Royal Precision Electronic Computer

LGP-30

SUBROUTINE MANUAL

Royal McBee Corporation |

LGP - 30 SUBROUTINE MANUAL

This subroutine manual was compiled by the Royal McBee Computing
Section to facilitate the coding of problems for the LGP-30. The pro-
gramming was done by the Royal McBee and Librascope Computing Sections
This subroutine manual, in its present form, is considered to be complete.

The subroutines provide for a variety of operations whose major
types are as follows: v

Machine Input and.Output.
Evaluation of Elementary Functions.
Program Check-Out.

. Complex Operations.

Floating Point/Operations.

OO0 oW

For each subroutine the calling sequences, running time, and storage
requirements are given. Also where applicable, the range of wvariables,
scaling, and accuracy are given. ’

It is hoped that as LGP-30 users develop other useful subroutines,
they will submit them to the Royal McBee Computing Section. Synopses of
lthese” subroutines together with those developed by the Royal McBee
Computing Section itself will appear regularly in the LGP-30 Newgletter.
The Newsletter is distributed monthly to all LGP-30 users. This arrange-
ment will facilitate prompt distribution of routines and will prevent
unnecessary duplication.

Royal McBee Corporation
1560 North LaBrea Avenue » :
Hollywood 28, California Copy No. 3F3

SECTION

- CONTENTS -

I: MISCELLANEOUS PROGRAMMING INFORMATION

SECTION

II:

12.
13.
b,
15.
16.
17.
18.
19.

20,

PROGRAM 090 +evvvuevseenssnrnsrnssnssnsanssnss BOOTSTRAP ROUTINE
PROGRAM 10.0 ,.....;..................LGP-30 PROGRAM ‘INPUT ROUTINE
PROGRAM 10.1e.vusaeeececsssnsacesssessss HEXADECIMAL INPUT ROUTINE
PROGRAM 11.0p.ueeusesucsnnssaseseesss DATA INPUT NO. 1 SUBROUTINE
PROGRAM 11.1.000esvsssecssacancsnceres .DATA INFUT NO. 2 SUBROUTINE
PROGRAM 11.2.+0useuveeressanssenssenss . DATA INFUT NO. 3 SUBROUTINE
PROGRAM 12.04evveossanssonansnansaess DATA OUTPUT NO. 1 SUBROUTINE
PROGRAM 12,14 sesovecsncassessenonsss .DATA OUTPUT NO. 2 SUBROUTINE
PROGRAM 13.0s v+ vuenevnsnssssnss. JHEXADECIMAL PUNCH OR FRINT NO. 1
PROGRAM 13.14vucesscosacensossss s HEADECIMAL PUNCH OR PRINT NO. 2
PROGRAM lh.O.........................;......SINE-COSINE.SUBROUTINE
PROGRAM 15.04uvacececsncevosansessesssaossqss SQUARE ROOT SUBROUTINE
PROGRAM 16,04.4uvuesscsseansannescssasssssss ARCTANGENT SUBROUTINE
PROGRAM 17.044eveacecoccncncacassacnssassss EXPONENTTAL SUBROUTINE
PROGRAM 18.0....,;...;.'..,...;.....................LoekXSUBROUTINE
PROGRAM 190+« vvvvvvverssrsnssns s ALFHANUMERIC OUTPUT- SUBROUTINE
PROGRAM 20.0+ e s senecnsasanssnsasnsessnssees ARCSINE - ARCCOSINE
PROGRAM 21.0u+ v vsensensnsnssnsesnsensesss DECTMAL MEMORY PRINTOUT
PROGRAM 22.0vvv0vevvsveasnsssssessns COMPLEX OPERATIONS SUBROUTINE
PROGRAM 21440eevvvesvacsvcsnssss FLOATING POINT INTERPRETIVE SYSTEM
Program 11.3 = 12.,34.cccscravssessasesassrsssseslnput - Output
Program 1h.l cceeassscscossaassassssacnssessrosseasSine - Cosine
Program 16.2.eecscsesssrsossonsccencassssnsasssass Arctangent

Program 18;10.00-..-00.9.0.0.-..-ouooooi‘oaaono’oon‘-.LOgarithm
Progrmn 17.1'Q°'°"..°"..'.."’....9........0'."“mponential

'DEFINITIONS

1. A routine is a logical subdivision of a program, complete in itself,
and serving a specific function in the problem. There is no fixed length
to any routine, and each routine occupies only as much storage as is act-
ually needed.

2. A subroutine consists of a set Qf instructions to perform a standard
task which is of a sufficiently general nature to be used in a number of
different programs. Examples are subroutines to input and output data,
compute square roots, arctangents, etc. This Subroutine Manual is a
compilation of the sp801flcat10ns of the subroutines, completely des-
cribing the functlon and use of each.

3. A calllng sequence is a set of instructions used for transferring
from the main routine to a particular subroutine. It may also include
information needed by the subroutine, such as constants and the locations
‘of certain quantities. The calling sequence for each of the subroutines
is given in the Subroutine Manual. ’

L. Minimum Time Programs.

"There are occasions when it is necessary to write programs which
will be executed in as little time as possible. These minimum time
programs are referred to as "optimum" programs. Since the subroutines
contained in the Manual are to be used over and over again, they have
been optimized. (The process of optimizing requires placing the sector
of the operandetat et+ (Tk+l) where 24k%6 for most instructions). The
programmer: should bear in mind that 10,000 executions of all nonoptimum
instructions would take less than 3 minutes longer than 10,000 executions
of optimum instructions. If the programmer spends 15 - 30 minutes on
each routine trying to save machine time by optimizing, this time may
never be made up in the actual running of the problem.

5. A scale factor of a scaled number in memory is defined as the
power ot 2 by which this scaled number must be multlplied to get the
original or unscaled number. (

Rev. 8/6/57

Page 1 of 1

CONVENTIONS USED IN THIS MANUAL

1. o{ is the base memory location from which entry to a subroutine is .
executed. Locations used by the subroutine are in reference to location
d'o EoGo, d’*‘ l, “"' 2,“"' 3.0.0-- ' .

2. Lo designates an initial location. L designates the final location.

3. The "Stop" and "Stop Codes" referred to in these write-ups and on
the coding sheet are synonymous with "Conditional Stop Code'.

L. ‘For explanétion of ouf scaling convention, see write-up on
"SCALING", :

5. Track 63 is used by some of these subroutines for temporary storage.
The track 63 sectors used by the subroutines are enumerated in the res-
pective write-ups. This practice was found useful for "optimum" program-
ming of subroutines. However if the subroutines which use this temporary-
storage are to remain optimum, the L, of the subroutine must be the
“beginning of a track. It is suggested that the programmer may also use
track 63 for temporary storagée of intermediate calculations. He should
not place a number in a track 63 location used by one of these subroutines
and expect that number to be there after exit from the subroutine.

\
)
~

Rev. 8/6/57

Page 1 of 1

PUNCHING TAPES FROM CODING SHEETS
Sze "3ample Program" page for example of coding sheet.

1. Only the "Program Input Codes" and "Instruction" columns of the
coding sheet are to be punched, with appropriate stops. Never punch
"Location", "Contents of Address", or "Notes" columns.

2. Bach entry on a line must be followed by a conditional stop code--
"Stop" column, symbol (¥). A line left blank must have the stop code
punched. .

3. Punch the "Program Input Codes" column only when there is an:entry
in the column. The "Program Input Codes" must be followed by the stop
(?)., This punching must precede the punching of the "Instruction"
column on the same line of the coding sheet.

L. Leading zeros need not be punched. All other zeros must be punched.
E.G., 00013086'only 13086' need be punched. ,0000017' must be punched
,0000017¢. For TO059! punch TO059¢.

5. Consider brackets as containing zeros. E.G., for [...!...]!
= [0000C0000]!, only the stop code need be punched. For B[....]' =
B{0O000]* punch BOOOO *. ‘

6. A1l punching may be done in lower case. B0627' will appear as
bOG2 71" z . A _

The placing of carriage returns is left to the discretion of the
person preparing the tape. Carriage returns do not affeect the input
operation. We have arbitrarily placed a carriage return () after
every b words on each coding sheet.

8. A heading may precede a punched program to identify the tape.
Anything except a stop code may be punched as a header. Then as the
tape is fed through the input reader the heading will print but will
not affect the operation of the computer.

9. Bach tape should be verified after punching. This can be done by
placing the punched tape in the reader and "listing" the tape by the
following process. ‘ :

a. Depress the "Cond. Stop" button on the Flexowritsr,

b. ‘Depress "Start Read" button.

c. When printing stops, depress the "Stop Read" button on the
Flexowriter, ‘ -

Then the printing may be visually checked against the coding sheets
for correctness and presence of stop codes.

10. It should be the programmer’s responsibility to enter "Program Input
Codes" (and the associated stop codes) on the coding sheet. This will
usually consist of a start £ill (;), a set modifier (/), and possibly
some hex. words (,) and/or stop and transfer (.) codes.

Rev. 8/6/57v

SAMPLE TFRoBLEM

1GP-30 CODING SHEET page_/_of /
Job No._XXX__Prog. No, 2 Y. Y Prep, by_ 222 Ck'd, by GL W Dpate ¥-/-S57
Problem_£ VAL 4T DeG Porynorae (Frxep PosnT) Track /9
el e W el
;,o,O,OT/LvoLo !
.olo,o{r/,o,o,a !
gL r000], xR0.5 08| U Tanafin s Dite Jepi #/ 25 rad
N L ,01] .x.(/,'aj.oLO' cmmz‘,ubé L,./d‘mewim ,
— .02, 3{0.017’.3 ' Aoorve Qe tal '%bD”,ﬂ.‘qjaq’ggr
— 0.3 C00.07\
L -) R ,h‘{o‘0‘7,5' '/W¢M& s 7ess
. f 051 .B%olo,'}’.{' Werdeng ,g»z;‘*?.a«zg_ eZ g =0
e 056 Mo o6l X@{@:o 4 /
A s \ Loy Al[‘ . ! a—’n@u?"o
R _ 08| Hlo 01/5' Workesg s2o1a 22 @z =0
— 09 Booo|| Al0en)
—— Y A 0.0.v¥ YAk
— Ll . ,)’i 0,00 7" R Al0027+n+)
NP A2 LS% 00 244'| Agozr ,3/@4;@-
e L A31, , 70005
e LAk Bo02S| Fwal Lol
. — 23| KR LA IV R T gmgbe (o Date feZiol #/
e 18| XU A 00 |t prd
- L 17, xZooo0o] | Cotle wnd =0 @Z}L/@=o)
L { — . .1 .8 N)(?% /.é. 0‘0' ? vaA/u,-n/JlZ—)
N —— L9 .x.%;o.o;op' /
o —— L 20| | ,)(.2; 0.5 00| %WQM
. ; . L2l A (/,0000' O ead mmore LaZa
—— L L, .22 X'Z.OC’O/' RCEY)
ey 23] Avore| KAL) || CoelanZe and
el 03] | Al) o i
—t ,125[.‘ | 'Mﬂﬂfﬂ»&za/@e@fso
L \ , 26 P ! . ..
o H R Vo e
U 1 l2,8 % ! a—l WM
L 29 - ' Ry ,aZ'E“ %j”iﬁd
R L 30 . ' VE atitlitogen Lo DeZs |
L 31 ' ' 2y W#/wm
' Conditional Stop Code K carriage Return

Royval M$Bee Corporation

Page 1 of 1

SCALING

The IGP-30 normally handles all numbers as if they were of the form
oXXXXeseosoeseey that 1s, numbers numerically less than 1. However, it
1s quite simple to carry any number in the machine at any number of bin-

ary places, and this arithmetic is explained below. In talking about
the placement of the radix point in the IGP-30, it is simpler to talk of
the number of whole places in front of the radix point, rather than the
number of places after the point. Hereafter, a number will be referred
to as being carried at q places, q being the number of binary digits to
the left of the radix point, and 30-q as the number to the right of the
point,

Additions Addition of course poses no problem if the two num-
bers To be added are at the same number of places. If not, either may
be shifted before addition by multiplying or dividing by "One'at an
appropriate q,

Multiplication: The IGP-30 multiplies a number at q3 places by
a number at qp places and forms the product in the accumulator at qj
plus q2.places.

Division: The IGP-30 divides the accumulator at qq places by a
numbé?‘éf‘ﬁE‘places and forms the quotient in the accumula%or at qp

= q3 places. It should be noted that overflow will occur if the quotient
developed is not less than 2Q3 in absolute value.

10-29-56

ROYAL McBEE CORPORATION

'LGP-30 Input Output

Keyboard Code

\

Numerical Commands Controls
123456 123456 123456
)0 000010 : Zz 000001 Lower Case 000100
L1 0u0110 , Bb 000101 Upper Case 001000
#2 001010 Yy 001001 Color Shift 001100
"3 001110 Rr 001101 Car Ret 010000
Al 010010 Ii 010001 Baock Space 010100
45 010110 Dd 010101 Tab 011000
$6 011010 Nn 011001 Cond Stop (') 100000
«7 011110 Mm 011101 Start Read 000000
%8 100010 Pp 100001 Space , 000011
(9 100110 Ee 100101 - Delete 111111
Ff 101010 Uu 101001 :
Gg 101110 Tt 101101 Signs
Jj 110010 Hh 110001
Kk 110110 Cc 110101 = 4+ 001011
Qq 111010 , Aa 111001 - 000111
Ww 111110 Ss 111101
[~ ——
Balance of Keyboard 1"i;‘-~j
o
123456 o
o
13 001111 o
?/ 010011 o
1. 010111 - 612 9345
L, 011011 000 9000
Vv 011111 0
Oo 100011 S
Xx 100111 °
A [+
[
]
\‘¢.\

Symbol

Stop
Bring

Inont
Divide

Print,
Extract

Test
Hold
Clear
Add

LroXmHldE I 20U 0d<TdN

16
32
- 6l
128

. 256

512
1 024
2 048

L 096
8 192
16 38l
32 768

65 536
131 072
262 1Ll
52), 288

1 048 576
2 097 152
ly 19); 304
8. 388 608

16 777 216
33 55 h32
67 108 86l
13 217 728

268 ;35 1,56
536 870 912
1 073 7L1 82}
2 147 LB3 6,48

Command

Store Add.
Return Add,.

N M ultiply
Multiply

Transfer

Subtract

O ~NoNWnE WO =

Rinary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

122 070 312 5
061. 035 156 25
030 517 578 125

015 258 789 062 5
007 629 39 531 25
003 81 697 265 625

001 907 3L8 632 812 5

000 953 67h 316 L06 25
000 1476 837 158 203 125
000 238 418 579 101 562 5
000 119 209 289 550 781 25

000 059 60L 6Ll 775 390 625

000 029 802 322 387 695 312 5

000 01 901 161 193 8L7 656 25
000 007 450 580 596 923 828 125

000 003 725 290 298 161 91l 062 5

000 001 862 6L5 149 230 957 031 25
000 000 931 322 57L 615 L78 515 625

000 000 L65 661 287 307 739 257 812 &

i 1] 1 11

Al

U

T
be Order W'l;rac k—v

T
*Scctp[-—w-
i

S

Hex Ded Keyboard Code
0 0 YO 02 02 zz 01 Ol
1 1l L1 06 06 Bb 05 05
2 2] w2 oOof 10 Yy 09 09
3 31 "3 oq 1 Rr Ok 13
i Ll AL 12 18 i 11 17
5 5] 95 16 22 Dd 15 21
6 6] #6 1t 26 Nn 19 25
7 71 7 g 30 Mm 1k 29
8 8 >8 22 3 Pp 21 33
9 91 (9 26 38 Ee 25 37
F 101 Ff 2f L2 Uu 29 k1l
G 11| @e 2q L6 T 2k LS
J 12 Jj 32 50 Hh 31 L9
K 13 Kk 36 5 Ce 35 53
Q 1} Qq 3f 58 Aa 39 57
W 15| ww 3q 62 Ss 3k 61
Space 03 03 Ic oy o
- 07 07 Uuc o8 08
¢ Og 11 csS o0j 12
ow 15 CR 10 16
?/ 13 19 BS 1y 20
Jo 17 23 Tab 18 24
[, 1z 27 Del. 3w 63
25 0o 23 35
. 812 5
906 25
953 125
976 562 5
1,88 281 25
2Lk 140 625

FUNCTION:

Page 1 of 2

BOOTSTRAP ROUTINE
(PROGRAM 09.0)

To load the input routine on tracks 00, Ol and 02. After the
bootstrap program has loaded the entire input routine, a halt is
executed at track 63 sector 13 (3W3k.) Depressing the Start button
transfers control to the first instruction of the input routine.

PROCEDURE :

The tape containing the bootstrap (and the program input routine)
1s placed in the tape reader and then the following manual operations
are performed :

1.

1.

12.

Connect Switch to "off" position.
("Inp. - Comp." switch to "Comp." on early.machines.)

a. Depress Flexowriter "Start Read" button.

Depress "Manual Input" button on console.
("Interrogate" button on early machines.)

Depress Flexowriter "Start Read" button.

Depress "Fill Instruction" button.
("Fill R" on early machines.)

Depress Flexowriter "Start Read" button.
Depress "One Operation” button.

Depress "Execute Instruction” button.
("Execute R" button on early machines.)

Repeat steps . 2 through 7 five more times beforé proceeding
to step Y.

Depress "One Operation" tutton.
Depress "Normal button.

“"Connect" switch to "On".
(Inp - Comp." switch to "Inp.'

' on early machines.

Depress Computer "Start".

The entire tape will automatiaclly read in after manually per-
forming step 12 above.

Rev. (1) 12/13/56

Page 2 of 2

(PROGRAM 09,0)

OUTPUT ¢
Program input routine on tracks 00, 01, 02,
STORAGE:

The bootstrap routine uses 21 words on track 63. (Sector 00
through 1, 22 thru 26 and L46),.

TIMEs

The time to read in the two programs after depressing the Start
button in Step 12 is approximately three minutes,

10/29/56

Page 1 of L

IGP-30 PROGRAM INPUT ROUTINE
(PROGRAM 10.0)

The purpose of this report is to describe a method of entering
information into the IGP-30., The general characteristics of the IGP=30

are described in the programming manual,

A program consists of two types

of words, data and instruction. This write-up primarily describes the
process of inputing instruction words and hexadecimal representations of

data words.

form.

There are several functions to be performed by a useful input routine.

1.

2.

3.

L.

This process does not handle data words expressed in decimal

The most direct way of entering information into the LGP-30 is
to present it with binary words., But since it is difficult to
program in this number system, we prefer to do our programming
in decimal notation. If we are to write words in decimal form,

we must provide the machine with a means of converting such words

into binary form.

Most routines contain instructions which refer to other locations

within that routine, Hence if we wish to place the routine in

another portion of memory, we must modify some of these addresses.

Tt is sometimes useful to express a number in binary formee.go, 3y

or other universal constants.,

It may be necessary to make instructional or data changes to a
program that has already been stored in memory.

These are the functions which this input routine is designed to

perform,

This routine recognizes seven types of input word, The sign and
first 3 bits of the input word are used for the input routine to iden-
7 tify the type. These words and their symbols are as follows:

1.

24

Instruction (none) consists of an order and decimal address.
The address consists of a decimal track and sector, The
instruction is converted to its binary equivalent and stored
in a given location. The address portion is incremented by
the contents of the "modifier® (to be discussed below) un-
less an “x" precedes the order. e.g., b 4000 will in inc-
remented. x b 6310 will not be incremented (and the x will
not appear in the stored instruction).

Cormmand (+4) This word will be treated as an order to the
input routine., The order will be executed after entry of
another word, The command is input in decimal and is not
incremented by the modifier. The second word, presumably
data, is input in hexadecimal. e.g. +00h1637 followed by
73W08 will store the hexadecimal word 73WO8 in memory
location 1637,

Rev. 3/25/57

Page 2 of |4

PROGRAM 10,0

3, Start £i1l (;). Tells the input routine where to begin
filling input words. Each succeeding word will be filled
consecutively., The address portion of the start £ill
word is decimal, ard consists of both track and sector
number. e.g. 30003128, The first stored word will be
located in track 31, sector 28.

bo Set modifier (/). The magnitude of the address of the
modifier will be used to increment orders. The set
modifier word will usually follow a start £ill and will
usually be identical to it in magnitude., This word is
for use by the input routine only.

5« Stop and transfer (.). This word stops the flexowriter.
A "start" will transfer control to the memory location
contained in the address portion of the stop and transfer
word. Depressing break switch 32 on the control panel
will cause the computer to disregard the stop portion of
this word. e.g. »,0001700 will stop reading, then control
will be transferred to track 17, sector 00.

6. Hex. words (,). This instruction causes the next N words
to be filled without conversion. N is specified in the
address portion of the "hex. words" word and must be
within the range 1 £ N £ 63 e.g. ,000001, means the next
1)} words are to be stored in the next 1l consecutive memory
locations. The words must be in hexadecimal notation, and
they will not be incremented by the modifier.

7. Hex. £ill (v). Fills the next n words hexadecimally
beginning in m. m and n are proper hexadecimal numbers,
The format of the word is v nj . 1Y
v1JO2W00 means the next 1J0 words(KiJQlé - mBhB will
be filled consecutively beginning in location 2W& [(2WOO)

= track (L7), sector 00]. Up to (7Wl),4 = (2047),, words
can be fille% by a single hex fill inpu % order,

Leading zeros need not be punched on any input word. All other
zeros must be punched. e.g. 800T0018 must be completely punched;
000537h9 only the last five characters need be punched. e.g.

B3749.

When the overall coding for a problem is surveyed, it is found
that the instructions separate logically into independent groups,
some of which can be used in any number of problems. Examples of these
groups are subroutines of all types, standard input and output routines,
and the mathematical subdivisions of the problem. It would be desirable
to code these pieces without reference to the other pieces. In order
to separate these pieces completely, it is necessary to assign a group
of instructions a block of storage locations which does not correspond
to actual memory locations; otherwise two blocks of coding might be
found to occupy the same section of storesge, requiring a change in the

10/29/56

Page 3 of L

PROGRAM 10.0

coding for one of the two pieces. The "get Modifier" order of the

input routine was intended to facilitate this type of coding. A

group of instructions can be coded without reference to actual memory
locations by starting that group at symbolic address 0000, Then by
setting the modifier to the "start f£ill" location, the programmer may
position a routine to any part of memory. An instruction preceeded by
an "x" will not be incremented, and this instruction will still refer
to an absolute memory location. It should be noted that orders may be
coded for actual locations merely by setting the modifier to zero (i.e.,
input order /0000000), Thus no particular restrictions are imposed upon
the programmer by this system.

If the input routine detects an erroneous input code it will print
"code" and halt, The last word read from tape contains the erroneous
code in the first punched character,

A tape prepared for this input routine must contain flexowriter
format control. It is suggested that a carriage return be inserted after
every four words on tape., If there is no format control and the flexo-
writer carriage is permitted to space into the automatic carriage return
a stop will result., The computer will continue if the carriage return
button is depressed. '

10/29/56

[o}

(o) .

A

+3 N

] -~ Q
0] 1 ¥ © L
B & 8 8
3 & & &

Oopl23}

x0pl23)
8o0T 1231
B0xT 123
+000p123)

'3000°223)
/000 123k
o000 1231

00000 12

v nynyns mympmym,

INPUT ROUTINE FORMAT

Mod,
Not Mod.
Mod.
Not Mod.,

PROGRAM 10,0

INTERPRETED AS:

Instruction -
Order plus address (dec.)

Command, This word is
treated as an order, using
the following word as data,
Following word in hex,

Start Fill - Address in decimal
Set Modifier - Address in decimal
Cond, Stop and Transfer =

Stop (unless Sw 32 down) and

transfer to location specified
in address,

Hexadecimal words.
Next N (dec) words are hex,
£i11 sequentially 1 & N £ 63

Hexadecimal Fill « Fi11 N

‘(hex) words beginning in loc.

M (hex) 1 € N & 2047 -

Rev. 3/25/57

Page 1 of 2

HEXADECIMAL INPUT ROUTIN%
(Prog;-am 10.1)

FUNCTION:

1. To read hexadecimal information and store it on the memory drum.

2. To verify that the information has been correctly stored by
generating a summation of the binary bits stored on the drum
(a check sum) and checking this summation against a previously
computed summation placed on the input tape.

INPUT:

A tape prepared in its entirety by program 13.1. This tape contains
the following:

1. An identification word in the form v n] np ny my m, My m where
N = (n np n) the number of words in hexadecimal to bé placed

on the drum. M= (m] mp mj m),) = the initial location in hexadecimal
to begin storing the words

2. N hexadecimal words, each followed by a conditional stop code,

3. The check sum.

’ . PROCEDURE :

1. Transfer to the beginring of this routine with the previously
prepared tape in the reader.

2. The routine will read the identification word and set up the
initial address and a tally from M and N respectively.

3. The hexadecimal words are read and stored sequentially on the
memory drum. After each word is stored the address (for the
next worc)is incremented by 1 and the tally is decremented
by 1.

L. After all hexadecimal words on tape have been placed in memory,
the check sum 1s read in and stored within this routine. Then
another check sum is computed in the identical manner used by
program 13.1.°

5. The computed check sum is subtracted from the one placed on tape.
It they are equal, the routine returns for another identification
word.,

6. If the two check sums are not equal the routine prints "error"

and halts. To re-read the same record, back up the tape in the reader
to the last "v code" (identified by a punch in channel 6) and depress

3/28/57

Page 2 of 2

(Hexadecimal Input Routine continued)

the start button. The routine will return to re-read the identification
word and procecd from there.

OUTPUT :

The information on the tape stored in memory and checked for
validity.

TIME:

Reading from tape - onc track per minute.
Computing check sum - ten tracks per minute.

"~ STORAGE:

96 locations of instructions and constants.
No temporary storage.

3/28/57

Page 1 of L

DATA. INPUT #71 SUBROUTINE
(PROGRAM 11.0p)

FUNCTION:

To read a decimal number from tape, convert to binary, scale to
the proper binal point location, and store the word in a specified drum
location. For each number the following is punched on tape:

1. "The decimal point location of the number on tape,
counting from right to left. (One decimal digit
designated as "P"W). '

2. The binal poiﬁt location desired for the number
to be placed on drum. (Sign and two decimal
digits designated as "q").
3. The drum location to which the number is to be
sent. (2 decimal digits for track and 2 decimal
. digits for sector).
L. The number to be entered (Seven decimal digits plus sign).

INPUT:

T et s

For each word to be stored, an identification word (parts 1, 2,
& 3 above), and the signed number (part L above) are required.

CALLING SEQUENCE;

Loc. Inst. - Add.
K R (Lo + 8)10
e+ 1 U Lo
oK+ 2 etc.

OUTPUT =

The scaled binary representation of the number will appear at 1tsi
proper drum locatlon.

EXIT:

A "zero! 1dent1flcation word w111 cause the routine to ex1b 10
(X+ 2). .

Rev. 8/6/57

SCALING

Page 2 of L

PROGRAM 11.0R

The location of the decimal point in the decimal number is
specified by a number P, which denotes the number of places follow-
ing the point in the seven digit field., P can be in the range 0.P.9.
The location of the binary point in the full 30 bit binary word is
specified by q, the number of digits preceeding the point in the full
worde q can lie in the range given in the following table,

In order for the number to be representable at a given q, the
number must be less (in absolute value) than oq. However, if too large
a q is used, the number will not reconvert exactly on output, since there
will be too few binary digits following the point to adequately represent

the fractional part of the number,

The following table also gives the

maximum conversion correspondence between P and q.

TABLE OF P vs Q¢

P Max q

+47
+43
+10
+37
+34
+31
+28
+24
+21

N o ~N O W NNy B O

+17

Min q Max q for Exact Min q for Max
Reconversion ‘No. Size (all 9's)

+2 +30 +2L

-2 +26 +20

-5 +23 +17

-8 +20 +1l

~-11 +16 +10

-1 +13 +7

=17 +10 +))

=21 +6 ' 0

-2} +3 -3

-28 0 -6

10/29/56

Page 3 of L

PROGRAM 11.0R

TIME:
20 - 25 words per minute.
ACCURACY:

The scaled number in memory may be inaccurate in the 30th binary
position.

STOKAGLE :

192 locations of instructions and constants. Eight locations of
temporary storage (Track 63, sectors 03, OL, L5, 52, 54, 55, 56, 57).

PROGRAM STOPS:

Loc. Meaning

(Lo + 023L)q4 Divide check in scaling data word. IN§ > 29,
- EXAMPLES: (See LGP-30 Data Input 1 load sheet) |

Y. Place +96.40236 in drum location 623k at a q of +7.

2. Place -.000000597 in drum location 2363 at a q of -1l

3. Place +330000. in drum location 2100 at a q of +30

TAPE PUNCHING INSTRUCTIONS:

1. All characters of the I.D. word must be punched. e.g., punch
0+096300° completely. The first three characters should not be
omitted. The stop code (®) must be the last character.

2. Leading zeros of a positive number need not be punched. To
enter all zeros merely punch a stop code. All digits of a
negative number must be punched.

3. Be sure to check each load sheet to see whether an additional
stop code should follow the last number punched.

3/20/57

1GP-30 DATA LOAD SHEET

Pagé ' 7[of_.i

Job No._______ Proge No._//. Oz Prep, by Ck'd, by Date
Problem Exampres For ___DATA T wpd7 T/ Case.
INPUT #1 Quan, {P| q [|Location |§] Number 3153‘43
+ 2|4 ")
' (0 = 0l
stho 7162 34" 17640 +36|
|))]
G/ A 23,6 3|} 000 0577]
o301t/ 00l | 330000l 327
14 | 4 .
l 1] A 1 b N 1 A . .
et 1 J PR T | [T
: L 1 L ' ! [] 1 1] [L 9 ooméloc£6363
! 1 1 1 . o T 2 [] L 1 L 1 v
' '] 4 1 L p ; 1 L I v
1
l 1 L L 9 : [L 1 1 1 1 7
! AN ?
} 1 1 1 : 1 1 1 1 L i
l 1 A 1 ? ! 1] 3 i ?
! L 1 1 v : 1 1 1 [9
| 1 ;
1 1] 1 1 L 1 1 1
! . rl ?
:] ol V 1 1 1 v
L 0] /
t 1 2 L iﬁ 1 [1 [1
| L . 7
I I N
l 1 1 L ? : v
O q
N I !
| v l L L] i 1 1
l 1 : 1 1 |) 1 1 1 9
L !
: 14 | — B . T
' Nl I3 1 l 1 '} A 1
| (A 9
At 1 1 i 2 PR |
i ot ?
l HEEN v
o T —
: 1 1 1 I L L 1 j v
§ |
' 1 [1] It 1 ?
- A 3
L 1N v
| Pl ¢
il 1 1 - 1 1 It 1 2 L
Punch a stop code after the last number? . Yes X No
Jan. 57

Royal MSBee Corpor'alion

Fage 1 ol 3
This Subroutine was developed by the Librascope Computing Group

DATA INPUT NO. 2 SUBROUTINE
(Program 11.1)

FUNCTIONS:

1. To input a sequence of "N" signed seven decimal digit numbers,
each with the same decimal point, convert to blndzy (all at thh
same q) and store sequentially in M, M + 1l.........

OR

2. To input one signed seven decimal digit integer and convert to
a signed binary integer at q = 30,

I. SEQUENTIAL FILL:

Inputb:
IN'" signed decimal numbers on lape and the hexadecimal code word
in the accumulator.

Calling Sequence:

Loc. . Inst. Add.
Q-1 L (Code word)

ol+ 1 (Lo + 010L),, Track 01, Sector OL.

B .

] R (Lo *+ 0121);4 Track 01, Sector 21.
_U

o+ 2 et

C.

ol- 1 nced not contain a B order. Any order or sequence ol orders
that leaves the code word in the accumulator is permissible.

The code word must be in the form: N no ny G my mo my m .
= (n np nj) = number of words to be fllled (in hc}&declmal
at q = 11) O<N<2048.
C = characteristic of numbers to be filled (number of integers)
0<C< 9. See correspondence of C and q under "Output.

M (m% mo mj ml) = First address to be filled (in hexadecimal at
q =29

H

1

Examples:

1. Code word OOF30200 means fill 10 (F) words, starting in
0200 with decimal numbers of the form + XXX XXKX (utOlbd at q = 10)

2. Code word 0316051J.
= 31 o
(’J)lb (h9) 10
8
(0519),, = (0507)44

0

2o
it

/2R

: Page 2 of 3
(Data Input No. 2 Subroutine continucd)

Fill OSO?,‘OEOB,.....,VOSSS with the next L9 decimal words
on tape.- Words are interpreted as +XXX<XXXO (stored at q = 27).

Output:

Binary representation of words on tape filled sequentially
beginning in location M.

g‘ q Decimal words interpreted as:
0 0
1 I
2 7
3 10
L 1
5 17
6 20
7 2l
8 27
9 30
Exit:
After all words have been scaled and stored, the routine exits to
di+ 2, » :
. Accuracy:

+ 1 at ¢ = 30 for 0<C<bt
Exact conversion for 7<C<9

Time: : (

L5 to 55 words per minute.

Note: : o »
It the hexadecimal code word is on tapé, replace the -1
instruction of calling sequence by the instructions PO00O
and I0000.

IT. ONE WORD INTEGER CONVERSION:

. Input:
One signed decimal integer on tape in the form + XXXXKXX.

- Calling Sequence:

Loc., . Inst. ©Add.

o R (Lo + Mo
o+ 1 U o :
d+ 2

3/28/57

Page 3 of 3

(Data Input No. 2 Subroutine continued)

Outgut:

Binary integer at q = 30 in accumulator,

~Accuracy:

Conversion 1s exact.

PROGRAM STOP:
' “Loc. Meaning

- . Divide check in scaling data word.

' STORAGE:

89 locations of instructions and constants.
No temparary storage.

NOTE:

. Leading zeros of a positive number need not be punched. To enter
all zeros merely punch a stop coda, 41l digits of a negative number
must be punched, ' '

3/28/57

Page 1 of 3

DATA INPUT NO. 3 SUBROUTINE
(Program 11.2)

FUNCTION:

To input groups of decimal numbers from tape, each group with the
same decimal point, convert each number to binary, all at the same g,
and store in consecutive memory locations. This differs from Input Wo. 1
in that each group of numbers, rather than every number, is preceded by
an identification word. The identification word contains P, + q, and the
location for the first number to be stored. All following numbers of the
group are filled sequentially at the same P and q. A "minus zero" number
will terminate the group, and another identification word will be read
. (See examples for "minus zero" format).

CALLING SEQUENCE: (Same as Input No. 1)

Loc. Inst. Add.

% R (Lo + B)
€+] U - Lo 10
&+ 2 ebe.

EXIT:

A zero identification word (normally preccded bV a minus zero
number) will cause the routine to exit to ol + 2, .

TIME:
LS - 55 words per minute .

STORAGE s
162 locations of instructions and coustants.
(3 tracks).

Five locations of temporary gtorabc
(Track 63, sector 00, Ol, 02, 03, Ok)

'PROGRAM STOP:

Loc, Meaning
(Lo + 03)))10. Divide check in scaling

data word N} z 29 |

W/3/571

——

[

Page 2 of 3

(Data Input No. 3 continued)

EXAMPLES: (See LGP-30

The minus zero

Group No. 1. Place

Group No. 2. Place

{]
. o
The minus zero

Groug No., 3. Place
The

e minus zero

the last number (see bottom of load shect,

Date Input 3 Load Sheet)

£96.40236 in drum location 6234 at q =
~30,00000 " n " 6235 n
+03.,14159 » q oon " 6236 n
_21.50000 L || " 6237]

causeg identification word No. 2 to be

7

read.

-,000000597 in drum location 2363 at q = -1l

+n000009000 n 1" n 2)400 it 1
+,000060000 * n " 2401w n
causes identification word No. 3 to be

read.

+330000 in drum locatlon 2100 at g = 30
word causes 1dent1flcation word No. h to be read.
Identification word No. 4 is the extra stop code punched after

"¥es" is checked).

This enters a zero ldentlflcabion word, so the subroutine
exits to (et + 2), .

See Data Input I write-up for "Scallng"

Punching Instructions®,

W/3/57

ITable of P vs q", and "Tap=z

1GP-30 DATA LOAD SHEET Page .x3_ of 3
Job No.___________Prog. No-__(f_‘_ﬁ.....?rep. by Ck'd, by.— Date
problem. L XAMPLES For DaTaA L NPUT 3 Gase
INPUT #1 Quan. {P| q [Location }§ Number 8"5
OR 3 e e
INPUT 7 3 stho7|6.2.3 £1'| 17 ¢4 023 06|
J b " 2000000]|!
I P L - AR Vi M - 0fpé9
1 "P ?
L P 1'21/1:)/.0|01010 dnd
] |] -28_q-h7
ol 1T eee 0990
1
123,63 H00.0 0597]° 0000£Loc£6363
| i !
! 1 I L v !] [] l?|010I0 '
‘ L i 1 1 ' ' 1 Iéiononono q
Vol I'Hoe s o0000|
a')“!jlo ’Zl/lalo ' ! .3.3'0.0‘0.0 !
l o | '} 1 q-.!olalal Olololo y
| el | e
i L L i 1 1 1 s i 1
l) 1 1 [' : L 1 (] L v
! 1] ¢
i L 1 1 L 5 1 1 L
I - R L
l' L '] 1, (1 ? i [i 1] v
T L
| 9 ; v
ol T {
: A I | 1 ‘? ! 3 1 q
! , Al v
l 1 L} L L
' 1 n 1 I 7 : PR | s 1 1l v
! () 1 1 I i s V
1 Il 1 4 :
. M X
| YR 7
L 3 1 3 ¢ { 1 1 N
; L 1 1 (] ' : L 1 N 1 4 Q>\
! I v
; ! e 9 ’ 1 1 L [) V
‘ L i et Il 1 1 i ?
| v 1)
. e e
| aN p
Punch a stop code after the last number? Yos__2X No
Royal MS5Bee Corporatlon Jan. 57

Page 1 of 2

DATA OUTPUT #1 SUBROUTINE
(PROGRAM 12.0)

FUNCTION:

To convert and print a nine decimal digit number plus decimal point
and sign (sign if the number is negative).

INPUT:

The number to be printed in the accumulator and a code number in
storage location &+ 2 to indicate the number of integers before the decimal

point,

CALLING SEQUENCE:

loc. Inst. Kad.
o = } B %(N))

) R Lo + 12
ot 1 U 1, 10
S+ 2 Z 000C
Lol 3 etce.

“A = 1 need not contain a bring order. Anyvorder which leaves the
argument in the accumulator is permissable,

C denotes code number and may be 0 thru 9.
OUTPUT:

Nine decimal digits plus a sign (or space if the number is positive)
and a decimal point,

CODE NUMBER:

C q of No. Output
0 0 o« XXXXXXKXK
1 in X XXXXXXXX
2 7 XX JXXXXXXX
3 10 XXX, XXXXXX
I il XXXX. XXXXX
5 17 XXXXX. XXXX
6 20 XXXXXX. XXX
7 2l XXXXXXX ., XX
8 27 SXXXXXXXX X
9 30 XXXXXXXXX.

MISCELLANEQUS ¢

Each binary number is scaled and converted as a fraction, The code
number is used by the routine as a print stroke counter. The only format
control is a tab after printing., It is safe to print immediately on exit
from the routine. After printing control is returned to «+3.

TIMEs

Printing takes about 1.5 seconds including the tab,

10/29/56

Page 2 of 2

PROGRAM 12.0

DATA OUTPUT #1 SUBROUTINE (conttd)
ACCURACY ¢
Maximum error is one in the ninth printed digit.

STORAGE:

96 locations of instructions and constants.
No temporary storage.

PROGRAM STOP:

(Lo+38)10 Argument7/ 10€

Rev. 1 (12-13-56)

Page 1 of 2

DATA OUTPUT NO. 2 SUBROUTINE
(Program 12.1)

FUNCTION:

To print one or more groups of numbers in decimal form. Each
group has the same binal point location (q), and all numbers are
printed from consecutive memory locations.

INPUT:

One or more groups of numbers to be printed, the initial location,
the number of numbers in each group, and the binal point location (q)
of each group. S

CALLING SEQUENCE:

Loc. Inst. Add.
-1 B L(1lst. No.)
-3 R Io +5
ol + 1 U Lo
& + 3 Z NQQQ
[(+1) +i] Z Nia;

[(e¢ +1)+(i+1)] ete.

Ni = number of words in group i. Ni is placed in the track
position (in decimal). 1 < Nj < 63.

Q4 = binal point location of the i’th group. as is‘placed in
the sector position (in decimal) 0'5 qj < 31.

OUTPUT:

Printed decimal representations of the numbers specified. FRach
output number will consist of a sign (space or minus), eight (or more)
decimal digits and the decimal point. A tab is given after each number.
There will be g/l (rounded) = J printed integers unless the number
to be printed will not fit at that J. If the nmumber is too large,

J 1s increased by enough to accommodate the number. The number of
decimal places will be 8 - J (30). If more than eight integers are
needed to express the number, J will be increased and no decimal places
will be printed. '

EXIT:

The routine exits to the first "non - Z" instruction.

W/12/57

Page 2 of 2

EXAMPIE:

Egg. Inst. Add.
of- 1 XB - 2100

o¢ xR + 5
o+ 1 xU :
o+ 2 xZ oLo7 (1)
o + 3 xZ 1015 (2)
o + L xB Y (3)

The above calling sequence will éause this subroutine to:

1. Print the contents of 2100, Ol; 02, and 03 as HXX.XXXXXX or
+XXXXXXXX. J = 7/l (rounded) = 2. If one or more of thése numbers
Is too large, J will be increased to 3 for that number.

2. Print the contents of 210L, 05.....13 as +XXXX.XXXX unless
one or more of these numbcrs is too large. The number(s)
which overflow J = L will be printed as +XXXXX.XXX.

3. Exit to &+ L, which is the first "non-Z" order following the
calling sequence.

PROGRAM STOPS:

Nohe.
ACCURACY:

Output is exact (and rounded). for eight printed digits. When nine
digits are printed, the output will be in error by 5 or 6 in the ninth -
place.

STORAGE :

160 locations of instructions and constants (2.1/2 tracks).
No temporary storage.

TIME:

Approximately 30 words per minute.

RANGE :

The number to be printed must be within the range -107 <N< 109,
q must be within the range 0 < q < 31.

L/12/57

Page 1 of 1

HEXADECIMAL PUNCH OR PRINT
(PROGRAM 13,0)

FUNCTION:

1. To print the contents of consecutive memory locations, or
2. To punch (and print) the contents of consecutive memory locations.

INPUT s

Beginning and final locations in decimal.
OUTPUT:

Hexadecimal representation of the contents of memory locations L,
through Lp. Output is six words per line., Leading zeros are not punched
or printed., When a memory locationt's value is zero, the flexowriter exe-
cutes a space if the "transfer control" button is down., When the Transfer
Control button is up, the routine punches a conditional stop code for a
~ memory location that contains zero. When punching, an identification
word (for use by the program input routine) is punched as the first
word on tape.

FORMAT CONTROL:

Depressing the "transfer control" button on the computer console
causes the routine to space between printed words, Otherwise stop codes
are punched after each word, If the transfer control button is down the
carriage is returned before printing. If it is up the control word is
punched., The control word consists of v N M, where N is the number of
words in the record to be punched, and M is the initial location. Both
M and N are in Hexadecimal. 001, ENE Twvry Loy vlhj2k00! denotes a
record of 332 words beginning in location 8500. This word is recognized
and used by the program input routine (Program 10.0) as a hexadecimal
£i111 instruction.

PROCEDURE:

1. Depress "manual input® button on the flexowriter.

2. Transfer to the first location of this routine.

3. After the "manual input" light turns on, type the initial and
final locations (in decimal) into the keyboard,

L. Make sure the transfer control button is in the correct position
- up for punchout - down for printout.

Se Depress "punch on" switch on flexowriter for punchout.

6. Depress the "start comp." button on the flexowriter,

TIME:
Approximately L5 words per minute,
STORAGE:

158 locations of instructions and constants.,
No temporary storage.

10/29/56

p—

—J v J

(-

Page 1 of 1

HEXADECIMAL PUNCH OR PRINT NO. 2
(Program 13.1)

FUNCTION:

This subroutine functions and operates the same as program 13.0
with the exception that after punching has been completed ("transfer
control" switch up), this routine computes a check sum and punches
it as the last word on tape. This check sum is intended for use by
programs. 10.1 and 10.2 which determine whether the content of the tape
has been correctly recorded on the memory drum.

TIME:

The check sum is computed at approximately 7 seconds per track.

STORAGE :

20l locations of instructions and constants. (Three tracks and
12 sectors).

No temporary storage.

3/29/57

Page 1 of 1

SIii-C0S SUBROUTINE
(PROGRAM 14,0)

FUNCTION:

To compute the sine or cosine of anmy given angle, A 9th degres
polynomial approximabion is used, The argument must be in degrees and
wlll be reduced to the first quadrant equivalent before computation
of the function, :

INPUT3
One word in the accumulator at q = 9,
One word in the accumulator at q = 1.
CALLING SEQUENCEs
SINE COSINE
A 1 B L (arg.) %=1 B I (Arg.)
O{‘i: 1 II} éLO o+ 1&9)10 O{zﬁ . 3 (Lo + L49)
X+ 2 etc © oy D oto. (Lo + byg

% w 1 need not be a B order. Any order or orders that leaves the
argument in the accumulator is permissable,

ACCURACY ¢
The maximum error is approximately 5 x 10~7,
250 to 275 MS,

STORAGE

6l locations of instructions and constants., 6 locations of tempo-
rary storage (Track 63, sectors 02, O, 05, 06, 07, L5).

10/29/56

Page 1 of 1

SQUARE ROOT SUBROUTINE
(PROGRAM 15.0)

FUNCTION:

{

To compute the square root of any positive number. The argument
may be at any even q, and the output will be at q/2,.

INPUT ¢
One word in the accumulator at any even q.
OUTPUT ¢

One word in the accumulator at q/2.

CALLING SEQUENCEs

Loce Inst., _A_d_g»_o
A -l B L (Arg.)

A R (Lo + 50)
=< + 1 U I, 10
A+ 2 etc,

A= 1 need not contain a B order, Any order or orders that leaves
the argument in the accumulator is permissable.

ACCURACY ¢
Answer is correct to 30 bits.
TIME:

Varies from 500-750 MS.

STORAGH:

6ly locations of instructions and constants. 5 locations of tempo=-
rary storage (track 63, sectors 19, 20, 21, 23, 2L).

PRCGRAM STOPS:

"Loc. Meaning
(10 + 61)10 Argument is negative, A start exits with zero

in accumulator.
NOTE:

A single bit in the 30th position will be treated as zero.

Rev. 3/26/57

Page 1 of 1

ARCTANGENT SUBROUTINE
(PROGRAM 16.0)
FUNCTION:
To compute the arctangent of any given number. A 15th degree polynomial
approximation is used. The output is in degrees, and the principle value
will be given (first or fourth quadrant).

INPUT ¢

One word in the accumulator at q = 9,

OUTPUT s

One word in the accumulator at q = 9 (degrees).
CALLING SEQUENCE:

Loc, Inst. Add.

= R (Lo + 51)
x4+ 1 U 1L 10
A+ 2 etc, °

A = 1 need not be a B order. Any order or orders that leaves the
argument in the accumulator is permissable.

ACCURACY ¢

Maximum error is 5 x 10~7, The output will be between 0° and 89.90°,
because the argument cannot be numerically greater that 512, If the pro-
grammer wants his output to come closer to 90° he can modify the routine
by changing (Io+ 56),, and (Lo *'59)10 from 1 and 2, respectively, at
q=9, to 1l and 2 at"some greater qo. Then the argument must be at qg2.
TIME:

320 milliseconds.

STORAGE:

- 6l locations of instructions and constants, 10 locations of tempo-
rary storage (track 63, sectors O4, 05, 06, 07, 08, 09, 10, 13, 50, 51).

10/29/56

Page 1 of 1

EXPONENTIAL SUBROUTINE
(PROGRAM 17.0)

FUNCTION:

To evaluate the function KX, where K = 2, e, or 10, and -1£x£1.
To obtain higher values of the exponentizl function, multiply the out -
put of the subroutine K to the integer part of the exponent.

EXAMPLES 102.5 = 102+ , 10.5
2=3.5 = 2=3. , 9-.5
eXeXX T gXe | geXX
INPUT:

One word in the accumulator at q = 1,

OUTPUT ¢

One word in the accumulator at q = L.

CALLING SEQUENCEs:

A= 1
!

o+ 1
A 4+]
A+]

X + 2

(0]
Qcccsw
S

L (arg.)
(Lo + 09)4,

Lo for 2 ' ‘
(Lo + 2)4y for ex
(Lo + 3)19 for 10%

== 1 need not contain a B order. Any order or orders that leaves
the argument in the accumulator is permissible.

ACCURACY ¢

Answer is correct to 5 x 10 “8.

TIME:
255 to 285 MS.

STORAGE:

63 locations of instructions and constants,

No temporary storage.

Rev. 1(12-13-56)

Page 1 of 1

10G X SUBROUTINE
(PROGRAM 18.0)

FUNCTION:

To compute the logarithm of any given number to the base 2, e, or
10, A 7th degree polynomial approximation is used., The argument must
be positive., K, the base to be used, must he specified in the calling
sequence,

INPUT%

One word in the accumulator at a positive q.

QUTPUT ¢

One word in the accumulator at g=6,

CALLING SEQUENCE:

A= 1 B L (arg.)
= 'R (Lo + 2l4)4,
A+ 1 U Lo Lo = Initial location of Subroutine.
<+ 2 Z q q = No. of places in argument.
X+ 3 Z K K = (0 for log 5X)
A+ h etc.

(1 for log X))
(2 for log 10X)

{ = 1 need not be a B order, Any order or orders that leaves the
argument in the accumulator is permissable.

NOTES &

The argument must be greater than zero. q, the number of places
in the argument must be in the range 05q431. If K, the type of output,
is not equal to O or 1, the base 10 will be used.

ACCURACY:
The error is 3 x 10‘8.

PROGRAM STOPS:

(Lo + 8)10 Argument is zero or negative.
TIME:
Approximately (LLS5 + 30 N) MS, where N is the number of leading zeros.

STORAGE:

122 locations of instructions and constansts.

No temporary storage.
o venporey 10/29/56

FUNCTION:

Page 1 of 3

ALPHANUMERIC OUTPUT SUBROUTINE

(Program 19.0)

To print (or punch and print) alphabetic and/or numeric information.

INPUT:

A set of code words, where each code

output codes.

CALLING SEQUENCE:

Toc.

c(
]
A

+ +

1
2

®+1) +n

(d+1) + (n+1)

Inst.

[co

[code
ete.

Where n is the number of code words.

EXAMPLE :

de

Add.

Lo
Lo
word]

word consists of i alphanumeric

word containing VQ]

PROGRAM INPUT

INSTRUCTION

CONTENTS OF

CODES LOCATION OPR ADDRESS ADDRESS NOTES
|
]

s I I : 1 | -
AR R T vl 1 ' N :

! .
i i 1 ! i L i 1 .0 [o (1 1 K; 1,/{1 " E‘n{er 4/p/ﬂnum¢nb
1 L [l £ [i | 1 10] ‘ L 1 lui I"/: { S“'éra“{{.ne

9.0 a,o,ro,o, 03 ! . .0 ,2 12, O,I,Oib, \/,'0.5‘,'1/ &u ry&: 4.6 &rr. l?é'lf ,ﬂn'xZ‘*

L4 = [B ' o .10|34|2'101Yi0|/;1/1J ELC,' ._)3 [.‘AGP‘Jo_:' 75’4 ¢
Lt ! 1 l' 1 , 40,4 014: 310 vlazlolo 0’: a*‘;‘#‘.f’ e—’(/.f
(R N | ! R . 1 O -3 Le ‘q’ 1) L C'On Z/I.}Yue LUI‘@IU‘?A

This calling sequence will perform a carriage return, print “ILGP-30"
and execute a tab.

3/29/57

Page 2 of 3

(Alphanumeric Output Subroutine continued)

OUTPUT:

Printing (or punching and printing) of alphanumeric characters
selected.

ALPHANUMERIC OUTPUT CODES:

(See page 3 of ‘this write-up)
EXIT:

The routine will exit to the location following the location
containing the exit code (VQ).

STORAGE :

58 locations of instructions and conspants.
No temporary storage.

‘TIME:

About LOO characters per minute.
NOTE:

An increase in output speed can be obtained by switching the
instruction in location 0035 with the one in 0036. This will raise
output speed to 475 characters per minute. But this change requires

that’ there not be a long carriage return or tab code as the Lth code
- of a code word. '

3/29/57

-

(Alphanumeric Output Subroutine continued)

6~BIT ALPHANUMERIC OUTPUT CODES

™MA & RD * e
iEw PO

-3 o

..(60’-\
1@

-3
N +

Lower Case
Upper Case
Color Shift

Carr. Ret.
Back Space

]

Leave Routine

Oy
0J
1k

1J
2k

2J
3L

3J
Lk

LdJ
06

OA

16
1A
26

2A
36
30

08
10
18

20
28

Lo

VQ

Aa
Bb
Ce

Dd
Ee
Ff

Gg
Hh
Ii

JdJ
Kk
L1

Nn
Oo

Qq
Rr

Ss
Tt
Tha

Page 3 of 3

72
OF
6F

2F
LF
I

b
22
6l
6d
0dJ
3F
32
L6
L2

1F

&
ol

52

3A
7J

12
02

L/3/57

Page 1 of 2

ARCSINE - ARCCOSINE SUBROUTINE
(Program 20.0)

FUNCTION ¢

To compute the arcsine or arccosine of any given value between
-1< X <1. A 6th degree polynomial approximation is used.

INPUT
One word in accumulator at q = 1.
OUTPUT:

One word in the accumulator at q = 9 in degrees.

CALLING SEQUENCE:

Arcsine . Arccosiné
Loc. Inst. Add, Loc. Inst. Add.
-1 B © L(arg.) o6-1 B L(arg.)
o 'R _(Lo + 21),, ol R (Lo + 21)4,
x4l U Lo ol+ 1 v (L, + ‘6211)10'
A+ 2 etc. ' K+2 ete. .

‘ . #*i.,e, track 02 sector 11
©{ - 1 need not be a B order. Any order or orders that leaves the
argument in the accumulator is permissable.

ACCURACY :
| The maximum error is approximatelyj 5x 10~7
350 to 375 ms.
STORAGE : |

160 locations of instructions and constants. 11 locations of
temporary storage (track 63, sectors 12, 15, 16, 17, 18, 19, 20, 21,

23, 2L, 28).

PROGRAM STOPS:
Loc. ' : ‘Meaning

(Lo + 0161)10. _ Arguhent is larger than 1 at q = 1.

Page 2 of 2
© NOTE:

Since the square root subroutine is required for the evaluation
. of either arcsine or arccosine, the coding for the former (Program 15.0)
is included in this program (20.0), 1In those instances in which the
square root -subroutine is independently required, the followlng calling .
sequence may be used for square root extractlon.

- Loc. - Tnst. : Add. :

-1 B L (rg.)

e - R (L, +0150)
<+l U (1 +.0100)45

<+ 2 | e_ftc._"

‘. For further mfonnation on the square root subroutine see program
l Oq) .

FUNCYTION:

| Page 1 of 2

.DECIMAL MEMORY PRINTOUT
(Program 21.0)

To print the contents of consecutive memory locations in decimal

form.

INPUT:

Begiming and final locations and the modifier (all in decimal).

OUTPUT FORMAT:

A.

Locations:
The printed location is equal to the real location minus

.the modifier used.

~Instructions:

1. With modifier subtracted if in the range
Modifier < Address < Final location.

2. If
. a.
b.

Data:
1l, In
ao,

2, In

Q.

in the range Modifier > Address > Final location.
Instructions are preceded by an "x" if modifier £ 0.
Instructions are not preceded by an "x" 'if modifier = O.

decimal (at @=0) if transfer control button is up.
Decimal data preceded Ly sign and decimal point.

hexadecimal if transfer control button is down.
Hexadecimal data preceded by a comma. :

Output is‘six words per line preceded by initial -location of the

line.

Words are separated by spaces, 'The sign and decimal point are

printed for decimal data words and a comma is printed for hexadecimal
words., Two carriage returns are given before and after printing.

‘Note:
Data printed in this manner can be converted to its
real decimal value by multiplying by 29,

1/28/57

Page 2 of 2

(Decimal memory printout continued.)

PROCEDURE :
1. Depress "manual input” button on the Flexowriter.,
2. ‘Transfer to the first 1ocatioh of this routine.
3. After the "manaal input" light comes on, type the initial and
finsl locations (in decimal) into the keyboard.
. ‘Depress the "Start Comp." button on the Flexowriter.
5. After a space is glven and "manual input® light comes
on again, type in modifier in decimal.
6. Make sure the "transfer cortrol" is in the desired position -
up for decimal data - down for hexadecimal.
7. Depress the "Start CoMp." button on the Flexowriter.
8. The position of thLe "tfanéfer control" button may be changed
’ at any time to change the output format ‘of non-instructional
words. :
TIME:

Approximately 60 words ber minute,

-STORAGE s

256 locations of instructions and constants (L4 tracks).
No temporary storage.

3/28/57

Page 1 of 5

COMPLIEY, OPERATION SUBROUTINE
(Program 22.0)

FUNCTION:

To interpret and execute the instructions B, A, S, M, D, H and C
as if they were complex operation instructions referring to a two word
abstract accumulator. To provide for shitling the abstraclt accumulators
to the right or left from O to 10 places. To permil address modilication
of instructions and test for the ilnal addresb without leaving the complex
operation mode of pxoytammlnb.

INPUT:

Real and 1mdg1narykparto of a complex number must be carried at
the same "q" and be in consecutive memory locations. (L.e. reul in ¥ ;
imaginary in ¥ +1).

OUTPUT :

Real and imaginary parts of a complex number placed in memory
locations specified by the program. See programming section of this
subroutine. Co

CALLING SEQUENCE;

ggg. Inst, Add.
o R " Lo
oq+ 1 N | L
od+ 2
L+ 3
. complex operation
.. instructions
oL+ n ‘XE €000 Mexit" instruction
o+ n +1 etc. :

PROGRAMMING :

After executing the R Lo and U Lo instructions (where Lo is first
instruction of the complex operation subroutine) the computer interprets
and executes instructions as defined below. For simplicity "m'is defined
as a complex memory address (i.e. memory location m and m + 1) and m’
is defined as a standard one-word memory address.

L/10/5T

ORDER

Sp———

B

ADDRESS

m

m

m

Page 2 of §

INTERPRETATION

BRING

Contents of m

réplaces the contents of the abstract
accumulators.

ADD

Contents of absiract accumalatory plus
contents of m replaces the conbonle of
the abstracl accumulalors.

SUBTRACT
Contents of abstract accumulators minus

contents of m replaces the contents

of the abstract accunulators.

MULTIPLY

Contents of abstract accumulators times

the contents of m replaces the contents
of the abstract accunulators.

DIVIDE :

Conlents of abstract accumulators divided
by contents of m replaces the contents of
the abstract accumulators.

HOLD :
Record the contents of -the abstract

- accumulators into location m. ' Contents

of ahstract accumulators unchanged.

CLEAR

Record contents of the abstract accumulators
‘into memory location m. Abstract

accumulators are then set to zero.

‘UNCONDITIONAL TRANSFER

The next instruction 'to be interpreted
is located in location m?

The uscrs attention is called to the

fact that after the execution of this
instruction the computer will continue

to execute orders in the complex operation

mode. This instruction may not be used

as an exit I'rom the subroutine.

L/12/57

Page 3 of 5

ORDER ADDRESS INTERPRELATTON

XE 0000 BXIT
: Wxit from the complex operation mode
of interpreting instruction and begin
executing instructions in conventional
"machine language" with instruction
following X 0000 instruction.

To facilitate the programmers task of address modification, this
subroutine contains a special address accumulator. The following four
instructions permit the programmer to perform address moditication
and test final address without leaving the complex operation mode.

ORDER ADDRESS INTERPRETATION

E m ENTER
This instruction enters the address
portion of the word at m into tne
address accumulator.

XI T1T2S71Sp INCREMENT
This instruction increments the address
accumulator by T1T» (track) and SqS»
(sector) leaving the adjusted address
in the address accumulator.

Y m* STORIY ADDRESS
This instruction stores the address
portion of the address accumulator in
the address portion of memory location
me . The address accumulator in un-
altered.

X2 T9T25152 ZERO TEST AND JUMP
If the address portion of the address
accumulator 1is equal tu T1TpS1S, the
following instruction is skipped.
When 117955, differs from the address
accumulator the instruction following
X2 T1T25152 is executed. Note that this
Ccomparison is based only on the address
portions. '

Since the basic arithmetic operation A, S, M, and D obey the
conventional "q" laws, (as established under "Scaling" in this manual)
it is still the responsibility of the programmer to provide the proper
binal point manipulations. To facilitate shifting to the right or
left, the following instructions are provided.

u/12/57

Pape L of §

00 mqny "Right Shift" -- This instruction
Cwill shift the abstract accumulators
"mnot places to the right. Whero
Moo ds oan integer in the range:
Oymnogto

VO MmNy Niefl, Shilt? -- This instruclion will

shift the abstract aceumulators "oqu,m
nlaces to Lhe left. Whers "ujoph is an

integer in thoe range: OgnynpglO

The transfer control button feature was not programmed into
the subroutine. Use of the —T instruction will result in
a halt.

In the explanation of orders above, use was made of the "Y"
to prevent modification of the corresponding address. If
modification is desired do not precede the order with "X".

Use of the order "I'" willl result in a programmed halt.

Use of EOOOO for the first complex operation instruction
is forbidden.,

Shifts exceeding 10 places will be incorrectly interpreted.
The table may be expanded to include large shifts if the
user desires,

Error Halts

XR

XP

NOTES:
1.
2.
3.
L.

.5.
STORAQE:

Lo + 0122 (track Ol sector 22) — T instruction given.
Lo + 0154 (tract Ol sector &l) T instruction given.
Lo + 0135 (track 01 sector 35) N instruction given.

192 locations of instructions and constants (3 tracks).
No temporary storage.

ACCUMULATOR LOCATIONS:

Lo + 0059 Real Accumulator
Lo + 0033 Imaginary Accumulator
Lo + 0219 (track 02 sector 19) Address Accumulator.

TIVE:

The following table gives the approximate time required to execute

ecach instruction. The times given are maximum times and in practice
will be slightly less than the times given.

h/11 /-7

Page 5 of 5

' ORDER DRUM REV. R (ms.)
B 1 | 187
Y 8 136
R 1y | 238
I 6 102
D Al 697
N # 11 187
N = 13 221
M o 22 37k
P 17 289
E (enter) ‘ 9 153
E (exit) ' 6 102
U 8 136
c 1y 238
H | 1l 238
A | 1l 238
S , W 238

L/12/57

Page 1 of 11

FLOATING POINT INTERPRETIVE SYSTEM
(Program 24.0)

PART 1

SECTION I: FUNCTION '

The function of this floating point system is the reinterprétation
of the LGP-30 fixed point order structure so that it may be programmed
as a floating point computer. This reinterpretation is effected by:

(1) The provision of a multiplier register and an address
register as well as a floating point accumulator.

(2) The provision of more types of orders including cumulative
multiply, shift, sign change, and function generating orders.

(3) A broadening of the scope of certain instructions such as
the input instruction and the print instruction.

SECTION II: GENERAL CHARACTERISTICS

Floating point programming has several advantages over fixed
point programming in that it is more rapid, does not require an
exact knowledge of the range of magnitude of the variables, and does
not involve as much truncation of the smaller values when that range
is large, Thirty-three orders are provided for in the system. 411
of these orders except input, output, sine, cosine, arctangent,
logarithm, and exponential are included in that section of the system
known as the floating point interpretive routine. This routine requires
only 10 out of the 6l tracks of LGP-30 memory leaving 3L56 words
available for problem program and data storage. The input and output
orders require 6 tracks and the floating point functions require 7
tracks. The entire system leaves 262l words of memory left for
problem program and data storage.

Generally the execution of a floating point program will take 10
to 20 times as lomg as the execution of the corresponding fixed point
program.

Times for the execution of the individual floating point orders
are included in the sumary tabulation at the end of part 2.

SECTION III: REGISTERS

(1) The floating point accumulator occupies 2 words

of memory, one for the characteristic of a floating point

number and one for the exponent. The floating point accumulator
is similar in function to the fixed p01nt accumulator; it holds
intermediate results.

(2) The multiplier (M) register occupies 2 words of memory, one
for the characteristic of a floating point number and one for the

Page 2 of 11

exponent. The multiplier register holds the multiplier for the reset and
multiply order and for the cumulative multiply order.

(3) The address accumulator occuples 1 word of memory and holds
a single address or tally which is the same in form as for fixed
point operations.

(4) . The contents of none of these registers is changed unless
replaced by a new result., For example, the M register remains
unchanged following execution of a square root or multiply
instruction. Nor is the contents of any memory location changed
except when affected as specifically noted in the order description
in the section that follows.

SECTION IV: FLOATING POINT ORDERS

Thirty-three orders are available. The list of these orders and
their meaning follows. In the following exposition the term "accumulator"
refers to the two memory cells of the floating point accumulator as
defined above.

A. Arithmetic Instructions .
Memory location XXXX is the address of one floating point
number in standard form as defined in Part 2.

1. B XXXX. Bring
The contents of memory location XXXX replace the contents
of the accumulator,

2. A XXXX. Add
The contents of the accumulator plus the contents of
memory location XXXX replace the contents of the
accunulator,

3. S XXXX. Subtract
The contents of the accumulator minus the contents of
memory location XXXX replace the contents of the
accumulatgr.

L. D XXXX. Divide
The contents of the accumulator divided by the contents
-of memory location XXXX replace the. contents of the
accumulator.

5. P XXXX. Place
The contents of memory location XXXX replace the contents
of the M register.

6. M XXXX. Reset and Multiply
The contents of the M register multlplied by the
contents of memory location XXXX replace the contents
of the accumulator.,

7. N XXXX. Cumulative Multiply
The contents of the M register multiplied by the
contents of memory location XXXX and added.to the contents
of the accumulator replace the contents of the accumulator.

Page 3 of 11

8. D 000y. Right Shift
The contents of the accumulator divided by 2¥ replace the
contents of the accumulator. The contents of accumulator
remain in floating point form,
0=sys9

9. M 000y. Left Shift
The contents of the accumulator multiplied by 27 replace the
contents of the accumulator: The contents of accumulator
remain in floating point form.
Osys?

10. H XXXX. Hold
Place the contents of the accumulator in memory location
XXXX.

1. C XXX. Clear '
Place the contents of the accumulator in memory location
XXXX and set the accumulator to zero.

B. Logical or Transfer Instructions

12. U XXXX, Unconditional Transfer
The next instruction to be interpreted is in memory location
XXXX. This order cannot be used to exit from the floating
point interpretive system.

13, T XXXX. Test ,
The next instruction to be interpreted is in memoxry location
XXXX if the accumulator is negative. Otherwise the first
successive location will be interpreted.

14. B800T XXXX. Transfer Control
. The next instruction to be interpreted will be in memory
location XXXX if either the accumulator has a negative
characteristic or the transfer control switch is down.
- Otherwise the first successive location will be interpreted,

0. Address Modification Instructions |
Location XXXX implies a fixed point address.

15 o E XXXX. unter ‘
The address portion of memory location XXXX replaces the
contents of the address accumulator,

16, I XXXX. Increment ,
The address accumulator is incremented by the address XXXX.
This order can be used to decrement the address accumulator
by complementing the address portion of the I XXXX order.

17.. Y XXXX, Store Address
The address portion of the address acoumulator replaces the
contents of the address portion of memory location XXXX,

D.

E.

18.

Page lj of 11

Z XXXX. Zero Test

The address of"the "Z!" instruction is subtracted from

the contents of the address accumulator. If the result is.
not zero, the first successive instruction is interpreted.
If the result is zero, the first successive instruction
is skipped and the second successive instruction is
interpreted.

Auxiliary Instructions

19.

20.

21.

22,

23,

2ly.

R XXXX. Return Address
'he Location of this instruction is increased by 2 and is
stored in the address portion of memory location XXXX.

U 0000. Reverse Registers
The contents of the M register and accumulator are -
interchanged.

B 0000. Set Sign Plus
The sign of the accumulator is made p031t1ve if not
already so.

T 0000. Set Sign Minus
The sign of the accumulator is made negative if not
already so. .

Y 0000. Change Sign
The sign of the acumulator is reversed.

Z 0000. Stog

Computation is halted unless break point switch No. 16

25.

is down. Depressing the start button causes the next
instruction to be interpreted.

E 0000. Exit

. Exit from the floating point interpretive system.

Control is returned to the location following the location
of the E 0000 instruction.

Input—Output Instructions

26,

27.

I 0000. Input

Control is transferred to a floating point data input
subroutine which reads decimally punched numbers on

tape, converts them to floating binary, and stores them.
The next instruction is interpreted after the proper

exit code has been read from tape. See Section V, Part 1
for tape format and input details.

P 0000. Print

Print the contents of the accumulator. The contents of
the accumulator are not destroyed., See Section VI, Part 1
for Output format.

Page 5 of 11

F. Function Evaluation Instructions

28, R 0C00, Smare root
The square roct of the contents of the accumulator re-
places the contents of the accumulator.

29, 8 0000, Sine
The sine of the contents of the accumulator replates the
contents of the accumulator, The accumulator must be in
radian measure,

30. C 0000, Cosine
The cosine of the contents of the accumulator replaces the
contents of the accumulator. The accumulator must be in
radian measure.

31. A 0000, Arctangent
The arctangent of the contents of the accumulator replaces
the contents of the accumulator, Output is in radian
measure.,

32, N 0000, Natural Logarithm.
The natural logarithm of the contents of the accumulator
replaces the contents of the accumulator.

33. H 0000, Exponential
The quantity eX replaces the contents of the accumulator,
where x is initially the contents of the accumulator,

SECTION V: DATA INPUT FORMAT

Data input is accomplished by reading a prepunched decimal tape.
The tape consists of groups of the following:

1. One identification word. This consists of a sign and two
decimal digits for P, followed by four decimal digits
for initial location to begin storing the converted
floating point binary numbers.

2. Signed decimal numbers. FEach number consists of a sign
(if negative) and seven decimal digits.,

3. A "minus zero" word. This consists of a minus sign followed
by seven zeros., This number is not stored in memory, but
is used by the routine to signal the end of the group.

A stop code must follow the last "minus zero" word. This is
interpreted as a "zero" identification (I.D.) word since it follows
the "minus zero" data word. It causes the system to exit from the
subroutine, carriage return, and interpret the 1nstructlon following
the I 0000 instruction.

P denotes the number of decimal places following the point in the
seven digit field. -3 g P g 15. Internally the exponent must be in the
range -31 < Exp. < 31. v

Page 6 of 11

SECTION VI: DATA OUTPUT FORMAT

The printed output consists of a decimal point followed by seven
decimal digits of the characteristic and its sign. Following the sign
there are two spaces followed by the exponent and its sign (if the sign
is negative). e.g. .5060000- 02 is -50.60000. A tab is executed after
printing, ’ '

Page 7 of 11

FLOATING POINT INTERPRETIVE SYSTEM
(Program 2);.0)

PART 2
Note: Refer to Part 1 for FUNCTION, REGISTERS, ORDERS, and INPUT and
OUTPUT FORMAT.
INPUT ¢

Floating point numbers on tape or in memory, or numbers in the
pseudo registers resulting from previous operations.

CALLING SEQUENCE:

Loc. Inst. Add
::’ R Lo

+1 U Lo
OL+.2_ .
oo+ 3 . ?

. . .-S Floatlng point operations
AL +n E 0000 M"Exit" instruction
oA +n+1 etc. Resume fixed point

- operation,

INTERNAL NUMBER FORMAT :

A standard floating point number as carried in memory consists of
sign and 2l bits for characteristic (x) and sign and 5 bits for the
exponent (y). However, all intermediate calculations (i.e., numbers
appearing only in accumulator and multiplier registers) are carried with
30 bits of characteristic and 30 bits of exponent. Each factor of any
calculation must be in standard floating point form. (N = y 5<|x|< 1.
orx =03 -31<y< 31). Numbers appearing in accumulator or M registers

‘ ~ are in the range .25 < I1xl < .5 or x = 0.

The standard floating point binary .form:

E ' vHXoooo-.-rnX_X -X_ . XXXXX
Sign of Characteristic Sign of éxponent Fxponent
Characteristic 2l bits. . . 5 bits
0 for plus 0 for plus Power of2
1 for minus) 1 for minus

DATA TAPE PREPARATION:

1. All characters of the I. D. word should be punched. e.g.
-012040" must contain eight characters including the stop
code. The stop code (*) must be the last character punched.

Page 8 of 11

2. Punch only those I.D. words appearing on the load sheet.
Do not punch the stop code if an I.D. word is not present.

3. The sign and any leading zeros of a positive number need
not be punched. To enter all zeros merely punch a stop
code. The sign and all seven digits of a negative number
must be punched.

4. Be sure to check each lodd sheet to see whether an additional
stop code should follow the last number punched.

EXIT:

The interpretive routine exits to the first location following the
E 0000 instruction.

SUBROUTINE MEMORY RELATIONSHIPS:

The arithmetic, logical, address modification, and auxiliary instruc-
tions have been coded as a unified group on a single set of coding sheets
("Floating Point Interpretive Routine"). A single corresponding tape
has :been punched for this set. In many instances the programmer will
wish to use just this part of the floating point system; if so, only
this tape need be stored in the memory. This will leave S5k tracks
for program instructions and data in contrast to 41 when the entire
system is used.

In other cases the Input-Output and/or function evaluation routines
may be needed. Only those routines actually used need be stored on the
drum. These required routines must be stored on the drum in the
following relationship:

Program Routine Start Fill Set Modifier No. of Tracks
2)4.0 Interpretive (Includes) Lo Lo 10
11.3-12.3 Input-Qutput Lo + 1000 Lo + 1000 6
4.1 Sine-Cosine Lo + 1600 Lo 2 1/2
16.2 Arctangent Lo + 1832 Lo 11/2
18.1 Logarithm Lo + 2000 Lo 1
17.1 Exponential Lo + 2100 Lo 2

A1l track 63 except sectors 10, 15, 16, 18, 23,.27, 29, 3L, 36, Lo,

47 thru 50, 52, 56 thru 58, 60 and 63 is used for temporary storage by
various parts of the system. Therefore Lo should be set such that no
part of the floating point system used is stored in track 63..

PROGRAM STOPS:

Loc. Order Meaning and Remedy
Lo + 0654 - Z 0000 Programmed stop. Depress "start" to continue.
Lo + 0556 H XXXX Exponent is too large. Location of instruction

or being executed is in the real accumulator.
C XXX¥ Start to continue.

Page 9 of 11

Lo + 0556 R 0000 Accumulator is negative. Location of instructicn
being executed is in the real accumilator.
Start to continue.

Lo + 1152 I 0000 Input data has too large an exponent.‘ A start
- will store a zero for that word and continue
with next word on tape.

Lo + 0612 D XXXX- Division by zero or a non-floated number.
Do not continue.

Lo + 2005 N 0000 Accumulator is < O. A start continues with
an answer of zero. :

Lo + 2028 N 0000 Accumulator exponent is not in range., Do not

or continue.
Lo + 2030
TIME

See summary tabulation.

EXAMPLE

See the following LGP-30 coding sheet.

NOTES:

1. The floating point system may be left and re-entered without des-
troying the contents of the registers.

2. The exponent of a number in a register which is to be stored in
memory must be less than +32, or a range error will result., If it is
less than -31, the number is replaced by zero.

3. It is strongly suggested that the initial location occupied by
the system be the 00 sector of a track. If it is not, many of the
addresses that refer to track 63 are not optimum.

4. It is also suggested that the entire system be placed in memory
and punched out in parts by program 13.1. Then the parts needed may
be loaded by program 10.1 and each check sum may be verified.

5. All instructions with zero addresses have special interpretations.
None of these zero addresses refer to memory location "zero", (0000),
but rather designate a special interpretive instruction. This float-
ing point system employs sixteen such special instructions. Further-
more, the two-shift.instructions (D 000y, M 000y) utilize the next nine
addresses (0001 through 0009); hence the divide and reset and multiply
instructions cannot use these addresses.

SUMMARY TABULATION

ORDER RESULT IF ADDRESS () # © TIME RESULT IF ADDRESS = 0¥ TIME
VA C(Add. Acc.) — (X) = 0? No: No skip

yes: - Skip 133 ms Stop (SW No. 16). Proceed on start 117 ms
B C(=) —> Acc. 233 ms. Make C(Acc.) positive 150 ms
X c(Add. Acc.)——> Add. of (ob) 150 ms. Complement C(Acc.) 150 ms
R (Loc. of R) + 2—> Add. of (ot) 166 ms. VC (Acc) —> Acc. 500 ms
I c(Add. Acc.) + (et)—> Add. Acc. 150 ms Input floating point data 40/min,
‘D C(Acc.) * C(oX)—> Acc. 283 ms. C(Acc.) + 2% & Ace. 183 ms|
N c(M) x C(et) + C(Acc.)—> Acc. 566 ms 1n C(Acc.)—> Acc. 500 ms
M C(M) x C(ct) ——> Acc. 266 ms. C(Acc.) x 2% 5 Ace. 150 ms|
P C(K)—> M ' 217 ms. Print C(Acc.) 1.85 sec
E C[Add.(oC)]~—> Add. Acc. 150 ms. Exit from interpretive routine 117 ms
U 4 Next abstract order taken from (oK) 117 ms. C(Acc)—> M; C (M)—; Acc. 200 ms
T 1 Transfer if C(Acc.) is negative 133 ms. Make C(Acc.) negative 150 ms
H “6(Ace.) — (X) 200 ms. Claces) o pee, 450 ms
C Clacc.) > (X); O0—> Acc. 233 ms. Cosine C(Acc)—> Acc. 517 ms
A C(Acc.) + C(=X)—> Acc. : 100 ms. Arctangent C{Acc.)-> Acc. 450rs:
S C(Acc.) — C(eQ)—> Acc. ’ 417 ms. Sine C(Acc.)—> Acc. 550 m3g

#

Add. Acc. = Address Accumulator register Address = 0: except for mstructlons "M 000&" and "D 000o4",
‘M = Multiplier register where 0 << 9,
Acc. = Floating point Accumulator K —> = 1Is stored in

o = any address
C = Contents of

A1l times are approximate and will vary with the amount of overflow and/or underflow. Actual times should be
slightly less than listed. Time will usually be reduced if any factor is zero.

TT Jo 0T 93eg

VLLUSTRATIVE EXAMPLLE [FOR FLOATING POINT INTERPREIIVE STYSTEM
LGP=30 CODING SHEET

Page.._.LL of Ll

Job No, .CIVE _Prog, No,24£-© Prep, by _G.L.W. ck'd, by /M-t pate” ¥ June ’5?

Provlen _CLLUING FOR 1,L"'/7 "ng!‘ec Folynomial

f

Track
P [Hocson] grtion TH G of [
j_;?.opfz.s,ao '
| 494940:2,52@0 !
o)-J: - , 200} , .X.R:a.a,"ﬁ : Lgm‘cr- Lnterprebive
— 01|, x Y2000 ! Routine
- 02| | ,XI= 0000} T oput Coctficiop¥ts
et . L0031, Eoa ot T|'K 2005 Set
L :) oLkl . . ,Y:a.alo,é' | 2008 Initial Address
- ; . 05 , .B;o,o.l,:-ii Eero '
e 06| xaAl .] Qn | Add _n' th coctticio
; N N XL o0l q,["aoas+nj£;’f;‘n‘;;2e‘}j’:"z; onity
e _ 08| ., Yoooos! | alzces +n]lZi Sl 000
et _ 09| xz2000'| |7zst fev Fimsh.
R , 1o _{/io,.a,/dg_' Nor+ Sfinidshed
: - Ly A.K.Pia.aLaL_o ' Pt resu /Y bere s Finishe d
—— 12, ,xAEio,a,o,o' K xit ’ :
, N L 231, X Eoepse 'l > Zop Fixcd pt, 175t
PN C1h| . xue000] [Move Accum, to M Register
_ T 15| xmzoosl' R Mltipl by X
, : . L 181 .U;o.a‘o,é '"| ARedern fv mexl ferin.
. —— LA, XF2pos! | Tnitial |cctficieet
bectimert e 00 ‘.JLLB ! ‘L_,L._a....;._.‘.' e+ a e o ve e e e s e st
| Quan, |, P |Location g+ muber | B4
F%::ting point — = S
a Input X _koTlzo0 44 | 41,0/9,0,00,0
Qe |}, RN 113210.0.0.0
2, sg s : 2 ,4e000 ~34P615
2z ot T | 5,6,0,0,00 ; ;
@s ; - T) 7.8.0,0,0.0 00004Locé63603
aq || . 9,0,0,0,0,0
‘ | . 1'l-10,0,00 00,0
N N B

Punch a stop code after the

last number?

Yoes N

