
Royal Precision Electronic Computer

LGP-30
SUBROUTINE MANUAL

Royal McBee Corporation .

LGP ...; JO 'SUBHOUTINE MANUAL

This subroutine manual was compiled by the Royal McBee Computing
Section to facilitate the coding of problems for the LGP-30.· The pro­
gramming was tlone by the·Royal McBee and.Librascope Computing Sections
This subroutine manual, in its present form, is considered to be complete.

The subroutines provide for a variety of operations whose major:
types are as follows:

a. Machine Input and.Output.
b. Evaluat'ion of Elementary Functions.
c. Program Check-Out.
d. Comp).ex Operations.
e. Floating Point.Operations.

I

For each subroutine the calling sequences, running time, and storage
requirements are given. Also where applicable, the range of -variables,
scaling, and accuracy are giveu.

It is hoped that as LGP-30 users develop other useful subroutines,
they will submit them to the Royal McBee Computing Section. Synopses of
these·· subroutines together with those d.eveloped by the Royal McBee
Computing Section itself will appear regularly in the·LGP-30 New~letter.
The Newsletter is distributed monthly to all.LGP-JO users. This arrange­
ment.will facilitate prompt distribution of routines and will prevent
unnecessary duplication. ·

Royal McBee Corporation
1560 North LaBrea Avenue
Hollywood 28, California Copy No. 3f 3

- CONTENTS -

SECTION I:: MISCELLANEOUS PROGRAMMING INFORMATION

SECTION II:

1.. PROGRAM 09 ~o BOOTSTRAP ROurINE

2. PROGRAM 10 .O o ••••••••••••••• , ••••. , •• LGP-30 PROGRAM· INPUT ROUTINE

3. PROGRAM 10.1 ••••••••••••••••••••••••••••• HEXADECIMAL INPtrr ROUTINE

4. PROGRAM 11.0n. , •••••••• "° DATA INPUT NO. l SUBROUTINE

5. PROGRAM 11.1 DATA INPUT NO. 2 SUBROUTINE

6. PROGRAM 11. 2 •• e •· DATA INPUT NO. 3 SUBROUTINE

7, PROGRAM 12.0•e•••o••••••••••••••••••••DATA OUTPUT NO. 1 SUBROirrINE

8. PROGRAM 12. 1. ••• • DATA OUTPUT NO. 2 SUBROUI'INE

9. PROGRAM 13.0 •••••••••••••••••••••• HEXADECIMAL PUNCH OR PRINT NO. 1

10. PROGRAM 13.1 ~ ••• HEXADECIMAL PUNCH OR ~INT NO. 2

11. PROGRAM 14.0 ,, •••••••••••••• ~ SINE-COSINE SUBROUTINE

12. PROGRAM 15 .. 0 •••••••• .,, SQUARE ROOT SUBROUTINE

13. PROGRAM 16. 0, , ARCTANGENT SUBROUTINE

14. PROGRAM

15. PROGRAM 18 .. O •••• , ••••• · •• , LOGk X SUBROUTINE

16. PROGRAM 19.0 •••••••••••••• , ••••••••• ALPHANUMERIC OUTPUT·SUBROUI'INE

17. PROGRAM

18. PROGRAM 21.0 ••••• , ••••••• ; , ••••• DECIMAL MEMORY PRINTOUT

19. PROGRAM 22.0 •••••••••••••••••••••••• COMPLEX OPERATIONS SUBROUTINE

20, PROGRAM 24.0 •••••••••••••••••••• FLOATING POINT INTERPRETIVE SYSTEM
Program 11.J ~ 12,J ••••••••••••••••••••••••••••• Input - Output
Program 14.l ••••••••••••••••••e•••••••••••••••••Sine - Cosine
Program 16. 2 , •• , • , •••••••• , ••• · •••••••••••• Arctangent
Program 18.1 ••••••••••• , ••••••••••••• , ••••• , ••••••••• Logarithm
Program 17. l. • , , ,, , • , , , • , •• , ••••••••• " •••••• , ••••• '• • Exponential

'DEFINITIONS

1. A routine is a logical subdivision of a program, complete in itself,
and serving a specific function in the problem. There is no fixed length
to any routine, and each routine occupies only as much storage.as is act-
ually needed. '

2. A subroutine consists of a set qf instructions to perform a standard
task which is of a sufficiently general· nature to be used in a number of
different programs. Examples are subroutines to input and output dp.ta,
compute square roots, arctangents, etc. This Subroutine Manual is a
compilation of the specifications of the subroutines, completely des­
cribing the function and· use of each.

J. A calling sequence is a set of instructions used for transferring
from the main routine to a particular subroutine. It.may also include
information needed by the subroutine, such as constants and the locations

·of certain quantities. The calling sequence for each of the subroutines
is given in the Subroutine Manual.

4. Minimum Time Programs.

·There are occasions when it is necessary to Write programs which
will be executed in as little time as possible. These minlinum time
programs are referred to as "optimum" programs. Since the subroutines
contained in the Manual are to be used over and over again, they have
been optimized. (The process of optimizing requires placing the sector
of the operand ot at et+ (7k+ 1) where 2= k.!:-6 for most instructions) • · 'rhe
programmer .. should bear in mind that 10,000 executions of all.nonoptimum ·
instruqtions would take less than) minutes longer than 10,000 executions
of optimum instructions. If the programmer spends 15 ~ 30 minutes on
each routine trying to save machine· time by optimizing, :this time may
never be made up in the actual running of the problem.

5.· A scale factor of a scaled number in memory is defined as the
power of 2 .by which this scaled number must be multiplied to get the
original or unscaled number.

Rev. 8/6/57

Page 1 of 1

CONV~NTIONS USED IN 'l1HIS MANUAi.1

1. o(is the base.memory location from which entry to a subroutine is .
executed. Locations used by the subroutine are ·in re.ference to location
o(E.G., o(+ 1, O(+ 2,·~+ J ••.•••

2. 10 designates an initial location. Lf designates the final location.

3. The 11 Stop" and 11 Stag Code·s 11 referred to· in these write-ups and on
the coding sheet are synonymous with "Conditional Stop Code".

4. For explan.~tion of our scaling convention, see write-up on
"SCALING".

5. Track 63 is used by some of these subroutines for temporary storage.
The track 63 sectors us·~d by .the subroutines are enumerated in the res­
pective write-ups. This practice was found useful for "optimum" program­
ming of subroutines. However if the subroutines which use this temporary·
storage are to remain optilnum, the L0 of the subroutine must be the

. beginning of a track. It is suggested that the programmer·may also use
track 63 for temporary storage of intermediate calculations. He should
not place a number in a track 63 location used by.one of these subroutines
and expect that number to be there afte.r exit from the subroutine.

')

Rev. 8/6/57

Page 1 of l

PUNCHING TAPES ·FROM CO DING SHEETS

Sae 11 Sample Prog1·am11 page for example of coding sheet.

1. Only the "Program Input Codes" and "Instruction" columns of the
coding sheet are to be punched, with appropriate sto~s. Never punch
11 Location 11 , 11 Contents of Address 11 , or 11 Notes 11 columns.

2. Each entry on a line must be folloi;.Jed by a conditional stop code-­
" Stop" column, symbol (•) . · A line left blank must have the stop code
punched.

J. Punch the 11 Prograni Input Codes" column only when there is a.n:entry
in the column. The "Program Input Codes 11 must be followed by the stop
('). , This punching must precede the punching of the "Instruction"
column on the same line of the coding sheet.

4. Leading zeros need not be punched. All other zeros must be punched.
E.G., 0001J086'only 13086' need be punched. ,0000017' must be punched
~0000017•. For T0059' punch Too59•.

5. Consider brackets as containing zeros. E.G., for[••• ! ...]•
= [00000000]•, only the stop code need be punched. For B[....]1 =
B[OOOO]' punch BOOOO 1•

6. All punching may be done in lower case. B0627' will appear as
b0627~.

7. The placing of carriage returns is left to the discretion of the
person preparing the tape. Carriage returns do not affect the input
operation. We have arbitrarily placed a carriage return (~) after
every 4 words on·each coding sheet.

8. A.heading may precede a punched program to identify the tape.
Anything except a stop code may be punched as a header. Then as the
tape is fed through the input reader the heading will print but will
not affect the operation of the computer.

9·. Each tape should be verified after punching. This can be done by
placing the punched tape in the reader and "listing" ·the tape b,y the
following process.

a. Depress the- 11 Cond. Stop11 button on the Flexowriter.
b. ·Depress "Start Read" button.
c. When printing stops, depress the 11 Stop Read11 button on the

Flexowriter. · ·

'fhen the printing may be visually checked ag~inst the coding sheets
for correctness and presence of stop codes.

10. It should be the programmer's responsibility to enter 11 Program' Input
Codes 11 (and the associated s.top codes) on the ·coding sheet. This will
usually consist of a st~rt fill (;), a set modifier (/), and possibly
some hex. words (,) and/or stop and transfer(.) codes.

Rev. 8/6/57 ·

5AM Pl-E -Pl?.o"/3 L-e~
ILJP-30 CODING SHEET

Job No. XXX Prog. No. YX Y Prep. by~

•0001000'

000/000 I

000

0 1

0 2

0 3
0 4
05
0 6

0 7
o.a
0 9
l 0

11

1 2

1 3
14 l,
16

1

2 0

2 1

2 7
2 8

2 9
3 0

J l

Page_/_ o!L

Ck'd• by GL W Date f-/-.57

Track I 0

Note a

' Conditional Stop Code ~ Carriage Retui111

Roval MC:Bee Corporation Jan. 57

Page l of l

SCALING·

The IOP-30 normally handles all numbers as·if they were of the form
eXXXX •••••••••• , that 1s1 numbers ·numerically less than l. However, it
is quite simple to carry any number in the machine at any number of bin­
ary places, and this arithmetic· is- explained below. In talking about
the placement of the radix point . in the I.G.P-301 it is simpler to talk of
the number of whole places in front of the radix point, rather than the
number or places after.the point. Hereafter, a number will be referred
to as being carried at q places, q being the number of binary digits to
the left of the radix point, and 30-q as the number to the right of the
point.

Addition: Addition of course poses no problem if' the two num-
bers £0 be added are at the same number of places. If not, either may
be shifted before addition by multiplying or dividing by "One"at an
appropriate q.

Multiplication: The IDP-30 multiplies a number at q1 places by
a number at q2 places and forms the product in the accumulator at ql
plus q2 If places.

Division: The IGP-30 divides the accumulator at ql places by a
number at q2 places and forms the quotient in the accumulator at ql ~q2
= q3 places. It should be noted that overflow will occur if the quotient
developed is not less than 2q3 in absolute value.

10-29-56

Numerical

123456

)0 000010
11 OUOllO
*2 001010
"J OOlllO
A4 010010
%5 010110
$6 011010
-rr7 011110
1:8 100010
(9 100110
Ff 101010
Gg 101110
Jj 110010
Kk 110110
Qq 111010
Ww 111110

Balance

IJ
?/
] 0

(,
Vv
Oo
Xx

ROYAL MoBEE CORPORATION

LGP-30 Input Output

Keyboard Code

Conunands

123456

Zz 000001
Bb 000101
Yy 001001
Rr 001101
Ii 010001
Dd 010101
Nn 011001
Mm 011101
Pp 100001
Ee 100101
Uu 101001
Tt 101101
Hh 110001
Cc 110101
Aa 111001
Sa 111101

of Keyboard

123456

001111
010011
010111 -
011011
011111
100011
100111

0
. ·o

0
0
0

61J. 0 3f5
000 0000

0
0
0
0
0
0
0

0
0

l

\

Controls

Lower Case
Upper Case
Color Shift
Car Ret
Back Space
Tab
Cond Stop (1)

Start Read
Space
Delete

Signs

a +

123456

000100·
001000
001100
010000
010100
011000
100000
000000
000011
111111

001011
000111

Syinbol Comnmnrl Rinary H8X De Koyboar<l Code 00 0
qh 57

z Stop 0000 0 0)0 02 02 Zz 01 01 j8 ~~ f j
B Rr:inp, 0001 1 l 11 06 06 Bb 05 05 90 36
y Stor1:~ flrld. 0010 2 2 fij2 Of 10 Yy 09 09 74 29
R RE"turn Add. 0011 3 3 It 3 Oq lh Rr Ok 13 58 22
I Inpnt. 0100 l~ 4 · aL 12 18 Ii 11 17 3j 15
D Div-tde 0101 5 5 %5 16 22 Dd 15 21 20 8
N N M ultiply OJ.10 6 6 ~r6 lf 26 Nn 19 25 Oh 1
M l:Tultiply 0111 7 7 1t7 lq 30 Mm lk 29 q8 58
p P:r.:lnt 1000 R 8 LB 22 34 Pp 21 33 jj 51
E Extl'HCt 1001 9 9 (9 26 38 Ee 25 37 cO LL

9!t 37 u Transfer 1010 F' 10 Ff 2f 42 Uu 29 41 78 30
T Test 1011 G 11 GP: 2q 46 Tt 2k 45 G5 23
H Hold 1100 J 12 Jj 32 50 Hh 31 !19 16
c Clear 1101 K 13 Kk 36 5h Cc 35 53 24 9
A Add 1110 Q 14 Qq 3f 58 Aa 39 57 08 2
s Subtract 1111 w 15 Ww 3q 62 Ss 3k 61 ~3 ~i pace 03 03 LC 04 O)~ g4

2N 2-N 98 38 N 01 07 UC 08 08 7j 31 - Og 11 12 1 0 i.o =+ cs Oj 60 24 .. Ow 15 CR 10 16 41-t 17
2 1 0.5

. ,
L 2 0'.25 ?/ 13 19 BS 14 20 28 10

8 3 0.125] . 17 23 Tab 18 24 Oj 3
[, lg 27 Del. 3w 63 wO 60

kli l~ 16 L 0.062 5 Vv lw 31 ' 20 32 g8
32 5 0.031 25 Oo 23 35 9j 39

. 64 6 0.015 625 Xx 27 39 80 32
128 7 0.001· 812 5 64 25

48 18
2 . 11

256 8 0.003 906 25 l~ 4
512 9 0.001 953 125 w4 61

1 024 10 0.000 976 562 5 kB 54
2 oLB 11 o.ooo 488 281 25 gj !i7

f O 1,0
L 096 12 o.ooo 2li4 140 625 8Ji ~~
8 192 13 o.cioo 122 070 312 5 68

~~ 19
16 384 14 o.ooo 061 035 156 25 12
32 768 15 o.ooo 030 517 578·125 14 5

w8 62
65 536 16 o.ooo 015 258 789 062 5 kj G~ 131 072 17 o.ooo 001 629 394 531 25 ~o L1

262 lli!t 18 o.ooo 003 8lh 697 265 625 8~ J)i
52L 288 19 o.ooo 001 907 348 632 812 5 f.,• 27

5~ 20
1 Oh8 576 20 o.ooo ooo 953 671' 316 Lo6 25 3L 13
2 097 152 21 o.ooo 000 476 837 158 203 125 18 b

4 19h 304 22 o.ooo ooo 238 L18 579 101 562 5 ~g lg
8.388 608 23 o.ooo 000 119 209 289 550 781 25 ig i•9 J2

16 777 216 2h o.ooo ooo 059 6oh 6L4 775 390 625 8j 35
33 554 h32 25 o.ooo 000 029 1102 322 387 695 312 5 70 28
67 100 R6L 26 o.ooo 000 014 901 161 193 847 656 25 54 21

134 217 728 27 o.ooo ooo 007 h~;o 580 596 923 828 125 38 14
lj 7

268 435 h56 28 o.ooo 000 003 7~~5 290 298 461 .91!~ 062 5
536 mo 912 29 o.ooo ooo 001 n62 645 149 230 957 031 25

l 073 741 fl2lt 30 o.ooo 000 000 9Jl 322 574 615 478 515 625
2 147 L RJ 61~8 31 o.ooo ooo ooo L65 661 287 307 739·257 812 5

1) 11 " 'I +. l1 ~ -- It!. , : 1 , • : 1 , , E~r~,~3 1 ~~Yd•c~=-S.ec.tP(~ ~:~

FUNCTION:

BOOTSTRAP ROUTINE
(PROGRAM 09.0)

Puge 1 of 2

To load the input.routine on tracks 00, Oland 02. After the
bootstrap program has loaded the entire input routine, a halt is
executed at track 63 sector 13 (3w34.) Depressing the Start button
transfers control to the first instruction of the input routine •

. PROCEDURE:

The tape containing the bootstrap (and the program input routine)
is placed in the tape reader and then the following manual operations
are performed

1. Connect Switch to "off" position.
(.'.'Inp. - Comp." switch to "Comp." on early.machines.)

a. Depress Flexowriter "Start Read" button.

, 2. Depress "Manual Input" button on console.
("Interrogate" button on early machines.·)

3. Depress Flexowriter "Start Read" button.

4. Depress "Fill Instruction" button.
("Fill R" on early machines.)

5. Depress Flexowriter "Sta.rt Read" button.

9. Depress "One Operation" ·button.

7. Depress "Execute Instructi.on" button.
("Execute R" button on early ma.chines.)

8. Repeat steps . 2 through 7 five more times before proceeding
to step 9.

9. Depress "One Operation" ·hutton.

10. Depress "Normal button.

11. "Connect" switch to "On".
(Inp - Comp." switch to "Inp." on early ma.chines.

12. Depress Computer "Start".

The entire tape will automatiaclly read in after manually per­
forming step 12 above.

Rev. (1) 12/13/56

Page 2 of 2

(PROORAM 09o0)

OUTPUT:

Program input routine on tracks 00, 01, 02.

STORAGE:

The bootstrap routine uses 21 words on track 63. (Sector 00
through J.4, 22 thru 26 and 46).

TIME:

The time to read in the two programs after depressing the Start
button in Step 12 is approximately three minutes.

10/29/56

I.GP-30 PROGRAM INPUT IDUTINE
(PROGRAM 10.0)

Page 1 of 4

The purpose of this .report is to describe a method of entering
information into the IDP-30. The general characteristics of the I.GP-30
are described in the progranuning manualo A program consists of two types
of words, data and instruction. This write-up primarily describes the
process of inputing instruction words _and hexadecimal representations of
data words. This process does not. handle data words expressed in decimal
form.

There are several functions to be perf onned by a useful input routineo

l~ The most direct way of entering information into the LGP-30 is
to present it with binary words. But since it is difficult to
program in this number system, we prefer to do our programming
in decimal notation. If we are to write words in decimal form,

we must provide the machine with a means of converting such words
into binary f onn.

2o Most routines contain instructions which refer to other locations
within that routine. Hence if we wish to place the routine in
another portion of memory, we must modify some of these addressese

3. It is sometimes useful to express a number in binary form. e. g. 1 '1T
or other universal constants.

4. It may be necessary to make instructional or data changes to a
program that has already been stored in memory.

These are the functions which this input routine is designed to
perform.

This rout,ine recognizes seven types of input word. The sign and
first 3 bits of the input word are used for the input routine to iden­

(tify the type. These words and their symbols are as follows:

l. Instruction (none) consists of an order and decimal address,,
The address consists of a decimal track and sector. The
instruction is converted to its binary equivalent and stored
in a given location. The address portion is incremented by
the contents of the ttmodifier" (to be discussed below) un­
less an nxn precedes the order. e.g~ b 4000 will in inc­
rementede x b 6310 will not·be incremented {and the x will
not appear in the stored instruction)o

2. Conunand (+) This word will be treated as an order to the
input routine. The order will be executed after entry of
another word. The command is input in decimal and is not
incremented by the modifier" The second word, presumably
data, is input in hexadecimal. e.g. +OOhl637 followed by
73W08 will store the hexadecimal word 73W08 in memory
location 1637.

Rev. 3/25/57

1 ·

4.

5.

6.

Page 2 of 4

PROORAM 10.0

Start fill (;). Tells the input routine where to begin
filling input words. Each succeeding word will be filled
consecutively. The address portion of the start fill
word is decimal, an:l consists of both track and sector
number. e.g. ;0003128. The first stored word will be
located in track 31, sector 28.

Set modifier (/). The magnitude of the address of the
modifier will be used to increment orders. The set
modifier wortl will usually follow a start fill and will
usually be identical to it in magnitude. This word is
for use by the input routine only.

Stop and transfer (.). This word stops the flexowriter.
A ttstartn will transfer control to the memory location
contained in the address portion of the stop and transfer
word. Depressing break switch 32 on the control panel
will cause the computer to disregard the stop portion of
this word. e.g •• 0001700 will stop reading, then control
will be transfe~red to track 17, sector 00.

Hex. words (,). This instruction causes the next N words
to be filled without conversion. N is specified in the
address portion of the 11hex. words" word and must be
within the range 1 !.- N ~ 63 e.g. ,0000014 means the next
14 words are to be stored in the next 14 ·consecutive memory
locations. The words must be in hexadecimal notation, and
they will not be incremented by the modifier.

Hex. fill (v). Fills the next n words hexadecimally
beginning in m. m and n are proper hexadecimal numbers.
The format of the word is v n1 °2 n m1 ~ ~ ~· e.g.
vlJ02WOO means the next lJO words [dJQ16 = (448) ~ will
be filled consecutively beginning in location 2~tf [(2W00) 16 = track (47) 10 sector oo]. Up to (7WVJ) 16 = (2047) 10 words
can be fillea by a single hex fill inpu~ order.

Leading zeros need not be punched on any input word. All other
zeros must be punched. e.g. 800T0018 must be completely punched;
OOOB3749 only the last five characters need be punched. e.g.
B3749.

When the overall coding for a problem is surveyed, it is found
that the instructions separate logically into independent groups,
some of which can be used in any number of problems. Examples of these
groups are subroutines of all types, standard input and output routinEs,
and the mathematical subdivisions of the problem. It would be desirable
to code these pieces without reference to the other pieces. In order
to separate these pieces completely, it is necessary to assign a group
of instructions a block of storage locations which does not correspond
to actual memory locations; otherwise two blocks of coding might be
found to occupy the same section of storage, requiring a change in the

10/29/56

Page 3 of 4

PROO RAM 10 .O

coding for one of the two pieces. The 11 set Modifierrt ord.er of the
input routine was intended to facilitate this type of coding. A
group of instructions can be coded without reference to actual memory
locations by starting that group at symbolic address 0000. Then by
setting· the modifier to the "start fill" location, the programmer may
position a routine to arry part of memory. An instruction preceeded by
an "x" will not be incremented, and this instruction will still refer
to an absolute memory location. It should be noted that orders may be
coded for actual locations merely by setting the modifier to zero (i.e.,
input order /0000000). Thus no particular restrictions are imposed upon
the programmer by this system.

If the input routine detects an erroneous input code it will print
rtcode" and halt. The last word read from tape contains the erroneous
code in the first punched charactero

A tape prepared for this input routine must contain flexowriter
format control. It is suggested that a carriage return be inserted after
every four words on tape. If there is no format control and the flexo­
writer carriage is permitted to space into the automatic carriage return
a stop will result. The computer will continue if the carriage return
button is depressed.

10/29/56

d
0

•r-1
.f.) J..t co ~ 0

Q) ~ () .+)
"O Q) £! ()
0 & Q)

0 E-t (J)

Op l 2 3 4
x Op l 2 3 4

8 0 0 T l 2 3 4
80xT 1234

+ooop1234

J 0 0 0 l 2 3 4

I o o o i 2 ·3 4
e 0 0 0 l 2 3 4

,00000 12

INPUT OOUTINE FORMAT
PROO RAM 10. 0

Modo
Not Mode
Mod.
Not Mod.

INTERPRETED AS:

Instruction -
Order plus address (dee.)

Command. This word is
treated as an order, using
the following word aa data.
Following word in hex.

Start Fill - Address in decimal

Set Modifier -·Address in decimal

Condo Stop ar.d Transfer•
Stop (unless Sw 32 down) and
transfer to location specified
in address.,

Hexadecimal wordao
Next N ·(dee) words are hex.
fill sequentially l fn- N ~ 63

Hexadecimal Fill - Fill N
··(hex) words beginning in loo.
M (hex) l ~ N ~ 204 7 ·

Rev •. 3/25/57

HEXADECJJ1AJ., DJPUT ROUTINS
(ProE; ·· a!ll 10 .1)

Page 1 of 2

FUNCTION:

1. To read hexadecimal information and store it on the memory drtun.

2. To verify that the infonnatlon has been correctly stored.by
generating a summation of the binary bits stored on the drum
(a check sum) and checkin~· this summation against a previously
computed summation placed on the input tape.

INPUT:

A tape prepared in its entirety by program 13.1. This tape contains
the following:

1. An identification word in the form v n1 n2 n3 m1 m2 m3 m where
N = (n1 n2 nJ) ~ the number of words in hexadecimal to b~ placed
on the drum. M = (m1 m2 m3 m4) = the initial locatio'n in hexadecimal

to begin storing the words.

2. N hexadecimal words, each followed by a conditional stop code.

j. rrhe . check sum.

PROCEDURE:

1. Transfer to the begin~ing of this routine with the previously
prepared tape in the reader.

2. The routine will read the identification word and set up the
initial address and a tally from M and N respectively.

Jo The hexadecimal words are read and stored sequentially on the·
memory drum. After each word is stored the address (for· the
next woro)is incremented by 1 and the tally is decremented
by 1.

4. After all hexadecimal words on tape have been placed in memory,
the check sum is read in and stored within this routine. Then
another check sum is computed in the identical manner used by
program 13 .1. •

5. The computed check sum :Ls subtracted from the one placed on tape.
Ii' they are equal, the routine returns for another identification
word.

6. If the two check sums arc not equal the routine prints "error"
and halts. To re-read the same record, back up the tape in the reader

to the last "v code" (identified by a punch in channel 6) and depress

3/28/57

Page 2 of 2

(Hexadecimal Input Houti.ne continued)

the start button. The routine will return to re-read the identification
word and proceed from there.

OUTPUT:

The information on the tape stored in memory and checked for
validity.

TIHE:

Reading from tape - one track per minute.
Computing check sum - ten tracks per minute.

STORAGE:

96 locations of instructions and constants.
No temporary storage.

J/28/57

Page 1 of 4

FUNCTION:

DA'l1A INPUT fl SUBROUi1INE
(PROGRAM 11.0n)

'11
0 read a decimal numb.er from tape, convert to binary, scale to

the proper binal point location, and store the word in a specified drum
location. For each number the following is punched on tape:

1. 'l1he decirnaJ point. loeation of the number on tape,
counting from right to left. (One decimal digit
designated as 11 p11) •.

2. Tht~ binal point location desired .for the number
to be placed on drum. (Sign and two dt~cimal
digits designated as 11 q11).

J. The drum location to which the number is to be
sent. (2 decimal digits for track and 2.decimal
digits for sector).

4. The number to be entered ('Seven decimal digits plus sign).

INPlYl1 :

For each word to be stored, an identification word (parts 1, 2,
& 3 above), and the signed number (part 4 above) are required.

CALLING SEQW~NCE :

ourPUT:

Loe.

o<.
o(+ 1
o<+ 2

Inst.

R

u
etc.

Add.

(Lo + 8)10
1

0

The scaled binary representation of the. number will appear at its
proper drum location.

EXIT:

A 11 zero 11 identification word will cause the routine to exit to
(o<'+ 2).

Rev. 8/6/57

l

l

.J

l

j

l

J

l

Page 2 of 4

PRCGRAM 11.0R

SCALING:

The location of the decimal point in .the decimal number is
specified by a number P, which denotes the number of places follow­
ing the point in the seven digit field. P can be in the range Q,P.t..9.
The location of the binary point in the full 30 bit binary word Is­
specified by q, the number of digits preceeding the point in the full
word. q can lie in the range given in the following table.

In order for the number to be representable at a given q, the
number must be less (in absolute value) than 2q. However, if too large
a q is used, the number will not reconvert exactly on output, since there
will be too few binary digits following the point to adequately represent
the fractional part of the number. The following table also gives the
maximum conversion correspondence between P and q.

TABLE OF P vs q:

p Max q Min q Max q for Exact Min q for Max
Reconversion No. Size (all 9 1s)

0 +47 +2 +30 +24

1 +43 -2 +26 +20

2 +40 -5 +23 +17

3 +37 -8 +20 +14

4 +34 -ll +16 +10

5 +31 -14 +13 +7

6 +28 -17 +10 +4

7 +24 -21 +6 0

8 +21 -24 +3 -3

9 +17 -28 0 -6

10/29/56

Page 3 of 4

PROGRAM 11. 0 R

TIME:

20 - 25 words per minute.

ACCURACY:

The scaled number in memory may be inaccurate in the 30th binary
pos:ition.

S'WH.AGE:

192 locations of instructions and constants. Eight locations of
temporary storage (Track 63, sectors 03, 04, 45, 52, 54, 55, 56, 57).

PROGRAM STOPS:

Loe. Meaning

(Lo + 0234)10 Divide check in scaling data word. ON§ > 2q.

EXAMPLES: (See LGP-30 Data Input 1 load sheet)

I. Place +96.40236 in drum location 6234 at a q of +7

2. Place -.000000597 in drum location 2363 at a q of ~14

3. Place +330000. in drum location 2100 at a q of +30

TAPE PUNCHING INSTRUCTIONS:

1. All characters of the I.D. word must be punched. e.g., punch
0+096JOOecompletely. The first three characters should not be
omitted. The stop code (o) must be the last character.

2. Leading zeros of a positive number need not be punched. To
enter all zeros merely punch a stop code. All digits of a
negative number must be punched.

J. Be sure to check each load sheet to see whether an additional
stop code should follow the last number punched.

3/20/57

J

i

I

~

..,
I

.)

1

IDP-30 DA'l'A LOAD SHEE'l' Page1od

Job No. ____ Prog. No. I/. Ott Prep. by _______ Ck'd• by _____ nate _____ _

Problem ----__;;~;;;;...;...;X~A~t1~P~~__.::;.€.=5;...._~F-o~R..;;.._~~7.J~~;.;....;.-r.~'/l..;..____,;.·:Z:~A/---P~v_-r~-~~/~--------Casa ________ ___

INPUT #1 Quan. p ±q Location

L5"
1

1+1o_.l..7_ '· .)_I 3 .-ii
9 ~J.tf -;.,_3J.ID_J__3

0 1-f-!3__.0
1

;l...
1

/__._ OJ.O

I . ..1. _l

I
I I

'
J. -'

I • I _J

I
I I _l_

I
I II. -1.

I
I I __._ L

I
I I __._ I_
J

I -•l. .L

I
l .J. J
T

..I.

I
_L I .l. ...1

I
I I .J. __._

T
I __. _J ..1I.

I
I .I.. I -.
I

I . .J. I

I
I I I .,. _._ 1

I
_l l I

I

J • I ...l 1.

I
I ..J. _l

T
..L __._

I , I _l I

I
J I __I -r ..1. I

I __._ _ _._ I

I
l l I J
T

i _I ...l _1.

I
1 . _l

I
J I

T
..LL

I _I I

I
..J. --• ..I.

T

I I .
I

_L . -L 1.

Punch a stop code after the last number?

~ Number
I~ +

' i 'l 6_L 1. o. r J. 6
f I 7 b_01 0 OJ.0 ~'1:
v I

.3_._3 0-10...1. o.o I , I
_1 _l ...1 J. ..1 -1. I

'I I
_l -•- ...I. ..l. ...I. -1. _l_

' I
I .J. .J. _l_ J.

9
I

I
I _f_ _L _J I I

~
T

I I .J. ...I.I.I.I.

9 I
I I ..1I. ..1. _ _I -• .,
I
I I

"T
...I. _l_ l .

q I
_L ..1 . .I.. _l

'I ' I
_.I .L ..I.. .J. -•- .J.

f I
I I -' .L __I -' , I

__._ ,. __I ...I. .J. -' ..J.

v I ,. -• ...I. ..1. _._ _._ ..J.

q I . t J_ _._ _I t I
T

' I
_L _L
T

..1. _.._ t

v I
L _I_ I _I_ I

I f I ..1. ..1 ..1 _l

v I
_I I ...&. ..1 __I

9
I

I
_I " -1. ...l _L _l_

v I
_l _)_
T

...&. ...L _J_

fl I l t _._ _l_ I , I
J. -• t ..1 -1. _l

t I
J __._ .1 __._ l.

'I I
I I I

"T
...l ...I.

-·· _L y
I

l -1.L ..J.

~ T
I _J t _l_ .L __I_ , I
I . . ' I

9 I . _._ I ' I

9 I

I
J l ...I. __._ _l _L , I

I I --•- __ L

-··

Q. ••
0 fit~
~(.)j

'
'~ ,
'IZI
' 9JXI
v

q~
v

·~ ,
tfX]
i

</ JXI
v
vJXJ
v
~lZI
v
Q lZJ
v

9 ~
~

f ~
\?

9 ~
v
fl ~
p

f c>Z1
v

' ~

0~~9

-28~q~47

OOOO~Loc~6363

Yes~-><~--- NO--~-----

Royal M<?Bec C~orporalion Jan. 57

.)

Page 1 ol' 3

This Subroutine was developed by the Librascope Computing Group

DATA INPU'i' NO. 2 SUBROUTINE
(Program 11.1)

FUNCTIONS:

1. To input a sequence of 11 N11 signed seven decimal dieit numbers,
each with the same decimal point, conve1·t to binary (all at the
same q) and stor~ sequentially in M, M + 1.'.

OH

2. To input one signed seven decimal digit integer and convert to
a signed binary integer at q = JO.

I. SEQUEN'rIAL FILL:

Input.:
11 N11 signed decimal numbers on tape and the hexadee:irnal code word
in the accumulator.

Calling Sequence:

Loe. Inst. Add.

ct - 1 B L (Code word)
C(R

a(.+ 1 u
O(+ 2 etc.

(10 + 0121) 10 ·Track 01, Sector 21.
(Lo + OlO!i) 10 'I1rack 01 , Sector Oh.

ct- 1 need not contain
that leaves the code word

a B order. Any order or sequGnce of ol'der::i
in the accumulator is permlssihle.

'11he code word must be in tho form: n1 n2 n3 C m1 m2 m3 rn4.

N = (111 n2 n3) = number of words to be filled (in hexadecimal
at q = 11) O<N<20J.i8.
C = characteristic of numbers to be filled (number of integers)
o~c::: 9. See correspondence of C and q under "Output.
M " (m1 m2 m3 m4) = First address to bu filled (in hexadecimal at
q = 29). .

Examples_:

1. Code word OOF:m200 means fill 10 (F) words, starting in
0200 with decimal m1mb<:!r'S of the form + XXX .XXXX (stored at q ~;:: 10)

2. Code word OJ18051J.
N = (31)1' - Ui9)

. l) 10
c = B
M = (051J) 1 t = '{0507)

o JO

).hri./r''··
.l; ··- ': .> (

(Data Input No. 2 Subroutine continued)

Fill 0507, 0.508, ••••• , 0?55 with the nl!xt li9 decimal words
on tape·.. Words are interpr0ted as +XXXXXXXO (stored at q = 27).

Output_:

Binary" representation of lmrds on t<J.pe: .f'.n ll~d rJ\:;qucntia11y
begirming in location I1.

c ~ De; c irr_~El...~:i~!rd s _.in t.e2yre te d as:

0 0 ·j· • XXXXX}:X.
l h + X.XZXX/:X
2 7 + XX. •. :< X;\XX
J 10 + x:(X .Xi(XX
h 1.l.1. + :f~{ ;< >'~ • ~~):X
5 17 I .. ;,;~\)CG .• X7
6 20 ·i· .i·~ x xx_~, x. ,{
7 2Li XI'.,< XX.~X •
8 27 + xxxxxxxu.
9. 30 + xxxxxxxoo.

Exit:

After all words have been scaled and stored, the routine exits to
cl+ 2.

Accuracy:

+ 1 at ~ = JO for 0<C<6
Exact conversion for 7<C<9

Time:

45 to 55 words per minute.

Noto:
If the hexadecimal code word is on tape, .replace the cil-1
j .. nstruction of calling sequence by the instruction$ POOOO
and IOOOO.

II. ONE WORD INrrEGER CONVl~HSION :

Input:

On_e signed. decimal integer on tape in the form + XXXXXXX.

Calling Sequence:

Loe ..

~

d. + 1
Q. + 2

Inst.

R

u
etc.

Add.

(Lo + 7)1 0

)

j

l.

Page 3 0£ 3

· (Data Input No. 2 Subroutine continued)

Output:

Binary integer at q • 30 in accumulator.

!9c.uracy:

Conversion ie ex~ot.

PROGRAM STOP:

·Loe. Meaning

Divide check in scaling data word.
I NI ~ 2q

. STORAGE1

89 locations of instructions and constant~.
~o temporary storage.

NOTE a -
, Leading zeros of a positive numbe~ need not be punched. To enter
all zeros merely punch a atop coda, 1ll digits of a negative number
must be punched,

"3/26/57

FUNCTION:

DATA INPU'l' NO. J SUBROU'l'INE
(Program 11.2)

Page l of 3

To input groups of decimal numbers from tape, each group with t!1e
same decimal point, convert each number to binary, all at the same q,
and store in consecutive memory locations. This differs from Inp~~ No. 1
in that each group of nrunbers, rather than every n'..lmber, is preeodcd by­
an identification word. 'l1he identification word contains P, _: q, and the
location for the first number to be stored. All follmdng numbers of the
group are filled sequentially at the same P and q. A "minus z0ro 11 mtmbcr
will terminate the group, and .. another identification word will be read

'· (S~e examples for 11minus zero" .format).

CALLING SEQUENCE: (Same as Input No. 1)

Loe. Inst. Add.

c:(
H (L6 + 8)

¢+ 1 u Lo 10

c(. + 2 e tG.

EXIT:

A zero identification ·word (norma11y prec;13dod by a minus zero
number) will cause the routinE: to exi·~ to ct. + 2.

TIME:

· 45 55 words per minu Lt;

S'I10RAGE:

192 locations of instrw:tiorw and corwtants.
(J tracks).
Five locations of temporary storage.
('l1rack 6J, sector 00, 01, 02 _, 03, OL~)

. PROGRAM STOP:

Loe:.

Divide check in scHling
datn word INI ~ 2q .

Page 2 of 3

(Data Input Nooi 3 continued)

(See LGP-30 Data Input. 3 Load Sheot)
' \

EXAMPLES:

Group No. 1.. Place +96.40236 in d1'1Dll location 6234 at q = 7
II -JQ e00QQQ ti II ti 62)5 II II

II +Q) .14159 It II II . 62)6 II II

II -21._50000 II II It 62) 7 II II

The minus zero cause a idGntif'ioation word No. 2 to bf~ read.

Group No. 2. Place -"000000597 in drum location 2363 at q ;: -lh
II +o00Q0Q9Q0Q II II II . 2400 II II II

· u + 0000060000 '1 II II 2401 fl II II

The minus zero causes identification word No. 3 to be read.

GrouE.N~-· Place +330000 in drum location 2100 at q =JO
1The minus zero ~mrd caunes ideqtification word No. 4 to be read.
Identificati:m word No. !i is the eA.-tra stop code punqhed after
the last number (see bottom of load sheet, 11 Yes11 is checked).

This enters a zero identifica·fiion word, so the subrout.lne
exits to (CC.+. 2).

See Data Input I write-up for II Scaling"' 11Table of p vs q"' and 111rn.p:-J
Punching Instructions11 •

11./J /r._;7

ffiP-30 D.t\TA LOAD SHEET Page _..;L_ or.di_

Job No. ____ Prog. No. //.;t Prepo by ______ Ck 1do by ____ nate ____ _

INPUT #1
OR

INPUT·# 3

Quan.

! _._ . ._ ..1. v.._.:3 0 O_.O __ p ~,0 f~
I _J_ _L I • , : 3_L / _L -'/, I _J_~_L f

11 I , a--! ,, I / t l'\../1
• • _L 1 '""_J_ _. ..:>. tJ_.o. a. o 161

I • • • -'- ' b_ o. o_l o • o_.l tJ __l_ CJ_J_ o f

I 9 -i ~ 9
_l _J_ t _J_ __ t ! t _l I_ / _L ()I o. 0

' I v 1 ?1'71
_ _J_ I • _J_ I _L __I_ -• • 16.1
I t I v

t--:--~--lir--f-'.....Ll._-f--l.1_,,Jl~_LL-.J--J--1 I _l _l L 1 I

~ __I_ - I I _l ' --~ I __L _l .l 1 ? (ZJ
I '
I I I I v : I I I I I I v
~i •• _, 9 ~ •-'~ ,_,' i)<J
I J_ .I • _l ' . ~ ~

0~~9

-28~q~47

OOOO~Loc~6363

P\lnch a stop code after t.he last number? Yea X No ---

Royal M9Bee Corporation Jan. 57

FUNCTION:

DATA OUTPUT #1 SUBROUTINE
(PROGRAM 12.0)

Page 1 of 2

To convert and print a nine decimal digit number plus decimal point
and sign (sign if the number is negative).

INPUT:

The number to be printed in the accumulator and a code number in
storage location~ 2 to indicate the number of integers before the decimal
point.

CALLING SEQUENCE:

lee.

o<- 1 B
· . .(R

o{1· l u
c{+ 2 z
o< + 3 etc.

Add.

L(N)
{L0 + 12)10 L 0 oooc

°"- l need not contain a bring order. Any
argument in the accumulator is permissableo

order which leaves ~he

C denotes code number and may be 0 thru 9.

OUTPUT:

Nine decimal digits plus a sign (or space :!f the number is positive)
and a decimal point.

CODE NUMBER:

MISCELLANEOUS:

c
0

l
2
3
4
5
6
7
8
9

q of No.
0
4
7

10
14
17
20
24
27
30

Output
.xxxxxxxxx
x.xxxxxxxx
xx.xxxxxxx
xxx.xxxxxx
xxxx.xxxxx
xxxxx.xxxx
xxxxxx.xxx
xxxxxxx.xx

·XXXXXXXX.X
xxxxxxxxx.

Each binary number is scaled and converted as a fraction. The code
number is used by the routine as a print stroke counter. The only format
control is a tab after printing. _It is safe to print inunediately on exit
from the routine. After printing control is returned to ~+3.

Printing takes about 1.5 seconds including the tab.

10/29/56

PROORAM 12.0

DATA OUTPUT #1 SUBROUTINE (cont'd)

ACCURACY:

Page 2 0£ 2

Maximwn error is one in the ninth printed digit.

STORAGE:

96 locations or instructions and constants.
No temporary storage.

PROGRAM STOP:

(Lo+38)10 Argument// lOc

Rev. 1 (12-13-56)

,.

J

I

)

1
J

l

.J

J

FUNCTION:

DATA OUTPUT NO. 2 SUBROUTINE
(Program 12.1)

Pnge 1 of 2

To pr.int one or more groups of numbers in decimal form. Each
group ha~ the same binal point location (q), and all numbers are
printed from ~onsecutive memory locations.

INPUT:

One or· more· groups of numbers to be printed, the initial location,
the number a·f numbers in each group, a~d the binal point location (q)
of each group • ·

CALLING SEQUENCE:

Loe.

oG - 1
«.

cL + 1
c(, + 2
c:(+ 3

[(ct+ 1) +i]
[(c(+l)+(i+l)]

Inst.

B
R
u
z
z

z
etc.

Add.

L(lst. No.)
Lo + 5
Lo
N1q1
N2q2

,N.q.
J. 1

Ni = number of wor·ds in group .i. Ni is placed in the track
position (in decimal).. 1 < Ni < 63. - -

qi =·binal point location of the i 1 th group. qi is placed in
the sector position (in decimal) o·~ qi:: 31.

OUTPUT:

Printed decimal representations of the numbers specified. Each
01,1tput number will consist of a sign (space or minus), eight (or more)
decimal di8its and the decimal point. A tab is given after each number.
There will be q/1-i (rounded) ~-== J printed integers unless the number
to be printE:d will not fit at that J. If the number is too large,
J is increased by enough to accommodate the numbtJr. rrf1e numbt:n· of
decimal places will be. 8 - J (~· 0) • If more than t-1ight i~tegers are
needod to express the nmnber, J. will be increased and no decimal places
will be printed •

EXI'l1
:

The routlne exits to the first 11 non - Z" instruction.

J11l2 /~7

J

l
J

J

l

J

.)

)

)

J

J

Page 2 of 2

EXAMPLE:

Loe. Inst.i Add.

o(- 1 xB 2100
0(xR ;<!+ 5

0(+ 1 xU ofo1 C(+ 2 xz (1)
o(+ 3 xz 1015 (2)
0(+ 4 xB ;r (3)

The above calling sequence will cause this subroutine ··to:

1. Print the contents of 2100, 01, 02, and ·03 ~s +XX.XXXXXX or
+XXX.XXXXX. J = 7/4·(rounded) = 2. If.·one or-more of 'these .. numbers
Is· too large, J will be increas.ed to 3 for that number.

2. Print the contents of 2104, 05 ••••• 13 as +XXXX.XXXX unless
one or more of these numb8rs i~ too large~ The number(s)
which overflow J = 4 will be printed as .:!:.XXXXX.XXX.

3. Exit to CC+ 4, which is the first 11 non-Z" order following the
calling sequence.

PROGRAM STOPS:

None.

ACCURACY:

Output is exact (and rounded). for eight printed digits.. When nim=.?
digits are printed, the output will be in error by 5 or 6 in the ninth
place.

STORAGE:

1l1 IME:

l(:D locations of instructions and constants (2.1/2 tracks).
No temporary storage.

Approximately JO words per minute.

RANGE:

The number to be printed must be within the range -109 <N< 109.
q must be within the range 0 2 q 2 31.

L~/12/57

Page l ot l

FUNCTION:

HEXADECIMAL PUNCH OR PRINT
(PROORAM 1.3.0)

L. To print the contents of consecutive memory locations, or
2. To punch (and print) the contents of consecutive memory locations.

INPUT:

Beginning and final locations in decimal.

OUTPUT:

Hexadecimal representatiqn of the contents of memory locations L0
through If• Output is six words per line. Leading zeros are not punched
or printed. When a memory location's value is zero, the flexowr~ter exe­
cutes a space if the "transfer controltt button is down. 'When the Transfer
Control button is up, the routine punches a conditional stop code for a
memory location that contains zero. When punching, an identification
word {for use by the program input routine) is punched as the first
word on tape.

FORMAT CONTROL:

Depressing the "transfer control" button· on the computer console
causes the routine to space between printed words. Othe:rwise stop codes
are punched after each word. If the transfer control button is down the
carriage is returned before printing. If it is up the control word is
punched. The control word consists of v N M, where N is the number of
words in the record to be punched, and M is the initial location. Both
M and N are in Hexadecimal. 00116'-'N~ 7wwi6• e.g., vl4j2k00 ~ denotes .a
record of 332 words beginning in location 4500. This word is recognized
and used by the program input routine {Program 10.0) as a hexadecimal
fill instruction.

PROCEDURE:

1.
2.
3.

4.

5.
6.

TIME: -

Depress "manual input0 button on the flexowriter.
Transfer to the first location of this routine.
After the "manual input11 light turns on, type the initial and
final locations {in decimal) into the keyboard.
Make sure the transfer control button is in the correct position
- up for punchout - down for printout.
Depress "punch on° switch on flexowriter for punchout.
Depress Jc,he 11start comp. n button on the flexowri ter.

Approximately 45 words per minute.

STORAGE:

158 locations of instructions and constants.
No tempora:ry storage.

"JJJ/29/56

J

1
I

J

' J

j

l
J

l
J

l

FUNCTION:

HEXADECIMAL PUNCH OR PRINT NO. 2
(P~ogram 13.1)

Page 1 of 1

This subroutine functions and operates the same as program 13.0
with the exception that after punching has been completed ("trans.fer
control" switch up), this routine computes a check sum and punches
it as the last word on tape. This check sum is intended for use by
programs. 10 .. 1 and 10. 2 which determine whether the conten·t of' the tape
has been correctly recorded on the memory drum.

TIME:

'rhe check sum is computed at approximately 7 seconds pc;r track.

S1'0RAGE:

204 locations of instructions and constants. (Three tracks and
12 sectors).

No temporary storage.

3/29/S?

IrUNCTION~ -------

SIN=COS SUBROUTINE
(PROORAM 1400)

?oge l of l

To compute the sine or cosine of any given angleo A 9t,h degree
polynomial approximation is usedo. The argument must be in degre·es and
will be reduced to the first quadrant equivalent before computation
ot the f unctiono ·

INPUT~
,,

One word in the accwnulator at q = 9o

OUTPUT:

One word in the accwnulator at q = lo

CALLING SEQUENCEi

SINE

loc., Ins to Add Loce

o{ ... l B L (Argo) °(.. l
D{ R (~o .+· 49) o<.

c{ i· l u L lD o<+ l 0
o\ + 2 etc lb o~+ 2

COSINE

B
R
u
etc a

eA 1 need not be a B order,, Arry order or orders that leaves the
a:rgwnent in the accwnulator is permissab.leo

ACCURACY:

The maximum error is approxiJna·te]y 5 x 10-7 0

'i'Il1E: -----
250 ·to 275 M.50

STORAGE:

64 locations of instructions and constants. 6 locations of tempo·""
i•arcJ s·torage (Track 63, sec·hors 02, 041 0.51 06, 07, 45) e>

10/29/c;,6

FUNCTION:

SQUARE ROOT SUBROUTINE
(PROORAM l5oO)

Page 1 o£ l

To compute the square root of any positive nwnbere The argument
may be at any ~ q, and the output will be at q/2.

One word in the accumulator at any even q.

OUTPUTi

One word in the accumulator at q/2.

CALLING SEQUENCE:

Loce Ins to Add.

o(. - 1 B L (Arg.)
~ R (Lo + 50)

10
o(+ 1 u Lo
0(. + 2 etc~

o<....,. l need not contain a B orde1•. Any order or orders that leaves
the argwnent in the accumulator is permissableo

ACCURACY:

Answer is correct to 30 bitso

TIME:

Varies f1·om 500- 750 MS.

STORAGgi

6h locations of instructions and constants. 5 locations of tempo­
rary storage (track 63 1 sectors 19~ 20 1 21, 23, 24) ..

PROO RAM s·roPs:

·Loe. Meaning

Argument is negative" A start exits, with zero
in accumulatorc

A single bit in the 30th position will be treated as zero.

Rev. 3/26/57

FUNCTION:

ARCTANGENT SUBROUTINE
(PROORAM 16.0)

;

Page l of l

To compute the arctangent of any given number. A 15th degree polynomial
approximation is used. The output is in degrees, and the principle value
will be given (first or fourth quadrant).

INPUT:

One word in the accumulator at q : 9.

OUTPUT:

One word in the accumulator at q : 9 (degrees).

CALLiln SEQUENCE:

Loe. Inst. Add.

o(. l B L (Arg.)
0(R (to + 51)

o(+ l u L 10
o<..+ 2 etc. 0

~ ~ l need not be a B order. Any order or orders that leaves the
argument in the accum~la~or is permissable.

ACCURACY:

Maximum error is 5 x io-7. The output will be between o0 and 89.90°,
because the argument cannot be numerically greater that 512. If the pro­
grammer wants his output to come closer to 90° he can modify the routine
by changing (I...+ 56)10 and (L0 +· 59)10 from 1 and 2, respectively, at
q = 91 to 1 anCl 2 at some greater q2• Then the argument must be at q2•

TIME: -
320 milliseconds.

STORAGE:

64 locations of instructions and constants. 10 locations of te:mpo­
~ary storage (track 63, sectors 04, 05, 06, 071 OB, 091 10 1 131 50 1 51).

10/29/56

Page l of l

FUNCTION:

EXPONENTIAL SUBROUTINE
(PROORAM 17.0)

To evaluate the function Kx, where K = 2, e, or 10, and -l:X~l.
To obtain higher values of the e.xponentiel function, multiply the out -
put of the subroutine K to the integer part of the exponent.

EXAMPLES:

INPUT:

102.5 = 102. • J.b.5
2-3.5 = 2-3 •• 2-.5

ex.xx = eX• • e•xx.

One word in the accwnulator at q • 1.

OUTPUT:

One word in the accumulator at q = 4.

CALLING SEQUENCE:

Loe.

°" - l B L (arg.)
0(R (Lo + 09)~:0

~ + lj u lLo for 2 · ·
o<. + 1 u (Lv + 2) 10 for eX
~+l u {Lo + 3)10 for lQX
o< + 2 etc.

o<·- l need not contain a B order. Arry order or orders that leaves
the argwnent in the accumulator is permissible.

ACCURACY:

Answer is correct to 5 x 10 -8.

TIME: -
25$ to 285 1£.

STORAGE:

63 locations of instructions and constants.
No temporary storage.

Rev. 1(12-13-56)

FUNCTION:

LOOk X SUBROUTINE
(PROORAM 18.0)

Paee l of l

To compute the logarithm of any given number to the base 21 e, or
10. A 7th degree polynomial approximation is used. The argument must
be positive. K, the base to be used, must be specified in the calling
sequence.

INPUT~

One word in the accumulator at a positive q.

OUTPUT:

One word in the accumulator at q=6.

CALLING SEQUENCE:

a{_ 1
q

o(+ 1
o(+ 2
o<. + 3
o(+ 4

B
R
u
z
z

L (arg.)
(Lo + 24) 10
Lo Lo a Initial location of Subroutine.
q q : No. of places in argument.

etc.
K K : (0 for log 2X)

(1 for ;Log ex)
(2 for log 10x)

cl..- l need not be a Border. Any order or orders that leaves the
argwnent in the accumulator is perrnissable.

NOTES:

The argument must he greater than zero. q, the number of places
in the argument must be in the range O~q~31. If K, the type of output,
is not equal to 0 or 1, the base 10 will be used.

ACCURACY: .

The error is 3 x lo-8.

PROO RAM STOPS:

(Lo + 8) 10 Argument is zero or negative.

TIME:

Approximately (445 + 30 N) MS, where N is the number of leading zeros.

STORAGE:

122 locations of instructions and constansts.
No temporary storage.

10/29/56

FUNC'rION:

ALPHANUMERIC OUTPUT SUBROUTINE
(Program 19.0)

Page 1 of 3

To print (or punch and print) alphabetic and/or numeric information.

INPUT:

A set of code words, where each code word consists of 4. alphanumeric
output codes.

CALLING SEQUENCE:

Loe.

o(

o(. + 1
C'(+ 2

.
(C(. + 1) + n
(c\.+·1) + (n + 1)

Inst. Add.

R Lo
U Lo

[c o d e w o r d]

[code word containing VQ]
eti:!.

Where n is the number of code wo·.L"'d::;.

EXAMPLE:

PROGRAM lHPUT
CODES

,

0 dt> 00 03 I

LOCATION
INSTRUCTION

0 P. ADOt;:ESS
CONTENTS OF

ADDRESS
NOTES

~~f--f--~~~~~~~~~~~~~~~--t

This calling sequence will perform a carriage return, print 11 LGP-J0 11

and execute a tab.

3/29/57

Page 2 of 3

(Alphanumeric Output Suoroutine continued)

OUTPUT:

Printing (or punching and printing) of alphanumeric characters
selected.

ALPHANUMERIC OUTPUT CODES:

(See page.3 of·this write .. up)

EXIT:

The routine will exit to the location following the location
containing tl1e exit coJe (VQ).

STORAGE:

58 locat,ions of instruction..> and constants.
No temporary storage.

·TIME:

About 400 characte~s per minute.

NO'l1E:

An increase in output speed can be obtained by switching the
instruction in location 0035 with the one in OOJ6. 'rhis will raise
output speed to 475 characters per minute. But this ·change requires
that'there not be a long carriage return or tab code as the 4th code
of a code word.

3/29/57

Page 3 of 3

(Alphanumeric Output Subroutine continued)

6- BIT ALPHANUMEHIC OUTPUT CODES

) 0 04 Aa 72
L 1 OJ Bb OF
* 2 14 Cc 6F

II J lJ Dd 2F
D. 4 24 Ee 4F
~ 5 2J . Ff Sh

• 6 34 Gg 5J
2(7 3J Hh bi. r. 8 44 Ii 22

(9 4J J ;j 64
Space 06 Kk 6J

OA 11 OJ

= + 16 Mm 3F

} lA Nn 32
? 26 Oo 46

] . 2A Pp 42
(' 36 Qq 74
TAB JO Rr l:F'

Lower Case 08 Ss 7.'i'
Upper Case 10 Tt .:.d
Color Shift 18 Uu 52

Carr. Ret. 20 Vv 3A
Back Space 28 Ww ?J

40 Xx 4A

Leave Routin.e VQ Yy 12
Zz 02

4/3/57

Page l of 2

FUNCTION:

ARCSINE - ARCCOSINE SUBROUTINE
(Program 20.0)

To compute the arcsine or arccosine of any given value bet\oieen
-1:: X ~ 1. A 6th degree polynomial approximation is used.

INPUT

One word in accumulator· at q = 1.

OUTPUT:

One word in the ~ccumulator at q = 9 in degrees.

CALLING SEQUENCE:

Loe. -
q.. _ 1

c/. ...

0(. + l
Q(.. + 2

Arcsine

Inst. -
B

.R

u
etc.

Add.

L(arg.)
. (Lo + 21) 10

Lo

Loe. -
of- 1

c(;,

cl.+ 1
o(+ 2.

Arc cosine

Inst.

B
R

u
eto •.

Add. -
L{arg.)

(Lo + 21)10

(L0 + 02ll)i
0

·

* i. e • track 02 sector 11
°'- - 1 need not be a B order. Any order or orders that leaves the

argument in the accumulator is permissable. ·

ACCURACY:

The· maximum error is ap~roximately: 5 x io-7

TIME: -
350 to 375 ms.

STORAGE:

160 locations of instructions and constants. ll locations of
temporary storage (track 63, sectors 12, 15, 16, 17, 18, 19, 20,. 21,
23, 24, 28) ..

PROGRAM STOPS:

Loe. - ·MeaninS,

(10 + 0161)
10

. Argument is larger than l at q ::s 1.

Page 2 of 2

.NOTE:

·sitlce the square root subroutine is required for the evaluation
·of either. arcsine or arccosine,·the coding for the fonner (Program 1.5.0)
is·included in this program.(20.0). In those ·instances in which ·the
square root ,subroutine is independently required, the following cal~ing
sequence may be used for squa~e· root extraction:

Loe.· ·-
o(: .. 1
.o(.

oC + l.
o(·+. 2.

Inst. Add~ - -·
B . L (Arg.)
R .. · (L

0
+ 0150)

10
·

.U (L0 .+ 0100)10
etc.

For· further information. on .. the sq"Q.are ... root subroutine see program
15.0.· . . ' . .

DECIMAL Mc~MOHY PHIN'l'OU'J.1

(Program 21..0)

Page l of 2

FUNC'l'ION:

To print the contents of cons(~cutive memory locations in dncimal
form.

INPUT:

Beginning and final. locations and the modifier (all in decimal) •

A. Locations:
The printed location is equal to the real location mim1.s

.the modifier used •

. B. · · Instructions:
1. With modifier.subtracted if .. in ·tho range

Modifier < Address < Final location.
' ' -

2. If in the range Modifier·> Address > F'inal location.
a. Instruc·tions are preceded by an 11 x11 if modifier I 0.
b. Instructions are not preceded by an 11 x 11 ·if modifier - 0.

C. Data:
l~ In decimal (at q=O) if transfer control button is up.

a. Decimal data prc~ceded t•Y sign and decimal .point.

2. In hexadecimal if transfer control butt.on is down.
a. Hexadecimal data preceded by a conuna.

Output is six words per line· prece·de<;i by initial ·location of the
line. Words are separated by spaces. ·The sign and decimal point are
printed for decimal data words and a comina is printed for hexadecimal
words. Two carriage returns are given before and after printing.

·Note_:
Data printed in this manner can be ·converted to. its
real decimal valuo by multiplying by 2q.

Page 2 of 2

(Decimal memory printout continued.)

PROCEDURE:

1. Depress "manual input" button on the Flexowriter.

2 • Tr·ansfer to the first location of this routine.

). Ar-ter the "manllal input" light comes on, type the initial and
final locations (in decimal) into the keyboard.

b. ·Depress the 11 Start Comp •11 button on the '£i'1.exowri ter.

S. After a space is given and "manual input" light comes
on again, type in modifier·in decimal.

6. Make sure the "transfer, cortrol11 is in the desired position -
up for decimal data - down for hexadecimal.

7. Depress the "Start Comp. 11 button on the Fle:x:owriter.

8. The position of tt:e "transfer control" button may be changed
at any time to change the output format 'or non-instructional
words.

TIME:

Appr(Jximately 60 words per minute •

. S'l'OH.AGE:

256 locations of instructions and constants (4 tracks).
No temporary storage.

3/28/57

FUNCTION:

COMPLl~X OPrmA'l'lON SUBROU'l.'INE
(P:t'l)g.rwn 22 .o)

Page 1 of.')

rro interprot and ei-~ecute the :ln!.i'Lr·uctions B, A, S, M, D, H .:~.lid G
as if they were complex upm'a. ti.on :ius t1·ue tion!:i I'G:f.\;1•1·lng Lo a ttw WtH'd
abstract ac;cumul.utov. 'fo p1·ov'ide for sh) rtl.ng the abst1·~1d. aci.!urna1nt•Jr~~
to the l'ight:. 01· left, f'1·om 0 to 10 places. To J.H:n·m.it addrd~t> mud:ll .. i.r~at,ion
of instructions and test for the f'ina1 ·address \dLhout leaving the cornplm:
operation mode of' programming.

INPU'r:

Real m.1d imaginary par;ts of l.L complex rrumber must bi:~ carried at
the same 11 q 11 and Un i.n consc1cutlvu mmnnry locat.iorw. {Le . .rt::;al in ?I;
imaginary in ~ + 1.) •

OUTPU'l':

Real arid imaginnry ptrcts o.f' a comIJl e.K number placed i.n memory
locations spcci.f:Led by the program. Seo progranuning sec{ion of· this
subroutine.·

PROGRAMMING:

Loe.

cl-.

Cl(+ 1
d.+ 2
G(. + J

cl+ n
d. + n +1

Inst.

R
u

Xl~
etc.

Add.

Lo
L

complex oparation
instructions

11 cx.1.t11 instruction

After execuUng the R Lo and U Lo irwtruetinns (where Lo is first
instruc·tton of' the complex operat.ion subrouti.ne) the computer interprets
and executes instructions as defined below. For simplicity ''m" if3 defined
as a complex memory address (i.e. memory location m and m + 1) and m'
is defi.ned as a standard one- ~vord memory address.

4/11/57

ORDER ADDRl~SS

B m

A m

s ltl

M m

D m

H m

a m

u m

Page 2 of S

I N'l1 l~RPHE'f A 'I1I ON

mnNG
Contents of m
replaces the content~ of tho aLstract
.accumulator~.

A.UJJ
Content.::., or atrnLrcu:L t11~cumul.:1LOI"U 1•l U~i
t,;unt611t::> ol' m l'L~},l.n.r.e;;.; Liu; ,.:•JnLi:nl.;. (~r

the ausld'LJc·L ui..;l;Umu.lal.u1·~.

SUBTRACT
Conte·nts of abstract eiccumula tor·s minus
.contents of m replaces the contents
of' the abstrac L aucwntilator::.i. ·

MUL1rIPLY
Contents of abstract accumulators ti.mes
the cC>ntents of m replaces tho contents
of the abstract accwnulators.

DIVIDE
Contents of abs·tract accumulators divided
by contents of m .raplacen the contents of
the ab::>tract accwnulators.

HOLD
Record the contents of ·the abstract
accumulators into location m. Contents
of abstract accumulators unchanged.

CLEAR
Reeord contents of the abstract accumulators
into manory location m. Abstract
accumulators are ·then set to zero.

'UNCONDI'l110NAL 'rH.ANSFER I

~he next instruction'to be interpreted
is located in location m'

Tha users attention is called to, the·
fa.ct that after the executi.on of this
instruction the computer will continue
to execute orders in the complex operation
mode. ~'bis inst.ructfon may not be used
as an exit from the subrouhino.

4/12/57

OHD!~R

XE 0000

Pag<.~ 3 of. 5

Ji~XrI1

l.1~xit from t}H:.i eomJJlux. operat.ioll mode
of in Lerpretlng instruc;tion and bc~gin
executing instruetions in conv-r:rnti.onal
11 machine l'anguage" with instruction
following Xf!~ 0000 instruction.

To facilitate the prograwnors task of address modification; this
subroutine contains a special address aecumulator. 1rt1e following four
instructions permit the prograrrnner to perform address modification
and test final address without leaving tho complex op8ratfon mode.

ORDER ADDRESS

E m

XI

y m'

xz

INTERPllE'f A 'l'ION

EN'l'ER
This instruction enters the address
portion of the word at m into the
address accumulator.

INCREMEN'r
This instruction increments the address
accumulator by r111T2 (track) and S1S2

(soctor) leaving the adjusted address
in the addresf,3 accumulator.

S'l'ORE AD DRE SS
This instruction stores the address
portion of the address accumulator in
the address portion of memory location
m, • '11he address accumulator in un­
;11 torcd.

Z~RO 'l'EST AND JUMP
If the address portion of the address
accumulator is equal tu 1f1 T2 S1 S~ the
following instruction is skipped.
When T1T2S1S2 dif~ers from the address
accumulator the instruction following
XZ T1T2S1S2 is executed. Note that this
comparison is based only on the address
.portions.

Since the basic arithmetic operation A, S, M, 3nd D obey the
conventional 11 q 11 laws, (as established under 11 Scaltng" in t.t1is manual)
it is still the responsibjJ i.ty of' tht1 programmer to provlde tlrn proper
binal point manipulations. To f'acilitatn shifting to the r.ight or
left, the following instructions are provided.

1.i/12/57

XR

XP

11 H.i.ght Sh:U'-L" -- 'l'h.i.8 1.n~tructJ.on
w.i.11 sh:U't the al>stra(;t. acc.:umulators
"rq n2 11 pl aces to the-: rj ght. Whero
11 n1 n?" .i ,:; an :l.ntf~ger in thn range:
u~ 111 n~·:{ln

11 LefL ~ih1.1.'"L 11 -- 'l'lr.L:..; .i1rntrw.:Lior1 Hi JI
slr.ift thn n.bstraet :1c~1"'.umulal.or;; ''!1-1 t•;i''
p"l;il'.f':; to Ltit· /(~fL. 'i-!t1~J'.'·~ 11 1q_r1211 i~; an
ihteger lll t.tw I'Clilgl!: 0~~Cl]_D2~:10

NOTES:

1. The transfer control button feature was not programmed into
the subroutine. Use of the -'11 inst.ruction wHl result in
a halt.

2. In the explanation of orders above, use was made of the "X"
to prevent modification of the corresponding address. If

I

modification .is desired do not precede the order with "X".

3. Use of tho order 11 '1' 11 will result in a programmed halt.

4. Use of EOOOO for the first complex operation instruction
is forbidden.

5. Shifts exceeding 10 places will be incorrectly interpreted.
The table may be expanded to include large shifts if the
user desires.

Error Halts
Lo + 0122 (track 01 sector 22) T instruction given.

Lo + 0154 (tract 01 sector Sh) T instruction given.

Lo + 0135 (track 01 sector· 35) N tnstr\1(~tion given.

SI10RAGE:

192 locations of instructions and constants (3 trnuks).
No temporary storage.

ACCUMULA'l'OR LOCA'!'IONS:

Lo + 0059 Real Accumulator
Lo + 0033 Imag1nary Accumulator
Lo + 0219 (track 02 sector• 19) Addr0ss Accumulator.

TIME:

The following table gives tho approximatn t.trne required to execute
each instruction. 'l'he times g"i.von are rnnxtmum times and i.n prnctiee
will be sJ:ightly less than the times g:I. ven.

J,h 7 /K7

Pago 5 of 5

'ORDER DRUM REV. TIMLi~ (ms.)_

B 11 18'/

y 8 136

R lh 238

I 6 102

D 41 697

NI 11 187

N::: 13 221

M 22 374
p 17 289

E (enter) 9 153

E (exit)· 6 102

u 8 136

c 14 238

H 14. 238

A u~ 238

s Hi 238

4/12/51

FLOATING POINT INTERPRETIVE SYSTEM
(Program 24.0)

PART l

SECTION I: FUNCTION

Page 1 o.f 11

The function of this floating pdint system is .the reinterpretation
of the LGP-30 fixed point order structure so that it may be progranuned
as a floating point computer. This reinterpfetation is effected by:

(1) The provision of a multiplier register and·an address
register as well as a floating point accumulator.

(2) The provision of more types of orders including cumulative
multiply, shift, sign change, and function generating orders.

(3) A broadening o;f.' the scope of certain instructions such as
the input instruction and the print instruction.

SECTION II: GENERAL CHARACTERISTICS

Floating point programming has several advantages over fixed
P.oint programming in that it is more rapid, does not require an
exact knowledge of the range of magnitude of the variables, and does
not involve as much truncation of the smaller values when that range
is large., Thirty-three orders are provided for in the system. .All
of these orders ex:.cept input, output, sine~ c·osine, arctangt:mt,
logarithm, and exponential are. included in that section of the system
known as the floating point interpretive routine. This routine requires
only 10 out of the 64 tracks of LGP-30 memory leaving 3456 words
available for problem program and data storage. The input and output
orders require 6 tracks and the floating point·functions require 7
trac~s. The entire system leaves 2624 words of memory left for
problem·program and· data storage.

Generally the eAecution of a floating point program will take 10
to 20 times as 1ong· as the execution of the corresponding fixed point
program.

Times for the execution of the individual floating point orders
are included in ~he summary tabul.B.tion at the end of part 2.

SECTION III: REGISTERS

(1) The floating point accumulator occupies 2 words
of memory, one for the characteristic of a floating point
number and one for the exponent·. The floating point accumulator
is similar in function to the fixed point accU:mulator; ·it holds
intermediat~ results.

(2) The multiplier (M) register occupies 2 words of memory, one
for the characteristic of a floating point number and one for the

Page 2 of 11

exponent. The multiplier register holds the multiplier for the reset and
multiply order and for the cumulative multiply order.

·(3) The address accumulator occupies l word of memory and holds
a single address or tally which is the same in form.as for fixed
p9int operations.

(4) 1 The contents of none of these registers is changed unless
replaced by a new result. For example, the M register remains
unchanged following execution of a square root or multiply
instruction. Nor is the contents of any memory location changed
except'when affected as specifically noted in the order description
in the section that followse

SECTION IV: FLOATING POINT ORDERS

Thirty-three orders are available. The list of these order~ and
their meaning follows. In the following exposition the term 11accumulator11

refers to the two memory cells of the floating point accumulator as
defined above.

A. Arithmetic Instructions
Memory location XX.XX is the address of one floating point
number in standard form as defined in Part 2.

l. B XX.XX. Bring
The contents of memory location XXXX replace the contents
of the accumulator.

2. A XXXX. Add

. 3.

4.

6.

7.

The contents of the accumulator·plus the contents of
memory location XXXX replace the contents of the
accumulator •

S XXXX. Subtract
The contents of the accumulator minus the contents of
memory location XXXX replace the contents of the
accumulat~r.

D XXXX. Divide
The contents of the accumulator divided by the contents
of memory location XXXX replace the.contents of the
accumulatore

P XXXX-;- Place
The contents of memory location XXXX replace the contents
of the M register.

M XXXX. Reset and Multiply
The contents of the M register multiplies by the
contents of memory location XXXX replace the contents
of the accumulator.

N XXXX. Cumulative Multiply
The contents of the M register multiplied by the
contents of memory location XXXX and added.to the contents
of the accumulator replace the contents of the accumulator.

Page 3 of 11

8. D OOOy. Right Shift
The contents of the ·accumulator divided by 2Y replace the
contents of the.accumulator. The contents of accumulator
remain in floati~g point form•
0<y<9 - -

· 9. M OOOy. Left Shift
The contents of th~ accumulator multiplied by 2Y replace the
contents of the accumulator~ The contents 0£ accumulator
remain in floating point formo
0<y<9 - -

10. H XXXX. Hold·
Place the-contents of the accumulator in memory location
xxxx.

11. C XXXX. Clear
Place the contents of the ao.cumulator in memo·ry location
XX.XX an"1 set the. accum~lator to zeroe

B. Logic.al or Transfer' Instructions

12. U XXXX. Unconditional Transfer
The next instruction to be interpreted is in memory location
XXXX. This order cannot be used to exit from the floating
point interpretive system.

13. T XXXX. Test
The next instruction to be interpreted is in memory loc'ation
XXXX if the accumulator is negative·.. Otherwise the first
successive location will be interpreted.

14. 800T XXXX. Transfer Control
. The next instruction to be interpreted will be in memory
location XXXX if either the accumulator has a negative
characteristic or the transfer· control switch is down.
Otherwise the first successive location will be interpreted.

O. Address Modtfication Instructions
Looat~on XXXX :iJnplies a fixed point address.

lS s E .XXXX. 1~nter
The address portion of memory location XXXX replaces the
contents of the address.acoumulatoro

16. I XXXX. Increment .
The address accumulator is incremented by the address XXXX.
This order can be used to decrement the address accumulator
by complementing the addreaa portion of the I XXXX order.

17,. Y .XXXX, Store Address
The address portion of tha address aooumulator replaces the
oontenta of tho addrean portion of memory location XXXX.

Page 4 of 11

18. Z XXXX. Zero Test
The address of"the 11 zit instruction is subtracted from
the contents of the address accumulator. If the result is.
not zero, the first successive instruction is interpreted.
If the result is zero, the first successive instruc~ion
is skipped and the second successive instruction i·a

interpreted.

D. Auxiliary Instructions

19. R XXXX:. Return. Address
the location of this instruction is increased by 2 and is
stored in the address portion of memory location XXXX.

20. U 0000. Reverse Registers
The contents of the M register and accumulator are
interchanged.

21. B 0000. Set Sign Plus
The sign of the accumulator is made positive if not
already so.·

22. T 0000. Set Sign Minus
The sign of the accumulator is made negative if not
already so,

23. Y 0000. Change Sign
The sign of the acumulator is reversed,

24. Z 0000, Stop
Computation is halted unless break point switch No. 16
is down. Depressing the start button causes the next
instruction to be interpreted.

25. E 0000. Exit
Exit from the floating point interpretive system.
Control is returned to the location following the location
of the E 0000 instruction.

E., Input-Output Instructions

26. I 0000. Input
, Control is transferred to a floating point data input

subroutine which reads decimally(punched numbers on
tape, converts them to floating binary, and stores them.
The next instruction is interpreted a~er the proper
exit code has been read from tape. See Section V, Part 1
for tape format and input detailse .

27. P 0000. Print
Print the contents of the accumulator.· The contents of
the accmnuiator are not destroyed, See Section VI, Part l
for Output format.

Page 5 of 11

F. Function Evaluation Instructions
--...._..v-.,~----.............. ~ ,. •

28. R 0000. So1mre root
The squar'e "'roote.fthe contents of. the accumuiator re­
places the contents of the accumulator.

29. S 0000. Sine
The sine or·iJie contents of the accumulator replaces the
contents of the· accumulator,, The accumulator must be in
radian measure.

30. C 0000. Cosine
The cosine of the contents of the accumulator replaces the
contents of· the accumulator. The accumulator must be in
radian measure.

31. A 0000. Arctangent
The arctangent of the contents of the accumulator r~places
the contents of the accum~ator. Output is.in radian
measure"'

32. N 0000. Natural Logarithm
The natural logarithm of the contents of the accumulator
replaces the contents of the accumulator.

33. H 0000. Exponential

SECTION V:

The quantity ex replaces the contents of the accumulator~
where x is initially the contents of the accmnulator.

DATA INPUT FORMAT

Data input is accomplished by reading a prepunched decimal tape,
The tape consists of groups of the following:

1. One identification word. This consists of a sign and two
decimal digits for P, followed by four decimal digits
for initial location to begin storing the converted
floating point binary numbers.

2e Signed decimal numbers. Each number consists of a sign
(if negative) and seven decimal digits~

3. A llminus zero"·word. This consists of a minus sign followed
by seven zeros. This number is not stored in mel'Jlory, but
is used by the routine to signal the end o~ the groupo

A stop code must follow the last "minus zero" word. This is
interpreted as a ttzero11 identification (I.D.) word since it follows
the "minus zero" data word. It causes the system to exit from the
subroutine, carriage return, and interpret the instruction following
the I 0000 instruction.

P denotes the number of decimal places following the point in the
seven digit field. -3 -s, P s..15. Internally the exponent must be in the
range -31 ~ Exp .. ~ 31.

Page 6 of 11

SECTION VI: DATA OUTPUT FORMAT

The printed output consists of a decimal point followed by seven
decimal digits of the characteristic and its sign. Following the sign
there are two spaces followed by the exponent and its sign (if the sign
is negative). e.g •• 5060000- 02 is -50.60000. A tab is execut~d a~er
printing. ·

Page 7 of 11

FLOATING POINT INTERPRETIVE SYSTEM
(Program 24.0)

PART 2

Note: Refer to Part 1 for FUNCTION, REGISTERS, ORDERS, and INPUT and
OUTPUT FORMAT.

INPUT:

Floating point numbers on tape or in memory, or numbers in the
pseudo registers resulting from·previous operations.

CALLING SEQUENCE:

Loe.

d..,

cJ.. + 1
d. + 2
d. + 3

cl. + n
O(.·+n+l

INTERNAL NUMBER FORMAT:

Inst.

R
u

E
etc.

Add

Lo
Lo

: 1
J

0000·

Floating point operations

"Exit" instruction
Resume fixed point
operation.

A standard floating point number as carried in memory consists of
sign and 24 bits for characteristic (x) and sign and 5 bits for the
exponent (y). However, all intermediate calculations (i.e., numpers
appearing only in accumulator and multiplier regi.sters) are carried with
30 bits of characteristic and 30 bits.of .exponent. ·Each factor of any
calculat!on must be in.standard flo~ting point form. (N = x.2Y; •5<ixt< 1.
or x =OJ -31 < y < 31). Numbers appearing in accumulator or M registers
are in the range .. 2~ ~ 1x I < .5 or x = o •.

The standard floating point binary.form:

x

Sign of
Characteristic
0 for plus
1 for minus

DATA TAPE PREPARATION:

• .xx.x xx
Characteristic
24 bits.

x

0 for plus
1 for minus

xxxxx
Exponent
5 bits
Power of2

1. All characters of the I. D. word should be punched. e.g.·
-012040~ must contain eight characte~s including the stop
code. The stop code (•)must be the last character punched.

Page 8 of 11

2. Punch only those I.D. words appearing on the load sheet.
Do not punch the stop code if an I.D. word is not present.

3. The sign and any leading zeros of a positive nLunber need
not be punched. To enter all zeros merely punch a stop
code. The sign and all seven digits of a negative number
must be punched.

4. Be sure to check each load sheet to see whether an additional
stop code should follow the last number punched.

EXIT:

The interpretive routine exits to the first location following the
E 0000 instruction.

SUBROUTINE MEMORY RELA.TIONSHIPS:

The arithmetic, logical, address modification, and auxiliary instruc­
tions have been coded as a unified group on a single set of coding sheets
(11Floa:ting Point Interpretive Routine"). A single corresponding tape
has,been punched for this set. In many instances the programmer will
wish to use just this part of the floating point system; if so, only
this tape need be stored in the memory. This will leave 54 trac~s
for program instructions and data in contrast to 41 when the entire
system is used.

In other cases the Input-Output and/or function evaluation routines
may be needed. Only those routines actually used need be stored on the
drum. These required routines must be stored on the drum in the
folloWing relationship:

Program Routine Start Fill Set Modifier No. of Tracks

24.0 Interpretive (Includes y) Lo Lo 10
11.3-12 .3 Input-Output Lo + 1000 Lo + 1000 6

14.l Sine-Cosine Lo + 1600 Lo 2 1/2
16.2 Arctangent Lo + 1832 Lo 1 1/2
18.l Logarithm .Lo + 2000 Lo 1
17.1 Exponential Lo + 2100 Lo 2

All track 63 except sectors 10, 15, 16, 18, 23,. 27, 29, 34, 36, 40,
47 thru 50, 52.56 thru 58, 60 and 63 is used for temporary storage by
various parts of the system. Therefore Lo should be set such that no
part of the floating point system ·used is stored in track 63 •.

PROGRAM STOPS:

Loe.

Lo + 0654

Lo + 0556

Order

z 0000

H XXXX
or

c xxxx

Meaning and Remedy

Programmed stop. Depress 11 start11 to continue.

Exponent is too large. Location of instruction
being executed is in the real accumulator.
Start to continue.

Lo + 0556

Lo +·1152

Lo + 0612

Lo + 2005

Lo + 2028
or

Lo + 2030

TIME; -

R 0000

I 0000

D XXXX·

N 0000

N 0000

See summary tabulation.

EXAMPLE:

Page 9 of 11

Accumulator is negative. Location of instruction
being executed is in the real accunr..J.lator.
Start to continue.

Input data has too large an exponent. A start
will store a zero for that word and continue
with next word on tape.

Division by zero or a non~floated number.
Do not continue.

Accumulator is < 0. A start continues with
an answer of zero.

Accumulator exponent is not in range. Do not
continue.

See the following LGP-30 coding sheet.

NOTES:

1. The floating point system may be left and re-entered without des­
troying the contents of the registers .•

2. The exponent of a number in a register which is to be stored in
memory must be less than +32, or a range error will result. If it is
less than -31, the number is replaced by zero.

3. It is strongly suggested that the initial location occupied by
the system be the 00 sector of a track. If it is not, many of the
addresses that refer to track 63 are not· optimum.

4. It is also suggested that the entire system be placed in memory
and punched out in parts by program lJ.l. Then the parts· needed may
be loaded by program 10.l and each check sum may be verified.

5. All instructions with zero addresses have special interpretations.
None of these zero addresses refer to memory location 11 zero 11 , (0000),
but rather designate a special interpretive instruction. This float­
ing point system employs sixteen such special instructions. Further­
more, the two· shift-instructions (D OOOy, M OOOy) utilize the next nine
addresses (0001 through 0009); hence the divide and reset and multiply
instructions cannot use these adaresses.

ORDER

z

B

y

R

I

·D

N :,·

M

p

E

u ·1

.T
. ..;

H

c
A

s

SUMMARY TABULATION

RESULT IF ADDRESS (°') r 0 TIME RESULT IF ADDRESS -= o*
C(Add. Acc.) - («) = O? No: No skip

yes: ·Ski~ 133 ms Stop_ {SW No. 16). Proceed on start

C(«}~ Acc. 233 ms. Make C(Acc.) positive

C(Add. Acc._)_~ Add. of (oL} .- 150 ms. Com_p_lement C(Acc.}

_(_Loe. of R) + 2~ Add. of (cx.._l 166 ms. ~C (Ace;}_~ Ace.

C(Add. Acc.) + (cc.)~ Add. Acc. 150 ms Input floating point data

C(Acc.) T C(o(.)~ Acc. 283 ms. C(Acc.) 7 2~ Acc.

C(M) x C(o(.) + C{Acc.)----+ Acc. 566 ms 1n C(Acc.)---+ Acc.

_C(M) x C(CX:.) ;., Acc. 266 ms. C(Acc.) x 2oC.-+ Acc.

·C.(~)~ M 217 ms. Print C(Acc.)

C{Add.(ol))~ Add. Acc. 150 ms. Exit from interpretive routine

·"Next abstract order taken from (oC.) 117 ms. C(Acc~~ M; C (M)~ Acc.

Transfer if C(Acc.) is negative 133 ms. Make C(Acc.) negative

-C(Acc.) ;;:... { oC) 200 ms. eC(Acc.) ~ Acc.

C(Acc.) ~ (o<); O~ Acc. 233 ms. Cosine C(Acc~~ Acc.

C(Aec.) + C(o<.)~ Acc. 400 ms. Arctangent C(Acc.)~ Acc.

C(Acc.) - C(cC.)~ Ace. 417 ms. Sine C(Acc.)~ Acc.

TIME

117 ms

150 ms

150 ms

500 ms

40/min.

183 ms

500 ms

150-ms

1.85 sec

117 ms

200 ms

150 ms

450 ms

517 ms

450FS.

550 ms

~
Q'Q
CD

~
0

0
HJ

~
~

Add. Acc. -= Address Accmnulator register
M·= Mu1tiplier register

~ . J
Address = 0: except for instructions 11M 0001(" and "D OOOU{,,",
where 0 <<:i< 9.
~ ;; Is stored in Acc. a Floating point Accumulator

o(• anj- address
C = Contents of .
All times are approximate and will vary with the amount of overflow and/or underflow.
slightly less than listed. Time will usually be reduced if any factor is zero.

Actual times should be

ILLVSTRAllVG EJ(AJ-'f'PL/i! F"aR... FLOArtA.16' Pa1Nr /Nr.t!!RPR.tSTIVG SYSTEM

lllP-30 CODING SHEET Page_Ll.. of-1.L

Job No. 01\JE Prog. No.21.,l.o Prep. by G.L.W. ck•d. by M-1'<. Data1'1June "'sr
f-h ..vi Pc PJ•ohlem C.::i'DIAIG r-a~ ii- c_$/rec: oly_nom_lo/ Track

r- "T.7

Pl•ogram Input g. Instruction Contente of Location I~ Notes Codas M Op. Addraes Address
r--·· T
1 ,., J. .0 0 2 L-5 0 ()

lL ".i_(2_ 0~.2 .tr o J.o
I

L ...L """ I
T

J. .L j -'
T

J.. t
T

.J.. ..1.
T

_l .L 1
r

..1.. ...l ..1.

' r--• I I I
...L ·+ L

.J.. .J.. l j

T
..L ..a.. .1 ..L

I
..L .J.. .I -,
.l _J, l

T.
...L _l ...I. -r

..1. ...L .1 _1.

1

.1. _1. ..1 _1.

I

.L ...I.. .1 _L
l

L. J. a

T
1 .J..

T
L :·--··· l

Floating p·oint
Data Input

I

J .

.I

I I

-'

-1.

_L ...L

I

.J

..J.

-1. _l

J.

J..

.J.

' I .

'
' t5<'J

.J.. ..Loo .1_

J.. o 1 ..L

,0 2 ..L

J.. _,_O 3 I

0 4
..L

.Lo S .L

.._O 6
...L

.J. _.._0 .. 7

I ,0 8

J 0 .. 9
,1 0

I ,l 1l

_J _J_lJ..2 ...J.

I ,1 3 .l

I -1.l 4 ...1.

L J_l ,S J.

I ,1 6 J

J .l J ..L

l 8 . --····-··"··· '

T I 'ila.Gnl't:..r X.11 Cc:114.E_rc l.lvc:::,, .XE,3 "~o o
T

' R.oui:lne .)(.U.JLO 0 0

IT ' x I (),OLD 0 . r n b_v+- Ux:,1-1·/c1pJ"!...-l.s..
T

• !XI ~ ()()$ " .J.Eio~ 1 z ..Se~
T

Xnlf10..I /lddre:-1os .J.r_10 o o b I ~ ooS I .1.

T I
.B10 o. I ..3 ~e"I"~

_Lx A:r. ~

A<1t1 n' -th C(Ja/f'/e1~J?i ~ I alt !. -T
In~rt:4d' aJcl,-~~11 • _LX :Ca (J -'-(J _..._ 0 .. l . I 5<1 ttC.e oo 6 + '1]J a.kC(.N77Ldao/ ~,,. /,y__ V'/1~ fy

T ·Q...[zoos +11] StP~ ct,.,~,,,,,.,.., '" ac:UZ'"~ ~ .Y. o o o b ' ~ -u '~ .h:t C!Pt:>
T I

~~£ Aw :f-hus6. · X.i!..2,o, 1 .. a
T .

Y/1Jt- :l/111 ~~cd u I 0 .. 0 I I (t.I '

.)(p~ o. a.() I 0 ' ~ · 'F/.,;, -I' r~~u .~ ~ h• ~t:;, , F1 i7 .~1to c1
J . ' Llr...£..o_Jo. o o J::-JC. ,·+

_X 1 I . _s i:.fJi!!_ F/~~t1 F!.. I. 1hrt, _ .. i!"1 o ..la .. () o
1 ' M~ve Accu m. to M R..~ist-eY' x_U1410_1a.o
T

~~II-~~~ A1~1.2_LO 0 .4- ' t1' x
T I

.&+"r>1 i. I" . :6
J _Lui I) 01D_.lo ~- l?CJI I ~>''171·
x T t -r;,; ~ '"" (O(Je:J ~'c1 ::=.,,,.I-~2.fJ,O.rlS

T ..

' -~-.l .I.. ..1 '-·· .. •.•·· ,,. .. ______ _.,_ _____ ···-··-~········ .. ·~··· ~· ...

w3'P'l?

OOOO~Loc'6363

' -10 0 o o o a O

Punch· a atop codB aftet' the last, munber? Yea X No ----

