
introduction to
PICKTCL

and file structure
88AOO782A01

RECORD OF REVISIONS

Title: Introduction to PICK TCL and File Structure

Document No. 88A00782A01

Date Issue

March 1984 Original Issue

NOTICE

The information contained in this document is subject to change without notice.

General Automation makes no warranty or representation with regard to this
material, including, but not limited to, the implied warranties of merchanta­
bility and fitness for a particular purpose. General Automation shall not be
liable for errors contained herein.

General Automation assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by General Automation.

This document contains proprietary information which is protected by copyright.
All rights are reserved. No part of this document may be photocopied or
reproduced without the prior written consent of General Automation.

This document embodies confidential information proprietary to PICK Systems
Inc.) and shall not be used, reproduced, copied, disclosed, or transferred in
any manner except under written agreement.

ii

introduction to
PICKTCL

and file structure
88AOO782A01

CopyrightC by General Automation. Inc.
1045 South East Street P.O. Box 4883

Anaheim, California 92803
(714)778-4800 (800)854-6234

TWX 910-591.1695 TELEX 685·513

RECORD OF REVISIONS

Title: Introduction to PICK TCL and File Structure

Document No. 88A00782A01

Date Issue

March 1984 Original Issue

NOTICE

The information contained in this document is subject to change without notice.

General Automation makes no warranty or representation with regard to this
material, including, but not limited to, the implied warranties of merchanta­
bility and fitness for a particular purpose. General Automation shall not be
liable for errors contained herein.

General Automation assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by General Automation.

This document contains proprietary information which is protected by copyright.
All rights are reserved. No part of this document may be photocopied or
reproduced without the prior written consent of General Automation.

This document embodies confidential information proprietary to PICK Systems
Inc., and shall not be used, reproduced, copied, disclosed, or transferred in
any manner except under written agreement.

ii

88A00782A

FOREWORD

The PICK Terminal Control Language (TCL) is the primary link between the user)
his files and what he wishes to do with the files. This document focuses on
TCL and the file structure.

It is recommended that "new" users of the ZEBRA/PICK system become familiar
with these sbjects before extensive use of the processor family is undertaken.

The following documents cover processors that can be called for carrying out
different operations with file data:

Document No.

88A00757A
88A00758A
88A00759A
88A00760A
88A00774A
88A00776A
88A00777A
88A00778A
88A00779A
88A00780A
88A00781A
88A00783A

Title

PICK Operator Guide
ACCU-PLOT Operator Guide
COMPU-SImET Operator Guide
Quick Guide for the PICK Operating System
PICK Utilities Guide
PICK ACCESS Reference Manual
PICK SPOOLER Reference Manual
PICK BASIC Reference Manual
PICK EDITOR Referance Manual
PICK PROC Reference Manual
PICK RUNOFF Reference Manual
PICK JET Word Processor Guide

!MACCU-PLOT is a trademark of ACCUSOFT Enterprises

TIICOMPU-SIlEET is a trademark of Raymond-Wayne Corporation

TMpICK is a trademark of PICK Systems

TMZEBRA is a trademark of General Automation, Inc.

iii/iv

Section

1

2

88A00782A

TABLE OF CONTENTS

Title

INTRODUCTION
1.1 KEY WORDS.

TERMINAL CONTROL LANGUAGE.
2.1
2.2
2.3
2.4

2.5
2.6
2.7

2.8
2.9
2.10
2.11
2.12

INTRODUCTION TO TERMINAL CONTROL LANGUAGE •••
TCL TYPE I INPUT STATEMENTS. • •
TCL TYPE II INPUT STATEMENTS • • • •
LOGGING ON AND OFF THE SYSTEM. • .
2.4.1 LOGGING ON TO THE SYSTEM • • . •
2.4.2 LOGGING OFF OF THE SYSTEM. • •••
ADDITIONAL LOGON FUNCTIONS: LOGTO, CHARGE-TO, AND CHARGES.
THE LOGON PROC AND GENERAL SYSTEM MESSAGES • • •
SETTING TERMINAL/LINE PRINTER CHARACTERISTICS:
TERM AND SET-TERM. • • • • • . • • • • •
SETTING TAB STOPS: TABS • • • • • •
MISCELLANEOUS UTILITY VERBS: TIME, SLEEP, WHO, MSG AND ECHO
MISCELLANEOUS UTILITY PROCS. • • • •
BLOCKING PRINTING: BLOCK-PRINT •
COPYING DATA: COpy • • • • • • • •
2.12.1 FILE-TO-FILE COPY ••••

2.12.1.1 COpy to Another Account.
2.12.1.2 COPY Options •••

2.13 PROGRAM INTERRUPTION: DEBUG FACILITY ••••

v

1-1
1-1

2-1
2-1
2-4
2-5
2-7
2-7
2-8
2-9
2-12

2-14
2-16
2-18
2-21
2-23
2-24
2-26
2-26
2-28
2-30

Section

3 FILE
3.1

3.2
3.3

3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15
3.16

88A00782A

Title

STRUCTURE • . • • • • • • • •
THE FILE HIERARCHY • • • . .
3.1.1 SYSTEM DICTIONARY (SYSTEM) •
3.1.2 USER MASTER DICTIONARIES (MOs) .
3.1.3 FILE LEVEL DICTIONARIES ••..
3.1.4 DATA FILES •••.••.•.•
FILE ACCESS. • . • • • • . • • • • • .
FILE STRUCTURE: BASE, MODULO, AND SEPARATION.
3.3.1 ITEM STORAGE AND THE HASHING ALGORITHM •.
SELECTING MODULO AND SEPARATION. • • . • • • .
CREATING FILES: CREATE-FILE AND CREATE-PFILE •
3.5.1 THE SHARING OF DICTIONARIES ••••.•.
CLEARING AND DELETING FILES: CLEAR-FILE AND DELETE-FILE ••
THE DICTIONARIES • • • • • • • • • • .
ITEM STRUCTURE (PHYSICAL) ••
ITEM STRUCTURE (LOGICAL) • •
FILE DEFINITION ITEMS ••••..•••
FILE SYNONYM DEFINITION ITEMS ••.
3.11.1 THE REFLEXIVE FORM OF THE Q-POINTER.
3.11.2 ACCOUNT SPECIFICATION. • • • • • • •
3.11.3 FILE SPECIFICATION ••.•••••.•.••.
3.11.4 EXTENSIONS TO THE FILE NAME REFERENCE.
ATTRIBUTE DEFINITION ITEMS • • • • • • . • • . . • • •
DICTIONARY ITEM: A SUMMARY • • • • • • • • . .
VERB DEFINITION ITEMS IN THE MASTER DICTIONARY • •
INITIAL SYSTEM FILES/DICTIONARIES. . • . .
SPECIAL FILES. . . . • . . • • • ••.
3.16.1 POINTER-FILES... • •.••.•.•
3.16.2 BASIC PROGRAM FILES •..••

vi

3-1
3-1
3-1
3-3
3-3
3-3
3-4
3-5
3-7
3-8
3-10
3-13
3-15
3-17
3-19
3-21
3-23
3-25
3-28
3-29
3-29
3-30
3-31
3-33
3-35
3-37
3-38
3-38
3-38

88A00782A

introduction 1
PICK is a user-friendly data base management system that allows multiple users
to instantly create, retrieve and update data stored in on-line files. Users
can cOlmnunicate with the system locally, or remotely, through keyboard
terminals.

One of the outstanding features of PICK is the ability to customize the
vocabulary for each use"r. Since the vocabulary words (called 'verbs') reside
in the individual user's Master Dictionary (MD), the vocabulary can be changed
as desired without affecting the other users. Communication statements can,
therefore, be in the user's language; and, those statements can be tailored
with words and phrases that are unique to the user's particular business field.

1 • 1 KEY WORDS

Before reading descriptions of the PICK verbs and their processors, the new
user should be introduced to key words that have special meanings. The
following words are not in strict alphabetic sequence. Words that are closely
related are grouped together to be more meaningful.

DICTIONARY

FILE

A dictionary is a "special" file. A dictionary contains items which define
the attributes which make up the (other) items in the data file associated
with it. A dictionary may also contains an item(s) which gives the size
and (disk) location of its associated data file(s). Every data file must
have its dictionary, although in some cases, it may share its dictionary
with similar files.

Physically, a file consists of a chain of disk areas in which its items are
stored. Although a dictionary is a file, usually "file" refers to a data
type file and dictionaries are called "dictionaries". Usually a file
contains similar types of items such as inventory or customer files, but
some files, such as program or word processing files, do contain dissimilar
i terns.

ITEM
A file record made up of attribute values. Items, in turn, make up a file.
Items in an inventory file could contain the part number, cost, vendor,
quantity on hand, date of last purchase, etc.

1-1

88A00782A

ITEM-ID
The name of an item in a file or the attribute position zero (0) in a
dictionary. Part number is usually the item-id in an inventory file;
customer number could be the item-id in an accounts receivable file.
An item-id may consist of numbers and/or letters or other characters except
certain characters reserved as "system delimiters". Blanks should be
avoided, if possible, but are allowed in an item-ide

ATTRIBUTE
A specific piece of data which, along with other attributes, makes up an
"item". Name, address, city, state, zip could be 5 attributes of the items
in a name and address file.

Attribute numbers and and attribute names are not stored in -an item, only
the values. The attribute number gives the relative position of the value
in the stored item.- This attribute position number is also called the MiC
of the attribute, meaning Attribute Mark Count.

An attribute is also referred to as a field.

FRAME
The disk storage on a PICK system is divided into 512 byte (character)
sections called "frames". Each frame is numbered and can be accessed
directly by the system using this number which is called the frame-id or
FlO.

GROUP
One or more disk frames linked together. The number of groups which are
reserved for a file is specified by the "modulo".

MODULO
The modulo is the number of "groups" of disk frames reserved for a file.
The modulo is specified at the time a file is created and is based upon an
estimate of the number of characters which will be contained in the file.

SEPARATION
This is the number of frames in a group. Separation times the modulo gives
the number of frames reserved for a file. Separation is usually "1",
although under special circumstances, it may be more. Separation is
specified at the time the file is created, but the system will
automatically add frames to the group when and if needed.

1-2

88A00782A

terminal control language

2.1 INTRODUCTION TO TERMINAL CONTROL LANGUAGE

Terminal Control Language (TCL) is the primary interface between the user and
the system. It is from TCL that all other processors (EDITOR, ACCESS, BASIC,
PROC, etc.) are invoked. The TCL processor is automatically entered at LOGON
and whenever a particular process run from TCL (such as an ACCESS or BASIC
process) is complete. The TCL prompt is a ')-.

2

A TCL statement calls into effect one of the TCL verbs (action-initiating
commands) res iding in the user's Mas ter Dictionary (HD) ~ihich ei ther perf orms
specified functions or invokes other processors to perform specified
functions. For example, the TIME verb prints the current time and date on the
terminal, while the RUN verb invokes the BASIC run-time processor which "runs'
the specified BASIC program. The general form of a TCL statement is:

TCL prompt character Options enclosed in Carriage return,
(or line-feed) Parentheses (must be at end)

!
)Verb { • Parameters ••• } { (Options) } {[cs_]} [CR]

!
Parameters as required by the
specific verb.

Optional continuation character
(Control-Underline or control-_).

The user is at the TCL level in the system when the system "prompts" with a")"
character. The ")" is printed at the far left on the terminal and indicates
that the system is awaiting input from the terminal.

~he.TCL verbs belong to three major categories. Type I verbs perform specified
functions, but do not access data in files; the TIME verb mentioned above is a
Type I verb. Type II verb functions involve the accessing of data in files;
the RUN verb mentioned above is a Type II verb. The third category is made up
of ACCESS verbs, which are discussed in the ACCESS Manual.

2-1

88A00782A

Note that the control character for the optional continuation character will
vary on different terminals, however, whatever control character corresponds to
ASCII US (hex IF) will perform the function on all terminals.

The user may create any number of synonyms for the verb definition items (and
may even remove the predefined verb definition items), thereby creating his own
vocabulary. Synonyms cay be created by copying the verb definition item into
another item with the desired name as the item-ide

A TCL statement consists of the TCL verb, any other parameters (words,
file-names, options, etc.) that the specific verb may require, followed by a
carriage return or line feed (shown as [CR] in the documentation). No action
is initiated until the [CR] is input.

All TCL statements may have an "options" entry as the last parameter; options
are single alphabetic characters, and/or a single or double number of the form

n or "n-m", where nand m may be decimal, or hexadecimal if preceded by a
period (.). The entire option string is enclosed in parentheses. Options
affect the operation of each verb in a unique way. General options are "P" for
routing data to the line printer and "N" for inhibiting the end-of-page wait at
the terminal. Multiple options may be separated by commas for clarity.
Examples of TCL statements are:

)TL'1E [CR]

)DUMP L,5000-5003 [CR]

)RUN BP LISTU (P) [CR]

>SORT INVENTORY WITH QUANTITY.ON.HAND > "200" BY QUANTITY.ON.HAND [cs] [CR]
: DESC PRICE QUAN EXT .PRICE (PI) [CR] (note options on second line f)"

2-2

88A00782A

During the entry of the TCL statement, certain editing functions are available
to the user. A control-H ([cR]) is used to BACKSPACE over the last character
input. Normally, the terminal will also physically backspace the cursor or
carriage to indicate that the last entered character has been deleted. A
control-X ([cX]) may be entered to DELETE entirely the last entered line; a new
line is initiated at the terminal hy the system. A control-W ([cW]) may be
used to backspace over the last WORD. A control-R ([cR]) may be used to RETYPE
the last line. Following is a summary of TCL editing functions:

Character

Carriage Return
[CR] (or line
feed) [LF]

Control-II
[BS]

Control-W
[ETB]

Control-X
[CAN]

Control-R
[DC2]

Editing Function

End of line.

Backspace over
last character.

Backspace ove r
last ~o1ord.

Delete last line.

Retype last line.

Control-Underline Line continuation
[US] character.

Comments

System will take action on TCL
statement.

No action if at left margin.
Character echoed by system may be
set by the TERM command.

No action if at left margin.

No action if at left margin; new
line will be started otherwise.

Must be followed immediately by a
[CR] • TCL will prompt with a ":"
for next line of input. May be used
repeatedly.

NOTE: The first five f~nctions listed are system-wide editing functions and
are applicable whenever the system requests data input from the user's
terminal. The last function listed is usable only by TCL and specific
other processors that allow multiple-line input. The control characters
used to generate a particular function will vary from terminal to
terminal. However, whatever control characters correspond to the ASCII
characters given in square brackets will perform the corresponding
funct.lon on all terminals.

2-3

88A00782A

2.2 TCL TYPE I INPUT STATEMENTS

TCL Type I verbs do not access a file. The format of the TCL statement is
unique to the specific verb (i.e., there is no general form of the TCL
statement using this type of verb).

A TCL-I input statement must begin with a TCL-I verb and end with a carriage
return, and may sometines include various parameter specifications. Some TCL-I
verbs are listed in Table 2-1. For further information regarding these verbs,
refer to Utilities and Spooler Hanuals.

Table 2-1. Some TCL-I Verbs

Verb Description

BLOCK-PRINT
CHARGES
CHARGE-TO
MESSAGE
MSG
OFF
P
StEEP

SP-ASSIGN
SP-STATUS
T-ATT
T-DET
TABS
TERM
TIME
WHAT
WHO

Sends block characters to spooler.
Prints current computer usage.
Keeps track of computer usage.
Communicates to other users.
Same a~ MESSAGE.
Terminates user's session.
Inhibits printing at terminal.
Puts a terminal to "sleep" for a specified time,
or until a specified time.
Sets up assignment status for the spooler.
Gives spooler and line printer status.
Attaches magnetic tape unit.
Detaches the magnetic tape unit.
Sets tabs for input or output.
Displays terminal characteristics.
Prints current time and date.
Prints current system parameters.
Prints the line number and account name to which
any terminal is logged on.

2-4

88A00782A

2.3 TCL-II INPUT STATEMENTS

TCL Type II verbs allow access to a specified file. The format for forming a
TCL-II input statement is more restrictive than for an ACCESS statement (refer
to the ACCESS Manual). The advantage gained by this restricted format is an
enhancement in processing speed since statement parsing is quicker.

A file-name (or DICT file-name) must immediately follow the TCL-II verb. Item
selection is more restricted than in ACCESS statements, since each item-id must
be explicitly named in the statement (or, alternatively, all items may be
specified via use of the asterisk (*) character).

The general form of a TCL-II statement is:

TCL-II verb file being accessed
!

options enclosed in parentheses
!

)Verb {DICT } file-name

Specifies access to
dictionary of file

{item-list} { (options) } {[cs_]} [CR]
!

specific items, or "*"j if
omitted, items are obtained
from a previously specified
select-list

The file-name specifies the desired file. The DICT option specifies the
dictionary portion of the file. The item-list is made up of one or more
item-ids, separated by one or more blanks. If an item-id contains embedded
blanks or parentheses, it must be surrounded by single quotes. All items in a
file may be specified by using an asterisk (*) character as the item-list.
Options, if specified, must be enclosed in parentheses at the end of the input
line. Multiple options may be separated by commas. The specified options are
passed to the appropriate TCL-II processor. Samples of TCL-II input statement:

>COpy MD LIST SORT (T) [CR]

)ED INVENTORY 123-987 [CR]

>RUN BASIC/PROGRAMS UPDATE/LISTS (D,P) [CR].

>COMPILE BASIC/PROGRAMS ALPHA (LMN) [CR]

The item-list may be omitted entirely, if the TCL-II statement is preceded by a
statement that generates a "select-list"; the item-ids are then obtained froIn
this preselected list. Statements that generate select-lists are SELECT,
SSELECT, QSELECT, and GET-LIST, and are described in the ACCESS Manual.

2-5

88A00782A

Some TCL-II verbs are:

Verb Description

COMPILE Compiles a BASIC program.

CATALOG Catalogs a BASIC program.

COpy Copies data files and dictionaries.

ED or EDIT Evokes the EDITOR processor.

RUN Executes a BASIC program.

RUNOFF Evokes the text processor.

For further information regarding these verbs, refer to the BASIC, EDITOR,
RUNOFF, and UTILITIES Manuals.

2-6

88A00782A

2.4 LOGGING ON AND OFF THE SYSTEM

The Logon processor provides a facility for initiating a user's session by
identifying valid users and their associated passwords. The Logoff processor
is used.to terminate the session and should always be evoked via the verb OFF
when the user wishes to terminate. These processors can accumulate accounting
statistics for billing purposes and also will associate the user with his
privileges and security codes.

2.4.1 LOGGING ON TO THE SYSTEM

The user may log on to the PICK Operating System when the following message is
displayed:

LOGON TO THE GA XX ZEBRA AT 00:00:00
PLEASE ENTER ACCOUNT NM1E >

NOTE

The actual form of this message will vary
from system to system, since the message
format is obtained from an entry called
"LOGON" in the SYSTEM Dictionary.

The user then enters the account name followed by a carriage return. The
system validates the user's identification (account name) against the entries
in the SYSTEM Dictionary; if it is illegal, the following message is returned:

USER-IO?

The user must then re-enter the account name.

If a password has been established, there will be a prompt:

PASSl-IORD:

He then enters the password followed by a carriage return. (The password is
not echoed back to the terminal when it is entered.) If a valid password is
not entered, the system will display:

PASSWORD?

The user must then reenter the account name and password.

The user may also enter the password at the time the account name is entered
by entering the account name, followed by a comma, followed by the password,
and then a carriage return. A password entered in this fashion will be
displayed on the terminal.

2-7

88A00782A

If the user has successfully logged on to the system (i.e., both the account
name and the password have been accepted), the following message is displayed:

«< R80 GENERAL AUTOMATION
«< 00:00:00 ZEBRA

>

REV: m.n »>
date»>

<.. TCL prompt.

where:

R80 is the PICK Operating System release level.
> is the TCL prompt character, which indicates that the user

may now enter any valid TCL level command.

2.4.2 LOGGING OFF OF THE SYSTEM

Logoff is achieved by entering the word OFF, either at the TCL level or at the
DEBUG level. A message indicating the connect time (i.e., number of Qinutes
that the user was logged on) and the appropriate CPU units will be displayed.
The system then displays the LOGON PLEASE message and waits for the next user
session to be initiated. The general form of the logoff message is as follows:

< CONNECT TIME • n MINS.; CPU - m UNITS; LPTR PAGES - x >
< LOGGED OFF AT time ON date >

where:

n is the number of minutes of connect time
m is the number of CPU units
x is the number of line printer pages generated
time is the current time
date is the current date

The CPU units represent usage of the CPU; it is in tenths of a CPU second.

2-8

88A00782A

2.5 ADDITIONAL LOGON FUNCTIONS: LOGTO, CHARGE-TO, AND CHARGES

The LOGTO verb allows the user to log to another account faster than by going
through the OFF and LOGON process. The CHARGE-TO verb allows the user to
charge a particular logon session to a specific charge number or name; the
CHARGES verb displays the charge statistics for the current logon session. An
example of the usage of these verbs:

* PLEASE ENTER ACCOUNT NAME > Sl1ITH, XYZ [CR]

*

*

*

«< R80 GENERAL AUTOMATION
«< time

>WHO [CR]
7 SMITH

>TlME [CR]

ZEBRA

09:17:00 11 DEC 1982

>LOGTO JONEA [CR]

USER-ID?

* >LOGTO JONES [CR]
* PASSWORD: ABC [CR]

REV: m.n »>
date »>

NOTE: The password is not displayed.)

< CONNECT TIL-IE =- 3 tUNS. j CPU - 11 UNITS, LPTR PAGES- 0 >

* >WHO [CR]
7 JONES

* >CHARGE-TO A001 [CR]

< CONNECT TIME - 0 MINS.; CPU=-7 UNITS, LPTR PAGES- 0 >

*

*

*

*

>WHO [CR]
7 JONES*A001

>CHARGES [CR]

< CONNECT TIME - 0 MINS.; CPU - 8 UNITS, LPTR PAGES- 0 >

>CHARGE-TO [CR]

< CONNECT TIME - 0 MINS.; CPU - 9 m~ITS) LPTR PAGES- 0 >

>WHO [CR]
7 JONES

2-9

88A00782A

The general form of the LOOTO verb is as follows:

LOGTO account-name {,password}

where:

account-name

pass\iord

is that of the other new account that the user wishes to
logon to.
is the valid password for the other account.

If the account has a password defined and the user has not entered a password,
the message:

PASSWORD:

will be displayed and the password may then be entered. This password will not
be displayed on the terminal.

If the account-name is illegal, the message:

USER-ID?

will be printed and the user will be back at TCL.

If the password is incorrect, the message:

PASS~-lORD?

will be displayed, and the user will be back. at TCL.

If the account-name and password are both correct, the current logon session
will be terminated by updating the accounting file with the appropriate
statistics, and a new session started. The message:

< CONNECT TIME - n MINS,; CPU - m UNITS, LPTR PAGES- x >

will be displayed.

Note that it is possible to enter the account name and password separated by a
comma on one line, however, this entry method will display the password on the
terminal.

Also, the tape unit and line printer will be detached, if the user had them
attached to his line prior to the LOGTO.

2-10

88A00782A

The CHARGE-TO statement has the following general form:

CHARGE-TO {text}

where:

text is any sequence of non-blank characters.

This statement will cause the current logon session to he terminated and the
account file to be updated with the appropriate statistics; a new session is
started, with the new user identification of the form:

account-name*text

where:

text is as specified in the CHARGE-TO statement.

This allows the user to charge his logon sessions to specific names or
numbers. If "text" is null in the CHARGE-TO statement, the user identification
will revert to the form "account-name" alone.

This CHARGE-TO statement will cause the following message to be displayed:

< CONNECT TIME - n HINS.; CPU - m UNITS; LPTR PAGES= x >

The CHARGES verb has the following form:

CHARGES

This will display the logon statistics with the following message:

< CONNECT TIME =- n HINS.; CPU =- m UNITS; LPTR PAGES= x >

2-11

88A00782A

2.6 THE LOGON PRoe AND GENERAL SYSTEM MESSAGES

Upon logon, PICK allows the execution of a PROC in the user's MD with an
item-id identical to the user's identification. PICK also allows a general
message to be sent to each user when he logs on to the system. Material in
this section will be covered in Section 2.9 of this manual and in the PROC
Manual.

When the user has logged on to his account, PICK permits the automatic
execution of a PROC in the user's MD whose item-id is the same as the user's
identification. That is, the Master Dictionary of the account will be searched
for a PROC matching the identification which was used to log on to the account;
if it is found, it will be executed.

Typically, the Logon PROC is used to perform standard functions that are always
associated with the particular user's needs. For example, setting of terminal
characteristics could be performed by the Logon PROC. When the user logs on to
the system, his terminal characteristics are set to the initial conditions as
follows:

Page Width:
Page Depth:
Line Skip:
LF Delay:
FF Delay:
Backspace:
Term Type:

Terminal

79
24
o
1
2
8
M

Printer

132 characters
60 lines

These conditions can subsequently be displayed and altered by the TCL verb
TERM. As an example, assume that the PROC listed as follows:

item 'SMITH' in MD of user SMITH

001 PQ
002 HTERM 118,44,7,6
003 P
004 X*** TERMINAL CHARACTERISTICS SET ***

is stored as item SMITH in the user's MD. If the user's identification is the
word SMITH, then the SMITH PROC will be executed automatically every time the
user logs on, and the user's particular terminal characteristics will
automatically be set. This is illustrated on the following page.

2-12

88A00782A

PLEASE ENTER ACCOUNT NAME > SMITH,XYZ [CR] <------------ Logon sequence.

**** NOTE: SYSTEM PRINTER WILL BE DOWN AT 12:00 <- General system
**** TODAY FOR ROUTINE t1AINTENANCE UNTIL 2: OOPM message.

«< R80 GENERAL AUTOMATION
«< time ZEBRA

REV: m.n »>
date »>

*** TERMINAL CHARACTERISTICS SET *** <------- Message from SMITH
PROC.

> <-- TCL prompt
character.

A general system message may be stored in the special item "LOGON" of the
system error-message file, ERRMSG. This file and the formats of the data in it
are described in the PICK Operator Guide. The general system message will be
printed immediately before the standard logon message

U«< RBO GENERAL AUTOMATION REV: m.n »>".

Typically, this facility is used to broadcast system messages relating to
everybody who logs on. Note that the item "LOGON" must exist in the ERRMSG
file even if there is to be no system-wide message; in this case, it will be a
null item.

2-13

88A00782A

2. 7 SETTING TERMINAL/LINE PRINTER CHARACTERISTICS: TE1U1 AND SET-TERM

Terminal and/or line printer characteristics may be displayed or set by a
process via the TERM command. The general form of the TERM command is as:

where:

a terminal line length (characters per line. Must be in range 16<a<140).

b number of print lines per page on the terminal.

c number of blank lines per page on the terminal (b + c a page length).

d number of delay or idle characters following each carriage return or
line feed. Used for terminals that require a pause after a carriage
return or line feed (the CPU generates characters faster than the
terminal can accept them).

e number of
If e - 0
If e ,.. 0
If e - 1
If e > 1

delay characters following each top-of-form.
No form-feed character sent to printer or terminal.
Form-feed character also output before each page.
Form-feed character sent to printer, not to terminal.
Form-feed character also sent to terminal at beginning of
each page, and that many delay or idle characters also sent
to give terminal time to settle after the form-feed. The
character sent to the printer is always X'OC' (ASCII FF).

f backspace character. An ASCII backspace (control-II) is always input to
backspace over (or erase) the last character that was input. User may
set actual character echoed to terminal to accommodate terminals that
cannot physically backspace, or have a backspace character other than
the ASCII backspace.

g line printer line length.

h line printer page length.

t terminal type code; changes the form-feed character sent by the system
to match terminal requirements and also sets the appropriate cursor
addressing for BASIC cursor functions. The letters used for supported
terminals are:
L LEAR-SIEGLER ADM-ll, T TELEVIDEO 925, 950

ADM-l2 V ADDS VIEWPOINT
M AMPEX, DIALOGUE 80 X No cursor addressing functions needed

2-14

88A00782A

Individual parameters may be null (specified by two adjacent commas in the
TERM command). If so, the previously defined parameter remains in force. A
TERM command without a parameter list causes display of the current
characteristics. To function properly, the t parameter must be the last
element in any TERM string. It may be the only element if no other elements
are to be changed. The other parameters are positional, however.

The general form of the SET-TERM is the same as the TERM command

SET-TERM {a,b,c,d,e,f,g,h,t}

The SET-TERM verb sets the default printer and terminal characteristics for
subsequent logons on all terminals. This verb is present only on accounts with
SYS2 privileges. A sample usage of TERM:

)TEIU1 [CR]

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP
LF DELAY
FF DELAY
BACKSPACE
TERM TYPE

TERMINAL
79
24
o
1
2
8
M

PRINTER
132

60

Standard terminal characteristics set for the DIALOGUE 80 terminal.

)TERM "",,120,48 [CR]
)TERM [CR]

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP
LF DELAY
FF DELAY
BACKSPACE
TERM-TYPE

TERMINAL PRINTER
79 120
24 48
o
1
2
8
M

Resets the line printer page size to 120x48.

2-15

88A00782A

2.8 SETTING TAB STOPS: TABS

Tab stops may be set with the TABS statement. The general form of the TABS
command is as follows:

TABS I or 0 nl,n2,n3 •.••••

or

TABS I or 0 {S}

where:

I or 0 may be set for input or output, by setting either
"I" or "0'· following the TABS verb.

nl, n2, etc. are up to 15 tab-stop positions; they must be in ascending
numerical sequence.

S recalls previously set tabs.

Tabs set for input are then available at any time that the system requests
input from the terminal. By entering a contro1-I ([cI]), the system will space
over to the next tab-stop position, if any. If there are no more tab-stop
positions, the [cI] is ignored (contro1-1 is also generated by the TAB key on
some terminals). The tab stops set by the TABS I statement are identical to
those set by the TB statement in the EDITOR.

Tabs set for output are only useful for terminals that have a physical tabbing
capability. Do not set output tabs for a CRT that does not have this feature!
If output tab stops are set, the system will replace blank sequences in any
output generated by the system by an appropriate tab character [cI], thus
reducing the data output. The user must also set up the physical tab stops on
the terminal to correspond to those set in the TABS 0 statement. On many
terminals, this entails positioning the carriage and entering a set-tabs
sequence from the keyboard.

Input or output tab stops may be disabled by entering "TABS I" or '·TABS 0"
respectively. Previously set tab stops may then be recalled by entering
"TABS I S" or "TABS 0 sot for input and output tab stops respectively.

Currently set tab stops can be displayed by entering "TABS" alone.

2-16

88A00782A

Examples of TABS:

)TABS I 4,8,12,16,20,24,28 [CR] (sets input tab stops)

)TABS 0,10,20,30,40,50,60 [CR] (sets output tab stops)

)TABS [CR] (displays current tab stops)

1 2 3 4 567
1234567890123456789012345678901234567890123456789012345678901234567890

I I I I I I I ° 0 0 0 0 0

)TABS ° [CR]

)TABS [CR]

(turns off output tab stops)

1 2 3 456 7
1234567890123456789012345678901234567890123456789012345678901234567890

I I I· I I I I

)TABS I 5,15,20,40,50 [CR]

)TABS 0 S [CR]

)TABS [CR]

(recalls previous output tab stops)

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

I I I I I
000 000

2-17

88A00782A

2 .9 MISCELLANEOUS UTILITY VERBS: TIME, SLEEP, WHO, MSG AND ECHO

The TIME statement displays the current system time and date; its general form
is:

TIME

For example,

>TL'1E [CR]
09:11:23 11 DEC 1982

The WHO statement is used to display the account-name that a terminal is logged
on to; its general form is:

WHO {n}

If WHO is entered without the n, the line number (channel number) of the
user's terminal is displayed, along with th~ account-name that he is logged on
to. If the "not is specified, the same data is displayed for line number "n",
where n ranges from 0 to the maximum number of lines on the current system. If
the line is non-existent, or if no user is logged on to that line, the
account-name is replaced with "UNKNOWN".

Lines which have the name UNKNOWN and which are actively processing suggest
that something strange is happening on the system, unless they are spoolers or
you have an account on the system by the name of Ul~NOWN.

Not only may one specify a line, but one may specify a range of lines as well.
Any non-numeric character will cause WHO to display all lines and their logon
name.

For example,

>WHO [CR]
07 SMITH

)WHO 0 [CR]
00 SYSPROG

)WHO 11 [CR]
11 UNKNOWN

>WHO * [CR]

)WHO 1-3 [CR]

01 JOHN
02 SYSPROG
03 UNKNOWN

>WHO 'SYSPROG' [CR]

(this is line-number 7, logged on to "SMITH e
,)

(line number 0 is logged on to SYSPROG)

(line number 11 is not logged on)

(displays accounts using all lines; lines
which are not logged on display UNKNOWN.)

(displays all lines logged onto the SYSPROG
account)

2-18

88A00782A

The SLEEP verb is used to put a terminal to "sleep", that is, to enter a
quiescent state for a specified period of time, or until a specified time. Its
general form is:

SLEEP x

where:

x is either a decimal number specifying the number of seconds to sleep,
or is of the form: "hh:mm:ss" or "hh:mm:", specifying a time in
24-hour format until which to sleep.

SLEEP is useful to cause a terminal to wait until some time to run a task; for
instance, the FILE-SAVE may be run at 23:00 (11:00PM) every night. For
example:

)SLEEP 100 [CR]

)SLEEP 23:00 [CR]

(terminal ,,,ill sleep for 100 seconds)

(terminal will wake up at 11:00 pm) .

The form of SLEEP with a wake-up time is usable for a maximum of 24 hours.

The MSG (or MESSAGE) statement allows one user to send a message to another.
The general form of the MSG statement is:

MSG account-name •••••• Message text •••••• [CR]

where:

account-name is the name that the other user is logged on to and the
text of the message follows

The message text is not edited in any way; there is no "options" parameter in
the MSG statement.

Note that ALL users who are logged on to the specified account-name will
receive the message.

Users with system level 2 privileges can broadcast a message to all users by
substituting an asterisk (*) for the "account-name" in the rISG statement. This
message will be received by the user's terminal also.

2-19

88A00782A

A user who was entering data when a message is received may lose up to 16
characters due to the interference of the message; he should use the retype
line character ([cR]) to see exactly what data is left.

Examples:

)MSG JONES*AOOOl WHAT'S THE STATUS OF THE INVENTORY REPORT??? [CR]

)~mSSAGE JONES HELLO THERE! U%%%%",% [CR]

USER NOT LOGGED ON (JONES is not logged on).

)MSG * SYSTEM FILE-SAVE WILL START IN 5 MINUTES!!1 [CR]

The MESSAGE and MSG verbs may be used to direct a message to a particular line
as well as to a particular user by preceding the line number with an
exclamation mark (1). This form of the verb will send messages to terminals
which are not logged on. Further, the user may send a message to all lines,
signed on or not, through a special form of this verb. The following outlines
the syntax:

MESSAGE !12 HELLO Send the message 'HELLO' to the user on line 12.

MSG !* SIGN OFF NOW Sends a message to all terminals connected to
the computer.

The ECHO verb suppresses printing on the terminal The general form is:

ECHO {(I)} or {(L)}

The function of this verb is to toggle the switch in each user's PIB indicating
whether or not characters typed in are to be echoed to the terminal. Thus,
typing ECHO in normal mode will cause all further typing to be echo-suppressed.
Similarly, typing ECHO in suppressed mode will cause echoing to resume. The
user may also force a particular echo status: ECHO (I) will force echo
suppression, ECHO (L) will force echoing.

2-20

88A00782A

2.10 MISCELLANEOUS UTILITY PRoes

This section describes commonly used utility PROCs. For a complete description
of all utility verbs and PROCs, see the Utilities }lanual.

CT PROC

The CT PROC is invoked by typing:

CT file-name item-list {options}

The item(s) specified will be copied to the terminal. Options recognized by
the COpy verb may be added.

LISTACC PROC

The LISTACC PROC is invoked by typing:

LISTACC {account-name(s)}

This PROC lists accounting data for the account-name(s) specified. If no
account-name(s) are specified, accounting data for all users will be listed.

LISTCONN PROC

The LISTCONN PROC is invoked by typing:

LISTcorm {file-name} {(P)}

This PROC sorts all connectives in any dictionary and lists them on the
terminal (or the line printer if P is specified). If no file-name is
specified, the account's master dictionary will be used.

LISTDICT PROC

The LISTDICT PROC sorts all attribute synonym definition items in any
dictionary and lists them on the terminal (or the line printer if P is
specified). If no file-name is specified, the account's master dictionary will
be used. The general form is:

LISTDICTS {file-name} {(P)}

LISTFILES PROC

The LISTFILES PROC sorts all file or file synonym definition items in any
dictionary and lists them on the terminal (or on the line printer if P is
specified). If no file-name is specified, the account's master dictionary will
be used. The general form is:

LISTFILE {file-name} {(P)}

2-21

88A00782A

LISTPROCS PROC

The LISTPROCS PROC sorts all PROCs in any file or dictionary and lists them
along with a brief abstract on the terminal (or the line printer if P is
specified). If no file-name is specified, the account's master dictionary will
be used. The general form is:

LISTPROCS {file-name} {(P)}

LISTU PROC

.The LISTU PROC lists the account name of all users currently active on the
system, along with their logon time and channel number. The general form is:

LISTU or LISTUSERS

LISTVERBS PROC

The LISTVERBS PROC sorts all verbs (not PROCs) in any dictionary and lists them
on the terminal (or on the line printer if P is specified). If no file-name is
specified, the account's master dictionary will be used. The general form is:

LISTVERBS {file-name} {(P)}

2-22

·88A00782A

2.11 BLOCKING PRINTING: BLOCK-PRINT

The BLOCK-PRINT command will print characters in a block-form on the line
printer or the user's terminal, respectively. Any ASCII characters may be
printed.

The general form of the BLOCK-PRINT command is as follows:

BLOCK-PRINT character-string {(P)}

This command causes the specified character-string to be block-printed on the
terminal. Any character-string containing single quotes (') must be enclosed
in double quotes ("), and vice versa. The surrounding quotes will not be
printed. A character-string not containing quotes as part of the string need
not be surrounded by quotes.

The option "p" will route the output to the line printer.

Character-strings to be blocked cannot have more than eight characters (the
total number of characters must not exceed the current line length set by the
most recent TERM command).

If a BLOCK-PRINT command is illegally formed, any of the error messages 521
through 525 may be displayed.

2-23

88A00782A

2.12 COPYING DATA: COpy

The COpy processor allows the user to copy items from a file to the terminal,
the line printer, to the same file, or to another file (either in his account
or in some other user-account).

The COpy processor is invoked via the COPY verb, which is a Type II verb
and therefore takes on the Type II format. The general form of the COpy
command is:

COpy {DICT} file-name item-list {(options)}

The file-name parameter specifies the source file. The item-list specifies the
items to be copied and consists of one or more item-ids separated by blanks, or
an asterisk (*) specifying all items. The options parameter, if used, must be
enclosed in parentheses. Options are described in the next section.

Once a COpy command has been issued, the COpy processor will respond in
different ways depending on whether the copy is to the terminal, line printer,
or to a file. Copy to the terminal may be specified by the presence of the "T"
option, copy to the printer is specified by the "pIt option. If neither of these
options is specified, . the copy is to a file.

On a terminal or line printer copy, the data is displayed in the following
format:

item-id
001 attribute one
002 attribute two
003 attribute three

nnn last attribute

For example, the item "ITEMX" in the SAMPLE-FILE may be copied to the terminal
as follows:

>COPY SAMPLE-FILE ITEMX (T) [CR]

ITEMX
001 3745
002 SMITH, JOHN
003 1234 ~1AIN STREET

2-24

88A00782A

If the copy is a file-to-file copy, the processor will respond with:

TO:

The response to this request is in the form:

{(} {DICT} file-name {item-list}

where:

1. If the data is to be copied to a different file, the destination
file-name is entered preceded by a left parentheses; the word DICT may
optionally precede the file-name if the data is being copied to a
destination dictionary file instead of a data file.

2. If the data is being copied to the same file, the left parentheses
is omitted.

3. If the item-ids of the items being copied are to be changed, the list
of new item-ids must follow.

4. If only a carriage return is entered to the "TO" request, a copy to the
terminal is performed (just as if the original COpy statement had used
the "T" option).

This is discussed further in the next sections.

2-25

88A00782A

2.12.1 FILE-TO-FILE COpy

Multiple items may be specified as the source and as the destination in the
COpy statement. Multiple item-ids are separated by blanks, unless the item-id
itself has embedded blanks, in which case the entire item-id must be enclosed
in double quotes (" H).

For example, the item-list may be:

1024-24 1024-25 "TEST ITEM" ABC

which specifies four item-ids, "1024-24," "1024-25," "TEST ITEM," and "ABC".

Item-ids may be repeated within the item-list. There may be different numbers
of items within the source and destination lists. If the source item-list is
exhausted first, the COPY terminates. If the destination item-list is
exhausted first, the remainder of the items are copied with no change in
item-ide

If the items are to be copied without any change in the item-ids, the
destination file item-list may be null.

If it is desired to copy all existing items, an asterisk (*) may be used as the
source file item-list.

If a preselected list of ite~ is to be copied, the source item-list should be
null; in this case, the COpy statement must be preceded by a SELECT, SSELECT,
QSELECT, or GET-LIST statement.

When copying from one dictionary to another, the COpy processor does not copy
dictionary items with O/COOE of "0" (i.e., the O-pointers). D-pointers must
only be created by the CREATE-FILE processor. To recreate both the dictionary
and the data sections of one file in a new file, a command sequence, such as
shown in Example C on the following page, must be used.

2.12.1.1 Copy to Another Account

When copying to a file in another account, it is necessary to set up a
Q-pointer to that account. Q-pointers, or File Synonym Oefinition items, are
discussed in Section 3.11 of this manual.

2-26

88A00782A

Example A - Copying items to the same file:

>COpy DICT SAMPLE COST
TO: PRICE [CR]

(I) [CR] <------ Single dictionary
item copied

1 ITEMS COPIED

>COpy SAMPLE 1242-01 [CR]
TO: 1242-99 [CR]

<---------- Single data item
copied

1 1242-01
1 ITEMS COPIED

<---------------------- Item-id is listed

>COPY FLAVORS RED WHITE BLUE
TO: ALPHA BETA GAMMA [CR]

1 RED
2 WHITE
3 BLUE

3 ITEMS COPIED

[CR] <--- Hultiple data items
copied

Example B - Copying items to a different file:

>COPY DICT SAMPLE * (I) [CR] <-------- All dictionary
TO: (DICT FLAVORS [CR] items copied
[418] FILE DEFINITION ITEM 'SAMPLE' liAS NOT COPIED

2 ITEMS COPIED

Example C - Recreation of entire dictionary and data sections:

>CREATE-FILE (NEW-SAMPLE 1,1 3,1) [CR] <------ New file created

[417] FILE 'NEW-SAMPLE' CREATED; BASE - 15417, MODULO = 1, SEPAR - 1
[417] FILE 'NEW-SAMPLE' CREATED; BASE = 15418, MODULO • 3, SEPAR - 1

>COPY DICT SAMPLE * (I) [CR] <----------- All dictionary items
TO: (DICT NEW-S&~LE) [CR] (except D-pointer) copied
[418] FILE DEFINITION ITEM 'SAMPLE' WAS NOT COPIED

3 ITEMS COPIED
>COPY SAMPLE * (I)
TO: (NEW-S&~LE

22 ITEMS COPIED

[CR] (---------------- All data items copied
[CR]

2-27

88A00782A

2.12.1.2 COpy Options

This section describes the options that may be specified in the COPY
statement.

The general form of the COpy command is:

COpy {DICT} file-name item-list {(options)}

The "options" parameter, if used, must be enclosed in parentheses. Options are
single alphabetic characters; multiple options may be strung together, or
separated by commas for clarity.

Table 2-2 describes the options used by the COpy processor. Note that some
options operate differently depending on whether the copy is to the terminal or
line printer or is a file copy.

2-28

Option

A

u

F

I

M

N

N

p

S

S

T

x

n

*NOTES

88A00782A

Table 2-2. COpy Processor Options

Note*

1

2

1

1

2

1

1

2

1

Description

Activates assembly MLIST format.

Delete item. On a file copy, the original (source)
item is deleted from the file after it is copied.

Form-feed. On a copy to the terminal or the line
printer, item will cause a new page to begin.

Item-id list suppress. On a file copy, will inhibit
the listing of item-ids copied.

Activates Macro (Assembly) format.

New item inhibit. On a file copy, will not copy the
items to the destination file unless the item
already exists there. New items will not be
created if this option is set.

No page. On a terminal copy, will inhibit the
automatic end-of-page wait.

Overwrite items. On a file copy, will copy the
item to the destination file even if it already
exists on file.

Printer copy. Copies the data to the SPOOLER.

Suppress error messages. On a file copy, messages
indicating that items were not copied (messages 409,
415, and 418) will not be printed.

Suppress line numbers. On a copy to the terminal or
line printer, the line nUDbers will not be displayed

Terminal copy. Copies the data to the terminal.

Hexadecimal format. On a terminal or line printer
copy, the data is displayed in hexadecimal form.

An integer number indicating the number of items to
be copied. Used for copying data for test files.

1. Valid only on a FILE copy.
2. Valid only on a nON-FILE (terminal or line printer) copy.

2-29

88A00782A

2.13 PROGRAM INTERRUPTION: DEBUG FACILITY

Processing can be interrupted by pressing the BREAK key on the terminal (INT
key on some terminals). This causes an interrupt in the current processing and
an entry into the DEBUG state. This is inhibited during critical stages of
processing.

When the BREAK (or I!IT) key has been pressed and the DEBUG state has been
entered, the following message will be displayed:

I x.d

where:

x and d describe the software location of the interruption.
is the DEBUG prompt character and is displayed to prompt
the user for a DEBUG command.

For users with system privilege levels 0 or 1, the commands listed below are
the only DEBUG commands allowed. Users with system privilege level 2 should
refer to the PICK Operator Guide for further DEBUG facilities. The user should
note that pressing the BREAK key while in the terminal input or output mode
will cause a loss of up to 16 characters. If in the input mode, the retype
line character (control-R) should be used to check the 108s of data after
returning from DEBUG via the G command.

Command

P

G or g or
LINE FEED

END or end

OFF or off

Description

Print on/off. Each entry of a P command switches (toggles)
from print suppression to print non-suppression. The
message OFF is displayed if output is currently suppressed.
The message ON is displayed if output is resumed. This
feature is useful in limiting the output at the terminal.

Go. This command causes resumption of process execution from
the point of interruption. G or LINE FEED cannot be used if
a process ABORT condition caused the entry to DEBUG.

Terminates current process and causes an immediate return
to TCL or to the LOGON PROC if the RESTART option is in
effect.

Terminates current process and causes the user to be logged
off the system.

Upon encountering one of the hardware abnormal conditions, the system will
automatically trap to the DEBUG state with a message indicating the nature and
location of the abort. If the user has system privileges level 0 or 1, he must
type END or OFF to exit from the DEBUG state.

2-30

88A00782A

file structure

3.1 THE FILE HIERARCHY

This section describes the nature of the files in the PICK Operating System.
Throughout this section, the following terms will be used:

Name

Item
Attribute
Item-id

Conventional Data Processing Name

Record
Field
Record Key

3

Files are organized in a hierarchial structure, with files at each level
pointing to multiple files at the next lower level. Four distinct file levels
exist:

1. System Dictionary
2. User Haster Dictionary
3. File Level Dictionary-
4. Data File

The hierarchial file structure is illustrated in Figure 3-1. The term "file"
refers to a mechanism for maintaining a set of like items logically together.
The data in a file may be accessed via the "dictionary" associated with it. A
dictionary is like the "index" to a file. Since the dictionary itself is also
a file, it contains items like a data file. The items in a dictionary serve to
define lower level dictionaries or data files.

The system can contain any number of files. Files can contain any number of
items and can automatically expand to any size. Items are variable length and
can contain any number of fields and characters so long as the data in an item
does not exceed a maximum of 32,267 bytes.

3.1.1 SYSTEM DICTIONARY (SYSTEM)

The highest level dictionary is called the System Dictionary (SYSTEH). The
System Dictionary contains all legitimate user Logon names, along with
associated passwords, security codes, restart and history update flags, and
system privileges. The Logon names and related information are stored as items
in the System Dictionary. These items function as pointers to the user's
Master Dictionary.

3-1

Level 0

~evel 1

Level 2

Level 3

88A00782A

System Dictionary

+-----------------------------+
I Account names with I
I passwords accounting I
I information. I
+-----------------------------+

I
I
~

Master Dictionary (MD)

+-----------------------------+
I Vocabulary items; I
I verbs, modifiers, etc.; I
I file-names. I
+-----------------------------+

I
L

File Dictionary

+------------------------------+
I Data definitions and I
I inter-relationship I
I definitions. I
+------------------------------+

I
!

File Data
+-------------------------------+
I Data items. I
+-------------------------------+

One per system

One per account

At least one per data
file, or data files

Figure 3-1. The Four-Level File Hierarchy

3-2

88A00782A

3.1.2 USER MASTER DICTIONARIES (MDs)

The Master Dictionaries (MOs) comprise the next dictionary level. Each user's
account ~iill normally have a unique MD associated with it. The MD contains
items which store the definitions of all user vocabulary (verbs, PROCs, etc.)
and items which function as pointers to accessible files.

When an account is created, a standard set of MD vocabulary items are stored in
the account's MD. A user may, however, create synonyms to, and abbreviated
forms of, these standard vocabulary elements (since they are merely items
within his MD file) by creating copies of the elements. The user can also add
statements called PROCs to the prestored vocabulary.

The file pointers can reference any file or dictionary in the system (i.e.,
they are not restricted to files defined within the user's account alone).

3.1.3 FILE LEVEL DICTIONARIES

The File Level Dictionaries describe the structure of the data within the
associated data files. They also contain pointers to the associated data level
files. A file level dictionary may be shared by more than one data level file.

Some dictionaries do not have an associated data file; these are called "single
level" files. Data in a single level file are stored within the dictionary
itself.

3.1.4 DATA FILES

The Data Files contain the actual data stored in variable record/field length
format. In addition to the normal record/field data structure, an attribute
(field) can contain multiple values, and a value, in turn, can consist of
multiple subvalues. Thus, data may be stored in a three-dimensional variable
length format.

3-3

88A00782A

3.2 FILE ACCESS

A file is a logical structure which associates a set of items so that they can
be accessed for both retrieval and update.

The file access system is designed to allow the access of a particular item (or
a number of particular items) in a file, or to access consecutively all items
in a file.

Items are individually variable in length. The maximun size of an item is
32,267 bytes. There is no limit to the number of items which may be contained
in a file, nor any limit to the number of files in an account. Each item has a
"name" which is called its item-ide An item-id is an item identifier (key or
name) that must be unique tQ the file which contains it.

Items are stored in the file in a "pseudo-random" sequence; this sequence is
determined by the result of a computational "hashing" (randomizing) technique
employed by the system for storage and retrieval of data on disk. This
technique uses the item-id and other predefined parameters for the file to
produce the disk-address (Frame-Identifier or FID), which identifies the
location of the item.

Items that are stored in a file may be accessed directly, using the item-id as
the key, or sequentially in the pseudo-random sequence. If items are to be
accessed in any sorted sequence, a preliminary pass through the file to
generate the sort sequence is needed (see SORT and SSELECT functions in the
ACCESS Manual). The result of the preliminary pass is a "list" of item-ids;
this list may be saved for future use or used immediately to access the items
in the file in the required sorted sequence (see SAVE-LIST and GET-LIST
functions in the ACCESS Manual).

The direct file access technique, which uses the item-id to locate the item
within the file, is an efficient method of locating data, and lends itself to
the on-line nature of the PICK system. The system overhead required to access
an item using this technique is essentially independent of the actual size of
the file.

Special reserved characters are used as delimiters for storing data within an
item. Attributes are separated by "attribute marks" ("', hexadecimal value
X'FE') which may be subdivided into values by "value marks" ('l', hexadecimal
value X'FO'); the values may, in turn, be subdivided into subvalues by
"subvalue marks" ("', hexadecimal value X'FC'). This structure allows each
attribute (including values and subvalues) to be of a variable length. This
structure is discussed further in Section 3.8.

3-4

88A00782A

3.3 FILE STRUCTURE: BASE, MODULO, AND SEPARATION

The physical boundaries of the random access file are defined by three
parameters: the Base, t1odulo, and Separation. The physical boundaries are
stored in the associated dictionary of the File Definition Item. The item-id
of this item is the file-name.

Files are defined at the time of creation by these three parameters:

Base

Modulo

Separation

Is the physical disk address (Frame-Identifier or FlO) of
the start of a contiguous block of reserved disk space.
~ase is automatically selected by the system.

Is the number of groups that the file space is logically
divided into (sometimes called "buckets"). 11odulo is
selected by user.

Is the number of sequential frames per group. Separation
is selected by user. Default separation is 1.

The numbers chosen for Modulo and Separation determine how efficient the file
access method tlill be. An algorithm for optimum selection is presented in the
next section.

The Base, Modulo, and Separation of the file are stored by the CREATE-FILE
processor when the file is created. These parameters should never be altered
in any way by the user!

Therefore, at the time of file creation, a contiguous block of disk space is
reserved. The size of this contiguous block is Modulo*Separation and is called
the "PRIMARY SPACE" allocated to the file. This does not, however, define the
TOTAL space available for the file. As data is placed into each group, the
group may overflow by linking on additional disk frames as needed. There is no
theoretical limit to this growth, other than the physical limit of disk space
available. In practice, however, a group should be kept as small as possible.
This may be achieved by the optilnum selection of the file's Modulo.

3-5

88A00782A

The following shows INVENTORY file's defined base, modulo and separation:

Item "INVENTORY" in the MD: (Dictionary level file)

INVENTORY

001 D
002 17324 <-----(base)
003 3 <---------(modulo)
004 1 <---------(separation)

FID "Primary" space allocated to the
INVENTORY dictionary file.

17324 1st group

17325 2nd group

17326 3rd group

Item "INVENTORY" in the dictionary INVENTORY: (Data level file)

INVENTORY

001 D
002 17573 <-----(base)
003 373 <-------(modulo)
004 1 <---------(separation)

FID "Primary" space allocated to the
INVENTORY data file.

17573 1st group

17574 2nd group

17945 Last group

3-6

88A00782A

3.3.1 ITEM STORAGE AND THE HASHING ALGORITHM

The system employs a computational group hashing technique which uses the
item-id and the file parameters defined at the time of file creation.
This te~hnique generates the disk address (FID) of the group in which the item
is stored.

The hashing formula used by the system to store or retrieve items is similar to
the BASIC program shown below:

X • 0
FOR J = 1 TO LEN(ITEMID)

X • X*10 + SEQ(ITEMID[J,l])
NEXT J
GROUP • REM(X,MODULO)
FID = GROUP*SEPARATION + BASE

where:

ITEMID contains the sequence of characters in the item-ide
The LEN function returns the number of characters in the item-ide
The form lTEMID[J,l] extracts the j-th. character of the item-ide
The SEQ function converts the above character to binary for addition.
The REM function returns the remainder of the division of X by HODULO.
And FID is the resulting disk address where the item may be found.

The item-id is treated as a variable length string of binary bytes; these bytes
are accumulated sequentially with each partial sum being multiplied by 10.
Dividing this value by the positive integer Modulo yields an unsigned integer
remainder within the range:

o <- Remainder < MODULO

This is then the group number (i.e., 0, 1, 2, ••• , up to Modulo - 1) where the
item is to be stored. Multiplying by the Separation and adding the Base yields
the actual FID of the first frame in the group.

After computing a FID to locate the specific group in which the item resides,
each item's item-id in the group must be compared for a "match." The frames
comprising a group are linked both forward and backward. This system facility
makes the group appear as a physically sequential string, where items are
stored one immediately after another. In fact, any portion of an item may
spill across a pQysical frame boundary.

When a file is created, it is allocated a primary area of .frames, the number of
frames being: Modulo*Separation. Thus, this amount of contiguous disk space
is permanently allocated to the file. As the file grows, individual groups may
fill up. When this happens, an additional frame is added to the group from a
pool of available space. This additional frame is linked into the group to
increase the length of the logically sequential group. Additionally, if a
delete or update causes the group to shrink, any unused frames outside the
primary area are returned to the pool of available space.

3-7

88A00782A

3.4 SELECTING MODULO AND SEPARATION

Effective file accessing and efficient disk utilization depends on proper
selection of modulo and separation.

"Modulo" is the number of groups in a file; "Separation" is the number of
contiguous frames per group. When a file is created, the user specifies its
Modulo and Separation. The frames allocated by the system (Modulo*Separation)
are referred to as the "primary" file space. As data is placed into the file,
any group may overflow by attaching frames from the available system space
pool; this space is referred to as the "overflow" file space.

When an item is to be added to a file, its item-id is "hashed" or converted
into a large number by a multiplication process. This number is then divided
by the modulo of the file. The remainder of this division is the "group" into
which the item will be placed. This method will produce an even distribution
of items in each group.

A proper selection of the "modulo" parameter is essential to minimize this
search time.

In the current file structure, a Separation parameter of more than 1 will be of
use only if the average item size is greater than 1000 bytes, in which case, a
few disk reads are avoided when searching for (reading) an item in the prime
file space. In all other cases, particularly in a multi-user environment, the
disk head will almost certainly have moved between the moment that a process
requests one frame of a group and the next; therefore, whether the next linked
frame of the group is contiguous (i:e., if the separation is greater than 1) or
not makes a marginal difference.

The number of groups in a file directly affects the search and update time for
an item in the group. The Modulo selection process will attempt to make the
average GROUP length between 1 and 2 frames. However, if the item size is of
the order of 250 bytes or greater, this rule must be modified; you should then
try to minimize as far as possible the average number of frames in a group.
Therefore, the average number of items in a group should be selected with the
average item size in mind; the larger the item size, the smaller the number of
items in a group.

The number of disk reads, which is the factor that causes the most degradation
of overall system response, increases dramatically as the number of frames per
group increases, due to the fact that on the average, one-half of the frames in
a group have to be written back to the disk after an item update. In order to
update an item in a group, the system must read every frame in the group, and
write and verify one-half of them, With this in mind, Tables 3-1 and 3-2
should be used as a guide in selecting Modulo. Separation should be 1.

3-8

88A00782A

The discontinuities in the items/group columns are because the selection of
the number is such that the bytes/group figures are close to integral multiples
of frames (500, 1000, 1500, etc.). The last figure, 0.8 items/group, may be
used for files with relatively f~w items that are very large, such as Assembly
or BASIC program files. If the number of items in such a file is also very
large, adjust the items/group figure upwards, since the lower figure will
result in a lot of wasted disk space. Using the table, you can select an
appropriate items/group value; knowing the expected number of items in the file
then gives you the approximate ~lodulo. Note that Modulo must not be a multiple
of 2 or 5, and should preferably be a prime number.

Table 3-1. Selecting Items/Group

If Then Average
Average Item Size Items/Group

Is: Should Be:

20 X 22.0 ..
35 X 13.0 •
50 X 9.0 =
75 X 12.0 ..

100 X 9.0 •
125 X 7.5 •
150 X 6.0 :I

175 X 8.0 •
200 X 7.0 ..
250 X 5.8 :I

300 X 6.4 :I

350 X 5.5 :I

400 X 4.8 :I

500 X 3.8 :I

1000 X 3.0 ..
5000 X 0.8 :I

Table 3-2. Examples of Computing Modulo

Approximate
Average Item

Size

20
40

210
4000

Number
of Items

800 /
5000 /
1800 /

230 /

Items/Group
(From Table 3-1)

22.0 -
11.0 :I

7.0 :I

1.0 ..

3-9

And Average
Bytes/Group
Will Be:

440
455
450
900
900
937
900

1400
1400
1450
1920
1925
1920
1900
3000
4000

Approximate
Modulo

36
454
257
230

88A00782A

3.5 CREATING FILES: CREATE-FILE AND CREATE-PFlLE

The CREATE-FILE processor generates new files and dictionaries in the system.
It creates file dictionaries by reserving disk space and inserting a "0" entry
in the user's MD which points to the file-level dictionary, and creates data
files by reserving disk space and placing a pointer to the space in the file
level dictionary. CREATE-FILE will automatically locate and reserve a
contiguous block of disk frames from the available space pool. The user need
only specify values for the Modulo and the Separation of both the file
dictionary and the data area. For a discussion of the values to use for Hodulo
and Separation, refer to Section 3.4, SELECTING MODULO AND SEPARATION.

There may not be a data file without a file level dictionary pointing to it.
Therefore, the file-level dictionary must be created prior to or concurrently
with the data file. The latter is the preferred method for creating files and
t~1ds form of the CREATE-FILE command is shown below. This enables the creation
of both the dictionary and the data area with one command. The general forms
are:

CREATE-FILE file-name m1{,sl}m2{,s2}

CREATE-FILE dict-name,data-name m1{,sl}m2{,s2}

'Jhere:
file-name
till and s 1

m2 and s2
dict-name

data-name

is the name of the, file
are the Modulo and Separation values of the dictionary (DICT)
portion
are the Modulo and Separation of the data portion
is the name of the dictionary. (To be used when dictionary
is shared by multiple data files.)
is the data file name. (To be used if multiple data files
will be pOinted to by the file dictionary.)

With either form, a pointer to the data file is placed in the file-level
dictionary.

Note that if sl and s2 are not specified, separation will be 1. If m1 or m2
are even numbers, the system will make them odd by adding 1 to the module.

A file dictionary may be created without a data file by the command:

CREATE-FILE DICT file-name m1{,s1}

The term 'DICT' with modulo m1 and separation sl specifies creation of the
dictionary only. A pOinter to file-name will be placed in the user's MD. Note
that a data area need not be reserved for a single-level dictionary file; the
data will be stored in the dictionary. (This is usually done for files that
contain PROCs.)

3-10

88A00782A

Once a DICT has been created, primary file space for the data section of the
file can be reserved. The general form of the command is:

CREATE-FILE DATA dict-name{,data-name} m2{ ,s2}

The term 'DATA' specifies creation of the data file, data-name, if the data
file is unique to the file-level dictionary, or creation of the data file,
data-name, under dictionary, dict-name, if multiple data files are desired.
Modulo m2 and Separation s2 are specified for the data file. The pointer to
the reserved space will be placed in the file-level dictionary. This form is
used to create new data files pointed to by a shared dictionary by including
the name of the data file, data-name.

Examples of CREATE-FILE usage:

)CREATE-FILE INVENTORY 3,1 373,1 [CR]

Creates a new file called "INVENTORY", with a DICTIONARY section ~olith
Modulo of 3 and Separation of 1, and a DATA section with a Modulo of 373
and a Separation of 1. An item called "INVENTORY" will be placed in the
MD and a D-item called "INVENTORY" will be placed in the INVENTORY
dictionary.

)CREATE-FILE DICT TEST/FILE 7,1 [CR]

Creates a Single-level dictionary file called "TEST/FILE"; aD-item
"TEST/FILE" will be placed in the MD and a D-item "TEST/FILE" will also be
placed in the dictionary created.

)CREATE-FILE DICT DEPT 3,1 [CR]

Creates a single-level dictionary called "DEPT".

)CREATE-FILE DATA DEPT,ACCOUNTING 73,1 [CR]

Creates a new DATA section called "ACCOUNTING" for the dictionary DEPT; a
D-item called "ACCOUNTING" will be placed in the DEPT dictionary. The
data file created will have to be referenced as .eDEPT,ACCOUNTING" since it
shares a dictionary.

)CREATE-FILE DATA DEPT,MAINTENANCE 57,1 [CR]

Creates a new DATA section called "MAINTENANCE" for the dictionary DEPT.
This data file will have to be referenced as "DEPT,MAINTENANCE".

3-11

88A00782A

If you wish to create a pointer-file or a BASIC program file, use the
CREATE-PFILE verb, which has the same general form as the CREATE-FILE verb.

CREATE-PFILE file-name m1{,s1}m2{,s2}
or dict-name,data-name m1{,s1}m2{,s2}
or OICT file-name ml{,sl}

CREATE-PFILE is used to create POINTER and BASIC files and dictionaries because
it will automatically place a "DC" in attribute 1 of the dictionary.

It will creates a file for file-name specified and its associated dictionary.
The modulo and separation values for the dictionary are given first (ml,s1) and
the values for the file last (m2,s2). If s is not specified, s-1.

The form dict-name,data-name MUst be used if file-name describes one of
multiple files using the same dictionary.

A dictionary may be created without a data file by using the OICT form shown.

3-12

88A00782A

3.5.1 THE SHARING OF DICTIONARIES

File-level dictionaries may define a unique data file or multiple data files.
lfuen a dictionary defines multiple data files it is said to be "shared" by
those data files. The characteristics of the data in the data files.are
typically similar.

For example) there may be sets of data relating to the various departments in a
corporation. For ease of maintenance) these sets of data may share a
dictionary, since the dictionary items that describe the data are identical for
each department. These dictionary items, used by the ACCESS processor, apply
to all of the data files defined by that dictionary. This structure has the
advantage of requiring only one set of dictionary items to be maintained for a
set of similar files.

Any number of data files sharing a dictionary may be opened simultaneously.
The general form for specification of a data file is:

dict-name{,data-name}

The first parameter, dict-name, always specifies the file dictionary. The
second parameter, data-name, specifies the data file and is required ONLY in
the case that multiple data files are using a common dictionary. If only one
data file is using a dictionary, and it has the same name as the dict-name)
then the form:

file-name

specifies the dictionary and the data file of the same name.

For example, the inventory file may be called:

INVENTORY

which indicates both the file and its dictionary. However, the departmental
data files are sharing a dictionary called "DEPT", which requires a further
specification. For example:

OEPT,ACCOUNTING
or

OEPT,MAINTENANCE

Note that the dictionary of a file contains a "0" item which defines the
associated data file. If the dictionary is NOT shared, the item-id of this
pointer (file-name) is the same as that of the dictionary; this is the default
case. Therefore, for example, the INVENTORY dictionary will contain an item,
also called "INVENTORY", which is the pointer to the associated INVENTORY data
file. The DEPT dictionary, on the other hand, t~ill contain as many "0" items as
there are departments; the item-ids of these pointers may be the department
names.

3-13

88A00782A

The statements required to create a shared dictionary structure are shown
below:

To create the dictionary of the file:

>CREATE-FILE DICT DEPT ml,{sl}

To create the data section for each data file:

>CREATE-FILE DATA DEPT,ACCOUNTING m2,{s2}

>CREATE-FILE DATA DEPT,MAINTENANCE ml,{s2}

User MD

+--------------------+
I DEPT I
+--------------------+

I
v

DEPT Dictionary

+-------------------------------------+
I I
I ACCOUNTING MAINTENANCE I
I I
+-------------------------------------+

I I
v v

Datafile ACCOUNTING Datafile MAINTENANCE

+-----------------+ +------------------+
I Data I I Data I
+-----------------+ +------------------+

File-name: DEPT ,ACCOUNTING DEPT,MAINTENANCE

3-14

88A00782A

3.6 CLEARING AND DELETING FILES: CLEAR-FILE AND DELETE-FILE

The CLEAR-FILE processor is used to clear (i.e.) to empty) files. The
DELETE-FILE processor is used to delete files.

The CLEAR-FILE processor clears the data from a file. It sets the file to the
"empty" state by placing X'FF' in the first data position of each group of the
file. Overflow frames that may be linked to the primary file space will be
released to the system's additional space pool. Either the data section or the
dictionary (DICT) section of a file may be cleared using the CLEAR-FILE
command. If the dictionary section is cleared, and a corresponding data
section exists (as implied by the presence of a file definition item in the
dictionary), then it will be maintained in the dictionary. The BREAK key is
inhibited during the DELETE process, but not the CLEAR process.

To clear the data section of a file, the following command is used:

CLEAR-FILE DATA file-name{,data-name}

In the case that the data file is unique to dictionary, file-name, the data
file, file-name is cleared; in the case that data file, data-name is one of
multiple data files under dictionary file-name, then data-name will be cleared.

To clear the dictionary section of a file, the following command is used:

CLEAR-FILE DICT file-name

The DELETE-FILE processor allows you to delete the whole file consisting of
both dictionary and data files, a dictionary only (if the dictionary has no
attached data file), a unique data file or any of mUltiple data files. A
file-level dictionary which points to a data file cannot be deleted. All
frames owned by the deleted file are returned to the available space pool.

To delete a file-level dictionary and all its attached data file(s), use the
command:

DELETE-FILE file-name

To delete a file-level dictionary without an attached data file, use the
command:

DELETE-FILE DICT file-name

In both cases, the file definition item (D-pointer) in the user's MD is deleted
and the space owned by the deleted file is returned to the available space
pool.

3-15

88A00782A

To delete the data file only, the following command is used:

DELETE-FILE DATA file-name{data-name}

This will delete the pointer to the data file from the file-level dictionary
and return the space owned by the data file to the available space pool. The
parameter "data-name" is necessary to delete a file that shares a dictionary
with other data files.

Files that are defined by file-synonym definitions in the user's MD cannot be
specified in a DELETE-FILE command.

Examples of DELETE-FILE and CLEAR-FILE:

)DELETE-FILE INVENTORY

Deletes the INVENTORY dictionary and all associated data files.

)CLEAR-FILE DATA INVENTORY

Clears the data section of the INVENTORY file.

)DELETE-FILE DICT TEST/FILE

Deletes the dictionary TEST/FILE. If there are any data sections
associated with this dictionary (i.e., if there are any D-items in the
dictionary), this command will not be executed.

)CLEAR-FILE DICT TEST/FILE

Clears the dictionary of the TEST/FILE of all items except D-items and
Q-pointers.

)DELETE-FILE DATA DEPT,ACCOUNTING

Deletes the DATA section ACCOUNTING from the shared dictionary
structure whose shared dictionary name is DEPT.

The CREATE-FILE, DELETE-FILE, and CLEAR-FILE verbs do not require a left
parenthesis prior to the file name or the key words DICT or DATA. Q-pointers
may be used to reference files which are to be cleared, but the D-pointer name
is required if the file is to be deleted. The CREATE-FILE verb constructs a
D-pointer. If a data file is being added to an existing dictionary, the
pointer to the dictionary will be aD-pointer.

3-16

88A00782A

3.7 THE DICTIONARIES

A dictionary defines and describes data within its associated file. The
following dictionary levels exist within the system:

System Dictionary (one per system)
User Master Dictionary (one per user account)
File Level Dictionary (one per file or files)

Since the dictionary itself is also a file, it contains items like a data file.
The items in a dictionary serve as the actual definitions for lower level
dictionaries or data files.

The following types of items are stored in dictionaries:

File Definition Items (file-names/pointers)
File Synonym Definition Items (file-names/pointers)
Attibute Definition Items (attribute names)

File Definition Items, also called "D" items, are used to define files. File
defini tion items are in the I-las ter Dictionary of the user in whose account the
associated data file exists. A file is said to be defined from the dictionary
which contains the "D" item that points to it or, more accurately, to its
dictionary. "D" items in the System dictionary point to the Master Uictionaries
of each user or account. "D" items in data dictionaries define and point to
their associated data file(s). The item-ids of "D" items are the names of the
files to which they point. "D" items are automatically created by the
Create-File processor when a file is first created. ("D" items should never be
created by using the Editor or copied from another dictionary.)

File Synonym Definition Items, also called "Q" pointers, are used to access a
file in another user's account. They are also used to provide a more
convenient name for files within the user's own account. For example, to make
typing in the file name easier, a "Q" pointer with the name "INV" might be
created to point to the user's "INVENTORY" file. The user creates "Q" pointers
in his MD by using the Editor. .

Attribute Definition Items, also called "A" items, define the attributes that
go into making up an item in an ACCESS data file. They are created in the
dictionary for that data file.

3-17

88A00782A

For ACCESS processors, "A" items may contain such additional information as:

Conversion specifications which are used to perform table look-ups,
masking functions, etc.

Correlative specifications which are used to describe inter-file and
intra-file data relationships.

Justification (left or right) for output purposes.

A data file is referenced by its "file-name." The dictionary file which is
associated with that data file is referenced by "DICT" followed by the data
file-name. A dictionary file may have more than one data file associated with
it.

3-18

88A00782A

3.8 ITEM STRUCTURE (PHYSICAL)

Data within an item is stored as attributes, values and subvalues, all of which
provide variable length storage. This section describes the physical item
format as stored on disk.

An item consists of one or more variable length attributes, separated by
attribute marks. An attribute mark is a character with a value of X'FE'
(hexadecimal), which prints outs as 'A'. The first attribute in an item
(attribute 0) is the item-ide The item-id is preceded by a four-character
hexadecimal count field which specifies the total number of characters in the
item including the count field itself. For example, consider the following
stored item:

Attribute 0 is the item-id "ITEMX." It is preceded by "002E" which specifies
that there are X'002E' (decimal 46) bytes in the item. Attribute 1 of the
"ITEMX" is "LINE 1." Attribute 2 is "SMITH, JOHN." Attribute 3 is "1234 MAIN
STREET." The item ends with a segment mark, which is X'FF'.

An attribute, in turn, may consist of any number of variable length values
separated by value marks. A value mark has an eight-bit value of X'FD', which
prints as "]". Finally, a value may consist of any number of variable length
subvalues (also known as secondary values) separated by secondary value marks.
A secondary value mark has an eight-bit value of X'FE', which prints as "\'.
For example, consider the following item:

ITEM-ID ATT1
I I

_1 __ 1

ATT3
1
1

ATT4
1
1

ATT6 ATT7
1 I

___ 1 _____ I _

END OF ITEH
1

1

003AITEMYAOSAAAAAAA123] 456] 78910AAABAS] 88\99\77\SS]4AXYZA_ <----
-,- ---r I T I

I I I I I
COUNT-FIELD ATT2 MULTIVALUES ATTS UULTI-SUBVALUES
(003A a 58 decimal)

The absence of an attribute value is specified by placing an attribute mark
immediately following the attribute mark that indicates the end of the previous
attribute (i.e., 'AA'). This maintains the correct attribute sequence. The
"null" between two adjacent attribute marks may be thought of as representing
the absent attribute. Depending on the data structure, two adjacent value
marks may be permissible, indicating the absence of a multi value. Two adjacent
submultivalues are normally not permitted.

3-19

88A00782A

The mnemonics Mi, VM, and SVM will be used hereafter to denote attribute mark,
value mark, and secondary (or sub) value mark.

The basic purpose of the value mark is to separate the contents of each value
within each attribute. The purpose of this subvalue mark is to separate
multiple entries within a value, within an attribute.

It is therefore, effective to store transaction records relating to a single
vendor within one item. Within a single attribute, the fields from different
values are separated by value marks. Attributes ~sed in this manner are
referred to as multi valued. Continuing the chain, a value within an attribute
may itself contain several values. These are called subvalues and represent
multiple subrecords within a given transaction record, as in the case of a
purchase order specifying several different parts. The individual records
remain identifiable because of the matching numbers of the delimiting value
marks. The ACCESS processor is able to generate reports from this storage
structure.

3-20

88A00782A

3.9 I~EM STRUCTURE (LOGICAL)

While it is important to understand the physical item format, in normal system
usage, items are always accessed at a more abstract or higher level. Files are
identified by a file name. Within a file, items are referenced by their
item-ide Attributes are referred to as lines (e.g., attribute 1 is called
"line I"). The following example shows a sample COpy operation where the item
with the item-id ITEMX (in the file SM1PLE-FILE) is being copied to the
terminal. The item has three attributes (lines) of sample data.

>COPY SAMPLE-FILE ITEMX (T) [CR]

ITEMX <------------------------------- Item-id
001 5207 <-------------------------------- Attribute 1
002 SMITH, JOHN <-------------------------- Attribute 2
003 1234 MAIN STREET <--------------.------ Attribute 3

Utility processors like COpy and the EDITOR deal at the file-item line level.
They make no logical distinction in definition between various lines in an
item, other than their implied line numbers.

The ACCESS processor, however, adds an additional dimension through the use of
the dictionary. The dictionary informs ACCESS of the nature of the information
stored for each of the attributes.

An item is similar to a "record" in computer terminology. It is more effective
to think of and use an item as a group of related records, however. One tends
to see a record as a collection of fields distributed horizontally, having
meaning by virtue of their offsets from the initial byte of the record.

In the PICK system, a data-string has meaning by virtue of its attribute
number. If you think of an item (record) as a vertical list of attributes
(fields) with attribute 1 on the first line, attribute 2 on the second line,
etc., you get a clearer picture of the system's storage structure.

The logical item format is identical for all processors. It is the
responsibility of the user to ascertain the further qualifications, if any, of
the various attributes.

3-21

88A00782A

For example, the item listing in the previous example is shown below as
produced by the ACCESS LIST processor.

)LIST SAMPLE-FILE "ITEMX" ATTRIBUTE-l NAME ADDRESS [CR]

PAGE 1 09:28:32 12 JAN 1983

SAMPLE-FILE •• ATTRIBUTE-l •• NAME ••••••••••••• ADDRESS •.•••••••

ITEMX 04/03/82 SMITH, JOHN 1234 t1AIN STREET

Here, the SAMPLE-FILE dictionary '·defines" attribute 2 (line 2) as NAME and
attribute 3 (line 3) as ADDRESS. This permits the user to reference his data
symbolically (through dictionaries). However, the actual data stored on file
is the same regardless of the processor accessing it.

Also note that the COpy of the item displays a value of 5207 for attribute 1 of
the item, whereas the ACCESS listing displays it as "04/03/82", which is the
same data after conversion USing the standard system date code.

3-22

88A00782A

3.10 FILE DEFINITION ITEMS

File definition items are used to define lower level dictionary files or data
files. File definition items are specified by "D", "DC", "DCX", "DCY", "DY",
or "DX". "D" pointers or "DC" pointers are created automatically by the
CREATE-FILE and CREATE-PFILE verbs.

At the System Dictionary level, file definition items are used to define the
Accounting File and each user's MD. File definition items in the MD define the
file level dictionaries, which in turn may contain one or more file definition
items which define the associated data file(s). The item-id and each attribute
of the file definition item contains required and optional information which
describes and 'points to' the lower level dictionary file or data file:

Item-id

Attribute 1

The item-id of a file definition item is the file name of the
dictionary or data file being pointed to. If the item is
pointing to a data level file, then the item-id must be the same
as the name of the data level file.

This is the D/cODE attribute. It must contain one of the
following: D, DC, DX, DY, DCX, or DCY: where:
D identifies the file as a lower level dictionary file or a

data file. When the file is created, the CREATE-FILE
processor will place a D in this attribute. One or two
letters may follow the D to indicate:
C the file contains binary data. Used only by the system

POINTER-FILE.
X do not save this file on filesave tapes. The file will

not exist after a file restore.
Y do not save the data in this file on filesave tapes.

On a file restore, the file will be recreated in an empty
state.

Attribute 2* This is the F/BASE (file Base) attribute; it must contain the
base FID (as a decimal number) of the defined file.

Attribute 3* This is the F/MOD (file Modulo) attributej it must contain the
Modulo (as a decimal number) of the defined file.

Attribute 4* This is the F/sEP (file Separation) attribute; it must contain
the Separation (as a decimal number) of the defined file.

Attribute 5

Attribute 6

*WARNING:

This is the L/RET attribute. It may contain retrieval lock
codes.

This is the L/UPD attribute. It may contain update lock
codes.

The user should never alter Attributes 2 through 4.

3-23

88A00782A

Attribute 7 Reserved.

Attribute 8 Reserved.

Attribute 9 This is the V/TYP attribute. It contains the justification
code for the values in the attribute.

Attribute 10 This is the V/t{AX attribute. It contains the maximum length
for values in this attribute in decimal.

Attribute 11 Reserved.

Attribute 12 Reserved.

Attribute 13 This is the F/REALLOC attribute, which allows for the
reallocation of the physical extents of a file during a system
File-Restore process (see PICK Operator Guide). The format of
this specification is as follows: (m,s) where m and s are
decimal numbers specifying the new Modulo and Separation
parameters of the file. Another way the physical extents of the
file may be altered is to COpy the file to a new file.

Table 3-3 illustrates a sample file definition item that defines the file level
dictionary for the INVENTORY data file. This item has an item-id of INVENTORY
and is stored in the user~s MD. It also shows the file definition item which
defines the data area of the INVENTORY file. This item also has an item-id of
INVENTORY, but it is stored in the dictionary level file and points to the data
level file. The user should note that in a single level (dictionary) file, the
file definition item (e.g. j INVENTORY) may be absent from the file dictionary
or it may be present and point to the dictionary itself.

(Item-id)
D/CODE
F/BASE
F/MOD
F/SEP
L/RET
L/UPD

V/TYP
V/MAX

Table 3-3. Sample File-Definition Items

INVENTORY (MD)
001 D
002 17324
003 3
004 1
005
006
007
008
009 L
010 10

INVENTORY (in DICT INVENTORY)
001 D
002 17573
003 373
004 1
005
006
007
008
009 R
010 7

Note that the item "INVENTORY" in the Uaster Oictionary has definitions
relating to the items in the dictionary of the INVENTORY file (such as
V/TYP of "L" and V/MAX of "10"; the item "INVENTORY" in the ImrENTORY
dictionary has definitions relating to the items in the DATA section,
such as V/TYP of "R" and V/MAX of "7".

3-24

88A00782A

3.11 FILE SYNONYM DEF'INITION ITEMS

File synonym definition items are used to allow access to files in another
user's account, or to define a synonym name for a file in the same account.
File synonym definition items are specified by "Q" and are referred to as
"Q-items". The item-id and attributes of a file synonym definition item are as
follows:

Item-id The item-id of a file synonym definition item is the synonym
name by which the defined file may be referenced.

Attribute 1 This is the D/CODE attribute. It must contain a "Q".

Attribute 2 This is the S/ACCOUNT attribute. It must contain the name of
the account in which the actual file is to be found. (The
account name is an entry in the SYSTEM dictionary). If this
attribute is null, then the synonym and the actual file are
defined in the same account.

Attribute 3 This is the S/FILE attribute. It must contain the item-id of
the actual file definition item to which the synonym equates
(i.e.) the actual file-name). If this attribute is null, it
means that the user's MD is the file for which a synonym is
being defined.

Attribute 4 Not used.

Attribute 5 This is the L/RET attribute. It may contain retrieval lock
codes.

Attribute 6 This is the L/UPD attribute. It may contain update lock codes.

Attribute 7 Reserved.

Attribute 8 Reserved.

Attribute 9 This is the V/TYP attribute. It contains the justification code.

Attribute 10 This is the V/~~ attribute. It contains the maximua length for
values in the attribute in decimal.

Attribute 11 Reserved.

Attribute 12 Reserved.

Attribute 13 Reserved.

3-25

88A00782A

A synonym file definition item is required in order to access a file in
another account. tn addition, there are many cases where it is convenient to
reference a file within the same account by more than one name. In this case
also, a Q-item may be created with attribute 2 of the Q-ite~ null. (This is a
better method for creating a synonym file pointer than creating duplicate
D-pointers.)

A Q-item to another user's MD should have the user's account name in attribute
2, and a null attribute 3.

Q-items are created by using the EDITOR. The items are edited into the UD
using the form:

EDIT MD item-id

where item-id is the synonym name being defined.

There is also a standard PROe, called SET-FILE, that creates a temporary
Q-item called QFILE, which may be used to set up a pointer quickly. (This PROe
is described in the Utilities r~nual.)

Table 3-4 illustrates a sample INVENTORY file synonym definition item which
allows the user access to the file in the account named SMITH; the user can
reference this file via the synonym fi1e-name INV. It also shows sample Q­
items that point to another user's MD, and to a file within the same account.

Table 3-4. Sample Synonym File Definition Items in Account 'JONES'

(Item-id) MD INV USER3 SAMPLE

D/eODE 001 Q 001 Q 001 Q 001 Q

S/AeeOUNT 002 002 SMITH 002 SMITH 002

S/FILE 003 003 INVENTORY 003 003 SAMPLE-FILE

F/SEP 004 004 004 004

3-26

88A00782A

These "Q" items are in the Master Dictionary of the JONES account. Item INV is
a synonym pointer to the file INVENTORY, which is defined as a file in the
lias ter Dictionary of the SMITH account.

Note that the item HD contains only '001 Q', and that Q-pointers to other ~.fDs

do not have the 'MD' in 3. Item USER3 refers to the Master Dictionary of user
"SMITH," since attribute 3 is null.

Note that null attributes may not be filled with blanks. Since a null input
(carriage return or line feed only) will cause the Editor to exit the input
environment, it is necessary to place a temporary character in the "null"
attribute and replace that character with a null via the REPLACE command. (See
the EDITOR Manual.)

Item SAMPLE is a synonym to the file SAMPLE-FILE, defined in the ~1aster
Dictionary of JONES, since attribute 2 is null.

An example using the EDITOR to create the Q-item INV shown on the previous
page.

EDIT MD INV [eR]
NEW ITEM
TOP
. I [CR]
001 Q [CR]
002 SMITH [CR]
003 INVENTORY [CR]
004 [CR]
.FI [CR]
'INV' FILED.

3-27

88A00782A

3.11.1 THE-REFLEXIVE FORK OF THE Q-POINTER

If attributes 2 and 3 are null, the Q-pointer is a pointer to the file in which
it is stored. This case has two applications. If you type ED MD MD, you will
find that the MD item contains only a Q in attribute 1. This is sufficient and
any other definition is less efficient. Specifically, the UD entry should not
be a D-pointer. The same follows for MD or the account name entry.

The second use is in the definition of a dictionary-only file. If you want to
reference the file without typing 'DICT' each time, an entry with the same name
as the D-pointer to the dictionary in the master dictionary is inserted in the
file dictionary whose only content is a Q.

Some uses of Q as the only attribute is as follows:

In the master dictionary

MD
001 Q

File reference to MD
Reference back to 'where you are now'

In the dictionary of the file FILENAME

FILENAME The name referenced by the name FILENAME in
the master dictionary

001 Q Reference back to the dictionary itself

The name of the Q-pointer is discarded as soon as the first D-pointer is
encountered. That is, a reference to QFILENAME which points to the file
FILENAME will look for the D-pointer FILENAME in the dictionary of FILENAME.
It will not look for a pointer by the name of QFILENAME. A partial exception
to this occurs when using the ACCESS processor, which will attempt to obtain
the conversion, length, and justification from the Q-pointer. If the Q-pointer
does not contain them, then the ACCESS processor will search the D-pointer for
them. If the D-pointer does not contain them, then the conversion will default
to null, the justification to 'L', and the field length to 10 bytes. It is,
therefore, possible to specify various formats for the item-id field for
purposes of sorting and listing.

3-28

88A00782A

3.11.2 ACCOUNT SPECIFICATION

The second attribute in any Q-pointer references an account name. If attribute
2 is null, then the Q-pointer references a file in the account onto which you
are logged. If attribute 2 is not null, the file-open processor will search
the system dictionary for a definition of the account name. If the processor
does not find a D-pointer in the system dictionary, the system will respond
with the following error message:

[201] 'Contents of attribute 2 of QFILENAME' IS NOT A FILE NAME.

It is possible to reference files in the account onto which you are logged by
putting the name of the D-pointer to the account in attribute 2 of the
Q-pointer definition. However, this will cause the system unnecessary work.

Reference to the Master Dictionary of another account is done with the name of
the D-pointer to the account (account-name) in attribute 2 and a null attribute
3.

A file or an account may be protected from access. (See Operator Guide,
Section 7.2, System Security.) If a user creates a Q-pointer to a file or an
account which he is not authorized to access, the system will deny him that
capability. An error message stating that the file or account is protected
will be returned.

3.11.3 FILE SPECIFICATION

Attribute 3 contains the name of the file referenced by the Q-pointer. If
attribute 3 is null, then the defaul t is to the lias ter Dictionary specified by
attribute 2. MO should not be placed in attribute 3, since MD is a Q-pointer.
The following error message will result:

[201] 'MO' IS NOT A FILE NAME.

In general, the file-name referenced in attribute 3 of the Q-pointer definition
must be a D-pointer in the MD of the account referenced in attribute 2.

3-29

88A00782A

3.11.4 EXTENSIONS TO THE FILE-NAME REFERENCE

PICK has the ability to reference multiple data files from a single
dictionary. These are pointed to by D-pointers in the dictionary of the file.
The names of the D-pointers in the dictionary are the names of the various data
files. In order to reference a specific data file, use the string:

file-name,data-name

The contents of attribute 3 of the Q-pointer definition may contain file-name,
data-name. In this case, the Q-pointer will reference the data in data-name
only, and will ignore the other data files referenced in the dictionary of
file-name. The result is a considerable simplification of the BASIC programs
and PROCs which reference the various data sets in a multiple data file
structure.

The following Q-pointer will reference the data file SCREW-DRIVERS in the
dictionary of HARDWARE in the account INVENTORY.

QFILENAME
001 Q
002 INVENTORY <----- (account-name)
003 liARDWARE,SeREW-DRIVERS ~----- (file-name,data-name)

A file dictionary does not need to reference a data file with the same name as
the dictionary. It may be convenient to create the file as a dictionary-only
file, which contains a Q-pointer that points to itself. The dictionary may
then be referenced without typing 'DICT', which is useful if there will be
extensive development of data definition items. It is also convenient if there
will be several data-level files, since each may be given a recognizable name.

3-30

88A00782A

3.12 ATTRIBUTE DEFINITION ITEMS

Attribute definition items define various attributes (lines or fields) in the
data items for use by the ACCESS processors. (More extensive treatment of this
topic will be found in the ACCESS Manual.) Attribute definition items are
specified by "A" in attribute 1 and are called "A-items".

An attribute definition item defines the nature and/or format of the data in a
specific attribute. Each attribute definition item has a value, called the
Attribute Mark Count (AMC) , which acts as a pointer to the data field (data
item attribute) defined by it. The AMC is simply the attribute number referred
to in the data item. An AMC of 5 means that the attribute definition item
"defines" attribute 5 of data items. An attribute definition item defines the
attribute specified (by the AMC) for all items in the related data file(s).
Moreover, an attribute definition item provides a name for an attribute.

Attribute definition items are constructed as follows:

, Item-id The item-id is the name desired for the defined attribute.
This name should be used in ACCESS input statements to
reference the defined attribute.

Attribute 1 This is the D/CODE attribute" It may contain an "A"
(attribute), "S" (synonym attribute), or "X" (skip this
attribute now).

-Attribute 2 This is the A/AMC attribute. It contains the AMC of the
defined attribute (i.e., it specifies which attribute in
data item(s) is being defined). An AMC of 0 may be used
to reference the item-ide An Al1C of 0, or a "fake" value
higher than the actual number of attributes that exist in
the file, may be used if the attribute definition item
references data that is not actually stored on the file,
but is computed. In addition, an AMC of 9998 is used to
access the current item counter (item sequence number), and
an AMC of 9999 to access the SIZE or count field of the item.

Attribute 3 This is the S/NAME attribute. It contains the name to be
used as the heading for this attribute in ACCESS listings.
If this field is null, the item-id will be used for the
heading.

Attribute 4 This is the V/STRUC attribute. It contains the associative
structure code. (Refer to the ACCESS Manual.)

Attribute 5 Unused.

Attribute 6 Unused.

3-31

88A00782A

Attribute 7 This is 'the V/CONV attribute. It contains the conversion
specification which is used to convert from internal
processing format to output format.

- Attribute 8 This is the V/CORR attribute. It contains the correlative
specification which is used to convert from the internal
format to processing format.

Attribute 9 This is the V/TYP attribute. It defines the justification
(left or right) for output. V/TYP defaults to left
justification if it is null.

',' Attribute 10 This is the V /MAX attribute. It defines the number of
spaces that will be reserved for values for the attribute
in vertical listings. The entry is a decimal number.
V/MAX defaults to 10 if it is null.

An example of attribute definition items which define different fields in the
INVENTORY file are:

(Item-id)

D/CODE
A/AMC
V/TAG
V/STRUC

V/CONV
V/CORR
V/TYP
V/MAX

Quantity

001 A
002 ,4)
003
004
005
006
007
008
009 R
010 7

List-Price

001 A
002 ~s
003 LIST PRICE
004
005
006
007 MR2$,
008
009 R
010 8

3-32

Extended-Price

001 A
002 300 - .A })',\}, "l:).l..'\'~'"

003
004
005
006
007 MR2$,
,008 A;4*s
009 R
010 10

('1'1:: , "

88A00782A

3.13 DICTIONARY ITEMS: A SUMMARY

This section presents a summary of the items used in the various dictionaries
in the system.

File, File Synonym and Attribute Definition Items - The File Definition, File
Synonym, Attribute Definition, and Attribute Synonym Definition items which may
be used as dictionary entries are summarized in Table 3-5.

System Dictionary (SYSTEM) Items - There is one, and only one, System
Dictionary for each system. The System Dictionary should contain only items
with D/CODE • D, DX, DY, or Q, to represent user accounts or special system
files. The Logon processor uses these "D-items" to verify users attempting to
log on to the system. Only one "D-item" should be present for each account; if
more than one user name is to be established for the same user account, the
additional name(s) should be File Synonym Definition ("Q-items"). The meaning
of attributes 5 through 8 in the System Dictionary is different for both "Q"
and "0" type entries. Entries in this dictionary completely control the
File-Save process, which saves the data base on a secondary storage medium
(typically magnetic tape).

Master Dictionary Items - There is one Master Dictionary for each account.
The MD, like any other dictionary or data file, is comprised of items. Items
with O/CODE of "A" define the attribute formats for all dictionaries. The
file defining items (O/CODE of "D") point to the various files existing in
that account.

In addition to those elements in the MD which define files and attributes,
there are items which define verbs, PROCs, and various ACCESS language
elements. Each of these items has a coding structure which uniquely identifies
it. Refer to the following sources:

Introduction to PICK TCL and FILE STRUCTURE Manual - Section 3
PROC Manual
ACCESS Manual
Operator Guide

3-33

88A00782A

Table 3-5. Summary of File and Attribute Definition Items

File Synonym Attribute
Attribute Definition Definition Definition

Number Name Item Item Item --
0 Item Iden- Item-id

tification

1 D/CODE 0, OX, OY, DC, Q A, S, X
DCX, DCY

2 F/BASE or Base FID of file Account-name AMC
S/ACCOUNT
or A/AYe

3 F/MOD or Modulo of file Synonym Tag or Heading
S/FlLE or file-name
S/NAME

4 F/SEP or Separation of Not used Controlling/
V/STRUC file Dependent codes

5 L/RET Retrieval lock Reserved
code(s)

6 L/UPO Update lock Reserved
code(s)

7 V/CONV Reserved Conversion
specification

8 V/CORR Reserved Correlative
specification

9 V/TYP Justification
code

10 V/MAX Maximum field
length

11 Reserved

12 Reserved

13 F/REALLOC I Reallocation
I

Reserved
Specification

3-34

88A00782A

3.14 VERB DEFINITION ITEMS IN THE MASTER DICTIONARY

Each verb definition resides as an item in the user's MD. The item-id (i.e.,
attribute 0) of a verb definition item is the verb name itself. The attributes
used in a verb definition item are defined as follows:

Attribute Number Description

o This is the item-id, which is the name of the verb.

1 Must contain one of the following: P, PA, PY, or PZ.
where:

P identifies the }ID item as a verb definition item.
The letter following P is passed to the defined
processor.

A defines an ACCESS verb.
Y defines a TCL-II verb.
Z defines a TCL-I verb.

2 This attribute defines the processor entry point to which
TCL passes control (i.e., the mode-id in hex).

An ACCESS verb will have an entry of 35
A Type-II verb will have an entry of 2
A Type-I verb will have an entry of xxxx
where:

xmmm x is the entry point, mmm is the mode-id in hex.

3 Secondary transfer point. Use depends on attributes '1 & 2.

4 Tertiary transfer point. Use depends on attributes 1 & 2.

5 TCL-II parameter string. These parameters govern item's
retrieval by TCL-II verbs to be passed to processor whose
entry point is defined in attribute 3. Parameter may be
any of the following:

C - Copy item to a work area.
F - Pick up file parameters only (ignore item-list).
N - Okay if item is not on file.
P - Print item-id if item-list is "*" (all items),

(or if SELECT-ed item-list).
S - Ignore the select-list; item-list is mandatory.
U - Items will be updated by processor.
Z - Final entry required on EOI.

WARNING: Do not change any of this data in existing verbs!

3-35

88A00782A

As an example of a verb definition item. the following item (stored as item
'LIST' in the user's MD) defines the ACCESS verb LIST:

Item 'LIST' in MD

001 PA
002 35
003 4D

The following verb definition item defines the TCL-II verb MLIST:

Item 'MLIST' in MD

001 PY
002 2
003 20
004
005 C

As a final example, the following verb definition item defines the TCL-I verb
TIME:

Item 'TIME' in MD

001 PZ
002 3033

The user may create any number of synonyms for the verb definition items (and
may even remove the predefined verb definition items), thereby creating his own
vocabulary. Synonyms may be created by copying the verb definition item into
another MD item with the desired synonym name as the item-ide

3-36

88A00782A

3.15 INITIAL SYSTEM FILES/DICTIONARIES

The files described below are initial system files and are used in the
operation and maintenance of the system.

The System Programmer (SYSPROG) account and the system message (ERRMSG) account
are the only accounts needed to maintain the system. The prototype MD (NEWAC)
is defined in the SYSPROG account. The ERRMSG file is accessed by all users to
obtain error and informative messages, while the NEWAC file is used to create
MD's for new accounts. SYSPROG also contains the system-level PROCs which
perform the File-Save and File-Restore functions, and initialize the Accounting
History file when the system is set up.

The ERR!1SG File - This dictionary-level file in the ERRMSG account contains
erro~ and informative system messages. Each account's MD must have an item
called ERRMSG which points to this file in the ERRMSG account. (This is
automatically created by the CREATE-ACCOUNT PROC.)

The SYSPROG-PL File - This dictionary-level file contains the System
Maintenance PROCs. These PROCs can be used from the SYSPROG account. Refer to
the PICK Operator Guide for a description of the entries in this account.

The NEWAC File - This dictionary is defined from the SYSPROG account and is a
prototype MD. It is used as a model by the CREATE-FILE PROC to create a new
user's HD. The NEWAC dictionary level file contains three data files: NEWAC,
SYS1, and SYS2.

The Accounting History File - The ACC file contains system accounting history
and currently active (logged-on) users. The format of LOGON/LOGOFF accounting
history statistics is described in the TCL section. The Accounting History
File should be cleared periodically to prevent overflow of the file.

The PROCLIB File - The PROCLIB file contains all common PROCs (e.g., LISTU, CT,
etc.). Each MD will contain a pointer to PROCLIB and items that transfer
control to the corresponding PROCs in PROCLIB. For further information, refer
to the PROC Manual.

The BLOCK-CONVERT File - This file contains items which are used by the
BLOCK-PRINT verb to convert characters to a block format.

3-37

88A00782A

3.16 SPECIAL FILES

3.16.1 POINTER-FILES

Every pointer file must contain a 'DC' in attribute 1 of its definition. It
must be two-level, but it is convenient to make the data-level pointer in the
dictionary a Q-pointer to itself. The name POINTER-FILE is reserved and known
to the list handler. It is therefore possible, and may be convenient, to call
the actual pointer-file(s) by names different from POINTER-FILE and construct
POINTER-FILE as a Q-pointer to the pointer file of the moaent. Any pointer
file in the system may be referenced this way. It is also possible to define
several pointer. files within one account. Each pointer file may then be used
for a particular group of tasks that are executed on the account.

3.16.2 BASIC PROGRAK FILES

The BASIC program file must have a dictionary level and one or more data-level
files, and the master dictionary entry for the BASIC program file must contain
a 'DC' in attribute 1. The source code must be in a data-level file, and the
dictionary will contain pointers to executable object code. This means that
only the source items are in the program file.

If there are multiple data files, and if there is a program with the same name
in more than one of them, the last one compiled is the one which will be run.

The CATALOG verb will include the name of the program in the master dictionary,
with a pointer to the file which contains the particular program.

The DE CATALOG verb will delete the object code from the system regardless of
whether the program has been CATALOGed, and delete the cataloged entry in the
MD.

3-38

88A00782A

Accounting History file 3.15
Attribute 3.1, 3.8, 3.9

INDEX

Attribute Definition Items 3.12, 3.13
Attribute Mark 3.2

Base 3.5
BASIC Program files 3.16.2
BLOCK-CONVERT file 3.15
Blocking printing 2.11
BLOCK-PRINT command 2.11
BREAK key 2.13

CHARGES verb 2.5
CHARGE-TO verb 2.5
Clearing files 3.6
CLEAR-FILE processor 3.6
Control characters 2.1
COpy processor 2.12
COpy processor options 2.12.2
Copying data 2.12
Creating new files 3.5
CREATE-FILE processor 3.5
CT PROC 2.10

Data files 3;1.4
DEBUG facility 2.13
Debugging commands 2.13
DELETE-FILE processor 3.6
Deleting files 3.6
Dictionaries 3.1, 3.7
Dictionary items 3.13
Dictionary sharing 3.5.1

ECHO verb 2.9
ERRMSG file 3.15

File Definition Items 3.10
File Hierarchy 3.1
File Level Dictionaries 3.1.3
File Structure 3.3
File Synonym Definition 3.11
Files, accessing 3.2
File-to-File COPY 2.12.1

I-I

Hashing Algorithm 3.3.1

Item 3.1, 3.2, 3.8, 3.9
Item Storage 3.2, 3.3.1
Item Structure, Logical 3.9
Item Structure, Physical 3.8
Item-id 3.1, 3.2, 3.8, 3.9

Key words 1.1

Logging off system 2.4.2
Logging on system 2.4.1
Logon, additional functions 2.5
LOGON PROC 2.6
LOGTO verb 2.5
LISTACe PRoe 2.10
LISTCONN PROC 2.10
LISTDICT PROC 2.10
LISTFILES PROC 2.10
LISTPROCS PROC 2.10
LISTU PROC 2.10
LISTVERBS PROC 2.10

Master Dictionary (~ID)

Master Dictionary Items
Master Dictionary, verb
definition in 3.14

Messages, sending 2.9
Modulo 3.3, 3.4
MSG verb 2.9

POINTER-FILE 3.16.1
Primary Space 3.3
PROCLIB File 3.15

Q-Pointers 3.11

3.1.2
3.13

Referencing multiple data
files 3.11.4

Selecting Module and Separation 3.4
Separation 3.3, 3.4
Setting tab stops 2.8
Setting terminal/printer
characteristics 2.7

SET-TERM command 2.7
SLEEP verb 2.9
Subvalue 3.8
Subvalue Mark 3.2
SYSPROG Account 3.15
SYSPROG-PL File 3.15
System Files/Dictionaries 3.15
System Messages, General 2.6
System (SYSTEM) Dictionary
3.1.1, 3.13

TABS statement 2.8
TCL prompt 2.1
TCL statement, general form 2.1
TCL Type I input statement 2.2
TCL Type II input statement 2.3
TERM command 2.7
Terminal Control Language (TCL),
definition 2.1

TIME verb 2.9

Utility PROCS 2.10

Value 3.8
Value Mark 3.2
Verb definition in Master
Dictionary 3.14

WHO verb 2.9

88A00782A

1-2

