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WHAT IS PROGRAMMING? 

Programming is P.,anning how to solve a problem. No matter what method is 
used -- pencil and paper, slide rule, adding machine, or computer -­
problem solving requires programming. Of course, how one programs depends 
on the device one uses in problem solving. Programming the Royal Precision 
LGP-30 is basically simple. Understanding certain problems requires 
special knowledge, however programming for the LGP-30 does not. Hence 
this manual is meant for beginners as.well as those with experience in 
stored program computers and describes completely the fundamentals of pro­
gramming for the LGP-30. 

Experienced programmers may find a reading of the summary of orders at the 
back of the manual sufficient. 

A Program for a Desk Calculator. 

The purpose of a computer is to solve problems. More specifically, however, 
computers are used to calculate numerical answers to numerical problems. 
By vrcalculateil is meant, the use of addition, subtraction, multip'lication, 
and division. To illustrate programmingp it is sufficient to illustrate 
with any machine that calculates; for instance, a desk calculator. 

Let us invent the description of a desk calculator with which to illustrate 
programming. 

0 0 0 0 0 0 0 0 0 01~ Accumuiator 

9 9 9 9 9 

8 8 8 8 8 

IR ESE T 
7 7 7 7 7 

~ ~ 6 6 6 6 6 

5 5 5 5 5 
..L... Keyboard "' 

~ ~ 4 4 4 4 4 

3 3 3 3 3 

2 2 2 2 2 

Is TART 1 1 1 1 1 

0 0 0 0 0 

Desk Calculator 
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The accumulator register holds the results of calculation at each stage. 
Depressing the start button after the reset button is depressed puts 
zeros at all ten of the accumulator digit positions. The first step in 
adding two numbers, such as perhaps 2 and 4, is to reset the accumulator 
if any numbers remain in the accumulator from previous calculation and then 
to put the number 2 in the keyboard. Note that we could depress a 2 in 
any one of the five positions on the keyboard, and zeros in the others. 
In this case suppose we depress the number 2 in the column second from the 
left. 

9 9 9 9 9 

8 8 8 8 8 

7 7 7 7 7 

6 6 6 6 6 

5 5 5 5 5 

4 4 4 4 4 

3 3 3 3 3 

2 @ 2 2 2 

1 1 1 1 1 

@ 0 @ @ @ 
Keyboard with 2 

The depressed keys are shown circled. Next, we depress the add button 
labeled A. Next, when the start button is depressed the number appears in 
the accumulator. 

0 0 0 0 0 0 2 0 0 ol 
Accumulator with 2 

Now to add the number 4, we set 4 in the keyboard. Note that we must put 
the 4 in at the same position as we put the 2 in, namely, second from the 
left. The next steps ~re to depress the add button A, depress the start 
button, and finally write the result, which is 0000006000. 
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This procedure would have been good for adding 200 and 400 or .02 and .04 
or 2 and 4 time any power of 10. We simply say we have scaled them differ­
ently by powers of ten. It is found useful to use a shorthand terminology 
for such scaling. This shorthand terminology we shall call scale factor 
and designate by the letter "f17

• In the above case, we have added 2 and 
4 at a scale facter f = -3 since the numbers are shifted 3 places to the 
left with respect to the decimal point which is located at the right hand 
end of the accumulator. 

If we multiply, scale factors addo For instance, if we multiply 0000002000 
on the accumulator by 04000 on the keyboard, the result in the accumulator 
will be 0008000000 in the accumulator. This operation can be expressed as 
2 at f = -3 times 4 at f = -3 equals 8 at f = -6. Now suppose we multiply 
again by the number 04000 on the keyboardo Note what occurso The result 
in the accumulator is 20000000000 In other words, we have lost the 3 of 
the 32 at f = -9 which should result from the multiply. This is because 
we have added together scale factors which result in a number too ~arge 
for the accumulator to hold. We say that the accumulator has overflowed. 
The smallest value of f at which we can hold 32 is f ~ -8. 

( 

However, if we had added 2 at f = 0, and 4 at f = 0, and had multiplied 
that result by 4 at f = O, the result would have been 0000000032 at f = O 
in the accumulator. In general, then, we want to keep our numbers at as 
high a scale factor as possible in order to avoid the possibility of over­
flow. The highest scale factor possible for the numbers 2 and 4 is f = O. 
Note that the numbers .02 and .04 could have been held at a scale factor 
f = +2. 

Now let us try solving a somewhat less simple problem on our desk calculator, 
the evaluation of an algebraic expression aox4 + a1x3 + a2x2 + a3X + ·a4. 

Suppose we are given values for x and for each of the five coefficients 
ao through a4. We could then plan our program to get values for x2, x3, 
and x4, multiply by the coefficients as indicated in order to get the terms 
of the expression, and finally add the terms to get the answero We write 
A for add and M for multiply. If we follow such a plan, our program looks 
like this: 

1 Reset calculation notes for storin~ 
2 Ax information 
3 M x Given: 
4 Write value of x2 ao 
5 M x a1 
6 Write value of x3 a2 
7 M x a3 
8 Write value of x4 a4 
9 Mao Calculated: 

10 Write value of aox4 x2 
11 Reset x3 
12 A x3 x4 
13 M a1 aox4 
14 Write value .of a1x3 a1x3 
15 Reset a2x2 
16 A x2 a3x 
17 M a2 final result 
18 Write value of a2X2 :;;;; aox4+ a1x3+ azx2+ 

a3x + a4 
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19 Reset 
20 Ax 
21 M a3 
22 A a4 
2:3 A a2x2 

24 A a1x3 
25 A aox4 
26 Write value of final result 

With a little reorganization we could have greatly simplified our program. 
For instance, if we had looked at the expression in factored form 
( ( (aox + a1)x-:+ a2)x + a3)x + a4 the program would have looked like this: 

1 Reset 
2 A ao 
3 M x 
4 A ai 
5 M x 
6 A a2 
7 M x 
8 A a3 
9 M x 

10 A a4 
11 Write value of final result 

As we will discuss in detail later, we can program this problem on the 
LGP-30 with an even simpler set of steps (B, M, A, M, A, M, A, M, A, H) 
because the LGP-30 provides B which combines reset and add. 

The steps in organizing a program such as this deserves emphasis. They 
are as follows: 

(1). Find a mathematical statement of the problem. 

(2). Find the best numerical expression for machine calculation. In 
the case given we had, to begin with, a numerical expression for machine 
calculat~on, but it was not the best. 

This improvement of a program, by changing the method of expressing it 
mathematically, is the very simplest illustration of an art known as 
numerical analysis. The results of our analysis have saved time required 
for writing intermediate results, saved paper, and program steps. 

(3). Write a flow diagram~ 

In the first case a flow diagram looks as follows: 

I II III IV 

c:J- Evaluate Evaluate terms Add 
powers of x and write terms ::.. 
and write 

For the second case a flow diagram looks like this: 

I 

Reset 
II 

Evaluate nest 
of factors 

III 

Write final 
answer 

v 
Write 
final 
answer 
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(4). Code the _problem. The coding of a problem is the actual writing 
of the instruction required for each program step in the solution. In 
the case of the desk calculator, an instruction consists of an order part 
such as "addvr and a numerical part such as ao. 

(5). Check the method of programming. Checking can be accomplished 
by solving the problem with a set of simple values chosen for the variable 
and the constants. Another method of checking is by programming the 
problem in two different ways. In this case, we have two methods, which 
provide checks for each other. Try checking with pencil and paper by 
using the following values: 

X - .l - 27 ao = 32~ a1 = 24, a2 ~ 16, a3 = 10, and a4 = 1 

For simplicity assume all of the numbers are at a scale factor f = 0. 

It is usually the case that the largest part of programming is that repre­
sented by the fourth stage, coding. Hence, the word programming is some­
times used to mean only the fourth stage of this sequence. 

What orders did we use in constructing our program? Of course, there were 
add and multiply. But there are also others. For instance, we used reset 
and write as orders. These orders are not so much numerical as logical and 
result more from the nature of the calculator than from the demands of the 
problem. It will be seen that since the computer to be described in this 
manual is different from and more powerful than the desk calculator, othe~ 
orders are useful which have no counterparts in the case of the desk 
calculator. 

What Type of Computer is the LGP-30? 

The Royal Precision Electronic Computer LGP-30 is a general purpose electronic 
digital computer. The phrase "general purpose" is intended to mean that 
the computer can solve to any required order of accuracy any mathematical 
problem expressable in numerical or logical terms. However, for any given 
computer there are always some problems beyond its practical reach because 
of the length of time required for their solution. By "electronic" is 
meant simply that the device uses vacuum tubes and germanium diodes. One 
way of classifying computers is by the terms analog and digital. 

An analog computer measures while a digital computer counts. The prototype 
of the analog machine is the slide rule or the automobile speedometer. A 
digital computer works on the principle of the abacus or of the desk calcu­
lator. 

There are other phrases, too, which help to classify the LGP-30. 

The LGP~30 is (1) a fixed point machine. In the desk calculator which we 
described, the decimal point is always understood to be at the right hand 
end of the keyboard and the accumulator. So also in the LGP-30 there is 
a fixed location for the decimal point. However, the LGP-30 is (2) a 
fractional machine. That is, the point is understood to be at the left 
hand end of the accumulator, rather than at the right hand end. Hence, all 
numbers must be scaled so that representation in the machine is in the range 
between -1 and +l. 



- 6 -

However, scaling can always be accomplished by a program and need never be 
the concern of the operator or programmer. Furthermore, the LGP-30 is 
(3) internally binary. Instead of a digit from 0 to 9 in each position 
of the accumulator, it is only possible for either a 0 or 1 to be in each 
digit position of the accumulator. One common device, which is both 
fractional and binary, is the ruler. Suppose, for instance, we were to 
measure 13/16th of an inch. We would note that we had a ! an inch, a i 
of an inch, and a 1/16 of an inch. A simple representation of this process 
of counting halves, quarters, eighths, etc., is as follows: 

l/2's l/4's l/8's l/16's l/32's etc . 

. 1 1 0 1 0 0 

or 

.1101 = 13/16 

BINARY DECIMAL FRACTION 

Just as scaling can be handled by a program so also can conversion from 
binary to decimal so that the LGP-30 can be used as easily as any decimal 
computer. 

The LGP-30 is (4) a stored program computer. It is easy now to see that 
a problem requires not only the numbers to be operated on but also a set 
of instructions describing the sequence of operations; that is, a program. 
In the case of a stored program computer, not only can the numbers be 
stored, but the instructions can also be stored. 

Functional Components of the LGP-30. 

There are four basic functional groupings of the components of the Royal 
Precision Electronic Computer LGP-30 which are necessary for problem solving. 
These functional groupings are: The accumulator, the memory, the input­
output system, and the control system. Each of these have analogs in the 
case of the desk calculator. For instance, the memory of the LGP-30 is 
equivalent in the desk calculator case to the paper required for storing 
initial data, intermediate results, and final results. An essential 
difference from the desk calculator, however, is that in the case of the 
LGP-30 the program itself is also stored in the memory. 

The accumulator of the LGP-30 is entirely similar in function to the 
accumulator in the desk calculator. 

In the case of the desk calculator, getting the results from our system is 
simply a matter of reading what is in the accumulator, or what we have 
written on paper. In the case of a stored program computer, however, the 
numbers to be operated on and the results are s~ored in the memory. In 
the LGP-30 it is the input-output system which enables us to get numbers 
in and results out. 
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The control function is manual in the case of the desk calculator but is 
automatic in a stored program computer. For instance, control in the desk 
calculator requires pressing the start button to execute each instruction, 
but in the stored program computer the control function provides for 
executing the program either one step at a time by pressing the start 
button for each instruction or all at once by pressing the start button 
just once for the entire program. 

Why a Stored Program Computer? 

Since the desk calculator is a useful computer, the question arises, "Whf-t 
is the need for a stored program computer?" The answer lies in the speed 
of computation. For instance, the stored program computer LGP-30 can 
execute over 400 additions per second, whereas the desk calculator can 
only execute approximately one addition per second, not counting the time 
required to enter the numbers into the keyboard. A table at the back of 
the manual shows the important physical and operational specifications of 
the Royal Precision electronic computer LGP-30. 

Besides a comparison of the LGP-30 with desk calculators., a comparison 
with other general purpose stored program computers is of interest. The 
LGP-30 occupies less floor space, requires less power, has a simpler list 
of instruction types, has fewer components, and costs less than any other 
general purpose stored program computer now in use. The LGP-30 has as 
large a memory, requires as few operators, is as fast, and is as easy .to 
program as any other general purpose stored program computer now in its 
price range. 

We will cover in order: 

Memory and recirculating registers 
Building a program 
Number representation 
Input-output and control 
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MEMORY AND RECIRCULATING REGISTERS 

Memory Drumo The heart of the memory section of the Royal Precision elec­
tronic computer LGP-30 is the magnetic drum shown below. The drum 
is a metal cylinder 6.5 inches in diameter and 7 inches long.- It is 
coated with material which can be magnetized, and it rotates at approximately 
3700 revolutions per minute. 

Track. Read-record heads, which are for magnetizing and for detecting 
magnetization on the drum, are mounted in a frame around the drum. Reading 
and recording on the drum are done in a manner somewhat different from 
that used to record on tape in tape recorders. The read-record heads are 
spaced along the axis of the drum so that each one can record and read 
spots in a circle around the drum as the drum rotates. There are 64 such 
circles and they are called tracks. 

The use of 64 tracks and 64 read-record heads means that any given portion 
of the drum is available to a read-record head at least 64 times faster 
than if the memory consisted of a tape governed by one read-record head. 

Sector. In each track there are 64 groups of spots. Each group occupies 
a sector. Each sector consists of 31 spots each of which can be magnetized 
or de-magnetized and a 32nd spot, called the spacer, which is always 
unaffected by recording and is never examined by reading. 

Locations and Addresses. There are 64 tracks and 64 sectors per track in 
th~ memory. Hence every location in memory can be identified by a track 
and sector number and there are 64 x 64 = 4096 such locations. Location 
numbering is generally by track and sector, tracks being numbered 00 
through 63, sectors 00 through 63, and locations 0000 through 6363. Note, 
however, that although there are 4096 locations, a location number such as 
2089 is impossible with this numbering system since sectors number only 
through 63. A location number is called an address. 

Access Time. Each sector of a given track is accessible for reading or 
recording by the head associated with the track of that location once per 
revolution. Since the drum rotates once every 17 milliseconds, each location 
is accessible once every 17 milliseconds. 

Recirculating Registers. In addition to the 64 tracks of memory on the 
drum, there are three tracks each of which contains a recirculating register. 
Each of these recirculating registers is on~ sector in length. As the re­
circulating register passes under a read head, a record head continuously 
records the information read, back into the drum at a distance of one 
sector length from the read head. The advantage of the recirculating 
register is a reduction of sector access time to the equivalent of one 
sector length or about .26 milliseconds, whereas, a location in memory has 
an access time equivalent to one track length or 17 milliseconds. 

The three recirculating registers are the accumulator, the instruction 
i;egister, and the counter ____ !egister. The function of th.e accumulator should 
be clear from the discussion of the desk calculatoro The functions of the 
instruction register and the counter register are covered later. 
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a recirculating register 

Read-record head 
used to record 

a sector ----(see inset) ;_ ---- .-

-----

32 
spots ih a 

sector 

Drum Memory magnetized 
demagnetized 

Bit. Each of the 31 spots in each sector.on the drum can be in either of 
~states: not magnetized or magnetized. These two states may be inter­
preted as corresponding to 0 and 1 which are the two digits of the binary 
number system just as 0 through 9 are the digits of the decimal system. 

The usefulness of a drum type computer depends on this correspondence 
between magnetized spots and binary digits. It can be seen, then, that 
information can be stored on the drum in terms of binary numbers. There 
is a binary digit, either 0 or 1, corresponding to the state of each spot 
on the drum. The phrase "binary digit" is generally contracted to the 
word "bit". 

The term: "bit" is sometimes used to mean the spot on the drum as well as 
the binary digit which the spot represents. Also the word bit is sometimes 
applied as meaning the digit 1 as opposed to the digit O. Although the 
LGP-30 operates in the binary number system, a program to convert from 
decimal to binary can be stored on the drum so that the LGP-30 is as 
convenient as any decimal computer. 
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Number Words. The information stored in a memory location in terms of 
magnetized or de-magnetized spots is called a word. A word can either be 
a number or~ since this is a stored program computer, an instruction. We 
will discuss here what a word looks like once it is in the memory and 
def er until later how to get words in and out of the LGP-30. 

If a word is a number, it consists of ~O bits to represent magnitude, one 
bit related to sign representation, and a spacer bit. 

30 magnitude bits 

0 0 0 0 0 1 0 0 

spacer bit 
(always 0 in memory) 

If a number is positive, the sign bit will be O. If the number is negative 
the sign bit will be 1. 

In the desk calculator example, the accumulator is ten decimal digits long, 
and hence can be used to represent numbers up to 1010 in magnitude. Since 
a word in the LGP~·30 is thirty binary bits long, a number up to a magnitude 
of 230 can be represented in each word. Note that 100 in the number 
system base 2 is 22 just as 100 in the number system base 10 is 102. 
Hence, 1 followed by 30 O's in the binary system is equivalent to 230. 
Since 230 is approximately equal to 109 in the decimal system, magnitudes 
of nine significant decimal digits can be represented in the LGP-30. A 
discussion of binary arithmetic, representation, and scaling is covered later. 

Instruction Words. An instruction word consists of two parts, an order 
part and an address part. For instance, the order part of the instruction 
might represent the operation add. The address part of the instruction 
represents, by track and sector, the location in memory of some number. 
For instance, add 2000 is interpreted as meaning add the number located in 
track 20, sector 00 to the contents of the accumulator and store the result 
in the accumulator. Note a major difference from the instructions discussed 
earlier where add 2000 meant add the number 2000 not a number in location 
2000. 

. 
1 2 3 4 5 6 7 8 9 10 11 ~2 13 14 15 16 17 .18 19 20 21 22 2l 24 25 26 27 28 29 30 31 

I(}) 0 0 0 0 0 0 O·O 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 o o Io l 
order bits track bits 
= add = 20 = 

\ L.\ 
instruction word = a 2000 

As indicated,bit positions 12 through 15 in a word are used to represent 
the order. Since 4 bits are used to represent the order, there are 24 or 
16 possible orders in the LGP-·30. For instance, 1 1 1 0 in binary is 
interpreted as naddir if located in bit positions 12 through 15 of an 
instruction word. Bit positions 18 through 23 are used to repres~nt track 
and bit positions 24 through 29 are used to represent sector. 
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Since· there are six bit positions allowed for track, and six bit positions 
allowed for sector, 26 or 64 tracks and 26 or 64 sectors can be designated 
by the address part of an instruction word. 

The computer has no way of knowing by examining the word inself, whether 
a word is intended as a number or an instruction. Under most circumstances 
it is the numbers which are operated on and the instructions which are 
followed as instruction. The LGP-30 has the ability to operate on in­
structions as numbers. This ability is not only valuable but a feature 
which makes for the great power of stored program computers. However, it 
is always to be avoided to use numbers as instructions. Since an instruction 
word is indistinguishable from a number word, some means must be provided 
to avoid using numbers as instructions. How this is accomplished is 
described under "BUILDING A PROGRAM". Also, how we convert from a 2000 to 
the binary representation shown is discussed later. 

Summary. In summary, the essential element with which we deal in the 
computer is the word, and it may be either a number or an instruction. 
The next section discusses the orders of the LGP-30 and the effect they 
have on number representations in the computer. 
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BU.ILDING A PROGMM 

Instruction Execution. We have learned that an instruction consists of two 
parts, an order part such as the letter a to designate "add" and an address 
part such as 2000 to designate a memory location. 

For instance, the instruction a 2000 means add the number in location 2000 
to the number in the accumulator and put the result in the accumulator. 
Let us see what the LGP-30 does to execute this instruction. 

Ther.e are four phases to instruction execution. First let us suppose that 
a 2000 is in location lo;oo and that the LGP-30 is ready to execute the 
insfruction in location 1000. The computer is ready to execute the in­
struction in location 1000 when 1000 is in the counter register. Hence, 
we are assuming that 1000 is in the counter register. 

The first phase of execution is "search11
• As the drum rotates,the LGP-30 

f ... 

searches for the address given by the counter register, in this case 1000. 

The second phase is nt.r;ansfer" As location 1000 passes under the read­
record head of track 10, the LGP-30 places a 2000 in the instruction register, 
but at the same time leaves a 2000 undistrubed in location 1000. 

The third phase is "search for operand". The LGP-30 searches for location 
2000. 

The·fourth phase is "completion". The LGP-30 picks up the operand as 
location 2000 passes under the read-record head of track 20 and completes 
the operation according to the order part of the instruction. In this 
case, it adds the operand to the contents of the accumulator and places 
the result in the accumulator. 

Before execution of an instruction is complete, the LGP-30 adds 1 to the 
contents of the counter register. Therefore, when execution of the in­
structions in 1000 is complete, the LGP-30 begins execution of the in~ 
struction in 1001. Hence, the LGP-30 executes instructions in sequence 
according to memory location. When the last instruction in a track is 
executed (for instance, the instruction in 2063), the instruction in sector 
00 of the next track is executed because 2100 appears in the counter regis~er. 

Now we see how the LGP-30 executes a sequence of instructions. How it 
begins executing a sequence and how it stops is covered in the following 
discussion of the orders. Later we will discuss what we have to do to 
store instructions in memory in the first place and how a 2000 is converted 
into binary representation. For now we are going to discuss what orders 
and instructions ~ and how we can use them to build a program. 

What orders do we need to evaluate the expression (((aox + ai)x + a2)x 
+ a3) x + a4 which we introduced earlier? We said that four LGP-30 orders 
designated by b, m, a,and h(called bring, multiply, add, and hold) were 
sufficient. To make from these orders the instructions necessary to evaluate 
the given expression, we need the address of some memory locations. 
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Hence let us assume that x, ao, a1, a2, a3, and a4 are in locations 2000 
through 2005 respectively. 

Bring From Memory. Now we can write an instruction such as b 2001. This 
means reset the accumulator to zero and add the number in 2001 (in this 
case ao) to the contents of the accumulator. Note the improvement over 
the desk calculator which required two orders, reset and add, instead of 
the one order bring of the LGP-30. ---

M Multiply. The instruction m 2000 means multiply the contents of the 
accumulator by the number in location 2000 and put the most significant 
half of the resulting product in the accumulator (in this case, aox). In 
general, the multiplication of two numbers results in a product which has 
as many digits as the sum of the number of digits in the multiplier and the 
multiplicand. For instance, if we multiply .20 by .10, we get .0200. 
Hence, if we interpret these operands as x = 2 at a scale factor f = 1 and 
ao = 1 at a scale factor f = 1 and if we retain only the significant half 
of the product, the result is aox = 2 at a scale factor f = 2. Therefore 
by proper scaling, significance may be retained with the M multiply in 
keeping only the most significant half of the product. More about scaling 
later. 

Add. The instruction a 2002 means add the number in location 2002 to the 
C'Oiitents of the accumulator and keep the result in the accumulator (in this 
case, aox + a1). 

Hold & Store. The instruction h 2006 means store the contents of the 
accumulator in location 2006 and retain it also in the accumulator. 

Now supposing we locate our program beginning in location 1000, we are 
equipped to write the following program notes. 

Location Instruction Operand Result 
or Number 

1000 b 2001 ao ao 

1001 m 2000 x aox 

1002 a 2002 a1 aox + ai 

1003 m 2000 x (a0x + a1)x 

1004 a 2003 a2 Caox + a1)x + a2 

1005 m 2000 x ((aox + a1)x + a2)X 

1006 a 2004 a3 CCaox + a1)x + a2)X + a3 
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Location Instruction Operand Result 
or Number 

1007 m 2000 x (((aox + a1)x + a2)X + a3)X 

1008 a 2005 a4 (((aox + ai)x + a2)X + a3)X + a4 

1009 h 2006 Answer Store answer in 2006 

2000 x 

2001 ao 

2002 a1 

2003 a2 

2004 a3 

2005 a4 

2006 (answer) 

We have now provided instructions which perform all of the functions per­
formed by the desk calculator in the solution of this problem: reset, add, 
mtiltiply, and write. We have written the answer into a memory location, 
howeve.r, and do not know what it is. Later we will discuss how to 
program so that our answer is printed out on the typewriter. 

Stop. In the desk calculator, computation requires pressing the start 
button to. execute each instruction. In the case of the LGP-30, however, 
pressing the start button may initiate the entire sequence of instructions. 
Hence, we need some method of instructing the computer to stop computation 
when we have accomplished what we desire. 

The LGP-30 provides a stop order designated by the letter z. Up to this 
point every instruction has implied an address. Actually, however, 
computation does not stop to any memory location; it simply stops. Hence, 
a stop instruction usually-iias the same effect regardless of the numbers 
in ·the address portion of the instruction. It is customary to write a stop 
instruction as z 0000. 

Looping. The repetition of the group of two instructions, multiply and 
add, sugges1s a generalization of the program we have written.. Perhaps we 
could in some way use the same mu1tiply and add instruction> repeatedly 
instead of writing a sequence of several parrs of multiply and add instruc­
tions. We require two additional types of functions to accomplish this: 

(1). an instruction to transfer back to the multiply and add 
instruction; and 

(2). a means of modifying the address in the add instruction. 
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Since we have located the coefficients ao through a4 in sequential memory 
locations, it will be useful to add 1 to the address portion of the add 
instruction before transferring back to the multiply and add instructions. 
Let us consider program notes for the same expression as above which look 
as follows: 

Location 

1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 

2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 

Instruction 
or Number 

b 2000 
m 2004 
a(2005) 
h 2000 
b 1002 
a 2001 
h 1002 
u 1000 

Operand 

working storage 
x 
an 

a( ) 
1 

a( ) 

working storage . 
1 {I. ~ "\ 1.:i :! ; 

not used 
not used 

x 

ao 
ai 
a2 
a3 
a4 

Notes or 
Result 

Initially zero 

Initially ao 
* 

}
modify add 
instruction 

Initially zero 

* Intermediate and final answe·rs into memory location 2000. 

Note that after executing the add ins~ruction for the first time we write 
into memory our first intermediate result, ao. The following three 
instructions bring, add, and hold change the add instruction from a 2005 
to a 2006. Hence, we note that address modification has not required any 
new type of order. 

\,/ Unconditional transfer. However, transfer back to the multiply instruction 
does require a new order. For this the LGP-30 provides an unconditional 
transfer order designated by the letter u.An instruction such as u 1000 
means execute next the instruction in location 1000. Each repetition of 
the sequence preceding the u instruction is called an iteration. It 
should be noted that a u instruction does not affect the contents of the 
accumulator. So far the only other inst ruction of this nature is the stop 
instruction. 

Now we have an answer to the question "How do we start and stop a sequence: 
of instruction?" A u instruction transfers computation to the beginning 
of a sequence and a 'i instruction stops computation at the end of a 
sequence. Late·r we will describe how. to use the typewriter and control 

-console to execute the proper u instruction to begin executing a program 
once it is stored in memory. -

\l 
\1 

() 
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We also have an answer to the question "How do we avoid executing numbers 
as instructions?'~ Since instructions are executed in sequence and since 
we have means of starting and stopping any sequence, we can avoid any 
sequence of memory locations where numbers are stored. 

Working storage. Besides transfer and address modification, there are two 
other ideas in our new program worth noting. First, the initial bring 
instruction when first executed does not bring ao but brings the contents 
of 2000 which is zero. The reason is this: after executing the multiply 
and add pair, we must store the result each time because we need to make 
use of the accumulat~r in modifying the address of the add instruction. 
Having stored the intermediate result each time we have to bring it 
again after we transfer to the beginning. Since we want to avoid bringing 
ao after the first time and need to bring the intermediate result, we 
provide a special memory location for storing intermediate results and find 
another method for bringing ao initially. Since the add instruction 
initially has the address of ao and the contents of working storage is 
initially zero, the effect of the first execution of the add instruction 
is to bring ao. 

A second idea we need to mention is that the 1 we add to the instruction 
in location 1002 m.ust increase the sector by one each time. Hence, 
according to the diagram of an instruction word which appeared earlier, 
the number in location 2001 must have a one in position 29 but otherwise 
have all zeroes .. 

Locat'ions 2002 and 2003 we did not use so that they would be available 
for certain modifications we will later make to the program. 

J' The Counter. You probably ·notice several things wrong with the program 
as it stands. The principal fault is that there is no way of controlling 
when it stops. After the instruction in 1002 becomes a 2009, it becomes 
a 2010 and so on indef inite1y. Numbers in locations following 2009 are 
added into the result, which we do not want. Two additional orders are 
helpful in controlling the number of iterations executed. These orders 
are 11 subtract" and "test". 

Subtract. The instructions 2003 means subtract the number in location 
2003 from the contents of the accumulator and keep the result in the 
accumulator. 

v Test. The instruction t 1000 means that if the number in the accumulator 
is negative, transfer to location 1000 and if the number in the accumulator 
is ze·ro or positive, execute the instructi-ort f()iloWirig t 1000. 
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Let us consider the following sequenc.e of instruct ions: 

Location 

1007 
1008 
1009 

1010 
1011 

1012 

2001 
2002 

2003 

Instruction 
or Number 

b. 2002 
a 2001 
h 2002 

s 2003 
t 1000 

z 0000 

1 at 29 r:rr cVt, l..t 

working storage 

5 

Operand 

counter 
1 
counter 

5 

Results 
or Notes 

augment counter 
store augmented 
counter 
flag 
tests number of 
iterations 
stops program 

counter initially 
zero 
flag 

The first iteration brings zero, adds one, holds one, subtracts 5 to leave 
-4 in .the accumulator, and transfers •. The second iteration leaves -3 in 
the accumulator before testing and so on until the last iteration leaves 
zero and the result of the test instruction is to go to the stop instruction 
in 1012. In this case, the sequence of instructions not shown (from 1000 
to 1007) is executed 5 times before testing out. 

Since the preceding program required modification of the add instruction 
in 1002 by one for each iteration, we might .use the add instruction itself 
as the counter. Then our program notes look as follows: 

Location Instruction 
or Number 

1004 b 1002 

1005 a 2001 
1006 h 1002 

1007 s 2003 
1008. t 1000 

1009 z 0000 

2001 1 at ·29 
2002 working storage 

2003 a 2010 

Operand 

a( ) 
counter 

1 at 29 
a( ) 

a 2010 

as 

Result 
or Notes 

augment counter 
store augmented 
counter 
flag 
tests number of 
iterations 
stops program 

counter initialiy 
a 2005 
flag 

The question usually arises, "Given a certain initial value of counter and 
augmenting by 1 sector each time, how do we determine what to have for a 
flagT 1 Note that the add instruction in 1002 is augmented after execution 
and before testing. Hence, it is augmented after execution the last time 
and the flag should have an address larger by one than the address of the 
last add instruction to be executed. 
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This last sequence for controlling iterations permits us to execute the pre­
ceding multiply-add pair exactly 5 times, which is the number of times 
required since we must add in the five coefficients ao through a4. 

/ Initializing. There are still faults with the program. If we execute the 
computation a second time, we obtain a different answer. For one thing, 
when computation begins the second time, the contents of the working 
storage location 2000 contains the final answer and not zero. For another,the 
counter and initial add instruction is a 2010 not a 2005. We must provide 
instructions to precede those we have written,which set correct initial 
values in boih of these locations. If we store the instruction a 2005 in 
2002 and a zero in 2010, the following four instructions are sufficient 
to properly .initialize our program. 

b 2002 
h 1002 
b 2010 
h 2000 

Clear and Store. The LGP-30 provides a clear order which can make this 
initialization.even simpler. The instruction c 1002 means replace the 
contents of memory location 1002 with the contents of the accumulator and 
replace the contents of the accumulator with zero. Now the initializing 
instructions can be reduced to: 

b 2002 
t 1002 
h 2000 

The use of the clear instruction reduces the number of instructions by one 
and eliminates the need for storing a zero because the use of a clear 
instead of a hold to store the ·initial add instruction ·leaves a ze·ro 
accumulator. 

Subroutines. A subroutine is a program which computes a frequently needed 
function such as the square root or the printing out of a number in the 
accumulator. The word "routine" simply means ''program" and the pref ix 
"sub-" simply reflects the fact that the evaluation of a function such as 
the square root is often needed as a subordinate part of a larger program. 
Subroutines are frequently retained in known locations in memory so that 
they may easily be used when needed. 

In the case of our present program we have need of a print-out subroutine 
so that the final result stored in location 2000 can be printed out. 
Suppose we.locate the· printout subroutine in locations 3000 through 30SO. 
We can easily transfer to the subroutine by executing a u 3000 instruction. 
The question arises, however, "How can we easily return for more computation 
to the sequence of locations where we have stored the program of which the 
subroutine is a part?" 

Return address. The answer is provided by the return address order. If 
the inst ruction r 3050 is located in 1013, it sto:res the address 1015 
in location 3050. 
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If the instruction u 0000 is located in 3050, it becomes u 1015. Hence, 
if we have 

1012 b 2000 
1013 r 3050 
1014 u 3000 
1015 z 0000 

we bring the answer to the accumulator, set up a return transfer instruction, 
transfer to the beginning of the printout subroutine in 3000, execute the 
printout routine, transfer back to 1015, and stop. Refer to the LGP-30 
Subroutine. Manual to see how various subroutines are pr-ogrammed.' 

Final Program.- Now we. can write .a program to evaluate (((aox + a1) x + 
a2)x + a3) x + a4 which incorporates all the devices we have learned to 
this point. 

Location Instruction 
or Number 

Operand Result or 
Notes 

i ) 1000 
sr5 I 1091 

l.1q.~2 

b 2002 
c 1005 
h 2000 

a 2005 initial add lnstruction 

,~1 •• ( 1003 
,,\)''" ) 1004 

cJ,·l\ \\ 1005 
(1006 

(1001 
:><> \ ioos 

b 2000 
m 2004 
a(2005) 
h 2000 

zero initializing Wt>rking 
storage 

working storage 
x 

an 
working storage interitiediate and final 

results 
a(2005 + n) 

rr1J· L1009 
.. r 1010 

'>\~ J l,_1011 

b 1005 
a 2001 
h 1005 
s 2003 

. t 1003 

1 at 29 
a(2005 + n+ 1) 
a 2010 ' flag O'r -fenv-. t ·1·.0-:V ,J.,~ (~·: · d,.;:.,·.t 

"· f1012 
. ~-:, . .! 1013 

(~y;·;i}, { 1014 
1 

\..1015 

2000 
2001 
2002 
200~ 
2004 
2005 
2006 
2007 
2008 
2009 

b 2000 
r 3050 
u 3000 
z 0000 

working storage 
1 at 29 
a 2005 
a 2010 -:. l<rr 
x 

ao 
a1 
a2 
a3 
a4 

final result 

print routine 
stop 

Aside from the four instructions required for printout, this program is 
two steps longer than the original program consisting of b, m, a, m,. a~ 
m, a, m, a, h instructions and requires the use of three additional storage 
locations. 
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Nevertheless, we have gained something, for we now have a program capable 
of evaluating the more general expression 

(. .an-l)x + an. 

All we need· to supply each time are a value for x and the coefficients ao 
through an and a value for the flag equal to a(2006 + n). Note that, 
although more storage space is required for more coefficients, the number 
of instru,ctions in our program is constant regardle~s of the size of n. 
That we can achieve such a program shows the· great. power of the LGP-30 and 
of stored program computers generally. · 

Although we have been able to build a respectable· program~ there are several 
orders provi~ed·by the LGP-30 whic!i :we have not used. 

Store address. Suppose we have a problem in which we wish to square all 
the numbers stored in track 20 and store each square in the location formerly 
occupied by the number. We might write a program to appear as follows: 

Location Instruction 

1000 b(2000) 
1001 m(2000) 
1002 h(2000) 
1003 b 1000 
1004 a 1015 
1005 h 1000 
1006 b 1001 
1007 a 1015 
1008 h 1001 
1009 b 1002 
1010 a 1015 
1011 h 1002 
1012 s 1016 
1013 t 1000 
1014 z 0000 
1015 1 at 29 
1016 h 2100 

02erand 

x 
x 
x2 
b(2000+n) 
1 at 29 
b(200l+n) 
m(2000+n) 
1 at 29 
m(200l+n) 
h(2000+n) 
1 at 29 
h(200l+n) 
h 2100 

Notes 

x2 

flag 
loop 
stop 
augmenter 
flag 

This program can be greatly simplified.by the use of the store address 
order. Th~ instruction:y 1000 means replace the contents of the address 
portion of the word in location 1000 with the contents of the address portion 
of the word in the accumulator. The contents of the accumulator is 
unaffected. Hence we can rewrite the program as follows: 

Location Instruction Operand Result or 
or number notes 

1000 b(2000) x 
1001 m(2000) x x2 
1002 h(2000) x2 
1003 b 1000 b(2000 + n) 
1004 a 1011 1 at 29 



Location Instruction 
or Number 

1005 h 1000 

1006 y 1001 
1007 y 1002 
1008 s 1012 
1009 t 1000 
1010 z 0000 
1011 1 at 29 
1012 b 2100 
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Operand 

b 2100 

flag 

Result or 
Notes 

Counter & augmented 
instruction 

flag 

stop 

We have been able to shorten the program by 4 steps because each l. in~ 
struction takes the place of the£, ~' ~ sequence. A z instruction can 
put the same address into instructions which have different orders. 

Extract. More than one kind of data may be stored in a given word. For 
instance, a calendar date consists of three types of data: month, day and 
year. A word with these three types of data might look this way. 

011 1 0 0 0 0 1 11 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
'---.r---l '--v--J \..'-____ ""'" ___ _,; 

month day year 

Sometimes it is desirable to deal with only one of the three pieces of 
data. The extract order makes it possible to separate different data 
stored in one word. The instruction e 2000 means: put zeroes in the word 
in the accumulator wherever there are zeroes in the word in location 2000 
but otherwise leave the word in the accumulator unchanged. Fot instance, 
if the above data. word is in the accumulator and in location 2000 is the 
word 

f1I 1 1 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

then the result in the accumulator is the following word~which contains 
only the month part of the date. 

1011 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o I 
'--v----' 

month 

The word in location 2000 is called the extract mask. It is possible with 
another extract instruction and mask to retain the day and not the month 
or the year, or to retain any part of any given word· in the accumulator. 
The extract order achieves its result by multiplying bits in corresponding 
positions of the extract mask and the accumulator. That is, if there is a 
one in position 29 of both words, there is a one in position 29 of the 
result; otherwise, there is a zero. 

N multiply. The instruction n 2000 means multiply the contents of the 
accumulator by the contents of location 2000 and retain the least significant 
half of the product in the accumulator. The N multiply and the divide 
order which follows are both discussed further in connection with binary 
represent at ion. 
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Divide. The instruction d 2000 means divide the contents of the accumulator 
by the contents of location 2000 and retain the rounded quotient in the 
accumulator. 

Print and Input. Both the print and input orders are discussed under in­
put output and control. 

Summary. There are 16 orders available for constructing instructions in 
the LGP-30. An instruction contains an order part such as the letter a 
for add and an address part such as 2000. It must be emphasized that -
20·00 in the instruct ion a 2000 is the location of a number stored in 
memory and not the number itself. Further properties of them, n, d, a, 
and s orderS'a"re discussed in connection with binary representation, but 
a summary of the properties of each order can be found all in one place 
at the back of the manual. 
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NUMBER REPRESENTATION 

Binary Numberso Just as a number system can be developed using the ten 
digits 0 through 9, so also a number system can be developed using only 
the two digits 0 and 1. This number system is called the binary system. 
In counting with the decimal system, when the digits 0 through 9 have 
been used in the low order position, a one is placed to the left of the 
low order position and counting continues with 10, 11, 12, etc. In the 
counting with the binary system we also first use all the digits in the 
low order position and then place a one to the left of the low order 
position so that counting goes 0, 1, 10, 11, etc. The binary numbers 
equivalent to the decimal digits are. as follows: 

Decimal digit 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Binary number 
0 
1 

10 
11 

100 
101 
110 
111 

1000 
1001 

Number representation can be looked on as an efficient method of counting. 
That is, we need just the ten digits, not as many digits as the magnitude 
of number we wish to represent, because the digit to the left of the low 
order position represents the number of lO's. For instance, the number 
1,234 is 

Cl x 103) + C~ x 102) + Cl, x 101) + (4 x 100) 

similarly in the binary system the number 1101 means 

Cl x 23) + Cl x 22) + CQ x 21) + Cl x 20) 

(where the digits are decimal). 

Sometimes it is useful to use a subscript to identify what number system 
a given expression is in, especially where different number systans use 
some of the same symbols for digits. For instance, 11012 = 1310; that is, 
1101 in binary is equal to 13 in decimal not one thousand one hundred oneo 
It is worthwhile pointing out that 

1010 = 101 

10010 = 102 

100010 = 103 

1002 = 410 

10002 = 810 
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Binary Arithmetic. Arithmetic in the binary system is similar to arithmetic 
in the decimal system. 

a. The rules for addition are 

1. O+O=O 
2. 1 + 0 = 1 
3. 1 + 1 = 10 (0 with 1 carried) 

As an example the sum of the two numbers 1011001 and 1001010 is 

As an 

Carries 1 0 1 1 0 0 0 
1 0 1 1 0 0 1 
1 0 0 1 0 1 0 

1 0 1 0 0 0 1 1 

b. The rules for subtraction are: 

1. 0 0 = 0 
2. 1 1 ;= 0 
3. 1 0 = 1 
4. 0 1 = 1 (with one borrowed) 

example the difference of the two numbers 

Borrows 1 1 0 1 
1 1 0 0 1 0 1 1 
- 1 0 1 0 1 1 0 

Dif ferenceO 1 1 1 0 1 0 1 

11001011 and 1010110 

c. The multiplication table for binary digits is 

1. OxO=O 
2. 1 x 0 = 0 
3. 1 x 1 = 1 

is 

The rules for multiplication and division in longhand are exactly the same 
as the rules in the decimal system. For example the multiplication of 
1.011 by 0.110 is 

1. 0 1 1 
o. 1 1 0 
0 0 0 0 

1 0 1 1 
1 0 1 1 

0 0 0 0 
1. 0 0 0 0 1 0 

To facilitate the handling of the binary point in ~inary arithmetic, most 
computers are constructed so that the binary point is fixed either to 
the left of the most significant digit or to the right of the least sig­
nificant digit. 
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The LGP-30 is designed to operate on numbers with the binary point left 
of the most significant digit. Numbers held in the computer are then 
represented as fractional quantities with the range of magnitude from +l 
to -1. 

Number Conversion and Scaling. Let us consider how we might represent 
the decimal number 19 in the LGP-30. First of all, let us convert 19 into 
binary. To do this we first find the largest number representable by a 
power of 2 which is equal to or smaller than 19, The number in this case 
is 24 or 16, or in binary, 10000. Conversion is easier to visualize if 
we represent the binary number as 

<.! x 24) + <.Q. x 23) + C.Q. x 22) + <.Q. x 21) + <.Q. x 20) 

With respect to the remainder 19 - 16 = 3, 21 is the largest power of 2 
equal to or less than 3. Now we can write a binary representation of 18 
based on the fact that it is the sum of numbers which are integral powers 
of 2. That is, 18 = 24 + 21 = 16 + 2, which in binary is 10010 or 

C.! x 24) + Co x 23) + C.Q. x 22) + <.! x 21) + <.Q. x 20) 

By this time it should be easy to see that 19 in decimal is equivalent 
to 10011 in binary. 

Now that we have converted the number we chose into binary, we need to 
represent it as a fraction since the LGP-30 is a fractional machine. ·We 
can do this by shifting the number far enough right with respect to the 
binary point. A shift of 5 places gives .10011 for the representation. 
Note that 5 is the smallest number of places we could shift right and 
still have a fraction. We keep track of shifts by the scale factor q. 
In this case., we say we have 19 at q = 5. In a memory location the number 
word would appear as 

q I '~ I I l I 
fol1 o o 1 1 o o 0 10 o o oJo o o o o o o o o o o o o o o o o o o of .t, ~ . . 

sign "-. L..scaled binary point 
bit binary point 

q = 5 

If the number we wish to represent is small enough, it is possible to 
represent it at a negative q. For instance, 1/8 decimal is equivalent 
to 0.001 in binary and 0.1 in binary is 1/8 at q = -2. In this case 
we moved the number two places to the left with respect to the binary 
point. 

In spite of the fact we have given some attention to converting a number 
here, the LGP=30 can be programmed to do all such conversion so that the 
operator may use it as a decimal computer. 

M multiplication. Suppose we c0nsider multiplying 2 and 3. In binary 
2 is 10 and 3 is 11. Each can be represented in the LGP-30 at a binary 
scale factor q = 2. Hence 2 at q = 2 is .10 and 3 at q = 2 is .11. 
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When we multiply, scale factors add. The result, then, is 6 at q = 4, 
which in binary is .0110. The appearance of the operands and the result 
of an M multiply in the LGP-30 are as follows: 
In the accumulator 

Ioli i o o o o o o o o o o o o o o o o o o o o o o o o o o o o o I 

In memory 

Ioli a o o o a o o a o a a a a a o a a a a o o a o a a a o a o o I 

Result in the accumulator 

Iola 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o I 
Addition. If we add 2 and 3 each at q = 2, the result is 5 at q = 2 which 
in binary is 1.01. Since this number is not fractional, it cannot be held 
in the LGP-30. Hence 1 although a q = 2 was sufficient for multiplication 
of 2 and 3, 3 is the minimum q for adding 2 and 3. Numbers can be added 
only if they are at the same q. 

Overflow. When addition results in a number too large for the LGP-30, 
we say computation overflows. The result is that the machine stops 
computing at the add order. Overflow can occur as the result of substraction 
when numbers of opposite signs are the operands. Overflow due to division 
can also occur. Multiplication can never result in overflow since the 
multipfication of fractions can never result in a number as large as 1. 

Truncation. An M multiply, however, has anothe: 
ing. Suppose we multiply 3 at q = 30 by 2 at q 
be 6 at q = 32. 

In the accumulator 

haracteristic worth not-
2 ·. The result should 

Iola o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 i al 

· In memory 

Ioli o o o o o o o o o o o o o o o o o o o o o o o o o o o o o al 

Result in the accumulator 

jolo o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 al 

The result is 4 at q = 32 instead of 6 at q = 32. In other words, part 
of the result has been lost because the word length is 30 bits. This 
type of error is called truncation error and can be minimized by carrying 
operands for multiplication at as small a q as possible. 

In general then, it is desirable to carry numbers at as high a q as 
_possible to avoid overflow and at as small a q as possible to avoid trun­
cation errors. 
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Division. Suppose we divide 3 at q = 2 by 2.at q = 2. The result is 1.5 
at q = O since the q of a quotient is the q of the dividend minus the q 
of the divisor. This result in binary is 1.1, which is too large for the 
machine to hold. In this case, too, we have an overflow and the LGP-30 
stops computation. However, if we divide 3 at q = 3 by 2 at q = 2 the 
result is 1.5 at q = 1. 

In the accumulator 

Iola 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

In memory 

Joli o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

The result in the accumulator 

Ioli 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

In case the result of division includes a remainder, the quotient is 
rounded to the nearest bit in the thirtieth place. 

Negative number representation. In the LGP-30, negative numbers ·are repre-· 
sented by their complements. A complement is formed by changing all the 
ones to zeroes and all the zeroes to ones and then adding one in the 
thirtieth position. The complement of 6 at q = 4 is as follows: 

. I 

6 at· q = 4 

Iola 1 1 O'. o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

-6 at q = 4 · ? 
?\' ? ? 

I 111 o 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

Subtraction is performed by adding the complement of the number to be 
subtracted. 

Scaling Example. Let us reexamine the program for 

to see what happens in the accumulator when the program is executed. 
Suppose again that x = ~' ao = 32, ai = 24, a2 = 16, a3 = 10, and a4 = 1. 
Suppose we convert the numbers representing x and the coef f icinets into 
binary. 

ao ::; 100000. 
al = 011000. 

)< a2 = 001000. ·~· (>\0000 x = 0.1 
a3 = 001010. 
a4 ~ 000001. 
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Next, let us scale these numbers. The minimum q for ao is 6., Since all 
the coefficients play similar roles. in the program, let us keep.them all 
a q = 6. The variable x requires no scaling since it is already a binary 
fraction. Now let us examine what happens in the program. 

ao = .100000 = 32 at q = 6 
aox = .010000 = 16 at q = 6 

aox + a1 ·- .101000 = 40 at q = 6 

aox4 + a1x3 + azx2 + a3X = .001110 = 14 at q = 6 
aax4 + a1x3 + a2x2 + a3X + a4 = .001111 = 15 at q ;:: 6 

Suppose, however, in the preceding problem, matters are complicated by 
having x = 1 instead of x = !. Then the minimum q at which we can keep 
x is i. In this case, the first steps result in 

ao. = .100000 = 32 at q = 6 
aax = .010000 = 32 at q = 7 

Note that we now can no longer add a1 as we did before because a1 is at 
q = 6 and aox is at q = 7 and we are permitted to add terms only if they 
are at the same q. One soll:ttion to this problem is to enter the coefficients 
at different q's. However, this requires a good deal of effort on the 
part of the operator. The best solution is to enter the coefficients•in 
some unconverted and unscaled decimal form and have a program to convert 
and scale. Subroutines can be written called floating point routines 
which can take care of this problem, so that the LGP-30 can be used as a 
floating point machine. 

Shifting. One of the essential requireme·nts of sucJ:i a program is that it 
scale numbers by shifting. There are three o·rders in the LGP-30 which 
~an be used for s.hifting, M-mu1tip1y, N multiply, and divide. 

If we M multiply by 1 at q = 1 we shift_ right 
i at· q = 2, we shift right by 2. And so on. 
~e divide by 1 at q = 1, we shift left by 1. 
we shift left by 2~ And so on. How we shift 
cussed in the next paragraph. 

py. 1.. If we M multiply by 
In the case of divide, ;f 
If we divide by 1 at q = 2, 
with an N multiply is dis-

N multiplication. Suppose, now we are interested in the result of a multiply 
as a magnitude and not simply as a shift. If we multiply 1 at q = 20 in 
the accumulator by 1 at q = 20 in memory, the result is 1 at q = 40. 
The result from M multiplication is lost, since 1 at q = 40 is not in the 
most significant half of the product. However, we have an order Which 
can preserve the least significant half of a product .as well as the most 
significant half. The order which the LGP-30 provides for this function 
is the N multiply. The instruction n 2000 means: multiply the number 
in the accumulator by the number in location 2000 and retain the 31st 
through the 61st bits of the product in the sign position and the .30 
magnitude positions of the accumulator. Note that the sign position in 



- 29 -

this case represents magnitude and not sign. The sign of the product is 
found as a result of the M ~ultiply. If one of the two operands is 
negative, the result relates to the sign of the product to the extent that 
it is complement in form. Why the thirtieth magnitude position of the 
result is sometimes significant is shown in the discussion of input and 
output. 

The N multiply can be used for shifting left. For instance, to N multiply 
by a 1 at q = 30 shifts left 1. To N multiply by a 1 at 29 shifts left 
by 2. And so on. 

Hexadecimal Digits. A shorthand is useful to indicate each word, since 
it is somewhat space consuming and t~me consuming to write out 32 o's and 
l's. In order to develop such a shorthand the word is marked off i~to 
groups of four bits each to total 32 bits consisting of the sign bit, the 
30 magnitude bits, and the spacer bit. There are 16 possible combinations 
for any group of four bits. Hence, each combination of four bits can be 
represented by one of a group of 16 charact~rs. The following.table 
shows single character representations for each of the·l6 possible· 
combinations and their decimal equivalents. 

Decimal and Hexadecimal 
Equivalents of Binary Numbers 

Binary Hexadecimal Decimal 

0 0 0 0 0 0 
0 0 0 1 1 1 
0 0 1 0 2 2 
0 0 1 1 3 3 
0 1 0 0 4 4 
0 1 0 1 5 5 
0 1 1 0 6 6 
0 1 1 1 7 7 
1 O·O 0 8· 8 
1 0 0 1 9 . \)- ( C:JD 9 
1 0 1 0 f ) 10 ,.) 

1 0 1 1 g '-· 11 
1 1 0 0 j .; ~ .. 12 
1 1 0 1 k 4,.':I 13 
1 1 1 0 q \ 14 
1 1 1 1 w ~·l 15 

This method of single character representation is, in fact, the number 
system of base 16 called the hexadecimal system. Just as there are the 
two digits 0 and 1 in the number system base 2 and the ten digits 0 
through 9 in the number system base 10, so also there can be digits 0 
through W in the number system base 16. 

For Example, we converted the number 19 in decimal into 10011 in binary 
and scaled to .10011. Hence, the binary and hexadecimal equivalents of 
19 at a q - 5 as they appear in a word are 

1011 o o 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o ol 
'--v--" ~ '----v----' '---y-.J '----V-J '--v--' ~"----v----" 

4 j 0 0 0 0 0 0 
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Scaling for Range. Suppose we have a problem which requires computing 
ALQ2 for various values of A, L, and Q but where each variable is con­
fined to a range of values as follows: 

12 x lo-15 ~A~ 523,ooo x lo-15 
0 , L .L 9,999 
0 ~ Q~ 125,000 - -

and we want our result 1n the range 

but we want our accuracy to supply the third decimal place from 0.000 to 
12.000. 

First let us determine the m1n1mum q for values of L. Since 9,999 is 
the maximum value for L, it determines the minimum q. We can find the 
minimum q by referring to the table of powers of 2. From this table we 
see that 213LLmax<214. Hence q = 14 is high enough for the minimum q. 
We can ·.generalize the procedure for finding the minimum q. If there is 
a number x such that · 

.then.q = n is sufficiently large for qmin, but if x ~ 2n, q = n is not 
large enough and ~in = n + 1 is required. 

We follow this procedure to determine that 

for A, 
for L, 
for Q, 

qmin = -30 
qmin = 14 
Qmin = 17 

If we are to provide for the whole range of values for our variables, we 
must be sure that our program can store the values of these variables at 
no smaller q's than these. 



2n 

1 
2 
4 
8 

16 
32 
64 

128 

256 
512 

1 024 
2 048 

4 096 
8 192 

16 384 
32 768 

65 536 
131 072 
262 144 
524 288 

1 048 576 
2 097 152 
4 194 304 
8 388 608 

16 777 216 
33 554 432 
67 108 864 

134 217 728 

268 435 456 
536 870 912 

1 073 741 824 
2 147 483 648 

4 294 967 296 
8 589 934 592 

17 179 869 184 
34 359 738 368 

68 719 476 736 
137 438 953 472 
274 877 906 944 
549 755 813 888 
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TABLE OF POWERS OF 2 

n 2-n 

0 1.0 
1 0.5 
2 0.25 
3 0.125 

4 0.062 5 
5 0.031 25 
6 0.015 625 
7 0.007 812 5 

8 0.003 906 25 
9 0.001 953 125 

10 o.ooo 976 562 5 
11 0.000 488 281 25 

12 0.000 244 140 625 
13 0.000 122 070 312 5 
14 o.ooo 061 035 156 25 
15 0.000 030 517 578 125 

16 o.ooo 015 258 789 062 5 
17 0.000 007 629 394 531 25 
18 0.000 003 814 697 265 625 
19 o.ooo 001 907 348 632 812 5 

20 0.000 000 953 674 316 406 25 
21 0.000 000 476 837 158 203 125 
22 0.000 000 238 418 579 101 562 5 
23 0.000 000 119 20~ 289 550 781 25 

24 o.ooo 000 059 604 644 775 390 625 
25 o.ooo 000 029 802 322 387 695 312 5 
26 0 .. 000 000 014 901 161 193 847 656 25 
27 0.000 000 007 450 580 596 923 828 125 

28 0.000 000 003 725 290 298 461 914 062 5 
29 o.ooo 000 001 862 645 149 230 957 031 25 
30 0.000 000 000 931 322 574 615 478 515 625 
31 0.000 000 000 465 661 287 307 739 257 812 5 

32 0.000 000 000 232 830 643 653 869 628 906 25 
33 0.000 000 000 116 415 321 826 934 814 453 125 
34 0.000 000 000 058 207 660 913 467 407 226 562 5 
35 0.000 000 000 029 103 830 456 733 703 613 281 25 

36 o.ooo 000 000 014 551 915 228 366 851 806 640 625 
37 o.ooo 000 000 007 275 957 614 183 425 903 320 312 5 
38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 
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Next, by following the rule that multiplication implies the addition of 
q's, we determine that 

for AL, qm.l.n = 
for ALQ2 Qmin = 
for ALQ,. <Imin = 

-16 
1 
18 

Since word length is 30 bits, there are 30 - 18 = 12 bits used for express­
ing the fractional part of the answer. Since ~ 12 L .. 00110 , the result 
is at a q suff icinet to provide the accuracy required. Note that we might 
have specified conditions which could not have been met by single precision 
operation. Floating point subroutines are available which take care of 
all such scaling problems as these. 

Binary Representation. of Orders. The order part of an instruction is con­
tained in bit positions 12 through 15 in a word. Each of the 16 order 
letters is represented by a unique pattern of zeroes and one's located in 
these four bit positions. The following table gives the binary equivalents 
of the orders. 

Binary equivalents of order letters 

z 0 0 0 0 
b 0 0 0 1 
y 0 0 1 0 
r 0 0 1 1 
i 0 1 0 0 
d 0 1 0 1 
n 0 1 1 0 
m 0 1 1 1 
p 1 0 0 0 
e 1 0 0 1 
u 1 0 1 0 
t 1 0 1 1 
h 1 1 0 0 
c 1 1 0 1 
a 1 1 1 0 
s 1 1 1 1 
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INPUT OUTPUT AND.CONTROL 

Print. Before discussing how to get information into the LGP-30, we must 
discuss the print order. A print instruction executes the typewriter 
keyboard function indicated by the 6 track bit. A print instruction 
affects only the typewriter and has no effect on any .memory location, the 
accumulator, or the counter register. 

For example, p 2000 has 010100 in. the track bits which is the code for 
a back space on the typewriter. The execution of p 2000, then, results 
in the typewriter's back spacing. The following table gives a complete 
list of typewriter keyboard codes. 

Numerical 

123456 

)0 0000~0 
lj 

Ll 0001~0 
*2 0010,tl.O 
11 3 001110 

A4 OlOOlO 
I 

35 010110 
$6 0110~0 

'(f 7 0111:10 
EB 1000.10 
(9 1001~0 . <-..:..... .• '"··---. ..•.. ·:'. , .. ·""'-· 

Ff 101010 
Gg 1011!10 
Jj 110010 
Kk 110110 
Qq 1110,10 
Ww 1111\10 

\ 
.i 

Balance of 

. ' 
?/ 
J. 
(, 
Vv 
Oo 
Xx 

LGP-30 Input Output 

Keyboard Code 

Commands 

123456 

Zz 0000;01 
Bb 0001!01 
Yy 001o;o1 
Rr 001101 
Ii 0100;01 
Dd 0101p1 
Nn 0110p1 
Mm 011101 

I 

Pp 10ooe1 
Ee 

~~~~lgi Uu 
Tt 1011pl 
Hh 11oop1 
Cc 110101 
Aa i11do1 
Ss 11u!o1 

I 
Ke!board 0 

0 

123456 0 
(J 

0 
0 

001111 0 
0 

010011 0 

010111 6/Z ~ 31f5 
011011 OI)() ~ 000 
011111 0 

100011 
a 
a 

100111 0 
() 
0 
c 
0 

~ 

Controls· 

.Lower Case 
Upper Case 
Color Shift 
Car Ret 
Back Space 
Tab 
Cond Stop('·) 
Start Read 
Space 
Delete 

Signs 

= + 

123456 

000100 '\ 
001000 
001100 \0 

OlGOOO \l. 

010100 C..o 

011000 ?_ll 

100000 :-1 
000000 c 

000011 
111111 G3 

2 : 
001011 \\ 
000111 1 
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The print order provides the means for executing any typewriter function. 

The principal method of entering information is by means of paper tape punched 
with holes representing the keyboard codes.. Hence, in order to enter data, 
we must have the means of starting the tape reader. If we are to program 
the entry of data, we can begin by executing a p 0000 instruction which starts 
the tape reader. Although the print instruction is the means we have of 
creating output, the unique instruction p 0000 is related to input. 

Input. The instruction p 0000 must always be followed, but not necessarily 
immediately, by the instruction i 0000, the input instruction. This 
inst ruction transfers the characters read on the tape into the. accumulator. 
No address portion other than 0000 is ever associated with the input order, 
and the instruction p 0000 always precedes the instruction i 0000. 

( 

One of the typewriter codes which can appear on the punched paper tape is 
the stop code. Its function is to stop the tape reader and to send a start 
signal to the computer. After the codes for characters necessary to fill 
a given word are read from the tape and transferred into the accumulator, 
a stop code is used. When the computer rec~ives a start signal, it executes 
the instruction which follows the i 0000 instruction in memory. Often this 
is a clear or hold instruction so that the word which has been filled into 
the accumulator can be stored in some memory location. 

Note that the stop code on the tape is reciprocal in function to the pair 
of instructions p 0000 and i 0000 in the computer. The pair stops computa~ 
tio;i;i .an4 starts the re~der, whereas, the stop code stops the reader and. 
~t.~i;ts .computation! 

Be sure not to confuse a stop code with a stop order or stop instruction. 
A stop instruction can be located in the computer to stop computation but 
a stop code is always on tape and stops the tape reader. 

Two types of input are provided, 4 bit and 6 bit. Four bit input fills into 
the accumulator- only the first four of the 6 bits representing each character. 
Hence, although 000101 represents b and 000110 represents 1, both have the 
same effect on the accumulator when read from tape (0001). When characters 
are read from tape, they are typed at the same time so that.although the 
codes for 1 and b have the same effect on the computer using four bit input, 
the typed result is different. The 6 bit input switch on the computer 
control console selects 6 bit input when depressed. For numerical work, 
the use of 4 bit input is more common. 

Since the accumulator is 32 bit positions long, including sign bit and 
spacer bit, 8 characters are sufficient to fill the accumulator on 4 bit, 
input. Hence, a stop code must appear on tape at least every eight 
characters. The accumulator is filled four bits at a time from the right 
hand end. That is, when the first character is read, it goes into the last 
four bit positions of the accumulator. When the next character is read, 
it occupies the last four bit positions of the accumulator and pushes the 
first character read into the next to last four bits. And so on. If a 
ninth character, is read, the first character read is lost. 
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Bootstrap. Consider, now the following program. 

Location 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 

Instruction 
or Number 

p 0000 
i 0000 
c(2000) 
b 0002 
a 0007 
y 0002 
u 0000 
1 at 29 

Operand 

input word 
c( ) 
1 at 29 
c( ) 

Results or 
Notes 

start tape reader 
bring in a word 

modify c( ) 

return to input 

This program represents the simplest type of input routine, one which simply 
brings in words and stores them without conversion. It is called a boot­
strap routine. Note that the initial clear instruction has an address 2000. 
Actually this initial address could be anything from 0008 through 6363 de­
pending on the number of words to be filled. Hence, we must prepare our 
input routine to include the initial address into which we wish to fill 
the words on tape. Actually, we could modify the routine so that it would 
use the first word on the tape as the start fill address. 

Note also, that although we loop through the instructions repeatedly, there 
is no need to have a counter. This is because after the last word has 
filled and computation returns to the input instruction, there is no 
further stop code on the tape to stpp the tape reader and to send a start 
signal to the computer. Hence, the reader continues even after the end of 
the tape has passed out of the reader and we can stop the reader at our 
convenience simply by depressing the STOP READ switch on the typewriter. 

Now the question arises, "How do we get the bootstrap routine into memory?" 
Out discussion of input so far assumes that there is already an input 
routine in the computer. Before discussing the process of entering the 
bootstrap, there are three things to consider. 

"Turning Power On. First, let us consider turning the power on. Turning on 
the typewriter is simple. Just flip the toggle switch to ON. The typewriter 
can be turned on even if the computer is not on, but the computer must be 
plugged in. To turn on the computer: 

(1) Depress MANUAL INPUT swit(:hw Note that the NORMAL, ONE OPERATION, 
and MANUAi-·lNPUT-·switches are ··:tntei~"iocked. The MANUAL INPUT switch can 
only be depressed ~-~ter the 9NE OPERATIOtJ switch is depressed. 

(2) .~epress the OPERAT~ switc~. 

(3) ?epress the POWER O~ switch. 

For f ift.y seconds the STANDBY light is on to indicate that tubes are at 
half filament power. For fifty more seconds the STANDBY TO OPERATE light 
is on indicating that the tubes are at full filament power and that the 
drum motor is energized. W~e~. the operate light comes on, the D.C. voltage~ 
c:.r~ . applied and the computer is ready for use •. 
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Control Switches. Second, let us look at some of the other switches on 
the typewri t.er and on the control console of the computer. The CONNECT 
switch on the typewriter when turned off prevents start signals from 
passing from the typewriter to the computer and start-read signals from 
going from the computer to the typewriter. When the MANUAL INPUT switch 
on the computer is depressed, keyboard characters typed on or read by the 
typewriter fill into the accumulator even though the CONNECT switch may 
be off. With the MANUAL INPUT switch depressed, recording in the memory 
is impossible, and therefore pressing the START switch by mistake can do 
no harm if an error has been made in typing. The FILL INSTRUCTION switch 
transfers the contents of the accumulator to the instruction register. 
When the ONE OPERATION switch is depressed, pressing the START switch 
executes one instruction at a time. The instruction executed is the one 
contained in the location given by the counter register. However, if the 
EXECUTE INSTRUCTION switch is depressed when the ONE OPERATION switch is 
down, it is the instruction in the instruction register which is executed. 

START STOP PUNCH TAPE CODE START 
STOP READ READ ON FEED DELETE COMP MANUAL 

I STOP 

I NORMAL I ONE 'LI 
: OPERATION: 

START CLEAR 
COUNTER 

BREAK BREAK 

MANUAL 
FILL 

!ypewriter Switches 

COMPUTE 

MANUAL '.l I STAND \.\ 
BY OPERATE INPUT 

FILL EXECUTE POWER 
INSTRUCTIOl INSTRUCTION ON 

BREAK BREAK 6 BIT 

OFF 
\)ON 

I 

CONNEQ 

ON Jl 
OFF~ 

POWER 

Oscilloscope 

! I 
OPERATE 

~ POWER 
OFF 

' TRANSFER 
POINT POINT POINT POINT INPUT CONTROL 

32 _1_6 8 ' 4 

~~--------------------
Control Console Switches 

r 
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Instruction Representation. 
sentation of instructions. 
of the instruction c 2710. 

Finally, let us consider the hexadecimal repre­
Consider, for instance, the binary representation 

.• 

0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 0 

0 0 0 c 
or k 

1 g 2 8 

Note that there is no problem with the order bits. If we had filled 
c 2000, the address portion of the word in memory would have been wrong 
but the order part would have been correct. 

The track bits appear different because the two highest order track bits 
belong to one hexadecimal character on input and the lowest four to 
another. 

The sector bits appear different for two reasons. First, like the track 
bits they are divided between two hexadecimal characters. Second, the 
lowest order sector bit corresponds to a hexadecimal 4 not a 1 in the 
last hexadecimal position of the word. 

A quick method of conversion is to divide the track number in decimal by 
16 to get the first hexadecimal character and then express the decimal 
remainder as a hexadecimal digit for the second hexadecimal character. 
For sector, divide the decimal number for sector by 4 and express the 
result as a hexadecimal digit. Then multiply the remainder by 4 and 
express the result as a hexadecimal digit. 

27/16 = 
27-(lx16) = 11 = 
10/4 = 

(10 - 2x4) x 4 a 

1 
g 
2 
8 

(+ remainder) 

(+ remainder) 

Filling the Bootstrap. Now suppose we want to put the instruction p 0000 
into location 0000. 

(1) Depress MANUAL INPUT switch on computer control console 
(2) Turn CONNECT switch off 
(3) Turn on the typewriter and the computer 
(4) Type cOOOO on typewriter keyboard 
(5) Depress FILL INSTRUCTION switch 
(6) Type OOOpOOOO on typewriter keyboard 
(7) Depress ONE OPERATION switch 
(8) Depress EXECUTE INSTRUCfION switch 

The instruction pOOOO has now been stored in location 0000. 
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Suppose we wish to fill i 0000 into location 0001, The procedure is 
the same except that we have OOOiOOOO and the clear instruction is c0004. 
Instead of typing each instruction we could have put on tape 

c0000'000p0000'c0004 9 000i0000' etc. 

The apostrophes stand for stop codes. Then our instruction; would be the 
same except that instruction (4) and (6) would be "Depress START READ 
switch on the typewriter." and to fill the entire bootstrap we would add 
instruction (9)"Return again to step (3) until all the words of the boot­
strap routine are filled into memory." 

It is important that the CONDITIONAL STOP s~itch on the typewriter is not 
depressed. If it is, one pressing of the START READ switch sends the 
entire tape through the reader without stopping at the end of each word. 

Note that we can express the number which is added to modify the address 
of the clear instruction as 0000000416 or z000110 since the code for the 
z order is 00002. The tape for thefwhole bootstrap is c0000'000p0000' 
c0004'000i0000'c0008~ooocxxxx'c000j'000b0008'c0010'000a001j'c0014'000y0008' 

c0018'000u0000'c00lj~00z0004~. Carriage return codes may be interspersed 
among instructions on the tape in order to limit line length for typing. 
When used, carriage return c0des should follow the stop orders. 

Executing the Bootstrap. Now let us execute the bootstrap. 

{l) Turn CONNECT switch on 
(2) Depress CLEAR COUNTER switch. This action puts zero in the 

counter register so that the next instruction to be executed is 
the instruction in location 0000. Since we usually place a 
program input routine such as the bootstrap starting in location 
0000, clearing the counter is the quickest way to get tG the 
program input routine. Either the MANUAL INPUT switch or the 
ONE OPERATION switch must be down, not the NORMAL switch. 

(3) Depress the NORMAL switch 
(4) Depress the Start switch 
(5) When the last word on the tape has been read, depress the 

STOP READ switch on the typewriter. 

Program Input Routine. The bootstrap input routine described has several 
shortcomings. For one thing, it requires manually filling the initial 
address of the clear instruction, called the start fill address. For 
another, both numbers and instructions must be put in hexad~cimal. However, 
a simple bootstrap such as this can be used to load another program 
capable of filling instructions expressed in decimal form, of distinguish­
ing between instructions and data words, and of accepting a word on tape 
as a start fill instruction. Such a program input routine is described 
in the Subroutine Manual for the LGP-30. 
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Executing a Program. If we wish to execute a program located somewhere 
other than in 0000, we cannot use the CLEAR COUNTER switch to reach it. 
To transfer manually to any location in memory 

(1) Turn CONNECT switch off 
(2) Depress MANUAL INPUT switch on computer control console 
(3) Type, for instance, u2000 in hexadecimal 
(4) Depress FILL INSTRUCTION switch 
(5) Depress ONE OPERATION switch 
(6) Depress EXECUTE INSTRUCTION switch 

At this point 2000 appears in the counter register. Next, if we depress 
the NORMAL switch and the START switch, the program beginning in 2000 is 
executed. 

Calling for Data. The pair p 0000 and i 0000 need not appear only at the 
beginning of a program input routine. They can appear in the middle of a 
program to bring in more data. We could have added them to the program 
discussed earlier so that values for x and the coefficients a0 through an 
could have been brought in from tape. When these instructions are included 
in a program, be sure that the CONNECT switch is on. If the MANUAL 
switch on the typewriter is depressed when the p 0000 and i 0000 pair are 
executed, the reader does not start but the MANUAL FILL light on the 
typewriter comes on. When this happens data can be entered from the key­
board. After the desired characters have been typed, depressing the 
START COMPUTER switch on the typewriter continues execution of the program. 

Filling the Spacer. Typing a character such as 9 for input fills the 
last four bits of the accumulator so that 1001 appears in the 28th, 29th, 
30th, and spacer positions of the accumulator. Hence, although the spacer 
for a word in a memory location is always zero, it may be a one in the 
accumulator. In order not to lose this bit by storing immediately 
following accumulator fill, it is often worthwhile to execute an N multiply 
by a 1 at 30 in order to shift the input word by one bit. 

Using the typewriter. The typewriter handbook covers those functions of 
the typewriter which do not relate to the computer such as punching a tape. 
However, it is worth noting that a good safety precaution in punching 
tape or otherwise using the typewriter by itself is to turn the CONNECT 
switch off to prevent the interchange of start signals between the computer 
and the typewriter and to depress the MANUAL INPUT switch on the computer 
so that recording in memory is prevented. 

Reading the Scope. An oscilloscope on the LGP-30 makes it possible to read 
the contents of the accumulator, the instruction register, and the counter 
.register in binary representation. Wherever there is a square wave on the 
scope there is a one stored; otherwise, there is a zero stored. For 
instance, -11S1 represents 0101 in binary or 5 in decimal. In ONE 
OPERATION the LGP-30 executes a program one at a time as the START switch 
is depressed .. The middle line on the scope shows a binary representation 
of the instruction which has been executed as the result of the last 
depression of the START switcho The counter register shown on the top 
line, gives the address of the next instruction to be executed, and the 
accumulator, shown on the bottom line, shews the .resultsp In MANUAL INPUT, 
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when the START switch is depressed successively, the contents of successive 
locations appears in the instruction register. The counter register, in 
this case also, gives the address of the location following the one shown 
in the instruction register. No change in the appearance of the 
accumulator occurs in this mode of operation since the contents of loca­
tions are simply being observed and instructions are not being executed. 
In ONE OPERATION the same instructions appear successively in the instruc­
tion register as in MANUAL INPUT except in the case of unconditional 
transfer instructions and test instructions which may result in a transfer. 

Break Points. If computation is to stop, the address portion of the stop 
instruction is usually of no significance. However, the stop order has 
a special characteristic. If there is a one in the third bit from the 
right hand end of the track portion of a stop instruction, 

f olo o o o o o o o o o o o o o o o o o o o 1 o o o o o o o o o ol 
~ c:::::::;:::::; c::::::y::::::: 

z track 04 sector 00 

computation does not stop if break point switch 4 on the console of the 
computer is depressed. There is a similar relationship between the stop 
order and each of the other four break point switches as follows: 

Track bits Break Point Switch 

000100 4 
001000 8 
010000 16 
100000 32 

Break points may be combined. For instance, if a track number in a stop 
instruction is 010100, computation fails to stop if either break point 
switch 4 or 16 is depressed. 

Transfer Control. The test order has one special characteristic. If it 
is stored in memory with a one in the sign position 

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

't . one 1n 
sign 
position 

'----y--J ~,..-----,; ~ 
t track 20 sector 00 

the instruction acts like a test instruction unless the "transfer control" 
switch on the console of the computer is depressed. If the "transfer 
control" switch is depressed, the test instruction acts like an unconditional 
transfer instruction, regardless of whether a one or a zero is in the 
sign bit of the word in the accumulator. 

Printing Out. When a print instruction other than p 0000 is executed, a 
signal goes to the typewriter to execute a typewriter character or 
funct'ion such as the letter "a" or a carriage return. However, unlike 
the case when there is an input instruction following the print instruc­
tion, computation does not stop. After the typewriter has executed the 
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character or function it sends a start signal to the computer. Hence, it 
is desirable to have computation in the computer stop before the completion 
of character execution at the typewriter. Therefore, a stop instruction 
should follow ~ print in~truction. Since the execution of a typewriter 
character requires about 6 drum revolutions computation requiring up to 
6 drum revolutions may occur between a print instruction and the following 
stop instruction. 

Turning Power Off. To turn power off, first depress the MANUAL INPUT 
switch and then depress the POWER OFF switch. In MANUAL INPUT mode of 
operation, recording in the memory is impossible so that transients occurring 
when the LGP-30 is turned off cannot affect the contents of memory. 

It is possible to depress the STANDBY switch so that only half tube fila­
ment power remains on. When the machine is not to be used for some time 
period during a shift of operation, the LGP-30 can be maintained in 
STANDBY mode of operation rather than in OPERATE mode so that fube life 
can be extended. In switching to STANDBY as in turning power on or off 
be sure that the MANUAL INPUT switch is depressed first. 



SUMMARY OF ORDERS 

An instruction consists of an order part such as the letter b for bring 
and an addre~s part such as the number 2000 to designate a memory location. 
All instructions have a similar appearance in an LGP-30 word. The order 
bits occupy positions 12 through 15 of the word and the address bits 
occupy positions 18 through 29 of the word. For instance, the instruction 
b 2000 appears as 

+ 1 2 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

~ ~o 0 0 0 0 1. 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
'----v-----' ' "V' /\... 

, 
'V 

order bits track bits = 20 sector bits = 00 
= bring "- addre~ 2000 

_..,,; 

The following pages describe the orders of the LGP-30 and give examples 
of instructions using the orders for which the address part is usually 
2000. For all of these cases the appearance of the instruction in a 
word is as given above except for the order bits. 

Bring from Memory: 

Letter designation: 

b which is equivalent to 0001 binary, 1 decimal, 1 hexadecimal 
Example of a bring order as used in an instruction: 

b 2000 

Meaning: 

Replace, the contents of the accumulator with the contents of memory 
location 2000. The contents of memory location 2000 is unaffected. 
This order is equivalent to a reset and add order in some other 
computers. 

Hold and Store: 

Letter designation: 

h which is equivalent to-1100 binary, 12 decimal, j hexadecimal 
Example of a hold order as used in an instruction: 

h 2000 

Meaning: 

Replace the contents of memory location 2000 with the contents of 
the accumulator. The contents of the accumulator is unaffected. 
This order is equivalent to a write order in some other computers. 

0 

31 

o I 
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Clear and Store: 

Letter designation: 

c which is equivalent to 1101 binary, 13 decimal, k hexadecimal 
Example of a clear order as used in an instruction: 

c 2000 

Meaning: 

Replace the contents of memory location 2000 with the contents of 
the accumulator and replace the contents of the accumulator with 
zero. This order is equivalent to a write and reset order in some 
other computers. 

Store Address: 

Letter designation: 

r. which is equivalent to 0010 binary, 2 decimal, 2 hexadecimal 
Example of a store address order as used in an instruction: 

y 2000 

Meaning: 

Replace the contents of the address portion of the word in memory 
location 2000 with the contents of the address portion of the word 
in the accumulator. The contents of the accumulator is unaffected. 

Notes: 

If the word in the accumulator before execution of the instruction 
y 2000 is an a 3000 and the word in memory location 2000 is a b 5000 
the ·result in memory location 2000 after execution is b 3000. 

Unconditional transfer: 

Letter designation: 

u which is equivalent to 1010 binary, 10 decimal, f hexadecimal 
Example of an unconditional transfer order as used in an instruction: 

u 2000 

Meaning: 

Replace the number in the counter register with the contents of the 
address portion of the unconditional transfer instruction. 
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Notes: 

Normally instruction; are executed in sequence according to memory 
location. For instance, if b 3000 is located in 1000 and h 4000 
is" located in 1001, the hold instruction is executed immediately 
after the bring instruction. This is governed by the fact that 
during the execution of the instruction located in 1000, one is 
added to the 1000 that already exists in the counter register. 
After execution of the instruction in 1000, the counter register 
gives the address of the next instruction to be executed; in this 
case, the instruction in 1001. 

However, if instead of b 3000 the instruction u 2000 had been 
located in 1000, 2000 would be in the counter register after 
execution of the u instruction, and the instruction in 2000 
wo11ld follow the Instruction in 1000 instead of the instruction 
in 1001. Hence, computation is transferred to location 2000. 

Most instructions affect or use the contents of the accumulator 
but unconditional transfer and return address instructions affect 
the counter register. 

Return address: 

Letter designation: 

r which is equivalent to 0011 binary, 3 decimal, 3 hexadecimal 
Example of a return address order as used in an instruction: 

r 2000 

Meaning: 

Add one to the contents of the counter register and replace the address 
portion of memory location 2000 with the contents of the counter 
register. 

Notes: 

If the word in memory location 2000 is u 0000 before execution of 
the return address instruction and if the return address instruction 
is located in 1000, the result after execution is u 1002 in memory 
location 2000. 

This type of instruction is almost always used before a u instruction. 
The purpose of this pair of instructions is to execute a block of 
instructions not in normal sequence. 
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For instance: 
Path of 

Location Instruction Computation Location Instruction 

1000 b 3000 1900 c 
1001 h 3001 1901 b 
1002 r 2000 
1003 u 1900 
1004 h 3002 
1005 c 3003 1963 c 

2000 u 

This program segment shows that the r and u instructions allow 
computation to transfer from the 1000, lOOl, 1002, 1003 sequence 
into the 1900 through 2000 sequence and then to transfer back to 
the 1004, 1005, etc. sequence. 

Letter designation: 

t which is equivalent to 1011 binary, 11 decimal, g hexadecimal 
Example of a test order as used in an instruction: 

t 2000 

Meaning: 

4000 
4001 

4009 
1004 

If a one is in the sign bit of the word in the accumulator, the 
test instruction has the effect of an unconditional transfer. If 
a zero is in the sign bit of the word in the accumulator, the next 
following instruction in normal sequence is executed. 

Note A: 

Since a zero in the accumulator has a zero in the sign bit, a test 
instruction goes on to the next instruction in normal sequence if 
the word in the accumulator is zero or positive and transfers if 
tre word in the accumulator is negative. For instance, if the word 
in the accumulator is zero and t 2000 is located in 1000, the next 
instruction to be executed is the one located in 1001. 

Note B: 

The test order has one special characteristic. If it is stored in 
memory with a one in the sign position, 

o o o o o o o o o o 1 o 1 1 o o o 1 o 1 o o o o o o o o o ol 
'\ one in 

sign 
position 

~~~ 
t track 20 sector 00 
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the instruction acts like a test instruction unless the 11 transfer 
control11 switch on the console of the computer is depressed. If 
the "transfer controlli switch is depressed, the test instruction 
acts like an unconditional transfer instruction, regardless of 
whether a one or a zero is in the sign bit of the word in the 
accumulator. 

Letter designation: 

z which is equivalent to 0000 binary, 0 decimal, 0 hexadecimal 
Example of a stop order as used in an instruction: 

z 2000 

Meaning: 

Stop computation. 

Note A: 

When the computer begins computation in normal operation, each 
instruction is executed in sequence according to memory location 
as fast as the computer can execute them. A stop instruction is 
the method used to prevent the computer from going on to some 
sequence of instructions other than those required for solving 
the problem at hand. 

Note B: 

If computation is to stop, the address portion of the stop 
instruction is usually of no significance. However, the stop order 
has a special characteristic. If there is a one in the third 
bit from the right hand end of the track portion of a stop instruction, 

lolo o o o o o o o o o o o o o o o o o o o 1 o o o o o o o o o ol 
'---v--/ ~¥_,J ~ 

z track 02 sector 00 

computation does not stop if break point switch 4 on the console 
of the computer is depressed. There is a similar relationship 
between the stop order and each of the other four break point 
switches as follows: 

Track bits Break Point Switch 

000100 4 
001000 8 
010000 16 
100000 32 
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Break points may be combined. For instance, if a track number in a 
stop instruction is 010100, computation fails to stop if either 
break point switch 4 or 16 is depressed. 

Print: 

Letter designation: 

.E which is equivalent to 1000 binary, 8 decimal, 8 hexadecimal 

Example of a print order as used in an instruction: 

p 2000 

Meaning: 

Execute the typewriter keyboard function indicated byr the 6 track 
bits. The print order has no effect on the contents of any memory­
location, the accumulator, or the counter register. 

Notes: 

For example, p 2000 has 010100 in the track bits which is the code 
for a back space on the typewriter. The execution of p 2000, then, 
results in the typewriter's back spacing. A table in the section 
INPUT OUTPUT AND CONTROL gives a complete list of typewriter key­
board codes. The print order provides the means for the execution 
of any typewriter function by the computer. 

Special note must be made of the instruction p 0000; that is, the 
execution of typewriter keyboard code 000000. This instruction 
starts the tape reader as necessary for bringing from tape words 
for storage in the memory. The instruction p 0000 is always 
followed in memory but not necessarily immediately by i 0000, the 
input instruction. After a p 0000 instruction starts the tape 
reader, an i 0000 instruction transfers into the last 4 bit positions 
of the accumulator the first 4 bits of the typewriter code for the 
first character read on the tape. When the second character is read, 
the bits representing the first character are shifted into the next 
to last four bit positions of the accumulator and the first four bits 
of the typewriter code of the second character on tape are placed 
in the last four bit positions of the accumulator. This process 
continues indefinitely until a stop code (100000) appears on the 
tape. The stop code stops the tape reader and sends a start signal 
to the computer so that the instruction following i 0000 in memory 
is executed. Often this next instruction is a hold or clear 
instruction so that the characters read into the accumulator can be 
stored in some memory location. 

It is never desirable to have more than eight characters to be filled 
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into memory preceding a stop code on tape. If more characters are 
on tape, the four bits in the accumulator representing the first 
of the nine characters is shifted out of the accumulator and lost 
when the ninth character on the tape is read. 

The p 0000 i 0000 combination is reciprocal in function to the stop 
code on tape; that is, it stops computation and starts the tape 
reader, whereas the stop code on tape stops the tape reader and starts 
computation. This combination is also required for manual input as 
well as for tape input. When the MANUAL switch on the type-
writer is depressed, the execution of p 0000 and i 0000 instructions 
stops computation but turns on the MANUAL FILL light on the type­
writer instead of starting the tape reader. When the MANUAL FILL 
light is on, characters typed on the keyboard enter the accumulator 
as they enter when read from tape. When the characters desired 
have been typed, depressing the START COMPUTER switch on the type­
writer sends a start signal to the computer. 

When a print instruction other than p 0000 is executed, a signal 
goes to the typewriter to execute a typewriter character of function 
such as the letter "a" or a carriage return. However, unlike the 
case when there is an input instruction following the print instruc­
tion, computation does not stop. After the typewriter has executed 
the character or function, it sends a start signal to the computer. 
Hence, it is desirable to have computa.tion in the computer stop 
before the completion of character execution at the typewriter. 
Therefore, a stop instruction should follow a print instruction. 
Sin~e the execution of a typewriter character requires about 6 drum 
revolutions, computation requiring up to 6 drum revolutions may 
occur between a print instruction and the following stop instruct.ion. 

Input: 

Letter designation: 

i which is equivalent to 0100 binary, 4 decimal, 4 hexadecimal 
Example of an input order as used in an instruction: 

i 0000 

Notes: 

The address portion of an instruction constructed from this order 
is always 0000. It is always preceded by the instruction p 0000. 
Refer to the notes under print order for an explanation of its 
meaning. 
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Letter designation: 

a which is equivalent to 1110 binary, 14 decimal, q hexadecimal 
Example of an add order as used in an instruction: 

a 2000 

Meaning: 

Add the contents of memory location 2000 to the contents of the 
accumulator and place the result in the accumulator. The contents 
of memory location 2000 is unaffected. 

Notes: 

Suppose we consider adding a 2 in memory location 2000 to a 3 in 
the accumulator each scaled to a q = 3. A scale factor q = 3 is 
equivalent to considering the number to be shifted 3 places to 
the right with respect to the binary point. The appearance of 
the words before execution is as follows: 

In location 2000: 

lolo 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o· o ol 

In the accumulator: 

lof o 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o I 
The result in the accumulator after execution is: 

Ioli o 1 o o o o o o o o a o a o o o o o o o o o o o o o o o o o I 
Note that although the numbers 2 and 3 could have been expressed at 
a scale factor q = 2, the result could not. In such a case we say 
that the accumulator overflows. The machine is designed to stop 
computation if such a situation arises. To prevent overflow it is 
necessary to carry the numbers to be added at a high enough q. It 
is possible, of course, to shift so far to the right as to lose 
significant digits. For example, a 3 at q = 31 appears in memory 
only as a 2 at 31 since the word is 30 bits long. 

Hence, the criteria which determine the scale factor at which to 
perform additions are (1) to carry the number far enough left. to. 
prevent loss of significant digits and (2) to ~arry it far enough 
right to prevent overflow. 
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Note, too, that two numbers must be added at the same scale factor 
q. The result of adding 2 at 3 and 3 at 4, for instance, would 
be 

lolo 1 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

which is not 5 at any scale factor and hence has no significance 
in relation to the process of adding 2 and 3. 

Subtract: 

Letter designation: 

s which is equivalent to 1111 binary, 15 decimal, w hexadecimal 
Example of a subtract order as used in an instruction: 

s 2000 

Meaning: 

Subtract the contents of memory location 2000 from the contents of 
the accumulator and place the result in the accumulator. The contents 
of memory location 2000 is unaffected. 

Notes: 

If the number in memory location is of the same sign as the number 
in the accumulator, the result of subtraction is a number smaller 
in absolute value than the larger of the two numbers. Hence, in 
such a case, overflow as described under add cannot occur. However, 
if the numbers are of opposite sign, overfIOw can occur and the 
numbers must be scaled as described in the notes-under add in this -summary. 

Negative numbers are represented in the LGP-30 by a complement 
f onned as follows. Change all the ones to zeroes and all the zeroes 
to ones and add a one in the thirtieth bit position. The process 
of subtraction is accomplished by complementing the minuend and 
adding the complement to the subtrahend. For instance, suppose 
we subtract 2 from 5 each held at a scale factor q = 3. 

In memory: 

jolo 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o oJ 

In the accumulator: 

Ioli o 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o oJ 
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Complement of minuend: 

I 111 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

Result in accumulator: 

I olo 11 o o o o o o o o o o o o o o o o o o o o o o o o o o o oj 

The result, of course, is 3 at a scale factor q = 3. 

M Multiply: 

Letter designation: 

m which is equivalent to 0111 binary, 7 decimal, 7 hexadecimal 
Example of an M multiply order as used in an instruction: 

m 2000 

Meaning: 

Multiply the number in the accumulator by the number in memory 
location 2000 and place the most significant thirty bits of th~ 
product in the accumulatoro -:rhe contents of memory location 2000 
is unaffected. 

Notes: 

In general, the multiplication of two numbers results in a product 
which has as many digits as the sum of the number of digits in the 
multiplier and the multiplicand. For instance, the product of 9, 
a one digit number, and 12, a two digit number, is 108, a three 
digit number. In the LGP-30, a word in memory has 30 binary digits 
of magnitude. A word in the accumulator may have as many as 31 
binary digits of magnitude, if the spacer bit is filled on input. 
Hence, a multiplication in the LGP-30 can result in a product with 
61 magnitude bits. The result of an M multiply order is the sign 
bit and the 30 most significant bits of the 61 bit product. 

Multiplication requires the addition of scale factors. For instance 
(0.2) (.03) = (0006) can be interpreted in terms of scale factors as 
2 (at a scale factor of 1) times 3 (at a scale factor of 2) equals 
6 (at a scale factor of 3). 

As an example of an M multiply, suppose we multiply 3 at a scale 
factor q = 3 in the accumulator by 2 at a sca·le factor q = 4 in 
memory location 2000. The result in the accumulator is 6 at a 
scale factor of q = 70 

In the accumulator: 

I o Jo 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o I 
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In memory: 

f olo o 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o of 

Result: 

lolo o o o 1 1 o o o o o o o o o o o o o o o o o o o o o o o o of 

As noted under add in this appendix, numbers to be added must be 
at the same scale factor. Hence, it is sometimes necessary to shift 
one of the numbers to be added so that it is at the same scale 
factor as the other. For instance, in the example above, the number 
in memory can as well be interpreted as 1 at a scale factor q = 3 
as 2 at a scale factor q = 4. The result then can be interpreted as 
3 at a scale factor q = 6. Hence we can shift a number to the 
right using an M multiply by an amount equal to the sc2.le factor 
at which we carry the 1 in the multiplier. In this case we shifted 
3 from a scale factor q ~ 3 to a scale factor q = 6. 

Note that an M multiply can result only in a shift to the right 
because all numbers in the LGP-30 must be scaled to less than one 
since the binary point is at the lefthand end of the accumulator. 
Hence, an M multiply is sometimes ref er re·::~ to as a fractional 
multiply. 

Let us consider another example. Suppose we multiply 3.25 at a 
scaie factor q = 15 in the accumulator by 2 at a scale factor q = 15 
in memory location 2000. The result in the accumulator is 6.5 at 
a scale factor q = 30. 

Result: 

Iola o o o o o o o o o o o o o o o o o o o o o o o o o o 1 1 o ol 

Note that the result when an M multiply is used, is 6 at a scale 
factor q = 30 instead of 6. 5. The reason is that it requires 31 
bits to express 0,5 at a scale factor q = 30 and only the most 
significant 30 bits of the 61 bit product are retained by an M 
multiply. Note that the last bit in the above representation of 
the result is the spacer bit which is always zero as a result of an 
M multiply. This example also serves to point out the fact that an 
M mul~iply results in a truncated, not a rounded product. 

Another type of multiply, the N multiply, is described in the section 
that follows. 

N multiply: 

Letter designation: 

n which is equivalent to 0110 binary, 6 decimal, 6 hexadecimal 
Example of an N multiply order as used in an instruction: 

n 2000 



- 53 -

Meaning: 

Multiply the number in the accumulator by the number in memory 
location 2000 and place the least significant thirty-one magnitude 
bits of the product in the sign bit and thirty magnitude bits of 
the accumulator. The contents of memory location 2000 is unaffected. 

Notes: 

As discussed in the section under M multiply, multiplication in the 
LGP-30 can result in a product with 61 magnitude bits. The result 
of an N multiply is the least significant 31 bits of the 61 bit 
product. Note that there is no truncation since the result of the 
N multiply includes the bit of least significance of the entire 61 
bit product. 

The sign position as well as the thirty magnitude bit positions of 
the accumulator must be used to hold the thirty-one bits resulting 
from an N multiply. Since the sign position is required to 
represent a magnitude bit, there is no room in the accumulator for 
holding the sign bit of the product resulting from an N multiply. 
To N multiply by a 1 at q = 30 shifts the multiplicand left by 1 
place. To N multiply by a 1 at q = 29 shifts left 2 places, and so 
on. Therefore, an N multiply by a 1 at q ~ 1 shifts left 30 places, 
This provides a left shift symmetrical with the right shift of the 
M multiply with which a 1 at q = 1 shifts right 1 and a 1 at q = 30 
shifts right 30. 

As pointed out in the discussion of the M multiply, scale factors 
add. 

As an example, suppose we N multiply 3 at q = 31 in the accumulator 
by 2 at q = 30 in memory. Note t 1hat this implies that there is a 
one in the spacer of the accumulator. 

In the accumulator: 

lolo o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 1 I 

In memory: 

I olo o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 o ol 

Result: 

f olo o o o o o o o o o o o o o o o o o o o o o o o o o o 1 1 o ol 

The result, of course, is 6 at q ~ 61. Note that the result of M 
multiplying these numbers would be a zero accumulator. 

The N multiply provides a left shift just as the M multiply provides 
a right shift. The above example can be interpreted as the multi­
plication of 3 at q = 31 in the accumulator by 1 at 2~ in memory. 



- 54 -

The result, then, is 3 at q = 29 in the accumulator. In other words 
we have shifted the 3 two places. 

In an example discussed under M multiply, part of the product was 
lost, namely 0.5. The result 6.0 occurred instead of 6.5. If an 
N multiply is executed with the same operands, the result in the 
accumulator is 

I llo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

which is, in this case, 0.5 at q = 31. Hence, the one in the sign 
position represents, in this case, magnitude and not sign. However, 
if one of the operands is negative, the sign of the product is 
represented to the extent that the result of the N multiply is 
complement in form although the sign bit is not included. 

The shifting right by an M multiply has led to calling the M multiply 
the fractional multiply. Since the N multiply shifts left, it is 
sometimes referred to as the integral multiply. 

Note that there can never be overflow with either type of multiply 
since multiplication always results in the addition of q's and· 
hence can never result in a number that is as large as 1 at q = 0. 

Divide: 

Letter designation: 

d which is equivalent to 0101 binary, 5 decimal, 5 hexadecimal 
Example of a divide order as used in an instruction: 

d 2000 

Meaning: 

Divide the number in the accumulator by the number in memory location 
2000 and place the quotient rounded to thirty bits in the accumulator. 
The contents of memory location 2000 is unaffected. 

Notes:· 

Suppose we divide 3 at q = 2 by 2 at q = 2. The result is 1.5 at 
q = 0 since the q of a quotient is the q of the dividend minus the 
q of the divisor. This result in binary is 1.1, which is too large 
for the machine to hold. In this case, too, we have an overflow 
and the LGP-30 stops computation. However, if we divide 3 at q = 3 
by 2 at q = 2 the result is 1.5 at q = 1. 

In the accumulator: 

~ olo 1 1 o o o o o o o o o o o o o o o o o -o o o o o o o o o o o~ 
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In memory: 

Ioli o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 

The result in the accumulator: 

1011 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 

In case the result of division includes a remainder, the quotient 
is rounded to the nearest bit in the thirtieth place. 

Extract: 

Letter designation: 

e which is equivalent to 1001 binary, 9 decimal, 9 hexadecimal 
Example of an extract order as used in an instruction: 

e 2000 

Meaning: 

Place zeroes in the word in the accumulator wherever there are zeroes 
in location 2000 but otherwise leave the word in the accumulator 
unchanged. The contents of location 2000 is unaffected. 

Notes: 

More than one kind of data may be stored in a given word. For 
instance, a calendar date consists of three types of data: month, 
day and year. A word with these three types of data might look this 
way. 

Ioli i o o o o 1 i i 1 1 1 1 o o i o i o i o o o o o o o o o o ol 
c:::y:::::> c:::::y::::::> ' 'V J 

month day year 

Sometimes it is desirable to deal with only one of the three pieces 
of data. The extract order makes it possible to separate different 
data stored in one word. The instruction e 2000 means; put zeroes 
in the word in the accumulator wherever there are zeroes in the 
word in location 2000 but otherwise leave the word in the accumulator 
unchanged. For instance, if the above data word is in the accumu­
lator and in location 2000 is the word 

1111 1 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o of 

then the result in the accumulator is the following word which 
contains only the month part of the date. 

Ioli 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o ol 
~ 
month 
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The word in location 2000 is called the extract mask. It is possible 
with another extract instruction and mask to retain the day and not 
the month or the year, or to retain any part of any given word in 
the accumulator. The extract order achieves its result by multi­
plying bits in corresponding positions of the extract mask and the 
accumulator. That is, if there is a one in position 29 of both 
words, there is a one in position 29 of the result; otherwise, there 
is a zero. 



Type: 

Number Base: 

Word Length: 

Mode of Operation: 

Memory: 

Clock Frequency: 

Access Time: 

Transfer Time: 

Addition Time: 

Multiplication or 
Division Time: 

Input-Output: 

Size: 

Weight Uncrated: 

Cooling System: 

Heat Dissipation: 

Power Requirement: 

Number of Tubes: 

Number of Diodes: 

TABLE OF 

LGP-30 SPECIFICATIONS 

General purpose, electronic, digital, single 
address, fixed binary point, fractional, stored 
program 

2 (binary) 

9 decimal digits plus sign (30 binary bits plus 
sign bit and spacer bit) 

Serial 

Magnetic drum, 4096 words, 3 one word recirculating 
registers. 

120 KC 

2 ms. minimum, 17 ms. maximum 

1 ms. minimum, 17 ms. maximum 

.26 ms. excluding access time 

17 ms. excluding access time 

Paper tape or electric typewriter 

Depth~ 26", Length - 44", Height - 33" 

740 lbs 

Internal forced air blower 

5000 B.T.U. /hr. 

115-volt, 60~cycle, single phase, 13 ampere 
alternating current 

113 

1350 



Numerical 

123456 

)0 000010 
Ll 000110 
*2 001010 
"3 OOlllO. 
A4 010010 
%5 010110 
$6 011010 
1!7 011110 
1:8 100010 
(9 100110 
Ff 101010 
Gg 101110 
Jj 110010 
Kk 110110 
Qq 111010 
Ww lllllO 

ROYAL McJEE CORPORATION 

LGP-30 Input Output 

Keyboard Code 

Commands 

123456 

Zz 000001 
Bb 000101 
Yy 001001 
Rr 001101 
Ii 010001 
Dd 010101 
Nn 011001 
Mm 011101 
Pp 100001 
Ee 100101 
Uu 101001 
Tt 101101 
Hh 110001 
Cc 110101 
Aa 111001 
Ss 111101 

Balance of Keyboard 

123456 

q OOllll 
?/ 010011 
lo 010111 
C, 011011 
Vv 011111 
Oo 100011 
Xx 100111 

0 
0 

0 
0 
0 

"1 J. 0 3+5 
000 0000 

0 
0 

0 
0 
0 
0 
0 
0 
0 

j 

Controls 

Lower Case 
Upper Case 
Color Shift 
Car Ret 
Back Space 
Tab . 
Cond Stop ( ' ) 
Start Read 
Space 
Delete 

Signs 

123456 

000100 
001000 
001100 
010000 
010100 
011000 
100000 
000000 
000011 
111111 

a + 001011 
000111 



Specifications Summary for Royal Precision LGP-30 

The LGP-30 is a general-purpose electronic digital computer; fixed point, 
fractional, inte11111ally binary, s.tored program. 

Memo1"y -- msgnetic drwn, 6.5"x7", 3700 rpm, or 1 rev. per 17 milliseconds. 
64 tracks, with 64 sectors each, for 4096 memory locatio11s. 
Address specifies track and sector, from 0000 to 6363. Thus 2089 impossible. 

- three additional tracks, each with a recirculating register having 
access time of 0.26 milliseconds; accumulator, instruction register, ancl 
counter register. 

-- each memory sector contains 31 bit positions and a blank 

Word Structure: 
numbers' 

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 0 1 0 1 0 
ti-

0 l 3;; 0 

c Sign bit 
--------3 

30 magnitude bite Spacer bit 
0 = :positive 
l : negative 

Instructions, 

l 2 3 4 5 6 7 81_9 10 ll 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 0 0 0 0 0 0 0 0 0 0 0 l l l 0 0 
~ ~ 

L Sign bit Order bi ts 
I Lf 

Hote: LGP-30 can record numbe1"s from 0 to 230, roughly ioi <lY' Ip o 010 0 op 0 0 

4 bits allow 16 combinations for 16 instructions. 
6 bi ts allow 64 combinations for 64 tracks, and 64 seftors. 


