
CC 1963, General Precision, Inc.

ACT Ill

An Algebraic Compiler for the LGP-30 Computer

Volume 2

OPERATOR'S MANUAL

By

Henry J. Bowlden

Parma Research Laboratory

Union Carbide Corporation

Parma 30, Ohio

Distributed by

POOL
The Organization of Users of
General Precision Computers

TABLE OF CONTENTS

INTRODUCTION

I. THE SYSTEM TAPES

A. Minimum Requirements .
B. The "Standard System"
C. Other Systems; Additions and Alterations .

II. PHASE 2: COMPILING A PROGRAM .

A. The Process of Compilation .
B. The Storage Map
C. Input and Output
D. Punchillg the Object Program
E. Batch Compiling

III. PARTIAL COMPILATIONS

A. Uses of Partial Compilation .
B. Method for Partial Compilations
C. Use of C-tapes
D. Limitations

IV. ERROR DETECTION IN PHASE 2 ..

A. Intermediate Error Diagnosis
B. Final Error Displays

V. PHASE 3: RUNNING A COMPILED PROGRAM

A. Production Runs - Tested Programs
B. Testing a Program Before Punching
C. Error Detection at Run-Time

VI. TRACING

A. Trace-Compiling
B. Tracing in Phase 3
C. Statement Stopping
D. Trace Printing . .
E. Testing Procedures .

v

1

1
2
2

3

3
4
5
5
6

7

7
7
7
8

9

.9
10

13

13
13
13

15

15
15
15
16
16

111

TABLE OF CONTENTS (Cont.)

VII. ASSEMBLY OF SUBROUTINE PACKAGES

A. The Assembly Process
B. Assembling Subroutine Packages
C. Alternative Packages
D. Error Stops During Assembly

VIII. TABLES AND APPENDICES

A. "Load" Checkpoints .
B. Phase 2 Error Types .
C. Phase 3 Error Types .
D. Operator's Flow Charts

1. Phase 2: Compiling A Program
2. Partial Compilations
3. Phase 3: Running A Compiled Program
4. Assembling A Subroutine Package

E. List of Programmed Stops

IV

19

19
20
23
24

25

25
25
26
26

27
28
29
30

31-32

INTRODUCTION

This volume contains detailed information and instructions pertain-

ing to the second and third phases of the solution of numerical problems

using the ACT III System. The relationship of these phases is discussed in

more detail in Volume 1, the Programmer's Manual, which gives also a com­

plete treatment of the first phase, the writing of the source-language program.

The second, or compiling, phase and the third, or running, phase

are performed directly on the computer. This volume describes the system

from the operator's point of view, gives the mechanics of operation, and

describes the error displays and remedial techniques. Techniques for de­

bugging are described.

A chapter is also included to cover the assembly of symbolic sub­

routines by SPAR into subroutine packages. The details of SPAR, and instruc­

tions for preparing symbolic tapes, are included in Volume 3.

A set of flow-charts is included for easy reference, giving the steps

in the operating procedure for the various phases of the process.

v

CHAPTER I

THE SYSTEM TAPES

A. Minimum Requirements

The minimum set of tapes necessary for use of the ACT III system

is as follows.

1) ACT III A. This hex tape contains the processor

which translates source-language programs into

machine language. It occupies tracks 40-58 inclusive.

2) ACT III B. This is a modified and extended version of

the hexadecimal output routine (13. 2), occupying tracks

30-34 and part of track 63. It is used to punch out the

object (machine language) 'program after compilation.

3) ACT III C. Tracks 28-32 of this tape are identical to

30-34 of ACT III B. In addition, tracks 33 and 34 are

used. This tape is used in the punching of partially

compiled programs (C-tapes), as described in Chapter III.

4) A P-tape. This is a hex tape of a set of operating sub-

routines for use in phase 3. Different P-tapes carry

distinctive numbers, for example P-2-A or P-5-B.

5) AT-tape. This is a tape, mostly in hex, which contains

the dictionary (vocabulary and syntax) to go with the

P-tape of the same number. It is used in phase 2 by the

processor (ACT III A).

6)
:;:::

A T -tape. This is an abbreviated, T-tape which may be

used for restarting a compilation.

2

B. The "Standard System"

The ACT III system is extremely flexible; however, for the sake of

standardization a "standard system" has been adopted which is satisfactory

for most uses. The vocabulary and syntax of this system are des~ribed in

Volume 1. This "standard system" is implemented by the set of tapes de­

scribed in Section A, with the P-tape being specifically P-5-B and the T­

tape being T-5-B.

C. Other Systems; Additions and Alterations

If it is necessary or desirable to modify the vocabulary or syntax, or

if space requirements demand the omission of some subroutines, it is possi­

ble for the installation to produce its own P- and T-tapes. The additional tapes

needed for this process are as follows. Their use is described in Chapter VII,

and their internal workings are discussed in Volume 3.

1) SPAR A. This hex tape occupies tracks 39-62, inclusive,

and is a symbolic assembler specifically designed for this

application. It takes, as input, tapes written in the sym­

bolic language described in Volume 3 and produces as out­

put P-tapes and T-tapes.

2) An R-tape. This tape enables SPAR A to initialize its

tables, and sets up the status for beginning of assembly.

3) SP AR B. This hex tape occupies parts of tracks 11 and 12,

and enables the preparation of R-tape s.

4) Symbolic tapes (S-tapes) of the subroutines to be assembled.

CHAPTER II

PHASE 2: COMPILING A PROGRAM

A. The Process of Compilation

During phase 2 the source-language tape is read under control of

the processor (ACT III A) and the dictionary (T-tape), and translated into a

machine language program (the object program).

The processor occupies tracks 40-58 and uses tracks 35-39 and

59-63 for tables and temporary storage. The tables of operators which are

the major part of the T-tape occupy tracks 30-34. The object program is

compiled and placed in storage starting at location 0300 and going up no fur­

ther than 2963. Object-program constants (constants appearing in the source

program) are stored in track 62.

After compilation is completed the object program is in storage, where

it may be tested immediately; alternatively, it may be punched out.

The steps in compilation are shown in Flow Chart No. 1. First the

processor (ACT III A) is loaded, then the T-tape is placed in the reader. The

first two words of this tape cause an immediate transfer to 4000, the entry

for initialization of tables. Tracks 35-38 (symbol table) and 59-62 (statement

dictionary and constants) are initialized, then control is transferred to the

program input routine to read in the remainder of the T-tape. This contains

the vocabulary and syntax (operators and their meanings), any predefined

symbols (such as "remdr 11
) with their equivalents, and the starting address of

the data block, which is the bottom of the corresponding subroutine package

(in the P-tape). It ends with a stop-and-transfer to location 4018.

3

4

At this point the status of a previous partial compilation may be re­

stored by loading the C-tape (see Chapter III} with the program input routine.

The source-language program tape is now read in 6-bit mode and

translated, one statement at a time. During the reading (first pass} operators

are replaced by code words, symbols are assigned equivalents, subscripts

are detected and processed, and constants are converted and stored in track 63.

When the entire statement has been read, these code words and equivalents,

which have been stored on track 39, are processed (second pass} and the ob­

ject program is developed. When the entire program has been processed

(or each procedure, if such are used} the "third pass" goes through and adjusts

all references to numbered statements.

B. The storage map

At the completion of the compilation a storage map is printed out,

containing the following information (all addresses are in decimal}.

a} Tue "program break", or last location used by the object­

program (labeled with the letter "f"}.

b} The statement dictionary, each entry of which consists of

the letter "s 11 , the statement number (three digits}, two

spaces and the address of the first object-program instruc­

tion of that statement. While the statement dictionary is

being printed, the first instruction of each numbered state­

ment is tagged with the number at a q of 11.

c} The symbol table, each entry of which consists of a symbol

(in lower case} and the address assigned to it (if the symbol

represents a region, the address is that of word zero of

the region}. These symbols are printed in the order in which

they first appear in the source program. Predefined

symbols (e.g. "remdr ") appear fir st, then procedure names,

then symbols of the main program. Addresses are assigned

sequentially from the bottom of the subroutine package downward,

except for procedure names, subscripts and the special symbol

"sO 11 which will always appear if a switch is used in the main

program.

This printout may be useful in detecting source-program errors or

reader errors. Thus, a procedure name with an address in the data area

probably indicates failure to compile the procedure tape. Unfamiliar symbols

may indicate typing errors or reader errors.

C. Input and Output Devices

It is generally recommended that untested programs be read through

the Flexowriter during compilation, so that if any errors are detected the

point in the program is easily determined. No program tape in which lead­

ing tabs have been used should be compiled on the photoreader unless the

reader has been modified to prevent entry of the tab code.

All output may be taken either on the Flexowriter (with breakpoint

32 off) or on the high-speed punch (HSP) (bkp 32 on). If it is desired to

keep the ~torage map on tape, this may easily be done using the HSP. How­

ever, the tape so produced should be listed to confirm the successful com­

pletion of compilation (see Chapter IV for discussion of error signals) before

the object program is punched.

D. Punching the Object Program

The object program is stored ready for use at the end of compilation.

It may now be punched out as ·a hex tape, or it may be tested before punching.

5

6

Chapter V gives instructions for running the program. If the test is- satis-

factory, the program may then be punched as before.

To punch the object program, load the punch program (ACT III B).

This occupies tracks 30-34 and part of track 63, and so destroys nothing but

the dictionary tables in the T-tape. It ends with a stop and transfer to 6300,

followed by a second stop and transfer to 6336. The first entry is the one

normally used, and causes the punching of the program break address F

(stored in 6338), the object program (0300 to F'), and the constants (in track 62),

followed by a stop and transfer to 0300. If the 6336 entry is used (by transferring

again to the program input routine after the ACT III B tape first stops), the con-

tents of any other desired block of memory may be punched along with the above,

such as a special subroutine package (loaded after compilation) or a data block of

fixed constants read in during testing by an auxiliary portion of the program. Such

block must not, of course, include the region occupied by ACT III B. The block

desired is entered manually when requested in the form required by 13. 2

{AAAABBBB to punch the block from AAAA to BBBB inclusive).

E. Batch Compiling

Since ACT III B erases nothing but the dictionary tables, a second

program may be compiled after punching (but not after testing, since the sub-

routine package destroys the compiler) simply by "loading the T-tape. If the

dictionary tables have not been destroyed (for example, if an error is detected

* during compilation and it is desired to restart the compilation), the T -tape

may be used instead of the T-tape. This performs the same initialization and

control functions as the T-tape, but does not include the dictionary tables. If

you are doubtful, use the T-tape!

CHAPTER III

PARTIAL COMPILATIONS

A. Uses of Partial Compilation

By partial compilation we refer to the compilation of an incomplete

program and the punching of the object program segment so obtained in order

that it may be used, without repeated compilation, as a part of one or more

complete programs. Usually the segment will consist of one or more pro­

cedures, but it may also contain part of a .main program.

B. Method for Partial Compilations

The partial program is compiled in the usual way; it ends with the

code "wait", which causes a stop in location 5339. The tape ACT III C is

now loaded using the program input routine, and the punch is prepared.

Pressing "start" causes the punching of a "C-tape", which contains the por­

tion of the object program, all tables {except those on the T-tape), certain

items required by the compiler for restarting, and some control words.

At this point there is a stop in 3403; pressing "start" will now cause the

storage map {see section II-B) to be printed. This should now be examined

for possible errors.

This process may be "cascaded"; thus, a C-tape may be used, followed

by a source-language segment, to produce another C-tape. The latter will

then contain the previous material also.

C. Use of C-tapes

After the T-tape has been loaded, the C-tape is loaded using the pro­

gram input routine. After patching the compiler to return control to the

program input routine instead of calling for 6-bit program material, this tape

7

8

transfers to a preliminary portion of the compiler, which performs certain

secondary initialization features. When control returns to the program input

routine, the patch is restored and the remainder of the C-tape is read in.

The tape ends with a stop and transfer to 5342. The compiler is now ready

to receive source-program material.

Note: Only one C-tape may be used at a time. See comment in previous

section.

D. Limitations

Since ACT III C starts at 2800, partial programs must not extend

beyond 2763,. A partial program must not contain an incomplete procedure

(an "enter" statement not followed by an "end" statement), unless it is clearly

understood that no "enter", "end", or "exit" may appear in the remaining

portion of the program.

CHAPTER IV

ERROR DETECTION IN PHASE 2

A. Intermediate Error Diagnosis

A number of programming errors are detected by the compiler during

the first or second pass, and are local in nature. These include such things

as incorrect bracket count, invalid subscripts, and invalid operands. When

such an error is detected, the program prints a carriage return, the letter

"e", and a single numeric digit giving the type number. The meanings of

the various error types are given in Appendix B.

Usually such errors may be corrected by correcting the tape, posi-

tioning it in the reader at the beginning of the same statement, and pressing

"start".

Some error displays of this type are caused by an error in a previous

statement. The most common situation is failure to put a blank word at the

end of a "dim", "index", "dbind", "enter 11
, or "local 11 statement. In such a ·

-;'~

case, the only remedy is to start over. The T
1

-tape may be used instead of

the T-tape for this purpose.

If, while observing the compilation, you dis cover an error which the

compiler cannot detect in the statement currently being read (before the

closing blank is read), it is possible to force an error display to permit

immediate corrections. Simply depress manual input, and enter a right

bracket at every "read" until an error is shown.

9

10

B. Final Error Displays

The first item printed out in the storage map is the program break

("F"). If something is printed before this, one of two kinds of nonlocalizable

errors has been detected.

If, before the program-end blank is read, the computer prints the

line "sOOO 0000" and follows it with a storage map, it indicates that the pro­

gram is too large for the machine. If Fis less than 2963, it may be possible

to conserve on data storage or use a smaller subroutine package and fit the

program in. If the object program would run beyond 2963, however, this is

not possible. Various techniques for improving efficiency of space utilization

are included in Volume 1. If the program was trace-compiled (see Chapter VI),

recompiling without trace will save two words per statement. Similar state­

ments or statement groups may be separated into a "ret-use" type block. If

nothing else avails, a program may be segmented.

The second type of nonlocalizable error is the undefined label. This

is indicated by the printing of the statement number and the location in the

main program which refers to it (if it is referred to more than once, each

reference is listed). This condition cannot be discovered until the third pass,

which occurs after either the final blank word of the program or tl1:e "end"

statement of a procedure is read. Such printouts may also follow the "sOOO 0000"

storage full indication, if some labels are defined in the portion of the program

which is not yet compiled.

When either of the above errors is detected, the compiler modifies its

operation to prevent further changes in the object program. Thus, calls on

labels are left unsatisfied after the first undefined label call (from the last

"end" in case of a "storage full" indication) and the statement numbers are

not inserted during the printing of the statement dictionary.

After the storage map is printed in such an error situation, the compiler

is prepared for a restart, which may be executed in the following way. After

the tape is corrected, position it in the reader at the blank word (stop code)

preceding a labeled statement, far enough back to include the part in error.

(Note, however, that in the case of an undefined label error any labels defined

after the restart point but called before it will not be corrected.)

If the portion of the program following this chosen restart point con­

tains a "dim" statement, depress "manual input" on the Flexowriter, press

"start", type in the first symbol named in the "dim" statement, and release

the "manual input" button. If no "dim" statement is involved, simply press

"start compute".

Sometimes a trace-compiled program (see Chapter VI) may be restarted

in this way after a storage-full error to re-do the last several statements

without trace, and thus gain the needed space.

11

CHAPTER V

PHASE 3: RUNNING A COMPILED PROGRAM

The requirements for running a program may be summarized as

follows: subroutine package (P-tape), object program, data tape.

A. Production Runs-Tested Programs

After loading the P-tape (if necessary), load the object program

tape with the program input routine. This tape ends with a stop-and-trans-

fer to 0300, the beginning of the program. Place the data tape in the reader,

set up the punch or Flexowriter to accept output, set breakpoints as required

by the program (always bkp 32 for highspeed punch), and press "start".

To restart, transfer to 0300.

B. Te sting a Program Before Punching

At the completion of compilation, the object program is stored in

memory. To test, load the P-tape, transfer to 0300 and proceed as in

Section A above. If the test is completed satisfactorily, simply load ACT III B

to punch the object program (see Section II-D).

C. Error Detection At Run-Time

Many errors are detected by the operating subroutines in the form

of unacceptable numbers. Thus, for example, an attempt to divide by zero,

or to take the square root of a negative number, or to produce a number too

large for the system will cause an error indication. The form of such an error
)

display is as follows. The computer prints a carriage return, "e ", the type

number, and the (source-language) name of the routine in which the error is

detected. After another carriage return,. the number of the last labeled

13

14

statement executed is printed (zero if the program is not trace-compiled),

followed by the address in the object program of the exit from the routine

in which the error occurred. (This information, with the help of the storage

map, will help to pinpoint the location in the source-program). Finally,

the value of the right operand is printed~ interpreted first as an integer and

then as a floating-point number.

The three err or types, as a general rule, have the following meanings:

type 1 denotes floating-point overflow (magnitude of result> 1032), type 2

implies an operand out of the range of definition of the operator, and type 3

refers to integer operations. Specific meanings for each routine are listed

in Appendix C.

Although pressing "start" will cause the program to continue, an

invalid result will be used, which may prevent meaningful testing of the re­

mainder of the program.

•

CHAPTER VI

TRACING

In this chapter we describe a powerful debugging tool which operates

essentially at source-language level.

A. Trace- Compiling

In order to use the trace features, it is necessary that a program be

trace-compiled. This is done by depressing transfer control during the com­

pilation phase. It adds two instructions per statement to the object program.

If it is desirable, selected portions of a program may be trace-com­

piled by depressing the transfer control button only when this feature is

desired. The insertion of "wait" codes in the program will avoid the necess­

ity of watching the compilation.

B. Tracing in Phase 3

A program which has been trace-compiled runs in the same way as

an untraced program if the transfer control button is off at run-time, except

that in the event of an error display the number of the last labeled statement

executed will be given. The trace routine keeps track of the statement number,

which is inserted in the object program at a q of 11 in the first instruction of

each labeled statement.

If, however, TC is on, two features are added. These are statement

stopping and trace-printing.

C. Statement Stopping

If the program is started at 0300 with TC on, the input must be set

for manual input from the Flexowriter. The first input order is given by the

15

16

tracing routine, and it is necessary to type in a statement number in

standard integer data form. When "start compute" is pressed, the pro­

gram will now continue until it stops in location 5918 (with P-5-B) just before

executing the statement with this number. (If no stop is desired, type in

"+0 ").

After this stop, input must again be set for manual, and the trace

routine will ask again for a statement number when the computer is restarted.

A valuable use of this feature is in a situation where it is desired,

without taking the ·time for a complete trace printout, to localize an error

(for exa·mple,-.to find out how many times a loop has been executed). It may

also be used to ~get close to the point of error at full speed, with the intention

of tracing the questioned portion in detail.

The call for a statement stop number may be bypassed by starting

the run at 0301 instead of 0300.

D. Trace Printing

For each source-language statement executed while the TC is on, a

line of information is printed containing the statement number (zero if the

statement is unlabeled), the machine address of the first instruction of the

statement, and the resuit of the statement, interpreted first as an integer

and then as a floating-point number. No provision is made for shifting to

lower case; if the program leaves the Flexowriter in upper case, the trace

will be printed this way.

E. Testing Procedures

During the compilation of a procedure, the trace-compile feature is

automatically suspended, regardless of the TC button. Also, statement

numbers are not inserted in the object program because the statement diction­

ary is erased by the "end" statement.

A procedure may be trace-compiled by inserting the staten:ient

trace 11

after the "enter 11 statement. This restores the test on the TC button, which

must, therefore, be on.

If the statement-number features are also desired, the following

additional recipe will make this possible. The "end" statement must be

omitted, the first working statement of the main program must be labeled,

and a statement transferring to this label must be placed before the procedure

being tested. No other procedures may be compiled following the one so

treated. Since the "end 11 statement is responsible for the "local 11 nature of

variab}es and labels, it will be necessary to avoid duplication in the main

program if this method is used.

If a procedure has not been trace-compiled (the usual case), any "call"

statement is traced as a single statement.

17

CHAPTER VII

ASSEMBLY OF SUBROUTINE PACKAGES

The "heart" of the flexibility of language and subroutine packages

rests in the symbolic assembler program, SPAR. This consists basically

of two tapes: SPAR A, for assembly of symbolic tapes into P-tapes and

T-tapes; and SPAR B, for punching R-tapes.

A. The Assembly Process

The program SPAR A accepts tapes in a symbolic language and from

these produces both a P-tape, containing the subroutines in hex,. and a T-tape,

containing the dictionary for use by the compiler.

SPAR A occupies tracks 39-62 (inclusive), and incorporates parts

of the modified 13. 2 used in ACT III B (in tracks 58-62). · It uses tracks 3-10,

30-38 and 63 for tables and temporary storage.

During the assembly of symbolic program tapes (S-tapes), SPAR A

builds up its own reference symbol table in tracks 3-10, and a set of tables in

the form required for a T-tape in tracks 30-38. The assembled subroutines

are stored in tracks 11-29, with provision for them to be properly relocated

during the punch-out.

The initialization is carried out under control of an R-tape. This

provides for transfer to the initialization routines and also sets up the proper

status of all tables. Two basic R-tapes are provided with SPAR A; these

are labeled RI-A and RI-B. Note the notation here; "I" stands for "Initializer",

and these tapes are not to be confused with R-1-A and R-1-B which correspond

to the P-tapes of the same number.

19

20

The RI-A tape initializes SPAR for assembly of packages in

"mode A", in which the subroutines are located (at run-time) downwards

from 2963. This mode is of use in situations where it is not desirable to

keep reloading ACT III A and the P-tapes, but it is very restrictive of

storage.

The tape RI-B initializes SP AR A for assembly of subroutines in

"mode B" (the standard mode), in which the subroutines are located (at

run-time) from 6163 downwards.

B. Assembling Subroutine Packages

With SPAR A in memory, the R-tape is loaded with the p. i. r. (If

the operator should forget to depress breakpoint 32, a stop will occur during

this process in 5705. Press "start" to continue). After the R-tape is loaded,

the program stops in 5125. The desired S-tapes are now assembled in 6-bit

mode. (An option controlled by the Transfer Control button allows a decimal

print-out of the program as it is assembled. If this option is used, the sym­

bolic tape should be assembled through the Flexowriter and output should be set

up on the Flexowriter. The first tab stop must be at least 25 characters from

the left mar gin).

Since the space available for the subroutines as they are assembled

(tracks 11-~9) is rather limited, it is not possible to assemble all the S-tapes

in a s~ngle pass. For this reason, provision is incorporated for segmented

assembly. Specifically, the symbolic tape S-1 should be assembled and

punched as the first segment. If this is done, there will be room for all re­

maining S-tapes in the second segment.

Any assembly may be used as the starting segment of a further

assembly, if this is anticipated and an R-tape is prepared at the time of the

original assembly. We, therefore, recommend the following steps at the

completion of each assembly (or segment).

Each S-tape ends with a "wait" code, which stops the operation in

5125. If more S-tapes are to be assembled in this segment, simply place the

next one in the reader and press "start". If this is the end of the segment,

press "start" before removing the present S-tape. After a pause while a

search is made for undefined symbols, the program will stop in 5131. Now

set up the punch (turn off TC if it was on), and press "start" to obtain the

P-tape. This will include all subroutines assembled in this segment, fol-

lowed by a stop and transfer to 0000. At this point the program stops in

5141. Pressing "start" again will produce the T-tape. The program now

'>'<.
stops in 5737. Pressing "start" will now produce the T

1

-tape.

It is essential to observe at this point that the P-tape thus produced

'>!<.
contains only the segment just assembled, whereas the T and T -tapes are

comprehensive, including all previous segments represented in the R-tape

which was used.

''<.
After T., -tape is punched, load the tape SPAR B with the p. i. r.

This is a control tape for the modified 13. 2 (which is in SPAR A), and

occupies track 11 and part of track 12. It ends with a stop-and-transfer to

1100. Pressing "start" now will cause punching of an R-tape, which includes

everything on the T-tape plus all the SPAR A tables and other data needed by

SPAR A for assembling subsequent segments. The stop is in 1211, and press-

ing "start" will cause a duplicate copy to be punched. (This may be used for

21

22

duplicating old R-tapes; simply proceed as in a regular assembly, but

without assembly of any S-tapes or punching of P-or T-tapes. If you wish to

make a duplicate T-tape from an R-tape, proceed as above, then after the

stop in 5125 insert~~ in 6108, then transfer to 5142).

By way of illustration, we will list the steps involved in producing

the standard system (P-5-B and T-5-B).

a) Load SPAR A.

b) Load RI-B.

c) Assemble S-1.

d) Punch P-1-B, T-1-B, T~:'-1-B.

e) Load SPAR B.

f) Punch R-1-B.

g) Load R- 1 - B .

h) Assemble ICP, CS, PELL, TRIG,

i)

j)

k)

ARTAN, SQRT.

~:c

Punch P-tape, T-5-B, T -5-B.

(optional) Load SPAR B and punch R-5-B.

To produce P-5-B, duplicate this P-tape

(which might be labeled P-5-B minus P-1-B)

without its final ". 0000000 1
", and then

duplicate P-1-B on the same tape. (Alternatively,

load the two P-tape s in memory and punch 3100- 6163

with a punch routine.)

·We recommend the making of R-5-B in view of its usefulness as a

master tape in making new copies of T-5-B, and also as a starter tape for

pas sible additions or alterations. The P- 5-B tape produced by this scheme

on a computer equipped with the overflow and breakpoint logic modification

will differ from the standard system tape. The subroutines are designed to

take advantage of the overflow test feature, and some improvement in oper­

ating spee'd may be expected. This P-tape will, therefore, (if assembled on

an overflow logic board) not work correctly on a standard computer. The S-1

tape and SPAR A are designed to detect the presence of the modification and

assemble the package appropriate to the machine. It is possible, however, to

assemble a standard package on an overflow machine using a special RI-tape.

The R-tape contains, in addition to coding recognized by the program

input routine, some material which is the hex equivalent of 6-bit codes

recognized by SPAR.

C. Alternative Packages

Many suggestions have been received for various subroutine com­

binations; in view of the variety pas sible, it has not been considered feasible

to provide more than the one standard. A system incorporating all the routines

in the revised order S-1, ICP, CS, SQRT, PELL, TRIG, AR TAN has been

suggested; this would make it easier to add more space for data in a program

which uses, for example, only "sqrt"; or only "sqrt", "ln" and "exp". How­

ever, we have adhered to the original order in order to maintain compatibility.

The following package numbers have been used by some users:

Package

P-1

P-2

P-3

S-tapes

S-1

S-1, ICP, CS

S-1, ICP, CS, PELL

23

The name 11P-4 11 was used for the pre-March, 1961, version of P-5,

which is now considered obsolete.

Other names are free; we would recommend that any arrangement

which seems to be of more than local interest be properly christened by an

announcement in POOL NEWS.

D. Error Stops Du~ing Assembly

The only error stop which should ever be met during assembly
• • <,...

of the standard S-tapes is error No. 2, which signifies that the subroutine

storage is full. This should also not occur if the suggestion in section B for

segmentation is followed. If it occurs, it will be at the beginning of a new

S-tape. The tapes compiled to this point may be punched as a segment as

follows: Switch to Flexowriter, manual input; press 11 start compute 11 and

enter two blank words on demand. The program will finally stop in 5131,

after which the procedure outlined above may be followed.

Error No. 3 will occur if an attempt is made to assemble ICP, PELL,

AR TAN, TRIG, or SQRT before S-1 (or without using an R-tape including S-1).

This is necessary since these subroutines use many of the executive routines

in S-1.

Any other error stop implies a defective S-tape or reader error. A

more complete discussion of the SPAR assembler will be found in Volume 3

(Technical Manual).

24

CHAPTER VIII

TABLES AND APPENDICES

APPENDIX A "LOAD" CHECKPOINTS

Procedure for loading tapes.

1) All breakpoints, 6-bit, transfer control off.

2) Place tape in reader. If using Flexowriter, manual input off.

3) Press "One operation", "Clear Counter", "Normal", "Start Compute".

(Buttons on computer control panel.)

4) Always wait until computer stops; some tapes will pause at various

points.

APPENDIX B PHASE 2 (COMPILE-TIME) ERROR TYPES

Printout Meaning

el

e3

e4

e5

e6

e7

e8

e9

a) Symbol table full (max. 126). Put some variables

into regions.

b) Too many constants (max . 63). Read in some as data.

Incorrect constant.

Improper use of "enter", "end", or "exit".

Invalid bracket count.

Statement too large.

Statement number >l 90.

a) 6-bit button up.

b) Invalid subscript.

c) Blank missing from end of previous "dim", "index",

"db ind 11
, "enter 11 , or "local" statement.

d) Operator not included in T-tape.

Invalid or missing operand. 25

26

Routine

+, -, x, I

I

ix, i/, unflo, fix

exp, flo, xlOp,

pwr

ipwr

In, log

sin, cos

sqrt

APPENDIX C

PHASE 3 (RUN-TIME) ERROR TYPES

pwr

Error Type

1

2

3

1

2

3

2

2

2

APPENDIX D

OPERATOR'S FLOW CHARTS

Meaning

fl. pt. overflow

division by zero

integer overflow

fl. pt. overflow

left operand negative;

or left operand zero

and right operand negative.

left operand zero

and right operand negative.

operand zero or negative

operand >10
8

operan,d negative

The following four pages contain quick-reference charts designed as

a simplified guide for operation of the various phases of the system. Since

they cannot, of course, cover all possible variations, they should be used only

for ready reference at the console in routine work.

FLOW CHART NO. 1

PHASE 2: COMPILING A PROGRAM

Load tape

ACT III A
Load T-tape
(e.g. T-5-B)
-stops on

Load C-tape
(if any)
-stops in
5339

---'"""' -stops on
. 0000000

6-BIT
ON

. 0004018

Place procedure tape
(if any) in reader
Press "start compute'~..,_--~
Normal stop is
in 5339
Repeat if more than one

If trace -
compiling is
desired, turn
Transfer Control ON

Place main program
tape in reader

At end of compilation
---- storage map is printed,

Press "start compute" and stop in 5453 (successful)
or 5641 (incorrect) TURN
6-BIT AND T. C. OFF

To test
before
punching

• Load tape
ACT III B
-stops on
. 0006300

Load P-tape,
transfer to
0300, run test
case.

Set up punch
and press
"start compute"
to punch object
program tape -
stop in 6329.

.___~ If successful, go to@')
otherwise go to 0

another program,
to compile)

go to@.

27

28

FLOW CHART NO. 2

PARTIAL COMPILATIONS

Follow Chart No. 1 up to C .
If there is a main program
segment, continue, but stop is
now in 5339 with no storage map .

6-BIT, TC
OFF

._ __ Load tape

Set up punch,
press "start
compute" to
get C-tape,
Stops in 3403.

To use C-tape
go to@of
Chart No. 1.

ACT III C
-stops on
. 0003300

Press "start
compute" to get
storage map, stops
in 5453.

FLOW CHART NO. 3

PHASE 3 - RUNNING A COMPILED PROGRAM

Load P-tape
(e.g. P-5-B)
-stops on
. 0000000

Place data tape
in reader, set
up output as desired,
set transfer control
and breakpoints.

Load Object
Program tape
-stops on
. 0000300

Press "start
compute". -stops
in region 0300-2963
if program goes to
"stop" statement.

To run another program, go to@ .
To restart this program at beginning,
transfer to 0300.

29

N

30

FLOW CHART NO. 4

ASSEMBLING A SUBROUTINE PACKAGE

Load tape
SPAR A
-stops on

0000000

BKP32 OFF
6-BIT ON

With Last S-tape
still in reader,
press "start
compute" and wait
for stop in 5131.

Press "start
compute" to
punch T-tape
-stops in 5737

6-BIT OFF
Load tape
SPAR B. -stops
on . 0001100.

BKP32 ON
Load R-tape
-stops in
5125

Place S-tape
in reader, "start
compute" to
assemble. Stop
in 5125. Repeat
for each S-tape.

Set up punch,
press "start
compute" to punch
P-tape; stops in
5141.

Press "start
compute'' to punch
T*-tape -stops in
5737.

Press "start
compute" to punch
R-tape -stops in
1211

APPENDIX E

LIST OF PROGRAMMED STOPS

A. During Compilation (Phase 2)

B.

Location

3403

5339

5339

5453

5641

6329

At Run Time

location

0300-2963

5918

6145

Program

ACT III C

ACT III A

II

II

II

ACT III B

(Phase 3)

Program

Object

P-5-B

P-5-B

C. During Subroutine Assembly

Location

1211

5125

Program

SPARB

SPARA

Comments

Punching of C-tape completed.

Press "start" for storage map.

"wait" in source program.

Press "start" to continue compilation.

After error display. See manual.

After storage map. Successful compilation.

After storage map. Inc or re ct program

(storage full or undefined labels).

Punching of object program tape completed.

Comments

Source program "stop".

Statement number stop.

After err or display.

Comments

Punching of R-tape completed. Press

"start" for duplicate copy.

"wait" in symbolic program or at end of

R-tape. Press "start" to continue assembly.

31

32

APPENDIX E CONTINUED

Location

5131

5141

Program

SPARA

SPARA

5705 {bkp32) SPAR A

5705 SPAR A

5723 SPARA

5737 SPARA

Comments

Blank unit in symbolic tape. End of assembly.

Punching of P-tape completed. Press "start"

to punch T-tape.

"trnsf" in ·symbolic program.

Bkp 32 off when loading R-tape.

Press "start" to continue assembly.

After error display.

Press "start" to reassemble unit.

a) Punching of T-tape completed.

b)

* Press "start" to punch T -tape.

* Punching of T -tape completed.

•· ,; .•• tl. ~..,. •••

COMMERCIAL COMPUTER DIVISION

INFORMATION SYSTEMS GROUP

SC 0021 Printed In U.S.A.

