l" programming manual

GENERAL PRECISION, INC.

Commercial Computer Division

THE OPTIMIZER AND
ASSEMBLY ROUTINE

for the n p ' 4 0 0 OGeneral Precision Electronic Computer

PROGRAM NO. H2-01.2

PREFACE

Recently a number of important modifications and changes were made in the
General Precision assembler, ROAR I, program H2-01.0. One version
(ROARPACT) was developed so that ROAR could assemble programs compiled
by COMPACT, program H3-01. 0. Another version (ROAR II), in addition to
encompassing all the features of ROAR I and ROARPACT, produced a reloca-
table hexadecimal program tape, allowed selection of input-output devices, in-
troduced a new error recovery procedure, and expanded the list of pseudo-
instructions.

This publication describes ROAR III, the latest version of the assembly pro-
gram. ROAR III incorporates all the features of the previous versions and pro-
vides some new ones. Information published for the first time in this manual
includes

Chapter 2 - Tape Records, Transfer Code

Chapter 3 - How ROAR Optimizes

Chapter 4 - Delayed Address

Chapter 5 - HED, NXT, PAS, SLT, SRT, SBT, SUB, SBE

Chapter 6 - PROGRAMMING TECHNIQUES

Chapter 7 - Procedures for Punching Input Tapes

Chapter 8 - Sense Switch Options, Error Printouts, Error Recovery,
Operating Procedures for Assembled Program

Appendixes - A, B, C

ROAR III is compatible with ROAR I and ROAR II; that is, any symbolic program
that can be assembled by the earlier versions of ROAR can also be assembled
by ROAR III (but not conversely). All references to "ROAR" in this document
are to ROAR III unless specifically noted as "ROAR I'" or "ROAR IL "

This manual has been prepared for both novice and experienced programmer,
Included are a detailed description of ROAR's optimization processes and inter-
nal gonfiguration, an expanded discussion of the pseudo-instructions and special
addresses, an explanation of tape preparation, and complete operating proce-
dures. The appendixes supply additional general information about the internal
structure of ROAR, charts, and summaries. The RPC-4000 commands and the
functions of the various control switches are not defined or explained. It is
assumed that the reader is familiar with the command structure and the use of
the manual controls on the computer. However, a summation of the commands
is provided for reference purposes.

CONTENTS

I s S A N A N A A AN N N NN N N I N I I S SO

Page

I PROGRAM PREPARATIONS 1-1
~ Introduction] 1-1

Program Organization 1-1

Program Coding 1-2

Program Assembly 1-3

THE ASSEMBLED PROGRAM 2-1

2 Program Tape 2-1
Bootstrap 2-1

Tape Records i 2-1

Transfer Code 2-2

Decimal Listing 2-2

INSTRUCTION TIMING AND OPTIMIZATION

3 Instruction Cycle

Instruction Timing

How ROAR Optimizes

Symbol Table

Availability Table

Command Code Table

Optimizing Rules

wwwc;owwww
U U1 U1 T D) et

ROAR CODING RULES
4 Coding Sheet for ROAR

Location Field
Order Field
Indexed Orders
ROAR Addressing
Symbolic Addresses
Numeric Addresses
Blank Addresses
Special Addresses
Artificial Sector Addresses
Special Character Addresses
Regional Addresses
Recirculating Track Addresses
Double-Access Track Addresses
Skip Address
Delayed Address
Comments Field

et

o
BB DWW N NN DN

T

t

|
=0 00D

rhrhthﬂkr{'knlkohrhrhuh
-0

PSEUDO-INSTRUCTIONS
Allocate Memory
Control Assembly
Establish Constants
Input-Output

Shift

Comment

Use Subroutine Library

RES Reserve Portion of Memory

REG Establish a Region '

RLR Designate a Relocatable Region

PRE Prepare ROAR

SET Establish Global Symbols

RST Restore Symbol Table

RRS Relocate Regional Storage

AVL Make a Block Available

EQR Equate and Reserve Location

EQV Make Equivalent

NIX Wait a Second

NEW Begin a New Assembly

CLS Clear Symbol Table

END End Assembly

TAG Designate Header Tag

HED Assign Sequential Header Tag

NXT - Optimize Next Instruction as Indicated
HEX Establish a Constant from Hexadecimal Input
DEC Establish a Constant from Decimal Input
ALF Input Alphanumeric Characters

PAV Punch Availability Table

PPA Punch and Print Availability Table
RAV Read Availability Table from Tape
PST Print Symbol Table

5CS Punch Five-Character Symbols

PAS Punch All Symbols

PRC Print a Character

SRT Shift Right

SLT Shift Left

COM Comment

(56)(57)(56) Compact-Generated Comments
SBT Enter Subroutine Library Mode

SUB Read Subroutine from Library Tape
SBE Exit from Subroutine Library Mode

PROGRAMMING TECHNIQUES
Program Library
Data Input-Output
Sectional Assemblies ;
Optimizing Exit from Subroutine
Header Tags Versus Global Symbols

o J
! &
@

(921 BV BN)) R R
[U UL
NDNNNDND - =

|
= O 00 =100 U WN

1
—
W wNn - o

U‘IO‘ICﬂ(ﬂU‘IU‘IC{IU‘IUICﬂO‘lUI

(93]
1

5-14
5-14
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-22
5-23
5-24
5-25
5-25
5-26
5-27
5-28
5-28
5-29
5-30
5-30

INPUT TAPE PREPARATION
Tape Characters
Parity Checking
Rules for Tape Preparation
Procedures for Punching Input Tapes
Correcting Errors While Punching Input Tapes
Correcting Errors After Punching Input Tapes
Duplicating Tapes On-Line
Correcting Errors On-Line
Correcting Parity Errors

OPERATING PROCEDURES
ROAR Master Tape
Bootstrap Procedure
Manual Transfer to ROAR
Assembly Preparations
Input-Output Selections
Changing Input-Output Selections
Subroutine Tape Region Storage
Bootstrap Track
Assembly Procedures
Interrupting an Assembly
Sense Switch Options
Error Printouts
Error Recovery
Input Errors-
Errors During Blind Assemblies
Parity Errors :
Operating Procedures for Assembled Program
Bootstrap Procedure :
Correction of Checksum Error
Correction of Parity Error

SUBROUTINE LIBRARY TAPE

SPECIAL ROAR TABLES
Symbol Table
Equivalence Table
Availability Table

COMMAND CODE TABLE

MODULO-EIGHT TABLE
Basic EXC Data-Track Settings

ALPHANUMERIC CODES

Page

sl-laT‘lT‘lquqqqq
COW WDN NN M o= e

PEPETRCTED
BB WL N e

@ @ o o
o1
KN

1
O O oD

(= =)

ILLUSTRATIONS

Viii

INPUT-OUTPUT SELECTION CODES -

SUMMARY OF RPC-4000 COMMANDS

SUMMARY OF ROAR PSEUDO-COMMANDS

Figure 3.
Figure 3.
Figure 3.

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

Table 6.1
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.

Figure 7.
Figure 7.
Figure 7.

Figure 8.
Figure 8.

w N

W~ U WN

[P ")
TR W N O

W DN

4

Do

Instruction Timing
Instruction Timing
Instruction Timing

ROAR Coding Sheet
Form of Indexed Instructions
Addressable Fields

Typical Symbolic Addresses

Sectors 90-98 for Special Addresses
Sectors 98,99 for Special Addresses
Sample Regional Addresses

RECRC Address

Preset Location Counter
Double-Access Address
Double-Access Addressing

Skip Address

Skip Addressing

Delayed Address

Delayed Addressing

Representative Programs Available

Input Routine

Decimal Output Routine
Hexadecimal Output Routine
Suppress Leading Zeros
Bit Configuration

Tape Channels
Sample Problem Coding’
Sample Problem Input Tape Listing

Coding Error
Coding Error

OOC:JW
> W N

»~ o
O DD =

o
— = O © 00 W3 UOW

[o B]

Page

Page

PN
1 1

e e s

PROGRAM PREPARATIONS

LA N A A AN AN A AN AN AN AN AN A A N AN AN AN N N NN NN AN N NN N NN N NN N NN NN NN N\ N\

INTRODUCTION

PROGRAM
ORGANIZATION

ROAR is an assembly program which translates symbolic-coded programs into
numeric or machine-language which can be read directly by the RPC-4000. In
addition, ROAR will insert in the object program all absolute memory address-
es not supplied by the programmer, and furthermore choose these addresses so
that each instruction in the object program will operate in the least amount of
time. ROAR also provides a number of pseudo-instructions which are the pro-
grammers' means of communicating with ROAR. The pseudo-instructions
cause ROAR to perform many convenience functions, such as reserving blocks
of memory for data storage, equating certain symbols with other symbols, and
other bookkeeping chores.

The programmer may code his program in symbolic language, absolute numeric
language, or in a combination of the two. He then reads his program into the

computer under control of ROAR, whereupon the program is assembled one in-

struction at a time. The two end results of the process are a hexadecimal tape

of the assembled program, ready to be read into the computer and operated, and
a printed list of the program. Each instruction is printed out on a separate line
showing a) the instruction in the form in which it was read by ROAR, b) the in-

struction -in its assembled form, c) the comments field of the instruction.

Programming for ROAR may be considered to include three areas of activity:
organization, coding, and assembly.

Proper organization of a program entails selection of the best method for solv-
ing the problem, determination of the limits within which the program is to
operate, and choice of the input-output format.

Next, the programmer must determine the amount of storage area needed. It

is desirable to restrict a program to the lower half of memory (tracks 00
through 52) whenever possible, thus leaving ROAR in memory during the check-
out of the program. Then, if it is necessary to re-assemble the program, ROAR
will still be available and need not be re-loaded.

When a program is especially large, it is often advantageous to divide the pro-
gram into sections and code each section separately. Then each section can be
assembled and checked out before attempting to run the whole program, After
all sections have been successfully tested, they can be combined into a single
tape.

Many programs and subroutines require regional storage, i.e., sequential mem-
ory locations, for the storage of tables, data, etc. The programmer must de-
termine the amount of region storage area to reserve for his own program (the
""object" program) and also for any subroutines he intends to use. The informa-
tion concerning region storage for the subroutines is available in the respective

PROGRAM CODING

1-2

program descriptions. If the programmer plans to use a Subroutine Library
Tape (i.e., a single tape containing numerous subroutines from which ROAR
will assemble only those that have been referenced in the object program), he
must reserve region storage for the subroutines at the beginning of the assembly
when ROAR queries "Subroutine Tape Region Storage.' Space for regions in the
object program may be reserved in the same manner, but it is usually more de-
sirable to establish these regions individually through the use of REG pseudo-
commands. (See REG, Chapter 5.) A detailed description of how to make a
Subroutine Library Tape is given in Appendix A.

Among the first outputs from ROAR will be the bootstrap necessary to load the
assembled program. - The bootstrap occupies one track and uses the Recirculat-
ing Track for temporary storage. The programmer must reserve the track
where the bootstrap is to be stored since ROAR does not automatically reserve
the track when it is allocated. (See '"Assembly Preparations,' Chapter 8.) To
conserve space,. the programmer may choose to locate the bootstrap in an area
that will later be used for data storage.

The assembly program permits coding in a symbolic language whereby each
machine instruction is represented by one symbolically noted assembly instruc-
tion. ROAR will interpret symbolic (mnemonic) and numeric commands and will
assign optimum absolute memory locations for addresses which are expressed
symbolically. ROAR will also act upon a number of pseudo-instructions. A
pseudo-instruction is an instruction word containing a pseudo-command directed
to ROAR. It takes the same form as an instruction and is reproduced on the de-
cimal listing but in most instances is not punched in the program tape. Gener-
ally, pseudo-instructions affect only the assembly process - e. g., reserving
areas of memory - and thus are not output as part of the assembled program.
However, a few pseudo-instructions do result in instructions in the assembled
program, namely those used for printing and shifting. These special pseudo-
instructions are handled by ROAR in the same manner as RPC-4000 commands
and follow the same rules that govern commands. (See '""Blank Addresses,"
Chapter 4.)

The tape produced by ROAR will be a relocatable, hexadecimal program tape.
That is, the program may be positioned anywhere in memory and is not res-
tricted solely to the area where it is assembled. If the program is to be used

as a relocatable program, absolute addresses should be avoided whenever pos-
sible. Absolute addresses, Double-access Track addresses, and Recirculating
Track addresses cannot be relocated when loading the program. Symbolic add-
resses, including Regional Addresses, are made relocatable. If it is necessary
to have a region that must not be relocated, absolute addresses should be used
to refer to the locations rather than regional notation. (See ""Regional Address,"
Chapter 4.)

Usually the first items listed on the coding sheet are those used to establish re-
gions, e.g., for data storage; to set up equivalents, e. g., for entry points; and,
to reserve areas, e, g., for limiting location of the program. If a header tag is
to be used, it is also among the first items.

The first instruction word containing an RPC-4000 command must have the loca-
tion given. Thereafter, the general rules governing blank fields are applicable.
(See "Blank Addresses," Chapter 4.) Pseudo-instructions may appear anywhere
in a program. General pseudo-instructions are not governed by, nor do they
affect, the rules for blank addresses. For example, assume instruction A is

PROGRAM ASSEMBLY

followed by a general pseudo-instruction, which is followed by instruction B. If
instruction A has no blank address field, ROAR will except a filled location in
the next instruction. ROAR does not consider the general pseudo-instruction

to be an instruction, but rather instruction B,

Program checkout and correction will be simplified if symbols that look like
pseudo-commands or mnemonic commands are avoided. Using HLT, SLC, HEX,
etc. as location symbols can cause much confusion for the person checking the
program,

The final item listed should be an END or NIX pseudo-command.

When the ROAR-language program has been completed, a tape of it should be
made for use during the assembly. (This tape is referred to as the symbolic
input tape.) After the ROAR program is stored in memory, it will read one
symbolically coded instruction at a time, assemble it as a machine-language
word, and output that hexadecimal word as part of the assembled program. At
the beginning of the assembly, ROAR requires certain specific information as
explained under ""Assembly Preparations' in Chapter 8. Throughout the re-
mainder of the assembly there should be little need for intervention by the pro-
grammer unless there is an error printout. Then, following the assembly, ‘t}'le
hexadecimal tape produced by ROAR can be read into memory and executed.

During an assembly ROAR reads the first 4 fields of an instruction in their en-
tirety before any information is output. If all 4 fields of input are acceptable,
ROAR will punch the hexadecimal output and will type the decimal equivalent of
the assembled instruction. Then the Comments field is copied on the decimal
listing. However, if an error other than parity occurs in any one of the first 4
fields, ROAR will clear from memory the instruction that it was building, exe-
cute an error printout, and halt. Error printouts and error recovery procedures
are discussed in Chapter 8.

To provide the greatest latitude possible in relocating programs, the program
should be assembled relative to location zero. That is, if a program requires

8 tracks, it should be assembled on tracks 000 through 007. Thus assembled,
the program can be loaded on any 8 sequential tracks on the drum, If the pro-
gram had been assembled on tracks 058 through 065, it could never be loaded on
tracks 000 through 057.

When a large program has been coded in sections, it is advisable to assemble
the most frequently used routines first in order to give them the best optimiza-
tion. After all sections are operating correctly, they can be combined on a
single tape or re-assembled into a single program. A detailed discussion on
sectional assemblies is given in Chapter 6.

THE ASSEMBLED PROGRAM

LN AN A A A A A A A R A A A A A AN A A A AN AN N A AN NN NN N NN NN NN NN NN NN

PROGRAM TAPE

Bootstrap

Tape Records

During the assembly process ROAR produces a relocatable, hexadecimal pro-
gram tape and, if desired, a decimal listing of the program.

The hexadecimal tape consists of the following:

1. A bootstrap, followed by a length of blank tape.
2. Several tape records that make up the program.
3. A transfer code, if an END pseudo-command was used.

When the assembled program is read into the computer, it may be positioned
anywhere in memory by incrementing the track portion of addresses in the
program. The value by which the addresses are incremented is called the
modifier. Since the process of locating the program in a specified area of
memory is the function of the bootstrap, it will add the modifier to all appro-
priate addresses as it loads the program. The operator supplies the desired
modifier to the bootstrap at the time the bootstrap is loaded into the computer.,
(See "Operating Procedures for Assembled Programs, ' Chapter 8.) The boot-
strap enters 200 words per minute with or without a modifier.

To verify the accuracy of information being input into the computer, a one-
word checksum is inserted by ROAR after every 100 words on the hexadecimal
tape. This is followed by a portion of blank tape. The format of the words be-
ing entered is 12 hexadecimal characters plus a stop code (*). The bootstrap
forms a checksum as it loads the program by summing the first 4 characters,
summing the last 8, and adding the two sums. Overflow is ignored. The boot-
strap compares the checksum it formed with the previously computed checksum
that is punched on tape. If the comparison is successful, reading continues.
Otherwise, an error indication is typed and the computer halts.

The format of each tape record (except the final one) is 100 tape words; each
word containing 12 hexadecimal characters followed by a stop code (*¥). The
first 4 characters contain the modifier flags and the Location; the last 8 char-
acters are the data (usually an instruction word) to be stored in the specified
location. Bits 1, 2, and 3 of the first hexadecimal character are the modifier
flags which indicate to the bootstrap whether of not a particular address field
(Location, Next-address, Data-address, respectively) can be modified.

When the word is read into the Double-length Accumulator, the data is in the
Lower Accumulator, and in the Upper Accumulator are the Location (at a "q"
of 31) and the modifier flags (in bit positions 16, 17, and 18),

The last tape record will consist of 100 tape words or less. The tape words in
this record are in the same format as the previous words except that the last
one will be a 16-character transfer code.

Transfer Code

DECIMAL LISTING

The transfer code is an instruction output by ROAR as the result of an END
pseudo-instruction. It indicates to the computer the location of the next in-
struction to be executed, i.e., the transfer location. The transfer code is a
double-length, hexadecimal word containing:

sign-bit atq = 0
modifier flag atq = 3
99 (decimal) atq =17

transfer location at q =62

The decimal 99 is an indication to the bootstrap that the next word is the last
word on the tape. That last word is the final checksum,

Unless the programmer dictates otherwise, ROAR will type a decimal list of the
program as it is being assembled. The list will contain one instruction per line,
each showing the following:

1. The symbolic instruction as it was read by ROAR.
2. The decimal equivalent of the assembled instruction.
3. The Comments field of the symbolic instruction.

ROAR allows the programmer to select the input and/or output devices that will
be used during an assembly. Thus, he may have ROAR bypass the typewriter
output completely or, if an RPC-4600 Auxiliary Tape Typewriter System is
available, have the decimal listing punched on tape to be typed at a later time.
Use of either option will reduce the time required for an assembly by one-half.
(Selection of input and output devices is explained in Chapter 8.)

INSTRUCTION TIMING
AND OPTIMIZATION

LN N S N N AN NN A N N A AN AN N AN NN N N AN AN N NN N N N NN N NN N NN NN NN\ N

INSTRUCTION CYCLE

In the RPC-4000 the sequence in which instructions are executed is controlled by
addresses contained within the instruction word. The time required for ¢omplet-
ing the operation specified is likewise dependent, in part, on the addresses.

A complete instruction cycle begins with the memory search for the instruction
word and ends with the commencement of the search for the next instruction
word.

The complete cycle consists of four phases:

Phase 1 - Search for memory location specified in Next-address field
of Command Register. Requires 1 to 64 word times.

Phase 2 - Transfer contents of this location to the Command Register.
Requires 1 word time,

Phase 3 - Search for memory location specified in Data-address field
of Command Register. Requires 1 to 64 word times.

Phase 4 - Execution of operation. Requires basically 1 word time but
some instructions require additional Phase 4 cycles to com-
plete the operation.

A "word time'" is the basic timing unit in the RPC-4000, It is equivalent to
1/64 drum revolution or . 26 milliseconds.

Basically the computer requires a complete cycle— a minimum of 4 word
times— to obtain and execute instructions. However, some instructions do not
require a memory search for data (Phase 3); some require an extended Phase
3 operation; and some require an extended Phase 4.

The following instructions do not require a memory search for data and require
only 1 word time in Phase 3.

HLT (Halt) SRL (Shift Right or Left)

SNS (Sense) SLC (Shift Left and Count)

CXE (Compare Index Equal) PRD (Print from Data-address)

LDX (Load Index Register) PRU (Print from Upper Accumulator)
INP (Input)

An exception to the timing of Phase 3 for the PRD and PRU instructions occurs
when the I/O interlock indicates non-readiness of the output device. The com-
puter will hold in Phase 3 until the interlock releases; then the output command
is executed.

3-1

INSTRUCTION
TIMING

The instructions EXC (Exchange) and MPT (Multiply by Ten) do not require a

memory search for data either, However their Phase 3 time depends on the
value in the Data-sector field of the instruction word. That is, the Data-sector
value may specify that the operation is to be performed on a particular word of

. the 8-word Lower Accumulator. Consequently a Phase 3 wait for the required ..

word in the Lower may be necessary.

Some instructions require an extended Phase 4 to complete their operations.
The total Phase 4 time for these is as follows:

DVU (Divide Upper) 67 word times
DIV (Divide) 67 word times

SRL (Shift Right or Left) 4 word times plus 1 word time for each
- bit position shifted :
SLC (Shift Left and Count) 4 word times plus 1 word time for each
bit position shifted
MPY (Multiply) 67 word times

The Phase 4 time required for the INP (Input), PRD (Print from Data-address), v
and PRU (Print from Upper) instructions depends on the speed of the selected

input/output devices.

There are two instructions which do not follow the normal phase sequence: TMI

- (Transfer on Minus) and TBC (Transfer on Branch Control). When a successful

test is made during Phase 3 of a TMI or TBC instruction, Phase 4 of that in-
struction and Phase 1 of the following instruction are bypassed, and the com-
puter advances directly to Phase 2. Consequently transfer instructions may

require as little as 2 word times. Unsuccessful tests require all 4 phases to
complete their operations.

All instructions other than those discussed require 1 word time for completion
of Phase 4.

From the foregoing explanation of the computer's command execution cycle it
can be seen that the Data-address and Next-address portions of the instruc-
tions greatly influence the speed with which they operate. Consider the follow-
ing instruction:

' non | oroee oAtA Next COMMENTS
Locatio ° ADDRESS ADDRESS ,
. o.t0 rAU[, 912 & 9,14

FIGURE 3.1 INSTRUCTION TIMING

Phase 2 in the execution of this instruction consists of loading the instruction in-

““"to the Command Register. Since the instruction is in Sector 10 of a track,

Phase 2 occurs during Sector 10 time. Phase 3 consists of a wait while the

~ drum rotates until the next sector to be read is the same as the one specified in

the Data—address part of the mstructmn Since the minimum time for Phase 3
is 1 word time, the earliest the computer can read a word in the location spe-

cified by the Data-address is at a sector time that is 2 greater than the sector

in which the instruction is located. The sample instruction has a Data-address

such that the Phase 3 time is at a minimum, and the instruction with respect to
the Data-address is said to be optimum. Considered step-by-step, the timing
of the instruction looks like this:

Phase Sector (time) Activity

1 09 Search for instruction in sector specified by
Next-address of preceding instruction. The
next sector is it,

2 10 Transfer contents of Sector 10 to Command
Register.

3 11 Search for operand in sector specified by Data-
address of this instruction. The next sector is
it.

4 12 Contents of 912 to Upper Accumulator.

Note that the Next-address referred to in Phase 1 belongs to the instruction
preceding the instruction under consideration. It is in the Command Register
as a result of the previous instruction having been executed. It should not be
confused with the Next-address belonging to the instruction. in the example; its
Next-address will be in the Command Register at the completion of Phase 2.
This can be made clearer if one considers two consecutive instructions begin-
ning with Phase 2 of the first.

DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
. .91.0 RAUl o2 9,14
. .914] apyl s18l , 920
ﬁ_/__ T

FIGURE 3.2 INSTRUCTION TIMING

Phase Sector (time) Activity

2 10 Load contents of 910 into Command Register.
3 11 Search for 912. Next sector is it.
4 12 Contents of 912 into Upper Accumulator.
1 13 Search for 914. Next sector is it.
‘ 2 14 Load contents of 914 into Command Register.
3 15 Search for 918. Wait.
16 Wait.
17 Wait. Next sector is 18.
4 18 Add contents of 918 to Upper Accumulator.
1 19 Search for 920. Next sector is 20.
And so on.

In the example just explained, Phase 3 and 4 of the first instruction and Phase 1
and 2 of the second instruction have a minimum wait time or latency of zero,
and these portions of their execution cycles are said to be optimum, Phase 3
of the second instruction has a latency of 2 (word times), and is not optimum.
Although "optimum" is grammatically an absolute degree, in the discussion of
programming techniques it is considered to be relative; i.e., certain condi-
tions can cause some instructions to be more or less optimum, with regard to
their timing, than other instructions.

The preceding examples contain instructions that require a full computer cycle
for their operation. Those instructions which do not require a full cycle vary
only slightly. Assuming the contents of Location 707 to be a negative value,
consider the following instructions:

LOCATION ORDER AI?S;:SS A;;:EISS COMMENTS
. 705 RAVl L 707 ., 709
(7091 TMIl 700, 71,5
7.V ADM L 73], (7005

FIGURE 3.3 INSTRUCTION TIMING

Phase Sector (time) Activity

2 05 Load contents of 705 into Command Register.
3 06 Search for 707. Next sector is it.

4 07 Contents of 707 into Upper Accumulator

1 08 Search for 709. Next sector is it.

2 09 Load contents of 709 into Command Register.
3 10 Content of Upper is negative.

Search for 711. Next sector is it.

2 11 Load contents of 711 into Command Register.
3 12 Search for 713. Next sector is it.
4 13 Add contents of 713 to contents of Upper.
1 14 Search for 715. Next sector is it.
HOW ROAR Fortunately for the programmer ROAR takes care of most of the routine work
OPTIMIZES of substituting optimum addresses for symbolic or blank addresses. For the

majority of instructions in the assembled program, the addresses ROAR
assigns will be truly optimum. There will be instances, however, when
ROAR's optimization can be improved. It is obviously impossible for ROARto
anticipate all the ways in which an instruction is used in a program; and since
ROAR is a one-pass assembler, which completely assembles one instruction
before going on to the next, it cannot determine by inspection how an instruc-
tion will interact with those that follow.

Symbol Table

Availability Table

Command Code Table

Optimizing Rules

Later on, this manual will explain a number of convement features that permit
the programmer to intervene in ROAR's normal optlmlzatlon process. For
now, it is 1mportant to see how ROAR goes about optimizing a program.
Basically, ROAR uses a few simple rules built into its logic, a Symbol Table in
which each symbol is stored, a Command Code Table for classifying instruc-
tions as to optimizing type, and an Availability Table that tells it whether an
address has already been ass1gned to an instruction.

The Symbol Table. (Appendix B) is a block of memory where all the symbolic
addresses used in a program are stored by ROAR during the assembly of that
program. By referring to this table, ROAR determines whether a symbol is

a new one or has been previously encountered. 1If the symbol is new, it is
stored in the table according to a formula which enables ROAR to determine the
absolute address that should be assigned to that symbol. If the symbol is not
new, ROAR will find it present in the Symbol Table and will be able to locate
its equivalent absolute address.

- The Availability Table (Appendix B) consists of a block of words wherein each

bit position of each word corresponds to a memory address, and the contents of
the position signifies the availability status of the address. During assembly of
a program, ROAR computes the optimum addresses to substitute for the symbol-
ic addresses in each instruction. Before making the substitutions, ROAR

- checks the availability status of the addresses. If the Availability Table shows

these addresses have already been assigned to another instruction or have been
reserved for some other purpose, ROAR will repeat the process of computing
new addresses and checking their avallablhty unt11 a successful assignment is
made.

The Command Code Table (Appendix C) shows the optimizing classification
ROAR assigns various RPC-4000 commands and the values used in computing
optimum addresses. The commands are classified as Type 1, 2, or 3. Type 1
indicates that the Data-address field contains the location of data rather than
data itself. Type 2 indicates that the Data-address field contains data instead
of a location. Type 3 indicates a shift command. The three classifications de-
termine how the Data-address and Next-address fields will be optimized.

Also listed in the Command Code Table are the special pseudo-commands that
ROAR handles in the same manner as RPC-4000 commands. They are HEX,
DEC, ALF, PRC, SRT, and SLT. (See Chapter 5, "PSEUDO-INSTRUCTIONS.)

ROAR optimizes each field individually, starting with the Location and continu-
ing through the Next-address field. If the Location field contains a symbol
which has been encountered previously, ROAR will assign the same address it
assigned before. If the symbol has not been encountered previously, ROAR will
assign it the same sector (but a different track) as was assigned to the preced-
ing Next-address field. If the Location field is legally blank, ROAR will assign
it the same address as was assigned the preceding blank Data-address or Next-
address field. If the Location field is blank when it should be filled, ROAR
checks the Order field to determine if a general pseudo-command (i.e., a non-
special pseudo-command) is present. If one is present, ROAR will perform as
required by the pseudo-command; if one is not present, ROAR will type an
error indication and then halt,

After the Location field has been assembled, ROAR processes the Order field.
The content of the Order field is compared with the Command Code Table. If
the comparison is successful, an RPC-4000 command or a special pseudo-
command is present. ROAR will note its classification, assemble the command,
and continue. If the comparison is not successful, the Order field did not con-

tain a command or a special pseudo-command; and ROAR checks to see if it
contains a general pseudo—command If so, ROAR will perform the required

'functlon and then contmue if not, ROAR will type an error indication and halt.

' ”Fo‘lloWing the assembly of the Order field, the Data-address field is optimized

relative to the Location. ‘If the command is a Type 1 and the Data-address field

" is blank or contains a symbol not previously encountered, ROAR will optimize it

as Location plus 2. If the symbol had been encountered before, ROAR will as-
sign it the same address as had been assigned previously. If the command is a
Type 2 or 3, the Data-address field is assembled directly and is not subject to
the optimization rules. For example, "in a shift instruction the Data-address
field contains a value indicating the number of positions to be shifted. ROAR
does not replace this value with an address, but merely converts it to a hexa-
decimal number and proceeds to the Next-address field.

The Next-address field is the last to be assembled. If the Next-address field
contains a symbol which had been encountered previously, it is assigned the
same address as before. If the field is blank or contains a symbol not pre-
v10usly encountered the Next address field is assembled according to the
classdlcatmn of the command. A Type 1 command results in the Next-address
being optimized as Data-address plus Constant. (The Constants, which vary
depending on the specific command, are listed in the Command Code Table,
Appendix C.) A Type 2 command causes the Next-address to be optimized as
Location plus .Constant. A Type 3 command results in the Next-address being
optimized ‘as Location plus Data-address plus Constant, except the SLC com-
mand which is optlmlzed as Location plus Constant. (The programmer should
provide a delay to account for the maximum number of shifts anticipated.)

The Comments field is not considered since it is only copied from the symbolic
input tape to the decimal listing, and does not influence the assembled instruc-
tion.

ROAR CODING RULES

h‘\\\'\\“\\\\“\\“\\““\\“\\\\“;“\\\“\\\\“\\\\\\\“\\“““\\‘

CODING SHEET Figure 4. 1 shows a coding sheet which was designed specifically for ROAR-

FOR ROAR language programming.

It is divided into columns corresponding to the five

fields which most ROAR instructions require: Location, Order, Data-address,
Next-address, and Comments.

LOCATION ORDER DATA NEXT COMMENTS
A
ADDRESS ADDRESS
T BT TR PN NS B S 1 T R S
t T

. 1 1 1 L 1 I I 1 1 i 1 } 1 1 1 il
T T T
1] 1 i 1 1 1 1 { i 1 1 L I I 1 1
T T T

1 1 1 i 1 1] It 1 1 1 L i 1 Il 1 1

1 T

T BT T T T B B R TR R N N |
y 1 T
1 1 1 L 1. ! 1 1 il 1 1 L 1 } J. 1 1 L
T T t
N i 1 1 ' 1 1 i t 1 1 1 L } 1 i 1 L
T T T)
+ 1 1 1 1 1 1 i } 1 1 L 1 i 1 I 1 1
T T T
4 1 1 i 1 1 1 i } 1 1 Il 1 i 1 1 1 i
T T T
T S S S hd 1 bl 1 N R R T
1 T y
I 1 i 1 1 1 1 1 I 1 il 1 1 1 L 1 1 1
T T T
I 1 1 1 i 1 1 1 i 1 1 1 1 } L 1 1 1.
T T T
4 1 1 1 1 1 I 1 i 1 1 1 1 I' 1 1 1 1
T T T
} 1 1 L 1 1 A1 4 I 1 1 1 L 3 1 1 s 1
Ll T T
4 1 L 1 1 1 1 1 Il 1 1 1 1 i 1 1 1 1
T T T
4 1 1 1 1 1 L 1 } 1 1 1 A4 1 1 1 1 1
T T T
} 1 1 1 1 1 L 1 } L 1 1 1 | 1 1 1 !
t T t

T T [T T B T | T O B
T T T
F IR S SO W | | I | | S N N | F I N SO S 8
T T 1

VR N S |) U | N S TS T | N N W |
¥ T T
} 1 i 1 H 1 i 1 I 1L 1 1 1 i 1 | 4 i
T T T
T T T B 14 I N N N | VIR S W
T 1 T
P S B R TR | T S G N | T N S |
T T T
N T N T | T D S T I N S N
T T T

T T B T T R S T | S S N |
T t t
I B N B | T U T I B TR T T W {
T T T
i i 1 1 L 1 1 1 i 1 1 1 1 } 1 1 1 1
T T T
T R R N 1t T S T T | R T S U |
T T T
T R WS PR S T B | TR R T W
T L T
T T S W' 11 TN T N B | R O B T
T T T
FI B N S L1 I B B | dod 4}
T T T
S N | L1 T N I W | TR N N
T 1 —}
il L 1 | 1 1 1 1 i 1 1 1 1 } 1 1 i 1
T T T
il L 1 L i 1 1 i } 1 1 1 1 I 1 1 1 1
T y t
} 1 i 1 1 1 1 1 I 4 L 1 L i 1 i 1 1
T T T
} L 1, 1 1 1 L 1 3 1 1 1 1 } 1 1 1 1
) T Ll

1 i 1 1 1 i 1 i 1 1 1 1 1 1 1 1 1
T T T
| N T I | L1 VI N S | I N W |
T T ¥
W S S N | [| T N S B T T S
t t y

i d L ' L L ' 4 1 1 J 1 1 1 1 Il I

FIGURE 4.1

ROAR CODING SHEET

LOCATION FIELD

ORDER FIELD

Indexed Orders

ROAR ADDRESSING

ROAR will accept as a Location any symbol having no more than 6 characters,
including regional notation and absolute decimal addresses. In some cases the
Location must be left blank, i.e., when the instruction word contains a pseudo-
command and also when either the Data-address field or the Next-address field
of the previous instruction word was blank. ‘A stop code must follow this field
even when it is blank.

Two types of commands may be written for this field: commands for computer
instructions and pseudo-commands. Pseudo-commands are so-called because
they are not interpreted by the computer but are directed to the ROAR program.
They may result in an instruction to the object program, supplement other com-
puter instructions, or cause ROAR to perform certain utilitarian functions
which facilitate the writing of a program. The pseudo-commands are explained
in Chapter 5.

Commands for computer instructions may be written on the coding sheet in
either symbolic (mnemonic) form or in absolute machine language (numeric)
form. ROAR will accept both forms of commands.

If an instruction is to be indexed, write an X immediately to the left of the 2- or
3-character order code. :

LOCATION ORDER DATA NEXT COMMENTS
ADDRESS ADDRESS
P C02l 0 |, |RESET ADD UPPER
T P xoeal .. . lINDEXED RESET ADD UPPER
o eau ., |RESET ADD uPPER
... . xrAUl . ., [, . . |INDEXED RESET ADD UPPER

FIGURE 4.2 FORM OF INDEXED INSTRUCTIONS

ROAR will accept indexed numeric orders from X00 through X31. The numbers
0 through 9 may be used in place of the decimal order codes 00 through 09, but
may not be indexed if written in that form.

The Location, Data-address, and Next-address fields may contain an absolute
address or a symbol representing an address to be assigned by ROAR. All
addresses in the object program will be converted by ROAR to track and sector
form., In Figure 4.3 the addressable fields are marked with a left-hand char-
acter "A'" followed by five "B" characters. The B characters show the place-
ment of either an absolute address or a symbolic address containing no more
than five characters. If an address contains both an A character and B char-
acters it is interpreted by ROAR as a special six-character address. There is
also a form of special address which contains an artificial sector number 90
through 99. Special ROAR addressing will be explained further on in the
Chapter. First the two types of non-special addresses, symbolic and numeric,
shall be examined.

Symbolic Addresses

Numeric Addresses

DATA) NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
ABBBBSBl L , L [ABBB®BBABBBSSB

FIGURE 4.3 ADDRESSABLE FIELDS

Symbolic addresses must consist of one to five characters, at least one of which
must not be numeric, that is, 0 through 9. The non-numeric characters are
shown in the table of alphanumeric codes (Appendix E) as codes greater than 25.

Symbolic addresses are assigned absolute track and sector equivalents by ROAR
when they are first encountered, and they retain this equivalence throughout the
assembly of the program. When a track and sector has been assigned to a sym-
bolic address it is made unavailable for assignment to any other symbolic add-
ress unless, of course, the subsequent symbolic address is a duplicate of one
already encountered.

Some typical symbolic addresses are shown in Figure 4.4,

" DATA NEXT COMMENTS
LOCATION ORDE ADDRESS ADDRESS

LA
RATE
1,AT29
‘ . .3./4
e oo [4/2PI
-l | 3. 142

FIGURE 4.4 TYPICAL SYMBOLIC ADDRESSES

Numeric addresses are always in track and sector form and, excepting some
special cases, refer to absolute memory locations. It is not necessary to in-
clude leading zeros in numeric addresses. ROAR will accept any five digits as
a legal address except that track numbers will be assembled modulo 128, and
sector numbers modulo 64. A track and sector address of 12373 will be con-
verted by ROAR to a mod-64 sector number on the next higher track, namely
12409. An address of 12764 will yield track 0, sector 0; 13176 will yield 00412,
ete.

If numeric addressing of data or instructions is employed in coding a program,
certain precautions are necessary. ROAR will not automatically refrain from
assigning these absolute numeric addresses to symbolic addresses it encoun-
ters. Consequently absolute addresses must be reserved in advance of the as-
sembly of the program by employing the RES pseudo-command. Stated simply,
it will cause ROAR to change the status of those bits in the Availability Table
corresponding to the address, so that the address becomes "unavailable" for
assignment by ROAR. The RES pseudo-instruction is explained in Chapter 5.

A hexadecimal address will not be accepted as such by ROAR, but will be inter-
preted as some symbolic or absolute address.

4-3

BLANK ADDRESSES

SPECIAL ADDRESSES

Artificial
Sector Addresses

Address fields may be left blank subject to the following rules:

1. For any instruction word, either the Data-address or Next-address
field may be left blank, but not both.

2. When one of these is left blank the Location field of the following
instruction must also be left blank.

3. If both the Data-address and Next-address fields are occupied, the
Location field of the following instruction cannot be blank, but must
contain some symbolic or absolute location. '

When either the Data-address or Next-address is left blank, ROAR will assign
it an available memory location (which is then made "unavailable'), and also
will assign that address to the blank Location of the following instruction. These
rules do not apply to the general pseudo-instructions, but to the special pseudo-
instructions (which result in an output to the assembled program tape), namely
those containing the pseudo-commands HEX, DEC, ALF, PRC, SLT, or SRT.

Obviously, if a location is to be referred to from more than one place, it must
be assigned a symbol rather than being left blank. Blank addresses, in effect,
are symbolic addresses with the symbol implied.

Special addresses are of two types: those employing an artificial sector number
90 through 99, and those having a character in the left-most position of the
Location, Data-address, or Next-address fields.

When an instruction involving the Lower Accumulator is executed and the Lower
is in Eight-Word Mode, the particular Accumulator word used will correspond
to the modulo-8 equivalent of the Data-sector specified by the instruction. To
put it another way, if Ly, L;, Lo... Ly designate the eight Lower Accumulators,
then an instruction with a Data-address of 10300 would use or affect Lg, as
would 10308, 10316, etc. Likewise, instructions with Data-address of 02703,
05403, 06711, 11819, etc., would affect Lg.

If a program is being coded in absolute numeric language, there is no difficulty
in choosing the proper Data-sector to write on the coding sheet. One merely
specifies the sector number which corresponds to the particular word of the 8-
word Lower desired, which will result in minimum latency during the instruc-
tion's Phase 3 time. If the program is coded in ROAR language, however, it is
not possible to specify beforehand the optimum sector number for the Data-
sector. This depends on the sector ROAR assigns to the location part of the
instruction.

To circumvent these and similar difficulties, provision has been made in ROAR
for specifying which sector it will assign to an address or location. It is un-
necessary to control ROAR's assignment of track numbers since this part of an
address has no bearing on an instruction's timing. As far as the execution of
instructions is concerned, switching from one track to another by the computer
occurs instantaneously. This means that two instructions having latency zero
with respect to their sector locations, but on different tracks, will operate at
the same speed as if they were on the same track.

The artificial sector numbers 90 through 99 are used for controlling ROAR's
assignment of sector numbers. When read by ROAR in the Data-sector field

of an instruction, as one example, they will be interpreted as follows:

90-97

98

The second digit refers to a prime sector (corresponding to Ly,

Lj, etc. of the Lower Accumulator and to 00, 01, ete. of the Re-
circulating Track). ROAR will assign the next optimum, modulo-8
equivalent of this sector to the Data-sector part of the instruction
word. As an example, if the ROAR-computed optimum sector for
the Data-address of a given instruction is 34 and the given sector
is 93, ROAR will assign 35 to the Data-sector because this is the
next sector (after 34) which is a modulo-8 equivalent of prime
sector 3. (See Modulo-8 Table, Appendix D.)

ROAR will assign the most optimum sector to the Data-sector
part of the instruction word (Figure 4. 5).

Assume data is stored in Region A. Word 3 is to be brought to the Upper Ac-
cumulator and Word 5, to the Lower. It is desired to accomplish this in less
than 1 drum revolution.

} DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
oo | EXCL L 1698, , , |SET LOWER TO 8-WORD MODE
oo lpel tHRrEl L .. [Loab counT oF 3

T T
... |l RAL|l/0,0003] | . | |BrRING SECTORS 3 -6 oF REGION
TR EXCl 293, , , , , [EXCHANGE WORD 3 T0o UPPER
oo | EXel | 32958, | |[SETLOWER TO 1-WORD MODE LEAVING
v oo oy b b IWORD SN L
—] T t

/—______
—

FIGURE 4.5 SECTORS 90-98 FOR SPECIAL ADDRESSES

99

ROAR will assign the same sector to the Data-sector part of the
instruction as it computes for the Location field of the instruction.
Therefore the Data-sector will have a latency 64. Sector 99 is
often used in the Data-address of "print" instructions to make the
1/0 interlock operative and thereby prevent the execution of a
subsequent print order until execution of the first is complete. If
sector 99 is not used in coding a Print instruction, ROAR will
assign an optimum sector to the Data-address and the interlock
will not be operative (Figure 4. 6).

LOCATION

e DATA NEXT COMMENT '
ORD ADDRESS ADDRESS MENTS

P.RD L .199 . |cARRIAGE RETURN

PRD[3099 . . |erinTE

FIGURE 4.6 SECTORS 98, 99 FOR SPECIAL ADDRESSES

Note that these artificial sector numbers are normally used in the sector part
of the Data-address or Next-address fields. If used in the sector part of the
Location field, that location cannot be referred to by some other instruction.
As an example, if one instruction is given location "NOW94", and another in-

4-5

Special
Character
Addresses

struction uses NOW94 as a Next-address, ROAR will not assign to this Next-
address the absolute address of the first instruction. Instead ROAR will inter-
pret both as special sector 94 addresses and will assign each a different opti-
mum, modulo-8 equivalent of prime sector 4.

The second category of special addresses is made up of those containing a spe-
cial character in the left-hand column of the Location. Data-address, or Next-
address fields. These special addresses are:

Regional address
Recirculating Track address
Double-access Track address
Skip address

Delayed address

REGIONAL ADDRESSES A region is a block of memory between and including
specified initial and final locations (see REG, Chapter 5). ROAR contains a
one-track Region Table in which the 64 symbols which can be entered into the
computer are stored. When a region is defined, the location of the first word of
the region is stored in the Region Table beside the specified symbol. Whenever
reference is made to a location within a region, ROAR searches the Region
Table, finds the base address designated for the region, and computes the de-
sired absolute address. A member of a region is addressed relative to the first
location in the region.

Addressing- relative to the first location in the region consists of writing a single
character region symbol and a five digit sequence number. The symbol enables
ROAR to locate in the Region Table the initial location of the region. The five-
digit number indicates the word location relative to that first location. Thus a
Regional Address T00012 indicates word number 12 in Region T. If, for
example, Region T has been set up as locations 02500 through 02763, some
acceptable Regional Addresses would be as follows:

LOCATION ORDER ADD;;EASS A:DE:ETSS COMMENTS

eov o, . ITo0000,1] ., , [02500

.\, . |rooo0e64 . ., |ozse3

b o), |TOO192 ., |o2763

bo v}y, |T00200] , , , ., [WOULD BE ASSIGNED AS 02807 EVEN
TR R [y I R ST PR R U THOUGH IT 18 8 SECTORS BEYOND
o e LIMITS oF THE T REGION.

+ [rooo000, . ., |ASSIGNED AS 02463.

— Lo T:o.a,llelz N BECAUSE REGION STORAGE IS CALCULATE]N
—_ N e o MODULO 8192, THIS IS ALSO 02463.
e L .. |to8. 19,14l , ., . . | |ASSIGNED AS 02462.
e —— e

|

FIGURE 4.7 SAMPLE REGIONAL ADDRESSES

If an instruction using a Regional Address contains an undefined region symbol,
ROAR will indicate an error and then halt.

RECIRCULATING TRACK ADDRESSES Addresses referring to the Recircula~

ting Track 127 are coded in ROAR language by writing the symbol "RECRC"
followed by a prime, modulo-8 sector number, Figure 4, 8 illustrates the
form of a RECRC address.

LOCATION ORDER DATA NEXT COMMENTS
ADDRESS ADDRESS

il L 1 i 1 1 1 1 R:Elcl RI C|5 } 1 1 1 Il

—_— 1]

FIGURE 4.8 RECRC ADDRESS

Upon reading an address in this form ROAR will assign to the address the next,
optimum, modulo-8 equivalent of the prime sector. If RECRCS5 is coded as the
Data-address of an instruction, and the ROAR-computed optimum sector for
this address is 18, it will assign an address of 12721. This is because sector
21 is the next sector (following 18) which is a modulo-8 equivalent of prime sec-
tor 5. (See Modulo-8 Table, Appendix D). The modulo-8 equivalents of prime
sector 5 are 5, 13, 21, 29, 37, 45, 53, 61. Assume the optimum sector for
the address is 30. Therefore the modulo-8 5 sector following the optimum sec-
tor of 30 is sector 37, and ROAR would assign an address of 12737.

The RECRC(n) notation may not be used as the location of an instruction with the
anticipation that the location may be referred to in the address of another in-
struction. When ROAR reads the RECRC address it will not equate it with the
RECRC location of the prior instruction. Instead ROAR will treat the RECRC
address as it always does, and assign a mod-8 equivalent of the prime sector
specified.

Furthermore, when ROAR reads RECRC(n) in the Location field of an instruc-
tion, the instruction will not be punched into the hexadecimal, program tape be-
ing produced. However, the instruction will be printed on the program listing,
With these restrictions borne in mind it is possible to use RECRC(n) in the
Location field to achieve some special results in the assembled program.

The RECRC(n) notation when written in the Location field has the effect of setting
the sector part of ROAR's internal Location Counter to a predetermined value.
ROAR assigns optimum addresses based on the value in the Location Counter.
When ROAR assigns an address it puts the number of the sector in the Counter
and thereby keeps track of what sector it assigned last. Assume that one

wishes to write an instruction that is to use the Recirculating Track, and it is
desired to have the instruction optimized so that it operates in the least amount
of time.

Location Order D-Address N-Address

A. Say the instruction is RATE CLL RECRCO ANY
ROAR will assemble as 01110 27 12716 01118

B. I, however, we precede the
instruction with RECRC2 RAU 98 RATE

Which will assemble as 12718 02 01120 01122

C. _Then the instruction we are
concerned with RATE CLL RECRCO ANY

Will assemble as 01122 27 12724 01126

4-7.

The assembled instruction in Example A is not optimum, There is a difference
of 6 word times between the Location-sector and the Data-sector, instead of the
optimum 2 word times. The assembled instruction in Example C is optimum.

Another way to preset the Location Counter is to write an instruction of the form

LOCATION ORDER DATA NEXT COMME
of ADDRESS ADDRESS OMMENTS
RECRCO ., o .. o, .. .14

FIGURE 4.9 PRESET LOCATION COUNTER

An instruction with RECRCO as a Location, with zero in the Order and Data-
address fields, will set the Location Counter to the value contained in the Next-
sector field.

DOUBLE-ACCESS TRACK ADDRESSES During the assembly of a program

ROAR will not arbitrarily assign Double-access Track addresses to Location or
Address fields. If it is desired to let ROAR assign these tracks in the same
way it assigns other memory locations, they may be made available to ROAR
with the pseudo-command AVL as explained in Chapter 5.

The normal way of referring to the Double-access Tracks is by means of the
ROAR Double-access Address. This symbolic address is illustrated in
Figure 4.10.

LOCATION ORDER DATA NEXT COMMEN
ADDRESS ADDRESS OMMENTS
; i 1 1 L L 1 1 D = Bl 3‘ 5 1 Y IM : 1 1 1 1
—] S /\,,//_

-FIGURE 4.10 DOUBLE-ACCESS ADDRESS

The address consists of three parts:

A. The letters DB with the D in the special character column. This
identifies the form of the address for ROAR,

B. The number following DB may be a number from 1 through 4. It
represents a Double-access Track number as follows:

Number ' Meaning
1 Leading head of the 16 word track (123)
2 Trailing head of the 16 word track (125)
3 Leading head of the 24 word track (124)
4 Trailing head of the 24 word track (126)

C. The letters SYM represent any 3-character symbol capable of being
read into the computer.

This three character symbol has the same significance as any other symbolic
location except that once it has been used in conjunction with a particular
Double-access Track it should continue to be referred to in conjunction with
that track or the associated track. DB Tracks 1 and 2 are associated, as are
3 and 4, (Just as Tracks 123 and 125 are associated, and 124 and 126 are
associated.) Thus DB1VAR and DB2VAR refer to the same word on the 16
word track except that the DB2VAR reference is 16 word times later than
DB1VAR.

To illustrate all this more clearly, consider the following sequence, given a
variable in the Upper Accumulator at a q of 7.

LOCATION ORDER Ag;;:ss ADN;:ETSS COMMENTS
b EX] STU[DB LV ARl . . [STORE TEMPORARILY

e I SRUL L, al . [RIGHT ONE BIT
STVl . varl . . |vmriaeE® 8
L. | RAUIDB2VAR 60 ,ON[REPLACE VARIABLE @ 7

4+ 4+ 4 4

FIGURE 4.11' DOUBLE-ACCESS ADDRESSING

The instruction in EX temporarily stores the variable in the first available sec-
tor of the 16 word Double-access Track using the leading head.

The Accumulator content is shifted right by 1 bit and the variable, now at a q of
8, is stored in Location VAR, ROAR will not confuse this location with the VAR
in DB1VAR or DB2VAR.

The fourth instruction restores the variable, at q of 7, to the Accumulator. The
variable is read by the trailing head of the 16 word track, i.e., 16 word times
later than it will be stored in DB1VAR.

ROAR might have assembled the sequence as follows:

EX*STU*DB1VAR** 00105 24 12307 00009 *
¥SRL*] ** 00009 12 00001 00217 *
*STU*VAR** 00217 24 00019 00021 *
*RAU*DB2VAR*GO ON* 00021 02 12523 00125 *

It should be noted that ROAR assigned the address 12307 to DB1VAR and 12523
to DB2VAR. On subsequent encounters of the DB1VAR symbol ROAR may as-
sign either 12307 or 12523, whichever results in the least latency. This is
permissible because both addresses refer to the same word.

SKIP ADDRESS At times, for purposes of optimization, it is desirable to
place an instruction in a location beyond the computed optimum. One example
of this would be where the Data-address is variable and may be set to pick up
the contents of one of several consecutive locations. We would like the follow-
ing instruction to be located so that it is optimum when the last sector of the
set is used, rather than the first. The Skip Address (Figure 4. 12) enables this
to be done. ‘

" DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
N N CYE XY]

FIGURE 4.12 SKIP ADDRESS

4-9

-The symbol SKIP:with S in the special character column identifies the Skip
Address. " -The 2 digit number specifies: the number of sectors to be skipped
beyond the optimum sector that would ordmarily be ass1gned to the field in which
: the Sk1p Address symbol appears

The followmg example will illustrate a typlcal use of the Skip Address. Assume
- locations:10520 through' 10525 have been reserved for a set of parameters and
have been defined as Region Q. The first has been chosen for use and its ad
dress placed in Location CODE which ROAR may assign as 00318.

oc. neN Roék ’ DATA Next ceMMe S
LOCA ° ADDRESS ADDRESS NT

, .C.ODE|X,RAU|Q00,00,1[5KI,P05| PARAMETER TO U
TR M P.Y TR W :x =6|°| -Q-N ;

~FIGURE 4. 13- SKIP ADDRESSING

For these instructions ROAR might generate:

CODE*XRAU*Q00001*SKIP05* 00318 X02 10520 00027 *
*MPY*X*GO ON* 00027 14 00029 00033 *

»When the assembled program is operated and the instruction in CODE (00318)
has been executed for the last time, the Data-address will contain 10525 and
the MPY instruction will then be optimum. ~

DELAYED ADDRESS The last of the specialvG,—character addresses is the De-

layed Address (Figure 4. 14). It is used only with the pseudo-command NXT
(see Chapter 5). » -

LOCATION RDER DATA NEXT ceM £l V
o o ADDRESS ADDRESS MENTS

b .| wxTloE LAYl |- '
vw/\,_/\

FIGURE 4.14 DELAYED ADDRESS

DELAYD may appear in the Data-address field, ‘Next-address field, or both;
.the Location field is left blank; . This pseudo-instruction causes ROAR to
change the optimization of the corresponding field of the instruction following
it. - That is, ROAR will optimize that address as‘the preceding Next-address
sector plus 4. This is possible only if the address fleld is blank or contains a
: symbohc address wh1ch has not been prev1ous1y seen by ROAR.

- Consider":
')] ‘DATA U NEXT
LOCATION ORDER ADDRESS - 1 ADDRES‘S" COMMENTS:
i . ©0f RAL| INST s@RT| =
. [NxTlpELAYDl T
L INST sTUl, , RTX|

FIGURE 4.15 DELAYED ADDRESSING

COMMENTS FIELD

The symbol GO will be assigned an optimum address; the symbol INST will be
assigned an address optimum with respect to GO. The symbol SQRT will be
optimized with respect to INST and that sector value stored. When ROAR reads
the Data-address field of the INST instruction, it will optimize that field as
SQRT+ 4. The above example might be assembled as:

GO*RAL*¥INST*SQRT * 03633 03 03635 03737 *
*NXT*DELAYD** *
INST*STU*RTX*B* 03635 24 03741 03743 *

In effect the DELAYD caused ROAR to delay the optimization of the Data-
address field of the INST instruction (03635) and to optimize it with respect to
the sector assigned to SQRT (i.e., 37+ 4 = 41).

This special address is effective in optimizing the instruction to which a sub-
routine will exit. (See Chapter 6, "PROGRAMMING TECHNIQUES, ')

The fifth field on the coding sheet is the Comments Field. ROAR will copy any
information in this field onto the decimal listing. The comments will appear to
the right of the decimal rcpresentation of the assembled instruction word. A
stop code must follow this field even if the field is blank.

PSEUDO-INSTRUCTIONS

Ll N N A A A A A A A A LA AR A AL A AL AR T N TN N NN NN S

ALLOCATE MEMORY

CONTROL ASSEMBLY

The description of each pseudo-instruction on the following pages includes:
1. A chart showing wha;c each field must contain.
2. A discussion of how it is processed by ROAR.
3. An explanation of its effect on other pseudo-instructions.
4. An example of its use.
5. A list of error printouts that may result from its misuse.

Most pseudo-instructions have the standard format discussed in Chapter 4, i.e.
5 fields, each followed by a stop code. However, a few pseudo instructions
deviate from this format; viz., PRE, SET, RAV, COM, (BB)(ET)(E6), SBT,
SUB, and SBE. The dlfferences in format for these are explained in the de-
tailed descriptions of the pseudo-instructions.

The thirty-four pseudo-instructions fall into seven classifications:

At the beginning of the assembly, all of the computer's memory is available to
the program. Normally, it will be necessary for the programmer to reserve
various parts of memory for data storage, subroutines, etc. ROAR provides
three pseudo-instructions to reserve areas of memory. They may be used at
any time, but normally will be among the first instructions assembled. These
pseudo-instructions are RES, REG, and RLR.

It is often desirable to pre~establish absolute addresses for certain symbols,
for example 5-character symbols for communication between parts of a pro-
gram, There are four pseudo—mstructmns which are used for this purpose:
PRE, SET, RST, RRS.

Occasionally it may be necessary to make available a previously reserved area
of memory or to set certain symbols equal to specific addresses. Three
pseudo-instructions have been provided to accomplish these tasks: AVL, EQR,
EQV.

A group of four pseudo-instructions provides the programmer with means of
controlling the progress of the assembly; i.e., pausing, restarting, altering
memory, terminating, - This group includes NIX, NEW, CLS, and END.

ESTABLISH
CONSTANTS

INPUT-OUTPUT

SHIFT

COMMENT

When a program is constructed in many segments, or makes use of symboli-
cally-coded subroutines, it becomes difficult to avoid duplication of symbolic

. addresses. Two pseudo-instructions have been provided which allow use of

USE SUBROUTINE

LIBRARY

ALLOCATE MEMORY

5-2

RES —

identical symbols in different subroutines without being ambiguous to ROAR
when it makes memory a551gnments They are TAG and HED

Should a programmer deswe to control the optlmlzatlon of an mstructlon by in-
creasing the latency in the Data-address or Next-address field, he may do so
with an NXT pseudo-instruction.

The assembly program provides the programmer with four methods of sétting
up constants for his program. He may convert the constant to the form of an
instruction and place it on the coding sheet as such, or he may use any of the
three pseudo-instructions HEX, DEC, ALF.

Six pseudo-instructions can be used to obtain reference material for use in pro-
gram checkout and change. In some cases their output may be used to advan-
tage in partial re-assemblies. They include PAV, PPA, RAV, PST,5CS, and
PAS.

A pseudo-instruction has been included to facil'itate the coding of print instruc-
tions. It is PRC.

Two pseudo-instructions have been included for convenience in the coding of
shift instructions: SRT and SLT.

Two pseudo-instructions have been added to allow unusually long statements to
be inserted in the symbolically coded program. They are COM and (58) 57) (56).

A Subroutine Library is a tape made up of frequently used, symbolically coded
programs, e.g., data input and output programs, trigonometric functions, etc.
Selecting and assembling the desired programs from the Library Tape is han-
dled entirely by ROAR. The pseudo-instructions relating to the use of a Sub-
routine Library are SBT, SUB, and SBE.

Reserve a Portion of Memory

Location - Must be-blank.

Command - RES : o

Data-address - Any legal decimal address having no more than 5 digits
and designating the first location of the reserved area.

ALLOCATE MEMORY

REG —

Next-address - Any legal decimal address having no more than 5 digits
and designating the last location of the reserved area.
Comments - Any applicable remarks.

FUNCTION This pseudo-instruction will make a designated number of sectors
unavailable to ROAR for assignment to symbolic and blank addresses. The ab-
solute address in the Data-address field designates the first location to be re-
served. The absolute address in the Next-address field designates the last
location to be reserved. All locations between and including these addresses
are reserved. The sectors in the reserved area can be referred to by absolute
addresses only.

Normally, RES will be one of the first pseudo-instructions processed by ROAR.
The use of RES allows the programmer to restrict his program to desired areas
or to reserve for other uses any area in memory. If the Data-address field of
an RES pseudo-instruction is greater than the Next-address, ROAR will begin
the reservation at the location specified by the Data-address, continue to 12763,
then proceed with 00000, and continue until the location specified by the Next-
address is processed. (See last example below.)

All sectors included in the bounds of an RES pseudo-instruction remain reserv-
ed until reinstated in the Availability Table by an AVL pseudo-instruction or
until ROAR is initialized to begin a new assembly,

EXAMPLES

DATA NEXT

ADDRESS | ADDREss | COMMENTS

LOCATION ORDER

o RES| , , 600 ,1,0,63| RESERVE ALLSECTORS IN TRACKS
‘ ‘ L1 1, 1637849, AND 10.

,2,0,7 S|RESERVE ALL SECTORS FROM 1200
L1 s, |THROUOGH 2111 .

. 11,6,3|RESERVE ALL SECTORS FROM
12000 THROUBH 1276 3 AND FROM
00 THROUGH 163. THIS INCLUDES
THE DOUBLE-ACCESS TRACKS AND

L . 4, |RECIRCULATING TRACKyALTHOUGH
IT IS UNNECESSARY TO RESERVE
L i, . |THESE TRACKS UNLESS THEY
HAVE PREVIOUSLY BEEN MADE
L .1 . |AYAILABLE WITH AN AVL.

14000

14,2000

0
m
"

<+ 4+ 4+ 4 4 4 4+ 4 4+ 4+ 4 4 4

ERROR PRINTOUT REFERENCE Address not decimal for pseudo-op REG
RES or AVL. See "Error Printouts,' Chapter 8.

Establish a Region

Location - Must be blank.

Command - REG

Data-address - The symbol that is to designate the region, followed by a 5
decimal digit address which will be the first location in the
region,

5-3

ALLOCATE MEMORY

5-4

Next-address - An address of not morevthan 5 decimal digits that will be the
final location in the region.
Comments - Any applicable remarks.

FUNCTION An REG pseudo—instruction will establish a region whose first

location will be specified by the absolute address in the Data-address field. The
five-digit Data-address in the REG instruction word is stored in the Region
Table and is used by ROAR to compute absolute addresses when reference is
made to the region later in the program. (See "Regional Addresses," Chapter
4.) The final location in the region will be designated by the absolute address in
the Next-address field of the same instruction word. All sectors between and
including these addresses are reserved for the region and may only be referred
to by regional addresses or by absolute addresses.

If the content of the Data-address field of an REG pseudo-instruction is greater
than the content of the Next-address field, ROAR will begin the region at the
location specified by the Data-address, continue to 12763, then proceed with
00000, and continue until the location specified by the Next-address is processed.
However, it would be very difficult to use a region which included the Double-
access Tracks or the Recirculating Track. . If they were included in a region,
ROAR would consider the Double-access Tracks to be 4 individual tracks, each
having 64 sectors, rather than only 2 tracks of 128 sectors and would consider
the Recirculating Track to have 64 individual sectors rather than 8 sectors re-
peated 8 times.

All sectors affected by an REG pseudo~instruction are arbitrarily included in
the region regardless of prior use by the program being assembled. Any sec-
tors included in the bounds of a subsequent AVL pseudo-instruction will be ar-
bitrarily reinstated in the Availability Table but such sectors may still be re-
ferred to by regional addressing. Any locations affected by a prior or subse-
quent REG, EQR, or EQV will be treated in the manner usual for the REG, EQR,

‘or EQV. That is, a location can be set equivalent to some address (absolute or

symbolic) and can also be designated as part of a region. Thus the location
could be addressed three ways: regional addressing, absolute addressing, and
the address to which it has been equated.

EXAMPLES

LOCATION ORDER DATA NEXT COMMENTS
ADDRESS ADDRESS

L1 REG|/0,1056| , 7.6 .2 0|RESERVE FOR REGION SLASH (/) ALL
: P L . L : L1 1 1 |SECTORS FROM 1056 THROUGH T7620.
: Lo .R.e.g_sii.e.z.o.o : ,9,7 9,8/ RESERVE FOR REGION 3 ALL SECTORS
ERTIRTE L b0 o |y oy, |FROM 3400 THROUGH 9834,

b 0| RAUINGO004] , N,- AD[LORD THE FIRST wWoRD OF REGION A
1 PR PR ST S — INTO THE UPPER AccumMULRATOR..
P R,AL 3;0.0,3.6,0 ' N,- A D|[LOAD WORD NUMBER 360 OF REGION
— L M B 3(WHICH IS ALSO WORD NUMBER.

o oo e o by v ey, 1840 OF REGION SLASH) INTO ThHE
e e by 0y, JLOWER ACCUMULATOR
k/—\/w_

ERROR PRINTOUT REFERENCE Address not decimal for pseudo-op REG
RES or AVL. Unassigned region. See "Error Printouts," Chapter 8.

ALLOCATE MEMORY

RLR — Designate a Relocatable Region

Location - = - Must be blank.

Command - RLR . :

Data-address - The 1-character symbol that is to designate the region.
Next-address - The number of locations to be in the region.

Comments - Any applicable remarks.

FUNCTION At the beginning of an assembly, the second printout from.ROAR
inquires "Subroutine Tape Region Storage.' (See '""Assembly Preparations, '
Chapter 7.) The area reserved at that time is normally for regions used by
subroutines to be assembled from a Library Tape. However, the area thus re-
served may be used for regions in the object program if the programmer wishes.

After the area for the regions has been reserved, the individual regions are de-
signated with RLR pseudo-instructions. The region symbol is written in the
Data-address field, and the number of memory locations required for that re-
gion is written in the Next-address field. When an RLR pseudo-instruction is
encountered, ROAR will assign sequential memory locations from the subrou-
tine region storage area to the given region. When subsequent RLR pseudo-
instructions (designating the same or different region symbols) are encountered,
ROAR will assign the next sequential group of locatious to those regions. For
example, subroutine A has 20 locations designated as Region Slash, subroutine
B has 12 locations also designated as Region Slash, and both subroutines are to
be assembled from a Library Tape. At the beginning of the assembly, the pro-
grammer would rescrve as Subroutine Tape Region Storage 32 locations, say

- 4000 through 4031. Then when ROAR begins the assembly from the Library

Tape, the second instruction of subroutine A would be *RLR*/*20** which

would establish Region Slash as locations 4000 through 4019. When the assembly
of subroutine B begins, ROAR will encounter *RLR*/*12** which would estab-
lish the next sequential group of locations as Region Slash, that is 4020 through
4031. In this way, the same region symbols may be used in numerous sub-
routines without conflict in the absolute addresses ROAR will assign.. (See
SUBROUTINE LIBRARY TAPE, Appendix A.)

If regions in an object program are established with RLR pseudo-instructions,
certain precautions should be observed by the programmer when using regional
addresses. Because the sectors actually assigned to a region established by an
RLR are unknown, it is hazardous to use regional addressing with the 8-word
Lower Accumulator. Since the words in the region might not have been stored
modulo-8, the programmer could not refer to a particular word'in the 8-word
Lower; or if used in conjunction with the Repeat Mode, the 8 words in the Lower
Accumulator might not be in the order desired.

EXAMPLES
DATA NEXT ¢

LOCATION ORDER ADDRESS ADDRESS OMMENTS

s | RLRE L KL, B 1|ESTABLISH REGION K AS THE

TS W S S 14 M Y ST S PR T S V| FIRST 81 LOCATIONS IN ARER

t 1 t

S S W T PR O S T T L 1 1 1, |OF SUBROUTINE RE®ION STORRGE
+ t T

T W S RL R —t & — 4 O0|ESTABLISH REGION Z AS THE
! L1 N . L 1 1, |INEXT SEQUENTIAL 40 LOCATIONS.
{ EE— A

ALLOCATE MEMORY

PRE —

The Subroutine Tape Region Storage area might have been reserved as locations
5600 through 5963. Then, Region K would be 5600 through 5716 and Region Z
would be 5717 through 5756. S o

ERROR PRINTOUT REFERENCE Insufficient subroutine region storage. See
"Error Printouts," Chapter 8. I

Prepare ROAR

Location - Must be blank.
Command - PRE "
Data-address - Inapplicable.
Next-address - Inapplicable.
Comments - Inapplicable.

FUNCTION This pseudo-instruction is generated by the Compact compiler
(see Compact Operating Procedure, program H3-01. 0) and is the last item out-
put after the program compilation is complete. It contains the name of the sub-
routine and the information concerning the amount of storage required by that
subroutine for each of the six special character regions. The PRE pseudo-
instruction and its information must.be the first item to enter the assembly
routine.

The information output with the PRE pseudo-instruction is in hexadecimal form.
The first word is the name of the subroutine. The second and subsequent words
are made up of two parts: the first 4 hexadecimal characters give the name of
the region; the last 4 hexadecimal characters indicate (at a q of 30) how many
memory locations are required for that region.

EXAMPLE

~ #PRE%229E 8BAD*3LDCOOOE #360C003E #350C 0000#3ADCO000%38DCO000%37DC0O1DC*

SET —

Subroutine INOUT requires

7 locations for region ,
31 locations for region [
0 locations for region=

0 locations for region +

0 locations for region -
238 locations for region]

ERROR PRINTOUT REFERENCE None.

Establish Global Symbols

Location - - Must be blank,
Command - SET
Data-address - Inapplicable.
Next-address - Inapplicable.
Comments - Inapplicable.

ALLOCATE MEMORY

RST —

FUNCTION This pseudo-instruction is used to set up the global symbols,
which are symbols common to all programs assembled as a single operating
program unit and which are used for communication between sections of a pro-
gram or between subroutines and a program. The advantage of establishing
global symbols with an SET pseudo-instruction is that the symbols are not re-
stricted to 5 characters and that the Symbol Table may be cleared of all sym-
bols except global symbols (see RST). SET is not generated by the COMPACT
compiler, but is required if any symbols are to be global.

When the SET pseudo-instruction is executed, ROAR places in the Set Table all
the symbols which follow it. The Set Table is 4 tracks long and contains only
those symbols established by an SET pseudo-instruction. Any number of sym-
bols (up to 256) may be entered with a single SET pseudo-instruction. Each
symbol, consisting of no more than 5 characters, is followed by a stop code.
The pseudo-instruction is terminated by an extra stop code. When a global
symbol is next encountered by ROAR, it is placed in the Symbol Table and is
assigned an absolute address.

When assembling a COMPACT-compiled program, the SET pseudo-instruction
should immediately follow the PRE pseudo-instruction. However, use of the
SET pseudo-instruction is not limited to COMPACT-compiled programs. Any
names which are defined as global in either a PRE or SET pseudo-instruction
are preserved in the Set Table as long as the ROAR program is not initialized.
If ROAR encounters a CLS (Clear Symbol Table), the global symbols will be
removed from the Symbol Table, but not from the Set Table.

Global symbols consisting of fewer than 5 characters should not be used in the
same sequence of coding with a header tag, since ROAR would prefix the header
tag to the symbol and, therefore, would not recognize it as a global symbol.
(See Chapter 6, "Programming Techniques. ')

EXAMPLE

#SET*FBR#COSF #XMODF #MA X1 F #F DCs

These 5 symbols will be entered as global symbols.

ERROR PRINTOUT REFERENCE None.

Restore Symbol Table

Location = Must be blank.
Command - RST

Data-address - Must be blank.
Next-address - Must be blank.
Comments - Must be blank.

FUNCTION When an RST pseudo-instruction is encountered, ROAR will clear
from the Symbol Table all non-global symbols. This does not affect the Set
Table. ROAR examines the list of global symbols established by SET and PRE
pseudo-instructions to determine whether any of these symbols have been as-
signed absolute addresses in the object program. If they have, the symbols are
re~-established in the Symbol Table andtheir absolute addresses retained. All
other symbols are cleared from the Symbol Table. In this way two different

5-7

ALLOCATE MEMORY

5-8

RRS —

programs that are assembled together may use the same non-global symbol to
mean different things without conflict. Every COMPACT-compiled program
has an RST pseudo-instruction as its first instruction.

EXAMPLE

LOCATION ORDER DATA NEXT c
ADDRESS ADDRESS OMMENTS

by RS

ERROR PRINTOUT REFERENCE None.

Relocate Regional Storage

Location - Must be blank.

Command - RRS :

Data-address - The symbol designating the region followed by 5 digits in-
dicating the number of locations used by the region.

Next-address - Must be blank.

Comments - Must be blank.

FUNCTION With the exception of a region that is common to two or more pro-
grams, sequential storage from one program must not overlap sequential stor-
age from another. The COMPACT compiler, however, can never determine
whether the program it is now compiling is to be assembled with another, and
yet unique sequential storage regions must be assigned as needed. The RRS
pseudo-instruction relegates this task to the assembly routine by informing
ROAR how many locations have been used in the particular program under con-
sideration. Every compiler-generated program, requiring regional storage,
has an RRS pseudo-instruction at the end of the program.

When ROAR encounters an RRS pseudo-instruction, it relocates the beginning
location of the specified region upward by the number of locations given in the
Data-address field. Thus when the next program that uses the specified region
is assembled, the regional storage will commence from that point.

The function of the RRS pseudo-command is similar to that of the RLR pseudo-
command with two exceptions:

1. The RLR pseudo-instruction refers only to that area of memory re-
served in reponse to the preliminary query, '"Subroutine Tape Region
Storage''; whereas the RRS pseudo-instruction can refer to any region
used by a program regardless of how it was reserved.

2. The RLR pseudo-instruction is coded by the programmer and precedes
the program that will use the specified region; the pseudo-instruction
is necessary to establish the region. The RRS pseudo-instruction is
generated by COMPACT (but can be coded by the programmer) and
follows the program that used the specified region; the pseudo-
instruction does not initially establish a region, but rather relocates
the base address of a previously established region.

ALLOCATE MEMORY

AVL —

EXAMPLE
LOCATION RDER DATA NEXT COMMENTS
' o ADDRESS ADDRESS N

. | RRS[C00031

L. ... | RRS|10,0.238|
i

Region [required 31 memory locations in this program.
Region] required 238 locations.

ERROR PRINTOUT REFERENCE None.

Make a Block Available

Location - Must be blank.

Command - AVL

Data-address - Any legal decimal address having no more than 5 digits and
designating the first location to be made available.

Next-address - Any legal decimal address having no more than 5 digits and
designating the last location to be made available.

Comments - Any applicable remarks.

FUNCTION This pseudo-instruction is the opposite of RES. That is, it causes
ROAR to modify the Availability Table, making available for use all sectors be-
tween and including the locations indicated by the Data-address and Next-address
fields. All locations within the bounds of an AVL pseudo-instruction are arbi-
trarily made available regardless of prior use by the program being assembled.
The only time it would be meaningful to employ the pseudo-instruction AVL at
the beginning of an assembly is in the event that one or both of the Double-access
Tracks will not be used for double access but are to be assigned by ROAR in the
same way that it assigns other memory locations. Only one head of a pair on
each Double-access Track should be made available. If both heads were avail-
able, ROAR could assign two words to the same drum location because each
head would then be assumed to represent 64 unique locations. (See "Double-
access Track Addresses,'" Chapter 4.)

If the address in the Data-address field of an AVL pseudo-instruction is great-
er than the address in the Next-address field, ROAR will make available the
location specified by the Data-address, continue to 12763, then proceed with
00000, and continue until the location specified by the Next-address is reached.

An AVL that includes locations mentioned in a previous RES, REG, or EQR will
cause those locations to be restored to the Availability Table and thus will per-
mit ROAR to use them for assignment to undefined symbolic and blank address-
es. Any sectors affected by a subsequent REG, RES, or EQR will be treated

in the manner usual for the REG, RES, or EQR.

5-9

ALLOCATE MEMORY

EQR ——

EXAMPLES
LOCATION ORDER DATA NEXT COMMENTS
ADDRESS ADDRESS
e oo] AVL] 12300 A.2,3,6,3MAKE_AVAILABLE THE LEADING HEAD
NP RPN RPN S OF TRACK 123/125, ie. SECTORS
12300 THROUGH 12363.
L a1l AVIL ;1,2.6,0.0 \1,2,6.6,3|MAKE AVAILABLE THE TRA(LING HEAD
1 [T —t 1 PR T 't OF TRACK 124/126’ .., SECTORS
,....1zeoorunoueH12663.
e | awvie] 13200, . .68 3|MAKE AVAILABLE ALL SECTORS FRO
;.......=....;....4oowmuau7:9‘
——t 1 AV L ' 4,000 N . 5,0,6,3|MAKE_AVAILABLE ALLSECTORS FROM
=....,.'.,....4....1ooo-rug_o_u_e_u_.igg.
__’

ERROR PRINTOUT REFERENCE Address not decimal for pseudo-op REG

RES or AVL. See "Error Printouts,' Chapter 8.

Equate and Reserve Location

Location - Must be blank.
Command - EQR

Data-address - Any legal address.
Next-address - Any legal address.
Comments - Any applicable remarks.

FUNCTION This pseudo-instruction causes ROAR to make one address equiva-
lent to some other address. It is possible to equate one symbol with another
symbol or with an absolute address, but either the Data-address or the Next-
address field (if not both) must contain a symbolic address. An error halt will
occur if an absolute address appears in both the Data-address and Next-address
fields. A blank address field and the SKIP(nn) address are not legal addresses
to use with this pseudo-command.

If one address field of an EQR pseudo-instruction contains a symbolic address
and the other a numeric address, the memory location thus assigned is made
unavailable. ROAR would store the symbol in the Symbol Table and the absolute
address in the Equivalence Table. The Equivalence Table is a block of memory
where ROAR stores the absolute addresses that are assigned to symbolic add-
resses. (See "Equivalence Table," Appendix B.) If a numeric address is in
either the Data-address or the Next-address field, the sector portion must be
within the range 00< N < 63.

Symbolic addresses may be made equivalent even if neither has been previously
assigned an absolute address. Both symbols are stored in the Symbol Table.
When ROAR subsequently encounters either of the symbols, an optimum address
is computed and assigned to both the symbols. Any number of symbols may be
made equivalent through the use of several EQR pseudo-instructions.

If two symbolic addresses which have already been assigned absolute addresses
by ROAR are to be made equivalent, the Next-address field is considered to be
predominant. That is, the absolute address of the symbol written in the Next-

ALLOCATE MEMORY

address field of the EQR pseudo-instruction will be assigned to the symbol in
the Data-address field; the absolute address thus replaced is left unavailable.
If several symbols have been made equivalent and have been assigned an abso-
lute address, changing one of the symbols by making it equivalent to some
other location does not affect the remaining symbols. For example, assume
A, B, C, and D are all equivalent and have been assigned the location 02354;
also, assume F has been assigned location 04623. If A is made equivalent to
F, then the absolute address of A would be changed to 04623, but B, C, and D
would continue to have location 02354,

EXAMPLES

LOCATION ORDER DATA NEXT COMMENTS

ADDRESS ADDRESS

PSR E R|] S TART| £ ,10,00|EQUATE START WITH THE LOCATION
: NN B L L . . . |1000 AND RESERVE THAT LOCATION.
oo, | eer|l 1004 . Nowleauare Now wiTH LocaTion

l [R 11 ; L1 ; PR S S 1001 AND RESERVE T.

i 1 1 1 1 IE R 1 1 1 1 lA I 1 1 1 ‘B

... 1lear . . &2 plp)EQUATE A,B,Z,AND D.
R Y N D

...] £ar|/00008| | Loo|EQUATE LoD wiTH THE ABSOLUTE
e e |apDrRESS ASSIGNED TO THE

' N . L o ' v ., I8B™M WORD OF REGION SLASH .

ERROR PRINTOUT REFERENCE Impossible address. See "Error Print-
outs,' Chapter 8.

EQV —— Make Equivalent
Location - Must be blank.
Order - EQV

Data-address - Any legal address.
Next-address - Any legal address.
Comments - Any applicable remarks.

FUNCTION This pseudo-instruction is handled in the same manner as EQR
with “one exception: when a symbol is equated with an absolute address, the
memory location thus assigned is not reserved. It is assumed that when this
pseudo-instruction is used the location will have been reserved previously or
else that there is no need for reservation.

‘With an EQV pseudo—instruction it is possible to equate one symbol with another
symbol or with an absolute address, but either the Data-address or the Next-
address field (if not both) must contain a symbolic address. An error halt will
occur if an absolute address appears in both address fields. When a numeric
address is used in an EQV pseudo-instruction, the sector portion must be with-
in the range 0< N < 63. A blank address field and the SKIP(nn) address are not
legal addresses to use with this pseudo-command. Symbolic addresses may be
made equivalent even if neither has been previously assigned an absolute add-
dress. Iftwo symbolic addresses which have already been assigned absolute
addresses by ROAR are to be equated, the symbol in the Next-address field is
given precedence over the one in the Data-address field.

5-1

ALLOCATE MEMORY

EXAMPLES
DATA NEXT
LOCATION ORDER ADDRESS - ADDRESS COMMENTS
L. .. | EQV] ABC| K .9600[ETHER WiLL EQUATE ABC WITH LOCATION
o EQV]! K 9600} | A B.CJ9600. LOCATION 9600 1S NOT RESERVED.
I\ 1 1l A 1 A e 1 i 1 1 1 i Il i L 1 1
e L EQV], 11,05Q]/ 0,000 3/EQUATE JOSQ WITH THE 3 0 WORD
: 1 J " 1 1 1 1 : 1 1 1 Vl {, 1 1 1 1 OF REG‘ON 5!—“5“»
b .o | EQYE L 105G L A BCIEQUATE 105Q WITH ABC; ie.,
+ t

CONTROL ASSEMBLY

NIX —

T

e oo b, ICHANGE 105Q TO 9600.
N\

ERROR PRINTOUT REFERENCE
outs, ' Chapter 8.

Impossible address. ‘See "Error Print-

Wait a Second

Location - Must be blank.
Command - NIX

Data-address - Must be blank.
Next-address - Must be blank.
Comments - Any applicable remarks.

FUNCTION When NIX is encountered, ROAR copies the Comments field, re-
moves any header tag, indicates the number of memory words used, and halts..
This is useful as an end of tape code, or for any time it is desirable to have the
computer halt during an assembly, e. g., at the end of each of several sub-
routines assembled as a unit, Following the printing of the comments, ROAR
types a number, in track and sector notation, indicating the number of locations
assigned since the beginning of the assembly if this is the first NIX, or since
the previous NIX if there are more than one. To resume assembly, depress
START COMPUTE, and ROAR will continue as if the interruption had not oc-
curred. The internal structure of ROAR and its tables are unaltered.

EXAMPLE
DATA NEXY
LOCATION ORDER ADDRESS ADDRESS COMMENTS
o | NTIXE L L [CHANGE TO TAPE B.
L—-—_n___u_—-»—"’ I S SR 1 1_5——-\'/—_/\
L

Typewriter Output:
N | X CHaNGE TO TaPe B# 103

The 103 indicates the number of locations used: 1 track and 3 sectors= 67
locations. :

ERROR PRINTOUT REFERENCE None.

CONTROL ASSEMBLY

NEW —— Begin New Assembly
Location - Must be blank,
Command - NEW

Data-address - Must be blank.
Next-address - Must be blank.
Comments - Any applicable remarks.

FUNCTION The NEW pseudo-instruction causes ROAR to execute its initializa-
tion routines. The Availability and Symbol Tables are cleared, and ROAR is
prepared to begin a new assembly. The NEW pseudo-instruction will not termi-
nate the assembly in progress, if any. The effect of NEW is the same as if
ROAR were entered from the bootstrap or by a manual transfer to GOTOROAR.

This pseudo-command is nOrmally used shortly following an END pseudo-com-
mand. The instruction immediately following the NEW pseudo-instruction is
assumed to be the first instruction of a new assembly.

EXAMPLE
DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
L oV NEWE ROAR WILL INITIALIZE ITS TRBLES,
N N " |AND BEGIN A NEW ASSEMBLY.
—

ERROR PRINTOUT REFERENCE None.

CLS —— Clear Symbol Table
Location - Must be blank.
Command - CLS

Data-address - Must be blank.
Next-address - Must be blank.
Comments - Any applicable remarks.

FUNCTION The execution of this pseudo-instruction causes ROAR to remove
all symbols from the Symbol Table. It does not affect the Availability Table.
The CLS pseudo-instruction is used when it is desired to continue assembly with
the Availability Table left intact but with a cleared Symbol Table. This situation
usually arises when separate programs are being assembled to be in memory at
the same time, or when major portions of a program have been coded by more
than one person and duplicate symbols have been used inadvertently.

EXAMPLE
‘) DATA NEXT c
LOCATION. ORDER ADDRESS ADDRESS OMMENTS
AT NN -] B ., ., IREMOVE ALL SYMBOLS FROM THE
NS e b L |SYMBOL TABLE .
L] v
:/._-—-—\‘_‘____

ERROR PRINTOUT REFERENCE None,

5-13

CONTROL ASSEMBLY

5-14

END —

TAG —

End Assembly

Location - Must be blank.
Command - END
Data-address - Must be blank.

- Next-address ~ Any legal address.

Comments - Any applicable remai’ks

FUNCTION When the END pseudo-instruction is detected, ROAR will read the
Next-address field and will punch on the hexadecimal output tape a transfer in-
struction to the address given in that field. The Comments field is copied, and
ROAR punches the final checksum followed by a length of blank tape. ROAR then

“types, in track and sector notatlon the total number of locations it has assigned
“during the assembly This mcludes all blank and symbohc addresses and any
"absolute address that is part of an EQV pseudo-instruction, but specifically ex-

cludes any regional reservations and any other absolute addresses used in the
coding. Finally, ROAR initializes the word-count and the checksum, removes
any header tag, and halts. The END pseudo-instruction does not cause ROAR to
initialize its control tables, i.e.,, Symbol Table, AVailability, etc., in prepara-
tion for a new assembly.

EXAMPLES
‘ DATA CNEXT MENTS:
LOCATION ORDER ADDRESS ADDRESS COMMENTS
Lo LEND Lo B E G | N|PUNCH ON THE HEXADECIMAL OUTPUT

L+ 4 |TAPE THE INSTRUCTION TO TRANSFER

t
T TO THE ADDRESS EQUIVALENT To
PN O T T | THE SYMmBO|(BEG'N.

4+ 4+ 4+ +
b

M/’\VW‘
Typewriter Output:

#END*#BEG | N# Puncn TransFer Copes 119

The number of locations used during the assembly is 83 (1 track and 19 sectors).

ERROR PRINTOUT REFERENCE Blank N address. See "Error Printouts, "

‘ Chapter 8.

Designate Header Tag

Location - Must be blank.

Command - TAG

Data-address - The symbol to6 be used for the tag
Next-address - Must be blank.

" Comments” ~ Any apphcable remarks.

FUNCTION When ’é’large ‘program is being written in sections or by several
people or when "many subroutines are to be assembled with an object program
as a unit, it is virtually impossible to avoid duplication of symbolic addresses.

CONTROL ASSEMBLY

To alleviate this situation, header tags were designed. After the headertaghas
been established, it is prefixed to any symbolic address having fewer than 5
characters. Symbols having 5 characters are not tagged, in order that they
may be used as linkage symbols between sections of a program and between sub-
routines and a program., These 5-character symbols are similar to the global
symbols established by SET. However, certain precautions must be taken when
using global symbols and header tags in the same program. These precautions
are discussed in Chapter 6, "PROGRAMMING TECHNIQUES, "

To establish a header tag, the pseudo-instruction TAG is used with the Data-
address field containing the single character symbol that is to be the tag. The
Location and Next-address fields are blank. Once established, the tag will be
used until it is replaced, removed, or until initialization for a new assembly is
effected. ‘

When the TAG pseudo-instruction is encountered by ROAR, the symbol is

stored. Thereafter, all symbolic addresses (having fewer than 5 characters)

are assigned the additional symbol. This tag will not appear on the decimal
listing. An entry is made in the Symbol Table so that ROAR will always differ-
entiate between the tagged symbol and any similar symbol. (See '"Symbol Table,"
Appendix B.) To remove a header tag during an assembly, use the pseudo-
instruction TAG with a blank Data-address field. (The NIX and END pseudo-
instructions also remove header tags.)

A header tag established by TAG remains in effect until a subsequent TAG or
HED assigns a different header tag. If an assembly is made from a Subroutine
Library Tape, ROAR will enter what is called the ""Subroutine Library Mode. "
Then an SBT will terminate assignment of header tags established by TAG or
HED, and SUB will initiate the assignment of a different header tag. However,
when ROAR exits from the "Subroutine Library Mode,'" i.e., returns to Nor-
mal Mode of operation, the header tag in force before SBT was encountered will
be reinstated. (See SBT and SUB.)

EXAMPLES
LOCATION ORDER ADD;;EASS A:;:;SS COMMENTS
oo L TAGL L, ML, |SET A HERDER TAG M.
— RAVU + KON ' N.,- A D|THESE SYMBOLIC ADDRE SSES WOULD
ey by, |BE SToRED AS (M)KON Ano (MIN-AD.
poo oo | SAV] MN-AD| , , KON|THESE ADORESSES WouLD BE STORED |
o b by e by 0y, [AS MN-AD anD (MKON .,
e L TAGL L, AL, |TRG Now BEcomes A.
JT.AC , . , . .. |REMOVE TRG.
—A\IWM

NOTE: (M)N-AD represents the symbolic address N-AD preceded by the tag
M; MN-AD is simply a 5-character, symbolic address.

ERROR PRINTOUT REFERENCE None.

CONTROL ASSEMBLY

HED —— Assign Sequential Header Tag
Location - Must be blank.
Command ~ HED

Data-address -~ Must be blank.
Next-address - Must be blank,
Comments - Any applicable remarks.

FUNCTION This pseudo-command has the same effect as TAG with one excep-
tion: the programmer has no control over the symbol assigned as the header tag.
To establish a header tag with HED, place the pseudo-command in the Command
field and leave all other fields blank. ROAR will assign the next available header
tag to all subsequent symbolic addresses having fewer than 5 characters. As
explained in the description of TAG, 5-character symbols are used for links be-
tween different parts of programs and are similar to the global symbols estab-
lished by SET. Certain precautions must be observed when using such global
symbols and header tags in the same program. (See Chapter 6, "PROGRAM-
MING TECHNIQUES. ") Once established, the tag will be used until it is remov-
ed or replaced or until initialization for a new assembly is effected. A maximum
of 63 header tags can be assigned by HED during a single assembly.

An advantage of TAG relative to HED is that the condition of being under the in-
fluence of a particular tag can be restored at a later time, e.g., for program
correction during assembly, etc. An advantage of HED is that it may be used
at any time during the coding of aprogram with the assurance that conflict will
not develop later through inadvertent use of the same header symbol.

A header tag established by HED is in effect until a subsequent HED or TAG as-
signs a different header tag. To remove a header tag during an assembly, use
the pseudo-instruction TAG with a blank Data-address field. (The NIX and END
pseudo-instructions also remove header tags.) If an assembly is made from a
Subroutine Library Tape, ROAR will enter what is called the ""Subroutine Li-
brary Mode. " Then an SBT will terminate assignment of header tags established
by TAG or HED, and SUB will initiate the assignment of a different header tag.
However, when ROAR exits from Subroutine Library Mode, i.e., returns to
Normal Mode of operation, the header tag in force before SBT was encountered
will be reinstated. (See SBT and SUB.)

EXAMPLES
LOCATION ORDER DATA NEXT COMMENTS
ADDRESS ADDRESS
PRI HED| , . ., ., [ESTABLISH A HEADER TAG.
... | s8] . ONE N,- KD|STORED As (The) ONE anb (TRe)N-AD.
b | TRE v Bl L, . ., |HEADER TAG NOW BECOMES "B",
b1 MEOL |, |ASSIGN NEXT SEQUENTIAL HEADER
} 1 i 11 1 1 1 = 1 1 1 L } 1 1 1 1 TRG<
bt L TRG L, 0, [REMOVE HEADER TARG.
B B R I S S S S S ST S

ERROR PRINTOUT REFERENCE None.

CONTROL ASSEMBLY

NXT —— Optimize Next Instruction as Indicated
Location - Must be blank.
Command - NXT

Data-address - A special 6-character address, a blank address, or a number
which will change the latency of the following Data-address field.
Next-address - A special 6-character address, a blank address, or a number
which will change the latency of the following Next-address field.
Comments - Any applicable remarks.

FUNCTION At times it is advantageous to be able to control the optimization of
instructions. This can be accomplished with the NXT pseudo-command. There
is a special 6-character address that is used with the NXT pseudo-command:
DELAYD. The DELAYD address appears in the Data-address or Next-address
field (or both) of the pseudo-instruction. This will cause ROAR to change the
normal optimization of the corresponding address field of the instruction that
immediately follows the NXT pseudo-instruction. That field will be assigned

the preceding Next-address sector plus 4. For a detailed description of this
special address see Chapter 4.

‘A number may appear in the Data-address field, the Next-address field, or both

fields of the NXT pseudo-instruction. That number is added to the optimum sec-
tor which ROAR computes for the absolute address of the corresponding field in
the instruction following the NXT pseudo-instruction. Thus the latency of an in-
struction can be incremented by any desired amount from zero through 63, or
since addressing is modulo-64, the latency of an instruction can be decremented:
1 word time by using the address 63, 2 word times by using 62, etc. Obviously
incrementing or decrementing addresses is possible only if the instruction
following the NXT pseudo-instruction contains a blank address field or symbolic
addresses which have not been assigned locations. If the symbol in the corre-
sponding address field has been assigned an absolute location, that portion of the
NXT pseudo-instruction will have no effect.

The NXT pseudo-instruction must immediately precede the instruction whose
optimization is to be changed. This rule has one exception: an NST pseudo-
instruction may be followed by other NXT pseudo-instructions, and they will
all be effective. If 2 or more NXT pseudo-instructions appear in sequence,
they are accumulative. For example, assume information to be assembled is
entered directly from the typewriter keyboard and one item is an NXT pseudo-
instruction to provide a latency of 8 in the Next-address field. If the operator
were to inadvertently type a ""7" instead of the desired "8", the error could be
easily corrected by entering another NXT pseudo-instruction with a '1'" in the
same field. The values are added. AnNXT pseudo-instruction with a DELAYD
address may be followed by an NXT pseudo-instruction with a numeric address,
and both will be effective. That is, the address field of the next instruction
will be assembled as the previous Next-address sector plus 4 plus the value
indicated by the second NXT pseudo-instruction.

CONTROL ASSEMBLY

EXAMPLES

LOCATION ORDER ASI:;:SS A:::;SS COMMENTS

+o RTOl RAL) |, NP

1 NXTIDEL.,AYD L .. |YoPTMiZE +& ps INP eLus 4.

oo LosTOl L H2l L COMP

b N b 8)) iNcReAsE LATENCY OF LOOP BY B;
1 SLtc oo O |, 1,0,0,PD) assumE MAXIMUM NUMBER OF SHIETS
e b b s YW BE 8,

o LNl L eal L ., J) DECREMENT LAreENcy oF HOLD By
— RAU ' MHO,LD ; REPT] 3 WORD TIMES.

4o | RAVI/00008 , . 0U.T)oPnMizE YES as BCK+1L (2 woro
e oo | NxT]l L 8], 2YTIMES NORMALLY ALLOWED PLys 9
e o | NXTL L, 4, woicaTED BY NXT); oPiMize NO
. Beckl curt] , YES N.0|las YES+4 (2 womo TiMES NorMALLY
e N : e by, YALOWED PLus 2 iworeaTED Y NIT)
o L RALL L EX T [SORTN

L NXTIDELAYD |, 1POPTIMIZE SQRX As SART pLus 4
b L NxTl L 8, [lPLuS S; OPTimizE COMPaAs SR X
+Ex,7] stV |, Sex| ,comPYPLUS 3.
~— 1 1 e

ERROR PRINTOUT REFERENCE None.

ESTABLISH
CONSTANTS

HEX —— Establish a Constant from Hexadecimal Input
. Location - Any legal address.
Command - HEX

Data-address - From 1 to 4 hexadecimal characters.
Next-address - From 1 to 4 hexadecimal characters.
Comments - Any applicable remarks.

FUNCTION. A constant may be converted to its hexadecimal equivalent and
entered with the HEX pseudo-instruction. The Location field may contain any
legal address.. The left four characters of the hexadecimal value are written in
the four, low-order positions of the Data-address field. The right four charac-
ters are written in the low-order portions of the Next-address field. Leading
zeros are unnecessary. A blank address is assumed to be zero.

Since the HEX pseudo-instruction may have a blank Location field, the instruc-
tion preceding it does not have to be a closed instruction (i.e., both the Data-
address and the Next-address fields filled). However, if a HEX pseudo-
instruction does have a blank Location field, it cannot be referred to from any
other instruction. The instruction following a HEX pseudo-instruction must
have a filled Location field.

ESTABLISH
CONSTANTS

DEC —

EXAMPLES
CATI RDER DATA NEXT COMMENT
LocaTioN ORDE ADDRESS ADDRESS OMMENTS

/,00020| wex] 7735 6 9400]/10%aT Q oF 30

~maskl wexl ..] c.000[Mask For comparison w orm.SECTOR
KONl wex]], ltarqoras
o — L _J
T

ERROR PRINTOUT REFERENCE None.

Establish a Constant from Decimal Input

Location - Any legal address.

Command - DEC

Data-address - A value and its sign, if negative, indicating the "'q" at which
the number is to be held.

Next-address - The decimal number to be entered, including the decimal
point and sign if applicable.

Comments - Any applicable remarks.

FUNCTION By using the DEC pseudo-instruction the programmer can write
his constants in decimal notation, and ROAR will convert the number to the
equivalent hexadecimal value at the indicated "q'"". The Location, symbolic or
absolute, is where the value is to be stored. The Data-address field contains
the q at which the number is to be held. The sign, necessary only if the q is
negative, precedes the q. The Next-address field contains the decimal number,
including its sign and decimal point if applicable. The sign, necessary only
when the value is negative, must precede the number; the decimal point is in-
cluded at its proper place.

The decimal number to be entered may consist of more than 16 characters, but
only the least significant 16 will be considered. It may contain a maximum of
13 digits following the decimal point. When writing the program, start the de-
cimal number in the Next-address column and allow it to extend into the Com-
ments column. When punching the tape, place the stop code for the Next-
address field after the complete number.

Since the DEC pseudo-instruction may have a blank Location field, the instruc-
tion preceding it does not have to be a closed one. However, reference cannot
be made to any instruction or pseudo-instruction that has a blank Location field.
The instruction following a DEC pseudo-instruction must have a filled Location
field.

ESTABLISH
CONSTANTS

5-20

ALF —

. Location

EXAMPLES

,], | . .pata. CUNEXT

LOCATION | ~ OROER ADDRESS' ADDREss | COMMENTS

— kKonl DEC| ., 21]-18563].8543% ENTER -18563.8543 AT
e b e o by 0 |AQIOF 21 IN LOCATION KON.

+ . NUM DECL ., -3/.062586|34% ENTER 06250834 ATAQ |
5 Lo PR W T —t L |~°=;-3v‘~LxRTION NUM.

o INTl DEC] |, 47 | 18@ T ENTER THE NUMBER 1847 AT A

— L o ,....goF/7/~LocA'noNINT.

ERROR PRINTOUT REFERENCE
Printouts, ' Chapter 8.

Incorrect entry for DEC. See "Error

Input Alphanumeric Characters

- Any legal address.
Command - ALF :
Data-address - Alphanumeric characters.
Next-address - Must be blank.

Comments - Any applicable remarks.

FUNCTION The alphanumeric characters in the Data-address field of the ALF

. pseudo-instruction are read in Six-Bit Mode and are assigned the Location indi-

.through 62, may be Used.

~ cated by the Location field. The Next-address field must be blank. Any number

of characters may be in the Data-address field, but only 5 complete characters
can be stored in any given location. If 5 characters are entered, they will
occupy bit positions 2 through 31 and bit positions 0 and 1 will contain zeros. If
fewer than 5 characters are entered, they are assembled in the low-order por-
tion of the memory location with zeros in the high order portion. If more than 5
characters are entered, the last 5 characters and the final 2 bits of the preced-
ing character will be assembled. Any alphanumeric characters, codes 16

(See. Appendix E, "TALPHANUMERIC CODES. ")

Since an ALF pseudo-instruction may have a blank Location field, it does not
have to be preceded by a closed instruction. However, reference cannot be
made to any instruction or pseudo-instruction that has a blank Location field.
The instruction following an ALF pseudo-instruction must have a filled Location
field.

. EXAMPLES

OCAT DATA . NEXT §

[ADN ORDER ADDRESS ADDRESS COMMENTS

. 608l ALFl T =PRT| ., ., 6 |ENTER THE FIVE ALPHANUMERIC
MEVETES S ;....CHRRRC—TE.RSI,=9PaR)T/'V
et 10 1 1 a1 LOCATIoN 608.

r . PNT| RLF|X=22/Y| .. . |ENTER THE 8IT CONFIaURANON (01)
= 1 1 i 1 1 1 1 = 1 1 1 1 f L 1 1 1 RND mE F,VE cHﬁRncTERS
NP Lo N I LY IE TR
— } "

———————

ERROR PRINTOUT REFERENCE None,

INPUT OR OUTPUT

PAV

Punch Availability Table

Location - Must be blank,
Command - PAV ‘
Data-address - Must be blank.
Next-address - Must be blank.
Comments - Any applicable remarks.

FUNCTION Should it be desirable to know the status of the Availability Table,
the programmer can have its contents punched on tape by using the PAV pseudo-
instruction. The PAV pseudo-instruction is usually input to ROAR directly from
the typewriter keyboard after the assembly is completed. It should be entered
after the END pseudo-instruction, in order that the tape thus obtained will be
separate from the program tape. This pseudo-instruction causes ROAR to turn
off and bypass the Copy Mode, and to bypass the typewriter output. The only
output from ROAR resulting from the pseudo-instruction is a hexadecimal tape of
the Availability Table.

The tape consists of the following:
1. "An‘area of blank tape.
2. AnRAVpseudo-instruction.

3. The Availability Table, consisting of a hexadecimal representation of
the contents of the stored table interspersed with initial adresses in
decimal notation. Each hexadecimal word represents a particular sec~
tor on 32 consecutive tracks; the decimal address denotes the sector
concerned together with the first of the 32 tracks. (See "Availability
Table," Appendix B.)

4. A checksum.

NOTE: ROAR will read *PAV* and immediately begin punching the tape. After
completing the tape, ROAR will read the remaining 3 fields.

In this discussion of the PAV pseudo-instruction the output unit is assumed to be
the RPC-4500 Punch. However, if other units are used for output during an as-
sembly, the output from this pseudo-instruction will be on the same unit as the
hexadecimal.program. (See "Input-Output Selections," Chapter 8.)

EXAMPLE
" DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
by PAVEL L L |PUNCH THE AVAILABILITY TRBLE .
"’__—_,-4’__-\ N ! /\-——_’_’_—/\

ERROR PRINTOUT REFERENCES None.

5-21

INPUT OR OUTPUT

5-22

PPA —— Punch and Print Availability Table
Location - Must be blank.
Command - PPA

RAV

Data-address - Must be blank,
Next-address - Must be blank.
Comments - Any applicable remarks.

FUNCTION This pseudo-command is handled in the same manner as PAV with
one exception: in addition to the hexadecimal tape which is punched, a typed, de-
cimal listing of available sectors is provided. The hexadecimal tape is exactly
the same as the one produced following a PAV. The typed listing will have 15
items per line, consisting of a two-digit sector number followed by three-digit
numbers indicating the tracks on which that sector is available. If a specific
sector is not available on any track, that sector is not listed. '

The first item punched on the hexadecimal tape resulting from the PPA is the
pseudo-instruction RAV (Read Availability Table), which is necessary in order
to read the tape into the computer. The last item punched on the tape is a check~
sum. The RAV pseudo-instruction and the checksum do not appear on the typed
listing.

NOTE: ROAR will read *PPA* and immediately begin to punch and print.
After the output is completed, ROAR will read the remaining 3
fields.

In this discussion of the PPA pseudo-instruction the output units are assumed to

be the RPC-4500 Punch and Typewriter. However, if other units are selected
for output during an assembly, the output from this pseudo-instruction will be
produced as follows: the hexadecimal output will be on the same unit as the
hexadecimal program tape; the listing of sectors will be on the same unit as the
decimal listing of the program. (See "Input-Output Selections,' Chapter 8.)

EXAMPLES

LOCATION ORDI DATA NEXT

10 ORDER ADDRESS ADDRESS COMMENTS

— 1 PPAl] .., |PUNCH AND PRINT AVAILABILITY
S~ L ..’%’.’Tnaus, }

20 097 098 120 ‘121 122

L2 o075 076 077 095 096 097 098 120 121 122

o6 075 076 077 095 096 097 098 120 121 122

63 ogo 001 002 065 066 067 074 075 076 077 095 096 097 098
120 121 122

ERROR PRINTOUT REFERENCE None.

Read Availability Table from Tape

Location - Must be blank.
Command - RAV
Data-address - Inapplicable.
Next-address - Inapplicable.
Comments - Inapplicable.

INPUT OR OUTPUT

PST ——

FUNCTION The RAV pseudo-instruction instructs ROAR to read the hexadeci-
mal tape of the Availability Table. This pseudo-instruction is the first item
punched on the availability tape obtained by executing a PAV or PPA. When an
availability tape is to be loaded, it is usually the first tape read after loading the
assembly program or after using the pseudo-command NEW. After ROAR has
read the availability tape, it will halt. Depressing START COMPUTE will
enable ROAR to continue the assembly.

EXAMPLE
Typewriter output:
(C. R.)*RAV*(C.R.)(C.R.)

The typewriter executes a carriage return, types *RAV*, executes two more
carriage returns, then is de-selected by ROAR while the tape is being read.

ERROR PRINTOUT REFERENCE Checksum wrong. See "Error Printouts, "
Chapter 8.

Print Symbol Table

Location - Must be blank.
Command - PST

Data-address - Must be blank.
Next-address - Must be blank.
Comments - Any applicable remarks.

FUNCTION The PST pseudo-instruction causes ROAR to print every symbol
from the Symbol Table along with the location assigned to it. This pseudo-
instruction is usually input to ROAR directly from the typewriter keyboard after
the assembly is completed. In order that the list thus obtained will be separate
from the decimal listing of the assembled program, the PST should be entered
after the END pseudo-instruction. Three classes of symbols are possible:

1. Five character symbols.

2. 'Untagged symbols and those headed by the TAG pseudo-instruction are
characterized by the tag (a space if untagged), a dash, and the symbol.

3. Symbols tagged by the HED pseudo-instruction and those read from the
Subroutine Library tape are characterized by an asterisk (stop code), a
space, and the symbol.

The symbols are printed in the same order in which they are stored in the
Symbol Table,

In this discussion of the PST pseudo-instruction the output unit is assumed to be

the RPC-4500 Typewriter. However, if other units are selected for output dur-

ing an assembly, the output resulting from this pseudo-instruction will be on the
same unit as the decimal listing of the program. (See "Input-Output Selections, "
Chapter 8.)

5-23

INPUT OR OUTPUT

EXAMPLES
, oF DATA ’ NEXT COMMENTS
LOCATION ORDER ADDRESS ADDRESS
sl [PRNT SymaseL TABLE
} }
MA%

Typewriter Output:

#PSTH3PRINT SymBoL TABLES

R-RATE 00006 R- GO 00008 =* R 00120 - 1,J 00038 % THIS 00018
® WHY 00020 -EVER 0000 R-EVER 0010L # THIS 00022 # A 00140
R-TIME 00010 ,- OK 00032 # THIS 000L2 & WHY 000 ,= NO 00030
,- U+V 00036 START 00000 ,-THIS 00026 ,- WHY 0012 ,-EVER 00124

ERROR PRINTOUT REFERENCE None.

5CS —— Punch Five-Character Symbols
Location - Must be blank,
Command - 5CS

5-24

Data-address - Must be blank.
Next-address - Must be blank.
Comments - Any applicable remarks.

FUNCTION The 5CS pseudo-instruction will cause ROAR to search the Symbol
Table for all 5 character symbols and punch them on tape in the form of EQR
pseudo-instructions. The output for this pseudo-instruction and PAV or PPA
makes partial re-assemblies quite simple. As with the PAV and PPA pseudo-
instructions, 5CS should be input directly from the typewriter keyboard after the
assembly is completed (i. e., following the END pseudo-instruction).

When the 5CS pseudo-instruction is executed, ROAR will turn off and bypass the
Copy Mode and the typewriter output. The only output resulting from this pseudo-
instruction is a punched tape. However, a typewritten copy may be obtained by
manually selecting COMPUTER TO TYPEWRITER while the tape feeds are be-
ing punched. The last item punched on the tape is a NIX pseudo-instruction.

NOTE: ROAR will read *5CS* and immediately begin punching the tape.
After completing the tape, ROAR will read the remaining 3 fields.

In this discussion of the 5CS pseudo-instruction the output unit is assumed to be
the RPC-4500 Punch. However, if other units are selected for output during an
assembly, the output resulting from this pseudo-instruction will be on the same
unit as the hexadecimal program. (See ''Input-Output Selections,' Chapter 8.)

EXAMPLES

LOCATION RDER DATA NEXT COMMEI
o ADDRESS ADDRESS NTS
L,-I—l;l a1 S5 CcS I T PR S S PUNCH & CHARRCTER SYMIBOLS
— T

If listed on the typewriter, the tape could produce:
#EGR¥RREAD#05929 %%
*EGR:[NEXL#059]y 73
#EGREPRINT#OT12644
N | X33

ERROR PRINTOUT REFERENCE None.

INPUT OR OUTPUT

PAS ——

PRC —

NOTE:

Punch All Symbols

Location - Must be blank.
Command - PAS :
Data-address - Must be blank.
Next-address - Must be blank.
Comments - Any applicable remarks

FUNCTION This pseudo-instruction is handled in the same manner as 5CSwith

one exception: all the symbols in the Symbol Table are punched.

By using an RST pseudo-instruction followed by a PAS pseudo-instruction, the
programmer can have ROAR punch all the global symbols used in his program.
Since the punched symbols will be in the form of EQR pseudo-instructions, the
tape can be used to establish the absolute addresses of the global symbols for
other assemblies.

ROAR will read *PAS* and immediately begin to punch the tape. After
. completing the tape, ROAR will read the remaining 3 fields.

In this discussion of the PAS pseudo-instruction the output unit is assumed to be
the RPC-4500 Punch. However, if other units are selected for output during an
assembly, the output resulting from this pseudo-instruction will be on the same
unit as the hexadecimal program.

EXAMPLE

DATA
ADDRESS

NEXT

LOCATION ADDRESS

ORDER COMMENTS

PAast L

If a typewritten copy were made, it could appear as

*EQR#F 0A#12208#+#
HEQREXMALF #1220, 03¢
HEQR#FLO2%1223 34
#EQR®F | X281223 744
BN e

ERROR PRINTOUT REFERENCE

None.

Print a Character

Location - Any legal address.

Command - PRC :

Data-address - A single alphanumeric character or a special 2-character
typewriter control.

Next address - Any legal address.

Comments - Any applicable remarks.

5-25

INPUT OR OUTPUT

SHIFT

5-26

SRT ——

FUNCTION The output resulting from this pseudo-instruction is the same as
the output from a PRD instruction. The assembled instruction will contain the
Alphanumeric Code (see Appendix E) in the Data-track portion corresponding to
the character or typewriter control specified. The Data-sector will be the same
as the sector portion of the Location field. The typewriter control codes used
with a PRC pseudo-command are '

TF = Tape Feed LC = Lower Case
CR = Carriage Return LF = Line Feed
TB = Tab SC = Stop Code
BS = Backspace SP = Space
UC'= Upper Case o CD = Code Delete
EXAMPLES
LOCATION ORDER‘ | AI:DA;?SS' A:IJE:;SS 'COMMENTS
. PT2 PRel , , , CR , , , [CARRIAGE RETURN
il PRl U, |UPPER CASE
{ 1 1 i 1 APIRI¢ ; 1 1 1 II : ICIOIMIF PRINT I
| — 1]
Typewriter Output:
®PRCXCR®: 01343 16 00143 013u5 CARRIAGE RETURN¥
#PRCH#UC 4 013&5 16 00545 01 UPPER CASE¥
#PRC# | #4 018L7 16 03447 019&9 PRINT ¥

EﬁROR PRINTOUT REFERENCE Impossible Address. See "Error Print-

. outs," Chapter 8.

Shift Right

‘Location - Any legal address.

Command - SRT

Data-address - Number of shifts in the sector portion.
Next-address - Any legal address.

Comments - Any applicable remarks.

FUNCTION The output resulting from this pseudo-instruction is the same as
the output from an SRL instruction with zero in the Data-track. The Data-sector
of the SRT pseudo-instruction must contain a number from 0 through 63 to indi-
cate the number of shifts. (A blank Data-address will result in an error halt;
however, a blank address is legal in the Next-address field.) The assembled
instruction will contain 000 in the Data-track portion and the indicated number

of shifts in the Data=-sector portion. The number of shifts may be modified by
indexing. : ‘

SHIFT

SLT —

EXAMPLES
DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
., Now| SRT| ., bl , N-AD|SHET RIGHT 6 PLACES.
. BAK|XseRT| , , , , 4] , I NTIT|INDEXED SHIFT RIGHT.
T L} T

—] —— L
Typewriter Output:

NOWESRT#6&N-AD* 07236 12 00006 07549 SHIFT RiGHT 6 PLACESH*

BAKEXSRT#1#INIT# 06915 X12 00001 07023 INDEXED SHIFT RiGHT#

ERROR PRINTOUT REFERENCE Impossible address. See "Error Print-

outs,''Chapter 8.

Shift Left
Location - Any legal address.
Command - SLT

Data-address - Number of shifts in the sector portion.
Next-address - Any legel address.
Comments - Any applicable remarks.

FUNCTION The output resulting from this pseudo-instruction is the same as
the output from an SRL instruction with a 1 in the Data-track. The Data-sector
of the SLT pseudo-instruction must contain a number from 0 through 63 to indi-
cate the number of shifts. (A blank Data-address will result in an error halt;
however, a blank address is legal in the Next-address field.) The assembled
instruction will contain 001 in the Data-track portion and the indicated number of
shifts in the Data-sector portion. The number of shifts may be modified by in-
dexing.

EXAMPLES
\ DATA NEXT
LOCATION ORDER ADDRESS ADDRESS COMMENTS
L CNTl S LT) L, #| | N- AD|SHIET LEFT ¥ PLACES.
L, THSIxs LT |, 4l R ND|INDEXGD SHIFT LEFT.
T T Ll
L Lol 1 _—————';a_n TR S W S N W

Typewriter Output:

CNT®SLT#Lsn-AD%¥ 06237 12 00104 O069L8 SHirT LEFT L4 PLACES*

THS#XSLT#1#RND* 07112 X12 00101 07320 |INDEXED SHIFT LEFTH*

ERROR PRINTOUT REFERENCE Impossible address. See "Error Print-

outs,'" Chapter 8.

' 5-27

COMMENT

Ge GD G —

coM

_ERROR PRINTOUT REFERENCE

Comment
Location® - Must be blank,
Command - coM -

Data-address - Inapplicable.
Next-address - Inapplicable.
Comments - Inapplicable.

FUNCTION When a COM pseudo-instruction is encountered, ROAR selects

Copy Mode and copies from the input tape until a stop code is encountered. In
this way a complete description of a program or subroutine can be given at the
beginning of the assembly, limiting the necessity for any subsequent comments.

EXAMPLE

DATA NEXT
ADDRESS ADDRESS

L T HE

LOCATION COMMENTS

Fo.L.LOIWING PROGRAM WILL INPYUT DATA
IN 4-81Ty) CONVERT TO BINARY, SCALE,
AND HoLD RESuULTS IN LowgR ATq=31 ™

None,

Compact-Generated Comments

- Must be blank.

- G®EDED

Location
Command

- Data-address - Inapplicable.

Next-address - Inapplicable.
Comments . - Inapplicable.

FUNCTION This "comment'" pseudo-instruction consists of the three charac-
ters (56) (B7) (56) and instructs ROAR to ignore all characters following, includ-
ing stop codes (*) unless the stop code is preceded by the character (58). In this
way the original statement in the Compact-language program can be included in

" the ROAR symbolic output as a comment, to make the final program listing some-

what comprehensible.

’Becau‘sef codes 56 and 57 have no representation on the keyboard, this comment

~ pseudo-instruction cannot be typed. However, it-can be punched on tape (by the

computer directly or by overpunching with the typewriter) and will enter the
computer the same as any other characters. When the program containing the
""comment'" pseudo-instruction is assembled by ROAR, the typewriter output will
show only two stop codes, a carriage return and the remarks provided, and
finally a carriage return and-the final stop code.

COMMENT

USE SUBROUTINE

LIBRARY

SBT ——

EXAMPLE

On tape is punched *(58) (BT (56)* Subscript and do loop test (GB)*
Typed output will show:

¥
SUBSCRIPT AND DO LOOP TEST
#*

ERROR PRINTOUT REFERENCE None.

Enter Subroutine Library Mode

Location - Must be blank.
Command - SBT
Data-address - Inapplicable.
Next-address - Inapplicable.
Comments - Inapplicable.

FUNCTION When subroutines are to be assembled from a Library Tape, the
first input from the tape is the pseudo-instruction SBT. (See Appendix A, "SUB-
ROUTINE LIBRARY TAPE.") The SBT instructs ROAR to enter what is called
the "Subroutine Library Mode'" of operation. In this mode, subroutines from a
Library Tape can be assembled faster than if the normal ROAR mode were used.

The Location field of this pseudo-instruction must be blank. The Data-address,
Next-address, and Comment fields are non-existent for this pseudo-instruction.
That is, following the Command field, ROAR will expect to read the Location
field of the next instruction.

When the SBT pseudo-command is executed, ROAR will store the header tag in
use, if any; establish an SBT tag; turn off and bypass Copy Mode; and bypass the
typewriter output. The only output from ROAR during this mode of operation
will be the hexadecimal program tape and any error printouts that might occur.

The Subroutine Library Mode will be terminated only when the pseudo-command
SBE is encountered.

EXAMPLE
On a Library Tape this pseudo-instruction would be punched:
SBT

ERROR PRINTOUT REFERENCE None.

5-29

USE SUBROUTINE

LIBRARY

5-30

SuB

SBE —

Read Subroutine from Library Tape

Location - Must be blank.

Command - SUB

Data-address - A value indicating the number of entry points in the subroutine.
Next-address - All entry points to the subroutine.

Comments - Inapplicable.

FUNCTION The SUB pseudo-instruction must precede each subroutine on the
Library Tape. The Location field must be blank. The Data-address contains a
value indicating the number of entry points in the subroutine that immediately
follows this pseudo-instruction. The Next-address field contains all the entry
points to the subroutine; each one is followed by a stop code. If written on a
coding sheet, the entry points may extend into the Comments column, since no
remarks may be punched on the tape as part of a SUB pseudo-instruction. ROAR
will read and store the entry points. They are then compared with the symbols
in the Symbol Table to determine if any of the entry points has been called upon,
If an entry point is found in the Symbol Table, the subroutine is assembled; if
not, it is bypassed and the next SUB pseudo-instruction is read.

A SUB pseudo-instruction will immediatély follow the SBT pseudo-instruction.
The SUB pseudo-instruction is usually followed by an RLR pseudo-instruction,
if applicable.

EXAMPLES
N DATA NEXT
LOCATIO ORDER ADDRESS ADDRESS COMMENTS
T Svsl ., 4 Jooo4
P | susel, ,, 4|10005%*]J1005* J2005*]3005 *
T T

The first pseudo-instruction indicates that a subroutine has only 1 entry point
which is]0004. The second pseudo-instruction indicates that a subroutine has
4 entry points which are 10005, 11005,]2005,]3005.

ERROR PRINTOUT REFERENCE
See "Error Printouts, " Chapter 8.

Insufficient Subroutine Region Storage.

Exit from Subroutine Library Mode

Location - Must be blank.
Command - SBE
Data-address - Inapplicable,
Next-address - Inapplicable.
Comments - Inapplicable.

FUNCTION After the Library Tape has been read and all desired subroutines
assembled, the pseudo-instruction SBE is used to exit from the Subroutine Li-

USE SUBROUTINE
LIBRARY

brary Mode. The SBE instructs ROAR to restore to its original state anything
that was modified because of the SBT pseudo-instruction. That is, ROAR rein-
states any header tag that was being used prior to the SBT, and re-establishes
the Copy Mode and typewriter output. Following this pseudo-instruction ROAR
is prepared to continue the assembly in Normal Mode:

The Subroutine Library Mode established by the SBT pseudo-instruction will be
terminated only when the SBE pseudo-instruction is encountered. The SBE
pseudo-instruction is the next to last instruction punched on the Subroutine
Library Tape; it is followed by a NIX pseudo-instruction.

EXAMPLE

The last two instructions on the Subroutine Library Tape appear in this format:

SBE
KNIk ok

ERROR PRINTOUT REFERENCE None. -

5-3

PROGRAMMING TECHNIQUES

[N N A A A A A A A A A A N N N AN N NN N N N NN N N N NN NN N A N AN N N A

PROGRAM LIBRARY

DATA INPUT-OUTPUT

This chapter contains various programming techniques and general information
about using ROAR. It is intended as instructive material for beginning pro-

grammers and reference material for others.

The Commercial Computer Division of General Precision, Inc. maintains a
library of general programs which are available to RPC-4000 users upon re-
quest. A few of the many different kinds of programs are listed here:

Classification Example of Program
Programmed arithmetic floating-point systems
Elementary functions trigonometric functions

Executive routines compiler, assembler, interpreter
Input-Output routines program input, alphanumeric and

data input-output routines

Program Test and Correction routines trace routines, program checkout
routinnes, memory print routines

Utility and Conversion programs sorting, information transfer,
conversion routines

TABLE 6.1 REPRESENTATIVE PROGRAMS AVAILABLE

Each program tape in the library is supplemented by a program description
which explains what the program does, what information is necessary, how to
provide the required information, and how to operate the program.

Most programs during their execution require the input of data and result in an
output of data. For these purposes standard subroutines are often used.
Occasionally a programmer prefers to write his own input and output routines.
The following examples illustrate the principles involved in binarization during
input and decimalization during output.

In the main or source program a calling sequence is necessary each time a
subroutine is to be used. A calling sequence provides any information required

by that subroutine in order to function, for example the q of a value or the exit
instruction (the instruction in the source program to which control will be trans-
ferred when the subroutiné has completed its operation).

Illustrated below is a program which.will read a 9-digit integer and binarizeit,
leaving the value in the Upper Accumulator at a q of 31. The program is
written as a subroutine, so that it may be used to input many different integers.
The calling sequence must place the exit instruction in the Lower Accumulator
before transferring to the entry location (INPUT) of the subroutine. Assume
the integer 123456789 is to be input.

. DATA NEXT
LOCATION ORDER . COMMENTS -

ADDRESS ADDRESS
INPUT] et t| Exa7l ., |store ExiriNsTRuCTION IN'EXIT”
oo lexel, 298], . [LeUu (-~ zERO=V)
oo lanel . o8l |4emr inepuT
. Imer el Tloxt
' i C, LV R:E,C—,R,C,'f : L1 11 |STORE 10X1 IN RECRC 7
oo lseml s a4l |swieT LerT 4 (2~ UPPER)
o .l . ADulRECRCc T . ., fox1)+2 '
oo I merl . 98l lioCiox1)+2]=100x1+10%2
ool erulrecre? . . |sTore N RECRC 7
oo lserl s &l IsHieT LERFT 4 (3 > uPPER)
.. apulrecre7l L. ltdcox) +(10x2)+3
ool omeTl o8l [100(100x4)+(10x2)+3]=10341
ooy oy Trorx2+10x3
L erulrREC R |sTorE IN RECRE 7
ool sl 4l lsHieT LEFT 4 (4—~UPPER)
C 0]l ADU R:E.C..R,CJ L., 10%x1+10%2%x2+10x3 +4

P MPT L. 98 .. |104%1+10%x2410*x 3+10x4

1 1 1} 1 lclLlU R%_§|°1R|C-|7 1 1 L 1

v sl 4l |SHIFT LEFT 4 (85— UPPER)

c . ADUIRECR,CT L 11 |104x1+103x2 +10*x 3 +10 X4+ 5"
o meTl 98l ., |10%x1 +10%x2+103x3+10%4+10x5
Lol etylRECRC? L,

TR B '|5|L|T —tl 1 fas PR T I | (6—’UPPER)

1 1 1 1 IAIDIU R:Elc'lﬁlcl7 1 i 1 1

1 1 1 1 IMIPIT 1 i 1 Igla 1 1 1 1 10‘:1*10‘x2.*10‘x3'103&44’10"35*10!6
vy el L UIRE CIRCT T

1 1 1 1 i ls]" lT 1 1 L 1 I4 1 1 i 1 (7_. UPPE’R)

5 1 I3 1 4 lAlDlU RIEICIRICI7 1 1 1 1

ol merl 98l |10"1+10%2+10%x3+10% 4 +103 5
I 5 1 L 1 1 1 : L 1L 1 1 1 1 1 1 +101X6f10x7

1 L 1 1 .C.L.U R:E|C|Rc|7 1 1 1 1

[19,0 T T W - 14
.l >I 'I I IAIDIU R:EICIRLCI7
|v' o 1‘ ‘|M|P|T [.9.3

L L1 | (8—UPPER)

103x1+107'x 2+10°x 3+10%x4+10% 5
+103x6 +10*x7+10x 8

1 I N S|

L | etURECRET
1 1 1 i ISILIT : 1 1 1 &
Il

+t+T T T+ T 4174 4

L., [(9—UPPER)
E X, 1, T|108x1+107x2+10% 3 +10°x 4 «
104x5+103x6 +10*x7+10x8 +9

v 4 AOUIRIE C R C T
T R B T L1 1

Aia gy g »|N|'~1

- +- 4+ 4+ 4+ + 4+ 4+ 4+ 4+~ + 4+ 4+~ 4+ 4+ 4+ 4+ - 4L 4 4+ 4L 4+ 4+ 4 4 4 4

L5 T N B 8

- FIGURE 6.1 INPUT ROUTINE

6-2

The following sequence of instructions will decimalize a binary value and output

that integer on the selected device.

The value to be output must be in the Upper

Accumulator at a q of 31, and the exit instruction in the Lower Accumulator

when control is transferred to the subroutine.
routine will output a sign for negative values or a space for positive ones.

output of leading zeros will be suppressed.

Preceding the number, this
The

LOCATION ORDER ADD;;:SS A[T::ETSS COMMENTS

Joecg|l er] EX1T[, ., |STORE EXIT INSTRUCTION INEXIT"
Lo L.D0X PR) [L . . . ISET INDEX REGISTER TO ZERO

: e L TMIT ' L ; , P, S|TEST FOR NEGATIVE NUMBER
4 CLUIRECRC 4 , , , , |{IF NEGATIVE, FIND ABSOLUTE
Ll 4 SBUIRECRCA4| , , , , , UVALUE.

: Lo RAL - NN J.J.IN|SET UP PRINT INSTRUCTION FOR “—"
., Pags| RrRAL :r.-l-.s,I.N 1 J 8.1 N|SET UP PRINT INSTRUCTION FOR SPAcE
JPIN cLLIRECRC4l ., , , [STORE PRINT (-or +) 1N RECRC4

— RALl . RNDl, ., . ., [RND=800000OO

\ . ., .| Ssevl 1079 ., |10T9=10"@ 31

:’ Lo] T T b |, (ERQGRIIF MORE THAN 9 DIGITS,—* ERROR HALT
oo | ADUl TENS| ., |TEN9=10°@ 1

N oryvl o718 10T8 =102 @ 28

(oo | RALL L MASK | .c.@MP|MASK=F0000000)SET UP To

L cgmp| emel zerg| . .. |zER0:00000000¢BYPASS LEAD-
(.. | TBel ., BNRECRCS)ine zERGS |
RECRC4| , ., Ol ., ., Ol , SELCIASSIGN SELC OPTIMUM TOo RECRC 4.
., BNl Prol L 6199 | . |PRINT SPAce iNLIEU oF zERO

: L1 MP T 1 L, 98 . L 1, 4 |MULTIPLY BY 10 TO PRODUCE NEXT DIGIT.
oo Ixweox] sl [INCREMENT INDEX REGISTER
o exkelol . . |tesT For 9™ oieiT

; L.l el L Exa.T] | c.dmp|lrinsHED; ORLoOP FOR MORE DIGITS
, SELC] PRU . 1,629 . . i 1 1 |PRINT BITS O-3 AS A DIGIT

o Ixewox] L ul L [incrEmENT INDEX

ILJ L WEX T 1. D, RGP : . 1 1, |EXTRACT OFF LAST DIGIT PRINTED
i. L MNP T .1 .98 . L 1, 1 |MULTIPLY BY 10 FOR NEXT DIGIT
oo Lexel 8l |TEST For s™DIGIT.

; T r,8c : JE X, 1T : S, E LCIFINISHED; OR LOOP FOR MORE DIGITS
ATJE.R.a.R PRO L .299 . L L 1 ITYPEWRITER TAB

PP W UL ... 0 , 1E.X,) T| HALT; ON START SIGNAL TRANSFER B EXIT,
(=N PRD| 5999 SELEPRINT -

o+ SNl PRDI , ,6,4,99] , SELCIPRINT SPACE FOR PLUS

.. Rup|l HEX] 800D | _ . . o|ROUNDIN® CONSTANT FOR DivisiON
y 12,079 KEX| .3B9A ¢ A0010%ATQ OF 31

L TENS] HEX| 3 B9Al , CA00|10%°TQ oF 31

. 1078 pecl .28 1.0.0.00[0000% 10%ara oF 28

, 2ERQ|l wex| ., o . olzero

(DrREP| HEX| , FFFl , FFFFMASK FOR EXTRACTING BITS 0-3
—MASK|I WEX] FOOO] , , ., OMHKSK FOR COMPARING WITH ZERO
T L 4 B e

FIGURE 6.2 DECIMAL OUTPUT ROUTINE

6-3

If a hexadecimal value is to be output rather than a decimal value, the following
sequence might be used.

LOCATION ORDER DATA NEXT COMMENTS
ADDRESS ADDRESS

s | coml PRI NT|CONTEN|TS OF UPPER IN HEXADECIMAL Y
., P8l PRU 1,699 ' L. ., |PRINT FiresT OF EISHT CHARACTERS
'L L4 MmP T : L, 298 : L ., ., |SHIPT UPPER LEFT 1 BIT
ool mer 108l . p7lswerverer ceFr 3 B/i7s
el prul | 16998 |, . . |PrRINT sEconD oF 8 cHARACTERS
: L Mmer L, 2986 L 4 . ISHIFT UPPER LEFT 1 BIT
N MmPT ' L 198 ' L, P.,6|SHIFT UPPER LEFT 3 BITS
Pl PRUI A 1699 ,, , |PRINT THIRD CHRARACTER
N MeT ' , 2,98 ' L 1 11 |sHIPT UPPER LEFT L BIT
: NP BN Y o r 198 ' ., P S5|SHIET UPPER LEFT 3 BITS
4:, L PS5l PRU ; 1,692 : L1 1 1 IPRINT FOURTH CHARACTG R
PR MPT| . 298 : M
R X RTY: [P4
— P4| PRU ; 1,699 | ., | | |PRINT FIPTH CHARRCTER
—_ .M.P.T:..z.a.l;....

L Mmer| 198 , , L P3
r . P3| prul | gesa] ", [Pewr sierw characTer
poao | MeT| | 208 L,
1 1 1 L 1 IMIPIT : A1 1119 la % 1 1 Ipl;z
., P2l PRU|l 1,699 , , , , , |PRINT SEVENTH CHARACTER
N Y Y N
: 1 1 1 i lMlP IT : L l-’- lal = 1 1 lpli
, . P11l PRV . 1,629| , , , P.OIPRINT EIGHTH CHARACTER
Recreol , o ., o ,, pPilser rocarion counter=P1
MHEXPT CLL o POl , P BENTRY To SUBROUTINE; STORE. Exir N PO
Nl
—~——lL 1) § TS N S N S NNV W NN NN NN G S N R |

—-L\/

FIGURE 6.3 HEXADECIMAL OUTPUT ROUTINE

The example in Figure 6. 3 is written as a subroutine which will output the con-
tents of the Upper Accumulator as a hexadecimal word. It does not produce a
stop code. The entry to the subroutine is the instruction

HEXPT*CLL*PO*Pg8**

It is coded as the last instruction in order that PO can be optimized with respect
to P1, thus providing an optimum exit instruction. That is, although the RECRCO
instruction is not punched in the program tape when it is assembled by ROAR, it
sets ROAR's Loeation Counter to the value indicated in the Next-address field

(in this case, to whatever address has been assigned to the symbol P1). There-
fore, the symbol HEXPT will be assigned a sector equal to that assigned P1,

and PO will be assigned a sector value 2 greater. Then, after the instruction

P1*PRU*1699*P0**

is executed, the transfer to the exit instruction (stored in Location P0) will be
optimum,

The MPT command was used to accomplish the necessary shifts because it re-
quires less time than the comparable SRL command. Consider the two instruc-
tions following the one in P8:

*MPT *298%**
*MPT*198*P7**

These will shift the contents of the Upper Accumulator to the left 4 places and
will be executed in 8 word times. The instruction

SRL] 04***

would then shift the contents of the Double-length Accumulator 4 places left, but
would require 11 word times.

In Figure 6. 3 several locations were assigned symbols that seem unnecessary.

However, with the routine coded in this manner, it can be used with another
routine, such as the one below, which will delete leading zeros.

FIGURE 6.4 SUPPRESS LEADING ZEROS

LOCATION ORDER Ag;;:ss A:DE:;SS COMMENTS

L COM| , THISIPROGRA|M DELETES LEADING 2ERJS FOR
:r T L ; L1 ; L1 2 THE PRINT HEXADECIMAL ROUTCNE*
PRSI N RIS IS
RECRCOl , , O}, , ,, O [, PL|SETSECTOR ADDRESS OF NEZEF=PL
Néerg| cLt)l ., POl . ., , , |ENTRY TO SUPPRESS ZERO ROUTINE
o Lrmzl . esl .. | |tF NEG— PRINT 8 cHARACTERS
. seul okl L K= (1@19)

ool TmI| 0T@3 . 4T.88|IFNEG.—+0TO3 CHARS; PoS.~4T0 8
_4rg8 sevul kol) ke=(1@11)-(1@19)

L. oIl 4dRrRS| | 6T ZBNEG+40RS CHARS ; POS—+6TO 8

. 406Rrs| Apul ., k3|l . . lk3=(1@11)-(1@15)

L amIl . F@url | F.i vE|lNEG.~> 4cHARS; POS.—~ 5 CHAR.

. 6Tg8 sBul . ka4l |, |ke=(1@7)- (1@ 11)

coo o rmI] . s1x| . 7.¢RE|NEG.~6CHARS; Pos.—» 7 OR 8
_7orel seul . ksl . [kS-(1@3)-(1@7)

(o, | TMIl . SEVNL L, AT E/NEG+7 CHARS; POs —+ &

. oTrg3l Apul ., Kbl .., [Ke=(1@19)}(1@27)

ool rmz] o8Rr1] . 2.4R3NEG—0OR 1CHAR; POS.=>2 0R 3
~odril apul . k1, lk7=@27)-(1@31)

o rmr] POl PNE|NEG.—OCHARS. . EXIT;POS. = &
,28r3| seu|l k8 .. [K8=(1@23)-(1@27)

[S R W TMI| 1‘|T|w|¢ . THRE|NEG.—> 2CHRRS; POS.— 3

. AT E| ADVY L .Cl . L P8c1=(1@ 3) REESTABLISHES ORIGINAL
§1|111||=|||1+||||VALUE..

[SEVN| mPTI 298] | |, , {SHIET OUT 1 LEADING ZERO (4 5m3)
el Mt 198, P.7|}avo 60 To PRINT 7 cHARACTERS
.. .six| MmPT| 298] ..,

. Imerl 288l . lsweTour 2 LEADING ZEROS(8 BITS)
c .. | mpx| ., 198, |laocoToPRINT o aHARACTERS,
L lmeTl 1098l Ps

CFawvel Laoul L L c2l L le2=(1@15)REESTRBLISH ORIGINAL
b vawe

. lwpel . ril . |REPEAT COUNT RL=3

: o MPT ' , 198 ' ., ,PS5|SHIFET LEFT 12 BITS; G0 TO PRINT &

6-6

DATA NEXT i
LOCATION ORDER ADDRESS ADDRESS COMMENTS
 Fdurl Loel , R2l. .. |REPEAT counT R2:4
oo L NXTE L L 0Ol 4|DELAY N-ADDRESS 4
o et 298], |sHier erT 15 BITS
oo | mpr| 298], Palswerierr18ir 60 To PRINT 4
, THRE| Apul e3l .. lc3-(1@23)
o . tweoe]l , Rr3l ,, , |REPEAT cCounT R3=S
. | MeT] |, 198|sk.I P oS|SHIFrLEFT 18 BITS
o | meT| 208,) swerierT2eiTs(ToTAC 20875
oo I mer| o eeel, , p3feoTorrinr 3 cHARAcTERS
. oTws| roel r4| |, |REPERT CounT R%=7
MM Mme T L 298l L, P2 su:F(-réEF;‘e4 BITS;CO To PRINT 2
L BNE| apul , cq|l | [ce:(1@ag
bbb . L RS ; L1 1, |REPEAT COUNT R5=8
l 1 i 1 1 IMIPIT] 1 Il Is B SIKI‘IIPIOIB SHIFT LEFT 2'7 6/1.5
p oo | meT| 2ogl | PilSHIET LEFT 181T; 60 To PRINT 1
= 1 i 1 1 1 i 1 = 1 1 L L ! 1 1 L1
oo K2l HEx! 0l 4000
... kel Hex] A Fopo
Lo k3L HEX| o Fl ., ., 0
. kel HEX] . Fol ... 0
o kSl HEX] FOOl ., .0
. kel wex] 0 . Fro
o k7| o mex| ol F
(oo oxel wex| ., d,, Fo
, .. Cda| HEX| 4000[, ., .0
(ooc2l Hexl a0
o3l wex] ol 100
roocal mex| . d
e R, 0L O, 3,00
. R2l L 0, O ., 400
. R3l .. o . o. ., 500
.., R4l , 0 ., , O, 6, 700
o kS|, 0 .., o . 800

————————

This subroutine would have to be assembled after the Hexadecimal Output Rou-
tine in order for NOZROto be optimized with respect to P1. The number of
characters to be printed is determined by a series of tests. The method shown
here never requires more than 4 tests. This is in contrast with a process of
straight comparison. In that method, the leading 4 bits are compared with a
zero. If the comparison is successful, the value is shifted left, and the com-
parison continues until a non-zero configuration is found, or until the last
character is tested. The comparison method may result in as many as 8 tests.

Notice that it is unnecessary to store the original value. When a constant is
subtracted from the original value, a successive subtraction will in effect add
the first subtrahend and subtract the next one in the same operation. That is,
the first constant subtracted is 1 at a q of 11; the second should be 1 at a q of
19. The quantity actually subtracted in the second operation is the difference
between these two values: (1 @ 11) - (1 @ 19). For example, if the word
0006E000 is in the Upper Accumulator to be printed, the results of the succes-
sive operations would appear as

Location Description

0 1

23456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

original value—

olololo 0.°|°.0 olololo °|1|1|° 1|1|11° olonolo 0|ololo OIOIOL

NOZRO 2 | SBUKI (1 @ 19)

1 1 1 L 1 1 1 ! 1 1 I 1 1

1

N N BT) F IR YT i S

4T08 seuk2q@in- |, , [|, olr1. a0l oL b
_ (1@19) | la,2, 2,202,222/ 2,0,8,4{0 1,208,200, Lo by
40R5 ADUK3 (1@ 11)- [, L ., .0ol1.,1.1, o L L A
e T 0.0,0,00,0,00/0,000l0,1.0,22. 22,0 , , | 1,

FIVE ADU C2 (1 @ 15) N N T Y T A R B
original value . s ., . lor 10t 4. 10| L L

SECTIONAL.
ASSEMBLIES

FIGURE 6.5 BIT CONFIGURATION

It is frequently desirable to assemble a large program in sections, checking out
and, if necessary, re-assembling each section as it is written. In order to
assemble the second and subsequent portions of such a program, ROAR must be
set to the same conditions as existed when the previous assembly was finished.

1.

. To accomplish this, certain provisions must be made when writing each section:

Make all linkage between sections (utility subroutines are considered
sections) either 5-character symbols or global symbols established
with the SET pseudo-command. (See "Header Tags Versus Global
Symbols' later in this chapter.)

All region reservations, EQR, and (if used) SET pseudo-instructions
should be on a separate tape from the rest of the program, as this in-

formation must be read by ROAR prior to the assembly of each section.

With each section an END pseudo-instruction should be used to provide

a checksum. Continuous loading of the completed program can be ac-
complished by making the transfer address a location on the bootstrap
track rather than the beginning of the program. If the following section
is to be loaded using the same modifier, the transfer should be to sector
39 of the bootstrap track. If a different modifier is to be used, the
transfer should be to RECRC4, and SENSE SWITCH 1 must be depress-
ed before the transfer is executed. This use of the END pseudo-command
makes subsequent loading of hexadecimal tapes easier, since only the
first section will have a bootstrap.

NOTE: I this transfer is input manually at the time the program is
loaded, the Lower Accumulator must be cleared before the
" transfer instruction is entered.

Upon completion of one portion of a sectional assembly, the information required
by ROAR for the assembly of later sections can be obtained as follows:

G oo

‘Remove the hexadecimal tape of the assembled program.

Depress MASTER RESET.

Select TYPEWRITER TO COMPUTER.
Select COMPUTER TO PUNCH.
Depress ONE OPERATION.,

6-7

OPTIMIZING EXIT
FROM SUBROUTINE

6-8

6. Depress SET INPUT.
7. Depress EXECUTE LOWER ACCUMULATOR.
8. Depress START COMPUTE.
9. Type: NOWBEGIN* ‘
10. Raise EXECUTE LOWER ACCUMULATOR.
11." Raise ONE OPERATION,

12, Depress START COMPUTE

13. When the light on the typewriter glows, type a PAV (or PPA) pseudo-
instruction.

14, After that output, the typewriter light will glow. To have ROAR pro-
duce a tape containing the linkage symbols and their equivalent loca-
tions, proceed as follows: :

a. If only 5-character symbols have been used for linkage, type a
5CS psuedo-instruction.

b. I only global symbols established with SET have been used, type
an RST pseudo-instruction followed by a PAS pseudo-instruction.

c. If a combination of both kinds of linkage symbols have been used,
enter all 3 pseudo-instructions in this order: 5CS, RST, PAS,

When a section is to be added to a previously assembled program, read in'the '
REG-EQR-SET tape used with the original section, followed by the output tapes
obtained with the PAV, 5CS and PAS pseudo-instructions as explained above.
This must be done prior to entering the symbolic tape for the current section to
be assembled. If the END pseudo-instruction on the previous section provided a
transfer to the bootstrap track, it is not necessary to have ROAR punch a boot-
strap for the new section. When the final section is assembled,. the END pseudo-
instruction may be used to transfer to the beginning of the program, provided its
symbolic designation has been entered as a linkage symbol or its absolute ad-
dress is known (from an EQR or a previous listing).

When all checkout is complete, the various symbolically-coded sections may be
reproduced onto a single tape and assembled. In this way the programmer will
have one complete symbolic tape and one hexadecimal tape instead of several.
An alternative is to combine all the assembled sections onto one tape. However,
when that tape is read into the computer, a halt will occur preceding the trans-
fer code at the end of each section. Depressing START COMPUTE will cause
the transfer to be executed and loading to continue:

When subroutines are used with a program, it is desirable to provide optimum
entries to and exits from them. Since the entry location will be assigned an ab-
solute address the first time its symbolic location is seen by ROAR, the only
time the entry to a subroutine will be optimum is the first time the calling se-
quence is used. However, since a different exit instruction can be used each
time the calling sequence is written, the exit instruction can be optimum every
time. To make the exit optimum, the programmer will use the NXT pseudo-
instruction as described in the following examples.

EXAMPLE A

Assume the following instructions form a calling sequence for a subroutine
which requires the exit instruction to be in the Lower Accumulator when control
is transferred to the subroutine. SQRT is the entry point of the subroutine and
the location of the first instruction which stores the exit instruction from the
Lower Accumulator in some memory location.

The coding for the calling sequence might appear as

*RAU*ARG** 01513 02 01515 01517 *
*RAL*EXIT*SQRT* 01517 03 01519 01521 *
EXIT*STU*RT1*N-AD* 01519 24 01621 01523 *

When the subroutine is assembled, its firét instruction will be something like:
SQRT*CLL*OUT*TEST* 01521 27 03723 03725%

Turther on in the subroutine, the instruction which transfers control to the exit
instruction might be:

FIN*TBC*OUT*LOOP* 03914 23 03723 03718 *

Thus the exit instruction of the calling sequence (*STU*RT1*N-AD¥*) will be
executed at word time 23, but the Data-address field of that instruction has a
sector 21. This means that a full drum revolution is wasted every time the
subroutine is used.

However, if an NXT pseudo-instruction had been used in the calling sequence,
it could be assembled as

*RAU*ARG** 01513 02 01515 01517 *
*RAL*EXIT*SQRT* 01517 03 01519 01521 *
*NXT*DELAYD** *
EXIT*STU*RT1*N-AD* 01519 24 01525 01527 *

so that when the exit instruction is executed at word time 23, the Data-address
has an optimum sector 25.

EXAMPLE B

In some subroutines, the first instruction does not store the exit instruction,
but rather it is done several word times later. In such a case, 2 NXT pseudo-
instructions are needed: one having the DELAYD address and the other having
a numeric address to allow for the additional word times.

Assume the third instruction of a subroutine is the one which stores the exit
instruction. The 3 instructions might appear as:

SINE*CLU*ARG** 01521 26 03823 03825 *
*EXC*898%* 03825 09 - 00827 03829 *
*CLL*QUT*LOOP* 03829 27 03831 03833 *

Thus in order to provide an optimum exit, the calling sequence would use 2 NXT
pseudo-instructions:

*RAUXARG** 01513 02 01515 01517 *
*RAL*EXIT*SINE* 01517 03 01519 01521 *
*NXT*DELAYD** *
AN T HQ** *
EXIT*ST U*SINX*N-AD* 01519 24 01533 01535 *

The DELAYD accounts for 1 of the 3 instructions in the subroutine, and the
second NXT pseudo-instruction allows an additional latency of 8 word times to
account for the other 2 instructions, making a total latency of 12 word times.

HEADER TAGS VERSUS
GLOBAL SYMBOLS

Then, when the exit instruction is executed at word time 31, the Data-address
field will be an optimum sector 33.

When a program is coded and assembled in sections or when numerous standard
subroutines are used with a program, it is possible that the same symbol may
be used inadvertently to represent more than one memory location. Header tags
allow identical symbols to be used for different locations in different portions of
a program without being ambiguous to ROAR. By preceding a portion of coding
with a TAG or HED pseudo-command, the programmer can be sure that any sym-
bols in that portion having fewer than 5 characters will be unique to ROAR. Since
5-character symbols are reserved for linkage symbols, no duplication of usage
should occur. However, it became evident that other than 5-character symbols

.were needed for linkage purposes, so the SET pseudo-command was provided.

This pseudo-command permits ROAR to read a list of symbols and to store them
in the Set Table. Then, when a portion of a program is to be assembled, instead
of using a header tag, the programmer may have ROAR clear all except the SET
symbols from the Symbol Table. In this manner the SET symbols remain in the
Symbol Table and retain the absolute addresses they were assigned. Since all
other symbols are removed from the Symbol Table, they will be new to ROAR
and will be assigned new addresses the next time they are encountered.

" These two concepts—header tags and SET symbols— were not intended to be

used together in the same sequence and, therefore, are not compatible in one
respect: if a SET symbol of fewer than 5 characters is used in a sequence of
coding that is under the influence of a header tag, the tag will be prefixed to the
symbol, and ROAR will no longer recognize it as a SET symbol. Consider for
example this sequence of coding:

*SET*FBR*FIX**
LOC*RAU*BCK*FBR* 00000 02 00002 00004 *

BCK*EXC*198*GO* 00002 09 00104 00007 *

The global symbol FBR has been assigned location 00004 If, later in the pro-
gram, this sequence appeared:

*T A GkA Kk *
NOW*RAU*BAK*FBR* - 00008 02 00010 00012 *
GO*RAL*FLG*FIX* 00014 03 00016 00018 *

ROAR will annex the tag to the symbols and will consider them as new symbols,
thus assigning new locations to them. If an RST pseudo-instruction were used
to remove all except SET symbols from the Symbol Table, ROAR would remove
everything except the FBR (location 00004).. The symbols FBR (location 00012)
and FIX (location 00018) have been tagged with an ""A''; therefore, ROAR does
not recognize them as SET symbols.

It is possible to use both SET symbols and header tags without conflict if the
programmer observes the following rules:

1. Establish global symbols with the SET pseudo-instruction, as usual.
2. Establish header tags, as usual.

3. Do not use any global symbols having fewer than 5 characters in a sec-
tion of coding that is under the influence of a header tag.

4. Remove the header tag at the end of the section.

INPUT TAPE PREPARATION

PR 1 R R R R R RN NN NN AN AN AN NN NN NN AN NN A AN N A A AN

TAPE CHARACTERS

PARITY CHECKING

RU LESk FOR TAPE
PREPARATION

Input to ROAR is in Normal (6-bit) Mode. Any characters with a code from 16
through 62 may be entered into the computer. Input may be from the typewriter
or from punched tape. Usually a symbolic program tape is prepared and is used
for the input to ROAR. This reduces the possibility of input errors during the
assembly since the punched tape can be listed, proofread, and corrected before
the assembly begins.

The tape-reader moves the tape under a set of "read brushes' which close an
electrical circuit when a tape hold (punch) passes beneath them. The tape has 7
channels. Any or all of these channels may have a punch in one horizontal row.
A combination of punches in channels 1 through 6 is called a character. Channel
7 is called the parity bit.

‘—Sprocket Holes

Motion

l

Channels

FIGURE 7.1 TAPE CHANNELS

The RPC-4000 uses a system of tape validating based on an even parity conven-
tion. If the number of punches in a character is odd, a parity bit will be punch-
ed so that the number of bits in all 7 channels is always even. Parity checking
is performed by the input-output unit to insure maximum accuracy and occurs
only during on-line operation. Operating on-line (with the computer), the input-
output equipment responds to commands issued by the computer. Anything typed
on the typewriter or read by the reader enters the accumulator, and therefore

a parity check is performed. Operating off-line has the same effect as physi-
cally disconnecting the RPC-4500 Tape-Typewriter system from the computer.
Therefore, if a program is being executed by the computer and does not use the
typewriter for input or output, the typewriter may be used off-line while the
computer is operating. The same is true for all input-output devices.

The following rules for punching tapes from coding sheets apply to all instruc-
tions and pseudo-instructions, with one exception: Rule 1 does not apply to
those pseudo-instructions which deviate from the standard format of 5 informa-
tion fields.

PROCEDURES
FOR PUNCHING
INPUT TAPES

Correcting Errors’

While Punching
Input Tapes

Correcting Errors
After Punching
Input Tapes

A stop code is required following each of the five fields: Location,
Order, Data-address, Next-address, Comments. It is required
whether the field is filled or blank. If stop codes are not in the re-
quired places, an error halt will occur.

Following each instruction, a carriage return must be punched on
the tape.

- Leading zeros in a field are optional, but separating and final zeros

are required.

a. Regional addresses must contain the region symbol and 5 numeric
characters which may be separating zeros, e.g., Z00008. Spaces
are not acceptable in lieu of zeros.

b. If a numeric order is to be indexed, the X must appear to the left
of 2 characters, e.g., an indexed halt order could be X00, butnot
X0 or just X. A blank order is illegal.

ROAR differentiates between a blank address and a zero address; a
single zero is sufficient for the distinction.

Place a NIX pseudo-instruction at the end of each tape if an END is not
used.

To punch tapes off-line, the following sequence should be followed:

IS N e

Depress MASTER RESET to de-select all on-line units.
Depress TYPEWRITER SELECT.

Depress PUNCH SELECT.

Depress CONDITIONAL STOP.

Depress START READ. Light on typewriter glows.
Whatever is typed will be punched.

If an error occurs while the tape is being punched, it can be corrected as

follows:

4.

Depress SPECIAL bar on typewriter keyboard and hold it down,

Depress BACKSPACE key as many times as necessary. This
moves both the typewriter carriage and the punched
tape.

While depressing the SPECIAL bar, type X over all the characters

to be deleted. The characters on the tape will be deleted, and an X

will be imprinted over the characters on the typed listing,

Release SPECIAL bar and continue typing as before.

If an error is discovered after the input tape has been completed, it can be cor-
rected by duplicating the tape that precedes the error, inserting the correct in-
formation, and duplicating the remainder of the tape. It is advantageous to du-
plicate tapes on-line instead of off-line so that parity checking can be done. If a
character is misread or if the original tape contains a poorly punched character,
a parity error is indicated and can be corrected at that time rather than during
the assembly.

DUPLICATING TAPES ON-LINE To duplicate tapes on-line, the following
sequence should be followed:

1. Depress MASTER RESET.
2. Depress TYPEWRITER TO COMPUTER.
3. Depress ONE OPERATION.
4. Depress SET INPUT.
5. Depress EXECUTE LOWER ACCUMULATOR.
6. Depress START READ (on-line). Light on typewriter glows.
7. Type: 40000000D0000000*, This puts a self-addressed input
order in the Double-length Accumulator. The equivalent
ROAR-language words would be:
INP 0 0
CLU 0 0
8. Raise EXECUTE LOWER ACCUMULATOR.
9. Raise ONE OPERATION.

10. Depress MASTER RESET.
11. Position original tape in Reader.

12. Select READER TO COMPUTER.
13. Select COMPUTER TO PUNCH.
14. Select COMPUTER TO TYPEWRITER.

15. Depress INPUT DUPLICATION SELECT.
16. Depress START COMPUTE. The original tape will be read and
duplicated.

CORRECTING ERRORS ON-LINE When the tape in the reader nears the error:

When the tape in the reader nears the error:

1. Depress ONE OPERATION. The reader will stop each time it en-
counters a stop code.
2. Depress START COMPUTE each time another word is to be read.
3. If the error is within a word and it is desired to read one character at
a time, depress SINGLE CHARACTER MODE after ONE OPERATION
- is depressed. Only 1 character will be read each time START COM-
PUTE is depressed.
4. When the last correct character (or word) prior to the error has been
read, depress MASTER RESET.
5. Select READER TO COMPUTER and COMPUTER TO TYPEWRIT-
ER.
6. Depress START COMPUTE and read past the error.
7. Depress MASTER RESET.
8

. Raise ONE OPERATION,
9. Raise SINGLE CHARACTER MODE if it has been depressed.
10. Select TYPEWRITER TO COMPUTER and COMPUTER TO PUNCH.

11. Depress START COMPUTE. Light on typewriter glows.
12. Type the correct information.
13. Depress MASTER RESET.
14. Select READER TO COMPUTER, COMPUTER TO TYPEWRITER,
and COMPUTER TO PUNCH.
- 15, Depress START COMPUTE to continue duplicating the original tape.

CORRECTING PARITY ERRORS If a parity error should occur while duplicating
a tape on-line, it can be corrected by the following method:

8.
"9
10.
11.
12,
13.

14.

- Depress

No o s W

~Depress

Depress
Depress
Depress
Depress .~
Depress
Depress

‘STOP READ (on-line).
"PARITY MONITOR RESET.

MASTER RESET.
TYPEWRITER SELECT and PUNCH SELECT.
START READ (off-line). Light on typewriter glows.

" SPECIAL bar on'the typewriter keyboard and hold it down.
. BACKSPACE key 1 time (the error would be in the last

character punched).

While still depressing the SPECIAL bar, type X.

De-select
Select -

Depress
Select

Depress

“TYPEWRITER SELECT and PUNCH SELECT.

TYPEWRITER TO COMPUTER and COMPUTER TO PUNCH.

:START COMPUTE and type the correct character.

MASTER RESET.

READER TO COMPUTER, COMPUTER TO TYPEWRITER,
and COMPUTER TO PUNCH.

START COMPUTE to continue duplicating.

Figure 7. 2 shows the coding for a sample problem; Figure 7.3, the way a typed
listing of the input tape would appear.

LOCATION 'ORDER Ag;;:ss ‘ A:::sTss COMMENTS

P B RES| ., , BOO! 1,2,2 6 3|RESTRICT PROGRAM TOTRACKS O-7
:J i E.QR r . INP . . ,1.00|DATA INPUT PROGRAM AT 100
o | E@R| , , OUT| . ,40,0|DATA OUTPUT PROGRAM AT 400
| BEG N RAUl , , QUEl , , 6 |54AT Q=17

L L RALL) INP|—DATA INPUT; READ A

v oo | sTol o A, |sTorE A

(| RAV| . QuE e |s@a7

oo L RALL L L, |, INPIREAD C

o gsruol e, |sTOREC

L | RAYl |, QuEl, . ., lsr@17

pooooo | RALL L, | INPIREAD X

— l.apyl Al ArX

e L oMPYE L X[[X (A*X)

NP Y -1 "X N t AX+X2/e = F (X)

po o L PRCL L, CR L, |CARRIAGE RETURN

pos o, | RALL L CODE , ,, ,, 6 |Q:5; P=8

o fboxl L L 0U T PR £ (X)

L L SNS| , 198] , , |, , |TEST SENSE SwiTCH 1

L | reel BeeunN ., ., |ss1 DePrESSED: RETURN FoR NEW DA
L LTl ol BiE6. N|[HALT; DEPRESS START To START OVER.
| ouel wem| 8, olacrs For paga meor
rcopel werl sl 8lQors, PoF8 For bara outeur
Ny END 1 |"| ;%Glllﬂ

FIGURE 7.

2 SAMPLE PROBLEM CODING (f(x) -axt x2)

#RES#BO0#12263#RESTRICT PROGRAM TO TRACKS O-T#
H#EQR#INPX100%DATA INPUT AT 1003
#EQR¥OUT#L,00%DATA OuTPuT AT LOO%
BEG IN#RAURQUE##5 AT @ = 17#
H#RAL#RINP#RgaD A%

#STURA#ESTORE A%

FRAU#QUE ##%

#RAL#*INP#ReAD C#

#STURCSTORE C#

$R AUHQUE #e4:4¢

H¥RALa INPH#READ X3¢

#ADUHA A+ X4

FMP Y3 X3 X (A+ X) #
#DVURCHEAX+XE /Cat
#¥PRCHCR3#CARRIAGE RETURN#
#RAL#CODE ##q=5,P=8#
#LDX®ROUTHPRINT F(x)
#3NS#198%5TEsT SENSE SwiTeH 14
#TBCHBEGIN#%S5S1 DOWN = LOOP FOR NEW DATA%
FHLT#OXBEGIN®F 1N 1SHED#®
QUEHLT#5%0%#Q=5 ror D.|.#
CODE#HL T#5#8#a=5,p=8 ror D.0.#%
#END##BEG | N3¢

FIGURE 7.3 SAMPLE PROBLEM INPUT TAPE LISTING

N N NN NN NN NN N\ N

ROAR MASTER TAPE

Bootstrap Procedure

Manual
Transfer
To Roar

OPERATING PROCEDURES

NN NN NN AN N A AN AN AN NN NN NN AN NN NN NN NN NN NS AN AN NN AN AN N\ N

The master tape containing the ROAR assembler is a hexadecimal tape consist-
ing of a bootstrap, several tape records, and a transfer code. The bootstrap is
used to load the ROAR program in memory. The tape records comprising the
program itself are each followed by a checksum. The final item on the tape is a
transfer code which will allow the operator to transfer control to the beginning of
ROAR.

The procedure for loading the ROAR master tape is as follows:

1. Place the tape in the Reader.
2. De-select all off-line units.
3. Depress MASTER RESET to de-select all on-line units.
4. Select READER TO COMPUTER.
5. Depress ONE OPERATION,
6. Depress SET INPUT.
7. Depress EXECUTE LOWER ACCUMULATOR.
8. Depress START COMPUTE. Wait for the Reader to stop.
9. Depress START COMPUTE.

10. Raise EXECUTE LOWER ACCUMULATOR.

~11. Depress SET INPUT.
12, Raise ONE OPERATION.
13. Depress START COMPUTE. The bootstrap will now read in and

will load the hexadecimal program tape without stopping.

After ROAR is stored in memory, the computer will halt. This halt occurs be-
fore the transfer code is executed to facilitate loading the symbolic tape of the
object program. Depressing START COMPUTE will cause the transfer code to
be executed and ROAR to begin the assembly.

If ROAR is already in memory, the following procedure may be used to trans-
fer control to the beginning location:

1. Select - TYPEWRITER TO COMPUTER.
2. Depress ONE OPERATION.
3. Depress SET INPUT:
4. Depress EXECUTE LOWER ACCUMULATOR
5. Depress START READ (on-line).
6. Type GOTOROARX*
7. Raise EXECUTE LOWER ACCUMULATOR.
8. Raise ONE OPERATION.
9. Depress MASTER RESET,
10. Select READER TO COMPUTER. Position input tape in the
reader.

11. Depress START COMPUTE.

The computer will transfer to the entry point GOTOROAR, and ROAR will begin
the assembly. When the entry point GOTOROAR is used, ROAR executes its

initialization routines. Therefore, use of this entry point clears the Symbol
- Table, the Availability Table, and all internal control tables. ROAR is thus pre-
pared to begin a new assembly, '

If it is desired after stopping te continue assembling without clearing the Sym-
bol Table and Availability Table, the entry point NOWBEGIN should be typed in
step 6 above. This entry point bypasses the initialization routines and prelim-
inary printouts (see step 3 of ASSEMBLY PREPARATIONS below). NOWBEGIN
is used when it is desired to output-the Availability Table, the Symbol Table, or
the.5-character symbols after the assembly is terminated following an END code.

ASSEMBLY Prior to assembling the object program certain preparations must be made:
PREPARATIONS ,
1. Two tab stops are required. Relative to the left margin stop, they
should be placed at increments of 27 and 57 spaces.

2. If a bootstrap is not desired on the hexadecimal tape that ROAR ‘,will
punch, depress SENSE SWITCH 8.

3. Provide preliminary information to ROAR regarding:

a. Input-Output Selections.
b. Subroutine Tape Region Storage.
c¢. Bootstrap Track.

Input-Output The operator can select the input-output units ROAR will use during an assem-

Selections bly. Certain selections can be made by Sense Switch settings, for example
bypassing the listing of input-output information. (Sense Switch options are ex-
plained later in this chapter.) However, on many occasions an operator may
desire to make input-output selections other than (or in addition to) those avail-
able through Sense Switch settings. For example, he may wish to use an aux-
iliary unit to input the symbolic tape and to punch the hexadecimal program tape.
Such selections can be made at the beginning of the assembly in response to a
preliminary printout.

After START COMPUTE has been depressed to begin the assembly, ROAR will
cause the typewriter to execute a carriage return and to type:

I/0 SELECTIONS-

If no changes from the normal selections are to be made, type only a stop code.
(Input-output devices normally used by ROAR are listed under "Assembly Pro-
cedures' in this chapter.)

Different selections are made by entering the numeric input-output selection
codes (see Appendix F). The order in which they must be entered is as follows:

Select the input device for entering the symbolic program.

Select the output device for the hexadecimal output.

Select the output device for the decimal listing.

Select the output device for the preliminary questions and error print-
outs.

5. Select the input device for answering the preliminary questions.

L

If any one unit is to be changed, all preceding fields must be filled. For
example, if the output device for the hexadecimal output is to be changed and all

Subroutine Tape
Region Storage

Bootstrap Track

other devices are to remain as normal selections, both field 1 and field 2 must
be entered. The question and answer might appear as

1/O SELECTIONS-64%113%*

Code 64 selects the normal input unit (RPC-4500 Reader), and code 113 selects
the RPC-4600 Punch for hexadecimal output. It is not necessary to enter all 5
fields. An extra stop code indicates that the last selection has been made. If

all 5 fields are entered, the extra stop code is unnecessary.

- This method of selecting input-output units does not invalidate or override Sense

Switch options. For example, if the RPC-4600 Typewriter is selected for out-
put of the decimal listing, depressmg SENSE SWITCH 32 will still bypass listing

. . the decimal output,

-CHANGING INPUT-OUTPUT SELECTIONS Once the selections have been made,

the devices remain selected until changed. They may be changed by one of the
following:

1. Transfer to entry point GOTOROAR and enter new selection codes in
response to the question. (Typing only a stop code will leave pre-
viously selected devices. still selected.)

2. Re-load ROAR.

Following the selection of input-output devices, the typewriter will execute a
carriage return and will type:

SUBROUTINE TAPE REGION STORAGE-

If a Subroutine Library Tape is not to be used and regions in the object program
are not to be designated with RLR pseudo-instructions, such storage is not
needed. Type only a stop code, and ROAR will proceed.

If a Subroutine Library Tape or RLR pseudo-instructions ‘are to be used, the
area of memory for that type of region must be reserved at this time. Only one
sequential group of locations may be reserved. Type, in track and sector nota-
tion, the first location of the area to be reserved followed by a stop code. After
the typewriter executes 4 space, type the final location of the area, again in

track and sector notation, followed by a stop code. ROAR will make unavailable

all locations between and including these addresses.

After the "'Subroutiné Tape Region Storage-" printout and respohse, the type-
writer will execute a carriage return and a line feed and will type:

BOOTSTRAP TRACK-

(It SENSE SWITCH 8 was depressed prior to depressmg START COMPUTE to
begm the assembly, this printout will be omitted.)

Type the track where the bootstrap program is to be stored. Care must be taken
that the bootstrap track is one where no part of the object program will be stored,
preferably a track which is not otherwise used. However, if space does notper-

mit this, use a track that the object program will later use for data storage,

After the bootstrap program has been punched, ROAR will transfer control to
the input device selected for entering the symbolic program. Since all further

ASSEMBLY
PROCEDURES

Interrupting
An Assembly

Sense Switch Options

.communication with ROAR can be made through the use of pseudo-commands, a
- manual restart to modify standard operation is not normally necessary.

The input-output devices normally used by ROAR during an assembly are as
follows:

RPC-4500 Reader (Input symbolic program) Code 64.
RPC-4500 Punch (Output hexadecimal tape) Code 97.
" RPC-4500 Typewriter (Output decimal listing) Code 98.
RPC-4500 Typewriter (Output preliminary questions and error print-
outs) Code 98,
5. RPC-4500 Typewriter (Input answers to preliminary questions) Code 68.

Gl i

Different selections may be made as previously explained under '""Assembly Pre-
parations. "

The operator may want to use the normal input-output devices for the assembly
but enter initial reservations, etec., from the keyboard. To accomplish this,

. the operator would indicate no changes in input-output selections in response to

the preliminary question, and.at a time when ROAR is on an input order (e. g.,
as the blank tape preceding the first punched character is moving under the read
head) he would proceed as follows:

1. Depress STOP READ.

2. Depress MASTER RESET.

3. Select TYPEWRITER TO COMPUTER.
4. Select COMPUTER TO TYPEWRITER.
5.

Depress START READ. Light on typewriter will glow.

ROAR will n‘ow‘accept input from the typewriter keyboard. To return to reader
input, repeat the same procedure except at step 3 select READER TO COM-
PUTER.

_ If ROAR is halted by a NIX pseudo-instruction, assembly may be continued by

depressing START COMPUTE.

The assembly of every program'should be concluded with an END pseudo-
instruction which provides a transfer to a desired location and a final checksum.

NOTE: This transfer may be made to the bootstrap if further program
read-in will be necessary. (See ''Sectional Assemblies,
,Chapter 6.)

Various options for input and output are available through Sense Switch settings:

. Sense Switch Use when Depressed

1 Functions only after an error halt. Each time
START COMPUTE is depressed, ROAR will read
the symbolic input tape until a stop code is sensed
and list that information on the RPC~-4500 type-
writer, but will not assemble it.

After SENSE SWITCH 1 is raised, depressing
START COMPUTE prepares ROAR for an input
to allow error recovery.

2 Bypass listing of input.

4 Use Photo-Reader for input.
8 Do not output a bootstrap.
16 List decimal output on RPC-4500 Typewriter in

addition to the selected output device.
32 Bypass decimal output.

NOTE: With both SENSE SWITCH 2 and 32 depressed, the only output
is the hexadecimal program tape. This shortens the assembly
time for already checked-out programs.

Error Printouts When ROAR detects an error in the instruction it is assembling, it will type a
notification of the kind of error and will halt. Listed below are the various error
printouts:

Printout Meaning

SYMBOL TABLE IS FULL The Symbol Table can hold 2048 symbols
during a single assembly. If more than
that number are encountered, this print-.
out is listed.

IMPOSSIBLE ADDRESS More than 6 characters or an illegal spe-
cial address was entered in an address
field.

UNASSIGNED REGION Use of a regional address before the re-

gion is designated or an erroneously
typed region symbol will cause this list-
ing.

DB FULL The Double-access Tracks can hold 128
words. If more than that number are en-
countered, this printout occurs.

LOCATION NOT BLANK The Location field of an instruction was
filled when it should have been left blank.

LOCATION IS NECESSARY The Location field of an instruction was
left blank when it should have been filled.

PSEUDO-OP NOT IN TABLE An order or a pseudo-command is input
incorrectly, e.g., RAX for RAU, or NXI
for NIX, or the assembly program is out
of phase and reading an address as an
order.

D AND N BOTH BLANK Both the Data-address and Next-address
fields were left blank when one or both
should have been filled.

BLANK N ADDRESS The Next-addresds field was left blank

when it should have been filled, e. g.,
following END.

8-5

Error Recovery

8-6

Printout. Meaning

ADDRESS NOT DECIMAL FOR A symbolic or blank address was entered
PSEUDO-OP REG RESORAVL for one of these pseudo-instructions
' instead of a decimal address.

INCORRECT ENTRY FOR DEC The value given with the DEC pseudo-
instruction cannot be held at the indicated
" 1"
q.

DRUM IS FULL All available memory has been used or
‘ there is not enough space for the indicated
‘reservation.

INSUFFICIENT SUBROUTINE During the assembly of the subroutines
REGION STORAGE from the Library Tape, the space reserv-
' ed for regional storage is exceeded.

CHECKSUM WRONG If a checksum error occurs while ROAR
is reading an Availability Tape, this
printout occurs.

There are two kinds of errors which might occur during an assembly: input
errors and parity errors. An input error is either a punching or coding error
which ROAR will detect and will indicate with an error printout. A parity error
occurs when a character containing an uneven number of bits (counting all 7

" channels) is read. This error is indicated by the PARITY MONITOR RESET

light. It is possible to recover from these errors without loss of the hexadecima

program tape.

INPUT ERRORS When an error is encountered in an input, ROAR clears from
memory the instruction it was constructing, re-establishes internal settings
(to their condition before the Location field of the instruction was read), types
an indication of what caused the error, and halts. Any new symbolic address
read by ROAR prior to the field in which the error occurred will be entered in
the Symbol Table and will be assigned a location. For example, if the error
occurred in the Next-address field, any symbols used in the Location and Data-
address fields will have been processed before the computer halts.

Following an error halt, ROAR will accept either a filled or a blank Location
field, depending upon the instruction that caused the error. If the Location
field in the instruction which caused the error halt should be blank (i.e., was
preceded by a blank Data-address of Next-address field), than a blank Location
field must be entered during the recovery procedure. Conversely, if the Loca-
tion field in the erroneous instruction should be filled (i. e., not preceded by a
blank Data-address or Next-address field), then a filled Location field must be
entered during the recovery procedure.

The following procedure should be used to correct input errors encountered
during the assembly:

1. Depress MASTER RESET,

2. Select TYPEWRITER TO COMPUTER.

3. Depress START COMPUTE.

4. Type correctly the symbolically coded instruction word that con-

tained the error. Begin with the Location of the instruction
to be corrected and continue to the point where ROAR

stopped readmg The Locatlon field may be either filled
or blank as explalned above.

5. Depress STOP READ (on-line).
6. Depress MASTER RESET.
7. Select READER TO COMPUTER
8. Select = COMPUTER TO TYPEWRITER.
9.

Depress START READ (on-line).
ROAR will continue assembling with tvh'e‘input from the tape,

An error printout indicates that according to ROAR's standards the last instruc-
tion read was erroneous. However, it is possible that from a programming
point of view the error actually occurred in the preceding instruction. Consider
the following sequence of 1nstruct10ns

» . DATA L
LOCATION , ORDER ADDRESS _ADDRESS | COMMENTS
L, REPT| RAUl , PAY| . ., |BRING AMT. SALARY
. ENC|] ADWUV fot BO N . ADD BONUS

FIGURE 8.1 CODING ERROR
The assembly would appear as:

- REPT*RAU*PAY** ' 01002 02 01004 01006 Bring amt.salary*
LOCATION NOT BLANK

and ROAR would halt. ROAR would consider instruction B to be incorrect be-
cause the Location field was filled. If the error actually is in instruction B and
the Location field should be blank, the correction can be made simply by follow-
ing the procedure outlined and by typing at step 4:

ADU

(It is necessary to type the Order field because ROAR will have already read

that field. Anytime a blank Location field is encountered when ROAR expects

to find a filled one, the Order field is read to see if it contains a pseudo-command.
If it does not contain a pseudo- command,. then an error halt occurs. If it does
contain a pseudo-command, then the Locati on fleld of the instruction following
that pseudo-command must be fllled)

However, if the verror were actually"in instruction A because the Next-address
should not have been blank, the correction should be made as follows:

1. Follow steps 1 through 3 as outhned
4, Type: *EQVXINC*1006%*

. *ADU*
5. Follow steps 5 through 9 as before

The EQV w111 establish 1006 as the absolute address for the symbol INC. Since
1006 was ~assigned to the blank Next-address field of instruction A, it will auto-
matlcally be assigned to the ‘blank Location field of instruction B and to any sub-
- sequent field containing INC. Obv1ously, this method of recovery is applicable
only if the symbol INC had not been prev1ously encountered by ROAR.

8-7

If the symbol INC had already been assigned a numeric address by ROAR, the
recovery procedure would be as follows:

1. Follow steps 1 through 3 as outlined.

4. Refer to the coding sheet and locate the last mstructlon (prior to the
one where ROAR stopped) which has a blank Location field. Starting
there, type the symbolically coded instructions until the error has
been corrected.

5. Follow steps 5 through 9 as before.

The corrected instructions will be made relocatable if these recovery proce-
dures are used.

ERRORS DURING BLIND ASSEMBLIES If an error occurs during a blind as-
sembly (i. e., an assembly without a decimal listing), ROAR will type an indica-
tion as to what caused the error, will re-establish necessary internal settings,
and will halt. For example, assume a blind assembly is being made on a pro-
gram containing the following instructions: - 3

TION RDER DATA NEXT COMMENTS

LocaTio Orol ADDRESS ADDRESS

,o00pl RAV] ., x/¥|, SQRT

PO T S W .S,B,U bt X2 THSHF T T rr—]

FIGURE 8.2 CODING ERROR

After instruction A has been assembled as
LOOP*RAU*X/Y*SQRT* 00117 02 00119 00121 *

ROAR would expect a filled Location field to follow. Since the Location field of
instruction B is blank, ROAR would type:

LOCATION IS NECESSARY

and halt. In order to know what instruction was being assembled and to locate

‘the error on the coding sheet, it will usually be necessary to list an instruction

or two. If the RPC-4500 Reader is the input device, it can be switched to off-
line mode, the typewriter activated, and as many instructions as necessary
listed. Then to correct the error, follow the procedure described previously,
and at step 4 type the corrections and all the instructions that were read off-
line. If the RPC-4410 Photo-Reader is the input device, the tape can not be
listed off-line without removing it from the unit. It is difficult if not impossible
to remove the tape from the Photo-Reader and later replace it in exactly the
same position; Therefore, the following procedure is recommended:

1. Depress SENSE SWITCH 1.
2, Depress START READ. ROAR will select the RPC-4500 Typewriter
e ~ and will copy from the input tape—without assembling—
until a stop code is sensed. This step may be repeated
' as many times as necessary to locate the error.

.3, Manually reverse the direction of tape movement in the Photo-Reader
and depress START COMPUTE repeatedly to reposition the tape at the
instruction where the assembly is to be resumed. Then reverse the
direction of tape motion again, i.e., re-establish the original direction.

Raise SENSE SWITCH 1.

Depress MASTER RESET.

Select TYPEWRITER TO COMPUTER.
Depress START COMPUTE.

Enter the necessary corrections.

Depress STOP READ (on-line).

10. Depress MASTER RESET.

11. Depress SELECT switch on the Photo-Reader.
12. Depress START READ (on-line).

© POk

ROAR will continue the assembly with input from the Photo-Reader.

PARITY ERRORS When a parity error occurs during an assembly, it is often
possible to continue the assembly without loss of the output tape. The proce-
dure is as follows:

1. Do not move the input tape.
2. Depress STOP READ (on-line) and PARITY MONITOR RESET.
3. Consult the typed listing to determine where the error occurred.

a. If the error is in the Comments field, no corrections are
necessary since this field is only copied on the typed listing.
To resume the assembly, depress START READ.

b. If the error is in any field other than Comments, it can be
rectified by entering the correct information through the
typewriter.

4, Depress READER SELECT and TYPEWRITER SELECT.

Make sure CONDITIONAL STOP is raised.

6. Depress START READ (off-line). The reader will halt at the first
stop code. The tape will now be positioned at the first
character-aof the field immediately following the one where
the error occurred.

o

7. Raise READER SELECT and TYPEWRITER SELECT.
8. Depress MASTER RESET.
9. Select TYPEWRITER TO COMPUTER.
10. Depress START READ (on-line). The light on the typewriter will
glow.

11. To cause an error printout, type any 6 hexadecimal characters, other
than zero, followed by a stop code.

12. Depress START COMPUTE. This will cause ROAR to transfer to

the input order for error recovery.

13. Type corrections. Begin with the Location field of the instruction that
caused the error and continue to the point where the tape is positioned
in the reader.

14, Depress MASTER RESET,

15. Select READER TO COMPUTER and COMPUTER TO TYPEWRITER.

16. Depress START READ (on-line).

NOTE: The rule governing the choice of blank or filled Location field during
error recovery (as explained under "Input Errors') is also applicable
for recovery from parity errors.

OPERATING After ROAR has completed its assembly, the object program may be read into
PROCEDURES FOR the computer and executed.
ASSEMBLED PROGRAM

8-9

Bootstrap Procedure

Correction of
Checksum Error

Correction of
Parity Error

The bootstrap procedure for loading the hexadecimal tape of the assembled pro-
gram is the same as the procedure for loading the ROAR master tape except that
a Sense Switch option has been provided. The setting of SENSE SWITCH 1 indi-
cates to the bootstrap whether a modifier is to be entered:

1. Raised - The bootstrap will assume the modifier to be zero, will
select the RPC-4500 Reader for input, and will load the program
in the locations given on the hexadecimal tape.

2. Depressed - The bootstrap will select the RPC-4500 Typewriter
for input and will halt on an input order. Type the modifier, in
track notation only, followed by a stop code. The bootstrap will
then select the RPC-4500 Reader as the input device for loading
the program.

After the program is stored in memory, the computer will halt. This occurs
before the transfer code is executed. Depressing START COMPUTE will cause
the transfer code to be executed and the program to begin operation.

NOTE: The bootstrap will always select the RPC-4500 Reader as the
input device for loading the program. If another device is to
be used, the RPC-4500 Reader will have to be de-selected
and the other device selected manually.

As the program tape is being read in, the bootstrap forms a checksum. After
every 100 words this checksum is compared against the checksum that ROAR
computed and punched on the tape. If the comparison is successful, reading
continues. If the comparison is not successful, an error printout occurs. The
typewriter executes a carriage return and prints: NO. The bootstrap then
initializes the word count and the checksum location and halts. To continue
loading, re-position the tape to the blank space preceding the erroneous tape
record and depress START COMPUTE. (If a checksum error occurs in one
portion of a sectionally assembled program, the entire program should be re-
loaded, not just the one section containing the error.)

WARNING: A checksum error indicates the possibility that a misread
word could have been incorrectly stored in memory, thus
destroying something previously stored. It is better pro-
cedure to start over, following a checksum error.

Should a parity error occur while loading the assembled program, the PARITY
MONITOR RESET light glows, and the computer halts. Examine the tape to de-

termine whether the character on the tape was incorrect or only misread. If

the character on the tape was incorrect, obtain a correct tape. If the tape was
correct and the bootstrap was entirely stored in memory, use the following
procedure. :

1. Depress STOP READ.

2 Depress PARITY MONITOR RESET.

3. - Read the 4 low-order bits in the Lower Accumulator to determine
whether the last character read (the one that caused the parity
error) entered correctly. If it did enter correctly, depress START
READ and the loading will continue. If it did not enter correctly:

Depress MASTER RESET.

Select TYPEWRITER TO COMPUTER.

Depress START READ (on-line).

Type zeros until the Upper and Lower Accumulator are clear.

pooTe

h.

i.

Depress MASTER RESET.

Position the tape so the character under the brushes is the
first character after the last stop code that was read.
Depress STOP READ.

Select READER TO COMPUTER.

Depress START READ (on-line).

If the computer does not stop on a checksum error at the end of the tape record,
the recovery was successful. If the checksum error does occur, the entire tape
should be re-loaded.

APPENDIX

R TR AR A AN AN NN AN AN NN NN AN AN N NN AN N NN NN N N N AN AN N A N N\

SUBROUTINE
LIBRARY TAPE

A Subroutine Library Tape may contain any number of subroutines. The order
in which the subroutines are listed is governed by only oune rule:

If one subroutine calls upon another, the subroutine called must not
precede the subroutine calling on it.

For example, if subroutine A calls on subroutine C, subroutine A must be on
the Library Tape preceding subroutine C. Then any time subroutine A is assem-
bled from the Library Tape, subroutine C will also be assembled.

A Subroutine Library Tape is constructed as follows:

1. *SBT*

2. Photo-Reader Search Code (13)

3. *SUB*(Number of entry codes for this subroutine)*(List of entry
codes, each followed by a stop code)

4, *RLR*(Region symbol)*(Number of sectors used)*(Any remarks)*
for each subroutine when applicable.

5. Subroutine.

Repeat items 2-5 for each subroutine.

7. To.complete the tape place *SBE* and *NIX**** after the last
subroutine.

o

If new subroutines are to be added to a Library Tape, it is recommended that
they precede the subroutine already on the Library Tape. In this way there
should be no conflict with the rule governing the order in which the subroutines
are listed.

To add new subroutines to a Library Tape:

1. Delete the *SBT* that is on the Library Tape.
Construct a new tape consisting of the subroutines to be added by
following steps 1-6 of the procedure described above.

3. Either splice the original Library Tape to the new one or duplicate
the original Library Tape as part of the new one.

APPENDIX

SPECIAL
ROAR TABLES

Symbol Table

ROAR uses a major part of the first half of memory for tabular storage during
assembly. The tables ROAR establishes in the lower part of memory are as
follows:)

Table) Tracks
Symbol Table 00 - 31
Equivalence Table 32 - 47
Availability Table 48 - 51

The Symbol Table consists of 32 consecutive tracks and contains the symbols
that are used in the program being assembled by ROAR. When a symbolic ad-
dress is encountered by ROAR, it is used to compute a value representing a track
of the Symbol Table. This track is then searched to determine whether the sym-
bol had been previously encountered. If the symbol is not found, ROAR will
search the track for a blank sector. If neither is present, ROAR will search

the successive tracks until either the symbol or a blank sector is found. The
presence of a blank sector indicates to ROAR that the symbol is new; therefore,
ROAR stores the symbol in that sector and computes an optimum address for it.
After determining (by reference to the Availability Table) that the address is
available, ROAR will store that address in the Equivalence Table. If the de-
sired symbol is in the Symbol Table, ROAR will refer to the Equivalence Table
to find the absolute address which was previously assigned to that symbol.

The first time the symbol is encountered by ROAR it is stored at a g of 31 in the
Symbol Table. That is, a 4-character symbol would be represented by bits 8
through 31; a 5-character symbol by bits 2 through 31. Bits 0 and 1 are used
to indicate the presence or absence of header tags in this manner:

Bit position 0 1 Meaning
0 0 Not tagged
0 1 Tagged by TAG
1 0 Tagged by SUB
1 1 Tagged by HED

If a-header tag is present, it is stored in bit positions 2 through 7 of the word.
For example, if the symbol ASKS is tagged by HED and the header tag thus
assigned is "M, " it would appear as

01 2345 6 7 8 9 1011121314156 1718 19 20 21 22 23 24 25 26 27 28 29 30 31
1.1,1.0[0.4,1,0[0,1,1,0[1,0,1,01,1,0,0[1,0,0,1/0,0,4,0[1,2,0,0

‘e \ [N \ J
>¢ v v

Tag M A S K S
Symbol ke———— 4-Character Symbolic Address ——
of Tag

Equivalence Table

Availability Table

ROAR would not confuse that symbol with the 5-character symbol MASKS, which
would appear as

0123456 7.8 910 11 1213 14 15 16 17 18 19 20 21 22 23 .24 25 26 27 28 29 30 31
©.0,1,0/0,1,1,0[0,2,1,0[21,0,1,0[1,2,0,0]1,00.1[0,0,1,0[1,1.0.0
M___ A AN PN K —)

No w 5-Character Symbolic Address 4
Tag

fa— -\

The Equivalence Table consists of 16 consecutive tracks. In this table are stor-
ed the absolute addresses assigned to the symbolic addresses used in the object
program. When a symbolic address is encountered by ROAR during an assembly,
the symbol is placed in the Symbol Table; an absolute address is computed and is
stored in the Equivalence Table.

If the symbol is stored in-an even-numbered track in the Symbol Table, the ab-
solute address will be stored in the Data-address field of the appropriate loca-
tion in the Equivalence Table. If the symbol is stored in an odd-numbered track
in the Symbol Table, the absolute address will be stored in the Next-address
field of the appropriate location in the Equivalence Table.

The Availability Table consists of 4 consecutive tracks. Each bit position repre-
sents a memory address and the value of the position (0 or 1) signifies the avail-
ability status of the address. ROAR uses the Availability Table as a record of
which locations have been used or reserved and which have not.

By using the PAV or PPA pseudo-command the programmer can have ROAR
punch a hexadecimal tape of the Availability Table. If listed on the typewriter,
the availability tape produces a list 64 lines long. Each line consists of 4 hexa-
decimal words, each preceded by a 5-digit decimal address. When converted to
a binary configuration, each hexadecimal word shows the availability status of a
given sector on 32 tracks. The presence of a 1 indicates the sector is available
on that track; a zero indicates the sector is unavailable. The first hexadecimal
word represents Tracks 000 through 031; the second, Tracks 032 through 063;
the third, Tracks 064 through 095; the fourth, Tracks 096 through 127. Tracks

123 through 127 are represented as being unavailable unless specifically made
available with an AVL pseudo-instruction. The track portion of the decimal
address contains the first track of the 32-track group, and the sector portion
denotes the sector concerned.

The following example represents a partial listing of an availability tape:

FRAV

00000 02085308% 03200 TD31FFFF% 06L,00 FFFFFFFF# 09600 FFFFFFEO#*
00001 3025CALT7# 03201 9TEFFFFF# 06401 FFFFFFFF% 09601 FFFFFFEO*

The first hexadecimal word on each line would be converted to binary as:

0-1.2.3 45 6 7 8 9101112131415 161718 19 20 21 22 23 24 25 26 27 28 29 30 31

0,0,0,0[0,0,1,0/1.1,0,0[1,0,1,1]0,14,0,1]1,0,4,2]4,1.0,1]1.0.0.0

©00,1,11000,0/0,0,1,0/0,1,0,1/1,1,0,0/1,0,1.0/0,1,0,0/0,2,1.1

Sector 00 is available on Tracks 6, 8, 9, 12, 14, 15, 17, 19, 20, 22, etc.
Sector 00 is unavailable on Tracks 0,1, 2, 3, 4, 5, 7, 10, 11, 13, 16, etc.

Sector 01 is available on Tracks 2, 3, 10, 13, 15, 16, 17, 20, 22, etc.
Sector 01 is unavailable on Tracks 0, 1, 4, 5, 6, 7, 8, 9, 11, 12, etc.

APPENDIX

N AN AN AN A AN AN AN AN NN AN AN NN AN AN NN AN AN NN NN N AN N AN AN N N N N

COMMAND ORDER CONSTANT PSEUDO OPTIMIZATION 3 DIGIT CODE
CODE TABLE 0-4 5-9 FLAG10 TYPE * 11-13 14-31
00 04 0 2 HLT
00 04 0 2 SNS
01 04 0 2 CXE
02 02 0 1 RAU
03 02 0 1 RAL
04 02 0 1 SAU
05 02 0 1 MST
06 02 0 1 LDC
07 04 0 2 LDX
08 01 0 2 INP
09 02 0 1 EXC
10 04 0 1 DVU
11 04 0 1 DIV
12 07 0 3 SRT
12 07 0 3 SLT
12 07 0 3 SRL
13 07 0 3 SLC
14 04 0 1 MPY
15 02 0 1 MPT
16 04 0 2 PRD
16 04 0 2 PRC
17 04 0 2 PRU
18 02 0 1 EXT
19 02 0 1 MML
20 02 0 1 CME
21 02 0 1 CMG
22 04 0 2 TMI
23 04 0 2 TBC
24 02 0 1 STU
25 02 0 1 STL
26 02 0 1 CLU
27 02 0 1 CLL
28 02 0 1 ADU
29 02 0 1 ADL
30 02 0 1 SBU
31 02 0 1 SBL
0 1 0 HEX
0 1 0 ALF
0 1 0 DEC
* TYPE 1 = Data-address + Constant; except, when indexed = Location +

Constant + 2

Location + Constant

Location + Data-address + Constant; except, SLC = Location +
Constant

- TYPE 2
TYPE 3

C-1

APPENDIX

\\‘\\\‘\\\\\\““‘\\\“\\\\“\\\\\\““‘\“\\‘\“\“\\\\\\\\\\“\\\\\ N

MODULO-
EIGHT TABLE

BASIC EXC DATA-
TRACK SETTINGS

SYMBOLIC ADDRESS EQUIVALENT MOD-8 SECTORS
RECRCO or RECRCS8 00 08 16 24 32 40 48 56
RECRC1 01 09 17 25 33 41 49 57
RECRC2 02 10 18 26 34 42- 50 58
RECRC3 03 11 19 27 35 43 51 59
RECRC4 04 12 20 28 36 44 52 60
RECRC5 05 13 21 .29 37 45 53 61
RECRC6 06 14 22 30 38 46 54 62
RECRC7 07 15 23 31 39 47 55 63
DATA
COMMAND ADDRESS EFFECT

EXC 098 No Operation.

EXC 198 Exchange Upper into Lower.

EXC 298 Exchange Lower into Upper.

EXC 498 Exchange Upper into Index.

EXC 898 Exchange Index into Upper.

EXC 1698 Change Lower to 8-word que.

EXC 3298 Change Lower to 1-word Mode.

EXC 4898 Reverse state of Lower.

EXC 6498 Reserved; if used, it is atr present an

effective No Operation.

APPENDIX

N AR AR AR AR AR AN A NN AN AN AN N NN AN NN NN AN NN NN N NN NN NN AN NS AN AN NN N\ N\ |

ALPHANUMERIC The following list gives the tape codes and the computer's internal configura-
CODES tions of the typewriter keyboard.

NUMERIC DEFINITION BINARY NUMERIC DEFINITION BINARY

00 Tape feed 000 000 32 g G 100 000
01 Carriage

return 000 001 33 h H 100 001
02 Tab 000 010 34 i 1 100 010
03 Backspace 000 011 35 j J 100 011
04 000 100 36 k K 100 100
05 Upper Case 000 101 37 1 L 100 101
06 Lower Case 000 110 38 m M 100110
07 Line feed 000 111 39 n N 100111
08 *Stop Code 001 000 40 o (0] 101 000
09 001 001 41 p P 101 001
10 001 010 42 q Q 101 010
11 End of Block 001 011 43 T R 101 011
12 001 100 44] S 101 100
13 Photo-Reader

EOM 001 101 45 t T 101 101
14 001 110 46 u U 101 110
15 001 111 47 v A% 101 111
16 0) 010 000 48 w W 110 000
17 1 ° 010 001 49 X X 110 001
18 2 " 010 010 50 y Y 110 010
19 3 # 010 011 51 A Z 110 011
20 4 3 010100 52 s S 110 100
21 5 A 010 101 53 = : 110 101
22 6 @ 010 110 54 [; 110110
23 7 & 010111 55] % 110111
24 8 ! 011 000 56 111 000
25 9 (011 001 57 111 001
26 a A 011 010 58 + ? 111 010
27 b B 011 011 59 - _ 111 011
28 c C 011 100 60 . . 111 100
29 d D 011 101 61 Space 111 101
30 e E 011 110 62 / + 111 110
31 f F 011 111 63 Code delete 111 111

E-1

APPENDIX

AR LR R R R R R RRE R R RNRNANAN NN AN NN NN N N N NN AN A A AN A NN

INPUT-OUTPUT D TRACK INPUT SELECTED OUTPUT SELECTED
SELECTION CODES
64 4500 Reader
(SYSTEM INCLUDES AN 65 4500 Reader 4500 Punch
RPC-4500 & RPC-4600) 66 4500 Reader ' 4500 Typewriter
67 4500 Reader 4500 Punch & Typewriter
68 4500 Typewriter
69 4500 Typewriter 4500 Punch
70 4500 Typewriter 4500 Typewriter
71 4500 Typewriter 4500 Punch & Typewriter
72 4410 Photo--fwd & Search
73 4410 Photo--rev & Search
74 4410 Photo~-fwd
75 4410 Photo--rev
76-79 Available
80 4600 Reader
81 4600 Reader 4600 Punch
82 . 4600 Reader 4600 Typewriter
83 4600 Reader 4600 Punch & Typewriter
84 4600 Typewriter :
85 4600 Typewriter ' 4600 Punch
86 4600 Typewriter 4600 Typewriter
87 4600 Typewriter 4600 Punch & Typewriter
88-94 Available
95 Master Reset—--Reset all units
96 Available
97 4500 Punch
98 4500 Typewriter
99 4500 Punch & Typewriter
100 Available
101 4500 Punch
102 : 4500 Typewriter
103 4500 Punch & Typewriter
104 Search Mode
105 Search Mode
106 4440 Punch
107-112 Available
113 : 4600 Punch
114 ‘ 4600 Typewriter
115 4600 Punch & Typewriter
116 Available
117 4600 Punch
118 4600 Typewriter
119 4600 Punch & Typewriter
120-124 Available
125 Copy mode on
126 Copy mode off
127 Reset output units

APPENDIX

h‘\\\““\\“\\\\“\‘\\““\\““\\““\\“\\“\““\\\\\\\\\\\\‘

SUMMARY OF
RPC-4000 COMMANDS

ORDER

SYMBOL

ORDER

NUMBER

DATA-ADDRESS

TRACK

SECTOR

MEANING

HLT

SNS

CXE

RAL

SATU

MST

00

00

01

02

03

04

05

000

#000

Any

Any

HALT

SENSE

Turn Branch Control OFF. If a

D-track bit and a depressed Sense

Switch correspond, turn Branch

Control ON, If D-track 64-bit is

present and a) or b) is true, turn

Branch Control ON:

a) Photo-reader search is not
completed.

b) Search completed, output de-
vice not ready.

COMPARE INDEX EQUAL

Turn Branch Control OFF. Com-
pare the bits of the D-address with
corresponding bits of the Index Re-
gister. If they are equal, turn
Branch Control ON.

RESET - ADD UPPER
Replace the content of U with the
content of memory location AB.

RESET - ADD LOWER
Replace the content of L with the
content of memory location AB.

STORE ADDRESS FROM UPPER
Store the Data-address portion of
U in memory location AB, leaving
the rest of the word unchanged.

MASKED STORE

Where U contains 1's, store L in
memory location AB; where U
contains zeros, leave memory
location AB unaltered.

ORDER

SYMBOL

ORDER

DATA-ADDRESS

NUMBER

TRACK

SECTOR

MEANING

LDC

LDX

INP

EXC

DVU

06

07

08

09

10

A

01
02

08
16
32
64

LOAD COUNT

Replace the content of the N-track
of the Index Register with the cor-
responding bits of memory loca-
tion AB. The next instruction will
be executed in Repeat Mode and
will be repeated as many times as
the number placed in bits 18-24 of
the Index Register.

LOAD INDEX REGISTER

Replace the content of the Data-
address field of the Index Register
with the number AB.

INPUT

If A =000, read in 4-bit,

If A = 064, read in 6-bit. (B is not
used.) If L is at 1-word length,
read into Double-length accumula-
tor. I L is at 8-word length, read
into L.)

No other values of the D-track
should be used, since any other
bits present will be duplicated
into every character read.

EXCHANGE

A may be any value within the
range 1< A< 64. B is normally
optimum, but may be any sector
value.

U —L

L —U

U —X

X —U

L to 8-word length

L to 1-word length

Unspecified.

Any combination of operations may
be coded with one EXC order.

DIVIDE UPPER

Divide U by the content of memory
location AB; retain the quotient in
U and the remainder in L. An
overflow will turn Branch Control
ON.

ORDER

SYMBOL

ORDER

NUMBER

DATA-ADDRESS

MEANING

TRACK

SECTOR

DIV

SRL

SLC

MPY

MPT

PRD

11

12

13

14

15

16

A

B

Divide the Double-length Accumu-
lator by the content of memory
location AB. An overflow will
turn Branch Control ON.

SHIFT RIGHT OR LEFT

If A=0, shift the Double-length
Accumulator right by B bits. If
A= 001, shift the Double-length
Accumulator left by B bits. An
overflow will turn Branch Control
ON.

SHIFT LEFT AND COUNT
Normalize the double-length num-
ber. Shift left until the most sig-
nificant bit is in bit positionl of U,
or until the sum of B and the num-
ber of shifts equals 64. After shift-
ing, clear L to zero and place
number of bits shifted in the D-
sector of L.

MULTIPLY

Clear L to zero. Multiply U by
content of memory location AB and
develop product in Double-length
Accumulator.

MULTIPLY BY TEN

If A= 000 multiply U by 10.
If A= 1 multiply U by 8.
If A= 2 multiply U by 2.
If A= 3 multiply U by 0.
If A= 064 multiply L by 10.
If A= 065 multiply L by 8.
If A= 066 multiply L by 2.
If A= 067 multiply L by 0.

If A equals any other number, the
result will be a multiplication of
U (if A<64) or L (if A >64) by 10,
8, 2, or zero plus some value be-
tween 1 and 8 at a q of 31.

PRINT DATA ADDRESS

If A<64, print (on the selected
output device) the character repre-
sented by A. If A>64, select the
input-output device(s)indicated by
A.

ORDER

SYMBOL

ORDER

NUMBER

DATA-ADDRESS

TRACK

SECTOR

MEANING

PRU

EXT

MML

CME

CMG

TMI

TBC

17

18

19

20

21

22

23

If the automatic interlock is not to
be overridden, B must be at least
1 greater than the optimum sector.

PRINT FROM UPPER

If A< 64, print the 4 high order
bits of U as channels 1-4 andtake
channels 5 and 6 from A. If A>64,
print the 6 high order bits of U, B
is normally unoptimum.

EXTRACT

Make U zero where memory loca-
tion AB contains zeros; do not
change U where AB contains 1's,

MASKED MERGE LOWER

In the bit positions where U con-
tains zeros, retain the content of
L. In the positions where U con-
tains 1's, replace content of L
with the content of memory loca-
tion AB,

COMPARE MEMORY EQUAL

Turn Branch Control OFF. Com-
pare U with memory location AB in
the bits where L contains 1's. If
they are equal, turn Branch Con-
trol ON. When executed in Repeat
Mode, the found sector plus 1 is
left in the N-sector of the Index
Register.

COMPARE MEMORY GREATER
Compare with memory under the
same conditions as CME except

~that Branch Control will be turned

ON if the content of AB is alge-
braically equal to or greater than
the content of U in the bits com-
pared.

TEST MINUS

If the sign bit of U contains a 1,
take the next instruction from AB,
If not, proceed to Next-address as
usual.

TEST BRANCH CONTROL

If Branch Control is ON, turn it
OFF and take the next instruction
from AB. If not, proceed to Next-
address as usual.

(ORDER

SYMBOL

ORDER

NUMBER

DATA-ADDRESS

TRACK | SECTOR

MEANING

STU

STL

CLU

CLL

ADU

ADL

SBU

SBL

24

25

26

27

28

29

30

31

STORE UPPER

Replace the content of memory
location AB with the content of U;
leave U unchanged.

STORE LOWER

Replace the content of memory
location AB with content of L;
leave L unchanged.

CLEAR UPPER

Replace content of memory loca-
tion AB with content of U; then
clear U to zero.

CLEAR LOWER

Replace content of memory loca-
tion AB with content of L; then
clear L to zero.

ADD UPPER

Add algebraically the content of
memory location AB to the content
of U, leaving sum in U. Overflow
will turn Branch Control ON.

ADD LOWER

Add algebraically the content of
memory location AB to the content
of L, leaving sum in L. Overflow
will turn Branch Control ON.

SUBTRACT FROM UPPER
Subtract algebraically the content
of memory location AB from the
content of U, leaving difference
in U. Overflow will turn Branch
Control ON,

SUBTRACT FROM LOWER
Subtract algebraically the content
of memory location AB from the
content of L, leaving difference in
L. Overflow will turn Branch Con-
trol ON.

APPENDIX

PR R R R RN TR RN AN AN NN NN NN NS NN NN NS N A A 8 A S A N N

SUMMARY OF ROAR
PSEUDO-COMMANDS

*RES*2000%2132*Any*
RESERVE A PORTION OF MEMORY
Reserve memory locations 2000 through 2132,
¥REG*/00051*612*Any*
ESTABLISH A REGION
Assign location 51 to /00001 and reserve locations 51 through 612.
*RLR*Q*21 *Any*
DESIGNATE A RELOCATABLE REGION

Reserve 21 locations for Region Q in the area designated as Subroutine
Tape Region Storage.

*PRE*OOOOSUBR*HM*WX*W*MX*XMX*
XXX XXX K *
PREPARE ROAR
Supply ROAR with the name of a subroutine and the six region reserva-
tions required for that subroutine as compiled by COMPACT,
*SET*ONE*TWO*BEGIN*FBR*SUBR**
ESTABLISH GLOBAL SYMBOLS
Enter the listed symbols in the Set Table as global symbols.
KRS HH*kk
RESTORE SYMBOL TABLE
Remove all non-global symbols from the Symbol Table and restore their
locations in the Availability Table.

RRS/00019%**

RELOCATE REGIONAL STORAGE
Relocate the base address of Region Slash upward by 19 words.

*AVL*12030%12150%Any*
MAKE A BLOCK AVAILABLE
Restore to the Availability Table all locations from 12030 through 12150.
*EQR*I/0*1500*Any*
EQUATE AND RESERVE LOCATION
Make symbol I/0O equivalent to location 1500 and reserve that location.
*EQV*1600*OUT*Any*
MAKE EQUIVALENT
Make symbol OUT equivalent to location 1600; when the symbol OUT is
first encountered in the object program, ROAR will reserve the loca—
tion.
KNIX*F*F*Any*
WAIT A SECOND
Wait for start signal before continuing.
KN E WHRKA py*
BEGIN NEW ASSEMBLY
Transfer to the initialization portion of ROAR.
*CLS***Any*
CLEAR SYMBOL TABLE
- Remove all symbols from the Symbol Table.
*END**START*Any*
END ASSEMBLY
Punch transfer address '""START, " punch checksum, clear word counter
and checksum counter, punch tape feeds, and then halt.
*TAG*A**Any*
DESIGNATE HEADER TAG
"‘Add header tag ""A" to all symbols having fewer than 5 characters.
K ED****
ASSIGN SEQUENTIAL HEADER TAG

ROAR will assign a unique tag to be added to all subsequent symbols
having fewer than 5 characters.

H-2

*NXT*DELA YD*NN*Any*

OPTIMIZE NEXT INSTRUCTION AS INDICATED
Assign the Data-sector in the instruction immediately following this pseudo-
instruction the value of the preceding Next-address sector plus 4 and in-

crease the sector portion of the Next-address field in that instruction by
NN.

/00007 *HEX*5F5E*10000*Any*. -
ESTABLISH A CONSTANT FROM HEXADECIMAL INPUT
The constant 108 (at a q of 27) is to be assigned the address equivalent
to /00007,
2T14*DEC*17%*16384*Any* "
ESTABLISH A CONSTANT FROM DECIMAL INPUT

The constant 214 (at a- q of 17) is to be assigned the address equivalent
to 2T14.

COL1*ALF*[=PRT**Any*

INPUT ALPHANUMERIC CHARACTERS
Read I=PRT in Six Bit Mode and assign it the address equivalent to
memory location COL1L.

*PAV**KAny*

PUNCH AVAILABILITY TABLE
ROAR will punch a hexadecimal tape of the Availability Table.

*¥PPA***Any*

PUNCH AND PRINT AVAILABILITY TABLE
ROAR will punch a hexadecimal tape of the Availability Table and will
type a decimal listing of the Table.

RAV

READ AVAILABILITY TABLE
This pseudo-command is the first one punched on the availability tape re-
sulting from a PAV or a PPA pseudo-instruction and is necessary if ROAR
is to input the tape. ’

PRINT SYMBOL TABLE

Print all symbols that are in the Symbol Table together with their equiva-
lent addresses.

*5CS***Any*

PUNCH FIVE-CHARACTER SYMBOLS
ROAR will search the Symbol Table for 5-character symbols and will
punch them in the form of EQR pseudo-instructions.

*PAS*RRANY*

PUNCH ALL SYMBOLS
ROAR will punch all symbols from the Symbol Table in the form of EQR
pseudo-instructions.

NOW*PRC*A*N-AD*Any*

PRINT A CHARACTER
The output resulting from this pseudo-instruction is the same as that
from a PRD with 26 in the track portion and 99 in the sector portion
of the Data-address field.

DO*SRT*5*N~AD*Any*

SHIFT RIGHT
The output resulting from this pseudo-instruction is the same as that
from an SRLwith 000 in the track portion and 05 in the sector portion of
the Data-address field.

NOR*SLT*13*N-AD*Any*

SHIFT LEFT
The output resulting from this pseudo-instruction is the same as that
from an SRLwith 001 in the track portion and 13 in the sector portion of
the Data-address field.

*¥COM*any statement desired*

COMMENT
ROAR will copy the statement from the input tape until a stop code is en-
countered.

E8)ED EH

COMPACT-GENERATED COMMENTS
ROAR will ignore all characters following this pseudo-command includ-
ing stop codes, unless the stop code is preceded by the character (56).

SBT

ENTER SUBROUTINE LIBRARY MODE
This pseudo-command causes ROAR to make certain internal changes in
order to assemble programs from a Subroutine Library Tape.

*SUB*4*] 0005*] 1005*] 2005*] 3005%

READ SUBROUTINE FROM LIBRARY TAPE
This pseudo-instruction precedes a program on the Subroutine Library
Tape and informs ROAR that the program has 4 entry points which are
10005,]11005, 12005, and]3005.

SBE
EXIT FROM SUBROUTINE LIBRARY MODE

This pseudo-command causes ROAR to restore to its original status any-
thing altered by the SBT.

H-5

COMMERCIAL COMPUTER DIVISIONV

SC4106 PRINTED IN U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	7-04
	7-05
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	A-01
	B-01
	B-02
	C-01
	D-01
	E-01
	F-01
	G-01
	G-02
	G-03
	G-04
	G-05
	H-01
	H-02
	H-03
	H-04
	H-05
	xBack

