
GIT-ICS-85/08

SOFTWARE TO-L~ ~. '--: .. --Eft,
USEf"S ~IDE

4th Ed. cion
Revised

May, 1985

T. A 11 en Ak i n
Terrell L. Countryman

Perry B. Flinn
Daniel H. Forsyth, Jr.

Jefferey S. Lee
Jeanette T. Myers
Arnold D. Robbins

Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

INTRODUCTION TO THE
GEORGIA TECH SOFTWARE TOOLS SUBSYSTEM USER'S GUIDE

The documents following this Introduction comprise the most recent version of the User's
Guide for the Georgia Tech Software Tools Subsystem for Prime 350 and larger computers. This
Guide brings together in one place all the tutorial and reference information useful to novice
and intermediate users of the Subsystem. It deals with several important aspects of Subsystem
use: the user interface in general, unavoidable aspects of the underlying operating system,
and the most-frequently used major commands. Each topic is covered in a separate document
(available individually) and all documents are collected together with this Introduction to
form the Guide itself. Experienced users, as well as beginning users who wish to expand their
knowledge of the Subsystem, will find the Software Tools Subsystem Reference Manual valuable.

The development of the Georgia Tech Software Tools Subsystem was originally motivated by
the text Software!22l!)) E ,~ \ <e,·nighan and P. u. Plauger, Addison-Wesley, 1976. That
text is still the basic reference for the tools that it covers, particularly Ratfor, the text
editor, the macro preprocessor, and the text formatter.

SOFTWARE TOOLS SUBSYSTEM TUTORIAL

USER'S GUIDE TO THE PRIMOS FILE SYSTEM

INTRODUCTION TO THE SOFTWARE TOOLS SUBSYSTEM TEXT EDITOR

USER'S GUIDE FOR THE SOFTWARE TOOLS SUBSYSTEM COMMAND INTERPRETER

USER'S GUIDE TO THE RATFOR PREPROCESSOR

SOFTWARE TOOLS TEXT FORMATTER USER'S GUIDE

Copyright (c) 1985 Georgia Institute of Technology

We are deeply indebted to Ann Richliew for editing this final edition of the Guide. Due to
her efforts, many typographical errors have been fixed, and many inconsistencies removed.

This guide was printed on the Xerox 9700 laser printer operated by the Georgia Tech Office of
Computing Services. The fonts supplied by Xerox for this printer do not include a boldface
grave accent ('). In boldface, this character prints as a cents sign (.). So, wherever the.
occurs, note that this should really be a grave accent (,).

Software Tools SUbsystem Tutorial

T. Allen Akin
Te~~ell ~. Count~yman

Pe~~y 8. Flinn
Daniel H. Fo~syth, ~~.

~eanette T. Myers
A~nold D. Robbins

Pete~ N. Wan

SchOOl of Info~mation and Compute~ Science
Geo~gia Institute of Technology

Atlanta, Geo~gia 30332

Ap~i 1, 1985

TABLE OF CONTENTS

Introduction .. 1
Gett i ng Started .. 1
Correcting Typographical Errors.. 2
Adjusting to Terminal Characteristics.. 2
Fin i sh i ng Up ... 3
Automatically Running the Subsystem :........ 4

Onl ine Documentation " 5
The 'Help' Command... 5
The ' Usage' Command .. 6

The File System and Related Utilities... 7
Creating Files ... (,. 7
Looking at the Contents of Files... 7
Deleting Files ... 7
The 'Lf' Command... 7
The Primos Fi 1e System... 8
Directories.. 9
Moving Around in the File System... 10

SUbsystem ComnLInlcation Services .. 11
The Subsystem Postal Service ... 11
The Subsystem News Serv i ce ... 11
Subsystem Real-Time Communications ... 12

Input/Output ... 13
Standard Input and Standard Output ... 13
I/O Redi rect ion .. 13
Examples of Redirected I/O Using 'Cat' ... 13

Using Primos from the Subsystem. 15
Executing Primos Commands from the Subsystem 15

Program Deve 1 opment ... 16
Developing Programs.. 16
The Subsystem Text Edi tor .. 16
Creat i ng a Program ... 17
Caveats for Subsystem Programmers .. 19

Errors .. 21
Recovering from Errors... 21

Advanced Techniques ... 23
Command F i 1 es .. 23
Pipes .. 23
Additional I/O Redirectors ... 23

Background. 25
AnCient History.. 25
Authors and Origins.. 26

- iii -

Foreword

The Software Tools Subsystem is a powerful collection of program development and text
processing tools developed at the Georgia Tech School of Information and Computer Science, for
use on Prime 350 and larger computer systems. The tutorial that you are now reading is inten­
ded to serve as your first introduction to the Subsystem and its many capabilities. The
information contained herein applies to Version 9.1 of the Subsystem as released in April
1985.

- i v -

Software Tools Subsystem Tutorial

Introduction

The Software Tools Subsystem is a programming system based on the book Software
!QQl!, by Brian W. Kernighan and P. ~. Plauger, (Addison-Wesley Publishing Company,
1976), that runs under the Primos operating system on Prime 350 and larger com­
puters. It allows much greater flexibility in command structure and input/output
capabilities than Primos, at some small added expense in processing time.

This tutorial is intended to provide sufficient information for a beginning
user to get started with the Subsystem, and to acquaint him with its basic features;
it is by no means a comprehensive reference. Readers desiring a more detailed
exposition of the Subsystem's capabilities are referred to the Software Tools
Subsystem Reference Manual and to the remainder of the Software !QQl! Subsystem
User's Guide, of which this Tutorial is a part.

(.

Gatt I ng Started

Since the Subsystem is composed entirely of ordinary user-state programs, as opposed to
being a part of the operating system, it must be called when needed. In other words, as far
as Primos is concerned, the Subsystem is a Single program invoked by the user. If the user
wishes to use the Subsystem, he or she must call it explicitly (it is possible to call the
Subsystem automatically on login; we will discuss how to do so a 11ttle further on).

The following example shows how a typical terminal session might begin. Items typed by
the user are boldfaced.

OK, login logtn_name (1)
(2) Password?

LOGIN NAME
Welcome to
Last login
OK, swt
Password:

(User 15) logged in Friday, 06 ~ul 84 14:22:07. (3)
PRIMOS version 19.2.
Friday, 06 Jul 84 14:06:32

Enter terminal type: tt
]

(4)
(5)
(6)
(7)

(1) A terminal session 1s initiated when you type the Primos LOGIN command.
"Login_name" here represents the login name that you were assigned when your account
was established.

(2) Primos asks you to enter your login password (if you have one) and turns off the
terminal's printer. You then type your password (which is not echoed) followed by a
newline (the key labelled "newline", "return", or "cr" on your terminal). Note:
password checking on login, as of Rev. 19, is now a standard part of Primos.

(3) Primos acknowledges a successful login by typing your login name, your process num­
ber (in parentheses), and the current time and date. (Note: At Georgia Tech, the
login aCknowledgement will look somewhat different from what is shown here.)

(4) Primos indicates it is ready to accept commands by typing "OK,".
this prompt, Primos is waiting for you to type a command.)
·~oft~are Iools") to start up the Subsystem.

(Whenever you see
Type 'swt' (for

(5) 'Swt' prompts you for your Subsystem password. This password will have been
assigned to you by your Subsystem Manager at the time he created your Subsystem
account. (Note: Under Georgia Tech Primos, Subsystem passwords are not issued and
not prompted for by 'swt'.) After you receive the prompt, enter your Subsystem pas­
sword. It will not be printed on the terminal.

(6) 'Swt' asks you to enter the type of terminal that you are using. Depending on your
local configuration, you mayor may not see this message. If you do see it, enter
the type of terminal you are using. You may obtain the name of your terminal type
by asking your system administrator, or you can enter a question mark (II?") and try
to find your terminal type in the list that 'swt' will ~isplay for you.

(7) The Subsystem's command interpreter prompts with "]", indicating that it is ready to
accept commands.

When the Subsystem command interpreter has told you it is waiting for something to do (by
typing the "]"), you may proceed to enter commands. Each command consists of a , command­
name', followed by zero or more 'arguments', all separated from each other by blanks:

command-name argument argument

The command name is necessary so that the command interpreter knows what it is you want it to

- i -

Software Tools Subsystem Tutorial

do. On the other hand, the arguments, with a few exceptions, are completely ignored by the
command interpreter. They consist of arbitrary sequences of characters which are made
available to the command when it 1s invoKed. For this reason, the things that you can type as
arguments depend on what command you are invoking.

When you have finished typing a command, you inform the command interpreter of this by
hitting the "newline" key. (On some terminals, this key is labeled "return", or ncr". If
both the "newline" and "return" keys are present, you should use "return".)

Incidentally, if you get some strange results from including any of the characters

II { } >

within a command name or argument, don't fret. These are called "meta-characters" and each
has a special meaning to the command interpreter. We will explain some of them later on. For
a more complete description of their mean,ing, see the ~ser's ~ ~ ~ Software !22l!
Subsystem Command Interpreter.

Correcttng Typographtcal Errors

If you are a perfect typist, you can probably skip this part. But, if you are like most
of us, you will make at least a few typos in the course of a session and will need to know how
to correct them.

There are three special characters used in making corrections. The "erase" character
causes the last character typed on the line to be deleted. If you want to delete the last
three characters you have typed so far, you should type the erase character three times. If
you have messed up a line so badly that it is beyond repair, you can throwaway everything you
have typed on that line in one fell swoop by typing the "kill" character. The result will be
that two backslashes (\\) are printed, and the cursor or carriage is repositioned to the
beginning of the line. Finally, the "retype" character retypes the present line, so you can
see exactly what erasures and Changes have been made. You may then continue to edit the line,
or enter it by striking the return key.

When you log into the Subsystem for the very first time, your erase, kill and retype
characters are control-h (backspace), DEL (RUBOUT on some terminals), and control-r, respec­
tively. You can, however, change their values to anything you wish, and the new settings will
be remembered from session to seSSion. The 'ek' command is used to set erase and kill charac­
ters:

ek erase kill

"Erase" should be replaced by any single character or by an ASCII mnemonic (l ike "BS" or
"SUB"). The indicated character will be used as the new erase character. Similarly, flki11"
should be replaced by a character or mnemonic to be used as the new kill character. For
instance, if you want to Change your erase and Kill characters back to the default values of
"BS" and "DEL", you can use the following command:

ek BS DEL

(By the way, we recommend that you 2.2!!2! use "en or Uk" for your erase or kill character. If
you do, you will be hard pressed to change them ever again!)

AdJusttng to T.".tnal Charact.rtsttcs

Unfortunately, not all terminals have full upper/lower case capability. In particular,
most of the older Teletype models can handle only the upper case letters. In the belief that
the use of "good" terminals should not be restricted by the limitations of the "bad" ones, the
Subsystem preserves the distinction between upper and lower case letters.

To allow, users of upper-ease-only terminals to cope with programs that expect lower case
input (and for other mysterious reasons), the Subsystem always knows what kind of terminal you
are using. You may have told it your terminal type when you entered the Subsystem, or your
system administrator may have pre-asstgned your terminal type. In any event, the Subsystem
initially decides whether or not you are using an upper-case-only terminal from this terminal
type.

You can find out what the Subsystem thinks about your terminal by entering the 'term'
command:

] t.,..
type tty buffer 2
-erase BS -escape ESC -kill DEL
-retype DC2 -eof ETX -newline LF
-echo -If -xoff -noinh -nose -novth -nolcase
-break
]

- 2 -

If the Subsystem thinks you are using an upper-ease-only terminal, you will see the entry
"-nolease" in the last 1 ine; otherwise, you will see "-lcase". If you see that you have
mistakenly entered the wrong terminal type, you can use 'term' to change it. To list the pos­
sible terminal types for your installation, enter

term ?

Then change your terminal type by entering

term <new terminal type>

If you are using an upper-case-only terminal, the Subsystem converts all subsequent upper
case letters you type to lower case, and converts all lower case letters sent to your terminal
by the computer to upper case. Since your terminal is also missing a few other necessary
characters, the Subsystem also activates a set of "escape" convent.lons to allow tl"e'l" t.., "!r":-~
other special characters not on their keyboard, and to provide for their printing. Wr,.n the
"escape" character (.) precedes another, the two characters together are ~ecognized by the
Subsystem as a single character according to the following list:

.A -> A (note that A -> a in "nolcase" mode)

.Z -> Z

.(-> {

.) -> }

• ->

.' ->

.! ->

All other characters are mapped to themselves when escaped; thus, ".-" is recognized as
If you must enter a literal escape character, you must enter two: " •• ".

11_ It

If the Subsystem thinks you have an upper-case-only terminal (i. e., you see "-nolcase"
in the output from 'term'), you must use escapes to enter upper case letters, since everything
would otherwise be forced to lower case. For example,

is used to transmit an upper case 'A', while

A

is used to transmit a lower case 'A'.

All output generated when "-nolcase" is in effect is forced to upper case for com­
patibility with upper-ease-only terminals. However, the distinction between upper and lower
case is preserved by prefixing each letter that was originally upper case with an escape
character. The same is true for the special characters in the above list. Thus,

Software Tools Subsystem

would be printed as

.SOFTWARE .TOOLS .SUBSYSTEM

under "-nolcase".

Fintshing Up

When you're finished using the Subsystem, you have several options for getting out. The
first two simply terminate the Subsystem, leaving you face to face with bare Primos. We cover
them here only for the sake of completeness, and on the off chance that you will actually want
to use Primos by itself.

First, you may type

) stop
OK,

which effects an orderly exit from the Subsystem's command interpreter and gives control to
Primos' command interpreter. You will be immediately greeted with "OK,", indicating that
Primos is ready to heed your call.

Second, you may enter a control-c (hold the "control" key down, then type the letter "c")
immediately after the "]" prompt from the command interpreter. TAKE HEED that this is the
standard method of generating an end-of-file signal to a program that is trying to read from
the terminal and is widely used throughout the Subsystem. Upon seeing this end-of-file
Signal, the command interpreter assumes you are finished and automatically invokes the 'stop'

- 3 -

Software Tools Subsystem Tutorial

command.

Finally. we come to the method you will prObably want to use most often. The 'bye' com­
mand simply ends your terminal session and disconnects you from the computer. The following
example illustrates its use. (Once again. user input is boldfaced.)

] bye (1)
LOGIN_NAME (User 15) logged out Friday. 06 Jul 84 15:30:00. (2)
Time Used: 01h OSm connect. 01m 06s CPU. 01m 10s I/O. (3)
OK. (4)

(1) You type the 'bye' command to end your terminal session.

(2) Primos acknowledges, printing the time of logout . .
(3) Primos prints a summary of ~i~es us~d.

The first time is the number of hours and minutes of connect time.

The second time is the number of minutes and seconds of CPU time.

The third time is the number of minutes and seconds spent doing disk i/O.

(4) Primos signals it is ready for a new login.

Note the the 'bye' command is equivalent to exiting the Subsystem and executing the Primos
LOGOUT command.

Automatically Running the Subsystem

With Primos Rev. 19. you can arrange to automatically run the Subsystem when you log in.
Simply put the command 'swt' into a file named 'login.comi' in the directory to which you will
be attached when you log in.

Primos will execute the command(s) in this file automatically. Furthermore, if your
profile directory is an ACL directory instead of a password directory, the Subsystem will not
even ask you for a password, since the file system provides the protection automatically. (If
this paragraph makes no sense to you at all, don't worry about it. It isn't all that
important.)

- 4 -

Software Tools Subsystem Tutorial

Dnl ine Docu18nt.tion

Users. old and new alike. often find that their memories need jogging on the
use of a particular command. It is convenient. rather than having to look something
up in a book or a manual. to have the computer tell you what you want to know. Two
Subsystem commands, 'help' and 'usage,' attempt to address this need.

The ' He 1 P' Command

The 'help' command is designed to give a comprehensive description of the command in
question. The information provided includes the following: a brief, one-line description of
what the command does: the date of the last modification to the documentation; the usage
syntax for thl command (what you must type to make it do what you ~·l\,.t .~ t:: ,jo;: a detailed
description of the command's features: a few examples: a list of filub referenced by the com­
mand; a list of the possible messages issued by the command; a list of the (.command's known
bugs or shortcomings; and a cross reference of related commands or dJcumentation.

'Help' is called in the following manner:

help command-1 command-2 .. ,

If help is available for the specified commands, 1t 1s printed: otherwise, 'help' tells you
that no information 1s available.

'Help' will only print out about as many lines as will fit on most CRT screens, and then
prompt you with a message ending "more?". This allows you to read the information before it
rolls off the screen. and also lets you stop getting the information for a command if you find
you're not really interested. To stop the output, just type an "n" or a "q" followed by a
NEWLINE. To continue, you may type anything else, including just a NEWLINE.

Several special cases are of interest. One. the command "help" with no arguments is the
same as "help general". which gives general information on the Subsystem and explains how to
use the help command. Two, the command "help -i" produces an index of all commands supported
under the Subsystem, along with a short description of each. Finally, "help bnf" gives an
explanation of the conventions used 1n the documentation to describe command syntax.

Examples of the use of 'help':

help
help -t
he 1 P rp eel term
help bnf
help gutde

(1)
(2)
(3)
(4)
(5)

(1) General information pertaining to the Subsystem, along with an explanation of the
'help' command, is listed on the terminal.

(2) A list of currently supported commands and subprograms, each with a short descrip­
tion, is listed on the terminal.

(3) Information on the Ratfor preprocessor, the Software Tools text editor, and the
terminal configuration program is printed on the terminal.

(4) A description of the notational conventions used to describe command syntax is
printed.

(5) Information on how to obtain the Subsystem User's Guides is listed on the terminal.

Since beginning users frequently find printed documentation helpful, you may find the
following procedure useful. Unfortunately, it involves many concepts not yet discussed, so it
will be rather cryptic; nevertheless. it will allow you to produce a neatly-formatted copy of
output from 'help'.

help -p I os >/dev/lpS/f
help -p rp s. term I os >/dev/lps/f
help -p -t I os >/dev/lpS/f

(1)
(2)
(3)

(1) The general information entry is printed on the line printer.

(2) Information on the Ratfor preprocessor, the screen editor, and the terminal con­
figuration program is printed on the line printer.

- 5 -

Software Tools Subsystem Tutorial

(3) The index of available commands and subprograms is printed on the line printer.

The 'Usage' Command

Whereas 'help' produces a fairly comprehensive description of the command in question,
the 'usage' command gives only a brief summary of the syntax of the command. The syntax is
expressed in a notation known as Backus-Naur Form (BNF for short) which is itself explained by
typing "help bnf".

The 'usage' command is used in the same way as the 'help' command, as the following exam­
ples illustrate.

usage usage
usage f1lt °M';1

(1) The syntax of the 'usage' command is printed.

(1)
(2)

(2) Usage information on the Software Tools text formatter and the 'help' command 1s
printed.

- 6 -

Software Tools Subsystem Tutorial

The File System and Related Utilittes

Users spend much of their time creating, deleting, modifying and manipulating files.
The utilities discussed in this section perform these tasks.

Creating Files

The most common way to create a file is to write the contents of a text editor to a new
filename. Another common way (especially for creating small files) is to use the 'cat' com­
mand. Both of these methods are covered later in this guide. Right now, we prefer that you
not be concerned with creating large, elaborate files or with knowing about more advanced
features of the Subsystem. Instead, we will show you a simple method for creating one-line
files. (Although you may not understand the com'1lanc' :'of',"r. at this point in time, don't worry
because you will by the time you get through the tutorial).

(

You can use the command 'echo' to create file~ as in the examples below:

] echo xxxx >f11e of x
] echo contents of myfile >myftle

(1) Creates a file named "file_of_x" containing ·xxxx".

(1)
(2)

(2) Creates a file named "myfile" containing the line ·contents of myfile".

In case you were wondering, you can only use letters, digits, underscores, and periods in
file names. (You can actually use a few other characters in names, but that can get you into
trouble.) The names must not start with a digit, and can be no longer than 32 characters.

Looking at the COntents of Files

There are several ways of looking at the contents of a file. One command that you can
use is the 'cat' command. 'Cat' is an alias for Kernighan and Plauger's program 'concat',
which appears on page 78 of Software I2el!. It has a simple function: to concatenate the
files named in its argument list, and print them on standard output. If no files are named,
it takes input from standard input. (More on standard input and output in a subsequent sec­
tion, which has examples USing 'cat.' For now, just assume that standard input comes from the
terminal and standard output goes to the terminal.)

Here are some samples of how to use 'cat'. For more important and useful ones, see the
following section.

Cat myf t1 e
cat part1 part2 part3
cat

(1)
(2)
(3)

(1) Prints the file named "myfile" on the user's terminal; l.e., "myfile" is
concatenated with nothing and printed on standard output.

(2) Prints the concatenation of the files named ·part1", ·part2", and "part3" on the
terminal.

(3) Copies standard input to standard output. On a terminal, this would cause anything
you typed to 'cat' to be echoed back to you. (If you try this, the way to stop is
to type a control-c as the first character on the line. As we said before, lots of
programs use this end-of-file convention.)

Deleting Files

Sooner or later, you will find it necessary to get rid of some files. The 'del' command
serves this need very nicely. It is used like thiS:

del file1 file2 file3

to remove as many files as you wish. Remember that each file can be specified by a pathname,
so you are not limited to deleting files in your current directory; but of course, you can
delete only files that belong to you.

The I Lf I Connand

The 'lf' (for "list files") command is the preferred method for obtaining information
about files. Used by itself without any arguments, 'lf' prints the names of all the files in

- 7 -

Software Tools Subsystem Tutorial

your current directory in a multi-column format. This, however, is by no means all that 'lf'
can do. In fact, used in its general form, an 'lf' command looks something like this:

lf options files

The "files" part is simply a list of files and/or directories that you want information
about. If the "files" part is omitted, 'lf' assumes you mean the current directory. For each
file in the list, information about that file is printed; for each directory listed, informa­
tion about each file within that directory is printed.

The "options" part of the command controls what information is to be printed. It is com­
posed of a dash ("_") followed by a string of single character option specifiers. Some'of the
more useful options are th! following:

~c p~int information in a single column format.

d for each directory in the list, print information about the directory itself instead
of about its contents.

print all known information about the named files.

w print the size (in 1S-bit words) of each named file.

(As always, if you would like complete information on 'lf', just use 'help'.)
above, if no options are given, then only the names of the files are printed.

Here are some examples of 'lf' commands:

1f
1f -1
1f //lkj
1f -cw //lkj .extra=/news

(1)
(2)
(3)
(4)

As we said

(1) List the names of all files in the current directory, in a multi-column format.

(2) List the names of all files in the current directory, including all information that
is known about each file.

(3) List the names of all fi les in the directory named "lkj".

(4) List the names and sizes of lkj's files in a Single-column format, followed by the
names and sizes of all files in directory ""'extra-/news".

The Prtmos Fil. Syst ..

Primos files are stored on several disk packs, each with a unique name. Each pack
contains a master file directory (mfd), which contains a pointer to each primary directory on
that disk. Each of these primary directories (one for each user, and several speCial ones for
the system) may contain sub-directories, which may themselves contain further sub-directories,
ad infinitum. Any directory may also contain ordinary files of text, data, or program code.
This diagram shows a simple structure that we will use 'as an example:

/
lf

/
bin

I
I

cat
\

sys
I
I

extra
I
I

users

\
users

/
edward

/ I
p1 p2

\
kate
I \
p2 kdir

I
I

kfl

In this example, the mfds are named ·sys· and ·users" , while there are primary directories
named "bin", "extra", ".dward", and "kate".

,)

The Subsystem allows you to specify the location of any file with a construct known as a
"pathname." Pathnames have several elements.

The first characters of a pathname may be a slash, followed by a disk pack name or
2S!!l logical disk number, followed by another slash (e.g. "sys" in the diagram
above could be referred to as "/0/" or "/sys/"). The named disk is the starting
point for the search of the rest of the pathname. The disk name may be omitted,
implying that all disks are to be searched. For example, a//edward" would cause a
search for a primary directory named "edward" starting its search at "sys" and then
·users· where "//edward" is found.

- 8 -

When a pathname does not begin with a slash, the file search operation begins with
your current directory. Vou can think Of your current directory as your "locationR
in the file system at the time you use the pathname. For instance. if your current
directory was "/users/edward" and you used the name "p2" , you would get the file
"p2" under "/users/edward"; however, if your current directory was "/users/ka.te" you
would get the file "p2" under "/users/kate". Later, you wi" see how to find out
the name of your current directory and how to "move around" the file system by
changing your current directory.

The remainder of the pathname consists of "nodes", separated by slashes. Each node
contains the name of a sub-directory or a file. (For revisions of Primos below Rev
19. which have passworded directories, you may have to specify nodes as a name pos­
sibly followed by a colon (n:p) and a password.) For example

are nodes.

kdir
extra
sys:xxxxxx (pre-Rev 19 Primos)

When nodes are strung together, they describe a path to a file, from anywhere in the file
system. Hence the term Ppathname." For example,

/sys/bin

names the primary directory named Rbin", located on the disk whose packname is ·sys".

//extra/users

names the file named "users" in the primary directory named "extra" on some unknown disk (all
disks will be searched);

p2

names the file "p2" in "/users/edward" if your current directory is "/users/edward" or the
file "p2" in "/users/kate" if your current directory is "/user/kate".

kdir:pwd/kfl

names the file "kfl" in the directory "kdir" (with password "pwd"), in a pre-Rev 19 Primos
file system, only if your current directory is "/user/kate".

Certain important Subsystem directories have been given alternative names, called "tem­
plates," in order to allow the Subsystem manager to change their location on disk without
disturbing existing programs (or users). A template consists of a name surrounded by equals
signs ("""). For example, the Subsystem command directory is named "bin". which could be
referred to on a standard system as "//bin." If the Subsystem Manager at your installation
had changed the location of the command directory, the command above would not work. To avoid
this problem, you could use the template for "bin", "-bina ". which would correctly reference
"bin" regardless of its location. There exist templates for all of the most important Sub­
system directories; for more information on them, and on pathnames in general. see the User's
~ 12 !h! Primos fil! System.

A word on upper and lower case: The Primos file system does n2! distinguish between
upper and lower case, thus "//BIN", "//Bin", and "//bin" are all the same. However, the SUb­
system template mechanism s:!2!! distinguish between upper and lower case, so "-BIN"", ""Bin"",
and P-bin-" are three different templates. This can be a subtle trap for the unwary.

Director-ie.

Directories can be created with the 'mkdir' (·ma~e st1.!:ectory) command; e.g:

~dtr /users/edward

will create the directory "edward" under the master file directory ·users". The command

IIIkdt r edward

will create the directory "edward" in the current directory.

As mentioned above, the 'lf' command can be used to list information about directories
and the files and subdirectories contained therein; e.g.,

If /users/edward
If edward

- 9 -

Software Tools Subsystem Tutorial

Finally, directories, 1 ike files, can be deleted with 'del'. However, unlike files,
directories cannot be deleted until all the files and subdirectories contained in them have
been deleted. If "edward" is an empty directory it can be deleted with the command

1 de 1 edward

If "edward" is not an empty directory then it can be deleted with the command

de 1 -ds edward

where the the "-ds" specifies to delete the contents of the directory, then the directory
itself.

Moving Around tn the Ft 1e syst_

You can change your current directory with the 'cd' (change directory) command. Simply
type 'cd' followed by the pathname of the directory to which you wish to move and. as long as
its a valid directory name, you will be promptly deposited there; e.g.

] cd /users/edward
] cd kdtr

Note that in the second example, since the pathname 'kdir' is not preceded by slashas, your
current directory must be "/users/kate" for it to work.

You can move "up" in the file system with

lcd\

For instance, if you were in "/users/kate/kdir" and you typed "cd \", your current directory
would then be "/user/kate".

Finally, if you get lost, you can find out where you are with the command

1 cd -p

It will print the full name of your current directory.

- 10 -

Software Tools Subsystem Tutorial

Subsystem Communication Services

Communication utilities are becoming increasingly important in today's computer
systems. The Subsystem, in keeping up with the times, offers as its most important
communication facilities a postal and news service and a real-time communication
system.

The Subsystem Postal Service

In order to faCilitate communication among users, the Subsystem supports a postal service
in the form of the 'mail' command. 'Mail' can be used in either of two ways:

III t'

which looks to see if you have been sent any mail, prints it on your terminai, and asks if you
would like you. mail to be saved, or

which accepts input from standard input and sends it to the mailbox of the user whose login
name is "login name". Used in this fashion, 'mail' reads until it sees an end-of-file. From
the termina1,- this means until you type a contro1-c in column 1. Your letter is postmarked
with the day, date and time of mailing and with your login name.

Whenever you enter the Subsystem (by typing 'swt') a check is made to see if you have
received any mail. If you have, you are told so. When you receive your mail (by typing
'mail'), you are asked if you want it to be saved. If you reply "n", the mail you have just
received will be discarded. Otherwise. it is appended to the file .. ·mai1fi1e .. •• which is
located in your profile directory. (You can look at it with 'cat'. print it with 'pr'. or do
anything else you wish to it. simply by giving its name to the proper command. For example,

cat -mat 1 f t le=

would print all your saved mail on your terminal.)

If you have declared the shell variable" mail check", (but not set it). the
check your mail file every 60 seconds, to see if-it has increased in size. If it
shell will tell you, ·You have new mail." You may then read your mail with
program. If you want it to check you mail more frequently, Dr less frequently, you
to the number of seconds between checks. For instance:

declare _mail_check" 300 # check mail every five minutes

shell will
has, the

the'mai1'
may set it

By default, "_mail_Check" will not be set for new users, so the shell will only check your
mail once, when the Subsystem is first cranked up. (See the User's ~ ~ the Software
Tools Subsystem Command Interpreter for a more detailed discussion of the use of shell
variables.

Due to the nature of the file system, setting "_mail_check"
different than setting it to four. At Georgia Tech, the mail
several machines, so, since the shell has to go across Primenet,
to a fairly large value, say 300, for once every five minutes.

The SUbsystem News Servtce

to less than four will be no
directory is shared among
you should set "_mail_cheek"

Whereas 'mail' is designed for person to person communication, the Subsystem news service
is intended for the publication of articles that appeal to • more general interest. The news
service is implemented by three commands: 'subscribe', 'publish' and 'news'. The use of the
first two should be obvious.

If you wish to subscribe to the new service, simply type

subscrtbe

and then, whenever anyone publishes an article, a copy of it will be delivered to your news
box. (You need subscribe to the news service only once; all subscriptions are perpetual.)
Whenever you enter the Subsystem, as with mail, a check is made to see if there is anything in
your news box; if there is, you are given a message to that effect.

Having gotten such a message, you may then read the news at your convenience by typing

news

The news will be printed out on your terminal and then you will be asked whether 01" not you
want to save it. If you say "yes", it will be left in your box and you may read it again at a

- 11 -

Software Tools Subsystem Tutorial

later date; otherwise, it is discarded. There are other ways to use the 'news' command that
are fully explained by 'help'.

Now suppose you have a. hot story that you want to publ ish. All you have to do is create
a fi le (let's call it "article") whose first line is the headl ine, followed by the text of the
story. Then you type

1 publish articl.

and your story will be delivered to all subscribers of the news service. If you are a sub­
scriber yourself, you can check this with the 'news' command. In addition, a copy is made in
the news archives.

If you find that you have published the wrong article or if you want to remove an out­
dated one, you can do a •

] retract <article number>

to remove the article, where <article number> is the sequence number obtained from the news
index ("news -in will give you such an index). A retraction notice will be delivered to all
subsCribers who have se.n the article, and the article will simply be removed from the news
boxes of subscribers who have not yet seen it. If you are only removing an outdated article,
then using

] retract -q <articl. number>

will quietly remove all traces of the article, leaving no retraction notices behind to disturb
those who have seen it.

Subsystem Real-Ttme communications

As if 'mail' and 'news' were not enough, the Subsystem offers still another way to com­
municate with your fellow user, by means of the 'to' command. 'To' allows you to communicate
with other logged-in users on a real-time basis; messages that are sent to another user by the
command

1 to 1 ogt n_n_ <message>

will be retrieved by the user whose login name is "login_name" the next time his shell is
ready for a command. Contrast this behavior to that of 'mail', where the message must be
retrieved by an action on the part of the addressee. If <message> contains any of the shell's
metacharacters, it must be enclosed in quotes, as in:

] to all.n "Where are you, and what are you CIoing?"

If you want to send a multi-line message, 'to' will read your message from standard input
(just like most other Subsystem programs), so that the only argument you would specify in this
case would be the login_name. As always, a control-c in column 1 will generate an end-of-fi1e
to terminate your input.

Messages are only retrieved when the shell is ready for the next command, so a user who
is running a long program may not see your messages until long after you have sent them. If
he logs out before he sees your messages, they will sit there, waiting to be retrieved until
the next time he logs in.

To alleviate this somewhat, the Subsystem screen editor, 'se', will notify you if there
1s a message waiting for you. See the ·om" command in the help on 'se' for details.

- 12 -

Software Tools Subsystem Tutorial

Input/Output

One of the most powerful features of the Software Tools Subsystem is its hand1~
ing of input and output. As much as posSible, the Subsystem has been designed to
shield the user from having to be aware of any specific input or output medium; it
presents to him, instead, a standardized interface with his environment. This
facilitates use of programs that work together, without the need for any esoteric or
complicated programming techniques. The ability to combine programs as cooperating
tools makes them more versatile; and the Software Tools Subsystem makes combining
them easy.

Standard Input and Standard Output

Programs in the Subsystem do not have to be written to read and write to specific
devices. In fact, most commands are written to read from "anything" and wri-re to "anything."
Only when the command is executed do you specify what "anything" is, which could be your
terminal, a disk file, device etc. "Any things" are more formally known as 'standard ports';
those available for input are called 'standard inputs', and those available for output are
called 'standard outputs'.

Standard inputs and standard outputs are initially assigned to your terminal, and revert
back to those assignments after each program terminates. However, you can change this through
a facil ity known as "input/output redirection" (or "i/O redirection" for short).

I/O Redirection

As we mentioned, standard input and output are by default assigned to the terminal.
Since this is not always desirable, the command interpreter allows them to be redirected
(reassigned) to other media. Typically, they are redirected to or from disk files, allowing
one program's output to be saved for later use perhaps as the input to another program. This
opens the possibility for programs to co~operate with each other. What 1s more, when programs
can communicate through a common medium such as a disk file, they can be combined in ways
innumerable, and can take on functions easily and naturally that they were never individually
designed for. A few examples with 'cat' below, will help to make this clear.

However, let us first examine the techniques for directing standard inputs and standard
outputs to things other than the terminal. The command interpreter supports a special syntax
(called a funnel) for this purpose:

pathname> (read "from" pathname)

redirects standard input to come from the file named by "pathname";

>pathname (read "toward" pathname)

redirects standard output to go to the file named by "pathname". For example, suppose you
wanted a copy of your mail, perhaps to look at slowly with the editor. Instead of typing

mail

which would print your mail on the terminal, you would type

mai 1 >mymai 1

which causes your mail to be written
is important to realize that 'mail'
it is printing mail on the terminal.
write need not be aware of what file

to the file named "mymal1" in the current directory. It
does nothing special to arrange for thiS; it still thinks
It is more important to realize that any program you

or device it is writing on or reading from.

A bit of terminology from Software Tools: programs which read only from standard input,
process the data so gathered, and write only on standard output, are known as "filters." They
are useful in many ways.

Examples of Redirected I/O Using 'Cat'

Now, 'cat' does not seem like a particularly powerful command; all it can do is
concatenate files and do some peculiar things when it isn't given any arguments. But this
behavior is deSigned with redirected i/O in mind. Look through the following examples and see
if they make sense.

cat file1 >file2

What this does is to copy "file1" into "file2". Note that since 'cat' sends its output to
standard output, we have gained a copy program for free.

~ 13 ~

Software Tools Subsystem Tutorial

cat fi1e1 fi1e2 fi1e3 >tota1

This example
named "tota 1 " .
filename" .

concatenates "fi1e1",
This is probably the

"f1182", and "file3" and places the result in the file
most common use of 'cat' besides the simple "cat

You need to be careful with the files to which yOU redirect i/o. In the above example,
if a file by the name of "total" already exists, its contents will be replaced by the
concatenation of "fi1e1", "fi1e2" and "file3". Similarly if you try the command

cat fi1e1 fi1e2 fi1e3 >fi1e1

disaster results as it first clobbers "file1", destroying its contents for good.)

cat >test

This is an easy way to create small files of data. 'Cat' does not see any filenames for it to
take input from, so it reads from standard input. Now, notice that where before, this simply
caused lines to be echoed on the terminal as they were typed, each line is now placed in the
file named "test". As always, end-of-file from the terminal is generated by typing a
control-c in column 1.

One thing that is extremely important is the placement of blanks around i/o redirectors.
A funnel (">,,) must not be separated from its associated file name, and the ent1re redlractor
must be surroundedbyat least one blank at each end. For example, "file> cat- and "cat
>fiTe" are correct. but "file > cat", "cat > file", "file>cat" and "cat>file" are all
incorrect, and may cause catastrophic results if used!

You can see that more complicated programs can profit greatly from this system of i/o.
After al" from a simple file concatenator we have gained functions that would have to be per­
formed by separate programs on other systems.

There are other, more complicated i/o redirectors available to you. See the User's Guide
!2t !h! Software Tools SUbsystem Command Interpreter for a full, in-depth discussion o~
facilities the shell prOVides.

- 14 -

Software Tools Subsystem Tutorial

Using Prtmos from the Subsystem

Unfortunately, a few functions of Primos and its support programs have not been
neatly bundled into the Subsystem. The Subsystem commands that address this problem
are the topic of this section.

Executing Primos COIIInancls from the Subsystem

The commands 'x' and 'primos' can be used to access Primos programs and commands without
having to go through the work of leaving and re-entering the Subsystem.

'X' may be used in either of two ways; the first is

x Pr i mos -connancl

This is the method of choice for executing a single Primos command. You will probably want to
put double quotes around the Primos command to keep the Subsystem from becoming annoyed at
metacharacters such as ">" and "<" being used in the Primos command.

The second way to use 'x' is to use it without arguments. Here is an example:

] x
ok, status net
ok, message -9 now
Hi there.
ok, <control-c>
]

This method allows many Primos commands to be executed. In this case, 'x' reads a line at a
time and passes it to the Primos command interpreter for execution. If the Primos return code
is positive. 'x' continues to the next line; if not. 'x' exits to the Subsystem. 'X' will
also return to the SUbsystem when it encounters a control-c or a Primos REN. The prompt .
.. ok is in small letters to remind you that it is the command 'x' prodUCing the prompt and
not Primos.

The second command. 'primos'. invokes a new level of the Primos command interpreter from
the Subsystem. (With this command. the Primos command interpreter prints the prompt "OK," and
your commands are received directly by it.) You can return to the Subsystem by typing the
Primos REN command.

- 15 -

Software Tools Subsystem Tutorial

Program Development

One of the most important uses of the Software Tools Subsystem is program
development. The Ratfor language presented in Software Tools is an elegant language
for software developers, and is the foundation of the Subsystem; virtually all of
the Subsystem is written in Ratfor.

Developing Programs

To acquaint you with the several steps of program development, we present an example in
which we develop a simple Ratfor program. We use a Ratfor example here because Ratfor is the
most widely used language 'n the Subsystem --- but for a few lines here and there, the entire
Subsystem is written in Ratfor. If you want to learn more ab~ut ~atfor programming, you can
read the User's §Y!S! !2t!b! Ratfor Preprocessor. Meanwhile, on with the example ..

The SUbsystem Text Editor

The first program most users will see when they wish to create another program is 'ed',
the Subsystem text editor, or if you have a crt, 'se', the screen editor. A complete descrip­
tion of either is beyond the scope of this tutorial, but a short list of commands (accepted by
both the line editor and full screen editor) and their formats, as well as an example using
'ed,' should help you get started. For more information refer to Introduction 12.ill! Software
!22l! ~ Editor and of course to Software I22l!.

'Ed' is an interactive program used for the creation and modification of "text". "Text"
may be any collection of characters, such as a report, a program, or data to be used by a
p'rogram. All editing takes place in a "buffer II , which is nothing more than 'ed's own private
storage area where it can manipulate your text. 'Ed's commands have the general format

<line number>,<line number><command>

where, typically, both line numbers are optional. Commands are one letter, sometimes with
optional parameters.

The symbol <line number> above can have several formats. Among them are:

an integer, meaning the line with that number. For example, if the integer is 7,
then the 7th line in the buffer;

a period ("."), meaning the current line;

a dollar sign ("$"), meaning the last line of the buffer;

/string/, meaning the next line containing "string";

string, meaning the previous line containing "string";

any of the above expression elements followed by "+" or "_" and another expression
element.

All commands assume certain default values for their line numbers. In the list below,
the defaults are in parentheses.

Command

(.)a

(. , •)d

e filename

(• , .)p

q

Action

Appends text from standard input to the buffer after the line
specified. The append operation is terminated by a line containing
only a periOd in column 1. Until that time, though, everything you
type goes into the buffer.

Deletes lines from the first line specified to the last line
specified.

Fills the buffer from the named file. Anything previously in the
buffer is lost.

Prints lines from the first line speCified to the last. l,Sp prints
the entire buffer.

Causes 'ed' to return to the command interpreter. Note that unless
you have given a "w· command (see below), everything you have done to
the buffer is lost.

- 16 -

Software Tools Subsystem Tutorial

(.) r f i 1 ename Reads the contents of the named file into the buffer after the
specified line.

(.,.)s/old/new/p Substitutes the string "new" for the string ·old". If the trailing p
is included, the result is printed, otherwise 'ed' stays quiet.

(1 , S) w f i 1 ename Writes the buffer to the named file. This command must be used if
you want to save what you have done to the buffer.

7 Prints a longer description of the last error that occurred.

If 'ed' is called with a filename as an argument, it automatically performs an "e" com­
mand for the user.

'Ed' is extremely qUiet. The only diagnostic message issued (except in a time of dire
distress) is a question mark. Alm~st always it is obvious to the user what is wrong w·,., '~r'
complains. However, a longer description of the problem can be had by typing "7" as the .looIxt
command after the error occurs. The only commands for which 'ed' pro~i·des unsol icited
information are the "e", "r", and ·w" commands. For each of these, the number of lines 1·ans­
ferred between the file and 'ed's buffer is printed.

You should note that specifying a line number without a command is identical to speCify­
ing the 1 ine number followed by a "p" command; i.e., print that 1 ine.

Creat i ng a Progl"UI

Now that we have a basic knowledge of the editor, we should be able to use it to write a
short program. As usual, user input is boldfaced.

ad
a
/I now --- pl"int the cUl"rent time

define(TIME_OF_DAY,2)

chal"actel" now (10)

call date (TIME OF DAY, now)
call pl"int (SToOUT7 "Now: *s*n"s, now

stop
end

w now.1"
1 1
q
]

(1)
(2)
(3)

(4)

(5)

(6)
(7)

(8)
(9)
(10)
(11)
(12)
(13)
(14)

(1) You invoke the editor by typing "ed" after the command interpreter's prompt. 'Ed,'
in its usual soft-spoken manner, says nothing.

(2) 'Ed's "a" command allows text to be added to the buffer.

(3) Now you type in the text of the program. The sharp sign "#" introduces comments in
Ratfor.

(4) Ratfor's built-in macro processor is used to define a macro with the name
"TIME_OF_DAY". Whenever this name appears in the program, it will be replaced by
the text appearing after the comma in its definition. This teChnique is used to
improve readability and allow quick conversions in the future.

(5) An array "now", of type character, length 10, is declared.

(6) The library routine 'date' is called to determine the current time.

(7) The library routine 'print' is called to perform format~ed output to the program's
standard output port.

(8) The "stop" statement causes a return to the Subsystem command interpreter when
executed.

(9) The "end" statement marks the end of the program.

(10) The period alone on a line terminates the "a" command. Remember that this must be
done before 'ed' will recognize any further commands.

- 17 -

Software Tools Subsystem Tutorial

(11) With the "w" command, 'ed' copies its buffer into the file named "now.r".

(12) 'Ed' responds by typing the number of lines written out.

(13) The "q" command tells 'ed' to quit and return to the Subsystem's command
interpreter.

(14) The Subsystem command interpreter prompts with a right bracket, awaiting a new com­
mand.

Now we are talking to the command interpreter again. We may now use the 'rp' command to
change our program from Ratfor into Fortran, and hopefully compile and execute it.

rp now.r (1)
8 (.main.): '<NEWLINE>' miSLing rIght parenthesis. (2)

(3)

(1) 'Rp' is called. The argument "now.r" directs Ratfor to take its input from the file
"now.r" and produce output on the file "now.f".

(2) 'Rp' has detected an error in the Ratfor program. 'Rp's error messages are of the
form

line (program-element): 'context' explanation

In this case, a missing parenthesis was detected on line 8 in the main program.

(3) 'Rp' has returned to the Subsystem's command interpreter, which prompts with H)".

Looking back over the program, we quickly spot the difficulty and proceed to fix it with
'ed' :

) ad now.r
11
8

call print (STDOUT, "Now: *s*n"s, now
51, now/, now)/p

W
11
q

call print (STDOUT, "Now: *s*n"s, now)

] rp now.r
]

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

(1) The editor is called as before. However, since we have given the name of a file,
"now.r", to 'ed' as an argument, it automatically does an "e" command on that file,
bringing it into the buffer.

(2) 'Ed' types the number of lines in the file.

(3) We type the line number 8, since that is the line that 'rp' told us had the error.

(4) 'Ed' responds by typing the line. (Remember that a line number by itself is the
same as a "p" command of that line number.)

(5) We use 'ed's ·5" command to add the miSSing parentheSiS. Note the use of the .p" at
the end of the command.

(6) 'Ed' makes the substitution, and since we have specified the .p., the result is
printed.

(7) We now write the changed buffer back out to our f11e ('ed' remembers the file name
"now.r" for us).

(8) 'Ed' prints the number of lines written.

(9) We exit from the editor with the quit command "q",

(10) We invoke Ratfor to process the program. Ratfor detects no errors. The output of
the preprocessing is on file "now.f".

(11) The command interpreter prompts us for another command.

Now that the Ratfor program has been successfully preprocessed, it is time to compile the
Fortran output, which was placed in the file "now.f". 'Fc,' should be used to compile Sub­
system programs, since it selects several useful compiler options and Standardizes the com-

- 18 -

Software Tools Subsystem Tutorial

pilation process:

] fc now.f
0000 ERRORS [<.MAIN.>FTN-REV19.2]
]

All of the garbage between the "fc" and the "],, prompt is stuff produced by the Fortran
compiler and is mostly irrelevant at this pOint. The essential thing to recognize about it is
that the number before "ERRORS" is zero.

Now that our program has compiled successfully, we bravely proceed to invoke the Linking
Loader using 'ld.' 'Fc' has left the output of Fortran in the file "now.b". We will use
'ld's "-0" option to select the name of the executable file:

] ld 1"t')\J.b -0 now
[SEG rev 19.2.GT]
1/ vl 1/
$ co ab 4001
$ sy swt$cm 4040 40000
$ sy swt$tp 2030 120000
$ mi
$ silo now.b 0 4000 4000
$ silo 'lib>vswtlb' 0 4000 4000
$ s/li 0 4000 4000
LOAD COMPLETE
$ ma 6
$ re
1/ sh
TWO CHARACTER FILE 10: ..
1/ d.lete
1/ q
]

Again, all the noise between "ld" and "],, comes from the Loader. The important
notice here is the "LOAD COMPLETE" message, which indicates that linking is complete.
did not get the "LOAD COMPLETE" message, we would re-link using the command "ld -u
now" and the loader would then list the undefined subprograms.

thing to
If we

now.b -0

We now have an executable program in our directory. We can check this USing 'If':

1f
now
]

now.b now.f now.r

Deciding we do not need the Fortran source file and the intermediate binary file hanging
around, we remove them with 'del':

] del now.f now.b
]1f
now now.r
]

And getting really brave, we try to run our newly created program:

] now
Now: 16: 34 : 4 i
]

Hopefully the preceding example will be of some help in the development of your own (more
important) programs. Even though it is Simple, it shows almost all the common steps involved
in creating and running a typical program.

Cav.ats for Subsystem Programmers

Since the Subsystem is exactly that, not an operating system but a sub-system, programs
written for it must follow a few simple conventions, summarized below.

TO exit, a program running under the Subsystem should either use a "stop" statement
(Ratfor programs only), "return" from the main program (Pascal and PL/I G), or call
the subroutine "swt". Specifically, the Primos routine "exit" must not be called to
terminate a program. ---

- 19 -

Software Tools Subsystem Tutorial

Whenever possible, Subsystem i/o and utility routines should be used instead of
Primos routines, since the latter cannot handle all aspects of the Subsystem files.
If, however, programs must use native i/o routines, remember that they must inform
their native i/o routines of the Subsystem by calling the proper initialization
routines (see Subsystem Interface Subroutines in the table below), or they will not
be able to take advantage of standard input, standard output or any of the other i/o
related features provided by the Subsystem.

The Subsystem interfaces available for Primos languages and utilities are summarized
below:

Language Primos
or Subsyst_
Uttl itx InterflC8

C xcc
xccl

Cobol cobc
cobcl

Database fsubc
fdmlc
fdmlcl

csubc
cdmlc
cdmlcl

ddlc

Debugger dbg
vpsd

Fortran 66 fc
fcl

Fortran 77 f77c
f77cl

Loader ld

Pascal pc
pcl

PL/P plpc
plpcl

PL/1 G plgc
plgcl

Prime pmac
Assembler pmacl

SPL splc
splcl

Primos
Connands
Interfaced

CC
CC, SEG

COBOL
COBOL, SEG

FSUBS
FDML
FDML, FTN,
SEG

CSUBS
CDML
CDML,
COBOL,
SEG

SCHEMA

DBG
SEG

FTN
FTN, SEG

F77
F77, SEG

SEG

Subsyst_
Interface
Subroutines

initSf,
getaSf

initSf,
getaSf

PASCAL initSp,
PASCAL. SEG fileSp.

getaSp

PLP
PLP, SEG

PL1G
PL1G, SEG

PMA
PMA, SEG

SPL
SPL, SEG

ini tS'plg,
getaSplg

\

Use 'help' or refer to the SUbsystem Reference Manual for a complete description of
Primos/Subsystem interf-=e commands and Subsystem interface subroutines.

"I,

- 20 -

Software Tools Subsystem Tutorial

Errors

Although the Software Tools Subsystem provides a very nice program development
and applications environment. Murphy's Law indicates that things will still go
wrong. "To err is human so it is best to anticipate errors. and know what to
do when you encounter them. This section indicates some of the more common causes
of errors. and what to do when you encounter them. The non-technical user can
probably skip this section.

Recovert ng f rom Errors

Everyone encounters errors sometimes. Eventually you will divide by zero. or try to
execute source code. or do something even worse. ~oweve. th~ only error which will kick you
out of the Subystem and into Primos is one wh'ch aestroys your user stack. In this case.
Primos will reinitialize the user environment (FATALS). If you have a ·'(,ogin.comi" file.
Primos will execute it. If it contains the comma~~ ·swt". the Subsytem will be cranked up
again.

For errors other than one which destroys your stack. Software Tools will catch it. and
ask if you wish to abort. continue. or call Primos. The default is to abort. and return to
the Subsystem.

When an error occurs, and after you have satisfied yourself reasonably well as to why.
the "cure-all" for Subsystem problems is simply to type:

swt

Sometimes, this
gone terribly wrong.
lowing:

will not work. The stack may be screwed uP. or something else may have
To clear everything completely, and restart the Subsystem. type the fo1-

OK, rls -all
OK. dels all
OK, swt

Again. a "login.comi" file containing the "swt" command will generally restart the Subsystem
for you.

All error messages that cause an exit to Primos (signalled by the "OK," or "ER!"
prompts) are briefly explained in appendix A-4 of the Prime Fortran Programmer's Guide
(FDR3057). Some very common programming errors can cause cryptic error messages with
explanations that may be unintelligible to the novice. The rest of this section contains a
brief description of some of those messages. You need not read what follows if you don't make
programming errors.

Many Primos error messages are dead giveaways of program errors. Messages that begin
with four asterisks are from the Fortran runtime packages -- they usually indicate such things
as division by zero or extraction of the square root of a negative number. For example,

**** SQRT
OK,

ARGUMENT < 0

results from extracting the square root of a number less than zero.

Other more mysterious error messages can also be caused by simple program errors.

POINTER FAULT

usually indicates that a subprogram was called that was not included in the object file. An
obvious indication of a missing subprogram is the failure to get the

LOAD COMPLETE

message from 'ld'. (Note that the Fortran compiler treats references to undimensioned arrays
as function callsl) A more insidious cause of the ·POINTER FAULT" message is referencing in a
subprogram an argument that was not supplied in the subprogram call; e.g .• the calling routine
specifies three arguments and the called routine expects four. The error occurs when the
unspecified argument is referenced iQ lb! subprogram, not during the subprogram call.

ACCESS VIOLATION
ILLEGAL INSTRUCTION AT <address>
ILLEGAL SEGNO
PROGRAM HALT AT <address>

all can result from a subscript exceeding its bounds. Because the program may have destroyed

- 21 -

Software Tools Subsystem Tutorial

part of itself, the memory addresses sometimes given may well be meaningless.

To find errors such as these, time can often be saved by using a program trace. In addi­
tion to the manual insertion of 'print' statements in the source program, both 'rp' and 'fe'
have options to produce a program trace. The "_t" option will cause 'rp' to insert code to
trace the entry and exit of subprograms. (One should note that only subprograms preprocessed
with the "_t" option will be traced.) 'Fe' will emit code to produce a Fortran statement­
label and assignment trace when called with the "-t" option. Although this trace will contain
the statement labels generated by 'rp', the intermediate Fortran code may be listed and the
execution path followed.

See the subsection on debugging in the Application Notes section of the User's ~ ~
1h! Ratfor Preprocessor for more suggestions on finding and eliminating errors in your ratfor
programs.

- 22 -

Software Tools Subsystem Tutorial

Advanced Techniques

This section deals with several of the more advanced features of the Subsystem.

Connand F 11 es

As an illustration, let us take an operation that finds use quite frequently: making
printed listings of all the Ratfor source code in a directory. Command language programs, or
"shell programs," greatly simplify the automation of this process. Shell program5 are files
containing commands to be executed when human intervention is not required.

Suppose that we put the following commands in a file named "mklist" (note the use of i/O
redirection here):

lf -c >tempi
tempi> find . r >temp2
temp2> change % "sp " >temp3
temp3> sh
del tempi temp2 temp3

Then, whenever we want a listing of all the Ratfor source code in the current directory, we
just type:

mkl ist

The only price we must pay for this convenience is to ensure that the names of all files
containing Ratfor programs end in ".r". (If the 'find', 'change', and 'sp' commands mystify
you, 'help' can offer explanations.)

Pipes

Pipes are another handy feature of the Subsystem. A "pipe" between two programs simply
connects the standard output of the first to the standard input of the second; and two or more
programs connected in this manner form a "pipeline." With pipes, programs are easily COmbined
as cooperating tools to perform any number of complex tasks that would otherwise require
special-purpose programs.

The command interpreter provides a Simple and intuitive way to specify these com­
binations:

prog1 prog2

Essentially, two or more complete commands are typed on the same line, separated by vertical
bars (":"). (One or more spaces ~ appear on both sides of this symbol.) The command
interpreter then does all the work in connecting them together so that whatever the program on
the left of the bar writes on its standard output, the one on the right reads from its stan­
dard input.

Take our shell program to create listings as an example; that series
the creation of three temporary files. Not only 1s this distracting, in
attention away from th.e real work at hand, but it also leads to wasted
one all too frequently forgets to delete temporary files after they have
tion. Using pipes, we could just as easily have done the same thing like

1f -c find .r change % HSp" sh

of commands involved
that it takes our
storage space, since
served their func­
this:

and the command interpreter would have taken care of all the details that before we had to
attend to ourselves. In addition to being much cleaner looking, the pipeline'S function is
also more obvious.

Additional I/O Redlrectors

The last advanced features of the Subsystem that we will examine are the two remaining
i/O redirection operators, represented by two variations of the double funnel ("»").

In the first variation,

»xyz (read "append to xyzll)

causes standard output to be appended to the file named "xyz". Whereas

cat file1 >file2

would copy the contents of file1 into fi1e2, destroying whatever was previously in file2,

- 23 -

Software Tools Subsystem Tutorial

cat file1 »file2

would copy the contents of file1 to the end of file2. without destroying anything that was
there to start with.

In the second variation. the double funnel is used without a file name

» (read "from command input")

to connect standard input to the current shell program. For example. suppose we wanted to
make a shell program that extracted the first ten lines of a file. and deleted all the rest.
The shell program might look something like this:

» ed file
11. Sd
w
q

"»" is frequently used in this way for the editor to read commands from the shell program.
without having to have a separate script file.

This is only a very small sample of the power made available by the features of the Sub­
system. As is the case with any craft. given the proper tools and an hospitable environment
in which to work. the only limit to the variety of things that can be done is the imagination
and ingenuity of the craftsman himself.

- 24 -

-_ -- __ .- ... ---#- ... - ~-- .. _.

Background

Ancient History

The Software Tools Subsystem. as it now exists. is in its ninth major revision. To give
you an idea of its development. here is a short history of successive versions.

Version 1:

Features: Basic utility commands. no redirection of input or output. low-level
routines for performing file operations. but no consistent input/output.

Language: Fortran

Version 2: (.

Features: Almost complete set of utility commands. redirection of input and output.
all Software Tools i/o routines. Software Tools editor and Ratfor, improved
reliability dur~nformation passing from one program to another.

Language: Low level routines in Fortran. high 'evel routines and programs in Rat­
for.

Version 3:

Features: Same as version 2. but with Primos compatible i/O for speed; new shell
added later greatly expanded program interaction.

Language: Almost entirely Ratfor.

Version 4:

Features: Same as version 3. plus: (1) ability to handle file names of up to 32
characters on new Primos file partitions; (2) much faster disk i/O (on an unloaded
system. benchmarks show an improvement on the order of a factor cf 20); (3) internal
reorganization to speed up command searches; (4) support for virtual mode programs
and a shared command interpreter.

Language: All higher-level routines in Ratfor. A few special routines in assembly
language to provide capabilities not inherent 1n Fortran.

Version 5:

Features: A new command interpreter supporting arbitrary networks of pipes.
generalized command file handling. and dynamic command line structures was added.
General reorganization of Subsystem direc.tories on disk.

Language: Ratfor and Assembler (PMA).

Version 6:

Features: Shared libraries. maximal security under unmodified Primos. increased
robustness.

Language: Ratfor and Assembler (PMA).

Version 7:

Features: Much faster disk I/O. extensions to pathn~es to allow specification of
non-file-system devices. new Ratfor preprocessor with Significant extenSions. some
general cleanup of code and redundant tools. many additional tools.

Language: Ratfor. Assembler (PMA). and some PL/I.

Version 8:

Features: Additional I/O speed. reduced working set. support for PL/I G. Pascal.
Fortran 77. OBG. improved error handling. terminal type handling. virtual terminal
handler.

- 25 -

Software Tools Subsystem Tutorial

Language: Ratfor, Assembler (PMA), and some PL/I.

Version 9:

Features: Increased security for shared segments, improved shell, extended text
editors and formatter. access to new Primos file system features, some support for
Prime's C compiler, a high precision mathematics library. and an improved stacc.

Language: Ratfor. Assembler (PMA), and some PL/I.

Version 9.1:

Features: Several important bug fixes. and totally terminal independant screen
editor. Text formatter extended further for use with laser printers. Final release
for perpetual 1 icensees.

Language: Ratfor. Assembler (PMA). and some PL/I.

Authors and Origins

The principal authors of the Software Tools Subsystem are Allen Akin. Perry Flinn, Dan
Forsyth, and Jack Waugh. of the Georgia Institute of Technology. aided by a cast of thousands.

The ultimate antecedent for the design of the Subsystem is the UNIX operating system,
written by Dennis Ritchie and Ken Thompson of Bell Labs for the DEC PDP-11 computers.

The tremendous debt owed to Brian W. Kernighan and P. U. Plauger, the authors of Software
Tools, cannot be overstated.

- 26 -

User's Gutde to the Prtmos Ft 1e System

Perry B. F 1 inn
Jefferey S. Lee

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

September, 1984

TABLE OF CONTENTS

Wha t ; s a Fi 1 e?
Entrynames .. .
Directories .. 1
Log i ca 1 Disks ..•........................... 2
The "Current" and "Home" Directories ... "" 2
Protection and Access Control.. 2
Pathnames .. :3
Passwords in Pathnames ... 4
Templates .. 5
Dev i ce Names ... 6
Georgia Tech Extensions .. 7
Appendix A - Standard Templates.. 8
Appendix B - Pathname Syntax ... (.. 11
Appendix C - Spool Options... 11

- i ; i -

Foreword

We offer this guide as an attempt to acquaint you with everything you need to know to
make effective use of the file system from within the Subsystem. Although we have tried to be
thorough in our coverage of concepts and features. we have specifically avoided the details of
the programmer's interface to the file system. and everything having to do with
implementation. Should you find yourself in need of further information in either of these
areas. let us direct your attention to section two of In! Software le2l! Subsystem Reference
Manual. the Reference Guide. f1l! Management System (Prime publication number FDR3110). and
the f!im! User's ~ (Prime publication number DOC4130).

- 1v -

File System User's Guide

Introduction

One thing that you will almost certainly encounter frequently during your exploits
in the Software Tools Subsystem is the Primos file system. Indeed, there is hardly
anything you can do that does not in some way involve this ubiquitous beast.

What is a Fi 1e?

A file is a named collection of information retained on some storage medium such as a
disk pack. Just what kind of information a file contains isn't of much concern to us here; it
may be ASCII character codes that form the text of a book or a program's source code, it may
be arbitrary binary machine words to be used as input data fora program, or it may be the
actual machine instructions of the prcgram itself, to mention just a few. No matter what f· N'
the information in a file takes, as far as Primos is concerned it is just an ordered seq~'encs
of sixteen bit binary numbers. The interpretation of those numbers is left tb other programs.

Entrynanes

Since we mentioned that a file has a name, you
file is known by something called its "entryname."
characters chosen from the letters of the alphabet.
special characters:

/I $ & '" /

might ask what names are acceptable. A
An entryname is a sequence of 32 or fewer

the decimal digits, and the following

The first character in the entryname must not be a digit. Also. no distinction is made
between upper- and lower-case letters. Thus "file_name" and "FILE_NAME".are the same.

Even though Primos allows you to use slashes (/) in entrynames, for reasons that will
become apparent in the section on pathnames they must be treated specially when you are using
the Subsystem. Because the slash is used to separate entrynames from one another in path­
names, if you want to use it in an entryname you have to "escape" it. By this we mean that
you have to precede it with the "escape" character The simply tells the Subsystem to
"treat the next character literally, no matter what special meaning it may have;" it is not
taken as part of the entryname. It is important that you realize this caveat applies only
when you are dealing with the Subsystem; if you try to put an .(11" in an entryname when talking
directly to Primos, you will get a rather impudent message.

Directories

The way that Primos makes the association between a file's entryname and its contents is
through the use of "directories." Like a file, a directory has an entryname and contains some
information; but it is different from ordinary files in that the information it contains is
treated specially by Primos. The information in a directory is a series of "entries," each
consisting of the entryname of some other file, that file'S location on the disk pack, and
some other stuff that we will cover in a later section. When a file's entryname and location
appear in a directory, we say that the directory ·contains" that file, or that the file
"resides within" that directory. Either way you say it, every file in the system appears in
exactly 2n! directory.

Since a directory is so much like a file, there is really nothing to prevent us from hav­
ing directories that contain other directories. This phenomenon is known as "nesting" and may
be carried out to any depth, giving rise to a hierarchical structure:

mfd
I

I--------~i------ri--··--'i--------'i--------I
I I I I I I

disk_rat d1r1 mfd boot badspt dlr2

I--~I~--I I------~I~-----I
I I I I I

dir3 file1 dir4 file1 dir1
I I
I I

file2 file1

At the topmost level of the hierarchy is a directory named "mfd", short for master f.ile
directory. You will find this directory at the top level of every Primos file system. The
MFD is special because it always begins at a fixed location on the disk pack, and because it
always contains the following entries:

disk rat
-The disk_rat (~cecord ~vai1ability lable) is a file that catalogs all of the

storage space on the disk pack that isn't already in use. It is always the first
entry in the MFD and, like the MFD, always begins at a fixed location. This file
may have any valid entryname; it doesn't have to be called "disk_rat". But whatever

- 1 -

File System User's Guide

entryname is chosen, it is known as the "packname" for that disk pack.

mfd
The MFO always has an entry describing itself.

boot
The "boot" file, which also begins at a fixed location, contains the memory-image of
a program that is loaded and executed whenever the computer is cold-started. This
program is usually a single-user version of Primos.

badspt
Although this file is not necessarily present on every disk pack,
contains a list of faulty records that should not be used.

if it is it

You may have noticed in the diagram that there are three occurrences of the entryname
"file1", and two of "dir1". Each of these entrynames refers to a different file or directory.
Even though each entryname must be unique among all those in a given directory, it is perfec­
tly legal to use the same name repeatedly in different directories.

Logical Disks

Since Primos doesn't allow file systems that span multiple disk packs, it does the next
best thing and allows you to have multiple file systems in the same installation. Each file
system is called a "logical disk" and has exactly the structure described in the last section.
Although each installation is virtually guaranteed to have at least one logical disk, the
actual number may vary dynamically from 0 to 62. Each disk is uniquely identified by its
"logical disk number," and though it is not required, it is extremely desirable for each disk
to have a unique packname.

The "CUrrent" and Htton." Directories

Now that we have described this wonderful hierarchy of directories and files just waiting
to be used, you might wonder how it is that you go about getting to them. One concept that is
central to the solution of this problem is that of the "current directory." From the time you
log in to the time you log out. your terminal is having an ongoing relationship with some
directory in the file system. When you first log in, this directory is set to whatever the
system administrator decided when he created your account. But monogamy is not required; you
are free to jump around from directory to directory upon the slightest whim. We say the
"current directory" is the directory to which you are attached.

The current directory is important because all the files contained in it are directly
accessible to you at the drop of an entryname. In fact, if you are using some of Prime's
software, these are the only files accessible to you without changing your current directory.
But there is a handy device called the "home directory" that takes some of the edge off of
this restriction. Your home directory is the one to which you intend to return after an
expedition into the wilds of the file system. In effect, it allows you to remember the loca­
tion of some particular directory, and to later return there in one giant step, regardless of
your (then) current location. Whenever you change your current directory, you get to choose
whether to change your home directory as well or to leave it where it is.

Protection and Access Control

In versions of Primos before Revision 19, to guard your files from unwanted perusal or
alteration. the file system included a basic access control mechanism that provided two levels
of protection to each file. As part of this mechanism, each directory had aSSOCiated with it
a pair of Six-character passwords. one called the "owner password," and the other called the
"non-owner password." Normally, when a directory was created its owner password was blank and
its non-owner password was zero; these were the default values. But if the passwords had
other than default values. then before you could successfully attach to the directory. you had
to prove your worthiness to do so by citing one of them. If you cited the owner password,
then you were attached to the directory with ·owner status;" if it's the non-owner password
that you Cited, then yo~'were attached with "non-owner status." If you failed to cite either
password, then unless:: one of them had a default value your attempt would be in vain. .Just
what status you attained when attaching to a directory bears upon the kinds of things you
could do to the files it contains.

For the purposes of password protection. there are three things you can do to a file:
you can read from it. you can write into it, and you can truncate (shorten) or delete it. Now
if you will recall that ·other stuff" we mentioned a while back as being in a file's directory
entry, part of it is two sets of "protection keys:" one for people attached to the containing
directory with owner status, and the other for those with non-owner status. Each set of keys
has a bit for each type of access: read, write and delete. If a bit is turned on, the
associated type of access is permitted; otherwise, it is denied.

Revision 19 of Primos introduced Access Control Lists (ACL's). Unlike the password
protection previously described. ACL's allow specific permissions on files to be granted on a

- 2 -

File System User's Guide

per-user basis, instead of a broad class of permissions being granted to anyone who happens to
know, or guess, the password. They also allow better control over permissions given to users.
Previously, in order to allow a user to create files in a directory, he was implicitly given
the right to delete any other files in that directory, also. With ACl's, this is no longer
the case.

An ACL conSists of
the identifiers. An
associated with several
user's login name takes

a list of up to 32 identifiers and privileges associated with each of
identifier can be a user's login name or it can be a group identifier
users. If e user's name and associated group are both in an ACl, the
precedence. The seven different privileges associated with ACl's are:

~ This privilege is associated with a directory and allows the user to create a
new file within that directory. Once the file is created, the user has full
read/write access to the file until the file is closed, at which point other
privileges determine the accessibility of the file.

delete This privilege is associated with a directory and allows t~e us~,' to delete
an existing file within that directory.

li!1 This privilege is aSSOCiated with a directory and allows the user to list the
contents of the directory (like with 'If').

protect This privilege is associated with a directory and allows the user to set ACl
protection for Objects in the directory.

read This privilege is associated with a file and allows the user to open a file for
reading or to execute a file. The user must first be able to attach to the
directory before he can read the file, which implies ~ privilege (see below).

~ This privilege is associated with a directory and allows the user to attach to
the directory (like with 'cd'). In order to access a file or a directory, the
user must have ~ privilege on all intervening directories between the MFD and
the desired file or directory.

~ This privilege is associated with a file and allows the user to open a file in
write mode or to truncate a file.

ASSOCiated with the ACl is its type. There are five different types of ACl's. The first
type is the specifiC ACl. This gives protection on one specific file object and is aSSOCiated
with only that object. If the Object is deleted then the speCific ACl goes away, also.

The second type of ACL is the default specific ACL where a specific ACL is set on an
ancestor directory of the current object. If the object is not protected by a specifiC ACL or
an access category (the next type). then it is given the same protection as the ancestor
directory.

The third type of ACL is the access category ("acat"). An access category. unlike the
two previous types. may protect many Objects at one time with the same protections. An acat
appears in the file system as a file that cannot be read or written. and its name must end in
".acat". It is a separate type of file system object (just as in 'lf -1' listings. DAM files
are different from SAM files -- acats are of type ACT). An access category need not protect
any object Since it exists independant of any other object in the file system. If an access
category is deleted. any object that it was protecting becomes default protected. or becomes
protected by the directory that contains it.

The fourth type of ACL is the default access cateeory. This is an access category that
protects a directory that contains other objects that are then protected by default.

The last type of ACL is the priority !£h. This is an ACL that is set on an entire disk
partition by the system administrator. normally at boot time. Any rights given by a priority
ACl override any rights given by any other ACL's.

In order to allow for a gradual change from the older versions of Primos to Revision 19.
it is possible for password directories and ACL's to exist in the same system, although pass­
word directories will eventually be unsupported. There is a restriction in that ACL direc­
tories may contain both password and ACL directories but password directories may not contain
ACL directories. In order for any directory to be an ACl direct~y on a logical disk. the MFD
of that partition has to be ACL protected. Password directories also overcome some of the
limitations of ACl's. If an ACL gives someone the privilege of writing a file. then under all
circumstances they are allowed to write the file. If the file is in a password directory.
though, they may only write the file if they know the password. This means that a password
can be nested deep in a program that is used to control their access to a file. even if the
person running the program does not know the password.

Pathnames

Unlike the Prime software we mentioned that only lets you manipulate files in your
current directory. the Subsystem places no restrictions on the whereabouts of the files you

- 3 -

File System User's Guide

can reference. Generally speaking. anywhere the name of a file is required you may use
something called a "pathname." A pathname is a construct that allows you to uniquely specify
any file in the system by describing a path to it from some known pOint. As we have seen. the
current directory is one such point. and because of its fixed location. the MFD on each
logical disk is another.

The syntax of a pathname is divided Into two basic parts which we will call the "starting
node." designating the particular known point at which the path starts. and the "directory
path," designating the actual series of nested directories that leads to the deSired file.
Both parts. by the way. are optional: either one may stand alone. they may stand together, or
they may both be omitted. But if both are present. they must be separated by a single slash
(/) .

The starting node of a pathname comes in two varieties. The first designates the MFD of
a particular logical disk dnd conSists of an initial slash followed by a packname, a logical
disk number in octal, or a sin31~ ~~terisk (*):

/volOO
/7
/*

If the asterisk is used. the MFD of the logical disk containing the current directory is
implied; the other two fOrms should be self-explanatory. The second variety of starting node
refers to one of the current directory's ancestors in the hierarchy and conSists of one or
more ~slashes (\). The number of backslashes indicates the number of nesting levels above
the current directory at which the path begins. If the starting node is omitted altogether,
then the path starts in the current directory.

Now the other half of a pathname, the directory path, is simply a series of one
entrynames. each separated from the next by a single slash. The first entryname
contained in the starting directory, and each subsequent entryname must reside in the
tory designated by the preceding entryname. The very last entryname in the path Is
the target file. To illustrate,

src/lib/swt
extra

or more
must be
direc­

that of

are proper directory paths. As
of the pathname is the starting
node and the directory path
directory.

you might expect. If the directory path is omitted, the target
directory. Thus, the pathname from which both the starting

have been omitted (the empty pathname) referS to the current

A couple of special cases are WOrth mentioning here: First, a pathname that begins with
a slash and whose directory path is n2! omitted need not contain a pack name or logical disk
number. In this case an implicit search of the MFD on each logical disk is made for the first
entryname in the directory path. The MFD on the lowest numbered logical disk in which that
entryname is found is taken as the starting directory. Notice that such a pathname is easily
recognizable because it begins with two slashes; the first one belongs to the starting node
and the second separates it from the directory path:

//system

The second special case has to do with pathnames beginning with a backslash. Although we
said that a slash mY!! be used to separate a starting node from a directory path. when using
backslashes the intervening slash is not required; indeed it is omitted mOre often than not.

Passwords t n Pattmu.s

The following discussion is applicable only fOr password protected directories, since ACL
protected items do not need passwords. Thus far in discussing pathnames we have assumed that
we may freely specify any valid sequence of directOries in a directory path without regard to
the passwords that may be associated with those directories. In fact, this is true only if
the directories have at least one password with a default value, Or if the directories are ACL
directories. You see, the interpretation of a pathname involves temporarily attaching to each
directory in the path; if this can't be done without a password then the pathname can't be
interpreted. Furthermore, the set of access privileges (owner or non-owner) available to you
with respect to the target file is determined by whether you are attached to its parent direc­
tory as an owner or a non-owner by the pathname interpreter. So, to let you deal. effectively
with passworded directories, the pathname syntax allows you to append a password to each
directory entryname in the path, separated from the entryname by a colon:

entryname:passwd

If a password is so specified, the pathname interpreter will use it when attaching to the
associated directory.

- 4 -

File System User's Guide

A password may contain arbitrary characters which are not necessarily legal in
entrynames. So to avoid the ambiguity in interpreting a password containing a slash, as with
entrynames, the slash must be "escaped" by preceding it with an •••. This also means that the
-." itself must be escaped if it is to appear literally in the password. Remember that the
..... used as an escape character is not included in the password; it merely turns off the
special meaning of the character that follows.

The following set of examples contains an instance of just about every possible variation
in the syntax of pathnames, along with an explanation of each. A formal summary of pathname
syntax in BNF notation is included in Appendix B.

a fl1e
- A file in the current directory whose entryname is Ha_file H •

a ufd/a file
- A file whose entryname is also "a_file" and :a. C'li",<·\l\rir'c; ifl the subdirectory "a_ufd"

of the current directory.

\
The parent of the current directory.

\brother (or \/brother)
The file or directory named ·brother" that resides in the same directory that
contains the current one.

lo/cmdncO:secret

Imd

The directory named "cmdncO" (one of whose passwords is "secret") which resides in
the MFO on logical disk O.

The MFO on the logical disk whose packname is "md".

1*/boot
The "boot" file on the current logical disk.

Iispoolq/q.ctrl
The file named "q.ctrl"
disk that has one.

in the "spoolq" directory on the lowest numbered logical

ki./da:ad./ik
The directory residing in
of whose passwords is
meaning of "I".)

the current directory whose entryname is "ki/da" and one
"ad/ik". (Note the use of the •• " to turn off the special

<empty>
The current directory.

Templates

In order to provide flexibility in the organization and placement of the directories and
files used by the Subsystem, the pathname interpreter contains a primitive macro substitution
facility, a feature that is loosely referred to as "templates." Templates provide a means for
designating particular files or directories without having to know their exact location in the
file system. and for constructing file names whose exact interpretation may vary with the
context in which, or the user by whom they are used. A template is constructed from letters,
digits and underscores and is always enclosed in equals bars (a). (Templates do D2! have to
begin with a letter). Unlike entrynames, upper- and lower-case letters ~ different in tem­
plate names; "name" and "NAME" are .D2l the same. Each defined template has an associated
value which is an arbitrary character string. The effect of including a template in a path­
name is the same as if its value had appeared instead.

There are two types of templates: statiC and dynamiC. The value of a dynamic template
varies depending upon who you are, how you are connected to the computer, or what time it is.
The following list describes all of the available dynamic templates:

-date=
The current date in the format mmddyy.

-day"
The current day of the week; "monday", for example.

"home=
The current user's initial login directory (set by the system administrator when he
created the account). This may vary on a per-user per-project basis. I.e., the
system administrator may set it up so that the initial login directory for a given
user is different for different projects.

- 5 -

File System User's Guide

=passwd=
The owner password of the current user's profile directory. (This is the same pass­
word the Subsystem asked you for when you typed "swt".)

=pid=
The current user's process-id. This is a three-digit number in the range 001-128
that is unique to each logged-in user.

=time=
The current time in the format hhmmss.

=user=
The current user's login name.

These templates are particularly useful for constructing unique file names.

Static templates are those whose definitions are independent of the context in which they
are used. These templates and their values come from two sources. The file whose name is the
value of the template

=template=

contains system template definitions that apply globally to all Subsystem users. In fact the
definition of "=templatea " itself is contained in this file, as are definitions for other
important Subsystem files and directories. In addition to this file, you may have in your
profile directory (named by the template "=varsdir=") a file named ".template" that contains
your own personal template definitions. Any templates that you define yourself preempt
similarly named system templates, so you should exercise caution in choosing names. Also note
that any new templates you place in your personal template file do not take effect until the
next time you enter the Subsystem via 'swt'; this is the only time that the file is examined.
If you wish to create templates that will take effect immediately, use the 'template' command
(do a 'help template' for details).

The format of both files is the same: a series of lines containing a name. followed by
one or more blanks. and then a value. Blank lines are ignored. as are leading and trailing
blanks on each line. Comments may be introduced with the sharp character (N); all characters
from the Sharp to the end of the line are ignored:

N example of a template definition
macros Iismith/misc/macros NSmith's macros

The above example defines a template "macros" referring to the f11e "llsmlth/misc/macros." A
quick perusal of the contents of " .. template-" should clear up any lingering questions you may
have. Just for convenience. all dynamiC and system templates. along with an explanation of
each, are listed in Appendix A.

If you look at the template definition file. you will notice that some of the definitions
appear to contain templates themselves. This is perfectly legal. for after each template is
expanded. the result is inspected for further templates until no others are found. This makes
possible the definition of such templates as "=varsdir=", and generally enhances the utility
of the mechanism.

Just one further remark about templates: Remember th~ trouble we had with "1" in pass­
words and entrynames? Well. we have a similar situation with "="; when should it be taken
literally. and when should it indicate the beginning of a template? To solve this dilemma,
any time the template expander sees a template with an empty name (that is, two consecutive
equals bars), it supplies a single "z" as the replacement value and does !l2.! consider it to be
the start of another template. So if you ever want a literal -.", in a password for example,
just type " ... " and you've got it.

Device
\

Up to this pOint, we have been talking only about disk files, and the pathnames we have
described have corresponded exactly to some actual sequence of directories leading to a file.
Although this is certainly the most common use of pathnames, there is one additional feature
that significantly enhances their usefulness. If the ·starting node" of a pathname is n/dev·,
the pathname doesn't necessarily refer to a disk file, but may instead refer to an arbitrary
peripheral device. or to some special file that requires unusual processing. As with ordinary
pathnames, the "directory path" provides more information about the target file or device.

Perhaps the most useful of these extended pathnames (or "device names," as they are
usually called) is

/dev/lps

which refers to the line printer spooler. When this pathname is opened for writing, a special
disk file is created and other processing is done so that when the file is closed. its
contents will be written to the on-Site line printer by the spooler and then deleted.

- 6 -

File System User's GUide

Additional entrynames may be included after the "lps" to select various processing options
specific to the spooling process. A complete list of these in included as Appendix C.

Another useful device name is

/dev/tty

which refers to your terminal device. There are also others which, when opened, yield file
descriptors for the various standard input and output ports:

/dev/stdout
/dev/stdout1
/dev/stdout2
/dev/stdout3
/dev/errout

Finally, the device name

/dev/nu11

/dev/stdin
/dev/stdin1
/dev/stdin2
/dev/stdin3
/dev/errin

(

when opened yields a file descriptor which discards all data written to it and returns an end­
of-file signal every time it is read. It is really just a fancy name for the proverbial bit
bucket.

Georgia Tech Extensions

As many of you reading this guide will eventually come to know, using the standard Primos
file system can be quite awkward, prinCipally because of the constant necessity of typing pas­
swords in pathnames. Relief from this burden comes only at the expense of security, which In
many cases is a more important consideration than ease of use. So that we can have our cake
and eat it too, we at Georgia Tech have made a few modifications to the standard protection
mechanism that virtually eliminate the necessity for typing passwords In all but the rarest of
circumstances. The Subsystem requires none of these modifications to operate properly, and in
those cases where it behaves differently depending on the extant version of Primos, it does so
completely transparently to the user.

In Georgia Tech Primos, if a directory's owner password is a valid entryname, it is
assumed to be the login name of the user that "owns" that directory. In this case, the "owner
password" is instead called the "owner name." When you attach to a directory whose owner name
"matches" your login name, you automatically get owner status without having to Cite a pass­
word. This is the only difference between the protection mechanism in Georgia Tech Primos and
the standard mechanism. In all other situations, you can expect the standard behavior.

- 7 -

File System User's Guide

Appendix A - Standard Templates

The following list describes all of the templates that are provided either in the stan­
dard Subsystem template file or by the template interpreter.

=aux=

-bin:

-buga

This Subsystem directory contains large files that are not absolutely necessary for
the operation of the Subsystem.

The standard Subsystem command directory.

The directory in which the Subsystem bug reporting mechanism collects bug reports . .
=cldata=

Defines the location of the Primos CLDATA structure, used internally by the Sub­
system command interpreter (shell).

=cmdncO=
The directory to which the system console is normally attached.

=crondir=
The directory where the 'cron' program creates temporary files for phantoms.

=cronfile=
The file that contains the directive lines for the 'cron' program.

-date-
The current date in the format mmddyy.

-day·
The current day of the week (e.g., "monday", "tueSday·, etc.).

-dictionary=
A file containing English words, used by the spelling checker.

-doc=
The Subsystem documentation directory.

-ebin-
A directory of programs called by shell programs in "-bin·".

-extra=
A standard Subsystem directory containing miscellaneous files required for proper
operation of the Subsystem.

-fmac-
The Subsystem directory containing all the text formatter macro definition files.

-GaTech-
This is a template having nothing to do with pathnames. Its value is "yes· at
installations that run the Georgia Tech version of Primos, and "no· elsewhere.
Programs that are sensitive to the operating system version use this template to
determine their environment.

-gossip-
The directory containing user-to-user message files generated by the 'to' command.

-histfile-
The current user's saved command history file.

-home-
The current user's login directory. Take note that th1s 1s not the same as his
"home directory· as described in the section on ucurrent" and "home· directories.

-1ncl-
The standard Subsystem directory containing files that are inclUded by Ratfor and C
programs.

=installation-
A file containing the name of the installation.

albin-

-lib-

The standard Subsystem locally-supported command directory.

The Primos directory containing al' library files that shou~d be accessible to the
loader.

- 8 -

File System User's Guide

=mail"
The Subsystem directory that contains per-user mail delivery files.

=ma i 1 f i 1 e=
The current user's mail storage file. This is where the 'mail' command deposits a
letter after you have asked that it be saved.

"new words"
-If this template exists and describes a legal file name, the 'spell' program will

write a copy of unrecognized words to this file.

=newbin=
The Subsystem directory into which newly-compiled commands are placed during a
recompilation of the entire Subsystem.

"newcmdncO" \:
The Su~sys~em directory into which newly-compiled Subsystem files that belong in
"cmdncO" are placed during a recompilation of the entire Subsystem.(

-newebin=
The Subsystem directory into which newly-compiled commands destined for ·-ebin"" are
placed during a recompilation of the entire Subsystem.

-newlbin"
The Subsystem directory into which newly-compiled 'ocal'y-supported-commands are
placed during a recompilation of the entire Subsystem.

"newlib=
The Subsystem directory into which newly-compiled object code libraries are placed
during a recompilation of the entire Subsystem.

"news"
The directory used by the Subsystem news service.

=newsf i le"
The current user's news delivery file.

=newsystem=
The SUbsystem directory into which newly-compiled Subsystem files that belong in
"system" are placed dur i ng a recomp 11 at i on of the ent i reSubsystem.

·passwd=

=pid=

"src=

The password of the current user's profile directory. (This is the same password
the Subsystem asked you for when you typed "swt".)

The current user's process-id. This is a three-digit number in the range 001-128
that is unique to each logged-in user.

The Subsystem source code directory.

=srcloo=
A file associating each Subsystem library subroutine and command with the path­
name(s) of its source code file(s).

·statistics=
The system template which controls whether or not command statistics are to be kept.
(See the "Application Notes" section of the Command Interpreter User's ~.)

·statsdir"
The directory where command statistics are recorded. (See the "Application Notes·
section of the Command Interpreter User's ~.)

·syscom-
The directory where the Primos subprogram keys (predefined constants) are stored.

·sysname·
This is the system's Primenet node name, if it is a network system.

-system"
The Primos directory that contains the core-images of the various shared memory seg­
ments.

"temp"
The Subsystem directory in which all temporary files are created.

- 9 -

File System User's Guide

=template=
The system template definition file.

'"termlist=
A file describing the location and type of each terminal connected to the computer.

=time=
The current time in the format hhmmss.

=ttypes=
A file containing a list of terminals supported by your Subsystem and their charac­
teristics.

=ubin= •
By convention, the user's private command directory.

=user=
The current user's login name.

=userlist=
A file containing a list of all users authorized to use the computer.

=utemplate-
The current user's private template definition file.

"vars=
The Subsystem directory in which all per-user profile directories are contained.

-varsdir=
The current user's profile directory .

• varsf i le-
The current user's shell variable storage file.

·vth=
The directory used by the Subsystem virtual terminal handler.

- 10 -

File System User's Guide

Appendfx B - Pathname Syntax

For the grammar aficionados among you, here is a formal description of the syntax of
pathnames. The notation used is an extended Backus-Naur Form (BNF) which is described in the
introduction to the Software I22l! Subsystem Reference Manual.

<pathname> : .• <starting node>
<directory path>
<starting nOde>/<directory path>
<empty>

<starting node> • \{\}
/<volume id>

<volume id> • <packname>

'~tJacKname>

<directory path>
<node>
<entryname>
<non-digit>
<valid char>
<letter>
<digit>
<special char>

Appendix C - Spool Options

<octal integer>

'" .. <entryname>
.. <node>{/<node>}
.. <entryname>[:<password>]

<non-digit>{<valid char>}
<letter> : <special char>

= <non-digit> : <digit>
1 b 1 1 1 1 1

.. a I I c 1"'1 x I Y I z
=°11121"'171819

;"11 1 $1&1-1"'1'1/

The entrynames that may be appended to the "/dev/lps" device name to control spooling
options are summarized in the following list. These entrynames correspond exactly to the
options that are accepted by the 'sp' command (see section one of the Subsystem reference
manual). These entrynames and associated values must be separated by slashes or blanks, e.g.
"/dev/lps/b/TECH/" or "/dev/lps/b TECH."

a This option selects a specific location at which the file is to be printed. The
immediately following entryname in the path is taken as the name of the destination
printer.

b The file name that is printed on the banner page of the printout may be set
arbitrarily with this option. The next entryname in the path is taken as the name
to be printed. If this option is not used, the name "/dev/lps" is printed.

c ThiS option specifies the number of copies of the file that are to be printed.
next entryname must be a decimal integer indicating the number of copies.

The

d Printing of the file may be deferred until a specific time of day using this option.
The next entryname in the path must be a time of day in any reasonable format.

f If specified, this option indicates that the print file contains standard Fortran
carriage control characters.

h This option causes the spooler to suppress the printing of the banner page that
normally precedes each printout.

j Specifying this option causes the spooler to suppress the trailing page eject that
it normally supplies at the end of each printout.

n This option causes the spooler to print a consecutive line number in front of each
line of the print file.

P This option instructs the spooler that the print file is to be printed on a special
type of paper. The name of the desired form should follow as the next entryname in
the path.

r "Raw· forms control mode is selected by this option. No carriage control characters
are recognized, nor is any pagination done when this m~e is in effect.

s This option selects the standard Primos forms control mode. Under this mode, the
printout is automatically paginated, and a header line is printed on each page.

- 11 -

IntrodUction to the Software Tools Text Editor

T. Allen Akin
Terrell L. Countryman

Perry B. Flinn
Daniel H. Forsyth, ~r.

ueanette T. Myers
Arnold D. Robbins

Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology

Atlanta. Georgia 30332

April. 1985

TABLE OF CONTENTS

Tutorial
Starting an Editing Session.. 1
Entering Text - the Append Command•................... 1
Writing text on a f11e - the Write command... 1
Finishing up - the Quit command.. 2
Reading files - the Enter command... 2
Errors - the Query command .. 3
Pr1nting text - the Print command.. 3
More Camp 11 cated L 1 ne Numbers .. 4
De 1 et i ng Lines•.................................... 5
Text Patterns .. 5
Making Substitutions - the Substitute command...................................... 8
L 1 ne Changes. I nser t ions. and Conca tena t ions '. 10
Moving Text .. 11
G 1 oba 1 Commands•.................................. 11
Mark 1 ng L 1 nes .. ;..... 11
Undoing Th1ngs -- the Undo Command•............................... 13
More L 1 ne Number Syntax•....................... 13
Escap1ng to the Shell .. 14
Forced Logouts ... 14
Summary .. 15

The Subsystem Screen Editor ... , . . . 16
I nvok i ng the Screen Ed i tor ... 16
Us1ng 'Se' ... 16
Extended Line Numbers............. .. 17
Case Conyers 1 on .. 17
Tabs ..•.......... 17
Full-Screen Editing .. 18
Hor i zonta 1 Cursor Mot ion ... 18
Vertical Cursor Motion... 18
Character Insert ion .. 18
Character Delet10n ... 19
Term1nating a L1ne ... 19
Non-printing Characters.. 19
The . sere F il e ..•.......... 19

Sc~ Edttor Opttons 21

Screen Edt tor control Characters .. 24

Edi tor eo.nanc:l SUlllUry .. 26

El~ts of Line Nullber Expressions ... 29

Summary of Pattern Elements ... 29

- 111 -

Foreword

'Ed' is an interactive program that can be used for the creation and modification of
"text." "Text~ may be any collection of character data, such as a report, a program, or data
to be used by a program. •

This document is intended to provide the beginning user of 'ed' with a tutorial, an aid
to becoming familiar with editing. It does not attempt to cover the editor in full; only the
most frequently used aspects are mentioned. for details on advanced uses, a careful reading
of Software !e2l! and the Software 1E2l! Subsystem Reference Manual is recommended.

How To Use This Gutde

This tutorial includes a step-by-step journey through an editing session. You should be
sitting at a terminal and running the Software Tools Subsystem, so that you can perform the
suggested exercises as you go.

Throughout the text of this guide are sample editing
your terminal to get a feel for their actual effect.
produces results different from those shown in the text,
typed, or consult someone in charge of your installation.

- iv -

commands, which you can execute on
If at any time your terminal session
carefully re-check what you have

Introduction to 'Ed'

Tutorial

Starting an Editing Session

We assume that you have successfully logged in to your computer and are running the
Software Tools Subsystem. If you need assistance, see the Software!22l! Subsystem Tutorial.
We further assume that you know how to use the character erase and line delete characters, so
that you will have no trouble correcting typographical errors, and that you have some idea of
what a "file" is.

Since
prompt "]".

you are in the Subsystem, the command interpreter should have just printed the
To enter the text editor, type

ed (followed by a newline)

(Throughout this guide, boldface is used to indicate information that yc·u s.llJuld type in.
Things typed by 'ed' are shown in the regular font.) You are now in the ed~tor, ready to go.
Note that 'ed' does not print any prompting information: this Quiet behavior is preferred by
experienced users. (If you would like a prompt, it can be provided: try the command
·op/prompt/".)

At this pOint, 'ed' is waiting for instructions from you. You can instruct 'ed' by using
·commands," which are single letters (occasionally accompanied by other information, which you
will see shortly).

Enterl ng Text - the Append Command

The first thing that you need is text to edit. Working with 'ed' is like working with a
blank sheet of paper: you write on the paper, alter or add to what you have written, and
either file the paper away for further use or throw it away. In 'ed's terminology, the blank
sheet of paper you start with is called a "buffer." The buffer is empty when you start
editing. All editing operations take place in the buffer: nothing you do can affect any file
unless you make an explicit request to transfer the contents of the buffer to a file.

So trle first problem reduces to finding a way to put text into the buffer. The "append"
command is used to do this:

•
This command appends (adds) text lines to the buffer, as they are typed in.

To put text into the buffer, simply type it in, terminating each line with a newline:

The quick brown fox
J....,s Over

the 1 azy dog.

To stop entering text, you must enter a line containing only a periOd, immediately followed by
a newline, as in the last line above. This tells 'ed' that you are finished writing on the
buffer, and are ready to do some editing.

The buffer now contains:

The Quick brown fox
jumps over

the lazy dog.

Neither the append command nor the final period are included in the buffer -- just the text
you typed in between them.

Writing text on a fll. - the Wrtt. command

Now that you have some text In the buffer, you need to know how to save it.
command "w" Is used for this purpose. It is used like this:

w file

The write

where "file" is the name of the file used to store what you just typed In. The write command
copies the contents of the buffer to the named file, destroying whatever was previously in the
file. The buffer, however, remains intact; whatever you typed in IS still there. To indicate
that the transfer of data was successful, 'ed' types out the number of lines written. In this
example, 'ed' would type:

3

- 1 -

Introduction to 'Ed'

It is advisable to write the contents of the buffer out to a file periodically, to insure that
you have an up-to-date version in case of some terrible catastrophe (like a system crash).

Finishing up - the Quit connand

Now that you have saved your text in a file, you may wish to leave the editor. The
"quit" command "q" is provided for this:

q

The next thing you see should be the "]" prompt from the Subsystem command interpreter. If
you did not write out the contents of the buffer, the editor would respond:

?
(not saved)

This is to remind you to write out the buffer, so that the results of your editing session are
not lost. If you intended that the buffer be discarded, just enter "q" again and 'ed' will
throwaway the buffer and terminate.

When you receive the nJ" prompt from the Subsystem command interpreter, the buffer has
been thrown away; there is absolutely no way to recover it. If you wrote the contents of the
buffer to a file, then this is of no concern; if you did not, it may mean disaster.

To check if the text you typed in is really in the file you wrote it to, try the follow­
ing command:

J cat ftle

where "file" is the name of the file given with the "w" command. (NCat" is a Subsystem com­
mand that' can be used to print files on the terminal. If, for example, you wished to print
your file on the line printer, you could say:

J pr f fl.

and the contents of "file" would be queued for printing.)

Reading files - the Enter cOIIUnd

Of course, most of the time you will not be entering text into the buffer for the first
time. You need a way to fill the buffer with the contents of some file that already exists,
so that you can modify it. This is the purpose of the "enter" command "e"; it enters the
contents of a file into the buffer. To tryout "enter,· you must first get back into the
editor:

Jed

"Enter" is used like this:

• fi 1e

"File" is the name of a file to be read into the buffer.

Note that you are not restricted to editing files in the current directory; you may also
edit files belonging to other users (provided they have given you permission). Files balong­
ing to other usars must be identified by their full ·pathname" (discussed fully in User's
~ 12 in! Primos fil! System). For example, to edit a file named "document" belonging to
user "tom," you would enter the following command:

e lItom/document

After the file's contents are copied into the buffer, 'ed' prints the number of 11nes it
read. In our example, the buffer would now contain:

The quick brown fox
jumps OVer

the lazy dog.

If anything at all is present in the buffer, the "eu command destroys it before reading the
named f 11e.

As a matter of convenience, 'ed' remembers the file name specified on the last Me" com­
mand, so you do not have to specify a file name on the ow· command. With these provisions, a
common editing session looks like

- 2 -

led
e ftle
{editing}
w
q

Introduction to 'Ed'

The "file" command (IIf") is available for finding out the remembered file name. To print out
the name, just type:

f
file

You might also want to check that

1 ed ftle

is exactly the same as

led
• ftle

(.

That is, 'ed' performs an "e" command for you if you give it a file name on the command line.

Errors - the Query COIIIIIand

Occasionally, an error of some kind is encountered.
spelled file names, although there are other possibilities.
types

7

Usually, these are caused by mis­
Whenever an error occurs, 'ed'

Although this is rather cryptic, it is usually clear what caused the problem. If you need
further explanation, just enter "7" and 'ed' respondS with a one-line explanation of the
error. For example, if the last command you typed was an "e" command, 'ed' is probably saying
that it could not find the file you asked for. You can find out for sure by entering "7":

• III)'f ite
7
?
I can't open the file to read

Except for the messages in response to ·7", 'ed' rarely gives other, more verbose error mes­
sages; if you should see one of these, the best course of action is to report it to the person
who maintains the editor at your installation.

Prtnttng text - the Prtnt COIIIand

You are likely to need to print the text you have typed to check it for accuracy. The
"print" command "p" is available to do this. .p. is different from the commands seen thus
far: "e", "w", and "a" have been seen to work on the whole buffer at once. For a small file,
it might be easiest to print the entire buffer just to check on some few lines, but for very
·'arge files this is clearly impractical. The "p" command therefore accepts "1 ine numbers"
that indicate which lines to print. Try the following experiment:

1 eel ftl.
3
1p
The quick brown fox
3p

the lazy dog.
1,2p
The quick brown fox

jumps over
1,3p
The quick brown fox

jumps over
the lazy dog.

"ip" tells 'ed' to print line 1 ("The quick brown fox"). "3p" says to print the third line
("the lazy dog."). "i,2p" tells 'ed' to print the first through the second lines, and "i,3p"
says to print the first through the third lines.

Suppose we want to print the last line in the buffer, but we don't know what its number
is. 'Ed' provides an abbreviation to specify the last line in the buffer:

- 3 -

Introduction to 'Ed'

$p
the lazy dog.

The dollar sign can be used just like a number. To print everything in the buffer, we could
type:

1,$p
The quick brown fox

jumps over
the lazy dog.

If for some reason you want to stop the printing before it is done, press the BREAK key
on your terminal. If you receive no response from BREAK, 'ed' is waiting for you to enter a
command. Otherwise, 'ed' ~esponds with

?

and waits for your next command.

More Complicated Line Numbers

'Ed' has several ways to specify lines other than just numbers and "S". Try the follow­
ing command:

p
the lazy dog.

'Ed' prints the last line. Does 'ed' always print the last line when it is given an unadorned
"p" command? No. The "p" command by itself prints the "current" line. The "current" line is
the last line you have edited in any way. (As a matter of fact, the last thing we did was to
print all the lines in the buffer, so the last line was edited by being printed.) 'Ed' allows
you to use the symbol"" (read "dot") to represent the current line. Thus

.p
the lazy dog.

is the same as

' •. p
the lazy dog.

whiCh is the same as just

p
the lazy dog.

can be used in many ways.

1.2p
The quick brown fox

jumps over
1 •. p
The quick brown fox

jumps over
.• $p

jumps over
the lazy dog.

For example.

This example shows how to print all the lines up to the current line (i,.p) Or all the lines
from the current line to the end of the buffer (.,$p). If for some reason you would like to
know the number of the current line. you can type ..

3

and 'ed' displays the number. (Note that the last thing we did was to print the last line, so
the current line became line 3.)

"" is not particularly
used in "line-number expressions."

.-1p
jumps over

useful when used alone. It becomes much more important when
Try this experiment:

".-1" means "the line that is one line before the current 11ne."

- 4 -

.+1p
the lazy dog.

".+1" means "the line that is one line after the current line."

.-2, .-1p
The quick brown fox

jumps over

Introduction to 'Ed'

".-2,.-1p" means "print the lines from two lines before to one line before the current line."

You can also use "$" in line-number expressions:

$-1p
jumps over

"$-1p" means ·print the line that is o"le l'ine before the last line in the
next to the last line."

buffer,
(

i . e .. the

Some abbreviations are
Typing a newline by itself ;s
minus sign, "-" followed
number expression followed by
followed by "p". Examples:

available to help reduce the amount of typing you have to do.
equivalent to typing ".+1p"; typing a caret, "All, or a single
by a newline is equivalent to typing ".-1p"; and typing a line­
a newline is equivalent to typing that line-number expression

{type a newline by itself}
the lazy dog.

jumps over

The quick brown fox
1
The quick brown fox

It might be worthwhile to note here that almost all commands expect line numbers of one
form or another. If none are supplied, 'ed' uses default values. Thus.

w f 11e

is equivalent to

1, $w f i 1 e

and

a

is equivalent to

.a

(whiCh means, append text after the current line.)

Deleting Lines

As yet. you have seen no way of removing lines that are no longer wanted or needed. To
do this, use the "delete" command "d":

1,2d

deletes the first through the second lines. The "d" command expects line numbers that work in
the same way as those specified for up". deleting one line or any range of 11nes.

d

deletes only the current 1 ine. It is the same as ".d" or "., .d".

After e deletion, the current line pOinter is left pointing to the first line!f1!L the
group of deleted lines, unless the last line in the buffer was deleted. In this case, the
current line is the last 11ne before the group of deleted lines.

Text Patterns

Frequently it is deSirable to be able to find a particular "pattern" in a piece of text.
For example, suppose that after proofreading a report you have typed in using 'ed' you find a
spelling error. There must be an easy way to find the misspelled word 1n the file so it can

- 5 -

Introduction to 'Ed'

be corrected. One way to do this is to count all the lines up to the line
error, so that you can give the line number of the offending line to 'ed'.
way is not very fast or effiCient. 'Ed' allows you to "search" for patterns
words) by enclosing the pattern in slashes:

/ju~s/
jumps over

containing the
Obviously, this
of text (like

'Ed'
tern.

looks for the pattern you specified, and moves to the first 1 ine which contains the pat­
Note that if we had typed

/juq:HtCI/
?

'ed' would inform us that ft could not find the pattern we wanted.

'Ed' searches forward from the current line when it attempts to find the pattern you
specified. If 'ed' reaches the last line without seeing the pattern, it "wraps around" to the
first line in the file and continues searching until it either finds the pattern or gets back
to the line where it started (line "."). This procedure ensures that you get the "next"
occurrence of the pattern you were looking for, and that you don't miss any occurrences
because of your current position in the file.

Suppose, however, that you do not wish to find the "next" occurrence of a word, but the
previous one instead. Very few text editors provide this capability; however, 'ed' makes it
simple. Just surround the pattern with backslashes:

\qutck\
The quick brown fox

Remember: backslashes search backward. The backward search (or backscan, as it is sometimes
called) wraps-iround the file ~ manner similar to the forward search (or scan). The search
begins at the line before the current line, proceeds until the first line of the file is seen,
then begins at the last line of the file and searches upwards until the current line is
encountered. Once again, this is to ensure that you do not miss any occurrences of a pattern
due to your current position in the file.

In pattern searches. and in other commands which we will get to later, 'ed' allows you to
leave off the trailing delimiter. I.e., instead of typing

/ju~s/

you can type

/ju~s

to search forward for the first occurrence of the pattern "jumps". Similarly, to search back­
ward, you may type

instead of

\qutck\

This feature can save
editing, and accidentally
guide will continue to
your actual editing.

considerable time and frustration when you are doing some involved
leave off the trailing delimiter ("/" or "\"). The rest of this
use examples with the trailing delimiter, but you do not have to in

'Ed' also provides more powerful pattern matching services than Simply lOOking for a
given string of characters. (A note to beginning users: this section may seem fairly com­
plicated at first, and indeed you do not really need to understand it completely for effective
use of the editor. However, the results you might get from some patterns would be mystifying
if you were not provided with some explanation, so look this over once and move on.)

The pattern that may appear within slashes (or backslashes) is called a "regular expres­
sion." It contains characters to look for and special characters used to perform other
operations. The following characters

% ? $. . {

have special meaning to led':

% Beginning of line. The "%" character appearing as the first element in a pattern
matches the beginning of a line. It is most frequently used to locate lines with
some string at the very beginning; for example,

- 6 -

IntrOduction to 'Ed'

I%Thel

finds the next line that begins with the word "The". The percent sign has its
special meaning only 1! 11 i! !n! first element 2!!n! pattern; otherwise, it is
treated as a literal percent sign.

? Any character. The question mark "?" in a regular expression matches any character
(except a beginning-of-l,ne or a newline). It can be used like this:

la?bl

to find strings like

a+b
a-b
a '.1

arbi'lrary
(.

However, .?" is most often used with the ·closure· operator (see below).

S End of line. The dollar sign appearing as the last element of a pattern matches the
newline character at the end of a line. Thus,

[]

ItodayS/

can be used to find a line with the word ·today" at the very end. Like the percent
sign, the dollar sign has no special meaning in positions other than the end of a
pattern.

Character classes.
For example,

The square brackets are used to match "classes" of characters.

/[A-z]1

finds the next line containing a capital letter,

/%[abcxyz]/

findS the next line beginning with an a. b, c, x, y, 01" z, and

/[-0-9]/

finds the next line which contains a non-digit.
frequently used with the "closure" operator ""'''.

Character classes are also

... Closure. The asterisk is used to mean "any number of repetitions (including zero)
of the previous pattern element (one character or a character class. in brackets)."
Thus,

la?*b/

finds lines containing an "a" followed by any number of characters and a "b". For
example, the following lines are matched:

ab
abnormal
Recording Media. by Dr. ~oseph P. Gunchy

As another example,

matches only those lines containing all equal-signs (or nothing at all).
wish to ensure that only non-empty lines are matched, use

I%· SI

If you

Always remember that "*" (closure) matches zero or more repetitions of an element.

• Escape. The "at" sign has special meaning to 'ed'. It is the "escape" character,
which is used to prevent interpretation of a special character which follows. Sup­
pose you wish to locate a line containing the string "a * b". You may use the fol­
lowing command:

The "at" sign .. turns off" the special meaning of the asterisk, so it can be used as
an ordinary text character. You may have occasion to escape any of the regular
expression metacharacters (%, ?, S, [, *, ., or {) or the slash itself. For exam-

- 7 -

Introduction to 'Ed'

p1e, suppose you wished to find the next occurrence of the string "1/2". The com­
mand you need is:

11./21

{} Pattern tags. As seen in the next section, it is sometimes useful to remember what
part of a line was actually matched by a pattern. By default, the string matched by
the entire pattern is remembered. It is also possible to remember a string that was
matched by only a part of a pattern by enclosing that part of the pattern in braces.
Hence to find the next line that contains a quoted string and remember the text
between the quotes, we might use

/"{?*}:I

If the line thus located looked like this

This is a line containing a "quoted string".

then the text remembered as matching the tagged part of the pattern would be

quoted string

The last important thing you need to know
tern. 'Ed' remembers the last pattern used in
ing it. To access the remembered pattern,
following sequence of commands could be used
occurrence of the string "ICS":

IIcsl
II
II
(and so on)

about patterns is the use of the "default" pat­
any command, to save you the trouble of retyp­
simply use an "empty" string. For example, the
to step through a file, looking for each

One last comment before leaving pattern searching. The constructs

Ipatternl
\pattern\

are not separate commands; they are components of line number expressions. Thus, to print the
line after the next line containing "tape", you could say

Itape/+1p

Or, to print a range of lines from one before to one after a line with a given pattern, you
could use

Ipattern/-1,/pattern/+1p

Maktng Substitutions - the Substitute command

This is one of the most used editor commands. The "substitute" command ·s· is used to
make small Changes within lines, without retyping them completely. It is used like this:

starting-line.ending-line s [/pattern/new-stuff[/]]

For instance, suppose our buffer looks like thiS:

1,Sp,
The quick brown fox

jumps over
the lazy dog.

To Change "jumps" to "jumped,·

2s/Jumps/Jumped/p
jumped over

Note the use of the trailing .p. to print the result. If the up. had been omitted, the change
would have been performed (in the buffer) but the changed line would not have be.n printed
out.

If the last string specified 1n the substitute command is empty, then the text matChing
the pattern is deleted:

- 8 -

s/juq:NtCI//p
over

5/% */ jumps /p
jumps over

Introduction to 'Ed'

Recalling that a missing pattern means "use the last pattern specified," try to explain what
the following commands do:

s///p
jumps over
5// /p

jumps over

(Note that, like many other commands, the substitute command assumes you want to work on the
current line if vou do not specify any line numbers.)

Wt,a t if you want to change "over" into "over and over"? You might use

slover/over and over/p
jumps over and over

to accomplish this. There is a shorthand notation for this kind of substitution that was
alluded to briefly in the last section. (Recall the discussion of "tagged" patterns.) By
default, the part of a line that was matched by the whole pattern is remembered. This string
can then be included in the replacement string by typing an ampersand ("&") in the desired
position. So, instead of the command in the last example,

s/over/& and &/

could have been used to get the same result. If a portion of the pattern had been tagged, the
text matched by the tagged part in the replacement could be reused by typing ''(1)1":

s/jump{?*}/vault.1/p
vaults over and over

It is possible to tag up to nine parts of a pattern using braces. The text matched by each
tagged part may then be used in a replacement string by typing

where n corresponds to the nth "{" in the pattern. What does the following command do?

Some more words on substitute: the slashes are known as Mdelimiters" and may be replaced
by any other character except a newline, as long as the same character is used consistently
throughout the command. Thus,

sNvaultsNvaultedNp
vaulted over and over

is legal. AlSo, note that substitute changes only the first occurrence of the pattern that it
finds; if you wish to change all occurrences on a line, you may append a "g" (for "global") to
the command, like this:

5/ /*/gp
****vaulted*over*and*over

In the replacement part of a substitute command, the character n&", A!!h! only character 1n
!h! pattern, means "the replacement part of the previous substitute command". (This allows an
empty replacement pattern as well.) Thus, to step through the buffer, and change selected
occurrences of one pattern into another, you might do the following:

/pat1/
Line containing patio
s/pat1/stuff1/p
Line containing stuffi.
II
Another line with patio
/I
Yet another line with patio
S//&/p
Yet another line with stuff1.

You may leave off the trailing delimiter in the substitute command. This will cause 'ed' to
print out the changed line. I.e., "s/stuff/junk" is the same as "S/stuff/junk/p".

- 9 -

Introduction to 'Ed'

/quick/
The quick brown fox
s/quick/really fast
The really fast brown fox

If you wish to delete an occurrence of a pattern. you may leave it off. 'Ed' will delete the
pattern. and then print the line. In other words. us/stuff" is the same as "s/stuff//p".

p
The qUick brown fox
s/qufck
The brown fox

Finally. you may leave off the search pattern and replacement string entirely. If you do.
'ed' will behave as though"you had typed "sf/alp". in other words. substitute the previous
replacement pattern for the pre\lious search pattern. and print.

1.$d
a
line 1
It.,.2

1s/1ine/this is &/p
this is line 1
2s
this is 1 ine 2

This can save considerable typing.

Line Changes, Insert t ons. and COncatenat t ons

Two "abbreviation"
changes of entire lines.

commands are available to shorten common operations applying to
These are the "Change" command ·c" and the "insert" command "i".

The change command is a combination of delete and append. Its format is

starting-line.ending-line c

This command deletes the given range of lines. and then goes into append mode to obtain text
to replace them. Append mode works exactly the same way as it does for the "au command; input
is terminated by a periOd standing alone on a line. Examine the following editing session to
see how change might be used:

1.$c
Ed is an tnteractive progr .. used for
thll creat i on and IIOdf f f cat t on of "text,

c
thll creatfon and IIOdtftcatton of "text,"
"Text" _y be any collectton of character
data .
. '

As you can see, the current line is set to the last line entered in append mode.

The other abbreviation command is "i", "I" is very closely related to "a"; in fact, the
following relation holds:

starting-line

is the same as

starting-11ne - a

In short, "1· insert~' text before the spec1f1ed 11ne, whereas "a" 1nserts text !.f.!!t the
specified 11ne,

The j01n command "j" can be used to put two or more lines together into a single 11ne.
It works like thiS:

starting-l ine,ending-l ine j[/string[/]l

The defaults for starting-line and ending-line are .AH and H," respectively, that is, "join
the line before the current line to the current line", You may specify in "string" what is to
replace the newline(s) which currently separate the lines which are to be joined, If you do
not specify any string, 'ed' will replace the newline with a single blank. If you do specify
a string, you may leave off the trailing delimiter (which can be any character), and 'ed' will
print out the resulting j01ned 11ne. An extended example Should make th1s clear:

- 10 -

1.Sp
The quick brown fox

jumps over
the lazy dog.

2,Ss/% *11
1.Sp
The quick brown fox
jumps over
the lazy dog.
1.2j
The quiCk brown fox jumps over
1.2j/ the baCk of /p
The quick brown fox jumps over the back of the lazy dog.

Moving Text

Introduction to 'Ed'

Throughout this guide, we have concentrated on what may be called -in-place" editing.
Th.e other type of editing commonly used is often called "cut-and-paste" editing. The move
command "m" is provided to facilitate this kind of editing, and works like this:

starting-line,ending-line m after-this-line

If you wanted to move the last fifty lines of a file to a point after the third line, the com­
mand would be

$-49,$m3

Any of the line numbers may, of course, be full expressions with search strings, arithmetic,
etc.

You may, if you like, append a Up" to the move command to cause it to print the last line
moved. The current line is set to the last line moved.

Global Commands

The "global" command "g" is used to perform an editing command on all lines in the buffer
that match a certain pattern. For example, to print all the lines containing the word
"editor", you could type

g/editor/p

If you wanted to correct some common spelling error, you would use

g/Old-stuff/s//new-stuff/gp

which makes the change in all appropriate lines and prints the resulting lines. Another exam­
ple: deleting all lines that begin with an asterisk could be done this way:

"G" has a companion command ·x" (for ·exclude") that performs an operation on all lines
in the buffer that do not match a given pattern. For example, to delete all lines that do ng!
begin with an asterisk:-Use

"G" and -x· are very powerful commands that are essential for advanced usage, but are
usually not necessary for beginners. Concentrate on other aspects of 'ed' before you move on
to tackle global commands.

Marking Lines

During some types of editing, especially when moving blocks of text, it is often neces­
sary to refer to a line in the buffer that is .far away from the current line. For instance,
say you want to move a subroutine near the beginning of a file to somewhere near the end, but
you aren't sure that you can specify patterns to properly locate the subroutine. One way to
solve thiS problem is to find the first line of the subroutine, then use the command ".=":

/sUbroutlne/
subroutine think

. =
47

- 11 -

Introduction to 'Ed'

and write down (or remember) line 47. Then find the end of the subroutine and do the same
thing:

/end/
end

=
71

Now you move to where you want to place the subroutine and enter the command

47,71m.

which does exactly what you want . .
The problem here is that absolute line numbers are easily forgotten, easily mistyped, and

difficult to find in the first place. It is much easier to have 'ed' re~~m~a~ a short "name"
along with each 11ne, and allow you to reference a line by its name. In practice, it seems
convenient to restrict names to a single character. such as "b" or "e" (for "beginning" or
"end"). It is not necessary for a given name to be uniquely aSSOCiated with one line; many
lines may bear the same name. In fact. at the beginning of the editing session. all lines are
marked with the same name: a single space.

To return to our example, using the 'k' command, we can mark the beginning and ending
lines of the subroutine quite easily:

/subrout;ne/
subroutine think

kb
/end/

end
ke

We have now marked the first line in the subroutine with "b" and the second line with lie".

To refer to names, we need more line number expression elements: ">" and "<H. Both work
in line number expreSSions just like "$" or "/pattern/". The symbol ">" followed by a single
character mark name means "the line number of the first line with this name when you search
forward". The symbol "<" followed by a Single character mark name means "the line number of
the first line with this name when you search backward". (Just remember that '<' points back­
ward and '>' points forward.)

Now in our example, once we locate the new destination of the subroutine. we can use "<b"
and "<e" to refer to lines 47 and 71, respectively (remember, we marked them). The "move"
command would then be

<b,<em.

Several other features pertaining to mark names are important. First, the 'k' command
~ QE! change the current line" You can say

$kx

(which marks the last line with "x") and "." will not be changed. If you want to mark a
range of lines, the 'k' command accepts two line numbers. For instance,

5, 10k.

markS lines 5 through 10 with "a" (1.e., gives each of lines 5 through 10 the markname "a").

The 'n', 'I' and apostrophe commands also deal with marks. The 'n' command performs two
functions. If it is invoked without a mark name following it. like

$"

it prints the mark name of the line. In this case, it would print the mark name of the last
line in the file. If the 'n' command is followed by a mark name, like

4nq

it marks the line with that mark name, and erases the marks on any other lines with that name.
In this case, line 4 is marked with "q" and it is guaranteed that no other line in the file is
marked with "q".

The'l' and apostrophe commands are both global commands that deal with mark names.
apostrophe command works very much like the 'g' command: the apostrophe is followed by a
name and another command; the command is performed on every line marked with that name.
instance,

- 12 -

The
mark

For

Introduction to '~a'

'as/fox/rabbit/

changes the first "fox" to "rabbit" on every line that is named "a". The '!' command works
in the same manner, except that it performs the command on those lines that are not marked
with the specified name. For example, to delete all lines not named "k", you COUld type

!kd

Undoing Things -- the Undo Connand

Unfortunately, Murphy's Law guarantees that if you make a mistake, it will happen at the
worst possible time and cause the greatest possible amount of damage. 'Ed' attempts to
prevent mistakes by doing such things as working with a copy of your file (rather than the
file itself) and checking commands for their plausibility. However, if you type

d (.

when you really meant to type

•
'ed' must take its input at face value and do what you say. It is at this point that the
"undo" command 'u' becomes useful. ·Undo" allows you to ·undelete" the last group of lines
that was deleted from the buffer. In the last example, some inconvenience could be avoided by
typing

"'ud

which restores the deleted line. (By default "undo" replaces the specified line by the last
group of lines deleted. Specifying the "d", as in "ud" , causes the group to be inserted !.!.i!!:
the specified 11ne instead.)

The problem that arises with "undo" is the answer to the Question: ·What was the last
group of lines deleted?" This answer is very dependent on the implementation of 'ed' and in
some cases is subject to change. After many commands, the last group of lines deleted is
well-defined, but unspecified. It is not a good idea to use the ·undo" command after anything
other than 'c', 'd', or's'. After a 'c' or 'd' command,

ud

places the last group of deleted lines after the current line. After an's' command (whiCh by
the way, deletes the old line, rep1acing-itwTIii the changed line),

u

deletes the current line and replaces it with the last line deleted -- it exactly undoes the
effects of the's' command. But beware! If the's' command covered a range of lines, 'u' can
only restore the last of the lines in which a substitution was made; the others are gone
forever.

You should be warr')ed that while "undo" works nicely for repairing a single 'c', 'd', or
's' command, it cannot repair the damage done by one of these commands under the control of a
global prefix ('g', 'x', '!' and apostrophe). Since the glObal prefixes cause their command
to be performed many times, only the very last command performed by a global prefix can be
repaired.

More L t... Nullber Syntax

So far, the commands that you have seen can be given either no line numbers elements (the
command tries to make an intelligent assumption about the line(s) on which to perform an
operation), one l1ne number element (the command acts only on that l1ne), or two line numbers
separated by a comma (the command acts on the given range of lines). There is one more way to
specify line number elements, and that 1.s to separate them by a semiCOlon. When line number
elements are separated by semicolons, each line number element encountered sets the
·current line" marker before the next line number element is evaluated. This 1s especially
useful when using patterns as line number elements; some examples will illustrate what we
mean.

Suppose that you wanted to print all the lines which lie between two lines, each contain­
ing the string "fred". An initial effort might yield the following command line:

/fred/,/fred/p

This, however, will only print out the first line which contains "fred" after the current
line. This is because both patterns will start their search after the current line where the
command was executed, instead of the second one starting where the first pattern was found.

- 13 -

Introduction to 'Ed'

To correct this, we would issue the following:

/fred/;/fred/p

When the first occurrence of "fred" is found, the "current line" is set to that line, and the
second occurrence of "fred" will be found starting at this new line. This will print the
lines between two succeeding occurrences of "fred" from the current line.

As a final example, suppose that we wanted to print the lines between the second and
third occurrence of "fred" after the current line; to do this, we would do:

/fred/;//;//p

The first pattern search wquld find "fred", the next two null strings will cause the previous
pattern ("fred") to be searched for again, each time resetting the "current line" marker. Of
course, the command "p" may be replaced by any ~ommand yol.! Wibh.

For both comma-separated and semicolon-separated line number elements, you may specify
more than two such elements, as the above example shows; only the last two such elements will
be used as the range for the given command. In general, using more than two line number
elements separated by commas is not too useful, because the "current line" is not modified for
any of the line number expression evaluations. Also, using integer line numbers means that
multiple expressions (more than two) are not useful, since the equivalent behavior can be
obtained by specifying only the last two line numbers.

ESCaping to the Shell

With Version 9 of Software Tools and Revision 19.2 or later of PRIMOS, it is now possible
to call the Software Tools Subsystem command interpreter (the shell) from within a program.

'Ed' provides access to this facility with the shell escape "-" command. It works like
this:

-[<Software Tools Command>]

If present, the <Software Tools Command> is passed to the shell to be executed. Otherwise, an
interactive shell is created. After either the command or the shell exits, 'ed' prints a "-"
to indicate that the shell escape has completed. If the first character of the <Software
Tools Command> is a H!", then the H," is replaced with the text of the previous shell com­
mand. An unescaped "%" in the <Software Tools Command> will be replaced with the current
saved file name. If the shell command is expanded, 'ed' will echo it first, and then execute
it.

This feature is useful when you want to temporarily stop editing and do something else,
or find something out, without having to write your file and leave the editor.

{editing session}
-If ·1 %
lf -1 file
sam aIr 06/17/84 16:25:08 19463 sys file

For a deeper discussion of using the shell from within a program, see the help on the
'shell' subroutine. In particular, due to operating system constraints. you must not run
another instance of the editor from the new shell, or you will end up clobbering your- current
edit buffer.

WARNING: Until Prime supports EPFs, and the editor is reloaded in EPF format, you must
!!21 run any external commands (like 'If') from a snell started from 'ed'. If you do, the new
program will load over 'ed'. and wipe out your current editing •••• ion. You can u.e command.
which are inter,na1 ;o-the shell (like 'cd'). without any ill effect. This restriction, for
various arcane reasons. does De! apply to the Subsystem screen editor, 'se'.

In essence, this feature is provided in the editor with an eye to the future.

Forced Logout.

With Revision 19 of Primos, it became possible for programs to catch a forced logout (the
LOGOUT$ condition), and take some kind of appropriate action. Both 'ed' and 'se' have
provision for catching a forced logout, and will save their current edit buffers. When a
LOGOUT$ signal is received, 'ed' writes its edit buffer to the file --temp-/-u.er-.ed", while
'se' writes its edit buffer to the f11e --temp-/-user-.se". Both editors use the -temp­
directory, since it is possible that if they tried to save their buffers in the user's direc­
tory (e.g. -homes). they could overflow a disk quota. and the editing session would be lost.

- 14 -

Introduction to 'Ed'

Sunna,.y

ThiS concludes our tour through the world of text editing. In the section that follows,
you will find a brief introduction to the Software Tools Subsystem screen editor 'se', which
supports all of the line-oriented commands of 'ed' as well as full screen editing
capabilities, while giving you a "window" into your edit buffer. Following that, we have
included for your convenience a short summary of all available line editing commands supported
by 'ed' and 'se', many of which were not discussed in this introduction, but which you will
undoubtedly find useful.

- 15 -

Introduction to 'Ed'

The SUbsystem Screen Editor

The
Although
without
outlines

screen editor, 'se', is an extended version of the Subsystem line editor, 'ed'.
'se' contains a number of additional features, it accepts all 'ed' commands (almost
exception), and is therefore easily used by anyone familiar with 'ed'. This section
the differences between 'ed' and 'se'.

The screen editor has a bUilt-in "help" facility, which documents all the commands and
options. When in doubt, type "help", and the help screens should guide you to further
information on what you need to know.

Invoking the Screen Editor.

You can invoke the screen ~ditor ,,·,tr. either of the following commands:

1 se

or

1 se myfile

'Se' will automatically fetch your terminal type from the Subsystem. If you never told the
Subsystem your terminal type or set an unknown terminal type with the 'term' command, 'se'
will prompt you for another terminal type; if you type a '7', 'se' will give you a list of
possible terminal types and prompt you again for yours.

'Se' can also be invoked by the command 'e'. 'E' remembers the name of the last file you
edited, so if you don't specify a file, 'e' will enter the last file you edited.

Using'S.'

'Se' first clears the screen, draws in its margins, and executes the commands in the file
"=home=/.serc" , if it exists. It then processes the command line, Obeying the options given
there, and begins reading your file (if you specified one). The screen it draws looks someth­
ing like this. (The parenthesized numerals are not part of the screen layout, but are there
to aid in the following discussion.)

(1) (2)
A I

B .1
c 1

_> 1
1
1
1

E
F
$
cmd>
11: 39

I

(3)

integer a

for (a = 1; a <= 12; a = a + 1)
call putch (NEWLINE, STDOUT)

stop
end
(4)

iiiyf i 1 e (5)

The display is divided into five parts: (1) the line number area, (2) the mark name. area, (3)
the text area, (4) the command line, and (5) the status line. The current line (remember ".")
is indicated by the symbol "." in the line number area of the screen. In addition, a rocket
("_>") is displayed to make the current line more obvious. The current mark name of each line
is shown in the markname area just to the left of the vertical bar. Other information, such
as the number of lines read in, the name of the file, and the time of day, are displayed in
the status line.

The cursor is pOSitioned at the begtnning of the command ltne, showing you that 'se'
awaits your command. You may now enter any of the 'ed' commands and 'se' will perform them,
while making sure that the current line Is always displayed on the screen. There are only a
few other things that you need know to successfully use 'se'.

'Se' always recognizes BS (control-h) and DEL as the erase and kill characters,
regardless of your Subsystem erase and kill character settings.

If you make an error, 'se' automatically dtsplays an error message in the status
line. It also leaves your command line intact so that you may change it using in­
line editing commands (we'll get to this a little later). If you don't want to
bother with changing the command, just hit DEL and 'se' will erase it.

The "p" command has a different meaning than in 'ed'. When used with line numbers,
it displays as many of the lines in the specified range as possible (always includ­
ing the last line). When used without line numbers, .p" displays the previous page.

- 16 -

lntroauction to 'Ea'

The "." command positions a specified line at the top of the screen (e.g., "12:"
positions the screen so that line 12 is at the top). If no line number is
specified, ":" displays the next page.

The "v" command can be used to mOdify an entire line rather than just add to
of the line. Also, if you use ·v" over a range of lines and find that you
terminate the command before all lines have been considered, the control-f
used instead of a period.

the end
want to
key is

If a file name is specified in the "w" command and the file already exists, 'se'
will display "file already exists"; entering the command again (by typing a NEWLINE)
will cause the file to be overwritten. Given the command lOW! <file>", 'se' will
never warn about the destruction of an existing file.

Keeping these few differences in mind, you will see that 'se' can Perform all of the functions
of 'ed' while giving the advantage of a "window" into the fd't =",'1~

Extended Line Numbers

'Se' has a number of features that take advantage of the window display to minimize
keystrokes and speed editing. In the line number area of the screen, 'se' always displays for
each line a string that may be used in a command to refer to that line. Normally, it displays
a capital letter for each line, but in "absolute line number" mode (controlled by the "oa"
command; see the section on options for more details), it displays the ordinal number of the
line in the buffer.

The line number letters displayed by 'se' may be used in any context requiring a line
number. For instance, in the above example, a Change to the first line on the screen could be
specified as

As/%/# my new program/

You could delete the line before the first line on the screen by typing

A-1d

Finally, 'se' accepts "#" as a line number element; it always refers to the first line on
the screen; like the line number letters. it may be used in any context which requires a line
number element or expression.

Case COnverston

When 'se' is displaying upper-case letters for line numbers. it accepts command letters
only in lower case. For those who edit predominantly upper-case text this is somewhat incon­
venient; for those with upper-case only terminals this is a disaster. For this reason, 'se'
offers several options to alleviate this situation.

First of all, typing a control-z causes 'se' to invert the case of all letters (just like
the alpha-lock key on some terminals). Upper-case letters are converted to lower-case. lower­
case letters are converted to upper-case, and all other characters are unchanged. You can
type control-z at any time to toggle the case conversion mode. When case inversion 1s in
effect, 'se' displays the word ·CASE" 1n the status 11ne.

One drawback to this feature is that 'se' still expects line numbers in upper case and
commands in lower case, so you must shift to type the command letter -- just the reverse of
what you're used to. A more satisfactory solution is to specify the "c" option. uust type

oc

on the command line and 'se' toggles the case conversion mode, and completely
interpretation of upper and lower case letters. In this mode, 'se' displays the
letters in lower case and expects its command letters in upper case. Unshifted
the terminal are converted to upper case and shifted letters to lower ~ase.

Tabs

reverses its
line number
letters from

In the absence of tabs, program indentation is very costly in keystrokes. So 'se' gives
you the ability to set arbitrary tab stops using the "ot" command. By default, 'se' places a
stop at column 1 and every third column thereafter. Tabs corresponding to the default can be
set by enumerating the column positions for the stops:

ot 1 4 7 10 13 16 19 22 25 28 31 34

This is almost as bad as typing the blanks on each line. For this reason, there is also a
shorthand for such repetitive specifications.

- 17 -

Introduction to 'Ed'

ot +3

sets a tab stop at column 1 and at every third column thereafter.
prefer the specification

ot 7 +3

to set a stop at column 7 and at every third thereafter.

Fortran programmers may

Once the tab stops are set, the control-i and control-e keys can be used to move the cur­
sor from its current position forward or backward to the nearest stop, respectively.

Full-Screen Editing

Full SG,'een iny with 'se,' is accomplished through the use of control characters for
editing functions. A few, such as control-h, control-i, and control-e have already been
mentioned. Since 'se' supports such a large number of control functions, the mnemonic value
of control character assignments has dwindled to almost zero. About the only thing mnemonic
;s that most symmetric functions have been assigned to opposing keys on the keyboard (e.g.,
forward and backward tab to control-i and control-e, forward and backward space to control-g
and control-h, skip right and left to control-o and control-w, and so on). We feel pangs of
conscience about this, but can find no more satisfactory alternative. If' you feel the control
character aSSignments are terrible and you can find a better way, you may Change them by
modifying the definitions in 'se' and recompiling.

Except for
the command line.
them.) Most of
"v" command), the

a few special purpose ones, control characters can be used anywhere, even on
(This is why erroneous commands are not erased -- you may want to edit
the functions work on a single line, but in overlay mode (controlled by the

cursor may be positioned anywhere in the buffer.

Horizontal Cursor Motion

There are quite a few functions for moving the cursor. You've probably used at least one
(control-h) to backspace over errors. None of the cursor motion functions erase characters,
so you may move forward and backward over a line without destroying it. Here are sev.ral of
the more fr.qu.ntly used cursor motion characters:

control-g Move forward one column.

control-h Move backward on. column.

control-i Move forward to the next tab stop.

cont .. ol-e Move backward to the p ... vious tab stop.

cont .. ol-o Move to the fi .. st column beyond the end of the lin •.

cont"ol-w Move to column 1.

Vertical CUrsor Motton

'5e' p .. ovides two cont .. ol keys, cont .. ol-d and control-k, to move the cu .. so .. up and down,
.. espectiv.ly, f .. om line to lin. th .. ough the edit buff The exact function of .ach depends
on 's.'s cu .. r.nt mod.: in command mode they simply move the cur .. ent line pointe .. without
affecting the cu .. sor position or the contents of the command line; in ov.rlay mode (viz. the
"v· command) th.y actually move the cursor up or down one line within the same column;
finally, in append move, these keys are ignored. Regardless of the mode, the screen is
adjusted when necessary to insure that the current line is displayed.

control-d Move the cursor up one line.

control-k Move the cursor down one line.

Character Insertion

Of course the next question is: "Now that I've mov.d the cursor, how do I change
things?" If you want to retype a character, just position the cursor over it, and type the
desired charact.r; the old on. is replaced. You may also lns.rt charact.rs at the current
cursor position instead of m.rely ov.rwriting what's already th.re. Typing a control-c
inserts a Single blank before the character under the cursor and moves the remainder of the
line one column to the right; the cursor remains in the same column over the n.wly-inserted
blank. Typing a control-x inserts enough blanks at the current cursor position to move the
character that was there to the n.xt tab stop. This can be handy for aligning items In a
table, for example. As with control-c, the cursor r.mains in the same column.

- 18 -

Introduction to 'Ed'

A more general way of handling insertions is to type control-a. This toggles "insert
mode" the word "INSERT" appears on the status 1 ine, and all characters typed from this
pOint are inserted in the line (and characters to the right are moved over). Typing control-a
again turns insert mode off. Here is a summary of these control characters:

control-a Toggle insert mode.

control-c Insert a blank to the left of the cursor.

control-x Insert blanks to the next tab stop.

control-_ Insert a newline.

Character Deletion

There are many ways to do away with chara~ters. The most drastic is to type DEL; 'se'
erases the current line and leaves the cursor in column 1. Typing contro1(.,.t causes 'se' to
delete the character under the cursor and al'l those to its right. The cursor is left in the
same column which is now just beyond the new end of the line. Similarly, control-y deletes
all the characters to the left of the cursor (not including the one under it). The remainder
of the line is moved to the left, leaving the cursor over the same character, but now in
column 1. Control-r deletes the character under the cursor and closes the gap from the right,
while control-u does the same thing after first moving the cursor one column to the left.
These last two are most commonly used to eat characters out of the middle of a line.

DEL Erase the entire 1 ine.

contro1-t Erase the characters under and to the right of the cursor.

control-y Erase the characters to the left of the cursor.

contro1-r Erase the character under the cursor.

control -u Erase the character immediately to left of the cursor.

Temtnating a Lhw

After you have edited a line, there are two ways of terminating it. The most commonly
used is the control-v. A newline (or carriage-return) can be used but beware that it deletes
all characters over and to the right of the cursor.

control-v Terminate.

NEWLINE Erase characters under and to the right of the cursor and terminate.

Non-printing Characters

'5e' displays a non-printing character as a blank (or other user-selectable character;
see the description of "ou" in the section on options). Non-printing characters (such as
'se's control characters). or any others for that matter. may be entered by hitting the ESC
key followed immediately by the key to generate the desired character. Note, however, that
the character you type is taken literally, exactly as it is generated by your terminal. so
case conversion does not apply.

ESC Accept the literal value of the next character. regardless of 1ts function.

The .• ere File

When 'se' starts uP. it tries to open the file ··home=/.serc". If that file exists. 'se'
reads it, one line at a time. and executes each line as a command. If a line has "N" as the
first character on the line. or if the line is empty, the entire 11ne is treated as a comment.
O't'hii'rwise it is executed. Here is a sample ".serc" file:

N turn on unix mode. tabs every 8 columns, auto indent
opu
ot+8
oia

The ".serc" file is useful for setting up personalized options, without having to type them on
the command line every time, and without using a special shell file in your bin. In
particular. it is useful for automatically turning on UNIX mode for SOftware Tools users who
are familiar with the UNIX system.

Command line options are processed!.f..l!..!: commands in the ".serc" file, so, in effect, command

- 19 -

Introduction to 'Ed'

line options can be used to over-ride the defaults in your ".serc" file.

NOTE: Commands in the ".serc" file do not go through that part of 'se' which processes the
special control characters (see above) ,So gg!!2! use them in your ".sere" file.

- 20 -

Int~oduction to 'Ed'

Screen Edttor Options

Options for 'se' can be specified in two ways: with the ·0· command or on the Subsystem
command line that invokes 'se'. To specify an option with the ·0· command. just .nt.r ·0"
followed immediately by the option letter and its parameters. To specify an option on the
command line. just use "-" followed by the option letter and its paramet.rs. With this second
method. if there are imbedded spaces in the parameter list. the entire option should be
enclosed in quotes. For example, to specify the "a" (absolute line number) option and tab
stops at column 8 and every fourth thereafter with the .0" command. just enter

oa
ot 8 +4

when 'se' is waiting for a command. To .nter the same options on the invoking command line,
you might use

se -t r.gent myfile -a "_t 8 +4"

The following table summarizes the available 'se' options:

Option Action

a causes absolute line numbers to be displayed in the line number area of the screen.
The default behavior is to display upper-case letters with the letter "A" correspon­
ding to the first line in the window.

c inverts the case of all letters you type (i.e., converts upper-case to lower-case
and vice versa). This option causes commands to be r.cogniz.d only in upp.r-case
and alphabetic line numb.rs to b. displayed and r.cognized only in lower-case.

d[<dir>] selects the placement of the current line pointer following a "d" (delete) command.
<dir> must be either ">" or "<". If ">" is specified. the d.fault behavior is
sel.cted: the line following the deleted lines becomes the n.w curr.nt line. If
"<" is specified, the 11ne immediately preceding the delet.d lines becomes the n.w
curr.nt line. If n.ith.r is specified, the current value of <dir> is displayed in
the status line.

f

g

sel.cts Fortran oriented options. This is equivalent to specifying both the ·c" and
"t7 +3" (s.e b.,ow) options.

controls the behavior of the liS" (Substitute) command wh.n it is under the control
of a "g" (global) command. By d.fault, if a substitute inside a global command
fails, 'se' will not continue with the rest of the lines which might succeed. If
·og" is giv.n. then the global substitute will continue, and lines which fail.d will
not be affected. Successive "og" commands will toggle this behavior. An
explanatory message is placed in the status line.

h[<baud>] lets the .ditor know at what baud rate you are receiving characters. Baud rates can
range from 50 to 19200; the default is 9600. This option allows the .ditor to
determine hOW many, if any, delay characters (nulls) will be output when the hard­
ware line tnsert/delete functions of the terminal are being us.d (if available).
Us. of the bUilt-1n terminal capabiliti.s to insert/del.te I1n.s sp.eds up .diting
over slow-sp.ed 11n.s (i .•.• dialups). Entering 'oh' without an argument will cause
your current baud rate to appear on the status line.

i[a <indent» selects ind.nt value for lines insert.d with Ha", ·c· and "1" commands
(init1ally 1). "a" s.l.cts auto-ind.nt wh1ch sets the indent to the value whiCh
.quals the ind.nt of the pr.vious line. If <indent> 1s an int.g.r. th.n the indent
value will be set to that numb.r. If neither "a" nor <1nd.nt> are specifi.d, the
current value of indent is displayed.

k Indicates whether the current contents of your .dit buffer has b •• n saved or not by
printing either a ·sav.d'· or "not saved" message on your status' line.

l[<IOp» sets the line number display option. Under control of this option. 'se'
continuously displays the value of one of thr.e symboliC 11n. numb.rs 1n the status
line. <lop> may be any of the following:

display the current line number

display the number of the top line on the screen

$ display the number of the last line in the buffer

If <lop> is omitted, the line number display is disabled.

- 21 -

Introduction to 'Ed'

1m[<co1>] sets the left margin to <col> which must be a positive integer. This option will
shift your entire screen to the left. enabling you to see characters at the end of
the line that were previously off the screen; the characters in columns 1 through
<col> - 1 will not be visible. You may continue editing in the normal fashion. To
reset your screen enter the command 'olm 1'. If <col> is omitted, the current left
margin column is displayed in the status line.

m[d] «user>] displays messages sent to you by other users (via the 'to' command) while you
are editing. When a message arrives while you are editing, the word "message"
appears on your status line. To send other users messages while inside of the
editor, you can insert the text of your message into the edit buffer, and then issue
the command "line1,line20m <user>", where ·'ine1" and "line2" are the first and last
lines, respectively, of where you appended your message in the edit buffer and
"<user>" is the login name or process id of the person to whom you want to send a
message. The given lines are sent and deleted from the edit buffer. To prevent the
1 ines from being deleted after they are sent, use t~., .. command line
"line1,line20md <user>"

pes u] converts to or from UNIX (tm) compatibility mode. The "op" command, by itself, will
toggle betweeh normal (Software Tools mOde) and UNIX mode. The command "opu" will
force 'se' to use UNIX mode, while the command "ops" will force 'se' to use Software
Tools mode.

s[pma

When in UNIX mode, 'se' uses the folloWing for its patterns and commands:

?pattern[?] searches backwards for a pattern.

matches the beginning of a line.

matches any character.

is used to negate character classes.

% used by itself in the replacement part of a substitute command represents the
replacement part of the previous substitute command.

\«regular expression>\) tags pieces of a pattern.

\<digit> represents the text matched by the tagged sub-pattern specified by <digit>.

\ is the escape character, instead of •.

t copies lines.

y transliterates lines.

does the global exclude on markname (see the "'" command, in the help on
'ed') .

'[<Software Tools Command>] will create a new instance of the Software Tools shel"
or execute <Software Tools Command> if it is present (see the "_" command, in
the help on 'ed').

All other characters and commands are the same for both UNIX and normal (Software
Tools) mode. The help command will always call up documentation appropriate to the
current mode. UNIX mode is indicated by the message ·UNIX· in the status line.

UNIX mode is available only in 'se'. This extenSion is not available in 'ed'.

ftn I f77 I s I f) sets other options for case, tabs, etc., for one of the three
programming languages listed. The option ·oss- ts the same as ·ospma" and the
option ·osf- is the same thing as ·osftn- (the corresponding command line options
are '. "-ss- and "-sf"). If no argument is speCified, the options affected by this
command revert to their default value.

t[<tabs» sets tab stop~ according to <tabs>. <Tabs> consists of a series of numbers indicat­
ing columns in whiCh tab stops are to be set. If a number is preceded by a plus
sign ("+"), it indicates that the number is an increment; stops are set at regular
intervals separated by that many columns, beginning with the most recently specified
absolute column number. If no such number precedes the first increment
specification, the stops are set relative to column 1. By default, tab stops are
set in every third column starting with column 1, corresponding to a <tabs>
specification of -+3". If <tabs> is omitted, the current tab spacing is displayed
in the status line.

u[<chr>] selects the character that 'se' displays in place of unprintable characters. <chr>
may be any printable character: it is initially set to blank. If <chr> is omitted,
'se' displays the current replacement character on the status line.

- 22 -

v[<cOl>] sets the default "overlay column". This is the column at which the cursor is
initially positioned by the "v" command. <Col> must be a positive integer, or a
dollar sign ($) to indicate the end of the line. If <col> is omitted, the current
overlay column is displayed in the status line.

w[<col>] sets the "warning threshold" to <col> which must be a positive integer. Whenever
the cursor is positioned at or beyond this column, the column number is displayed in
the status line and the terminal's bell is sounded. If <col> is omitted, the
current warning threshold is displayed in the status line. The default warning
threshold is 74, corresponding to the first column beyond the right edge of the
screen on an 80 column crt.

-[<lnr>] splits the screen at the line specified by <lnr> which must be a simple line number
within the current window. All lines above <lnr> remain frozen on the screen, the
line specified by <lnr> is replaced by a row of dashes, and the space below this row
;;',-\,' .. the new window on the file. Further editing commands do no· affect the
lines displayed in the top part of the screen. If <lnr> is omitted, the screen is
restored to its full size. (

- 23 -

Introduction to 'Ed'

Screen Editor COntrol Characters

(Files can be edited with cont~ol characte~s only when you are in overlay mode. wh1ch you
can enter with the 'v' command. A cont~ol-v will exit ove~lay mode and put you back into com­
mand mode. While in command mode you can use these cha~acte~s to edit you~ command line.)

Character Action

cont~ol-a Toggle inse~t mode. The status of the inse~tlon indicato~ is lnve~ted. Inse~t
mode. when enabled, causes cha~acte~s typed to be Inserted at the cu~~ent cu~so~
position in the line instead of ove~w~iting the cha~acte~s that we~e there
p~eviously. Whet;) inse~t mode is In effect. "INSERT" appea~s in the status line.

cont~ol-b Scan ~ight and e~ase. The cu~~ent line Is scanned f~om the cu~~ent cu~sor pooltio',
to the ~lght ma~gin until an occu~~ence of the next characte~ typed 1s found. When
the cha~acte~ is found, all cha~acte~s f~om the cu~~ent cu~sor position up to (but
not including) the scanned cha~acte~ a~e deleted and the ~emainder of the line is
moved to the left to close the gap. The cu~sor is left in the same column which is
now occupied by the scanned cha~acter. If the line to the ~ight of the cu~sor does
not contain the cha~acter being sought. the terminal's bell Is sounded. 'Se' ~emem­
be~s the last cha~acter that was scanned using this o~ any of the other scanning
keys; if control-b is hit twice in a ~ow. this remembered character is used instead
of a lite~al cont~ol-b.

cont~ol-c Insert blank. The cha~acte~s at and to the right of the cu~~ent cu~so~ position are
moved to the right one column and a blank is inserted to fill the gap.

control-d Cu~so~ up. The effect of this key depends on 'se's cu~~ent mode. When In command
mode. the cu~~ent line polnte~ Is moved to the p~evious line without affecting the
contents of the command line. If the current line pointe~ is at line 1. the last
line in the file becomes the new cu~~ent line. In ove~lay mode (viz. the "v" com­
mand). the cu~sor is moved up one 11ne while remaining In the same column. In
append mode, this key is igno~ed.

cont~ol-e Tab left.
pOSition.

The cu~so~ is moved to the nearest tab stop to the left of its cu~rent

cont~ol-f "Funny" return. The effect of this key depends on the edito~'s cu~~ent mode. In
command mode. the current command line is ente~ed as is, but is not e~ased upon com­
pletion of the command; in append mode. the cu~~ent line is duplicated; in overlay
mode (viz. the "v" command). the cu~~ent line is resto~ed to its original state and
command mode is ~eentered (except if under cont~ol of a global p~efix).

control-g Cu~so~ ~ight. The curso~ is moved one column to the ~ight. Note that this ~ n2!
e~ase any characte~s; it simply moves the cu~sor.

cont~ol-h Cu~sor left. The cursor is moved one column to the left. Note that this 2e!! n2!
erase any characte~s; it simply moves the curso~.

cont~ol-i Tab ~ight.
position.

The cu~so~ is moved to the next tab stop to the ~ight of its cu~~ent

control-k Cu~so~ down. As with the cont~ol-d key. this key's effect depends on the cu~rent

editing mOde. In command mode. the current line pointer is moved to the next line
without chang1ng the contents of the command 11ne. If the cu~rent line p01nter is
at the last line in the file. line 1 becomes the new cu~~ent line. In overlay mode
(viz. the ·v· command). the curso~ is moved down one line while ~emainlng in the
same column. In append mode. control-k has no effect.

control-l Scan left. The cursor is positioned according to the character typed immediately
after the cont~ol-l. In effect, the current line is scanned. starting from the
cu~~ent cu~so~ position and moving left. for the first occur~ence of this character.
If none is found befo~e the beginning of the line is ~eached, the scan ~esumes with
the last character in the line. If the line does not contain the character being
looked fo~, the message "NOT FOUND" Is p~inted In the status line. 'Se' ~emembers
the last character that was Scanned for using this key; if the cont~ol-l Is hit
twice In a ~ow, this ~emembered character is searched fo~ Instead of a 1lte~al
control-l. Apa~t f~om this, howeve~, the character typed afte~ control-l Is taken
'1tera"y, so 'se's case conversion feature does not apply.

control-m Newline. This key 1s identical to the NEWLINE key desc~ibed below.

control-n Scan left and e~ase. The current ·llne Is scanned f~om the cu~rent cursor position
to the left margin until an occu~~ence of the next cha~acte~ typed is found. Then
that cha~acte~ and all cha~acters to its ~ight, up to (but not including) the
cha~acte~ under the cu~so~. a~e erased. Tha ~emainder of the lina, as well as the
cu~sor. a~e moved to the left to close the gap. If the line to the left of the cu~-

- 24 -

sor does not contain the character being sought, the terminal's bell is sounded. As
with the contro1-b key, if contro1-n is hit twice in a row, the last character scan­
ned for is used instead of a literal contro1-n.

contro1-0 Skip right.
1 i ne.

The cursor is moved to the first position beyond the current end of

contro1-p Interrupt. If executing any command except "a", ·c", "i" or "v", 'se' aborts the
command and reenters command mode. The command line is not erased.

control-q Fix screen.
screen.

The screen is reconstructed from 'se's internal representation of the

control-r Erase right. The character at the current cursor position is erased and all charac­
ters to its right are moved left one position.

control-s Scan right. This key is identical to the control-l key described above, except that
the scan proceeds to the right from the current cursor position.

contro1-t Kill right. The character at the current cursor position and all those to its right
are erased.

control-u Erase left. The character to the left of the current cursor position is deleted and
all characters to its right are moved to the left to fill the gap. The cursor is
also moved left one column, leaving it over the same character.

control-v Skip right and terminate. The cursor is moved to the current end of line and the
line is terminated.

control-w Skip left. The cursor is positioned at column 1.

contro1-x Insert tab. The character under the cursor is moved right to the next tab stop; the
gap is filled with blanks. The cursor is not moved.

control-y Kill left. All characters to the left of the cursor are erased; those at and to the
right of the cursor are moved to the left to fill the VOid. The cursor is left in
column 1.

control-z Toggle case conversion mode. The status of the case conversion indicat.or is
inverted; if case inversion was on, it is turned off, and vice versa. Case inver­
sion, when 1n effect, causes all upper case letters to be converted to lower case,
and all lower case letters to be converted to upper case. Note, however, that 'se'
continues to recognize alphabetic line numbers in upper case only, 1n contrast to
the ·case inversion" option (see the description of options above). When case
inversion is on, ·CASE" appears in the status line.

control-_ Insert newline. A newline character 1s inserted before the current cursor position,
and the cursor is moved one position to the right. The newline is displayed accord­
ing to the current non-printing replacement character (see the "u" option).

control-\ Tab left and erase. Characters are erased starting with the character at the
nearest tab stop to the left of the cursor up to but not including the character
under the cursor. The rest of the line, including the cursor, is moved to the left
to close the gap.

control- A Tab right and erase. Characters are erased starting with the character under the
cursor up to but not including the character at the nearest tab stop to the right of
the cursor. The rest of the line is then shifted to the left to close the gap.

NEWLINE Kill right and terminate. The characters at and to the right of the current cursor
position are deleted, and the line 1s terminated.

DEL Kill all. The entire line is erased, along with any error message that appears in
the status 11ne.

ESC Escape. The ESC key provides a means for entering 'se's control characters
literally as text into the f11e. In fact, any charact~ that can be generated from
the keyboard is taken literally when it immediately follows the ESC key. If the
character is non-printing (as are all of 'se's control characters), it appears on
the screen as the current non-pI" i nt i ng replacement character (norma 11 y a b1 ank) .

- 25 -

Introduction to 'Ed'

Editor Command Summary

Range Syntax

a[:textl

Function

Append

none

none

. ,$

none

c[:text]

d[p]

Inserts text after the specified line. Text is inserted until a line
containing only a period and a n.ewl ine is encountered. In 'se', If
the command is followed immediately by a colon, then whatever text
follows the colon is inserted without entering "append" mode. The
current line pOinter is left at the last line inserted.

Change
Deletes the lines specified and inserts text to replace them. Text is
inserted until a line containing only a period and a newline is
encountered. In 'se', if the command Is 'followed immediately by a
colon, then whatever text follows the colon is inserted without enter­
ing ftappend" mode. The current line pointer is left at the last line
inserted.

Delete
Deletes all lines between the specified lines, inclusive. The current
line pointer is left at the line after the last one deleted. If the
.pH is included, the new current line is printed.

e[!] [filename] Enter

f [fflename]

g/pat/command

h[stuff]

Loads the specified file into the buffer and prepares for editing.
Automatically invoked if a filename is specified as an argument on the
command line used to invoke the editor. The current line pointer is
positioned at the first line in the buffer. An error message Is
generated if the editing buffer contains text that has not been saved.
The enter command may be resubmitted after the error message, in which
case it will be obeyed. The "enter now" command "e!" may be USed to
avoid the error message.

File
Print or change the
remembered file name Is
file name is printed.

Global on pattern

remembered file name. If a name is given, the
set to that value; otherwise, the remembered

Performs the given command on all lines in the specified range that
match a certain pattern.

Help
In 'se', provides access to online documentation on the screen editor.
·Stuff" may be used to select which information is displayed.

i[:text] Insert
Inserts text before the specified line. Text is inserted until a line
containing only a period and a newline is encountered. In 'se', if
the command is immediately followed by a colon, then whatever text
follows is inserted without entering "append" mode. The current line
pOinter is left at the last line inserted.

j[/stuff[/]][p) ~oin
The specified lines are joined into a single line. You may specify in
·stuff· what is to replace the newlines that previously separated the
lines. The default is a single blank. If you use the default, 'ed'
automatically prints out the result. If the .p. option is used, the
resulting line (which becomes the new current line) 15 printed. Thus
OJ" and "jp. are equivalent to "j/ /p •. In general. 'ed' and 'se'
will supply trailing delimiters for you. So "j/" is the same as
0j//", i.e. replace the newline(s) with nothing (delete them).

km marK
The specified lines are marked with 'm' which may be any single
character other than a newline. If 'm' is not present, the lines are
marked with the default name of blank. The current ltne pointer is
never changed.

none Locate
"I" will print the first line of the file -installation-. This is so
that one can tell what machine he is using from within the editor.
This is particularly useful for installations with many machines that
can run the editor. where the user can switch back and forth between
them. and become confused as to where he is at a given moment.

- 26 -

none

none

m<line>[p)

n[m]

O[stuff]

p

q[!]

I' [f i 1 ename]

.lrl\.'·U\.n.I~\. 1\,1'. LV ~ ...

Move
Moves the specified block of lines after <line>. <Line> may not be
omitted. The current line pointer is left at the last line moved. If
the "p" is specified. the new current line is also printed.

Name
If 'm' is present, the last line in the specified range is marked with
it and all other lines having that mark name are given the default
mark name of blank. In 'ed', if 'm' is not present, the mark name of
each line in the range is printed; in 'se' the names of all lines in
the range are cleared.

Option
Editing options may be queried or set. "Stuff" determines which
options are affected. In 'ed', options lid", "g", "k", and ~p. are
available. Options "d", "g". and "k" are the same as in 'se'. In
'ed', option "p" sets the prompt to be used (useful for the user who
is disturbed by 'ed'S quiet behavior). The prompt c~ be set by the
command "op/string[/)" , which sets the prompt to "string". The trail­
ing delimiter is optional. If no string is given, the prompt is set
to "* Of. An empty string ("op//") restores 'ed's no prompting
behavior. Successive ·op" commands will toggle prompting mode. In
'se', the "op" command controls what metacharacters are used for pat­
tern matChing.

Print
Prints all the lines in the given range. In 'se', as much as POSSible
of the range is displayed, always including the last line; if no range
is given, the previous page is displayed. The current line pOinter is
left at the last line printed.

Quit
Exit from the editor. An error message is generated if the editing
buffer contains text that has not been saved. The quit command may be
resubmitted after the error message, in which case it will be obeyed.
The "quit now" command "q!" may be used to avoid the error message.

Read
Insert the contents of the given file after the specified line. The
current line pointer is left at the last line read.

s[/pat/sub[/][g][p]] Substitute
Substitutes "sub" for each occurrence of the pattern ·pat". If the
optional "g" is specified. all occurrences in each line are changed;
otherwise, only the first occurrence is changed. The current line
pOinter is left at the last line in the range in which a substitution
was made. This 1 ine is also printed if the "p" is used. In 'ed', if
you leave off the trailing slash, the result of the substitute will be
printed automatically. Thus "s/junk/stuff" is entirely equivalent to
"s/jUnk/stuff/p". If you type an ·s" by itself, without a pattern and
replacement string, 'ed' will behave as though you had typed "s//&/P",
i.e. substitute the previous replacement pattern for the previous
search pattern, and print.

t[/from/to[/][p]] Transliterate

U[d] [p]

v

The range Of characters specified by 'from' is transliterated into the
range of characters specified by 'to'. The last line on which someth­
ing was transliterated is printed if the .p" option is used. The last
line in the range becomes the new current line. Again, if you leave
off the trailing delimiter, 'ed' will print the result of the
transliteration. In addition, like the "sot command, both the 'from'
and 'to' parts are saved; "t//&/" w111 perform the same translitera­
tion as the last one, and "t" is the same as "t//&/". The "&" is
special if it is the only character in the 'to' part, otherwise it is
treated as a literal "&". In Unix mode (for 'se' only), use "%"
instead of "&". See Software !22l! and the help on 'tlit' for some
examples of character transliterations.

Undo
The specified range of lines is replaced by the last range of lines
deleted. If the "d" is used, the restored text is inserted after the
last line In the speCified range. The current line pointer is set at
the last line that was restored; this line is also printed if the "p"
is specified.

oVerlay
In 'ed', each
1 ng newl ine
1 ine. If the

11ne in the given range is printed without its terminat­
and a line of input is read and added to the end of the
first and only character on the input line is a period,

- 27 -

Introduction to 'Ed'

no further lines are printed. In 'se', "overlay mode" is entered and
the control characters may be used to modify text anywhere in the
buffer. A control-v may be used to quit overlay mode. A control-f
may be used to restore the current line to its original state and
terminate the command.

1,$ w['+': '!'l [filename] Write

i, $

none

1, $

1, $

none

x/pat/command

y<line>[p]

Writes the portion of the buffer specified to the named file. The
current line pointer is not changed. If "+" is given, the portion of
the buffer is appended to the file; otherwise the portion of the
buffer replaces the file. In 'se' only, if "I" is present, an exist­
ing file specified in the command is overwritten without comment. If
"filename" is not present, the specified lines will be written to the
cu~rent file name specified on the status line.

eXclude on pattern
Performs the command on all lines in the given range that do not match
the specified pattern.

copY
Makes a copy of all the lines in the
copies after <line>. As with the Om"
ted. The current line pointer is set
in the range; this line is printed if

given range, and inserts the
command, <line> may not be omit­
to the new copy of the last line
the "pH is present.

zb<left>[,<right>][<char>] draw Box

= [p]

?

!mcommand

'mcommand

In 'se' only, a box is drawn using the given <char> (blank by default,
allowing erasure of a previously-drawn box). Line numbers are used to
specify top and bottom row positions of the box. <Left> and <right>
specify left and right column positions of the box. If second line
number is omitted, the box degenerates to a horizontal line. If
right-hand column is omitted, the box degenerates to a vertical line.

Equals
The number of the
printed if the
changed.

Query

specified line is printed. The line itself is also
Up" option is use!=l. The current line pointer is not

In 'ed' only, a verbose description of the last error encountered is
printed.

Exclude on markname
Similar to the 'x' prefix except that 'command' is performed for all
lines in the range that do not have the mark name 'm'.

Global on markname
Similar to the 'g' prefix except that 'command' is performed for all
lines in the range that have the mark name 'm'.

Print next page
In 'ed', 23 lines beginning with the current line are printed
(equivalent to "., .+23p"). In 'se', the next page of the buffer is
displayed and the current line pOinter is placed at the top of the
window.

-[<Software Tools Command>] Escape to the shell
If present, the <Software Tools Command> is passed to the shell to be
executed. Otherwise, an interactive shell is created. After either
the command or the shell exits, 'ed' prints M_" to indicate that the
shell escape has completed. For a command, 'se' asks you to type a
newline before redrawing the screen, but for an interactive Shell,
'se' will redraw the screen immediately. If the first character of
the <Software Tools Command> is a "J", then the DI" is replaced with
the text of the previous shell command. An unescaped "%" in the
<Software Tools Command> will be replaced with the current saved file
name. If the shell command is expanded, both 'ed' and 'se' will echo
it first, and then execute it.

Until EPFs are supported, when using 'ed', do not
execute external commands. Internal commands
This does not apply to 'se'.

use the shell to
(like 'cd') are OK.

For a deeper discussion of using the shell from within a program, see
the help on the 'shell' subroutine.

Note that the 'ed' editor allows you to enter alphabetiC commands 1n both upper and lower
case. Lower case is preferred because it is easier to read. The 'se' editor is not as
flexible, since upper case letters are usually used to represent lines on the screen.

- 28 -

integer

$

1/

/pattern[f]

\pattern[\]

>name

<name

expression

Element

?

$

[<ccl>]

[-<CC1>]

•

•
{<pattern>}

&.

.<digit>

Elements of Line Number Expressions

~

value of the integer (e.g. , 44) •

number of the current 1 ine in the buffer.

number of the last 1 ine ln the buffer.

number of the previous 11ne in the buffer (same as . -1).

number of the previous line in the buffer (same as ").

number of the flrst llne on the screen (only in
(

'se')'

number of the next line in the buffer that matches the given\ patt.rn (e.g.,
/February/); the search proceeds to the end of the buffer, then wraps around to
the beginning and back to the current line. The trail ing "I" is optional.

number of the previous line in the buffer that matches the g1ven pattern (e.g.,
\January\); search proceeds ln reverse, from the current line to line 1, then
from the last line back to the current line. The tral1ing "\" is optional.

number of the next llne having the glven markname (search wraps around, 11ke
/ I),

number of the previous line having the given markname (search proceeds in
reverse, like \\).

any of the above operands may be combined with plus or minus signs to produce a
line number expression. Plus slgns may be omitted lf desired (e.g., Iparse/-5,
Ilexical/+2, Ilexical/2, $-5, .+6, .6).

Summary of Pattern Elements

Meaning

Matches the null string at the beginning of a line. However, if not the !i!!1
element of a pattern, is treated as a literal percent slgn.

Matches any s1ngle character other than newline.

Matches the newline character at the end of a 11ne. However, lf not the l!!1
element of a pattern, is treated as a literal dollar slgn.

Matches any
<eel> may
<c1>-<c2>.
digits, the

slngle character that is a member of the set specif1ed by <ccl>.
be composed of slngle characters or of character ranges of the form
If character ranges are used, <c1> and <c2> must both belong to the
upper case alphabet or the lower caSe alphabet.

Matches any single character that ls not a member of the set specified by
<ccl>.

In combination with the immediately preceding pattern element, matches zero or
more characters that are matched by that element.

Turns off the speclal meaning of the immediately following character. If that
character has no special meaning, this is treated as a literal·.·.

Tags the text actually matched by the sub-pattern specified by <pattern> for
use in the replacement part of a substitute command.

Appearing
actua lly
character
part used

in the replacement part of a substitute command, represents the text
matched by the pattern part of the command. If u&." is the only
in the replacement part, however, then it represents the replacement
1n a previous substitute command.

Appearing in the replacement part of a substitute command, represents the text
actually matched by the tagged sub-pattern specified by <digit>.

- 29 -

Usar's Gutde for the
Software Tools Subsystem Command Interprete,.

(The Shel1)

T. Allen Akin
Terrell L. Countryman

Perry B. Flinn
Daniel H. Forsyth. Jr.

Jefferey S. Lee
Jeanette T. Myers
Arnold D. Robbins

Peter N. Wan

SChool of Information end Computer SCience
Georgia Institute of Technology

Atlanta. Georgia 30332

Apri l. 1985

TABLE OF CQNTENTS

Tutorial
Commands ••••••••.••••.••••.•.•........•..••..•..•••...••.•••.••.•.•••••••••••.•....
How the Command I nterpreter Locates a Command. ••.•....••.••..•••.••••....•.•
Spec i a 1 Characters and Quot i ng •...•..••.••.•••••••••••.......•....•.•••..••.••.••••
Command F il es•••••...••.•....••.••••••••••.•.••...••.•••••••••.•.•.••.••.•....•
Doing Repet1tive Tasks --- Iteration .. .
I/O Redi rect ion .••.•.......••..•.••••••••••••.....•...•••••..••••.•.•••••••••..... ,
I/O Redirection to Disk Files or Devices
I/O Redirection to other Commands ••••••••••.....•.....•.•••.•••••••.••.••••••••....
I/O Redirection for a Group of Commands
I/O Redirection to a Command Argument ..• • • •....
Variables ••.••..•.•••••..••••••..•.•.....•••••.•••••••.•.....•..•..•......••.....•.
Interrupts, Quits and Error Handling Mechanisms ('
Conclusion •••.•.••••........•..••••••••••••......••.•.•••.•.•••.•.•.••••••••••••.••

SU-ry of Syntax and S-nt tes .. .
Commands •.••••..•.•..•....••.•••••••.••.•••.•.••.•...••.•••.••..••......•••••.•...•
Networks ••••.•••••.....•...•......••.•••••••••..••••...••..•...•••........••••.•..•
Nodes •.•.•....•.••••••...•.•...••••.••••••••.....•.•••••••••.•••••..••.•••••••••...
Comments •.••.....•..••••••.••••......••..••••...•••.....•.•....•..•.....•..••••••••
Variables ••••••••••.•••••••••••....•••••••.••••••••••••..........••.•••••••••••••••
Iteration ••......•..••.••......••...••.•.••••.....••..•••••••••••••......•••••.•..•
Funct i on Cal' s•••.•.••.....••••.•.•.•.•.•..•....••.•..............•••••.••.•
History Mechanism .•.••.....•..•.•••.••.•.••••••.••••••.••••.•.....•••••••••••••••••

Command Selection •••••••••••••••.••••••••••..••••••••••••••...••.••..••.••••••••
Argument Selection •.•.•.•••••..•......•.••.•••••••.............•••....•.•.•••.•.
Substitution ...••.•.......•.•..•••••••••.......•....•.........•...••••••••.....•

Conclusion•......•......•...•.......•..•.•..•...••..............•..•..

Appl ie.tion Notes '.' .. .
Bas i c Funct ions••..••......••..•.•...........•••..........•.•...•.......•...•.
History Examples .•...•.......••••••••••.••.••...•••••••••.•.................•......
Shell Control Variables ••.•••••..•...•...•....•.•••.••.•••••.•.•.•...........••••••
Shel' Command Stat i st ics .••.•••......••..•.••••.••.••••......•...........•.••.••.••
Symb 1 ot i c Commands ••.•......•..•••..••••.••••••.•••••.••••••••....••••••.••••......

Argument Fetching .•.••.•••.•.•...•....•.•...•.•.••.•.•..••.••.••..........••••••
Shell Tracing •.•..•...•..••••.....•.....••..•••••••............•..•...•••...•.•.
Shell Variable Utilities .•••••••••••••••......•..•••••••....•..••••....•••••••.•

Program Interface •••.•...••.••••...•.....•.••••.•••••••••.••....•.••.•.•....••••...
Conclusion •..........•.....•..••••••••...••. , .•••.•.•••••••••••••••••••.••.•••...•.

........ from the Shell .. .

- 11 i -

1
1
1
2
2
2
3
4
4
5
5
6
7
7

8
8
8

10
13
13
14
15
15
15
15
16
16

17
17
19
22
23
23
23
24
24
24
25

26

Foreword

The Software Tools Subsystem is a set of program development tools based on the book
Software Tools by Brian W. Kernighan and P. J. Plauger. It was originally developed for use
on the Prime 400 computer in 1977 and 1978 In the form of several cooperating user programs.
The present Subsystem, the ninth version, is a powerful tool that aids in the effective use of
computing resources.

The command interpreter, also referred to as the "shell," is a vital part of the Sub­
system. It is a program which accepts commands typed by the user on his terminal and converts
them into more primitive directions to the computer itself. The user's instructions are
expressed in a special medium called the "command language." The greatest part of this
document is involved wi1h describing the command language and giving examples of how it is
used.

Three areas will be covered in the following pages. First, there is a tutorial on the
use of the command language. New Subsystem users should read this chapter first. Some
minimal knowledge of terminal usage is assumed; if you are unsure of yourself in this area,
see Prime's published documentation and the Software I2el! Subsystem Tutorial for help.
Second, there is a summary of the syntax and semantics of the command language. Experienced
users should find this chapter valuable as a reference. Finally, there is a selection of
application notes. This chapter is a gOOd source of useful techniques and samples of advanced
usage. Experienced users and curious beginners should find it well worthwhile.

- iv -

Command Interpreter User's Guide

Tutorial

Connanc:ls

Input to the command interpreter consists of ·commands". Commands. in turn, consist of a
"command name", which is the name of an executable file. A command is executed simply by
entering its name. For example,

1 help

is a command that will describe how you can obtain online documentation.

Some commands may have arguments. Arguments ere values supplied by you to the command.
Arguments can be required or they may be optional in which case the system uses a default. In
the above exemple when 'help' ;:0 ;.;vr;' "d with no arguments the Subsystem assumes the command
'help help' (i.e. get me on-line documentation for the 'help' command). However, if you
wanted on-line documentation for a specific command you would supply the command name as an
argument. e.g.

) help If

will describe the command that can be used to list information about files in a directory.
Some commands may have options. Options are used to make the same command execute in slightly
different ways. Options usually consist of one letter and are preceded by a dash. The com­
mand.

J help -f f t1e

will list the names of commands and subroutines that may be associated with the keyword
If11e". The "_f" is an option and "file" is an argument. Commands, arguments and options are
separated from each other by blanks.

Here is a final example:

J1f
adventure
shell
words
J

ee
she".doe
zunde

guide
subSys

m6800
time_sheet

'Lf' is used to list the names of your files. Executed without any arguments. 'lf' prints the
files in your current directory, but (like 'help') 'lf' may be used with or without arguments
and options.

How the COImIanc:l Interpreter LOCate. a COImIanc:l

Recall that you can access files by their entrynames only if they are located in your
current directory. Without help from the shell this would also be true for commands. That
is, in order to execute 'help' you would need to have a copy of the 'help' command in your
current directory or you would have to enter its full pathname so that the shell could locate
it in another directory. Obviously. neither alternative is desirable. In reality. the shell
uses a "variable" called II search rule" to find commands like "help" in other directories.
Each user has his own -search- rule. (Refer to the section in this guide entitled "Shell
Control Variables" for more information.) The search rule tells the Shell in what locations
to look for commands, and if there is more than one location pOSSible, it specifies the order
in which the locations will be searched.

Most new users are given the search rule that causes the command interpreter to look for
commands in the following five locations in the order shown:

1. The shell's internal library for an internal command (e.g. 'stop', 'set')
2. The user's variables currently stored in memory
3. The user's current directory
4. The Subsystem library conta,ning locally supported external commands. ·.,binm " (e.g.

memo, moot)
5. The Subsystem library containing standard external commands, "-bin=" (e.g. 'If'.

'help')

ThiS variable is explained in more detail in the "Application Notes" section of this guide.

Beware that this flexibility can get beginners (and some experienced users) into trouble.
With the search rule above, the command interpreter will always look in your current directory
for a command before it looks in one of the Subsystem command directories. Therefore. if you
create a file having the same name as a command. the shell will try its best to execute the
contents of that file.

- 1 -

Command Intsr~reter User's Guide

Special Characters and Quoting

Some characters have special meaning to the command interpreter. For example, try typing
this command:

1 echo Alas, poor Yorick
Alas
poor: not found
1

'Echo' is simply a command that types back its arguments. Obviously this example is not work­
ing as it should. The strange behavior is caused by the fact that the comma is used for dark
mysterious purposes elsewhere in the command language. (The comma actually represents a null
I/O connection between ~odes of a network. See the section on pipes and networks for more
information.) In fact. all of the following characters are potential troublemakers:

.. > { blank

The way to handle this problem is to use quotes. You may use either single or double quotes,
but be sure to match each with another of the same kind. Try this command now:

echo "Alas, poor Yorick; I knew him well."
Alas, poor Yorick; I knew him well.
]

You can use quotes to enclose other quotes:

] echo 'Quoth the raven: "Nevermore!"
Quoth the raven: "Nevermore'"
]

A final word on quoting: Note that anything enclosed in quotes becomes a single
argument. For example, the command

] echo "can I USe that in my book?"

has only one argument, but

echo Can I use that in my book?

has seven.

Connand F I 1 es

Suppose you have a task which must be done often enough that it is inconvenient to remem­
ber the necessary commands and type them in every time. For an example, let's say that you
have to print the year-end financial reports for the last five years. If the "print" command
is uSfld to print files, your command might look like:

] prtnt year74 year7S year7S year77 year7S year78

If you use a text editor to make a file named "reports" that contains this command, you can
then print your reports by typing

] reports

No special command is required to perform the operations in this "command file;" simply typing
its name is suffiCient.

Any number of commands may be placed in a command file. It is possible to set up groups
of commands t~be repeated or executed only if certain conditions occur. See the Applications
Notes for exampfes.

It is one of the important features of the command interpreter that command files can be
treated exactly like ordinary commands. As shown in later sections, they are actually
programs written in the command language; in fact, they are often called "shell programs."
Many Subsystem commands ('e', 'fos', and 'rfl', for example) are implemented in this manner.

Doing Repetitive Tasks --- Iteration

Some commands can accept only a single argument. One example of this is the 'fos' com­
mand. "Fos" stands for "format, overstrike, and spool." It is a shorthand command for print­
ing "formatted" documents on the line printer. (A "formatted" document is one prepared with
the help of a program called a "text formatter," which justifies right margins, indents
paragraphs, etc. This document was prepared by the Software Tools text formatter 'fmt.') If
you have several documents to be prepared, it is inconvenient to have to type the 'fos' com-

- 2 -

\"UJllfIlOT'lr.I .a.r'''''I-tJ.r-aL.r" , D '-\01'''''

mand for each one. A special technique called "iteration- allows you to -factor out" the
repeated text. For example,

1 fOB (ftl.1 ftl.2 ftle3)

;s equivalent to

] fos ftl.1
1 fos ftle2
] fos fil.3

The arguments inside the parentheses form an "iteration group." There may be more than one
iteration group in a command, but they must all contain the same number of arguments. This is
because each new command line produced by iteration must have one argument from each group.
As an illustration of thiS,

1 (.cho print fos) ftle(1 2 3)

is equivalel.c to

1 echo ftle1
1 print f t 1.2
1 fOB fUe3

Iteration 1s performed by simple text substitution: if there is no space between an argument
and an iteration group in the original command, then there is none between the argument and
group elements in the new commands. Thus,

f11e(1 2 3)

is equivalent to

file1
f ile2
fi le3

Iteration is most useful when combined with function calls, which will be discussed later.

110 Redtrection

Control of the sources and destinations of data is a very basic function of the command
interpreter, yet one that deserves special attent10n. The concepts involved are not new, yet
they are rarely employed to the extent that they have been used in the Subsystem. The best
approach to learning these ideas is to experiment. Get on a terminal, enter the Subsystem,
and try the examples given here until they seem to make sense. Above a", experiment freely;
try anything that comes to mind. The Subsystem has been designed with the idea that users are
intelligent human beings, and their freedom of expression is the most valuable of tools. Use
your imagination; if it needs tweaking, take a look at the Application Notes 1.n the last chap~
tel".

Programs and commands in the Subsystem do not have to be written to read and write to
specific files and devices. In fact most of them are written to read from "anything- and
write to "anything." Only when the program 15 executed do you speCify what "anything" is,
which could be your terminal, a disk file, the line printer, or even another program.
·Anything"s are more formally known as ·standard input ports" and "standard output ports."
Programs are said to "read from standard input" and "write to standard output." The key pOint
here is that programs need not take into account how input data is made available or what hap­
pens to output data when they are finished with it; the command interpreter is in complete
control of the standard ports.

A command we will use frequently in this section is 'copy'. 'Copy' does exactly what its
name implies; it copies data from one place to another. In fact, it copies data from its
first standard input port to its first standard output port.

The first point to remember is that ~ default, standard po~ts reference !n! terminal.
Try 'copy' now:

1 copy

After you have entered this command, type some randOm text followed by a newline. • Copy , will
type the same text back to you. (When you tire of this game, type a contro'·c; this causes an
end-of·file s1gna' to be sent to 'COpy', which then returns to the command interpreter. Typ­
ing contro'·c to cause end-of-fi'e is a convention observed by all Subsystem programs.) Since
you did not say otherwise, standard input and standard output referred to the te~mina'; input
data was taken from the te~minal (as you typed it) and output data was placed on the terminal
(printed by 'copy').

·3·

Command Interpreter User's Guide

Obviously, 'copy' would not be of much use if this was all it could do. Fortunately, the
command interpreter can change the sources and destinations of data, thus making 'copy' less
trivial.

I/O Redirection to Disk Files o~ Devices

Standard ports may be altered so as to refer to disk files by use of a "funnel." The
greater-than sign (» is used to represent a funnel. Conventionally, the ">" points in the
direction of data flow. For example, if you wished to copy the contents of file nee" to file
"old_ee" , you could type

] ee> copy >old_ee

The greater-than sign must-always be immediately next to its associated filename; no interven­
ing blanks are allowed. At least one blank must separate the '>' from any command name or
arguments. This restriction is necessary to insure that the command language can be
interpreted unambiguously.

The construct "ee>" is read "from ee"· ">old ee" is read "toward old ee."
mand above can be read "from ee copy toward Old_ee, " or, "copy from ee toward
process of changing the file assignment of a standard port by use of a funnel
redirection," or simply "redirection."

Thus, the com­
old ee." The
is called "I/O

It is not necessary to redirect both standard input and standard output; either may be
redirected independently of the other. For example,

] ee> copy

can be used to print the contents of file "ee" on the terminal. (Remember that standard out­
put, since it was not specifically redirected, refers to the terminal.) Not surprisingly, the
last variation of 'copy',

is also useful. This command causes input to be taken from the terminal (until an end-of-file
is generated by typing a control-c) and placed on the file "old_ee". This is a quick way of
creating a small file of text without using a text editor.

It is
redirection.

important to realize that all Subsystem programs behave uniformly ~ regard 12
It is as correct to redirect the output of, say, 'lf'

as it is to redirect the output of 'copy'.

Recall that special pathnames which begin with "/dev" may refer to peripheral devices.
For example, by redirecting output to "/dev/1ps" you can print a file on the line printer.

] cat myftle >/dev/lps

Although the discussion has been limited to one input port and one output port up to this
pOint, more of each type are available. In the current implementation, there are a total of
six; three for input and three for output. The highest-numbered output port is generally used
for error messages, and is often called "ERROUT"; you can "capture" error messages by redirec­
ting this output port. For example, if any errors are detected by 'lf' in this command

1 If 3>errors

then the resulting error messages will be placed on the file "errors".

Final words on redirection: there are two special-purpose redirection operators left.
They are both represented by the double funnel·»". The first operator is called "append:·

1 1f »1 tst
.:\

causes a list of files to be placed!.! l!!!!.ru! 2! (appended to) the file named "list·. The
second operator is called "from command input." It is represented as just "»" with no file
name, and causes standard input to refer to the current source of commands. It is useful for
running programs like the text editor from "scripts· of instructions placed in a command file.
S.e the Application Notes for examples.

1/0 Redirectton to othe~ Connands

The last section discussed I/O redirection --- the process of making standard ports refer
to disk files or devices, rather than just to the terminal. This section will take that idea
one step further. Frequently, the output of one program is placed on a file, only to be
piCked up again later and used by another program. The command interpreter simplifies this
p~ocess by eliminating the intermediate file. The connection between programs that is so

- 4 -

formed is called a "pipe," and a linear array of programs communicating through pipes is cal­
led a "pipeline."

Suppose that you maintain a large directory, containing drafts of various manuals.
draft is in a file with a name of the form "MANxxxx.rr", where "xxxx· is the number
manual and "rr" is the revision number. You are asked to produce a list Of the numbers
manuals at the first revision stage. The following command will do the job:

] 1f -c I ftnd .01

''If -c" lists the names of all files in the current directory, in a single column. The
connection" (vertical bar) causes this listing to be passed to the 'find' command,
selects those lines containing the string ".01" and prints them. Thus, the pipeline
will print all filenames matching the conventional form of a first-revision manual name.

Each
of the
of all

"pipe
which
above

The ability to build specia' purpose commands Cheaply and quickly from available tools
using pipes is one of the most valuable features of the command interpreter. With practice,
surprisingly difficult prOblems can be solved with ease. For further exam~les of pipelines,
see the Applications Notes.

Combinations of programs connected with pipes need not be linear. Since multiple stan­
dard ports are available, programs can be and often are connected in non-linear networkS.
(Some networks cannot be executed if the programs in the network are not executed
concurrently. The command interpreter detects such networks, and prints a warning message if
they cannot be performed.) Further information on networks can be found in both the reference
and applications chapters of this guide.

I/O Redirection for a Group of Commands

It is sometimes necessary to change the standard port environment of many commands at one
time. for reasons of convenience or efficiency. The • compound node" (a set of networks
surrounded by curly braces) can be used in these situations.

As an example of the first case, suppose that you wish to generate a list of manual names
(see the last example) in either the first or the second stage of revision. One way to do
this is to generate the list for the first revision stage. place it on a file using a funnel.
then generate a list for the second revision stage and place it on the end of the same'file
using an "append" redirector. A compound node might simplify the procedure thusly:

] { 1 f -c 1ft nd . 01 ; 1f -c 1ft net • 02} > 11 st

The first network finds all manuals at the first revision stage. and
those at the second stage. The networks will execute left-to-rtght,
being placed on the file "1 ist." thus generating the desired l1sting.
command can be collapsed even farther:

J { 1f -c I ftnd .O(1 2)} >lIst

This combination of iteration and compound nodes is often useful.

the second finds all
with the output of each

With iteration, the

Efficiency
be copied onto a
and repositioned
once:

becomes a consideration in cases where successive long streams of data are to
file; if the "append" redirect~r is used each time. the file must be reopened
several times. Using a compound nOde, the output file need be opened only

] { (file1 f11e2 ft183» copy} >.11_f118.

This complex example copies the contents of f11es °f11.1." "fi 1e2," and "file3" into the fi le
named "a 1 ,_ f i 1 es . "

I/O Redirectton to • COBnand ArsJUMnt

As mentioned before. some commands may have arguments. The standard output of a command
(or a series of commands) can be used as an argument(s) by using the "function cal'"
mechanism. For example. recall the situation illustrated in. the section on pipes and
networks; suppose it is necessary to actually print the manuals whose names were found. This
is how the task could be done:

1 prtnt [If -c I find .01]

The function call is composed of the pipeline ''If -c I find .Oi" and the square brackets
enclosing it. The output of the pipeline within the brackets is passed to 'print' as a set of
arguments. which it accesses in the usual manner. SpeCifically. all the lines of output from
the pipeline are combined into 2n! set of arguments. with spaces provided where multiple lines
have been collapsed into one line.

- 5 -

Command Interpreter User's Guide

'Print' accepts multiple arguments; however, suppose it was necessary to use a program
like 'fos', that accepts only one argument. Iteration can be combined with a function call to
do the job:

fos ([If -c : find .01])

ThiS command formats and prints all manuals in the current directory with revision numbers
"Oi" .

Function calls are frequently used in command files, particularly for accessing arguments
passed to them. Since the sequence "1f -c : find pattern" occurs very frequently, it is a
good candidate for replacement with a command file; it is only necessary ~o pass the pattern
to be matched from the argument list of the command file to the 'find' command with a function
call. The following commaQd file, called 'files', will illustrate the process:

lf -c : find (arg 1]

"arg 1" retrieves the first command file argument. The function call then passes that
argument to 'find' through its argument list. 'Files' may then be used anywhere the original
network was appropriate:

Variables

files .01
print [ffles .01]
fos ([ffles .01])

It has been claimed that the command language is a programming language in its own right.
One facet of this language that has not been discussed thus far is the use of its variables.
The command interpreter allows the user to create variables, with scope, and assign values to
them or reference the values stored in them.

Certain special variables
These variables have names
which is the prompt string the
object to "]" as a prompt. you

are used by the command interpreter in its everyday operation.
that begin with the underline (_). One of these is '_prompt',
command interpreter prints when requesting a command. If you
can change it with the "set" command:

] set -p~t = "OK, "
OK, set -prompt • "% "
% set -prompt • n] II

]

You may create and use variables of your own. To create a variable in the current scope
(level of command file execution), use the "declare" command:

] declare t J k SUII

Values are assigned to variables with the 'set' command. The command interpreter checks the
current scope and all surrounding scopes for the variable to be set; if found, it is changed,
otherwise it is declared in the current scope and assigned the specified value.

Variables behave like small programs that print their current values. Thus the value of
a variable can be obtained by simply typing its name, or it can be used in a command line by
enclosing it in brackets to forma function call. The following command file (which also
illustrates the use of 'if', 'eval', and 'goto') will count from 1 to the number given as its
first argument:

declare i
set i • 1
: loop

if [eval i A>. [arg 1]]
goto exit

fi
i
set i • [eval i + 1]
goto loop

:exit

Note the use of the "eva1" function, which treats its arguments as an arithmetic expression
and returns the expression's value. This is required to insure that the string "i + 1" is
interpreted as an expression rather than as a character string. Also note that 'fi'
terminates the' 'if' command.

When setting a variable to a string containing unprintable characters, you may use a
special mnemonic form to prevent having to type the literal characters. For example

- 6 -

set crlf • "<cr><1f>"

sets the variable 'cr1f' to a literal carriage return followed by a 1inefeed. There are times
when this is not desirable, so to prevent the interpretation of the string, simply escape the
start on the mnemonic with the Subsystem escape character (an '.'). To set set the variable
'cr1f' to the literal string "<cr><lf>" you would type

set cr1f = -.<cr>.<1f>"

The quotes in these two cases are necessary, otherwise the shell would try to interpret the
'>' as an I/O redirector. If the string between the "<>" characters is not a legal ASCII
mnemonic, no substitution will be made and the string will be passed unchanged.

Interrupts, au t ts and Error Handl t ng Meehan; SIIS

Normally, if you interrupt a program, it will terminate and the next thing you will see
is the Subsystem's prompt for your next command. However, by defining the shell control
variab~e "_qUit_action" in your ""varsdir=/.va ... s" f11e, the fault handler Wi1~, upon detection
of the interrupt, prompt you as to whether to abort the cu ent program, continue, or call
Primos. Fo ... program errors, the fault handler will .'ways ask whether you want to .bort the
program, continue, or call Primos (regardless of whether "_quit_.ction" is defined or not).
The Application Notes discuss how to go about creating shell va ... iab1es (which e kept in
a"val"sdir&/.vars" for storage between login sessions).

Conclusion

This concludes the tutorial chapter of this document. Despite the fact that a good deal
of material has been p ... esented, much detail has been omitted. The next chapter is a complete
summary of the capabilities of the command interpreter. It is written in a ... ather technical
style, .nd is recommended for I"efel"ence rather than self-teaching. The '.st chaptel" is a set
of examples that may pl"ove helpful. As always, the best approach is simply to sit down at a
terminal and tryout whatever you wish to do. Should you have difficulty, further tutorials
are available, and the 'help' command can be consulted for quick reference.

- 7 -

Command Interpreter User's Guide

Summary of syntax and Semantics

This section is the definitive document for the syntax and corresponding semantics of the
Software Tools Subsystem Command Interpreter. It is composed of several sub-sections, each
covering some major area of command syntax, with discussions of the semantic consequences of
employing particular constructs. It is not intended as a tutorial, nor is it intended to sup­
ply multitudinous examples; the other sections of this document are provided to fill those
needs.

Commands

<command> ::= [<net> { ; «net> }] <newline>

The "command" is the basic unit of communication t,etwee~ th.~ command interpreter and the
user. It consists of any number of networks (described below) separated by semicolons and
terminated by a newline. The networks are executed one at a time, left-to-right; should an
error occur at any point in the parse or execution of a network, the remainder of the
<command> is ignored. The null command is legal, and causes no action.

The command interpreter reads commands for interpretation from the "command source."
This is initially the user's terminal, although execution of a command file may change the
assignment. Whenever the command source is the terminal, and the command interpreter is ready
for input, it prompts the user with the string contained in the shell variable I prompt'.
Since this variable may be altered by the user, the prompt string is selectable on a -per-user
basis.

Networks

<net> ::= <node>
{ <node separator> { <node separator> } <node> }

<node separator> ;;= ': <pipe connection>

<pipe connection> ::= <port>] I I ,
I [<node number>] [.<port>]

<port> ::= <integer>

<node number> ::- <integer> : $: <label>

A <net> generates a block of (possibly concurrent) processes that are bound to one
another by channels for the flow of data. Typically, each <node> corresponds to a single
process. «Node>s are described in more detail below.) There is no predefined "execution
order" of the processes composing a <net>; the command interpreter will select any order it
sees fit in order to satisfy the required input/output relations. In particular, the user is
specifically enjoined n2! to assume a 1eft-to-right serial execution, since some <net>s cannot
be executed in this manner.

Input/output relations between <node>s are specified with the <node separator> construct.
The following discussion may be useful in visualizing the data flows in a <net>, and clarifing
the function of the components of the <node separator>.

The entire <net> may be 'represented as a directed graph with one vertex for each <node>
(typically, equivalent to each process) in the net. Each vertex may have up to narcs
terminating at it (representing "input data streams"). and !!! arcs originating from it
(representing ·output data streams"). An arc between two vertices indicates a flow of data
from one <node> to another, and is physically implemented by a pipe.

Each of the n possible input points on a <node> is assigned an identifier consisting of a
unique integer in-the range 1 to n. These identifiers are referred to as the "port numbers·
for the "standard input ports" of the given <node>. Similarly, each of the m pOSSible output
points on a <node> is assigned a unique integer in the range 1 to !!!, referred-to as the port
numbers for the ·standard output ports" of the given <node>.

Lastly, the <node>s themselves are numbered. starting at 1 and increasing by 1 from the
left end of the <net> to the right.

Clearly, in order to speCify any possible input/output connection between any two
<node>s. it is sufficient to specify:

The number of the "source" <node>.

The number of the "destination" <node>.

- 8 -

Command Interpreter User'S Guide

The port number of the standard output port on the source <node> that is to be the
source of the data.

The port number of the standard input port on the destination <node> that is to
receive the data.

The syntax for <node separator> includes the specifications for the last three of these
items. The source <node> is understood to be the node that immediately precedes the
<node separator> under consideration. The special <node separator> "," is used to separate
<node>s that do not participate in data sharing; it specifies a null connection. Thus. the
<node separator> provides!!!!.!!!l!.2f establishing any possible connection between tWO'<node>!:
.2f ! given <n!l>. .

The full flexibility of the <node separator> is rarely needed or desirable. In order to
make effective use of the capabilities provided, suitable defaults have been designed into the
syntax. The semantics associated with the defaults are as follows:

If the output port number (the one to the left of the vertical bar) is pmitted, !b!
n!!! unaSSigned output port (in increasing numerical ~) i! imp)ied. T .. ,s
default action takes place only after the entire <net> has been examined. and all
non-defaulted output ports for the given node have been assigned. Thus, if the
first <node separator> after a <node> has a defaulted output port number, port 1
will be assigned if and only if no other <node separator> attached to that <node>
references 'output port 1. It is an error for two <node separators> to reference the
same output port.

If the destination <node> number is omitted, then the next node in the <net> (scan­
ning from left to right) is implied. Occasionally a null <node> is generated at the
~nd of a <net> because of the necessity for resolving such references.

If the destination <node>'s input port number is omitted, then the next unassigned
input port (in increasing numerical order) is implied. As with the defaulted output
port. this action takes place only after the entire <net> has been examined. The
comments under (1) above also apply to defaulted input ports.

In addition to the defaults, specifying input/output connections between widely separated
<node>s is aided by alternative means of giving <node> numbers. The last <node> in a <net>
may be referred to by the <node number> $. and any <node> may be referred to by an
alphanumeric <label>. «Node> labelling is discussed in the section on <node> syntax. below.)
If the first <node> of a <net> is labelled, the <nat> may serve as a target for the 'goto'
command: see the Applications Notes for examples.

As will be seen in the next section, further syntax is necessary to completely specify
the input/output environment of a <node>; the reader should remember that <node separator>s
control only those flows of data between processes.

A few examples of the syntax presented above may help to clarify some of the semanf1cs.
Since the syntax of <node> has not yet been discussed, <node>s will be represented by 'the
string "node" followed by a digit. for uniqueness and as a key to <node number>s.

A simple linear <net> of three <node>s without defaults:

node 1 112.1 node 2 113.1 node3

(Oata flows from output port 1 of node1 to input port 1 of node2 and output port 1 of node2 to
input port 1 of node3.)

The same <net>, with defaults:

node 1 1 node2 I node3

(Note that the spaces around the vertical bars are mandatory. so that the lexical analysis
routines of the command interpreter can parse the elements of the command unambiguously.)

A simple cycle:

node 1 11.2

(Data flows from output port 1 of node1 to input port 2 of node1.
unspecified at this level.)

A branching <net> with overridden defaults:

node 1 1$ node2 :.1 node3

Other data flOWS are

(Data flows from output port 1 of node 1 to input port 2(!) of node3 and output port 10f
node2 to .i nput port 1 of nodeS.)

- 9 -

Command Interpreter User's Guide

NOdes

<node> .. = {:<label>} [<simple node> <compound node>]

<simple node> ::= { <i/o redirector> }
<command name>
{ <i/o redirector> <argument>}

<compound node> { <i/o redirector> }
'{' <net> { <net separator> <net> } '}'
{ <i/o redirector> }

<i/O redirector>

<net separator> ::=

<fi Ie name> '>'
[<porot>] '>'
[<port» '»'

<command name> ::= <file name>

<label> ::= <identifier>

[<port>]
<f i Ie name>
<file name>

The <node> is the basic executable element of the command language. It consists of zero
or more labels (strings of letters, digits, and underscores, beginning with a letter),
optionally followed by one of two additional structures. Although, strictly speaking, the
syntax allows an empty node, in practice there must be either a label or one of the two
additional structures present.

The first option is the <simple node>. It specifies the name of a command to be per­
formed, any arguments that command may require, and any <i/o redirector>s that will affect the
data environment of the command. «I/o redirectors will be discussed below.) The execution
of a Simple node normally involves the creation of a single process, which performs some func­
tion, then returns to the operating system.

The second option is the <compound node>. It specifies a <net> which is to be executed
according to the usual rules of <net> evaluation (see the previous subsection). and any
<i/o redirector>s that should affect the environment of the <net>. The <compound node> is
provided for two reasons. One, it is occasionally useful to alter default port assignments
for an entire <net> with <i/O redirector>s, rather than supplying <i/o redirector>s for each
<node>. Two, use of compound nodes containing more than one <net> gives the user some control
over the order of execution of his processes. These abilities are discussed in more detail
below.

Since it is the more basic construct, consider the <simple node>. It conSists of a
<command name> with <argument>s, intermixed with <i/o redirector>s. The <command name> must
be a filename, usually speCifying the name of an object code file to be loaded. The command
interpreter locates the command to be performed by use of a user-specified ·search rule.- The
search rule resides in the shell variable II search rule", and consists of a series of comma­
separated elements. Each element is either a-template in which ampersands (S) are replaced by
the <command name> or a flag instructing the command interpreter to search one of its internal
tables. The flag "Aint" indicates that the command interpreter's repertoire of "internal"
commands is to be checked. (An internal command is implemented as a subroutine of the command
interpreter, typically for speed or because of a need to access some private data base.) The
flag NAvar" causes a search of the user's ·shell variables" (see below for further discussion
of variables and functions). The following search rule will cause the command interpreter to
search for a command among the internal commands, shell variables. and the directory -abina -.

in that order:

The purpose of the search rule is to allow optimization of command location for speed, and to
admit the possibility of restricting some users from accessing "privileged- commands. (For
example. the search rule

-Avar,//project/library/S-

would restrict a user to accessing his variables and those commands in the directory
H//project/library-. He could not alter this restriction, since he does not have access to
the (internal) 'set' command; the ·"int" flag is missing from his search rule.) In addition
to restricting a user to commands in specific directories, the system administrator can also
restrict a user from uSing certain internal commands (and allow use of all other internal com­
mandS). This is accomplished by adding "qualifiers" after the internal command flag in the
search rule. The qualifiers are characters representing the class of commands to be excluded
in the search for internal commands to be executed. Qualifiers follow the ·"int" flag.
separated from it by a slash. The following table summarizes the qualifiers and which inter­
nal commands they exclude :

- 10 -

Qua 1 if ier

a

b

c

d

h

m

q

s

v

x

meaning

access to arguments in shell files ('arg', 'args', 'al"gsto', 'nargs',
and 'quote')

access to debugging commands ('dump' and 'shtrace')

access to flow of control commands ('case', 'elif', 'else',
'exit', 'fi', 'goto', 'if', 'label', 'out', 'repeat',
'until', and 'when')

ability to change directories (via 'cd')

'esac' ,
, then' ,

access to environment
'installation', 'I ine',

information ('date', 'day',
'login_name', an::t ttir::>:"

, echo', ' eva 1 ' ,

access to string manipulation functions ('dl"op',
and 'take')

ability to exit the shell (via 'stop')

'substr' ,

access to variable setting commands ('fol"get', 'set', and 'sh')

access to variable manipulating commands ('declare', 'declared', and
'vars')

access to commands which allow execution of Primos commands ('dbg',
'primos', 'vpsd', and 'x')

For instance, if the system administrator wanted to keep someone from executing the Primos
Fortran compiler directly, then the following search rule would accomplish this:

The "q" qual ifier prevents exit from the shell (so that you can't run the Primos Fortran com­
piler directly), the "x" qualifier prevents you from accessing external commands from within
the shell (i.e., via "x ftn prog"), and the "v" qualifier prevents you from using 'declare' to
modify or create a search rule (the shell file 'fc', which is the Subsystem interface to' the
Primos Fortran compiler, declares its own search rule) which contains an unqualified "Aint"
flag, It should be noted, however, that this is not a fool-proof method of limiting a user's
access to commands; a better solution is to write a program which is run at login and which
"supervises" the user's session. One way of overcoming such a restriction placed by the
system administrator would be to execute a command within a function call, such as thefol­
lowing:

[declare search rule = "<normal search rule>"; _
<unrestricted command>]

By redefining the search rule, the user is then allowed to execute any desired command,
including a new invocation of the command interpreter.

cArgument>s to be passed to the program being readied for execution are gathered by the
command interpreter and placed in an area of memory accessible to the library routine
'getarg'. They may be arbitrary strings, separated fl"om the command name and from each other
by blanks. Quoting may be necessary if an <argument> could be intel"preted as some other
element of the command syntax. Either Single or double quotes may be used. The appearance Of
two strings adjacent to one another without blanks implies concatenation. Thus,

"quoted "string

is equivalent to

"quoted string"

or to

quoted' string'

Single quotes may appear within strings delimited by double quotes, and vice versa; this is
the only way to include quotes within a string. Example:

"'quoted string'"
'''Alas, poor Yorick!'"

Arguments are generally unprocessed by the command interpreter, and so may contain any
information useful to the program being invoked.

- 11 -

Command Interpreter User's Guide

In the previous section, it was shown that streams of data from "standard ports" could be
piped from program to program through the use of the <pipe connection> syntax. It is also
possible to redirect these data streams to files, or to use files as sources of data. The
construct that makes this possible is the <i/O redirector>. The <i/o redirector> is composed.
of filenames. port numbers (as described in the last section), and one or two occurrences of
the "funnel" (».

The two simplest forms take input from a file to a standard port or output from a stan­
dard port to a file. In the case of delivering output to a file, the file is automatically
created if it did not exist, and overwritten if it did. In the case of taking input from a
file, the file is unmOdified. Example:

documentation>1

causes the data on the file "documentation" to be passed to standard input port 1 of the node;

1>results

causes data written to standard output port of the node to be placed on the file "results".

If no <i/O redirector> is present for a given port, then that port automatically refers
to the user's terminal.

If port numbers are omitted, an assignment of defaults is made. The assignment rule is
identical to that given above for <pipe connections>: the first available port after the
entire <net> has been scanned is used. <I/O redirector>s are evaluated left-to-right, so
leftmost defaulted redirectors are assigned to lower-numbered ports than those to their right.
For example,

data> requests> trans 2>summary 3>errors sp

1s the same as

data>1 requests>2 trans 2>summary 3>errors 112.1 sp

where all defaults have been elaborated. 'Trans' might be some sort of transaction processor,
accepting data input and update requests, and producing a report (here printed off-line by
being piped to a spooler program), a summary of transactions, and an error listing.

In addition to the <i/O redirector>s mentioned above, there are two lesser-used redirec­
tors that are useful. The first appends output to a file, rather than overwriting the file.
The syntax is identical to the other output redirector, with the exception that two funnels
'»' are used, rather than one. For example,

2»stuff

causes the data written to output port 2 to be appended to the file "stuff". (Note the lack
of spaces around the red1rector; a redirector and its parameters are never separated from one
another, but are always separated from surrounding arguments or other ~ This restriction
is necessary to insure unambiguous interpretation of the redirector.) The second redirector
causes input to be taken from the current command source file. It is most useful in conjunc­
tion with command files. The syntax is similar to the input redirector mentioned above, but
two funnels are used and no filename may be specified. As an example. the following segment
of a command file uses the text editor to Change all occurrences of "March" to "April" in a
given file:

» ed f11e
g/March/s//Apr1l/
w
q

When the editor is invoked, it will take input directly from the command file. and thus it
will read the three commands placed there for it.

The "command source· and "append" redirectors are subject to the same resolution of
defaults as the other redirectors and <pipe connection>s. Thus, in the example immediately
above.

» ed file

is equivalent to

»1 ed file

Now that the syntax of <node> has been covered, just two further considerations remain.
First, the nature of an executable program must be defined. Second. the problem of execution
order must be. clarified.

- 12 -

Command Interpreter User's Guide

In the vast majority of cases, a <node> is executed by bringing an object program into
memory and starting it. However, the <command name> may also specify an internal command, a
shell variable, or a command file. Internal commands are executed within the command
interpreter by the invocation of a subroutine. When a shell variable is used as a command,
the net effect is to print the value of the variable on the first output port, followed by a
newline. If the filename specified is a text file rather than an object file, the command
interpreter "guesses" that the named f i 1 e is a f i 1 e of commands to be interpreted one at a
time. In any case, command invocation is uniform, and any <I/O redirector> or
<pipe connection> given will be honored. Thus, it is allowable to redirect the output of a
command file just as if it were an object program, or copy a shell variable to the line
printer by connecting it to the spooler through a pipe.

As mentioned in the section on <net>s, the execution order of nodes In a <net> is
undefined. That is, they may be executed serially in any order, concurrently. or even Simul­
taneously. The exact method is left to the implementor of the command interpreter. In any
case, the flows of data described by <pipe conne:" ie .,>~ : I .' <i/o redirector>s are guaranteed
to be present. There are times when it would be prererable to know the order in which a <net>
will be evaluated; to help with this situation, <compound node>s may pe used to effect
serialization of control flow within a network. <~~t>s separated by semicolons or newlines
are guaranteed to be executed serially, left-to-right, otherwise the command interpreter would
exhibit unpredictable behavior as the user typed in his commands. Suppose it is necessary to
operate four programs; three may proceed concurrently to make full use of the multiprogramming
capability of the computer system, but the fourth must not be executed until the second of the
three has terminated. For Simplicity, we will assume there are no input/output connections
between the programs. The following command line meets the requirements stated above:

program 1 , {program2; program4}, program3

(Recall that the comma represents a null i/O connection.) Suppose that we have a slightly
different problem: the fourth program must run after all of the other three had run to com-
pletion. This, too, can be expressed concisely: ---

program1, program2, program3; program4

Thus, the user has fairly complete control over the execution order of his <net>s. (The use
of commas and semicolons in the command language is analogous to their use for collateral and
serial elaboration in Algol 68.)

This completes the discussion of the core of the command language. The remainder Of the
features present in the command interpreter are provided by a built-in preprocessor, which
handles function calls, iteration, and comments. The next few sections deal with the
preprocessor's capabilities.

CoBDents

Any gOOd command language should provide some means for the user to comment his code,
particularly in command files that may be used by others. The command interpreter has a Sim­
ple comment convention: Any text between an unquoted Sharp sign (N) and the next newline is
ignored. A comment may appear at the beginning of a line, like this:

N command file to preprocess, compile, and link edit

Or after a command, like this:

file.r> rp N Ratfor's output goes to the terminal

Or even after a label, for identification of a loop:

: loop # beginning of daily cycle

As far as implications in other araas of command syntax. the comment is functionally
equivalent to a newline.

Variables

<variable> ::z <identifier>

<value> ::= { <printable char> : <unprintable char> }

<unprintable char> ::= '<' <ascii mnemonic> '>'

<set command> ::= set [<variable>] = [<value>

<declare command> .,= declare { <variable [= <value>] }

<forget command> ::= forget <variable> { <variable> }

- 13 -

Command Interpreter User's Guide

The command interpreter supports named string storage areas for miscellaneous user
applications. These are called variables. Variables are identified by a name, consisting of
letters of either case, digits, and underscores, not beginning with a digit. Variables have
two attributes: value and scope. The value of a variable may be altered with the 'set' com­
mand, discussed below. The scope of a variable is fixed at the time of its creation; simply,
variables declared during the time when the command interpreter is taking input from a command
file are active as long as that file is being used as the command source. Variables with
global scope (those created when the command interpreter is reading commands from the
terminal) are saved as part of the user's profile, and so are available from terminal session
to terminal session. Other variables disappear when the execution of the command file in
which they were declared terminates.

Variables may be created with the 'declare' command. 'Declare' creates variables with
the given names at the curpent lexical level (within the scope of the current command file).
The newly-created variables are assigned a .nu11 value, unless an initialization string is
provi-deo.

Variables may be destroyed prematurely with the 'forget' command. The named variables
are removed from the command interpreter's symbol table and storage assigned to them is
released to the system. Note that variables created by operations within a command file are
automatically released when that command file ceases to execute. Also note that the only way
to destroy variables at the global lexical level is to use the 'forget' command.

The value of a variable may be changed with the 'set' command. The first argument to
'set' is the name of the variable to be changed. If absent, the value that would have been
assigned is printed on 'set's first standard output. The last argument to 'set' is the value
to be assigned to the variable. It is uninterpreted, that is, treated as an arbitrary string
of text. If missing, 'set' reads one line from its first standard input, and assigns the
resulting string. If the variable named in the first argument has not been declared at any
lexical level, 'set' declares it at the current lexical level.

A variable may contain any legal ASCII character. To allow the user to enter unprintable
characters that might be a problem to Primos or the shell, the commands that manipulate
variables allow the use of ASCII mnemonics in the value of a shell variable. The following
would set the" kill resp" variables to two ASCII escape characters, a baCkspace, and the
string "*del*":- -

set _kill_resp = "<esc><esc><bs>*del*·

To prevent the interpretation of the mnemonics (i.e. to enter
"<esc><esc><bs>*del*", in this case) the user simply uses the Subsystem escape
front of the mnemonics:

a literal
character in

Variables are accessed by name, as with any command. (Note that the user's search rule
must contain the flag H~var· before variables will be evaluated.) The command interpreter
prints the value of the variable on the first standard output. This behavior makes variables
useful in function calls (discussed below). In addition, the user may obtain the value of a
variable for checking simply by typing its name as a command.

Iteratton

<i terat ion> :: .. '(' <element> { <element> } ,),

Iteration is used to generate multiple command lines each differing by one or more sub­
strings. Several iteration elements (collectively, an "iteration group") are placed in
parentheses; the command interpreter will then generate one command line for each element,
with successive elements replacing the tnstance of iteration. Iteratton takes place over the
scope of one <net>; tt will not extend over a <net separator>. (If iteration ts applied to a
<compound node>, it will, of course, apply to the entire <node>; not just to the ftrst <net>
within that <node>.)

Multiple iterations may be present on one command; each iteration group must have the
same number of elements, since the command interpreter will pick one element from each group
for each generated command line. (Cross-products over iteration groups are not tmp1emented.)

An example of iteration:

] fos part(1 2 3)

is equivalent to

] fos part1; fos part2; fos part3

and

- 14 -

] cp (t ntro bOdy sUlMllary) part (1 2 3)

is equivalent to

] cp t.ntro part1; cp IMXiy part2; cp ~ry part3

Functi on Call s

<function call> ::= '[' <net> { <net separator> <net> } ']1

Occasionally it is useful to be able to pass the output of a program along as arguments
to another program, rather than to an input port. The "function ca"· makes this possible.
The output appearing on each of the first standard output ports of the <net>s within the func­
tion call is copied into t~i8 ~···;n~·.-· line ;-in place of the function call itself. Line
separators (newlines) present in tne <net>'s output are replaced by blanks. No quoting of
<net> output is performed, thus blank-separated tokens will be passed as s~arate arguments.
(If quoting is desired, the filt£.<t' 'quote' can be used or the shell variable "_quote_opt" may
be set to the string ·YES" to cause automatic quotation.)

A <net> may of course be any network; all the syntax described in this document is
applicable. In particular, the name of a variable may appear with the brackets; thus, the
value of a variable may be substituted into the command line.

Htstory Mechantsm

<history_command> ::- <cmd_select> <arg_select> <sUbstitution>

The shell provides a sort of dynamic macro replacement facility for commands that are entered
from the terminal. This is called a command history mechanism. It allows the user to recall
commands he has previously entered, extract portions of the command, edit the portions he has
selected, and either execute what remains or incorporate it into another command, with a
minimum of typing.

A history substitution contains three parts; command selection, argument selection, and
editing. Command selection chooses what command will be used. Argument selection decides
which arguments are to be extracted from the chosen command line, and the editing phase allows
the result to be edited to Change spelling or substitute a different word for portions of the
line. To prevent any history substitution from taking place, the 'hist' command can turn off
the history mechanism. It also controls the saving and restoration of the current history
environment. For the rest of this discussion, the assumption will be that history is
currently enabled.

History substitution is triggered by the '!' character. A history substitution is
normally stopped by a blank or tab character, but a trailing '!' will stop the interpretation
of any further characters. This is used when concatenating supplementary text to the result
of a history substitution. To prevent this and any other interpretation of the special
history characters, they may be escaped with the Subsystem escape Character, '.'. When a
history substitution is discovered, the mechanism modifies the command line, prints the resul­
ting command line on the user's terminal, and then passes the command to the rest of the shell
for execution. History processing occurs befOre any other evaluation in the Shel" such as
function calls and iteration. However, the use of '_' to continue an input line is done even
before the history mechanism sees what you have typed; if the '_' is the last character in
your history command, and the last character on the line, follow it with a terminating 'I'.

Command Selection.

<cmd_select> ::- '!' [<str> I'?' <str> '7' I <num> 1

The first thing in a history substitution is command selection. This 1s used to retrieve
a given command line for use, or further proceSSing. In a history command selection '!<str>'
will find the most recent command 11ne that started with the characters in <str>. '!?<str>?'
will find the most recent command line that contained <str> anywhere on the 11ne. It also
allows <str> to contain blanks or tabs whereas the first form does not. '!<num>' allows the
user to specify the number of a command according to the output ~f the 'hist' command. As a
convenience, '!' by itself will repeat the last command entered.

Araument Selection.

<arg_select> ::.. ", [<num> 1 [I - I <num> 1

The next portion of a history substitution is an optional argument selection. This
chooses which portions of the command are to be kept. History arguments are not exactly the
same as the arguments the rest of the shell uses, since history expansion occurs before
argument collection. Arguments 1n this context are blank or tab seperated words on the com­
mand line. Function calls, iterations, and quotations will be extracted as a single argument,
even if they contain blanks or tabs. Arguments are numbered from zero, starting at the 1eft-

• 15 -

Command Interpreter User's Guide

most portion of the line. In an argument selection, "<num>' specifies that only argument
<num> is to be extracted and kept for further processing or use, and the rest of the command
line is to be dropped. "<num>·<num>' specifies that arguments from the first <num> to the
last <num> are to be kept. In place of any <num>, '$' may be specified to obtain the last
argument on the line. The form "·<num>' is a shorthand for "1·<num>' and "<num>·' is a
short form for "<num>·$'.

Substitution.

<substitution> ::- { ,A' <str> ,A' <str> 'A' ['g' 1 }

The last portion of a history substitution is also optional and is the editing phase.
This allows the portions of the command line that remain to actually be modified like the sub­
stitution command in 'ed' "although much more limited. In the history mechanism, <str> is not
a regular expression, as in 'ed', but is taken as a simple string. The regular expression
special characters are not recognized in the history m~chanism. iacn~sUbstitution happens
only once on the line unless a 'g' i$ appended on the substitution, in which case the Change
occurs globally on the line. Substitutions may be strung together, so that more than one may
be performed at a time.

Finally, after all history substitutions have been made, the Shell will echo the new com·
mand line to the terminal, and then execute it. See the Application Notes for a discussion of
the 'hist' command.

COnclusion

This concludes the description of command syntax and semantics. The next, and final,
chapter contains actual working examples of the full command syntax, along with suggested
applications; it is highly recommended for those who wish to gain proficiency in the use of
the command language.

.;1

- 16 -

Application Notes

This section consists mostly of examples of current usage of the command interpreter.
Extensive knowledge of some Subsystem programs may be necessary for complete understanding of
these examples, but basic principles should be clear without this knowledge.

aastc Functions

In this section, some basic applications
These applications are intended to give the user a
without being explicitly pedagogical.

of the command language will be discussed.
"feel" for the flow of the language,

One commonly occurring task is the location of lines in a file that match a certain pat­
tern. The 'f 'I'I-~' .::;"h •. Id performs this function:

] ftle> find pattern >lines_found

Stnce the lines to be checked against the pattern are frequently a list of file names, the
following sequence occurs often:

] If -c directory I ftnd pattern

Consequently. a command file named 'files' ts available to abbreviate the sequence:

] cat -btn=/ftles
lf -c [args 2] : find [arg 1]

('Cat' is used here only to print the contents of the command file.) The internal command
'arg' is used to fetch the first argument on the command line that invoked 'files'.

'Similarly, the internal command 'args' fetches the second through the last arguments on the
command line. The command file gives the external appearance of a program 'files' such that

] fnes pattern

is equivalent to

] 1f -c find pattern

and

] f nes pattern directory

is equivalent to

] 1f -c directory I find pattern

Once a list of file names is obtained, it ts frequently processed further, as in this command
to print Ratfor source files on the line printer:

] pr [f nes . rS I sort]

'Files' prOduces a ltst of file names with the ".r" suffix, which is then sorted by 'sort',
'Pr' then prints all the named files on the line printer.

One problem arises when the pattern to be matched contains command language metacharac­
ters. When the pattern 1s substituted into the network within 'files', and the command
interpreter parses the command, trouble of some kind is sure to arise. There are two
solutions: One, the filter 'quote' can be used to supply a layer of quotes around the pat­
tern:

lf -c [args 2] I find [arg 1 I quote]

Two, the shell variable" quote opt", which controls automattc function quotation by the com­
!land interpreter, can be set to-the string ·YES":

declare _quote_opt • YES
If -c [args 2] I find [arg 1]

This latter solution works only because 'args' prints each argument on a separate line; the
command interpreter always generates separate arguments from separate lines of function out­
put. In practice, the first SOlution is favored, since the non-intuitive quoting is made more
evident.

One common non-linear command structure is the so-called "yu structure, where two streams
of data join together to form a third (after some proceSSing). This situation occurs because
of the presence of dyadic operations (especially comparisons) in the tools available under the
Subsystem. As an example, the following Command compares the file names in two directories

- 17 -

Command Interpreter User's Guide

and lists those names that are present in both:

] If -c dtr1 : sort 1$ If -c dtr2 I sort common -3

Visualize the command in this way:

lf -c dir1 : sort 1f -c dir2 sort
, 1
, ______ . --------I

\ 1
common -3

The two 'lf' and 'sort' pairs produce lists of file names that are compared by 'common', which
produces a list of those n,mes common to both input lists.

Command files tend to be used not on'ly for oft-performed tasks but also to make lif.
easier when typing long, complex commands. Quite often these long command lines make use of
line continuation -- a newline preceded immediately by an underscore is ignored. The follow­
ing command file is used to create a keyword-in-context index from the heading lines of the
Subsystem Reference Manual. Although it is not used frequently, it does a great deal of work
and is illustrative of many of the features of the command interpreter.

make cmd.k --- build permuted index of commands
files .dS -1' s1 I change % "find %.hd -0 1"

sh
I change '%.hd *{[-]*} ["]*{[_II]*}?*' '.1: .2' I kwic -d =aux-/spelling/discard _
I sort -d : unrot -w [width] >cmd.k

First a few words on how Subsystem documentation is stored: The documentation for Subsystem
commands resides in a subdirectory named ·s1". The documentation for each command is in a
separate file with the name "<command>.d". The heading 1 ine in eaCh file can be identified by
the characters ".hd" at the beginning of the line.

The entire command file consists of a single network. The 'files' command produces a
list of the full path names (the -f option is passed on to 'If') of the files in the subdirec­
tory Is1" that have path names ending with the characters ".d". The next 'change' command
generates a 'find' command for each documentation file to find the heading line. These com­
mand lines are passed back to the shell ('sh') for execution. The outputs of all of these
'find' commands, namely the heading lines from all the documentation files, are passed back on
the first standard output of 'sh'. The second 'change' command uses tagged patterns to
isolate the command name and its short description from the header line and to construct a
suitable entry for the kwic index generator. Finally, 'kwic', 'sort', and 'unrot' produce the
index on the file ·cmd.k".

To this point, only serially-executed commands have been discussed, however sophisticated
or parameterized. Control structures are necessary for more generally useful applications.
The following command file, 'ssr', shows a useful technique for parameter-setting,commands.
Like many APL system commands, 'ssr' without arguments prints the value it controls (in this
case, the user's command search rule), while 'ssr' with an argument sets the search rule to
the argument given, then prints the value for verification. 'Ssr' looks like this:

ssr set user's search rule and print it

if [nargs]
set _search_rule • [arg i quote]

f1

_search_rule

The 'if' command conditionally executes other commands. It requires one argument, which is
interpreted as "true" if it is present, not null, and non-zero. If the argument is true, all
the commands from the 'if' to the next unmatched 'elif', 'else' or 'fi' command are executed.
If the argument is false, all the commands from the next unmatched 'else' command (if one is
present) to the next unmatched 'fi' command are executed. In 'ssr' above, the argument to
'if' is a function call invoking 'nargs', a command that returns the number of arguments pas­
sed to the command file that is currently active. If 'nargs' is zero, then no arguments were
specified, and 'ssr' does not set the user's search rule. If 'nargs' is nonzero, then 'ssr'
fetches the first argument, quotes it to prevent the command interpreter from evaluating
special Characters, and aSSigns it to the user's search rule variable '_search_rUle'.

'If' is
among several
available to
used to invoke
being used (as

useful for simple conditional execution, but it is often necessary to select one
alternative actions instead of just one from two. The 'case' command is

perform this function. One example of 'case' is the command file 'e', Which is
either the screen editor or the line editor depending on which terminal is
well as remembering the name of the file last edited):

- 18 -

e --- invoke the editor best suited to a terminal
(this is not the current version of 'e' in -b1n-)

if [nargs]
set f = [arg I quote]

fi

case [line]
when 10

se -t consul [se_params] [f]
when i1

se -t b200 [se_params] [f]
when 15

se -t b150 [se_params] [f]
when 17

se -t gt40 [se_params] [f]
when 18

se -t b200 [se_params] [f]
when 25

se -t b150 [se_params] [f]
out

ed [f]
esac

The first 'if' command sets the remembered file name (stored in the shell variable 'f') in the
same fashion that 'ssr' was used to set the search rule (above). The 'case' command then
selects from the terminals it recognizes and invokes the proper text editor. The argument of
'case' is compared with the arguments of successive 'when' commands until a match occurs, in
which case the group of commands after the 'when' is executed; if no match occurs, then the
commands after the 'out' command will be executed. (If no 'out' command is present. and no
match occurs, then no action is taken as a result of the 'case'.) The 'esac' command marks
the end of the control structure. In 'e', the 'case' command selects either 'se' (the screen
editor) or 'ed' (the line editor). and invokes each with the proper arguments (in the case of
'se'. identifying the terminal type and specifying any user-dependent personal parameters).

The 'goto' command may be used to set up a loop within a command file. For example, the
following command file will count from 1 to 10:

bogus command file to show computers can count

declare i .. 1

: loop
i
set 1 .. [eva 1 i + 1]
if [eval i c= 10]

goto lOOP
fi

The 'repeat' command is used to set up loops but, un11ke the 'goto' command. will also
work from the terminal. The following loop will do exactly what the previous command f11e
did. but will also work when entered from a terminal:

not quite as bogus a lOOp to show computer counting

declare i ..

repeat
i
set i .. [eva1 i + 1]

until [eval i '>' 10]

History Ex.-ples

Command history provides a quick way of re-executing a command without retyping the
entire command line. The following example shows how a user can run the previous command
again by only typing a'!':

] ttme
11:59:04
] I
time
11 :59 :08

- 19 -

Command Interpreter User's Guide

Another advantage is the ability to fix a mistyped command. For example. to list the
contents of the directory "stuff.u" where the ".u" was omitted in the 'If' command and then
corrected.

] 1f stuff
stuff: not found
] !!.u
If stuff.u
bogus gorf snert

Two '!'s are used because text must be entered right next to the history substitution. Any
other time, the trailing '!' is not needed.

The 'hist' command,.without any arguments. will print a list of the current history and
their command numbers.

htst
1 : pmac gorf.s; ld gorf.b -0 snert
2: se gorf.s
3: pmac gorf.s; ld gorf.b -0 gorf
4: gorf
5: se gorf.s

At this point it is time to execute the 'pmac' and 'ld' statements. again. There are several
ways to do this. One is to give the specific command number (as printed by 'hist'):

] !3
pmac gorf.s; ld gorf.b -0 gorf

or let the history do more of the work for us by telling it to look for the command starting
wi th 'pmac':

] !pmac
pmac gorf.s; ld gorf.b -0 gorf

or if that is not the correct command. entering a unique string that appears anywhere on the
command 1 i ne :

] !?-o sn
pmac gorf.s: ld gorf.b -0 snert

Notice that the trailing '?' wasn't needed. This is because it would have occured at the end
of the line. None of the delimiting characters need to be entered at the end of the line
because the command substitution will place them there for you. Also notice that the shell
will always echo the command produced by the history mechanism to the terminal, so that you
can know for sure exactly what the shell is doing.

Argument selection allows the user to retrieve certa1n arguments from the selected com­
mand line. After a command line is selected (as in the previous examples) then argument
selection takes place. For example, given the command line

echo12345878
2345678

to retrieve only arguments 3 to 7 one can type:

] echo 1 2 3 4 5 8 7 8
1 234 5 6 7 8
] echo '.3-7
echo 3 4 5 6 7
3 4 567

or to grab the first item on the line,

]ech012345878
1 234 5 6 7 8
] echo !.o
echo echo
echo

because argument zero (the command name) is the first item on the line.

The history mechanism does not know about command <nodes>. E.g., a 'I', and the command
name after it, are treated as just plain arguments. Numbering starts at zero. and each suc­
cessive blank separated "item" is considered another argument. In the case of a function
call, iteration, or quoted string. blanks and tabs are inSignificant until all the brackets.
parentheses. and quotes match up. In this manner. an entire function call. iteration group.
or string counts as a s1ngle argument, whether or not it contains spaces.

- 20 -

] echO (gorf.S snert.r)
gorf.s snert.r
] cat -h '.1
cat -h (gorf.s snert.r)
cec== ••• _ •••• a=: ••• = gorf.s ••••••••••••••••••••

SEG
DVNT BURF$
END

•••••• = ••••• == •• = ••• sne~t.r ••••••••••••••••••••
call print(STDOUT, "burf*n"s)
stop
end

or for a more complicated example

] echO [echO berf] (blert blort) -ftnal WOM"
berf blert final word
berf blort final word
] echO '.3 1.1 '.2
echo "final word" [echo berf] (blert blort)
final word berf blert
final word berf blort

Command Interpreter User's Guide

The last portion of a history replacement 1s substitution. This allows previously selec­
ted portions of the command line to be placed through a set of substitutions similar to the
'change' command or the substitute command in the editor. To change the "blert" in the
previOUS example to "bonzo" , you would type

] echO [echo berf] (bl.rt blort) -ftnal word"
berf blert final word
berf blort final word
] ' bl.rt bonzo
echo [echo berf] (bonzo blort) ufinal word"
berf bonzo final word
berf blort final word

The operations can be combined. For instance to move arguments around, and make substitu,tions

] echO one two three
one two three
] echo '.3 '.1 one"1" '.2
echo three 1 two
three 1 two

There can be more than one substitution per command line, and the given changes can be. made
glObally.

] echo •• bb cc CIc:t ..
aa bb cc dd ee
] , "z
echo za bb cc dd ee
za bb cc dd ee
] 1??"b"Y'a
echo aa yy cc dd ee
aa yy cc dd ee
1 '?a bb? zASI"b y"a "v d~
acho zz yy cc wd ve
zz yy cc wd ve

The first substitution simply changes the first "a" to a HZ". The second one racalls the most
racent command with an "aa" in it and changes the first "b" to a .y". The last one looks for
the most recent command that contains an Ma bb" string (the first line) and then substitutes a
·z" for all occurences of an "a", a "y. for all occurences of a "b", a OveN for the first
-ee", and a ·w" for the first "d". Notice that for the last substitution, the trailing '''''
was not necessary.

History processing takes place across the entire input line, even inside quoted strings.
To get one of the literal history characters (I""), you ~ escape it with the Subsystem
escape character, '.'.

Finally, the 'hist' command is available to control the use of the history mechanism.
'Hist on' turns on history processing. By default, it is off. 'Hist off' turns history
processing off. 'Hist save <file>' will save the current list of remembered commands into
<file>, or into -histfile= if <file> is not specified. 'Hist restore <file>' will retrieve a
saved history session from <file>, or from -histfile= if <file> is not specified. It is
recommended that you put a 'hist restore' into your '_hello' variable or the file it executes
(if you want to save your shell sessions across logins). If history processing is not turned
on when you do a 'hist restore', the shell will automatically turn it on for you, and then

- 21 -

Command Interpreter user's Guide

restore your saved command history. If history is turned
mand (like =bin=/bye does), the shell will automatically
also happen if you type an EOF at the shell (usually
"_nottyeof" set (see below).

on, whenever you issue a 'stop' com­
do a 'hist save' for you. This will
control-c), unless you also have

Shell Control Vartables

Many special shell variables are used to control the operation of the command
interpreter. You can define or change any shell variable with 'set' and can delete it with
'forget'. The current value of a shell variable can be examined by entering its name. The
values of all your shell variables can be examined with the 'vars' command. Certain shell
variables are read into the SWT common block at Subsystem initialization to control the
terminal input routines. If these variables are changed, the shell will modify the Subsystem
common to reflect the change immediately. The variables that could accept control characters
as v~lues may be entered using the ASCII mnemonics supported.by t~,e shell variable commands
(see the heading "variable,s" in the reference section of this manual). The following table
identifies these variables and gives a short explanation of the function of each.

Variable

_newline

_nottyeof

Function

This variable is used to select a command interpreter to be executed when the
user enters the Subsystem. It should be set to the full pathname of the com­
mand interpreter desired. This variable 1s only checked on entrance to the
Subsystem, so 1f this is changed, the user should exit the Subsystem (say with
'stop') and then reenter (using the 'swt' command). The default value is
u=bin=/sh".

ThiS variable may be set to a single character which will be used to signal the
end of file from a terminal. The Subsystem input routines will recognize an
instance of this character anywhere on the input line and send the appropriate
signal to the input routine. The default value is the ASCII character ETX
(control-c) .

This variable may be set to a single character to be used as the "erase,· or
character delete, control character for Subsystem terminal input processing.

This variable may be set to a Single character to be used as the "escape"
control character for Subsystem terminal input processing. Note that this will
ne! not change the standard Subsystem escape character, it remains an '.'.
(See the help on 'tcook$' for the gory details.)

This variable, if present, is used as the source of a command to be executed
whenever the user enters the Subsystem. It is frequently used to implement
memo systems, supply system status information, and print pleasing messages-of­
the-day.

This variable may be set to a single character to be used as the "kill," or
line delete, control character for Subsystem terminal input processing.

Th1s variable may be set to any string which will appear on the user's terminal
when the kill character is entered. If this variable is not present n\\" is
the kill response.

ThiS variable determines how often mail is checked during the login session.
If not declared, the user is not notified of incoming mail while he is logged
in. If the variable is set to an integer value, the shell will check for
changes 1n his mailbox status after that many seconds has elapsed, just before
his prompt string is printed. The user is notified by the message, ·You have
new mail". If the variable is declared but not set. or set to an 111egal
value, the default is to check every 60 seconds.

This variable may be set to a single character which will be interpreted as the
end-of-l;ne. Whenever this character is encountered, a carriage return and
linefeed will be echoed to the terminal. If it is not set, then the ASCII
character LF 1s the default.

An EOF character typed at command level 1 will normally terminate the Subsystem
and place the user face to face with the Primos operating system. Most com­
mands accept input from the terminal if an alternate file is not specified and
if the user's keyboard happens to bounce, the user is bounced into Primos. If
this variable is declared, an EOF typed at command level; will not terminate
the shell but will type the message ·use 'stop' to exit the subsystem" and
return to command level.

- 22 -

-prompt

_retype

commana Interpreter user's wUlae

ThiS variable controls the paging of gOSSip messages. If this variable is .et.
the gossip will pause at the last page, otherwise it Simply returns to command
level Without allowing any paging commands.

This variable contains the prompt string printed by the command interpreter
before any command read from the user's terminal. The default value 1s a right
bracket (]).

This variable contains the location where all files spooled by this user are to
be printed. If this variable is not present. files will be printed at the
system·defined default printer.

This variable contains the form to be used for files spooled by this user (e.g.
"narrow"). If this variable is not present. files will be printed on the
system·defined default form.

~:.

If this variable is present. whenever the fault handrer detects a
will prompt you as to whether you want to continue. termin~~e the
call Primos. Otherwise. a break will return you to the Subsystem.

break, it
program or

This variable. if set to the value ·YES". causes automatiC quotation of each
line of program output used in a function call. It is mainly provided for com·
patibility with an older version of the command interpreter. which performed
the quoting automatically. The program 'quote' may be used to expliCitly force
quotation.

This variable may be set to a single character to be used as the "retype"
control character for ·Subsystem terminal input processing.

This variable contains a sequence of comma· separated elements that control the
procedure used by the command interpreter to locate the object code for a com·
mand. Each element is either (1) the flag • int".· meaning the command
interpreter's table of internal commands. (2) the flag " var". meaning the
user's shell variables. or (3) a template containing the character ampersand
(&). meaning a particular directory or file in a directory. In the last case.
the command name specified by the user ;5 substituted into the template at the
point of the ampersand. hopefully providing a full pathname that locates the
object code needed.

This causes any gossip that is received to be paged using the screen oriented
paging mechanism.

Shell eo..and Stattsttcs

If the public or private template ".statistics is defined with .the value ·yes". the
shell will record every Command issued by the user in the directory defined by the systemtem·
plate ".statadir"". If you set your private template -"statistics"· to "yes· then your com·
mends will be recorded in the directory defined by your -"statsdir"- template. The files in
the directory "-statsdir"" are named "sh<pid>"; command statistics for a given process are
stored in the file with the corresponding process id. Here is an example of the file:

122680 171812 16 system 1 F //bin/x
122680 171816 16 system 1 F //bin/lf
122680 171822 16 system 1 F //bin/temp1ate
(date) (time) (user) I I (command)

(pid) (level) (F • command found)

The date begins in the first column. The (level) is the depth of nesting of shell f11es at
which the command is requested; 1 is the terminal level.

Sy.btottc co..ands

There are several commands that. in effect. live symbiotioa11y with the Shell.
following sections. some of the more useful of these will be reviewed. For
information. consult the Software!22l! Subsystem Reference Manua~.

In the
further

Argument Fetching. Four internal commands are frequently used in shell programs to fetch
arguments given on the command line. 'Arg' fetches a single argument, 'args' fetches several,
'argsto' fetchs a specified group, and 'nargs' returns the number of available arguments.

arg <pOSition> [<level>]

'Arg' prints on its first standard output the argument which appeared in the
<position>th position in the command line invoking the shell program containing
'arg'. POSition zero refers to the command name, position one to the first
argument. etc. If an illegal position is specified. 'erg' prints nothing. The
optional second argument, <level>. specifies the number of 1exic levels to

• 23 •

Command Interpreter user's Guide

ascend in order to reach the desired argument list. The entry of any command
file or function call constitutes a new lexic level; thus, an 'arg' command
used in a function call to fetch an argument to the command file containing the
function call needs a <level> of 1 (to escape the lexic level in which the
function is evaluated). In fact, this is the most common use of 'arg', so the
default value for <level> is 1. The following three commands. when placed in a
command file. would cause that command file's first argument to be printed
three times on standard output one:

echo [arg 1]
echo [arg 1 1]
arg 1 0

.
args <first> [<last> [<level>]]

'Args' prints on its first standard output the arguments specified on the com­
mand file <level> lexic levels above the current level. <First> is the pOSi­
tion on ~he command line of ~he first argument to be printed; <last> is the
position of the last argument to be printed. If <last> is omitted, the final
argument on the command line is assumed. <Level> has the same meaning as for
'arg' above.

argsto <delim> [<number> [<start> [<level>]]]

'Argsto' prints a group of arguments delimited by arguments consisting of
<delim>. <Number> is an integer that controls which group of arguments is
printed. If <number> is 0 or omitted, arguments up to the first occurrence of
<delim> are printed; if <number> is 1, arguments between the first occurrence
of <delim> and the second occurrence of <delim> are printed, and so on.
<Start> is an integer indicating the argument at which the scan is to begin; if
<start> is omitted (or is 1), the scan begins at the first argument. <Level>
has the same meaning as for 'arg' above.

nargs [<level>]

'Nargs' prints on its first standard output the number of arguments passed to
the command file <level> lexic levels above the current level. <Level> has the
same meaning as for 'arg' above.

~ Tracin;. The 'shtrace' command is useful for tracing the operation of the shell.
Although primarily intended for debugging the command interpreter itself, it also finds use in
monitoring and debugging shell files. To turn the trace on, enter

shtrace on

To turn the trace off, enter

shtrace

Many other options are available. Consult the Software !22l! Subsystem Reference Manual for
details.

Shell Variable Utilities. The following commands (in addition to 'declare', 'set', and
'forget' discussed earlier) have been found useful in dealing with shell variables. Further
information can, as usual, be found in the Software!22l! Subsystem Reference Manual.

vars
'Vars' 11sts the names (and optionally the values) of the user' •• hell
var1ables. 'Vars' can also save and restore the user's variable. from
arbitrary files. Various options control the listing format, the number of
lexic levels scanned, and whether or not shell control variables are listed.
The most common form is probably

vars -alv

which lists all variables at all lexic levels along with their values.

PrograM Interface

The shell provides a set of routines which allows the user of the standard shared
libraries to create shell variables, retrieve their values, and change them as well. You may
also execute shell commands from within a program. This facility is not available when using
the non-shared libraries, and even using the shared libraries it is somewhat restrictive until
Prime supports EPF runfiles. Further information on these routines can be found in the
Software Tools Subsystem Reference Manual.

- 24 -

shell

~ommang ln~erpre~er user's ~ula.

'Shell' is the subroutine which starts another level of the SWT shell. It 18
USed to execute commands read from an open input file. It is analagous to the
'sh' command,

subsys

svdel

'Subsys' is used to execute a single command from within a program. It com­
bines all the operations needed to execute a string with 'shell' without the
user having to perform the operations, It is a convenience for the user.

'Svdel' accepts the name of a shell variable and deletes it at the current
shell level. It takes care of updating the SWT common block 1n the case of a
special shell variable (see "Shell Control Variables", above). It is analagous
to the command 'forget'.

svdump

svget

'Svdump' prints a representation of the internal shell variable cpmm~n block.
It scans all levels of the variables, dumping the chains and ··.·:le hash tables.
It is analagous to the 'dump sv' command.

'Svget' simply retrieves the value of a given shell variable. Since
"executing" a variable from the command 'evel prints the value of the variable,
the action of 'svget' is closest to the execution of a variable.

svlevl
'Svlevl' returns the current lexic level of the shell. This is useful in
cooporation with 'svscan' (described below) to retrieve the value of all
currently declared variables. This routine has no command equivalent.

svmake

svput

'Svmake' creates a given shell variable at the current lexic level of the
shell. It returns the lexic level of the shell. If the variable already
exists at the current level, then 'svmake' will have no effect. Any speCial
variables (see "Shell Control Variables", above) that are changed will cause a
change in the SWT common block to reflect the value of the variable. , Svmake ,
is analagous to the 'declare' command.

'Svput' sets the value of a given shell variable in the most recent lexic level
where it appears. If the variable does not exist in any scope of the shel" it
is created in the current level. 'Svput' also makes modifications to the SWT
common block if any special variables are Changed. 'Svput' is analagous to the
'set' command.

svrest
'Svrest' reads a file written by 'svSave' (see below) and attempts to merge
those variables with those at the current 'exic level. 'Svrest' is analagous
to the 'val's -I'" command.

svsave
'Svsave' attempts to save the shell variables at lexic level number 1 (the top
level) In the given file. 'Svsave' is analagous to the 'val's -s' command.

svscan
'Svscan'
at any
There is

conclusion

provides a way for the user to obtain the value of all shell variables
or all lexic levels. It operates in a method Similar to 'tscanS'.
no command aSSOCiated with 'svscan'.

This concludes the Application Notes section of the guide. Hopefully it has presented
some ideas that will make the use of the command interpreter more productive and enjoyable.

- 25 -

Command Interpreter user's Guide

Messages from the Shell

Listed here are messages with obscure meanings that are produced by the Shell; several
indicate dire internal problems that should not occur during normal operation. In the
interest of saving paper, self-explanatory messages are not included.

<command> : not found
The list of elements in the search rule was exhausted, but the command had not been
located.

<command> : too many ct f t1 es
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive. calIon a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table spQc~.

continue?
This
set.
will
will

message occurs after each network when the "Single_step· shell trace option is
A line beginning with anything other than an upper or lower case letter "n"
cause the shell to execute the next network. A response beginning with "n"

cause the shell to return to command level.

illegal desttnation node spec
The destination node specifier must be a defined label or a number between 1 and the
number of nodes in the network.

i 11 ega I port nunaer
A port number must be a number between 1 and the maximum number of standard ports
defined (currently 3).

mf ss i ng command n
Although an empty net is allowable, redirectors must not be specified without a com­
mand name.

misstng pathn ... in redtrector
A greater-than sign was encountered without a pathname on either side.

net is not serially executable
Because multiple processes per user are not supported, each node of a net must be
executed serially. Therefore, nets which have pipe connections that form a complete
cycle cannot be executed.

overflow (save stat.): <level>
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive calIon a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table space.

ptpe destlnatton not found
The destination node of a pipe is not in the range of the current net.

state save stack overflow
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive calIon a command file. The maximum nesting depth (currently
10) is a compile time option of the Shell and may be increased at the expense of
additional table space.

Unbalanced iteratton groups
Because of the semantiCS of iteration, each iteration group in the same net must
contain the same number of arguments.

unexpected EOFon variabl. save ft ,.
End of file has been encountered on the shell variable save file when a value has
been expected. The shell variables have been corrupted. To recover what might be
left, exit the Subsystem with a <break> or control-P and consult your system
administrator.

whttespace required around pipe connector
A pipe connector and its associated port numbers and destination label must be
surrounded by spaces.

wh t tespace ,..... t red around t /0 red I rector
An i/O redirector and its aSSOCiated i/O redirector must be surrounded by spaces.

- 26 -

User's Guide for the Ratfor Preprocessor

Second Ed ttl on

T. Allen Akin
Terrell L. Countryman

Perry B. Flinn
Daniel H. Forsyth, ~r.

~eanette T. Myers
Arnold D. Robbins

Peter N. Wan

SChool of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

Apr; " 1985

.:i

TABLE QF CONTENTS

Ratfo ... L.rtCI!J.ae Guide

What is R.tfo ... ? .. .

Diffe ncesBetween Ratfo ... and Fo ... tran .. 1
Source Program Format .. 1

Case Sensitivity .. 1
Blank Sensitivity ... 1
Card Co 1 umns ". 1
Multiple Statements per Line.. 2
Statement Labels and Continuation... 2
Comments'.......... 3

Identifiers .. 3
Integer Constants .. 4
String Constants.... 4
Logical and Relational Operators... 5
Ass i gnment Opera tors ... 6
Fortran Statements in Ratfor Programs 6
Incompatibilities .. 7

Ratfo ... Text Substitution Statements ... 8
Oef ine ... 8
Undef i ne ... 10
Incl ude .. 10

Ratfo ... Decla tions ... 11
String... 11
Stringtable .. 11
Linkage .. 12
Local .. 12

R.tfo ... Control Statements ... 14
Compound Statements .. 14
If - Else .. 14
Wh i 1 e .. 14
Repeat ... 15
Do ••..•.•.•..••.•.•••...•••.....•..•..•••••..•..•••.••.••••••..•..•••...••••.•••••• 15
For .. 16
Break .. 16
Next ... 17
Return ... 17
Se 1 ect ... 17
Procedure .. 19

Ratfor L.nguage R.ference

Dt ff nces B.tween Ratfo ... and Fortran .. 21
Source Program Format .. 21
I dent i f 1 ers ...•.................. 21
Integer Constants .. 21
String Constants ... 21
Logical and Relational Operators... 22
Assignment Operators ... 22
Escape Statements .. 22
Incompatibi11ties ... 23

R.tfor Text Substitution Stat_nts ... 23
Oef ine ... 23
Undef i ne ... 23
Include... 23

- 111 -

Ratfor Declarations ... 24
Li nkage .. 24
Loca 1 •..••••••••••••••••••..•..••••••.•••••••••.•••••••...••••••.•••••.•••••••••••• 24
String... 24
Stringtable .. 24

Ratfor Control Statements ... 24
Break .. 24
Do ... 24
For .. 24
If ... 24
Next ... 25
Procedure .. 25
Repeat•.. 25
Return ... 25
Select ... 25
While ... : 25

Ratfor Programmi ng Under the Subsystem

Requirements for Ratfor Programs .. 26

Running Ratfor Programs Under the Subsystem ... 26
Preproces sing .. 26
Compi 1 ing .. 27
Link i ng .. 28
Execut i ng .. 29
Shortcuts .. 29

Shell Programs ~ . 29
The 'Rfl' Command... 30
Storing Source Programs Separately .. 30
Compil ing Programs Separately... 30

Debugg i ng .. 30
Performance Mon i tor i ng ... 33
Conditional Compilation .. 33
Portabi 1 i ty .. 34

Source Program Format Conventions ... 34
Statement Pl acement .. 34
Indentat i on .. 35
Subsystem Definitions.. 36

Us t ng thll Subsystem Support Rout i nes .. 36
Termi nat i on .. 36
Character Strings.. 36

Equal ... 37
Index ... 37
Length " 37
Mapdn and Mapup ... 37
Mapstr .. 37
Scopy .. " 37
Type .. 38

F i 1 e Access•.......•... 38
Open and Close .. 38
Create•... 39
Mktemp and Rmtemp ... 39
Wind and Rewind ... 39
Trunc ..•.. 39
Remove .. 39
Cant•......................•..• 40
Get 1 in. • • . 40
Gatch•......................•....................•....•................ 40
Input ..• 40
Readf ... 42
Putl in .. 42
Putch ... 42
Pri nt ... 42
Wri tef .. 42
Fcopy ... 42
Markf and Seekf ... 43
Getto ... 43

- iv -

Type Conyers i on .•...............•....................•....•.....•.....•..••...•.•.. 43
Decode•................•.......................•.... 45
Encode ..•.................•......•.......• 45

Argument Access•............••........................•.•...•.••• 45
Getarg•......•............................••....•...••••..•••.. 45
Parscl ..•..•......•..............•.... 46

Dynamic Storage Management•.•.•..........•....•.................•......••••. 47
Dsini t •...•............................... 48
Dsget ...•..... 48
Dsfree ..•...................•..... 48
Dsdump .. 48

Symbol Table Manipulation...•.....•..... 49
Mktabl ...•...... 49
Enter ..• 50
Lookup••.......................•......................•...•...............• 50
Delete ,•.............. , •• . .. •. 50
Rmtabl . ..•........•.......... 50
Sctabl ...•................ t. 50

Other Rout i nes ... '. • • • .. 51

Appendixes

Appendix A -- Implementation of Cont~l Statements 52
Break•... 53
Do•... 54
For•... 55
If ... 56
If - Else ...• 57
Next ..•.. 58
Repeat ... 59
Return•.......•..........••..............................•.... 60
Select ... 61
Se 1 ect « integer express ion» ..•............. 63
Whi 1 e .. 6.5

Appendix B

Appendix C

Linking Programs With Initialized Common 66

Requirements for SUbsystem Programs '" 67

Appendix D The Subsystem Definitions ... 68
Characters ... 68
Oa ta Types•.........•.........•...........................••. 68
Macro Subrout i nes .. 68
Language Extens ions•..............•..........•.... 68
Lim; ts ..•......•................... 69
Standard Ports••.................................. 69
Argument and Return Va 1 ues ... 69

Appendix E

Appendix F

I Rp I Reserved Words

Command Line Syntax

70

71

- v -

Foreword

Ratfor ("Rational Fortran") is an extension of Fortran-66 that serves as the basis for
the Software Tools Subsystem. It provides a number of enhancements to Fortran that facilitate
structured design and programming, as well as enhance program readability and ease the burden
of program coding.

This guide is intended to explain and demonstrate the use of Ratfor as a programming
language within the Software Tools Subsystem. In addition, applications notes are provided to
help users build on the experience of others.

- vi -

Ratfor baDIYa,. Guid!

What i. Ratfor?

The Ratfor ("Rational Fortran") language was introduced in the book Software I22l! by
Brian W. Kernighan and P. V. Plauger (Addison-Wesley, 1976). There, the authors use 1t as the
medium for the development of programs that may be used as cooperating tools. Ratfor offers
many extensions to Fortran that encourage and facilitate structured design and programming,
enhance program readability and ease the burden of coding. Through some very simple
mechanisms, Ratfor helps the programmer to isolate machine and implementation dependent sec­
tions of his code.

Amo~g the many programs developed in Software !22l! is a Ratfor preprocessor -- a program
for converting Ratfor into equivalent ANSI-66 Fortran. 'Rp', the preproce~sor described in
this guide, is an original version based on the program presented in Software I22l!.

Differences .etw.en Ratfor and Fortran

As we mentioned, Ratfor and Fortran are very similar. Perhaps the best introduction to
their differences is given by Kernighan and Plauger in Software !2El!:

"But bare Fortran is a poor language indeed for programming or describing programs.
Ratfor pt"ovides modern control flow statements 1 ike those in PL/I, Cobol,

Algol, or Pascal, so we can do structured programming properly. It 1s easy to read,
write and understand, and readily translates into Fortran. . .. Except for a hand­
ful of new statements like tf - else. whtle, and repeat - until, Ratfor i.!. Fortran. II

Source Program Format

Case Sensitivity. In most cases, the format of Ratfor programs is much less restricted
than that of Fortran programs. Since the Software Tools Subsystem encourages use of terminals
with multi-case capabilities, 'rp' accepts input in both upper and lower case. 'Rp' is case
sensitive. Keywords, such as if and .elect, must appear in lower case. Case is significant
in identifiers; they may appear in either case, but upper case letters are not equivalent to
lower case letters. For example, the words "blank" and -Blank" do !!E! represent the same
identifier. For circumstances in which case sensitivity is a bother, 'rp' accepts a command
line option ("-m") that instructs it to ignore the case of all identifiers and keywordS. See
the applications notes or the 'help' command for more details.

Blank Sensitivity. Unlike most Fortran compilers, 'rp' is very sensitive to
'Rp' requires that all words be separated by at least one blank or speCial character.
containing imbedded blanks are not allowed. The best rule of thumb is to remember that
is incomprehensible to you, it is probably incomprehensible to 'rp.' (Remember, we
normally leave blank spaces between words and tend not to place blanks inside words.
things make text difficult to understand.)

blanks.
Words

if it
humans

Such

As a bad example, the following Ratfor code is incorrect and wf.11 not be interpreted
properly:

subroutineexample(a,b,c)
integera,b,c

repeatx-x+1
until(x>1)

A faw wall placed blanks will have to be added before 'rp' can understand it:

subroutine example(a,b,c)
integer a,b,c

repeat x·x+1
unti1(x>1)

You should note that extra spaces are allowed (and encouraged) everywhere except inside words
and literals. Extra spaces make a program much more readable by humans:

subroutine example (a, b, c)
integer a, b, c

repeat x = x + i
unt 11 (x > i)

- 1 -

Ratfor User's Guide

Card Columns. As should be expected of any interactive software system, 'rp' is com­
pletelY1nsensitive to "card" columns; statements may begin and end at any position in a line.
Lines may be of any length, but identifiers and quoted strings may not be longer than 100
characters. 'Rp' will output all statements beginning in column 7, and automatically generate
continuation lines for statements extending past column 72. All of the following are valid
Ratfor statements, although such erratic indentation is definitely frowned upon.

integer i, j
= 1

stop
end

j = 2

Multiple Statements per~. 'Rp' also allows multiple statements per line, although
indiscriminate use of this feature is not encouraged. ..lust place a' semico: "", ~,.) .. ween
statements and 'rp' will generate two Fortran statements from them. You will find

integer
real a
logical

to be completely equivalent to

integer i; real a; logical

Statement Labels and Continuation. You may wonder what happens to statement labels and
continuation lines, since 'rp' pays no attention to card columns. It turns out that statement
labels and continuation lines are not often necessary. While 'rp' minimizes the need for
statement labels (except on .format statements) and is quite intelligent about continuation
lines, there are conventions to take care of those situations where a label is required or the
need for a continuation 1 ine is not obvious to 'rp.'

A statement may be labeled simply by placing the statement number, starting in any
column, before the statement. Any executable statement, including the Ratfor control
statements, may be labeled, and 'rp' will place the label correctly in the Fortran output. It
is wise to refrain from using five-digit statement numbers; 'rp' uses these statement labels
to implement the Ratfor control statements, and consequently will complain if it encounters
them in a source program. As examples of statement labels,

2 read (1, 10) a, b, c
10 format (3e10.0)

write (1, 20) a, b, c; 20 format (3f20.5)
go to 2

all show statement numbers in use. You should note that with proper use of Ratfor and the
Software Tools Subsystem support subroutines, statement labels are almost never required.

As for continuation lines, 'rp'
to be continued. A line ending with
sing statement (such as at the
anticipates a continuation line:

integer a, b, c, d,
e, f, g

if (a •• b & c •• d & e • •
g .. h & i .. j & k ...

if (a .. b)

c • -2

is usually able to recognize when the current line needs
a comma, unbalanced parentheses in a condition, or a mis­
end of an tf) are all situations in which 'rp' correctly

f &
1) call eql

If an explicit continuation is required. such as in a long assignment statement. 'rp' can
be made to continue a line by placing a trailing underscore (N_H) at the end of the line.
This underscore must be preceded by a space. You should note that the underscore is placed on
the end of the line to be continued. rather than on the continuation 11ne as in Fortran. If
you are unsure Whether~atfor will correctly anticipate a continuation---l-ine. go ahead and
place an underscore on the line to be continued -- 'rp' will ignore redundant continuation
indicators.

Identifiers may not be split between 11nes; continuation 1s allowed only between tokens.
If you have an extremely long string constant that requires continuation. you can take
advantage of the fact that 'rp' always concatenates two adjacent string constants. ..lust close
the first part of the literal with a quote. space, and underscore. and begin the second part
on the next line with a quote. 'Rp' will ignore the line break (because of the trailing
underscore) and concatenate the two literals.

- 2 -

The following are some examples of explicit line continuations;

= i + j + k + 1 + m + n + 0 + P + q + I" +
S + t + U + v

format ("for inputs of ", i5, "and ", i5/
"the expected output should be ", i5)

string heading
"--" " __ M

Ratfor user's ~ulae

Comments. Comments, an important part of any program, can be entered on any line; a com­
ment begins with a sharp sign ("#") and continues until the end of .the line. In addition,
blank lines and lines containing only comments may re freely pl~ced in the source program.
Here are some appropriate and (correct but) inappropriate uses of R~tfor comments:

if (i > 48)
do this only if
j = j + 1

is greater than 48

data array / 1,
2,
3,

element 1
element 2
element 3
element 4 4/

integer cnt, # counter for controlling the
outer loop

total_errs, # total number of errors
encountered

last_pass # flag for determining the
last pass; init = 0

Identifier'S

A major difference between Ratfor and Fortran is Ratfor's acceptance of arbitrarily long
identifiers. A Ratfor identifier may be up to 100 characters long, beginning with a letter,
and may contain letters, digits, dollar signs, and underscores. However, it may n£! be a Rat­
for or Fortran keyword, such as if, else, tnteger, ... al, or logical. Underscores are allowed
in identifiers only for the sake of readability, and are always ignored. Thus, "these_tasks"
and "the_set_asks" are equivalent Ratfor identifiers.

'Rp' guarantees that an identifier longer than six characters will be transformed into a
unique Fortran identifier. Normally, the process of transforming Ratfor identifiers into
Fortran identifiers is transparent; you need not be concerned with how this transformation is
accomplished. The one notable exception is the effect on external symbols (i,e. subroutine
and function names, common block names). When the declaration of a subprogram and its invoca­
tion are preprocessed together, in the same run, no problems will occur. However, if the sub­
program and its invocation are preprocessed separately, there is no guarantee that a given
Ratfor name will be transformed into the same Fortran name in the two different runs. This
situation can be avoided in either of three ways: (1) use the linkage statement described in
the next section, (2) use Six-character or shorter identifiers for subprogram names, or (3)
preprocess subprograms and their invocations in the same run.

Just for pedagogical reasons, here are a few correct and incorrect Ratfor identifiers:

Correct

10ng_name_1
long_name_2
prwf$$
I_am_a_very_long_Ratfor_name_that_is_perfectly_correct
a a # You should note that 'a a', 'a a', and 'aa'
a- a # are all absolutely identical in-Ratfor --
aa- # underscores are always ignored in identifiers,
AA # but 'AA' is very different.

Incorrect

123 part
part 1

part 2
aoob

starts with a digit
starts with an underscore
contains a blank
contains an asterisk

- 3 -

Ratfor User's Guide

The following paragraph contains a description of exactly how Ratfor identifiers are
transformed into Fortran identifiers. You need not know how this transformation is accom­
plished to make full use of Ratfor; hence, you probably need not read the next paragraph.

If a Ratfor identifier is longer than six characters or contains an upper case letter, it
is made unique by the following procedure:

(1) The identifier is padded with 'a's or truncated to five characters. Remaining characters
are mapped to lower case.

(2) The first character is retained to preserve implicit typing.
(3) The sixth character is changed to a "uniquing character" (normally a zero).
(4) If necessary, the second, third, fourth, and fifth characters are altered to make sure

there is no conflict with a previously used identifier.

'Rp' also examines Six-character identifiers containing the uniquing character in the sixth
positio~, to ensure that no conflicts arise.

Integer Constants

Since it is sometimes necessary to use other than
'rp' accepts integers in bases 2 through 16. Integers
course, considered deCimal integers. Other bases
notation:

<base>r<number>

decimal integer constants in a program,
consisting of only digits are, of
can be indicated with the following

where <base> is the base of the number (in decimal) and <number> is number in the desired base
(the letters 'a' through 'f' are used to represent the digits '10' through '15' in bases
greater than 10). For example, here are some Ratfor integer constants and the decimal values
they represent:

Number Deci rna I ~

8r77 63
16rff 255
-2r11 -3
7r13 10

Some care must be exercised when using this form of constant to generate bit-masks with
the high-order bit set. For example, to set the high-order bit in a 16-bit word, one might be
tempted to use one of the constants

16r8000 or Br100000

Either of these would cause incorrect ~esults, because the value that they represent. in
deCimal, is 65536. This number. when encountered by Prime Fortran, is converted to a 32-bit
constant (with the high order bit in the second word set). This is prObably not the desired
result. The only solutions to this problem (which occurs when trying to represent a negative
twos-complement number as a pOSitive number) are (1) use the correct twos-complement
representation (-32768 in this case), or (2) fall back to Prime Fortran's octal constants
(e.g. :100000).

Strtng Constants

Under the Software Tools Subsystem, character strings come in various flavors. Because
various internal representations are used for character strings, Fortran Hollerith constants
are not sufficient to easily provide all the different formats required.

All types of Ratfor string constants consist of a string body followed by a string format
indicator. The body of a string constant consists of strings of characters bounded by pairs
of quotes (either single or double quotes), possibly separated by blanks. All the character
strings in the bOdy (not including the bound1ng quotes) are concatenated to give the value of
the string constant. For example, here are three string constant bodies that contain the same
string:

"I am a string constant body·
"I" , am ' Ha" , string' "constant" , bOdy'
"I am a string "'constant body'

The string format indicator is an optional letter that determines the internal format to
be used when storing the string. Currently there are five different string representations
available:

omitted Fortran Hollerith string. When the string format indicator is omitted. a standard
Fortran Hollerith constant is generated. Characters are left-justified, packed in

- 4 -

c

p

v

s

words (two characters per word on the Prime), and unused positions on the right are
filled with blanks.

Single character constant. The 'c' string format indicator causes a single character
constant to be generated. The character is right-justified and zero-filled on the
left in a word. Only one character is allowed in the bOdy of the constant. Since it
is easy to manipulate and compare characters in this format, it is the preferred
format for all single characters in the Software Tools Subsystem.

Packed (Hollerith) period-terminated string. The 'p' format indicator causes the
generation of a Fortran Hollerith constant containing the characters in the string
body followed by a periOd. In addition, all periods in the string body are preceded
by an escape character (-""). The advantage of a "p. format string over a Fortran
Hollerith string is that the length of the .p" format string can be determined at run
time.

PL/I character varying string. For compatibility with Prime's PL/I and because this
data format is required by some system calls, the "v" format indica1lOr will generate
Fortran declarations to create a PL/I character varying string. The first word Lr

the constant contains the number of Characters; subsequent words contain the charac­
ters of the string body packed two per word. "V" format string constants may only be
used in executable statements.

EOS-terminated unpacked string. The "s" string format indicator causes 'rp' to
generate declarations necessary to construct an array of characters containing each
character in the string body in a separate word, right-justified and zero-filled
(each character is in the same format as is generated by the "c" format indicator).
Following the characters is a word containing a value different from any character
value that marks the end of the string. This ending value is defined as the symbolic
constant EOS. EOS-terminated strings are the preferred format for multi-character
strings in the Subsystem, a~d are used by most Subsystem routines dealing with
character strings. US" format string constants may only be used in executable
statements.

Here are some examples of strings and the result that would be generated for Prime
Fortran. On a machine with a different character set or word length, different code might be
generated.

String Constant

"a>b c>d"v
• .main. lip
"Hollerith"

Resulting £est!

the integer constant 245
an integer array of length 5 containing 189, 228, 239, 227. 189.
o
an integer array containing 7. "a>". lib •• ·c>", "d "
the constant 9ht>.maint> ..
the constant 9hHollerith

Logical and Relational Operators

Ratfor allows the use of graphic characters to represent logical and relational operators
instead of the Fortran ".EO." and such. While use of these graphic characters is encouraged.
it is not incorrect to use the Fortran operators. The following table shows the equivalent
syntaxes:

Rauor Fortran Function

> .GT. Greater than
>" .GE. Greater or equal
< .LT. Less than
<= .LE. Less or equal
". .EO. Equal to -. .NE. Not equal to

.NOT. Logical negation
& .AND. Logical conjunction
I .OR. Logical disjunction I

Note that the digraphs shown in the table must appear in the Ratfor program with no imbedded
spaces.

For example. the two following if statements are equivalent in every way:

if (a .eq. b .or .. not. (c .ne. d .and. f .ge. g»

if (a •• b - (c -. d & f >= g»

- 5 -

Ratfor User's Guide

In addition to graphics representing Fortran operators, two additional operators are
available in any logical expression parsed by 'rp' (i.e. anywhere but assignment statements).
These operators, '&&' ("and if") and 'i i' ("or if") perform the same action as the logical
operators '&' and 'I', except that they guarantee that the expression is evaluated from left
to right, and that evaluation is terminated when the truth value of the expression is known.
They may appear within the scope of the '-' operator, but they may not be grouped within the
scope of '&' and 'i'.

These operators find use in situations in which it may be illegal or undesirable to
evaluate the right-hand side of a logical expression based on the truth value of the left-hand
side. For example, in

while (i > 0 && str (i)
i = i - 1

, 'c)

it is necessary that the subscript be checked i,.; .. rL,'f'! it is used. The order of evaluation of
Fortran logical~.xpressions is not specified, so in this example, it would be technically
illegal to use '&' in place of '&&'. If the value of 'i' were less than 1, the illegal sub­
script reference might be made regardless of the range check of the subscript. The Ratfor
short-circuited logical operators prevent this problem by insuring that "i > 0" is evaluated
first, and if it is false, evaluation of the expression terminates, since its value (false) is
known.

Assignment Operators

Ratfor provides shorthand forms for the Fortran idioms of the form

<variable> = <variable> <operator> <expression>

In Ratfor, this assignment can be simplified to the form

<variable> <assignment operator> <expression>

with the use of assignment operators. The following assignment operators are ava i 1abl e:

Deerator Y!.! Result

+= <v> +oo <e> <v> <v> + «e»
<v> <e> <v> = <v> - «e»

*'" <v> *oo <e> <v> .. <v> * «e»
1= <v> Is <e> <v> <v> I «e»
%- <v> %oo <e> <v> '" mod «v>, <e»
&oo <v> &oo <e> <v> and «v>, <e»
1- <v> 1_ <e> <v> .. or «v>, <e» I- I-

"= <v> "" <e> <v> = xor «v>, <e»

The Ratfor assignment operators may be used wherever a Fortran assignment statement is
allowable. Regrettably. the assignment operators provide only a shorthand for the programmer;
they do not affect the efficiency of the object code.

The assignment operators are especially useful with subscripted variables; since a com­
plex subscript expression need appear only once, there is no pOSSibility of mistyping or for­
getting to change one. Here are some examples of the use of assignment operators

i +=
fact *- + 10
subs (2 * i - 2, 5 * j - 23) -. 1
int %= 10 ** j
mask &= 8r12

For comparison, here are the same assignments without the use of assignment operators:

i .. i + 1
fact .. fact * (i + 10)
subs (2*i-2, 5*j-23) .. subs (2*i-2, 5*j-23) - 1
int .. mod (int, (10 ** j»
mask" and (maSk, 8r12)

Fortran statements in Ratfor Programs

Ratfor provides the escape statement to allow Fortran statements to be passed directly to
the output without the usual processing, such as case mapping and automatic continuation. The
escape statement has three forms, summarized below. In the first form listed below, the first
non-blank character of the Fortran statement is output in column seven. In the second form,
the first non-blank character of the Fortran statement is output in column seven, but column
six contains a "$" to continue a previous Fortran statement to that stream. In the third

- 6 -

form, the Fortran statement is output starting in column one, so that the user has full
control of the placement of items on the 11ne. The following is a summary of this descrip­
tion:

Escape Statement Format

%<stream><Fortran statement>
%<stream>&<Fortran statement>
%<stream>%<Fortran statement>

"Stream" can take on the following values:

1
2
3

declaration
data
code

Output Column

7
6
1

If no stream is specified (i .e. %%<Fortran statement», the Fortran statem'JoIt is s.ent to the
code stream. { ,

Escaped statements mY!! occur inside a program unit, i.e., between a function or
subroutine statement, and its corresponding end statement. Otherwise 'rp' gets confused about
where the escaped statements should go, since it won't have any streams open. If you have a
large amount of self contained Fortran that you want 'rp' to include in its output, you can
accomplish this in two steps. First, put '%1%' at the beginning of each line, and then put
the Fortran at the beainning of your ratfor source file.

Incompatibilities

Even with the great similarities between Fortran and Ratfor, an arbitrary Fortran program
is ~ necessarily a correct Ratfor program. Several areas of incompatibility exist:

In Ratfor, blanks are significant
identifiers.

at least one space must separate adjacent

The Ratfor do statement, as we shall soon see, does not contain the statement number
following the "do". Instead, its range extends over the next (possibly compound)
statement.

Two-word Fortran key phrases such as double precision, block data, and stack header
must be presented as II single Ratfor identifier (e.g. -blockdata" or -block_data").

Fortran statement functions must be preceded by the Ratfor keyword stmtfunc. To
assure that they will appear in the correct order in the Fortran. they should
immediately precede the end statement for the program unit.

Hollerith literals (i.e.
Instead, 'rp' expects
quotes (i.e. "ABCDE" or
proper Fortran Hollerith

5HABCDE) are not allowed anywhere in a
all Hollerith literals to be enclosed in
'ABCDE'). 'Rp' will convert the quoted
string.

Ratfor program.
single or double
string into a

'Rp' does not allow Fortran comments. In Ratfor, comments are introduced by a sharp
s1gn (It"") appearing anywhere on a line, and continuing to the end of the line.

'Rp' does not accept the Fortran continuation convention. Continuation is impliCit
for any line ending w1th a comma, or any conditional statement containing unbalanced
parentheses. Continuation between arbitrary words may be indicated by placing an
underscore, preceded by at least one space, at the end of the 11ne to be cont1 nued.

'Rp' does not ignore text beyond column 72.

Fortran and Ratfor keywordS may not be used as identifiers in a Ratfor program.
Their use will result in unreasonable behavior.

- 7 -

Ratfor User's Guide

Ratfor Text Substitution statements

'Rp' provides several text substitution facilities to improve the readability and
maintainability of Ratfor programs. You can use these facilities to great advantage to hide
tedious implementation details and to assist in writing transportable code.

Define

The Ratfor define statement bears a vague similarity to the non-standard Fortran
parameter declaration, but is much more flexible. In Ratfor, any legal identifier may be
defined as almost any string of characters. Thereafter, 'rp' will replace all occurrences of
the defined identifier ~ith the definition string. In addition, identifiers may be defined
with a formal parameter list. Then, during replacement, actual parameters specified in the
invocation are substitu"e,j ~or IJc "rences of the formal parameters in the replacement text.

Defines find their
that appear frequently.

principle
For example,

use in helping to clarify the meaning of "magic numbers"

while (getlin (line, -10) -= -1)
call put1in (line, -11)

is syntactically correct, and even does something useful. But what? The use of define to
hide the magic numbers not only allows them to be changed easily and uniformly, but also gives
the program reader a helpful hint as to what is going on. If we rewrite the example, replac­
ing the numbers by defined identifiers, not only are the numbers easier to change uniformly at
some later date, but also, the reader is given a little bit of a hint as to what is intended.

define (EOF, -1)
define (STANDARD INPUT, -10)
define (STANDARD:DUTPUT, -11)

while (getlin (line, STANDARD INPUT) -= EOF)
call put1in (line, STANDARD_OUTPUT)

The last example also shows the syntax for definitions without formal parameters.

Often there are situations in which the replacement text must vary slightly from place to
place. For example, let's take the last situation in which the programmer must supply
"STANDARD INPUT" and "STANDARD OUTPUT" in calls to the line input and output routines. Since
this occurs in a large majority-of cases, it would be more convenient to have procedures
named, say "getl" and "putl" that take only one parameter and assume "STANDARD INPUT" or
"STANDARD OUTPUT". We could, of course, write two new procedures to fill this need,-but that
would add more code and more procedure calls. Two define statements will serve the purpose
very well:

define (STANDARD INPUT, -10)
define (STANDARD-OUTPUT, -11)
define (getl (In), getlin (In, STANDARD INPUT»
define (putl (In), putlin (In, STANDARD:OUTPUT»

whi le (getl (1 ine) -= EDF)
ca 11 put 1 (1 i ne)

In this case, when the string "getl (line)" is replaced, all occurrences of "In'' (the formal
parameter) will be replaced by "line" (the actual parameter). This example will give exactly
the same results as the first, but with a little less typing when "getl· and ·putl" are called
often.

The full syntax for a define statement follows:
"

define «identifier> [«formal params»], <replacement»
,~

When such a define statement is encountered, <replacement> is recorded as the value of
<identifier>, At any' later time, if <identifier> is encountered in the text, it is replaced
by the text of <replacement>. If the original define contained a formal parameter list, the
list of actual parameters following <identifier> is collected, and the actual parameters are
substituted for the corresponding formal parameters in <replacement> before the replacement is
made.

There is a file of "standard" definitions used by all Subsystem programs called
naincl=/swt def.r.i". The define statements in this file are automatically inserted before
each source-file (unless 'rp' is told otherwise by the "-f· command line option). For
information on the exact contents of this file, see Appendix D.

There are also a few other facts that are helpful when using define:

- 8 -

Ratfor User's Guide

The <replacement> may be any string of characters not containing unbalanced parentheses
or unpaired quotes

<Formal parameters> must be identifiers.

<Actual parameters> may be any string of characters not containing unbalanced
parentheses, unpaired quotes, or commas not surrounded by quotes or parentheses.

Formal parameter replacement in <replacement> occurs even inside of quoted strings. For
example,

define (assert (cond), {
if (-(cond»

call error ("assertion cond not valid"p)}
assert (i < j)

would generate

{
if (-(i < j»

call error ("assertion i < j not Valid"p)}

During replacement of an identifier defined Without a formal parameter list, an actual
parameter list will never be accessed. For example,

define (ARRAYNAME, table1)
ARRAYNAME (i, j) = 0

would generate

table1 (i, j) = 0

The number of actual and formal parameters need not match. Excess formal parameters will
be replaced by null strings; excess actual parameters will be ignored.

A define statement affects only those identifiers following it. In the following exam­
ple, STDIN would not be replaced by -11, unless a define statement for STDIN had occurred
previously:

1 c getlin (buf, STDIN)
define (STDIN, -11)

A define statement applies to all lines following it in the input to 'rp', regardless of
subroutine, procedure, and source file boundaries.

After replacement, the substituted text itself is examined for further defined
identifiers. This allows such definition sequences as

define (DELCOMMAND, LETD)
define (LETD, 100)

to result in the desired replacement of "100" for "DELCOMMAND". Actual parameters are
not reexamined until the entire replacement string is reexamined.

Identifiers may be redefined without error. The most recent definition supersedes all
previous ones. Storage space used by superseded definitions is reclaimed.

Here are a few more examples of how defines can be used:

- 9 -

Ratfor User's Guide

Undeflne

Before Defines ~ Been Processed:

define (NO. 0)
define (VES. 1)
define (STDIN. -11)
define (EOF. -2)
define (RESET (flag). flag = NO)
define (CHECK FOR ERROR (flag. msg).

if (flag =;' VES)
call error (msg)

)
define (FATAL ERROR MESSAGE.

"Fatal error -- run terminated"p)
define (PROCESS_LINE.

count = count + 1
_8.; check_syntax (buf. count. ..,-r,pr _f 1 ag)
)

while (getlin (buf. STDIN) -= EOF) {
RESET (error_flag)
PROCESS LINE
CHECK FOR ERROR (error_flag. FATAL_ERROR_MESSAGE)
} - -
~ Defines ~ !!!n Processed:

while (getlin (buf. -11) -= -2) {
.error_flag • 0
count = count + 1
call check syntax (buf. count. error_flag)
if (error_flag _. 1)

call error ("Fatal error -- run terminated"p)
}

The Ratfor undeftne statement allows termination of the range of a define statement. The
identifier named in the undefine statement is removed from the define table if it is present;
otherwise. no action is taken. Storage used by the definition is reclaimed. For example. the
statements

define (xxx. a • 1)
xxx
undefine (xxx)
xxx

would produce the following code:

Include

a •
xxx

The Ratfor Include statement allows you to include arbitrary files in a Ratfor program
(much like the COBOL copy verb). The syntax of an Include statement is as follows:

include -<file name>H

If the file name is six or fewer characters in length and contains only alphanumeric charac­
ters. the quotes may be omitted. For the sake of uniformity, we suggest that the quotes
always be used.

When 'rp' encounters an Include statement. it begins taking input from the file specified
by <file name>. When the end of the included file is encountered. 'rp' resumes reading the
preempted file. Files named in Include statements may themselves contain include statements;
this nesting may continue to an arbitrary depth (which, by the way. is arbitrarily limited to
five) .

For an example of tnclude at work, assume the existence of the following files:

- 10 -

f 1 :

f2:

f3:

f4 :

include "f2"
i .. 1
include "f3"

include "f4"
m • 1

j "' 1

k .. 1

Ratfor user's Guide

If "f1" were the original f11e, the f· .• ";,' - t:llX. is what would actually be processed:

k "' 1
m "' 1
i "' 1
j • 1

Ratfor Declarations

The.re are several declarations available 1n Ratfor in addition to those usually supported
in Fortran. They provide a way of conveniently declaring data structures not available in
Fortran, assist in supporting separate compilation, allow declaration of local variables
within compound statements. and allow the declaration of interna' procedures. Declarations in
Ratfor may be intermixed with executable statements. .

String

The string statement is provided as a shorthand way of creating and naming EOS-terminated
strings. The structure and use of an EOS-terminated string is described in the section on
Subsystem Conventions. Here it 1s sufficient to say that such a string is an integer array
containing one character per element. right justified and zero filled. and ending with a
.pecia' value (EOS) designating the -end of string." Since Fortran has no construct, for
specifying such a data structure, it must either be declared manually, as a Ratfor string
constant. or by the Ratfor string statement. .

The string statement is a declaration that creates a named string in an tnteger array
using a Fortran data statement. The syntax of the string statement is as follows:

string <name> <quoted string>

where <name> is the Ratfor identifier to be used in naming the string and <quoted string>
specifies the string'S contents. As you might expect, either single or double quotes may be
used to de'imit <quoted string>. In either case, only the characters between the quotes
become part of the string; the quotes themselves are not included.

String statements are quitp. often used for setting up constant strings such as fil. names
or key words. For instance,

string file_name "//mydir/myfl1e"
string change_command ·change"
string delete_command Udelete"

define such character arrays.

Stringtabl.

The strlngtabl. statement creates a rather specialized data structure a marginally
indexed array of variable length strings. This data structure provides the same ease of
access as an array, but it can contain entries of varying sizes. A strtngtabl. declaration
defines two data items: a marginal index and a table body. The marginal index is an integer
array containing indices into the table body. The first element of the marginal index is the
number of entries following in the marginal index. Subsequent elements of the marginal index
are pointers to the beginning of items in the table body. Since the beginning of the table
body is always the beginning of an item, the second entry of the marginal index is always 1.

The syntax of a stringtable declaration is as follows:

- 11 -

Ratfor User's Guide

string table <marginal index>. <table bOdy>.
[I-J <item> { 1 <item> }

<Marginal index> and <table body> are identifiers that will be declared as the marginal index
and table body. respectively. <Item> is a comma-separated list of single-character constants
(with a "c" string format indicator), integers. or EOS-terminated character strings (with !l2
string format indicator -- a little inconsistency here). The values contained in an <item>
are stored contiguously in <table body> with no separator values (save for an EOS at the end
of each EOS-terminated string). An entry is made in the marginal index containing the pOSi­
tion of the first word of each <item>.

For example. assume that you have a program in which you wish to obtain one of three
integer values based on an input string. You want to allow an arbitrary number of synonyms in
the input (like "add". "insert". etc.).

string_table
/ ADD.
/ ADD.
/ CHANGE.
1 CHANGE.
1 DELETE.
1 DELETE.

cmdpos. cmdtext.
"add"
"insert"
"change"
"update"
"delete"
"remove"

This declaration creates a structure something like the following:

cmdpos cmdtext

i: 6
2: 1 i : ADD. 'a'e, 'd'c. 'd'c. EOS
3: 6 6: ADD. ' i 'e, 'n'c, 'SiC, 'e'c.

'ric, ' t 'c. EOS
4: i4 14 : CHANGE. 'c'c. 'h'c. 'a'c, 'n'c.

'g'c. 'e'c, EOS
5: 22 22: CHANGE. lyle, 'P'c. 'd'c. 'a'c,

'tic, 'e'c, EDS
6: 29 29: DELETE. 'd'c. 'a"c, '1 'c. 'e'c.

't 'c. 'e'c, EDS
7: 36 36: DELETE. 'r'c. 'e'c. 'm'c, 'o'e,

'ViC, 'e'c, EDS

There are several routines in the Subsystem library that can be used to search for
strings in one of these structures. You can find details on the use of these procedures in
the reference manual/'help' entries for 'strlsr' and 'strbsr'.

Llnka.

The sole purpose of the link •• declaration is to circumvent problems with transforming
Ratfor identifiers to Fortran identifiers when compiling program modules separately. To relax
the restriction that externally visible names (subroutine. function, and common block names)
must contain no more than six characters, each separately compiled module must begin with an
identical linka. declaration containing the names of!ll external symbols -- subroutine
names, function names, and common block names (the identifiers inside the slashes -- not the
variable names). Except for text substitution statements, the linka. declaration ~ be the
first statement in each module. The order of names in the statement i! sianificant -- as a
general rule, you should inclUde the same file containing the link •• declaration in each
module.

Ltnk •• looks very much like a Fortran type declaration:

linkage identifier1. identifier2, identifier3

Each of the identifiers is an external name (i.e. subroutine. function. or common block
name). If this statement appears in each source mOdule, ~ lO! identifiers in exactly !b!
!Am! ~, it is guaranteed that in all cases. each of these identifiers will be transformed
into the same unique Fortran identifier. For Subsystem-specific information on the mechanics
of separate compilation, you can see the section in the applications notes devoted to this
topic.

Local

With the local declaration, you can indicate that certain variables are ·'ocal· to a
particular compound statement (or block) just as in Algol. Local declarations are most often
used inside internal procedures (which are described later), but they can appear in any com­
pound statement.

- 12 -

The type declarations for local variables must be preceded by a local declaration
containing the names of all variables that are to be local to the block:

1 oca 1 i, j, a

integer i, j
real a

The local statement must precede the first appearance of a variable inside the block. While
this isn't the greatest syntax in the world, it is easy to implement local variables in this
fashion.

Scope rules similar to those of most block-structured languages apply to nested compound
statements: A local variable is visible to all blocks nested within the block in which it is
declared. Declaration of a local variable obscures a variable by the same name declared in an
outer block.

There are several cautions you must observe when using local Var\ables. 'Rp' is
currently not wellyersed in the semantics of Fortran declarations and therefore cannot
diagnose the incorrect use of local declarations. Misuse can then result in semantiC errors
in the Fortran output that are often not caught by the Fortran compiler. If the declaration
of a variable within a block appears before the variable is named in a local declaration, 'rp'
will not detect the error, and an "undeclared variable" error wi 11 be generated 1n the
Fortran. External names (i.e. function, subroutine, and common block names) must never be
named in a tocal declaration, unless you want to declare a local variable of the same name.
Finally, the formal parameters of internal procedures should never appear in a local declara­
tion in the body of the procedure, again, unless you want to declare a local variable of the
same name.

Here is an example showing the scopes of variables appearing in a local declaration:

111111 level 0
subroutine test

integer i, j, k

{ #II II 1 eve 1 1
local i, m; integer i, m
II accessible: level 0 j, k; level 1 i, m

end

{ #1111 level 2

}

local m, k; real m, k
II accessible: level 0 j; level 1 i; level 2 m, k
}

- 13 -

Ratfor User's Guide

Ratfor Control Statements

As was said by Kernighan and Plauger in Software Tools, except for the control struc­
tures, "Ratfor is Fortran." The additional control structures just serve to give Fortran the
capabilities that already exist in Algol, Pascal, and PL/I.

Compound Statements

Ratfor allows the specification of a compound statement by surrounding a group of Ratfor
statements with braces ("0")' just like begin -.nd in Algol or Pascal. or do - end in PL/I.
A compound statement may appear anywhere a single statement may appear, and is considered to
be equivalent to a s1ngle .tatement when used within the scope of a Ratfor control statement.

There is normally no need for a compound statement to appear by itself c~nd

statements usually appear in the context of a control structure -- but for completeness, here
is an example of a compound statement.

If - Else

{ # end of line -- set to beginning of next line
line" line + 1
col .. 1
end of line • YES
} - -

The Ratfor if statement is much more flexible than its Fortran counterpart. In addition
to allowing a compound statement as an alternative, the Ratfor if includes an optional els.
statement to allow the specification of an alternative statement. Here is the complete syntax
of the Ratfor if statement:

if «condition» <statement1>
[else <statement2>]

<Condition> is an ordinary Fortran logical expression. If <condition> is true, <statement 1>
will be executed. If <condition> is false and the ., •• alternative is specified, <statement2>
will be executed. Otherwise, if <condition> is false and the ., •• alternative has not been
specified, no action occurs.

Both <statement1> and <statement2> may be compound statements or may be further tf
statements. In the case of nested if statements where one or more .'s. alternatives are not
specified, each .,S. is paired with the most recently occurring tf that has not already been
paired with an els •.

Although deep nesting of tf statements hinders understanding, one situation often occurs
when it is necessary to select one and only one of a set Of alternatives based on several con­
ditions. This can be nicely represented with a chain of if - .'se if - els. if ., ••
statements. For example,

if (color =. RED)
call process red

else if (color ~. BLUE I color •• GREEN)
call process_blue~reen

else if (color •• YELLOW)
call process_yellow

else
call color_error

could be used to select a routine for processing based on color.

Whil.

The Ratfor whtl. statement allows the repetition of a statement (or compound statement)
as long as a specified condition is met. The Ratfor whil. loop is a "test at the top· loop
exactly like the Pascal whtl. and the PL/I do whil •. The whil. statement has the following
syntax:

while «condition»
<statement>

If <condition> is false. control passes beyond the loop to the next statement in the program;
if <condition> is true, <statement> 1s executed and <condition> is retested. As should be
expected, if <condition> 1s false when the whil. is first entered, <statement> will be
executed ~ times.

- 14 -

The while statement is very handy for controlling such things as skipping blanks in
strings:

wh i 1 e (s t r (i)
= i + 1

BLANK)

And of course, <statement> may also be a compound statement:

while (get1in (buf, STDIN) -= EOF) {
call process (buf)
call output (buf)
}

R·:Pf ~.. ::

The Ratfor repeat loop allows repetitive execution of a statement until ~
di.lon is met. But, unl ike the whne loop, the test is made at the bottom
that the controlled statement will be executed at least once. The repeat loop
follows:

repeat
<statement>
[unt i 1 «cond it ion»]

specified con­
of the loop, so
has syntax as

When the repeat statement is encountered, <statement> is executed. If <condition> 1s found to
be false, <statement> is reexecuted and the <condition> is retested. Otherwise control passes
to the statement following the repeat loop. If the until portion of the loop is omitted, the
loop is considered an "infinite repeat" and must be terminated within <statement> (usually
with a break or return statement). Pascal users should note that the scope of the Ratfor
repeat is only a single <statement> (which of course may be compound).

Repeat loops, as opposed to while loops, are used when the controlled statement must be
evaluated at least once, For example,

repeat
call get_next_token (token)
until (tOken -= BLANK_TOKEN)

The "infinite repeat" is often useful when a loop must be terminated "1n the middle:"

repeat {
call get_next_input (inp)
call check syntax (inp, error flag)
if (error_flag == NO) -

return
call syntax_error (inp) # go back and get another
}

Do

Ratfor provides access to the Fortran do statement. The Ratfor do statement 1s identical
to the Fortran do except that it does not use a statement label to delimit its scope, The
Ratfor do statement has the following syntax:

do <limits>
<statement>

<Limits> is the normal Fortran notation for the limits of a do, such as
20, 2", The same restrictions apply to <limits> as apply to the limits
<Statement> is any Ratfor statement (whiCh may be compound).

.. 1 -=
in

1, 10" or "j
the Fortran

., 5,
do.

The Ratfor do statement is just like the standard Fortran one-trip do loop -- <statement>
will be executed at least once, regardless of the limits. Also. the value of the do control
variable is not defined on exit from the loop.

The do loop can be used for array initialization and other such things that can never
require "zero trips", since it produces Slightly more efficient object code than the for
statement (which we will get to next).

do i = 1, 10
array (i) 0

One slight irregularity in the Ratfor syntax occurs when <statement> appears on the same
line as the do. Since 'rp' knows very little about Fortran, it assumes that the <limits>

- 15 -

Ratfor User's Guide

continue until a statement delimiter. This means that the <limits> must be followed by a
semicolon if <statement> is to begin on the same line. This often occurs when a compound
statement is to be used:

FOr-

do i = 1, 10: {
array_1 (i) 0
array 2 (i) = 0
} -

The Ratfor for- statem,nt is an all-purpose looping construct that takes the best features
of both the while and do statements, while allowing more flexibility. The syntax of the fOr­
statement is as follows:

for «initialize>: <condition>; <reinitialize»
<statement>

When the for- is executed, the statement represented by <initial ize> is executed. Then, if
<condition> is true, <statement> is executed, followed by the statement represented by
<reinitialize>. Then. <condition> is retested. etc. Any or all of <initialize>. <condition>.
or <reinitialize> may be omitted; the semicolons. however. must remain. If <initialize> or
<reinitialize> is omitted, no action is performed in their place. If <condition> is omitted.
an "infinite loop" is assumed. (Both <initial ize> or <reinitial ize> may be compound
statements).

As you can see. the for- loop with <initialize> and <reinitialize> omitted is identical to
the while loop. With the addition of <initialize> and <reinitialize>. a zero-trip do loop can
be constructed. For instance.

for (i = 1: i <= 10; i += 1) {
array 1 (i) .. 0
array:2 (i) = 0
}

is identical to the last do example, but given a certain combination of limits. the for loop
would execute <statement> zero times while the do loop would execute it once.

The for- loop can do many things not possible with a do loop. Since the for- loop is not
constrained to the ascending incrementation of an index. As an example. assume a list struc­
ture in which "list" contains the index of the first item in a list. and the first position in
each list item contains the index of the next. The for- statement could be used to serially
examine the list:

Bre.k

fOr (ptr = list; ptr -. NULL; ptr z array (ptr»{
[examine the item beginning at array (ptr + i)
}

The break statement allows the early termination of a loop. The statement

break [<level>]

will cause the immediate termination of <level> loops. where <level>. if specified. is an
integer in the range 1 to the depth of loop nesting at the pOint the break statement appears.
Where <level> is omitted. only the innermost loop surrounding the break is terminated.

In the following example. the break statement will cause the termination of the inner for
loop if a blank is encountered in 'str':

while (getlin (str. STDIN) -. EOF) {
for (i .. 1; str (i) -a EOS; i +- 1)

if (str (i) ... BLANK)
break

str (i) .. EOS # output just the first word
call putlin (str. STDOUT)
call putch (NEWLINE. STDOUT)
}

Replacing the break statement with "break 1" would have exactly the same effect. However,
replacing it with "break 2" would cause termination of both the inner for- and outer whtle
loops. Unless this fragment is nested insid~ other loops. a value greater than 2 would be an
error.

- 16 -

Ratfor User's Guide

Next

The next statement is very similar to the break statement, except that a statement of the
form

next [<level>]

causes termination of <level> - 1 nested loops (zero when <level> 1s omitted). Execution then
resumes with the ~ iteration of the innermost active loop. <Level>, if specified, is again
an integer in the range 1 to the depth of loop nesting that specifies which loop (from inside
out) is to begin its next iteration.

In this example, the next statement will cause the processing to be skipped when an array
element with the value "UNUSED" is encountered.

for (i .. 1; 1 <- 10; i .- 1)
for (j • 1; j <- 10: j ... 1) {

if (array (i, j) •• UNUSED)
next

process array (1, j)

}

(.

When an array element with the value "UNUSED" is encountered, execution of the next statement
causes the <reinitialize> portion of the innermost for statement, "j ... 1", to be executed
before the next iteration of the inner loop begins. You should note that when used with a for
statement, next always skips to the <reinitialize> part of the appropriate for loop.

If the statement "next 2" had been used in place of "next", the inner for loop would have
been terminated, and the "i ."' 1" of the outer for loop would have been executed in prepara­
tion for its next iteration.

Return

The Ratfor return statement normally behaves exactly like the Fortran return statement in
all but one case. In this case, Ratfor allows a parenthesized expression to follow the
keyword return inside a function subprogram. The value of this expression is then assigned to
the function name as the value of the function before the return is executed. This is just
another shorthand and does not provide any additional functionality.

Normally in a Fortran function subprogram, you place an assignment statement that as~tgns
a value to the function name before the return statement, l1ke thls:

integer function calc (x, y, z)

calc .. x • y - z
return

If you 11ke, Ratfor allows you to express the same actions with one line less code:

integer function calc (x, y, z)

return (x • y - z)

This segment performs exactly the same function as the preceding segment.

select

The Ratfor .elect statement allows the selection of a statement from several alter­
natives, based either on the value of an integer variable or on the outcome of several logical
conditions. A .elect statement of the form

- 17 -

Ratfor User's Guide

select
when «expression list 1»

<statement 1>
when «expression list 2»

<statement 2>

when «expression list n»
<statement n>

[ifany
<statement n+1>]

[else
<statement n+2>]

(where <expression list> i~ a comma-separated list of logical expressions) performs almost the
same function as a chain of if - else if , else statements. Each <logical expression>
is evalua":ed in turn. and when the first true expression is enco\.",teri:id. the corresponding
statement is executed. If any when alternative is selected. the statement in the ifany part
is executed. If none of the when alternatives are selected. the statement in the else part is
executed.

Although its function is very similar to an if - else chain. a select statement has two
distinct advantages. First. it allows the "ifany· alternative -- a way to implement a rather
frequently encountered control structure without repeated code or procedure calls. Second. it
places all the logical expressions in the same basic optimization block. so that even a dumb
Fortran compiler can optimize register loads and stores.

For example. assume that we want to check to see if the variable 'color' contains a valid
color. namely 'RED'. 'YELLOW'. 'BLUE'. or 'GREEN', If it does. we want to execute one of the
three subroutines 'process_red'. 'process_yellow'. or 'process_blue_green' and set the flag
'color valid' to YES. Otherwise. we want to set the 'color valid' to NO. A select statement
performs this trick nicely, with no repeated code: -

select
when (color == RED)

call process red
when (color .- YELLOW)

call process yellow
when (color == BLUE. color == GREEN)

call process_blue_Qreen
ifany

color_valid = YES
else

color_valid NO

The second variant of the select statement allows the selection of a statement based on
the value of an integer (or character) expression. It has almost exactly the same syntax as
the logical variant:

select «integer expression»
when «expression list 1»

<statement 1>
when «expression list 2»

<statement 2>

when «expression 1 ist n»
<statement n>

[ifany
<statement n+1>]

[else
<statement n+2>]

Using this va~iant. a statement is selected when one of its corresponding integer expreSSions
has the same value as the <integer expression> following the 'select', The tfany and else
clauses behave as they do in the logical variant. The most visible difference. though, is
that the order of evaluation of the integer expressions is not specified. If two values in
two expression lists are 1dentical. it is difficult to say which of the statements will be
executed; it can only be said that one and only one will be executed.

The integer variant offers one further advantage. If elements in the expression lists
are integer or Single-character constants, 'rp' will generate Fortran computed goto
statements, rather than Fortran if statements. where possible. This code is usually
considerably faster and more compact than the code generated by if statements.

The example given for the logical variant of select would really be much more easily done
with the integer variant:

- 18 -

select (cOlor)
when (RED)

call process_red
when (YELLOW)

call process_yellow
when (BLUE, GREEN)

cal' process_blue_green
ifany

color valid eYES
else -

color_valid = NO

As a fina' example of select, the following program fragment selects an insert, update,
delete, or print routine based on the input codes "i", "u·, lid II or "p":

while (getlin (buf, STDIN) -= EOF)

select (buf (1»
when ('i'c, 'I'c) # insert record

call insert record
when ('u'c, 'Utc) { # update record

call delete record
call insert-record
} -

when ('d'c, 'D'c) # delete record
call delete record

when ('p'c, 'P'C) # print record

ifany
call print record

else
call command_error

always print after command

illegal input

This example shows the use of both a compound statement within an alternative (the ·update·
action deletes the target record and then inserts a new version), and a null statement
consisting of a single semicolon.

ProcedUre

Procedures are a convenient and useful structuring mechanism for programs, but in Fortran
there often are reasons for restricting the unbridled use of procedures. Among these reasons
are (1) the run-time expense of procedure calls, and argument and common block addressing; (2)
external name space congestion; and (3) difficulty in detecting errors in parameter and
common-block correspondence. Ratfor attempts to address these problems by allowing
declarations of procedures within Fortran subprograms that are inexpensive to call (an
assignment and two lOtoS), are not externally visible, and allow access to global variab)es.
In addition, when correctly declared, Ratfor internal procedures can call each other recur­
sively without requiring recursive procedures in the host Fortran.

Currently, Ratfor internal procedures do not provide the same leve' of functionality as
Fortran subroutines and functions: internal procedure parameters must be scalars and are pas­
sed by value, internal procedures cannot be used as functions (they cannot return values), and
no automatic storage is available with recursive integer procedures. But even with these
restrictions, internal procedures can significantly improve the readability and modu'arit~ Of
RaHor code.

Internal procedures are declared with the Ratfor procedure statement. Internal
procedures may be declared anywhere in a program, but a declaration must appear before any of
its calls. Here is an example of a non-recursive procedure declaration:

putchar --- put a character in the output string
procedure putchar (ch) {

character ch

str (i) a ch
i +- 1
}

This procedure has one parameter, ·ch", which must appear in a type declaration inside the
procedure.

Internal procedures always exit by falling through the end of the compound statement. A
return statement in an internal procedure will return from the Fortran subprogram in which the
internal procedure is declared.

- 19 -

Ratfor User's Guide

After the above declaration, "putchar" can be subsequently called in one of two ways:

putchar ('='c)

-or-

call putchar ('='c)

The second form is preferable, so that a procedure can be converted to a subroutine, and vice­
versa. The number of parameters in the call must always match the number of parameters in the
declaration. If parameter list is omitted in the declaration, then it also must be omitted in
its calls.

If "putchar" were rec~rsive, the declaration would be

procedure putchar (ch) recursive 128

The value "t28" is an integer constant that is the maximum number of recursive calls to
"putchar" outstanding at anyone time.

Since internal procedures may be mutually recursive, and since they must be declared tex­
tually before they are used, procedures may be declared "forward" by separating the procedure
declaration from its body. Here is "putchar" declared using a "forward" declaration:

procedure putchar (Ch) forward

putchar --- put a character in the output string
procedure putchar {

character ch

str (i) = ch
i += 1
}

As you can see, the parameters must appear in the "forward" declaration; they may appear in
the body declaration, but are ignored. For maximum efficiency, all internal procedures should
be presented in a "forward" declaration. The procedure bodies should then be declared after
the final return or stop statement in the body of the Fortran subprogram, but before the
terminating end statement (then the program never has to jump around the procedure body).

In general, a procedure declaration contains five parts: the word "procedure", the
procedure name, an optional list of formal parameters, an optional "recursive <integer>" part,
and either a compound statement or the word "forward". An internal procedure call consists of
three parts: optionally the word "call", the procedure name, and an optional parameter list.

- 20 -

Ratfor L Refe!"!DC!

This section contains a summa~y of the Ratfor syntax and sou~ce prog~am fo~mat. In addi­
tion to serving as a reference for Ratfo~. it can also be used by someone who is familia~ with
Fo~tran and wants to quickly gain a ~eading knowledge of Ratfo~.

Differences Between Ratfor and Fortran

Source Program FOr'IUt

'Rp' is sensitive to lette~ case. Keywo~ds must appea~ in lower cas',. Case is
significant in identifiers.

'Rp' is blank sensitive in that wo~ds (sequences of lette~s, digits, dollar signs.
and undersco~es) must be separated by special cha~acters ~ blanks.

'Rp' is not sensitive to ca~d columns. Statements may begin at any position on a
1 ine.

'Rp' allows multiple statements per line by separating the statements with
semicolons.

A Ratfor statement may be labeled by placing the numeric label in front of the
statement. The label must be separated from the statement by at least one space.

'Rp' will expect a continuation line if it encounters a line ending with a trailing
comma, a condition with unbalanced parentheses, a missing statement following a
control statement, or a line ending with a trailing unde~score.

Any line may contain a comment. Comments begin with a sharp Sign ("N") and continue
until the end of the line.

ldenttfters

Ratfor identifiers conSist of letters, digits, undersco~es, dollar signs, and may be up
to 100 cha~acters long. An identifie~ must begin with a lette~. Underscores may be included
for readability, but are completely ignored. An identifier may not be the same as a Fortran
or Ratfor keyword. 'Rp' transforms all long Ratfor identifiers into unique Fortran
identifie~s.

Integer Constants

'Rp' allows intege~ constants of the fo~m " <base>r<number>" whe~e <base> is an integer
between 2 and 16. The letters "a" - "f" a~e used fo~ digits in bases greater than 10.

Strtng Constants

St~ing constants in Ratfo~ consist of a string body and a string format indicator. The
string body is a group of strings, bounded by quotes. and possibly separated by blanks. The
string format indicator designates the data representation to be used for the characters in
the st~ing body. It has one of the following values:

omitted Fort~an Hollerith string. A standard Fortran Hollerith constant is generated.
Characters a~e left-justified, packed in wo~ds (two characters per word on the
Prime), and unused positions on the ~ight are filled with blanks.

c Single character constant. A single character constant ~s generated. The characte~
is right-justified and zero-filled on the left in a word. Only one character is
allowed in the body of the constant. This is the prefer~ed format for all single
characters in the Software ToolS Subsystem.

p

v

Packed (Hollerith) period-terminated string.
gene~ation of a Fortran Hollerith constant. All
p~eceded by an escape character (.....).

The 'p' fo~mat indicator causes the
pe~iods in the string body are

PLjI character varying string. Fortran declarations are gene~ated to c~eate a PL/I
character va~ying string. "V" fo~mat string constants may only be used in executable
statements.

- 21 -

Ratfor User's Guide

s EOS-terminated unpaCked string. Fortran declarations are generated to construct an
array in which each element contains one character of the string body. right­
justified and zero-filled (each character is in the same format as is generated by
the ·c" format indicator). Following the characters is a word containing the value
EOS. EOS-terminated strings are the preferred format for multi-character strings in
the Subsystem. "5" format string constants may only be used in executable
statements.

Logtcal and Relational Operators

Ratfor allows the use of graphic characters to represent logical and relational operators
instead of the Fortran ".EO." and such. These characters will be replaced by their Fortran
equivalents during preproc,ssing. The following table shows the equivalent syntaxes:

:,; : . .:;
Ratfor Fortran Function

> .GT. Greater than
>- .GE. Greater or equal
< .LT. Less than
<'" .LE. Less or equal
== .EO. Equal to
-= .NE. Not equal to

.NOT. Logical negation
& .AND. Logical conjunction
I .OR. Logical disjunction I

&& (none) Short-Circuited conjunction
II (none) Short-Circuited disjunction II

Note that the digraphs shown in the table must appear in the Ratfor program with no imbedded
spaces. The short-Circuited operators may appear only in the <condition> part of Ratfor
control statements.

Assignment Operators

Assignment operators provide a shorthand for the common Fortran idiom "<v> .. <v> <op>
<expr>". Assignment operators may appear anywhere a Fortran assignment statement may appear.
The following aSSignment operators are available in RattoI':

Operator Y.!! Result

+ .. <v> += <e> <v> • <v> + «e»
-oo <v> -. <e> <v> • <v> - «e» .- <v> ... <e> <v> .. <v> • «e»
f= <v> f- <e> <v> .. <v> f «e»
% .. <v> %" <e> <v> .. mod «v>, <e»
&- <v> &. <e> <v> .. and «v>, <e» : .. <v> : .. <e> <v> .. or «v>, <e»
h .. <v> ~. <e> <v> - xor «v>, <e»

Escape Stat...nts

Escape statements can be used to output Fortran statements that will not be touched by
the RattoI' preprocessor. The escape statement has thr .. pOSSible forms. In the first form
listed below, the first non-blank character of the Fortran statement is output in column
seven. In the.second form, the first non-blank character of the Fortran statement is output
in column seven, but column six contains a .$. to continue a previous Fortran statement to
that stream. In the third form, the Fortran statement is output starting in column one, so
that the user has full control of the placement of items on the line. The following is a sum­
mary of this description:

Escape Statement Format

%<stream><Fortran statement>
%<stream>&<Fortran statement>
%<stream>%<Fortran statement>

·Stream" can take on the following values:

1
2
3

declaration
data
code

Output Column

- 22 -

7
6
1

If no stream value is given, it is aSsumed to be the code st~eam. Escaped statements have to
come between a iunctton o~ subroutine statement and the corresponding end statement.

Incompattbtltttes

Even with the great similarities between Fortran and Ratfo~, an arbitrary Fortran program
is nE1 necessarily a correct Ratfor program. Severa' a~eas of incompatibilities exist:

Blanks are significant -- at least one space or special character must separate
adjacent keywords and identifiers.

The Ratfor do statement does not contain a statement number following the -do". Its
range always extends over the next statement.

-wo word Fortran key phrases such as doUble prectSi"'" Ill:'; ~.~ f el::ented as a single
Ratfor ident i f ier (e. g. "doubl epreci s i on" or "doubl e-proci sion").

(
Fortran statement functions must be preceded by the Ra~for keyword st.tfunc. To
assure that they will appear in the correct order in the Fortran, they should
immediately precede the end statement of the program unit.

Hollerith literals (i.e. 5HABCDE) are not allowed anywhere in a Ratfor program.
Instead, 'rp' expects all Hollerith lite~als to be enclosed in single or double
quotes (i.e. "ABCOE" or 'ABCOE').

'Rp' does not allow Fortran comments. Ratfor comments must be introduced by a Sharp
sign ("Nu).

'Rp' does not accept the Fortran continuation convention. Continuation is implicit
for any line ending with a comma, o~ any conditional statement containing unbalanced
pa~entheses. Continuation between a~bit~ary words may be indicated by placing an
underscore, preceded by at least one space, at the end of the line to be continued.

'Rp' does not ignore text beyond column 72.

Fortran and Ratfor keywords may not be used as identifiers in a Ratfor program.
Their use will result in unreasonable behavior.

R.tfor Text SUbstitution Statements

deftne «tdenttfter> [«fOrMal p.r »]. <replac_nt text»

When a deftne statement is encountered in a source p~ogram, <replacement text> is reco~­
ded as the replacement for <identifier>. If <identifier> is encountered later in the prog~am,
it will be ~eplaced by <replacement text>. If <formal params> was present in the definition
of <identifier>, and the subsequent occurrence of <identifier> is followed by a parenthesized,
comma-separated list of strings. occurrences of the formal parameters in <replacement text>
will be replaced by the corresponding strings in the actual parameter list.

<Identifier> must be an alphabetic Ratfor identifier, while <replacement text> may
contain any characters except unmatched quotes or parentheses. <Formal params> must be a
comma-separated list of identifiers; corresponding actual parameters may contain any charac­
ters except unmatched quotes, unbalanced parentheses, or unnested commas. During replacement,
<replacement text> is also examined for occurrences of defined identifiers. Formal parameter
replacement occurs on identifiers in <replacement text>. even if the identifiers are surroun­
ded by quotes or parentheses. Redefinition of an <identifier> causes the new <replacement
text> to replace the old.

undeftne «tdenttfter»

The undeftne statement ~emoves the definition of <identifier> from the list of defined
identifiers. Subsequent occurrences of <identifier> in the.program will not be replaced
unless <identifier> appears in a subsequent deftne statement.

tnclude '<p.th n •• >'

An Include statement instructs 'rp' to begin taking input from the file specified by
<path name>. When the end of the file is reached, 'rp' resumes taking input from the file
containing the tnclude statement. The path name may be surrounded by either single or double
quotes. The file specified by <path name> may contain further tnclude statements, up to 8
maximum depth of 5.

- 23 -

Ratfor User's Guide

Ratfor Declarations

linkage <identifier> { • <identifier> }

The linkage declaration is used to guarantee that long external names are transformed
into the same unique Fortran name. Names are transformed as they are presented in the linkage
declaration. The same linkage statement should appear as the first statement of each
separately compiled source module, and should contain the names of all subroutines, functions,
and common blocks in the program.

local <identifier> { • <identifier> } .
The local declaration allows the declaration of variables with names local to the scope

of a com,Jouno ~l-,cement (block). T~.,.Joca.1 .. declaration should appear inside a compound
statement and must precede all occurrences of the id~tifiers to be declared local to the
block. All identifiers appearing in a local declaration must subsequently appear in a type
declaration in the same compound statement.

string <name> <quoted string>

The string statement generates declarations to produce an EOS-terminated string in the
integer array <name>. <Quoted string> must be surrounded by either single or double quotes.

stringtable <index>, <body>, [/] <item> { / <item }

The strtngtable declaration creates a marginally indexed array of integers and character
strings. <Index> and <body> are variables to be declared as the index and body arrays respec­
tively. <Body> is a one-dimensional array 1n which the values generated by the <item>s are
stored consecutively. The first element of <index> contains the number of remaining elements
in <index>; subsequent elements each contain the index in <body> of the first position of the
corresponding <item>.

<Item>s are comma-separated lists of integers, single-character constants, and strings (with
no string format indicators). Integers and EOS-terminated strings are generated and stored
consecutively in <body>. The first position of each <item> in <body> is stored in the
corresponding entry of <index>.

Ratfor Control Statements

break [< i ntager>]

The break statement allows the user to terminate the execution of a for, while, or repeat
loop and resume control at the first statement following the loop. The <integer> specifies
the number of loops to terminate; if absent, 1 is assumed (only the innermost loop is
terminated). If the integer is N, then the N innermost loops currently active are terminated.

do <limits>; <statement>

The do statement provides a means of accessing the local Fortran do-statement. <Limits>
includes whatever parameters are necessary to satisfy Fortran, minus the statement number of
the last statement to be performed, which is generated by Ratfor. The semicolon must not be
used if the statement to be iterated does not appear on the same line as the do.

for '(' <intt>~ <condttton>; <reinit> ')' <statement>

The for statement is a very general looping construct. <1nit> is a statement to be
executed before loop entry: it is frequently used to initialize a counter. <Condition> is a
condition to be satisfied for every iteration: the condition is tested at the top of the loop.
<Condition> becoming false is the most often used method of terminating the loop. <Reinit> is
a statement to be executed at the bottom of the loop, just before a jump is made to the top to
test the <condition>. <Reinit> is usually used to increment or decrement a counter.
<Statement> may be any legal Ratfor statement.

if '(' <condttion> ')' <statement> [else <statement>]

If is a generalization of the Fortran logical-if statement. If the condition is true,
the first <statement> is executed. If the optional else clause is missing, control is then
passed to the statement following the if; otherwise, the <statement> following the else is
executed before passing control.

- 24 -

KalTor user's bUlae

next [<intager->]

The next statement complements the break statement. It is used to force the next itera­
tion of a for, repeat or while loop to occur. The parameter <integer> specifies the number of
levels of nested loops to jump out; if omitted, the innermost loop is continued; otherwise,
for <integer> • 2, the next-to-innermost loop is continued, etc.

procedUr-e <procid> ['(' <id> {, <id> } ')']
[r-ecursive <integer->]
('fot"Ward I <~nd statement>

[call] <proctd> ['(' <expr-> {. <expr-> } ')']

The procedur-e declaration allows the declaration of internal Ratfor procedures. <Procid>
1s the name of the internal procedure. r·?r.Yi";'· !""','lIe.;ers (scalar, pass-by-value) are declared
following the <procid>. Formal par2mete~s must appear in a type declaration in the bOdy of
the procedure. If the procedure is to be called recursively, the recur-sive «integer-> clause
must be included: <integer> is the maxin.~m number of recursive calls in process at any given
time. Following the heading, either a compound statement or the word forward must appear. If
the fot"Ward option is used, a pr-ocedure declaration containing <compound statement> must fol­
low at some point in the program unit. Formal parameters specified on the second declaration
may be present, but are ignored.

A <procid> must be defined before it is referenced by a call. The call can appear exac­
tly as a Fortran call, or the word call can be omitted. Actual parameters must correspond in
number to formal parameters. If the formal parameters list is omitted in the declaration, no
actual parameter list may be present.

repeat <statement> [until '(' <condition> 1)/]

The repeat statement is used to generate a loop with the iteration test at the bottom.
The <statement> is performed, then the <condition> checked; if false, the <statement> is
repeated. If true, control passes to the statement following the unttl. If the until is
omitted, the loop is repeated indefinitely, and must be terminated with a stop, break, or
gato.

return [/(' <expression> 1)1]

The retur-n statement behaves exactly like its Fortran counterpart, except that if the
optional parenthesized expression is included inside a function subprogram, the value of
<expression> will be assigned to the function name as the function value before the return is
executed.

select
{when '(' <condition> {, <condition>} ')' <statement> }
[tfany <statement>] [else <statement>]

select '(' <integer- expr-> ')'
{when '(' <tnteger- expr-> {, <integer- expr->} ')' <statement>
[ifany <statement>] [else <statement>]

Select is a generalization of the if statement. In its first alternative, the when
<condition>s are evaluated in order; the <statement> associated with the first one found to be
true is executed. If any <condition> is found true, the <statement> associated with tfany is
executed; if none are found true, the <statement> associated with else is executed.

Similarly, in the second alternative, the <integer expr> associated with select is
evaluated. The result is then compared to the <integer expr>s associated with the When parts
in an unspeCified order. When an equal comparison is made, the <statement> following the
corresponding when is executed. If an equal comparison is made, the <statement> following
tfany is executed; if no equal comparison is made, the <statement> following else is executed.

Whil. '(' <condition> 1)' <statement>

The While statement is the basic test-at-the-top loop. The <condition> is evaluated; if
true, the <statement> is executed and the loop is repeated, otherwise control passes to the
statement following the loop.

- 25 -

Ratfor User·' s ","uide

Ratfor Programming Under the Subsystem

ThiS chapter describes the use of Ratfor in the programming environment provided by the
Software Tools Subsystem. In addition to demonstrating the use of the Ratfor preprocessor,
Fortran compiler, and linking loader, the programming conventions necessary for the use of the
Subsystem support subprograms are described.

In this chapter, a number of programming conventions are presented. Since very few of
the conventions can be enforced by the Subsystem, adherence to these conventions must be left
up to the programmer. Many conventions, such as those dealing with indentation and comment
placement, are shown becau,e they assist in producing readable, maintainable programs. Viola­
tion of these conventions, while not critical, may result in unmaintainable programs and
<r.x~ended debugging times. Other conventions, such as those de~ing·.,with character string
representations and input/output, are crucial to the proper operation of the Subsystem and its
support subprograms. Violation of ~ conventions ~ !OS ~ ~ undesirable results.

Requirements for Ratfor Programs

The Software Tools Subsystem is not an operating system. Rather, it is a collection of
cooperating user programs. To run successfully under the Subsystem, a program ~ cooperate
with it. Several things are required of Subsystem programs:

The program must terminate with a stop statement, or a call to the routine "errorH. The
program ~ n2l "call exit" or invoke any of the Primos error reporting subroutines with
the "immediate return" key. A program's failure to terminate properly will also cause
the Subsystem command interpreter to be terminated, leaving the user face-to-face with
Primos.

The program should not have initialized common blocks (i.e. blOCk data). Initialize the
common areas with executable statements. (To link a program that must have initialized
common, see appendix b.)

Local variables in a subprogram are placed on the stack unless they appear in a data or
save declaration. The value of variables not appearing in one of these declarations is
not defined on entry to a subprogram.

Several conventions apply to the file containing the Ratfor source statements:

The file name should end with the suffix ".rH.

Any number of program units (main program, functions, and subroutines) may be included in
the file, but the main program must be first.

All variables and functions must be declared in type statements (the Primos Fortran com­
piler enforces this restriction, except in the case of function names).

Each program unit must end with an end statement.

Since defines apply globally to all subsequent program units, a main program and all of
its associated subprograms can be contained in the same f11e.. Only one copy of
definitions need be included at the beginning of the source file.

Rumt,. RaUor progr_ Under the SUbsyst_

Three steps are required to obtain an executable program from Ratfor source statements.
The first step, preprocessing, produces ANSI Fortran statements from the Ratfor source
statements. The second step, compilation, results in a relocatable binary module, which lacks
all of the Primos, Fortran and Subsystem subroutines. The last step, linking, produces an
executable object program by linking the relocatable binary module with the Primos, Fortran
and Subsystem support routines necessary for its execution. The object program produced dur­
ing linking may then be executed.

Preprocess i ng

In the preprocessing step, the Ratfor preprocessor, 'rp,' is used to translate Ratfor
source statements into semantically equivalent ANSI Fortran statements acceptable to the
Primos Fortran compiler. The Ratfor preprocessor is invoked with a command line of the fol­
lowing syntax:

- 26 -

rp [-0 <output file>] <input file> [<rp options>]

If you do not want a conventionally named output file, you may specify the option "-0
<output file>", where <output file> is the name you want given to the Fortran output. If you
do not include a "-0 <output file>" option, 'rp' will name the output file by appending ".f"
to the name of the first <input file>. If the name of the first <input file> ends in ".1"",
the ".1"" will be replaced by the ".f".

Next comes a list of the files containing Ratfor source statements to be
'Rp' reads the files in the order specified on the command line and treats the
they were together in one big file. This means that defines in each input file
subsequent input files.

preprocessed.
contents as if
app1 y to all

Finally, there are preprocessor options which may be specified to change the output in
some way or affect p'(,)r , ... (.~;,(J' :Jperation. For a complete 1 ist of Ii!vailable options and a
more deta i 1 ed descr i pt i 0., of the command 1 i ne syntax, see Append i x F.

In spite of all tr.ls complicated stuff, the 'rp' preprocessor is quite easy to use if you
follow the recommended naming conventions for files. For instance, if you have a Ratfor
program in a file called "prog.r", you can have it preprocessed by just typing

rp prog.r

This command will cause the program contained in "prog.r" to be preprocessed, and the Fortran
output to be produced on the file "prog.f" (which is exactly what the Fortran compiler
expects).

Here are some more examples to show other ways in which 'rp' can be called:

preprocess the files "pl.r", "p2.r", and "p3.r"
and produce Fortran output on "pi.f"

rp pi.r p2.r p3.r

preprocess the files "pl.r", ·p2.r", and "p3.r"
and produce Fortran output on "ftn_out"

rp pi.r p2.r p3.r -0 ftn_out

preprocess the file "pi.r", produce the Fortran
on "ftn out" and include code to produce
subprogram level trace

rp -t pi.r -0 ftn_out

After turning your Ratfor source code into Fortran with the preprocessor, the next step
is to compile the Fortran code. Since the Subsystem uses the Primos Fortran compiler, the
'fc' command just prOduces a sequence of Primos commands to cause the compilation. The fol­
lowing command w~ll call the Fortran compiler for a compilation:

fc [<options>] <input> [-b [<binary>]] [-1 [<listing>]]

The Fortran source code must be in the file <input>. The relocatable binary output will be
placed in the file <binary>, unless H-b <binary>" is omitted. Then, following Subsystem con­
ventions, the binary fne name is constructed by appending the input file name with ".b": if
the input file ends with ".f", the "f" will be replaced by the "b". Normally no listing is
produced; however, if one is requested, it will appear on the file <listing>, or if the list­
ing file name is omitted, the name will be constructed by appending the ".1" to the input fne
name; again, if the input file name ends in ".f", the "f" will be replaced with the "1".

<Options> is a series of single letter options that specify how the compiler is to
generate the object code. Since there are too many options to completely describe here, we
will only mention a few of the more important ones. For those who wish to make full use of
the Fortran compiler, or for those just curious, the Software ~ Subsystem Reference
Manual, or the 'help' command will give complete information.

Here are brief descriptions of the options of interest:

-v

-i

Generate pseudo-assembly code describing the object code produced.

Unless otherwise specified, conSider all integers to be "long" (32-bit) rather
than "short" (i6-bit). (This is useful for programs ported from machines with

- 27 -

Ratfor User's Guide

longer word lengths.)

-t Insert code to produce a statement-level trace during execution.

Of course, more than one of these options may be specified.

Again, even though all of this looks very complicated, it is really very simple, if you
have used the Subsystem file naming conventions. If you have your Fortran code in a file
named "prog.f" (remember where Ratfor put its output), you may compile it, using the default
options, by just entering

fc prog.f

The command will call the Fortran compiler to produce binary output in the file "prog.b".
uust for completeness, here are some other examples of 'fe' commands:

.n· i

Compi le "pl.f" to produce the binary "pl.b"
and a listing on "pl.l"

fcpl.f-l

Compile "pl.f" to produce the binary "bin" and
the listing on "list·

fc p1.f -b bin -1 1 ist

Compile "p3.f", produce a pseudo-assembly code
listing and default to 32-bit integers

fc -v -i p3.f -1

One problem you may encounter when using 'fc' is that the Primos Fortran compiler pays no
attention to i/o redirection when it is writing error messages to the terminal. This is a
problem common to all Primos commands called from the Subsystem. If you want to record the
terminal output of the Fortran compiler, you must use the Primos command output facility.
This facility is accessed through the Subsystem 'como' command; for details, see the Software
Ie2l! SUbsystem Reference Manual or use the 'help' command.

Ltnktng

The last step in preparing the program for execution is linking. The linking step fixes
the memory locations of the Subsystem common areas; assigns the binary module for each sub­
program to an absolute memory location; and links in the required Subsystem support routines,
Fortran run-time routines, and Primos system calls. The memory image file produced by this
step may then be executed. It should be noted here that programs linked under the Subsystem
can run only under the Subsystem; they may not run without it.

The 'ld' command is used to invoke the Primos loader to to do the linking. Its syntax is
as follows:

ld [-u] <binary file> ... [-1 <library file>]
[-t -m] [-0 <output file>]

ThiS is not the entire syntax accepted by 'ld,' but a complete discussion requires detailed
knowledge of the Primos loaders. For more information, see the Subsystem reference manual.

The "-UN option causes the loader to print a list of undefined subprograms. Any number
of binary files to be included may be listed. The only restriction is that the main program
~ be the ft~st binary subprogram encountered -- it must be the first program unit in a
binary file, and that binary file must be the first <binary file> to appear on the command
line. Any number of libraries (residing in "Klib·") may then be specified with the "-1"
option. The "-t -m" options cause a load map to be produced on a file with the name as the
output file (or first <binary file>, if an output file is not specified) with ".m" appended.
If the file name ends with n.b", the ".b" is replaced by the ".m". The "-0" option specifies
the name of the output file. If the "-0· option is omitted, the output file will have the
same name as the first <binary file>, with ".0" appended. If the name of the first <binary
file> ends in ".b", the B.b" will be replaced by the ".0".

Even though linking is a mysterious process, it need not be traumatic. Most of the time,
you will be linking a single binary file with no additional libraries. For instance, if you
had a binary file named "prog.b," you could produce an object program by just typing the com­
mand

ld prog.b

- 28 -

Rat~or user's ~u\ae

The Primos loader would be invoked, and after a great deal of garbage was printed on the
terminal, the executable program "prog.o· would be produced.

The only thing that you must do is look for the message "LOAD COMPLETE" lurking somewhere
near the end of this garbage. If you find this message, it means that all of the external
references in your program (subroutine and function calls) have been satisfied, and linking is
complete. If you don't find this message, there are unsatisfied references in your program.
You may then call 'ld' with the "-u" option and the loader will print the names of the
unsatisfied references on the terminal. You will probably then find that these references are
caused by misspelled subprogram names, missing subprograms, or undimensioned arrays (remember,
the Fortran compiler treats undimensioned arrays as functions calls, so you may not always get
an error message from the compiler).

Again, for completeness, here are some examples of 'ld' at work:

;.. che binary files "p1.b", "p2.b", and ·p3.b"
to produce "pi.o" as output

ld p1.b p2.b p3.b

link the binary file "nprog.b",
include the library "vshlib",
and produce the output file "nprog"

ld nprog.b -1 vshlib -0 nprog

link the binary files "np1" and "np2",
produce a load map,
and output "my_new_prog"

The Primos loader also pays no attention to i/O redirection. If you want to catch its
terminal output, you must use the Primos 'como' commands. For details, see the reference
manual or use the 'help' command.

E)(ecuttng

Executing a Subsystem program is the easiest step of all. All you have to do to execute
i.t is to type its name. For instance, if your object program was named "prog.o", all you need
type is

prog.o

.to make it go. Because the shell also looks in your current directory for executable
programs, "prog.o" is now a full-fledged Subsystem command. You may give it arguments on its
command line, redirect its standard inputs and outputs, include it in pipelines, or use it as
a function. Of course to be able to do all of these things properly, it must observe the Sub­
system conventions and use the Subsystem I/O routines.

Shortcuts

There are several shortcuts that speed things up and save typing when developing
programs.

Shell Programs. Shell programs can be a great help when performing repetitive tasks.
Quite-often one of these tasks is preprocessing, compiling, and linking a program during its
development. A simple shell program can save a great deal of typing in this situation. For
instance, let's say we are writing a Ratfor program that is in the file "np.r", We are in the
process of adding new features to "np" and w111 probably compl1e and test it several times.
We can make a very simple shell program that will keep us from having to type 'rp,' 'fe,' and
'ld' commands every time we want to make a test run. All we have to do is make a file
containing these three commands with 'cat':

] cat >cnp
rp np.r
fc np.f
ld -u np.b -0 np
<control-c>
]

Now the file "cnp" contains the following text:

- 29 -

Ratfor User'S Guide

rp np.r
fc np.f
ld -u np.b -0 np

All we need do now to preprocess, compile, and link our program is just type the name of the
shell program as a command:

cnp

and the shell will execute all of the commands contained in it.

The 'Rfl' Command. Of course, it is so common to preprocess, compile, and link a
program. tiiire is an already-built shell program that works nicely in most cases. 'Rf1'
contains the necessary commands to preprocess, compile and link a Ratfor program contained in
a file whose name ends with ".r". All you have to do is type

rfl np.r

and 'rfl' will execute the necessary commands to produce an executable file named "npH, (note
that the executable file is named "np" and not "np.o"!) 'Rfl' can also do some other handy
things that you can find out about in the Subsystem reference manual.

Storing Source Programs Separately. When you write fairly large programs or test modules
independently, it is often convenient to store the programs in separate files. If this is the
case, creating an executable program is just a little bit more complicated. The eaSiest solu­
tion is to just name all of the programs on the 'rp' command line, like this:

rp p1.r p2.r p3.r

'Rp' will preprocess all of the files together and produce output on the file "p1.f". The
Cleftne statements in "p1.r" will still be in effect when "p2.r" is preprocessed, etc. so
"p1.r", "p2.r", and ·p3.r H might just as well be together in one file.

Compiling Programs Separately. A little bit harder, but sometimes much faster, is to
preprocess and compile the modules separately and then combine them during linking. There are
two things that you have to watch. The first problem with separate compilation is that cleft,.
statements in one file cannot affect subprograms in the other files. For a large program that
would benefit from separate compilation, this nastiness can be avoided by plaCing all of the
Cleftnes together in one file and placing an tnclude for that file at the beginning of each of
the files containing the program. The Cleft,.. will then be applied uniformly to all parts of
the program.

The second thing is that since Ratfor chooses unique Fortran names in the order that it
is presented with "long" Ratfor names, it cannot guarantee that a long name in one file will
be transformed into exactly the same Fortran name as the same long name in a second file
(although the probability is quite high). To avoid problems, subprogram names that are cross­
referenced in the separate binary fl1es should be given Six-character or shorter names, or a
ltnkage declaration containing the names of all subroutines, function, and common blocks
should be inserted at the beginning of each module. It is usually easiest to handle the lin­
kage declaration just like the cleft,. statements: put it in a separate file, and add an
include statement for it at the beginning of each module.

Then, the program units in each file may be preprocessed and compiled separately. The
binary files from the separate compilations are linked together by just listing the names of
all of the files on the 'ld' command:

ld pi.b p2.b p3.b

The only restriction is that the main program ~ appear first. The object file from this
example would be named "pi.o", but this could have been overridden by including the "-0
<output file>" option.

When com~iling parts of a program separately, you should be aware that incorrect use of
the ltnkage declaration can cause totally irrational behavior of the program wlth no other
indication of error. Since no Checking is done on the linka .. declaration, you must be
certain that every external name appears ln the statement. More importantly, when you add a
subroutine, function, or common block, you must remember to change the ltnka .. declaration.
In addition, if you do not add the name to the very end of the declaration, you must
immediately recompile all modulesl If you compile separately, and are confronted with a
Situation in which your program is misbehaving for no apparent reason, re-check the ltnka ..
declaration and recompile all the modules.

Debuggtng

Debugging unruly programs under
almost no run-time debugging support.
gers, you'll get very little help
debugging programs. This means that

Primos is at best a grueling taSk, as currently there is
Except for a couple of machine-language level debug­

from Primos (except for some nasty error messages) while
such techniques as top-down design, reading other

- 30 -

programmers'
even with all
system) . The
bOrn bugs.

code, and reasonably careful desk checking will payoff in the long run. But
the care in the world, some bugs 101111 creep through (especially 01"1 an unfaml1 iar
next few paragraphs will be devoted to techniques for exterminating these stub-

For an experienced user, a load map, the Primos DMSTK command, and VPSD (the V-mode sym­
bolic debugger) can very Quickly isolate the location, if not the cause, of a bug. With more
complicated programs that are dependent on the internal structure of the machine and operating
system, such machine level debugging cannot always be avoided. If you find yourself in such a
position, you can begin to learn some of these things by examining the following reference
lIanua 1 s: .

MAN 1671 System Reference Manual, Prime 100-200-300

MAN 2798 System Reference Manual, Prime 400

FOR 3059 The PMA Programmer's Guide

FOR 3057 User Guide for the Fortran Programmer

Most often, the bug can be found by one or more of the following techniques:

(1) Inserting 'print' calls to display the intermediate results within the program.

(2) Using the Rattor subroutine trace.

(3) Using the Fortran statement number and assignment trace.

It is usually Quickest to use the Ratfor subroutine trace (by including the "-t" option on the
'rp' command 1 ine). Although this trace 1 ists only subroutine nes.ting, it will narrow down
where a program is blowing up to a single subprogram. If the program is very modular and
contains mostly small subprograms, Quite often, the error can be spotted.

If the Ratfor trace fails to pinpoint the problem, the Fortran statement and assignment
trace will give a great deal more information (possibly hundreds of pages). The Fortran trace
can be produced by specifying the "-t" option on the 'fc' command. The Fortran code produced
by 'rp' must be examined to locate the statement numbers, but given the large number of
statement labels generated by 'rp,' study of this trace can isolate the problem practically to
within one statement. .

The above debugging methods are Quick and easy to use when the program contains a
catastrophic error that causes an error termination or an infinite loop. While this is
sometimes the case, more often a subtle error is the problem. In finding these errors, there
1s no substitute for carefully inserted debugging code (such as calls to 'print') at critical
points in the program.

The rest of this section is devoted to a brief description of many of the terminal errors
that may do away with programs (and sometimes the Subsystem). About the only terminal error
cause the Subsystem command interpreter to be terminated along with the user's delinquent
program is one which clobbers the stack. You can tell that you've been booted into Primos by
the appearance of the "OK," or "ER!" prompt. All error messages that cause an exit to Primos
are briefly explained in appendix A-4 of the Prime Fortran Programmer's Guide (FDR3057). Some
very common programming errors can cause cryptic error messages with explanations that are
close to unintelligible. Hopefully, most of these messages are described below.

Many Primos error messages are dead giveaways of program errors. Messages that begin
with four asterisks are from the Fortran runtime packages -- they usually indicate such things
as diviSion by zero or extraction of the square root of a negative number. For example,

**** SORT
OK,

ARGUMENT < 0

results from extracting the square root of a number less than zero.

Other, more mysteriOUS, error messages can also be caused by Simple program errors.

Error: condition "POINTER_FAULTS" raised at <addr>

can be caused by referencing a subprogram which has not been included in the object file. An
obvious indication of a missing subprogram is the failure to get the

LOAD COMPLETE

message from 'ld'. (Note that the Fortran compiler treats references to undimensioned arrays
as function calls!) A more insidious cause of the "POINTER FAULT" message is a reference to
an unspecified argument in a subprogram; i.e. the calling routine specifies three arguments
and the called routine expects four. The error occurs when the unspecified argument is
referenced in 1h! SUbprogram, not during the subprogram cal'.

- 31 -

Ratfor User's Guide

Error: condition "ACCESS VIOLATION$" raised at <addr>
Error: condition "RESTRICTED INST$" raised at <addr>
Error: condition "I LLEGAL_SEGNO$ " raised at <addr>
Error: conditio~ "ARITH$" raised at <addr>
Program halt at <addr>

all can result from a subscript exceeding its bounds. Because the program may have destroyed
parts of its code, the memory addresses sometimes given may well be meaningless. Even so, you
may locate the routine in which the program blew up by using the Primos DMSTK command and a
load map. For instance, given the following scenario (ell ipses indicate irrelevant
information) ,

Error: condition "POINTER FAULTS" raised at 3.4000.001000.
Abort (a), Continue (~) or Call Primos (p)? p
OK. dmstk

Stack Segment is 6002.

6) 001464: Condition Frame for "POINTER FAULTS"; .. .
Raised at 3.4000.017202; LB= 0.4000.017402, .. .

7) 001374: Fault Frame; fault type= 000064
Returns to 3.4000.017202; ~ 2.4000.017402, ...
Fault code- 100000, Fault addr- 3.4000.017204
Registers at time of fault:

The numbers following "LB=" on the underlined portion of the stack dump show the address of
the data area of the procedure executing when the fault occurred. The segment number portion
of this address (the four-digi t part) t'ell s who the rout i ne belongs to:

Segment ~

0000 - 0033
2030
2031
2035
2050
4000 - 4037
4040
4041
6001
6002

Operating System
Software Tools Shell
Software Tools Screen Editor
Software Tools Library
Fortran Library
User Program
Software Tools Common
Software Tools Stack
Fortran Library
Primos Ring 3 Stack

If the executing routine is not part of your program, you can trace back the stack (see below)
until you find which of your subprograms made the call. If the segment number begins with
-4", you need only look down the right-most two columns of the load map (see the 'ld' command)
for 'the two numbers (4000 17402 in this case). If you get an exact match, just loOk across to
the name on the left -- this is the subprogram that was executing. Otherwise, if none of the
numbers match then either the program has clobbered itself and jumped into nowhere, you left
off an argument to a library subprogram, or one of the library routines has caused an excep­
tion trap with no fault vector.

Subsequent entries in the stack dump (following the information in the last scenario) can
be used to find what procedure calls were in process when the error occurred. The entries are
of the following form:

Stack Segment is 4041.

8) 002222: Owner. (LB- 0.4000.017402).
Called from 3.4000.017700; returns to 3.2035.017702.

9) 002156: Owner. (LB. 0.4000.013026).
Called from 3:4000.013442; returns to 3.2030.013450.

,:1;

Each entry on the Subsystem stack (segment 4041) represents a procedure call in process. You
can use the numbers following the "LB·- and the load map to trace back through the ·stack· of
procedure calls, just as with the "fault frame" mentioned above.

If you find yourself at a complete and total loss at finding why your program is blowing
up, here is a list of some of the errors that have caused us great anguish:

Subscript out of range. This error can cause any number of strange results.

Undefined subprogram. This error can be detected by the lack of a "LOAD COMPLETE" mes­
sage from the 'ld' command.

Too few arguments passed. This error almost always causes a ·POINTER_FAULTS· when the

- 32 -

Ratfor User's Guide

missing argument is referenced.

Code and initialized local data requires more that one segment (64K words) .. The load map
shows how much space is allocated. No linkage or procedure frame should appear in any
segment other than 4000.

Delimiter character is missing in a packed string. This includes periods in packed
strings passed to 'print' and 'input'. This error causes the program to run wild, writ­
ing allover the place.

Type declaration is missing for a function. This error can causes failure of routines
such as 'open' which return an integer result. The Primos Fortran compiler does not flag
undeclared functions. This error may also cause an erratic real-to-integer conversion
error or cause the program to take an exception trap.

A subprogram is changing the value of r constant. If you pass a single constant as a
function or subroutine argument, and the subprogram changes the corresponding parameter,
the values of all occurrences of that constant in the calling program ~ill be changed.
With this error, it is quite possible for the constant 12 to have the value -37 at some
time during execution.

The Subsystem will catch almost all the errors enumerated above. The only exception is
one that clobbers the stack (like a negative argument passed to SORT). In this case, a
"login.comi" file containing the "swt" command will automatically put you back in the Sub­
system.

Performance Monitoring

In most cases, it is very difficult to determine how much processing time is required by
different parts of a program. Since it is nearly impossible to determine which parts of a
program are "inefficient", especially before the program 1s written, it is often more effec­
tive to write a program in the most simple and straightforward manner, and then use per­
formance monitoring tools to find where the program is spending its time. It has many times
been our experience to find even though parts of a program are coded inefficiently, only a
very small amount of time is wasted.

There are two available methods for obtaining an execution time "profile" of a Ratfor
program. The first method provides statistics on the number of calls to and the amount of
time spent in each subprogram. The second method provides a count of the number of times each
statement in the program is executed.

To invoke the subroutine profile, just preprocess (in one run) all the subprograms to be
profiled. Add the "_pOI option to the 'rp' command line when the programs are preprocessed.
Then compile, link and execute the program normally. When the program terminates (it must
execute a stop statement, and not call "error"), type the command

prof ile

'Profile' accesses the files "timer_dictionary" (output by 'rp') and "-profile" (output by
your program) and prints the subroutine profile to standard output.

To invoke the statement count profile, put all the subprograms to be profiled (you must
also include the main program) in a single file. Then preprocess the file with 'rp' and the
"-c· option. Compile, link, and execute the program. When the program terminates normally,
type the command

st-profile myprog.r

(Of course, assuming your source file name is "myprog.r H .) A listing of the program with
execution count for each line will be printed.

When running a profile, there are several things to keep in mind. First, the program
with the profiling code can be more than twice as large as the original program. Second, the
program can run an order of magnitude more slowly. Third, there can be a considerable delay
between the execution of the stop statement and the actual end of the program. Finally, you
should remember that the main program and all subprograms to be ~rofiled must be preprocessed
at the same time.

Conditional Compilation

Conditional compilation is a handy trick for inserting debugging code or setting compile­
time options for programs. Conditional compilation can be approximated in Ratfor by defining
an identifier, such as "DEBUG" to a sharp sign or null (for off and on respectively). Lines
in the Ratfor program beginning with the identifier "DEBUG" (i.e. debugging COde) are not
compiled if "DEBUG" is defined to be "fI", but are compiled normally if "DEBUG" is defined as a
null string.

- 33 -

Ratfor user's Guide

For instance, the following example shows how conditional compilation can be used to
"turn off" print statements at compile time:

define (DEBUG, #)

fd = open (fn, READ)
DEBUG call print (ERRDUT. "fd returned:*i*n"s. fd)

len = getlin (str. fd)
DEBUG call print (ERRDUT. "str read: *s"s, str)

In this example. all lines beginning with "DEBUG" are ignored, unless the deftne statement is
replaced with

define (DEBUG,)'

Then. all 1 ines beginning with "DEBUG" wi 11 be compiled normally.

Portabtlity

If your intent is to produce portable Fortran code. the Ratfor preprocessor, 'rp' can be
invoked with the following four options:

·h Produce Hollerith-format string constants rather than quoted string constants. This
option useful in prodUCing character strings in the proper format needed by your
Fortran compiler.

·V Output "standard" Fortran. This option causes 'rp' to generate only standard
Fortran constructs (as far as we know). This option does not detect non-standard
Fortran usage in Ratfor 'source code; it only prevents 'rp' from generating non­
standard constructs in implementing its data and control structures.

·x Translate character codes. 'Rp' uses the character correspondences in a translation
file to convert characters into integers when it builds Fortran "data" statements
containing EOS-terminated or PL/I strings. If the option is not specified, 'rp'
converts the characters using the native Prime character set .

• y Do not output ·call swt", This option keeps 'rp' from generating a ·call swt" in
place of all "stop" statements, which are required for Fortran programs to run under
the Subsystem,

The following option for 'fc' may also help:

·t Consider all integers to be "long& (32-bit) rather than short.

SOUI"C8 prog...... Fo t COnvent t ons

After considering many program formatting styles. we have concluded that the convention
used by Kernighan and Plauger in Software Tools is the most expedient in terms of clarity and
ease of modification. As a consequence, we have tried to be consistent in the use of this
convention throughout the Subsystem to provide uniformly readable and modifiable code. We
present the convention here in the hope that you can use it to the same advantage.

Stat..-nt Placement

The placement of statements in program units is perhaps the most important part of the
formatting convention. Through uniform placement of statements, many documents can be
produced directly from the source code, For instance, the skeleton for Section 2 of the Sub­
system Reference Manual was produced originally from the subprogram headers of the Subsystem
library subprograms. Then the detail was filled in using the text editor.

The order of a program unit (including a main program) should be as follows:

i. A comment line of the following format:

<program name> --- <one-line description>

2. The sUbrouttne or functton statement (or nothing if it is a main program),

3. The declarations of all arguments passed to the subprogram, if any.

- 34 -

4. A blank line

5. Declarations for all local variables in the program unit.

6. A blank line.

7. Executable program statements.

8. The end statement.

9. Three blank lines.

Of course, extra blank lines should be used freely to separate different logical groups of
declarations and different logical blocks of executable statements.

As an example, here's the source code for the subroutine ·cant" taken dir'"'c"t'· ~~." -'.le
Subsystem library:

cant --- print cant open file message
subroutine cant (str)

Indentation

character str (ARB)

call putlin (str, ERROUT)
call error (": can't open.")

return
end

The indentation convention
should be indented three spaces to
Braces are placed as unobtrusively
ing statements.

is very simple. It is based on the idea that a statement
the right of the innermost statement controlling it.
as pOSSible, without affecting the ease of adding or delet-

Statements, with the exception of the program heading comment, are placed three spaces to
the right of the left margin. All statements are placed 1n this position, unless they are
subordinate to a control statement. In this case, they are placed three spaces to the right
of the beginning of the controlling statement.

Braces do not affect the placement of statements. An opening brace is placed on the line
with the controlling statement. A closing brace is placed on a separate line three spaces to
the right of the beginning of the controlling statement.

Multiple statements per line are forbidden, except when a chain of tf - .'.a if ... • ,­
.a statements is used to implement a case structure. In this event, the el.e if is considered
a single statement, appearing on the same line. and subsequent lines are ~ndented only three
spaces to the right.

If all of this seems terribly confusing, here are some examples that show the indentation
convention in action (the bars are just to show you the matching of braces):

for (i '"' 1; str (i) -= EOS; i += 1) {
I if (str (i) == 'a'c) {
I j '"' cto; (str (2), i)
I select (j)

! i :he~a~~)alt1
when (2)

I I: call a1t2

! I ihe~a~~)a{t1
I I I call alt2

I I }
I else
I call error ("number must be >= 1 and <- 3"s) I ___ }
I else if (str (i) 's'c)

repeat {
I I j = ctoi (str (2). i)
I ! status = getnext (j) I ---} until (status == EOF)
I else {
I I call clean_up
I I stop
I -- -}
---}

- 35 -

Ratfor User's Guide

Subsystem Definitions

The use of the define statement plays a large part in producing readable. maintainable
programs. Hiding implementation details with define statements not only produces more
readable code. but allows changes in the implementation details to be made without necessitat­
ing changes in applications programs. The development of a large part of the Subsystem would
have been greatly hindered if it had not been possible to redefine the constant "STDIN" from
"1" to "-11". with no more than recompi1ation.

The Subsystem definitions file. ""inc1"/swt_def.r. i" exists primarily to hide the dirty
details of the SUbsystem support routines from Ratfor programmers. We sincerely believe that
the character string "EOF" is inherently more meaningful than the string "-1". (Would you
believe that after three years of using the Subsystem. the author of this section had to look
up the value assigned to "iOF" in order to write the preceding sentence?)

Of course. the use of th~ SU~sy~,~m Jefinitions also allow the developers to change these
values when necessary. Of course. these changes force recompi1ation of all existing programs.
but we feel that this is a small price to pay for the availability of more advanced features.
All users of the Subsystem support routines are therefore warned that the values of the Sub­
system definitions may change between versions of the Subsystem. (At Georgia Tech. this may
be daily.) Programs that depend on the specific values of the symbolic constants may well
cease to function when a new version of the Subsystem is installed.

Appendix 0 contains specific information about (but not specific values for) the standard
Subsystem definition file. As a general rule, all symbolic constants mentioned in Section 2
of the Subsystem Reference Manual can be found in "=inc1=/swt_def.r.i".

Using the Subsystem Support Routines

Many of the capabilities available to a Subsystem programmer are provided through the
Subsystem support routines. The Subsystem support routines consist of well over one hundred
Ratfor and PMA subprograms that either perform common tasks, insulate the user from Primos and
Fortran, or conceal the internal mechanisms of the Subsystem. By default, the library
containing all of these routines ("·,ib-/vswt,b") is included in the linking of all Subsystem
programs. Therefore, no special actions need be taken to call these routines.

If you notice that there are some "holes" in the functionality of the Subsystem library,
you are probably quite correct. The Subsystem library has grown to its present size through
the effort of many of its users. The instance often arises that a routine is required to fill
a specific function. In keeping with the Software IQQl! methodology, instead of writing a
very specific routine, we ask that the author write a slightly more general routine that can
be used in a variety of instances. The routine can then be documented and placed in the Sub­
system library for the benefit of all users. Many of the support routines, including the
dynamic storage management routines, have come from just such instances. The "holes" 1n the
Subsystem library are just waiting for someone to fill them; if you need a routine that isn't
there, please write it for us.

Termination

The subprogram 'swt' terminates the program and causes a return to the Subsystem command
interpreter. Any Subsystem files left open by the program are closed. Ratfor automatically
inserts a "call swt" any time it encounters a Fortran stop statement. All Ratfor programs
should stop rather than ·call exit". Fortran and PMA programs should invoke 'swt' to
terminate.

Character Strings

Most of t~e support routines use characters that are unpacked, one per word (i.e.
integer variable), right-justified with zero fill, rather than the Fortran default. two
characters per word, left-justified, with blank fill (for an odd last character). In addition
to the SimpliCity of manipulating unpacked strings, the unpacked format represents characters
as smal" positive integers. Thus, character values can be used in comparisons and as indexes
without conversion.

Most of the support routines that manipulate character strings expect them to be stored
in an integer array, one character per word, right-justified and zero-filled, and terminated
with a word containing the symbolic constant 'EOS'. Strings of this format are usually called
EOS-terminated strings.

Support for the use of unpacked characters is provided in several ways: (1) the Sub­
system I/O routines perform conversion to and from unpacked format, (2) single-character
constants 'a'c, 'b'c, ',/C. etc. are provided for use in place of s1ng1e-character Hollerith
literals, and (3) the Ratfor strtng statement is provided to initialize EOS-terminated
strings.

- 36 -

In a few cases, it is more convenient to use a Hollerith litera, instead of an EOS­
terminated string. Since it is impossible to tell the length of a Hollerith literal at run
time, Hollerith literals used with the Subsystem are required to contain a delimiter character
(usually a period) as the last character. Hollerith literals or integer arrays that contain
Hollerith-format Characters and end with a delimiter character are referred to as packed
strings.

Following are brief descriptions for the most generally useful character manipulation
routines. For specific information, see the Software ~ Subsystem Reference Manual.

Egua 1 .
arguments.
For example,

'Equal'
If the

is an integer function
two strings are identical,

that takes two EOS-terminated strings as
'equal' returns YES; otherwise it returns NO.

string dash_x "-x"
integer equal

if (equal (argument, dash_x) == YES)
call cross_ref

(.

Index. 'Index' is used to find the position of a character in an EOS-terminated string.
If t~haracter is in the string, its position is returned, otherwise zero is returned.
'Index' is very similar to the bUilt-in function of the same name in PL/I. Example:

string options "acx"
integer ndx
integer index

ndx = index (options, opt_character)
select (ndx)

when (1)
call 1 i st all

when (2) -
call list common

when (3) -
call cross_reference

else
call remark ("illegal option"s)

This example selects one of a number of subroutines to be executed depending on a single­
Character option specifier. Of course, this particular example could be done with just •• lect
alone. 'Index' is also useful in character transliteration and conversion from character to
binary integer.

Length. 'Length' is an integer function that returns the length of an EOS-termi~ated
string. The length of a string is zero if and only if its first character is an EOS; it is
the number of characters before the EOS in all other cases. 'Length' is often useful in
deCiding where to start appending additional text, as in the following example:

integer len
integer length

len • length (str)
call scopy (new_str, 1, str, len + 1)

Mapdn ~ Mapup. These functions accept a
character is alphabetic, force it to lower or upper
quite often find use in mapping option letters to a
alphabetiC characters are not modified, these
alphabetic characters appear. In addition, these
isolate character set dependencies. For example,

character c
character mapdn

if (mapdn (c) •• 'a'c) {
handle 'a' option

else if (mapdn (c) == '1'c) {
handle '1' option

single character as an argument and if the
case, respectively. 'Mapdn' and 'mapup'
Single case before comparison. Since non­
routines may be used safely even if non-

routines provide a very good place to

Mapstr. 'Mapstr'
strings. As arguments,
AlphabetiC characters
constant specified.

provides case mapping for alphabetiC characters in EOS-terminated
'mapstr' takes a string and the symbolic constant 'LOWER' or 'UPPER'.
in the string are then forced to lower or upper case, depending on the

- 37 -

Ratfor user's Guide

SCOPy. The subroutine 'scopy' is used for copying EOS-terminated strings. It requires
four arguments: the source string. the position from which to start copying. the destination
string, and the position at which filling begins in the destination string. Since Ratfor
provides no string assignment, 'scopy' is normally used to provide the capability. The simple
movement of a string from one place to another is coded as

character str1 (MAXLINE), str2 (MAXLINE)

call SCOpy (str1, 1, str2, 1)

'SOOpy' is also capable of appending one string to another, as in the following example:

character str1 (MAXLINE), str2 (MAXLINE)

call scopy (str1~ 1. str2. length (str2) + 1)
_,"f'--

Note that 'scopy' makes no attempt to avoid writing past the end of 'str2'!

~. 'Type' is another of the routines that is intended to isolate character depen­
dencies. Type is a function that takes a Single character as an argument. If that character
is a letter, 'type' returns the constant 'LETTER'; if the character is a digit, 'type' returns
the constant 'DIGIT'; otherwise, 'type' returns the character. 'Type' often finds use in a
lexical analyzer:

character c
character type

if (type (c) == LETTER) {
collect identifier

else if (type (c) •• DIGIT) {
collect integer

else {
handle special character

File Acc.ss

File access is one of the more important aspects
Subsystem I/O routines that device independence
moreover, the Subsystem routines provide a much less
Primos routines.

of the Subsystem. It
and I/O redirection
complicated interface

is through the
are accomplished;

than comparable

The basic method of access to a Subsystem file is through the contents of an integer
variable called a fil. descriptor. File descriptors can be set by one of several routines or
they can be set to one of the six standard descriptors representing the six standard ports
provided to all Subsystem programs.

Quite often, the standard ports provide all of the file access required by a program.
Values for the standard port descriptors can be accessed from deftnes contained in
u=inc1-/swt_def.r.i" ('Rp' automatically includes this file in each run). The following table
gives the symbolic names for the three standard input and three standard output ports
ava i1 ab1 e:

STDIN1 (or STDIN)
STDIN2
STDIN3 (or ERRIN)

Output f.2.!:.l!

STDDUT1 (or STDOUT)
STDOUT2
STDOUT3 (or ERROUT)

These constantlJ may be used wherever a f11e descriptor is required by a Subsystem I/O routine.

Other files may be accessed or created through the routines 'open', 'create', and
'mktemp' that are described 1atar. At the moment, it is sufficient to say that these routines
are functions that return a f11e descriptor that may be used in other Subsystem I/O calls.

Once a fi1. descriptor has been obtained. the file it references may be read with the
routines 'get1in', 'getch', or 'input'; written with the routines 'put1in', 'putch', or
'print'; positioned with the routines 'wind' or 'rewind'; or closed with the routines 'close'
or 'rmtemp'.

Open ~ Close. 'Open' takes an EOS-terminated path name and a mode (one of the
constants READ, WRITE. or READWRITE) as arguments and returns the value of a file descriptor
~r the symbolic constant ERR as a function value. 'Open' is normally used to make a fil.
availab1. for processing in the specified mode. If the mode is READ, 'open' will open the
file for reading; if the file doesn't exist or cannot be read (i.e. no read permission),
'open' will return ERR. If the mode is WRITE or READWRITE, 'open' wilt open an existing file

- 38 -

or create a new file for writing or reading and writing. if possible; otherwise it will return
ERR. If 'open' opens an existing file, it will never destroy the contents. even if mode is
WRITE. To be certain that a "new" file is empty. use 'create' instead of 'open'.

'Close' takes a file descriptor as its argument; it closes and releases the file attached
to the descriptor. If 'close' is called with a standard port. it takes no action.

Opening and closing a file is really very easy. This example opens a file named
""extra=/news/index" and returns the file descriptor in 'fd'. If the file can't be opened.
the program will terminate with a call to 'cant'.

file des fd
integer open
string fn "=extra=/news/index"

fd" open (fn. READ)" open ·.extI3 .. I,~,~" Jet<"
if (fd == ERR)

call cant (fn)

<process the contents of -extra=/news/index>

call close (fd)
stop

release the file

If the file can't be opened. 'cant' will print the message

aextra=/news/index: can't open

and terminate the program.

Create. 'Create' takes the same arguments as 'open'. but also truncates the file (makes
it empty) to be sure that there are no remnants of its previous contents.

Mktemp and Rmtemp. Quite often, programs need temporary files for their internal use
only. 'Mktemp' and 'rmtemp' allow the creation of unique temporaries in the directory
"·temp·". 'Mktemp' requires only a mode (READ, WRITE, or READWRITE) as an argument and
returns a file descriptor as its function value. 'Rmtemp' takes a file descriptor as its
argument and destroys and closes the temporary file. (One should use caution, for if a
descriptor for a permanent file is passed to 'rmtemp'. that file will also be destroyed.)

Typical use of 'mktemp' and 'rmtemp' usually involves the writing and reading of an
intermediate file:

filedesfd
integer mktemp

fd .. mktemp (READWRITE) # create a temporary file

<code to write the intermediate file>

call rewind (fd) # reposition the temporary

<code to read the intermediate file>

call rmtemp (fd) # close and destroy the temporary

Wind and Rewind. The subroutines 'wind' and 'rewind' allow the positioning of an open
file ~ts-;nd and beginning, respectively. Both take a file descriptor as an argument.
Usually. 'rewind' is used when a program creates a file and then wishes to read it back;
'wind' is often used when a program wants to add to the end of an existing file.

A program wishing to extend a file would make a call to 'wind' just after successfully
opening the file to be extended:

file_des fd
integer open
string fn Nmyfile"

fd .. open (fn. READWRITE)
if (fd == ERR)

call cant (fn)
call wind (fd) " file is now positioned at the

end, ready for appending.

Trunc. 'Trunc' truncates an open file. Truncating a file means releasing all of its
disk space, hence making it empty, but retaining its name and attributes. 'Trunc' takes a
file descriptor as its argument.

- 39 -

Ratfor User's Guide

Remove. 'Remove' removes a file by name, deleting it from the disk directory. It takes
an EOS-terminated string as its argument. and returns the constant OK or ERR, depending on
whether or not it could remove the file. ('Remove' will also delete a Primos segment direc­
tory without complaining.)

Cant. 'Cant' is a handy routine for handling exceptions when opening files. For its
argument, 'cant' takes an EOS-terminated string containing a file name. It prints the message

<file name>: can't open

and then terminates the program.

Get1in. All Subsystem character input is done through 'get1in'. 'Get1in' takes a
character array (at least MAXLINE long) and a file descriptor and returns a line of input in
the array as an EOS-terminated string. Although the last character in the string is normally
~ ~~~~rNt character, if the line is longer than MAXLINE, nO_NEWLINE will be present and the
rest of the line will be obtained on the next call to 'getlin'. For its function value, 'get­
lin' returns the length of the line delivered, (including the NEWLINE, if any) or the constant
EOF if end-of-file was encountered.

Most line-oriented i/o is done with 'getlin'. For instance, using 'getlin' with its
analog 'putlin', a program to select only those lines beginning with the letter "a" can be
written very quickly:

character buf (MAXLINE)
integer get1in

while (getlin (buf, STDIN) -= EOF)
if (buf (1) == 'a'c)

call putlin (buf, STDOUT)

'Get1in' is guaranteed to never return a line longer than the symbolic constant MAXLINE
(including the terminating EOS).

If needed, there are a number of routines that you can call to convert
string returned by 'getlin' into other formats, such as integer and real.
routines are described later in the section on "Type Conversion".

the character
Most of these

Getch. 'Getch' returns one character at a time from a file; it requires a character
varia~and a file descriptor as arguments; it returns the character obtained, or the
constant EOF. in the supplied argument and as the function value. Calls to 'getch' and 'get­
lin' may be interleaved; 'getlin' will pick up the rest of a line not read by 'getch'.

'Getch' is very useful in lexical analyzers or just when counting characters. For
instance, the following routine counts both characters and lines at the same time:

character c
integer c count, I_count
integer getch

c_count = 0
1 count = 0
while (getch (c, STDIN) -= EOF) {

c count • c count + 1
if (c == NEWLINE)

I_count • I_count +
}

This example assumes that since each line ends with a NEWLINE character, lines can be counted
by counting the NEWLINEs.

Input. 'Input' is a rather general routine created to prOVide easy access to both
interactive and file input. For interactive Input, 'input' will prompt at the terminal,
accept input, and call the proper conversion routines to prOduce the deSired data formats. In
case of unexpected input (like letters in an integer), it will ask for a line to be retyped.
For file input, 'input' recognizes that its input is not coming from a terminal (even if from
a standard port) by turning off all prompting. It will then accept fixed or variable-length
fields from the file under control of the format string.

'Input' requires a variable number of arguments: a file descriptor, a format string, and
as many destination fields as required by the format string. It returns the constant EDF as
its function value if it encountered end-of-file; otherwise it returns OK.

The f i 1 e descr i ptor passed to 'i nput' descr·i bes the f il e to be read. All prompt 1 ng out­
put (if any) always appears on the terminal. The format string passed to 'input' indicates
what prompting information is to be output and what data format to expect as input. Prompts
to be output are specified as literal characters; i.e. to output "Input X:", the characters
"Input X:" would appear in the format string. Prompting characters may only appear at the
beginning of the string and immediately after ·skip-newline" (".n") format codes. Data items

- 40 -

to be input are described by an asterisk followed by optionally one or two numbers and a let­
ter. For instance the code to input a decimal integer would·be M*l- and the code to input a
double precision floating point number would be "*d H •

When a call to 'input' ls executed, the format string is interpreted from left to right.
When leading 11teral characters are encountered, they are output as a prompt. Whan the first
format code ls encountered, a line is read from the fl1e, the corresponding ftem is obtained
from the input line, and the item is placed in the next item in the argument lfst. More items
are removed from the input 11ne until the end of the format string is reached or a newline
appears ln the input. If the end of the format string ls encountered, the rest of the lnput
line is dlscarded, and 'input' returns OK. Otherwise, if a newline is encountered in the
input, fields designated by the format are filled with empty strings, blankS, or zeroes, until
the format string is exhausted, or a code (-*n") to skip the NEWLINE and read a new line ls
encountered.

The format string "u' t _.' l:a', exactly as many input indicators as there are receiving
data Items In the call. In any cas·a, the maximum number of input items per call is 10.

Before we go any further, here is an exampl e of an 'i nput' call to obta i'n three integers:

call input (STDIN, "Type i: *i*nType j: *i*nType k: *i"s,
i, j, k)

If this statement were executed the following might appear at the terminal (user input is bol­
dfaced) :

Type i:
Type j:
Type k:

22 <newl tne>
476 <newline>
1 <newl tne>

We could also type all three integers on the same line, and 'input' would omit the prompting
for the second and third numbers:

Type i: 22 476 1 <newltne>

There are a number of input indicators available for use in the format string. Since
there are a large number of them with many available options, only a few are mentioned in the
following table. For further information, see the Subsystem reference manual.

*5

Skip newline

16 bU integer

32 bit integer

32 bit real

64 bit real

string

Input Representation

If there is a NEWLINE at the current pOSition, skip over it and read
another 11ne. Otherwise do nothing. ('Input' wl11 never read more
than one 11ne per cal" unless this format code is present.

Input an integer with optional plus or minus sign, followed by a
string of digits, delimited by a blank or newline. Leading blanks are
ignored. The input radix can be Changed by preceding the number with
-<radix>r" (e.g. octal should be expressed by "Sr").

Same as "*i".

Input a real number with optional plus or minus Sign, followed by a
posslble empty string of dlglts, optionally followed by a decimal
point and a possibly empty string of digits. Scaling by a power of 10
may be indicated by an "e" followed by an optional plus or minus sign,
followed by a string of digits. The number is delimited by a blank;
leading blanks are ignored.

Same as "*r H •

Input a string of characters delimited by a blank or newline. No more
than MAXLINE characters will be delivered, regardless of input size.
Use "*1s" to read in a single character. (Admittedly, this is an
inconsistency; there really should be a "*c· format.)

• Fixed size input fields can be requested by placing the desired field size immediately
following the asterisk in the format code. For instance, to read three integers requiring
five spaces each, you can use the following format string:

You can also change the delimiting character of a field from its default value of a blank.
uust place two commas followed by the new delimiter immediately after the asterisk. For
instance, two strings delimited by slashes can be input with the following format string:

* .. /s* .. /s

- 41 -

Ratfor User's Guide

Regardless of the delimiter setting, a newline is always treated as a delimiter. One caution:
if the delimiter is not a blank, leading blanks in strings are not ignored.

Readf. You can use 'readf' to read binary (memory-image) files that were created with
'writ~ 'Readf' is the fastest way to read files, since no data conversion is performed.
However. use of 'readf' and 'writef' tend to make a program dependent on machine word size,
and hence. non-portable.

'Readf' takes three arguments: a receiving data array. the maximum number of words to be
read, and a Subsystem file descriptor. When called, 'readf' attempts to read the number of
words requested; if there are not that many in the file. it returns all that are left. If
there are no words left in the file at all. 'readf' returns EOF as its function value; other­
wise. it returns the number of words actually read as its function value.

Put1in. 'Put1in' is the primary output routine of the Subsystem. It takes an EOS-
terminated string and a file descriptor as arguments, and writes the charact,e'i\i,1n the string
on the file specified by the descriptor. There is no restriction on the length of t~e input
string; 'putlin' will write characters until it sees an EOS. 'Put1 in' does not supply a
newline character at the end of the line; if one is to be written, it must appear in the
string. For a simple example. see the description of 'get1in'.

Putch. A single character can be output to a file with 'putch'; it takes a character and
a file descriptor as arguments and writes the character on the file specified by the descrip­
tor. Calls to 'putch' and 'putlin' can be interleaved as desired.

~. 'Print' is a general output routine that accepts a format string and up to ten
output data items. Interpreting the format string, 'print' calls the appropriate type conver­
sion routines to produce character data. and outputs the characters as directed by the format
string. 'Print' requires several arguments: a file descriptor; an EOS-terminated format
string; and zero to ten output data arguments. depending on how many are required by the
format string.

The format string contains two kinds of items: literal items which are output when they
are encountered. and output items, which cause the next data argument to be converted to
character format and output. Literal items are just characters in the string; i.e. to output
"X c" the format string would contain "X =". Output items conSist of an asterisk, followed
by two optional numbers. followed by a letter. For instance an output item for an integer is
"*i" and an output item for single precision floating point is IOcr". The next example shows
the output of three integers:

call print (STDOUT, "i
i. j, k)

* i. j *i. k *i*n"S.

If this call were executed. the following might be the result:

= 342, j = 1, k = -3382

Some of the mOre useful output items are described in the following table:

Data Representation

*i short (16 bit) integer
*1 long (32 bit) integer
*r single precision (32 bit) real
*d double precision (64 bit) real
*P packed, period-terminated string
*s EOS-terminated string
*c single character
*n newl ine

It is possible to exert much more control over the format of output using 'print'; for more
information, see the Subsystem reference manual.

Writef. 'Writef' is the companion routine to 'readf'; it writes words to a binary
(memory-image) file. It is the fastest of the output routines, since it performs no data con­
verSion. It is called with three arguments: a data array containing the words to be written,
the number of words to write, and a Subsystem file descriptor. Here is an example of a fast
file-to-file copy using 'readf' and 'writef' together.

integer 1, buf (1024)
integer readf
file_des in_fd, out_fd

repeat {
1 = readf (buf, 1024, in_fd)
if (1 .- EOF)

break
call writef (buf, 1, out_fd)
}

- 42 -

Ratfor User's GUide

~. 'Fcopy' is a very 6it'!""", 1"outine that copies files. You open and position the
input and output files and call 'fcopy' with the input and output fl1. descriptors. It then
copies lines from the input file to the output ftl.. 'Fcopy' uses a great deal of -secret
knowledge" of the workings of the Subsystem input-output routines. and as a consequence, it
copies disk-ftle to disk-file very quickly (even when the descrtptors are of standard ports).

Markf ~ Seekf. 'Markf' and 'seekf' are companton routines that tlnplement random access
on disk files. 'Markf' takes a file descriptor as its argument and returns a "file mark ft

(currently a 32-bit integer). 'Seekf' takes the fi le mark along with a fne descriptor and
sets the file pointer so that the file Is positioned at the same place as when the Hmark" was
taken.

To be used portably, 'markf' and 'seekf' may only be used between calls to 'readf' and
'writef', or immediately after input or output of a newline characte.r (i.e. at the ends of
lines). In addition. a call to 'putlin' or 'putch' on a file effecttvely (although not
actuall~) ;';·,::>·.''''·~.IS tnformation following the current posttion of the file. For .xample, if
you w~nt to wrfte a line in a file, go off and do other operations on the file, and then be
able to re-read the line later, you can use 'markf' and 'seekf':

file mark fm
file-mark markf
ffle-des fd
character line (MAXLINE)

fm • markf (fd)
call putlin (line, fd)

INN perform other operations on 'fd'

call seekf (fm, fd)
call getlin (line, fd) N get 'line' back

Non-portably, you can assume that a "file mark" ;s a zero-relative word number within the
file to get word number 12 in the file, just execute

call seekf (intl (i2), fd)
call readf (word, 1, fd)

(Remember: file marks are 32 bits, not 161 We use 'intl' here to make "12" into a 32 bit
tnteger:) Keep in mind that this "secret knowledge" is useful only with. "readf" and ·writef·,
not with any other input or output routine. Blank compression is used in line oriented files,
so the position of a line is dependent not only on length of previous lines, but also on their
content. This usually makes the pOSition of a line in a file quite unpredictable.

~. 'Getto' exists primarily to interface with the Primos file system calls. 'Getto'
takes a path name (in an EOS-terminated string) as its first argument. It follows the path
and sets the current directory to that specified for the file in the path name. It then packs
the file name into its second argument, a 16 word array (with blank padding), ready for a call
to the Primos file system. It fills its 3-word third argument with the password of the last
node of the path (if there was one). Its fourth argument, an integer, is set to YES if
'getto' changed the attach point, and NO otherwise.

'Getto' often finds use when functions other than those supported by Subsystem routines
need to be performed, such as setting the passwords on a directory:

integer pfn (16), opw (3),' npw (3). pw (3). att
integer getto
string fn -.varsa/system"

if (getto (fn, pfn. pw, att) •• ERR)
call print (ERRDUT, ·can't get to ••• n"s, fn)

call spas$$ (pfn. 32. opw, npw) I set passwords
if (att ... YES)

call follow (EDS, 0) # attaCh back to home

Type Converston

There are a very large number of type conversion routines available to convert most data
types into charaeter strings and back. Because keeping up with all the conversion routine
names and calling sequences can be quite a chore, two routines 'decode' and 'encode' exist to
handle conversion details in a consistent format. These two routines are described at the end
of this section.

Most of the "character-to-something" routines require at least two arguments. The first
argument is usually the character string, and the second is an integer variable indicating the
first of the characters to be converted. The result of conversion is then returned as the

- 43 -

function value, and the position variable 1$ updated to indicate the first position past the
characters used in the conversion.

For example, the simplest Hcharacter-to-integer" routine, 'ctoi' requires the two
arguments mentioned above. Since it skips leading blanks, but stops at the first non-digit
character, it can be called several times in succession to grab several blank-separated
integers on a line:

character str (MAXLINE)
integer i, k (4), pos
integer ctoi

pos .. 1
do i It 1, 4

k (i) It ctoi (str, pos)
if (str (pos) -a EOS)

call remark ("illegal character in input"s)

This routine will assume unspecified values to be zero, but complain if non-numeric, non-blank
characters are specified.

Here is a·list of all of the currently supported ·character-to-something" routines.

etoc Character-to-character; copies character strings and pays attention to the
maximum length parameter.

etod Character-to-double precision real; handles general floating point input.

etoi Character-to-integer (16 bit); does not handle plus and minus signs;
dec1mal only.

etop Character-to-packed-string; converts to packed format with no delimiter
character.

ctor Character-to-slngle precision real; handles general floating point input.

ctov Character-to-PL/I-character-varying; converts to PL/I character varying
format.

gctoi

gctol

Generallzed-character-to-integer (16 bit); handles plus and minus signs; in
addition to program-specified radix, accepts an optional user-specified
radix from 2-16.

Generalized-character-to-long-integer (32 bit); handles plus and minus
signs; in addition to program-specified radix, accepts an optional user­
specified radix from 2-16.

In addition to the ·character-to-something" routines, there are the ·something-to­
character" routines. Most of these routines require three arguments: the value to be con­
verted, the destination string, and the maximum size allowable. They return the length of the
string prOduced as the function value. An EOS is always placed in the position following the
last character in the destination string, but the EOS is not included when the size of the
returned string is calculated.

Since the functions will accept a sub-array reference for
place several objects in the same string. For example, using
version routine 'itoc', you can place the four integers in the
tar format:

character str (MAXLINE)
1nteger i, k(4), pos
integer itoc

pos .. 1
doi"1,4;{

pos • pos + itoc (k (i), str (pos), MAXLINE - pos)

the output string, you may
the "integer-to-character" con­
array 'k' into 'str' 1n charac-

if (pos > .. MAXLINE - 1) # there's no room for any more
break

str (pos) .. BLANK
pos • pos + 1
}

str (pos) = EOS # cover up the last blank

This code will place the four integers in 'str', separated by a single blank. Although all
conversion routines leave an EOS in the string, we have to replace it here because we clobber
it with the blank.

- 44 -

It's worth noting that the maximum size parameter always includeS the EOS -- the conver­
Sion routine will never touch any more characters than are specified by this parameter.

Here is

ctoc

dtoc

gitoc

gltoc

itoc

ltoc

ptoc

rtoc

vtoc

a 11st of all available -something-to-character W conversion routines:

Character-to-character; copies character strings and pays attention to the
maximum length parameter.

Double-precision-real-to-character; handles general floating point conver­
sions in Basic or Fortran formats.

Generalized-integer-to-character (16 bit); handles integer conversions;
program-specified radix.

Generalized-long-integer-to-character (32 bit); handle. long integer con­
version; program-specified radix.~~·

;:.:

Integer-to-character (16 b1t); handles integer converston; dect~al only.

Long-integer-to-character
dec1mal only.

(32 bit); handles long integer conversion;

Packed-string-to-character; accepts arbitrary delimiter character; will
unpack fixed length strings if delimiter is set to EDS and maximum is set
to (length + 1).

Single-precision-real-to-character; handles general real conversion in
Basic or Fortran formats.

PL/I-character-varying-to-character; converts PL/I character varying format
to character.

Decode. 'Decode' handles conversion from character strings to all other formats. It is
written to be used in concert with 'getlin' and other such routines, and as such, has a rather
odd calling sequence. It requires a minimum of five arguments: the usual string. and string
index; a format string; a format string index and an argument string index. Following are
receiving arguments. depending on the data types specified in the format string. In almost
all cases, you should just supply variables with a value of 1 for the format index and the
argument index. The string index behaves just as it does in all other character-to-something
routines on successful conversion, it points to the EOS tn the string. The specifics of
the format string and receiving fields are identical to 'input'. The only differences are
that 'decode' returns with OK in the situations in which 'input' would read another line of
input, and EOF otherwise, and that all characters in the format string that are not format
codes are ignored.

Encode. 'Encode' is a companion routine to 'decode': it can access all of the
something-to-character conversion routines in a consistent way. For arguments it takes a
character string. maximum length of the string, a format string, and a varying number of
source arguments, depending on the format string. 'Encode' behaves exactly like 'print',
except that it puts the converted characters into the string, rather than putting them onto a
file.

A,-.-nt Access

Programs often find it necessary to access arguments specified on the command line.
These arguments can be obtained as EOS-terminated strings. ready for processing or passing to
a routine such as 'open'.

Getarp. 'Getarg' is the only routine that retrieves arguments from the shell's argument
buffer. It is called with three arguments: an integer descrtbing the position of the
argument deSired, a character array to receive the argument, and an integer describing the
maximum size of the receiving array. 'Getarg' tries to retrieve the argument in the specified
position; if it can, it returns the length of the string placed in the array; if it can't, it
returns the constant EOF. 'Getarg' will never write farther in the character array than the
size specified 1n the third argument.

Arguments are numbered 0 through the maximum specified on the command line. Argument 0
is the name of the command, argument 1 is the first argument speCified, and so on. The number
of arguments present on the command line can be determined by the point at which 'getarg'
returns EOF.

As a short example, here is a program fragment that attempts to delete all files
specified as arguments on its command line:

- 45 -

Ratfor User's Guide

character file (MAXLINE)
integer i
tnteger remove, getarg

t • 1
while (getarg (i, file, MAXLINE -a EOF» {

if (remove (file) •• ERR)
call prtnt (ERROUT, "as: cannot remove-nos,

file)
i • i + 1
}

Parscl. In many programs, argument syntax is quite complex. ft'Par.cl' .xi.ts for the
benefft of both programmers and users: it mak.s codfng argum.nt jiarsfng .impl. and it helps
keep argument conventtons uniform. Of course. '.1:0 do this, tt must autu;!:.stically enforce
certatn argum.nt conv.nttons. 'Parscl' and it. accompanytng macros .~pect to recognize
arguments of a single letter without regard to cas.. Rather than a '.ngthy explanation, '.t's
loOk at an .xample:' For its argum.nts, a program r.qutr.s a page '.ngth (whtch .hould d.fault
to 66 if not present), a tftl. (which may also not b. pres.nt), a flag to t.,l whether to
format for a printer or a terminal, and a list of fil. nam.s to process. In this cas., a
r.a.onable option .yntax is

prog [-1 <page length>] [-t [<titl.>]] [-p] {<file nam.>}

We have u.ed single letter flags to avoid the need for always specifying arguments. Now. in
terms of 'par.cl'. what we have is'a "r.quir.d int.ger". an "optional string", and a "flag u •

Thts m.ans that "-1" cannot be .pecifi.d without a <page '.ngth>, but a_to can be .pecifi.d
without a <title> (in this case. of course, we would u.e an empty titl.). B. sure to note
that a -required" argument means that if the letter is specified. it must be followed by a
value. It does not m.an that the '.tt.r argument mu.t always be pr ••• nt. In other eircum­
stanc.s. we can also have "optional int.ger" and "r.quired .tring" arguments.

TO use 'parscl' in our program. w. mu.t first include the arguJll8nt macros and declare the
argument data ar.a:

includ. ARGUMENT DEFS
ARG_DECL -

Th.n, near the b.ginning of the main program. w. us. a macro call to call 'parscl' that
contains the syntax of the command lin. and a "u.ag." m.s.ag. to be display.d if the command
ltn. is incorr.ct. For our .xample, w. can us.

PARSE_CDMMAND_LINE ("l<r.q int> t<opt str> p<flag>"s.
"prog [-1 <page '.n>] [-t [<titl.]] [-p] {<ftl.}>".)

For "optional tnt.ger" and "r.qutred string" argument., the argum.nt typ.s ara "<opt tnt>" and
"<r.q str>". r •• pecttv.'y.

If the command line is pars.d succ.ssful'y. 'parscl' returns and the program continu.s;
otherwts., 'p.r.cl' prtnts the "u.ag.- me.sag. with a call to '.rror'. One. 'parscl' has
r.turn.d, w. c.n s.t the d.fault valu •• , te.t for the presence or ab •• nce of .rgum.nts, .nd
obt.in value. of argum.nts. First w. u.ual'y .et d.fault v.,u.s:

ARG DEFAULT INT (1, 66)
if (ARG_PRESENT (t»

ARG DEFAULT STR (t, "".) .'.e - -
ARG_DEFAULT_STR (t, "Li.ting from prog".)

R.member. def.ult v.'u ••• r ••• t .fter the c.,l to 'p.rscl'l

In the preceding .xample. we .et the valu. of the .rgument for "1" to 66. This t •• impl •
• nough. But for the. "t" .rgum.nt. we r.ally hay. thr •• diff.r.nt ca.es: the argument was
sp.cified with •• tringW the argum.nt wa. spectfted without a .trtng (meaning th.t we must u ••
• n .mpty titl.). or the:argument w.s not specift.d .t ." (m •• nil1g that w. u.e some other
d.f.ult). In the first c.... netther c.,l to ARG_DEFAULT_STR will do .nything, sine. the
.tring wa~ specifi.d by the us.r: in the .econd c •••• ARG_PRESENT (t) wtll b. ".tru •. " .et­
ting the def.ult to the .mpty string (sinc. the "t" .rgum.nt w.s specifi.d, .v.n though it w.s
without a string); and in the third ca •• ARG_PRESENT (t) wtll be ·.fals •. • ••• tting the
default to "Listtng from prog".

Now that w. have ftnished setting d.faults, we can obtain the values of argum.nt. with
more macros: the call ARG_VALUE (1) wtll return the page length value: .ith.r the v.'u.
sp.cift.d by the u.er or the value 66 that we s.t as the d.fault. ARG_TEXT (t) ref.r.nc.s an
EDS-termtnat.d strtng contatning the tttle: .ith.r the valu. sp.ctfi.d by the us.r, an .mpty
string, or "Listtng from prog". Use of the values in our .xample might look like this:

- 46 -

page_'en • ARG_VALUE (1)
ca 11 ctoc (ARG_ TEXT (t). tit 1.. MAXTlTLE)
if (ARG_PRESENT (p»

NNN do printer formatting
els.

NNN do t.rminal formatting

And now. here's how all of the argument parsing will look:

includ. ARGUMENT DEFS
ARG_DECL -

PARSE_COMMAND_LINE ("l<req int> t<opt str> p<flag>"s.
"prog [-1 <page len>] [-t [<title]] [-p] {<ftle}>"s)

ARG DEFAULT INT (1. 66)
if (ARG PRESENT (t»

ARG DEFAULT STR (t •• us)
alsa - -

ARG_DEFAULT_STR (t. "Listing from prog"s)

page_'an. ARG_VALUE (1)
call ct.oc (ARG TEXT (t). title. MAXTITLE)
if (ARG PRESENT (p»

NNN do printar formatting
alsa

NNN do t.rminal formatting

, (
\.

Now •. what about the file name arguments we wara supposed to pars.. Where did they go?
'Parscl' deletes arguments that it processes; it also ignores any arguments not starting with
a hyphen (that do not appear aft.r an '.tter-argument looking for a string). So the file name
arguments are still there. ready to be fetched by 'getarg'. with none of the "-t <title>"
stuff laft to confuse the logic of the rest of the program.

Now. how about some example commands to call this program:

prog -p
(page_'en • 66. title • "Listing from prog".

formatted for print.r)

prog -134 -t new title
(page len • 34. title • "new".

fiTe name. -title",
formatted for terminal)

prog f11e1 file2 -p -t -170
(page_'en • 70. title • all.

file names • file1 file2.
formatted for printer)

prog filea -t"my new title" -1 60
(page_'en • 60. titl. • "my new titl

ftle name • filea. formatted for printer)

prog -x f 11 ea
(the "usage" message is printed)

prog f 11 eb - 1
(the "usage" message is pr1nted)

As you can see. 'parscl' allows you to specify arguments in many different ways. For more
information on 'parscl', .ee its .ntry in the R.faranca Manual.

DynaIIt c: Stor na nt
• Dynamic storage subroutin.s reserve and free variable Size blocks from an area of memory.

In this implamentation, the area of memory is a one-dimensional array. Each block conSists of
consecutive words of that array.

The dynamic storage routines assume that you have included the following declaration in
your main program and in any subprograms that ref.rence dynamic storage:

DS_DECL (mem. MEMSIZE)

where 'mem' is an array name that can be used to reference the dynamic storage area. You must
also define MEMSIZE to an tnteger value between 6 and 32761 inclusive. This number is the
maximum amount of space available for use by the dynamic storage routines. In est1mating for

- 47 -

Ratfor User's Guide

the amount of dynamic storage required, you must allow for two extra 'overhead' words for each
block allocated. Three other overhead words are required for a pointer to the first available
block of memory and to store the value of MEMSIZE.

Os1n1t. The call

call dsin1t (MEMSIZE)

init1alizes the storage structure's pointers and sets up the 11st of free blocks. This call
must be made before ~ny other references to the dynamic storage araa are mada.

Osget. 'Osget' allocates a block of words in the storage area and returns a pointer
(array index) to the first useable word of the bloCk. It takes one argument -- the size of
the block to be allocated 'in wordS).

After a call to 'dsget', you may then fill consecut i v·e word&. in the 'mem' array beginning
at the pointer returned by 'dsget' (up to the number of words you requested i,; the block) with
whatever information called for by your application. If you should write more wOrds to the
block than you allocated, the next block will be overwritten. Needless to say, if this hap­
pens you may as well give up and start over.

If 'dsget' finds that there is not enough cont1guous storage space to satisfy your
request, it pr1nts an error message, and 1f you des1re, calls 'dsdump' to give you a dump of
the contents of the dynamiC storaga array.

Osfree. A call to 'dsfraa' with a pointer to a block of storage (obta1ned from a call to
'daget') dealloeates the block and make. 1t avaflable for later use by 'dsget'. 'Osfree' w111
warn you if 1t detects an attempt to free an unallocated block and give you the option of
terminating or continuing the program .

. 0Sdump. The dynamic storage routines cannot check for correct usage of dynam1c storage.
Seeause bloCk sizes and p01nters are also stored 1n 'mem' it is very easy for a mistake in
your program to destroy this information. , Dsdump' is a subroutine that can print the dynamic
storage area 1n a sem1-readable format to assist in debugging. It takes one argument: the
constant LETTER for an alphanumeric dump, or the constant DIGIT for a numeric dump.

The follow1ng example shows the use of the dynamic storage routines and uses 'dsdump' to
show the changes in storage that result from each call.

define (MEMSIZE. 35)

p01nter poS1, pos2 # pOinter 1s a subsystem defined type
pointer dsget
DS_DECL (mem, MEMSIZE)

call dsinit (MEMSIZE)
call dsdump (LETTER) # first call

pos1 • dsget (4)
call scopy ("aaa"s, 1, mem, post)
call dsdump (LETTER) # second call

pos2 • dsget (3)
call scopy ("bb"S, 1. mem, pOS2)
call dsdump (LETTER) # third call

call dsfr .. (pos2)
call dsdump (LETTER) # fourth call

stop
end

The first call .to 'dsdump' (aftar 'init') produces the following dump:

* DYNAMIC STORAGE DUMP •
1 3 words in use
4 32 words available

* END DUMP.

"

The first three words are used for overhead. and 32 (MEMSIZE - 3) wordS are available starting
at word four in 'mam'. •

The second call to 'dsdump' (after the first write to dynamic storage) produces the fol­
lowing:

- 48 -

1

I
I

-I

• DYNAMIC STORAGE DUMP •
1 3 words in use
4 26 words available

30 6 words in use
aaa

• END DUMP •

Note that only four characters were written, three a's and an EDS (an
character), but two extra control words are requirad for aach block.
of words 30 - 35 in the array 'mem'.

EOS is a nonprinttng
That block ts comprtsed

The third call to 'dsdump' (after the second 'scopy') produces the followtng:

• DYNAMIC STORAGE DUMP •
1 3 words in use
4 21 words available

25 5 words
bb

30 6 words
aaa

• END DUMP •

in use

in use

The final call to 'dsdump' produces:

• DYNAMIC STORAGE DUMP •
1 3 words in use
4 26 words avatlable

30 6 words in use
aaa

• END DUMP •

(:
"

AS you can sae, the second block of storage that began at word 25 has been returned to the
list of available space.

Synaol Table Manipulation

Symbol table routines allow you to index tabular data with a character string rather than
an integer SUbscript. For instance, in the following table, the information contained in
"field1", "field2", and "field3 P can be obtained by specifying a certain key value (e.g.
"f i rstentry·).

: f iel d 1 I fie 1 d2

Iftrstentry I 10268 I data I u

!secondentry ! 27043 ! moredata! a

All Subsystem symbol table routines use dynamiC storage. Therefore, the declarations and
initialization required for dynamic storage are also required for the symbol table routines;
namely:

DS_DECL (mem, MEMSIZE)

call dsinit (MEMSIZE)

where 'mem' is an array name that can be used to reference the dynamic storage area, and MEM­
SIZE is a user-defined identifier descrtbing how many words are to be reserved for items in
dynamiC storage. MEMSIZE must be a integer value betw_n 6 and 32767 inclusive. For a
discussion on how to estimate the amount of dynamiC storage space needed in a program, you can
refer back to the section on the dynamic storage routines.

A symbol table entry consists of two parts: an identifier and its associated data. 1he
identifier is a variable langth character string; it is dynamica~ly created when the symbol is
entered into a symbol table. The data associated with the symbol· is treated as a fixed-length
array of words to be stored or modified when the associated symbol is entered in the table and
raturned when the symbol is looked up. The size of the data is ftxed for each symbol table -­
each antry in a table must have associated data of the same size, but d1fferant symbol tables
may have different lengths of data.

Mktabl. A symbol table is created by a call to the pOinter function 'mktabl' with a
single integer argument giving the Size of the associated data array or the "node size".
'Mktabl' returns a pointer to the symbol table in dynamic storage. This returned pOinter
identifies the symbol table -- you must pass it to the other symbol table routines to identify
which table you want to reference. A symbol table is relatively small (each table requires
about 50 words, not counting the symbols stored in it), so you may create as many of them as

- 49 -

Ratfor User's Guide

you like (as long as you have room for them).

In the table above. if "field1" and "field3" requtr-e one wor-d each. and "fteld2" requir-es
no mor-e than 9 words. then you can create the symbol table with the following call:

pointer- extable

extable • mktabl (11)

The argument to 'mktabl' ts 11 -- the total length of the data to be assoctated with each sym­
bol.

Enter-. To enter- a symbol in a symbol table. you must provide two items: an EOS­
terminated string containi~g the identifier to be placed in the table. and .n array containing
the data to be associated with the symbol. Of course this ar-ray must be at le.st as '.rge as
the "nodesize" declared when the parti~u1~r symbol table was cr-eated. A call to the
subr-outine 'enter' with the identifier-. the data array. and the symbol table(pointer- will make
an entry in the symbol table. However-. if the identifier- is already in the table. its
associated data will be over-written oy the new data you've just supplied. It is not possible
to haVe the same identifier- in the same symbol table twice.

Now. continuing our example,to enter the first r-ow of information 1n the table, you can
use the following statements:

info (1) • 10268
call scopy ("data"s, 1, info, 2)
info (1i) • 'u'c
call en'ter- ("firstentry·s, info, extable)

Lookup. Once you've made an. entry in the symbol table, you can retrieve it by supplying
the identifier in an EOS-terminated string. an empty data array, and the symbOl table pOinter­
to the function 'lookup'. If 'lookup' can find the identifier in the table, it will fill in
your data array with the data 1t has stored with the symbol and return with YES for its func­
tion value. Other-wise, it will return with NO as its function value.

In our example. to access the data associated with the ·firstentr-y· we can make the fol­
lowing call:

foundit • lookup ("fir-stentr-y·s, 1nfo. extable)

After this call (assuming that "firstentry" was in the table), "foundit" would have the value
YES, "info (1)" would have the value for ·fieldP. "info (2)· through "info (iO)- would have
the value for "field2", and "1nfo (11)· would heve the value for "field3".

Delete. If you should want to get rid of an entr-y in a symbol table. you can make a call
to the subr-outine 'delete' with the identifier you. want to delete in an EOS-terminated str-ing
and the symbol table pointer. If the identifier you pa.s is in the table, 'delete' will
delete it and free its .pace for later u.e. If the identifier i. not in the table. then
'delete' won't do anything.

Using our example again, if you want to delete 'f1rstentry' from the table, you can just
make the ca 11

call delete (lIftrstentry·s. extable)

and "firstentry" will be removed from the table.

Rmtabl. When you are through with a table and want to reclaim all of its stor-age space.
you pass the table pointer to 'rmtabl'. 'Rmtabl' wtll d.'.te all of the symbOls tn the tabl.
and rel.ase the stor-age space for- the table ttself. Of course, after you remove a table. you
can never reference tt agatn.

\

To complete our example. we can get rtd of our symbol table by just calling 'rmtabl':

call rmtabl (extable)

Sctabl. So far. the routines we've talked about have been suffictent for dealtng with
symbol tables. It turns out that there is one missing oper-ation: getting entries from the
table without knowing the identifiers. The need for- this oper-ation arises under many circum­
stances. Perhaps the most common is when we want to print out the contents of a symbol table
for debugging.

To use 'sctabl' to return the contents of a symbol table. you first need to initialize a
pointer with the value zero. We'll call this the position pointer from now on. Then you call
'sctable' repeatedly, passing it the symbol table pOinter-, a character- array for the name. a
data array for the associated data. and the position pointer-. Each time you call it, 'sctabt'
will return another entry in the table: it will fill in the character string with the entry's

- 50 -

identifier, fill in your data array with the entry's data, and update position in the position
pointer. When there are no more entries to return in the table, 'sctabl' returns EOF as its
function value.

There are two things you have to watch when using ·sctabl'. First, if you don't keep
calling 'sctabl ' until it returns EOF, you must call 'dsfree' with the position pointer to
release the space. Second, you may call 'enter' to modify the value of a symbol while scan­
ning a table, but you cannot use 'enter' to add a new symbol or use 'delete' to remove a sym­
bol. If you do, 'sctabl' may lose its place and return garbage. or it may not return at alll

Here is a subroutine that will dump the contents of our example symbol table:

N stdump --- print the contents of a symbol table
subroutine stdump (table)
pointer table

integer posn
integer sctabl
character symbol (MAXSTR)
untyped info (11)

call print (ERROUT, "*4xSymbol*12xInfo*n"s)

posn • 0
while (sctabl (table. symbol, info, posn) -a EOF)

call print (ERROUT, ·*15S:*6i:*9s:*c*n"s,
symbol, info (1), info (2). info (9»

return
end

If you made a call to 'stdump' after you had made the entry for "firstentry", it would print
the following:

Symbol
firstentry

Info
1026Sidata :u

Other Rout i nes

There are a number of miscellaneous routines that provide often needed assistance. The
following table gives their names and a brief description. For full information on their use,
see the Subsystem reference manual:

date Obtain date. time, process id. login name

error Print an error message and terminate

follow Follow a path and set the current and/or home directories

remark Print a string followed by a newline

tqui t$ Check if the break key was hit

wkday Determine the day of the week of any date

- 51 -

Ratfor User's Guide

Appendt xes

Appendtx A -- IMP1...ntatton of control StateMents

This appendix contains flowcharts of the code produced by the Ratfor control statements
along with actual examples of the code Ratfor produces.

In different contexts. a given sequence of Ratfor control statements can generate
slightly different code. First. where possible. statement labels are not produced when they
are not referenced. For i~stance. a ~.t loop containing no bre~,statements will have no
"exit" label generated. since one is not needed. Second. contt~ statements are generated
only wh~;1n two ·;t·.t~m"'·"': -' ... lbers must reference the same statement. Finally, internally
generated goto statements are omitted when control can never pass to them; e.~. a when clause
ending with a return statement.

These code generation techniques make no fundamental difference in the control-flow of a
program, but can make the code generated by very Similar instances of a control statement
appear quite different. Please keep in mind that the examples of Fortran code generated by
'rp' are included for completeness, and are not necessarily character-for-character descrip­
tions of the code that would be obtained from preprocessing. Rather, they are intended to
illustrate the manner 1n which the Ratfor statements are implemented in Fortran.

- 52 -

lreak

Syntax:

Function:

Causes an immediate exit from the referenced loop.

Example:

for (1 a length (str); 1 > 0; 1 a 1 - 1)
if (str (1) -a , 'e)

break

1-length(str)
goto 10002

10000 1-1-1
10002 1f«i.le.O»goto 10001

if«str(i).eq.160»goto 10003
goto 10001

10003 goto 10000
10001 continue

- 53 -

• •

Ratfor User's Guide

Syntax:

do <limits>
<statement>

Function:

t
I
V

-------------------7-I I

lin it 10 l i ze dr) 1
t I

Do

1<--

*

Example:

*

V

<statement>

*

I
I
V

*
*

*
do satisfied?

* *
* *

* I true
V

false I
* --->1

I

do 1 - 1. 10
array (1) - 0

do 10000 1-1.10
10000 array(1)-O

I

re1n1t1al1ze do 1----->
I

- 54 -

Syntax:

Fa ..

for ([<initialize>]; [<condition>]; [<reinttialize>])
<statement>

Functton:

Example:

, ,
V

<initialize>

-------------->1 I V
I *
I * *
I * * false
I * <condition> * ------>,
I * *
I * *
I r true

I ----------~----------
I
I
I
I
I
I
I
I
I

<statement>

, ,
V

<reinitialize> I ____________________ _

I ,
I ~
!---------------

1-----------------
V

for (i a limit - 1: 1 > 0: i • i - 1) {
array_1 (i) - array 1 (i + 1)
array_2 (i) • array:2 (i + t)
}

t·limit-1
goto 10002

10000 t-i-1
10002 if«t.le.O»goto 10001

array1(t)-array1(i+1)
array2(i)-array2(i+1)

goto 10000
10001 continue

- 55 -

• •

".,,'WI "".'V. _ WW'UW:

,(
'..

Ratfor User's Guide

Syntax:

Function:

•

Example:

if «condition»
<statement>

•

I
I
V

•
•

If

·<cond1t1on>· *t~~~>i <statement> 1----->1
•• •• ~ ___________________ ~ I

• I
I false !
!<---
V

if (a •• b) {

c • 1
d • 1
}

1f«a.ne.b»goto 10000
c-1
d-1

10000 continue

- 56 -

Syntax:

Function:

Example:

if «condition»
<statement_1>

else
<statement_2>

true
\<----- •
I
I
V

<statement_1>

I
I
V

if (i >- MAXLINE)
i • 1

else
i • i + 1

*

*

I
I
V

• •
* <condition>

* *
*

I
I
V

*

if«1.1t.102»goto 10000
i-1
goto 10001

10000 i-1+1
10001 continue

If - El ..

false
* ----->\

I

- 57 -

I
V

I
I
V

Ratfor User's Guide

Next

Syntax:

next [<levels>]

Function:

All loops nested within the loop specified by <levels> are terminated. Execution resumes
with the next iteration of the loop specified by <levels>.

Example:

output only strings containing no blanks
for (i - 1; 1 <- LIMIT; t - 1 + 1) {

for (j - 1: str (j, 1) -- EOS: j - J + 1)
if (str (j, t) •• • 'c)

next 2
call putlin (str (1, i), STDOUT)
}

1-1
goto 10002

10000 i-1+1
10002 1f«1.gt.50»goto 10001

j-1
goto 10005

10003 Jaj+1
10005 1f«str(J,i).eQ.-2»goto 10004

1f«str(j,1).ne.160»goto 10006
goto 10000

10006 goto 10003
10004 call putltn(str(1,i),-11)

goto 10000
10001 continue

- 58 -

Syntax:

Function:

Example:

repeat
<statement>
[until «condition»]

I

!<----------------
V

<statement>

I
I
V
I!<

I!< I!<

'" I!< false
I!< <condition> I!< ------>

I!< I!<

I!< I!<

repeat {
1 a 1 + 1
j a j + 1

I!<

l true
V

} until (str (i) -a I 'e)

10000 1-1+1

.... at

jaj+1
1f«str(1).eq.160»goto 10000

- 59 -

• .

Ha~Tor u •• r·. ~Ulae

,\

Ratfor User's Guide

Return

Syntax:

return ['(' <expression ')')

Function:

Causes <expression> (if specified) to be assigned to ~he function name, and then causes a
return from the subprogram.

Example:

integer function fcn (x)

return (a + 12)

integer function fcn (x)

fcn-a+12
return

- 60 -

Syntax:

Function:

•

•

•

•

select
when «condition 1»

<statement 1>­
when «condition 2»

<statement 2>­
when «condition 3»

<statement_3>-

when «condition_n»
<statement n>

[ifany -
<statement 1>]

[els. -
<statement_e>]

I
I
V

•
• •

• •
<condit 1 on_ 1>
• •

• •
• I false I
V

•
• •

• •
<condit1on_2>
• •

• •
•
I false I
V

•
• •

• •
<condit1on_3>
• •

• •
•
I false I
V

i false I
V

* • •
* •
<condit1on_n>
* •

true I
• --->,

I

true I
· --->,

I

true I
· --->,

I

true I
* --->,

I

Select

I

<statement_1> 1->
I

I

1->
I

I

1->
I

I

1->,
• • •

I ,

--------------------- ,
I false I
V

,
I
V

<statement_i>

I I
, I

V

!<-------------------------------------
V

- 61 -

,(;
\

Ra~~or user's GU10e

Example:

select
when (i ... 1)

ca 11 add record
when (i •• 2)

call delete_record
else

call cOde_error

goto 10001
10002 call add reO

goto 10000.
10003 call deletO

goto 10000
10001 if«i.eq.1»goto 10002

if«i .• q.2»goto 10003
call cod.eO

10000 continue

- 62 -

Syntax:

Function:

II<

...

*

*

Sel.:t «Integer expresston»

.elect «10»
when «11.1>, <11.2>, ...)

<statement 1>
when «12.1>.-<12.2> •...)

<statement_2>
when «13.1>, <13.2>, ...)

<statement_3>

.
when «tn. t>. <tn.2> •...)

<statement n>
[tfany -

<statement t>]
[el.e -

<statement_e>]

I
I
V
...

II< ...
I II< 10.. II<

11.1 or 11.2
true I

* --->1
I

<statement_1> 1-> ... or ...
I

* II<

* I false I
V

*
* ...

... 10 •• * true I
... --->1

I

I

1-> 12.1 Or
... or

...
* I
I
V
...

*

12.2
II<

...

false

...

I

--------------------- 1
1
1
1 _____________________ 1

... 10 •• II< true I
* --->1

I

I 1
1-> 13.1 or 13.2

* or ... I

* ...
...
I false I
V

i false I
V

*
* ...

* 10 true I
* --->1

I

I

1-> tn.1 or 1n.2
* or * I

* * ...
I false I
V V

<statement_1>

I I
1 I

V

!<-------------------------------------
V

- 63 -

(

(

Ratfor User's Guide

Example:

select (i)
when (4, 6, 3003)

call add record
when (2, 127 5000)

call delete_record
else

call code_error

integer aaaaaO,aaaabO

aaaaaO-i
goto 10001

10002 call addreO
goto 10000

10003 call deletO
goto 10000

10001 aaaabO-aaaaaO-1
goto(10003,10004,10002,10004,10002,

* 10004,10004,10004,10004,10004,
* 1ooo3),aaaabO

if(aaaaaO.eq.3OO3)goto 10002
1f(aaaaaO.eq.5OOO)goto 10003

10004 continue
10000 continue

- 64 -

Syntax:

while «condition»
<statement>

Whtl.

Function:

Example:

I

------------->!
V

*
* * * * false

* <condition> * ------>
* *

* *
* I true
V

<statement>

I
I I

V

!---------------
, ,
I

1------------------
V

while (str (i) -a EOS)
i - 1 + 1

10000 1f«str(1).eq.-2»goto 10001
i-1+1

goto 10000
10001 continue

- 65 -

Ratfor user's QUide

Ratfor User's Guide

Appendtx B -- Linking Prog With Initia1fzed Cannon

The Subsystem link procedure makes the assumption that all common areas are uninitialized
to allow programs to access up to 27 64K word segments of data space. A program which uses
initialized common areas must be linked with one of two slightly different procedures: If the
object file can be a segment directory (this is usually not a problem), you can have the
object file placed in a segment directory. vust add the "-d" option to the 'ld' command line.
Assuming your binary file is named ·prog.b", you can use the command

ld -d prog.b

If you would rather t~ object program be stored in a regular f11e, you can use a
slightly different procedure. With this procedure, the program is restricted to 2!:!!. segment
(64K words) for both code and dataiip .. ce. :t~ this limit is exceeded, no warning will be
g1V8n:-;nd unpredictable results will occur during execution. If more than 6~K words of space
is reqUired, the common areas must be initia11zed at run time, or the program must be placed
in a segment directory.

This modification to the link procedure is as follows: the option string
4000'· must appear on the 'ld' command line before the first binary file. For
the f11e ·prog.b H contained a program with black data statements, an 'ld' command
might appear as follows:

ld -5 'co ab 4000' prog.b

The executable program would be placed in the file nprog.o".

- 66 -

·-s 'co
instance,
to link

ab
if
it

Rat~or User's Gutde

ThiS appendix
under the Subsys~em.

gtves the techntcal specifications of requtrements for programs that run
It is included to allow non·Ratfor progra •• to run under the SUbsystem.

32S !.!!:! ill addressing !!!2!i!!!!

There i. no support for the executton of thes. addressing modes.

!!! ! ~ addressing modes

The 64R mode library routines cannot access the Subsystem common areas, so 32R and 64R
mode programs cannot execute under the Subsystem.

~ addressing mas!

Segments '4040 and '4041 may not be disturbed.

When a Subsystem program i. executed, the stack ts already constructed in segment
'4041. However, the executing program may rebuild tt tf desired.

Programs that use native i/O routines must inform their
system (tf they wish to take advantage of SUbsystem
initialization routines, i.e. 'init$f' for Fortran
Pascal and 'init$plg' for PL/I G.

native i/O routines of the Sub­
t/o) by calltng the proper

66 and Fortran 77, 'init$p' for

The program must terminate with a call to the Subsystem routine 'swt' at the end of its
execution or its main program must return to its caller. A stap statement tn Ratfor
will be transformed into a call to 'swt'.

The program must not tamper with eny file units already open by the Subsystem. It
should always use a Subsystem or Primos call to obtain an unused file unit.

The program must be in a P300 format runfile or a SEG-compatibl. segment directory.

If the program is in a P300 format runftle, it .ust have been loaded by the modified
version of the segmented loader, 'swt.eg', or the entry control block fOr the main
program must be at location '1000 in .egment '4000.

The runfile must not expect any segment other than '4000 to be initialized before
execution. unless· it is loaded from a SEG·compatible se;nent directory.

The default load sequence produced by 'ld' will correctly link programs requiring up to
64K words of procedure (code) and linkage (initialized local data) frames. Up to 27
64.K word .egments may be uSed for uninitialized common blocks. Up to 64K words of
local data may be allocated on the stack. Programs loaded from SEG-compatible segment
directories may be as large as the Operating system permits. as long as they do not
modify segments '4040 and '4041.

321 addressing mas!

Programs in 32I mode may be executed under th2 Subsystem subject to the same
constraints as 64V mode programs.

- 67 -

Ratfor User's Guide

Appendt x D -- Ttw SUbsyst. Def t nt t t ans

The file "·incl·/swt def.r.i" contains Ratfor a.ftne statements for all
constants required to use the routines in the Subsystem support library.
describes the more frequently used constants and the constraints placed on them.

Characters

the symbolic
This appendix

ASCII Mnemonics. Character definitions for the ASCII control characters NUL. SOH. STX •
..•• GS. RS. US. as well as SP and DEL.

Control characters. Character definitions for the ASCII control characters CTRL AT.
CTRL_BACKSLASH. CTRL_RBRACK. CTRL_CARET. -and

BACKSPACE
TAB
BELL

CTRL_A. CTR~_B •..•• CTRL_LBRACK,
CTRL UNDERLINE.
S. n.,t.! .. , ;=,:r ASCII BS.
Synonym for ASCII HT.

RHT
Synonym for ASCII BEL.
Relative horizontal tab
files) .

character (used for blank compression in Primos text

RUBDUT

Data Types

bits
bool
character

fl1e des
file-mark
long1nt
longreal
pointer

Synonym for ASCII DEL.

Bit strings (16 bit items).
Boolean (logical) values: .true. and .false. (16 bit items).
Single right-justified zero-filled character (scalar), or a string
characters terminated by an EOS (array).
file descriptor returned 'open'. 'create'. etc.
file position returned by 'seekf'.
Double precision (32 bit) integer.
Double preCiSion (64 bit) floating point.
Pointer for use with dynamic storage and symbol table routines.

Macro SUbroUt t

Of these

fpchar «packed array>. <index>. <character» fetches <character> from <packed array> at
character pOsition <index> and increments <index>. The first character in the
array is position zero.

spchar «packed array>. <index>. <character» Stores <character> in <packed array> at
character position <index> and increments <index>. The first character in the
array is position zero.

getc «char» aehaves exactly like 'getch'. except the character is always obtained from
STDIN.

putc «Char» Behaves exactly like 'putch', except the character is always placed on
STDOUT.

SKIPBL «Character array>. <index» Increments <index> until the corresponding position
in the character array is non-blank.

DS_DECL «ds array name>. <ds array size» Declaras the dynamiC storage array with tha
name <ds array name> with size <ds array size>.

Langua. Extenstons

ARB Used when dimensioning array parameters in subprograms (since their length is
determined by the calling program. not the subprogram).

fALSE Represents the fortran logical constant .false.
IS_DIGIT «char» Logical expression yielding TRUE if <char> is a digit.
IS_LETTER «char» Logical expression yielding TRUE if <char> is an upper or lower case

letter.
IS UPPER «char» Logical expression yielding TRUE if <Char> is an upper case letter.
IS:LOWER «char» Logical expression yielding TRUE if <Char> 1s a lower case letter.
SET Of UPPER CASE Sequence of 26 character constants representing the upper case letters

- -. for use in the When parts of .. lect statements. •
SET_Df_LOWER_CASE Sequence of 26 character constants representing the lower case letters

for use in When parts of .. lect statements.
SET_Of_LETTERS Sequence of 52 character constants represent1ng the upper and lower case

letters for use in When parts of .. lect statements.
SET_Of_DIGITS Sequence of 10 character constants representing the digits for use 1n When

parts of select statements.
SET Of CONTROL CHAR Sequence of 32 character constants representing the first 32 ASCII

- - control characters for use in When parts of select statements.
TRUE Represents the fortran 10g1cal constant .true.

- 68 -

Ltmtts

CHARS PER WORD Maximum number of packed characters per machine word.
MAXI NT -Largest is-bit integer.
MAXARG Maximum length of a command line argument (EOS-terminated character string).
MAXCARD Maximum input line length (excluding the EOS).
MAXOECODE Maximum size of string processed by 'decode'.
MAXLINE Maximum input line length.
MAXPAT Maximum size of a pattern array.
MAXPATH Maximum size of a Subsystem pathname.
MAXPRINT Maximum number of characters that can be output by a single call to 'print'.
MAXTREE Maximum number of characters in a Primos tree name.
MAXFNAME Maximum number of characters 1n a simple file name.

Standaret Ports

STDIN
STDIN1
STDIN2
ERRIN
STDIN3
STDOUT
STDDUT1
STDOUT2
ERROUT
STDOUT3

Standard input 1.
Standard input 1.
Standard input 2.
Standard input 3.
Standard input 3.
Standard output 1.
Standard output 1.
Standard output 2.
Standard output 3.
Standard output 3.

Argument anc:l Return Val ues

ABS
REL
DIGIT
LETTER
UPPER
LOWER
READ
WRITE
READWRITE
EOF
OK
ERR
EOS
LAMBDA
PG END
PG-VTH
YES
NO

Request absolute pOSitioning ('seekf').
Request relative positioning ('saekf').
Character is a digit ('type').
Character is a letter ('type').
Map to upper case ('mapstr').
Map to lower case ('mapstr').
Open file for reading.
Open file for writing.
Open file for reading and writing.
End of file (guaranteed distinct from all characters and from OK and ERR).
No error (guaranteed distinct from all characters and from EOF and ERR).
Error occurred (guaranteed distinct from all characters and from EOF and OK).
End of string (guaranteed distinct from all characters).
Null pointer (guaranteed distinct from all pointer values).
Make 'page' return after the last page of input.
Make 'page' use the VTH routines when writing to the terminal.
Affirmative response (guaranteed distinct from NO).
Negative response (guaranteed distinct from YES).

- 59 -

Ratfor User's Guide

Append t x E - - I Rp I Reserved Vorcts

The following identifiers are reserved keywords in Ratfor and cannot be used as
identifiers. 'Rp' will not diagnose the use of reserved keywords as identifiers; results of
misuse will be unreasonable behavior such as misleading error messages and mis-ordered Fortran
code.

b10ckdata 1 inkage
break local
call logical
case next
common parameter
complex procedure ~ ~

" continue real r
dt:lta recursive
define repeat
dimension return
do save -,
doub1eprecision select
else shortca 11
end stackheader
equivalence stmtfunc
external stop
for string
forward stringtab1e
function subroutine
goto trace
if undefine
ifany unt i 1
implicit when
include whi 1e
integer

:t.'

- 70 -

Appendix F -- ca.and Line Syntax

'Rp' provides a rich set of processing options to allow the user much flexibility and
control over the code whiCh i. produced. The command line syntax is as follows:

rp [- {a I b I c I d I fIg I h I 1 I m I pIs I t I v I y}]
[-0 <output_file>] {<input_file>} [-x <translation file>]

The following is a full description of each option:

a Abort all active shell programs if any errors were encountered during preprocessing.
This option is useful in shell programs like 'rfl' that wish to inhibit compilation
and loading if preprocessing failed. By default, this option is not selected; that
is, errors in preprocessing do not terminate active shell programs.

b Do not map 10l"lg 'indentifiers or identifiers containing upper case letters into
unique six character Fortran identifiers. This option is useful ((1·f your Fortran
compiler will accep'~ names longer than .ix characters.

c Include statement-count profiling code in the generated Fortran. When this option
is selected, calls to the library routines 'c$init', 'c$incr', and 'c$end' will be
placed (unobtrusively) in the output code. When the preprocessed program is run, it
will generate a file named ·_st_count· containing execution frequencies for each
line of source code. The utility program 'st-profile' may then be used to combine
source code and statement counts to form a readable report.

d Inhibit generation of the long-name dictionary.
long names used in the Ratfor.program along with
placed at the end of the generated Fortran as a
option prevents its generation.

Normally, a dictionary listing all
their equivalent short forms is
series of comment statements. This

f Suppress automatiC inclusion of standard definitions file. Macro definitions for
the manifest constants used throughout the Subsystem reside in the file
·.incl-/swt def.r.i". 'Rp' will process these definitions automatically, unless the
o_f" option-iS speCified.

g Make a second pass over the code and remove GOTOs to GOTOs generated in Ratfor
control structures. Use of this option lengthens preprocessing time significantly,
but can result (sometimes) in a 2-5% speedup of the object program.

h PrOduce Hollerith-format string constants rather than quoted string constants. This
option useful in producing character strings in the proper format needed by your
Fortran compiler.

Include Ratfor line numbers in the sequence number field of the Fortran output.
This may be useful in tracking down the Ratfor statement that caused a Fortran
syntax error. By default, no sequence field is generated.

m Map all identifiers to lower case. When this option is selected, 'rp' considers the
upper case letters equivalent to the corresponding lower case letters, except inside
quoted strings.

p Emit subroutine profiling code. When this option is selected, 'rp' places calls to
the library routines 't$entr', 't$exit', and 't$clup' in the Fortran output, and
creates a text file named "timer_dictionary· containing the names of all subprograms
seen by the preprocessor. When the profiled program is run, a file named "-profile"
is created that contains timing measurements for each subprogram. The utility
program 'profile' may then be used to print a report summarizing the number of times
each subprogram was called and the total time spent in each.

s Short-circuit all logical conditions. The order of evaluation of logical operands
in Fortran is unspecified; that is, in the expreSsion ·a.b· there is no guarantee
that "a" will be evaluated before ·b a • Occasionally this creates inconveniences;
one would like to say something like ·if(i>1.array(i)-.O) ... •. 'Rp' supplies the
short-circuit logical operators •••• and "II" (read "andif· and "orif") for these
occasions. Both operators evaluate their left operands~ if the value of the logical
expression is predictable solely on the basis of the value of the left operand, then
the right operand remains unevaluated and the correct expreSSion value is yielded.
Otherwise the right operand is evaluated and the proper expreSSion value is
determined. The "-s" option may be used to automatically convert all "1.o,gical and"
operators in a program to "andifs," and all "logical or" operators to ·orifs." In
addition to improving program portability, this option may also reduce execution
time. By default, however, this option is not in effect.

t Trace subprograms. When a program preprocessed with the "-t" option is run, an
indented trace of the subprograms encountered will be printed on ERROUT. This trace
output is generated by calls to the library routine 't$trac' that are inserted
automatically by 'rp'.

- 71 -

Ratfor User's Guide

v Output ·standard" Fortran. This option causes 'rp' to generate only standard
Fortran constructs (as far as we know). This option does not detect non-standard
Fortran usage in Ratfor source code: it only prevents 'rp' from generating non­
standard constructs in implementtng its data and control structures. Programs
preprocessed with this option are slightly larger and slower; the intermediate
Fortran and binary files are approximately 10% larger.

x Translate character codes. 'Rp' uses the character correspondences in the
<translation file> to convert characters into integers when it builds Fortran DATA
statements containtng EOS-terminated or PL/I strtngs. If the option ts not
specified, 'rp' converts the characters uSing the native Prime character set. The
format of the translation file is documented below.

y Do not output ·"call swt". This option keeps 'rp' from generating ·call swt· in
place of all ·stop· statements.

The remainder of the command ltne ts used to spectfy the names of t~e Ratfor input
file(s) and the Fortran output file. If the "·0· option, followed by a ftlename, is selected,
then the named file is used for Fortran output. Any remaining filenames are considered Ratfor
source files. If no other file names are specifted, standard input is read. If the "-0"
option is not specified, then the output filename is constructed from the first input filename
by changing a ".r" suffix (if present) to ".f". If the ".r" suffix is not present, the output
filename ts the input filename followed by the sufftx ".f".

The format of the translation file used with the "·x· option is as follows. Each line
contains descriptions of two characters: the Prime native character to be replaced, and the
character value to replace it. These descriptions may be anyone of the following: a single·
non-blank Prime ASCII Character, a number tn a format acceptable to 'gctoi' (must be more than
one digit), or an ASCII mnemonic acceptable to 'mntoc'. In addition, the character to be
replaced may also be the mnemoniC REDS" to indicate that the value of the end-of-string
indicator is to be Changed. For example, here fs a portion of the table for converting the
EBCDIC character set:

A t6rct
B t6rc2

Z t6re9
o 16rfO

9 16rf9
SP 16r40

• 72 -

Software Tool. Text Forwatter
User's Gutde

Terrell L. Countryman
Perry B. Flinn

Jeanette T. Myers
Arnold O. Robbins

Peter N. Wan

School of Information end Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

April, 1985

TAILE OF CQNTENIS

aastes .. 1
Usage•..•...•.•...••...•.••.........••....................••...••..•.. 1
Commands and Text •.•..............•...••••........•............................•••. 1

Fill tng and "rgtn Adjust..nt ... 1
Filled Text.. 1
Hyphena t 1 on ..••..•••.••.............. :2
Margln Adjustment•...........•...•......•..............•............••••. :2
Center 1 ng•.........•..................••................•. 2
Sentenc:.e Punc:tua t 10n ..•.•.••.•...••...•••...•......•...•........................... 3
Summary - Filling and Margln Adjustment 3

Spactng and p. COntrol .. (.... 3
L1ne Spac:lng .••...••...•.•...........................••..••.............•.......••. 3
Page 01 vl s10n•......•......................•................... 4
'No-spac:e' Mode•...•.......•.......••...••..•.•..••.........•.................. 5
Summary - Spac:lng and Page Control ... 5

.. rgtns and l..-ntatton ... 5
Margi ns•......••••.••..•••.••....•...•.......•......................... 5
Top and Bottom Margtns•.....•...•...•.................. 5
Left and Rlght Margins ;...................... 6
I ndentat i on•...................•....•.....•.........•...................... 6
Page Offset•....•...................................... 6
Margin Charac:ters ..•. 7
Summary - Margins and Indentation•..•.. 7

Headtng., Foottng. and Tttl.. ... 7
Three Part Titles.. 7
Page Headings and Footings ... 8
Summary - Headings. Footings and Titles.. 9

Tabulatton .. 9
Tabs•.....•... 9
Summary - Tabulation... 10

Mt _11aneous c-and. .. 10
Comments•... 10
Boldfac:ing. Underlining. and ItallC:izlng•.....................•................ 10
Control Charac:ters .•......•...............•.....•...................•........•..... 11
Prompt i ng ...•.......................... 11
Premature Tiltrmination•...•. 12
Summary - Mlsc:e"aneous Commands•........................•.............•.... 12

Input/Output Processtng•... 12
Input File Control ... 12
Output File Control .. 13
Func:tions. Variables and Spec:ial Charac:ters .. 13
Number Reg1 sters•...........•..................•.........•........ 14
Func:tions ...•................................ 14
Varlables .. 15
Spec: ial Charac:ters ... 15
Summary - Input Proc:essing•.................. 17

.. cros .. 17
Mac:ro Oef i n 1 t i on ..•...•..•...........•.•....•....••........•....•.................. 17
Macro Invocat 10n•..•....................................•..........•....... 17
Append 1 ng To A Mac:ro •........••..•..............•.........................••....... 18
Summary - Macros••...............•.•.....•..........••......•.....•..... 18

COndittonal Ltne Processtng ... 19
Introduc:tion••.•................•.•............. ••..................•... 19
The . 'I f c:ommand•.. !...................... 19
Conditional Func:t'lons•............•.......................... 19
Summary - Cond 1 t 1 ona' L 'I ne Proc:ess i ng•..........•....... 20

Appl fcatton. Note. .. 21
Paragraphs ..•..........•....... 21
Sub-headi ngs•... 21
Major Headings ... 21
Tables of Contents ... 22

- 11'1 -

Quotations •••.•••.••..••••.........••.••••••••••••......•••••.••..•.•....••...•.•••
I tal i cs ••.••....•.•......••.•.•••••.....•.••..•.••••••.••••••••••.•.•••••••••...•..
Boldfacing •.••.•.••••.•...•....•.•...••••••••.............••..•••..••...•..•...••••
Exampl es .••••.•.•..•..••.••••.•••••••••••••.••••••..•.•.•••••••••••••...•••.•••••••
Table Construction ••..••.•.....•.•...•.•.•••..•••••......•.••••••...•.•.•.•..••••••

Subsyst Macro Packages
Introduct i on ..••••.•...••..•••.••.•••.•••.••.....••••••••••••••••••••••••••••••••••
Access 1 ng The User Gu i c:te Macros •........•..•.....••.•..•••.••••••.•.•....•..••••..•
Using The User Guide Macros •..••.•••••.•••••••..•••••••..•••••••...•..•••••.•••••••
The Printing Environment And The .HE Macro ••.•••.••.•.....•••••••.••..•.•••.••.•.••
Concl us ion •.••••.•.•...........•••••••.•••••••.•••••.••..••••••••.••••••••••••••••.

~ry of eo-nds Sortecl.Alphabettcally tf"

- iv -

22
23
23
23
23

24
24
24
24
26
26

27

For.word

'Fmt' is a program designed to facilitate the preparation of neatly formatted text. It
provides many features, such as automatic margin alignment, paragraph indentation, hyphenation
and pagination, that are designed to greatly ease an otherwise tedious job.

It is the intent of this guide to familiarize the user with the principles of automatic
text formatting in general and with the capabilities and usage of 'fmt' in particular.

- v -

a •• tcs

u

'Fmt' takes as input a file containing text with interspersed formatting instructions.
It is invoked by a command with various optional parameters, discussed below. The resultant
output is appropriately formatted text suitable for a printer having backspacing capabilities.
The output of 'fmt' is made available on its first standard output port, and so may be placed
in a file, sent to a line printer, or changed in any of a number of ways, Simply by applying
standard Software Tools Subsystem I/O redirection.

When 'fmt' is invoked from the Subsystem, there are several optional parameters that may
be specified to control its operation. The full command line syntax is

fmt [-s] [-p<first>t-<last>]] { <file name> }

A brief explanation of the cryptic notation: the items enclosed within squane brackets ("[JII)
are optional -- they mayor may not be specified; items enclosed between braces ("{~) may
occur any number of times, including zero; items enclosed in angle brackets (H<>") designate
character strings whose significance is suggested by the text within the brackets; everything
else Should be taken literally. .

And now for an explanation of what these parameters mean:

-s

-p ••.

<fi Ie>

If this option is selected, 'fmt' will pause at the top of each page, ring the bell
or buzzer on your terminal, and wait for a response. This feature is for the
benefit of people using hard-copy terminals with paper not having pin-feed margins.
The correct response, to be entered after the paper is mounted, is a control-c (hold
the 'control' key down and type 'e').

This option allows .election of which pages of the formatted document will actually
be printed. Immediately following the "_p" , without any intervening spaces, should
be a number indicating the first page to be printed. Following thiS, a second num­
ber may be specified, separated from the first by a s1ngle dash, which indicates the
last page to be printed. If this second number is omitted, all remaining pages will
be produced.

Any number of file names may be specified on the command line. 'Fmt' will open the
files in turn, formatting the contents of each one as if they constituted one big
file. When the last named file is processed, 'fmt' terminates. If no file names
are specified, standard input number one is used. In addition, standard input may
be speCified explicitly on the command line by USing a dash as a file name.

Commanets .net Text

'Fmt', like almost every other text formatter ever written, operates on an input .tream
that consists of a mixture of text and formatting .commands. Each command starts at the begin­
ning of a line with a 'control Character', usually a period, followed by a two character name,
in turn followed by some optional 'parameters'. There must not be anything else on the line.
For example, in

.t. 11 21 31 41

the control character is a period, the command name is ta, and there are fOllr parameters:
"11", "21", "31" and "41". Notice that the command name and all the parameters must be
.eparated from each other by one or more blanks. Anything not recognizable as a command is
treated as text.

Ft1led Text

'Fmt' collects as many words as will fit on a s1ngle output"line before actually writing
it out, regardless of line boundaries in its 1nput stream. This is called 'filling' and is
standard practice for 'fmt'. It can, however, be turned off with the 'no-fill' command

.nf

and lines thenceforth will be copied from input to output unaltered. When you want to turn
f1111ng back on again, you may do so with the 'fill' command

.ff

and 'fmt' will resume its normal behavior,

- 1 -

Text Formatter User's Guiae

If there is a partially filled line that has not yet been written out when an nf command
is encountered, the line 15 forced out before any other action is taken. This phenomenon of
forcing out a partially filled line is known as a 'break' and occurs implicitly with many
formatting commands. To cause one explicitly, the 'break' command

.br

is available.

Hyphenat t on
If, while filling an output line, it is discovered that the next word will not fit, an

attempt is made to hyphenate it. Although 'fmt' is usually quite good in its chOice of where
to split a word, it occasionally makes a gaffe or two, giving reason to want to turn the
feature off. Automatic hyphenation c~n be disabled with the 'no-hyphenation' command

(

.nh

long enough for a troublesome word to be processed, and then reenabled with the 'hyphenate'
command

.hy

Neither command causes a break.

Margtn Adjust..nt

After filling an output line, 'fmt' inserts extra blanks between words so that the last
word on the line is flush with the right margin, giving the text a Mprofessional· appearance.
This is one of several margin adjustment modes that can be s.'ected with the 'adjust' command

.ad <mode>

The optional parameter <mode> may be anyone of four single characters: Mb M, MC M, M1M or Mr M.
If the parameter is Mb M or missing, normal behavior will prevail -- both margins will be made
even by inserting extra blanks between words. This is the default margin adjustment mode. If
·c· is specified. lines will be shifted to tha right so that they are centered between the
left and right margins. If the parameter is "1 M, no adjustment will be performed; the line
will start at the left margin and the right margin will be ragged. If Mr" Is specified, lines
will be moved to the right so that the right margin is even, leaving the left margin ragged.

The 'no-adjustment' command

.fta

has exactly the same effect as the following 'adjust' command:

.ad 1

No adjustment will be performed, leaving the left margin even and the right margin ragged. In
no case does a change in the adjustment mode cause a break.

Centering

Input lines may be centered, without filling, with the help of the 'center' command

.ce N

The optional parameter N Is the number of subsequant input lines to be centered between the
left and right)marglns. If the parameter is omitted, only the next line of input text Is
centered. Typically, one would specify a large number, say 1000, to avOid having to count
lines; then, immediately following the lines to be centered, give a 'center' command with a
parameter of zero. For example: •

• ce 1000
more lines
than I care
to count
.ce 0

It Is worth noting the difference between

.ce

and

- 2 -

. ad c

When the former ts used. an impl1ctt break occurs before each ltne ts printed. preventing fil­
ling of the centered ltnes; when the latter is u.ed. each line is filled with as many' words as
possible before centertng takes place.

Sentence Punctuatton

By default. 'fmt' adds an extra blank after punctuation at the end of a .entence;
specifically. after periods. colons. exclamatton points and question marks. This may not be
desirable. particularly when abbreviattons or a person's initials are involved. Thus, it can
be turned on and off at Will. The 'Single-blank' command

• lib

turns the mode off, while the 'extra-blank' command

.xb

turns it back on again. As with hyphenation. neither command causeS a break.

c-.nc:s
Syntax

.. ad <mode>

.br

.ce N

. f 1

. hy

. na

.nf

. nh

. sb

. xb

Ltne Spactng

Inttial
Value

-btl

on

on

off

on

If no cau.e
Par ... ter Break Explanatton

Mb" no Set margin adjustment mode.

yes Force a break.

N-1 yes Center N input text lines.

no Turn on fill mode .

no Turn on automatic hyphenation .

no Turn off margin adjustment .

yes Turn off fill mOde. (Also inhtb1ts adjustment.)

no Turn off automatiC hyphenation .

no Single blank after end of sentence .

no Extra blank after end of sentence .

Spact ng and Page control

'Fmt' usually produces single-spaced output. but this can be changed. without a break.
using the 'line-spacing' command

.1. N

The parameter N specifies how many lines on the page a single line of text will use; for
dOuble spacing. N would be two. If N is omitted. the default (single) spacing is reinstated.

Blank lines may be produced with the 'space' command

.ap N

The parameter N is the number of blank lines to be produced; if omitted. a value of one is
assumed. The sp command first causes a break; this not only causes a partially filled line to
be output. but if the current line spacing is more than one. the break will cause the extra
blank lines to be output as well. Then the blank lines generated by sp are output. Thus, if
output is being double-spaced and the command

.sp 3

is given, four blank lines will be generated: one from the dOuble-spacing that is in effect,
and three from the sp command. If the value of N calls for more blank lines than there are

- 3 -

Text Formatter User's Guide

remaining on the current page. any extra ones are discarded. This ensures that, normally,
each page begins at the same distance from the top of the paper.

Page Dtvtston

'Fmt' automatically divides its output into pages, leaving adequate room at the top and
bottom of each page for running headings and footings. There are several commands that
faCilitate the control of page divisions when the normal behavior is inadequate.

The 'begin-page' command

.bp .:!:.N .
causes a break and a skip to the top of the next page. If a parame~r is givan, it serves to
alter the page ru.,b ... · "nd su it must be numeric with an optional plus or minus sign. If the
parameter is omitted, the page number is incremented by one. If the command ~ccurs at the top
of a page before any text has been printed on it, the command is ignored, except perhaps to
set the page number. ThiS is to prevent the random occurrence of blank pages.

The optionally signed numeric parameter is a form of parameter used by many formatting
commands. When the sign is omitted, it indicates an absolute value to be used; when the sign
is present, it indicates an amount to be added to or subtracted from the current value.

The page number may be set independently of the 'begin-page' command with the 'page­
number' command

.pn .:!:.N

The next page after the current one, when and if it occurs, will be numbered .:!:.N. No break is
caused.

The length of each page produced by 'fmt' is normally 66 lines. This is standard for
eleven inch paper printed at six lines per inch. However, if non-standard paper is used, the
printed length of the page may easily be changed with the 'page-length' command

.pl .:!:.N

which will set the length of the page to.:!:.N lines without causing a break.

It is possible skip an arbitrary number of pages in a controlled fashion. To do this,
use the 'page-skip' command

.ps <max> <modulus>

<Max> is the maximum number of pages plus one that 'fmt' will skip. <Modulus> is the number
which 'fmt' uses modulo the next output page number to count skipping pages. It works as fol­
lows: 'Fmt' sees the .ps command. It computes the page number of the current page plus one,
and then takes the remainder of that number divided by the <modulus>, and saves it. 'Fmt'
skips pages, adding one to this saved value. As long as this value is l!!! than <max>, it
continues to skip pages. For instance, if the current page is 15, and you issue a

.pS 3 5

command, 'fmt' would compute ((15 + 1) mod 5), yielding (16 mod.5), which is one (16 divided
by 5 is 3, with 1 left over). It will then skip two pages, since it started with one, then
skipped one, which is two. This is still less than three, so it skips one more page, yielding
three, which is not less than three, so it stops. It is really quite simple. For instance,
to skip to the next even page, use

.ps 2 2

and to skip to -.the next odd page, use

.ps 1 2

This feature is particularly useful for writing macros which a1d with large documents. For
example, it may be necessary that a chapter always start on an odd numbered page. So the
'begin chapter' macro would have a '.ps 1 2' as one of its lines. (See later for more details
on how to write macros.)

Finally, if it is necessary to be sure of having enough room on a page, say for a figure
or a graph, use the 'need' command

.ne N

'Fmt' will cause a break, check if there are N lines left on the current page and, if 50, will
do nothing more. Otherwise, it will skip to the top of the next page where there should be
adequate room.

- 4 -

'No-space I Mode

'No-space' mod. 1s a feature that ass1sts in preventing unwanted blank lines from
appearing, usually at the top of a page. When in effect, certatn commands that cause blank
lines to be generated, such as tip, and sp, are suppressed. For the most part, 'no-space'
mode is managed automatically; it is turned on automatically at the top of .ach page before
the first text ha. appeared, and turned off again automatically when a line of output is
generated. This accounts for the suppression of tip commands at the top of a page and the
discarding of excess blank lines in sp commands.

'No-space' mode may be turned on explic1tly with the 'no-space' command

.n.
and turned off expliCitly with the 'restore-spacing' command

.r.

Neither command causes a break.

I..-ry - Spactng and P.ge Control

Coananc:l
Syntax

. bp :tN

.1 s N

.ne N

.ns

.pl :tN

.pn :tN

.ps N M

. rs

.sp N

Margins

Intttal
Value

on

If no cau.e
Pa~t.r Break EJCplanatton

next

Na1

N=66

ignored

yes

yes

yes

no

no

no

yes

Begin a new page .

Set line spacing.

Express a need for N contiguous 11nes.

Turn on 'no-space' mode.

Set page length.

Set page number.

Skip pages while (page number mod M) is '.ss than N.

no Turn off 'no-space' mode .

yes Put out N blank lines.

Margtns and Indentation

All formatting operattons are performed withtn the framework of a page whose Size is
defined by four margins: top, bottom, left and right. The top and bottom margins determine
the number of lines that are left blank at the top and bottom of each page. Likewise, the
left and rtght margins determine the first and last columns across the page into which text
may be placed.

Both
the header
top margin
margins of

the top and the bottom margins consist of two sub-margins that fix the location of
and footer ltnes. For the sake of clarity, the ftrst and second sub-margins of the
will be referred to as 'margin l' and 'margin 2', and the first and second sub­
the bottom margin, 'margin 3' and 'margin 4' ..

The value of margin 1 is the number of lines to skip at tne top of each page before the
header line, plus one. Thus, margin 1 includes the header line and all the blank lines
preceding it from the top of the paper. By default, its value is three. Margin 2 1S the num­
ber of blank lines that are to appear between the header ltne and the ftrst text on the page.
Normally, it has a value of two. The two together form a standard top margin of five lines,
with the header line rtght tn the middle. It ts easy enough to change these defaults if they
prove unsatisfactory; just use the 'margin-1' and 'marg;n-2' commands

.m1 +N

.112 !N
to set either or both sub-margins to :tN.

- 5 -

Text Formatter User's Guide

The bottom margin is completely analogous to the top margin. with margin 3 being the num­
ber of blank lines between the last text on a page and the footer line. and margin 4 b.ing the
numb.r of lines from the footer to the bottom of the pap.r (including the footer). They may
be s.t using the 'margin-3' and 'margin-4' commands

.113 +N

.M !N

whiCh work just like th.ir counterparts tn the top margin; non. of these commands cause a
br.ak.

Lef t and Right Marat ns

The left and right margins d.ftn. the first and last columns into which text may b.
flr'n·,eQ. " .•• y aff.ct such thtngs as adjustment and centttring. The left margin is normally
set Lt column one. though this is easily changed with the 'left-margin' command

.1. ;!:N

The right margin. which is normally position.d in column sixty. can b. s.t similarly with the
'right-margin' command

• r'II ;!:N

To ensure that the new margins apply only to subsequent text. each command causes a break
before changing the margin value.

Indentation

It is oft.n desirable to change the effective value of the left margin for indentation.
without actually changing the margin itself. For instance. all of the examples in this guide
are indented from the left margin in order to s.t them apart from the rest of the text.
Indentation is easily arranged using the 'ind.nt' command •

• In ;!:N

whose paramet.r specifi.s the numb.r of columns to indent from the left margin. The initial
indentation valu •• and the one assumed if no parameter is given. is z.ro (i .•.• start in the
l.ft margi n).

For the purpose of margin adjustment. the current indentation value is added to the left
margin value to obtain the .ffective left margin. In this resp.ct. the ,. and In commands are
quite similar. But. whereas the left margin value affects the placement of centered lines
produced by the ce command. indentation is complet.ly ignored when lines are center.d.

Paragraph indentation poses a sticky probl.m in that the ind.ntation must b. applied only
to the first lin. of the paragraph. and then normal margins must b. resumed. This can't b.
done conv.ni.ntly with the 'indent' command. since it caus.s a break. Ther.fore. 'fmt' has a
't.mporary-indent' command

.tt ;!:N

whose function is to caus. a br.ak. alter the curr.nt ind.ntation value by +N until the next
lin. of t.xt is produced. and than r.s.t the indentation to its previous value. So to begin a
n.w paragraph with a five column indentation. on. would say

.tt +5

Pa .. Offset

As if control Over the left margin position and indentation were not enough. there is yet
a third means for controlling the position of text on the page. ~he concept of a page offset
involves nothing more than prepending a numb.r of blanks to each and every line of output. It
is primarily intended to allow output to be eaSily positioned on the paper without having to
adjust margins and indentation (with all their attendant Side effects) and without having to
physically move the paper. Although the page offs.t is initially zero. other arrangements may
b. made with the 'page-offs.t' command

.po ;!:N

which causes a break.

'Eo' and '00' commands allow you to specify diff.rent page offs.ts for ev.n- and odd­
numbered pages r.Spectively. Like 'po'. they are initialized to z.ro and r.vert to that value
wh.n no parameter is specified. For instanc ••

- 6 -

.eo ;!:N

will change the even-numbered page offset by N (or to N if no sign is specified).

Margl n Characters

It is common practice in the revision of technical literature to indicate parts of the
text that are different from previous versions of the same document. SuCh changes are usually
indicated by -revision bars· which are vertical lines in the left margin of lines that are new
or revised. 'Fmt' provides for this capability with two formatting commands. The 'margin­
offset' command,

• .0 ;!:N

without causing a break, specif1.1s Lt::...; cc.lumns are to be re.erved between the 'page­
offset' columns and the 'left-mat·gin' column for revision bars or other marginal characters.
The margin offset starts out at zero, and reverts to that value if no parame~r is specified.

c.

Once a non-zero margin offset has been .et. any arbitrary character may be placed in the
leftmost column of the area with the 'margin-character' Command:

.IIC <char>

Initially, and when <char> is omitted, this character has blank as its value. For revision
bars. <char> would be specified as -1-. Whatever character is specified. it is placed next to
the left margin on every line of output as long as the margin offset is non-zero.

S&.MIary - Margins and Indentation

CoMand
Syntax

.eo iN

. in iN

. lm ;tN

. m1 iN

• m2 ;tN

• m3 ;tN

.m4 iN

.mc <char>

. mo iN

.00 ;tN

.po iN

. rm iN

.ti iN

Intttal
Value

BLANK

N-O

Three Part Tttles

If no Cause
Par.-tar areak Explanation

N=O

BLANK

N=O

N=O

yes

yes

yes

no

no

no

no

no

no

yes

yes

yes

yes

Set even page offset.

Indent left margin .

Set left margin .

Set top margin before and including page heading .

Set top margin after page heading .

Set bottom margin before page footing .

Set bottom marg in i nc 1 ud i ng and after page foot i ng .:

Set margin character.

Set margin offset .

Set odd page offset.

Set page offset.

Set right margin .

Temporarily indent left margin.

HeaCltngs. Foottngs and Tttlas

A three part title is a line of output consisting of three segments. The first segment
is left-justified, the second is centered between the left and right margins. and the third is
right-justified. For example

left part center part right part

is a three part title whose first segment is "left part", whose second segment 1s "center
part", and whose third segment 1s "right part".

- 7 -

Text Formatter User's Guide

To generate a title at the current position on the page. the 'titl.' command is
available:

.t1 /left part/center part/right part/

In fact. this command was used to generate the previous example. The parameter to the title
command is made up of the text of the three parts. with each segment enclosed within a pair of
delimiter characters. Here. the delimiter is a slash. but any other character may be used as
long as it is used consistently within the same command. If one or more segments are to be
omitted. indicate this with two adjacent delimiters at the desired position. Thus,

.tl II/Page 1/

specifies only the third segment and would produce something like this:

Page 1

It is not necessary to include the trailing delimiters.

To facilitate page numbering. you may include the sharp character ("N") anywhere in the
text of the title; when the command is actually performed. 'fmt' will replace all occurrences
of the .," with the current page number. To prOduce a literal Sharp character 1n the title.
it should be preceded by an •••

so that it loses its special meaning.

The first segment of a title always starts at the left margin as specified by the 1. com·
mand. While the third segment normally ends at the right margin as specified by the ~ com­
mand. this can be changed with the 'length-of-title' command:

.1t ;tN

which changes the length of subsequent titles to +N. still beginning at the left margin. Note
that the title length is automatically set by the-1. and ra commands to coincide with the
distance between the left and right margins.

'.ge dtngs and Foottngs

The most common uses for three part titles are page headings and footings. The header
and footer lines are initially blank. Either one or both may be set at any time. without a
break. by using the 'header' command

.he /left/center/right/

to set the page heading. and the 'footer' command

.fo /left/center/right/

to set the page footing. The change will become manifest the next time the top or the bottom
of a page is reached. As with the tl command, the .," may be used to access the current page
number.

It is often desirable when producing text to be printed on both sides of a page to have
different headings and footings on odd- and even-numbered pages. Although the he and fo com·
mands affect the headings and footings on all pages, it 1s possible to set up independent
headings and footings for odd· and even-numbered pages. For odd-numbered pages, the 'odd·
header' and 'odd-footer' commands are available:

.oh /left/center/right/

.of/left/center/right/

while the 'even-header' and 'even-footer' commands are provided for even-numbered pages:

.eh /left/center/right/

... /left/center/right/

As an illustration. the following commands were used to generate the page headings and
footings for this guide:

.eh /Text Formatter User's Guide///

.oh ///Text Formatter User's GUide/

.fo //- I -//

- B -

----- ._ _--_. ---- - -- ---

I..-ry - dtngs, Foottngs .nd Titl ••

co.anc:l Initt.' Uno eause
Synt.x Value ' t.r Break Expl.natton

.ef /l/c/r/ blank blank no Set even-numbered page footing.

.ah /l/c/r/ blank blank no Set even-numbered page heading.

.fo /l/c/r/ blank blank no Set running page footing.

.he /l/c/r/ blank blank no Set running page heading.

.1 t ;!:N N-60 N-60 no Set length of header, footer and titles.

.of /l/c/r/ i:·l,.hl< blank no Set odd-numbered page footing.

.oh /l/c/r/ blank blank no Set odd-numbered page heading. (.

.tl /l/c/r/ blank blank yes Generate a three part title.

TabUl.tton

Tab.

~ust like any good typewriter, 'fmt' has facilities for tabulation. When it encounters a
special character in its input called the 'tab character' (analogous to the TAB key on a
typewriter), it automatically advances to the next output column in which a 'tab stop' has
been previously .et. Tab stops are always measured from the effective l!!! marain, that is,
the left margin plus the current indentation or temporary indentation value. Whatever column
the left margin may actually be in, it is always assumed to be column one for the purpose of
tabulation. .

Originally, a tab stop is set in every eighth column, starting with column nine. This
may be changed using the 'tab' command

.t. <col> <col> ...

Each parameter specified must be a number, and causes a tab stop to be set in the correspond­
ing output column. All existing .tops are cleared before setting the new ones, and a stOp is
.et in every column beyond the last one specified. This means that if no columns are
specified, a stop is set in every column.

By defaul.t, 'fmt' recognizes the ASCII TAB. control-i, as the 'tab character'. But since
this is an invisible character and is guaranteed to be interpreted differently by different
terminals, it can be changed to any character with the 'tab-character' command:

.tc <char>

While there is no restriction on what particular character is .pecified for <char>, it is wise
to chooso one that doesn't occur too frequently elsewhere in the text. If you omit the
parameter. the tab character reverts to the default.

When 'fmt' expands a tab character. 1t normally puts out enough blanks to get to the next
tab stop. In other words, the default 'replacement' character is the blank. This too may
easily be changed with the 'replacement-character' command:

.re <char>

As with the tc command, <char> may be any single character. If omitted. the default is used.

A common alternate replacement character is the period. w~ich is frequently used in
tables of contents. The following example illustrates how one m(ght be constructed:

- 9 -

Text Formatter User's Guide

.ta 52

.tc \
Section Name\Page
.re
.sp
.nf
.ta 53
Basics\1
Filling and Margin Adjustment\2
Spacing and Page Control\5
.sp
.fi

The result should look abowt lik. this:

Section Name

Bas iCs•••..•••.•...•.....•.•.......•.. 1
Filling and Margin Adjustm.nt•.. 2
SpaCing and Page Control. 5

A final word on tabs: Since the default replac.ment character is a blank you might think
that, in the process of adjusting margins (t .•.• wh.n the adjustment mode is "b-), 'fmt' might
throw in extra blanks betwe.n words that were separated by the tab character. Since this is
definitelY!l2! the expected or deSired behavior. 'fmt' uses what is called a "phantom blank"
as the default replacement character. The phantom blank pr1nts as an ordinary blank, but is
not recognized as one during margin adjustment.

s.-ary - T.tJulatton

eo.anc:t Inittal Uno caus.
Syntax Value Pa~t.r Break Explanation

.ta N 9 17 all no Set tab stops.

.tc c TAB TAB no Set tab character.

.rc c BLANK BLANK no Set tab replacement character.

Ni scellaneous COIIIIands

It is rare that a document survives its writing under the pen of just one author or
editor. More frequently. several different people are likely to put in their two cents worth
concerning its format or cont.nt. So. if the author is particularly attached to something he
has written. he 1s w.ll advised to say so. Comments are an ideal vehicle for this purpose and
are easily introduced with the 'comment' command

.1 <comm.ntary t.xt>

Everything aft.r the I up to and including the next newline character is completely ignored by
'fmt'.

Boldfacing. Underl tntng. and !tal ictztng

'Fmt' mak •• provistons for boldfactng. underltninp, and ftalfcfzing lines or parts
ther.of with three commands:

.M N

boldfaces the next N lines of input text. while

. tt N

italicizes the next N lines of input text. and

.ul N

underlines the next N lines of input text. In all three cases. if N is omitted. a value of
one is assumed. Neither command causes a break. allowing single words or phrases to be bold-

- 10 -

faced, italicized, or underlined without affecting the rest of the output line.

It is also possible to use them in combination. For instance, the heading at the begin­
ning of the table of contents was produced by a sequence of commands and text similar to the
following:

.bf

.ul
TABLE OF CONTENTS

As with the 'center' command, these Commands are often used to bracket the lines to be affec­
ted by specifying a huge parameter value with the first occurrence of the command and a value
of zero with the second:

.bf 1000

.ul 1000
lots of lines
to be
boldfaced
and
underlined
.bf 0
.ul 0

On a line printer, ft.,fcfzed text, and underlined text will look the same. But the sequences
of characters that 'fmt' generates for these two types of text are different, and the 'lz'
program distinguishes between the two when producing output for the local Xerox .700 laser
printer. On a CRT terminal, ftalicfzed text will show up as just a sequence of underscores.
In short, if you are not producing text to be post-processed by 'lz', just use underlining,
and not italicizing.

As mentioned 1n the first section, command lines are distinguiShed from text by the
presence of a 'control character' in column one. II:
select a new value:

.CC <char>

The parameter <Char>, which may be any single character, becomes the new control character.
If the parameter is omitted, the familiar period is reinstated.

It has been shown that many commands automatically cause a break before they perform
their function. When this presents a problem, it can be altered. If instead of using the
basic control character the 'no-break' control character is used to introduce a command, the
automatic break that would normally result is suppressed. The standard no-break cont.rol
character is the grave accent (M'M), but may easily ba changed with the following command:

.c2 <char>

As with the CC command, the parameter may be any single character, or may be omitted if the
default value is desirad.

p~ttng

Brief. one-line messages may be written directly to the user's terminal using the
'prompt' command

.ar <brief, one-line message>

The text that is actually written to the terminal starts with the first non-blank character
following the command name, and continues up to, but not including, the next newline charac­
ter. If a newline character should be included 1n the message, the escape sequence

may be used. Leading blanks may also be included in the message by preceding the message with
a quote or an apostrophe. 'Fmt' will discard this character, but will then print the rest of
the message verbatim. For instance,

.er ' this is a message with 10 leading blanks

would write the following text on the termina', leaving the cursor or carriage at the end of

- 11 -

Text Formatter User's Guide

the message

this is a message with 10 leading blanks

For a multiple-line message, try

.er multiple.nline.nmessage.n

The output should look like this:

multiple
line
message

•
Prompts are particularly useful in form letter applications where there may uO several

pieces of information that 'fmt' has to ask for in the course of its work. \. The next section
describes how 'fmt' can dynamically obtain information from the user.

P,......ture TerMination

If 'fmt' should ever encounter an 'exit' command

.ex

in the course of doing its job, it will cause a break and exit immediately to the Subsystem.

sun.ry - M t scellaneous eon.ands

eo-nd
syntax

• 11

. bf N

. c2 c

.cc c

.er text

.ex

. it N

.ul N

Initial
Value

Input FUe COntrol

If no Cause
Par_ter Break Explanation

no Introduce a comment .

no Boldface N input text lines .

no Set no-break control character .

no Set basic control character.

ignored no Write a message to the terminal.

yes Exit immediately to the Subsystem.

no Italicize N input text lines .

no Underline N input text lines.

Input/Output ProceSSing

Up to this point, it has been assumed that 'fmt' reads only from its standard input file
or from files specified as parameters on the command line. It is also possible to dynamically
Include the contents of any file In the midst of formatting another. This aids greatly in the
modularization·of large, otherwise unwieldy documents, or in the definition of frequently used
sequences of commands and text.

The 'source' command is available to dynamically Include the. contents of a file:

.SO <file>

The parameter <file> is mandatory; it may be an arbitrary file system pathname, or, as with
file names on the command line, a single dash (,,-,,) to specify standard input number one.

The effect of a 'source' command Is to temporarily preempt the current input source and
begin reading from the named file. When the end of that file Is reached, the original source
of input is resumed. Files included with 'source' commands may themselves contain other
'source' commands; in fact, this 'nesting' of input files may be carried out to virtually any
depth.

- 12 -

'Fmt' provides one additional command for manipulating input files. The 'next file' com-
mand

.N< <f11e>

may be used for either one of two purposes. If you specify a <file> parameter, all current
input files are clo.ed (including those opened with 80 commands), and the named file becomes
the new input source. You can use this for repeatedly processing the same file, as, for exam­
ple, with a form letter. If you omit the <f11e> parameter, 'fmt' st111 closes all of its
current input files. But instead of using a file name you supply with the nx command, it uses
the next file named on the command line that invoked 'fmt'. If there is no next file, then
formatting terminates normally.

Neither the SO command nor the nx command causes a break.

OUtput Fil. Control

The output of the formatter is always written on STDOUT unless you div~rt it with the
divert output stream command, 'dv'. 'Dv' can be used to divertfmt's output to a named file:

.dv <f11e>

All output is written in <file> until a 'dv' command with no parameter
also be used to divert output to a temporary file that can be later
mand. This is useful for generating tables of contents for documents
Notes" section). The command

.CIv N

is specified. 'Dv' can
read with the 'so' com­
(see the -Application

diverts output to stream 'N' and can be read at any time and repeatedly by the command

.so N

Output will be diverted until the the 'dv' command is seen again without parameters. (N can
be an integer between i and 100; the upper limit may be somewhat less for you --- it depends
on the number of file units that you can have open and the number of file units that you
actually have open at the time the command is executed).

The basic difference between the two variants of 'dv' is that 'dv <file>' opens <file>
for WRITE access; <file> cannot be used as an input file. 'Dv N' opens a temporary file for
READ/WRITE access; therefore, 'so N' causes the temporary file to be rewound and read. If the
command 'dv N' occurs a second, third, fourth etc. time, diverted lines are appended to the
end of that .ame temporary file.

One final important comment is necessary. We were hesitant to even tell you about 'dv'
because of its rather nasty habit of executing commands instead of diverting them. Since it
is the only way for you to generate automatic table of contents we decided to document it.
~ust keep in mind that when you want to divert commands, precede them by a Character other
than your control character; you can later designate that character as your control character
before you read the stream.

Functtons, Vart." •• and Special Characters

Whenever 'fmt' reads a line of input, no matter what the source may be, there is a
certain amount of 'pre-procesSing' done before any other formatting operations take place.
This pre-processing conSists of the interpretation of 'functions', 'variables' and 'special
characters'. A 'function' is a predefined set of actions that produces a textual result, pos­
sibly based on some user supplied textual input. For example, one hypothetical function might
be named 'time', and its result might be a textual r.presentation of the current time of day:

14:32:25

A 'variable' is simply one of 'fmt's internal parameters, such as the current page length or
the current line-spacing value: the name of each variable is the .ame as the two-character
name of the corresponding command to set the value of th~ parameter. The result of a
variable is just a textual representation of that value.

A 'special character' is like a function or variable, but its result is a single charac­
ter that cannot be conveniently generated from the keyboard.

From the standpoint of a user, functions, variables and special characters are all very
similar. In fact, they are invoked identically by enclosing the appropriate name, plus any
text to be used as arguments, in square brackets:

[bf This text to be boldfaced]
[1 s]
[alpha 5]

- 13 -

Text Formatter User's Guide

Such a construct is known as a Ufunction ca". N

When 'fmt' sees a function call in an input line, it excises everything in between the
brackets, including the brackets themselves, and inserts the results in its place. Naturally,
anything not recognizable is left alone. If by chance you want the name of a function,
variable or special character enclosed in square brackets included literally as part of the
text, you can inhibit evaluation by preceding the left bracket with the escape character:

Similarly, a right bracket may appear literally inside a function call when preceded by an
escape character:

•
It is also possible to Unest H function calls so that the ~'es ·'ts of one may be used as
arguments to another:

[bf [ldate]]

Nullber Regtsters

The 'number registers' are a group of 200 accumulators (numbered 1-200) on
arithmetic operations may be performed. They find their greatest use in the
documents with numbered sections and paragraphs. Number registers are
manipulated by a special set of functions. The 'set' function

[set reg value]

which simple
preparation of
accessed and

assigns the integer 'value' to the register 'reg' and yields the empty string as its result.
The 'add' function

[add reg value]

adds the integer 'value' (which, by the way may be
'reg'. This function also yields an empty result.

[num reg]

positive or negative) to
Finally, the 'num' function

the register

yields the current value of the register 'reg' as its result. In addition, 'reg' may either
be prefixed or postfixed by a plus or minus sign. If the sign appears before the register
number, the register is incremented or decremented (according to the sign) by one, before the
function's result is yielded. If the sign follows the register number, though, the register'S
current value is yielded and then the register is incremented or decremented.

Functtons

The following table summarizes the available functions:

add
bf
cu
date
day
ldate
num

rn
RN
set
sub
sup
time
ul
letter
LETTER
.vertspace
even
odd
cap
small
plus
minus
header
evenheader
oddheader

Add constant to number register
Boldface the arguments on output
Output the arguments with a continuous underline
Current date; e.g., 08/16/85
Current day of the week; e.g., Friday
Current date: e.g., August 16, 1985
Output value of number register with optional pre- or post-incrementation or
decrementation
Convert the argument to a lower-case Roman numeral
Convert the argument to an upper-case Roman numeral
Set number register to value
Output the arguments as a subscript (requires post-processor, e.g. 'sprint')
Output the arguments as a superscript (requires post-processor)
Current time of day: e.g., 14:32:29
Underline the arguments on output
Convert a number to its lower case equivalent
Convert a number to its upper case equivalent
Change the vertical spacing on a NEC Spinwriter (requires spinwriter)
Test if number is even
Test if number is odd
Capitalize Text
Map all characters of text to lower case
Add two numbers
Subtract two numbers
Return the page header
Return the even page header
Return the odd page header

- 14 -

footer
evenfooter
Oddfooter
cmp
icmp
it
bottom
top

V.,.t.t»le.

Return the page footer
Return the even page footer
Return the odd page footer
Perform string comparison
Perform tnteger compar1son
It.11cize the argu~nts on output
Return the number of the last pr1nted line

. Return the nulllbar of the first pr 1 nted li ne

'.--" '-""-IIIGL ... ,. W •• , .,

The formatting parameters whose values are available through function calls are sum­
marized in the following table:

cc
c2
in
1m
ln
ls
lt
ml
m1
m2
m3
m4
ns
pl
pn
po
rm
tc
t1
tcpn

Current basi c contre 1 character j!'
Current no-break control character
Current 1nden.tat10n value
Current left margin value
Current l1ne number on the page
Current 11ne-spacing value
Length of t1tles
Current macro 1nvocat10n level
Current margin 1 value
Current margin 2 value
Current margin 3 value
Current margin 4 value
True or false 1f no-space is in effect
Current page length value
Current page number
Current page offset value
Current right margin valu.
Current tab character
Current temporary indentation value
Current page number. right justified in 4 character field

Spectal Cha,..cte,..

The follOwing table summarizes the ava1lable specfal characters. In each case. a
pos1t1ve integer may be 1ncluded as an argument following the name to produce multiple
instances of the character. For example. -[bl 5]- yields five contiguous phantom blanks.
NOTE: in order for the Greek letters and mathematical symbols to be printed correctly, a
post-processor such as 'aprint' (se. Section 3 of the Software Tools Subsystem Reference
Manual) anet/or special printing equipment is required.

bl Phantom blank
bs BaCkspace
alpha lower-case Greek alpha

... ALPHA upper-cas. Greek alpha
beta lower-cas. Greek beta

... BETA upper-case Greek beta

... chi lower-ca.e Greek Chi

... CHI upper-case Greek chi
delta lower-ca.e Greek delta

... DELTA uP!i:er-case Greek delta
epsilon lower-case Greek &ps 11 on

... EPSILON upper-case Greek epsilon
eta tower-case Greek eta

... ETA upper-case Greek eta
ga_a lO.wer-case Greek $Iamma
GAMMA upper-ca.e Greek gamma
infinity int ini tysymbol
integral integration symbol

... INTEGRAL large integration symbol

... iota lower-ca.e Greek iota
'" IOTA upper-case Greek 10ta --'" kappa lower-case Greek kappa
'" KAPPA upper-ca •• Greek kappa

lambda lower-case Greek lambda
LAMBDA upper-ca.e Greek lambda
mu lower-case Greek mu

... MU upper-case Greek mu
nabla inverted delta (APL del)
not EBCDIC-style not symbol

'" nu lower-ca.e Greek nu
... NU upper-case Greek nu

omega lower-case Greek omega
OMEGA upper-case Greek omega

- 15 -

Text Formatter User's Guide

.. omicron

.. OMICRON
partial
phi
PHI
psi
PSI
pi
PI
rho

.. RHO
sigma
SIGMA
tau

.. TAU
theta
THETA

.. upsilon

.. UPSILON
xi

.. XI
zeta

.. ZETA

.. downarrow
* uparrow
* backslash
* tilde
* largerbrace
* largelbrace
* proportional
* apeq
* ge
* imp
* exist
* AND
* ne
* psset
* sset
* le
* nexist
* univ
* OR
* iso
* lfloor
* rfloor
* 1 ceil
* rceil
* smallO
* smal11
* smal12
* smal13
* smal14
* smal15
* smal16
* small7
* smallS
* smal19
* scolon
* dquote
* dollar

lower-case Greek omicron
upper-case Greek omicron
partial differential symbol
lower-case Greek phi
upper-case Greek phi
lower-case Greek psi
upper-case Greek psi
lower-case Greek pi
upper-case Greek pi
lower-case Greek rho
upper-case Greek rho
lower-case Greek sigma
upper-case Greek sigma
1 ower-case. Greek tau
upper-case Greek tau
lower-case Greek theta
upper-case Greek theta
lower-case Greek upsilon
upper-case Greek upsilon
lower-case Greek xi
upper-case Greek xi
lower-case Greek zeta
upper-case Greek zeta
arrow pointing down
arrow pointing up
back slash symbol
tilde symbol
large square right brace
large square left brace
proportional symbol
approximately equal to
greater than or equal to
implies
there exists
logical and
not equal to
proper subset
subset
less than or equal to
there does not exist
for every
logical or
congruence
left floor
right floor
left ceil ing
right ceiling
a small 0
a small 1
a small 2
a small 3
a small 4
a small 5
a small 6
a small 7
a small S
a small 9
semicolon
double quote
dollar sign

The special characters marked with an asterisk (*) are only available on the NEe Spln­
wrtter, and so· the output of 'fmt' mY!! be post-processed with 'sprint'.

In particular, the.~ characters require that the special Times-Roman/Mathematics type
wheel be in the Sptnwrl~r. This wheel, in order to aCCommodate ~he special characters, lacks
certain of the regular ASCII graphics. These are substituted for by special functions. For
example, [scolon) is used to produce a semi-colon.

- 16 -

s..-ry - Input Processing

If no cause ea.anc:l
Syntax

Initial
Value Pa~ter areal<. Explanatton

.dv [stream] -

• nx file

.so <stream> -

"CI"O Definition

end ' .dv' no

next arg no

ignor.d no

Temporarily div.rt the output str .. m to a -fil.name"
or to a temporary fil. designated by an int.ger "N­
(to be later read by a M.SO N" command) until a 'dv'
command with no arguments is seen.

Move on to the next input file .

Temporarily alter the input source. -Stream can be a
M_M to indicate standard input, a Mfilename,- or an
integer -N- corresponding to a temporary file created
by a previous '.dv H' COMManr..

A macro is nothing more than a fr.quently u.ed •• quence of commands and/or text that have
b •• n grouped together under a single name. This name may then be used just like an ordinary
command to invoke the whole group in one fell swoop.

The definition (or redefinition) of a macro starts with a '~efine' command

.de xx

Whose param.ter is a one or two character string that becomes the name of the macro. The
macro name may consist of any characters other than blanks, tabs or newlines: upper and lower
'.tters are distinct. The definition of the macro continues until a matching 'end' command

.en xx

is encountered. Anything may appear within a macro definition, including other macro
definitions. The only processing that is done during definition is the interpretation of
variables and functions (i.e. things surrounded by square brack.ts). Other than this, lines
are stored exactly as they are read from the input source. To include a function call in the
definition of a macro so that its interpretation will b. delayed until the macro is invoked,
the opening bracket should be preceded by the escape character •• ". For example,

.f tm --- time of day

.de tm
.[time]
.en tm

would produce the curr.nt time of day when invok.d, wherea •

. f tm --- time of day

.de tm
[time]
.en tm

would produce the tim. at which the macro definition wa. proc •••• d.

IIacI'"o InYocatlon

Again, a macro is invok.d lik. an ordinary command: a control character at the beginning
of the line immediately followed by the name of the macro. So to invoke the above 'time-of-
day' macro, one might say .'

.tM

As with ordinary commands, macros may have paramet.rs. In fact, anything typed on the
line after the macro name is available t.o the contents of the macro. As usual, blanks and
tabs serve to separate parameters from each other and from the macro name. If it is necessary
to include a blank or a tab within a parameter, it may be enclosed in quotes. Thus,

"parameter one"

would constitute a single parameter and would be passed to the macro as

- 17 -

Text Formatter User's Guide

parameter one

To include an actual quotation mark within the parameter, type two quotes immediately adjacent
to each other. For instance,

...... quoted string" U.

would be passed to the macro as the single parameter

"quoted string"

Within the macro, parameters are accessed in a way similar to functions and variables:
the number of the desired garameter is enclosed 1s square brackets. Thus,

[1]

would retrieve the first parameter,

[2]

would fetch the second, and so on. As a special case, the name of the macro itself may be
accessed with

[0]

Assume there is a macro named "mx· defined as follows:

.N mx --- macro example

.de mx
Macro named '[0]', invoked with two arguments:
'[1]' and '[2]' .
. en mx

Then, typing

._ "param 1" ·param 2"

would produce the same result as typing

Macro named 'mx', invoked with two arguments:
'param l' and 'param 21.

Macros
such tedious
section in
notes in the

are quite handy for such common operations as starting a new paragraph, or for
tasks as the construction of tables like the ones appearing at the end of each
this guide. For some examples of frequently used macros, see the applications
following pages.

Appending To A Macro

It is possible to add text to the body of a previously defined macro, using the 'append
macro' command:

.... xx

where xx is a previously defined macro. It is an error to append to a macro which has not
been previously defined. The additional text of the macro is terminated with a '.en xx' com­
mand, just like the initial definition of the macro. The rules for the additional text of the
macro are the same as for the initial text, i.e. any function calls or special characters
must be escaped with an "." sign to prevent their immediate evaluation.

s.-ry - Macros

Coaaand Inittal Uno Caus.
Syntax Value Pa~t.r Break Explanatton

.de xx ignored no Begin definition or redefinition of a macro.

.en xx ignored no End macro definition.

.am xx ignored no Add additional text to the body of a previously
defined macro.

- 18 -

Conc:It t tonal L t ne Process t ng

Introcluctton

This sections discusses the features of 'fmt' which provide you with considerable control
and flexibtlity over the formatting of your documents.

The . t f c-.nd

'Fmt' allows you to test a condition and tf that conditton ts true, it will execute a
command. Optionally, you may specify a command to be executed if the condition Is not true
(an 'else' part). This is done ustng the 'if' command:

• tf cond delim true_part [del im else_par':~

This evaluates a condition ('cond') WhiCh, if it 15 true, will cause (.'.trueJ)art' to be
executed, just as if 'true_part' had been on a ltne by itself. If the condit.ton ts false, and
the 'else-PBrt' ts present, then 'elseJ)art' will be executed as if tt had been on a line by
ttself. The 'deltm' ts any single non-blank character. For tnstance, the command

.tf [odd [pn]] / .er odd pag .. n / .er even pag .. n

will write etther 'odd page' or 'even page' to the termtnal, depending on whether or not the
current page is odd (the [odd] function will be discussed Shortly).

The 'cond' can be negated by putting a '-' In front of It. Note that 'fmt' only checks
for a single '-' to see If the condition is to be inverted. 'F.mt' is not a true programming
language! It Is probably almost always better to rewrite your conditton than to use a '-' to
negate it. The functions discussed below, and the ability to specify an 'else' part, provide
ample flexibility to do whatever needs to be done.

A .tf command with no arguments has no effect on the formatted output. The .tf command
mayor may not cause a break, depending on the contents of the 'if' and 'else' parts.

COnd t t tonal Funct ton.

'Fmt' provides four functton calls which return either true or false (1 or 0) depending
on the truth values of the condittons spectfied In their arguments. The four functions are as
follows:

odd Return true (false) If Its integer argument is odd (even).

even Return true (false) if Its integer argument Is even (odd).

cmp Does a string comparison on its arguments, returning true if the specified relation
is true, false otherwise. The form of this call is described below.

icmp Does an integer comparison on Its arguments, returning true if the specified rela­
tion is true, false otherwise.

The two comparison functions are called
relational operator, and the second operand.

<- Less than or equal to.
-< Less than or equal to.
< Less than. -- Equal to.
• Equal to . -. Not equal to.
<> Not equal to.
>< Not equal to.
>- Greater than or equal to.
-> Greater than or equal to.
> Greater than.

with three arguments, the first
The relational operators are:

operand, a

A missing or incorrect operator is an error, and will cause 'fmt' to exit. As an example, to
determ1na ~ha~a you are, you could do the following:

- 19 -

Text Formatter User's Guide

ThiS must be
.if [cmp [day] = Tuesday] / Belgium. / Somewhere.

would cause the output to be "This must be Belgium." if it were Tuesday_ Otherwise your text
would simply wonder where it is.

Su_ry - Cond i tiona 1 Line Process i ng

Connand
Syntax

. if <ergs>

Initial
Value

If no Cau ••
Par t.r Break Explanation

ignored maybe Conditional execution of an input line .

- 20 -

Appltcattons Notes

This .ection will illustrate the capabilities of 'fmt' with some actual applications.
Most of the examples are macros that assist in common formatting operations, but attention has
also been given to table construction. All of the macros pre.ented here are available for
gene .. al u.e tn the f11. -//extra/fmacro/report-, whtch may be named on the command line invok­
ing 'fmt' or may be included with a 'source' command as follows:

.80 -fmac-/report

Pa .. agMIPhs

Dna standard way of beginnin~ a n£w p~ragr.ph 1. to skip a line and indent by a few
spaces, a. was done throughout this guide. This can be done by giving an ap command followed
by a ti command. A batter way is to define a macro. This allows procrastina~ion on deciding
the format of paragraphs and fa~ilitates change at some later date without a major editing
effort.

Here is the paragraph macro used in this document:

.N pp --- begin paragraph

.CIe pp

.ap

... 2

.tt .[1n]

.tt +5

.M

.en pp

First a line is skipped via the 'space' command. Then, after checking that there is room on
the current page for the first two lines of the new paragraph, a temporary indentation is set
up that is five columns to the right of the running indentation with the two tt commands.
Finally, no-space mode 1s turned on to suppress unwanted blank lines.

Sub-headings such as the ones used here may be easily produced with the following macro:

.N sh --- sub-heading
•• sh
.ap 2
.... 4
.tt .[in]
.M
[1]
.pp
.en sh

First, two blank lines are put out. Than it is determined if there are four contiguous I1nes
on the current page: one for the h.ading itself, one for the blank line after the heading,
and two for the ftrst two lines of the next paragraph. The temporary indentation value is
then set to coincide with the current indentation value. Next, the first parameter passed to
the macro (the text of the sub-heading) is boldfaced and a new paragraph is begun. The -pp"
.. acro wtll in.ert the blank line after the heading.

Major HeaClfngs

Each .ection of this guide is introduced by a major heading that is boldfaced, underlined
and centered on the page. The macro u.ed to produce these headings is the following:

.N mh --- major h.ading
•• mh
.ap 3
.... 5
.oe
.Ul
.bf
[1 J
.ap
.pp
.en mh

ThiS is similar to the sub-heading macro: three blank lines are put out; a check for enough
room is made; the parameter is centered, underlined and boldfaced: another blank 11ne 1s put

- 21 -

Text Formatter User's Guide

out; and a new paragraph is begun.

Tables Of Contents

Table of contents can be automatically generated by writing the contents to
file, then at the end reading that file to produce the table of contents. In
above we could divert subheadings and headings to a temporary file; e.g., add the
the 'sh' and 'mh' macros. (These examples are similar to what is used to produce
contents of this guide; for pedagogical reasons we have simplified it a little) .

. N generate a table of contents entry for a heading

.dv 5

.cc "
Nsp J:'
lne 8
[bf [1]] .[tc].[tcpn]
Icc
.dv

.N table of contents entry for sub-heading

.dv 5

.cc "
lne 4

[1] .[tc].[tcpn]
Ibr
Icc
.dv

a temporary
the examples
following to
the table of

Each time a heading is printed a line is written to temporary f11e "5" containing the heading.
boldfaced, followed by a blank, a tab and finally the current page number right justified in
four columns. Each time a subheading is printed a line is written containing three blanks,
the subheading, a blank, a tab and finally the current page number. Note that we precede
diverted commands by a different control character because 'dv' will execute commands instead
of diverting them.

The very last command of the document would be a generate table of contents macro, e.g.,

.1 TC --- generate table of contents

.de TC

.cc If
Ibp
Ifo .. - .[rn .[pn]] -
lea "TABLE OF CONTENTS"
Irm -6
Ita .[rm]
I +6
Irc
Ins
Iso 5
Icc
.en TC

This macro will set the control character to correspond to the control characters written to
output stream "5," advance to the top of the next page, center the heading "TABLE OF
CONTENTS", set the footer to print the page number in small roman numerals (the page number
must be set prior to calling 'TC'), set the tab column to 6 columns to the left of the right
margin (this generates 2 blanks followed by the page number which is right justified in four
columns), sets the replacement tab character to "." and reads the contents of temporary file
M5 R •

Quotations

Lengthy quotations are often set apart from other text by altering the left and right
margins to narrow the width of the quoted text. Here is a pair Df macros that may be used to
delimit the beginning and end of a direct quotation:

.N bq --- begtn direct quote

.de bq

.sp

.ne 2

. in +5

.rtII -5

.1t +5

.en bq

- 22 -

.1 eq --- end direct quote

.de eq •• • in -5

.1"11 +5

.... eq

Notice the It command in the first macro. To avoid affecting page headings and footings, the
left margin is not adjusted; rather, an additional indentation is applied. But to increase
the right margin width, there is no other alternative but to u •• the 1"11 command. The 'title­
length' command is thUS necessary to allow headings and footings to remain unaffected by the
interim right margin.

It.l lea

Since most pri,1ters can't easily produce italics, they are frequently Simulated by under-
lining. The following macro 'italicizes' its parameter by underlining it. \.'

.1 it --- italicize (by underlining)

.CIe it

.ul
[1]
.en it

Boldfacing

While 'fmt' has built-in facilities for boldfacing, their u.e may be somewhat cumbersome
if there are many short phrases or single words that need bOldfacing; each phrase or word
requires two input lines: one for the bf command and one for the actual text. The following
macro cuts the overhead in half by allowing the command and the text to appear on the same
line.

Exupl.

.1 bo

.CIe bo

.bf
[1]
.en bo

boldface parameter

This guide is peppered with examples, each one set apart from other text by surrounding
blank lines and additional indentation. The next two macros, used like the "bq" and ·eq"
macros, facilitate the production of examples .

. 1 bx --- begin example text

.de bx

.sp

.ne 2

.nf

. tn +10

.on bx

.1 ex --- end example text

.CIe ex

.sp

.ft

.in -10

.en ex

Note that the definition of the ·ex· macro causes the ex command to become inacceSSible.

Tabl. c:onstn.:tton

One example of table construction (for a table of contents) has already been mentioned in
the section dealing with tabs. Another type of table that occurs frequently is that used in
the command summaries in this guide. Each entry of such a table conSists of a number of
'fields', followed on the right by a body of explanatory text that needs to be filled and
adjusted.

The easiest way to construct a table like this involves USing a combination of tabs and
indentation, as the following series of commands illustrates:

- 23 -

Text Formatter User's Guide

. tn +40

.ta 14 24 34 41

.tc \

The idea is to set a tab stop in each column that begins a field. and one last one in the
column that is to be the left margin for the explanatory text. The extra indentation moves
the effective left margin to this column. To begin a new entry. temporarily undo the extra
indentation with a tt command. and then type the text of the entry. separating the fields from
one another with a tab character:

. tt -40
field 1\field 2\f1eld 3\field 4\Explanatory text

The first line of the entrv will start at the old left margin. Then all subsequent lines will
be filled and adjusted between column forty-one and the right margin (inclusive).

Subsyst ... Macro PaCka .. s

Introductton

The previous section discussed how you might go about writing maCrOS which do all kinds
of nifty things. including building a table of contents. Fortunately, you do not have to
write your own macrO packages, since the Subsystem comes with several already written.

The two major packages are the User Guide Macros. and the Report macros. The Report
maCrOS are an older set of macros; their use is discouraged in favor of the User Guide Macros,
which can actually be easily adapted for almost any kind of paper you may have to write.
Users who wish to use the Report macros may print them off to see what they do and how they
work. They are in .fmac-/report and .fmac-/ds_report for single- and double-spaced reports,
respectively.

There are also macros for formatting Master's and Ph.D. theses. These are
-fmacK/gt_thesis. They are meant to be used by themselves, without any of the
files (discussed below). The macros are documented in the file itself; see there
on using them. You will probably want to change them to have your school's name,
Georgia Tech.

Accesstng The User Guide .. acros

contained 1n
-fmac-/ev?
for details
instead of

To use the User Guide Macros in your paper, you may name them on the command line, or
more conveniently, use one of the lines

,so -fmac-/ugh

- or -

.SO -fmac-/ugnh

as the first line in your 'fmt' input file. The first command provides you with a report that
uses plain headings (like the ones in.this guide), while the second provides you with numbered
headings (useful for technical reports). In either case, the macros are used in an identical
fashion. You should not need to change the text of your document in order to get either num­
bered or plain headings; you just need to switch macro paCkages.

Each of these files sets up the macros for headings, and then does a

to include the rest of the User Guide macros.

Ust ng The Usar Guide Macros

The User Guide macros will automatically produce a title page and table of contents. The
macros and their functions are:

. TP Start the Title Page .

• AU List the nama(s) of the author(s) .

.PO [<date>] Give the publication date.

- 24 -

..

·eH [<heading text»

.MH [<heading text>]

.SH [<heading text>]

• PH [<heading text>]

• pp

.bq [<length>]

. eq

.be [<length>]

. ee

. ep

. op

. HI

.TC

Chapter heading.

Major haading (within a chapter).

Sub·heading (within a major heading).

Paragraph heading (within a sub·haading) .

Start a new paragraph (do not use after .PH) .

Begin an indented quote.

End an indented quote .

Begin an example.

End an example .

Skip to an even page .

Skip to an odd page .

Produce a hanging Indent. Used for lists like this one .

Generate the table of contents (reset the page number with a
.bp 0. first).

So. a full paper might look something like thiS:

.TP
On The Preservation Of The Arithmetic IF
.AU
Arnold O. Robbins
.PO "[ldate]"
.op
.HE ·Saving The Arithmetic IF"
.N The .HE macro will be explained shortly
. fo ". If ."
.CH "Chapter 1"

.MH "Major 2"

.PH "Par 4"

.bp 3

.TC

The title page produced would look just like the title page of this guide. You may want
to Change the .PD macro in -fmac-/ugm to have the name and address of your school or business,
instead of Georgia Tech.

The heading macros each use two additional macros; one to help generate the table of
contents, and one to actually produce the heading. For instance, .CH calls .Ch to produce the
table of contents entry, and .ch to produce the chapter heading. The other header macros are
implemented in a similar fashion. It is occasionally useful to access these macros directly;
for instance in order to produce a foreword to a document. without having the foreword show up
in the table of contents.

You should use all the .1H macros when writing your papers, i.e., the .CH macro, as well
as the .MH and .SH macros. If you do not us. the .CH macro, and you wish to use the numbered
headings macros. your major sections will be .ections 1, 2. 3, ... Of Chapter O. not Chapter
1, so bear this in mind.

It is ~ necessary to use a .pp macro after any of the ~ding macros, since they all
do a .pp for you. In particular. the .PH heading macro should ndt be followed by a .pp; while
after the other macros a .pp will only cause an .xtra line to be skipped.

The .be and .~ macros each take an optional argument, which is the length of the example
or quote. For a small quote or example. you probably do not need to provide the length.

Since your entire document has to be formatted before the table of contents can be
prOduced, the .TC macro should come at the end of your paper. You need to do a .bp 0 to the
proper page for the table of contents (usually 0 • 3). The macros use diversion stream number
five for the table of contents, so you should not use stream five for doing any of your own
diversions.

- 25 -

Text Formatter User's Guide

The Pl"'tnttng Envtl"'O nt And The .HE MaCI"'O

The User Guide macros are designed 50 that a paper which uses them may be formatted on a
variety of output devices, without changing the text of the paper. This is done by defining
the printing environment in a macro; specifically the .EV macro. This macro takes care of
setting the margin values, the page and margin offsets, the even and odd offsets, and the page
length, among other things.

There are different environment files for different output devices. The files and the
environments they are designed for are:

-fmac-/evd Format output for the Diablo.

--fmac-/evp Format output for the line printer.

-fmac-/evl Format output for the Georgia Tech Xerox 9700 laser printer (See the
help on '1%'). These macros are for the User Guides.

-fmac-/ev12 Format output for the Georgia Tech Xerox 9700 laser printer. These
macros are for the Reference Manual.

-fmac-/evt Format output for "typesetting" on the Spinwriter. The output
produced is designed to be photo-reduced to 8 1/2" by 11".

Unless you are positive that you will always use a particular output device, these files
should D21 be included in your 'fmt' input f11e. Instead, they should be named on the command
line. The .TP macro automatically calls the .EV macro to reset the environment.

The BV? files also define the .HE macro, which is used for des1gnating the page
headings. For single sided output, .HE is:

.de HE <left> <center> <right>
.[cc]he '[1]'[2]'[3]'
.en HE

wh11e for double sided output (like the printed user guides), .HE is:

.de HE <left> <center> <right>
.[cc]eh '[1]'[2]'[31'
.[cc]oh '[3]'(2]'[i]'
.en HE

The .HE macro should be placed right after the .bp 1 command for the first page of your
document, and before the first .CH command.

There is no special macro for footers. They are left to the .fo command.
choice is:

The usual

.fo "- # -"

which places the page number at the bottom of the page.

There are environment files for the Report macros as well. The files are -fmac-/envd and
-fmac-/envp for the Diablo and 11ne printer, respectively.

CDncluston

The macros available to you with the Subsystem should satisfy most of
needs, particularly with the variety of output devices that are supported.
easily change~ to suit your requirements, since the source files for the
included with the Subsystem.

- 26 -

your documentation
They can also be
macro packages are

CoIaand
Syntax

• 11

.ad c

.am xx

. bf N

.bp :tN

. br

. c2 c

.cc c

. ce N

.de xx

Intttal
Value

both

N;'O

.dv <stream> -

• ef /l/c/r/ blank

.eh /l/c/r/ blank

.en xx

• eo :tN

.er text

.ex

. fi on

.fo /l/c/r/ blank

.he /l/c/r/ blank

. hy

.if <args>

• 1 n :tN

.1 t :tN

. 1m :tN

• 1 s N

• 1 t :tN

• ml :tN

• m2 :tN

• m3 :tN

. m4 :tN

.mc <char>

.mo :tN

.n8

on

BLANK

N=O

s.o-ry of eo.andS SOrted Alphabetical 1 y

If no Cause
Par_tar lreak IJCplanatton

no

both no

no

no

next yes

yes

no

no

yes

ignored no

Introduce a comment .

Set margin adjustment mode.

Add additional text to the body of a previously
defined macro.

Boldface Ninput text lines •

Begin a new page.

Force a break •

Set no-break control character •

Set basic control character.

Center N input text lines .

Begin definition or redefinition of a macro.

end' .dv' no Temporarily divert the output stream to
or to a temporary file deSignated by an
(to be later read by a -.so N" command)
command with no arguments Is .een .

a -filename"
integer UN"
until a 'dv'

blank

blank

ignored

ignored

blank

blank

ignored

N=1

BLANK

N=O

no

no

no

yes

no

yes

no

no

no

Set even-numbered page footing.

Set even-numbered page heading.

End macro definition.

Set even page offset .

Write a message to the terminal.

Exit immediately to the Subsystem.

Turn on fill mode .

Set running page footing.

Set running page heading.

no Turn on automatic hyphenation .

maybe Conditional execution of an input line.

yes

no

yes

no

no

no

no

no

no

no

no

no

Indent left margin .

Italicize N input text l1nes.

Set left margin .

Set line spacing .

Set length of header, footer and titles .

Set top margin before and including page heading .

Set top margin after pag~heading .

Set bottom margin before page footing .

Set bottom margin including and after page footing .

Set margin character.

Set margin offset.

Turn off margin adjustment.

- 27 -

•

•

Text Formatter User's Guide

If no cause Cannand
Syntax

Initial
Value Par_ter Break Explanatton

. ne N yes

.nf yes

. nh no

• ns on no

. nx file

. of /l/c/r/ blank

• oh /l/c/r/ blank

• 00 ;tN N-O

.pl ;tN N-66

.pn ;tN N=1

. po ;tN N-O

. ps N M N-M-O

.rc c BLANK

. rm ;tN N-60

. rs

.sb off

.so <stream> -

. sp N

.ta N 9 17

.tc C TAB

. ti ;tN

. tl 'l'c'r' blank

. ul N

. xb on

next arg no

blaJik no

blank no

yes

no

ignored no

yes

yes

BLANK no

yes

no

no

ignored no

yes

all no

TAB no

yes

blank yes

no

no

Express a need for N contiguous lines .

Turn off fill mode. (Also inhibits adjustment.)

Turn off automatic hyphenation .

Turn on 'no-space' mode .

Move on to the next input file .

Set odd-numbered page footi~ .
t;'

Set odd-numbered page head i i;::;j .

Set odd page offset .

Set page length.

Set page number.

Set page offset .

Skip pages while (page number mod M) is less than N .

Set tab replacement character.

Set right margin .

Turn off 'no-space' mode .

Single blank after end of sentence.

Temporarily alter the input source. ·Stream can be a
R_" to indicate standard input, a "filename," or an
integer "N" corresponding to a temporary f11e created
by a previous '.dv N' command.

Put out N blank lines .

Set tab stops.

Set tab character.

Temporarily indent left margin .

Generate a three part title .

Underline N input text lines .

Extra blank after end of sentence .

- 28 -

	001
	002
	003
	004
	1-001
	1-002
	1-003
	1-004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-001
	2-002
	2-003
	2-004
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-001
	3-002
	3-003
	3-004
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-001
	4-002
	4-003
	4-004
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28

