
General Precision Electronic Computer
'

LGP-30
PROGRAMMING CLASS

NOTES

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

TABLE OF CONTENTS

Page

INTRODUCTION

I•.•.•. LGP-30 PHYSICAL DESCRIPTION 1

II•..... MAGNETIC DRUM AND WORD STRUCTURE ..•...•. 2

III SOME BASIC ORDERS ...••...•.......••.•... 7

IV . • • • . • • . • • SCALING . • • • . • . . • . 9

V ••.•••••.. PROGRAMMING A SIMPLE PROBLEM•.••. 12

VI • . • • . • • • . • TAPE CODES •....•.•....•....•............ · 14

VII

VIII

TAPE READ IN • • • • . . . • • • . • • . 17

CONVERSION OF DECIMAL INSTRUCTION
AND DATA TO HEXADECIMAL

. • . . • . • 19

IX • • • • • . • . . . OSCILLOSCOPE . • • • • • • . . • • • • . • • • • • • . 22

X • • • • . • • . • . CONSOLE BUTTONS . • • • • • • . • • • . • • • • . • • • . • • • . 23

XI • • • • • • • • • • TYPEWRITER CONTROLS • . • . . . • • • . • • • • • . • 30

XII PROGRAMMING A LOOP . • . • • . . • • • • • 35

XIII BOOTSTRAP PROGRAM • . . • • • . . . • • • . . 38

XIV PROGRAM INPUT ROUTINE ...•.•••••.•..••... 42

XV••••.. OPERATING TIMES-OPTIMIZING .•••.....••... 48

XVI PRINT INSTRUCTION • • . . • 52

XVII BINARIZATION OF DECIMAL ADDRESS •........ 54

SECTION XVIII CORRECTING TAPES . • . . . • • • • . 57

SECTION XIX SYNOPSES OF LGP-30 SUBROUTINES .•.....••. 59

INTRODUCTION

These class notes are designed to dispense with the necessity
for note taking and to increase the general efficiency of the in­
struction period. They do not constitute the Royal McBee LGP-30
Programming Manual.

The following paragraphs briefly summarize the organization
of the major topics covered by the sections of this manual.

After disposing of the basic physical description and "Computer
Control" the concept of data and instruction words are introduced.
Some basic LGP-30 orders along with scaling are introduced before
proceeding to a specific example. Having programmed a basic problem,
the next step is to show how this program is represented o.n tape
and read into the LGP-30.

The sections covering conversion to hexadecimal, the oscilloscope,
console buttons, typewriter controls, and programming a loop are
presented to prepare the reader to master the section concerning the
bootstrap program.

The section devoted to the program input routine is possibly
the most important as it is most widely used.

A section covering operating times and optimizing is presented
to give the reader the background required to fully grasp the theory
of the print instruction.

The remaining sections contain material with which LGP-30
operators and programmers should be acquainted.

SECTION I

LGP-30 PHYSICAL DESCRIPI'ION

The LGP-30 is commonly referred to as a desk computer. Obviously,
this phrase originated because the size of the LGP-30 closely parallels
the size of a standard office desk. The LGP-30 is 26" deep, 33" high, and
44" long, exclusive of the typewriter shelf. The computer weighs approx­
imately 800 pounds and is mounted on sturdy casters which facilitates
movement of the computer.

Another asset in regard to the computer's mobility is its power re­
quirement. The LGP-30 requires 1500 watts when operating under full load.
The power inlet cord may be plugged into any standard 115 volt 60 cycle
single phase line. The computer contains internal voltage regulation of
all voltages against power line variations from 95 to 130 volts. In addi­
tion to regulation of power line variations, the computer also contains
the circuitry required to permit a warm-up stage. This warm-up stage
minimizes thermal shock to tubes and insures long component life. The
computer contains its own blower unit and directs filtered air, through
ducts, to tubes and diodes, in order to again insure long component life
and proper operation. No expensive air conditioning needs to be installed
if the room is kept within a reasonable temperature range.

The computer contains 113 electronic tubes and 1450 diodes. The 113
electronic tubes are mounted on 34 etched circuit pluggable cards which
also contain associated components. Although 34 pluggable cards are used,
there are only 12 different types of such cards. Card extenders are avail­
able to permit dynamic testing of all machine functions. Six hundred and
eighty of the 1450 diodes are mounted on one pluggable logic board. This
logic board may be quickly removed and is very accessible for service
personnel'~ use.

The main memory consists of a magnetic drum that contains 4096 words.
An instruction or data word may be stored in each one of the 4096 available
words. When instructions are placed on the drum, they will be executed in
sequence until one of the instructions "transfers control" to a new set of
instructions.

1

SECTION II

MAGNETIC DRUM AND WORD STRUCTURE

Since we will be concerned with programming for the computer, the most
important component from our standpoint will be the magnetic drum. Physi­
cally the drum is approximately 6.5" in diameter and 7" in length. The
4096 word main memory is contained on this drum. To facilitate machine
design (as we shall soon see) this main memory was broken into 64 tracks
or rings.around the circumference of the drum. These tracks a~e not
visible, actually each track is only .040" in width. There is .075"
between each track. Approximately .001 of an inch above each track is
mounted a head. This head is capable of reading and recording magnetic
spots on the surface of the drum. Since these heads are much wider than
the .040" track width, it is impossible to place all 64 heads in one con­
tinual line above the drum. Instead they are spaced at various points
around the drum. The heads are manufactured by Librascope Inc. and each
head is encapsuled for moisture resistance and dimensional stability. Low
resistance windings and sintered ferrite cores with low capacitance assure
stable operation.

The 64 tracks on the drum are numbered from 00 through 63. At first
this may seem odd but shortly you will see the reason for numbering the
tracks in this fashion. Each track is broken into 64 equal segments or
sectors as we shall refer to them. This gives us 64 tracks each containing
64 sectors or a total of 4096 sectors. As you already know, the LGP-30
computer has a 4096 word memory; consequently, each sector may also be
referred to as a word. Again as you already know, our computer is a stored
program computer, i.e. we may use each word of memory to store an instruc­
tion of our program or a numerical value (word of data).

The computer interprets a word of data in an entirely different manner
than it does a word containing an instruction. So let us first see how the
computer interprets a word of data. If we were able to pick up any sector
(or word) of memory and examine it as the computer does, we would find that
the word was composed of 32 equal pieces or bits. The read record head is
capable of recording or magnetizing each one of these individual bits inde­
pendently and later is capable of reading those same magnetized spots. In
the case of a data word, if the high order bit (i.e. bit at the extreme
left) is magnetized, it indicates that the data word is negative. Conversely
an unmagnetized high order bit indicates the presence of a positive number.
Perhaps you have seen in the blue brochure that the LGP-30 number range is
from -1 to almost +l. If this were really true, I am sure you all might have
a 1 ittle difficulty finding a job to ru.n on the computer.

The computer represents all numbers in binary and assumes the decimal
point (or binary point -- since we have a binary number) to be located
between the sign bit and the bit just to the right of it. The computer
considers the bit to the right of the sign bit to have a value of 2-l and
the bit to the right of it to have a value of 2-2 , the next 2-3, 2-4, etc.

2

We shall represent a magnetized bit as a 1 and an unmagnetized bit
as zero. Consequently, if we have the 4 bits to the right of the sign
bit magnetized and all others unmagnetized (including sign bit) the com­
puter would interpret this as 2-l + 2-2 + 2-3 + 2-4 or 1/2 + 1/4 + 1/8 +
1/16 = .5 + .25 + .125 + .0625 = .9375. With this notation ~t would not
be possible to ever express a positive integer. Since there is never an
actual binary point placed on the drum, the machine does not know whether
we consider the binary point to be located between the sign bit and the
bit to the right of it or not. So we may consider the binary point to be
located anywhere we choose.

As an example, let us suppose we consider the binary point to be
located X positions to the right of the standard position. Rather than
saying each time that "the binary point is X places to the right of the

,. standard position of the binary point", we have adopted the notation "at
a 'q' of +X." Conversely, "a 'q' of -X" indicates that the binary point
is considered to be X places to the left of the standard binary point
location. As an example, if. we consider "q" to be + 3, we have 3 bits
between the sign bit and the binary point. The bit just to the left of the
binary point represents 20, the bit to the left of that 2+1 and the one to
the left of that 2+2. Therefore, if all 3 of these bits are magnetized, we
are representing the integer 20 + 21 + 22 = 1 + 2 + 4 = 7. In this example,
the bits to the right of our binary point represent 2-l, 2-2, 2-3, etc. So
if we choose to carry a number at a q of 3, we may represent any number less
than 23 = 8.

Wa cannot represent 23 = 8 or any larger number at a· q of 3 so in a
binary fixed point machine you must have some idea of the range of all of
your data. Once you know the range (maximum value in particular) of a
variable it is a simple matter to refer to a table of powers of 2 and deter­
mine what "q" (or power of 2) the number must be "carried at". By follow­
ing thesa basic rules, one may easily express positive numbers in the range
0 < N< 23 with nearly 9 decimal digits accuracy. You will note that we say
230 and not 231 even though it appears that we have 31 bits to the right of
the standard binary position. Actually the low order bit (extreme right)
is always recorded on the drum as a zero. It is usually referred to as a
spacer bit since it effectively gives us a space between the words (or
sectors) on the drum.

Negative numbers are represented in the LGP-30 as two's complements.
We shall discuss here two methods that we may use to obtain the two's
complement of a number. First, if we express the negative number we wish
to convert as a positive binary number, then make all the l's zeros and all
the zeros l's and finally add a 1 in the least significant bit, we will
obtain the proper complement. For example, suppose we wish to represent
-6.75 in binary at q = 3.. First we represent +6.75 at q = 3 in binary:

.:!:. sp
OllO .1100000000000000000.00000000

1001.001111111111111111111111110
1

1001.010000000000000000000000000

Then reverse all bits:

Add a bit to the least significant bit.

The preceding arrangment of bits represents a -6.75 at q = 3.

3

We shall discuss the second method of representing a negative number
through inspection of the first example. If we examine the +6.75 at
q = 3 and our final answer, we can readily see that all bits to the left
of our least significant bit have been reversed. This is the second rule:
represent the number as a positive number at the appropriate q and then
reverse all bits to the left of the least significant "l" present. The
bits to the right of the least significant bit are unchanged. The least
significant bit is unchanged.

Perhaps you have decided by now that you do not like this method of
converting negative decimal numbers in this manner. As a matter of fact
you undoubtedly do not like the method of converting your positive numbers
to binary. Well we did not like it either, we all prefer to be able to
write down our decimal number in good old decimal form and tell the machine
to convert it for us and place it on the drum at the proper place. The
LGP-30 Data Input Subroutines were developed to perform this function for
us. As an example, suppose we desire to place the following numbers into
the computer.

1. Place +96.40236 in drum location 6234 at q of+ 7.
2. Place -.000000597 in drum location 2363 at q of -14.
3. Place +330000. in drum location 2100 at q of +30.

All we need to do is enter these numbers on a load sheet, and punch the
data tape from it. These three numbers would be entered on the load
sheet in the following manner.

Quan. p ± q Location ± Number Car.]
Ret.

5 07 6 2 3 4
I

9 640236
I

+

9 14 2 3 6 3
I

-0 0 0 0 5 9 7
I 2SJ -

0 + 30 2 I 0 0
I

330000
I

Later we shall learn how to use the Data Input Subroutine in order to have
it read in our decimal numbers and place them on the drum.

Now let us consider a word on the drum that is used to store an in­
struction. The 12 bits at the left are ignored entirely by the computer
while it is interpreting the instruction. The one exception to this rule
is the transfer control instruction which will be discussed later. The
next 4 bits are very important, since the order (command or operation) is
represented in binary here. If we consider these four bits in binary, we
see that we can represent the integers 1 through 15 by magnetizing various
combinations. If no bits are magnetized, we may represent a 16th order.
Since our computer has 16 basic orders (or operations) we may assign a
number (0 through 15) to each order. The complete table of orders with
their equivalent code is given on the following page.

4

DEC. BINARY CODE
CODE: ORDER . 3 22 20 2 21

0 z Stop 0 0 0 0
1 B Bri~g 0 0 0 1
2 y Store Address 0 0 1 0
3 R Return Address 0 0 1 1
4 I Input 0 1 0 0
5 D Divide 0 1 0 1
6 N Multiply 0 1 1 0
7 M . Multiply 0 1 1 1
8 p Print . 1 0 0 0
9 E Extract 1 0 0 1

10 u Unconditional Transfer 1 a 1 0
11 T Test 1 a 1 1
12 H Hold 1 1 0 0
13 c Clear 1 1 a 1
14 A Add 1 1 1 a
15 s Subtract 1 1 1 1

Later we shall explain each instruction in detail but for now let us
consider the meaning of other bits present in the word when it is used to
represent an instruction.

Just to the right of the 4 order bits we find 2 bits that are also
ignored by the computer when it is interpreting an instruction. The 12
bits just to the right of these 2 bits are used to represent the address
(operand) of the instruction. This operand.refers to one word of the 4096
word memory. As we found earlier, each one of the .4096 words may be iden­
tified by giving it a specific track and sector address. Since we have 12
bits to identify this address, it follows that the first 6 bits should be
used to represent the track portion of the address and the last 6 bits be
used to represent the sector portion. If we analyze the 6 bits of the
track, we will find that we may represent in binary any integer in the
range I to 63 (inclusive) by magnetizing various combinations of bits.
Again, if we do not magnetize any of the track bits we ma:y represent track
00. Now.we see why the tracks were originally number 00 through 63.

The same logic applies to the six bits used to represent sector. You
will. note that if we add a 1 to the binary representation of sector 63 we
obtain a carry into the track portion and the sector becomes zero. Thus

··address modification from one track to another is easily obtained. Atten­
tion is also called to the fact. that the address portion of an instruction
is carried at a q of 29. The bit following the address is ignored and the
bit to the right of it is our old friend the spacer bit.

In the discussion thus far we have referred to a bit either being mag­
netized or not being magnetized. This is not actually the case; instead,
zeros are magnetized with their north pole in one direction and l's are
magnetized in.the opposite direction.

5

As we now examine the word of instruction, we find that our order
m~st be represented in the binary number system; for example, add is
represented as 14. In addition, we find that our address must' have its·
decimal track and sector represented in the binary number system. Here
again, we prefer to do all of our programming in the familiar decimal
system, ·SO it became necessary to have a program input routine to convert
our decimal instructions to binary.

It is obvious that since the computer is a binary computer and conse­
quently does all its computing in binary, it is necessary to have a Data
Output Subroutine convert the data from binary to decimal and perform the
decimal printing. So to perform any problem we must have a Data Input
Subroutine, Program Input Subroutine, and Data Output Subroutine stored
in the computer. If we had the Program Input Subroutine in the computer,
we could use it to read in the Data Input and Output Programs.· So our
problem now is to develop a routine that will load the Program Input
Subroutine into the computer. We call the. program that does this the
"bootstrap" program. Later we shall see in detail exactly how this boot­
strap loads the Program Input Routine into the computer.

6

SECTION Ill
SOME BASIC ORDERS

The LGP-30 is a single address computer. That is, with each order
there must be an address. In a three address computer there are 3
addresses with each order. For example, in a three address computer, one
would give an add and 3 addresses. The computer would add the contents
of the first address to the contents of the second address and place the
sum in the third address. In a single address computer this same addition
would be programmed with the add order and the one address. Obviously,
2 addresses are implied. In the case of the LGP-30 these 2 addresses both
refer to the accumulator. In the case of an add, the computer adds the
contents of the accumulator to the contents of the single given address
and places the sum in the accumulator. The following presentation explains
the basic LGP-30 orders. The R (code 3), P (code 8), I (code 4), N (code 6)
and E (code 9) orders are explained later.

In the explanation below m represents any one of the 4096 words of
memory.

CODE ORDER

1 B

14 A

15 s

7 M

ADDRESS

m

m

m

m

7

INTERPRETATION

Bring -- Place the contents of memory
location m in the accumulator after
clearing out its previous contents.
Memory location m is unaltered.

Add -- Add the contents of memory
location m to the contents of the
accumulator and place their algebraic
sum in the accumulator. Memory loca­
tion m is unaltered.

Subtract -- Subtract the contents of
memory location m from the contents
of the accumulator and leave their
algebraic difference in the accumula­
tor. Memory location m is unaltered.

Multiply -- Multiply the contents of
memory location m by the contents of
the accumulator and place the most
significant 30 bits of the algebraic
product in the accumulator. Memory
location m is unaltered.

5 D m

12 H m

13 c m

2 m

10 u m

11 T m

0 z m

8

Divide -- Divide the contents of the
accumulator by the contents of memory
location m and place the algebraic
quotient in the accumulator. Memory
location m is unaltered.

Hold --Store the contents of the .accum­
ulator in memory location m. The con­
tent.s of the accumulator are unaltered.

Clear Store the contents of the
accumulator in memory location m. Then
clear the accumulator to zero.

Store Address -- Store the address por­
t.ion of the accumulator into the address
portion of memory location m. The con­
tents of the accumulator and all other
portions of memory location m are unaltered.

Unconditional Transfer -- This instruction
transfers control to memory location m.
That is, it goes to memory location m and
executes the instruction there and proc~eds
sequentially from there until given another
trans~er instruction.

Test -- This instruction tests the sign
of the accumulator and if the accumulator
is negative, control is transferred to
memory location m. If the accumulator
is positive, the instruction following
T m is executed next. (See p.26 - Transfer
Control Button). Zero is always "+".

Stop -- This order is a conditional stop
instruction. (See p. 25 - Break Point
Buttons).

SECTION IV
SCALING

If we are adding two numbers, the decimal points must_ first be
lined up. In performing an addition on the LGP-30, the binary points
must also be lined up. That is to say that the "q" of both numbers
must be the same. The "q" of the sum will be equal to this same q.

Similarly, the same principle holds for subtraction.

In performing a multiplication, the number of decimal places in
the multiplier must be added to the number of decimal places in the
multiplicand, to give the number of decimal places in the product.
On the LGP-30, the binary points of the multiplier and multiplicand
are added (i.e. "q1", + "q2" = "q3") to give the binary point location
of the product.

In division, the binary point of the divisor is subtracted from the
binary point of the dividend (i.e. ql - q2 = q3) to give the binary
point of the quotient.

Occasionally customers have an application in which all input data
is extremely large or small. For instance, the input might all be in
rilul t iples of one thousand. In this case, the input could be "scaled"
down by 1000. This type of "scaling" is well known by everyone familiar
with the operation of a desk calculator.

In this section, scaling within the computer will be considered.
We saw above that before an addition or subtraction could be performed,
the numbers involved had to be "scaled" to the same binary point loca­
tion. That is to say, one number may have to be shifted to the right
or left before performing the addition or subtraction.

First, we shall consider shifting a number to the right. Suppose we
have the number 7 at a "q" of 4 and we wish to shift this number to a
"q" of 6 in order to add it to another number already at a "q" of 6.

The number 7 at a "q" of 4 may be represented as:

+

I o l 0 0 0 0 0 I
t

q=4

9

If we multiply this 7 at "q" of 4 by a 1 at a "q" of 2, we obtain
7 at a "q" of 6 which may be represented as:

+
I o ! 0 0 0 • 0 0 0 0

f
q=6

You will note that performing a multiplication by 1 at a "q" of 2
shifted the entire contents of the accumulator right by 2 places.

From this simple example it is apparent that we may shift the con­
tents of the accumulator to the right "x" places by performing a multi­
plication by a 1 at a "q" of "x".

There. are two ways to shift the accumulator left "x" places. First,
we shall consider the method employing the use of a divide instruction.
Let us reverse the previous example i.e. shift a 7 at a "q" of 6 to a 7
at "q" of 4.

To accomplish this, we divide the 7 at a "q" of 6 by a 1 at a "q"
of 2 and obtain a 7 at a "q" of 4.

It might be pointed out here that if we were to divide a 7 at a "q"
of 6 by a 1 at "q" of 4 we might expect to obtain 7 at a "q" of 2. Such
a thing is impossible since the quotient (7) may not be carried at a "q"
of 2. If this division were attempted on the LGP-30, the computer would
stop. This condition is referred to by programmers as a "divide check".
A "divide check" will result if the quotient will not "fit" at the "q"
resulting from the division. Another way to analyze the possibility of
a divide check, is to analyze the dividend and divisor before dividing.
If the divisor is greater than the dividend by at least one unit in the
30th binary position (i.e. the least significant binary digit), then a
divide check will not occur.

The second method of shifting left "x" places involves the N mul tip1y
instruction. The N multiply instruction places the least significant 31
bits of the product in the accumulator. Attention is called to the fact
that the high order bit appearing in the accumulator does not indicate the
sign of the product. It actually represents the bit that would have
appeared in the spacer bit position on the M multiply instruction if it
were possible to display this bit then.

Thus far we have been speaking of an LGP-30 accumulator as if it
were only 32 bits somewhere. This is not truly the case, but from the
programmer's standpoint he may consider it this way if he desires.
Actually the accumulator is a track located on the drum. The accumulator
track consists of 64 separate 32 bit accumulators just as any one of the
tracks 00 through 63 consists of 64 separate 32 bit sectors. The main
difference is that the accumulator track is a "recirculating" track, i.e.
whatever arrangement of bits are found in one 32 bit accumulator will

10

be found in all of the other 32 bit accumulators. This "recirculating"
feature enables the computer to obtain access to the accumulator value
at 64 distinct locations during each drum revolution. So in general
there are 64 separate accumulators on the accumulator track. The
exception to this rule is that following an "M'' or "N" multiply there
are only 32 separate accumulators on the accumulator track. Then, each
accumulator contains 64 bits consisting of 1 sign bit followed by 30
bits of accumulator value, a spacer bit, 31 additional bits of accumu­
lator value and another spacer bit. Following an M multiply, the
computer considers only the first half of the 64 bit accumulator, viz.,
the sign bit, 30 bits of accumulator value and a spacer bit. Following
an N multiply, the computer considers only the last half of the 64 bit
accumulator, viz., the 31 bits of actual accumulator value and the
spacer bit.

The following illustration will help to clarify the effect that
an "M" or "N" multiply has on the value of "q".

±I 2 3 4 5 6 7 8

0 0 0 0 1.,0 0 0 o.o 0 I I .o 0

' ' ' q=6 q=30 q=35
or

q=4

Suppose now that we have 7 at a "q" of 6 and desire to shift it left
2 places and obtain 7 at a ··~· of 4, as shown in the illustration above.
If we N multiply 7 at a "q" of 6 by 1 at a "q" of 29, we obtain 7 at a
"q" of 35. You will notice that a "q" of 35 is equivalent to a "q" of 4
when the "q" in the latter case is referenced to the new accumulator.

To shift a number "n", left "x" places, N multi ply "n" by 1 at a "q"
of (31 - "x"). Care must be taken to be sure that the number "n" will fit
at the new "q".

The q of a number following an N multiply is: q3 = ql + q2 - 3 ·

11

SECTION V
PROGRAMMING A SIMPLE PROBLEM

Example No. 1. Given the following equation, write a program that
would store Q at a "q" of 7 in memory location 1505.

Q ~ K (F + G - J)
w

We shall assume K, F, G, J, and W represent various quan.tities of
hypothetical problem that are stored as indicated below:

F in 1500 at q = 7
G in 1501 at q = 7
J in 1502 at q = 7
K in 1503 at q = 7
w in 1504 at q "' 7

The program~consisting of the following instruction~ may be placed
on any track, (Example shows track 10 sector 02).

Loe. Order Address Notes

1002 B 1500 F at 7 in acc.
1003 A 1501 (F + G) at 7 in acc.
1004 s 1502 (F + G - J) at 7 in acc.
1005 M 1503 K (F + G - J) at 14 in acc.
1006 D 1504 K (F + G - J) = Q at 7 in acc.

w

1007 H 1505 Q at 7 in 1505 and Acc.
1008 z 0000 Halt

some

Let us now consider how we would go about getting the data F, G, J ,. K,
and W into the computer so our program could use them. We mentioned before
that we have a set of instructions that will convert decimal data to binary
numbers and store them anywhere in the computer at the desired q. This set
of instructions is a program in the Royal McBee program library, and is
called Data Input 1 (prog. J2-ll.O R). This program occupies 3 tracks and
can be placed anywhere on the drum. Let us assume that another program
called a "program input routine" has placed Data Input 1 on tracks 53, 54,
and SS. What we would like to do is have Data Input 1 read in the data for
our program just before we begin executing our program at location 1002.
We can accomplish this by preceding our program with 2 instructions that
will cause us to "transfer control" from our program to Data Input 1, and
then return to our program to continue operating after Data Input 1 has
finished its function. Before writing these two instructions we must know
the "entry point" and "exit point" of Data Input 1. The entry point of a
program is the location to which control is transferred to allow the program
to start operating. The exit point of a program is the location from which
control is transferred when the program has finished operating. The entry
point for Data Input 1 is location 5300 and the exit point is 5308.

12

Now we are ready to examine the R (Return Address) instruction. The
purpose of an R instruction is to place an address in the address portion
of a word in memory. Usually it is used to place a return address in the
address portion of a word in memory whose order portion already contains a
U (Unconditional Transfer) instruction.

Let us suppose we write the instruction R 5308 in our program at
location 1000. When the computer executes an R instruction, it adds 2
to the location of the instruction it is executing (in our case, 2 + 1000=1002)
and places this sum in the address portion of the word in memory specified
by the address portion of the R 5308 instruction. We have now effectively
set the _exit point of Data Input 1. When Data Input 1 finishes operating,
it will transfer to its exit point at 5308 where it will encounter a U order
and the return address 1002. (Address 1002 will be placed there when R 5308
in our program is executed). You will notice that the R order, when executed,
does not alter the accumulator and does not perform a transfer. It only
sets up an address. Having done this for us, the computer then executes
the instructions at the next memory location, 1001. In memory location 1001
we will exe.cute the instruction U 5300. Our completed program now becomes:

Loe. Order Address

1000 R 5308
1001 u 5300
1002 B 1500
1003 A 1501
1004 s 1502
1005 M 1503
1006 D 1504
1007 H 1505
1008 z 0000

13

SECTION VI
TAPE CODES

In later sections we shall consider how information enters the
computer and how the oscilloscope and console buttons may be used to
perform various functions. In order to understand how information
enters the computer we must first learn the form that this information
is in. This section explains how each alphabetic, numeric or ·control
character on the keyboard has its own unique 6 bit code and how the
computer accepts 4 of these 6 bits.

The punched paper tape contains 6 channels and the channels are
numbered as indicated below.

(I

Machines with serial number 1.2 or less read 4 of the 6 channels
into the computer. Namely, channels 1 .2 3 and 4 read into the com­
puter~ For machines with serial numbers greater than 1.2 the same is
normally true; however, on these machines if the "6 bit Input" button
is depressed all 6 bits of the character represented on tape will
read in. This entire write up is based on using the LGP-30 with the
4 bit input feature. As you will see later, this is normally the way
the computer is used.

The following table denotes the tape codes associated with the
typewriter keys 0 through 9. A "l" indicates a punched hole in the
tape.

Key Code

o---
1
.2
3
4
5
6
7
8
9

Tape Code

1~8'-7- z4a 1.23 \5,.

~L)
11

1 1
111

1 1
1 11
11 1
llll

1 1 '
1 11

Binary Code

\-_Q)
1
.2
3
4
5
6
7
8
9

.Upon examining the tape codes, one will notice that channels 1,
.2, 3, and 4 give the binary representation of the decimal number that
has been punched. We discovered earlier in our discussion of the 4
order bits that it is possible to represent the binary numbers 0 through
15 in four consecutive bits. Upon inspection of the table, one immed­
iately notices that some combinations are missing. In particular, the

14

binary 10, ll, 12, 13, 14 and 15. Since these keys are not on the
typewriter unit and it is necessary (at times) to be able to place
these codes on tape, the fol lowing .. correspondence table was adapted.

Memorize this:

F = 10
G = ll
J = 12 oQ

K = 13
Q = 14
w = 15

Key Code TaEe Code Binary Code
6 1 2 3 4 5

F 1 1 1 10
G 1 1 1 1 ll
J 1 1 1 12
K 1 1 1 1 13
Q 1 1 1 1 14
w 1 1 1 1 1 15

You will note that these numbers (if we consider F, G, J, K, Q,
W to represent binary numbers) all contain a channel 5 punch and never
contain a·channel 6 punch.

A table of tape codes for the 16 orders are given below. Attention
is called to the fact that all order codes contain a punch in channel 6
and never a punch in channel 5. You will also notice that the binary
representation of these codes (as given by channels 123 and 4) corres­
ponds to the code assigned to each order in the discussion of "Basic
Orders".

Key Code TaEe Code Binary Code
6 1 2 3 4 5

z. 1 0
B 1 1 1
y 1 1 2
R 1 1 1 3
I 1 1 4
D 1 1 1 5
N 1 1 l 6
M 1 1 1 1 7
p 1 1 8
E 1 1 1 9
u 1 1 1 10
T 1 1 1 1 ll
H 1 1 1 12
c 1 1 1 1 13
A 1 1 1 1 14
s 1 1 1 1 1 .r-\ 15

The reader is referred to the complete keyboard code sheet for·
control codes artd the balance of the keyboard codes. Attention is
called to the fact that these codes either contain no punching in
channels 5 and 6 or punching in both channel 5 and 6.

15

The reader should note .that on the sheet giving the tabulation
of tape code, that the channels are represented in the order 123456
instead of 612345 as they actually appear on tape.

The LGP-30 typewriter.keyboard contains one key that is not found
on conventional typewriter keyboards. This is the "conditional stop"
key. (cond. stop). You will find that you will possibly use this one
key more than any other one key on the keyboard. Its function is to
place on tape a code that will stop the tape from reading.

16

-----·---·--·-··-·-----·-------------·-·------ -·-- -- ·---- ---

SECTION VII
TAPE READ IN

The tape may be started in motion by programming two instructions.
These two instructions are POOOO and IOOOO. Once the tape is set
into motion, channels 1, 2, 3, and 4 enter the right hand side of the
accumulator and move the previous contents of the accumulator to the
left by four bits. This process continues until a conditional stop
code is sensed on the tape. At this time the tape stops (the condi­
tional stop code does not enter the accumulator) and the computer
executes the instruction following the IOOOO instruction.

We stated earlier that the accumulator and each one of the 4096
words of memory contained 32 bits and that the bit at the extreme
right was a spacer bit that always contained zero. Now we find the
only exception to this rule. During input the right hand bit of the
accumulator may accept either a "l" or a zero. If this were not so,
the right hand bit of each group of four would contain a zero.
(e.g. 0001 would enter as 0000). As soon as the contents of the
accumulator are stored the spacer bit becomes as "O". So if the bit
in the right hand position of the accumulator is to be preserved, the
contents of the accumulator must be shifted to the left before storing.

The accumulator has a 32 bit capacity and each character read in
requires 4 bits. Under these circumstances, eight is the maximum
number of characters that may be read in without the presence of a
stop code to prevent the loss of some significant character.

It might also be mentioned here that if a clear order is given
before the POOOO and IOOOO orders, leading zeros need not be punched
on the input tape.

Since the accumulator and each word of memory contains 32 bits,
it would be very inconvenient to say the accumulator has a value of
1001'no11000:1ononno1on1onoo. At once it becomes apparent that
some form of "shorthand" notation is needed. In view of the fact that
the LGP-30 reads in 4 bits at a time, we find it very convenient to
break the bits of a word into groups of 4. This form of notation is
referred to as hexadecimal. The above arrangement of bits may be re­
presented in hexadecimal notation as 9K8G7FQJ.

Before leaving the subject of tape read in it should be stated
that all tape codes listed on the "keyboard code" sheet will be read
into the computer by the tape reader except the control codes listed
on the following page.

17

Control Code Tape Code
1 2 3 4 5 6

1. Lower Case 0 0 0 1 0 0

2. Upper Case 0 0 1 0 0 0

3. Color Shift 0 0 1 1 0 0

4. Carriage Return 0 1 0 0 0 0

5. Back Space 0 1 0 1 0 0

6. Conditional Stop 1 0 0 0 0 0

7. Start Read 0 0 0 0 0 0

8. Delete 1 1 1 1 1 1

The tab code (011000) is different from any other code in that
it will not enter its code into the accumulator but will shift the
contents of the accumulator left by four or six bits. The four or
six bit shift will occur when using the four and six bit input feature
respectively.·

18

SECTION VI II
CONVERSION OF DECIMAL INSTRUCTIONS AND DATA TO HEXADECIMAL

As an example of reading in an instruction let us say we wish to
read in the instruction B 4627 .. We said before that we were going to
code in decimal and have the program input routine convert the entire
instruction to binary and arrange it in the proper form for us. The
method to be described below is not the method employed by the program
input routine. The following method lends itself very well to mental
manipulations where the method employed in the program input routine
blends itself very nicely to machine manipulation. Later on in the
course we shall describe in detail the latter method, but for now let
us concern ourself with mentally performing this conversion.

If we were to read in the instruction B 4627, it would enter the
accumulator in the following manner:

(a) 0 0 0 1
(bring

code 1)

0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1
Spacer
bit

This form is known as Binary Coded Decimal since each decimal
number is represented in binary. We know from our study of the struc­
ture of an instruction word that B 4627 must be represented in the
computer in the following fashion.

(b) Order Track Sector
0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0
Bring Binary Binary
Code 1 46 27

If we represented this same desire,d form in groups of four bits,
it appears as:

(c) 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0
Bring 2 14=Q 6 12=J

Consequently, the computer must convert B 4627 in binary coded
decimal to B 2Q6J. The B 2Q6J is known as hexadecimal. For an ex­
planation of hexadecimal form the .reader is referred to the section
on "Tape Read In." You will note that the order portion needs no
attention. This is. always the case.

If we consider the track portion in illustration (b) above, we
note that the last 4 bits of track consist of one group of 4 bits in
illustration (c): This means that we may represent decimal tracks 0
through 15 in these 4 bits. If we desire to represent track i6, we must
represent it as a bit just to the left of this group of 4 bits. Con­
sequently, the number of bits requited to the left of this group of four
bits is obtained by divi~ing the decimal track by 16. In our case we.
would divide 46/16 and obtain 2 with remainder of 14. The 2 we repre­
sent to the left of the group of 4 bits and the 14 (equivalent to Q)
we represent within the 4 bit group.

19

Upon analyzing the Sector portion of illustration (b), we find
that the last 2 bits of sector fall in the last group of 4 bits in
illustration (c). This means that we. may represent decimal sectors
0 through 3 in the 2 high order bits of the last group of (c). To
represent sector 4, we must represent it as a bit just to the left of
the last 4 bits in illustration (c). Consequently the number of bits
required to the left of this group of 4 bits is obtained by dividing
the decimal~ctor by 4. In our case we would divide 27/4 and obtain
6 with a remainder of 3. The 6 we represent in the bits to the left
of the last group of 4 bits in illustration (c). In our example it is
easy to see that we desire to represent the remainder in the 2 high
order bits of the last group of 4 bits. Now if we consider only the
last 4 bits (1100), we see that the bit adjacent to the zero really
represents a binary 4 and the bit to the left of this bit represents
a binary 8, So instead of representing our remainder as a binary 3
in the last 4 bits we are representing it as a binary 12 or as 4 times
its value. Consequently the remainder obtained by dividing 27/4 must
be multiplied by 4 to permit us to enter it into the last 4 bits of
the accumulator from the tape or keyboard.

The above conversions may be summarized in the following manner.

Decimal Track to hexadecimal track conversion

Divide the decimal track by 16. The integer represents the. high
order track hexadecimal integer and the remainder represents the low
order hexadecimal character. If the low order hexadecimal character
is 10, 11, 12, 13, 14, or 15 use the equivalent F, G, J) K, Q or W
form.

Decimal sector to hexadecimal sector conversion

Divide the decimal sector by 4. The integer represents the high
order sector hexadecimal character. The remainder is multiplied by
4 and this product becomes the low order hexadecimal character. If
the high or low hexadecimal character is 10, 11, 12, 13, 14, or 15 use
the equivalent F, G, J, K, Q or W form.

Consequently, if we preferred to go through this mental gymnas­
tics for each instruction we would not need an input routine. We
find the program input routine much faster and for most of us, far
more reliable. This presentation is given here merely as an exercise
to help the student grasp the problem of conversion and should not be
interpreted as part of the programming technique. It may, howev~r,
be used if a situation should warrant it.

The method just described is a method which is very useful when
converting decimal track and sector to hexadecimal. When it becomes
necessary for a programmer to express decimal data in hexadecimal, the
conversion is not always a mental one.

20

In previous sections of this write-up (page 3) simple decimal
data was converted to binary by inspection. For example +6.75 at
a "q'' = 3 was quickly converted to binary by sketching an accumulator.
Normally the data to be converted does not lend itself to this method.

A general method for converting a decimal data number "N" to a
hexadecimal number with a binary point location of "q" is given below.
This me.thod.expresses the converted number in hexadecimal rather than
binary. Use of a table of powers of 2 and a desk calculator are
required.

If the number to be converted is N and its binary point location
is to be "q", the high order hexadecimal character (11) is found by
the following formula.

(11 is integer part of product)
(F1 is fractional part of product)

The second hexadecimal character (12) is found by:

The third hexadecimal character (13) is found by:

The five remaining hexadecimal characters may be found by the equation:

F(. l) (16) =I· F· i - i i

As an example of this method, let us convert the value (3.1415927) to
hexadecimal at a "q" of 3.

3.1415927 (23-3) = 3 .1415927 11 = 3
.1415927 (16) = 2.2654832 12 = 2
.2654832 (16) = 4.2477312 13 = 4
.2477312 (16) = 3.9636992 14 = 3
.9636992 (16) =15.4191872 15 = w
.4191872 (16) = 6.7069952 16 = 6
.7069952 (16) =11.3119232 17 = G
.3119232 (16) = 4.9907712 Ia = 4

Combining the 8 hexadecimal characters and rounding the last one
(due to spacer bit), the 32 bit word appears as:

,) .? ·;·-·3 1J (.., ,·/-

Consulting the powers of 2 table enables us to check this hexa­
decimal representation against the number we started with.

21

SECTION IX
OSCILLOSCOPE

The oscilloscope, hereafter referred to as scope, along with the
console buttons and typewriter keyboard, provide the operator a means
of checking out ("debugging"} a program. In this section we shall
discuss the role played by only the scope. In the section on console
buttons, the reader will acquire the concept of how the three components
are necessary to "debug" a program.

The scope furnishes the operator with a visual representation of
3 registers. Each register is displayed in a separate window on the
face of the scope.

The top window displays the contents of the counter register. The
counter register always contains the location (binary track and sector)
of the next instruction that the computer plans on executing. It tells
the operator where the machine is "headed."

The center window displays the contents of the instruction register.
When the computer stops; the instruction register displays (in binary)
the last instruction executed by the computer. There is an exception
to this general rule; namely, after the execution of a divide or
multiply instruction, the multiply or divide instruction does not
appear in the irtstruction register. In the section on the "console
buttons", the reader will learn how to use this instruction register
to "interrogate" a set of words (data or instructions) without execut­
ing any instructions. In the section on the "console buttons" the
reader will also learn how the operator may execute an instruction
that is in the instruction register.

The lower window displays the contents of the accumulator (in
binary). We may use the window to view the contents of the accumu­
lator afte·r a series of operations· or after manually entering informa­
tion into the accumulator.

22

SECTION X
CONSOLE BUTTONS

In checking out programs the scope enables the operator to de­
termine where the computer has stopped, the last instruction executed,
and the contents of the accumulator. Through the use of the console
buttons, the typewriter keyboard and the scope, the operator may inter­
rogate a series of instructions, interrogate a table of data, enter a
new instruction or data word into the computer, manually transfer con­
trol to another portion of memory or perform one operation of his
program at a time.

POWER ON AND POWER OFF:

Let us now turn our attention to the console buttons and lights.
First, there is a very important rule to always remember. This rule
is the alpha and omega (the beginning and the end) rule which may be
stated as "always to be certain that the manual input button (interro­
gate button on early machines) is depressed before depressing the
'Power On' or the 'Power Off' button." Violation of this rule "MAY"
result in bits on the drum being altered. The worst thing that can
happen is that you may have to load your routine into the computer
again. Since the LGP-30 will retain programs or data on the drum for
an indefinite period of time, it is a waste of time to reload these
routines due to carelessness on the part of the operator.

So, after checking to insure that the "Manual Input" button is
depressed, the operator may then depress the "Power On" button.

STAND BY:

After the Power On button is depressed, the red "Stand By" button
will light up. For the following SO seconds half voltage is applied
to the filaments of all tubes and the drum is brought up to speed.

STAND BY TO OPERATE:

Following this SO second warm-up period (providing the "operate"
button has been previously depressed), the computer will automatically
turn out the "Stand By" light and light the yellow "Stand By to Operate"
light. At this time full voltage is applied to the filaments and all
computer voltages are regulated to their proper value. This "Stand By
to Operate" stage also requires SO seconds.

OPERATE:

At the completion of this period the "Stand by to Operate" light
goes out and the green "Operate" button will light. This is an indica­
tion to the operator that the computer is ready for use. Before leaving
the subject of computer warm up we might also state that should the
operator desire t"O place the computer in "Stand By" he may do so by
depressing the "Stand By" button. This will reduce the filament voltages
to half voltage. Later when the computer is needed, the green operate
button may be depressed and the computer will again cycle through the

23

--- ·-··---------

the 50 second "Stand By to Operate" stage before lighting the green
"operate" button to indicate it is ready for use. You will notice
that "Stand by to Operate" may not be depressed since it is not a
push button.

MANUAL INPUT BUTTON:

Let us now consider the functions that may be performed while the
"Manual Input" (interrogate on early machines) button is depressed.
First, let us see why the word "interrogate" was originally given to
this button. With this button depressed we may easily "interrogate"
a series of words within the computer. If the start button is depressed
while the "Manual Input" button is depressed, the contents of the track
and sector represented in the counter (top window) will be displayed in
the instruction register (middle window) and the contents of the counter·
register will be increased by one. You will notice that no instruc­
tions wil 1 actually be executed by th~ computer. Multiply and divide
instructions will appear in the instruction register if they are present
in the program being interrogated. Data will also appear in the in­
struction register if it is contained in the memory locations being
interrogated.

FILL INSTRUCTION BUTTON:

Another function that may be performed while the "Manual Input"
button is depressed is that of entering information into the computer
from the keyboard. As a key of the keyboard is depressed, its 4 bit
code is entered into the right hand side of the accumulator and the
origina_l contents of the accumulator shifted left by 4 bits. In this
way the B 2Q6J could be typed into the accumulator to represent a
B 4627 instruction. If we desire to execute this instruction, we must
place this arrangement of bits into the instruction register. This
transfer of information frQm the accumulator to instruction register
may be accomplished by depressing the fill instruction button. After
this button is depressed the contents of the accumulator and the con­
tents of the·instruction register are identical.

ONE OPERATION BUTTON -- EXECUTE INSTRUCTION BUTTON:

Having the instruction to be executed in the instruction register,
one may depress the "one operation" button and then depress the "exe­
cute instruction" button. If B 2Q6J is in the Instruction register,
the contents of 2Q6J (4627) will be brought to the accumulator. De­
pressing the "one operation" button before the "execute instruction"
button caused the machine to halt after executing the one instruction.

NORMAL --ONE OPERATION -- MANUAL INPUT BUTTON:

Attention is called to the fact that the "normal", "one operation"
and "manual input" buttons are mechanically interlocked. It is impos­
sible to go from "normal" to "manual input" and conversely from "manual
input" to "normal." It is necessary to first depress the "one opera­
tion" button in changing from one of these modes to the other. This

24

interlocking feature was incorporated in the LGP-30 to prevent any
operator from leaving the normal mode of operation before the opera­
tion being executed had been completely executed.

The readers' attention is also called to the lights under the
various buttons. The lights under the "normal", "one operation" and
"manual input0 buttons permit the operator to tell at a glance which
mode of operation the computer is in. While the computer is in the
"manual input11 mode of operation the light under the "fill instruction"
button. is lit. While in the "one operation" mode lights under the
"start", "clear counter" and "execute instruction" buttons are 1 it.
This feature assists the operator in remembering which auxiliary
buttons are active when in the various modes of operation.

CLEAR COUNTER BUTTON:

When the "clear counter" button is depressed, the counter is
reset to track zero sector zero. This feature allows us to readily
get to memory location 0000. Later we will discuss the program input
routine which we suggest you place in track 00., 01, 02, in orde'r to be
able to quickly get to its first instruction in memory location 0000.

STOP LIGHT:

The red "stop" (Blocked State on earlier machines) light will be
on whenever the computer is not computing.

COMPUTE LIGHT:

The green "Compute" light is on while the machine is computing.

BREAK POINT BUTTONS:

Machines with serial numbers 12 or less contain five break point
switches. Machines manufactured after that contain four break point
switches.

The break point switches are used in conjunction with ·the Z (stop)
order previously discussed. Mention was made at that time that the Z
order was a conditional· stop. Actually the stop depends on the "con­
dition" (up or down) of the break point switch setting called for in
the address portion of the Z order. The break points are numbered 32,
16, 8, 4, and 2 (2 is present only on early machines). When the stop
instruction is programmed, the programmer must supply the Z order with
a track and sector. address in the same manner he would program any
other in-struction. If the programmer programs a "stop" instruction
with a track address correspond.ing to one of the break point switches,
the computer will. not execute a stop until it has checked the condition
of· the corresponding break point switch. If the. corresponding break
point switch has previously been depressed, the computer will disregard
the programmed stop instruction and execute the instruction following
the programmed stop. If the computer finds the corresponding break
point switch has not been depressed, it will execute the instruction
as a stop instruction.

25

It might be mentioned that a Z 0000 is always a stop instruction,
regardless of the break point switch settings.

The break point switches are mechanically engineered so that one
depression will latch it in the down position and the following depres­
sion releases the latch. Lights under the break point switch buttons
are lit while the switch is in the doWn .or latched position.

The programmer will find it convenient to program Z instructions
with either a zero track address or a track address corresPionding to one
of the break points. For instance, a Z 2000 is interpreted by the com­
puter as a stop order if either break point switch 16 or 4 has not been
previously depressed.

TRANSFER CONTROL BUTTON:

The transfer control button, like the break point switches, furnishes
the computer additional information required for the execution of an
instruction. In the case of the break point switches, we found that the
Z (halt) order was the order associated with the break point switches. (~'
In the case of the transfer control button, a variation of the test (T) ~
order is associated with the transfer control button.

You may recall that we stated earlier that the computer ignored the
12 leading bits of a word when executing an instruction. It was also
stated that there was one exception to this general rule. Now we are
ready to consider this one exception.

Whenever the LGP-30 executes a test (T) instruction, it tests the
contents of the accumulator for being negative. If the accumulator is
negative, the computer next executes the instruction whose address is
given in the address portion of the test instruction. In the event that
the accumulator is positive, the computer next checks the sign bit posi­
tion of the test instruction. If the sign bit position of the instruction
does not conta'iri a bit (i.e. test instruction is plus), the computer next
executes the instruction following the test instruction. When the accumu­
lator is plus and the sign position of the test instruction contains a
bit (i.e. test instruction is minus), the computer next examines the
"condition" of the "transfer control" button. When the "transfer control"
button is down, the computer will next execute the instruction whose
address is given in the address portion of the test instruction. In the
event that the "transfer control" button is up, the computer will next
execute the instruction following the test instruction.

The above paragraph has been condensed to the block diagram form,
(next page) to enable the student to better grasp the flexibility of this
test instruction. If at memory location a (where a represents any
memory location), the instruction "-T (3" is given (where (3 represents
some other memory address) the computer will follow the logic outlined
below in executing the "-T{3" instruction.

26

Is contents of Execute
Accumulator YES Instruction ..
Minus P at memory

Location f3
next

NO

NO
Does Test Instruction

Execute the - contain a bit in the
Instruction at ~ "Sign" position~ ''~"?) memory location
b>+I)
next YES

I

Is Transfer___, Control Button
NO Down? YES

The beginner may not desire the added flexibility that this in­
struction affords until he gains a little programming experience but
he should be aware of the flexibility he has at his disposal.

SIX BIT INPUT BUTTON:

All machines having a serial number greater than 12 contain a
"Six Bit Input Button" in place of Break Point Switch No. 2. When
this "Six Bit Input Button" is depressed, all six tape channels will
enter the accumulator. The reader is referred to Section VII for a
more detailed explanation of the tape codes that actually enter the
accumulator.

When the "Six Bit Input Button" is up, only channels 1, 2, 3, and
4 enter the accumulator.

27

NORMAL BUTTON:

After the normal button is depressed, the computer is prepared to
execute instructions at high speed. If the "start" button is depressed,
the computer will begin the execution of instructions with the instruc­
tion contained in the word whose address is displayed in the counter
register.

START BUTTON:

Three possible interpretations are associated with depressions of
the "start" button. They are summarized below as a function of the
computer's mode of operation at the time of the "start" button depression. ·

Manual Input:

A depression of the start button will result in displaying
the contents of the wor~ whose address is displayed in the
counter register, in the instruction register. The counter
register will be increased once for each depression of the
start button. No instruction will be executed by depress­
ing the start button in this mode of operation. For this
reason the accumulator value will be unaltered.

One Operation:

A depression of the start button will execute the instruc­
tion in the word whose address is displayed in the counter
register and stop. The contents of the counter register
will be increased by one unless the instruction that was
actually executed was a transfer instruction. In this
case, the counter register will contain the address of the
transfer instruction. The instruction register will con­
tain the instruction just executed except for multiply and
divide instructions. This is due to the fact that in the
design of the LGP-30 the engineers utilized time sharing
circuitry.when economical to do so. During the execution
of a multiply and divide instruction, it was found econom­
ical to utilize the instruction register for another func­
tion. After the execution of an instruction, the accumula­
tor register displays (as always) the contents of the
accumulator. Whether the accumulator content has been
changed or not as a result of executing the instruction is
a function of the instruction executed.

Normal:

A depression of the start button will
executing instructions at high speed.
to be executed will be located at the
the counter register.

28

start the computer
The first instruction

address displayed in

The following example is given to review the console button
functions. This review is accomplished by executing an unconditional
transfer (U) instruction.

To manually transfer to 4627, the operator must depress the "manual
input" button, type in a U 2Q6J, depress the "fill instruction" button,
depress the "one operation" and finally depress the "execute instruc­
tion" button. The counter window will then contain 2Q6J (4627) indicat­
ing that the machine is ready to transfer control to 4627 as soon as
the "start" button is depressed. The "start" button may be depressed
while in the "one operation" mode and only the one instruction contained
in 4627 will be executed. If the operator so desires, he may depress
the "normal" button and then the "start" button, in which case the
computer will execute instructions, beginning with the instruction con­
tained in 4627.

The best way to stop the computer while it is operating at high
speed ("normal" button depressed) is to depress the "one operation"
button. If the operator does this, he may later depress the "normal"
button and then the "start" button and the computer will continue with
its sequence of operations.

As a final example, let us manually enter the instructions B4953
in location 5614. The following sequence of operations is required:

1. Depress "manual input" button.
2. Type C3838 (C5614) on keyboard.
3. Depress "fill instruction" button.
4. Type OOOB31K4 (B4953) on keyboard.
5. Depress "one operation" button.
6. Depress "execute instruction" button.

We will find later that this instruction (B4953) may be placed
in 5614 by entering everything in decimal form.

29

Power - On - Off:

SECTION XI
TYPEWRITER CONTRDLS

The typewriter unit contains its own main line switch. This switch
is a toggle type switch clearly marked "power". The "on" and "off" posi­
tions are appropriately indicated.

Connect Switch:

In our discussion on tape read in, we stated that a "conditional
stop code" on the tape would stop tape reading. In addition to stop­
ping the tape motion, the "conditional stop" code provides a "start
signal". This "start signal" is capable of starting the computer at
the instruction following the IOOOO instruction.

Many times it is advantageous for us to prevent this "start
signal" from reaching the computer. In short, we would like to "dis­
connect" the wire that carries this "start" signal back to the computer.
This may effectively be accomplished by placing the "connect" switch in
the "off" position. Conversely the "start signal" reaches the computer
when the "connect switch" is in the "on" position.

The other typewriter unit controls are mounted in two banks above
and to the rear of the typewriter keyboard. Each bank contains 4 labeled
levers. The function of each lever is presented below.

Start Read Lever:

We found that the programmed instruction POOOO and IOOOO would set
the tape reader into motion. When the typewriter unit is "disconnected"
(connect switch to off), it very often becomes necessary to set the tape
reader in motion manually. This may be accomplished by depressing the
"start read" lever.

Stop Read Lever:

Whenever the tape reader is in motion, it may be stop.ped by depress­
ing the "stop read" lever.

Punch On Lever:

The LGP-30 typewriter unit is equipped with two tape unit heads.
One head is capable of reading the tape and the other is capable of
punching a tape. The punch head is capable of feeding and punching holes
only while the "punch on" lever is in the down position. Depressing the
"punch on" lever prepares the punch unit for operation.

Tape Feed Lever:

When the "punch on" lever is in the down position, tape will feed
through the punch head as long as the "tape feed" lever is held in a down­
ward position. This tape feed lever will spring up as soon as it is

30

released. The "tape feed" lever is very useful in placing blank tape on
the front or rear of a tape that is being prepared in the punch unit.
While the "tape feed" lever is held down, sprocket holes are cut in the
tape but no other holes are cut. Depressing the "tape feed" lever does
not cause the "read unit" to move.

Code Delete. Lever:

After the "punch on" lever has been depressed, every key depression
will result in that key's code being punched on tape. If the operator
should depress the wrong key and detect his error immediately, he may
manually roll the punch tape back one space and depress the "code delete"
lever. Depressing the "code delete" lever punches holes in channels
612345. Later when this code is read by the read unit it will not enter
the computer or be reproduced on to another tape.

Conditional Stop Lever:

Since the LGP-30 has a punch head and read head it often becomes
convenient for an operator to reproduce a tape. To accomplish this,
the operator must place the tape to be reproduced in the read head,
Next, the "punch on" lever should be depressed and the "tape feed" lever
held down to obtain a leader on the front of the new tape. If the "start
read" lever is depressed, the tape read unit will start in motion and as
characters appear under the read head the corresponding characters will
be punched at the punching station. When the read head detects blank
tape, the read head remains in motion but the punch unit stops feeding
tape. Delete codes read by the read head are not punched by the punch
head.

Once the tape read unit is set in motion by a depression of the
"start read11 lever, it will remain in motion until a conditional stop
code is read. In order to start the tape reader again (when reproducing)
another depression of the "start read" is required. When reproducing a
long tape, depressing the '!:!tart read" after every Conditional Stop code
would become quite a chore. It is obvious that the operator would like
to avoid stopping after each conditional stop code when reproducing tapes.
By depressing the "Conditional Stop" lever these. stops will be ignored.
Raising the "conditional stop" lever will cause the tape to stop after
the next conditional stop code is read at the read head.

Manual Input Lever:

We found earlier that a programmed POOOO followed by an IOOOO would
call for information to be read into the computer. Normally this infor­
mation will be on tape and be ready to pass under the tape read head.
Occasionally though an operator may desire to enter a change or additional
information into the computer. By depressing the "manual input" lever
the operator will force the computer to stop following the execution of
the POOOO, IOOOO instruction. This type of stop is indicated by a light
on the typewriter unit being lit. At this time the operator may type
information which will be entered into the accumulator.

31

Start Compute Lever:

The "start compute" lever is especially useful after the computer
is brought to a stop by depressing the "manual input" lever and then
having the machine execute the instructions POOOO, 10000. Under this
condition the light on the typewriter unit will glow and the computer
will stop. Manual information may be entered via the typewriter
keyboard and then a depression of the "start compute" lever will turn
out the typewriter unit light and start computing within the computer.

Paper Guide:

The "paper guide" is located just to the rear of the platen.
This guide should be adjusted horizontally so that it just touches
the left edge of the paper form. This "paper guide" is mount.ed on
a metal shield known as the "paper table".

Tab Rack:

If the "paper guide" is used to rotate the "paper table" to the
rear, the "tab rack" is visible. The "tab rack" has the numbers 8
through 80 (in increments of 4) inscribed on it.

Margin Rack:

The "margin rack" is located just in front of the "tab rack".
The "margin rack" has the numbers 0 through 44 (in increments of 4)
inscribed on it.

Front Paper Scale:

The "front paper scale" is printed on the metal shield just to
the front of the platen. By viewing the "front paper scale" through
the aperture at the printing position, one may determine the exact
position of the carriage. Note the hairline indicator in the aperture
window numerically defining the carriage position.

Tab Stop:

A "tab stop" is a metal positioner that may be inserted in any
notch along the "tab rack". If a tab stop is placed in a numbered
notch, it will stop the carriage in a numbered position coinciding
with this numbered notch. (The carriages numbered position is shown
at the "front paper scale" indicator.) The carriages numbered posi­
tion must be at a lower value than the tab stop's if the latter is
to have any effect on the carriage's position.

Margin Stop:

The "margin stop" is the sliding assembly mounted on the margin
rack. The "margin stop" assembly may be moved by pressing on the
middle of the margin stop assembly and sliding it along the rack.
The right end of the margin stop is the indicator. By setting the
margin stop at a particular number on the margin rack, the carriage's
left margin position will be determined.

32

Paper Release Lever:

The "paper release lever" is located at the top left hand corner
of the movable carriage assembly. When this lever is pulled forward,
pressure is released from the paper to allow straightening or removal.

Line Space Lever:

The "line space lever" is located just to the right of the paper
release lever. It permits selection of single, double or triple
spacing between lines.

Carriage Release Buttons (right and left):

The two buttons are located above and to the right and left of
the platen. When either or both are held down, the entire carriage
assembly may be easily moved rightward or leftward.

Feed Knob (read and punch):

The read and punch 11 feed knobs" are located to the left of the
read and punch heads respectively. These knobs may be used to move
tape forward or backward manually.

Platen Knobs (right and left):

The platen knobs, located at each end of the platen, are used
for turning the platen forward or backward.

Platen Variable Button:

The "platen variable button" is located in the center of the
left platen knob. When this button is depressed the platen is
released from discrete motion to allow the operator vernier line
space adjustment through the use of the platen knob.

Carriage Return Rack:

The carriage return rack is the rack that is visible from the
top of the typewriter unit. This movable rack passes a fixed con­
tact lever mounted to the rear of it.

Carriage Return "Tabs":

The insertion of a carriage return "tab" stop is capable of
automatically returning the carriage to its lef·t most position.
Care must be taken in inserting this tab in the proper carriage re­
turn rack slot. If the operator desires to obtain a carriage return
when a particular position of the carriage is reached, he should do
the following:

33

1. Position the carriage so that the last printing
position of the line to be printed is at the
printing station.

2. Sight the carriage rack notch that lines up with
the contact levers to the rear of the rack.

3. Move the carriage assembly to the right or left
to permit insertion of a carriage tab stop in
this notch without trouching the contact with
the "tab" stop.

4. Insert the carriage tab stop in the notch.

This procedure will assure an automatic carriage return from
this carriage position whenever a key is manually depressed on the
keyboard while in this carriage position.

If a carriage return is desired from this carriage position
while .reading a tape or while carriage movement is controlled by
the program, the above procedure is a necessary but not a sufficient
one. To obtain an automatic carriage return under either of these
two conditions a "tab stop" must also be placed in the corresponding
"tab rack" notch; furthermore, a "tab" ~ ~ position must occur.

34

;\
~I

'

;\
'i '1

~
i.[t
'i

SECTION XII
PROGRAMMING A LOOP

One of the most basic and powerful techniques in programming
is that of programming a set of instructions that apply to more than
one set of memory addresses. That is, the set of instructions per­
form a basic function many times but use different values (i.e.
different addresses) each time. Such a set ofinstructions is referred
to by programmers as a loop.

As a basic example let us suppose we desire to move the words
on track 14 to track 56. It is obvious that such a programming task
could be accomplished by giving the following set of instructions on
any track. (say track 39).

Loe. Order Address Notes ---
3900 B 1400 Contents 1400 to Acc.
3901 c 5600 " Acc. to 5600
3902 B 1401
3903 c 5601
3904 B 1402
3905 c 5602
3906 B 1403
3907 c 5603
etc. etc. etc.

Such a set of instructions, if expanded to use 64 brings and
64 clears (total 128 instructions), would accomplish the task. This
type of programming is efficient when the machine time is the only
consideration. When memory capacity is at a premium and we prefer
to use as few instructions as possible,. this type of programming is
wasteful. It might also be mentioned here that programmers, in
general, strive to reduce the number of instructions in a program,
even though it might require a little more machine time.

This same programming task could be accomplished in the follow-
ing manner:

Loe. Order Address Notes

3900 B 3915
3901 y 3904
3902 B 3916
3903 y 3905
3904 B []
3905 c []
3906 B 3904
3907 A 3918
3908 y 3904
3909 B 3905

35

Loe. Order Address Notes

3910 A 3918
39ll y 3905
3912 s 3917
3913 T 3904
3914 z 0000 StQp - Finished
3915 z 1400
3916 z 5600
3917 c 5700
3918 z 0001

I,

The Y order stores the address portion of the accumulator (12
bits only) in the address portion of the instruction represented
by the address of the Y instruction. For example, on step 3901 the

, accumulator would contain Z 1400. Executing the instruction at
location 3901 would place the address that is contained in the accu­
mulator in 3904. That is, the instruction at 3904 would then read
Bl400.

The instructions at locations 3900 through 3903 are referred
to as "set up instructions". They set up initial addresses in
memory locations 3904 and 3905. If these 4 set up instructions
were not used and instructions 3904 and 3905 were made B 1400 and
C 5600 the program would work--BUT ONLY FOR THE FIRST TIME AFTER
RECORDING THE PROGRAM FROM TAPE: All experienced programmers use
this "set up" policy. Failure to adopt this technique will not
only brand a programmer as imexperienced; but what is even worse,
his programs may frequently give incorrect results.

A third method for programming this problem is given below.
This third method is rarely used in programming a loop but it should
be mastered before attempting to understand the bootstrap program
in the following section.

Loe. Order Address Notes

3900 B 3914
3901 y 3904
3902 B 3915
3903 c 3905
3904 B [l
3905 []
3906 B :-· 3904
3907 A 3916
3908 y 3904
3909 B 3905
3910 s 3917
39ll T 3918
3912 H 3905
3913 u 3904
3914 z 1400
3915 03WC 5600
3916 z 0001
3917 ooow WWWJ
3918 z 0000 Halt - Finished

36

Again instructions 3900 through 3903 are set up instructions.
The instructions at 3904 and 3905 perform the actual shifting from
track 14 to track 56. (Track 14 is unaltered). The address of
instruction 3904 is modified as before by instructions 3906, 3907,
and 3908. The entire instruction at 3905 is modified by instructions
3909 through 3912. This modification requires a detailed explanation.

Instruction 3905 is initially set up to be 03WC5600. Remembering
that the computer ignores the leading 12 bits of an instruction, the
computer will execute the instruction at 3905 as a standard C5600.
The 03W in the first 12 bits may be expressed in binary as 0000 0011
1111 at a q of 11. This is just another way of expressing the decimal
number 63. Our purpose in carrying 63 in this way is to furnish us
with an (N - 1) counter which will tell us the number of times to
execute the loop. We will subtract a 1 from this counter each time we
execute a loop and after the 64th time through the loop the counter
will turn negative.

If we analyze the bits in the accumulator after executing instruc­
tion 3909 the first time we find:

0000 0011
0 3

63 Decimal

1111
w

1101
c

0011 1000
Track
56

0000 0000
Sector
00

After subtracting the following arrangement of bits at instruction 3910.

0000 0000 0000
0 0 0

We obtain:

0000 0011 1110
0 3 Q

1111
w

1101
c

1111
w

1111
w

0011 1000
Track
56

1111
w

1100
J

0000 0100
Sector
01

This final form shows that by subtracting OOOWWWWJ we have increased
the sector portion by one and decreased the (N-1) counter by one. In
this way we have accomplished two functions with one instruction. The
remainder of the program is similar to the second example.

37

~

'

SECTION XIII
BOOTSTRAP PROGRAM

If the reader has read the preceding pages, he has had all the
fundamentals required to proceed with the following description of
how the bootstrap and program input are placed in the computer.

The LGP-30 "bootstrap program" consists of a set of instructions
that will read itself into the computer and then transfer control to
a section of itself which in turn will call in the "program input"
routine.

So, one might say that the LGP-30 "bootstrap program" consists of
two individual bootstraps. The first bootstrap (5 instructions) is
put in track 63 manually. This first bootstrap is then used to read
in the second bootstrap and automatically transfer control to this
second bootstrap which reads the program input routine into tracks
00, 01, and 02.

If the reader will recall, one of the reasons we desire a "pro~
gram input routine" in the LGP-30 is to convert our decimal instruc­
tions to binary. Without the "program input" routine we may not enter
decimal instructions; consequently, the bootstrap and "program input
routine" itself must be written in hexadecimal. In order to simplify
matters, this hexadecimal bootstrap and hexadecimal program input are
placed on one tape and supplied to all customers.

We shall first illustrate the basic bootstrap (5 instructions)
in decimal. We chose to put it on track 63.

Loe. Order Address

6300 p 0000'
6301 I 0000'
6302 c 6305'
6303 p 0000'
6304 I 0000'

These 5 instructions must be placed in the computer manually. The
first 12 hexadecimal instructions on the "bootstrap" program input tape
are given below. The decimal equivalent of each is shown at the left.
A "start read" depression is required for each of the 12 hexadecimal
words. Before depressing the "start read" for the first time, the opera­
tor should be sure that the computer is in the "manual input" mode of
operation and the typewriter "connect" switch is set to "off".-' The
console button depress ions required (following each "start read" depres­
sion) and their effect are given to the right of the hexadecimal repre­
sentation. The first "start read" depression causes a note to print.

"38

Dec. Equiv. Hex. Tape

c 6300 OOOC 3W00'

p 0000 OOOP 0000'

c 6301 OOOC 3W04'

I 0000 OOOI 0000'

c 6302 OOOC 3W08'

c 6305 OOOC 3Wl4'

c 6303 OOOC 3WOJ'

p 0000 . OOOP 0000'

c 6304 OOOC 3Wl0'

I 0000 OOOI 0000'

u 6300 OOOU 3W00'

zoooo oooz 0000'

Console Button and Interpretation

Depress fill instruction
(a) Places C6300 in instruction
register.
Depress one operation - depress
execute instruction - depress manual
input.
(a) Clears POOOO into 6300.
Depress fill instruction
(a) Places C 6301 in instruction
register.
Depress one operation - depress
execute instruction - depress manual
input.
(a) Clears 10000 into 6301.
Depress fill instruction.
(a) Places C 6302 in instruction
register
Depress one operation - depress
execute instruction - depress manual
input
(a) Clears C 6305 into 6302
Depress fill instruction.
(a) Places C 6303 in instruction
register
Depress one operation - depress
execute instruction - depress manual
input.
(a) Clears POOOO into 6303
Depress fill instruction
(a) Places C 6304 in instruction
register
Depress one operation - Depress
execute instruction - depress manual
input.
(a) Clears 10000 into 6304.
Depress fill instruction.
(a) Places U 6300 into instruction
register.
Depress one operation - depress
execute instruction - depress manual
input.
(a) The computer executes the instruc­
tion U 6300.

At t~is point the counter register (top scope window) reads track
63 sector 00. This indicates that when the "start" button is depressed
(in normal mode of operation), the computer will execute instructions
beginning in 6300 at high speed.

39

One more "start read" depression will cause a note to print in­
forming the operator to place the "connect" switch to "on" and go into
normal operation. After doing these two things the operator may de­
press the "start" button on the computer console. This depression will
read in the second bootstrap and transfer control to it.

The decimal coding for the second bootstrap is given below.

Loe. Order Address

6306 u 6300'
6307 p 0000'
6308 I 0000'
6309 OGW C 0000'
6310 B 6346'
6311 s 6326'
6312 u 6322'
6313 z 0000'
6314 u 0000'

6322 T 6313'
6323 H 6309'
6324 c 6346'
6325 u 6307'
6326 000 w WWWJ'

6346 OGW C 0000'

The first bootstrap (5 instructions) will place this second boot­
strap in the computer and transfer control to 6307. The basic concept
of this is illustrated below. The hexadecimal tape is shown with the
decimal equivalent given to the left of each instruction. The reader's
attention is called to the fact that there is a clear order preceding
each instruction that is actually to be placed on track 63. The clear
order is the first (of each pair) to be read. The instructions at 6300
and 6301 reads this clear instruction into the accumulator. The instruc­
tion at 6302 then places the clear instruction into 6305. The instruc­
tions at 6303 and 6304 read the instruction that is to be actually
stored into the accumulator. Then at instruction 6305 the instruction
is actually stored in the proper sector on track 63. Instruction 6306
transfers control back to 6300 to repeat the process for the next pair
on tape.

c 6306 c 3Wl8'
u 6300 u 3WOO'
c 6307 c 3WlJ'
p 0000 p 0000'
c 6308 c 3W20'
I 0000 I 0000'
c 6309 c 3W24'

191 c 0000 OGW C 0000'

40

c 6310 c 3W28'
B 6346 B 3WG8'
c 6311 c 3W2J'
s 6326 s 3W68'
c 6312 c 3W30'
u 6322 u 3W58'
c 6313 c 3W34'
z 0000 z 0000'
c 6314 c 3W38'
u 0000 u 0000'
c 6322 c 3W58'
T 6313 T 3W34'
c 6323 c 3W5J'
H 6309 H 3W24'
c 6324 C 3W60'
c 6346 c 3WG8'
c 6325 c 3W64'
u 6307 u 3WlJ'
c 6326 c 3W68'

000 W WWWJ 000 W WWWJ'
c 6346 C 3WG8'

191 c 0000 OGW C 0000'
u 6307 u 3WlJ'

The reader• s attention is called to the last pair indicated above.
The U3WlJ is read into the accumulator by the instructions at 6300 and
6301 and then instruction 6302 places the U3WlJ (U6307) into location
6305. The POOOO and IOOOO at 6303 and 6304 reads a conditional stop
code. Instruction 6305 then transfers control to 6307 and the hexade­
cimal "program input routine" is loaded into tracks 00, 01, and·o2.
Since this second bootstrap counts the number of instructions in the
"program input routine", a stop is executed after loading. (stop at
6313) If the operator desires, he may depress the start button and
control is transferred to track 00 sector 00.

41

---·--··---·--···· --·------ - - -·----------------------- --- ·---·-·-·-·-·- ··------

SECTION XIV
PROGRAM INPUT ROUTINE

(Pro g . 10 . 4)

This Program Input routine is punched in hexadecimal on the "Boot­
strap - Program Input" tape and is supplied to all LGP-30 users. This
tape will place the program input routine on tracks 00, 01, and 02.

Transferring to the first instruction of the program input routine
will read a word into the computer. Every word read into the computer
by the program input routine may be classified into one of seven basic
categories. Classification into one of these categories is ba~ed upon
the binary "code" represented in. the four high order accumulator bits.
For this reason each word read in by the program input routine is referred
to as a code word. A decimal instruction is a code word whose 4 high
order accumulator bits appear as 0000 (code zero).

In summarizing the above paragraph, transferring to the first
instruction of the program input routine reads a "code word" into the
accumulator. The program input routine then analyzes the "code" and
branches in one of seven basic directions to execute the requirements
defined by the code word.

It now becomes apparent that an operator must be able to transfer
to the first instruction of the program input routine to "trigger this
chain reaction." The program input routine'S first instruction was
placed on track 00 sector 00 to facilitate the operator's transferring
control to this location. This may be accomplished by performing the
following procedure:

1. Depress the "one operation" button.
2. Depress the "clear counter" button.
3. Depress the "normal" button.
4. Depress the "start" button.

These four operations are basic and the function of each should be
clearly understood. The first three instructions of the program input
routine (located on 0000• 0001, and 0002) are C 0143, P 0000, I 0000.
These 3 instructions clear the accumulator to zero and supply a type­
writer input order. It was explained in the section on Typewriter
Controls that the "manual input" lever determines whether the tape reader
is set in motion or the computer stops after the execution of the POOOO
and 10000 instructions. So by setting the "manual input" lever prior
to giving four basic operations listed above, the operator may select
whether the "code word" is to come from keyboard or tape.

The computer's counter register (top scope window) will always
be at 0003 while this word is being entered into the computer, whether
it be from keyboard or tape. Control will be transferred to 0003 when
a conditional stop code is reached on tape or when the "start compute"
lever is depressed in the case of a keyboard entry. At location 0003

42

the program input routine begins to analyze the word placed in the accumu­
lator. This analysis is based on the "code" placed in the four high
order accumulator bits. Control is transferred to one of seven sets of
instructions.

The seven basic "codes" that may be represented in the 4 high order
accumulator bits are given below:

Typewriter Type
Key Code Codes Interpretation

(None) 0000 Instruction
+ 0010 Command
; 0011 Start Fill
I 0100 Set Modifier

0101 Stop and Transfer
OllO Hexadecimal Words

v Olll Hexadecimal Fill

These seven basic "codes" will now be discussed individually
in detail.

(;) Start Fill:

One location (word) of the program input routine is used as a
counter to indicate to the routine where the next instruction or hexa­
decimal be stored. This counter is commonly referred to as the "start
fill" counter. The "start fill code" word is used to place an initial
value into this counter. Each time another word is read in and stored
the"start fill"counter is increased by one. The entire start fill word
will consist of ; 000m1m2m3 m4 • Where: m1m2m3m4 represents in decimal
the initial address into wfiich the next word stored will be placed. The
binarized m1m2m3m4 will be placed in the"start fill"counter.

(/) Set Modifier:

When programming small problems for the LGP-30, the programmer
may program a set of instructions and know (while he programs) exactly
where this program will be stored in memory. If a large problem is
being programmed by many programmers, this may not be the case. It then
becomes necessary to be able to program instructions and later decide
exactly where the set of instructions should be placed in memory.

For instance, the program at the bottom of page35 and top of
page 36 will work properly only if placed on track 39. However,
suppose that the track number (39) had notbeenchosen at the time this
program had been devised. In that event that programmer could have used
a tentative track number, f_or example "00", and could have completed the
writing of his program with respect to this "00" track. Then, later,
when the actual track number had been selected, the programmer could use
the program input routine to modify the tentative. track "00" number of
those instructions requiring such changes. The following program is
equivalent to the one on pages 35 and 36. The program on the following
page is preferred over the other one since it may be placed on any other
track by just changing the start fill and set modifier instructions.
The modifier (/0003~00) will add 3900 to the address of every instruction
whose order is not preceded by an "X".

43

Profi. In2ut
;0003900

Code Loe. Or:der Address

1000·3900

0000\ B 0015
OOOi y 0004
0002 B 0016
0003 y 0005
0004 B []
0005 c []
0006 B 0004
0007 A 0018
0008 y 0004
0009 B 0005
0010 A 0018
OOll y 0005
0012 s 0017
0013 T 0004
0014 xz 0000
0015 xz 1400
0016 xz 5600
0017 xc 5700
0018 xz 0001

The addresses at 0015, 0016, and 0017 are fixed by the statement
· of the problem and will not vary when we relocate our program. For
this reason an "X" should precede the order. The 1 at 29 (instruction
0018) is a constant and the "X" prevents this constant from being
altered. The "X" was placed before the order in instruction 0014, to
prevent the program input routine from changing it to an instruction
dependent upon a break point switch setting.

Programmers are urged to use the modifying feature in order to
permit shifting the program to another memory location at a later date.

The /0003900 will set the "modifier" of the program input routine
at 3900. The "m6difier" will remain at 3900 until changed by a new
(/) code. If a programmer is not using the modifying feature he must
set the modifier to zero by preceding his instructions with the /000 0000
code. Failure to do this will result in all of his non "X" instructions
having their address increased by whatever happens to be in the program
input routine's modifier.

(None) Instruction

Since the program input routine clears the accumulator to zero
before giving the POOOO, 10000 instructions, all instruction words on
tape will leave a zero code (0000) in the 4 high order accumulator bits.
When the program input routine finds this zero code, it converts the
decimal track and sector to binary. Then it places the binary repre­
sentation of the instruction in the memory location given by the "start
fill" counter. A "-T" instruction is handled in the same manner even
though it contains a (1000) code in the 4 high order accumulator bits.

After the instruction is properly stored, the program input
routine increases the "start fill" counter by one.

44

(,) Hexadecimal Words

In Section VIII we converted the number TT to hexadecimal. At
times it is desirable to enter a hexadecimal number (such as TT) into
the computer. The number " at a q = 3 was found to be 3243W6G4. Since
we have already converted the decimal number to binary, we would like
to prevent the program input routine from altering this word. Use of
the "program input code" ,0000001 wi.,11 cause the program input routine
to place the next word on tape in the memory location given by the "start
fill" counter. The '!3tart fill" counter is increased by one after storing
each hexadecimal word.

One hexadecimal code word may be used to place as many as 63 hexa­
decimal words in memory. The number of hexadecimal words following the
"hexadecimal word - program input code" is denoted (in decimal) by the
last two digits of the code word. That is ,0000056 would denote that
56 hexadecimal words were to follow. The reader is referred to the
Subroutine Manual (any subroutine) for examples of the hexadecimal word.

(V) Hexadecimal Fill

From the discussion of the "hexadecimal word" code above, the
reader should have surmised that inputing a hexadecimal word is accomplished
in less time than standard decimal words. This is true because ~he com­
puter does not need to perform the decimal to binary conversion.

In order to take advantage of this faster input, hexadecimal punch
out routines were developed. These routines may be used to punch out
an entire program in hexadecimal. These punched out hexadecimal tapes
always contain a vn1n2n3 m1m2m3m4 (8 digit) code. Later, when the tape
is used as an input tape, the program input routine will detect the "V"
and branch to the "hexadecimal fill" portion of the program input routine.
The n1n2n3 represents in hexadecimal the number of hexadecimal words to
be read in. The m1m2m3m4 denotes in hexadecimal where the first hexa­
decimal word on tape is to be stored. The n1n2n3 words will be filled
consecutively.

Use of the hexadecimal tape (V code) is preferred over the decimal
tape, once the program has been checked out.

(.)Stop and Transfer

In writing the program input routine, it was felt that a code to
transfer control to any memory location would be desirable. The.period
code serves this purpose. It may be placed at the end of the program
tape. After the program input routine detects this period code on the
program tape, a stop is executed.

The period code is of the following form:
.000 m1m2m3m4

Where: m1m2m3m4 represents in decimal the drum location
to which a transfer is to be made.

45

--·---·-·-----·----·-------- ··--·- _., ________ -----··-----

After execution of the.stop, depressing the "start button" will
transfer control to m1m2m3m4. The stop portion of the stop and trans­
fer code will be ignored whenever break point switch 32 is depressed.

(+) Command

This program input code is a very handy one to use when manually
changing an instruction or word of data in the computer. It may also
be used to manually execute any instruction.

The "+ command" is a two part "program input code". The first
part will store the command that the operator desires to execute. The
second part consists of the execution of this instruction.

The following two examples should illustrate the flexibility
obtainable through the use of the "+ Command" code.

Example 1.
Place the instruction A 2317 into memory location 4649.
Procedure:
1. Depress "one operation" button.
2. Depress "clear counter" button.
3. Depress "normal" button.
4. Depress typewriter "manual input" lever.
5. Depress console "start" button.
6. After typewriter light glows, type +OOC4649, (the

instruction to be executed) on the keyboard.
7. Depress typewriter "start compute" lever.

(This stores the instruction to be execut~d).
8. After typewriter light glows again, type A 1744 (A 2317)

on the keyboard.
9. Depress typewriter "start compute" lever (this actually

executes the instruction stored by part 1).

The instruction A 2317 could be stored in memory location 4649
through proper use of the "start fill" and "set modifier" codes. This
method is longer but the use of a hexadecimal address is avoided.

Example 2.
Bring the contents of memory location 3761 to the accumulator.
Procedure:

Steps 1 through 5 of example 1 are identical.
6. After typewriter light glows, type +OOB3761 (the instruc­

tion to be executed) on the keyboard.
7. Depress typewriter "start compute" lever.

(this stores the instruction to be executed).
8. Depress "one operation" button.
9. Depress typewriter "start compute" lever.

(this actually executes the instruction stored by part 1)
Following the execution of step 9, the contents of 3761 will be dis­

played in the scope accumulator.window.

The flow chart on the following page may help tie together the basic
program input code words.

46

-· - - .,

,,Entry I ; 0

Store Hex ..
Word in Lo ca- Increase '---i Increase -
tion given 11M11 Ctr.

COl43 start fill
POOOO counter by Store in

by 11M11 Ctr. by One
~' 10000 one Location
I

- given by

' Sta rt Fi 11
Ctr. "

Add
Read Hex Code Word Modifier j_yes Decrease .

Word ~
"N" Ctr.

Enters Acc.
l II II

From Tape ~ no Is x
By One Pre.sent P

~

Set
N and M
Counters no Finish yes

,1r
I p

"o" Analyze 4 Convert "v" High Order inst.
Decimal

Accumulator
·-
bits and

Fill Address Hex. Branch Accordingly to Binary II II
Start fill

Stop and Transfer "I
;

II+" II 1 11

Command Hex Words :J."/' Set Modifier

Convert Convert to Convert "N" Convert Convert
Decimal Binary then and Decimal Decimal
Address store Store In Address Address

to binary Instruction "N" Ctr. to binary to binary
to execute

' I I ~ ' Is Break POOOO Read Hex. Store Binary Store Binary
Point 1132 11

10000 Word From Address In Address in ~
Down? Tape Modifier Count- Start Fil I

er Counter

yes no ·~
I

Stop

no yes
II I

Transfer Execute Store Hex Decrease Increase
Control The Word In 11N11 Ctr. Start Fi II

To Address I nstruc- Location by one Counters
of "." Code ti on Given By finished Contents

Stored Start Fill By One Exit Ctr.
I J

47 (

SECTION XV
OPERATING TIMES - OPTIMIZING

The LGP-30 will execute an addition or subtraction in .26 ms.
(excluding access time). The same time applies to all other instruc­
tions except multiply, divide and transfer instructions. The execution
of a multiply or divide instruction requires 16.66 ms. (exluding access
time). The minimum execution time for a transfer instruction is 1 ms.

The following discussion explains the idea of "access time". Two
columns of figures will be found along the right hand edge of t.he powers
of 2 table sheet. The right most column indicates in decimal the se~
quence of sectors found on each track. The column to the left of it
gives the hexadecimal representation of these sectors.

The sketch above shows a cross sectional view of the drum at any
track.

48

.•

)

The particular track that this cross section depicts is immaterial
but for purposes of illustration let us say it shows track 15. The
drum rotation is indicated to be counter clock-wise. The time required
for each sector to pass under the head is approximately .25 ms. This
is commonly referred to as one word time. The time required per drum
revolution is approximately 17 ms. (actually 16.66+). In the follow­
ing discussion the approximate times are used since the figures are
easier to work with. In practice these approximate times are adequate.

Th·a memory lo cat ion 1500 could contain a "bring" instruct ion.
After sector 00 passes the head the computer analyzes the order bits of
sector 00 and determines a "bring" has to be executed. By this time
sector 57 has partially passed beyond the head and a B 15S7 could not be
executed without waiting for an entire drum revolution. The LGP-30 is
capable of "bringing" sector SO, 43, 36, 29, 22, or lS in time to
accept the next instruction from location lSOl as it passes the head.
In this way, an instruct ion may be "optimally" executed in approximately
1/7 of a drum revolution. If a BlS08 were located in memory location
lSOO, it would not be possible in an optimum program to read 1S08 and
execute the BlS08 in time to accept the next instruction from lSOl.

From this discussion it should be clear to the reader that the
sector portion of an instruction's address determines whether or not
the instruction is an "optimum" one. It should be clear that the
track portion of the "instruction" does not affect the time required
to execute an instruction.

The following table illustrates the breakdown in ms. for all in­
structions except transfer, multiply, and divide when the instruction
is given at sector 00.

Address Time Access Time Exec, Access Time Total
Sector Req'd. Time Req'd. Time to next Time

of to Read to to Read (. 26) Inst.
Instr. Instr. Operand Operand

S7 .2S 17.00 .25 .2S 1. so 19.2S
so .2S .2S .2S .2S 1. 2S 2.2S
43 .2S .so .2S .2S 1.00 2.2S
36 .2S . 7S .2S .2S .7S 2.2S
29 .25 1.00 .25 .2S .so 2.25
22 .25 1. 25 .25 .25 .25 2.25
15 .2S 1.50 .25 .25 .oo 2.25
08 .25 1. 75 .25 .25 16.75 19.25

From this table it is apparent that for all instructions except
transfer, multiply, and divide, either 2,25 ms. or 19.25 ms. are re-
quired to read any instruction, execute it and be in a position to read
the next instruct ion. In short, an instruction is either optimum or
unoptimum.

49

From the sketch, it can be seen that if a transfer (U) instruction
is given in sector 00, the fastest transfer will be one to sector 36.
Each sector following sector 36 will add approximately .2S ms. to the
minimum transfer time of 1 ms. Search for the sector of a "T" instruc­
tion is made only when an actual transfer is being executed. If a "T"
instruction is given in sector 00 and a transfer is not actually made,
the instruction at sector 01 will be read (for execution) as it passes
the head on that drum revolution.

Execution of the "M" instruction requires 66 word times, the "N"
instruction 64 word times, and the divide 67 word times. All three of
these instructions are said to require 17 ms. in various sales bro­
chures. Since we are dealing here with optimizing, we must consider
the instructions with a little more care.

If we consider the case where sector 00 contains an "N" order,
sectors SO, 43, 36, 29, 22, lS and 8 are all optimum sectors. The
table given below illustrates the times required when an "W' instruc­
tion is given in sector 00.

In the event that an "M'' instruction is given in sector 00, sectors
SO, 43, 36, 29, and 22 are optimum locations. The table indicates the
times required when an "M'' instruction is given in sector 00. If a
divide instruction is given in sector 00, sectors SO, 43, 36, and 29
are optimum locations. The table indicates the times required when a
divide instruction is given in sector 00.

Address
Sector

of
Instr.

S7
so
43
36
29
22
15
08

57
so
43
36
29
22
15
08

Time
Req'd.
to Read
Instr.

.25

.2S

.2S

.2S

.2S

.25

.25

.2S

.25

.2S

.2S

.25

.2S

.2S

.2S

.2S

"N" INSTRUCTION

Access
Time

to
Operand

17.00
.25
.50
.75

1.00
l.2S
l.SO
1. 75

Time
Req'd.
to Read
Operand

.25

.25

.25

.2S

.2S

.25

.25

.25

Exec.
Time

17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00

"M'' INSTRUCTION

17 .00
.25
.50
.75

1.00
l.2S
1.50
l.7S

.25

.2S

.2S

.25

.25

.25

.2S

.2S

so

17.SO
17.SO
17.SO
17.50
17.SO
17.SO
17.SO
17.SO

Access Time
To Next
Inst.

1. 75
1. so
l.2S
1.00

.7S

.so

.2S

.oo

l.2S
1.00

.7S

.so

.2S

.00
16.7S
16.50

Total
Time

36.2S
19.2S
19.2S
19.2S
19.2S
19.2S
19.2S
19.2S

36.2S
19 .2S
19.25
19.2S
19.2S
19.2S
36.2S
36.2S

"D" INSTRUCTION

Address Time Access Time Exec. Access Time Total
Sector Req 'd. Time Req'd. Time to next Time

of to Read to to Read Inst.
Instr. Instr. Operand Operand

57 .25 17.00 .25 17.75 1.00 36.25
50 .25 .25 .25 17. 75 .75 19.25
43 .25 .so .25 17.75 .50 19.25
36 .25 .75 .25 17. 75 .25 19.25
29 .25 1.00 .25 17.75 .oo 19 .25
22 .25 1.25 .25 17.75 16.75 36.25
15 .25 1.50 .25 17. 75 16.50 36.25
08 .25 1. 75 .25 17.75 16 .25 36.25

The above discussion has all dealt with instructions in sector 00.
When an instruction is given in any other sector the basic concepts
still apply but the address to which they apply changes. As an example,
instructions located in sector 43 can be analyzed in the following way:

1. The fastest transfer is to sector 15. Sector 08 requires an
extra .25 ms. etc.

2. Optimum "N" multiply locations are 29, 22, 15, 08, 01, 58, and
51.

3. Optimum "M'' multiply locations are 29, 22, 15, 08, and 01.
4. Optimum divide locations are 29, 22, 15, and 08.
5. Optimum locations for all other orders. are 29, 22, 15, 08, 01,

and 58.

In closing, it might be stated that all Subroutines programmed by
the Royal McBee programming group have been optimized. It was felt
that the time saved by optimizing these basic routines was justified.
Programmers are cautioned to carefully compare the savings in machine
time cost realized by an optimum program against the added programming
costs required to obtain the progr.am. In most cases the added program­
ming costs will exceed the saving in machine time costs. This is, of
course, a function of the application, but extreme care should be taken
before deciding to optimize any program.

51

SECTION XVI
PRINT INSTRUCTION

The explanation of the print instruction has been delayed until
the reader has acquired knowledge of operating times and the "x"
notation of the program input routine.

When a print instruction is executed, the typewriter w511 print a
character or perform another typewriter function. The function per­
formed is dependent upon the arrangement of the six bits in the track
portion of the print instruction. To print a character on the type­
writer a "P" instruction with an arrangement of track bits correspond­
ing to this character's bit code must be given.

Normally the Data Output, Hexadecimal Print or Punch out, or
Alpha-numeric output .subroutines automatically set up the track portion
of the print instruction for the programmer. Occasionally the programmer
decides to set up the track portion of the print instruction himself and
it is for this reason that the following discussion is included.

\
To simplify the programmer's task of determining the arrangement

of track bits required to execute a "P" instruction, a table is supplied
on the powers of 2 sheet, and is labeled "Keyboard Codes". This table
lists all typewriter characters and functions in the first and fourth
columns. The entries LC, UC, CS, CR, and BS represent lower case, upper
case, color shift, carriage return and back space respectively. For all
other entries that consist of two characters, the first character indi­
cates the upper case code and the second the lower case code. The entry
appearing two columns to the right of each typewriter character entry is
the decimal track representation required to print that character.

For instance, the decimal track representation for a 5 is shown
to be 22. This means that when programming, to print a 5 the decimal
instruction P 2200 should be given. This track 22 will be converted
by the program input routine to binary 22 and will appear as 010110.
This is the keyboard code for a 5 and may be verified on page 73. All
characters are printed and all keyb_oard functions are executed in this
manner.

The Sector portion of the "P" instruction is used by the computer
in the manner discussed in the Section on Operating Times and Optimiz­
ing. That is, any Sector may be given but an optimum sector will start
the typewriter function one drum revolution sooner ..

After the "P" instruction supplies the typewriter unit with.the
required information to execute a print or control function, control
is transferred to the instruction following the "P" instruction. The
programmer may feel free to use any instruction except another "P"
instruction. If a "P" instruction is to be given within 100 ms. after
giving a previous "P'~ instruction, the "Z" (stop) instruction must
precede this second "P" instruction. This "Z" instruction causes the

52

computer to stop until the first "P" instruction has been completely
executed. After the typewriter unit completes the execution of every
"P" instruction, it supplies a "start signal" back to the computer.
If the computer is stopped, this start signal will cause the computer
to proceed to the instruction whose address is given by the counter
register. (Normally this is the in~truction following the "Z" instruc­
tion). If the computer is running when this start signal arrives, the
start signal will have no effect. Programmers are cautioned not to use
the "Z" instruction more than 100 ms. after giving a "P" instruction
unless a stop is really desired.

The carriage return and tab require more than 100 ms. and of course
are a function of the distance the carriage must travel. Long carriage
returns can require as many as llOO ms. and tabs 800 ms. It is advis­
able to follow carriage return and tab instructions with a "Z" instruc­
tion if the programmer is in doubt as to whether ¬her print instruc­
tion will be given in the next second or so.

In programming "P" and "Z" instructions it is advisable to place
an "X" before the order on the programming sheet. This prevents the
program input routine from modifying the address portion of the instruc­
tion.

53

SECTION XVII -
BINARIZATION OF DECIMAL ADDRESS

The following method of binarizing a decimal track and sector to
its corresponding binary track and sector lends itself very nicely to
the LGP-30. This method was derived and first used by Dr. Tom Kampe
of Librascope. The following presentation of the derivation is not
very rigorous. A formal derivation may be obtained by contacting
Dr. Tom Kampe.

Since we have found this procedure so useful, we included it to
enable LGP-30 users to incorporate it in programs of their own, should
the occasion arise. The presentation is slanted toward the applica­
tion of converting track and sector but the same general approach
applies to data also. The derivation deals with converting a decimal
track or sector but in the explanation that follows track and sector
are handled simultaneously.

Let C represent the 2 decimal digit track (or sector) to be con­
verted. This number C may then be represented as:

(1) C = R . A + B where A and B are two contiguous digits
to the base R, each binary coded with n
binary digits.

As an example of (1), let us consider track 23 then:
A = 2
B = 3
c = 23 = 10 (2) + 3
B is expressed in binary coded decimal as 0010\0011.

Let D be this same binary coded decimal arrangement of bits repre­
sented in pure binary.

(2) D = A2n + B
For the example track 23

A = 2
B = 3
D = 35 = (2) 2n + 3

If we subtract (1) from (2) we obtain:

D - c = A (2n - R)
c = D - A (2n - R) = D + A (-6) when R = 10

n = 4

This means that B (low order 4 bits) is not needed in evaluating
A(-6). That is, we would like to "extract" off the last four bits of
the accumulator before multiplying by -6. The LGP-30 has an "extract"
instruction which is capable of "extracting off" (setting to zero) any
bit or combination of bits present in the accumulator.

54

-----------· .. - .. ~

The "extract" instruction consists of an E order and a 4 decimal
digit address just as any other instruction does. The address of the
extract instruction indicates the location of what is known as the
"extractor". In executing the extract instruction the LGP-30 places
an "O" bit in.every accumulator bit for which the corresponding ex­
tractor bit is zero. Conversely, the LGP-30 leaves every accumulator
bit unaltered if the corresponding extractor bit contains a "l".

Another way of thinking of the extract instruction is to consider
a bit for bit multiplication between each accumulator bit and the
corresponding extractor bit. Carries in this multiplication are ignored.

With this explanation of the extract instruction the reader is
prepared to proceed with the detailed program of binarization of a
decimal track and sector. The method of binarizing track and sector
simultaneously is identical to the preceding discussion of track or
sector with the exception that the track and sector portions occupy
different portions of the accumulator.

When the 2 decimal track and 2 decimal sector enter the accumulator,
they occupy the last 16 bits. We may consider the track portion as
A1 and B1 and the sector portion as A2 and B2 . This may be indicated
in the following manner.

Al is at
B1 is at
D1 is at

The

Loe.

0000

0001

0002

0003

0004

19 23 27

q = 19
q = 23
q = 23

following program will binarize:

Order Address

N 0009

H 0010

E 0011

M 0012

A 0010

55

31

Notes

A2 is at q = 27
B2 is at q = 31
D2 is at q = 31

This instruction shifts
accumulator value left 2 bits.
A1 now at q = 17; A2 now at
q = 25;B1 now at q = 21; B2
now at q = 29;D1 now at q =21;
D2 now at g = 29.
Save D1 and n2 at q = 21 and
29 respectively.
Extract off B1 and B2 since
A (-6) does not involve B's.
A1 still at q = 17;A2 still
at q = 25.
By multiplying -6 at q = 4
by A1 at a q = 17 and A2 at
a q = 25,we obtain A1 (-6)
at 21 and A2 (-6) at 29.
Performing this addition
giv~s· D1 + A1 (-6) at q = 21
and D~ + A2 (-6) at q = 29.
At this point both track and
sector have been binarized.

Loe.

0005

0006

0007

0008

0009
0010
OOll
0012
0013
0014
0015

Order

H

E

M

A

xz
[

[

3J3
KOOO

owww
FOOO

Address

0013

0014

0015

0013

0001

J3JO
0000

wwoo
0000

56

]

]

Notes

The sector position is at a
q of 29 just as it is to be
stored. The track portion
is at a q of 21 and should
be stored at a q of 23.
That i~ we would like to
shift only the track portion
of the accumulator right by
2 bits. This is equivalent
to multipl~ing the track por­
tion by 2- = 1/4. Since we
desire then 1/4 of the track
value that we have in the ac­
cumulator, we may obtain this
1/4 by subtracting 3/4 of the
track value from the track
value itself.
Save track value at q = 21
and sector value at q = 29
Extract off sector portion
leaving track value at a
q = 21 in accumulator.
By multiplying track value
at q = 21 by -3/4 at q = 0
we obtain -3/4 of track
value at q = 21 in the Ac­
cumulator.
This gives [track value at
q = 21] + [-3/4 track value
at q = 21] = [1/4 track
value at q = 21] = [track
value at a q = 23]. Of course
the sector value is still at
a q = 29.
1 at a g of 29
temp. N1
Extractor
-6 at a g - 4
Temp. N

-3/4 at a q = 0,

SECTION XVIII
CORRECTING TAPES

Correcting an error on punched paper tape may be accomplished in
various ways. The method of correcting the error depends generally
upon the type of error. The purpose of the following discussion is to
explain the basic correction techniques and encourage the reader to
analyze his particular problems closely before deciding on the best
method.

1. Perhaps the easiest error to correct is one which is
detected immediately after the wrong key has been
depressed. In this case all that needs to be done
is:

A. Turn the "feed knob" at the left side of
the tape punch back one notch.

B. Press the "code delete" lever once.
C. Continue by depressing the proper key on

the keyboard.

2. At times the operator will depress the wrong key and
punch a particular combination of holes. This com­
bination of holes might be a portion of the combina­
tion desired. If this is the case, the operator need
only turn the "punch feed knob" back one notch and
continue by depressing the proper key. This method
is particularly useful when the error is detected
after characters have been punched beyond the error.

3. Another type of error is the one in which an incorrect
word is punched on tape and cannot be corrected by
either of the methods given above. As an example,
suppose the instruction Sl234 were punched instead
of the correct instruction Al234. The operator may
correct this error by punching two additional words
on the end of this program tape. If the Al234
instruction were to be placed in memory location 3617,
the two words to be added to the tape would be:

1) +OOC3617 (see Section XIV)
2) AOJ88 (Al234)

This Sl234 would be entered into 3617 but the Al234
would later replace it.

4. The example discussed in (3) could also be corrected
by placing the following three words on tape.

1) ;000 3617'
2) /000 0000'
3) Al234'

57

5. The most obvious method of correcting a word on tape
is to reproduce the tape up to the error, punch the
correct word, and then continue reproducing.

58

SYNOPSES OF LGP-30 SUBROUTINES

BOOTSTRAP (Program Jl-09.0)

This routine loads the "Program Input Routine" on tracks 00, 01,
and 02. After completing this procedure; a halt is executed at track
63 sector 13. Depressing the START switch transfers control to the
first instruction of the "Program Input Routine".

Storage:

The Bootstrap routine uses 21 words on track 63." (Sectors 00
through 14, 22 through 26, and sector 46.)

Time:

The time required for storing both Program Jl-09. 0 and Program
Jl-10.0 is approximately three minutes. They are considered collectively
since they are supplied to LGP-30 Computing Installations on a single
tape.

PROGRAM INPUT 1 (Program Jl-10.0)

This routine reads in classified or coded words which it interprets,
.binarizes (if necessary), and stores in chosen memory locations.· The
coding is accomplished in the four high-order binary bits of the words.
Most coded words are "instructions" which are expressed in terms of the
machine's engineered order structure and addresses of locations on the
magnetic drum. Other coded words have the following associated symbols
and capabilities:

Symbol Function Performed

------------------ Storage of from one to sixty-three hexa­
decimal words.

v ------------------ Storage of an entire program-tape which
has been punched previously in hexa­
decimal.

------------------ Stops the computer and transfers to a
chosen memory location.

+ ------------------ Permits the voluntary changing of an
instruction or data-word or the execu­
tion of any instruction by keyboard
direction.

Storage:

Three tracks, or 192 words.

59

---- ·------·-··------· ···-----.-·------

HEXADECIMAL INPUT 1 (Program Jl-10.1)

This routine reads in a hexadecimal tape that has been prepared
by Program J4-13 .1. This routine is superior to the Program Input 1
for storing information from hexadecimal tapes because it computes a
check sum based on tape information stored in memory and compares it
with a previously computed and punched sum appearing on the tape. If
the two sums disagree, the word "error" is printed and a stop is exe­
cuted. A hexadecimal tape is preferable to a tape with decimally typed
addresses since the former requires no binarization and, hence, is
faster.

Storage:

Ninety-six locations of instructions and constants.

Time:

Reading from tape: One track per minute. Computing the check sum:
ten tracks per minute.

DATA INPUT 1 (Program J2-ll.OR)

This routine reaqs punched paper tape having binary-coded config­
urations of decimal data. It converts these configurations to pure
binary, introduces required scale factors, and stores the results in
specified drum memory locations. Each data word stored is preceded by
an identification word which supplies the necessary decimal and binary
point location information as well as the drum location for storing
the data word.

Storage:

192 locations of instructions and constants, and eight locations
of temporary storage (Track 63).

Time:

20-25 words per minute.

DATA INPUT 2 (Program J2-ll.l)

The useful feature of this routine is its ability to store a set·
of numbers (having the same "p" and "q") in consecutive memory locations.
The "p", "q", and first memory location are specified by a single code
word contained in memory. Use of this routine requires one data word
on· tape for each word to be stored in memory.

Storage:

89 locations of instructions and constants.

Time:

45-55 words per minute.

60

DATA INPUT 3 (Program J2-ll.2)

This routine is efficient for storing several groups of data when
the several numbers within a given group have the same "q" and the same
number of fractional decimal digits. The numbers within a given group
are stored in consecutive memory locations. The "p" and/or "q" and/or
first memory location may be changed without leaving the routine. One
identification word must accompany eacn ~of data words.

Storage:

192 locations of instructions and constants. Five locations of
temporary.

Time:

45-55 words per minute.

DATA INPUT 4 (Program J2-ll.3)

This program is an integral part of Program Hl-24.0. See program
description of latter.

DATA INPUT 5 (Program J2-ll.4)

This routine inputs, converts, and scales nine decimal digit
data words. It functions similarly to Data Input 3 (Program J2-11.2).

Storage:

3-1/2 tracks.

Time:

40-50 words per minute.

DATA OUTPUT 1 (Program J3-12.0)

This routine will print a nine decimal digit number complete with
decimal point and sign (sign if negative). Each time a number is to
be printed it must first be placed in the accumulator before giving the
corresponding "R-U" instructions. The programmer must scale the number
to be printed to one of ten particular "q's" and indicate whiclt "q"
is being used by a code.

DATA OUTPUT 1 Modified (Program J3-12.0A)

This data output routine differs from its unmodified counterpart
J3-12.0 in only one respect: it suppresses leading integral zeros
when printing.

Storage:

Nineteen locations in addition to Data Output No. 1 storage.

61

DATA OUTPUT 2 (Program J3-12.l)

This routine will print one or more groups of numbers in decimal
form. Each group has the same binary point location (q), and all
numbers are printed from consecutive memory locations.

Storage:

160 locations of instructions and constants.

Time:

Approximately 30 words per minute.

DATA OUTPUT 2A (Program J3-12.1A)

This routine differs from its unmodified counterpart J3-12.l in
only one respect: it suppresses leading integral zeros when printing.

Storage:

Nineteen locations in addition to Data Output No. 2 storage.

DATA OUTPUT 3 (Program J3-12.2)

This output routine prints the contents of the accumulator as if
it were in dollars and cents at q 30. This routine is primarily useful
for business problems. It provides exact conversion, with leading
zeroes suppressed.

Storage:

Two tracks.

Time:

1.2 seconds per word.

DATA OUTPUT 4 (Program J3-12.3)

This program is an integral part of Program Hl-24.0. See pro­
gram description of the latter.

·DATA OUTPUT 5 (Program J3-12.4)

This subroutine has suppression of leading integral zeroes as its
primary feature. It is achieved by executing spacing operations instead
of printing the zeroes. It will print one or more groups of numbers in
decimal form, each group consisting of one or more numbers stored in
consecutive memory locations. All numbers in each group are assigned
a specified scale factor "q" in· the calling sequence to fix their binary
points. ·Each output number will consist of a decimal point and eight
(or more) rounded decimal digits. Each number is followed by the sign
if the number is negative. A tab is executed after each number is
printed.

62

I

Storage:

3-1/2 tracks.

Time:

30-35 words per minute.

HEXADECIMAL PUNCH OR PRINT 1 (Program J4-13.0)

This routine is used to punch out a group of memory locations
in hexadecimal. The hex tape is subsequently read into the computer
through the agency of Program Input 1 (Jl-10.0).

Storage:

158 locations and instructions.

Time:

Approximately 45 words per minute.

HEXADECIMAL PUNCH OR PRINT 2 (Program J4-13.l)

This routine functions and operates in the same general manner
as program J4-13.0 with the exception that after punching has been
completed this routine computes a check sum and punches it as the last
word on tape. The Hexadecimal Input 1 program (Jl-10.1) is used when
subsequently reading and storing the hexadecimalized information from
tape. The check sum is intended for use by program Jl-10.1 in deter­
mining whether or not the hexadecimalized tape information has been
correctly stored on the drum.

Storage:

204 locations of instructions and constants. (Three tracks and
12 sectors).

Time:

The check sum is computed at approximately 7 seconds per track.

SINE-COSINE 1 (Program Bl-14.0)

This fixed point routine computes the sine or cosine of the angle
value, argument, or independent variable placed in the accumulator. A
9th degree polynomial approximation is used. The angle value (or inde­
pendent variable) must be expressed in degrees and will be reduced to
the first quadrant equivalent before computation of the function value.

Storage:

64 locations of instructions and constants. Six locations to
temporary storage.

Time:

250 to 275 ms.

63

SINE-COSINE 2 Floating Point (Program Bl-14.1)

This routine is an integral part of Program Hl-24.0. See pro­
gram description of the latter.

SINE-COSINE 3 Radian Argument (Program Bl-14.2)

This is a fixed point routine to find Sin x, or Cos x, when x is
in radians. "x" is expressed with a scale factor of three, with the
result that

/x/ < 8 radians < 458. 3 degrees.

The routine uses Taylor's series for Cos x, with

sin x = cos (x + j rr) or sin x = cos (x - ~).

The maximum error is 8 x io-9 .

Storage:

64 words and 2 words of temporary storage on track 63.

SQUARE ROOT 1 (Program B4-15.0)

This fixed point routine computes the square root of a number
placed in the accumulator. The number whose root is extracted must be
scaled by a scale factor whose exponent "q" is a positive even integer.

Storage:

64 locations of instructions and constants. Five locations of
temporary storage.

Time:

Square Root computed in from 500-750 ms.

ARCTANGENT 1 (Program Bl-16.0)

This fixed point routine computes the arctangent of the number
placed in accumulator. A 15th degree polynomial is used in the approx­

imation process. The "principle" value (i.e. a value lying in the
first or fourth quadrant) expressed in degrees will be given as output.

Storage:

64 locations of instructions and constants. Ten locations of
temporary storage.

Time:

320 milliseconds.

64

ARCTANGENT - VECTOR RESOLUTION (Program Bl-16.1)·

This routine computes the arctangent of y/x where x and y are
numbers scaled by the same scale factor. There are no overflow stops,
and resolution in all four quadrants is possible.

Storage:

145 locations.

ARCTANGENT 2 - Floating Point (Program Bl-16.2)

This routine is an integral part of Program Hl-24.0. See program
description of the latter.

EXPONENTIAL 1 (Program B3-17.0)

This fixed point routine will evaluate the functions ex, or kX
where k may be "2" or "10".

Storage:

63 locations of instructions and constants.

Time:

255 to 285 ms. per evaluation.

EXPONENTIAL 2 - Floating Point (Program B3-17.l)

This routine is an integral part of Program Hl-24.0. See program
description of the latter.

LOG 1 (Program B3-18.0)

This fixed point routine computes the logarithm of a positive
number in terms of any of the three bases "2", "e", or "10". A 7th
degree polynomial is used in the approximation process. The base chosen
is explicitly indicated in the routine's calling sequence.

Storage:

122 locations of instructions and constants.

Time:

Approximately (445 - 30 N) ms., where N is the number of leading
zeros.

LOG 3 - Floating Point (Program B3-18.l)

This subroutine is an integral part of Program Hl-24.0. See pro-
gram description of the latter. ~·· ·

65

------··-··-- ---·-··-- --·------

ALPHANUMERIC OUTPUT 1 (Program J4-19.0)

This routine is useful for printing page headings or distributing
data at desired locations in alphabetical titles. The routine enables
the programmer to "write" or express four typewriter commands in a
single instruction word of the program.

Storage:

58 locations and constants.

Time:

About 400 characters per minute.

ARCSINE-ARCCOSINE 1 (Program Bl-20.0)

This fixed point routine computes the arcsine or arccosine of any
given value between -l<lX<l. A 7th degree polynomial is used in the
approximation process.

Storage:

160 locations of instructions and constants. 9 locations of tem­
porary storage are also used.

Time:

850-900 ms per evaluation.

DECIMAL MEMORY PRINTOUT 1 (Program K2-21.0)

This routine is useful when performing Program Checkout procedures.
The routine causes the computer to print out the contents of any desig­
nated part of drum memory in decimal. Instruction words print in-the
form in which they customarily appear on the coding sheet and data print
in either decimal (at q of zero) or hexadecimal, depending on the pro­
grammer's wishes.

Storage:

256 locations Of instructions and constants (foUr tracks).

Time;

Approximately 60 words per minute.

COMPLEX OPERATIONS INTERPRETIVE ROUTINE 1 -cProgram Hl-22.0)

This fixed point interpretive program permits the programmer to
program complex number arithmetic operations with the ease of corres­
ponding real number arithmetic operations.

Storage: 192 locations of instructions and constants.

~: 102 - 1697 ms. per instruction.

66

TRACE AND MEMORY PRINTOUT 1 (Program Kl-23.0)

This routine is a member of the general class of "Program Checkout"
routines. It is capable .both of performing tracing operations and of
executing memory printout processes. During tracing operations the
routine prints out logically necessary information contained in the
LGP-30 coding sheets, such as:

1. "Locations" or Instruction Counter
2. "Instruction" or Order-Address words of the program
3. "Contents of Address"
4. "Contents of Accumulator".
Each of these four items is not necessarily printed for each

instruction.

Storage:

Seven tracks ..

TRACE AND MEMORY PRINTOUT 2 (Program Kl-23.1)

This routine, like Kl-23,0, is a Program Checkout routine for
tracing fixed point programs. It will perform a selective printing of
items from the following logical four:

1. "Location" or Address of Instruction.
2. "Instruction" or Order-Address words of the program.
3. Contents of the Address contained in the address part of

the instruction.
4. Contents of the Accumulator.

It is possible, when using this routine, to define the memory interval
over which tracing and printing is to occur when executing a given
problem program. The address in the problem program at which computa­
tion is to begin is also specifiable. The program description for this
routine classifies the printed output on the basis of the defined memory
interval, the order structure, and the time at which the printing is
done (i.e. whether the printing occurs before or after the computer's
execution of the instruction being traced.)

Storage:

Nine tracks.

Time:

About 3.8 seconds per instruction when monitor-printing, and about
0.7 seconds per instruction when not printing.

67

--- ------.. --· -- -··-----·---·-- --·--·--------------

TRACE AND MEMORY PRINTOUT 3 (Program Kl-23.2)

This routine will facilitate program-checkout for floating point
programs by providing a printed record of the program's instructions
together with the numerical results obtained at the completion of each
instruction execution. The actual printed information given by this
routine appears in five columns and gives:

1. The Address of the floating point instruction to be executed.
2. The floating point instruction to be executed.
3. The contents of the address accumulator or floating point

accumulator after the execution of an instruction causing a
change.

4. The contents of the memory location specified by the address
appearing in the floating point instruction.

5. The contents of the multiplier register after the execution
of a given floating point instruction.

Provision is made for omitting this customary printing within the
traced interval for:

(a) a given sequence of instruction and/or
(b) a sequence of instruction constituting a loop.

Storage:

Eight tracks.

Time:

600-700 instructions per hour.

FLOATING POINT INTERPRETIVE SYSTEM (Program Hl-24.0)

This interpretive routine redefines the LGP-30 engineered order
structure so that it may be programmed as a floating point computer.
The original order structure of sixteen orders has been expanded to
thirty-three to include additional typical orders as well as data in­
put, data output, and function evaluation orders. Along with the changed
order structure the routine has its new format for numbers in memory
as well as a set of defined registers. Numbers are represented in ..
memory by 24 binary bits and sign for the fractional part and five bits
and sign for the Exponential Part.

The newly defined registers consist of a floating point accumula­
tor and a Multiplier Register each consisting of two.words of memory,
and an Address Accumulator consisting of a single word. This new
system of registers permits intermediate calculations to be executed
with 30 bits of Fraction and 30 bits of Exponent for the floating point
numbers involved.

68

Twenty-six instructions covering the arithmetic, logical, address
modification, auxiliary, and square root orders have been coded as a
single "Floating Point Interpretive Routine", numbered as Program
Hl-24.0. The Data Input and Data Output Subroutines (two instructions)
are customarily used in conjunction with Hl-24.0; thus sixteen tracks
(1024 words) of memory provide 28 instructions for a wide range of
floating point problems. With this arrangement 3072 words of memory
are available for storage of problem-programs. In other cases the
remaining five instructions of the Interpretive Order Structure, namely
the Function Evaluation instructions (excluding square root) may be
needed. In those cases 23 tracks of memory provide the entire 33
instructions leaving 2624 words of memory for problem-program and data
storage.

Only those routines actually used need be stored on the drum.
These required routines must be stored on the drum in the following
relationship: (in addition to showing the memory relationships the
following table shows the program numbers which also appear in the
complete LGP-30 1 ist, printed periodically in the LGP-30 Newsletter).

Start Set Number of Number of
Program No. & Title Fill mod. Tracks Words

Hl-24.0 - F.P. Interpretive

I
L L 10.0 640

J2-ll.3 - Data Input 4 LlOOO LlOOO 6.0 384
J3-12.3 - Data Output 4

Bl-14.1 - Sine-Cosine 2 Ll600 L 2.5 160

Bl-16.2 - Arctangent 2 ·Ll832 L 1.5 96

B3-18.l - Log 3 L2000 L 1.0 64

B3-17.l - Exponential 2 L2100 L 2.0 128
Totals 23.0 1472

Time:

The time required for executing the more conventional instructions
range from 133 to 566 milliseconds, while the input floating point data
require 666 milliseconds and the print instruction uses 1.86 seconds.

FLOAT & UNFLOAT 1 (Program L3-25.0 R)

This routine performs two functions for operations:
1. It converts a fixed point binary number to standard floating

point form as defined in Program Hl-24.0. This conversion
is defined as "floating" a number.

2. It converts a floating point number as used by Program Hl-24.0
to fixed point form. This second type of conversion process is
designated as "unfloating" a number.

Storage: Three Tracks.
Time:· Float: (150 - 16n) ms, Unfloat: 133 ms. (n designates the number
O'f"Teading zeros.)

69

MEMORY SEARCH FOR ADDRESS 1 (Program K3-26.0)

This routine searches the drum for any given instruction (opera­
tion and address). If and when the instruction is found, its location
is printed in decimal. This search procedure is primarily useful in
finding programming errors which cause the computer to:

1. Transfer to an unwanted location, or
2. Store information in an unwanted location.

This memory search does not alter any location searched (locations
0000-6263).

Storage:

One (1) track.

Time:

Four minutes

MATRIX INVERSION 1, Self scaling (Program Dl-127 .0)

This matrix inversion routine contains the following features:

1. Decimal prescaling of matrix elements.
2. Automatic scaling to adjust for "growth error."
3. Dynamic scaling.
4. Fixed point computation effective at any positive integral "q".
5. Matrices are repositionable in memory.

The method of this matrix inver.sion routine concerns itself with
the prevention of overflow that ordinarily occurs when the maximum sizes
of generated numbers are incorrectly estimated. The routine performs
tests during the course of the inversion and employs variable .scale
factors to avoid such overflow. Scaling in this routine is of.three
types: Decimal prescaling, automatic scaling of "q" when necessary,
and dynamic scaling by a scale factor 2~. All computation is done in
fixed point and is effective at any positive integral "q". The input
consists of the exponent (dynamic scale factor) along with the decimally
prescaled matrix elements, while the output gives the row permuted
identity matrix, the correctly ordered scaled matrix inverse, and the
row permuted inverse. The program description for this routine is
complete with a clarifying matrix inversion example and "A Program for
Operating the MATRIX INVERSION ROUTINE".

Storage:

13-1/4 tracks.

Time:

A "3 x 3" matrix requires approximately one minute for inversion
provided there is little scaling. A "6 x 6" requires approximately
5-1/2 minutes.

70

SEARCH FOR PIVOT ELEMENT (Program Dl-27.1)

These two routines function as subsidiaries for other routines in
the matrix series; namely, the Matrix Inversion Routine, and the Matrix
Multiplication Routine. These routines are utilized in the Inversion
routine by conventional "calling sequences" linkages, but in the Multi­
plication routine the essential elements each appear explicitly in the
coding sheets without the use of linkages. The purpose of the "Search
for Pivot Element" is the determination of the largest matrix element
stored in a given sequence of memory locations, while the purpose of
the "Store Data in Two Places" is, as its name implies, the transfer­
ence of a given set of data from one memory interval to another.

Storage:

One track for each of the two.

MATRIX MULTIPLY 1 (Program Dl-227.2)

The matrices multiplied by this routine must satisfy the require­
ment that the number of columns in the first equals the number of rows
in the second. The routine has two characteristics that are the same
as two corresponding ones in the Inversion routine; namely:

1. Matrix elements are fracti~nalized by decimal prescaling.
2. The dynamic scale factor 2 is used, and the exponent "fl" is

entered and printed out at the conclusion in a manner similar
to the Inversion routine's method.

Programs Dl-27.1 and Dl-27.3 are explicitly included as integral parts
of this program.

Storage:

Eleven tracks for instructions and constants; track 63 used for
temporary storage of matrix.

MATRIX NORMALIZE 1 (Program Dl-27.3)

This routine carries out the operations resulting in the presence
of a non-zero number in the highest ordered digit of matrix elements.
Like the Inversion and Multiplication routines, this program uses the
exponent "W' and enters it and prints it out in a similar manner.

Storage:

Two tracks of instructions and constants. (One sector, temporary
storage).

71

.. ----------·-------·---· _ _:__ _____________________ , ______ ,, ____ ... -···----- ·- ..

MATRIX ADD-SUBTRACT 1 (Program Dl-327 .4)

This routine adds or. ljlUbtracts two matrices if the number of
rows and columns of the. two matrices are respectively equal. The
characteristics listed under "l" and "2" for Dl-227 .2 above are also
possessed by this routine. The "q" of the matrix elements is unit
for b.oth this routine and the Multiplication routine; both for input
and output .. Since prescaling is used, the final result 2fl (Cixj)
is multiplied by the post scaling factor 10 A.

INI'EG~TION OF DIFFERENTIAL EQUATIONS (Program G2-28.0)

The purpose of this routine is the integration of n f irst-arder
equations by S. Gill's modification of the fourth order Runge-Kutta
method, with two.changes to enable greater accuracy than that provided
by certain equations of Gill's paper. The routine itself occupies 200
sectors for storage plus eleven sectors on track 63.

Time:

, ~odgl).ly (4/3n - 1/5 sec/variable - 4 times the time required to
evaluate the derivatives; this is based on 15 .2 msec/revolution).

72

Numerical

123456

)O 000010
Ll OOOllO
*2 001010
"3 OOlllO
DJ+ 010010
35 OlOllO
$6 011010
TT 7 011110

:I,8 100010
(9 100110
Ff 101010
Gg 101110
Jj ll0010
Kk llOllO
Qq 111010
Ww 111110

Balance of

. ,
?/
] .
[,
Vv
Oo
Xx

ROYAL McBEE CORPORATION

LGP-30 Input-Output
Keyboard Code

Commands

123456

Zz 000001
Bb 000101
Yy 001001
Rr OOllOl
Ii 010001
Dd 010101
Nn OllOOl
Mm 011101
Pp 100001
Ee 100101
Uu 101001
Tt 101101
Rh 110001
Cc 110101
Aa 111001
Ss 111101

Keyboard

123456

001111
010011
010111
011011
011111
100011
100111

73

6

Controls

123456

Lower Case 000100
Upper Case 001000
Color Shift OOllOO
Car. return 010000
Back space 010100
Tab OllOOO
Cond. Stop 100000
Start Read 000000
Space 000011
Delete 111111

Signs

= + 001011
000111

0

0

0

0

0

0

0

0

I 2 0 3 4 5
0

0

0

0

0

0

0

0

Symbol Co;nmand Binary Rex Dec Keyboard Code

z
B
y

R
I
D
N
M
p

E
u
T
H
c
A
s

Stop
Bring
Store Add.
Return Add.
Input
Divide
N Multiply
Multiply
Print
Extract
Transfer
Test
Hold
Clear
Add
Subtract

2N N

1 0
2 1
4 2
8 3

16 4-,._
32 .5
64 6.

128 7

256 8
512 9

1 024 10
2 048 11

4 096 12
8 192 13

16 384 14
32 768 15

I

0000 0 0)O
0001 1 1 Ll
0010 2 2 *2·
0011 3 3 "3
0100 4 4 64
0101 5 5 %5
0110 6 6 $6
0111 7 7 rr7
1000 8 8 ~8
1001 9 9 (9
1010 F 10 Ff
1011 G 11 Gg
1100 J 12 Jj
1101 K 13 Kk
1110 Q 14 Qq
1111 w 15 Ww

rt'{ Sp. -
1.0 =+
0.5: . '
0.25 ?/
0.125 J •

['
0.062 5 Vv
0.031 25 Oo
0.015 625 Xx
0.001 812 5

0.003 905 25
0.001 953 125
o.ooo 976 562 5
0,000 488281 25

o.ooo 244 140 625
o.ooo 122 070 312 5
0.000 061 035 156 25
o.ooo 030 517 578 125

65 536 16 o.ooo 015 258 789 062 5

02
06
Of
Oq
12
16
1f
lq
22
26
2f
2q
32
36
3f
3q

03
07
Og
Ow
13
17
lg
lw
23
27

131 072 17 o.ooo 007 629 394 531 25
262 144 l.8 o.ooo 003 814 697 265 625
.524 288 1!9 0. 000 001 907 348 632 812 5

I

l 048 576 ~o
125
562 5

02
06
10
14
18
22
26
30
34
38
42
46
50
54
58
62

03
07
11
15
19
23
27
31
35
39

2 097 152,.\21
4 194 304 22
8 38l' 608 23

0.000 000 953 674 316 40S 25
o.ooo 000 476 837 1.58 203
o.ooo 000 238 418 579 101
0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 o.ooo 000 029 802 322 387 695 312 5
67 108 864 26 o.ooo 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

Zz
Bb
Yy
Rr
Ii
Dd
Nn
Mm
Pp
Ee
Uu
Tt
Hh
Cc
Aa
3s

LC
UC
cs
CR
BS

Tab
Del.

268 435 456 28
536 870 912 29

l 073 741 824 30
2 147 483 648 31

o.ooo 000 003 725 290 298 461 914 062 5
o.ooo 000 001 862 645 149 230 957 031 25
o.ooo 000 000 931 322 574 615 478 515 625
o.ooo 000 000 465 661 287 307 739 257 812 5

74

lr
00 0
q4 57

01 01 j8 50
05 05 fj 43
09 09 90 36
Ok 13 74 29
11 17 58 22
15 21 3j 15
19 25 20 8
lk 29 04 1
21 33 q8 58
25 37 jj 51
29 41 go 44
2k 45 94 37
31 49 78 30
35 53 5j 23
39 57 40 16
3k 61 24 9

08 2

04 04 ~J 59
52

08 o.8 g4 45
Oj 12 98 38
10 16 7j 31
14 20 60 24
18 24 44 17
3w 63 28 10
20 32 Oj 3

wO 60
k4 53
g8 46
9j 39
80 32
64 25
48 18
2j 11
10 4
w4 61
k8 54
gj 47
fO 40
84 33
68 26
4j 19
30 12
14 5
w8 62
kj 55
jO 48
f4 41
88 34
6j 27
50 20
34 13
18 6
wj 63
qO 56
j4 49
f8 42

~d 35
28

54 21
38 14
lj 7

\ /

-

COMMERCIAL COMPUTER DIVISION

INFORMATION SYSTEMS GROUP

SC 0001 PRINTED IN U.S.A.

