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1. INTRODUCTION 

Flight simulators are based on the theory that the behavior of an air­
craft in flight can be represented mathematically by a system of equations 
in which certain "output" variables, such as position coordinates and ori­
entation angles, ch~rige appropr iately with time in accordance with certain 
"input" variables, such as throttle position and stick position. In order to 
build a flight simulator, it is necessary first to develop a system of equa­
tions that will accurately represent the characteristics of a particular air­
craft, and then to design and assemble a computer that will solve these 
equations in accordance with a variety of inputs representing the physical 
situation and provide accurate output signals with which to drive cockpit 
instruments, ,!generate control forces, and activate all of the peripheral 
equipment (ed g., motion system, visual <;lisplay) required for a realistic 
training environment. 

.< 

Until ~ short time ago, flight simulators were based exclusively upon 
analog computation techniques, in which aircraft flight quantities (altitude, 
airspeed)! are analogously represented by electrical and mechanical quan­
tities (vc6ltages, shaft positions) in an electromechanical network that 
duplicat~s the interrelationships between the various subsystems that 
make lJJ> a particular aircraft. In recent years, however, in spite of the 
many ~dvances made in analog computing technology, the flight simulator, 
along/with the aircraft it simulates, has increased in complexity to the 
point/where designers have had to supplement the capabilities of conven­
tiomil analog equipment by incorporating digital equipment in ever-
inc~'~asing amounts. . 

/ . 

The fundam~ntal difficulty with analog simulators is that the organiza­
tion of the elements of these machines must be v~fy similar to the organi­
zation of the mathematical equations describing .the operational system. 
That is, for every element in an equation therejnlUst be a corresponding 
element in the computer which, as a rule, series only this one function. 
Thus, as the complexity of the equations incr¢ases, so does the complexi­
tyof the analog hardware. Furthermore, oq.l:e an analog simulator has 
been built, any changes in the operational system, and hence in the equa­
tions of the system, can be implemented only by making corresponding 
changes in the hardware of the analog computer, with the attendant penalty 
of lost computer time. 

Contrast this with the great flexibi~tty of the digital machine, whose 
elements are organized to carry out the step-by-step instructions of a 
written program. Any changes in the ,equations being solved affect only 
the written program and do not requi:fJ~ changes in the hardware of the 
computer itself. That is, there is nd downtime involved when making the 
actual changeover except the time---r-equired to load the new program 
(generally only minutes). Add to these qualifications the inherent accuracy 
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of the digital computer, plus its reduced overall size and power consump­
tion, and it becomes apparent that a digital approach to real-time aircraft 
simulation is much to be desired. 

The first serious~tfempt to apply digital,c'6mputing techniques.to the 
problem of real-ti1l,)e' flight simulation w~fnitiated in 1950, when a joint 
Air Force-Navy pfogram was establisg.efi at the Moore School of Electrj... 
cal Engineerin ; University of Penn lvania. The Moore School's g-
time associa ·on with the develop nt and application of digita omputing 
techniques ade it a natural cho·ce to head the program, w ·ch was named 
UDOFT ( iversal Digital Ope ational Flight Trainer). e intent of the 
UDOFT roject was to devel a suitable digital camp- er and program it 

! 

to solv:,e a set of flight equa ons, so that the feasibity of digital simulation 
in re~l time could be est lished. 

/ ( 

.The equations used by the Moore School were taken from two existing 
analog flight Simulators, representing the F9F and the F100 fighter air­
craft. This was done so that a direct comparison of flying qualities of the 
digital and analog simulators could be made. No attempt was made to de­
rive new equations directly from the aircraft data because it was intended 
that the degree of simulation should remain the same. 

By 1958 the development of the mathematical techniques had been com- 0 
pleted and the logical design of the UDOFT computer was well defined. 
Actual construc.tion of the digital computer was accomplished by the 
Sylvania Corporation and was completed in 1960. The results of the pro-
gram clearly ~stablished that a digital computer could successfully be 
used for the lieal-time simulation of' aircraft flight. 

In spite: of the fact that it performed successfully, h'owever, UDOFT 
was (and is) far from being the fiI:1al answer to the problem of all-digital 
flight simulation. In the first place, it was never inten.d.ed to be more 
than a fe~sibility tool, preprogrammed to solve a partibular set of aero­
dynamic,equations, and, as a result, its application to! simulation prob­
lems in .:general (function generation, Boolean operations) was severely 
limited. What was needed was a new species of speciajl .. purpose computer 

." d~sign,ed, like UDO~~, exclusively for flight simulati!bn purposes, but 
~ WIth ~dequate capablllty to accommodate the total ran~e of computational 

requ~rements associated with the modern flight simu~ator. The Mark I 
is such a computer. i 

f 
Link began developing the Mark I with the idea tijat the computer 

should be economically justifiable for use in flight Simulators under sub­
st&'ntially the present cost structure and should capitalize on the undeniable 
a~vantages of digital computation: high accuracy, extreme flexibility, high 
r!eliability, small Size, and reduced heat dissipation.j The main objective, 
~owever, was to obtain a digital computer suitable f9r use in simulators 
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that customers,~6th commercial and military, could afford. As a result, 
the Mark I is a rather unusual computer in that it is designed for maximum 
usability in the/simulation and training equipment domain. 

The Ma,rk I computer is a highly specialized combination of proven 
techniques that completely elimi~ates the risk inherent in the use of de­
velopmenqil circuits and compqrtents, while at the same time reducing 
the overall cost and complexi~ of the computer to the economic level 
mandatory for flight simulatQf.s. With the exception of some minor in­
novations, Link makes no cHtim that the Mark I computer advances the 
state qf the digital comput~f art in general. It is simply a special com­
bination of existing digital' computing equipment that uniquely satisfies 
the cpmputation requiret¥Emts for simulation devices. 

/ 
The computations Iiandled by the Mark I can, if carefully simplified, 

be/handled in margina~j'fashion by other large-scale computers (the CDC 
1~04, the IBM 7090, ~he fastest of the Philco Transac series, the PDP3, 
~d p.erhaps others). / However, because the Mark I is designed specifi­
,cally to accommoda~e the particular problems of real-time Simulation, 
it is substantially le;~s expensive and will be much easier to program 
than any commer1y available computer wo¢d be In this application. 
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2. ADVANTAGES OF MARK I APPROACH TO FLIGHT SIMULATION 

The tasks required of a computer used for flight simulation are highly 
specialized. To be completely useful, the computer must be capable of: 

1) Performing all required mathematical operations peculiar to 
simulation problems. These operations are addition, subtraction, multi­
plication, division, squaring, square root, integration, level and polarity 
detection, and scaling. 

2) Performing all required Boolean (switching logic) operations 
peculiar to simulation problems. These operations are LOGICAL SUM 
(OR), LOGICAL MULTIPLY (AND), and INVERT. The Boolean opera­
tions should lend themselves to the generation of pseudo-Boolean functions 
(for example, radio call1eUer generation). 

3) Storing large amounts of permanent data, such as curves of 
arbitrary nonlinear functions, constants, and parameters defining navi­
gational facilities. 

4) Accepting large amounts of rapidly changing input data from 
the cockpit and instructor's controls. These input data should be accepted 
in raw form, with a minimum need for intermediate modification or trans- 0 
lation before the computing process commences. 

5) ProceSSing all the current input data and permanent data in ac­
cordance with a program of instructions that is completely flexible. The 
program should be versatile enough so that certain parameters having 
critical dynamic characteristics (e. g. , Euler angle rates) and critical 
accuracy and resolution requirements (e. g., altitude, latitude, longitude) 
can be given special consideration without reducing the computing effi­
ciency or useful memory capacity. 

6) Providing a large amount of new, smoothly changing, accurate 
answers. These answers should be provided in a form that requires a 
minimum amount of conversion or translation in order to be useful. 

7) Accepting new, modified, or corrected program instructions 
and permanent data changes rapidly and with ease. 

8) Minor program revision or updating by personnel with a basic 
analog background. 

In specifying the characteristics of the Mark I, Link carefully studied 
the pertinent features of available digital computers in relation to the re­
quirements of flight simulation. In examining these requirements, they 
were divided into categories so that areas of computation with similar 
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problems could be taken together. These categories are: 

1) Flight equations 

2) Engines and aerodynamic coefficients 

3) Accessory systems and instructor inputs 

4) Radio navigation -/.;; 
,. "" ,c" "'i'" ";''L, 

The solution of flight equations requires that many calculations be 
performed at high speed, over and over again. A high repetition rate is 
necessary in order to avoid lags in the computations, which would cause 
the simulation to depart from realism. The experience of the Moore 
School with the UDOFT program had shown that an iteration rate of 20 
times per second was required for an adequately responsive solution of 
the equations of motion. This requirement demands a high-speed, parallel­
arithmetic computer with a random-access core memory. 

The Mark I is such a computer. It performs all of the required arith­
metic operations (add, subtract, multiply, divide, square, square-root, 
shift, absolute value) under program control, and with great rapidity. If 
no other operations were considered, the Mark I could perform as many 
as 163,840 additions, or 27,273 multiplications, or 23,405 division opera­
tions per second. These times include all instruction and data access C­
times as well as the time required to perform the operations. From this -
point of view, the Mark I ranks with the faster digital computers available 
at the present time. 

The calculation of engine parameters and aerodynamic coefficients 
involves the generation of a large number of arbitrary functions of one, 
two, and three variables representing empirical aircraft data. In conven­
tional digital computers, it is necessary to develop a polynomial expression 
for each arbitrary function and then program the computer to solve the 
expression for all values of all variables. These operations are very time­
consuming and also require a high degree of skill in the mathematical 
operations of data reduction and curve-fitting to achieve a satisfactory poly­
nomialexpression. In addition, the functions can change quite rapidly, so 
that a high iteration rate is necessary in the solution of the polynomials, 
and, since many program steps are involved, the burden on the computer 
is quite high. 

In the Mark I, function generation is handled by straightforward linear 
interpolation, using straight-line-segment function curves which in most 
cases are taken directly from aircraft data curves. The function interpo­
lations in the Mark I take place sequentially, are repeated 10 times per 
second, and are done independently of the main program - i. e., they 
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require no instructions from the main program, and therefore no attention 
from the programmer. The stored function curves are entered directly 
as numerical data along with the core memory address of the interpolated 
result. Because of this simplicity of organization, it is quite easy to 
change individual function curves as air craft data change, without the ne­
cessity for extensive mathematical opera tions. 

The simulation of aircraft accessory systems is primarily a problem 
in switching logic, requiring only a small amount of arithmetic computa­
tion. This means that the computer has to be able to handle large numbers 
of Boolean {one-bit} words representing switching {on/off} functions. Many 
computers have the capability to incorporate two or more independent bits 
of Booleari information in one computer word; however, they usually re­
quire several extra program steps to extract a desired item from the 
various items contained in a given word. 

o 

The Mark I has a separate arithmetic unit that can perform program­
med Boolean operations on as many as 2048 independently addressable, 
single-bit words stored in a functionally separate section of the'random­
access core memory. Since each single-bit word can be individually ad­
dressed, no extra instructions need be written or executed to obtain ac­
cess to the desired word. This arrangement conserves the expensive core 
memory, and thus helps to keep the Mark I economically priced. Further-
more, by minimizing the number of instructions that must be performed, 0 
it also reduces the labor of initial programming and reprogramming. In 
other words, because the Mark I has been designed to operate on single-
bit words directly, it is ideally suited to the computations associated with 
accessory systems. Some relays may still be required in cases where 
large amounts of power are switched, but the racks of relays traditionally 
associated with logic circuits will be entirely absent from the Mark I 
flight simulator. 

Radio-navigation problems, important as they are from a training 
standpoint, have always been extremely difficult to simulate with a high 
degree of realism. The maximum incorporable repertory of radio facili­
ties has always been severely limited, and the accuracy of simulation has 
often been poor owing to the nature of the computing equipment. Now, 
with the advent of digital simulation, there is promise of tremendous im­
provement in the simulation of radio facilities. Not only is greatly in­
creased accuracy possible, but the number of facilities that can be repre­
sented is increased by a factor of nearly a hundred. 

The Mark I computer was designed with the problem of radio facility 
representation very much in mind, especially the problem of selecting 
eligible transmitters for reception by the aircraft receiver~. The Mark I 
provides a repertory of 350 separate and independent navigation transmitters, 
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and, on the basis of receiver tuning and aircraft geographic position, se­
lects for each receiver the one best transmitter to be received. This se­
lection process is carried out for each navigation receiver aboard the 
simulated aircraft, and is accomplished automatically, without operator 
control and without using a single program instruction. Programmed 
operations are required only for the calculations associated with the nature 
of the transmitter and receiver and with the simulated physical situation; 
the actual selection of a transmitter for a given receiver and the transfer 
of the stored data that define the location and characteristics of that trans­
mitter are accomplished in parallel with the main program, like function 
generation, and do not subtract from the time available for executing pro­
grammed arithmetic operations. 

A digital simulation computer must be able to handle large numbers 
of inputs and outputs, both analog and Boolean. Conventional machines 
can do this only at the expense of precious program space. The Mark I 
input/output system, however, operates automatically. No instructions 
are required in order to accomplish the input/output memory transfers 
or conversions to or from digital form, and no time is subtracted from 
the time available for the execution of the general program. The input 
system automatically scans analog inputs, converts them to digital form, 
and loads them into preassigned core memory locations. Similarly, the 
output system obtains variables from preassigned core memory locations, 
converts them to analog quantities, and makes them available on separate 
output lines for use outside the computer. In addition, a large number of 
Boolean (single-bit) input functions are scanned and inserted into pre­
aSSigned core memory locations, and a large number of Boolean outputs 
are available from preassigned core locations. In all, a total of 126 
analog inputs, 192 analog outputs, 1024 Boolean inputs, and 256 Boolean 
outputs can be accommodated by the Mark I. 

Because the Mark I program is changed infrequently (in contrast to 

A-D 

the typical scientific computer application), it can be stored more or less 
-E..e~~ane~gg.¥...2.1l.~ magneti~ storage drum. Conventional digital computers 
utilize the core memory for instruction storage, and, because core memor­
ies are so expensive, have a rather limited capacity for the storage of pro­
gram. In order to utilize the available storage space efficiently, elaborate 
programming techniques, such as looping, branching, and instruction modi­
fication, are necessary. In conventional digital computers, a time penalty 
is also paid, because after the execution of each instruction the computer 
must wait for the next instruction to be obtained from the core memory. 
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(- This is not so in the Mark I, because the instructions are stored on the 
\ drum in the exact order in which they are performed, and as one instruc-
l., tion is being performed by the arithmetic element, the next one to be per-
I formed is moving into pOSition to be read. When it is in position"it is 
I read and performed without waiting. Most instructions require only one 
I,,-~access to the core memory, others require no access at all,and no in-

structions require more than one core memory access. 

Since program instructions are never modified intentionally by the 
Mark I computer, errors cannot be made in the process and the instruc­
tions will therefore not be altered accidentally - as could happen in a con­
ventional digital computer. Storage of the program on a magnetic drum is 
also far less expensive than an equivalent core memory. The Mark I con­
tains program storage space for 45,056 instructions. Of these, 4096 are 
performed 20 times per second, 8192 are performed five times per second, 
and 32,588 are performed every 0.8 seconds. This, of course, does not 
include the capability represented by the automatic radio system, the func­
tion generator, and the automatic input/output system - none of ,which use 
any of the 45,056 instructions. 

o 

Link studies have indicated that 45,000-instruction storage is 0 
more than adequate to accomplish a degree of simulation which is equiva- . 
lent to, and in many cases better than, that of present-day simulators. 
Estimates of required program space were based on a mathematically 
rigorous axis system and uncompromising accuracy throughout all com-
putations. The use of equations of this degree of rigor in an analog simu-
lator would be prohibitively expensive, and in many cases would be intol-
erable from the standpoint of dynamic accuracy and stability because of 
the inherent limitations of analog equipment. For purposes of comparison, 
it is estimated that the Mark I has a computing capacity equivalent to that 
of a highly flexible analog system containing 150 servos, 1200 operational 
amplifiers, 1000 potentiometers, and 20,000 precision resistors. In ex-
ploiting this capability, the designer of the Mark I flight simulator has the 
option of incorporating many additional features not found in present-day 
analog flight simulators. 
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3. FUNCTIONAL DESCRIPTION OF COMPUTER 

3. 1 GENERAL DESCRIPTION 

A simplified block diagram of the Mark I flight simulator is 
shown in Figure L The major elements of this system are: 

1) The Mark I digital computer 

2) The cockpit (flight crew location) 

3) The instructor's station (near flight crew) 

MARK I 
Computer" . 

r------, 
Cockpit 1'-- -....I Flight J..--. Cockpit 

I I Inputs ~-l 
I Crew I ,- Outputs 
I 

I 
L.. __ -. __ ..J 

I 
I I I I 
I t I 
I I 

L Instructor c- J 

Figure 1 GENERAL DATA FLOW - MARK I FLIGHT SIMULATOR 

The block diagram treats the cockpit and the instructor station as the 
input/output elements for the Mark I computer. Thus, the -major input/ 
output loop is closed through the flight crew personnel, while the instruc­
tor functions as an arbitrary input device. 
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Figure 2 is a more detailed block diagram of the flight simulator. 
From this diagram, it can be seen that the major problems to be solved 
by the computer are: 

1) Accept all cockpit and instructor inputs, such as flight 
controls, engine controls, accessory system switching functions, radio­
navigation controls, and malfunction controls. 

2) Compute solutions to all aircraft equations of motion 
throughout the flight envelope of the aircraft for normal and emergency 
flight situations. 

3) Compute solutions to all engine equations for normal and 
emergency operation of the engines. 

4) Compute solutions to all switching logic equations used to 
define aircraft accessory systems operation, for normal and emergency 
operatio~. 

5) Compute all navigation equation solutions. 

6) Provide appropriate outputs to cockpit and instructor station 
indicators, lights, audio devices, recorders, and control force generating 
equipment. 

The manner in which each of these problem areas is handled is described 
in detail in subsequent sections. In general, the Mark I digital computer 
will perform all of the arithmetic and Boolean operations required in the 
modern flight simulator. It will solve the equations which represent the 
characteristics of the airframe, the onboard systems (including engines), 
and the complete radio-navigation problem. 

As shown in Figure 3, the Mark I computer operates in accordance 
with a written program stored on a magnetic drum. Using a special tape 
reader and high-speed drum loader, the many thousands of instructions 
constituting a typical flight simulator program are. stored on the drum in 
the order in which they are to be performed. During the operation of the 
computer, these instructions are read and performed in the order in which 
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they were written, without waiting and without the necessity of addressing 
the location 61 the next instruction. 

If an instruction is read demanding an arithmetic operation, 
this operation is performed in the main arithmetic unit. This unit 

. contains the registers and logic circuitry for performing all arithmetic 
operations. Similarly, instructions indicating Boolean operations are 
performed in the Ia2,.olean aritl1f;Iletic. unit. The source of all numerical 
and Boolean data words for these operations is the main core memory, 
a fast, random-access storage unit that serves as the Mark I's working 
memory. 

, !>'V 
, t(l4A.?f!!J 

The Mark I also includes a large-capacity l!near interpolator 
that operates in parallel with the main program to generate instantaneous 
values of the many complex functions encountered in aircraft flight and 
engine computations. These functions are constantly being calculated 
and recalculated and stored in preassigned memory locations in the main 
core memory for use by the main program. Since this is a parallel oper­
ation, there is no time lost in the main program calculating these quan­
tities. 

The Mark I also includes considerable input and output equip­
ment (see Figure 3). In the input system, analog and Boolean inputs from 
the outside world (for example, simulator cockpit controls) are written 
into preassigned core storage locations where they may be used by the 
main program. The output system reads calculated analog and Boolean 
data out of the' core memories in the form of analog voltages with which 
to activate the simulator equipment (for example, the cockpit instruments). 
This system, too, operates in parallel with the main program, thus using 
no separate ~110tment of program time to achieve these operations. 

Also operating in parallel with the main program is a large­
capacity radio preselection unit. This unit compares the location of the 
aircraft and the frequency to which each of its receivers is tuned with 
the locations and frequencies of some 350 radio transmitters. It then 
selects the best possible transmitter, if any, that each receiver should 
be picking up and stores numerical data concerning the selected trans­
mitter in preassigned core memory locations for use by the main pro­
gram. Again, since this is a parallel operation, there is no time spent 
in the main program achieving this end. 

Because all of its major operations take place in parallel -
i. e., without waiting for other operations to be completed - the Mark I 
is an extremely fast computer. This computational speed is essential 
in order to ensure adequate dynamiC performance of the Mark I flight 
simulator under real-time conditions. 
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3. 2 MAGNETIC DRUM 
a 

The Mark I drum contains--16--bands of instructions and con-
stants. Once this information has been written onto the drum, the "write" 
equipment is disconnected and no further information can get into the 
drum. The design of the Mark I deliberately prevents any further writ­
ing on the drum or modification of information contained on the drum. 

Once the computer selects a band of instructions to read, every 
word on that band is read in order, at the rate of one word every 6.105 
microseconds, until all the words on that band have been read. At this 
time, another band is selected and all its words are read. As each in­
struction is read, the operation indicated is performed. If the operation 
requires more than 6. 105 microseconds to complete, then it is neces­
sary to make the succeeding instructions NO OP's until enough time has 
been allowed for completion of that operation. 

/! '<\/i.i"'1:~;~;;;o,r;'!;:£'f'V) 
The 16 bands on the drum are made 'up from 240 data -tracks -

each track being one bit wide and 4096 bits/i~ ..length around the circum­
ference of the drum. Thus, there is a total storage capacity on the drum 
of over 983, OJio bits. The drum rotates at 2400 rpm, therefore requiring 
25 milliseconds to complete one revolution All bits comprising a word 
are stored and read in parallel - that is,if the first word in a band of the 
main program were being read, then the first bit in each of the 16 data 
tracks making up that band would be read ,simultaneously. Since all the 
words in a band are read in one revolution of the drum, the read rate is 
approximately 164 kilocycles, or 6. 105 microseconds per word. 

hi 
/,{}\,J/.~">' 

f 

Figure 
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~ of theA1l bands of words written around the drum. 

(Figure 4) are for the general program, four contain instructions and 
constants for the linear interpolator, and one is for radio aids. Of the 

,/,......J:rbands reserved for the general program, one is called a fast band, 
tw6" are called medium bands, and ei.glrt" are called slow bands. q ,'<C/:l!-L. P('~ 
J if 

All words in the general program portion of the drum are 16-bit 
words. There are 4096 words per band and a total of 11 bands. This gives 
a total o~ver 45,000 words for this portion of the drum. The four bands 
of the tngrful interpolator portion are made up of 11-bit words at 4096 
words per band. This represents a total of over 16, 000 words in this 
section. The 4096 words on the r~o~ids band are all 20-bit words. 

Each time the drum makes one revolution, three bands of instruc­
tions and constants are read simultaneously: one band is read and per­
formed by the general program section of the computer, one band by the 
digital interpolator, and the single band belonging to radio aids is read 
and performed by that section (this single band is read and perfo!,med on 
every revolution). 

The 11 bands comprising the general program portion of the 
drum are not simply read in order, 1 through 11. The reason is that in 
simulator work some quantities change much more rapidly than others; 
consequently, they require a higher frequency response of the computer 
(that is;. it is essential to recalculate these quantities much more fre­
quently that is necessary for many other computations in the simulation 
program). 

To JIandle this situation, one band of the general program por­
tion of the drum is deSignated as a fast band, and all the calculations on 
this band are performed on every other cycle of drum rotation. The in­
structions for the calculation of those quantities requiring frequent updating 
are all placed on this band. Two of the remaining ten bands are designated 
as medium-fast bands (M1 and M2), and the instructions on these bands 
are performed alternately on every fourth revolution of the drum (first 
M1; then, four revolutions later, M2; then, four revolutions later, Ml; 
and so forth). 

The remaining eight bands are deSignated as slow bands. These 
bands are taken one at a time on every fourth revolution of the drum until 
all eight have been read, and then, of course, the process is repeated. 
Because of this read order, instructions on the fast band are performed 
every 50 milliseconds, those on the medium-fast bands every 200 milli­
seconds, and those on the slow bands every O. 8 seconds. 
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As stated previously, two other bands on the drum are being 
read simultaneously each time a band of the general program is read 
(that is, on each drum revolution). One of these is the radio-aids band, 
which is read on every drum revolution, and the other is one of the four 
linear interpolator bands. The four interpolator bands are read one after 
the other at the rate of one band per drum revolution. Therefore, any 
given interpolator band is read once on every fourth revolution of the 
drum. Figure 5 illustrates the final order in which all the bands on the 
drum are read. The first line of this illustration represents the general 
program bands, the second line represents the linear interpolator bands, 
and the third line represents the radio-aids band. Each vertical column 
represents one drum revolution (25 milliseconds). After 32 revolutions 
(0. 8 seconds), all of the bands have been read in the order indicated. 
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3. 3 CORE MEMORY 
... :--

The core memory of the M~k I is a 2048-word, random­
access memory, each of whose 2048 words is an addressable location. 
Numerical information may be stored in any word location, or, converse-
ly, the information contained in any word location may be read out on A 4? VVi,,~,6L;;;. 
command. Only one word location in the core may be read out of or writ- j!(fi,. ":k4 

ten into during any given machine operation cycle (6 microseconds). Each 
word of the main core is 24 bits long, of which the most significant bit is 
the sign bit. 

It is the function of the main core memory to act as the working 
storage of the computer. That is; all quantities stored in the main core 
can be changed, updated, and erased. 

The variables in the simulator equations are each assigned to 
a specific location in the core storage. As each of these variables is re­
calculated or changed, the new value is inserted into the proper core 
location, thus replaCing the previous value. All inputs to the Mark I 
computer from the outside world (for example, cockpit, instructor's 
station) come to preassigned storage locations in the main core. All 
outputs from the Mark I to the rest of the simulator system are read out 
from their preassigned storage locations in the main core. 

Independent variables to be used by the linear interpolator for 
the purpose of function generation are also read from their assigned loca­
tion in the core memory. Similarly, cPIllPuted functional values are 
stored in assigned core locations b~ tQ.e linear interpolator. In shor~, all 
mathematical quantities needed for a simulator program are stored in the 
core memory (with the exception of constants, which may be stored on 
the drum). 

As stated before, only one word of the entire core memory may 
be interrogated or written into during anyone 6-microsecond period. How­
ever, it is apparent that the many parallel processes of the computer (that 
is, function generation, radio preselection, input-output reading, main pro-
gram arithmetic) all require memory access. Hence, it is necessary that 
these various processes be given a priority rating. In the Mark I, any op­
eration of the main program requiring memory access takes priority. Any 
operations or instructions in the main program that do not require memory 
access are considered to be "holes" in the main program, and it is during 
these "holes" that the auxiliary processes of the computer gain access to 
the core memory. Hence, instructions in the main program such as ~" 
SCALE, SHIFT, TAKE ABSOLUTE VALUE, INVERT, ZERO SLICE, 
FLAG and NO OPERATION, which do not require memory access, act 
as "holes" to auxiliary sections of the computer. 



Priority for all of the parallel processes of the Mark I is as 
follows: i j:ecr~~~ /k~~ 

:1-~ Main program (; j .. .o (~j.k ~J 'P ~'i ytlY'rrj 
3~ Digital function interpolation !-- F ( ~-' r:r~W¥M ct;v;, 

D F;t'( Radio aids preselection (D;1;. (:ZUd.L Jj 
__ t) Ai Analog input scanning· AI 0 

b 4 Analog output reading DIA-
l' 7 .-9-V Boolean input scanning. P S () 

8".x) Boolean output reading l:> S I 

The reasons for this particular order of priority will become apparent as 
the various operations are discussed in detail. 

Of the 2048 words of memory in the main core, the first 128 
words are reserved for use as Boolean storage locations. Only the first 
16 bits in each of the 128 words are used for this purpose. This results 
in a total of 2048 bits of Boolean storage, since a Boolean word is only 
one bit long. The core memory, then; is set up to appear as if there were 
two separate core memory blocks - one being a 2048-word arithmetic 
core and the other being a 2048":word Boolean core. 

Like its counterpart, the arithmetic core memory, the 
Boolean core memory acts as the working storage for all Boolean opera­
tions. Here, Boolean variables are assigned storage locations, Boolean 
inputs from the rest of the simulator system are read into preassigned 
storage locations in this memory, and Boolean outputs from the Mark I 
to the rest of the simulator system are read out from their assigned 
storage locations in the Boolean memory. 

Since the Boolean core memory is actually made up of 128 
words of the main core memory, then any instruction requiring access to 
the Boolean memory is, in truth, accessing the main core memory. 
Therefore, any instruction of the main program that requires memory 
access, whether arithmetic or Boolean, represents a "highest priority" 
operation. 

Because there is no circuitry in the Mark I to prevent hiJ;Il from 
doing so, it is possible for the programmer to address the entire contents 
of one of these "blocks" of Boolean storage (the entire 16 bits of one of the 
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128 main-core words) by using an ordinary (non-Boolean) instruction. It 
is conceivable that this sort of thing might be deliberately performed in 
order to provide a direct 16-bit binary output of an ordinary arithmetic 
quantity without going through the D-A converter. In this case, the main 
word location containing the 16 bits concerned would be "stolen" perma­
nently from the Boolean section for use by the main arithmetic unit. It 
should be noted that Boolean storage locations may also be "stolen" (in 
blocks of 16) for the purpose of storing an externally coded, 16-bit binary 
word as an input, thus bypassing the A-D converter. 

It is important, if these practices are employed for the purpose 
of providing direct binary inputs and outputs of ordinary arithmetic quan­
tities, that the programmer look upon the entire Boolean core as being 
reduced in size, and never address, the bits concerned for any Boolean 
purpose. 

3. 4 MAIN ARITHMETIC UNIT 

The main arithmetic unit of the Mark I acts as the operating 
center of the computer. This unit consists of 1) a 24-bit accumulator 

1 register for holding the numerical results of arithmetic operations, 2) 
all of the necessary logic circuitry for performing arithmetic operations 
and transferring numerical data, and 3) a salvage register that salvages 
the old contents of the accumulator when a new word is loaded into it. 

3. 4. 1 General Organization 

All numerical operations in the main arithmetic unit are of the 
fixed-point, binary form. All numbers handled by the main arithmetic 
unit, either as inputs to or results of arithmetic operations, are in the 
form of an absolute value and a sign. Sign processes are performed in 
all arithmetic operations, and signs are preserved in the results. All 
number words are 24 bits in length, the first bit being the algebraic sign, 
and the remaining 23 bits being the absolute value of the binary number. 

If the sign bit is zero, the number is positive. If the sign 
l>it is one, the number is negative. Thus, a numerical word in the Mark I 
might be represented as follows: 

010 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 

'f "----- ----/ ~ 
Sign Bit (+) 23 Magnitude Bits 
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In the Mark I's fixed-point arithmetic, the decimal point is 
assumed to be to the left of the most significant bit; therefore, the mag­
nitude of a number is always less than- one. The largest magnitude that 
may be represented is .99999 ..•. in decimal notation, or . 1111111 .... 
in binary notation. All numbers handled by the Mark I must be scaled with 
this fixed-point notation in mind. 

If the result of any arithmetic operation in the Mark I is a 
number whose magnitude is greater than one (that is, greater than 
1.11111111 ... I), an automatic overflow process sets each bit of the accu­
mulation to "1" but preserves the sign of the result. Thus, after an over­
flow caused by a positive result greater than one, the contents of the ac­
cumulator will be: 

01 1 1 1 1 1 1 1 ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

An automatic overflow is possible in the execution of any of the following 
instructions: ADD, SUBTRACT, DIVIDE, SCALE. 

The rules for addition in the binary number system are as 
follows: 

1 + 1 = 10 (zero with 1 carried) 

Ji~ I :. II 
" As an example of binary addition, the sum of the two numbers 

1011001 and 1001010 is: 

Carries 1011000 
1011001 

+ 1001010 
10100011 

Addition in the Mark I is accomplished by a parallel adder 
with fast carry propagation. Consider the two binary numbers A and B: 

An· .~A1 AO 

A = O ••• 1 1 1 

Bn •. · B2 B1 BO 

B = O .•. 0 1 1 
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In a parallel adder, the addition of corresponding bits be­
tween two numbers is done simultaneously. That is, in the example 
shown, the AO digit is being added to the BO digit at the same time that 
the Ai and Bl digits are being added. Carries, of course, must be con­
sidered. When adding the two least significant digits (AO + BO), there is 
obviously no carry from the right, and the results of ~is addition may 
be described as follows: \ 

AO BO Cout Sum 

1 0 0 1 

1 1 t 0 

o 0 0 0, 

o 1 0 1, 

This table (often called a truth table) shows that the sum of 
AO and BO is one if AO and BO are complementary. Cout denotes carries 
to the left - that is, to the next pair of digits, Al and Bl. If AO and BO 
are both zero, thEm the sum is zero and there is no carry. If AO and BO 
are both one, the sum is zero and a "1" is carried. 

The sum of any succeeding pairs of digits of A and B is made 
more complicated by the fact that carries from the right must be con­
sidered. Examine the following truth table and consider the conditions 
that make the sum one: 

A B Cin Cout Sum 

0 0 0 0 0 

0 0 1 0 1 

1 1 0 1 0 

1 1 1 1 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1· 1 0 
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This table is perfectly general in that it represents the sum 
of any two corresponding bits of any two binary numbers. It will be seen 
that S and Cout are now determined by the binary addition of three quan­
tities: A, B, and Cin. Using Boolean notation, Sand Cout can each be 
defined by an equation in A, B, and Cin. If these two equations are im­
plemented for each pair of corresponding digits of the binary numbers A 
and B, the resultant system represents a complete parallel binary adder. 

3.4.2 The 24-Bit Arithmetic -Accumulator 
/;.,£ . 

Almost !:f6o/O of the instructions for the Mark I cause some 
operation to be performed on the numerical data contained in the arith­
metic accumulator (for example, add, subtract, multiply). It should be 
stated that only numerical data can ever be inserted intO' the accumulator 
(that is, instructions are found only on the drum and can never be oper::lted 
on or modified in any way). 

'&;;,,1-
The first bit (most significant bit) of the /tccumulator is re-

served as a sign bit. This bit gives the algebraic sign of the number de­
fined by the remaining 23 bits - "0" for a positive number and" 1" for a 
negative. 

Numerical data may be loaded into the accumulator from the 
core memory and, by virtue of a special instruction, from the drum. Data 
contained in the accumulator may be stored only in'the core memory. ~,-' 

~-~,;t;;i);~;~ >:l', .-;;;>r·{::{~~.¢i . ..--i'~~:ift.,....~ V'~. ,;.:.r~':yf"'{~'L''k';''''''_ 

Most operations performed on data in the accumulator re­
quire only a very small amount of time and may be initiated and finished _ 
in the amount of time equal to one machine operation cycle (6.105 micro­
seconds). A few of these operations (multiply, divide) require several, 
machine cycles to complete; hence, once they are initiated, extreme care 
must be taken that new instructions do not arrive requiring operations on 
data in the accumulator until the previous,more lengthy, operation has 
been completed. This point is treated more fully in a subsequent section. 

3.4.3 The 24-Bit Salvage Register --{;.'.' 

Associated with the arithmetic accumulator is a salvage 
register, also 24 bits in length. When an instruction is read directing 
that a word of data from some source be loaded into the accumulator, 
and there is no salvage register, then whatever word happens to be in 
the accumulator at that time is lost when the new word is loaded. It is 
the function of the salvage register, just as the name implies, to salvage 
the data word in the accumulator just before a LOAD instruction. Hence, 
if the number X is in the accumulator at the time that an instruction is 
read directing that Y be loaded into the accumulator, then one machine 
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cycle later, Y will appear in the accumulator and X will appear in the 
salvage register. The previous contents of the salvage register will be 
lost. 

The salvage register is an addressable location~ That is, 
it may act as a source of data with which to perform arithmetic opera­
tions on the contents of the accumulator. The contents of the salvage 
register, however, may not be loaded into the accumulator. 

3. 5 BOOLEAN ARITHMETIC UNIT 

The Boolean arithmetic unit is the Boolean counterpart of the 
main arithmetic unit. This unit performs all Boolean operations indicat­
ed by instructions in the general program. Thus, the logic circuitry of 
the Boolean arithmetic unit is arranged to perform the functions of AND, 
OR, COMPLEMENT, LOAD, and STORE. Like its counterpart, the 
main arithmetic unit, the Boolean arithmetic unit has an accumulator and 
a salvage register. Since Boolean words are one bit in length, tlie Boolean 
accumulator, which is used to hold the results of all Boolean operations, 
is a one-bit register. Boolean words may be loaded into the Boolean ac­
cumulator from the core memory, and information in the Boolean accumu­
lator may be stored in memory locations in the Boolean portion of the main 
core. All Boolean operations, indicated by instructions in the general pro­
gram, are performed on the contents of the Boolean accumulator by the 
contents of the address specified in the instruction. 

The Boolean salvage register performs the same, function as the 
salvage register of the main arithmetic unit (that is, it salvages the old 
contents of the accumulator when a new word is loaded). However, unlike 
the main arithmetic salvage register, which is only a one-word register, 
the Boolean salvage register can hold four one-bit words, all of which are 
addressable. Because of this multiword capacity, the Boolean salvage 
register may act as an intermediate, temporary storage unit, thus re­
ducing the core memory access requirements of the Boolean arithmetic 
unit. The operation of the salvage register is shown in Figure 6, assu­
ming a hypothetical series of LOAD instructions. 

Since the four words of the Boolean salvage register are ad­
dressable locations, the contents of any of these word locations may be 
used to perform a logical AND or OR with the contents of th~ Boolean 
accumulator. However, the contents of any of these salvage register 
locations may not be loaded into the Boolean accumulator. Neither may 
the contents of these locations be stored in the Boolean core. Only the 
contents of the accumulator may be stored in the core memory. 
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CONTENTS OF 
Boolean Sa1vase Re&!ster 

1 0 1 1 1 2 1 3 1 INSTRUCTION ACCUMULATOR 

~ I I 
Load b ~ I a I 
Load c 8 I b a I 
Load d ~ I c I b I a I I 
Load e B I d I c I b I a 

J 

Load f ~ I e J 
d I c I b 

Figure 6 OPERATION OF BOOLEAN SALVAGE REGISTER 

3.6 LINEAR FUNCTION INTERPOLATOR 

Function generation in the Mark I is done continuously in parallel 
with the main program of the machine, and thus, because of computation 
time saved in the main program, contributes largely to the real-time dy­
namic response of the computer. Function generation is accomplished by 
means of linear interpolation between the ordinates of fixed breakpoints. 
Figure 7 illustrates an arbitrary function of X whose X axis has been 
divided into eight equal segments. These eight segments are defined by 
nine breakpoints: 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1. 

If the ordinates of these nine breakpoints are known [f(O), f(1/8), 
f(1/4), f(3/8), and so forth] and if the independent variable X is known, 
then it is possible to perform a linear interpolation to determine f(X). 
For instance, if X lies between 1/8 and 1/4, then it is possible to inter­
polate between f(1/8) and f(1/4) to obtain a very close approximation of 
f(X). The linear interpolator has its own arithmetic unit with a parallel 
binary adder and appropriate registers and logic circuitry to' solve the 
linear interpolation formula for f(X). 
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1.0 

f(X) 

o 1/8 1/4 3/4 1/2 5/8 3/4 7/8 1. 0 

-------------x------------~~~ 

Figure 7 MARK I FUNCTION INTERPOLATION 

As stated previously, all numbers handled by the Mark I must be scaled 
so that their magnitude is not greater than one. This also applies to the 
function interpolator. Therefore, both the independent variable, X, and 
the ordinate value, f(X), must be scaled so that their magnitudes are not 
greater than one. It should also be noted that all numbers handled by the 
interpolator are assumed to be positive. 

The four bands on the magnetic drum used for function interpolation 
store the breakpoint ordinates of all the function curves. Also, the drum 
contains the core memory location of the independent variable and the core 
memory location in which,the calculated value of the function will be stored. 
Each different function is represented by its own block of information listed 
on one of the bands, all of the blocks being listed in order around the bands. 
Figure 8 shows the flow of information for function generation. 

It is unnecessary to store the X values of the breakpoints, since these 
breakpoints are fixed at 0, 1/8, 1/4, and so forth. It is only necessary to 
build a logic of the interpolator in such a way that it can inspect the value 
of X and recognize which two breakpoints it lies between. Consider the 
binary representation of the fixed breakpoints: 

'0 = • 00000000. • • • • 

1/8 = • 00100000. • • • • 
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1/4:: .01000000. 

3/8 = .01100000 •. 

1/2 = • 1000000 •. 

5/8 = • 1010000 •. 

3/4 = .1100000 •• 

7/8 = .1110000 .. 

1 = .111111111111111111111. ••••••• 

It is apparent from these representations that the first three digits of X 
will determine which two breakpoints X lies between, in accordance with 
the following scheme: 

000 I 001 I 010 I 011 I 100 I 101 I 110 I 111 I 
o 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 

MAGNETIC 
DRUM~ 

MAIN 
CORE 

MEMORY 

f(X) 

LOCATION OF X 
f(o) 
f(~) 

I 
I 

-f (I.o) 
LOCATION OF -F(X) ..-___ ---. 

X 

LINEAR 
INTERPOLATOR 

Figure 8 FUNCTION GENERATION FLOW DIAGRAM 
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Looking at a block of words on the drum concerning a given function 
(assume a function of a single variable), the first word listed is a control 
word that serves to identify a new function and tell whether it is a function 
of one, two, or three variables. The second word listed is the memory 
location of the independent variable. Following this will be the ordinates 
of the nine breakpoints in order, beginning with f(O). Notice that the 
memory location of X, the independent variable, is listed before the ordi­
nate information. It will be remembered that memory access by the main 
program has priority over access requirements by the interpolator. There­
fore, the interpolator may only have access to memory during "holes" in 
the main program. In order to ensure that the current value of the inde­
pendent variable is obtained from its memory location, its address must 
be repeated several times. Thus, the first time the address of X is read 
from the drum, the interpolator will attempt to interrogate the core mem­
ory. If it fails to do so during the read cycle (6.105 microseconds), an­
other word will be read directing it to interrogate the memory again. By 
repeating this process a sufficient number of times, the probability of en­
countering a "hole" in the main program, and thereby gaining access to the 
core memory, can be increased to the point where access is practically en­
sured. In most cases, repeating the location of the independent variable 
four or five times will prove sufficient. 

Once access to the core memory has been gained, the current value 
of the independent variable is read into a register in the interpolator. 
Here, as stated previously, the first three digits of X"(the independent 
variable) are examined to bracket X between two brea.li:points. This proc­
ess is finished before the data field is read; therefore, before the first 
ordinate is read, the interpolator already knows which two breakpoints 
brack,et X. As the ordinates are read from the drum, only the two ordi­
nates concerned are held for interpolation. The other ordinate words are 
ignored by the interpolator. 

The result of the iilterpolation is, of course, f(X). This value is held 
in the linear interpolator until a word is' read from the drum directing that 
f(X) be stored and giving the location in the core memory in which it is to 
be stored. As before, when the location of X was repeated several times 
in order to ensure memory access, the location of f(X) must be repeated 
several times. Again, four or five repetitions of the location of f(X) are 
sufficient in most cases. 

In the event that X were located between 7/8 and 1.0, the interpolator 
would have to wait until the eighth and ninth ordinates were read from the 
drum before it could begin its calculations. Thus, this means that some 
Ume must be allowed after the last ordinate is listed before the memory 
location of f(X) is listed. This time is to allow the interpolator to finish 
its calculations before directing it to store -the results. In the case of a 
single-variable function, two blank words (12 microseconds) are sufficient. 
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In the case of a function of two variables, four blanks are required, and 
for the three-variable function, six blanks are required. 

The final arrangement of the data and instructions for some single 
variable function, f(X), might be as shown in Figure 9. 

Figure 9 TYPICAL INSTRUCTION SEQUENCE FOR FUNCTION 
GENERATION 
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In order to handle a function of two variables in the Mark I, the func­
tion must first be represented in the form of a "family" of nine single­
variable functions, as shown in Figure 10. 

Y=1. 0 

Y=7/8 

Y=3!4 

Y=5/8 

Y=1/2 

f(X) 
Y=3/8 

o 3 8 5;8 3/4 

•• ~------------------ X 

7/8 .. 

,Y=1/4 

Y=1/8 

y=o 

1.0 

Figure 10 REPRESENTATION OF FUNCTION OF TWO VARIABLES 

Examination of this figure shows that 81 ordinates are required to 
describe the function. The address of Y is listed after listing the address 
of X, and this address, also, must be repeated several times for memory 
access. Then the 81 data points are listed in order, beginning with the 
f(X, Y=O) curve and ending with the f(X, Y=1. 0) curve. 

Going a step further, a function of three variables would be composed 
of nine "sheets" such as the one shown in Figure 10. In this case, there 
would be a total of 729 (9 x 9 x 9) words of data to be listed for the function 
interpolation. The location of the Z independent variable would be listed 
after the Y location, and,like the X and Y variables, would have to be list­
ed several times to ensure memory access. 
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Since it is possible to list 4096 words around a single band of the 
drum, and since there are four bands reserv~d for the linear interpolator, 
there is a total of 16,384 words of storage capacity on the drum to be used 
for function generation alone. Referring back to Figure 9, it can be seen 
that approximately 22 words are required in order to program the gen­
eration of one function of a single variable. Hence, if only singh~-variable 
functions were stored on the drum, there would be sufficient capacity to 
generate over 740 different functions. If functions of two or three vari­
ables are stored, of course, the capacity is affected accordingly. 

To provide for maximum use of the capacity available, the linear inter­
polator of the Mark I is constructed so that, by using certain indexing bits 
in the control word, it is possible to use the same function data or curve 
with four different independent variables, with the results stored in four 
different locations. The programmer can, for example, instruct the inter­
polator to index through the same set of engine function curves with four 
different sets of variables representing four different engines on an air­
craft. The purpose of this is to reduce the necessity for having to repeat 
the data for the same curve several times on the drum, thereby saving 
storage capacity on the drum. The penalty is that the functions are calcu­
lated at only one-fourth of the normal rate - that is, non-indexed functions 
are recalculated four times as frequently as indexed functions. Since the 
four bands on the drum read at the rate of one band per drum revolution, 
and since one drum revolution requires 25 milliseconds, all four bands are 
read and every function listed is calculated every 100 milliseconds. In 
other words, the normal rate of recalculation for non-indexed functions is 
10 times per second, and that for indexed functions is 2.5 times per second. 

All of the words on the four bands of drum storage for the linear inter­
polator are 11 bits long. One of these 11 bits (the most Significant) is re­
served as a control bit and the remaining ten are for data. Therefore, 
numerical data (ordinates of the breakpoints) are listed with only ten­
binary-digit resolution. Arithmetic in the interpolator, however, is 
c.arried to 14 places and rounded off. 

3.7 RADIO AIDS PRESELECTOR 

3.7. 1 Introduction 

Each transmitter located anywhere in the world causes a 
signal to be introduced into the antenna of every receiver in the world. 
Certainly, the signals induced by very distant transmitters are extreme­
ly weak and cannot be heard because of the noise level. Others are re­
jected by the frequency-selection circuits of the receiver. This state-
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ment applies particularly well to radio navigation facilities, because 
navigation transmitters which occupy the same frequency band have de­
liberately been separated by a large distance, or made to operate with 
a low power output, or confined by a narrow radiation pattern, in order 
to prevent interference. These facts make it possible to devise an auto­
matic radio navigation simulation system which, on a basis of receiver 
frequency and aircraft location, can select for each receiver the one best 
facility to receive. 

It is the function of the Mark I radio aids preselector to examine 
a total of 350 different radio transmitters and select the one transmitter, 
if any, that each of the simulated aircraft receivers should be picking up. 
This process operates in parallel with the general program of the Mark I 
and is completely automatic, without need for programmer attention. 

In the Mark I radio-aids system, the information required for the 
simulation of 350 navigation transmitters is contained in a band of 20 data 
tracks of the Mark 1's program drum. These tracks are used independently 
of the main program and linear interpolator tracks, and are used in a read­
only mode. The method for loading data into these 20 tracks is identical 
to that used for loading the program and interpolator data into the magnetic 
drum. A new set of facilities can be entered by means of the photoelectric 
tape reader in about a minute's time, although it is necessary to interrupt 
the simulated flight during the loading operation. 

The signal feature of the Mark I's automatic radio-aids system 
is that it treats each transmitter as a separate entity. Under this con­
cept, an ILS facility would consist of a localizer transmitter, two 75-
megacycle marker transmitters, and two low-frequency compass-marker 
transmitters, for a total of five separate units. Each simulated transmitter 
is counted separately, with the following exceptions: 

1) The glideslope facility is provided as a component of the 
localizer system and does not require a separate transmitter in the total 
facilities count. 

2) A DMET system installed at a VOR station, or a tacan 
DME system, is, from a computational standpoint, an integral part of the 
azimuth transmission facility and does not count in the total. 

With the exception of these two types of facilities, each individual trans­
mitter counts as a separate unit. Thus, Z markers and fan markers 
associated with an A/N range station are totaled individually. 
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3.7. 2 Classification of Facilities 

The 350 available transmitters are divided into five groups, 
according to the type of facility. The maximum number of facilities in 
each of the groups may not be exceeded, although it is not necessary that 
all facility channels be employed if a smaller amount is desirable. The 
groups are: 

1) Low-Frequency Transmitters - This group includes 
low-frequency beacons, low-frequency compass locator faCilities, and 
A/N range stations. A total of 127 such facilities can be represented, 
of which as many as 32 may be A/N range stations - although it is not 
necessary that all 32 be so assigned. 

2) VHF/UHF Transmission Facilities - These include 
VOR transmitters, tacan transmitters, Navy UHF direction-finder trans­
mitters, and ILS transmitters. A total of 127 independent VHF/UHF 
transmitters can be represented. 

3) 
outer ILS markers. 

Outer ILS Markers - The system can represent 32 
~ 

4) Middle ILS Markers - The system can represent 32 
middle ILS markers. ~-

5) Fan and Z Markers - The system is capable of repre­
senting 32 fan or Z markers, which can be intermixed in any desired pro­
portion. 

These facilities can be received when within range and if the appropriate 
receivers are operative and tuned.. 

It should be noted that the Mark I radio-aids system does not 
automatically provide the voice signals associated with certain facilities -
that is,it is left to the instructor to provide this in the usual manner. The 
prime reason for omitting this feature is that of excessive cost in relation 
to training value. Call letter identification is, of course, provided for the 
facilities and is deemed to be quite adequate for training purposes. 

3.7.3 Facility Selection 

3.7.3.1 General Considerations 

Facility selection is based upon electronic inspection of the 
data words provided for each of the facilities. The preselector system 
employs specialized electronic circuitry to scan the drum data concern­
ing the 350 individual navigational transmitters and select the one eligible 
transmitter facility for each naVigation receiver in the aircraft. Since 

o 

o 

all 350 facilities must be scanned every drum revolution (40 times per 0 
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second), it is apparent that a fast and relatively simple system must be 
employed to choose the one facility from each group that best merits 
transfer to the core memory for the programmed computation associated 
with each receiver. 

While a criterion such as slant range to the station might ap­
pear to be highly desirable for preselection purposes, the computation of 
the quantity (involving several subtractions, additions, and multiplications, 
and one square -root operation) is too complicated to be accomplished- in 
the time available for the preselection operation. To permit the use of 
simple electronic circuitry, preselection is limited to inspection of sta­
tion frequency, station X coordinate, and station Y coordinate. Before 
conSidering the method of preselection based upon the navigational facili­
ty's geographical position, consideration must be given to certain aspects 
of the use of transmitter frequency in station preselection. 

3. 7. 3. 2 Frequency Inspection 

Fan, Z, middle, and outer markers all operate on 75 
megacycles and are received by a fixed-frequency, untunable receiver. 
Accordingly, any preselection operation associated with 75-megacycle 
marker facilities must be based solely upon geographical location of the 
facility with respect to the aircraft's position. 

Low-frequency navigation receivers, such as automatic 
direction finders, commonly employ continuous tuning similar to that em­
ployed in conventional broadcast receivers. Accordingly, the use of fre­
quency in the preselection of low-frequency facilities must allow a band of 
frequencies somewhat wider than the bandpass of the receiver itself, with 
a final determination of the degree of tune being performed by programmed 
computation after a station is selected. 

VHF /UHF navigational facilities are ordinarily tuned by 
receivers employing numerical switching for frequency selection, with 
the result that preselection may employ the exact frequency of the facility 
rather than a band of frequencies, as is required for low-frequency trans­
mitters. Thus, the final decision whether a VHF navigational facility is 
tuned can be based exclusively upon the action of the preselector system 
alone. 

Inspection of facility frequency, then, must be consistent 
with the receiver tuning and facility frequency characteristics. The cri­
terion against which facility frequency acceptability is judged is the de­
gree of match· between the frequency of the receiver and the assigned 
frequency of the facility. In order for a facility to be "heard", it is 
necessary that its frequency match the receiver frequency within certain 
limits. These limits actually correspond to the bandwidth of the receiver, 

33 



but it is more convenient to design an electronic inspection system which 
considers that the limits are assigned to the transmitter facility. The end 
result is the same, and the same degree of match· is determined, but it 
is determined more easily. 

Therefore, for each transmitter represented in the Mark I, 
an upper anJ lower frequency limit is assigned. The facility preselector 
system will find a particular facility acceptable for a particular receiver 
from a frequency standpoint if, and only if, . the frequency of the receiver 
falls between the lower and upper frequency limits assigned to that facility. 

Because all marker transmitters operate on one frequency 
(75 megacycles) frequency inspection is not actually required to determine 
whether any marker transmitter can be received. However, it is more 
convenient from a design point of view to actually conduct a frequency in­
spection of the marker transmitters, making the limits sufficiently wide 
so that every transmitter will certainly pass regardless of the frequency 
used for inspection. 

VHF /UHF receivers employ digital tuning with discrete fre­
quencyassignments; hence, the limits assigned to the transmitter may be 
quite close together ,ensuring that only those transmitters which exactly 
match the receiver's frequency will pass the frequency test for a given 
receiver. 

LF transmitter facilities are assigned frequency limits by 
subtracting and adding, to the assigned operating frequency, a number 
that is somewhat greater than half the receiver bandwidth. The resultant 
two numbers are then used as the lower and upper frequency limits. LF 
transmitters will pass the frequency test only if the current receiver 
frequency falls between the lower and upper frequency limits assigned to 
that transmitter. 

3. 7. 3. 3 Geographic Position Inspection 

In addition to the consideration of frequency assignment, 
it is necessary to consider the location of the aircraft with respect to the 
station. It has been mentioned that slant range is too complicated to com­
pute for each of the 350 simulated facilities, and that a simpler criterion 
must be utilized. The chosen scheme has the necessary Simplicity and 
proves to be entirely adequate in representing the physical situation. 

The method employed for geographic inspection assigns 
to each of the 350 facilities two pairs of coordinates. These coorqi.p.ate 
pairs represent the upper, lower, left, and right boundaries of 'a 'rectangle 
that contains a given facility. These rectangles are arbitrarily assigned 
so that the left and right boundaries (limits) are the east-west direction 
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(x axis) and the upper and lower boundaries are in the north-south direc­
tion (Yaxis). In general, each rectangle is made as large as possible, 
using caution that there are no overlaps of rectangles assigned to differ­
ent facilities, either operating on the same frequency (in the case of 
markers and VHF jUHF facilities) or operating on adjacent frequencies 
that could be within the bandpass of the receiver (in the case of LF facili­
ties). 

The assignment of rectangles to each facility is made 
easier by the facility grouping in the computer memory. For example, 
there are three groups of markers, outer ILS, middle ILS, and fan or Z 
markers. Although all three groups operate on the same frequency, only 
one marker transmitter from each group can be selected at one time. 
Therefore, it is only necessary to assign the rectangles in such a man­
ner that for a given group, such as outer ILS markers, overlapping rec­
tangles are not assigned. The rectangles assigned to facilities of differ­
ent groups can be permitted to overlap without causing interference prob­
lems. Because of the programmed calculations involving the range. and 
radiation pattern, no interference will result unless two or more mark­
ers of different types are represented that in reality do interfere and 
can be simultaneously received. -

3.7.3.4 Summary 

Preselection of one of the radio facilities within a group 
is thus accomplished by determining whether the aircraft is within a pair 
of left and right X coordinate bounds and a pair of upper and lower Y co­
ordinate bounds, and whether the receiver is tuned to a frequency within 
a pair of upper and lower frequency bounds. Each transmitter is effec­
tively placed within a rectangular box having north-south and east-west 
boundaries. The box cannot be placed diagonally on a map. 

The third dimension of the box is, of course, frequency 
rather than altitude, but the three-dimensional concept is convenient for 
visualizing the physical domain within which the individual transmitters 
are eligible for reception. If the boxes of a given facility type are all in­
dependent of one another (that is, if none of them share a common space), 
it is apparent that no more than one transmitter of a given group will be 
considered eligible for reception. It is also apparent that it will be pos­
sible to operate in a space that is free of any of the individual boxes, in 
which case no station may be received. This situation is, of course, im­
mediately altered if the receiver tuning is changed, since this constitutes 
a change in the vertical dimension of the imaginary three -dimensional 
space, which may result in the preselection of a station whose box has been 
entered. 

When any station of a particular group simultaneously 
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meets all three preselected criteria, the stored data describing that sta­
tion are transferred to a specific group of core memory locations asso­
ciated with the receiver capable of receiving that station. The transferred 
data are used by the programmer to calculate signal strength, range leg 
orientation, beam pattern, and call letters, according to the type of facility. 

3.8 ANALOG-TO-DIGITAL INPUT CONVERTER ,ii fJfiJo
' 

It is the funcflo~ of ~~e A~~6'~:rif~~t:';'f~~"~~~ ~:t:~o~J-rnputs ;;1. t ll' 
to the Mark I (from cockpit, instructor's station, and so forth) and con­
vert them into 14-bit binary numbers, storing these numbers in preas­
signed (fixed) core memory locations. There are 64 analog inputs, with 
an expansion capability to 126. Each input is converted to binary form 
and stored in its individual core memory location. This operation is 
carried on in parallel with the main program and is fully automatic. To 
the programmer, there is a block of core memory locations containing 
the digital equivalent of the various analog input quantities necessary for 
his equations, and he has only to address the appropriate core location to 
employ any of these quantities in computations. 

o 

All analog input quantities are scaled in the range of -10 volts 
to +10 volts, these reference voltages being provided by the Mark I. The 
A-D converter converts these quantities to binary numbers scaled from 0 
-1 to +1. 

The 64 multiplexed inputs of the A-D converter are sampled and 
converted into properly Signed 14-bit binary words during everytworevolu­
tions of the drum. Inputs are sampled only during the first and third 
quarters of each drum revolution (the second and fourth quarters are re­
served for output sampling), and the 64 channels are spread over the four al­
lowed quarters of the two drum revolutions, so that 16 channels are sam­
pled, converted, and stored in each allowed quarter. A counter provides 
the core memory addresses in which each quantity is stored. 

Memory access, of course, is required for storage, and the 
A-D converter is under control of the priority circuitry. When an input 
has been sampled, the binary equivalent is held until access to the mem­
ory is obtained. At that time, it is stored in the address dictated by the 
counter. The counter is advanced, the next output is sampled, and the 
process continues until all of the inputs have been sampled. The process 
repeats endlessly, and occurs without programming attention or instruc­
tions. 

3.9 BOOLEAN INPUT SYSTEM 

Internal Mark I circuitry will provide interrogation signals for 
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a maximum of 64 groups of 16 Type A contacts, which may take the form 
of toggle switches, and static punchcard readers, located externally. 
This will provide responses at 1024 one-bit inputs. Internal circuitry will 
generate core memory addresses 001 through 032 (decimal), and each 16-
bit group of Boolean words generated by the interrogation of switches 
will be transferred sequentially to these assigned memory locations. 

This circuitry is also under control of the priority circuits. It 
will operate, throughout all drum revolutions, whenever a NO OP or 
"no-memory-access" instruction appears in the main program and the 
"hole" is not utilized by the linear interpolator, the radio aids preselector, 
or either the A-D or D-A converter. Because of long lead requirements, 
the interrogation of a set of 16 switches may precede the allowable trans­
fer time of the response by a few hundred microseconds, or longer. 

3.10 DIGITAL-TO-ANALOG OUTPUT CONVERTER 

Digital-to-analog conversion in the Mark I is another process 
that ope1~Jn parallel with the main program. The Mark I has a 

J'total of,-!2I8'1lldependent analog outputs, with an expansion capability to 
/fb~g...2"~analog outputs. These outputs are used to drive indicators, motion 

systems, and recorders in the external simulator equipment (for example, 
cockpit, instructor's station). //j"lftt",r:~1't1""jIf';!'f':;: .. ''''r:4.o ... "r"..p 

.I' 

The equations repre~sn {ng each of the output quantities must, 
of course, be implemented in th general program to be computed by the 
Mark I. A fixed word location in the main core memory, is reserved 
for each of these quantities, and as each quantity is recalculated in the 
main program, its new value is stored in its respective memory location. 
That block of core memory locations containing the 128 output quantities 
is periodically interrogated, and all of those 128 words are sequentially 
transferred to a buffer core memory. Thus, the 128 words in the buffer 
core are fed to 128 individual D-A converters whose outputs are analog 
voltages representing the digital quantities. 

The storage locations in the main core reserved for output 
quantities are all sampled by the buffer core at a rate of 80 times per 
second. The buffer core, in turn, is sampled by the D-A converter 80 
times per second. This number, then, represents the sampling rate of 
the entire D-A output system. 

In order that a maximum of 192 words in the main core mem­
ory be read into the buffer core memory, 192 separate memory accesses 
are required; however, it should be remembered that only one word loca­
tion of the main core may be interrogated during any 6.1-microsecond 
machine cycle. These words will all be accessed once during the second 
quarter of a drum rotation, and then accessed again during the fourth 
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quarter of a drum rotation. Since there are 40 drum revolutions per 
second, and since each word is read into the buffer core twice during 
each drum revolution, the sampling rate is 80 times per second for all 
outputs. It should be recognized that the drum plays no actual part in 
this process, but that its rotation merely provides a convenient time 
base for examining the D-A conversion. 

Since there are 4096 words written around the circumference 
of the drum on each band, 1024 words are read during the time that the 
drum takes to make one quarter of a revolution. The time required to 
read each word represents the basic machine cycle of 6. 1 microseconds; 
therefore, one quarter revolution of the drum represents enough time 
for 1024 possible memory accesses. The D-A converter is, of course, 
under the control of the priority control circuitry, and it can have access 
to the core memory only when it is not being accessed by either the main 
program, the digital interpolator, or the radio-aids preselector. Obvious­
ly, then, there must be at least 192 "holes" in the total access requirements 
on the core memory during both the second and fourth quarters of a drum 
revolution, or else all of the output words would not be sampled. 

A counter in the Mark I generates the core memory addresses 
of the output quantities that are to be read into the buffer memory. Upon, 
access of the first address, the counter advances to the next address and 

01 
I 
I 

holds that address until an opportunity occurs to interrogate that word. 0 
The word is read into the buffer memory and the counter advances again. 
This process continues until all 192 addresses have been interrogated. 

The buffer memory itself is a 16 x 192-bit core matrix composed 
of twelve 16 x 16-bit memory boards. The matrix arrangement is equiva­
lent to a column of 192 words - each word essentially a 16-bit wor~l. The 
word length in the main core is, of course, 23 bits plus one sign bit; how­
ever, only the sign bit and the ten next most significant bits are read into 
the buffer core, thus utilizing only 11 of the available 16 bits per word. 

As words are read from the main core, they are read into an 
ll-bit register. Each digit of this register, in turn, drives the vertical 
wire strung through the corresponding bit position of all 192 words of the 
buffer core (see Figure 11). A write amplifier drives a horizontal wire 
running through all the bits constituting a word. After the first output 
quantity has been read from the main core and into the output register, 
the horizontal drive amplifier for Word 1, only, is turned on. This hori­
zontal driver provides half the total current required to switch the cores. 
A "I" in any of the 11 bits of the output register causes the corresponding 
vertical driver to also provide half the necessary switching current. A 
"0" causes no current to flow. Hence, since the fields generated by the 
two wires strung through a core are additive, the presence of a "1" in the 
register causes the corresponding bit in the word concerned to switch to 
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WORD I 

WORD 2 

WORD 3 

OUTPUT REGISTER 

o WORD 192 

Figure 11 192-WORD BUFFER CORE AND OUTPUT REGISTER 

the "1" state, and the presence of a "0" in the register leaves the correspond­
ing core in the "0" state, since insufficient current was provided to cause it to 
switch. A simplified block diagram of the complete output conversion 
system is shown in Figure 12. 

All 11 bits of the register are read into the buffer core simultane­
ously. The next output quantity in the main core is then read into the output 
register (as soon as memory access is available), and the process is contin­
ued until all 192 output quantities have been stored in the buffer core. 

In actuality, words stored in the main core memory are not read 
into the output register in the straight binary form in which they are held in 
the main memory. Instead, they are coded in the following fashion: 
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Figure 12 MARK I D-A OUTPUT SYSTEM 
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1) The sign bit is always inverted. (A "1" in the memory goes 
into the register as a "0", and a "0" in the memory goes into the register 
asa"I".) 

2) If the sign bit in the memory is negative (1), all the mag­
nitude bits are inverted. If the sign bit in memory is positive (0), all 
the magnitude bits are read into the register without inverting. 

The following examples will demonstrate this transformation: 

Memory Word 

0110100011110 ..... 

1 1 1 0 1 0 0 0 1 1 1 

1 0 000 0 0 0 0 0 0 

Output Register 

1 1 1 0 1 0.0 0 1 1 1 

000 1 011 1 000 

011 1 1 1 1 1 111 

These examples indicate that the 24-bit word in memory is 
merely ,.truncated after the 11th bit with no attempt at round-off. Again, 
this is not the entire truth. Actually, the output register is 12 bits long, 
and all the words stored in the buffer core are 12 bits long. This 12th 
bit is generated electronically to compensate for round-off error and is 
used to set the 12th bit of the register: 

1 2 3 4 5 6 7 8 9 10 11 12 

coded round 
sign --CODED MAGNITUDE BITS .. off 
bit bit 

This 12th bit is generated by forming the one's complement of 
the 12th bit on the word in main core. That is, if the sign of the word in 
the main core is positive, the 12th bit transfers to the output register un­
changed. If the sign of the word in the main core is negative, the com­
plement of the 12th bit is transferred to the output register. 

Words stored in the buffer core must now be converted to ana­
log voltages. This process is accomplished by sampling all 192 words, 
one bit at a time, beginning with all the least significant bits (12th bits) and 
working backwards to all the most significant bits (sign bits). The 12th 
and 11th bits are both "looked at" by the D-A converter for 6 micro­
seconds each, the 10th bit for 12 microseconds, the 9th bit for 24 micro-
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seconds, the 8th bit for 48 microseconds, and so forth. Eachsucceedingbit 
is looked at for twice the amount of time devoted to the previous bit. 

Each of the 192 D-A converters consists of a drive amplifier, a 
flip-flop, an electronic switch, and a three-sectionRC filter, as shown in 
Figure 13. If the core being interrogated is in the "1" state, then the flip­
flop goes to the "1" state and the electronic switch goes to +10 volts. If 
the core is in the "0" state, then the flip-flop remains in the "0" state and 
the electronic switch goes to -10 volts. The filter smooths the output of 
the switch. Once a core has been interrogated it returns to the "0" state. 

Note that once an entire word has been sampled by the D-A con­
verter, all the cores making up that word location in the buffer core are 
back in the "0" state and are ready to be written into again. Since the 
cores go to zero when interrogated, it is the function of the flip-flop to re­
tain the information regarding the original state of the core. The amount 
of time that the flip-flop remains in any state is determtned by the signifi­
cance of the bit that set it - 6 microseconds for the(LsB-=and LSB +1, 12 

~-::::::::-:='"'",.. 

microseconds for the LSB +2, 24 microseconds {or"lhe LSB +3, ... , and 
finally, 6144 microseconds for the sign bit.:rhe electronic switch, of 
course, follows the flip-flop. . . ____ -~.~"d. l ""rf 0; 

When writing into the buffer core, all 12 bits of a word are 
written in parallel, one word after another. When reading from the buffer 
core, all 192 words are read out at the same time, one bit at a time. 

If the word being read from the buffer core is all zeros, the 
output of the transistor switch is a constant -10 volts. If the word being 
read is all ones, the switch output is a constant +10 volts. Figure 14 
shows the switch output for a word consisting of alternate ones and zeros. 

+ IOV TRANSISTOR f SWITCH 

r--r~, r------, 
FLIP RC 
FLOP FILTER 

Buffer Cores 
o -IOV 

Figure 13 SIMPLIFIED DIAGRAM OF D-A CONVERTER 
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Figure 14 D-A SWITCH OUTPUT 
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3. 11 BOOLEAN OUTPUT SYSTEM 

The Mark I is designed so that outputs from preselected core mem­
ory addresses for four 16-bit Boolean data words will be transferred by in­
ternal circuitry to the 64 register-bit locations provided. Each bit's output, 
for these registers, incorporates a driver with sufficient power to operate a 
relay that provides a "c" contact for external use. The four core memory 
word addresses, 124 through 127 (decimal), are permanently allocated for 
Boolean output words. 
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4. PROGRAMMING THE MARK I 

4.1 EASE OF PROGRAMMING 

Unlike the general-purpose digital computer, on which hundreds of 
problems might be programmed and solved per day, the digital simulation 
computer need never be reprogrammed except to accommodate changes 
in the aircraft or in the radio-aids facilities. It appears highly unlikely, 
therefore, that the purchaser of a digital flight simulator would write a 
complete instruction list for the machine, since a completely checked­
out program will be supplied by the simulator manufacturer. In other 
words, modification of an existing program is a much more likely occur­
rence than the generation of a completely new program for the Mark I 
flight simulator. 

In discussing the relative ease or difficulty of programming any digital 
computer, it is necessary to consider the skill level of the programmer 
and the equipment at his disposal to aid in formulating the computer pro­
gram. One of the design goals of the Mark I computer has been to permit 
initial programming of the computer and program modifications by indivi­
duals who are not skilled digital computer programmers. This is felt to 
be an absolute necessity in a digital flight simulator, so that modification 
of the computer program can be performed in the field by essentially the 

o 

same persqnnel who operate and maintain present analog flight simulators. 0 
The instruction complement of the Mark I has deliberately been re­

stricted to the minimum number of simple instructions necessary for flight 
simulation problems. There are 26 different instructions in all, and the 
function of each is explained later on in this section. With one exception, 
all instructions are performed in the computer in exactly the order in 
which they were written. This exception is the CONDITIONAL SKIP in­
structioI1, which permits the skipping of a number of instructions based on 
the existence of a certain condition (such as the insertion of a malfunction 
from the instructor's console). This continuous-flow pattern of instructions 
makes programming easier and also facilitates the checking of a program 
through one-step operation in a straightforward manner, since each step 
that the computer performs follows the instruction list exactly. 

The branching operation of the Mark I differs from that of a general­
purpose computer in that the various branches are arranged serially 
rather than in parallel, and the one branch is performed while the other 
branches are skipped. During the time that instructions are skipped, the 
various parallel processes of the Mark I are permitted access to the core 
memory, thus effectively utilizing this program time for computer opera­
tion. 
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Another factor in the programming ease of the Mark I is the built-in 
priority control circuitry. No program control, input-output subroutines, 
or program-interrupt features are required to enable the linear interpola­
tor, radio aids preselector, and input-output converters to gain access to 
the core memory. From the programmer's point of view, there are a 
number of core memory locations containing the data derived from the 
various parallel processes, and he has only to address the appropriate 
core location in order to employ any of these quantities in computations. 

Another aid to programming and program modification is the fact that 
the particular location of an instruction on the drum has no significance. 
Obviously, for purposes of fault detection and one-step operation, it is 
necessary that the location of the instruction be known, but in normal 
operation this knowledge is not required. In the event that it is desired 
to add a term to an equation for which the program has already been pre­
pared, it is only necessary to insert the new portion of the program in 
the appropriate position and effectively" slide back" the remaining instruc­
tions in the program. It should be emphasized that the addition of one or 
more instructions in a band on the drum will never affect all of the remain­
ing instructions on the instruction list, and in most ca'ses will affect only 
those instructions in the particular sector of the drum involved. The smal­
lest program segment that can be loaded into the Mark I is one sector of 
1024 words, which is equivalent to one-fourth of one program band. 

In order to more readily accommodate the alteration of particular 
instructions in the Mark I computer, all of the computer instructions will 
be distributed relatively evenly around the drum. For example, if all of 
the required slow-band instructions could be readily accommodated 
on five of the available eight slow bands, these instructions would be dis­
tributed uniformly upon all of the eight slow bands. This would permit a 
large number of NO OP instructions to be inserted in each sector of each 
slow band, thus helping to ensure that any additional program steps in 
one sector would affect the instruction location in that sector only .. In the 
event that more than one secto/ is affected by a modification of the program, 
or even that more than one band is affected, no problems arise in the pro­
gramming; however, some additional bookkeeping is required to update 
the list of instructions. 

Another feature that makes the Mark I easy to program and easy to 
modify is its specially-designed linear interpolator for the generation of 
arbitrary functions. Both in initial design and during programming 
modifications, the only information that has to be provided is the ordinates 
of the breakpoints of an eight-segment straight-line approximation of the 
data curves (this is virtually an irreducible minimum level of information 
for arbitrary functions). In the event that aircraft data indicate that a 
curve should be modified, the affected breakpoints can be inserted in lieu 
of the previous data. 
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4.2 FORMAT OF INSTRUCTION WORnS 

There are 26 machine instructions which the programmer may 
use to direct the Mark I in the step-by-step solution of equations. It 
should be kept in mind that a long list of instructions is all that is written 
on the 11 general-program bands of the drum and that these instructions 
are read and performed in the order in which they are written - one in­
struction during each 6. 1-microsecond machine cycle. Each instruction 
describes an operation which the Mark I performs and gives the core 
memory location of the data word involved in the operation. 

All the instructions fall into three general categories - control, 
transfer, and arithmetic - and each instruction has an identifying code 
number recognizable by the machine. Each instruction word is made up 
of two sections: a two-octal-digit section that identifies the operation 
(identifying code), and a four-octal-digit section that specifies a core 
memory address. For example: 

\01 1500\ = ADD the contents of memory 
cell 1500 to the contents of 
the accumulator. 

(where 01 and 1500 are octal numbers) 

When this six-digit word is punched up on the tape preparation 
unit, this unit automatically converts the octal word into a 16-binarY-bit 
word. The first five bits are the binary code for the operation, and the fol­
lowing 11 bits are the binary code for the core memory location (the 11 
general-program bands on the drum are all 16 bits wide). The example 
given above would be coded as follows: 

101 I 1500 I 
o 1 1 5 0 0 

100 I 001 I 01 I 101 I 000 1 0001 

Notice that each digit of the octal instruction word is coded separately. 
This format is binary-coded octal. Each octal digit of the instruction is 
separately converted to binary (three binary bits are required to count 
from zero to seven) and the binary equivalents are written in the same 
order as the octal numbers. The first octal digit of the operation code 
is never larger than three, thus requiring only two binary digits to de­
scribe it. This is also true of the address section's first octal digit. 
All other octal digits can take on values from zero to seven; thus, each 
requires three binary digits. As another example of the binary-coded­
octal conversion, consider the instruction word 23 I 1777. This is a 

46 

-------- ~-~---~-- ----------- -_.-------_ .. 

J 

o 

o 

o 

-~--



o 

o 

STORE instruction, directing the arithmetic unit to store the contents 
of the accumulator in core memory location 1777. The binary equiva­
lent, as written onthe drum, is: 

2 3 1 7 7 7 
11 0 I 0 1 1 I 0 1 1 1 1 111 1 11 1 1 

4. 3 LIST OF INSTRUCTIONS 

The instructions which can be performed by the main arithme­
tic unit are: 

NO OP 

LOAD 

INDEX LOAD 

- Do nothing during this machine cycle 
(used to allow time for completion of 
arithmetic operations and to test read 
heads). 

- Insert the contents of a specified core 
memory location into the accumulator. 

- Insert into the main accumulator the 
contents of either of two consecutively 
numbered core memory locations, de­
pending on the state of the Boolean ac­
cumulator. 

ADD - Add the contents of a specified core 
memory location to the contents of 
the accumulator. 

SUBTRACT - Subtract the contents of a specified 
core memory location from the ac­
cumulator contents. 

MULTIPLY - Multiply the accumulator contents by 
the contents of a specified core mem­
ory location. 

DIVIDE - Divide the accumulator contents by the 
contents of a specified core memory 
location. 

NEGATIVE MULTIPLY - Same as MULTIPLY, but reverse 
algebraic sign of the product. 
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SQUARE 

SQUARE ROOT 

SCALE 

SHIFT 

INVERT 

Multiply the number in the accumulator 
by itself (does not require memory ac­
cess). 

Perform one iteration of the Newton­
Raphson approximation: 

=\1 y 

X n+l + 

Shift the accumulator contents to the 
left or right. The direction and num­
ber of places are specified by the ad­
dress portion of the instruction, leav­
ing the sign bit unchanged. (Equivalent 
to multiplying or dividing by integral 
powers of two. ) 

Logical shift (including the sign bit) to 
the right or left. The direction and 
number of places are specified by the 
address portion of the instruction. 
(This instruction effectively "rubber­
stamps" the number a specified num­
ber of places to the right or left of the 
existing location, filling the margins 
with zeros. ) 

Reverse the sign of the accumulator 
contents. 
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ABSOLUTE VALUE 

ZERO SLICE 

STORE 

INDEX STORE 

STORE CONSTANT 

o 

CONDITIONAL SKIP 

CONDITIONAL STOP 

FLAG NEGATIVE 

Make the sign of the accumulator con­
tents positive. 

If the accumulator contents are nega­
tive, set the accumulator to zero. If 
positive, do nothing. 

Store the accumulator contents in the 
core memory location specified by the 
address portion of the instruction. 

Store the contents of the main accumu­
lator in either of two consecutively 
numbered core memory locations, de­
pending on the state of the Boolean ac­
cumulator. 

This instruction-address combination 
causes the computer to read the next 
15-bit word appearing in sequence 
from the drum into the accumulator 
and into the core memory location 
specified by the address portion of the 
instruction. 

If the Boolean accumulator contains a 
"1", skip the number of instructions 
specified by the address portion of the 
instruction. 

Stop performing instructions if an ex­
ternal control signal (console switch) 
is not present. Resume program with 
the next instruction if a signal is pres­
ent. (Used for diagnostic routines and 
problem freeze.) 

If the algebraic sign of the main ac­
cumulator contents is negative, set the 
contents of the Boolean accumulator to 
"1. " 
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are: 
The instructions performed by the Boolean arithmetic unit 

LOAD BOOLEAN 
ACCUMULATOR 

INVERT BOOLEAN 
ACCUMULATOR 

STORE BOOLEAN 
ACCUMULATOR 

BOOLEAN SUM (OR) 
(A + B) 

BOOLEAN PRODUCT 
(AND) (A-B) 

Insert into the Boolean accumulator the 
contents of the memory location speci­
fied by the address portion of the in­
struction, salvaging the previous con­
tents of the Boolean accumulator. 

Complement the contents of the Boolean 
accumulator. 

The Boolean accumulator contents are 
stored in the memory location specified 
by the address portion of the instruction, 
leaving the Boolean accumulator contents 
unchanged. 

Perform the Boolean sum operation with 
the contents of the Boolean accumulator 
and the Boolean data word in the mem­
ory location specified by the address 
portion of the instruction, leaving the 
sum in the Boolean accumulator. 

Perform the Boolean product operation 
with the Boolean accumulator contents 
and the Boolean data word in the core 
memory location specified by the ad­
dress portion of the instruction, leav­
ing the product in the Boolean accumu­
lator. 

An examination of the above list of instructions shows that while 
some are quite common and may be found in almost any digital computer, 
others are peculiar to the Mark I and are to a large degree responsible for 
the high degree of flexibility found in the Mark 1. These instructions allow 
the programmer greater freedom in writing the program, and reduce the 
requirement for optimization of the program. In fact, ease of program­
ming has been a goal of the logical design of the Mark I, so that elaborate 
programming techniques such as looping, branching, address arithmetic, 
and the like will not be required. 
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4. 4 SCALING OF VARIABLES 

As stated previously, all constants and variables handled by the 
Mark I must be scaled to lie within the range from -1 to + 1. The situation 
is analogous to that encountered when scaling quantities for analog com­
puters in the range from -100 volts to +100 volts. A major difference 
does exist, however, in the choice of a scaling factor. Ordinarily, in an 
analog computer, the choice of scale factor is completely free, as long as 
it constrains the quantity concerned to lie in the proper range. In the 
Mark I, however, the choice of scale factors is limited to integral powers 
of two in order to minimize time-consuming multiplication operations. 

Consider, as an example, some variable X that ranges from 
-80 to + 500. Obviously, if given complete freedom in the choice of scale 
factor, the number . 002 is a good choice, since. 002Xmax= 1. O. However, 
under the restriction imposed above, the choice is limited to the smallest 
integral power of two which, when divided into Xmax, results in a number 
less than or equal to one - that is,we must find the smallest positive inte­
ger a for which Xmax2- a < 1. O. For the example given, Xmax. 2-9 < 1.0, 
and 2-9 (1/512) is the reqmred scale factor. 

If the choice of constants were completely free, most resulting 
numbers would be awkward to accommodate on the Mark I. That is, there 
would be an extremely large number of time-consuming multiplications and 
divisions caused by the use of these numbers. On the other hand, recall 
that a SCALE, or arithmetic shift, is equivalent to multiplying by integral 
powers of two - positive powers for left scales and negative powers for 
right scales. The Mark I is capable of shifting as many as five places in 
one basic machine cycle. Thus, a left scale of three places is equivalent 
to multiplying by 23, and a right scale of three places is the same as mul­
tiplying by 2-3• The operation, of course, requires only one instruction 
word, whereas a multiplication requires five words. The saving in pro­
gram time and the benefits derived therefrom are apparent. 

4.5 PROGRAMMING TECHNIQUES 

4.5.1 Preparation and Programming of Data for the Linear 
Interpolator 

Flight simulator computations necessarily employ empirical 
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data describing the characteristics of particular aircraft. These data gen­
erally cannot be expressed analytically and must be generated in a literal 
manner. In the Mark I, this job is accomplished by the linear function in­
terpolator, the operation of which has already been described in Section 3. 

In the reduction and scaling of empirical aircraft data for 
use in the Mark I, there are two major considerations: 

1) The value of any number handled by the Mark I must lie 
between -1. 0 and +1. O. 

2) All function data utilized by the linear interpolator are 
assumed to lie within the first quadrant - that is,all values of the func­
tion and of the independent variable must be greater than or equal to 
zero. 

o 

The implication of the second consideration is that any func­
tion curve defined for negative values of the independent variable and/or 
having negative function values will require an axis transformation of the 0 
type illustrated in Figure 15. A new independent variable, X', must be 
generated to conform to the axis transformation, and the function data 
generated from this curve, f(X'), must be operated on by an inverse 
transformation before being used, to result in a true f(X) curve. 

The implication of both considerations taken together is that 
the entire range of the independent variable must be scaled to lie between 
zero and +1. O. Similarly, the entire range of the function data must lie 
between zero and +1.0 (see Figure 15). 

Once all the function data for a given system have been re­
duced, scaled, and prepared for programming, it is then necessary to 
compile a listing of the words to be written on the interpolator bands of 
the magnetic drum. Each function will be represented by a block of 
words. Complete blocks are listed one after the other in the program. 
Figure 16 illustrates such a sequence. 
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Figure 15 FUNCTION DATA TRANSFORMATION AND SCALING 
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CONTROL WORD 

LOCATION OF h 

6 DATA: f(h) for h=O 

A sequence of A breakdown of the 
"blocks" of words EJ II words contained in 

on the drum f (h) / a typical block 

f(h) for h"'l/S 

I BLANK (hme delay) 

I OCANK 

I LOCATION OF f(h) o 

I: 

Figure 16 DRUM REPRESENTATION OF FUNCTION DATA 
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The control word is a coded word that relates information to the 
interpolator concerning the function being described by the succeeding list 
of words. A sample control word is shown in Figure 17. 

ABC D 
1 2 13 4 5 \6 7 8: 9 10 11 

I I ! 
1110Ixlx'xlo'0 'Oi X Ix I xl 

I I" I I t 
I No. of independent \. Function indexing code 

variables 

Figure 17 SAMPLE CONTROL WORD 

The first bit (most significant bit) of the control word is always one, and 
the second bit is always zero. Bits 9, 10, and 11 represent a small coded 
word that tells which variables are to be indexed. The third, fourth, and 
fifth bits of the control word tell whether the function is of one, two, or 
three independent variables. Bits 6, 7, and 8 are not used. 

The three-bit code that tells the interpolator whether the func­
tion is of one, two, or three variables is as follows: 

001 - Function of one variable 

010 - Function of two variables 

011 - Function of three variables 

The index code (bits 9, 10, and 11) is as follows: 

000 - None of the variables are indexed 

001 - Index on X 

010 - Index on Y 

011 - Index on X and Y 

100 - Index on Z 

101 - Index on X and Z 
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110 - Index on Y and Z 

111 - Index on X, Y, and Z 

If a function is indexed, then it is indexed through four different 
variables. The core memory addresses of the independent variable and 
the calculated function, as listed on the drum, must have zeros in the last 
two digits (least significant digits). A counter in the interpolator will auto­
matically modify these last two digits to create four different addresses in 
which the four different independent variables can be found and the four dif­
ferent calculated answers stored. These addresses will be: 

ADDRESSES OF X ADDRESSES OF f(X) 

1) XXXXXXX 0 0 XXXXXXXX 0 0 

2) XXXXXXX 0 1 XXXXXXXX 0 1 

3) XXXXXXX 1 0 XXX XXX XX 1 0 

4) XXXXXXX 1 1 XXXXXXXX 1 1 

The initial pair of addresses are automatically used the first time calcula­
tion is performed. Four drum revolutions later, when that block of words 
is read again, the second pair of addresses will be used, and so forth. 
Note that the control word may be looked upon as being made up of four 
binary-coded octal digits ABCD (see Figure 17). A is always two, B may 
be one, two, or three, C is always zero, ane. D may take on values from 
zero to seven. Thus, the complete 11-bit control word. describing a func­
tion of three variables with indexing on the third variable only could be 
written as the octal number 2304. 

The order of information contained in a block of words describ­
ing a function is as follows: 

1) Control word 

2) X address 

3) Yaddress 

4) Z address 

5) Numerical data 
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6) Computational time 

7) Answer address 

This list of seven items may be described as seven "zones" of words. 
Every word written on the interpolator bands is an ll-bit word, of which 
the most significant bit is a control bit. 

The first word in each zone stored on the drum will have a"l" in 
its control bit. All the other words will have a "0" in their control bit. 
In this manner, the beginning of each zone will be marked by the appear­
ance of a "1" in the control bit of the first word of that zone. Zones 3 
and/or 4 will be ignored automatically if the control word identifies the 
function as being a function of only one or two variables, as the case may 
be. Zone 1 contains only the control word discussed previously. Zones 
2, 3, 4, and 7, when used, are all address zones, and each of these zones 
consists of four or five repetitions of the core memory address concerned. 

Zone 6 represents extra time allowed for the interpolator to 
finish its calculations. This time is accounted for by having two blank 
words (except for the control bit in the first word) for a single variable 
function, four blank words for a function of two variables, and six blank 
words for a function of three variables. Actually, anything at all may be 
written in these words as long as the control bit convention is observed. 

Zone 5 is the zone containing all numerical data. The control 
bit of the first data word must, of course, contain a "1", while all the 
others are zero. This ordinate information is stored sequentially - nine 
successive words specifying a single curve, nine groups of nine words 
specifying a family of curves (for a function of two variables), and nine 
blocks or sheets of nine groups of nine words each specifying a function of 
three variables. 

Of the nine words describing a single curve, the first word is 
f(O), the second is f(1/8), and so forth (see Section 3). For a function 
of two variables, the first curve, or group of nine words, is associated 
with Y = 0, the second curve is associated with Y = 1/8, and so forth. 
Similarly, for a function of three variables, the first sheet listed is asso­
ciated with Z = 0, the second sheet with Z = 1/8, and so forth. 

Sometimes it is not necessary to include the entire numerical 
data zone. If, for instance, the programmer were certain that Z would 
always lie between Z .. 0 and Z = 1/2, there would be no point in including 
data sheets for Z = 5/8, 3/4, 7/8, and 1. O. Therefore, after listing all 
the data words making up the sheets for Z = 0, Z = 1/8, Z = 1/4, Z = 3/8 
and Z = 1/2, the data field could be truncated by merely listing the first 
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word of the next zone (the interpolator will recognize the change by the 
appearance of a "1" in the control bit of that word)o 

Similarly, if one is dealing with a function of two variables and 
the second variable, Y, will always be limited to some value less than one, 
then it is permissible to reduce the number of curves required to describe 
that function. 

4.5.2 Programming Ill-Behaved Functions for the Linear Interpolator 

When a function cannot be closely approximated by straight-line 
segments between fixed breakpoints, special methods must be used to pro­
gram the function for the digital interpolator. This will happen when the de­
rivative of the function curve is large in magnitude, or when the curve has 
points of inflection whose ordinates do not coincide with any of the fixed 
breakpoints. There are many methods of handling this problem; the me­
thod chosen is determined by the nature of the function curve. 

Probably the most promising method for use on the Mark I is 
that of "warping" the curve into a more reasonable shape. This is accom­
plished by replotting the function data in terms of a new variable that is a 
function of the original independent variable. That is, instead of plotting 
f(X) versus X, we can plot f(X) versus X2, or..JX, or X3-1, or any other 
deliberately chosen function of X that will warp the function data in the de­
sired manner. Consider the four curves shown in Figure 18. Curve Noo 1 
is the original curve of f(X) versus XO Curve No.2 represents a linear 
"stretching" of the independent variable: f(X) versus 10/3 (X-0.7). Curve 
No.3 represents the function data plotted versus [10/3 (X-O. 7) ]2. Any 
degree of warping may be obtained by choosing the proper function of X as 
an independent variable. The function chosen must, of course, be gener­
ated as part of the general program and stored for use by the digital inter­
polator. 

Not all ill-behaved functions will lend themselves to warping 
techniques. We may find for example, that there is no function of the 
independent variable capable of producing the desiged degree of warping, 
or, more probably, that such a function exists but is too difficult and time­
consuming to derive. Furthermore, even when a suitable function can be 
derived, we may find that an excessive number of program steps must be 
utilized in order to generate the new independent variableo In these 
cases a new approach to the problem must be takeno 

Consider the function illustrated in Figure 19 . Since 
the breakpoints are fixed as shown by the logic of the interpolator the 
function constructed by the interpolator will resemble the dashed 'line 
shown in Figure 19a. Obviously, f(X) is badly distorted by the 
removal of the peak in the vicinity of X = 0.41. Thus, in order to con-
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------ ~~~~ AS CONSTRUCTED 
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Figure 19 FUNCTION SPLITTING TECHNIQUE 
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struct f(X) with accuracy, one approach might be to split f(X) into two 
functions: f(X1) for 0 :s. X < 0.41 and f(X2) for 0.41 :s.X ~ 1. 0 (see Figure 
19b). By rescaling X in the region between X=O and X=O. 41, a new quan­
tity Xl may be defined as: 

1.0 
Xl = 0.41 X = 2.44 X for 0 ~ X ~ O. 41 

Similarly, by rescaling X in the region between X = 0.41 and X = 1. 0, a 
new quantity X2 may be defined: 

X2 = 1. 0 1 (X-O. 41) = 1. 69 (X-0.41) for O. 41 ~ X ~ 1. 0 
1. 0 - O. 4 

Two new and entirely separate functions are now constructed: 
f(Xl) and f(X2). The function f(X1) will be an ordinary eight-segment 
function programmed on the interpolator portion of the drum. It will de­
scribe the original f(X) for 0 :s. X ~ 0.41. Similarly, f(X2) will be a sepa­
rate eight-segment function on the drum describing f(X) for O. 41 :s.X~ 1. O. 
This means, of course, that all three independent variables (X, Xl, and 
X2) must be assigned storage locations in core memory. Similarly, core 
locations must be reserved for f(Xl) and f(X2). 

Each time the Mark I calculates a new X, it is necessary to test 
X to see if it lies in the region of Xl or in that of X2. Simultaneously, a 
Boolean flag must be set and stored in order to later identify which region 
X lies in. This is necessary because later, when it is desired to use f(X) 
in some calculation, there must be some simple way to identify the correct 
functional value for the computer to select - that is,f(XI) or f(X2). Having 
tested X and set the flag, Xl and X2 may now be calculated and stored in 
their aSSigned locations. It does not matter if, for instance, a value of 
X2 is calculated and stored for some value of X lying in the region of Xl. 
It is true that this X2 will be an incorrect number and that the correspond­
ing value of f(X2) will also be incorrect, but it must be remembered that 
because of the flag previously set, the Mark I will ignore f(X2) and select 
f(XI). 

It should be noted that this particular method of splitting an ill­
behaved function is not a recommended method because it requires a 
large amount of program space to implement. However, the basic idea 
of splitting a function may be extrapolated into several methods or varia­
tions, many of which require less program space and are better suited to 
use on the Mark I. 
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4.5.3 Numerical Integration Methods 

The high-speed portion of the computation cycle of the Mark I 
computer operates at a repetition rate of 20 cycles per second. Table I il­
lustrates the periods and degrees of damping of a number of computer solu­
tions for two different integration formulas. This table has been prepared 
employing z-transform techniques and has been calculated for damped sinu­
soidal solutions, since these are considered to be representative of the types 
of dynamic response most critical in the simulator flying qualities. For long­
er-period oscillations than those indicated on the table, the computer solution 
is invariably vastly superior to the tabulated information and may be consider­
ed to be, for practical purposes, perfect. In every instance, it should be under­
stood that the dynamic response of the simulator (at least for a computer em­
ploying word length as great as the 24-bit calculation specified for the Mark I) 
is, even with the degree of deterioration indicated in Table I, vastly superior 
to that now obtainable in electronic computers which employ electromechani­
cal elements for multiplication or integration. 

Columns 1 and 2 of Table I indicate the period and damping 
characteristics of a number of equation solutions using "pencil and paper" 
methods. Columns 3 to 6 indicate the results obtained when the computation 
is performed by a digital computer. Columns 3 and 4 represent the comput­
er solution using parabolic integration, while columns 5 and 6 represent the 
computer solution using an integration formula commonly called Gurk 033. 
The relative-amplitude columns represent the percentage relationship be­
tween successive peaks of the sinusoidal oscillation. A factor of 100% indi­
cates a neutrally damped system continuing to oscillate at a fixed magnitude, 
95% indicates that each successive cycle has a magnitude equal to 95% of that 
of its immediate predecessor, and so on. It should be understood that these 
percentages pertain to relative magnitudes per cycle of oscillation and not 
per cycle of the machine computation. The table has been prepared for a 
basic cyclic repetition of 20 calculations per second. 

It should be observed that the parabolic integration formulas 
give materially superior accuracy with respect to damping ratio for reason­
able periods in comparison with the Gurk 033 integration formula. Further­
more, the errors which are present in the case of parabolic integration re­
sult in a solution which is slightly over damped. The opposite effect is ob­
served for the errors employing Gurk 033, an unfortunate consideration in 
view of the fact that marginally damped oscillations, such as Dutch roll at 
high altitude, may become objectionable if subjected to a reduction in natural 
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TABLE I 

INTEGRATION DYNAMIC ERROR FOR DAMPED SINUSOIDS 

True Solution Computer Solution Using Computer Solution Using 
Parabolic Integration Gurk 033 Integration 

Period Relative Period Relative Period Relative 
In Seconds Amplitude (%) In Seconds Amplitude (%) In Seconds Amplitude (%) 

31. 4 10 31. 4 10.00 31. 5 10.02 

31. 4 50 31. 4 50.00 31. 5 50.07 

31. 4 90 31. 4 90.00 31. 5 90. 13 

o 31. 4 100 31. 4 100.00 31. 5 100. 14 

3. 14 10 3.14 9.98 3. 14 10.17 

3. 14 50 3. 14 49.88 3. 14 50.11 

3. 14 90 3. 14 89. 79 3. 14 91. 96 

3. 14 100 3. 14 99. 73 3. 14 102.2 

1. 57 10 1. 58 9. 81 1. 56 10.11 

1. 57 50 1. 57 49.01 1. 56 51. 49 

1. 57 90 1. 57 88. 32 1. 56 93.41 

1. 57 100 1. 57 98. 18 1. 56 103.94 

0.628 10 0.662 6. 50 0.617 12.41 

0.628 50 0.623 36.78 0.600 47.35 

0.628 90 0.614 69.45 0.592 91. 84 

0.628 100 0.612 78.38 O. 592 103.42 
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damping owing to machine error. The use of Gurk 033 does, however, per­
mit the attainment of reasonably satisfactory dynamic solutions at oscilla­
tory frequencies higher than those which can be handled by parabolic inte­
gration (unless over damped solutions can be tolerated). 

It should be recognized that the Mark I computer is not wired 
or designed to accommodate any particular integration formula; the partic­
ular choice of formula is determined by programming. Parabolic integra­
tion is moderately more economical of computer time than the more com­
plex Gurk 033 formula. However, the actual percentage of increase in 
computation time required through the use of complex integration formulas 
is relatively small, since an enormous amount of additional computation 
unrelated to integration must be done in any case. 

4. 5. 4 Extra-Precision Arithmetic 

In a digital computer, integration is accomplished by calculat­
ing an incremental change in the quantity concerned and addjng that incre­
ment to the old value of the quantity. In the equation X = f X dt, if X is 
extremely large in magnitude, then the LSB (least significant bit) of X is 
correspondingly large. Since the magnitude of this LSB determines the 
smallest rate of change of X that can be integrated with accuracy, it 
may be necessary in some cases to magnify the LSB to obtain a smaller 
increment. This situation is comparable to that encountered in analog 
integration, where a wire-wound potentiometer provides a rate signal to 
an integrator, and the Ii V between the centertap of the potentiometer and 
the next wire over determines the smallest rate of change that can be fed 
to the integrator. In every analog system, a smaller Ii V can be obtained 
by using a vernier potentiometer to interpolate between two adjacent wires 
of the main potentiometer. In the Mark I, the programmer can accomplish 
this by means of "extra-precision arithmetic. " 

To illustrate this technique, let's consider the hypothetical 
case of an aircraft flying almost due north (Y axis). Assume there is a 
very small drift velocity to the east (X axis). Let:!:l in the Mark I cor­
respond to :!: (half-way around the world at the equator) == ±12, 500 miles. 
With a 23-bit resolution in the Mark'1, the pilot can know his X position 
anywhere in the wor ld within 8 feet - certainly an ~xcellent resolution for 
position. However, X is calculated by integrating X, and, since the LSB 
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of X in the Mark I corresponds to approximately 8 feet, and X is inte­
grated at the rate of 20 calculations per second, then the smallest drift 
velocity recognized is 8 feet x 20/second = 100 feet/second. A drift 
velocity of this magnitude can cause appreciable error in heading and 
position and would quickly be noticed. Therefore, in order to calculate 
X accurately for small rates, there must be an increase in the resolution 
of X. 

A suitable increase in resolution can be achieved by treating 
X as the sum of two numbers: 

/,-

X = XCoar~e + X Fine 

Xc will have the same/scale factor as X ordinarily would, and Xc real~y 
is X, all by itself. However, instead of integratiny X to generate X, X 
will be integrated t() generate XF, where XF is 2- OxC. This represents 
~ ten-bit increase in resolution. Each time XF is calculated by integrating 
X, it is tested to see whether it is large enough to add a significant digit to 
XC. If it is large enough, then XF is scaled ten places to the right and 
added to XC· Obviously, whatever amount is added to Xc must also be 
subtracted from XF. 

Extra-precision arithmetic can, of course, be utilized for 
any computation in which increased resolution must be achieved; however, 
in view of the 23-bit inherent resolution of the Mark I computer, it is 
highly unlikely that extra-precision methods will be required except to 
deal with the type of problem we have illustrated. 

4. 5. 5 Simulation of Accessory Systems 

4. 5. 50 1 General Approach 

One of the unique features of the Mark I computer is its 
integral Boolean capability. This capability has been incorporated speci­
fically to permit economical simulation of the complex switching systems 
found in current aircraft designs. It represents an economical approach, 
eliminating the large quantities of wired relay systems commonly required 
for this type of simulation. Furthermore, aircraft switching systems are 
particularly vulnerable to modification, and the Boolean capability of the 
Mark I is a flexible capability that can easily be reprogrammed to ac­
commodate modification. 

/ The fundamentals of Boolean logic are illustrated in _ 
Figure 20. . The Boolean (two-valued) function E is defined by the two 
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Figure 20 FUNDAMENTALS OF BOOLEAN LOGIC 

lines directed into it. One of these is the Boolean function A; the other is 0 
the indicated Boolean function of B, C, and D. In Boolean notation, 
E=A+D (BtC). If the elements of the diagram represented the Boolean 
elements (switches, lights, circuit breakers, relays) of a particular air-
craft subsystem, then that subsystem could be simulated by program-
ming the Mark I to solve the Boolean equation for E. In practice, all air-
craft systems are reduced to a Simplified Boolean flow diagram containing 
only those inputs, outputs, and variables which need to be stored. 

4. 5. 5. 2 Typical Example 

The simplicity of simulating accessory system switching 
operations in the Mark I computer may best be seen by the following ex­
ample. Figure 21 represents a typical aircraft electrical subsystem. Load 
sensing and balancing components have been omitted for clarity. In this 
example, the load ammeter will read the current from either generator, 
depending on the position of the ammeter switching relay. In addition, the 
ammeter will read one-half of the total load when both "Bus Tie" relays 
are energized. The load ammeter must reflect actual bus loads that are 
computed from the corresponding circuit breaker and switch positions. 
For simulation purposes, two distinct computational steps are required. 
First, Boolean switching logic must be performed to determine the num­
ber of loads that should be reflected by the ammeter; second, the load 
current to be indicated by the load ammeter must be computed. 
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Figure 22 LOGICAL AND ARITHMETIC FLOW DIAGRAM 
FOR SYSTEM SHOWN IN FIGURE 21 
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Figure 22 is a Boolean flow diagram based on the system 
shown in Figure 21. The Boolean functions are designated by circles and 
the arithmetic operations by rectangles. Arithmetic operations control­
led by Boolean functions are designated as FLAG operations. This is 
shown by a circle labeled FLAG adjacent to the 'rectangle that represents 
the arithmetic operation. In practice there are more than two individual 
loads on a bus. From Figure 22, the following equations can be written 
for the Bus A load: 

FLAG Al (F Al) = SWl CBl (Boolean) 

BUS A Load = Load Al + Load A2 (Arithmetic) 

where: Load At, Load A2 = 0 for F AV F A2 = 0 

Load Al, Load A2=K for FAV FA2 = 1 

Individual loads on Bus A and Bus B will be arithmetic num­
bers stored in the drum memory. The program for these loads will be 
repetitive. The following program describes the Bus A load computation: 

FLAG Al 

Instruction 

LOAD B (load Boolean 
accumulator) 

BOOLEAN PRODUCT 
(multiply by) 

BOOLEAN PRODUCT 

COND SK (conditionally 
skip the next instruction 
if above result is not true) 

LOAD CaNST ANT (main 
accumulator) 
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Data 

Bus A (energized) 

Switch Al ("ON") 

Circuit Breaker Al ("ON") 

Bus Al Load 



FLAG A2 

LOAD B 

BOOLEAN PRODUCT 

BOOLEAN PRODUCT 

COND SK (continually skip 
the next two instructions if 
above result is not true) 

LOAD CONSTANT 

ADD 

Bus A (energized) 

Bus A2 Load 

Bus Ai Load -+- Bus A2 Load 

In a similar manner, the Bus B load (and any subsequent 
loads necessary) would be computed and added to the Bus A load to pro­
vide the required loadmeter readout. 

4.5.6 Elapsed Time Computation 

Any desired elapsed time can be simulated in the Mark I by 
successively subtracting a small decrement from a stored constant during 
each cycle of operation until the original number is reduced to zero. The 
total time, t, is determined by dividing the stored number (M) by the decre­
ment (N) and multiplying by the time required for one cycle: t= MIN T c. 

A diagram of the required operation is shown in Figure 23. 

1 

~----l Mj=ML-N>O 

Figure 23 ELAPSED TIME OPERATION 
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Assuming N is a constant already stored, perhaps for some 
other purpose, the program wnuld be: 

Instruction 

COND SK 

LOAD 

SUB 

STORE 

FL NEG 

BINV 

COND SK 

LD CONS 

STORE 

Data 

Mi 

N 

M· J 

M 

M 

Referring to the logic diagram in Figure 23,.it can be seen 
that if the timer (A) has not been started (A = 0), the time instructions 
are skipped. When the timer has been started (A = 1), then the repetitive 
subtraction process is begun and continues until Mj < O. At this point, a 
flag is set indicating the specified elapsed time has passed, and the in­
structions that manifest the end of the elapsed time are executed. 

4.5.7 Motor Drive Computation 

There are many applications involving a motor-driven unit, 
usually found at one extreme or the other of the allowable travel. Typical 
of these are motor-driven valves, flaps, trim.and wheels. Figure 24 
shows a typical unit of this type and diagrams of the computer operations 
to accomplish it. 

The stored value (M) represents the position of the simulated 
device at all times, with K = • 9998 at the upper limit and zero at the lower 
limit. The upper and lower limits are stored Boolean functions, and as 
such, can be used in Boolean operations. The position (M) is a stored 
arithmetic number and can be used in any arithmetic operations. The 
constant (N) which is added or subtracted each machine cycle can be two 
different values, one for increase and the other for decrease. 
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Flgur~ 24 MOTOR DRIVE OPERATION 

LOAD 
M=Mj 

LOAD 
M=O 

LOAD 
M=Mj 

'l'h~ programs for comput~r rout1n~s Ind1cat~d In Figure 24 are 
as follows: 

Instruction 

B LOAD 
B MUL 
B INV 
B SUM 
CONn SK 
LOAD 
ADD 

Data 

A 
B 

M 
N 
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AB 
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0 

Instruction 

STORE 
SUB 
FL NEG 
B INV 
B STORE 
B LOAD 
B MUL 
B !NV 
S SUM 
COND SK 
LOAD 
SUB 
STORE 
FL NEG 
B STORE 
COND SK 
ZER SL 
STORE 

4.6 PROGRAM LOADING 

Data 

M 
K 

U 
C 
D 

L 

M 
N 
M 

L 

M 

Contents of 
Boolean 
Accumulator 

M+N-K 

CD 
CD 
CD+L 

M-N 

All instructions, numerical data for the generation of arbitrary func­
tions, and descriptive data for radio navigation facilities are stored on the 
drum memory of the Mark I computer. For clerical convenience, the use­
ful storage area of the drum is divided into 16 bands, each containing four 
1024-word sectors. The four bands containing function generation infor­
mation employ 11-bit words (44 tracks), the 11 bands containing general 
program instructions employ 16-bit words (176 tracks), and the single 
radio-navigation facility band employs 20-bit words (20 tracks). All three 
data bands are loaded from punched paper tape, employing one standard­
ized loading procedure. Any of the 64 sectors may be loaded independently, 
employing a relatively short segment of punched tape, or the entire program 
(or any desired sequential fragments thereof) may be automatically loaded 
in sequence, employing a single, full-length tape. 

The drum loading system is an integral part of the Mark I computer. 
The loading operation is controlled through manipulation of console switches 
rather than through program instructions. Accordingly, there are no in­
structions related to program or memory loading in the Mark I instruction 
repertory, nor is it necessary to employ loading routines or special com­
puter programs to accomplish computer loading. The tape loading method 
is felt to offer certain advantages over other possible loading techniques; 
however, if program loading directly from punched cards is desired, this 
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can be readily incorporated into the Mark I with no modification of the basic 
computer. The various items of equipment utilized in the drum loading se­
quence and their characteristics are as follows: 

1) Photoelectric punched tape reader - 500 characters/second 

2) Tape handler - 500 characters/second forward speed; 
100 inches/second rewind speed 

3} Input register 

4) Main core memory (used as loading buffer) 

5) Core memory address counter 

6) Drum memory address counter 

The tape feed controls are extremely simple; no computer knowledge 
or sophisticated control manipulations are required to accomplish tape 
loading. Furthermore, the starting and stopping of normal computer 
operation, preceding or following tape loading, is accomplished by simple 
switch manipulation; it is not necessary to set up complex console switches 
or to introduce instructions through manual console entry to initiate simu­
lator operation after tape loading. In view of the Simplicity of the tape 
loading control system, the fact that computer operation can be initiated 
without recourse to complicated control manipulations, and the fact that 

') a single 1024-word sector of the drum can be loaded in a few seconds 
'I ..,. time, it is believed that Mark I program alterations will require consider­

tlA /<t .'1 ably less effort than the experimental modification of analog simulators. 
h _I'ft ~.L. 
~€ &.p ~ The data words are read from eight-hole punched tape. General pro-

pA gram instruction words occupy two lines each on the tape, linear inter-
f\~ polator words occupy two lines, radio-aids data words occupy three lines, 
v and core memory load words occupy four lines. Core memory load words 

will seldom be used in program loading of the Mark I; however, they have 
been included in order to reflect the maximum time that is required to 
completely load the drum memory and the core memory. As each word 
is read from the punched tape, it is compiled in a 24-bit input register .. 
After each word is compiled, it is transferred for storage to one-half of 
the main core memory (1024 words), which is used as a loading buffer in 
this process. An address counter is advanced each time a data word is 
stored in the core memory to provide the memory address input for the 
following word. When a block (sector) of 1024 data words has been loaded 
into the core memory, the tape reader is stopped and this block of data is 
written on the program memory drum in the proper block address loca­
tion. The block address at which the first block of information on input 
punched tape is to be written is set manually into control switches and this 
address is automatically increased by one after each block of data is loaded. 
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After the process of writing each block of data onto the drum is com­
plete, a bit-by-bit comparison is made between the recorded drum infor­
mation and the data contained in the core memory. If there are any dis­
crepancies, the loading process will be halted pending manual instruction 
to attempt reloading. For each block, the writing and comparison process 
requires two drum revolutions - that is, 0.05 seconds. Manual controls 
are provided to permit complete rerunning of the punched tape or a dupli­
cate tape in a verification mode to double-check the entire loading process 
if desired. 

The tape length required to fully load the drum memory and the main 
core memory is as follows: 

No. of Characters 
Type of Data No. of Bands per Word 

Tape 
Characters Length (ft) 

General Program 11 2 89,980 750 

Interpolator 4 2 32,720 273 

Radio Aids 1 3 12,288 103 

Core Memory Load 2048 words 4 8,192 68.5 

143,180 1194.5 

Totals (Maximum) 

The time estimate given below is based on the use of two reels of 3.5 
mil Mylar tape. It should be noted that no time has been included for the 
changing of reels (probably less than one minute) or for rewinding the 
second reel (this can be performed after the computer is in operation). 
The loading time estimate is as follows: 

OPERATION TIME REQUIRED 

Load Program Instruction Data 180 sec. (Reel 1) 

Rewind Tape 90 sec. 

Load Interpolator, Radio Aids, and 
Core Memory Data 106 sec. (Reel 2) 

Total 376 sec. or 6.25 min. 
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After the complete simulation program has been loaded into the Mark I 
any modification of this program due to aircraft changes or radio aids ' 
facility changes will normally require reloading only a small segment of 
the total simulation program. The smallest segment of the program that 
can be loaded into the computer is one block, or sector, of 1024 words. 
Neglecting the time required to insert the punched tape in the drum loader 
and to rewind the tape after the loading has been completed which does 
n?t repres~nt.simulator downtime (that is, can be accomplish~d while the 
SImulator IS III operation), the time required to load one sector of either 
the general program or the linear interpolator program is approximately 
four seconds. For the radio-aids data band, the time required to load 
one ~ector is approximately six seconds. It may be noted, therefore, that 
loadl,ng a completely new set of radio facilities into the Mark I computer 
reqUlres only 24 seconds of simulator downtime. . 

4.7 PROGRAM MODIFICATION 

4.7.1 General-Purpose Instructions 

The general-purpose program will invariably cpnsist of a 
very large number of relatively simple program fragments, each fragment 
accomplishing a specific computational task (for example, an individual 
fragment might be t.he computation of indicated airspeed or the calculation 
of direction cosines from guaternions). In the basic program these indi­
vidual fragments will be arranged in sequence and assembled in program 
sectors of 1024 words each. It should be recognized that the entire 1024-
word s,!mce will not, in general, be employed unless the computer is being 
utilized perilously close to 100% capacity. Furthermore, in view of the fact 
that persons unfamiliar with numerical real-time calculations may under­
standably be led to attach undue significance to the sequence in which the in­
dividual calculations are performed, it should be recognized that the actual 
sequence of calculations is of very little importance. Except for obvious 
precautions such as resisting the temptation to program the extraction of 
the square root of the sum of X2 + y2 before the quantities X and Yare 
squared and summedTthe actual sequential pOSition of the individual program 
fragments within a c~plete program is almost entirely meaningless.) '1 
Furthermore, the address location of the individual instructions in %e ' 
sequential memory of the Mark I is immaterial, and is recorded only for 
clerical purposes to permit identification of the location of the individual 
instructions in the event that program alteration is considere~ desirable. 

The procedure for modifying the general-purpose instructions 
begins with writing a new program to replace the original and undesired 
program steps. This will, in general, entail replacement of a group of 
instructions with a new group which may be either larger or smaller in 
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total number than their predecessor group. These new instructions are 
then keypunched in any desired groupings from one through eight per card. 
The instructions to be eliminated from the original program are then 
identified in the individual card decks from which the original program 
tape was prepared. The obsolete instruction cards are removed and the 
new cards inserted in their place. An entirely new and unrelated group 
of instructions might be placed at the end of the program group or might 
be inserted between any program fragments in the deck, although it is 
unwise to break an individual computation group without scanning the 
original program to discern the probable consequen,ces (for example, it 
is undesirable to split a program at a point immediately prior to storage 
of the answer, since the computed result would be abandoned in the ac­
cumulator immediately prior to storage and would never be available for 
subsequent computations or output use). 

The corrected deck is then fed through the tape preparation 
unit to generate a new l024-word tape fragment which may be individually 
loaded for test purposes into its corresponding sector of the drum. After 
testing the modified program, the individual tape sector may be inserted, 
through splicing, into a complete 64-sector master program tape. If de­
sired, the new spliced master program tape can, at some convenient time, 
be duplicated as a continuous un spliced tape. This duplication operation can 
be accomplished without interference with the operation of the flight simu-
lator since the tape preparation unit is completely independent of the simu- ", 

la tor. ~,~!<t .. ¢+,-!?4"'-'~ 44 ~ 
If desired, after preparing ~ l024-wor. r ~am frag- :/' 

ment, the tape may be fed through th~eWlett-Packar "'.~.~ nd as­
sociated circuitry to obtain a printed llsttrrg-oHlre"11mV' program steps for 
future reference. Alternatively, the revised IBM deck from which the new 
tape was prepared can be listed on a standard IBM tabulating printer. 

4.7.2 Interpolator Data 

Simple numerical alterations to existing interpolator data 
can be accomplished through removal of the card or cards containing 
obsolete numerical data and replacement of these cards by cards contain­
ing the updated information, keypunched in decimal form. This new 
deck is then converted into a l024-word replacement tape and introduced 
into the computer or into the master tape following a procedure similar 
to that employed for the general-purpose instructions. In the event that 
it is necessary to make a major alteration of the interpolator data (as, 
for example, the substitution of a function of two variables for a function 
of a single variable), it is readily apparent that insufficient space may be 
available in the original loading sequence for the new interpolator curve 
information. 
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Probably the most straightforward method of handling this 
problem is to introduce the new two-variable function data at the end of 
the interpolation sequence. As in the case of the general-purpdse pro­
grams, space will be available following the interpolation sequence unless 
the computer is being utilized to maximum capacity. Information key­
punched for the interpolator consists of addresses of the X, Y, and Z 
variables (depending upon whether the function is a function of one, two, 
or three variables), numerical data for the breakpoints of the curves, and 
the address of the memory location into which the answer is to be inserted. 
This information, suitably keypunched, is simply added to the last IBM card 
deck and a new tape sector punched. 

In the example given herein, the original function of one vari­
able remains in the program and is still calculated, since we have not re­
placed it in the procedure described. Unless the space occupied by the 
original erroneous obsolete function is needed for generation of another 
function, the most convenient means of obliterating the original calculation 
would be to alter the address into which the obsolete single-variable func­
tion interpolated answer is to be ~tQr_ed.Acco'rdingly~the-ca-rd-containing 

&,7
, . 1l1'fS\i;rerarrdr-ess-f-or-,itre~'6osofete function should be removed and re­
placed with instructions, to store this computation in an unused core meIfi-::." 

, oryaddress. With this procedure'"fhe original interpolation is performed, 
""but is stored in a memory location from which it is never user Here 

again ~n-sfiouIa oe "sl'resseornanI1e" sequeilce-in -wFilch the interpolation 
calculations are performed is completely immaterial. Aside from the pro­
viso that the individual groups of numerical words specifying the ordinates 
of the curves comprising a single function of one variable (81 words for a 
function of two variables, and 729 words for a function of three variables, 
unless the data field for the last variable is truncated as described in Sec­
tion 4. 5) be stored in continuous sequence without break, the sequence of 
word assignments in the interpolator is entirely at the discretion of the 
programmer. 

4.7.3 Introduction of New Radio Information 

New radio information is introduced in a manner exactly 
analogous to the introduction of general-purpose program instructions, 
with the following exceptions: 

1) The data must be composed of pairs of pseudo instruc­
tion words, as discussed in Section 5.6. 

2) The various types of radio facilities are grouped in 
families with respect to their drum storage location. 
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There are groups of data words for 32 middle markers, 32 outer markers, 
32 fan or Z markers, 128 VHF navigation facilities, and 128 low-frequency 
navigation facilities. The position of an individual radio facility within 
the group is immaterial- that is, there is no Significance to the position 
of 128 VHF navigation facilities with re spect to on"e another. However, 
data for a VHF facility cannot be placed in the drum area belonging to a 
low-frequency facility because the computer will then process the atten­
dant data as a low-frequency facility, with resultant computational error. 
Since the various categories of navigational facilities are grouped in con­
tinuous blocks rather than intermixed, it is not antiCipated that any diffi­
culty will be encountered in meeting this programming requirement. 

The individual data words within the block of information 
pertaining to an individual station (such information as latitude, longitude, 
airport elevation, call letters, frequency) are assigned stereotyped 
locations within a block and cannot be indiscriminately intermixed without 
machine misinterpretation of the resultant data. Since reassignment of 
navigational facilities will, in general, consist of simple substitution of 
one facility for another, the word-by-word replacement of data in the ap­
propriate cells does not appear to constitute a serious problem. 

Accordingly, the pseudo words generated according to the 
instruction book are simply keypunched as general-purpose instructions, 
the new cards replace the old keypunched pseudo words pertaining to the 
obsolete facility, and the deck is translated into a new l024-word tape 
sector. The procedure for loading this modified tape is identical to that 
employed for all tape loading throughout the computer. 

It should be recognized, then, that minor Mark I updating 
projects, such as the introduction of new radio information, can easily be 
accomplished in the field by essentially the same personnel who now oper­
ate and maintain conventional analog flight simulators. Indeed, this has 
been one of the primary design objectives of the Mark I program, and it is 
one of the special features that make the Mark I an ideal computer for flight 
simulation. 
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5. PROVISIONS FOR EASE OF OPERATION AND MAINTENANCE 

5.1 GENERAL CONSIDERATIONS 

In an analog simulator, failures of individual components are 
clearly identified with single elements of the computation. These elements 
bear identification labels which are meaningful to a person familiar with 
the mechanics and the functioning of the equipment that is simulated. The 
individual elements in the Mark I are singularly associated with individual 
steps in arithmetic operations or the transfer of numbers from one portion 
of the computer to another. Just as in the case of an analog simulator, the 
defective element can be localized through observation of the nature of the 
operational fault. However, it is readily apparent in the case of the digital 
simulator that the malfunctions have little or no relation to individual pa­
rameters or instrumentation characteristics, since the components of the 
digital computer are time-shared throughout all calculations. For this 
reason, the operation of the instruments and displays affords little, if any, 
inSight into the possible identity of a defective components in the digital 
system. 

This might be a serious disadvantage for digital simulation if 
it were not for the fact that the internal program of the digital computer 
(and, accordingly, the operation of the individual elements) can be readily 
altered to facilitate diagnostic operations. A corresponding capability in 
an analog computer would be almost intolerably complex, since it would 
be necessary to physically transfer thousands of connections, alter resis­
tance values, reset servo positions, to accomplish diagnostic checks auto­
matically. In the digital computer, such alteration in basic machine oper­
ation can be accomplished without the incorporation of a single additional 
component in the design of the computer. 

Diagnostic routines function by "exercising" the computer, 
employing standardized test programs. It is apparent that an unlimited 
variety of ingenious programs can be devised to operate the computer in 
such a manner as to facilitate identification of a single defective element. 
Because of the extremely high computational capability of the computer, it 
is also common practice to process the results of the individual test oper­
ations in the diagnostic routines to simplify display of the results. As an 
extremely overSimplified example, if the machine were being tested to de­
termine whether or not it is capable of dividing 3 by 5, the correct answer 
(0. 6) could be stored in the diagnostiC routine and subtracted from the 
computed answer, with the result that a correct solution would produce 
an output of zero. Since an answer of zero would clearly be easier to 
interpret (when one of thousands of such results obtained rapidly in se­
quence), the facility for arithmetically proceSSing the test answers is 
clearly advantageous. 
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The Mark I computer has a relatiyely small number of inputs 
and outputs compared to a complete analog system. Furthermore, these 
are arranged in such a manner that removal of the connectors can be ac­
complished with little effort. Accordingly, it is also possible to discon­
nect the normal input-output information (the majority of which is in analog 
form) and close the input-output circuitry through adapter plugs. If this is 
done, a diagnostic routine can also cross-compare the various inputs and 
outputs to check the operation of the analog-to-digital and digital-to-analog 
conversion equipment. 

In addition, the Mark I will contain provisions for component 
test by virtue of a static card tester, a dynamic computer test by virtue 
of individual rack-mounted test point panels; and a static test by virtue of 
controls provided to permit operation of the computer one instruction at 
a time. Individual switches will be provided to enable the operator to stop 
the computer on a specific single instruction word and to temporarily alter 
this instruction word without affecting the permanently stored program. 
Indicator lights will be provided to permit readout of the instruction loca­
tion and the instruction word contained therein. In addition, indicator 
lights will be included to permit observation of the content of important 
registers in the computer for specific use during this one-step operation 
of the Mark I computer. . 

Many of the components of the Mark I computer are inter­
changeable. This should materially facilitate troubleshooting, since large 
numbers of elements can be interchanged to simplify failure analysis. Al­
though not directly associated with the Mark I computer itself, the servos 
employed to operate instruments in a simulator employing the Mark I com­
puter have a much higher degree of standardization than corresponding 
servos in an analog computer, since the servos are employed only for the 
relatively straightforward and simple task of rotating synchro transmitters 
or similar data tr.nsmission devices. Because of the high order of stand­
ardization among the simple instrument drive servos, the opportunity to 
interchange duplicate servos to facilitate maintenance of the instrument 
drive portion of this system is considerably greater in the digital system 
than in a corresponding analog simulator. 

5.2 COMPUTER CONTROL PANELS 

The Mark I computer will contain numerous control and dis­
play panels whose functional design is predicated on ease of computer 
operation and maintenance. Three of these panels - the computer opera­
tor's panel, the flight computer panel, and the interpolator/radio aids 
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computer panel - will be externally available to the computer operator 
for monitoring and control of all major functions of the computer opera­
tion. 

The computer operator panel (Figure 25) will contain the major 
computer operating controls and the computer operating mode controls. 
Computer operating modes will consist of: 

1) Normal: Under clock control. 

2) Single-,.'Shot Repeat: Under manual control. Repeat 
one addressed instruction for each operation of control. 

3) Single-Shot Advance: Under manual control. Execute 
addressed instruction, and increase address in auxiliary counters by one 
for each operation of control. 

4) Instruction Replace: Manual controls provided for in-
sertion of content and address of a single instruction which will replace 
drum instruction at addressed location, under manual control, in either 
normal or single-shot modes. 

5) Overflow Check: Under manual control. The history 
of program overflows between successive STORE instructions is placed 
in the 24th bit location of the data memory. 

6) Auxiliary Process Execution Failure: Under manual 
control. For either linear interpolator or radio aids process, the occur­
rence of an execution failure will cause computer to stop, with drum ad­
dress of failure point contained in auxiliary counters, and core address 
of affected item in appropriate register. 

These special operating modes have been provided for convenience in 
checking machine malfunctions and will also facilitate program debugging. 

The single-shot operation, under manual control, is provided 
with switches for the insertion of an address at which the manual process is 
to start, and provides for repeats of the addressed instruction or automatic 
advance. These switches may be used in an additional control mode which 
will permit anyone instruction to be replaced during either normal or 
single-shot operation by the use of an instruction set up in these switches. 
Also provided is an overflow-check process, which will permit a program­
mer to use the 24th bit of the core memory words to retain information 
regarding any overflows that have occurred during the processing of a 
program~ Provision to print out this information, as well as the complete 
contents of the core memory and main arithmetic accumulator contents, 
is provided. An execution-failure test for each of the auxiliary processes 
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under priority control is provided. These are 1) interpolator core mem­
oryaccesses, 2) A-D converter transfers to core memory, 3) D-A con­
verter transfers out of cores, and 4) digital switch transfers in and out of 
cores. 

The flight computer indicator panel (Figure 26) and the inter­
polator /radio aids computer indicator panel (Figure 27) will provide visual 
observation of the functioning of individual circuit elements during the one-
step operating mode. Nixie indicators will be located in the upper portion 
of one panel. These indicators are being provided for operator convenience, 
displaying the registers indicating contents of instruction being executed and 
drum address of this instruction. These, together with the other operational 
register indicators, operate only during a manual single-shot process or 
after a conditional stop has occurred (any display during normal operation 
would not produce intelligible data because of the extreme speed of the 
Mark I computer). 

In addition to the three panels illustrated, rack-mounted panels 
are provided containing indicators and control circuits incorporated into 
the computer for program loading operations, individual power supply con­
trol, and for such malfunctions as power supply failures, overtemperature 
alarms, and other machine failures outside the logic area. 

5.3 DIAGNOSTIC PROGRAMS 

Before the Mark I digital computer is operated with the input 
and output equipment of the digital flight simulator, a diagnostic program 
will be loaded into the computer drum storage by the computer operator. 
This diagnostic program, designed to detect errors in all computer­
dependent operations, will consist of two logical parts: 

1) Computer diagnostic program 

2) Input/output diagnostic program 

The computer diagnostiC program will completely check all possible inter­
nal operations of the Mark I, such as arithmetic, transfer, and Boolean 
operations. The radio aids preselection, digital function interpolation, 
and other internal data transfer operations will also be thoroughly tested. 
The input/output diagnostic program will determine whether the data trans­
fers from the simUlator equipment to the computer and from the computer 
to the simulator equipment are correct. 
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The diagnostic program will be punched on paper tape and 
will be loaded into the computer drum storage in exactly the same manner 
as the operational program. Duplicate copies of the diagnostic program 
tape will be provided because of the possibility of loss or mutilation of a 
paper tape. 

Written and pictorial instructions concerning the diagnostic 
program will be included in the computer operator's manual. Using these 
instructions, the computer operator can easily load the diagnostic pro­
gram, initiate the program, and determine whether the program has de­
tected an error. 

5.3.1 Computer Diagnostic Program 

After the computer diagnostic program is loaded and 
initiated, the program will execute all possible internal operations, and 
compare the results against preplanned results loaded with the program. 
If the results agree, the computer will stop, and the computer operator 
will check the neon light configuration on the computer control panel to 
determine whether it agrees with a pictorial display in the computer 
operator's manual that depicts the error-free condition. Agreement be­
tween the panel display and the pictorial display will indicate that the pro­
gram has operated successfully. 

If an error occurs, the neon light indicators on the com­
puter control panel will notify the operator of the type of error - that is, 
the operator's manual will contain pictorial displays of the light indicators 
for the various possible errors. Each type of error will have a unique 
light-indicator configuration. 

5.3.2 Input/Output Diagnostic Program 

The computer operator's manual will contain written and 
pictorial instructions pertaining to the proper setting of the various input 
devices. The diagnostic program will determine whether the input values 
agree with the preplanned values, and will indicate error or the error­
free condition by illumination of the light indicators on the computer con­
trol panel. 

The output portion of the input/output diagnostiC program 
will. set all output quantities to certain predetermined values. The com­
puter operator or maintenance personnel can then read all the various 
indicators and determine whether the equipment is functioning properly. 
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5. 4 ELECTRONIC CARD TESTER 

A static card tester will be provided as part of the Mark I 
computer. This card tester will enable the maintenance personnel to de­
termine whether an electronic card is functioning proper ly. 

Suitable card mounts will be positioned on the card tester 
module to allow testing the various types of cards in the system. These 
card mounts, used in conjunction with rotary-type switches on the control 
panel, will be used for malfunction detection, debugging, and preventive 
maintenance. 

A detailed instruction book will be provided with the card 
tester} illustrating the card mounts and rotary switch settings used for 
each type of card. The instruction manual will also show the indicator 
readings for a card that is operating normally) and also the indicator 
readings for the type of malfunction. 

5.5 AUTOMATIC READ HEAD CHECKING 

In order to utilize all available time in the Mark I computer, 
a dynamic read head checking circuit is incorporated to make use of time 
during the performance of arithmetic operations requiring more than one 
machine cycle. Multiplication and division operations, for example, re­
quire several machine cycles to complete. The computer program makes 
allowance for the time requirements of these arithmetic operations by the 
insertion of the NO-OP instruction for each segment of machine cycle 
time required. In effect, this NO-OP instruction inhibits any further 
transfer of data from the main drum memory; however, the data con­
tained in the NO-OP instruction consists of a series of alternate 1 's and 
O's. This data is compared in the associated read head checking circuitry 
to allow verification of the ability of each individual read head to distinguish 
between a "1" state and a ItO" state. The instruction data word is randomly 
alternated to continuously check both states of operation. That is, the first 
NO-OP data word would consist of the binary number 101010------,whlle 
the next NO-OP data word would consist of the binary number 01010---. 
In this manner, all read heads will be continuously checked for reading 
accuracy. The failure of any read head to read properly will illuminate 
an indicator light on the Mark I control panel. 

5. 6 T APE PREP ARA TION EQUIPMENT 

The designer of a special-purpose digital computer to be em­
ployed for real-time flight simulation is faced with a number of compro­
mises in the selection of a method of introduction of data into the computer: 
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1) Since, for the overwhelming portion of its usable life, the 
computer will be employed in purely routine training operations, it is 
essential that the standard loading procedure be simple and relatively 
rapid. 

2) Means must be provided to permit expeditious introduction 
of minor modifications to the program without extensive control manipu­
lation or without requiring excessive amounts of time for individual changes. 

3) Means must be provided to permit, on infrequent occasions, 
the keypunching or typing of an entire program by unskilled clerical per­
sonnel in an orderly and economical manner. 

4) Means must also be provided to _permit simulator engineers 
or maintenance personnel to produce small program fragments without 
recourse to elaborate programmed translation routines, awkward key­
punch manipulation, or use of sophisticated data translation techniques 
which might be tolerable for wholesale production of entire programs but 
would be intolerable for the introduction of a small number of modifica­
tions into an existing program. 

5) Consideration must be given to the reliability of the asso­
ciated equipment and to the vulnerability of the physical program data to 
damage, improper loading sequence, loss of individual elements (in the 
case of punched cards), or wear due to repeated passage through mechani­
cal reading devices. 

From the viewpoint of rapid loading, the use of magnetic tape 
to store the basic program is most attractive. Unfortunately, magnetic 
tape readers generally are considered to be less reliable than photoelec­
tric punched paper tape readers. Furthermore, magnetic tape is rather 
awkward to use since it cannot be edited conveniently and cannot be inter­
preted through visual inspection. Since the entire drum loading operation 
for the Mark I can be accomplished in less than 6. 5 minutes employing a 
photoelectric punched paper tape reader, the potential loading speed at­
tainable with magnetic tape is believed to be unjustified. 

From the standpoint of convenience in modifying programs, ex­
perimenting, and introducing minor variations in the sequence of compu-
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tations, the use of punched cards for program information is highly de­
sirable. The advantage of the use of punched cards completely disappears, 
however, if the data contained in the cards must be punched in a language 
other than direct program language or if it must be machine-translated 
before loading, since the only real advantage of punched cards lies in the 
fact that the individual fragments of a program can be physically manipu­
lated individually to facilitate minor changes in programming. Unfortu­
nately, the required to load an entire program using punched cards may 
be excessive unless an unusually fast and expensive card reader is em­
ployed. For example, the conventional card readers employed in present 
IBM machines read 200 cards per minute. The large number of instruc­
tions required in a computer for flight simulator operation might entail 
as much as an hour's reading time at this relatively slow rate, unless the 
information content of each card is condensed to such a degree that the 
flexibility advantage of the punched cards is seriously compromised. 

To satisfactorily meet these diverse requirements, the Mark I 
is designed to employ paper tape as the basic means of introducing infor­
mation into the computer. To capitalize on the flexibility advantage of 
punched cards, however, a fast photoelectric punched card reader is pro­
vided in the tape preparation unit to prepare a machine-language paper 
tape from a group of punched cards. Thus, the advantages of the relatively 
rapid and foolproof paper tape system are retained, while, at the same 
time, the programmer is permitted the use of punched cards in the as­
sembly of a tape to permit convenient insertion, deletion, and rearrange­
ment of individual program and data words. 

The tape preparation unit employs a photoelectric card reader 
which reads standard IBM cards at a rate of 240 cards per minute. Each 
card may contain any desired number of instructions from 1 to 8, or any 
desired number of interpolator data words from 1 through 9. Restriction 
of the maximum number of instruction words per card permits the reten­
tion of conventional IBM Hollerith code for keypunching of the instructions, 
spaces the individual instructions to such a degree that they may be con­
veniently read visually (if keypunched on a IBM 026 keypunch with printing 
attachment) and minimizes the size of a card deck corresponding to one 
1024-word sector of the program. (It is considered that most programmed 
operations, both in initial programming and in modification, will be ac­
complished in 1024-word groups.) At eight instructions per card, a 
l024-word sector may be prepared from a stack of cards less than one 
inch in thickness. 

The tape preparation unit employs a 1l0-character-per-second 
Teletype Corporation high-speed tape punch. This punch is widely used 
for communication purposes and is believed to be highly reliable. 
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A group of 128 cards, each containing eight instructions per 
card, can be translated into a machine tape in approximately 20 seconds. 
As stated earlier, it is not necessary that each card contain eight instruc­
tion words. For modification of existing programs, it is often convenient 
to introduce instructions one word per card. Furthermore, groups of 
cards containing any number of instructions (not exceeding eight per card) 
may be intermixed at random with no disadvantageous consequences other 
than loss of time - that is, the tape preparation unit effectively wastes time 
when potential data fields of the card are not employed. In other wordS, 
a 1024-word sector punched two words per card would take four times as 
long (or approximately 80 seconds) to translate to tape as a correspond­
ing sector punched eight words per card. After preparation of a tape, the 
cards need not be reused, unless modification of the program is required. 

The preparation of interpolator data in the card-to-tape con­
version equipment introduces two problems not encountered in the pre­
paration of general-purpose instructions. These are: 

1) As the eight straightline segment approximations employed 
for linear interpolation require nine data points per curve, it is highly 
convenient to increase the allowable number of data words per card to 
nine to permit each card to contain all the numerical data representing a 
Single curve. 

2) It is clearly desirable that the numerical information for 
the interpolator be punched into the cards in decimal language rather than 
in octal. Accordingly, the card-to-tape equipment provided with the 
Mark I computer contains internal circuitry to translate decimal keypunch 
information from IBM cards to binary before activation of the tape punch. 

Information for the radio-navigation facilities also presents 
additional problems arising in the following areas: 

1) The basic data words are 20 bits in length. 

2) A considerable variety of different types of data words are 
employed to characterize each navigation facility; these words not only 
contain numerical information in binary form but also contain information 
regarding call-letter generation patterns. 

To achieve the highest possible order of standardization and 
Simplification of the tape preparation circuitry and drum loading circuitry 
of the basic Mark I computer, the 20-bit radio words are assembled from 
two 16-bit pseudo general-purpose instructions. Through this concept 
the relatively small number of instructions or data words required for the 
four radio data sectors of the drum may be prepared by the same key­
punching philosophy and circuitry techniques employed for the generation 
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of general-purpose instructions. A detailed instruction manual will be 
provided with the computer to permit the programmer to assemble the 
appropriate pseudo instructions from the various types of numerical and 
call letter information required for each navigational facility. Thus 
minor modifications in the radio data may be prepared by preparation of 
a pseudo program, using the translation handbook to prepare the individual 
instructions. 

It should be recognized that the keypunch operations are per­
formed in direct programming language without recourse to indirect state­
ments, oblique language, translation during keypunching,or similar confus­
ing inefficiencies. Punching of large volumes of instruction cards for 
preparation of an entire program is best handled through the utilization of 
an IBM 026 keypunch ,which is not provided with the basic Mark I computer 
but is widely available at any facility employing even the simplest of IBM 
accounting equipment. No modifications to the keypunch are required and' 
the keypunch technique is identical to that employed in standard IBM busi­
ness operations. 

For modest-scale experimentation and alteration of programs, 
it is entirely satisfactory to employ the small IBM hand keypunch provided 
with the basic Mark I equipment. Reasonable numbers of cards can be 
punched with this device at little inconvenience, although it is somewhat 
inefficient for producing cards in quantities of hundreds or thousands. 

It should be recognized that the individual instruction cards 
prepared for the Mark I tape preparation unit may be processed in various 
ways through straightforward utilization of unsophisticated IBM tabulating 
and accounting equipment, if such machines are available. For example, 
programs written one instruction per card might advantageously be con­
densed to eight instructions per card through longstanding procedures 
commonly employed in IBM tabulating equipment. Furthermore, the in­
struction decks may be listed on simple tabulating machines to provide a 
highly readable copy of the instructions for record purposes. The extent 
to which the many advantages of machine manipulation or processing of 
the individual program cards can be capitalized upon is, of course, de­
pendent upon the extensiveness of IBM facilities readily available to the 
using activity. Since IBM facilities of the relative simplicity required to 
handle the problems described above are almost universally obtainable 
but are not mandatory for operation of the tape preparation unit or the 
digital simulator itself, it is believed that the proposed procedure for 
generation of program tapes offers the optimum combination of reliability, 
simplicity, and low cost, while permitting certain idealistic extensions 
of the basic concept to be accomplished in the likely event that simple ad­
ditional IBM equipment is available on a part-time basis for use by the 
using agency. 
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With the exception of an 026 keypunch, it is considered improb­
able that the usefulness of any additional standard IBM equipment would 
justify rental or puchase of such equipment by an agency interested pri­
marily in operation of a flight simulator for training or research purposes. 

If desired, the high-speed paper tape punch may be controlled 
directly through an electrical keyboard prov'ided with the basic Mark I 
system. Use of this keyboard, which resembles that of a conventional 
desk calculator, eliminates the need for punched card input to the tape 
preparation unit. The actual numerical typing operations employing the 
electrical keyboard are identical to those employed with the IBM 026 key­
punch or the IBM mechanical keypunch (that is, the actual numerical keys 
punched are the same for all three machines). The numerical keyboard 
may be employed to enter decimal information for the interpolator data, 
with automatic translation to binary occurring within the tape preparation 
unit circuitry. While tapes may be prepared employing the manual key­
board at a typing speed approximately equivalent to that which may be ac­
complished on the 026 keypunch, it should be recognized that the individual 
instructions are punched into a continuous paper tape and can be removed, 
rearranged, or changed only through tape splicing operations. 

The tape preparation unit may also be employed to duplicate 
paper tapes, to generate file copies, or to reproduce tapes which are be­
ginning to show evidence of wear. It should, of course, be recognized 
that new tapes may also be prepared through utilization of a master file 
of IBM card inst.ructions as an alternate to the duplication facility provided. 

5. 7 A UTOMA TIC PRINTOUT EQUIPMENT 

As in the case of the tape preparation unit and drum loading 
equipment, the selection of suitable output printing apparatus for a digital 
simulator is something of a compromise. The use of a Flexowriter (or 
similar electrically-controlled typewriter) offers the advantage of highly 
flexible format (including printing of alphanumeric characters and punctu­
ation marks) and the ready availability of parts and service through-
out the world. Unfortunately, the use of an electrically controlled type­
writer or teletype machine results in seriously limited printout speed: 
the printing speed of a teletype machine or electric typewriter is exas­
peratingly slow when relatively large volumes of data must be listed. 
Furthermore, the reliability of the extremely complex electric typewriters 
is subject to considerable question. 
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The problem of printing speed and reliability may be solved 
through the use of one of the many high-speed line printers now available 
for use with data processing equipment. Unfortunately, these devices, 
while highly reliable, are extremely expensive. Furthermore, an inordi­
nate amount of electronic buffering circuitry is required, since the major 
speed advantage of the less exotic line printers is achieved through paral­
lel printing of large numbers of characters, with resultant extravagant 
electronic circuitry requirements. 

To achieve a compromise between the extravagance of the use 
of high-speed line printers and the slow operating speed and suspect re­
liability of electric typewriters, the Mark I printout equipment employs 
a Hewlett-Packard printing mechanism which is, in effect, a foreshortened 
version of a full-scale line printer. That is, the device prints all charac­
ters of a single data word simultaneously and employs a time-division print 
control mechanism somewhat similar to that employed on more sophisti­
cated line printers. The control circuitry and activation mechanism of 
the Hewlett-Packard printer is considerably more simple and is believed 
to be considerably more reliable than the electronics and mechanisms as­
sociated with conventional electric typewriters. The principal disadvan­
tage of the simple Hewlett-Packard printer lies in the fact that it prints 
individual words in sequence on a tape somewhat similar to adding machine 
tape. However, fan-fold paper tape will be employed in the Hewlett­
Packard printer to eliminate the undesirable coiled paper tape of the con­
ventional adding machine print mechanism. Through this procedure the 
Hewlett-Packard line printer becomes the equivalent of a full-scale page 
printer with the exception that it prints on a narrow page having but a 
single column of figures per line. 

The printer may be employed with the Mark I computer or tape 
preparation unit to accomplish the following purposes: 

1) Listing of program tapes. In this mode of operation the 
circuitry automatically translates interpolator data words from binary to 
decimal to permit convenient interpretation of functional data in decimal 
form. 

2) Listing of contents of core memory. During certain pro­
gram debugging operations, it is sometimes desirable to print out the 
contents of the working memory of the computer. This is particularly 
useful when the programmer is completely baffled by apparently incon­
sistent results and would like to obtain a convenient listing of the actual 
contents of all memory locations at a particular instant. In operations 
such as this, the relatively slow printing speed of an electric typewriter 
is particularly exasperating. 
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3) Printout of accumulator contents during one-step operation 
of the computer. During program debugging operations or computer mainte­
nance operations, it is sometimes desirable to operate the computer in the 
one-step mode. The printout unit permits the printing, in either octal or 
decimal equivalent, of the contents of the accumulator fbltowing each step 
of the program in the one-step mode. Through the use of this printout 
facility, the necessity of reading register(Nixie)lights and recording the 
observations in a series of tabulations is eliminated. 

4) Printout of memory locations in which computational over­
flows have occurred. In the Mark I it is possible to select a mode of 
computer operation in which the least significant bit of core memory is 
sacrificed for use as a tally to indicate the presence of a computer over­
flow during the calculations preceding the storage of an answer in the 
core memory location under discussion. In this mode of operation any 
overflow, once tallied, remains in the memory until manually cleared. 
This tabulation of overflows may be accumulated for any desired length 
of time during normal or one-step operation. After accumulating the 

, historical overflows for the desired time period, the computer may be 
stopped and the address of the memory locations containing an overflow 
tally in the least significant bit printed out by means of the Hewlett-Packard 
printer. The programmer can then scan the list of memory locations for 
an identification of the individual calculations in which overflows have oc­
curred at least once during the test period. It is believed that this facility 
will be highly useful in relieving the programmer of the ever-present 
worry of the consequences of injudicious scaling. This consideration is 
particularly important in aerodynamic calculations,since it is often diffi­
cult, even for a highly experienced aerodynamicist, to place a realistic 
upper bound on the magnitude of a variable under computation. Since it 
is relatively easy to correct injudicious scaling if the offending terms can 
be identified, the advantage of a historical tally of overflows is obvious. 
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6. PHYSICAL DESCRIPTION OF COMPUTER 

The general arrangement of the Mark I computer is shown in 
Figure 28. The computer is housed in nine standard bays arranged in a 
single line to minimize cable runs. Each bay is 2 ft. wide, 2 ft. 2 in. 
deep, and 7 ft. high, requiring approximately 39 square feet of floor area. 
Each bay is fitted with an integral blower unit for equipment cooling. The 
air intake is across the lower front and the air exit is through louvers on 
the upper rear of each bay, providing approximately 5,400 cfm of airflow 
through the computer. 

Casters and lifting eyes are available, the additional heights of 
which are indicated in the following table. Mounting provisions for these 
accessories are provided in all bays. Fork lift slots in the flush bases 
are provided in all bays. The nine bays are arranged in four double sec­
tions and one single section, which are separable for shipment, and are 
bolted together upon installation. 

The design of the equipment is such that the use of a computer floor 
installation is not required. Input power access and connectors for all 
analog and digital inputs and outputs are located at the rear of the top 
plates of appropriate bays. A photograph of the Mark I computer cabinets 
is shown in Figure 29. 

Mark I Installation Data: 

Length ...................... 18 feet 

Depth 26 inches 

Height 77-5/8 inches 

Caster Height. . . . . . . . . . . . . . .. 1-7/8 inches additional 

Lifting Eye Height ............ 2-5/8 inches additional 

Weight ...................... 5,640 lbs. (approximate) 

Air Intake ................... 5,400 cfm (approximate) 

Dimensions of maximum-size module for shipment: 
77-5/8 inches by 26 inches by 48 inches. 

(Can be shipped in any attitude) 

Power Consumption: 

117 V, 60 cps A C, Load "-65 amperes ± 10% 
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7. SUMMARY OF COMPUTER CHARACTERISTICS 

7. 1 FLIGHT COMPUTER 

1) Arithmetic Unit 

a) Data Word Size: 24 bits (sign bit plus 23 .bits magnitude) 

b) Type of Arithmetic: Fixed-point fractional binary, with 
full sign control. Results expressed in true-value magnitude and sign. 

c) Operational Registers: Input (N) Register, Accumulator 
(A) Register, Multiplier-Quotient (MQ) Register, Salvage (S) Register. 

d) Arithmetic Operations: Add, Subtract, Multiply, Divide, 
Negative Multiply, Square, Square Root Step, Scale, Shift, and other spe­
cial operations. Multiply and Divide instruction time = 30. 5 microseconds. 
Add instruction time = 6. 1 microseconds. Basic Add time (without access) 
= 1. 0 microsecond . 

2) Boolean Arithmetic Unit 

a) Data Word Size: I-bit Boolean expressions, stored and 
accessed in 16-bit words, with 1-bit selection provided through a special 
bit-alteration mode of the data memory. 

b) Arithmetic Type: Calculation of Boolean functions. 

c) Operational Registers: Input (N) flip-flop, Boolean Accumu­
lator (BA) flip-flop, four salvage (BS) flip-flops. 

d) Arithmetic Operations: Boolean Sum (OR), Boolean Product 
(AND), Boolean Invert (NOT). All processes performed in basic instruction 
time of 6. 1 microseconds. 

3) Data Memory 

a) Type: Magnetic core storage for 2,048 24-bit words. Ran­
dom-access, parallel operation, with 5. O-microsecond cycle time. Memory 
processes: read-restore, clear-write, and bit alteration. 

b) Use: The data memory is shared by the several portions of 
the computer subsystem on a priority basis, as follows: 

(1) Flight Computer instruction proceSSing. 
(2) Linear Interpolator function processing. 
(3) Radio Aids station preselection processing. 
(4) Flight Computer Input-Output transfers. 
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4) Priority Control 

The Flight Computer instruction program normally will be com­
posed of a large proportion of instructions which require more than one 6. 1-
microsecond period for execution. For such instructions, only the first 
6. I-microsecond period of the 30.5 or 36.6 microseconds of processing 
time is required for data memory access. Therefore, processing of items 
of 2, 3, or 4 priority order is performed automatically during the remain­
ing free time periods. This permits performance of these auxiliary pro­
cesses without requirement for program control, input-output subroutines, 
or program-interrupt features. 

5) Program Memory 
(~irAfO ) 

a) Type: Magnetic drum storage. Track length: 4,096 bits. 
Speed: 40 revolutions/second. Useful storage: 65,382 words, plus clock 
tracks. 

b) Use: The drum memory is shared by several portions of 
the computer subsystem, with space allocations as follows: 

'Sb1'145 >(1/(X';)~\i7fYY Cqf(~/7e) (1) Flight Computer Instructions: 11 bands, each containing 
16 tracks. Useful storage: 40,946 words of 16 bits each. 

_ (2) Linear Interpolator Instructions and Data: Four bands, 
:> ;;2 r<f:,yj,/'j each containing 11 tracks. Useful storage: 16, 344 ll-bit words. 

..... ::::. ,;}..I\'::,y(t") (3) Radio Aids Station Data: One band containing 20 tracks. 
I b/l'-1JK4"KJr 3by,t') Useful storage! 4, 092 20-bit words. 
--J/jl.J)-1'4 S7(}fl/J1P1( :::- /6ok plv) CLoCkT{QJr<5 

) 0 6) Instruction Control 

a) Instruction Form: Single~address, dual-process with zero 
address used as flag to initiate performance of alternate execution process. 

b) Instruction Size and Format: Operation Code: 5 bits. 
Execution Address: 11 bits. Modification of detail of address region ex­
ists for certain instructions. 

\ 

c) Address Modification (Indexing): Not provided. 

d) Logical Branching: Not provided. 

e) Branching: Provided in the form of a Conditional Skip in­
struction which permits non-execution of 1 to 127 following program steps. 
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f) Instruction Processing: The 11 bands of instruction storage 
in the program memory are divided into groups and processed at differing 
rates, as follows: 

Group No. Bands Title Processing Rate 

1 
2 

3 

1 
2 

8 

, 

Fast Instruction Band 20/second So".... S 
Medium Instruction 
Bands 5/second each ~ OfJM '5 

Slow Instruction Bands 1. 25 second each I,?S- 5 

7) Operational Control 

a) Basic Clock Rates: Drum Clock rate: 6.1 microseconds. 
Operational 1. O-microsecond clock phases (1-6) are synchronized with 
drum clock, and O. 5 -microsecond subphases are synchronized with opera­
tional clocks. 

b) Operational Counters: Drum address counter . Drum band 
sequencing counter. Drum revolution counter. Auxiliary counters for the 
above information, . but under Operating Mode control. 

c) Operating Modes: 

(1) Normal: Under clock control. 

(2) Single Shot Repeat: Under manual control. Repeat one 
addressed instruction for each operation of control. 

(3) Single Shot Advance: Under manual contro1. Execute 
addressed instruction, and increase address in Auxiliary Counters by one 
for each operation of control. 

(4) Instruction Replace: Manual controls provided for in­
sertion of content and address of a single instruction which will replace 
drum instruction at addressed location, under manual control, in either 
normal or single-shot modes. 

(5) Overflow-Check: Under manual control. The histrJry 
of program overflows between successive Store instructions is placed in 
24th bit location of data memory. 

(6) Auxiliary Process Execution Failure: Under manual 
contro1. For either Linear Interpolator or Radio Aids process, the occur­
rence of an execution failure will cause computer to stop, with drum ad­
dress of failure point contained in auxiliary counters, and core address of 
affected item in appropriate register. 
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8) Sampled-Data Inputs and Outputs 

a) A/D Multiplexer and Converter 

(1) Size: 64 input analog channels, with space provided for 
extension to 126 channels. Transfers are under priority control. 

(2) Precision: 14 bits and sign. 

Multiverter. 
(3) Type: Packard-Bell EM-3 Multiplexer, and M-2 

(4) Sample Rate: 20/second, for total of 126 channels. 

(5) Conversion Time: 64 microseconds. 

(6) Input Range: ±10 volts. Analog Input Passband approxi­
mately 0 to 3 cps. 

b) Digital Switch Inputs 

(1) Size: 1,024 binary channels, interrogated in 64 groups 
of 16 bits, with transfers under priority control. 

(2) Sample Rate: 20/second, for total of 1,024 channels. 

(3) Input: One Form A contact on each switch, etc., to be 
sampled. 

c) Digital Switch Outputs 

(1) ~: 256 binary storage elements. 

(2) TtfiPth Each element is composed of a mercury-wetted 
Form D contact, wi ree leads brought out for external use. Modifica-
tions of state of these contacts are under priority control. 

(3) Sample Rate: 10/second, for total of 256 channels. 

d) D-A Converter 

(1) Size: 192 analog output channels. (Modular circuit 
cards installed only for numbtr of channels rtquirtd, which lIil normally 
128. ) 

(2) Precision: 11 bits plus sign. 

(3) Output Range: ±10 volts. 
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(4) Sample Rate: aO/second, for total of 192 channels. 

(5) Input: Word-serial from data memory to D-A Core 
Buffer Memory. A code translator is provided to furnish compatible in­
puts to D-A unit. Transfers are under priority control. 

(6) Output: Word-parallel, bit-serial, pulse-time-modulated 
analog channels, under timing control from drum address counters. Analog 
output filter on each channel with passband of approximately 0 to 3 cps. 

7.2 LINEAR INTERPOLATOR 

1) Arithmetic Unit 

a) Data Word Size: 

(1) From Program Memory: 10 bits, with sign assumed 
positive. 

(2) Arithmetic Unit, Internal: 14 bits, with roundoff. Sign 
assumed positive. 

(3) Arithmetic Unit, Output: 16 bits, without roundoff. 
Sign assumed positive. 

b) Type of Arithmetic: Fixed-point fractional binary. Signs 
assumed positive. 

c) Arithmetic Operation: Linear interpolation process for 
equidistant increments of argument. 

d) Process Time: 120 microseconds for a function of one 
variable. 

e) 0 erational Registers: Input Registers, F(Xn) and F(Xn+J). 
Accumulator (I . Multiplier Register (MR). Result Registers (RA) an 
(RB). 

2) Data Memory 

The data memory contains argument values, X, Y, and Z. 
Most significant 14 bits of data word transferred to interpolator input 
re~isters under priority control, with argument addresses obtained from 
program memory as described below. Provides storage for function 

'(answer) values. 
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3) Program Memory 

a) Interpolator Instructions: 

(1) Size: I-bit flag, lO-bit control word or data memory 
address. 

(2) Order: Order of instruction words in drum band indi­
cates significance, obviating need for operation code. 

'1. Control instruction, giving number of variables and 
indexing information. 

2. X, Y, and Z data memory argument address instruc­
tions. 

3. Data 

4. Answer instruction, data memory address for 
function. 

(3) Indexing: 0-3 indexing counter value may be added to 
all or any combination of X, Y, and Z argument addresses, and to answer 
address. 

b) Interpolator Data: 

(1) Size: I-bit flag, 10-bit data word, with sign assumed 
positive. 

(2) Order: For a function of one variable, a straight line 
approximation to the function with equal intervals of the argument will be 
provided by nine data words. The represented function will lie entirely 
within the first quadrant. For a function of two variables, nine such curves 
will be provided, each composed of nine data words. For a function of 
three variables, nine pages, each composed of nine curves, will be pro­
vided. 

4) Interpolator Input Registers 

a) Size: l4-bits, composed of I-bit Sign, 3-bit argument 
interval identification, and 10-bits argument increment. 

b) Operational Registers: Three input registers, (X), (Y), and 
(Z). 

c) Sign Control: It sign is positive, the sign bit is dropped and 
transferred value is used with sign assumed positive. If sign is negative, 
the argument value is made identically zero. 
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d) Addresses: Data memory addresses of argument values 
are obtained from interpolator instructions X, Yand Z in program memory. 

5) Interpolator Control 

The Linear Interpolator processing is under wired-program 
control, with process sequencing under priority control, .and with selec­
tion of process form, selection of indexing, and data memory addressing 
under instruction control. 

6) Interpolator Processing 

The Linear Interpolator has inputs and outputs only with re­
spect to the Data Memory for -arguments and interpolated function values. 
Since four Program Memory drum bands are assigned to Interpolator func­
tion tables, the complete field of 16,344 word-locations will be processed 
each O. 1 second. Therefore, interpolated function values are automati,9-
ally and continuously available to the Flight Computer at this rate. 

7.3 RADIO AIDS COMPUTER 

1) Preselection Unit 

a) Data Word Size: lO-bits, stored in the Program Memory 
in parallel groups of two words, forming 20-bit words of the Radio Aids 
band. 

b) Type of Process: Limit Comparison on Upper and Lower 
Bounds of ten-bit parallel data words. 

c) Operational Registers: Data Memory AcquiSition Address 
Control for X-position, Y-position, and Frequency-set input data.· Upper.· 
and Lower Limit Comparators. Selected-Station Data Register. _D~ta:·· . 
Memory Transfer Address Generator for selected station data. 

d) Process Operations: Limit Comparison of X, Y,. F control 
data, preselection of detailed station data words, and transfer to Data 
Memory. 

NOTE: Comparison performed with respect to X, Y control 
data only for all Marker Stations. 
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2) Data Memory 

Preaddressed locations provided for followiiig preselected data. 

Number of 
Stations 

1 
1 
1 
2 
4 

. Station Class 

Middle Marker 
Outer Marker 
Fan-Z Marker 
LF Stations 
VHF Stations 

Number of 
Data Words 

4,20-bit 
4,20-bit 
4,20-bit,and 4,16-bit 
8,20-bit,and 4,16-bit 
4,20-bit,and 4,16-bit 

Transfer of preselected station data is under priority controL 

3) Program Memory 

Radio aids band provides storage capacity for various types 
of stations, as follows: 

Number of 
Stations 

~ 

Station Class 

32 Middle Marker 
32 . Outer Marker 
32 Fan-Z Marker 
95 LF Stations 
32 LF IAN Stations 

127 VHF Stations 
350 Total 

4) Keying Function Generator 

a) Operational Registers: Data Memory Address Generator 
for Call Letter Groups for the preselected stations of Fan-Z Marker, LF, 
and VHF classes. Data Memory Readout Timing Generator. Keying Sig­
nal Generator. 

b) Operation Mode: The main program is permanently blanked 
. during word times 0-7 on all Program Memory bands. This period is used 
during each fourth drum revolution to transfer out the selected Call Group 
bit from appropriate preselected stations in the Data Memory. 

c) Timing: The bit timing is O. 1 second. The total Call Group 
pattern timing is 32 seconds, with a dead ·band of 6.4 seconds, which is 
used for operation of external VORTAC signal generator. 

.. .' 
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