GIT-1CS-85/08

SOFTWARE TO™LS - ™ “~Em
USER’S GuIDE

4th Ed.cion
Revised

May, 1985

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jefferey S. Lee
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

INTRODUCTION TO THE
GEORGIA TECH SOFTWARE TOOLS SUBSYSTEM USER’S GUIDE

The documents following this Introduction comprise the most recent version of the User’s
Guide for the Georgia Tech Software Tools Subsystem for Prime 350 and larger computers. This
Guide brings together in one place all the tutorial and reference information useful to novice
and intermediate users of the Subsystem. It deals with several important aspects of Subsystem
use: the user interface in general, unavoidable aspects of the underlying operating system,
and the most-frequently used major commands. Each topic is covered in a separate document
(available individually) and all documents are collected together with this Introduction to
form the Guide itself. Experienced users, as well as beginning users who wish to expand their
knowledge of the Subsystem, will find the Software Tools Subsystem Reference Manual valuable.

The development of the Georgia Tech Software Tools Subsystem was originally motivated by
the text Software Tools > F .~ . ' <ernighan and P. J. Plauger, Addison-Wesley, 1976. That
text is still the basic reference for the tools that it covers, particularly Ratfor, the text

editor, the macro preprocessor, and the text formatter. <

SOFTWARE TOOLS SUBSYSTEM TUTORIAL

USER’S GUIDE TO THE PRIMOS FILE SYSTEM

INTRODUCTION TO THE SOFTWARE TOOLS SUBSYSTEM TEXT EDITOR

USER’S GUIDE FOR THE SOFTWARE TOOLS SUBSYSTEM COMMAND INTERPRETER

USER’S GUIDE TO THE RATFOR PREPROCESSOR

SOFTWARE TOOLS TEXT FORMATTER USER’S GUIDE

Copyright (c) 1985 Georgia Institute of Technology

We are deeply indebted to Ann Richliew for editing this final edition of the Guide. Due to
her efforts, many typographical errors have been fixed, and many inconsistencies removed.

€

This guide was printed on the Xerox 9700 laser printer operated by the Georgia Tech Office of
Computing Services. The fonts supplied by Xerox for this printer do not incliude a boldface
grave accent (‘). 1In boldface, this character prints as a cents sign (¢). So, wherever the ¢
occurs, note that this should really be a grave accent (‘).

Sof tware Tools Subsystem Tutorial

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jeanette T. Myers
Arnold D. Robbins
Peter N. wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

JABLE OF CONTENTS

b 48 - T8 T
Getting Started it i ittt it st e e e
Correcting Typographical Errors¢cciiiiiinennnnncennnns S heesecncnsesaseeen
Adjusting to Terminal CharacterisSticsttt orneeierneneesssencncenannss
L TR -1 T 1T =T
Automatically RUNNINg the SUDSYStemt iiiiiittieeeneeneessnnneeacoasnseenns

Online Documentation
The ‘Help’ Command
The ‘Usage’ Command

..
...

..

The File System and Related Utilitiest iitetiinennnnnns
Creating Filesttt it ittt ittt eeeeeaneenanneaaessnnesssnsnnnns feooonnnns
Looking at the Contents of Files
Deleting Filesttt it ittt e aeeaeesaaaceansseceessnenennaneneaanasss
The ‘Lf’ ComMmMaNdtiiittennoeesennoneeneesesensssenneansasnssnsssanssanansnnaenas
The Primos File System
Directories

...

..

Subsystem Communication ServiCes i e it
The Subsystem Postal SerVviCettt tinteeaaaneseenssoennsenaneenannnn
The SubsysStem NewsS SerViICEttt it tnnneetinetoaeaeeensenssesenonnsnassonannns
Subsystem Real-Time Communications e ettt et ettt e e

INPUL /DU PUL L .. ettt et
Standard Input and Standard DUTPULt ittt ittt ittt eeeneeeenennoennneeneeessneees
I/0 REAIPBCTION & ittt it ittt ittt innoenonsaneeeeeaeeneeooenaseeesaeseneneeeanoneannenn
Examples of Redirected I/0 USiNg ‘Cat’ ittt eeneeeneneneneeaeeneneenennennss

Using Primos from the Subsystem i it iennaaaann
Executing Primos Commands from the SubsysStem0t ittt nnnnnonnnns

Program Developmentttt i ettt r e it
Developing Programsttt ittt ittt it assaantaetsetonscnenccennncannas
The Subsystem Text Editorttt it ittt ittt teeeaeeaeaseeeeeeeeesseennennnnn
Creating @ PrOgram ittt ittt eesoeeeesssesesesensnnsannesesessssssseseeanneennnns
Caveats for SUDSyStem Programmer sttt ittt ioesenneenennoneaseesneanssonsnss

3 o o - T o

Advanced TeChNIQUEBSt titiietntenaentssssosssossocssennasneenanennnnenss
Command Fil@s ittt it iiietessonennseeaesessonssensssoeennessnnneasesssnssnnnss
g 1 ==
Additional I/0 REOIPECEOINS ... it ittt it te e it e ittt teaeeseeseeeeeeeeeeenaeeenenennnns

LB T - T T T T A

ANCient HiStOry ittt it ittt ittt esnnneroneeseasnsnnnanasnnncans
AULhOrS 8NA Origins ... i ittt ittt ettt ettt oeesnnnnsnesanseeeseeeeeeeseesanennnss

- 1ii -

OONNIIY OO BWON ==

Foreword

The Software Tools Subsystem is a powerful collection of program cevelopment and text

processing tools developed at the Georgia Tech School of Information and Computer Science,

for
use on Prime 350 and larger computer systems. The tutorial that you are now reading is inten-
ded to serve as your first introduction to the Subsystem and its many capabilities. The
information contained herein applies to Version 9.1 of the Subsystem as released in April
1985.

- jiv -

Software Tools Subsystem Tutorial
Introduction

The Software Tools Subsystem is a programming system based on the book Software
Tools, by Brian W. Kernighan and P. J. Plauger, (Addison-Wesley Publishing Company,
1976), that runs under the Primos operating system on Prime 350 and larger com-
puters. It allows much greater flexibility in command structure and input/output
capabilities than Primos, at some small added expense in processing time.

This tutorial is intended to provide sufficient information for a beginning
user to get started with the Subsystem, and to acquaint him with its basic features;
it is by no means a comprehensive reference. Readers desiring a more detailed
exposition of the Subsystem’s capabilities are referred to the Software Tools
Subsystem Reference Manual and to the remainder of the Software 7Tools Subsystem
User‘’s Guide, of which this Tutorial is a part.

Getting Started

Since the Subsystem is composed entirely of ordinary user-state programs, as opposed to
being a part of the operating system, it must be called when needed. In other words, as far
as Primos 1is concerned, the Subsystem is a single program invoked by the user. If the user
wishes to use the Subsystem, he or she must call it explicitly (it is possible to call the
Subsystem automatically on login; we will discuss how to do so a little further on).

The following example shows how a typical terminal session might begin. Items typed by
the user are boldfaced.

0K, legin login_name (1)
Password? (2)
LOGIN_NAME (User 15) logged in Friday, 06 Jul 84 14:22:07. (3)
welcome to PRIMOS version 19.2.

Last login Friday, 06 Jul 84 14:06:32

OK, swt (4)
Password:] (5)
Enter terminal type: ti (6)
] (7)

(1) A terminal session is initiated when you type the Primos LOGIN command.
"Login_name" here represents the login name that you were assigned when your account
was established.

(2) Primos asks you to enter your login password (if you have one) and turns off the
terminal’‘s printer. You then type your password (which is not echoed) followed by a
newline (the key labelled "newline", "“return", or "cr" on your terminal). Note:
password checking on login, as of Rev. 19, is now a standard part of Primos.

(3) Primos acknowledges a successful login by typing your login name, your process num-
ber (in parentheses), and the current time and date. (Note: At Georgia Tech, the
login acknowledgement will look somewhat different from what is shown here.)

(4) Primos 1indicates it is ready to accept commands by typing "OK,". (Whenever you see
this prompt, Primos is waiting for you to type a command.) Type ’‘swt’ (for
"Software JTools") to start up the Subsystem.

(5) ‘Swt’ prompts you for your Subsystem password. This password will have been
assigned to you by your Subsystem Manager at the time he created your Subsystem
account. (Note: Under Georgia Tech Primos, Subsystem passwords are not issued and

not prompted for by ’‘swt’.) After you receive the prompt, enter your Subsystem pas-
sword. It will not be printed on the terminal.

(6) ’Swt’ asks you to enter the type of terminal that you are using. Depending on your
local configuration, you may or may not see this message. If you do see it, enter
the type of terminal you are using. You may obtain the name of your terminal type
by asking your system administrator, or you can enter a question mark ("?") and try
to find your terminal type in the 1ist that ‘swt’ will lisplay for you.

(7) The Subsystem’s command interpreter prompts with "]", indicating that it is ready to
accept commands.

When the Subsystem command interpreter has told you it is waiting for something to do (by
typing the "]1"), you may proceed to enter commands. Each command consists of a ‘command-
name’, followed by zero or more ‘arguments’, all separated from each other by blanks:

command-name argument argument ...

The command name is necessary so that the command interpreter knows what it is you want it to

Software Tools Subsystem Tutorial

do. On the other hand, the arguments, with a few exceptions, are complietely ignored by the
command interpreter. They consist of arbitrary sequences of characters which are made
available to the command when it is invoked. For this reason, the things that you can type as
arguments depend on what command you are invoking.

when you have finished typing a command, you inform the command interpreter of this by
hitting the "newline" key. (On some terminals, this key is labeled "return", or “"cr". If
both the "newline" and "return" keys are present, you should use "return".)

Incidentally, if you get some strange results from including any of the characters
g b, s CY Yy Loy o
within a command name or argument, don’‘t fret. These are called "meta-characters" and each

has a special meaning to the command interpreter. We will explain some of them later on. For
& more complete description of their meaning, see the User’s Guide for the Software Tools

Subsystem Command Interpreter.

Correcting Typographical Errors

If you are a perfect typist, you can probably skip this part. But, if you are like most
of us, you will make at least a few typos in the course of a session and will need to know how
to correct them.

There are three special characters used in making corrections. The "erase" character
causes the last character typed on the line to be deleted. If you want to delete the last
three characters you have typed so far, you should type the erase character three times. If
you have messed up a line so badly that it is beyond repair, you can throw away everything you
have typed on that tine in one fell swoop by typing the "kill" character. The result will be
that two backslashes (\\) are . printed, and the cursor or carriage is repositioned to the
beginning of the line. Finally, the "retype" character retypes the present line, so you can
see exactly what erasures and changes have been made. You may then continue to edit the line,
or enter it by striking the return key.

Wwhen you 1log into the Subsystem for the very first time, your erase, kill and retype
characters are control-h (backspace), DEL (RUBOUT on some terminals), and control-r, respec-
tively. You can, however, change their values to anything you wish, and the new settings will
be remembered from session to session. The ‘ek’ command is used to set erase and kill charac-
ters:

ek erase kill

"Erase" should be replaced by any single character or by an ASCII mnemonic (like "BS" or
"SUB"). The indicated character will be used as the new erase character. Similarly, "kill"
should be replaced by a character or mnemonic to be used as the new kill character. For
instance, if you want to change your erase and kill characters back to the default values of
"BS" and "DEL", you can use the following command:

ek BS DEL

(By the way, we recommend that you do not use "e" or "k" for your erase or kill character. 1If
you do, you will be hard pressed to change them ever again!)

Adjusting to Terminal Characteristics

Unfortunately, not all terminals have full upper/lower case capability. 1In particular,
most of the older Teletype models can handle only the upper case letters. In the belief that
the use of "“good" terminals should not be restricted by the limitations of the "bad" ones, the
Subsystem preserves the distinction between upper and l1ower case letters.

To allow.users of upper-case-only terminals to cope with programs that expect lower case
input (and for other mysterious reasons), the Subsystem always knows what kind of terminal you
are using. You may have told it your terminal type when you entered the Subsystem, or your
system administrator may have pre-assigned your terminal type. In any event, the Subsystem
initially decides whether or not you are using an upper-case-only terminal from this terminal

type.

You can find out what the Subsystem thinks about your terminal by entering the ‘term’
command:

] term

type tty buffer 2

-erase BS -escape ESC -kill DEL

-retype DC2 -eof ETX -newline LF

-echo -1f -xoff -noinh -nose -novth -nolcase
-break

Sortware 100IS dUpsystiem 1utoriai

If the Subsystem thinks you are using an upper-case-only terminal, you will see the entry
"-nolcase" in the 1last 1ine; otherwise, vyou will see "-lcase". If you see that you have
mistakenly entered the wrong terminal type, you can use ‘term’ to change it. To l1ist the pos-
sible terminal types for your installation, enter

] term ?
Then change your terminal type by entering

] term <new terminal type>

If you are using an upper-case-only terminal, the Subsystem converts all subsequent upper
case letters you type to lower case, and converts all lower case letters sent to your terminal
by the computer to upper case. Since your terminal is also missing a few other necessary
characters, the Subsystem also activates a set of "escape" conventions to allow trer tn 2r+~-
other special characters not on their keyboard, and to provide for their printing. wren the
"escape" character (@) precedes another, the two characters together are (recognized by the
Subsystem as a single character according to the following 1ist:

A -> A (note that A -> a in "nolcase" mode)
[Y4 -> Z
o I {
e) -> }
[-> -
”I— _> A}
e! -> H

A11 other characters are mapped to themselves when escaped; thus, "eé-" is recognized as “-".
If you must enter a literal escape character, you must enter two: ‘"ee".

If the Subsystem thinks you have an upper-case-only terminal (i. e., you see "-nolcase"
in the output from ‘term’), you must use escapes to enter upper case letters, since everything
would otherwise be forced to lower case. For example,
A

is used to transmit an upper case ‘A’, while
A

is used to transmit a lower case 'A’.

A1l output generated when "-nolcase" is in effect is forced to upper case for com-
patibility with upper-case-only terminals. However, the distinction between upper and lower
case is preserved by prefixing each letter that was originally upper case with an escape
character. The same is true for the special characters in the above list. Thus,

Software Tools Subsystem
would be printed as

@SOFTWARE eTOOLS eSUBSYSTEM

under "-nolcase".

Finishing Up

when you’‘re finished using the Subsystem, you have several options for getting out. The
first two simply terminate the Subsystem, leaving you face to face with bare Primos. We cover
them here only for the sake of completeness, and on the off chance that you will actually want
to use Primos by itself.

First, you may type

] stop
oK,

which effects an orderly exit from the Subsystem’s command interpreter and gives control to
Primos’ command interpreter. You will be immediately greeted with "OK,", indicating that
Primos is ready to heed your call.

Second, you may enter a control-c (hold the "control" key down, then type the letter "c")
immediately after the "]" prompt from the command interpreter. TAKE HEED that this is the
standard method of generating an end-of-file signal to a program that is trying to read from
the terminal and is widely used throughout the Subsystem. Upon seeing this end-of-file
signal, the command interpreter assumes you are finished and automatically invokes the ’‘stop’

Software Tools Subsystem Tutorial

command.

Finally, we come to the method you will probably want to use most often. The ‘bye’ com-
mand simply ends your terminal session and disconnects you from the computer. The following
example illustrates its use. (Once again, user input is boldfaced.)

1 bye (1)
LOGIN_NAME (User 15) logged out Friday, 06 Jul 84 15:30:00. (2)
Time Used: O1h O8m connect, O1m 06s CPU, Oim 10s 1/0. (3)
oK, (4)
(1) You type the ’‘bye’ command to end your terminal session.
(2) Primos acknowledges, printing the time of logout.
£

(3) Primos prints a summary of. _ines usad.

. The first time is the number of hours and minutes of connect time.
The second time is the number of minutes and seconds of CPU time.
The third time is the number of minutes and seconds spent doing disk i/o.

(4) Primos signals it is ready for a new login.

Note the the ’‘bye’ command is equivalent to exiting the Subsystem and executing the Primos
LOGOUT command.
Automatically Running the Subsystem

With Primos Rev. 18, you can arrange to automatically run the Subsystem when you log in.
Simply put the command ‘swt’ into a file named ’‘login.comi’ in the directory to which you will
be attached when you log in.

Primos will execute the command(s) in this file automatically. Furthermore, if your
profile directory is an ACL directory instead of a password directory, the Subsystem will not
even ask you for a password, since the file system provides the protection automatically. (If

this paragraph makes no sense to you at all, don’‘t worry about it. It isn‘t all that
important.)

Software Tools Subsystem Tutorial

Online Documentation

Users, old and new alike, often find that their memories need jogging on the
use of a particular command. It is convenient, rather than having to 100k something
up in a book or a manual, to have the computer tell you what you want to know. Two
Subsystem commands, ‘help’ and ‘usage,’ attempt to address this need.

The ‘Help’ Command

The ‘help’ command is designed to give a comprehensive description of the command in
question. The information provided includes the following: a brief, one-line description of
what the command does; the date of the last modification to the documentation; the usage
syntax for th» command (what you must type to make it do what you vart '* t do;; a detailed
description of the command’s features; a few examples; a l1ist of filus referenced by the com-
mand; a 1ist of the possible messages issued by the command; a 1ist of the (.command’s known
bugs or shortcomings; and a cross reference of related commands or documentation.

‘'Help’ is called in the following manner:
help command-1 command-2 ...

If help 1is available for the specified commands, it is printed; otherwise, ‘help’ tells you
that no information is available.

‘Help’ will only print out about as many lines as will fit on most CRT screens, and then
prompt you with a message ending "more?". This allows you to read the information before it
rolls off the screen, and also lets you stop getting the information for a command if you find
you‘re not really interested. To stop the output, just type an “n" or a "q" followed by a
NEWLINE. To continue, you may type anything else, including just a NEWLINE.

Several special cases are of interest. One, the command "help" with no arguments is the

same as "help general", which gives general information on the Subsystem and explains how to
use the help command. Two, the command "help -i" produces an index of all commands supported
under the Subsystem, along with a short description of each. Finally, "help bnf" gives an

explanation of the conventions used in the documentation to describe command syntax.

Examples of the use of ‘help’:

] help (1)
] help -i (2)
1 help rp ed term (3)
] help bnf (4)
1 help guide (5)

(1) General information pertaining to the Subsystem, along with an explanation of the
‘help’ command, is listed on the terminal.

(2) A list of currently supported commands and subprograms, each with a short descrip-
tion, is listed on the terminal.

(3) Information on the Ratfor preprocessor, the Software Tools text editor, and the
terminal configuration program is printed on the terminal.

(4) A description of the notational conventions used to describe command syntax is
printed.

(5) Information on how to obtain the Subsystem User’s Guides is l1isted on the terminal.

Since beginning users frequently find printed documentation helpful, you may find the
following procedure useful. Unfortunately, it involves many concepts not yet discussed, so it
will be rather cryptic; nevertheless, it will allow you to produce a neatly-formatted copy of
output from ‘help’.

»
] help -p | os >/dev/1ps/f
] help -p rp se term | os >/dev/ips/f
] help -p -i | os >/dev/1ps/f

o~~~

1
2
3

(1) The general information entry is printed on the line printer.

(2) 1Information on the Ratfor preprocessor, the screen editor, and the terminal con-
figuration program is printed on the line printer.

Software Tools Subsystem Tutorial

(3) The index of available commands and subprograms is printed on the lime printer.

The ‘Usage’ Command

whereas ’'help’ produces a fairly comprehensive description of the command 1in question,
the ‘usage’ command gives only a brief summary of the syntax of the command. The syntax is
expressed in a notation known as Backus-Naur Form (BNF for short) which is itself explained by
typing "help bnf".

The ‘usage’ command is used in the same way as the ‘help’ command, as the following exam-
ples iliustrate.

] usage usage
] usage fat ha'>

—~—~
N -
- -

(1) The syntax of the ‘usage’ command is printed.

(2) Usage information on the Software Tools text formatter and the ‘help’ command is
printed.

Software Tools Subsystem Tutorial
The File System and Related Utilities

Users spend much of their time creating, deleting, modifying and manipulating files.
The utilities discussed in this section perform these tasks.

Creating Files

The most common way to create a file is to write the contents of a text editor to a new
filename. Another common way (especially for creating small files) is to use the ‘cat’ com-
mand. Both of these methods are covered later in this guide. Right now, we prefer that you
not be concerned with creating large, elaborate files or with knowing about more advanced
features of the Subsystem. Instead, we will show you a simple method for creating one-1ine
files. (Although you may not understand the commanc forac. at this point in time, don’t worry
because you will by the time you get through the tutorial).

(

You can use the command ‘echo’ to create files as in the examplies below:

] echo xxxx >file_of_x (1)
] echo contents of myfile >myfile (2)

(1) Creates a file named "file_of_x" containing "xxxx".
(2) Creates 2 file named "myfile" containing the line "contents of myfile".

In case you were wondering, you can only use letters, digits, underscores, and periods in
file names. (You can actually use a few other characters in names, but that can get you into
trouble.) The names must not start with a digit, and can be no longer than 32 characters.

Looking at the Contents of Files

There are several ways of looking at the contents of a file. One command that you can
use is the ‘cat’ command. ‘Cat’ is an alias for Kernighan and Plauger‘s program ‘concat’,
which appears on page 78 of Software Tools. It has a simple function: to concatenate the
files named in its argument 1ist, and print them on standard output. If no files are named,
it takes input from standard input. (More on standard input and output in a subsequent sec-
tion, which has examples using ‘cat.’ For now, just assume that standard input comes from the
terminal and standard output goes to the terminal.)

Here are some sampies of how to use ‘cat’. For more important and useful ones, see the
following section.

] cat myfile (1)
] cat partti part2 part3 (2)
] cat (3)

(1) Prints the file named "myfile" on the user’s terminal; i.e., "myfile" is
concatenated with nothing and printed on standard output.

(2) Prints the concatenation of the files named “"parti", "part2", and "part3" on the
terminal.

(3) Copies standard input to standard output. On a terminal, this would cause anything
you typed to ‘cat’ to be echoed back to you. (If you try this, the way to stop is
to type a control-c as the first character on the 1ine. As we said before, lots of
programs use this end-of-file convention.)

Deleting Files

Sooner or later, you will find it necessary to get rid of some files. The ‘del’ command
serves this need very nicely. It is used l1ike this: 4

del filet file2 file3 ...
to remove as many files as you wish. Remember that each file can be specified by a pathname,
so you are not limited to deleting files in your current directory; but of course, you can
delete only files that belong to you.
The ‘Lf‘’ Command

The ‘1f’ (for "list files") command is the preferred method for obtaining information
about files. Used by itself without any arguments, ’‘1f’ prints the names of all the files in

Software Tools Subsystem Tutorial

your current directory in a multi-column format. This, however, is by no means all that ’‘1f’
can do. In fact, used in its general form, an ‘1f’ command looks something like this:

1f options files

The "files" part is simply a list of files and/or directories that you want information
about. If the "files" part is omitted, ‘1f’ assumes you mean the current directory. For each
file in the list, information about that file is printed; for each directory listed, informa-
tion about each file within that directory is printed.

The "options" part of the command controls what information is to be printed. It is com-
posed of a dash ("-") followed by a string of single character option specifiers. Some of the
more useful options are th? following:

~C iprint information in a single column format.
d for each directory in the list, print information about the directory itself instead
of about its contents.
1 print all known information about the named files.
w print the size (in 16-bit words) of each named file.

(As always, if you would like complete information on ‘1f’, just use ‘help’.) As we said
above, if no options are given, then only the names of the files are printed.

Here are some examples of ‘1f’ commands:

1 //1kJ§

]
1 1§ -1
]
] 1§ -cw //1kj =extra=/news

A~~~ —~
HWN =
Nt - N

(1) List the names of all files in the current directory, in a multi-column format.

(2) List the names of all files in the current directory, including all information that
is known about each file.

(3) List the names of all files in the directory named "l1kj".

(4) List the names and sizes of lkj’‘’s files in a single-column format, followed by the
names and sizes of all files in directory “"=extra=/news".

The Primos File System

Primos files are stored on several disk packs, each with a unique name. Each pack
contains a master file directory (mfd), which contains a pointer to each primary directory on
that disk. Each of these primary directories (ome for each user, and several special ones for
the system) may contain sub-directories, which may themselves contain further sub-directories,
ad infinitum. Any directory may aiso contain ordinary files of text, data, or program code.
This diagram shows a simple structure that we will use as an example:

sys users
/ | \ /N
bin extra edward kate
/ 1\ i / A
1f cat ... users p1 p2 p2 kd:r

)
kf1

In this examé\e. the mfds are named "sys" and “users", while there are primary directories
named "bin", "extra", "edward", and "kate".
K

The Subsystem ailoﬁé you to specify the location of any file with a construct known as a
"pathname." Pathnames have several elements.

. The first characters of a pathname may be a slash, followed by a disk packname or
octal logical disk number, followed by another slash (e.g. *sys" in the diagram
above could be referred to as "/0/" or "/sys/"). The named disk is the starting
point for the search of the rest of the pathname. The disk name may be omitted,
implying that all disks are to be searched. For example, "//edward" would cause a
search for a primary directory named "edward" starting its search at "sys" and then
"users" where "//edward" is found.

sSoftware 100i1S dUpsystem iutoriail

. When a pathname does not begin with a slash, the file search operation begins with
your current directory. You can think of your current directory as your “location"
in the file system at the time you use the pathname. For instance, if your current
directory was "/users/edward" and you used the name "p2", you would get the file
"p2" under "/users/edward"; however, if your current directory was */users/kate" you
would get the file "p2" under "/users/kate". Later, you will see how to find out
the name of your current directory and how to "move around”" the file system by
changing your current directory.

. The remainder of the pathname consists of "“nodes", separated by slashes. Each node
contains the name of a sub-directory or a file. (For revisions of Primos below Rev
19, which have passworded directories, you may have to specify nodes as a name pos-
sibly followed by a colon (":") and a password.) For exampie

kdir
extra
sys : xxxxxx (pre-Rev 19 Primos)

are nodes.

when nodes are strung together, they describe a path to a file, from anywhere in the file
system. Hence the term "pathname." For example,

/sys/bin
names the primary directory named "bin", located on the disk whose packname is "sys".
//extra/users

names the file named "users" in the primary directory named "extra" on some unknown disk (a1l
disks will be searched);

p2

names the file "p2" 1in "/users/edward" if your current directory is "/users/edward" or the
file "p2" in "/users/kate" if your current directory is "/user/kate".

kdir:pwd/kf1

names the file "kf1" in the directory "kdir" (with password "pwd"), in a pre-Rev 18 Primos
file system, only if your current directory is "/user/kate".

Certain important Subsystem directories have been given alternative names, called "tem-
plates," in order to allow the Subsystem manager to change their Jlocation on disk without
disturbing existing programs (or users). A template consists of a name surrounded by equals
signs ("="). For example, the Subsystem command directory is named "bin". which could be
referred to on a standard system as "//bin." If the Subsystem Manager at your installation
had changed the location of the command directory, the command above would not work. To avoid
this problem, you could use the template for "bin", "=bin=". which would correctly reference
"bin' regardiess of its location. There exist templates for all of the most important Sub-
system directories; for more information on them, and on pathnames in general, see the User’s
Guide to the Primos File System.

A word on upper and Jlower case: The Primos file system does not distinguish between
upper and lower case, thus "//BIN", "//Bin", and "//bin" are all the same. However, the Sub-
system template mechanism does distinguish between upper and lower case, s0 "=BIN=", "=Bin=",
and “"=bin=" are three different templates. This can be a subtle trap for the unwary.
Directories

Directories can be created with the ‘mkdir’ ("make directory) command; e.g.

] mkdir /users/edward
will create the directory "edward" under the master file directory "users". The command
»
] mkdir edward

will create the directory "“"edward" in the current directory.

As mentioned above, the ’‘1f’ command can be used to 1ist information about directories
and the files and subdirectories contained therein; e.g.,

1 1¥ /users/edward
] ¥ edward

Software Tools Subsystem Tutorial

Finally, directories, 1like files, can be deleted with ‘del’. However, unlike files,
directories cannot be deleted until all the files and subdirectories contained 1in them have
been deleted. If "edward" is an empty directory it can be deleted with the command

] del edward
If "edward" is not an empty directory then it can be deleted with the command
] del -ds edward
where the the "-ds" specifies to delete the contents of the directory, then the directory
itself.
Moving Around in the File System

You can change your current directory with the ‘cd’ (change directory) command. Simply

type ‘cd’ followed by the pathname of the directory to which you wish to move and, as long as

its a valid directory name, you will be promptly deposited there; e.g.

] ed /users/edward
] ed kdir

Note that in the second example, since the pathname ‘kdir’ is not preceded by slashes, your
current directory must be "/users/kate" for it to work.

You can move "up" in the file system with
led)\

For instance, if you were in "/users/kate/kdir" and you typed "cd \", your current directory
would then be "/user/kate".

Finally, if you get lost, you can find out where you are with the command
] ed -p

It will print the full name of your current directory.

- 10 -

Software Tools Subsystem Tutorial

Subsystem Communication Services

Communication utilities are becoming increasingly important 1in today’s computer

systems. The Subsystem, in keeping up with the times, offers as its most important
communication facilities a postal and news service and a real-time communication
system.

The Subsystem Postal Service

In order to facilitate communication among users, the Subsystem supports a postal service
in the form of the ‘mail’ command. ‘Mail’ can be used in either of two ways:

] m i3

which looks to see if you have been sent any mail, prints it on your terminaX, and asks if you
would l1ike you. mail to be saved, or

1 mail login_name
which accepts input from standard input and sends it to the mailbox of the user whose login
name is "login_name". Used in this fashion, ‘mail’ reads until it sees an end-of-file. From
the terminal, this means until you type a control-c in column 1. Your letter is postmarked
with the day, date and time of mailing and with your login name.

Whenever you enter the Subsystem (by typing ’‘swt’) a check is made to see if you have

received any mail. If you have, you are told so. When you receive your mail (by typing
‘mail’), you are asked if you want it to be saved. If you reply "n", the mail you have just
received will be discarded. Otherwise, it is appended to the file "=mailfile=", which is

located in your profile directory. (You can look at it with ‘cat’, print it with ‘pr’, or do
anything else you wish to it, simply by giving its name to the proper command. For example,

] cat =mailfile=
would print all your saved mail on your terminal.)

If you have declared the shell variable "_mail_check", (but not set it), the shell will
check your mail file every 60 seconds, to see if it has increased in size. If it has, the
shell will tell you, "You have new mail." You may then read your mail with the ‘mail’
program. If you want it to check you mail more frequently, or less frequently, you may set it
to the number of seconds between checks. For instance:

declare _mail_check = 300 # check mail every five minutes

By default, "_mail_check" will not be set for new users, so the shell will only check your
mail once, when the Subsystem is first cranked up. (See the User’s Guide for the Software
Jools Subsystem Command Interpreter for a more detailed discussion of the use of shell
variables.

Due to the nature of the file system, setting "_mail_check" to less than four will be no
different than setting it to four. At Georgia Tech, the mail directory is shared among
several machines, so, since the shell has to go across Primenet, you should set "_mail_check"
to a fairly large value, say 300, for once every five minutes.

The Subsystem News Service
Whereas ‘mail’ is designed for person to person communication, the Subsystem news service
is intended for the publication of articles that appeal to a more general interest. The news
service is implemented by three commands: ‘subscribe’, ‘publish’ and ‘news’. The use of the
first two should be obvious.
If you wish to subscribe to the new service, simply type
] subscribe ’
and then, whenever anyone publishes an article, a copy of it will be delivered to your news
box. (You need subscribe to the news service only once; all subscriptions are perpetual.)
whenever you enter the Subsystem, as with mail, a check is made to see if there is anything in
your news box; if there is, you are given a message to that effect.
Having gotten such a message, you may then read the news at your convenience by typing
] news
The news will be printed out on your terminal and then you will be asked whether or not you
want to save it. If you say "yes", it will be left in your box and you may read it again at a

- 11 -

Software Tools Subsystem Tutorial

later date; otherwise, it is discarded. There are other ways to use the ‘news’ command that
are fully explained by ‘help’.

Now suppose you have a hot story that you want to publish. All you have to do is create
a file (let’s call it "article") whose first line is the headline, followed by the text of the
story. Then you type

] publish article

and your story will be delivered to all subscribers of the news service. If you are a sub-
scriber yourself, you can check this with the ‘news’ command. In addition, a copy is made in
the news archives.

If you find that you have published the wrong article or if you want to remove an out-
dated one, you can do a

] retract <article number>

to remove the article, where <article number> is the sequence number obtained from the news
index ("news -i" will give you such an index). A retraction notice will be delivered to all
subscribers who have seen the article, and the article will simply be removed from the news
boxes of subscribers who have not yet seen it. If you are only removing an outdated article,
then using

] retract -q <article number>

will quietly remove all traces of the article, leaving no retraction notices behind to disturb
those who have seen it.

Subsystem Real-Time Communications

As if ‘mail’ and ‘news’ were not enough, the Subsystem offers still another way to com-
municate with your fellow user, by means of the ‘to’ command. ‘To’ allows you to communicate
with other logged-in users on a real-time basis; messages that are sent to another user by the
command

] to login_name <message> .
will be retrieved by the user whose login name is "login_name" the next time his shell is
ready for a command. Contrast this behavior to that of ’‘mail’, where the message must be
retrieved by an action on the part of the addressee. If <message> contains any of the shell’s
metacharacters, it must be enclosed in quotes, as in:

] to allen "Where are you, and what are you doing?"

If you want to send a multi-1ine message, ‘to’ will read your message from standard input
(just 1ike most other Subsystem programs), so that the only argument you would specify in this
case would be the login_name. As always, a control-c in column 1 will generate an end-of-file
to terminate your input.

Messages are only retrieved when the shell is ready for the next command, so a user who
is running a long program may not see your messages until long after you have sent them. If
he logs out before he sees your messages. they will sit there, waiting to be retrieved until
the next time he logs in.

To alleviate this somewhat, the Subsystem screen editor, ‘se’, will notify you if there
is a message waiting for you. See the "om" command in the help on ’‘se’ for details.

Software Tools Subsystem Tutorial
Input/Output

One of the most powerful features of the Software Tools Subsystem is its handil-
ing of input and output. As much as possible, the Subsystem has been designed to
shield the user from having to be aware of any specific input or output medium; it
presents to him, instead, a standardized interface with his environment, This
facilitates use of programs that work together, without the need for any esoteric or
complicated programming technigues. The ability to combine programs as cooperating
tools makes them more versatile; and the Software Tools Subsystem makes combining
them easy.

Standard lnput and Standard Output

Programs in the Subsystem do not have to be written to read and write to specific
devices. In fact, most commands are written to read from "anything" and write to "anything."
Only when the command 1is executed do you specify what “anything" is, which could be your
terminal, a disk file, device etc. "Anythings" are more formally known as ‘standard ports‘;
those available for input are called ‘standard inputs’, and those available for output are
called ‘standard outputs’.

Standard inputs and standard outputs are initially assigned to your terminal, and revert
back to those assignments after each program terminates. However, you can change this through
a facility known as "input/output redirection" (or "i/o redirection" for short).

I1/0 Redirection

As we mentioned, standard input and output are by default assigned to the terminal.
Since this is not always desirable, the command interpreter allows them to be redirected
(reassigned) to other media. Typically, they are redirected to or from disk files, allowing
one program’‘s output to be saved for later use perhaps as the input to another program. This
opens the possibility for programs to co-operate with each other. What is more, when programs
can communicate through a common medium such as a disk file, they can be combined in ways
innumerable, and can take on functions easily and naturalily that they were never individualily
designed for. A few examples with ‘cat’ below, will help to make this clear.

However, let us first examine the techniques for directing standard inputs and standard
outputs to things other than the terminal. The command interpreter supports a special syntax
(called a funnel) for this purpose:

pathname> (read "from" pathname)
redirects standard input to come from the file named by "pathname";

>pathname (read "toward" pathname)

redirects standard output to go to the file named by "pathname". For example, suppose you
wanted a copy of your mail, perhaps to look at slowly with the editor. 1Instead of typing
mail

which would print your mail on the terminal, you would type
mail >mymail

which causes your mail to be written to the file named "mymail" in the current directory. It
is important to realize that ‘mail’ does nothing special to arrange for this; it still thinks
it is printing mail on the terminal. It is more important to realize that any program you
write need not be aware of what file or device it is writing on or reading from.

A bit of terminology from Software Tools: programs which read only from standard input,
process the data so gathered, and write only on standard output, are known as "filters." They
are useful in many ways.

td

Examples of Redirected I/0 Using ‘Cat’

Now, ‘cat’ does not seem like a particularly powerful command; all it can do is
concatenate files and do some peculiar things when it isn’t given any arguments. But this
behavior is designed with redirected i/o in mind. Look through the following examples and see
if they make sense.

cat filet >file2
What this does is to copy "filet" into "file2". Note that since ‘cat’ sends its output to
standard output, we have gained a copy program for free.

- 13 -

Software Tools Subsystem Tutorial

cat filet file2 file3 >total

This example concatenates "filei", "file2", and "file3" and places the result in the file
named "total". This is probably the most common use of ‘cat’ besides the simple "cat
filename".

You need to be careful with the files to which you redirect i/o. In the above example,
if a file by the name of "total" already exists, its contents will be replaced by the
concatenation of "filet", "file2" and "file3". Similarly if you try the command

cat filel file2 file3 >filel

disaster results as it first clobbers "filei", destroying its contents for good.)

£

cat >test

This is an easy way to create small files of data. ‘Cat’ does not see any filenames for it to
take 1input from, so it reads from standard input. Now, notice that where before, this simply
caused lines to be echoed on the terminal as they were typed, each line is now placed in the
file named "test". As always, end-of-file from the terminal 1is generated by typing a
control-c in column 1.

One thing that is extremely important is the placement of blanks around i/o redirectors.
A funnel (">") must not be separated from its associated file name, and the entire redirector
must be surrounded by at least one blank at each end. For example, "file> cat" and ‘"cat
>file" are correct, but "file > cat", "cat > file", "file>cat" and "cat>file" are all
incorrect, and may cause catastrophic results if used!

You can see that more complicated programs can profit greatly from this system of i/o.
After all, from a simple file concatenator we have gained functions that would have to be per-
formed by separate programs on other systems.

There are other, more complicated i/o redirectors available to you. See the User’s Guide
for the Software Tools Subsystem Command Interpreter for a full, in-depth discussion of the

acilities the shell provides.

Software Tools Subsystem Tutoriatl

Using Primos from the Subsystem

Unfortunately, a few functions of Primos and its support programs have not been
neatly bundled into the Subsystem. The Subsystem commands that address this problem
are the topic of this section.

Executing Primos Commands from the Subsystem

The commands ‘x’ and ‘primos’ can be used to access Primos programs and commands without
having to go through the work of leaving and re-entering the Subsystem.

‘X’ may be used in either of two ways; the first is

s

x Primos-command
This is the method of choice for executing a single Primos command. You will probably want to
put double quotes around the Primos command to keep the Subsystem from becoming annoyed at
metacharacters such as ">" and "<" being used in the Primos command.

The second way to use ‘x’ is to use it without arguments. Here is an example:

] x

ok, status net

ok, message -9 now
Hi there.

ok, <control-c>

This method allows many Primos commands to be executed. In this case, ‘x’ reads a line at a
time and passes it to the Primos command interpreter for execution. If the Primos return code
is positive, ‘x’ continues to the next line; if not, ‘x’ exits to the Subsystem. ‘X’ will
also return to the Subsystem when it encounters a control-c or a Primos REN. The prompt,
"ok,", is 1in small letters to remind you that it is the command ‘x’ producing the prompt and
not Primos.

The second command, ’‘primos’, invokes a new level of the Primos command interpreter from
the Subsystem. (With this command, the Primos command interpreter prints the prompt "OK," and
your commands are received directly by it.) You can return to the Subsystem by typing the
Primos REN command.

Software Tools Subsystem Tutorial

Program Development

One of the most important uses of the Software Tools Subsystem is program
development. The Ratfor language presented in Software Tools is an elegant language
for software developers, and is the foundation of the Subsystem; virtually all of
the Subsystem is written in Ratfor.

Developing Programs

To acquaint you with the several steps of program development, we present an example in
which we develop a simple Ratfor program. We use a Ratfor example here because Ratfor is the
most widely used language fn the Subsystem --- but for a few lines here and there, the entire
Subsystem is written in Ratfor. 1If you want to learn more about Ratfor programming, you can
read the User‘’s Guide for the Ratfor Preprocessor. Meanwhile, on with the example . . .

The Subsystem Text Editor

The first program most users will see when they wish to create another program is ‘ed’,
the Subsystem text editor, or if you have a crt, ‘se’, the screen editor. A complete descrip-
tion of either is beyond the scope of this tutorial, but a short list of commands (accepted by
both the 1line editor and full screen editor) and their formats, as well as an example using
‘ed, ’ should help you get started. For more information refer to Introduction to the Software
Jools Text Editor and of course to Software Tools.

'Ed’ is an interactive program used for the creation and modification of "text". "Text"
may be any collection of characters, such as a report, a program, or data to be used by a
program. All editing takes place in a "buffer", which is nothing more than ‘ed’s own private
storage area where it can manipulate your text. '‘Ed’s commands have the general format
<line number>,<1ine number><command>

where, typically, both 1l1ine numbers are optional. Commands are one letter, sometimes with
optional parameters.

The symbol <1ine number> above can have several formats. Among them are:

. an 1nteger} meaning the line with that number. For example, if the integer 1is 7,
then the 7th 1ine in the buffer;

. a period ("."), meaning the current line;

. a dollar sign (“$"), meaning the last l1ine of the buffer;

. /string/, meaning the next line containing "string";

. string , meaning the previous line containing "string";

. any of the above expression elements followed by "+" or "-" and another expression

element.

A1l commands assume certain default values for their line numbers. In the 1list below,
the defaults are in parentheses.

Command Action
(.)a Appends text from standard input to the buffer after the line

specified. The append operation is terminated by a 1ine containing
only a period in column 1. Until that time, though, everything you
type goes into the buffer.

(.,.)d Deletes lines from the first 1ine specified to the last 1line
specified.
e filename Fills the buffer from the named file. Anything previously in the

buffer is lost.

(...)p Prints lines from the first line specified to the last. 1,$p prints
the entire buffer.

q Causes ‘ed’ to return to the command interpreter. Note that unless
you have given a "w" command (see below), everything you have done to
the buffer is lost.

Software Tools Subsystem Tutorial

(.)r filename Reads the contents of the named file into the buffer after the
specified line.

(.,.)s/old/new/p Substitutes the string "new" for the string "old". If the trailing p
is included, the result is printed, otherwise ‘ed’ stays quiet.

(1,8$)w filename Writes the buffer to the named file. This command must be used if
you want to save what you have done to the buffer.

? Prints a longer description of the last error that occurred.

If ‘ed’ is called with a filename as an argument, it automatically performs an "e" com-
mand for the user.

‘Ed’ is extremely quiet. The only diagnostic message issued (except in a time of dire
distress) is a question mark. AImast always it is obvious to the user what is wrong wien ‘2¢’
complains. However, a longer description of the problem can be had by typing "?" as the wxt
command after the error occurs. The only commands for which ‘ed’ provides unsolicited
information are the "e", "r", and "w" commands. For each of these, the number of lines i -ans-
ferred between the file and ‘ed’s buffer is printed.

You should note that specifying a 1ine number without a command is identical to specify-
ing the 1ine number followed by a "p" command; i.e., print that line.

Creating a Program

Now that we have a basic knowledge of the editor, we should be able to use it to write a
short program. As usual, user input is boldfaced.

] ed (1)
a (2)
now --- print the current time (3)
def ine(TIME_OF_DAY,2) (4)
character now (10) (5)
call date (TIME_OF_DAY, now) (6)
call print (STDOUT, "Now: *sxn"s, now (7)
stop (8)
end (9)
. (10)
W now.r (11)
11 (12)
q (13)

] (14)

(1) You invoke the editor by typing "ed" after the command interpreter’s prompt. ‘Ed,’
in its usual soft-spoken manner, says nothing.

(2) ‘Ed’s "a" command allows text to be added to the buffer.

(3) Now you type in the text of the program. The sharp sign "#" introduces comments in
Ratfor.

(4) Ratfor’s built-in macro processor is used to define a macro with the name
"TIME_OF_DAY". Whenever this name appears in the program, it will be replaced by
the text appearing after the comma in its definition. This technique is used to
improve readability and allow quick conversions in the future.

(5) An array "now", of type character, length 10, is declared.

(6) The library routine ‘date’ is called to determine the current time.

(7) The library routine ‘print’ is called to perform formatted output to the program’s
standard output port.

(8) The *“stop" statement causes a return to the Subsystem command interpreter when
executed.

(8) The "end" statement marks the end of the program.

(10) The period alone on a line terminates the "a" command. Remember that this must be
done before ‘ed’ will recognize any further commands.

Software Tools Subsystem Tutorial

(11)
(12)
(13)

(14)

Now

with the "w" command, ‘ed’ copies its buffer into the file named "now.r".
‘Ed’ responds by typing the number of l1ines written out.

The "q" command tells ‘ed’ to quit and return to the Subsystem’s command
interpreter.

The Subsystem command interpreter prompts with a right bracket, awaiting a new com-
mand.

we are talking to the command interpreter again. We may now use the ‘rp’ command to

change our program from Ratfor into Fortran, and hopefully compile and execute it. :

1)

(2)

(3)

1 rp now.r ‘ (1)
8 (.main.): ‘<NEWLINE>’ misting right parenthesis. (2)
] (3)

‘Rp’ is called. The argument "now.r" directs Ratfor to take its input from the file
"now.r" and produce output on the file "now.f".

‘Rp’ has detected an error in the Ratfor program. ‘Rp’s error messages are of the
form

line (program-element): ‘context’ explanation
In this case, a missing parenthesis was detected on 1ine 8 in the main program.

‘Rp’ has returned to the Subsystem’s command interpreter, which prompts with "]".

Looking back over the program, we quickly spot the difficulty and proceed to fix it with

‘ed’:

(1)

(2)
(3)
(4)

(s)
(e)
(7)

(8)
(9)
(10)

(11)

] ed now.r (1)
11 (2)
8 (3)
call print (STDOUT, "Now: *sx*n"s, now (4)
s/, now/, now)/p (5)
call print (STDOUT, "Now: *s*n's, now) (e)

" (7)
11 (8)
(9)

1 rp now.r (10
(11

)
])
The editor is called as before. However, since we have given the name of a file,
"now.r", to ‘ed’ as an argument, it automatically does an "e" command on that file,
bringing it into the buffer.
‘Ed’ types the number of lines in the file.
we type the line number 8, since that is the l1ine that ‘rp’ told us had the error.

‘Ed’ responds by typing the 1ine. (Remember that a line number by itself is the
same as a "p" command of that 1ine number.)

we use ‘ed’s "s" command to add the missing parenthesis. Note the use of the "p" at
the end of the command.

‘Ed’ makes the substitution, and since we have specified the “p", the result is
printed.

we now write the changed buffer back out to our file (‘ed’ remembers the file name
Ynow.r" for us).

‘Ed’ prints the number of l1ines written.
we exit from the editor with the quit command “q".

we invoke Ratfor to process the program. Ratfor detects no errors. The output of
the preprocessing is on file "now.f".

The command interpreter prompts us for another command.

Now that the Ratfor program has been successfully preprocessed, it is time to compile the
Fortran output, which was placed in the file "now.f". ‘Fc,’ should be used to compile Sub-
system programs, since it selects several useful compiler options and standardizes the com-

- 18 -

Software Tools Subsystem Tutorial

pilation process:

] fc now.f
0000 ERRORS [<.MAIN.>FTN-REV19.2]
]

A1l of the garbage between the "fc" and the "]" prompt is stuff produced by the Fortran
compiler and is mostly irrelevant at this point. The essential thing to recognize about it is
that the number before "ERRORS" is zero.

Now that our program has compiled successfully, we bravely proceed to invoke the Linking
Loader using ‘1d.’ '’‘Fc’ has left the output of Fortran in the file "now.b". We will use
‘1d’s "-o" option to select the name of the executable file:

1 1d row.b -0 now

[SEG rev 19.2.GT]

vl # {
$ co ab 4001

$ sy swt$cm 4040 40000

$ sy swt$tp 2030 120000

$ mi

$ s/10 now.b O 4000 4000

$ s/1o ‘1ib>vswtib’ O 4000 4000
$ s/1i O 4000 4000

LOAD COMPLETE

$ ma 6

$ re

sh

TWO CHARACTER FILE 1ID:

delete

q

]

Again, all the noise between "1d" and "]" comes from the Loader. The important thing to
notice here is the "LOAD COMPLETE" message, which indicates that linking is complete. If we
did not get the "LOAD COMPLETE" message, we would re-link using the command "1d -u now.b -0
now" and the loader would then l1ist the undefined subprograms.

we now have an executable program in our directory. We can check this using ‘1f‘:

1
now now.b now. f now.r

]

Deciding we do not need the Fortran source file and the intermediate binary file hanging
around, we remove them with ‘del’:

] del now.f now.b
1 1f
now now.r

]
And getting really brave, we try to run our newly created program:

] now
Now: 16:34:41
]

Hopefully the preceding example will be of some help in the development of your own (more
important) programs. Even though it is simple, it shows almost all the common steps involved
in creating and running a typical program.

Caveats for Subsystem Programmers
Since the Subsystem is exactly that, not an operating system but a sub-system, programs

written for it must follow a few simple conventions, summarized below.

To exit, a program running under the Subsystem should either use a "stop" statement
(Ratfor programs only), "return" from the main program (Pascal and PL/I G), or call
the subroutine "swt". Specifically, the Primos routine "exit" must not be called to
terminate a program.

- 19 -

Software Tools Subsystem Tutorial

Whenever possible, Subsystem i/0 and utility routines should be used instead of
Primos routines, since the latter cannot handle all aspects of the Subsystem files.
If, however, programs must use native i/o routines, remember that they must inform
their native i/o routines of the Subsystem by calling the proper initialization
routines (see Subsystem Interface Subroutines in the table below), or they will not
be able to take advantage of standard input, standard output or any of the other i/o
related features provided by the Subsystem.

The Subsystem interfaces available for Primos languages and utilities are summarized
below:

Language Primos Primos Subsystem
or Subsystem Commands Interface
Utility Interface Interfaced Subroutines
o xce cc -
xcel CC, SEG
Cobo1l cobc COBOL -
cobcel coBOL, SEG
Database fsubc FSUBS -
fdmic FDML
fdmicl FDML, FTN,
SEG
csubc CSuBS -
cdmic CDML
cdmicl CDML,
coBoOL,
SEG
ddlic SCHEMA -
Debugger dbg DBG -
vpsd SEG
Fortran 66 fc FTN init$f,
fel FTN, SEG getas$f
Fortran 77 f77c F77 init$f,
£77¢1 F77, SEG - getas$f
Loader id SEG -
Pascal pc PASCAL init$p,
pcl PASCAL, SEG file$p,
getasp
PL/P plpc PLP -
plpel PLP, SEG
PL/1 G plgc PL1G init$plg,
plgcl PL1G, SEG getasplg
Prime pmac PMA -
Assembler pmacl PMA, SEG
SPL splc SPL -
spicl SPL, SEG

Use 'he16’ or refer to the Subsystem Reference Manual for a complete description of
Primos/Subsystem interface commands and Subsystem interface subroutines. '
i)

-20-

Software Tools Subsystem Tutorial
Errors

Although the Software Tools Subsystem provides a very nice program development
and applications environment, Murphy’s Law indicates that things will still go

wrong. "To err is human...", so it is best to anticipate errors, and know what to
do when you encounter them. This section indicates some of the more common causes
of errors, and what to do when you encounter them. The non-technical user can

probably skip this section.

Recovering from Errors

Everyone encounters errors sometimes. Eventually vyou will divide by zero, or try to
execute source code, or do something even worse. Howeve: the only error which will kick you
out of the Subystem and into Primos is one which aestroys your user stack. 1In this case,
Primos will reinitialize the user environment (FATAL$). If you have a *"login.comi" file,

Primos will execute it. If it contains the command *“swt", the Subsytem will be cranked up
again.

For errors other than one which destroys your stack, Software Tools will catch it, and
ask if you wish to abort, continue, or call Primos. The default is to abort, and return to
the Subsystem.

when an error occurs, and after you have satisfied yourself reasonably well as to why,
the "“cure-all" for Subsystem problems is simply to type:

swt

Sometimes, this will not work. The stack may be screwed up, or something else may have
gone terribly wrong. To clear everything compietely, and restart the Subsystem, type the fol-
lowing:

0K, rl1s -alil
OK, dels all
0K, swt

Again, a "login.comi" file containing the "swt" command will generally restart the Subsystem
for you.

A1l error messages that cause an exit to Primos (signalled by the "OK," or "ER!"
prompts) are briefly explained in appendix A-4 of the Prime Fortran Programmer‘’s Guide
(FDR3057). Some very common programming errors can cause cryptic error messages with
explanations that may be uninteliligible to the novice. The rest of this section contains a
brief description of some of those messages. You need not read what follows if you don‘t make
programming errors.

Many Primos error messages are dead giveaways of program errors. Messages that begin
with four asterisks are from the Fortran runtime packages -- they usually indicate such things
as division by zero or extraction of the square root of a negative number. For example,

**xxx SQRT -- ARGUMENT < O
0K,

results from extracting the square root of a number less than zero.
Other more mysterious error messages can also be caused by simple program errors.
POINTER FAULT

usually indicates that a subprogram was called that was not included in the object file. An
obvious indication of a missing subprogram is the failure to get the

LOAD COMPLETE
»
message from ‘1d’. (Note that the Fortran compiler treats references to undimensioned arrays
as function calls!) A more insidious cause of the “POINTER FAULT" message is referencing in a
subprogram an argument that was not supplied in the subprogram call; e.g., the calling routine
specifies three arguments and the called routine expects four. The error occurs when the
unspecified argument is referenced in the subprogram, not during the subprogram call.

ACCESS VIOLATION
ILLEGAL INSTRUCTION AT <address>

ILLEGAL SEGNO
PROGRAM HALT AT <address>

all can result from a subscript exceeding its bounds. Because the program may have destroyed

- 21 -

Software Tools Subsystem Tutorial

part of itself, the memory addresses sometimes given may well be meaningless.

To find errors such as these, time can often be saved by using a program trace. In addi-
tion to the manual insertion of ‘print’ statements in the source program, both ‘rp’ and ‘fc’
have options to produce a program trace. The "-t" option will cause ‘rp’ to insert code to
trace the entry and exit of subprograms. (One should note that only subprograms preprocessed
with the "-t" option will be traced.) ‘Fc’ will emit code to produce a Fortran statement-
label and assignment trace when called with the "-t" option. Although this trace will contain
the statement labels generated by ’‘rp’, the intermediate Fortran code may be 1listed and the
execution path followed.

See the subsection on debugging in the Application Notes section of the User’s Guide for
the Ratfor Preprocessor for more suggestions on finding and eliminating errors in your ratfor
programs.

- 22 -

Software Tools Subsystem Tutorial
Advanced Techniques

This section deals with several of the more advanced features of the Subsystem.

Command Files

As an illustration, 1let us take an operation that finds use quite frequently: making
printed 1istings of all the Ratfor source code in a directory. Command language programs, or
"shell programs," greatly simplify the automation of this process. Shell programs are files
containing commands to be executed when human intervention is not required.

Suppose that we put the following commands in a file named "mklist" (note the use of i/o
redirection here):

1f -c >tempt (
tempi> find .r >temp2

temp2> change % "sp " >temp3

temp3> sh

del tempi temp2 temp3

Then, whenever we want a listing of all the Ratfor source code in the current directory, we
just type:

mklist

The only price we must pay for this convenience is to ensure that the names of all files
containing Ratfor programs end in ".r". (If the ‘find’, ‘change’, and ‘sp’ commands mystify
you, ‘help’ can offer explanations.)

Pipes

Pipes are another handy feature of the Subsystem. A "pipe" between two programs simply
connects the standard output of the first to the standard input of the second; and two or more
programs connected in this manner form a "pipeline." With pipes, programs are easily combined
as cooperating tools to perform any number of complex tasks that would otherwise require
special-purpose programs.

The command interpreter provides a simple and intuitive way to specify these com-
binations:

progi | prog2
Essentially, two or more complete commands are typed on the same l1ine, separated by vertical
bars (“:"). (One or more spaces must appear on both sides of this symbol.) The command
interpreter then does. all the work in connecting them together so that whatever the program on
the left of the bar writes on its standard output, the one on the right reads from its stan-
dard input.

Take our shell program to create listings as an example; that series of commands involved
the creation of three temporary files. Not only is this distracting, in that it takes our
attention away from the real work at hand, but it also leads to wasted storage space, since
one all too frequently forgets to delete temporary files after they have served their func-
tion. Using pipes, we could just as easily have done the same thing like this:

1f -¢ | find .r | change % %“sp " | sh
and the command interpreter would have taken care of all the details that before we had to

attend to ourselves. In addition to being much cleaner 1ooking, the pipeline’s function is
also more obvious.

Additional 1/0 Redirectors

»

The 1last advanced features of the Subsystem that we will examine are the two remaining
i/o redirection operators, represented by two variations of the double funnel (">>").

In the first variation,
>>Xyz (read "append to xyz")
causes standard output to be appended to the file named "xyz". Whereas
cat filet >file2

would copy the contents of filei into file2, destroying whatever was previously in file2,

- 23 -

Software Tools Subsystem Tutorial

cat file1 >>file2

would copy the contents of filel to the end of file2, without destroying anything that was
there to start with.

In the second variation, the double funnel is used without a file name
>> (read "from command input")

to connect standard input to the current shell program. For example, suppose we wanted to
make ‘a shell program that extracted the first ten lines of a file, and deleted all the rest.
The shell program might l1ook something like this:

> ed file
11,%d

w

q

.

">>" is frequently used in this way for the editor to read commands from the shell program,
without having to have a separate script file.

This is only a very small sample of the power made available by the features of the Sub-
system. As is the case with any craft, given the proper tools and an hospitable environment
in which to work, the only limit to the variety of things that can be done is the imagination
and ingenuity of the craftsman himself.

- 24 -

Background

Ancient History

The Software Tools Subsystem, as it now exists, is in its ninth major revision. To give
you an idea of its development, here is a short history of successive versions.

Version 1:

Features: Basic utility commands, no redirection of 1input or output, 1low-level
routines for performing file operations, but no consistent input/output.

. Language: Fortran

Version 2: (.
. Features: AImost complete set of utility commands, redirection of input and output,
all Software Tools 1i/o0 routines, Software Tools editor and Ratfor, improved
reliability during information passing from one program to another.

. Language: Low level routines in Fortran, high level routines and programs in Rat-

for.
Version 3:
. Features: Same as version 2, but with Primos compatible i/o for speed; new shell

added later greatly expanded program interaction.

. Language: Almost entirely Ratfor.

Version 4:

. Features: Same as version 3, plus: (1) ability to handle file names of up to 32
characters on new Primos file partitions; (2) much faster disk i/o0 (on an unloaded
system, benchmarks show an improvement on the order of a factor of 20); (3) internal
reorganization to speed up command searches; (4) support for virtual mode programs
and a shared command interpreter.

. lLanguage: A1l higher-level routines in Ratfor. A few special routines in assembly
language to provide capabilities not inherent in Fortran.

version 5:

. Features: A new command interpreter supporting arbitrary networks of pipes,
generalized command file handling, and dynamic command 1line structures was added.
General reorganization of Subsystem directories on disk.

. Language: Ratfor and Assembler (PMA).

Version 6:

. Features: Shared libraries, maximal security under unmodified Primos, increased
robustness.

. Language: Ratfor and Assembler (PMA).

Version 7:
. Features: Much faster disk I/0, extensions to pathnames to allow specification of
non-file-system devices, new Ratfor preprocessor with significant extensions, some
general cleanup of code and redundant tools, many additional tools.

. Language: Ratfor, Assembier (PMA), and some PL/I.

Version 8:
. Features: Additional 1/0 speed, reduced working set, support for PL/I G, Pascal,
Fortran 77, DBG, improved error handling, terminal type handling, virtual terminal
handler.

- 25 -

Software Tools Subsystem Tutorial
. lLanguage: Ratfor, Assembler (PMA), and some PL/I.

Version 9:
Features: Increased security for shared segments, improved shell, extended text
editors and formatter, access to new Primos file system features, some support for
Prime’s C compiler, a high precision mathematics 1library, and an improved stacc.

. Language: Ratfor, Assembler (PMA), and some PL/I.

Version 9.1:
. Features: Several important bug fixes, and totally terminal independant screen
editor. Text formatter extended further for use with laser printers. Final release
for perpetual 1icensees.

. lLanguage: Ratfor, Assembler (PMA), and some PL/I.

Authors and Origins

The principal authors of the Software Tools Subsystem are Allen Akin, Perry Flinn, Dan
Forsyth, and Jack Waugh, of the Georgia Institute of Technology, aided by a cast of thousands.

The ultimate antecedent for the design of the Subsystem is the UNIX operating system,
written by Dennis Ritchie and Ken Thompson of Bell Labs for the DEC PDP-11 computers.

The tremendous debt owed to Brian W. Kernighan and P. J. Plauger, the authors of Software
Tools, cannot be overstated.

User’s Guide to the Primos File System

Perry B. Flinn
Jefferey S. Lee

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

September, 1984

TABLE_OF CONTENTS

what is a File? C b et et e e e C ettt eses e C et
Entrynamesc0c0ccninnn ettt e e et e e e e
Directoriescc... e A, cee e et e e e e
Logical Disks et e et e e et e C et e ese e
The "Current" and "Home" Directories Ch e e et s .
Protection and Access Controlc.cciiiinnnnnnns e e ese s e et e e
Pathnames e ettt e s e e e e ettt a e ceeeens PR
Passwords in Pathnames ettt C ettt eeeeeeeet e et
L= 11> I T o = [P
Device Namescteiierinnnnnn ettt e e Ceeee e .
Georgia Tech Extensionsc.ccueeeuauon. et e e ese e ceeeen e
Appendix A - Standard Templatesc.ceeneeemcennn C e st s eat st
Appendix B - Pathname Syntax it e e te et e e e ce et (oeercnnnen
Appendix C - Spool Optionscciiurinnn. e eeeaa . c et et e
»

-
- s O NOUDWNNND -

-

Foreword

We offer this guide as an attempt to acquaint you with everything you need to know to
make effective use of the file system from within the Subsystem. Although we have tried to be
thorough in our coverage of concepts and features, we have specifically avoided the details of
the programmer‘’s interface to the file system, and everything having to do with
impiementation. Should you find yourself in need of further information in either of these
areas, let us direct your attention to section two of The Software Tools Subsystem Reference
Manual, the Reference Guide, File Management System (Prime publication number FDR3110), and
the Prime User’s Guide (Prime publication number DOC4130).

File System User’s Guide
Introduction

One thing that you will almost certainly encounter frequently during your exploits
in the Software Tools Subsystem is the Primos file system. Indeed, there is hardly
anything you can do that does not in some way invoive this ubiquitous beast.

What is a File?

A file is a named collection of information retained on some storage medium such as a
disk pack. Just what kind of information a file contains isn’t of much concern to us here; it
may be ASCII character codes that form the text of a book or a program’s source code, it may
be arbitrary binary machine words to be used as input data for a program, or it may be the
actual machine instructions of the prcgram itself, to mention just a few. No matter what f rr-
the information in a file takes, as far as Primos is concerned it is just an ordered sequence
of sixteen bit binary numbers. The interpretation of those numbers is left tb other programs.

Entrynames
Since we mentioned that a file has a name, you might ask what names are acceptable. A
file 1is known by something called its "entryname." An entryname is a sequence of 32 or fewer

characters chosen from the letters of the alphabet, the decimal digits, and the following
special characters:

$ & - x ./ _
The first character in the entryname must not be a digit. Also, no distinction is made
between upper- and lower-case letters. Thus "file_name" and "FILE_NAME" are the same.

Even though Primos allows you to use slashes (/) in entrynames, for reasons that will
become apparent in the section on pathnames they must be treated specially when you are using
the Subsystem. Because the slash is used to separate entrynames from one another in path-
names, if you want to use it in an entryname you have to "escape" it. By this we mean that
you have to precede it with the "escape" character "e". The "e" simply tells the Subsystem to
“treat the next character literally, no matter what special meaning it may have;" it is not
taken as part of the entryname. It is important that you realize this caveat applies only
when you are dealing with the Subsystem; if you try to put an “e" in an entryname when talking
directly to Primos, you will get a rather impudent message.

Directories

The way that Primos makes the association between a file‘’s entryname and its contents is
through the use of "directories." Like a file, a directory has an entryname and contains some
information; but it 1is different from ordinary files in that the information it contains is
treated specially by Primos. The information in a directory is a series of ‘"entries," each
consisting of the entryname of some other file, that file’s location on the disk pack, and
some other stuff that we will cover in a later section. When a file’s entryname and location
appear in a directory, we say that the directory "contains" that file, or that the file
"resides within" that directory. Either way you say it, every file in the system appears in
exactly one directory.

Since a directory is so much like a file, there is really nothing to prevent us from hav-
ing directories that contain other directories. This phenomenon is known as “nesting" and may
be carried out to any depth, giving rise to a hierarchical structure:

mfd
! 1 ! :
disk_rat djr1 mfd boot badspt d:r2
T : i
d:r3 file1 d:rd filed diri ,
fi{ez f1{e1

At the topmost 1level of the hierarchy is a directory named "mfd", short for master file
directory. You will find this directory at the top level of every Primos file system. The
MFD is special because it always begins at a fixed location on the disk pack, and because it
always contains the following entries:

disk_rat
“The disk_rat (disk record availability table) is a file that catalogs all of the
storage space on the disk pack that isn‘t already in use. It is always the first
entry in the MFD and, 1ike the MFD, always begins at a fixed 1location. This file
may have any valid entryname; it doesn’t have to be called "disk_rat". But whatever

File System User’s Guide

entryname is chosen, it is known as the "packname" for that disk pack.

mfd
The MFD always has an entry describing itself.

boot
The "boot" file, which also begins at a fixed location, contains the memory-image of
a program that is loaded and executed whenever the computer is cold-started. This
program is usually a single-user version of Primos.

badspt

Although this file is not necessarily present on every disk pack, if it is it
contains a list of faulty records that should not be used.

You may have noticéd in the diagram that there are three occurrences of the entryname
“filet", and two of "dir1". Each of these entrynzmes rerers to a different file or directory.
Even though each entryname must be unique among all those in a given directory, it is perfec-
tly legal to use the same name repeatedly in different directories.

Logical Disks

Since Primos doesn’t allow file systems that span multiple disk packs, it does the next
best thing and allows you to have multiple file systems in the same installation. Each file
system is called a "logical disk" and has exactly the structure described in the last section.
Although each installation is virtually guaranteed to have at least one logical disk, the
actual number may vary dynamically from O to 62. Each disk is uniquely identified by its
"logical disk number," and though it is not required, it is extremely desirable for each disk
to have a unique packname.

The "Current" and "Home" Directories

Now that we have described this wonderful hierarchy of directories and files just waiting
to be used, you might wonder how it is that you go about getting to them. One concept that is
central to the solution of this problem is that of the "current directory." From the time you
log in to the time you log out, your terminal is having an ongoing relationship with some
directory in the file system. When you first log in, this directory is set to whatever the
system administrator decided when he created your account. But monogamy is not required; you
are free to jump around from directory to directory upon the slightest whim. We say the
"current directory" is the directory to which you are attached.

The current directory is important because all the files contained in it are directly
accessible to you at the drop of an entryname. 1In fact, if you are using some of Prime’s
software, these are the only files accessible to you without changing your current directory.
But there 1is a handy device called the "home directory" that takes some of the edge off of
this restriction. Your home directory is the one to which you intend to return after an
expedition into the wilds of the file system. 1In effect, it allows you to remember the loca-
tion of some particular directory, and to later return there in one giant step, regardiess of
your (then) current location. Whenever you change your current directory, you get to choose
whether to change your home directory as well or to leave it where it is.

Protection and Access Control

In versions of Primos before Revision 19, to guard your files from unwanted perusal or
alteration, the file system included a basic access control mechanism that provided two levels
of protection to each file. As part of this mechanism, each directory had associated with it
a pair of six-character passwords, one called the "owner password," and the other called the
"non-owner password.* Normally, when a directory was created its owner password was blank and
its non-owner password was zero; these were the default values. But if the passwords had
other than default values, then before you could successfully attach to the directory, you had
to prove your worthiness to do so by citing one of them. If you cited the owner password,
then you were attached to the directory with "owner status;" if it‘’s the non-owner password
that you cited, then you: were attached with *non-owner status." If you failed to cite either
password, then unless: one of them had a default value your attempt would be in vain. Just
what status you attained when attaching to a directory bears upon the kinds of things you
could do to the files it contains.

For the purposes of password protection, there are three things you can do to a file:
you can read from it, you can write into it, and you can truncate (shorten) or delete it. Now
if you will recall that "other stuff" we mentioned a while back as being in a file’s directory
entry, part of it is two sets of "protection keys:" one for people attached to the containing
directory with owner status, and the other for those with non-owner status. Each set of keys
has a bit for each type of access: read, write and delete. If a bit is turned on, the
associated type of access is permitted; otherwise, it is denied.

Revision 19 of Primos introduced Access Control Lists (ACL’s). Unlike the password
protection previously described, ACL’s allow specific permissions on files to be granted on a

File System User’s Guide

per-user basis, instead of a broad class of permissions being granted to anyone who happens to
know, or guess, the password. They also allow better control over permissions given to users.
Previously, in order to allow a user to create files in a directory, he was implicitly given
the right to delete any other files in that directory, also. With ACL’s, this is no longer
the case.

An ACL consists of a 1ist of up to 32 identifiers and privileges associated with each of
the identifiers. An identifier can be a user’s login name or it can be a group identifier
associated with several users. If a user’s name and associated group are both in an ACL, the
user’s login name takes precedence. The seven different privileges associated with ACL’s are:

add This privilege 1is associated with a directory and allows the user to create a
new file within that directory. Once the file is created, the user has full
read/write access to the file until the file is closed, at which point other
privileges determine the accessibility of the file.

delete This privilege is associated with a directory and allows tre us=" to delete
an existing file within that directory. ¢

list This privilege is associated with a directory and allows the user to list the
contents of the directory (l1ike with “1f/).

protect This privilege is associated with a directory and allows the user to set ACL
protection for objects in the directory.

read This privilege is associated with a file and allows the user to open a file for
reading or to execute a file. The user must first be able to attach to the
directory before he can read the file, which implies use privilege (see below).

use This privilege is associated with a directory and allows the user to attach to
the directory (l1ike with ‘cd’). 1In order to access a file or a directory, the
user must have use privilege on all intervening directories between the MFD and
the desired file or directory.

write This privilege is associated with a file and allows the user to open a file in
write mode or to truncate a file.

Associated with the ACL is its type. There are five different types of ACL’s. The first
type is the specific ACL. This gives protection on one specific file object and is associated
with only that object. 1If the object is deleted then the specific ACL goes away, also.

The second type of ACL is the default specific ACL where a specific ACL is set on an
ancestor directory of the current object. 1If the object is not protected by a specific ACL or
an access category (the next type), then it is given the same protection as the ancestor
directory.

The third type of ACL is the access category ("acat"). An access category, unlike the
two previous types, may protect many objects at one time with the same protections. An acat
appears in the file system as a file that cannot be read or written, and its name must end in
v“.acat". It is a separate type of file system object (just as in ‘1f -1’ listings, DAM files
are different from SAM files -- acats are of type ACT). An access category need not protect
any object since it exists independant of any other object in the file system. If an access
category is deleted, any object that it was protecting becomes default protected, or becomes
protected by the directory that contains it.

The fourth type of ACL is the default access category. This is an access category that
protects a directory that contains other objects that are then protected by default.

The 1last type of ACL is the priority ACL. This is an ACL that is set on an entire disk
partition by the system administrator, normally at boot time. Any rights given by a priority
ACL override any rights given by any other ACL’s.

In order to allow for a gradual change from the older versions of Primos to Revision 19,
it is possible for password directories and ACL’S to exist in the same system, although pass-
word directories will eventually be unsupported. There is a restriction in that ACL direc-
tories may contain both password and ACL directories but password directories may not contain
ACL directories. 1In order for any directory to be an ACL directory on a logical disk, the MFD
of that partition has to be ACL protected. Password directories also overcome some of the
limitations of ACL’s. If an ACL gives someone the privilege of writing a file, then under all
circumstances they are allowed to write the file. 1If the file is 1in a password directory,
though, they may only write the file if they know the password. This means that a password
can be nested deep in a program that is used to control their access to a file, even if the
person running the program does not know the password.

Pathnames

Unlike the Prime software we mentioned that only lets you manipulate files in your
current directory, the Subsystem places no restrictions on the whereabouts of the files you

File System User’s Guide

can reference. Generally speaking, anywhere the name of a file is required you may use
something called a "pathname." A pathname is a construct that allows you to unigquely specify
any file in the system by describing a path to it from some known point. As we have seen, the
current directory 1is one such point, and because of its fixed location, the MFD on each
"logical disk is another.

The syntax of a pathname is divided into two basic parts which we will call the "starting
node, " designating the particular known point at which the path starts, and the "directory
path," designating the actual series of nested directories that leads to the desired file.
Both parts, by the way, are optional: either one may stand alone, they may stand together, or
they may both be omitted. But if both are present, they must be separated by a single slash
/).

The starting node of a pathname comes in two varieties. The first designates the MFD of
a particular logical disk &nd consists of an initial slash followed by a packname, a logical
disk number in octal, or a single ~sterisk (*):

/vo100
/7
/*

If the asterisk 1is used, the MFD of the logical disk containing the current directory is
implied; the other two forms should be self-explanatory. The second variety of starting node
refers to one of the current directory’s ancestors in the hierarchy and consists of one or
more backslashes (\). The number of backslashes indicates the number of nesting levels above
the current directory at which the path begins. If the starting node is omitted altogether,
then the path starts in the current directory.

Now the other half of a pathname, the directory path, is simply a series of one or more
entrynames, each separated from the next by a single slash. The first entryname must be
contained in the starting directory, and each subsegquent entryname must reside in the direc-
tory designated by the preceding entryname. The very last entryname in the path is that of
the target file. To illustrate,

src/11ib/swt
extra

are proper directory paths. As you might expect, if the directory path is omitted, the target
of the pathname is the starting directory. Thus, the pathname from which both the starting
node and the directory path have been omitted (the empty pathname) refers to the current
directory.

A couple of special cases are worth mentioning here: First, a pathname that begins with
a slash and whose directory path is not omitted need not contain a packname or logical disk
number. In this case an implicit search of the MFD on each logical disk is made for the first
entryname in the directory path. The MFD on the lowest numbered logical disk in which that
entryname is found is taken as the starting directory. Notice that such a pathname is easily
recognizable because it begins with two slashes; the first one belongs to the starting node
and the second separates it from the directory path:

//system

The second special case has to do with pathnames beginning with a backslash. Although we
said that a slash must be used to separate a starting node from a directory path, when using
backslashes the intervening slash is not required; indeed it is omitted more often than not.

Passwords in Pathnames

The following discussion is applicable only for password protected directories, since ACL
protected items do not need passwords. Thus far in discussing pathnames we have assumed that
we may freely specify any valid sequence of directories in a directory path without regard to
the passwords that may be associated with those directories. 1In fact, this is true only if
the directories have at least one password with a default value, or if the directories are ACL
directories. You see, the interpretation of a pathname involves temporarily attaching to each
directory 1in the path; if this can’t be done without a password then the pathname can’t be
interpreted. Furthermore, the set of access privileges (owner or non-owner) available to you
with respect to the target file is determined by whether you are attached to its parent direc-
tory as an owner or a non-owner by the pathname interpreter. So, to let you deal effectively
with passworded directories, the pathname syntax allows you to append a password to each
directory entryname in the path, separated from the entryname by a colon:

entryname:passwd

If a password is so specified, the pathname interpreter will use it when attaching to the
associated directory.

- 4 -

File System User’s Guide

A password may contain arbitrary characters which are not necessarily legal in

entrynames. So to avoid the ambiguity in interpreting a password containing a slash, as with
entrynames, the slash must be "escaped" by preceding it with an "e". This aiso means that the
"e" itself must be escaped if it is to appear l1iterally in the password. Remember that the

"e" used as an escape character is not included in the password; it merely turns off the
special meaning of the character that follows.

The following set of examples contains an instance of just about every possible variation
in the syntax of pathnames, along with an explanation of each. A formal summary of pathname
syntax in BNF notation is included in Appendix B.

a_file
A file in the current directory whose entryname is "a_file".

a_ufd/a_file
A file whose entryname is also “"a_file" and !t con*airsc in the subdirectory “a_ufd*
of the current directory. !

The parent of the current directory.

\brother (or \/brother)

The file or directory named “brother" that resides in the same directory that
contains the current one.

/0/cmdncO: secret
The directory named "cmdncO" (one of whose passwords is "secret") which resides in
the MFD on logical disk O.

/md
The MFD on the logical disk whose packname is "md".

/*/boot
The "boot" file on the current logical disk.

//spoolg/q.ctri

The file named "g.ctrl1" in the "spoolq" directory on the lowest numbered logical
disk that has one.

kie/da:ade/ik
The directory residing in the current directory whose entryname is "ki/da" and one

of whose passwords is "ad/ik". (Note the use of the "e" to turn off the special
meaning of "/".)

<empty>
The current directory.

Templates

In order to provide flexibility in the organization and placement of the directories and
files used by the Subsystem, the pathname interpreter contains a primitive macro substitution
facility, a feature that is loosely referred to as "templates." Templates provide a means for
designating particular files or directories without having to know their exact location in the
file system, and for constructing file names whose exact interpretation may vary with the
context 1{in which, or the user by whom they are used. A template is constructed from letters,
digits and underscores and is always enclosed in equals bars (=). (Templates do not have to
begin with a letter). Unlike entrynames, upper- and lower-case letters are different in tem-
plate names; "name" and "NAME" are not the same. Each defined template has an associated
value which 1is an arbitrary character string. The effect of including a template in a path-
name is the same as if its value had appeared instead.

There are two types of templates: static and dynamic. The value of a dynamic template
varies depending upon who you are, how you are connected to the computer, or what time it is.
The following list describes all of the available dynamic templates:

=date= ’
The current date in the format mmddyy.

=day=
The current day of the week; "monday", for example.

=home=
The current user’s initial login directory (set by the system administrator when he
created the account). This may vary on a per-user per-project basis. I.e., the

system administrator may set it up so that the initial login directory for a given
user is different for different projects.

File System User’s Guide

=passwds=s
The owner password of the current user’s profile directory. (This is the same pass-
word the Subsystem asked you for when you typed "swt".)

=pid=
The current user’s process-id. This is a three-digit number in the range 001-128
that is unigue to each logged-in user.

=time=
The current time in the format hhmmss.

=users=
The current user’s login name.

These templates are particUlarly useful for constructing unique file names.

Static templates are those whose definitions are independent of the context in which they
are used. These templates and their values come from two sources. The file whose name is the
value of the template

=templates=

contains system template definitions that apply globally to all Subsystem users. In fact the
definition of "=template=" itself is contained in this file, as are definitions for other
important Subsystem files and directories. In addition to this file, you may have in your
profile directory (named by the template "=varsdir=") a file named ".template" that contains
your own personal template definitions. Any templates that you define yourself preempt
similarly named system templates, SO you should exercise caution in choosing names. Also note
that any new templates you place in your personal template file do not take effect until the
next time you enter the Subsystem via ’‘swt’; this is the only time that the file is examined.
If you wish to create templates that will take effect immediately, use the ’‘template’ command
(do a ‘help template’ for details).

The format of both files is the same: a series of lines containing a name, followed by
one or more blanks, and then a value. Blank 1ines are ignored, as are leading and trailing
blanks on each line. Comments may be introduced with the sharp character (#); all characters
from the sharp to the end of the line are ignored:

example of a template definition

macros //smith/misc/macros #Smith’s macros
The above example defines a template "macros" referring to the file "//smith/misc/macros." A
gquick perusal of the contents of "=template=" should clear up any lingering questions you may
have. Just for convenience, all dynamic and system templates, along with an explanation of

each, are listed in Appendix A.

If you look at the template definition file, you will notice that some of the definitions
appear to contain templates themselves. This is perfectly legal, for after each template is
expanded, the result is inspected for further templates until no others are found. This makes
possible the definition of such templates as "=varsdir=", and generally enhances the utility
of the mechanism.

Just one further remark about templates: Remember the trouble we had with "/" 1in pass-
words and entrynames? well, we have a similar situation with "="; when should it be taken
lTiterally, and when should it indicate the beginning of a template? To solve this dilemma,
any time the template expander sees a template with an empty name (that is, two consecutive
equals bars), it supplies a single "=" as the replacement value and does not consider it to be
the start of another templiate. So if you ever want a l1iteral "=", in a password for example,
just type "==" and you‘ve got it.

Device Names

Up to tﬁis point, we have been talking only about disk files, and the pathnames we have
described have corresponded exactly to some actual sequence of directories leading to a file.
Although this is certainly the most common use of pathnames, there is one additional feature
that significantly enhances their usefulness. If the "starting node" of a pathname is "/dev",
the pathname doesn’t necessarily refer to a disk file, but may instead refer to an arbitrary
peripheral device, or to some special file that requires unusual processing. As with ordinary
pathnames, the "directory path" provides more information about the target file or device.

Perhaps the most useful of these extended pathnames (or "device names," as they are
usually called) is

/dev/1ps
which refers to the 1ine printer spooler. When this pathname is opened for writing, a special

disk file is created and other processing is done so that when the file 1is closed, its
contents will be written to the on-site 1ine printer by the spooler and then deleted.

File System User’s Guide
Additional entrynames may be included after the "lips" to select various processing options
specific to the spooling process. A complete list of these in included as Appendix C.
Another useful device name is
/dev/tty

which refers to your terminal device. There are also others which, when opened, yield file
descriptors for the various standard input and output ports:

/dev/stdout /dev/stdin
/dev/stdout1 /dev/stdini
/dev/stdout2 /dev/stdin2
/dev/stdout3 /dev/stdin3
/dev/errout /dev/errin
Finally, the device name (-
/dev/nuli

when opened yields a file descriptor which discards all data written to it and returns an end-

of-file signal every time it is read. It is really just a fancy name for the proverbial bit
bucket.

Georgia Tech Extensions

As many of you reading this guide will eventually come to know, using the standard Primos
file system can be quite awkward, principally because of the constant necessity of typing pas-
swords in pathnames. Relief from this burden comes only at the expense of security, which in
many cases is a more important consideration than ease of use. So that we can have our cake
and eat it too, we at Georgia Tech have made a few modifications to the standard protection
mechanism that virtually eliminate the necessity for typing passwords in all but the rarest of
circumstances. The Subsystem requires none of these modifications to operate properly, and in
those cases where it behaves differently depending on the extant version of Primos, it does so
completely transparently to the user.

In Georgia Tech Primos, if a directory’s owner password is a valid entryname, it is
assumed to be the login name of the user that "owns" that directory. 1In this case, the "owner
password" is instead called the "owner name." When you attach to a directory whose owner name
"matches" your login name, you automatically get owner status without having to cite a pass-
word. This is the only difference between the protection mechanism in Georgia Tech Primos and
the standard mechanism. In all other situations, you can expect the standard behavior.

-7 -

File

System User’s Guide

Appendix A - Standard Templates

dard

The following list describes all of the templates that are provided either in the stan-
Subsystem template file or by the template interpreter.

=aux=
This Subsystem directory contains large files that are not absolutely necessary for
the operation of the Subsystem.

=bin=
The standard Subsystem command directory.
sbug:
The directory in which the Subsystem bug reporting mechanism collects bug reports.
[
=cldata=
Defines the location of the Primos CLDATA structure, used internally by the Sub-
system command interpreter (shell).
=cmdncO=
The directory to which the system console is normally attached.
=crondir=
The directory where the ‘cron’ program creates temporary files for phantoms.
=cronfiles
The file that contains the directive lines for the ‘cron’ program.
=date=
The current date in the format mmddyy.
=day=

The current day of the week (e.g., "monday", "tuesday", etc.).

=dictionary=
A file containing English words, used by the spelling checker.

=doc=
The Subsystem documentation directory.

=ebin=
A directory of programs called by shell programs in "=bin=",

zextras=
A standard Subsystem directory containing miscellaneous files required for proper
operation of the Subsystem.

=fmac=
The Subsystem directory containing all the text formatter macro definition files.

=GaTech=
This is a template having nothing to do with pathnames. Its value is ‘"yes" at
installations that run the Georgia Tech version of Primos, and "no" elsewhere.
Programs that are sensitive to the operating system version use this template to
determine their environment.

=gossip=
The directory containing user-to-user message files generated by the ‘to‘ command.

zhistfile=
The current user’s saved command history file.

=homes=
The current user’s login directory. Take note that this is not the same as his
"home directory" as described in the section on "current" and "home" directories.
zincl=
The standard Subsystem directory containing files that are included by Ratfor and C
programs.

=installation=
A file containing the name of the installation.

=lbin=
The standard Subsystem locally-supported command directory.

=11ibs=
The Primos directory containing all library files that should be accessible to the
loader.

File System User’s Guide

=mail=
The Subsystem directory that contains per-user mail delivery files.

=mailfile=
The current user’s mail storage file. This is where the ‘mail’ command deposits a
letter after you have asked that it be saved.

=new_words=
If this template exists and describes a legal file name, the ‘spell’ program will
write a copy of unrecognized words to this file.

=newbin=
The Subsystem directory into which newly-compiled commands are placed during a
recompilation of the entire Subsystem.

=newcmdncO= k%
The Suossysiem directory into which newly-compiled Subsystem files that belong in
"emdncO" are placed during a recompilation of the entire Subsystem.

=newebin=
The Subsystem directory into which newly-compiled commands destined for "“=ebin=" are
placed during a recompilation of the entire Subsystem.

znewlbin=
The Subsystem directory into which newly-compiled 1locally-supported-commands are
placed during a recompilation of the entire Subsystem.

=newlib= :
The Subsystem directory into which newly-compiled object code 1ibraries are placed
during a recompilation of the entire Subsystem.

=news=
The directory used by the Subsystem news service.

=newsfile=
The current user’s news delivery file.

=newsystem=
The Subsystem directory into which newly-compiled Subsystem files that belong in
"system" are placed during a recompilation of the entire Subsystem.

=passwd=
The password of the current user’s profile directory. (This is the same password
the Subsystem asked you for when you typed "swt".)

:p1d=
The current user’s process-id. This is a three-digit number in the range 001-128
that is unique to each logged-in user.

=srcs
The Subsystem source code directory.

=srcloc= .
A file associating each Subsystem 1library subroutine and command with the path-
name(s) of its source code file(s).

=statistics=

The system template which controls whether or not command statistics are to be kept.
(See the "Application Notes" section of the Command Interpreter User’s Guide.)

=statsdir=
The directory where command statistics are recorded. (See the "Application Notes"
section of the Command Interpreter User’s Guide.)

=syscom=
The directory where the Primos subprogram keys (predefined constants) are stored.

=sysname=
This is the system’s Primenet node name, if it is a network system.

=system=
The Primos directory that contains the core-images of the various shared memory seg-
ments.

=temp=
The Subsystem directory in which all temporary files are created.

- 9 -

File

System User'’s Guide

=template=
The system template definition file.

=termlist=
A file describing the location and type of each terminal connected to the computer.

=time=
The current time in the format hhmmss.

=ttypes=
A file containing a list of terminals supported by your Subsystem and their charac-
teristics.

=ubins=
By convention, tﬁe user’s private command directory.

=users=
The current user’s login name.

=userlist=
A file containing a 1ist of all users authorized to use the computer.

sutemplate=
The current user’‘s private template definition file.

=vars=
The Subsystem directory in which all per-user profile directories are contained.

=varsdir=
The current user’s profile directory.

=varsfiles=
The current user’‘s shell variable storage file.

=vths=
The directory used by the Subsystem virtual terminal handler.

File System User‘s Guide

Appendix B - Pathname Syntax

For the grammar aficionados among you, here is a formal description of the syntax of
pathnames. The notation used is an extended Backus-Naur Form (BNF) which is described in the
introduction to the Software Tools Subsystem Reference Manual.

<pathname> 1= <starting node>
<directory path>
<starting node>/<directory path>
<empty>
<starting node> ::= \{\}
/<volume id>
= <packname>
<octal integer>
*

<volume id>

“packname> = <entryname>

<directory path> ::= <node>{/<node>}

<node> 1= <entryname>|[:<password>] <
<entryname> 1= <non-digit>{<valid char>}

<non-digit> 1= <letter> | <special char>

<valid char> 1= <non-digit> | <digit>

<letter> 1= a i b! c i...i x i y i z

<digit> = 0 i 1 | 2 [7 | 8 I -]

<special char> = 1 0$ & | -« .0/

Appendix C - Spool Options

The entrynames that may be appended to the “/dev/1ps" device name to control spooling
options are summarized in the following list. These entrynames correspond exactly to the
options that are accepted by the ’‘sp’ command (see section one of the Subsystem reference
manual). These entrynames and associated values must be separated by siashes or blanks, e.g.
"/dev/1ps/b/TECH/" or "/dev/1ps/b TECH."

a This option selects a specific location at which the file is to be printed. The
immediately following entryname in the path is taken as the name of the destination
printer.

b The file name that is printed on the banner page of the printout may be set

arbitrarily with this option. The next entryname in the path is taken as the name
to be printed. If this option is not used, the name "/dev/1ps" is printed.

c This option specifies the number of copies of the file that are to be printed. The
next entryname must be a decimal integer indicating the number of copies.

d Printing of the file may be deferred until a specific time of day using this option.
The next entryname in the path must be a time of day in any reasonable format.

f If specified, this option indicates that the print file contains standard Fortran
carriage control characters.

h This option causes the spooler to suppress the printing of the banner page that
normally precedes each printout.

3 Specifying this option causes the spooler to suppress the trailing page eject that
it normally supplies at the end of each printout.

n This option causes the spooler to print a consecutive line number in front of each
1ine of the print file.

[This option instructs the spooler that the print file is to be printed on a special
type of paper. The name of the desired form should follow as the next entryname in
the path.

r "Raw" forms control mode is selected by this option. No carriage control characters

are recognized, nor is any pagination done when this mode is in effect.

S This option selects the standard Primos forms control mode. Under this mode, the
printout is automatically paginated, and a header line is printed on each page.

Introduction to the Software Tools Text Editor

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

TABLE OF CONTENTS

Tutorial ...;

1

Starting an Editing SeSSionttt ittt it tenetessscaanetossineenanaan 1
Entering Text - the Append Commandctitititneeeenennosassnoatsonsossnannnas 1
Writing text on a file - the Write commandttt enenanennn 1
Finishing up - the QUit COmMMAaNGttt iininmeetnosnennanoeseeacenenn 2
Reading files - the Enter command i ettt e e e e 2
Errors - the Query COmmMaNdttt inemeeaeeennsnennenaneeeesaeeeneannensaeas 3
Printing text - the Print command ittt iieiiiieenneenenannnennanan 3
More Complicated Line NUMDErSttt titnetenneennoasesoaeesssnecsnanaenens 4
Deleting Linesc.iiiiiiriiiinieinaanans ettt et eaeene ettt 5
LI I - B - o o T 5
Making Substitutions - the Substitute Command et termnennnncnnnnaanenan 8
Line Changes, Insertions, and Concatenationscteeinnecscennnenn e 10

L Lo LT T T i I - B 11
Global CoOMMANASttt it ittt ttenonnaceassasensneeeneseneeenseancsnacnannns 11
Marking Limesttt ittt ittt tateesesennanecseassonsssssssscennsnennnsan 11
Undoing Things -- the Undo Commandiititenirenneensrenennnnenetnasonnnss 13
More Line Number SyntaXiuie e iiiieeeineeaaaeestosnnncsssasonasososssannsnsses 13
Escaping to the Shell ittt ettt ittt nnennesasesasseaeaeaneeaensnsnns 14
Forcad LOgoULS ittt ittt iittnnsnseaaeeoesossnsnasensnensnssensannassens 14
SUMMAY . ottt e e s ot oo s e oraseenssnsososesacasessssssanesenssonssenneassnasassennsanaans 15
The Subsystem Screen Editor it ittt et itnaneannnannan 16
Invoking the Screen Editorttt intitetneonsnerontiesnssiosesaneacseanans 16

[I o o L] - 16
Extended Line Numbers et ettt e et e e 17
(07 3 T I o o T - Y o 1 T o 17

LI 1= 17
FUll=Screen Editingttt ittt ittt teinseeesasassanenerieenonssseonseneaneas 18
HOrizZzoNntal CUPrSOr MOt iON ... ittt ittt it ittt sttt st e e s ot ns e s sseanenseoennenns 18
Vertical CurSOr MOtiOn ittt ittt ittt tn it et eenneenenneeseneennensennns 18
Character INSErtION . .. ittt it ittt it ittt aatenseneenasnssonssnenaeenenneesnns 18
Character Deletion it i ittt ittt tsseenanessessonesononenennnneas 19
Terminating 8 Limettt ittt iiiittaeetnssosearaenanosesoonasansenssensoness 18
NON-pPrinting CharaCter S ittt ittt ittt it se st oeaneeesesenesesnaneeenassas 19
The .SerC File ittt it ittt ittt it s emneneasasessnsesoenceansennesnns 19
Scraen Editor OptioNns it ittt ittt eraetnstenseneasnnsanasnn 21
Screen Editor Control Characters it iiiittninenneesennnnns 24
Editor Command SUMmMarYttt tennaecsaesoeesnnneannanecaeaneoanenns 26
Elements of Line NUmMber ExXpPresSSions it tiitotennrnenrinrnneeanaeaenennnns 29
Summary of Pattern Elements ittt ittt 29

- 1ii -

Foreword

‘Ed’ is an interactive program that can be used for the creation and modification of
"text." "Text" may be any collection of character data, such as a report, a program, or data
to be used by a program.

This document is intended to provide the beginning user of ‘ed’ with a tutorial, an aid
to becoming familiar with editing. It does not attempt to cover the editor in full; only the
most frequently used aspects are mentioned. Ffor details on advanced uses, a careful reading
of Software Tools and the Software Tools Subsystem Reference Manual is recommended.

How To Use This Guide

This tutorial includes a step-by-step journey through an editing session. You should be
sitting at a terminal and running the Software Tools Subsystem, so that you can perform the
suggested exercises as you go.

Throughout the text of this guide are samplie editing commands, which you can execute on
your terminal to get a feel for their actual effect. If at any time your terminal session
produces results different from those shown in the text, carefully re-check what you have
typed, or consult someone in charge of your installation.

Introduction to ‘Ed’
Tutorial

Starting an Editing Session

We assume that you have successfully logged in to your computer and are running the
Software Tools Subsystem. If you need assistance, see the Software Jools Subsystem Tutorial.
We further assume that you know how to use the character erase and line delete characters, so
that you will have no trouble correcting typographical errors, and that you have some idea of
what a "file" is.

Since you are in the Subsystem, the command interpreter should have just printed the
prompt "]". To enter the text editor, type

] ed (followed by a newline)

(Throughout this guide, boldface is used to indicate information that ycu s.ould type in.
Things typed by ‘ed’ are shown in the regular font.) You are now in the editor, ready to go.
Note that ‘ed’ does not print any prompting information; this gquiet behavior is preferred by
experienced users. (If you would 1like a prompt, it can be provided; try the command
‘op/prompt/".)

At this point, ‘ed’ is waiting for instructions from you. You can instruct ‘ed’ by using
*commands, " which are single letters (occasionally accompanied by other information, which you
will see shortly).

Entering Text - the Append Command

The first thing that you need is text to edit. Working with ‘ed’ is l1ike working with a
blank sheet of paper; you write on the paper, alter or add to what you have written, and
either file the paper away for further use or throw it away. In ‘ed’s terminology, the blank
sheet of paper you start with 1is called a "buffer." The buffer is empty when you start
editing. A1l editing operations take place in the buffer; nothing you do can affect any file
unliess you make an explicit request to transfer the contents of the buffer to a file.

So the first problem reduces to finding a way to put text into the buffer. The "append"
command is used to do this:

a
This command appends (adds) text lines to the buffer, as they are typed in.
To put text into the buffer, simply type it in, terminating each l1ine with a newline:

The quick brown fox

jumps over
the lazy dog.

.

To stop entering text, you must enter a line containing only a period, immediately followed by
a newline, as in the last 1ine above. This tells ‘ed’ that you are finished writing on the
buffer, and are ready to do some editing.

The buffer now contains:
The quick brown fox
jumps over
the lazy dog.

Neither the append command nor the final period are included in the buffer -- just the text
you typed in between them.

Writing text on a file - the Write command

Now that you have some text in the buffer, you need to know how to save it. The write
command “"w" is used for this purpose. It is used l1ike this:

w file

where "file" is the name of the file used to store what you just typed in. The write command
copies the contents of the buffer to the named file, destroying whatever was previously in the
file. The buffer, however, remains intact; whatever you typed in is still there. To indicate
that the transfer of data was successful, ‘ed’ types out the number of lines written. In this
example, ‘ed’ would type:

3

Introduction to ‘Ed’

It is advisable to write the contents of the buffer out to a file periodically, to insure that
you have an up-to-date version in case of some terrible catastrophe (like a system crash).

Finishing up - the Quit command

Now that you have saved your text in a file, you may wish to Jleave the editor. The
'quit" command "q" is provided for this:

q

The next thing you see should be the "]" prompt from the Subsystem command interpreter. If
you did not write out the contents of the buffer, the editor would respond:

.
?

inot saved)

This is to remind you to write out the buffer, so that the results of your editing session are
not lost. If you intended that the buffer be discarded, just enter "q" again and ‘ed’ will
throw away the buffer and terminate.

When you receive the "]" prompt from the Subsystem command interpreter, the buffer has
been thrown away; there is absolutely no way to recover it. If you wrote the contents of the
buffer to a file, then this is of no concern; if you did not, it may mean disaster.

To check if the text you typed in is really in the file you wrote it to, try the follow-
ing command:

] cat file

where "file" is the name of the file given with the "w" command. ("Cat" is a Subsystem com-
mand that can be used to print files on the terminal. If, for example, you wished to print
your file on the line printer, you could say:

] pr file

and the contents of "file" would be queued for printing.)

Reading files - the Enter command

Of course, most of the time you will not be entering text into the buffer for the first
time. You need a way to fill the buffer with the contents of some file that already exists,
so that you can modify it. This is the purpose of the "enter" command "e"; it enters the
contents of a file into the buffer. To try out "enter," you must first get back into the
editor:

] ed
"Enter" is used 1ike this:
e file
"File" is the name of a file to be read into the buffer.

Note that you are not restricted to editing files in the current directory; you may also
edit files belonging to other users (provided they have given you permission). Files belong-
ing to other users must be identified by their full ‘“pathname” (discussed fully 1in User’s
Guide to the Primos File System). For example, to edit a file named "document" belonging to
user "tom," you would enter the following command:

e //tom/document

After the file’s contents are copied into the buffer, ‘ed’ prints the number of lines it
read. In our example, the buffer would now contain:

The quick brown fox
Jumps over
the lazy dog.

If anything at all is present in the buffer, the "e" command destroys it before reading the
named file.

As a matter of convenience, ‘ed’ remembers the file name specified on the last “e" com-
mand, SO you do not have to specify a file name on the "w" command. With these provisions, a
common editing session looks like

Introduction to ‘Ed’

] ed

e file
{editing}
w

q

The "file" command ("f") is available for finding out the remembered file name. To print out
the name, just type:

f
file

You might also want to check that
] ed file
is exactly the same as [

] ed
e file

That is, ‘ed’ performs an "e" command for you if you give it a file name on the command 1line.

Errors - the Query command

Occasionally, an error of some kind is encountered. Usually, these are caused by mis-
spelled file names, although there are other possibilities. Whenever an error occurs, ‘ed’
types

?

Although this 1is rather cryptic, it is usually clear what caused the problem. If you need
further explanation, just enter "?" and ‘ed’ responds with a one-1ine explanation of the
error. For example, if the last command you typed was an "e" command, ‘ed’ is probably saying
that it could not find the file you asked for. You can find out for sure by entering "7":

e myfile
?
?
I can’t open the file to read

Except for the messages in response to "?", ‘ed’ rarely gives other, more verbose error mes-
sages; if you should see one of these, the best course of action is to report it to the person
who maintains the editor at your installation.

Printing text - the Print command

You are likely to need to print the text you have typed to check it for accuracy. The
‘print" command "p" 1is available to do this. "P" is different from the commands seen thus
far; "e", "w", and "a" have been seen to work on the whole buffer at once. For a small file,
it might be easiest to print the entire buffer just to check on some few lines, but for very
large files this is clearly impractical. The "p" command therefore accepts "line numbers"
that indicate which lines to print. Try the following experiment:

] ed file

3

ip

The quick brown fox

the lazy dog.
1,2p
The quick brown fox

jumps over
1,3p ’
The quick brown fox

jumps over

the lazy dog.

"4p" tells ‘ed’ to print line 1 ("The quick brown fox"). "3p" says to print the third line
("the lazy dog."). "1,2p" tells ‘ed’ to print the first through the second lines, and "1,3p"
says to print the first through the third lines.

Suppose we want to print the last 1ine in the buffer, but we don’t know what its number
is. 'Ed’ provides an abbreviation to specify the last line in the buffer:

Introduction to ‘Ed’

$p
the lazy dog.

The dollar sign can be used just like a number. To print everything in the buffer, we could
type:

1,8p

The quick brown fox
jumps over
the lazy dog.

If for some reason you want to stop the printing before it is done, press the BREAK kéy
on your terminal. If you receive no response from BREAK, ‘ed’ is waiting for you to enter a
command. Otherwise, ‘ed’ rfesponds with

?

and waits for your next command.

More Complicated Line Numbers

‘Ed’ has several ways to specify lines other than just numbers and "$". Try the follow-
ing command:

the lazy dog.

‘Ed’ prints the last 1ine. Does ‘ed’ always print the last line when it is given an unadorned
"p" command? No. The "p" command by itself prints the "current" line. The "current" line is
the last line you have edited in any way. (As a matter of fact, the last thing we did was to
print all the lines in the buffer, so the last 1ine was edited by being printed.) ‘Ed’ allows
you to use the symbol "." (read “dot") to represent the current line. Thus

the lazy dog.

is the same as

- -
the lazy dog.

which is the same as just
the lazy dog.

"." can be used in many ways. For example,

1.2p
The quick brown fox
jumps over
1,.p
The quick brown fox
jumps over
<SP
jumps over
the lazy dog.

This example shows how to print all the l1ines up to the current line (1,.p) or all the lines
from the current line to the end of the buffer (.,$p). If for some reason you would 1like to
know the number of the current 1ine, you can type

3

and ‘ed’ displays the number. (Note that the last thing we did was to print the last line, so
the current line became 1ine 3.)

wo is not particularly useful when used alone. It becomes much more important when
used in "line-number expressions." Try this experiment:

.~1p
jumps over

".-1" means "the 1ine that is one 1ine before the current line."

Introduction to ‘Ed’
.+1p
the tazy dog.
".+1" means “"the l1ine that is one l1ine after the current line."
.=2,.-1p
The quick brown fox
jumps over

".-2,.-1p" means "print the lines from two lines before to one line before the current line."

You can also use "$" in 1ine-number expressions:

$-1p
jumps over N
[N
“$-1p" means “print the line that is o1ve 1ine before the last line in the buffer, i.e., the
next to the last line." (.

Some abbreviations are available to help reduce the amount of typing you have to do.
Typing a newline by itself is equivalent to typing ".+1p"; typing a caret, *~*, or a single
minus sign, "-", followed by a newline is equivalent to typing ".-1p"; and typing a line-
number expression followed by a newline is equivalent to typing that 1ine-number expression
followed by "p". Examples:

{type a newline by itself}
the lazy dog.

~

jumps over
;he quick brown fox
The quick brown fox
It might be worthwhile to note here that ailmost all commands expect 1ine numbers of one

form or another. If none are supplied, ‘ed’ uses default values. Thus,

w file
is equivalent to

1,8w file
and

a
is equivalent to

(which means, append text after the current line.)

Deleting Lines

As yet, you have seen no way of removing lines that are no longer wanted or needed. To
do this, use the “"delete" command "d":

1,2d

deletes the first through the second l1ines. The "d" command expects 1ine numbers that work in
the same way as those specified for “p", deleting one 1ine or any range of 1lines.

d

deletes only the current line. It is the same as ".d" or ".,.d".

After a deletion, the current line pointer is left pointing to the first l1ine after the
group of deleted 1ines, unless the last 1ine in the buffer was deleted. In this case, the
current l1ine is the last 1ine before the group of deleted lines.

Text Patterns
Fregquently it is desirable to be able to find a particular "pattern" in a piece of text.

For example, suppose that after proofreading a report you have typed in using ‘ed’ you find a
spelling error. There must be an easy way to find the misspelled word in the file so it can

Introduction to ‘Ed’

be corrected. One way to do this is to count all the lines up to the 1ine containing the
error, so that you can give the 1ine number of the offending l1ine to ‘ed’. Obviously, this
way is not very fast or efficient. ‘Ed’ allows you to “search" for patterns of text (l1ike
words) by enclosing the pattern in slashes:

/ jumps/
jumps over

‘Ed’ looks for the pattern you specified, and moves to the first 1ine which contains the pat-
tern. Note that if we had typed

/ jumped/
?

‘ed’ would inform us that ft could not find the pattern we wanted.

‘Ed’ searches forward from the current line when it attempts to find the pattern you
specified. If ‘ed’ reaches the last line without seeing the pattern, it "wraps around" to the
first 1line in the file and continues searching until it either finds the pattern or gets back
to the line where it started (line “."). This procedure ensures that you get the ‘“next"
occurrence of the pattern you were looking for, and that you don‘’t miss any occurrences
because of your current position in the file.

Suppose, however, that you do not wish to find the "next" occurrence of a word, but the
previous one instead. Very few text editors provide this capability; however, ‘ed’ makes it
simple. Just surround the pattern with backslashes:

\quick\
The gquick brown fox

Remember: backslashes search backward. The backward search (or backscan, as it is sometimes
called) wraps around the file in a manner similar to the forward search (or scan). The search
begins at the 1ine before the current line, proceeds until the first 1ine of the file is seen,
then begins at the 1last 1l1ine of the file and searches upwards until the current line is
encountered. Once again, this is to ensure that you do not miss any occurrences of a pattern
due to your current position in the file.

In pattern searches, and in other commands which we will get to later, ‘ed’ allows you to
leave off the trailing delimiter. 1I.e., instead of typing

/ jumps/
you can type
/ jumps
to search forward for the first occurrence of the pattern "jumps". Similarly, to search back-
ward, you may type
\quick
instead of
\quick\

This feature can save considerable time and frustration when you are doing some involved
editing, and accidentally leave off the trailing delimiter ("/" or "\"). The rest of this
guide will continue to use examples with the trailing delimiter, but you do not have to in
your actual editing.

‘Ed’ also provides more powerful pattern matching services than simply 1looking for a
given string of characters. (A note to beginning users: this section may seem fairly com-
plicated at first, and indeed you do not really need to understand it completely for effective
use of the editor. However, the results you might get from some patterns would be mystifying
if you were not provided with some explanation, so 1ook this over once and move on.)

The pattern that may appear within slashes (or backslashes) is called a "regular expres-

sion." 1t contains characters to look for and special characters used to perform other
operations. The following characters

%» 2 8 [= e
have special meaning to ‘ed’:
% Beginning of 1line. The "%" character appearing as the first element in a pattern

matches the beginning of a 1ine. It is most frequently used to 1locate 1lines with
some string at the very beginning; for example,

[]

Introduction to ‘Ed’

/%The/
finds the next 1l1ine that begins with the word "The". The percent sign has its
special meaning only if it is the first element of the pattern; otherwise, it is
treated as a literal percent sign.

Any character. The question mark "?" in a regular expression matches any character
(except a beginning-of-line or a newline). It can be used 1ike this:

/a?b/
to find strings 1ike

a+b

a-b

a

arbiirary

(-

However, "?" 1is most often used with the "closure" operator "*" (see below).

End of 1ine. The dollar sign appearing as the last element of a pattern matches the
newline character at the end of a 1line. Thus,

/today$/
can be used to find a2 line with the word "today" at the very end. Like the percent
sign, the dollar sign has no special meaning in positions other than the end of a
pattern.

Character classes. The square brackets are used to match "classes" of characters.
For example,

/la-21/

finds the next l1ine containing a capital letter,
/%[abecxyz]/

finds the next 1ine beginning with an a, b, ¢, %X, y, or z, and
/[~0-9]/

finds the next 1line which contains a non-digit. Character classes are also
frequently used with the "closure" operator "x",

Closure. The asterisk is used to mean "any number of repetitions (including zero)
of the previous pattern element (one character or a character class. in brackets)."
Thus,

/a?*b/

finds 1lines containing an "a" folliowed by any number of characters and a "b". For
example, the following lines are matched:

ab
abnormal
Recording Media, by Dr. Joseph P. Gunchy

As another example,

[%=*$/
matches only those lines containing all equal-signs (or nothing at all). If vyou
wish to ensure that only non-empty lines are matched, use

/%==x$/

»

Always remember that "*" (closure) matches zero or more repetitions of an element.

Escape. The "at" sign has special meaning to ‘ed’. It is the "escape" character,
which is used to prevent interpretation of a special character which follows. Sup-
pose you wish to locate a 1ine containing the string "a * b", You may use the fol-
lowing command:
/a ex b/

The "at" sign "turns off" the special meaning of the asterisk, so it can be used as
an ordinary text character. You may have occasion to escape any of the regular
expression metacharacters (%, ?, $, [, *, e, or {) or the slash itself. For exam-

Introduction to ‘Ed’

{

ple, suppose you wished to find the next occurrence of the string “"{1/2". The com-
mand you need is:
/1e/2/

Pattern tags. As seen in the next section, it is sometimes useful to remember what
part of a line was actually matched by a pattern. By default, the string matched by
the entire pattern is remembered. It is also possible to remember a string that was
matched by only a part of a pattern by enclosing that part of the pattern in braces.
Hence to find the next 1line that contains a quoted string and remember the text
between the quotes, we might use

/v {2x)/
If the 1ine thus located looked 1ike this
This is a line containing a “quoted string".
then the text remembered as matching the tagged part of the pattern would be

quoted string

The last important thing you need to know about patterns is the use of the "default" pat-
tern. ‘Ed’ remembers the last pattern used in any command, to save you the trouble of retyp-

ing it.
following

To access the remembered pattern, simply use an "empty" string. For example, the
sequence of commands could be used to step through a file, 1looking for each

occurrence of the string "ICS":

/1cs/
//
//

(and so on)

One last comment before leaving pattern searching. The constructs

/pattern/
\pattern\

are not separate commands; they are components of 1ine number expressions. Thus, to print the
line after the next line containing "tape", you could say

/tape/+1p

Oor, to print a range of lines from one before to one after a line with a given pattern, you

could use

/pattern/-1,/pattern/+1p

Making Substitutions - the Substitute command

This

is one of the most used editor commands. The "substitute" command “s*" is used to

make small changes within lines, without retyping them completely. It is used like this:

starting-line,ending-1ine s [/pattern/new-stuff[/]]

For instance, suppose our buffer looks 1ike this:

To change

1'sp1

The quick brown fox
jumps over
the lazy dog.

"jumps" to "jumped, "

2s/ jumps/ jumped/p
jumped over

Note the use of the trailing "p" to print the result. If the "p" had been omitted, the change
would have been performed (in the buffer) but the changed l1ine would not have been printed

out.

If the last string specified in the substitute command is empty, then the text matching
the pattern is deleted:

Introduction to ‘Ed’

s/ jumped//p

over
s/% */ jumps /p

jumps over

Recalling that a missing pattern means "use the last pattern specified," try to explain what
the following commands do:

s///p
jumps over
s// /p

jumps over

(Note that, 1ike many other commands, the substitute command assumes you want to work on the
current line if vou do not specify any line numbers.)

what if you want to change "over" into "over and over"? You might use

s/over/over and over/p
jumps over and over

to accomplish this. There is a shorthand notation for this kind of substitution that was
alluded to briefly in the last section. (Recall the discussion of "tagged" patterns.) By
default, the part of a line that was matched by the whole pattern is remembered. This string
can then be included in the replacement string by typing an ampersand ("&") in the desired
position. So, instead of the command in the last example,

s/over/& and &/

could have been used to get the same result. If a portion of the pattern had been tagged, the
text matched by the tagged part in the replacement could be reused by typing "e1":

s/jump{?=*}/vaulte1/p
vaults over and over

It is possible to tag up to nine parts of a pattern using braces. The text matched by each
tagged part may then be used in a replacement string by typing

en
where n corresponds to the nth "{" in the pattern. What does the following command do?

s/{[~ 1*} {2*}/e2 e1/

Some more words on substitute: the slashes are known as “delimiters" and may be replaced
by any other character except a newline, as long as the same character 1is used consistently
throughout the command. Thus,

s#vaults#vaul ted#p
vaulted over and over

is legal. Also, note that substitute changes only the first occurrence of the pattern that it
finds; if you wish to change all occurrences on a line, you may append a "g" (for "global") to
the command, like this:

s/ /x/gp
xxxxvaulted*over*and*over

In the replacement part of a substitute command, the character "&", as the only character in
the pattern, means "the replacement part of the previous substitute command". (This allows an
empty replacement pattern as well.) Thus, to step through the buffer, and change selected
occurrences of one pattern into another, you might do the following:

/pat1/

Line containing patt.

s/pati1/stuffi/p ’
Line containing stuff1.

//

Another 1ine with pati.

Yet another line with pati.
s//&/p .
Yet another l1ine with stuffi.

You may leave off the trailing delimiter in the substitute command. This will cause ‘ed’ to
print out the changed line. 1I.e., "s/stuff/junk" is the same as "s/stuff/junk/p".

Introduction to ‘Ed’

/quick/

The quick brown fox
s/quick/really fast

The really fast brown fox

If you wish to delete an occurrence of a pattern, you may leave it off. ‘Ed’ will delete the
pattern, and then print the line. In other words, "s/stuff" is the same as "s/stuff//p".

P
The quick brown fox

s/quick
The brown fox

Finally, you may leave ‘off the search pattern and replacement string entirely. If you do,
‘ed’ will behave as though’'you had typed "s//&/p". in other words, substitute the previous
replacement pattern for the previous search pattern, and print.

1,%d
a

line 1
line 2

1s/1ine/this is &/p
this is 1ine 1

2s

this is line 2

This can save considerable typing.

Line Changes, Insertions, and Concatenations

Two ‘“"abbreviation" commands are available to shorten common operations appliying to
changes of entire 1ines. These are the "change" command "c" and the "insert" command "i".

The change command is a combination of delete and append. 1Its format is
starting-line,ending-1ine ¢

This command deletes the given range of 1ines, and then goes into append mode to obtain text
to replace them. Append mode works exactly the same way as it does for the "a" command; input
is terminated by a period standing alone on a 1ine. Examine the following editing session to
see how change might be used:

1,8¢c
Ed is an interactive program used for
the creation and modification of "text.

c
the creation and modification of "text."
"Text" may be any collection of character
data. :
As you can see, the current l1ine is set to the last 1ine entered in append mode.

The other abbreviation command is "i*. "I" is very closely related to "a"; in fact, the
following relation holds:

starting-line i
is the same as
starting-1ine - 1 a

In short, *i® 1nsert§ text before the specified 1ine, whereas "a" inserts text after the
specified line. ’

The join command "j" can be used to put two or more lines together into a single 1line.
It works like this:

starting-1ine,ending-1ine j[/stringl/]]

The defaults for starting-line and ending-line are "~" and "." respectively, that is, "join
the line before the current line to the current l1ine". You may specify in "string" what is to
replace the newline(s) which currently separate the lines which are to be joined. If you do
not specify any string, ‘ed’ will replace the newline with a single blank. If you do specify
a string, you may leave off the trailing delimiter (which can be any character), and ‘ed’ will
print out the resuiting joined line. An extended example should make this clear:

- 10 -

Introduction to ‘Ed’

1,%p
The quick brown fox
jumps over
the lazy dog.
2,88/% *//
1,8p
The quick brown fox
jumps over
the lazy dog.
1,2)
The aquick brown fox jumps over
1,2j§/ the back of /p
The quick brown fox jumps over the back of the lazy dog.

Moving Text

(
Throughout this guide, we have concentrated on what may be called "in-place" editing.
The other type of editing commonly used is often called “"cut-and-paste" editing. The move
command "m" is provided to facilitate this kind of editing, and works 1ike this:

starting-line,ending-1ine m after-this-11ine

If you wanted to move the last fifty lines of a file to a point after the third 1ine, the com-
mand would be

$-49,$m3

Any of the 1ine numbers may, of course, be full expressions with search strings, arithmetic,
etc.

You may, if you like, append a "p" to the move command to cause it to print the last line
moved. The current 1ine is set to the last 1ine moved.

Global Commands

The “gliobal" command "g" is used to perform an editing command on aill lines in the buffer
that match a certain pattern. For example, to print all the lines containing the word
‘editor", you could type

g/editor/p
If you wanted to correct some common spelling error, you would use
g/old-stuff/s//new-stuff/gp

which makes the change in all appropriate 1ines and prints the resulting lines. Another exam-
ple: deleting all lines that begin with an asterisk could be done this way:

g/%ex/d

"G" has a companion command "x" (for “"exclude") that performs an operation on all 1lines
in the buffer that do not match a given pattern. For example, to delete all l1ines that do not
begin with an asterisk, use

x/%ex/d

*G" and "x" are very powerful commands that are essential for advanced usage, but are
usually not necessary for beginners. Concentrate on other aspects of ‘ed’ before you move on
to tackle global commands.

Marking Lines ’

During some types of editing, especially when moving blocks of text, it is often neces-
sary to refer to a line in the buffer that is far away from the current line. For instance,
say you want to move a subroutine near the beginning of a file to somewhere near the end, but
you aren’t sure that you can specify patterns to properly locate the subroutine. One way to
solve this problem is to find the first l1ine of the subroutine, then use the command ".=":

/subroutine/
subroutine think
.=

47

Introduction to ‘Ed’

and write down (or remember) line 47. Then find the end of the subroutine and do the same
thing:

/end/
end
71
Now you move to where you want to place the subroutine and enter the command
47,71m.
which does exactly what you want.

.

The problem here is that absolute 1ine numbers are easily forgotten, easily mistyped, and
difficult to find in the first place. It is much easier to have ‘ed’ remnzcmse” a short "name"
along with each 1line, and allow you to reference a line by its name. In practice, it seems
convenient to restrict names to a single character, such as "b" or "e" (for ‘'beginning" or
"end"). It is not necessary for a given name to be uniquely associated with one 1ine; many
lines may bear the same name. 1In fact, at the beginning of the editing session, all lines are
marked with the same name: a single space.

To return to our example, using the ‘k’ command, we can mark the beginning and ending
lines of the subroutine quite easily:

/subroutine/
subroutine think.
kb
/end/
end
ke

we have now marked the first 1ine in the subroutine with "b" and the second line with "e".

To refer to names, we need more 1line number expression elements: ">" and "<". Both work
in line number expressions just like "$" or "/pattern/". The symbol ">" followed by a singie
character mark name means "the line number of the first 1ine with this name when you search
forward". The symbol "<" followed by a single character mark name means "the 1ine number of
the first line with this name when you search backward". (Just remember that ‘<’ points back-
ward and ‘>’ points forward.)

Now in our example, once we locate the new destination of the subroutine, we can use "<b"
and "<e" to refer to lines 47 and 71, respectively (remember, we marked them). The "move"
command would then be

<b,<em.
Several other features pertaining to mark names are important. First, the ‘k’ command
does not change the current line ‘'.’. You can say
$kx

(which marks the last line with "x") and "." will not be changed. If you want to mark a
range of lines, the ‘k’ command accepts two line numbers. For instance,

5, 10ka
marks lines 5 through 10 with "a" (i.e., gives each of 1ines 5 through 10 the markname “a").

The ‘n’, ‘!’ and apostrophe commands also deal with marks. The ‘n’ command performs two
functions. If it is invoked without a mark name following it, like

$n

it prints the mark name of the line. In this case, it would print the mark name of the last
1ine in the file. If the 'n’ command is followed by a mark name, 1ike

anq

it marks the line with that mark name, and erases the marks on any other lines with that name.
In this case, 1ine 4 is marked with "q" and it is guaranteed that no other l1ine in the file is
marked with "q".

The ‘!’ and apostrophe commands are both global commands that deal with mark names. The
apostrophe command works very much like the ‘g’ command: the apostrophe is followed by a mark
name and another command; the command is performed on every line marked with that name. For
instance, :

- 12 -

Introduction to ‘Ea’

‘as/fox/rabbit/

changes the first "fox" to "rabbit" on every line that is named "a". The ‘!’ command works
in the same manner, except that it performs the command on those 1ines that are not marked
with the specified name. For example, to delete all lines not named "k", you could type

tkd

Undoing Things -- the Undo Command

Unfortunately, Murphy’s Law guarantees that if you make a mistake, it will happen at the
worst possible time and cause the greatest possible amount of damage. ‘Ed’ attempts to
prevent mistakes by doing such things as working with a copy of your file (rather than the
file itself) and checking commands for their plausibility. However, if you type

d (.

when you really meant to type
a

‘ed’ must take its input at face value and do what you say. It is at this point that the
"undo" command ‘u’ becomes useful. “Undo" allows you to *undelete" the last group of 1ines
that was deleted from the buffer. In the last example, some inconvenience couild be avoided by
typing

“ud

which restores the deleted l1ine. (By default “undo" replaces the specified 1ine by the last
group of 1ines deleted. Specifying the "“d", as in "ud", causes the group to be inserted after
the specified line instead.)

The problem that arises with "undo" is the answer to the guestion: “What was the last
group of lines deleted?" This answer is very dependent on the implementation of ‘ed’ and in
some cases 1is subject to change. After many commands, the last group of 1ines deleted is
well-defined, but unspecified. It is not a good idea to use the "undo" command after anything
other than ‘c’, ‘d’, or ‘s’. After a ‘c’ or ‘d’ command,

ud

places the last group of deleted lines after the current line. After an ‘s’ command (which by
the way, deletes the old line, replacing it with the changed line),

u

deletes the current line and replaces it with the last 1ine deleted -- it exactly undoes the
effects of the ‘s’ command. But beware! If the ‘s’ command covered a range of lines, ‘u’ can
only restore the last of the 1ines in which a substitution was made; the others are gone
forever.

You should be warned that while "undo" works nicely for repairing a single ‘c’, ‘d’, or
‘s’ command, it cannot repair the damage done by one of these commands under the control of a
global prefix (’g’, ‘x’, ‘!’ and apostrophe). Since the giobal prefixes cause their command
to be performed many times, only the very last command performed by a global prefix can be
repaired.

More Line Number Syntax

So far, the commands that you have seen can be given either no 1ine numbers elements (the
command tries to make an intelligent assumption about the 1ine(s) on which to perform an
operation), one line number element (the command acts only on that line), or two 1ine numbers
separated by a comma (the command acts on the given range of lines). There is one more way to
specify line number elements, and that is to separate them by a semicolon. When 1line number
elements are separated by semicolons, each 1ine number element encountered sets the
“current 1ine" marker before the next 1ine number element is evaluated. This 1is especially
useful when using patterns as 1line number elements; some examples will illustrate what we
mean.

Suppose that you wanted to print all the lines which l1ie between two 1ines, each contain-
ing the string "fred". An initial effort might yield the following command line:

/fred/,/fred/p
This, however, will only print out the first 1ine which contains ‘"fred" after the current

line. This is because both patterns will start their search after the current 1ine where the
command was executed, instead of the second one starting where the first pattern was found.

- 43 -

Introduction to ‘Ed’

To correct this, we would issue the following:
/fred/;/fred/p

when the first occurrence of "fred" is found, the "current line" is set to that line, and the
second occurrence of "fred" will be found starting at this new 1line. This will print the
1ines between two succeeding occurrences of "fred" from the current line.

As a final example, suppose that we wanted to print the lines between the second and
third occurrence of "fred" after the current line; to do this, we would do:

/fred/;//://p

The first pattern search wquld find "fred", the next two null strings will cause the previous
pattern ("fred") to be searched for again, each time resetting the “current line" marker. Of
course, the command "p" may be replaced by any command you wish.

For both comma-separated and semicolon-separated 1ine number elements, you may specify
more than two such elements, as the above example shows; only the last two such elements will
be used as the range for the given command. In general, using more than two 1line number
elements separated by commas is not too useful, because the "current l1ine" is not modified for
any of the 1line number expression evaluations. Also, using integer 1ine numbers means that
multiple expressions (more than two) are not useful, since the equivalent behavior can be
obtained by specifying only the last two 1ine numbers.

Escaping to the Shell

wWith Version 8 of Software Tools and Revision 19.2 or later of PRIMOS, it is now possible
to call the Software Tools Subsystem command interpreter (the shell) from within a program.

‘Ed’ provides access to this facility with the shell escape "~" command. It works like
this: .

~[<Software Tools Command>]

If present, the <Software Tools Command> is passed to the shell to be executed. Otherwise, an
interactive shell is created. After either the command or the shell exits, ‘ed’ prints a “~"
to indicate that the shell escape has completed. If the first character of the <Software
Tools Command> is a "!", then the "!" is replaced with the text of the previous shell com-
mand. An unescaped "%" in the <Software Tools Command> will be replaced with the current
saved file name. If the shell command is expanded, ‘ed’ will echo it first, and then execute
it.

This feature is useful when you want to temporarily stop editing and do something else,
or find something out, without having to write your file and leave the editor.

{editing session}

~1f -1 %

1f -1 file

sam a/r 06/17/84 16:25:08 19463 sys file

-~

For a deeper discussion of using the shell from within a program, see the help on the
‘shell’ subroutine. In particular, due to operating system constraints, you must not run
another instance of the editor from the new shell, or you will end up clobbering your current
edit buffer.

WARNING: Until Prime supports EPFs, and the editor is reloaded in EPF format, you must
not run any external commands (1ike ‘1f’) from a shell started from ‘ed’. If you do, the new
program will load over ‘ed’, and wipe out your current editing session. You can use commands
which are internal to the shell (1ike ‘cd’), without any i11 effect. This restriction, for
various arcane reasons, does not apply to the Subsystem screen editor, ’‘se’.

In essence, this feature is provided in the editor with an eye to the future.

Forced Logouts

With Revision 19 of Primos, it became possible for programs to catch a forced logout (the
LOGOUT$ condition), and take some kind of appropriate action. Both ‘ed’ and ‘se’ have
provision for catching a forced logout, and will save their current edit buffers. when a
LOGOUTS signal is received, ‘ed’ writes its edit buffer to the file "=temp=/=user=.ed", while
‘se’ writes its edit buffer to the file "=temp=/=user=.se". Both editors use the =temp=
directory, since it is possible that if they tried to save their buffers in the user’s direc-
tory (e.g. =home=), they could overflow a disk quota, and the editing session would be lost.

Introduction to ‘Ed’

Summary

This concludes our tour through the world of text editing. In the section that follows,
you will find a brief introduction to the Software Tools Subsystem screen editor ‘se’, which
supports all of the 1line-oriented commands of ‘ed’ as well as full screen editing
capabilities, while giving you a "window" into your edit buffer. Following that, we have
included for your convenience a short summary of all available 1ine editing commands supported
by

‘ed’ and ‘se’, many of which were not discussed in this introduction, but which you will
undoubtedly find useful.

Introduction to ‘Ed’
The Subsystem Screen Editor

The screen editor, ‘se’, is an extended version of the Subsystem 1ine editor, ‘ed’.
Although ‘se’ contains a number of additional features, it accepts all ‘ed’ commands (alimost
without exception), and is therefore easily used by anyone familiar with ‘ed’. This section
outlines the differences between ‘ed’ and ‘se’.

The screen editor has a built-in "help" facility, which documents all the commands and
options. when in doubt, type "help", and the help screens should guide you to further
information on what you need to know.

Invoking the Screen Editor,
You can invoke the screen editor .itr either of the following commands:
] se
or
] se myfile
‘Se’ will automatically fetch your terminal type from the Subsystem. If you never told the
Subsystem your terminal type or set an unknown terminal type with the ‘term’ command, ’‘se’
will prompt you for another terminal type; if you type a ‘?’, ‘se’ will give you a 1list of

possible terminal types and prompt you again for yours.

‘Se’ can also be invoked by the command ‘e’. ‘E’ remembers the name of the last file you
edited, so if you don’t specify a file, ‘e’ will enter the last file you edited.

Using ‘Se’

‘Se’ first clears the screen, draws in its margins, and executes the commands in the file
"=home=/.serc", if it exists. It then processes the command line, obeying the options given
there, and begins reading your file (if you specified one). The screen it draws looks someth-
ing 1ike this. (The parenthesized numerals are not part of the screen layout, but are there
to aid in the following discussion.)

(1) (2) (3)

A [}

B *} integer a

(o}

.= } for (a = 1; a <= 12; a = a + 1)

E | call putch (NEWLINE, STDOUT)

F | stop

$ | end

cmd> _ (4)

11:39 myfile(5).....cvvvennn. it ..
The display is divided into five parts: (1) the l1ine number area, (2) the mark name_ area, (3)
the text area, (4) the command line, and (5) the status line. The current line (remember ".*")
is indicated by the symbol "." in the line number area of the screen. In addition, a rocket

("->") is displayed to make the current line more obvious. The current mark name of each line
is shown in the markname area just to the left of the vertical bar. Other information, such
as the number of lines read in, the name of the file, and the time of day, are displayed in
the status line.

The cursor is positioned at the beginning of the command 1line, showing you that ‘se’
awaits your command. You may now enter any of the ‘ed’ commands and ‘se’ will perform them,
while making sure that the current line is always displayed on the screen. There are only a
few other things that you need know to successfully use ‘se’.

. ‘Se’ always recognizes BS (control-h) and DEL as the erase and kill characters,
regardless of your Subsystem erase and kill character settings.

. If you make an error, ‘se’ automatically displays an error message in the status
line. It also leaves your command line intact so that you may change it using in-
1ine editing commands (we‘ll get to this a littlie later). If you don‘’t want to
bother with changing the command, just hit DEL and ‘se’ will erase it.

. The '"p" command has a different meaning than in ‘ed’. When used with 1ine numbers,
it displays as many of the lines in the specified range as possible (always includ-
ing the last 1ine). When used without 1ine numbers, “p" displays the previous page.

Introduction to ‘EQ’

. The ":" command positions a specified 1ine at the top of the screen (e.g., "12:"
positions the screen so that line 12 1is at the top). If no 1ine number is
specified, ":" displays the next page.

. The "v" command can be used to modify an entire 1ine rather than just add to the end
of the 1tline. Also, if you use "“v" over a range of lines and find that you want to
terminate the command before all l1ines have been considered, the control-f key is
used instead of a period.

. If a file name is specified in the "w" command and the file already exists, ’‘se’
will display "file already exists"; entering the command again (by typing a NEWLINE)
will cause the file to be overwritten. Given the command "w! <file>", ‘se’ will
never warn about the destruction of an existing file.

Keeping these few differences in mind, you will see that ’‘se’ can perform all of the functions
of ‘ed’. while giving the advantage of a "window" into the ed’'t -u™%=2

Extended Line Numbers

‘Se’ has a number of features that take advantage of the window display to minimize
keystrokes and speed editing. In the line number area of the screen, ‘se’ always displays for
each 1ine a string that may be used in a command to refer to that 1ine. Normally, it displays
a capital letter for each line, but in "absolute 1ine number" mode (controlled by the "oa"
command; see the section on options for more details), it displays the ordinal number of the
line in the buffer.

The line number letters displayed by ‘se’ may be used in any context reqguiring a 1line
number. For instance, in the above example, a change to the first 1ine on the screen could be
specified as

As/%/# my new program/
You could delete the 1ine before the first 1ine on the screen by typing

A-1d

Finally, ‘se’ accepts "#" as a 1ine number element; it always refers to the first line on
the screen; like the 1ine number letters, it may be used in any context which requires a line
number element or expression.

Case Conversion

When ‘se’ is displaying upper-case letters for 1ine numbers, it accepts command letters
only 1in lower case. For those who edit predominantly upper-case text this is somewhat incon-
venient; for those with upper-case only terminals this is a disaster. For this reason, ‘se’
offers several options to alleviate this situation.

First of all, typing a control-z causes ‘se’ to invert the case of all letters (just like
the alpha-lock key on some terminals). Upper-case letters are converted to lower-case, lower-
case letters are converted to upper-case, and all other characters are unchanged. You can
type control-z at any time to toggle the case conversion mode. when case inversion 1is in
effect, ’‘se’ displays the word "CASE" in the status line.

One drawback to this feature is that ’‘se’ still expects line numbers in upper case and
commands in lower case, so you must shift to type the command letter -- just the reverse of
what you’‘re used to. A more satisfactory solution is to specify the “c" option. Just type

ocC

on the command 1ine and ‘se’ toggles the case conversion mode, and completely reverses its
interpretation of upper and lower case letters. In this mode, ‘se’ displays the 1ine number
letters in lower case and expects its command letters in upper case. Unshifted letters from
the terminal are converted to upper case and shifted letters to lower case.

»

Tabs

In the absence of tabs, program indentation is very costly in keystrokes. So ‘se’ gives
you the ability to set arbitrary tab stops using the "ot" command. By default, ’‘se’ places a
stop at column 1 and every third column thereafter. Tabs corresponding to the default can be
set by enumerating the column positions for the stops:

ot 1 47 10 13 16 19 22 25 28 31 34

This 1is almost as bad as typing the blanks on each line. For this reason, there is also a
shorthand for such repetitive specifications.

Introduction to ‘Ed’

ot +3

sets a tab stop at column 1 and at every third column thereafter. Fortran programmers may
prefer the specification

ot 7 +3
to set a stop at column 7 and at every third thereafter.
Once the tab stops are set, the control-i and control-e keys can be used to move the cur-

sor from its current position forward or backward to the nearest stop, respectively.

Full-Screen Editing

L

Full screen <. .iny with ‘se’ is accomplished through the use of control characters for
editing functions. A few, such as control-h, control-i, and control-e have already been
mentioned. Since ‘se’ supports such a large number of control functions, the mnemonic value

of control character assignments has dwindled to almost zero. About the only thing mnemonic
is that most symmetric functions have been assigned to opposing keys on the keyboard (e.g.,
forward and backward tab to control-i and control-e, forward and backward space to control-g
and control-h, skip right and left to control-o and control-w, and so on). We feel pangs of
conscience about this, but can find no more satisfactory alternative. If you feel the control
character assignments are terrible and you can find a better way, you may change them by
modifying the definitions in ‘se’ and recompiling.

Except for a few special purpose ones, control characters can be used anywhere, even on
the command line. (This is why erroneous commands are not erased -- you may want to edit
them.) Most of the functions work on a single 1ine, but in overlay mode (controllied by the
"v" command), the cursor may be positioned anywhere in the buffer.

Horizontal Cursor Motion

There are quite a few functions for moving the cursor. You‘ve probably used at least one
(control-h) to backspace over errors. None of the cursor motion functions erase characters,
so you may move forward and backward over a line without destroying it. Here are several of
the more frequently used cursor motion characters:

controi-g Move forward one column.

control-h Move backward one column.

control-i Move forward to the next tab stop.

control-e Move backward to the previous tab stop.

control-o Move to the first column beyond the end of the line.

control-w Move to column 1.

Vertical Cursor Motion

‘Se’ provides two control keys, control-d and control-k, to move the cursor up and down,
respectively, from 1line to l1ine through the edit buffer. The exact function of each depends
on ‘se’‘s current mode: in command mode they simply move the current 1l1ine pointer without
affecting the cursor position or the contents of the command line; in overlay mode (viz. the
"v" command) they actually move the cursor up or down one 1line within the same column;
finally, in append move, these keys are ignored. Regardliess of the mode, the screen is
adjusted when necessary to insure that the current line is displayed.

control-d Move the cursor up one line.

control-k Move the cursor down one 1line.

Character Insertion

Of course the next question is: "Now that I‘ve moved the cursor, how do I change
things?" If you want to retype a character, just position the cursor over it, and type the
desired character; the old one is replaced. You may also insert characters at the current
cursor position instead of merely overwriting what’s already there. Typing a control-c
inserts a single blank before the character under the cursor and moves the remainder of the
1ine one column to the right; the cursor remains in the same column over the newly-inserted
blank. Typing a control-x inserts enough blanks at the current cursor position to move the
character that was there to the next tab stop. This can be handy for aligning items in a
table, for example. As with control-c, the cursor remains in the same column.

Introduction to ‘Ed’

A more general way of handling insertions is to type control-a. This toggles “insert
mode" -- the word "INSERT" appears on the status line, and all characters typed from this
point are inserted in the line (and characters to the right are moved over). Typing control-a
again turns insert mode off. Here is a summary of these control characters:
control-a Toggle insert mode.
control-c Insert a blank to the left of the cursor.
control-x Insert blanks to the next tab stop.

control-_ Insert a newline.

Character Deletion

There are many ways to do away with characters. The most drastic is to type DEL;: ‘se’
erases the current 1line and leaves the cursor in column 1. Typing controli-t causes ‘se’ to
delete the character under the cursor and ali those to its right. The cursor is left in the
same column which is now just beyond the new end of the line. Similarly, control-y deletes
all the characters to the left of the cursor (not including the one under it). The remainder
of the 1ine is moved to the left, leaving the cursor over the same character, but now in
column 1. Control-r deletes the character under the cursor and closes the gap from the right,
while control-u does the same thing after first moving the cursor one column to the left.
These last two are most commonly used to eat characters out of the middle of a 1ine.
DEL Erase the entire line.
control-t Erase the characters under and to the right of the cursor.
control-y Erase the characters to the left of the cursor.
control-r Erase the character under the cursor.

control-u Erase the character immediately to l1eft of the cursor.

Terminating a Line

After you have edited a 1ine, there are two ways of terminating it. The most commonly
used is the control-v. A newline (or carriage-return) can be used but beware that it deletes
all characters over and to the right of the cursor.
control-v Terminate.

NEWLINE Erase characters under and to the right of the cursor and terminate.

Non-printing Characters

‘Se’ displays a non-printing character as a blank (or other user-selectable character;

see the description of "ou" in the section on options). Non-printing characters (such as
‘se’s control characters), or any others for that matter., may be entered by hitting the ESC
key followed immediately by the key to generate the desired character. Note, however, that

the character you type is taken literally, exactly as it is generated by your terminal, so
case conversion does not apply.

ESC Accept the literal value of the next character, regardless of its function.

The .serc File

When ‘se’ starts up, it tries to open the file “=home=/.serc". If that file exists, ‘se’
reads it, one line at a time, and executes each line as a command. If a line has "#" as the
first character on the l1ine, or if the 1ine is empty, the entire line is treated as a comment,
otherwise it is executed. Here is a sample ".serc" file: ’

turn on unix mode, tabs every 8 columns, auto indent
opu
ot+8
oia

The ".serc" file is useful for setting up personalized options, without having to type them on
the command 1ine every time, and without using a special shell file in your bin. 1In
particular, it is useful for automatically turning on UNIX mode for Software Tools users who
are familiar with the UNIX system.

Command 1ine options are processed after commands in the ".serc" file, so, in effect, command

- 419 -

Introduction to ‘Ed’

line options can be used to over-ride the defaults in your ".serc" file.

NOTE: Commands in the ".serc" file do not go through that part of ‘se’ which processes the
special control characters (see above), so do not use them in your ".serc" file.

0

-20-

Introduction to ‘Ed’
Screen Editor Options

Options for ‘se’ can be specified in two ways: with the "o" command or on the Subsystem
command 1ine that invokes ’‘se’. To specify an option with the "o" command, just enter %“o"
followed immediately by the option letter and its parameters. To specify an option on the
command line, just use "-" followed by the option letter and its parameters. With this second
method, if there are imbedded spaces in the parameter 1ist, the entire option should be
enclosed in quotes. For example, to specify the "a" (absolute 1ine number) option and tab
stops at column 8 and every fourth thereafter with the "o" command, just enter

oa
ot 8 +4

when ‘se’ is waiting for a command. To enter the same options on the invoking command 1line,
you might use

se -t regent myfile -a "-t 8 +4"

The following table summarizes the available ‘se’ options:

Option Action

a causes absoclute 1ine numbers to be displayed in the 1ine number area of the screen.
The default behavior is to display upper-case letters with the letter "A" correspon-
ding to the first 1ine in the window.

c inverts the case of all letters you type (i.e., converts upper-case to lower-case
and vice versa). This option causes commands to be recognized only in upper-case
and alphabetic 1ine numbers to be displayed and recognized only in lower-case.

di<dir>] selects the placement of the current line pointer following a "d" (delete) command.
<dir> must be either ">" or "<"', 1If ">" is specified, the default behavior is
selected: the l1ine following the deleted 1ines becomes the new current 1line. If
"<" is specified, the 1ine immediately preceding the deleted 1ines becomes the new
current line. If neither is specified, the current value of <dir> is displayed in
the status line.

f selects Fortran oriented options. This is equivalent to specifying both the "c" and
"t7 +3" (see beliow) options.

-] controls the behavior of the "s" (substitute) command when it is under the control
of a "g" (gliobal) command. By default, if a substitute 1inside a global command
fails, ‘se’ will not continue with the rest of the lines which might succeed. If
"og" is given, then the global substitute will continue, and lines which failed will
not be affected. Successive "og" commands will toggle this behavior. An
explanatory message is placed in the status 1line.

hl<baud>] lets the editor know at what baud rate you are receiving characters. Baud rates can
range from 50 to 19200; the default is 9600. This option allows the editor to
determine how many, if any, delay characters (nulls) will be output when the hard-
ware line insert/delete functions of the terminal are being used (if available).
Use of the built-in terminal capabilities to insert/delete l1ines speeds up editing
over slow-szpeed lines (i.e., dialups). Entering ‘oh’ without an argument will cause
your current baud rate to appear on the status 1line.

i[a } <indent>] selects indent value for 1lines inserted with *“a", "c" and "1" commands
(initially 1). "a" selects auto-indent which sets the indent to the value which
equals the indent of the previous line. If <indent> is an integer, then the indent
value will be set to that number. If neither "a" nor <indent> are specified, the
current value of indent is displayed.

k Indicates whether the current contents of your edit buffer has been saved or not by
printing either a "saved" or "not saved" message on your status: line.
1]
1[<1op>)] sets the 1ine number display option. Under control of this option, ‘se’
continuously displays the value of one of three symbolic 1ine numbers in the status
line. <lop> may be any of the following:
display the current 1ine number
display the number of the top line on the screen
$ display the number of the last 1ine in the buffer

If <lop> is omitted, the 1ine number display is disabled.

- 21 -

Introduction to ‘Ed’

iml<col1>]

sets the left margin to <col> which must be a positive integer. This option will
shift your entire screen to the left, enabling you to see characters at the end of
the line that were previously off the screen; the characters in columns 1 through
<col> - 1 will not be visible. You may continue editing in the normal fashion. To
reset your screen enter the command ‘oim 1’/. 1If <col> is omitted, the current left
margin column is displayed in the status line.

m{d] [<user>) displays messages sent t0 you by other users (via the ‘to’ command) while you

pls | ul

are editing. When a message arrives while you are editing, the word "message"
appears on your status line. To send other users messages while inside of the
editor, you can insert the text of your message into the edit buffer, and then issue
the command "linei,line2om <user>", where "lineti" and "line2" are the first and last
lines, respectively, of where you appended your message in the edit buffer and
"<user>" is the 1login name or process id of the person to whom you want to send a
message. The gi¥en 1ines are sent and deleted from the edit buffer. To prevent the
lines from being deleted after they are sent, use the . command 1ine
"l1ine1,1ine2omd <user>" i

converts to or from UNIX (tm) compatibility mode. The "op" command, by itself, will
toggle between normal (Software Tools mode) and UNIX mode. The command "opu" will
force ’‘se’ to use UNIX mode, while the command "ops" will force ‘se’ to use Software
Tools mode.
when in UNIX mode, ‘se’ uses the following for its patterns and commands:
?pattern[?] searches backwards for a pattern.
~ matches the beginning of a line.

matches any character.

~ is used to negate character classes.

% used by itself in the replacement part of a substitute command represents the
replacement part of the previous substitute command.

\(<regular expression>\) tags pieces of a pattern.

\<digit> represents the text matched by the tagged sub-pattern specified by <digit>.
\ is the escape character, instead of e.

t copies l1ines.

Yy transliterates lines.

~ does the global exclude on markname (see the "!" command, in the help on
‘ed’).

![<Software Tools Command>] will create a new instance of the Software Tools shell,
or execute <Software Tools Command> if it is present (see the "~" command, in
the help on ‘ed’).

A1l other characters and commands are the same for both UNIX and normal (Software
Tools) mode. The help command will always call up documentation appropriate to the
current mode. UNIX mode is indicated by the message "UNIX" in the status line.

UNIX mode is available only in ’‘se’. This extension is not available in ‘ed’.

s[pma | ftn | £77 | s | f] sets other options for case, tabs, etc., for one of the three

t[<tabs>]

ul<chr>]

programming languages 1listed. The option "oss" 1is the same as “‘ospma"“ and the
option “osf" is the same thing as "osftn" (the corresponding command line options
are "-ss* and "-sf"). If no argument is specified, the options affected by this
command revert to their default value.

sets tab stops& according to <tabs>. <Tabs> consists of a series of numbers indicat-
ing columns in which tab stops are to be set. If a number is preceded by a pilus
sign ("+"), it indicates that the number is an increment; stops are set at regular
intervals separated by that many columns, beginning with the most recently specified
absolute column number. If no such number precedes the first increment
specification, the stops are set relative to column 1. By default, tab stops are
set in every third column starting with column 1, corresponding to a <tabs>
specification of "+3". If <tabs> is omitted, the current tab spacing is displayed
in the status line.

selects the character that ‘se’ displays in place of unprintable characters. <chr>

may be any printable character; it is initially set to blank. If <chr> is omitted,
‘se’ displays the current replacement character on the status 1line.

- 22 -

vi<co1>]

wl<co1>]

-[<inr>]

inNTtroguctTion To "EKQ-

sets the default "overlay column". This is the column at which the cursor is
initially positioned by the "v" command. <Col> must be a positive integer, or a
dollar sign ($) to indicate the end of the 1ine. If <col> is omitted, the current
overlay column is displayed in the status)ine.

sets the "warning threshold" to <col> which must be a positive integer. Whenever
the cursor is positioned at or beyond this column, the column number is displayed in
the status line and the terminal’s bell 1is sounded. If <col> is omitted, the
current warning threshold is displayed in the status line. The default warning
threshold is 74, corresponding to the first column beyond the right edge of the
screen on an 80 column crt.

splits the screen at the line specified by <Inr> which must be a simple 1ine number
within the current window. All lines above <Inr> remain frozen on the screen, the
line specified by <Inr> is replaced by a row of dashes, and the space below this row

DT L ithe new window on the file. Further editing commands do no* affect the
lines displayed in the top part of the screen. If <Inr> is omitted, the screen is
restored to its full size. (.

- 23 -

Introduction to ‘Ed’

Screen Editor Control Characters

(Files can be edited with control characters only when you are in overlay mode, which you

can enter

mand mode.

Character

control-a

control-b

control-c

control-d

control-e

control-f

control-g

control-h

control-i

control -k

control-1

control-m

control-n

with the ‘v’ command. A control-v will exit overlay mode and put you back into com-
while in command mode you can use these characters to edit your command line.)

Action

Toggle insert mode. The status of the insertion indicator is inverted. Insert
mode, when enabled, causes characters typed to be inserted at the current cursor
position in the 1line instead of overwriting the characters that were there
previously. When insert mode is in effect, "INSERT" appears in the status line.

Scan right and erase. The current line is scanned from the current cursor position
to the right margin until an occurrence of the next character typed is found. When
the character is found, all characters from the current cursor position up to (but
not including) the scanned character are deleted and the remainder of the line is
moved to the left to close the gap. The cursor is left in the same column which is
now occupied by the scanned character. If the l1ine to the right of the cursor does
not contain the character being sought, the terminal’s bell is sounded. ‘Se’ remem-
bers the last character that was scanned using this or any of the other scanning
keys; 1if control-b is hit twice in a row, this remembered character is used instead
of a literal control-b.

Insert blank. The characters at and to the right of the current cursor position are
moved to the right one column and a blank is inserted to fill the gap.

Cursor up. The effect of this key depends on ’‘se’s current mode. When in command
mode, the current line pointer is moved to the previous line without affecting the
contents of the command line. If the current l1ine pointer is at line 1, the last
line 1in the file becomes the new current 1ine. In overlay mode (viz. the "v" com-
mand), the cursor is moved up one line while remaining in the same column. In
append mode, this key is ignored.

Tab left. The cursor is moved to the nearest tab stop to the left of its current
position.
"Funny" return. The effect of this key depends on the editor’s current mode. In

command mode, the current command line is entered as is, but is not erased upon com-
pletion of the command; in append mode, the current line is duplicated; in overlay
mode (viz. the "v" command), the current line is restored to its original state and
command mode is reentered (except if under control of a global prefix).

Cursor right. The cursor is moved one column to the right. Note that this does not
erase any characters; it simply moves the cursor.

Cursor left. The cursor is moved one column to the left. Note that this does not
erase any characters; it simply moves the cursor.

Tab right. The cursor is moved to the next tab stop to the right of its current
position.

Cursor down. As with the control-d key, this key’s effect depends on the current
editing mode. In command mode, the current line pointer is moved to the next line
without changing the contents of the command line. If the current line pointer is
at the last 1ine in the file, 1ine 1 becomes the new current line. In overlay mode
(viz. the "v" command), the cursor is moved down one line while remaining 1in the
same column. In append mode, control-k has no effect.

Scan left. The cursor is positioned according to the character typed immediately
after the controli-1. 1In effect, the current l1ine 1is scanned, starting from the
current cursor position and moving left, for the first occurrence of this character.
If none is found before the beginning of the line is reached, the scan resumes with
the last character in the line. If the 1ine does not contain the character being
looked for, the message "NOT FOUND" is printed in the status line. ‘Se’ remembers
the last character that was scanned for using this key; if the control-1 1is hit
twice 1in a row, this remembered character is searched for instead of a literal
control-1. Apart from this, however, the character typed after control-1 is taken
literally, so ’‘se’s case conversion feature does not apply.

Newline. This key is identical to the NEWLINE key described below.

Scan left and erase. The current .1ine is scanned from the current cursor position
to the left margin until an occurrence of the next character typed is found. Then
that character and all characters to its right, up to (but not including) the
character under the cursor, are erased. The remainder of the line, as well as the
cursor, are moved to the left to close the gap. If the line to the left of the cur-

- 24 -

control-o

control-p

control-q

control-r

control-s

control-t

control-u

control-v

control-w

control-x

control-y

control-z

control-_

control-\

control-"

NEWLINE

DEL

ESC

ATILITVUUWL L TV VW 1= =1

sor does not contain the character being sought, the terminal’s bell is sounded. As
with the control-b key, if control-n is hit twice in a row, the last character scan-
ned for is used instead of a 1iteral control-n.

Skip right. The cursor is moved to the first position beyond the current end of
line.
Interrupt. If executing any command except "a", *“c", "i" or 'v%, ‘se’ aborts the

command and reenters command mode. The command 1ine is not erased.

Fix screen. The screen is reconstructed from ‘se’s internal representation of the
screen.

Erase right. The character at the current cursor position is erased and all charac-
ters to its right are moved left one position.

Scan right. This key is identical to the control-1 key described above, except that
the scan proceeds to the right from the current cursor position. ¢

Kill right. The character at the current cursor position and all those to its right
are erased.

Erase left. The character to the left of the current cursor position is deleted and
all characters to its right are moved to the left to fill the gap. The cursor is
also moved left one column, leaving it over the same character.

Skip right and terminate. The cursor is moved to the current end of line and the
line is terminated.

Skip left. The cursor is positioned at column f{.

Insert tab. The character under the cursor is moved rﬁght to the next tab stop; the
gap is filled with blanks. The cursor is not moved.

Kill left. Al1 characters to the left of the cursor are erased; those at and to the
right of the cursor are moved to the left to fill the void. The cursor is left in
column 1.

Toggle case conversion mode. The status of the case conversion indicator is
inverted; {if case inversion was on, it is turned off, and vice versa. Case inver-
sion, when in effect, causes all upper case letters to be converted to lower case,
and all lower case letters to be converted to upper case. Note, however, that . ‘se’
continues to recognize alphabetic line numbers in upper case only, in contrast to
the "case inversion" option (see the description of options above). When .case
inversion is on, "CASE" appears in the status line.

Insert newline. A newline character is inserted before the current cursor position,
and the cursor is moved one position to the right. The newline is displayed accord-
ing to the current non-printing replacement character (see the "u" option).

Tab 1left and erase. Characters are erased starting with the character at the
nearest tab stop to the left of the cursor up to but not including the character
under the cursor. The rest of the line, including the cursor, is moved to the left
to close the gap.

Tab right and erase. Characters are erased starting with the character under the
cursor up to but not including the character at the nearest tab stop to the right of
the cursor. The rest of the l1ine is then shifted to the left to close the gap.

Kill right and terminate. The characters at and to the right of the current cursor
position are deleted, and the line is terminated.

Kill all. The entire line is erased, along with any error message that appears in
the status line.

Escape. The ESC key provides a means for entering ‘se’s control characters
literally as text into the file. 1In fact, any character that can be generated from
the keyboard 1is taken 1literally when it immediately follows the ESC key. If the
character is non-printing (as are all of ‘se’s control characters), it appears on
the screen as the current non-printing replacement character (normally a blank).

- 25 -

Introduction to ‘Ed’

Range

none

none

none

none

Syntax
al :text]

cl:text]

dlp]

e[!] [filename]

f [filename]

g/pat/command

h[stuff]

i[:text]

jl/stufel/111p]

km

Editor Command Summary

Function

Append

Inserts text after the specified 1ine. Text is inserted until a line
containing only a period and a newline is encountered. In ‘se’, if
the command is followed 1immediately by a colon, then whatever text
follows the colon is inserted without entering "append" mode. The

current line pointer is left at the last line inserted.

Change

Dejetes the lines specified and inserts text to replace them. Text is
inserted until a line containing only a period and a newline is
encountered. In ‘se’, if the command is followed immediately by a
colon, then whatever text follows the colon is inserted without enter-
ing ‘"append" mode. The current line pointer is left at the last line
inserted.

Delete
Deletes all lines between the specified lines, inclusive. The current
line pointer is left at the line after the last one deleted. If the

“p* is included, the new current line is printed.

Enter

Loads the specified file into the buffer and prepares for editing.
Automatically invoked if a filename is specified as an argument on the
command line used to invoke the editor. The current line pointer is
positioned at the first 1line 1in the buffer. An error message is
generated if the editing buffer contains text that has not been saved.
The enter command may be resubmitted after the error message, in which
case it will be obeyed. The "enter now" command “"e!" may be used to
avoid the error message.

File

Print or change the remembered file name. If a name is given, the
remembered file name is set to that value; otherwise, the remembered
file name is printed.

Global on pattern
Performs the given command on all lines in the specified range that
match a certain pattern.

Help
In ‘se’, provides access to online documentation on the screen editor.
“Stuff* may be used to select which information is displayed.

Insert .
Inserts text before the specified l1ine. Text is inserted until a line
containing only a period and a newline is encountered. In ‘’‘se’, if

the command 1is immediately followed by a colon, then whatever text
follows is inserted without entering "append" mode. The current 1line
pointer is left at the last line inserted.

Join

The specified 1ines are joined into a single line. You may specify in
"stuff*" what is to replace the newlines that previously separated the
lines. The default is a single blank. If you use the default, ‘ed’
automatically prints out the result. If the "p" option is used, the
resulting line (which becomes the new current line) is printed. Thus
j and "jp" are equivalent to "j/ /p*. 1In general, ‘ed’ and ‘se’
will supply trailing delimiters for you. so "j/" is the same as
*j//", i.e. replace the newline(s) with nothing (delete them).

mark

The specified lines are marked with ‘m’ which may be any single
character other than a newline. If ‘m’ is not present, the lines are
marked with the default name of blank. The current line pointer is
never changed.

Locate

1" will print the first 1ine of the file =installation=. This is so
that one can tell what machine he is using from within the editor.
This is particularly useful for installations with many machines that
can run the editor, where the user can switch back and forth between
them, and become confused as to where he is at a given moment.

- 26 -

none

none

m<iine>[p]

nim]

o[stuff]

ql!]

r [filename]

ATILTINUUMCG L 1UTE W (=)

Move

Moves the specified block of l1ines after <line>. <Line> may not be
omitted. The current line pointer is left at the last 1ine moved. If
the "p" is specified, the new current line is also printed.

Name

If ‘m’ is present, the last 1ine in the specified range is marked with
it and all other 1lines having that mark name are given the default
mark name of blank. In ‘ed’, if ‘m’ is not present, the mark name of
each 1line 1in the range is printed; in ‘se’ the names of all lines in
the range are cleared.

Option

Editing options may be queried or set. "Stuff" determines which
options are affected. In ‘ed’, options "“d", 'g", "k", and “p" are
available. Options “d", "g", and “k" are the same as in ‘se’. In

‘ed’, option "p" sets the prompt to be used (useful for the user who
is disturbed by ‘ed’s quiet behavior). The prompt cqp be set by the

command "op/string[/]", which sets the prompt to "string". The trail-
ing delimiter 1is optional. If no string is given, the prompt is set
to "x ", An empty string (“op//") restores ‘ed’s no prompting
behavior. Successive "op" commands will toggle prompting mode. 1In

‘se’, the "op" command controls what metacharacters are used for pat-
tern matching.

Print

Prints all the l1ines in the given range. In ‘se’, as much as possible
of the range is displayed, always including the last line; if no range
is given, the previous page is displayed. The current line pointer is
left at the last 1ine printed.

Quit

Exit from the editor. An error message is generated if the editing
buffer contains text that has not been saved. The quit command may be
resubmitted after the error message, in which case it will be obeyed.
The "quit now" command “q!" may be used to avoid the error message.

Read
Insert the contents of the given file after the specified l1ine. The
current line pointer is left at the last 1ine read.

s[/pat/subl/1lgllp]] Substitute

Substitutes "sub" for each occurrence of the pattern “pat". If the
optional "g" is specified, all occurrences in each 1ine are changed;
otherwise, only the first occurrence is changed. The current 1line

pointer is left at the last line in the range in which a substitution

was made. This line is also printed if the “p" is used. In ‘ed’, if

you leave off the trailing slash, the result of the substitute will be

printed automatically. Thus "s/junk/stuff" is entirely equivalent to .
"s/junk/stuff/p". If you type an "s" by itself, without a pattern and

replacement string, ‘ed’ will behave as though you had typed "s//&/p",

i.e. substitute the previous replacement pattern for the previous

search pattern, and print.

t[/from/to[/])[p]l] Transliterate

uld]lp]

The range of characters specified by ‘from’ is transliterated into the
range of characters specified by ‘to’. The last line on which someth-
ing was transliterated is printed if the “p" option is used. The last
line 1in the range becomes the new current 1ine. Again, if you leave
off the trailing delimiter, ‘ed’ will print the result of the
transliteration. In addition, l1ike the "s" command, both the ‘from’
and ‘to’ parts are saved; “t//&/" will perform the same translitera-
tion as the last one, and "t" is the same as “t//&/". The "&" is
special if it is the only character in the ‘to’ part, otherwise it is
treated as a literal "&". In Unix mode (for ’‘se’ only), use "%"
instead of "&". See Software Tools and the help on ‘tlit’ for some
examples of character transliterations. ,

Undo

The specified range of lines is replaced by the last range of lines
deleted. If the "“d" is used, the restored text is inserted after the
last 1ine in the specified range. The current line pointer is set at
the last line that was restored; this line is also printed if the “p*
is specified.

oVerlay

In ‘ed’, each 1ine in the given range is printed without its terminat-
ing newline and a line of input is read and added to the end of the
line. 1If the first and only character on the input line is a period,

- 27 -

Introduction to ‘Ed’

1.9

1,8

none

1,$

1,9

none

case.

no further lines are printed. In ’‘se’, "overlay mode" is entered and
the control characters may be used to modify text anywhere in the
buffer. A control-v may be used to quit overlay mode. A control-f
may be used to restore the current 1ine to its original state and
terminate the command.

wl’+71717] [filename] Write

x/pat/command

y<line>[p]

Writes the portion of the buffer specified to the named file. The
current line pointer is not changed. If "+" is given, the portion of
the buffer is appended to the file; otherwise the portion of the
buffer replaces the file. 1In ’‘se’ only, if "!" is present, an exist-
ing file specified in the command is overwritten without comment. If
"filename" is not present, the specified lines will be written to the
cugrent file name specified on the status line.

exclude on pattern y
Performs the command on all lines in the given range that do not match
the specified pattern.

copY

Makes a copy of all the lines in the given range, and inserts the
copies after <line>. As with the "m" command, <line> may not be omit-
ted. The current line pointer is set to the new copy of the last line
in the range; this line is printed if the "p" is present.

zb<left>[,<right>][<char>] draw Box

=[p]

! mcommand

‘mcommand

In ’‘se’ only, a box is drawn using the given <char> (blank by default,
allowing erasure of a previously-drawn box). Line numbers are used to
specify top and bottom row positions of the box. <Left> and <right>
specify left and right column positions of the box. If second 1line
number 1is omitted, the box degenerates to a horizontal line. If
right-hand column is omitted, the box degenerates to a vertical line.

Equals

The number of the specified l1ine is printed. The l1ine itself is also
printed if the "p" option is used. The current line pointer is not
changed.

Query
In ‘ed’ only, a verbose description of the last error encountered is
printed.

Exclude on markname
Similar to the ’‘x’ prefix except that ‘command’ is performed for all
lines in the range that do not have the mark name ’‘m’.

Global on markname
Similar to the ‘g’ prefix except that ‘command’ is performed for all
lines in the range that have the mark name ‘m’‘.

Print next page

In ‘ed’, 23 1lines beginning with the current 1line are printed
(equivalent to ".,.+23p"). In ‘se’, the next page of the buffer Iis
displayed and the current 1line pointer is placed at the top of the
window.

~[<Software Tools Command>] Escape to the shell

If present, the <Software Tools Command> is passed to the shell to be
executed. Otherwise, an interactive shell is created. After either
the command or the shell exits, ‘ed’ prints "~* to indicate that the
shell escape has completed. For a command, ‘se’ asks you to type a
newline before redrawing the screen, but for an interactive shell,
‘se’ will redraw the screen immediately. If the first character of
the <Software Tools Command> is a "!", then the "!" is replaced with
the text of the previous shell command. An unescaped "% in the
<Software Tools Command> will be replaced with the current saved file
name. If the shell command is expanded, both ‘ed’ and ‘se’ will echo
it first, and then execute it.

Until EPFs are supported, when using ‘ed’, do not use the shell to
execute external commands. Internal commands (like ‘cd’) are OK.
This does not apply to ‘se’.

For a deeper discussion of using the shell from within a program, see
the help on the ’‘shell’ subroutine.

Note that the ‘ed’ editor allows you to enter alphabetic commands in both upper and lower

Lower case

is

preferred because it is easier to read. The ’‘se’ editor is not as

flexible, since upper case letters are usually used to represent l1ines on the screen.

- 28 -

#

/pattern[/]

\pattern[\]

>name

<name

expression

Element

[<ce1>]

[~<cc1>]

{<pattern>}

e<digit>

ALI0 WA L T W W -

Elements of Line Number Expressions
Value

value of the integer (e.g., 44).
number of the current l1ine in the buffer.
number of the last line in the buffer.
number of the previous line in the buffer (same as .-1).
number of the previous line in the buffer (same as ~).

i
number of the first line on the screen (only in ‘se’Y)
number of the next line in the buffer that matches the given(patt.rn (e.g.,
/February/); the search proceeds to the end of the buffer, then wraps around to
the beginning and back to the current l1ine. The trailing "/" is optional.
number of the previous line in the buffer that matches the given pattern (e.g.,
\January\); search proceeds in reverse, from the current line to line 1, then

from the last line back to the current line. The trailing "\" is optional.

number of the next line having the given markname (search wraps

/7).

number of the previous
reverse, like \\).

around, 1ike
line having the given markname (search proceeds in

any of the above operands may be combined with plus or minus signs to produce a
1ine number expression. Plus signs may be omitted if desired (e.g., /parse/-5,
/lexical/+2, /lexical/2, $-5, .+6, .6).

Summary of Pattern Elements

Meaning

Matches the null string at the beginning of a 1ine. However, if not the first
element of a pattern, is treated as a literal percent sign.

Matches any single character other than newline.

Matches the newline character at the end of a 1ine. However, if not the last
element of a pattern, is treated as a literal dollar sign.

Matches any single character that is a member of the set
<Ccl1> may be composed of single characters or of character ranges of the form
<ci>-<c2>. If character ranges are used, <c1> and <c2> must both belong to the
digits, the upper case alphabet or the lower case alphabet.

specified by <ccl>.

Matches any single character that is not a member of

<ccl>.

the set specified by

In combination with the immediately preceding pattern element, matches zero or
more characters that are matched by that element.

Turns off the special meaning of the immediately following character. If that
character has no special meaning, this is treated as a literal “e".

Tags the text actually matched by the sub-pattern specified by <pattern> for
use in the replacement part of a substitute command.

Appearing in the replacement part of a substitute command, represents the text
actually matched by the pattern part of the command. If "&" is the only
character in the replacement part, however, then it represents the replacement
part used in a previous substitute command.

Appearing in the replacement part of a substitute command, represents the text
actually matched by the tagged sub-pattern specified by <digit>.

- 29 -

User’s Guide for the
Sof tware Tools Subsystem Command Interpreter
(The Shell)

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jefferey S. Lee
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

TABLE OF CONTENTS

TUROP I AT ... i ittt ittt i teneeeneneeneaeenesnssssnaseasennaanasessasessesanennsans 1
COMMABNAS ... ittt vt tsneeeenseeeeesesssossesssasacaanananasaaseeaaeasssaasesnssaneananas 1
How the Command Interpreter Locates @ COmMMaNdciiieeiennrocasosenoncensanas 1
Special Characters and QUOLING it iiiiieiiieineeeeenrneseasanennoaasaansannsas 2
ComMMAaNG Fil Sttt it ittt ietontesanseeeasosssssonsesosssesanseneneanosesennnas 2
Doing Repetitive TaSKSs === Iterationciiiiiiirniirteieneeoscossonncansancsannnns 2
I/0 REAIPECEION ittt ittt it ittt ieeesneesoeeeseesnsoeeneesesesasnasesnnaeensaaneenens . 3
I/0 Redirection to DiSk Fil@S OF DeVIiCeSiviieiettnerneenesonnnsasaneansaneens 4
I/0 Redirection tO Other COMMAaNMScuueteunecnoenennnerneanerenaeceasanannenas 4
1/0 Redirection for @ Group Of COMMABNGScuotiuiunenenonenenenoenenesnansnnenan)
I/0 Redirection to a Command APQUMENTceuieuenuneneesnanennsosaannnnn 5
R T - 1 = 0 I - [
Interrupts, Quits and Error Handling Mechanismsccc0eeeevenaans feet e 7
[= o T B T = T o (; 7

Summary of Syntax and SemantiCst i ittt 8
COMMABNAS ... it ittt et eneneaneencssensonsssasassssnasssasosasssasssscenssansassasnssas 8
NEEWOPKS ..ttt i it ittt iencenenneesassososonosssenaasosnnsasnsensoasssassssssssncnnssas 8
NOGES ittt ittt ittt itennesanesssssnsoncasesoanssososssssssanssseancanssasnnasssas 10
COMMEN LSt ittt ittt ieeeseosensonseossansssnsneassasssosesesassasssssssssssss 13
L2 Tl 1 = 0 - 13
R =1 o S = o T 14
FUNCLION Cal 1S ...ttt ittt ii it iieeeneeeeenesesosncssaseanssssansssnssesasosessannss 15
History Mechanismcciittenncan. Mt it e siteseeesac et ettt aneanan 15

Command Selectioncciiivnirerrsoanesnsnncns f ettt seaesstsaeacceceresannnn 15
Argument SeTeCtiONttt ieetesantossacsssesssscssssossanansenocassnnsan 15
T o G I I o = T o 16
[T o T R E = o T o 16

Application Notes e teetaeeiee ettt it e e e 17
BasSiC FUNCEIONS ..t ittt it ittt ittt st esceaoseneeeananssnaaeeassosoesnneasssassnnannss 17
HiStOry EXBMPI@S ittt iiiitinentceenononosenonsssosansseasotoesnanansssescannanss 19
Shell Control Vari@blesciiiiiniiiiineetntenceseansosessstonesnasssasssenoenas 22
Shell Command StatiStiCsut ittt tiorioetstorsoncenassasnssesnensancansensansseasnas 23
SymbiotiC COMMANAS iittiiiniieinetenrneseenonsroscnsssstosaansanessanasnssoes 23

Argument FetChingttt it ittt neneeennsasnnssasoenaneessenanannacs 23

1] 0 L= I R I o - o T 24

Shell Variable Utildtiesi ittt iiieneeesoeaneescenasaseonnsasenennaannnes 24
Program Interfacet titiiiiieetieeneatossescsssseassssssssosssassssanensnans 24

Lo o T I o 25
Messages from the Shell i i ittt trseseeesaasesanecesanasnaannas 26

- {ii -

Foreword

The Software Tools Subsystem is a set of program development tools based on the book
Software Tools by Brian W. Kernighan and P. J. Plauger. It was originally developed for use
on the Prime 400 computer in 1977 and 1978 in the form of several cooperating user programs.
The present Subsystem, the ninth version, is a powerful tool that aids in the effective use of
computing resources.

The command interpreter, also referred to as the "shell," is a vital part of the Sub-
system. It is a program which accepts commands typed by the user on his terminal and converts
them into more primitive directions to the computer itself. The user’s instructions are
expressed in a special medium called the '"command language." The greatest part of this
document is involved with describing the command language and giving examples of how it is
used.

Three areas will be covered in the following pages. First, there is a tutorial on the
use of the command language. New Subsystem users should read this chapter first. Some
minimal knowledge of terminal usage is assumed; if you are unsure of yourself in this area,
see Prime’s published documentation and the Software Tools Subsystem Tutorial for help.
Second, there is a summary of the syntax and semantics of the command language. Experienced
users should find this chapter valuable as a reference. Finally, there is a selection of
application notes. This chapter is a good source of useful techniques and samples of advanced
usage. Experienced users and curious beginners should find it well worthwhile.

- jv -

Command Interpreter User’s Guide
Tutorial

Commands

Input to the command interpreter consists of “"commands". Commands, in turn, consist of a
“*command name", which is the name of an executable file. A command is executed simply by
entering its name. For example,

1 help
is a command that will describe how you can obtain online documentation.

Some commands may have arguments. Arguments are values supplied by you to the command.
Arguments can be required or they may be optional in which case the system uses a default. In
the above example when ‘help i3 inve' -d with no arguments the Subsystem assumes the command
‘help help’ (i.e. get me on-line documentation for the ‘help’ command). However, if you
wanted on-1ine documentation for a specific command you would supply the command name as an
argument, e.g.

] help 1f

will describe the command that cah be used to 1ist information about files in a directory.
Some commands may have options. Options are used to make the same command execute in slightly
different ways. Options usually consist of one letter and are preceded by a dash. The com-
mand,

] help -f file
will 1list the names of commands and subroutines that may be associated with the keyword
"file". The "-f" is an option and "file" is an argument. Commands, arguments and options are
separated from each other by blanks.

Here is a final example:

1 1f

adventure ee guide mE&800
shell shell.doc subsys time_sheet
words zunde

‘Lf’ is used to 1ist the names of your files. Executed without any arguments, ‘1f‘ prints the
files in your current directory, but (like ‘help’) ’‘1f’ may be used with or without arguments
and options.

How the Command Interpreter Locates a Command

Recall that you can access files by their entrynames only if they are located in your
current directory. Without help from the shell this would also be true for commands. That
is, 1in order to execute ‘help’ you would need to have a copy of the ‘help’ command in your
current directory or you would have to enter its full pathname so that the shell could 1locate
it in another directory. Obviousliy, neither alternative is desirable. 1In reality, the shell
uses a "variable" called "_search_rule" to find commands like “help" in other directories.
Each user has his own search rule. (Refer to the section in this guide entitled "Shell
Control Variables" for more information.) The search rule tells the shell in what locations
to look for commands, and if there is more than one location possible, it specifies the order
in which the locations will be searched.

Most new users are given the search rule that causes the command interpreter to look for
commands in the following five locations in the order shown:

1. The shell’s internal library for an internal command (e.g, ‘stop’, ’‘set’)

2. The user‘s variables currently stored in memory

3. The user’s current directory :

4. The Subsystem 1ibrary containing locally supported external commands, "=lbin=" (e.g.
memo, moot) ’

5. The Subsystem library containing standard external commands, "=bin=" (e.g. NF,
‘help’)

This variable is explained in more detail in the "Application Notes" section of this guide.

~ Beware that this flexibility can get beginners (and some experienced users) into trouble.
With the search rule above, the command interpreter will always look in your current directory
for a command before it looks in one of the Subsystem command directories. Therefore, if you
create 2 file having the same name as a command, the shell will try its best to execute the
contents of that file.

command Interoreter User’s Guide

Special Characters and Quoting

Some characters have special meaning to the command interpreter. For example, try typing
this command:

] echo Alas, poor Yorick
Alas
poor: not found

]

‘Echo’ is simply a command that types back its arguments. Obviously this example is not work-
ing as it should. The strange behavior is caused by the fact that the comma is used for dark
mysterious purposes elsewhere in the command language. (The comma actually represents a null
1/0 connection between nodes of a network. See the section on pipes and networks for more
information.) 1In fact, all of the following characters are potential troublemakers:

., ;s # e > | {)} [1 () _ blank . .

The way to handlie this problem is to use quotes. You may use either single or double quotes,
but be sure to match each with another of the same kind. Try this command now:

] echo "Alas, poor Yorick; I knew him well."
Alas, poor Yorick; I knew him well.

You can use gquotes to enclose other quotes:

] echo ‘Quoth the raven: "Nevermore!" '/
Quoth the raven: "Nevermore!"

1

A final word on quoting: Note that anything enclosed 1in quotes becomes a single
argument. For example, the command

] echo "Can I use that in my book?"
has only one argument, but
] echo Can I use that in my book?

has seven.

Command Files

Suppose you have a task which must be done often enough that it is inconvenient to remem-
ber the necessary commands and type them in every time. For an example, let’s say that you
have to print the year-end financial reports for the last five years. If the "print" command
is usad to print files, your command might look 1like:

] print year74 year75 year76 year77 year78 year7$

If you use a text editor to make a %119 named "reports" that contains this command, you can
then print your reports by typing

] reports

No special command is required to perform the operations in this "command file;" simply typing
its name is sufficient.

Any number of commands may be placed in a command file. It is possible to set up groups
of commands to. be repeated or executed only if certain conditions occur. See the Applications
Notes for exampTes.

It is one of the important features of the command interpreter that command files can be
treated exactly 1ike ordinary commands. As shown in 1later sections, they are actually
programs written in the command language; in fact, they are often called “shell programs.*"
Many Subsystem commands (‘e’, ‘fos’, and ‘rfl’, for example) are implemented in this manner.

Doing Repetitive Tasks --- Iteration

Some commands can accept only a single argument. One example of this is the ’‘fos’ com-
mand. “Fos" stands for "format, overstrike, and spool." It is a shorthand command for print-
ing "formatted" documents on the 1ine printer. (A "formatted" document is one prepared with
the help of a program called a "text formatter," which justifies right margins, indents
paragraphs, etc. This document was prepared by the Software Tools text formatter ‘fmt.’) 1If
you have several documents to be prepared, it is inconvenient to have to type the ’‘fos’ com-

vommarnid irnterprele! wos! D VY iue

mand for each one. A special technique called "iteration" allows you to “factor out' the
repeated text. For example, .

] fos (filet1 file2 file3)
is equivalent to

] fos filet
] fos file2
] fos file3

The arguments inside the parentheses form an "iteration group." There may be more than one
iteration group in a command, but they must all contain the same number of arguments. This is
because each new command 1ine produced by iteration must have one argument from each group.
As an illustration of this,

1 (echo print fos) file(1 2 3)
is equivalel.c to

] echo filet
] print file2
] fos file3

Iteration is performed by simple text substitution; if there is no space between an argument
and an iteration group in the original command, then there is none between the argument and
group elements in the new commands. Thus,

file(1 2 3)
is equivalent to

filed
fite2
file3

Iteration is most useful when combined with function calls, which will be discussed later.

I/0 Redirection

Control of the sources and destinations of data is a very basic function of the command
interpreter, yet one that deserves special attention. The concepts involved are not new, vet
they are rarely employed to the extent that they have been used in the Subsystem. The best
approach to learning these ideas is to experiment. Get on a terminal, enter the Subsystem,
and try the examples given here until they seem to make sense. Above all, experiment freely:
try anything that comes to mind. The Subsystem has been designed with the idea that users are
intelligent human beings, and their freedom of expression is the most valuable of tools. Use
your imagination; if it needs tweaking, take a 100k at the Application Notes in the last chap-
ter.

Programs and commands in the Subsystem do not have to be written to read and write to
specific files and devices. 1In fact most of them are written to read from ‘“anything" and
write to ‘“anything." Only when the program is executed do you specify what "anything® is,
which could be your terminal, a disk file, the 1ine printer, or even another program.
"Anvthing"s are more formally known as “"standard input ports" and “standard output ports."
Programs are said to "read from standard input" and "write tc standard cutput." The key point
here is that programs need not take into account how input data is made available or what hap-
pens to output data when they are finished with it; the command interpreter 1is in complete
control of the standard ports.

A command we will use frequently in this section is ‘copy’. ‘Copy’ does exactly what its
name implies; it copies data from one place to another. 1In fact, it copies data from its
first standard input port to its first standard output port.

The first point to remember is that by default, standard ports reference the terminal.
Try ‘copy’ Nnow: .

1 copy

After you have entered this command, type some random text followed by a newline. ‘Copy’ will
type the same text back to you. (When you tire of this game, type a control-c; this causes an
end-of-file signal to be sent to ‘copy’, which then returns to the command interpreter. Typ-
ing control-c to cause end-of-file is a convention observed by all Subsystem programs.) Since
you did not say otherwise, standard input and standard output referred to the terminal; input
data was taken from the terminal (as you typed it) and output data was placed on the terminal
(printed by ‘copy’).

Command Interpreter User’s Guide

Obviously, ‘copy’ would not be of much use if this was all it could do. Fortunately, the
command interpreter can change the sources and destinations of data, thus making ‘copy’ less
trivial.

I/0 Redirection to Disk Files or Devices

Standard ports may be altered so as to refer to disk files by use of a "funnel." The
greater-than sign (>) is used to represent a funnel. Conventionally, the ">" points in the
direction of data flow. For example, if you wished to copy the contents of file "ee" to file
"old_ee", you could type

] ee> copy >old_ee

The greater-than sign musts<always be immediately next to its associated filename; no interven-
ing blanks are allowed. At least one blank must separate the ‘>’ from any command name or
arguments. This restriction 1is necessary to insure that the command language can be
interpreted unambiguously.

The construct "ee>" is read "from ee"; “>old_ee" is read "toward old_ee." Thus, the com-
mand above can be read "from ee copy toward old_ee," or, "copy from ee toward old_ee." The
process of changing the file assignment of a standard port by use of a funnel is called "1/0
redirection," or simply "redirection." .

It is not necessary to redirect both standard input and standard output; either may be
redirected independently of the other. For example,

] ee> copy

can be used to print the contents of file "ee" on the terminal. (Remember that standard out-
put, since it was not specifically redirected, refers to the terminal.) Not surprisingly, the
last variation of ‘copy’,

] copy >old_ee
is also useful. This command causes input to be taken from the terminal (until an end-of-file
is generated by typing a control-c) and placed on the file "old_ee". This is a quick way of
creating a small file of text without using a text editor.

It is important to realize that all Subsystem programs behave uniformly with regard to
redirection. It is as correct to redirect the output of, say, ‘1f’

1 1¢ >file_list
as it is to redirect the output of ‘copy’.

Recall that special pathnames which begin with "/dev" may refer to peripheral devices.
For example, by redirecting output to "/dev/1ps" you can print a file on the line printer.

] cat myfile >/dev/1ps

Although the discussion has been 1l1imited to one input port and one output port up to this
point, more of each type are available. In the current implementation, there are a total of
six; three for input and three for output. The highest-numbered output port is generally used
for error messages, and is often called "ERROUT"; you can "capture" error messages by redirec-
ting this output port. For example, if any errors are detected by ‘1f’ in this command

] 1 3>errors
then the resulting error messages will be placed on the file "errors".

Final words on redirection: there are two special-purpose redirection operators left.
They are both represented by the double funnel ">>". The first operator is called "append:*

1 1¢ >>list

M
causes a 1ist of files to be placed at the end of (appended to) the file named "list*. The
second operator is called "from command input.* It is represented as just ">>" with no file
name, and causes standard input to refer to the current source of commands. It is useful for
running programs 1ike the text editor from "scripts" of instructions placed in a command file.
See the Application Notes for examples.

I/0 Redirection to other Commands

The last section discussed I/0 redirection --- the process of making standard ports refer
to disk files or devices, rather than just to the terminal. This section will take that idea
one step further. Frequently, the output of one program is placed on a file, only to be
picked up again later and used by another program. The command interpreter simplifies this
process by eliminating the intermediate file. The connection between programs that is so

- 4 =~

VOGN W LIILST WIS LSl wvos!: S NS

formed is called a "pipe," and a linear array of programs communicating through pipes is cal-
led a "pipeline."

Suppose that you maintain a large directory, containing drafts of various manuals. Each
draft is in a file with a name of the form "MANxxxx.rr", where *“xxxx" is the number of the
manual and "rr" is the revision number. You are asked to produce a 1ist of the numbers of all
manuals at the first revision stage. The following command will do the job:

11f -¢ | find .01

"1¥ -c" lists the names of all files in the current directory, in a single column. The ‘"pipe
connection" (vertical bar) causes this 1listing to be passed to the ‘find’ command, which
selects those lines containing the string ".01" and prints them. Thus, the pipeline above
will print all filenames matching the conventional form of a first-revision manual name.

The ability to build special purpose commands cheaply and quickly from available tools
using pipes is one of the most valuable features of the command interpreter. with practice,
surprisingly difficulit problems can be solved with ease. For further examples of pipelines,
see the Applications Notes.

Combinations of programs connected with pipes need not be linear. Since multiple stan-
dard ports are available, programs can be and often are connected in non-1linear networks.
(Some networks cannot be executed if the programs in the network are not executed
concurrently. The command interpreter detects such networks, and prints a warning message if
they cannot be performed.) Further information on networks can be found in both the reference
and applications chapters of this guide.

1/0 Redirection for a Group of Commands

It is sometimes necessary to change the standard port environment of many commands at one
time, for reasons of convenience or efficiency. The ‘"compound node" (a set of networks
surrounded by curly braces) can be used in these situations.

As an example of the first case, suppose that you wish to generate a l1ist of manual names
(see the 1last example) 1in either the first or the second stage of revision. One way to do
this is to generate the list for the first revision stage, place it on a file using a funnel,
then generate a 1ist for the second revision stage and place it on the end of the same file
using an "append" redirector. A compound node might simplify the procedure thusly:

1 {1f ¢ | find .01; 1f -c | find .02 } >list

The first network finds all manuals at the first revision stage, and the second finds alil
those at the second stage. The networks will execute left-to-right, with the output of each
being placed on the file "list," thus generating the desired 1isting. with iteration, the
command can be collapsed even farther:

1 {1f -c | find .0(1 2) } >list
This combination of iteration and compound nodes is often useful.

Efficiency becomes a consideration in cases where successive long streams of data are to
be copied onto a file; if the "append" redirector is used each time, the file must be reopened
and repositioned several times. Using a compound node, the output file need be opened onily
once:

1 { (file1 file2 file3)> copy } >all_files

This complex example copies the contents of files "filet1," "file2," and "file3" into the file
named "all_files."

1/0 Redirection to a Command Argument

As mentioned before, some commands may have arguments. The standard output of a command
(or a series of commands) can be used as an argument(s) by using the "function calil"
mechanism. For example, recall the situation illustrated 1in, the section on pipes and
networks; suppose it is necessary to actually print the manuals whose names were found. This
is how the task could be done:

] print [1f -c | find .01]

The function call is composed of the pipeline "1f -c } find .01" and the square brackets
enclosing it. The output of the pipeline within the brackets is passed to ‘print’ as a set of
arguments, which it accesses in the usual manner. Specifically, all the lines of output from
the pipeline are combined into one set of arguments, with spaces provided where multiple lines
have been collapsed into one line.

Command Interpreter User’‘s Guide

‘Print’ accepts multiple arguments; however, suppose it was necessary to use a program
like ‘fos’, that accepts only one argument. Iteration can be combined with a function call to
do the job:

] fos ([1f -c | find .01])

This command formats and prints all manuals in the current directory with revision numbers
ll°1 " .

Function calls are frequently used in command files, particularly for accessing arguments
passed to them. Since the sequence "1f -c : find pattern" occurs very freguently, it is a
good candidate for replacement with a command file; it is only necessary to pass the pattern
to be matched from the argument l1ist of the command file to the ‘find’ command with a function
call. The following command file, called ‘files’, will illustrate the process:

1f -¢ | find [arg 1]

"arg 1" retrieves the first command file argument. The function call then passes that
argument to ‘find’ through its argument list. ‘Files’ may then be used anywhere the original
network was appropriate:

] files .01
] print [files .01]
] fos ([files .01])

Variables

It has been claimed that the command language is a programming language in its own right.
One facet of this language that has not been discussed thus far is the use of its variables.
The command interpreter allows the user to create variables, with scope, and assign values to
them or reference the values stored in them.

Certain special variables are used by the command interpreter in its everyday operation.
These variables have names that begin with the underline (_). One of these is ‘_prompt’,
which is the prompt string the command interpreter prints when requesting a command. If you
object to "]" as a prompt, you can change it with the "set" command:

] set _prompt = "OK, "
OK, set _prompt = “%
% set _prompt = “]

]

You may create and use variables of your own. To create a variable in the current scope
(1evel of command file execution), use the "declare" command:

] declare i j k sum

Values are assigned to variables with the ’‘set’ command. The command interpreter checks the
current scope and all surrounding scopes for the variable to be set; if found, it is changed,
otherwise it is declared in the current scope and assigned the specified value.

Variables behave 1ike small programs that print their current values. Thus the value of
a variable can be obtained by simply typing its name, or it can be used in a command 1ine by
enclosing it in brackets to form a function call. The following command file (which also
illustrates the use of ‘if’, ‘eval’, and ‘goto’) will count from 1 to the number given as its
first argument:

declare i
set 1 = 1
:loop
if [eval i "> [arg 1]]
goto exit
fi
i
set i = [eval i + 1]
goto loop
texit

Note the use of the "eval" function, which treats its arguments as an arithmetic expression
and returns the expression’s value. This is required to insure that the string *i1 + 1" is
interpreted as an expression rather than as a character string. Also note that ‘fi’
terminates the ‘if’ command.

when setting a variable to a string containing unprintable characters, you may use a
special mnemonic form to prevent having to type the l1iteral characters. For example

commana i1nterpreter user s uauuJuige

set crif = "<cr><1f>"

sets the variable ‘crl1f’ to a literal carriage return followed by a linefeed. There are times
when this is not desirable, so to prevent the interpretation of the string, simply escape the
start on the mnemonic with the Subsystem escape character (an ‘6’). To set set the variable
‘cr1f’ to the 1iteral string "<cr><1f>" you would type

set crlif = "e<cr>e<if>"

The quotes in these two cases are necessary, otherwise the shell would try to interpret the
‘>’ as an 1/0 redirector. If the string between the "<>" characters is not a legal ASCII
mnemonic, no substitution will be made and the string will be passed unchanged.

Interrupts, Quits and Error Handling Mechanisms

Normally, if you interrupt a program, it will terminate and the next thing you will see
is the Subsystem’s prompt for your next command. However, by defining the shell control
variab’e "_quit_action" in your “=varsdir=/.vars" file, the fault handler wi1H, upon detection
of the interrupt, prompt you as to whether to abort the current program, continue, or call
Primos. For program errors, the fault handler will always ask whether you want to abort the
program, continue, or call Primos (regardless of whether "_quit_action" is defined or not).
The Application Notes discuss how to go about creating shell variables (which are kept in
“=varsdir=/.vars" for storage between login sessions).

Conclusion

This concludes the tutorial chapter of this document. Despite the fact that a good deal
of material has been presented, much detail has been omitted. The next chapter is a complete
summary of the capabilities of the command interpreter. It is written in a rather technical
style, and is recommended for reference rather than self-teaching. The last chapter is a set
of examples that may prove helpful. As always, the best approach is simply to sit down at a
terminal and try out whatever you wish to do. Should you have difficulty, further tutorials
are available, and the ‘help’ command can be consulted for quick reference.

Command Interpreter User’s Guide
Summary of Syntax and Semantics

This section is the definitive document for the syntax and corresponding semantics of the
Software Tools Subsystem Command Interpreter. It is composed of several sub-sections, each
covering some major area of command syntax, with discussions of the semantic consequences of
employing particular constructs. It is not intended as a tutorial, nor is it intended to sup-
ply multitudinous examples; the other sections of this document are provided to fill those
needs.

Commands
<command> ::= [<net> { ; «net> } '] <newline>

The “command" is the basic unit of communication Letween tne command interpreter and the
user. It consists of any number of networks (described below) separated by semicolons and
terminated by a newline. The networks are executed one at a time, left-to-right; should an
error occur at any point in the parse or execution of a network, the remainder of the
<command> is ignored. The null command is legal, and causes no action.

The command interpreter reads commands for interpretation from the "command source."
This is initially the user‘’s terminal, although execution of a command file may change the
assignment. Whenever the command source is the terminal, and the command interpreter is ready
for input, it prompts the user with the string contained in the shell variable ‘_prompt’.
Since this variable may be altered by the user, the prompt string is selectable on a per-user
basis.

Networks

<net> ::= <node>
{ <node separator> { <node separator> } <node> }

<node separator> ::= , | <pipe connection>

<pipe connection> ::= [<port>] ‘|’ [<node number>] [.<port>]

<port> ::= <integer>

<node number> ::= <integer> | $ | <label>

A <net> generates a block of (possibly concurrent) processes that are bound to one
another by channeis for the flow of data. Typically, each <node> corresponds to a single
process. (<Node>s are described 1in more detail below.) There is no predefined "execution
order" of the processes composing a <net>; the command interpreter will select any order it
sees fit in order to satisfy the required input/output relations. In particular, the user is
specifically enjoined not to assume a left-to-right serial execution, since some <net>s cannot
be executed in this manner.

Input/output relations between <node>s are specified with the <node separator> construct.
The following discussion may be useful in visualizing the data flows in a <net>, and clarifing
the function of the components of the <node separator>.

The entire <net> may be represented as a directed graph with one vertex for each <node>
(typically, equivalent to each process) in the net. Each vertex may have up to n arcs
terminating at it (representing "input data streams"), and m arcs originating from it
(representing ‘“"output data streams"). An arc between two vertices indicates a flow of data
from one <node> to another, and is physically implemented by a pipe.

Each of the n possible input points on a <node> is assigned an identifier consisting of a
unique integer in the range 1 to n. These identifiers are referred to as the “port numbers"®
for the "standard input ports" of the given <node>. Similarly, each of the m possible output
points on a <node> is assigned a unique integer in the range 1 to m, referred to as the port
numbers for the "standard output ports" of the given <node>.

Lastly, the <node>s themselves are numbered, starting at {1 and increasing by 1 from the
left end of the <net> to the right.

Clearly, in order to specify any possible input/output connection between any two
<node>s, it is sufficient to specify:

. The number of the "“source" <node>.

. The number of the "destination" <node>.

Command Interpreter User‘’s Guide
. The port number of the standard output port on the source <node> that is to be the
source of the data. :

. The port number of the standard input port on the destination <node> that is to
receive the data.

The syntax for <node separator> includes the specifications for the last three of these
items. The source <node> 1is understood to be the node that immediately precedes the

<node separator> under consideration. The special <node separator> "," is used to separate
<node>s that do not participate in data sharing; it specifies a null connection. Thus, the

<node separator> provides a means of establishing any possible connection between two <node>s
of a given <net>.

The full flexibility of the <node separator> is rarely needed or desirable. In order to
make effective use of the capabilities provided, suitable defaults have been designed into the
syntax. The semantics associated with the defaults are as follows:

. 1f the output port number (the one to the left of the vertical bar) is ?m1tted. the
next unassigned output port (in increasing numerical order) is implied. T .18
default action takes place only after the entire <net> has been examined, and all
non-defaulted output ports for the given node have been assigned. Thus, 1if the
first <node separator> after a <node> has a defaulted output port number, port 1
will be assigned if and only if no other <node separator> attached to that <node>
references output port 1. It is an error for two <node separators> to reference the
same output port.

. If the destination <node> number is omitted, then the next node in the <net> (scan-
ning from left to right) is implied. Occasionally a null <node> is generated at the
end of a <net> because of the necessity for resolving such references.

. 1f the destination <node>‘s input port number is omitted, then the next unassigned
input port (in increasing numerical order) is implied. As with the defaulted output
port, this action takes place only after the entire <net> has been examined. The
comments under (1) above also apply to defaulted input ports.

In addition to the defaults, specifying input/output connections between widely separated
<node>s is aided by alternative means of giving <node> numbers. The last <node> in a <net>
may be referred to by the <node number> $, and any <node> may be referred to by an
alphanumeric <label>. (<Node> labelling is discussed in the section on <node> syntax, below.)
If the first <node> of a <net> is labelled, the <net> may serve as a target for the ‘goto’
command; see the Applications Notes for examples.

As will be seen in the next section, further syntax is necessary to completely specify
the input/output environment of a <node>: the reader should remember that <node separator>s
control only those flows of data between processes.

A few examples of the syntax presented above may help to clarify some of the semantﬁcs.
Since the syntax of <node> has not yet been discussed, <node>s will be represented by " the
string "node" followed by a digit, for uniqueness and as a key to <node number>s.

A simple 1inear <net> of three <node>s without defaults:

nodei 1!2.1 node2 1]3.1 node3

(Data flows from output port 1 of nodei to input port 1 of node2 and output port 1 of node2 to
input port 1 of node3.)

The same <net>, with defaults:
nodeti | node2 | node3

(Note that the spaces around the vertical bars are mandatory, so that the lexical analysis
routines of the command interpreter can parse the elements of the command unambiguously.)

A simple cycle:
nodet }1.2 ’

(Data flows from output port 1 of nodet to input port 2 of nodei. Other data flows are
unspecified at this level.)

A branching <net> with overridden defaults:
nodel |$ node2 |.1 node3

(Data flows from output port 1 of nodei to input port 2(!) of node3 and output port i of
node2 to input port 1 of node3.)

Command Interpreter User’s Guide

Nodes
<node> ::= {:<label>} [<simple node> | <compound node>]
<simple node> ::= { <i/o redirector> }
<command name>
{ <i/o redirector> | <argument> }
<compound node> ::= { <i/o redirector> }
*{’ <net> { <net separator> <net> } ‘}’
{ <i/o redirector> }

[<pot>] ’>’ <file name>
[<port>] ’>>’ <file name>

~

<i/o redirector> ::= <file name> ‘>’ [<port>] i
|
!

> [<port
<net separator> ::=
<command name> ::= <file name>
<label> ::= <identifier>

The <node> is the basic executable element of the command language. It consists of zero
or more labels (strings of letters, digits, and underscores, beginning with a letter),
optionally followed by one of two additional structures. Although, strictly speaking, the
syntax allows an empty node, in practice there must be either a label or one of the two
additional structures present.

The first option is the <simple node>. It specifies the name of a command to be per-
formed, any arguments that command may require, and any <i/o redirector>s that will affect the
data environment of the command. (<I/o redirectors will be discussed below.) The execution
of a simple node normally involves the creation of a single process, which performs some func-
tion, then returns to the operating system.

The second option is the <compound node>. It specifies a <net> which is to be executed
according to the usual rules of <net> evaluation (see the previous subsection), and any
<i/o redirector>s that should affect the environment of the <net>. The <compound node> is
provided for two reasons. One, it is occasionally useful to alter default port assignments
for an entire <net> with <i/o redirector>s, rather than supplying <i/o redirector>s for each
<node>. Two, use of compound nodes containing more than one <net> gives the user some control
over the order of execution of his processes. These abilities are discussed in more detail
below.

Since it is the more basic construct, consider the <simple node>. It consists of a
<command name> with <argument>s, intermixed with <i/o redirector>s. The <command name> must
be a filename, usually specifying the name of an object code file to be loaded. The command

interpreter locates the command to be performed by use of a user-specified "search rule." The
search rule resides in the shell variable "_search_rule", and consists of a series of comma-
separated elements. Each element is either a template in which ampersands (&) are replaced by
the <command name> or a flag instructing the command interpreter to search one of its internal
tables. The flag "~int" indicates that the command interpreter‘’s repertoire of "internal*
commands is to be checked. (An internal command is implemented as a subroutine of the command
interpreter, typically for speed or because of a need to access some private data base.) The
flag “~var"' causes a search of the user’s "“shell variables" (see below for further discussion
of variables and functions). The following search rule will cause the command interpreter to
search for a command among the internal commands, shell variables, and the directory ‘“sbin=",
in that order: .

*~int, var,=bin=/&"

The purpose of the search rule is to allow optimization of command location for speed, and to
admit the possibility of restricting some users from accessing "privileged" commands. (For
example, the search rule

*~var,//project/1ibrary/&"

would restrict a user to accessing his variables and those commands in the directory
*//project/l1ibrary”. He could not alter this restriction, since he does not have access to
the (internal) ‘set’ command; the "~int" flag is missing from his search rule.) 1In addition
to restricting a user to commands in specific directories, the system administrator can also
restrict a user from using certain internal commands (and allow use of all other internal com-
mands) . This 1is accomplished by adding "qualifiers" after the internal command flag in the
search rule. The qualifiers are characters representing the class of commands to be excluded
in the search for internal commands to be executed. Qualifiers follow the "~int" flag,
separated from it by a slash. The following table summarizes the qualifiers and which inter-
nal commands they exclude

Lommana inlterpreler user-s auJuiae

Qualifier meaning

a access to arguments in shel) files (‘arg’, ‘args’, ‘argsto’, ‘nargs’‘,
and ‘quote’)

b access to debugging commands (‘dump’ and ‘shtrace’)

c access to flow of control commands (‘case’, ‘elif’, ‘else’, ‘esac’,
‘exit’, ‘fi’, ‘goto’, ‘if‘’, ‘label’, ‘out’, ‘repeat’, ‘then’,
‘until’, and ‘when’)

d ability to change directories (via ‘cd’)

h access to environment information (‘date’, ‘day’, ‘echo’, ‘eval’,
‘installation’, ‘1ine’, ’‘login_name’, ani Q;imz'F

m access to string manipulation functions (‘drop’, 'ipdex’. ‘substr’,
and ‘take’)

q ability to exit the shell (via ‘stop’)

s access to variable setting commands (‘forget’, ‘set’, and ‘sh’)

v access to variable manipulating commands (‘declare’, ‘declared’, and
‘vars’)

x access to commands which allow execution of Primos commands (‘dbg’,

‘primos‘’, ‘vpsd’, and ‘x’)

For instance, Tif the system administrator wanted to keep someone from executing the Primos
Fortran compiler directly, then the following search rule would accomplish this :

"~int/gxv, “var,=bin=/&"

The “"g" qualifier prevents exit from the shell (so that you can’t run the Primos Fortran com-
piler directly), the "x" qualifier prevents you from accessing external commands from within
the shell (i.e., via "x ftn prog"), and the "v" qualifier prevents you from using ‘declare’ to
modify or create a search rule (the shell file ‘fc’, which is the Subsystem interface to" the
Primos Fortran compiler, declares its own search rule) which contains an ungqualified "~int"
flag. It should be noted, however, that this is not a fool-proof method of 1imiting a user’s
access to commands; a better solution is to write a program which is run at login and which
‘supervises" the user’s session. One way of overcoming such a restriction placed by the
system administrator would be to execute a command within a function call, such as the fol-
lowing:

[declare _search_rule = “<normal search rule>";
<unrestricted command>]

By redefining the search rule, the user is then alliowed to execute any desired command,
including a new invocation of the command interpreter.

<Argument>s to be passed to the program being readied for execution are gathered by the

command interpreter and placed in an area of memory accessible to the 1library routine
‘getarg’. They may be arbitrary strings, separated from the command name and from each other
by blanks. Quoting may be necessary if an <argument> could be interpreted as some other
element of the command syntax. Either single or double quotes may be used. The appearance of
two strings adjacent to one another without blanks implies concatenation. Thus,

*quoted "string
is equivalent to

*quoted string"
or to »

quoted’ string’

Single quotes may appear within strings delimited by double quotes, and vice versa; this is
the only way to include quotes within a string. Example:

"quoted string’"
‘"Alas, poor Yorick!"’

Arguments are generally unprocessed by the command interpreter, and so may contain any
information useful to the program being invoked.

Command Interpreter User’s Guide

In the previous section, it was shown that streams of data from "standard ports" could be
piped from program to program through the use of the <pipe connection> syntax. It is also
possible to redirect these data streams to files, or to use files as sources of data. The
construct that makes this possible is the <i/o redirector>. The <i/o redirector> is composed.
of filenames, port numbers (as described in the last section), and one or two occurrences of
the "funnel" (>).

The two simpiest forms take input from a file to a standard port or output from a stan-
dard port to a file. In the case of delivering output to a file, the file 1is automatically
created if it did not exist, and overwritten if it did. In the case of taking input from a
file, the file is unmodified. Example:

documentation>1
-
causes the data on the file "documentation" to be passed to standard input port 1 of the node;

ety

t>results
causes data written to standard output port 1 of the node to be placed on the file "results".

If no <i/o redirector> is present for a given port, then that port automatically refers
to the user’s terminal.

If port numbers are omitted, an assignment of defaults is made. The assignment rule is
identical to that given above for <pipe connections>: the first available port after the
entire <net> has been scanned is used. <I1/0 redirector>s are evaluated left-to-right, so
leftmost defaulted redirectors are assigned to lower-numbered ports than those to their right.
For example,

data> requests> trans 2>summary 3>errors } sp

is the same as
data>1 requests>2 trans 2>summary 3>errors 1{2.1 sp

where all defaults have been elaborated. ‘Trans’ might be some sort of transaction processor,
accepting data input and update requests, and producing a report (here printed off-line by
being piped to a spooler program), a summary of transactions, and an error listing.

In addition to the <i/o redirector>s mentioned above, there are two lesser-used redirec-
tors that are useful. The first appends output to a file, rather than overwriting the file.
The syntax 1is identical to the other output redirector, with the exception that two funnels
‘>>’ are used, rather than one. For example,

2>>stuff

causes the data written to output port 2 to be appended to the file "stuff". (Note the lack
of spaces around the redirector; a redirector and its parameters are never separated from one
another, but are always separated from surrounding arguments or other text. This restriction
is necessary to insure unambiguous interpretation of the redirector.) The second redirector
causes input to be taken from the current command source file. It is most useful in conjunc-
tion with command files. The syntax is similar to the input redirector mentioned above, but
two funnels are used and no filename may be specified. As an example, the following segment
of a command file uses the text editor to change all occurrences of "March' to "April* in a
given file:

>> ed file

g/March/s//April/
w

q

when the editor is invoked, it will take input directly from the command file, and thus it
will read the three commands placed there for it.

The ‘"command source" and ‘“"append" redirectors are subject to the same resolution of
defaults as the other redirectors and <pipe connection>s. Thus, in the example immediately
above,

>> ed file
is equivalent to
>>1 ed file
Now that the syntax of <node> has been covered, just two further considerations remain.

First, the nature of an executable program must be defined. Second, the problem of execution
order must be clarified.

Command Interpreter User’s Guide

In the vast majority of cases, a2 <node> is executed by bringing an object program into
memory and starting it. However, the <command name> may also specify an internal command, a
shell variable, or a command file. Internal commands are executed within the command
interpreter by the invocation of a subroutine. When a shell variable is used as a command,
the net effect is to print the value of the variable on the first output port, followed by a
newline. If the filename specified is a text file rather than an object file, the command
interpreter ‘"guesses" that the named file is a file of commands to be interpreted one at a
time. In any case, command invocation is uniform, and any <i/o redirector> or
<pipe connection> given will be honored. Thus, it is allowable to redirect the output of a
command file just as if it were an object program, or copy a shell variable to the 1line
printer by connecting it to the spooler through a pipe.

As mentioned in the section on <net>s, the execution order of nodes in a <net> is
undefined. That is, they may be executed serially in any order, concurrently, or even simul-
taneously. The exact method is left to the implementor of the command interpreter. In any
case, the flows of data described by <pipe conne:z-ica>+ ' <i/o redirector>s are guaranteed
to be present. There are times when it would be prererable to know the order in which a <net>
will be evaluated; to help with this situation, <compound node>s may be used to effect
serialization of control flow within a network. <Mhet>s separated by semicolons or newlines
are guaranteed to be executed serially, left-to-right, otherwise the command interpreter would
exhibit unpredictable behavior as the user typed in his commands. Suppose it is necessary to
operate four programs; three may proceed concurrently to make full use of the multiprogramming
capability of the computer system, but the fourth must not be executed until the second of the
three has terminated. For simpliicity, we will assume there are no input/output connections
between the programs. The following command 1ine meets the reguirements stated above:

programi, {program2:; program4}, program3
(Recall that the comma represents a null i/o connection.) Suppose that we have a slightly
different problem: the fourth program must run after all of the other three had run to com-
pletion. This, too, can be expressed concisely:

programi, program2, program3; programé4
Thus, the wuser has fairly complete control over the execution order of his <net>s. (The use
of commas and semicolons in the command language is analogous to their use for collateral and
serial elaboration in Algol 68.)

This completes the discussion of the core of the command language. The remainder of the
features present in the command interpreter are provided by &a built-in preprocessor, which
handles function calls, iteration, and comments. The next few sections deal with the
preprocessor’s capabilities.

Comments

Any good command language should provide some means for the user to comment his code,
particularly in command files that may be used by others. The command interpreter has a sim-
ple comment convention: Any text between an unquoted sharp sign (#) and the next newliine is
ignored. A comment may appear at the beginning of a line, like this:

command file to preprocess, compile, and 1ink edit
Or after a command, 1ike this:

file.r> rp # Ratfor’s output goes to the terminal
Or even after a label, for identification of a loop:

:loop # beginning of daily cycle

As far as implications in other areas of command syntax, the comment is functionally
equivalent to a newline.

Variables »
<variable> ::= <identifier>

<value> ::= { <printable char> } <unprintable char> }
<unprintable char> ::= ‘<’ <ascii mnemonic> ‘>’

<set command> ::= set [<variable>] = [<value>]

<declare command> ::= declare { <variable [= <value>] }

<forget command> ::= forget <variable> { <variable> }

- 13 -

Command Interpreter User’s Guide

The command interpreter supports named string storage areas for miscellaneous user

applications. These are called variables. Variables are identified by a name, consisting of
letters of either case, digits, and underscores, not beginning with a digit. vVariables have

two attributes: value and scope. The value of a variable may be altered with the ‘set’ com-
mand, discussed below. The scope of a variable is fixed at the time of its creation; simply,
variables declared during the time when the command interpreter is taking input from a command
file are active as 1long as that file is being used as the command source. Variables with
global scope (those created when the command interpreter is reading commands from the
terminal) are saved as part of the user’s profile, and so are available from terminal session
to terminal session. Other variablies disappear when the execution of the command file in
which they were declared terminates. ’

Variables may be created with the ‘declare’ command. ‘Declare’ creates variables with
the given names at the curpent lexical level (within the scope of the current command file).
The newly-created variables are assigned a null value, unless an initialization string is
provided. R :

Variables may be destroyed prematurely with the ‘forget’ command. The named variables
are removed from the command interpreter’s symbol table and storage assigned to them is
released to the system. Note that variables created by operations within a command file are
automatically released when that command file ceases to execute. Al1sO note that the only way
to destroy variables at the global lexical level is to use the ‘forget’ command.

The value of a variable may be changed with the ’‘set’ command. The first argument to
‘set’ is the name of the variable to be changed. If absent, the value that would have been
assigned is printed on ‘set’s first standard output. The last argument to ‘set’ is the value
to be assigned to the variable. It is uninterpreted, that is, treated as an arbitrary string
of text. If missing, ’‘set’ reads one line from its first standard 1input, and assigns the
resulting string. If the variable named in the first argument has not been declared at any
lexical level, ‘set’ declares it at the current lexical level.

A variable may contain any legal ASCII character. To allow the user to enter unprintable
characters that might be a problem to Primos or the shell, the commands that manipulate
variables allow the use of ASCII mnemonics in the value of a shell variable. The following
would set the "_kill_resp" variables to two ASCII escape characters, a backspace, and the
string “=delx":

set _kill_resp = "<esc><esc><bs>*del=*"

To prevent the interpretation of the mnemonics (i.e. to enter a Titeral
"<esc><esc><bs>*del*", in this case) the user simply uses the Subsystem escape character in
front of the mnemonics:

set _kill_resp = "e<esc>0<esc>0<bs>xdelx*"

variables are accessed by name, as with any command. (Note that the user’s search rule
must contain the flag "~var® before variables will be evaluated.) The command interpreter
prints the value of the variable on the first standard output. This behavior makes variables
useful in function calls (discussed below). 1In addition, the user may obtain the value of a
variable for checking simply by typing its name as a command.

Iteration
<iteration> ::= ‘(’ <element> { <element> } ‘)’

Iteration 1is used to generate multiple command 1ines each differing by one or more sub-
strings. Several iteration elements (collectively, an *"iteration group") are placed in
parentheses; the command interpreter will then generate one command 1ine for each element,
with successive elements replacing the instance of iteration. Iteration takes place over the
scope of one <net>; 1t will not extend over a <net separator>. (If iteration is applied to a
<compound node>», it will, of course, apply to the entire <node>; not just to the first <net>
within that <node>.)

Mulitiple i{terations may be present on one command; each iteration group must have the
same number of elements, since the command interpreter will pick one element from each group
for each generated command 1ine. (Cross-products over iteration groups are not implemented.)

An example of iteration:

] fos part(1 2 3)
is equivalent to
] fos part1; fos part2; fos part3

and

LONNIGNIW LTIASI W S LGl waw!t LR AR

1 ep (intro body summary) part(1 2 3)
is equivalent to

1 cp intro parti; cp body part2; cp summary part3

Function Calls
<function call> ::= ‘[’ <net> { <net separator> <net> } ‘]‘

Occasionally it is useful to be able to pass the output of a program along as arguments
to another program, rather than to an input port. The "function call" makes this possible.
The output appearing on each of the first standard output ports of the <net>s within the func-
tion call 1is copied into te « "ni~Y 1ine i«in place of the function call itself. Line
separators (newlines) present in tne <net>’s output are replaced by blanks. No quoting of
<net> output is performed, thus blank-separated tokens will be passed as sqparate arguments.
(If guoting is desired, the filter ‘quote’ can be used or the shell variable "_quote_opt" may
be set to the string "YES" to cause automatic quotation.)

A <net> may of course be any network; all the syntax described in this document is
applicable. 1In particular, the name of a variable may appear with the brackets; thus, the
value of a variable may be substituted into the command 1line.

History Mechanism
<history_command> ::= <cmd_select> <arg_select> <substitution>

The shell provides a sort of dynamic macro replacement facility for commands that are entered
from the terminal. This is called a command history mechanism. It allows the user to recall
commands he has previously entered, extract portions of the command, edit the portions he has
selected, and either execute what remains or incorporate it 1into another command, with a
minimum of typing.

A history substitution contains three parts; command selection, argument selection, and
editing. Command selection chooses what command will be used. Argument selection decides
which arguments are to be extracted from the chosen command line, and the editing phase allows
the result to be edited to change spelling or substitute a different word for portions of the
line. To prevent any history substitution from taking place, the ‘hist’ command can turn off
the history mechanism. It also controls the saving and restoration of the current history
environment. For the rest of this discussion, the assumption will be that history is
currently enabled.

History substitution is triggered by the ‘!’ character. A history substitution is
normally stopped by a blank or tab character, but a trailing ‘!’ will stop the interpretation
of any further characters. This is used when concatenating supplementary text to the result
of a history substitution. To prevent this and any other interpretation of the special
history characters, they may be escaped with the Subsystem escape character, ‘@’. when a
history substitution is discovered, the mechanism modifies the command 1ine, prints the resul-
ting command 1ine on the user'’s terminal, and then passes the command to the rest of the shell
for execution. History processing occurs before any other evaluation in the shell, such as
function calls and iteration. However, the use of ‘_’ to continue an input line is done even
before the history mechanism sees what you have typed; if the ’‘_’ is the last character in
your history command, and the last character on the l1ine, follow it with a terminating “!’.

Command Selection.

<cmd_select> ::= ‘1’ [<str> | ‘2’ <str> ‘2’ | <num>]

The first thing in a history substitution is command selection. This is used to retrieve
a given command 1ine for use, or further processing. In a history command selection ‘l!<str>’
will find the most recent command 1ine that started with the characters in <str>. “‘!1?2<str>?’

will find the most recent command line that contained <str> anywhere on the 1ine. It also
allows <str> to contain blanks or tabs whereas the first form does not. ‘!<num>’ allows the
user to specify the number of a command according to the output Qf the ‘hist’ command. As a

convenience, ‘!’ by itself will repeat the last command entered.
Argument Selection.
<arg_select> ::= ‘*/ [<num> 1 [‘-’ <num>]

The next portion of a history substitution is an optional argument selection. This
chooses which portions of the command are to be kept. History arguments are not exactly the
same as the arguments the rest of the shell uses, since history expansion occurs before
argument collection. Arguments in this context are blank or tab seperated words on the com-
mand line. Function calls, iterations, and gquotations will be extracted as a single argument,
even if they contain blanks or tabs. Arguments are numbered from zero, starting at the left-

-15_

Command Interpreter User’s Guide

most portion of the line. In an argument selection, ‘‘<num>’ specifies that only argument
<num> is to be extracted and kept for further processing or use, and the rest of the command
line is to be dropped. ‘‘<num>-<num>‘’ specifies that arguments from the first <num> to the
last <num> are to be kept. 1In place of any <num>, ‘$’ may be specified to obtain the last
argument on the line. The form ‘‘-<num>‘ is a shorthand for ‘‘*1-<num>‘’ and ‘‘<num>-’ is a
short form for ‘‘<num>-$’.

Substitution.

<substitution> ::= { ’*~’ <str> ‘'~ <str> ‘'~ [‘g’ 1}

The 1last portion of a history substitution is also optional and is the editing phase.
This allows the portions of the command l1ine that remain to actually be modified 1ike the sub-
stitution command in ‘ed’,.,although much more limited. In the history mechanism, <str> is not
a regular expression, as in ‘ed’, but is taken as a simple string. The regular expression
special characters are not recognized in the history mechanism. Each-substitution happens
only once on the line unless a ‘g’ is appended on the substitution, in which case the change
occurs globally on the line. Substitutions may be strung together, so that more than one may
be performed at a time.

Finally, after all history substitutions have been made, the Shell will echo the new com-
mand line to the terminal, and then execute it. See the Application Notes for a discussion of
the ‘hist’ command.

Conclusion

This concludes the description of command syntax and semantics. The next, and final,
chapter contains actual working examples of the full command syntax, along with suggested
applications; it is highly recommended for those who wish to gain proficiency in the use of
the command language.

Lommana dniterpre(er usel s uuiue

Application Notes

This section consists mostly of examples of current usage of the command interpreter.
Extensive knowledge of some Subsystem programs may be necessary for complete understanding of
these examples, but basic principles should be clear without this knowledge.

Basic Functions

In this section, some basic applications of the command language will be discussed.
These applications are intended to give the user a "feel" for the flow of the language,
without being explicitly pedagogical.

One commonly occurring task is the location of lines in a file that match a certain pat-
tern. The 'f rnu .tri. wd performs this function:

] file> find pattern >1ines_found ¢

Since the 1ines to be checked against the pattern are frequently a l1ist of file names, the
following seguence occurs often:

1 1 -c directory | find pattern
Consequently, a command file named ‘files’ is available to abbreviate the sequence:

] cat =bin=/files
1f -c [args 2] | find [arg 1]

(‘Cat’ 1is wused here only to print the contents of the command file.) The internal command
,‘arg’ is used to fetch the first argument on the command 1line that 1invoked ‘files’.
Similarly, the internal command ‘args’ fetches the second through the last arguments on the
command 1ine. The command file gives the external appearance of a program ‘files’ such that

] files pattern
is equivalent to

] 1§ -c | find pattern
and

] files pattern directory
is equivalent to

] 1f -c directory | find pattern

Once a 1ist of file names is obtained, it is frequently processed further, as in this command
to print Ratfor source files on the line printer:

1 pr [files .rs | sort]

‘Files’ produces a 1list of file names with the ".r" suffix, which is then sorted by ‘sort’.
‘Pr’ then prints all the named files on the l1ine printer.

One problem arises when the pattern to be matched contains command language metacharac-

ters. wWhen the pattern is substituted into the network within ‘files’, and the command
interpreter parses the command, trouble of some kind {s sure to arise. There are two
solutions: One, the filter ‘quote’ can be used to supply a layer of quotes around the pat-
tern:

1f -c [args 2] | find [arg 1 | quote]

Two, the shell variable "_quote_opt", which controls automatic function quotation by the com-
mand interpreter, can be set to the string "YES":

declare _quote_opt = YES

1¥f -c [args 2] | find [arg 1]

This latter solution works only because ‘args’ prints each argument on a separate line; the
command interpreter always generates separate arguments from separate lines of function out-
put. In practice, the first solution is favored, since the non-intuitive quoting is made more
evident.

One common non-1linear command structure is the so-called "Y" structure, where two streams
of data join together to form a third (after some processing). This situation occurs because
of the presence of dyadic operations (especially comparisons) in the tools available under the
Subsystem. As an example, the following command compares the file names 1in two directories

- 17 -

Command Interpreter User’s Guide

and lists those names that are present in both:
1 1§ -c dir1 | sort |$ 1f -c dir2 | sort | common -3
Visualize the command in this way:
1f -c dir1 | sort 1f -c dir2 | sort
\\ /
\ /

common -3

The two “1f’ and ‘sort’ pairs produce lists of file names that are compared by ’‘common’, which
produces a 1ist of those nagmes common to both input 1ists.

Command files tend to be used not only for oft-performed tasks but also to make life
easier when typing long, complex commands. Quite often these long command 1ines make use of
line continuation -- a newline preceded immediately by an underscore is ignored. The follow-
ing command file is used to create a keyword-in-context index from the heading 1lines of the
Subsystem Reference Manual. Although it is not used frequently, it does a great deal of work
and is illustrative of many of the features of the command interpreter.

make_cmd.k --- build permuted index of commands
files .d$ -f s1 _
i change % "find %.hd -0 1" _
sh
= change ‘%.hd *{[~ J*} ["1*x{[~"]1*}?2=’ ‘e1: @2’ _
| kwic -d =aux=/spelling/discard _
{ sort -d | unrot -w [width] >cmd.k

First a few words on how Subsystem documentation is stored: The documentation for Subsystem
commands resides in a subdirectory named "s1". The documentation for each command is in a
separate file with the name "<command>.d". The heading line in each file can be identified by
the characters ".hd" at the beginning of the line.

The entire command file consists of a single network. The ‘files’ command produces a
l1ist of the full path names (the -f option is passed on to ‘1f’) of the files in the subdirec-
tory "s1" that have path names ending with the characters ".d". The next ‘change’ command
generates a ‘find’ command for each documentation file to find the heading line. These com-
mand lines are passed back to the shell (‘sh’) for execution. The outputs of all of these
‘find’ commands, namely the heading lines from all the documentation files, are passed back on
the first standard output of ‘sh’. The second ‘change’ command uses tagged patterns to
isolate the command name and its short description from the header 1ine and to construct a
suitable entry for the kwic index generator. Finally, ‘kwic’, ‘sort’, and ‘unrot’ produce the
index on the file "cmd.k".

To this point, only serially-executed commands have been discussed, however sophisticated
or parameterized. Control structures are necessary for more generally useful applications.
The following command file, ‘ssr’, shows a useful technique for parameter-setting.commands.
Like many APL system commands, ’‘SSsr‘ without arguments prints the value it controls (in this
case, the user’s command search rule), while ‘ssr’ with an argument sets the search rule to
the argument given, then prints the value for verification. ‘Ssr’ looks l1ike this:

ssr --- set user’s search rule and print it
if [nargs]
set _search_rule = [arg 1 | quote]
fi

_search_rule

The ‘if’ command conditionally executes other commands. It requires one argument, which is
interpreted as “true" if it is present, not null, and non-zero. If the argument is true, all
the commands from the ’‘if’ to the next unmatched ‘elif’, ‘else’ or ‘fi’ command are executed.
If the argument is false, all the commands from the next unmatched ‘else’ command (if one is
present) to the next unmatched ‘fi’ command are executed. In ’‘ssr’ above, the argument to
‘if’ s a function call invoking ‘nargs’, a command that returns the number of arguments pas-
sed to the command file that is currently active. If ‘nargs’ is zero, then no arguments were
specified, and ’‘ssr’ does not set the user’s search rule. If ‘nargs’ is nonzero, then ’‘ssr’
fetches the first argument, quotes it to prevent the command interpreter from evaluating
special characters, and assigns it to the user’s search rule variable ‘_search_rule’.

‘If’ 1{is useful for simple conditional execution, but it is often necessary to select one
among several alternative actions instead of just one from two. The ‘case’ command is
available to perform this function. One example of ‘case’ is the command file ‘e’, which is
used to invoke either the screen editor or the 1ine editor depending on which terminal is
being used (as well as remembering the name of the file last edited):

vomiariyu drnilerpreter user » awiue

e --- invoke the editor best suited to a terminal

(this is not the current version of ‘e’ in =bin=)
if [nargs]
set f = [arg 1 | quote]
fi
case [line]
when 10
se -t consul [se_params] [f]
when 11
se -t b200 [se_params] [f]
when 15
se -t b150 [se_params] [f]
when 17
se -t gtao [se_params] [f]
when 18
se -t b200 [se_params] [f] .
when 25
se -t b150 [se_params] [f]
out
ed [f]
esac

The first ‘if’ command sets the remembered file name (stored in the shell variable ‘f‘) in the
same fashion that ‘ssr’ was used to set the search rule (above). The ‘case’ command then
selects from the terminals it recognizes and invokes the proper text editor. The argument of
‘case’ is compared with the arguments of successive ‘when’ commands until a match occurs, in
which case the group of commands after the ‘when’ is executed; if no match occurs, then the
commands after the ‘out’ command will be executed. (If no ‘out’ command is present, and no
match occurs, then no action is taken as a result of the ‘case’.) The ‘esac’ command marks
the end of the control structure. 1In ‘e’, the ‘case’ command selects either ‘se’ (the screen
editor) or ‘ed’ (the 1ine editor), and invokes each with the proper arguments (in the case of
‘se’, identifying the terminal type and specifying any user-dependent personal parameters).

The ‘goto’ command may be used to set up a l1oop within a command file. For example, the
following command file will count from 1 to 10:

bogus command file to show computers can count
declare i = 1

:loop
i
set i = [eval i + 1]
if [eval i <= 10]
goto loop
fi

The ‘repeat’ command is used to set up loops but, unlike the ‘goto’ command, will also
work from the terminal. The following loop will do exactly what the previous command file
did, but will also work when entered from a terminal:

not quite as bogus a 1oop to show computer counting
declare i = 1

repeat

i

set i = [eval i + 1]
until [eval i ‘>’ 10]

History Examples

»
Command history provides a quick way of re-executing a command without retyping the
entire command 1line. The following example shows how a user can run the previous command
again by only typing a ‘!’:

] time
11:59:04
1!

time
11:59:08

- 19 -

Command Interpreter User’s Guide

Another advantage is the ability to fix a mistyped command. For example, to 1list the
contents of the directory "stuff.u" where the ".u" was omitted in the ‘1f’ command and then
corrected.

] 1% stuff
stuff: not found
] ttu
1f stuff.u
bogus gorf snert
Two ‘!’s are used because text must be entered right next to the history substitution. Any

other time, the trailing ‘!’ is not needed.

The ‘hist’ command,,without any arguments, will print a list of the current history and

their command numbers.
1 hist

pmac gorf.s; 1d gorf.b -0 snert
se gorf.s
pmac gorf.s; 1d gorf.b -o gorf
gorf
se gorf.s

GbhbWN

At this point it is time to execute the ‘pmac’ and ‘1d’ statements, again. There are several
ways to do this. One is to give the specific command number (as printed by ‘hist’):

113
pmac gorf.s; 1d gorf.b -o gorf

or let the history do more of the work for us by telling it to look for the command starting
with ‘pmac’:

1 !pmac
pmac gorf.s; 1d gorf.b -o gorf

or if that is not the correct command, entering a unique string that appears anywhere on the
command line:

] 1?-0 sn
pmac gorf.s; 1d gorf.b -o snert

Notice that the trailing ‘?’ wasn’t needed. This is because it would have occured at the end
of the 1line. None of the delimiting characters need to be entered at the end of the line
because the command substitution will place them there for you. Also notice that the shell
will always echo the command produced by the history mechanism to the terminal, so that you
can know for sure exactly what the shell is doing.

Argument selection allows the user to retrieve certain arguments from the selected com-
mand line. After a command line is selected (as in the previous examples) then argument
selection takes place. For example, given the command 1ine

lJ]echo 1234586738
12345678

to retrieve only arguments 3 to 7 one can type:

J]echo 123 458678
123456178

] echo !¢3-7
echo 34 56 7
34567

or to grab the.first item on the l1ine,

J]echo 12 3 458678
123456178

1 echo !¢0

echo echo

echo

because aﬁgument zero (the command name) is the first item on the line.

The history mechanism does not know about command <nodes>. E.g., a '{'. and the command
name after it, are treated as just plain arguments. Numbering starts at zero, and each suc-
cessive blank separated "item" is considered another argument. In the case of a function
call, iteration, or quoted string, blanks and tabs are insignificant until all the brackets,
parentheses, and quotes match up. In this manner, an entire function call, iteration group,
or string counts as a single argument, whether or not it contains spaces.

Command Interpreter User‘s Guide

] echo (gorf.s snert.r)
gorf.s snert.r
] cat -h let
cat -h (gorf.s snert.r)
EEESCSCSSESESEESSSS=S===E go"f.s EEEESEZEESSESTESEERESEED
SEG
DYNT BURF$
END
ETESESST=SSgSsEsSS==SsSEs sner‘t.r‘ It 2 2 2 2 2 2 3 2 5 3 £ £ 5 5 & 5]
call print(STDOUT, "burf=xn"s)
stop
end

or for a more complicated exampie

] echo [echo berf] (blert blort) “final word"

berf blert final word

berf blort final word (
] echo !¢3 l¢1 le¢2

echo "final word" [echo berf] (blert blort)

final word berf blert

final word berf blort

The last portion of a history replacement is substitution. This allows previously selec-
ted portions of the command 1ine to be placed through a set of substitutions similar to the
‘change’ command or the substitute command in the editor. To change the "blert" in the
previous example to "bonzo", you would type

] echo [echo berf] (blert blort) "final word"
berf blert final word

berf blort final word

] "blert”"bonzo”

echo [echo berf] (bonzo blort) "final word"
berf bonzo final word

berf blort final word

The operations can be combined. For instance to move arguments around, and make substitutions

] echo one two three

one two three

] echo !¢3 !¢1”"one™1” 1¢2
echo three 1 two

three 1 two

There can be more than one substitution per command line, and the given changes can be made
globally. .

] echo aa bb cc dd ee
aa bb cc dd ee

] ""a”z

echo za bb cc dd ee
za bb cc dd ee

1 17aa?"b"y"g

echo aa yy cc dd ee
aa yy cc dd ee

1 1?2 bb?"a"z2"g"b"y"g“ee”ve"d"w
echo zz yy cc wd ve
ZZ yy cC wd ve

The first substitution simply changes the first "a" to & "z". The second one recalls the most
recent command with an “aa" in it and changes the first "b" to a "y". The last one looks for
the most recent command that contains an "a bb" string (the first 1ine) and then substitutes a
"z* for all occurences of an "a", a "y" for all occurences of a "b", a "ve" for the first
*ee", and a "w" for the first "d". Notice that for the last substitution, the trailing '~

was not necessary.

»
History processing takes place across the entire input line, even inside quoted strings.
To get one of the literal history characters (!~'), you must escape it with the Subsystem
escape character, ‘€’.

Finally, the ‘hist’ command is available to control the use of the history mechanism.
‘Hist on’ turns on history processing. By default, it is off. 'Hist off’ <turns history
processing off. ‘Hist save <file>’ will save the current l1ist of remembered commands into
<file>, or into =histfile= if <file> is not specified. ‘Hist restore <file>’ will retrieve a
saved history session from <file>, or from =shistfile= if <file> is not specified. It is
recommended that you put a ‘hist restore’ into your ‘_hello’ variable or the file it executes
(if you want to save your shell sessions across logins). If history processing is not turned
on when you do a ‘hist restore’, the shell will automatically turn it on for you, and then

- 21 -

Command Interpreter User’s Guide

restore your saved command history. If history is turned on, whenever you issue a ‘stop’ com-
mand (like =bin=/bye does), the shell will automatically do a ‘hist save’ for you. This will
also happen if you type an EOF at the shell (usually control-c), unless you also have
"_nottyeof" set (see below).

Shell Control Variables

Many special shell variables are used to control the operation of the command
interpreter. You can define or change any shell variable with ‘set’ and can delete it with
‘forget’. The current value of a shell variable can be examined by entering its name. The
values of all your shell variables can be examined with the ’‘vars’ command. Certain shell
variables are read into the SWT common block at Subsystem initialization to control the
terminal input routines. Jf these variables are changed, the shell will modify the Subsystem
common to reflect the change immediately. The variables that could accept control characters
as values may be entered using the ASCII mnemonics supported .by the shell variable commands
(see the heading "variables" in the reference section of this manual). The following table
identifies these variables and gives a short explanation of the function of each.

Variable Function
_ci_name This variable is used to select a command interpreter to be executed when the

user enters the Subsystem. It should be set to the full pathname of the com-
mand interpreter desired. This variable is only checked on entrance to the
Subsystem, so if this is changed, the user should exit the Subsystem (say with

‘stop’) and then reenter (using the ‘swt’ command). The default value is
"zhin=/sh".
_eof This variable may be set to a single characterAwhich will be used to signal the

end of file from a terminal. The Subsystem input routines will recognize an
instance of this character anywhere on the input 1ine and send the appropriate
signal to the input routine. The default value is the ASCII character ETX
(control-c).

_erase This variable may be set to a singlie character to be used as the ‘“erase," or
character delete, control character for Subsystem terminal input processing.

_escape This variable may be set to a single character to be used as the "escape"
control character for Subsystem terminal input processing. Note that this will
not not change the standard Subsystem escape character, it remains an ‘e’.
(See the help on ‘tcook$’ for the gory details.)

_hello This variable, if present, is used as the source of a command to be executed
whenever the user enters the Subsystem. It is freguently used to implement
memo systems, supply system status information, and print pleasing messages-of-
the-day.

_kill This variable may be set to a single character to be used as the "kill," or
line delete, control character for Subsystem terminal input processing.

_kill_resp This variable may be set to any string which will appear on the user’s terminal
when the kill character is entered. If this variable is not present "\\" is
the kill response.

_mail_check This variable determines how often mail is checked during the login session.
If not declared, the user is not notified of incoming mail while he 1is logged
in. If the variable is set to an integer value, the shell will check for

changes in his mailbox status after that many seconds has elapsed, just before
his prompt string is printed. The user is notified by the message, "You have
new mail®. If the variable is declared but not set, or set to an illegal
value, the default is to check every 60 seconds.

_newline This variable may be set to a single character which will be interpreted as the
end-of-1line. whenever this character is encountered, a carriage return and
linefeed will be echoed to the terminal. If it is not set, then the ASCII
character LF is the default.

_nottyeof An EOF character typed at command level {1 will normally terminate the Subsystem
and place the user face to face with the Primos operating system. Most com-
mands accept input from the terminal if an alternate file is not specified and
if the user’s keyboard happens to bounce, the user is bounced into Primos. 1If
this variable is declared, an EOF typed at command level {1 will not terminate
the shell but will type the message "use ‘stop’ to exit the subsystem* and
return to command level.

- 22 -

Command ilnterpreter user- s uulae

_pause_gossip This variable controls the paging of gossip messages. If this variable is set,
the gossip will pause at the last page, otherwise it simply returns to command
level without allowing any paging commands.

_prompt This variable contains the prompt string printed by the command interpreter
before any command read from the user’s terminal. The default value is a right
bracket (]).

_prt_dest This variable contains the location where all files spooled by this user are to
be printed. If this variable is not present, files will be printed at the
system-def ined default printer.

_prt_form This variable contains the form to be used for files spooled by this user (e.g.
"narrow"). If this variable 1is not present, files will be printed on the
system-defined default form. -

5

_quit_action If this variable is present, whenever the fault handler detects a break, it
will prompt you as to whether you want to continue, terminate the program or
call Primos. Otherwise, a break will return you to the Subsystem.

_quote_opt This variable, if set to the value "YES", causes automatic quotation of each
l1ine of program output used in a function call. It is mainly provided for com-
patibility with an older version of the command interpreter, which performed
the quoting automatically. The program ‘quote’ may be used to explicitly force
quotation.

_retype This variable may be set to a single character to be used as the "retype"
control character for Subsystem terminal input processing.

_search_rule This variable contains a sequence of comma-separated elements that control the
procedure used by the command interpreter to locate the object code for a com-
mand. Each element is either (1) the flag "~int", meaning the command
interpreter’s table of internal commands, (2) the flag "~var", meaning the
user’s shell variables, or (3) a template containing the character ampersand
(&), meaning a particular directory or file in a directory. 1In the last case,
the command name specified by the user is substituted into the template at the
point of the ampersand, hopefully providing a full pathname that 1locates the
object code needed.

_vth_gossip This causes any gossip that is received to be paged using the screen oriented
paging mechanism.

Shell Command Statistics

If the public or private template "=statistics=" is defined with the value ‘"yes", the
shell will record every command issued by the user in the directory defined by the system tem-
plate ‘"=statsdir=". If you set your private template "=statistics=" to "yes" then your com-
mands will be recorded in the directory defined by your "=statsdir=" template. The files in
the directory "=statsdir=" are named "sh<pid>"; command statistics for a given process are
stored in the file with the corresponding process id. Here is an example of the file:

122680 171812 16 system 1 F //bin/x
122680 171816 16 system 1 F //bin/1f
122680 171822 16 system 1 F //bin/template
(date) (time) (user) | | (command)
(pid) (level) (F - command found)

The date begins in the first column. The (level) is the depth of nesting of shell files at
which the command is requested; 1 is the terminal level.
Symbiotic Commands

There are several commands that, in effect, l1ive symbiotically with the Shell. In the

following sections, some of the more useful of these will be reviewed. For further
information, consult the Software Tools Subsystem Reference Manuai.

Argument Fetching. Four internal commands are frequently used in shell programs to fetch
arguments given on the command l1ine. ‘Arg’ fetches a single argument, ‘args’ fetches several,
‘argsto’ fetchs a specified group, and ‘nargs’ returns the number of available arguments.

arg <position> [<ievel>]

‘Arg’ prints on its first standard output the argument which appeared in the
<position>th position in the command line invoking the shell program containing
‘arg’. Position zero refers to the command name, position one to the first
argument, etc. If an illegal position is specified, ‘arg’ prints nothing. The
optional second argument, <level>, specifies the number of lexic levels to

- 23 -

Command Interpreter User’s Guide

ascend in order to reach the desired argument list. The entry of any command
file or function call constitutes a new lexic level; thus, an ‘arg’ command
used in a function call to fetch an argument to the command file containing the
function call needs a <level> of 1 (to escape the 1lexic 1level in which the
function is evaluated). In fact, this is the most common use of ’‘arg’, so the
default value for <level> is 1. The following three commands, when placed in a
command file, would cause that command file‘’s first argument to be printed
three times on standard output one:

echo [arg 1]
echo [arg 1 1]
arg 1 O

£
args <first> [<last> [<level>]]

‘Args’ prints on its first standard output the arguments specified on the com-
mand file <level> lexic levels above the current level. <First> is the posi-
tion on the command 1ine of the first argument to be printed; <last> is the
position of the last argument to be printed. If <last> is omitted, the final
argument on the command l1ine is assumed. <Level> has the same meaning as for
‘arg’ above.

argsto <delim> [<number> [<start> [<level>]]]

‘Argsto’ prints a group of arguments delimited by arguments consisting of
<delim>. <Number> 1is an integer that controls which group of arguments is
printed. If <number> is O or omitted, arguments up to the first occurrence of
<delim> are printed; if <number> is 1, arguments between the first occurrence
of <delim> and the second occurrence of <delim> are printed, and so on.
<Start> is an integer indicating the argument at which the scan is to begin; if
<start> 1is omitted (or is 1), the scan begins at the first argument. <Level>
has the same meaning as for ‘arg’ above.

nargs [<level>]
‘Nargs’ prints on its first standard output the number of arguments passed to

the command file <level> lexic levels above the current level. <lLevel> has the
same meaning as for ‘arg’ above.

Shell JTracing. The ’‘shtrace’ command is useful for tracing the operation of the shell.
Al though primarily intended for debugging the command interpreter itself, it also finds use in
monitoring and debugging shell files. To turn the trace on, enter
shtrace on
To turn the trace off, enter
shtrace

Many other options are available. Consult the Software Tools Subsystem Reference Manual for
details.

Shell Variable Utilities. The following commands (in addition to ‘declare’, ‘set’, and
‘forget’ discussed earlier) have been found useful in dealing with shell variables. Further
information can, as usual, be found in the Software Tools Subsystem Reference Manual.

vars
‘Vars’ 1lists the names (and optionally the values) of the user’s shell
variables. ‘vars’ can also save and restore the user’s variables from
arbitrary files. various options control the listing format, the number of
lexi¢c levels scanned, and whether or not shell control variables are listed.
The most common form is probably

vars -alv

which 1ists all variables at all lexic levels along with their values.

Program Interface

. The shell provides a set of routines which allows the user of the standard shared
libraries to create shell variables, retrieve their values, and change them as well. You may
also execute shell commands from within a program. This facility is not available when using
the non-shared libraries, and even using the shared libraries it is somewhat restrictive untiil
Prime supports EPF runfiles. Further information on these routines can be found in the
- Software Tools Subsystem Reference Manual.

- 24 -

commana initerpreter user- s uJuiae

shell
‘Shell’ 1is the subroutine which starts another level of the SWT shell. It is
used to execute commands read from an open input file. It is analagous to the
‘sh’ command.

subsys
‘Subsys’ is used to execute a single command from within a program. It com-
bines all the operations needed to execute a string with ‘shell’ without the
user having to perform the operations. It is a convenience for the user.

svdel
‘Svdel’ accepts the name of a shell variable and deletes it at the current
shell level. It takes care of updating the SWT common block in the case of a
special shell variable (see "Shell Control Variables", above). It is analagous
to the command ‘forget’.

svdump
‘Svdump’ prints a representation of the internal shell variable common block.
It scans all levels of the variables, dumping the chains and '@ hash tables.
It is analagous to the ‘dump sv’ command.

svget
‘Svget’ simply retrieves the value of a given shell variable. Since
"executing" a variable from the command level prints the value of the variable,
the action of ’‘svget’ is closest to the execution of a variable.

svievl
‘Svievl’ returns the current lexic level of the shell. This is wuseful in
cooporation with ‘svscan’ (described below) to retrieve the value of all
currently declared variables. This routine has no command equivaient.

svmake
‘Svmake’ creates a given shell variable at the current 1lexic level of the
shell. It returns the 1lexic 1level of the shell. 1If the variable already
exists at the current level, then ’‘svmake’ will have no effect. Any special
variables (see "Shell Control Variables", above) that are changed will cause a
change in the SWT common block to reflect the value of the variable. ‘Svmake’

is analagous to the ‘declare’ command.

svput
‘Svput’ sets the value of a given shell variable in the most recent lexic level
where it appears. If the variable does not exist in any scope of the shell, it
is created 1in the current level. ‘Svput’ also makes modifications to the SWT
common block if any special variables are changed. ‘Svput’ is analagous to the
‘set’ command.

svrest
‘Svrest’ reads a file written by ‘svsave’ (see below) and attempts to merge
those variables with those at the current lexic level. ‘Svrest’ is analagous

to the ‘vars -r’ command.

svsave
‘Svsave’ attempts to save the shell variables at lexic level number 1 (the top
level) in the given file. ‘Svsave’ is analagous to the ‘vars -s’ command.

svscan
‘Svscan’ provides a way for the user to obtain the value of all shell variables
at any or all lexic levels. It operates in a method similar to ‘tscan$’.

There is no command associated with ‘svscan’.

Conclusion

This concludes the Application Notes section of the guide. Hopefully it has presented
some ideas that will make the use of the command interpreter more productive and enjoyable.

»

Command Interpreter User’s Guide

Messages from the Shell

Listed here are messages with obscure meanings that are produced by the Shell; several
indicate dire internal problems that should not occur during normal operation. In the
interest of saving paper, self-explanatory messages are not included.

<command>: not found
The 1ist of elements in the search rule was exhausted, but the command had not been
located.

<command>: too many ci files
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive« call on a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table space.

continue?
This message occurs after each network when the "single_step" shell trace option is
set. A line beginning with anything other than an upper or lower case letter "n"
will cause the shell to execute the next network. A response beginning with "n"
will cause the shell to return to command level.

illegal destination node spec
The destination node specifier must be a defined label or a number between 1 and the
number of nodes in the network.

illegal port number
A port number must be a number between 1 and the maximum number of standard ports
defined (currently 3).

missing command name
Although an empty net is allowable, redirectors must not be specified without a com-
mand name.

missing pathname in redirector
A greater-than sign was encountered without a pathname on either side.

net is not serially executable
Because multiple processes per user are not supported, each node of a net must be
executed serially. Therefore, nets which have pipe connections that form a compliete
cycle cannot be executed.

overflow (save_state): <level>
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive call on a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table space.

pipe destination not found
The destination node of a pipe is not in the range of the current net.

state save stack overflow
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive call on a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table space.

unbalanced 1iteration groups
Because of the semantics of iteration, each iteration group in the same net must
contain the same number of arguments.

unexpected EOF ‘'on variable save file
End of file has been encountered on the shell variable save file when a value has
been expected. The shell variables have been corrupted. To recover what might be
left, exit the Subsystem with a <break> or control-P and consult your system
administrator.

whitespace required around pipe connector
A pipe connmector and its associated port numbers and destination label must be
surrounded by spaces.

whitespace required around i/o redirector
An i/o0 redirector and its associated i/o redirector must be surrounded by spaces.

- 26 -

User’‘s Guide for the Ratfor Pr'eﬁhooessor
Second Edition

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

JABLE OF ENT

Ratfor Language Guide

What 18 RAtFOP? i it it i ittt teeononeensasanossosnssssesessensnsnsanas 1
Differences Between Ratfor and Fortran ittt ttnnnnrnannns 1
SoUrCe Program FOoPmatcceeiiiiiitneenoeesenannsocansssascesasesaneneenaanenns 1
Case SeNSItiIVItY ...ttt ittt ittt et enenaacoesosstssnacsas oot nseanns 1

Blank SenSitiVity ...ttt it niieeneetesseeeseeersesacasssssscssssssesssssnssss 1

Card Columns e ettt e e eeeetteeee et e 1
MUTtiple Statements Per Linettt teeeeeeneneneaseossenssonssssssssesnns 2
Statement Labels and Continuationc.cciiiiiiinennnnnennanannn et 2
COMMENE S ..ttt ittt ittt et iiaeeononocnssosnncssasosossseansassssnnnsssns e s 3

b0 1= o B o B = o 3
INnteger ConStaNtSttt ittt ittt oeseaanacssosencssanesansssansonsssonansnnns 4
StrinNg CONStANESttt eneeceeneeeansessesasocssssasaasesanossosesnnessennas 4
Logical and Relational Operatorsttt ennoensseeeeneanonsenenennnnnsns 5
ASSignment OpPerator Sttt ittt ittt ittt et e 6
Fortran Statements in Ratfor Programsc.itiiiiiiennrnneenacenennnnnennnns 6
IncomPatibilitiesottt it teeeneennasassssseasasnsoocennnssansnasnens 7
Ratfor Text Substitution Statements ittt ittt inaennn 8
|97 0 1 o = 8

L g T 1= T T 10

D 8 T T T = 10
RatfOr DeCIaratioNS ittt ittt teeaeenneanesansanessnsenssaenesannnes 11
£ 2 o 1 = 11

Eo o kI T = < I 11

LI I 1 ¥ T 12
T - 12
Ratfor Control Statements i ittt et ttntteronanennannoncnnnns 14
Compound StatemMeNtSttt iitinetentenssseeanscesassoseseseaaatoassassosonnns 14

0 S S I 14
WT T ...ttt it iitietieaoeeneseeaaasasonssosesesasososensosasesscssnsssssanonasonas 14
2= <= - 15

5 15
2= 16

=5 = - 1 16
L= 17
== T o o 17
£33 1= 7= 17
PrOCRAUNE .. ittt i ineeetsooneeeeaasssssnannsesoasssssansossnsassnssasessessnsnnsacenss 19

Ratfor Language Reference

Differences Between Ratfor and Fortran ittt irennreraeensonennnnn 21
SOUrCe Program FOrmMatc.c.ieuiieeeaeaanonesesenensesenssessnesacnsassannaannss 21

D= 1= o T R - 21
INteger CONStANESttt irsenaneaeesaasososoeseasasssssnsnaasassesnsnssnnes 21
StrinNg CONSTANES iiiiiireteeeeneeneseeaeneenenssnssosesstssnsssessssasassnnnnn 21
Logical and Relational Operatorsiiitiiiinennnnenenencannacssssscnananas 22
Assignment OpPeratorSttt eianeactonasesasseonsosasansensnneennsoannans 22
ESCape StAteMENTSttt iiteeeeneaeeonoennssoosassssesenscesssenasesneannass 22
Incompatibilitiesiiiiieinnenenenennanacassnssnnsa preetasencnsaanacseenn 23
Ratfor Text Substitution Statements i ittt iiietnnnnannnnnn 23
[5= 20 1 2 7= 23

(8 a T L= T T 23

B O T 1T T = 23

= 111 -

RatfOr DeClarations it ittt ittt sttt e e et eeeaeeeeeaaaaaaaaanasns 24

[1Y T 24
= Y - T I 24
138 o 1 o« T 24
1Rl I T - 1o T = 24
Ratfor Control Statements i i ittt ittt e tnaneaaanaaacsan 24
= o = Y 24
5 = 24
2= o 24
0 24
2= 25
L =T ==Y T o 25
Repeat 6 ettt e e e e mmae ettt ettt 25
REIUPI it ittt teeeenoneeeeaeeeeeasassenanesesseeesoscessnnesosessnssnsennsas 25
£ =T 25
L T - 25

Ratfor Programming Under the Subsystem

Requirements for Ratfor Programs it iiiiiiiiinneennennnnennn 26
Running Ratfor Programs Under the Subsystem ittt 26
Lo = = =TT = Y= = o c I 26
{072 1 1T = T I o T 27
L 1 I o T 28
123 o1 ¥ S T T 29
1] T T o o = I 29
SNET T PrOgramS ... iiitit i tniaonneeanenseeeessstnsnennsonscecesenasssennasesannenns 29
The ‘Rf1/ COMMANGAttt iittneennneneeeannenosensenasoesnsenesaneenasacenss 30
Storing Source Programs Separately ittt itcttetttitti ittt 30
Compiling Programs Separatelyc.uiciuciuineennenessnsaesneceaceanascansnsa 30
1071 < T T I oV« 30
Performance MONITTOP INgttt teeeeeeeeeeeeeoestoessseeeasceasssssssssssssnsssss 33
Conditional Compilationttt iiiiiniitineseinnneeeennaceocsoessseannsecsnsnnsnsnss 33
Lo T o -1 < T T T < 34
Source Program Format Conventionsttt ittt 34
Statement Placementt iiiineenernoanetoeeenssnsenasacaanneesenssnnsnnnas 34
BT L= o 8 - N b I o o 35
Subsystem DefinitionNs ittt it ittt enaetenaaanesnessnenannns 36
Using the Subsystem Support Routines ittt nnnnannnn 36
LI Lol 10T G I < o 36
Character StriNMgSttt ittt ittnennraetoseeseeseseeneenaanasecaessseaseaneannnns 36
0 T - . 37

B 5 T (- 37
=Y T s oo 37
MaPAN ANA MBPUP .. ittt i s mesveeereeeeaacaeeaeseoasassnaennanseaneenacaeeanseensosssnnsenenns 37
=T = 2 37

T o o < 37

1577 =L 38
File Access e, 38
Open 8Nd ClOSEicuuitieeineenooasssseneessesssnesssnsscanacesenanaasaanananns 38

o] o = T - 39
Mktemp 8Nd RMIEMDttt eeeeeoaeeasssnesosnssanseanssssnacaasssaeneanscenanasas 39
Wind and Rewindttt ittt iieeeeoeanenossosetocsesasssasoesesannonosnasenennas 39
a7 L T 39
REBMOVE iiietieioenenoeeneenssoeasoaseeeeasssesssaessesaosssssncsseasansesannsns 39
07 1 5 40
(T S T T T 40

[= R = o 40

B = LU L 40
ROAASF ittt ittt teteenonaeanseeeeneessatosssosssssasosancnassssnsnnsennnns 42
L2203 T T T 42
L2 = o T 42

L2 o 0 42

L T <= 42
FOOPY i ittt ittt ittt teeeeeceaseseasseneeseesossesssaeecaanascssnesssecnscnsennens 42
Markf and Seekfttt ittt ittt ettt ettt et 43
[T G = 43

- iv -

TYPE CONVEIN S ION ..ttt ittt ittt et ies et assosooeanessasssassanosnsasnnsenas 43

137 T o o PR 45
g T = o T 45
Argument ACCESSccovvieesronacacnnessnns W et serebtenemeveesesasonnson Ce et e 45
€= - Y o « 45
- ¥ o o 46
Dynamic Storage Managementt iiitininneeneraneeneansensencassasesasanesas 47

|2 235 1 1 48

10T T 48

13 T o o T - 48

13 T T 7= 48
Symbol Table Manipulationttt itittineneeroeeeneeenneaeeeenseneasanans 49
L - = 49

3 =T o 50

[=T | < 50

13 1 - 50
53111 - = 50

1] = 4 -1 forrennnnnn 50

Other ROUTINES i i i ittt ittt e teiataneeesssnseanassonasssossnneasnss 51

Appendixes

Appendix A -- Implementation of Control Statementst 52
= =T Y 53

9. = I 54
2= 55

8 56

B 3 I] 57

L 1= 58

225 == 59
2= T o o 60
FT2 3 == < 61
SeleCt (<iNteger EXPreSSTON>) ...t ittt ineintensaneeeeoneesanensooreeenneanenennns 63

L 0 T - 65
Appendix B -- Linking Programs With Initialized Common 66
Appendix C -- Requirements for Subsystem Programscciittunrnnenernnannn 67
Appendix D -- The Subsystem Definitions ittt innnnnnnnnens 68
[0 g T ¥ - Ve = o - N 68

18 T T = T IRV = T 68
MaCrO SUDPOUL I MEEttt tmeitonnennasoesssnsnsesaosscasssensoasonnssnnnnnenanas 68
Language EXtenSioNSttt iteteenneriosnnecasosensasssescssonnasneannnesnnes 68

L T T e 69

R - g T F T T B o o T 69
Argument and ReTUPrN ValUBSttt ittt etsoeeresosnscsonsoncaeessssnneansannanss 69
Appendix E ~- ‘Rp’ Reserved WOordsttt iinneennntoeennaaneeannannnns 70
Appendix F - - Command Line SyntaxXi. ittt ieiiioneerncontasanranannananan 71

-V -

Foreword

Ratfor ("Rational Fortran") is an extension of Fortran-66 that serves as the basis for
the Software Tools Subsystem. It provides a number of enhancements to Fortran that facilitate
structured design and programming, as well as enhance program readability and ease the burden
of program coding.

This guide is intended to explain and demonstrate the use of Ratfor as a programming

language within the Software Tools Subsystem. In addition, applications notes are provided to
help users build on the experience of others.

- vi -

RALTVI™ waeH 0 W e

Ratfor Language Guide

What is Ratfor?

The Ratfor ("Rational Fortran") language was introduced in the book Software Tools by
Brian W. Kernighan and P. J. Plauger (Addison-wWesley, 1876). There, the authors use it as the
medium for the development of programs that may be used as cooperating tools. Ratfor offers
many extensions to Fortran that encourage and facilitate structured design and programming,
enhance program readability and ease the burden of coding. Through some very simple
mechanisms, Ratfor helps the programmer to isolate machine and impiementation dependent sec-
tions of his code.

Among the many programs developed in Software Tools is a Ratfor preprocessor -- a program
for converting Ratfor into equivalent ANSI-66 Fortran. ‘Rp’, the preproce§sor described in
this guide, is an original version based on the program presented in Software Tools.

Differences Between Ratfor and Fortran

As we mentioned, Ratfor and Fortran are very similar. Perhaps the best introduction to
their differences is given by Kernighan and Plauger in Software Tools:

"But bare Fortran is a poor language indeed for programming or describing programs.
. . Ratfor provides modern control flow statements like those in PL/I, Cobol,
Algol, or Pascal, so we can do structured programming properly. It is easy to read,
write and understand, and readily translates into Fortran. . . . Except for a hand-
ful of new statements like if - else, while, and repeat - until, Ratfor is Fortran.®

Source Program Format

Case Sensitivity. In most cases, the format of Ratfor programs is much less restricted
than that of Fortran programs. Since the Software Tools Subsystem encourages use of terminals
with multi-case capabilities, ‘rp’ accepts input in both upper and lower case. '‘Rp’ 1i{s case

sensitive. Keywords, such as if and select, must appear in lower case. Case is significant
in identifiers; they may appear in either case, but upper case letters are not equivalent to
lower case letters. For example, the words "blank" and "Blank" do not represent the same

identifier. For circumstances in which case sensitivity is a bother, ‘rp’ accepts a command
line option ("-m") that instructs it to ignore the case of all identifiers and keywords. See
the apptications notes or the ‘help’ command for more details.

Blank Sensitivity. Unlike most Fortran compilers, ‘rp’ is very sensitive to blanks.
‘Rp’ requires that all words be separated by at least one blank or special character. Words
containing imbedded blanks are not allowed. The best rule of thumb is to remember that if it
is incomprehensible to you, it is probably incomprehensible to ‘rp.’ (Remember, we humans
normally leave blank spaces between words and tend not to place blanks inside words. Such
things make text difficult to understand.)

As a bad example, the following Ratfor code is incorrect and will not be interpreted
properly:

subroutineexample(a,b,c)
integera,b,c

repeatx=x+1
until(x>1)

A few well placed blanks will have to be added before ‘rp’ can understand it:

subroutine example(a,b,c)
integer a,b,c

repeat x=x+1
until(x>1)

You should note that extra spaces are allowed (and encouraged) everywhere except inside words
and literals. Extra spaces make a program much more readable by humans:

subroutine example (a, b, c¢)
integer a, b, ¢

repeat x = x + 1
until (x > 1)

Ratfor User‘’s Guide

Card Columns. As should be expected of any interactive software system, ’‘rp’ is com-
pletely insensitive to "card" columns; statements may begin and end at any position in a line.
Lines may be of any length, but identifiers and quoted strings may not be 1longer than 100
characters. ‘Rp’ will output all statements beginning in column 7, and automatically generate
continuation 1lines for statements extending past column 72. All of the following are valid
Ratfor statements, although such erratic indentation is definitely frowned upon.

integer i, j
i=1
j =2
stop
end

&
Multiple Statements per Line. ‘Rp’ also allows multiple statements per 1line, although
indiscriminate use of this feature 1is not encouraged. Just place a semnico’ = Lo.ween
statements and ‘rp‘’ will generate two Fortran statements from them. You will find

integer i
real a
logical 1

to be completely equivalent to

integer i; real a; logical 1

Statement Labels and Continuation. You may wonder what happens to statement labels and
continuation lines, since ‘rp’ pays no attention to card columns. It turns out that statement
labels and continuation 1lines are not often necessary. While ‘rp’ minimizes the need for
statement labels (except on format statements) and is quite intelligent about continuation
lines, there are conventions to take care of those situations where a label is required or the
need for a continuation line is not obvious to ‘rp.‘

A statement may be labeled simply by placing the statement number, starting in any
column, before the statement. Any executable statement, including the Ratfor control
statements, may be labeled, and ‘rp’ will place the label correctly in the Fortran output. It
is wise to refrain from using five-digit statement numbers; ‘rp‘’ uses these statement labels
to implement the Ratfor control statements, and consequently will compliain if it encounters
them in a source program. As examples of statement labels,

2 read (1, 10) a, b, ¢
10 format (3e10.0)
write (1, 20) a, b, c; 20 format (3f20.5)
go to 2

all show statement numbers in use. You should note that with proper use of Ratfor and the
Software Tools Subsystem support subroutines, statement labels are almost never required.

As for continuation lines, ’‘rp’ is usually able to recognize when the current line needs
to be continued. A line ending with a comma, unbalanced parentheses in a condition, or a mis-
sing statement (such as at the end of an if) are all situations in which ‘rp’ correctly
anticipates a continuation line:

integer a, b, ¢, d,

e, f, g
if (a==b&c=2=d&es==+f2&
g==h&i==3j & k == 1) call eql
if (a == b)
c = -2

If an explicit continuation is required, such as in a long assignment statement, ‘rp’ can
be made to continue a 1ine by placing a trailing underscore (*_") at the end of the 1line.
This underscore must be preceded by a space. You should note that the underscore is placed on
the end of the line to be continued, rather than on the continuation line as in Fortran. If
you are unsure whether Ratfor will correctly anticipate a continuation 1line, go ahead and
place an underscore on the line to be continued -- ‘rp’ will ignore redundant continuation
indicators.

Identifiers may not be split between 1ines; continuation is allowed only between tokens.
If you have an extremely 1ong string constant that requires continuation, you can take
advantage of the fact that ‘rp’ always concatenates two adjacent string constants. Just close
the first part of the literal with a gquote, space, and underscore, and begin the second part
on the next 1ine with a quote. ‘Rp’ will ignore the 1ine break (because of the trailing
underscore) and concatenate the two literals.

Ratfor user’'s Guiae

The following are some examples of explicit 1ine continuations:

i=i+ j+k+1+m+n+o+p+q+r+ _
s + t +u+ v

i format ("for inputs of ", i5, " and “, 15/ _
"the expected output should be ", i5)

Comments. Comments, an important part of any program, can be entered on any line; a com-
ment begins with a sharp sign ("#") and continues until the end of -the 1line. In addition,
blank 1lines and 1lines containing only comments may te freely placed in the source program.
Here are some appropriate and (correct but) inappropriate uses of Ratfor comments:

\

if (i > 48)
do this only if i is greater than 48
i=3+1
data array / 1, # element 1
. # element 2
3, # element 3
4/ # element 4
integer cnt, # counter for controlling the
outer loop
total_errs, # total number of errors
encountered
last_pass # flag for determining the
last pass; init = O

ldentifiers

A major difference between Ratfor and Fortran is Ratfor’s acceptance of arbitrarily “long
identifiers. A Ratfor identifier may be up to 100 characters long, beginning with a letter,
and may contain letters, digits, dollar signs, and underscores. However, it may not be a Rat-
for or Fortran keyword, such as if, else, integer, real, or logical. Underscores are allowed
in identifiers only for the sake of readability, and are always ignored. Thus, "these_tasks"
and "the_set_asks" are equivalent Ratfor identifiers.

‘Rp’ guarantees that an identifier longer than six characters will be transformed into a
unigue Fortran identifier. Normally, the process of transforming Ratfor identifiers into
Fortran identifiers is transparent; you need not be concerned with how this transformation 1is
accompl ished. The one notable exception is the effect on external symbols (i.e. subroutine
and function names, common block names). When the declaration of a subprogram and its invoca-
tion are preprocessed together, in the same run, no probliems will occur. However, if the sub-
program and its invocation are preprocessed separately, there is no guarantee that a given
Ratfor name will be transformed into the same Fortran name in the two different runs. This
situation can be avoided in either of three ways: (1) use the linkage statement described in
the next section, (2) use six-character or shorter identifiers for subprogram names, or (3)
preprocess subprograms and their invocations in the same run.

Just for pedagogical reasons, here are a few correct and incorrect Ratfor identifiers:

Correct

Tong_name_1
long_name_2

prwf$s
I_am_a_very_long_Ratfor_name_that_is_perfectly_correct
a_a # You should note that ‘a_a‘’, ‘a__a’, and ‘aa’
a__a # are all absolutely identical in Ratfor -- »
aa # underscores are always ignored in identifiers,
AA # but ‘AA’ is very different.

Incorrect

123_part # starts with a digit

_parti # starts with an underscore

part 2 # contains a blank

a*b # contains an asterisk

Ratfor User‘s Guide

The following paragraph contains a description of exactly how Ratfor identifiers are
transformed into Fortran identifiers. You need not know how this transformation is accom-
plished to make full use of Ratfor; hence, you probably need not read the next paragraph.

If a Ratfor identifier is longer than six characters or contains an upper case letter, it
is made unique by the following procedure:

(1) The identifier is padded with ‘a‘s or truncated to five characters. Remaining characters
are mapped to lower case.

(2) The first character is retained to preserve implicit typing.

(3) The sixth character is changed to a "uniquing character" (normally a zero).

(4) If necessary, the second, third, fourth, and fifth characters are altered to make sure
there is no conflict with a previously used identifier.

‘Rp’ also examines six-Character identifiers containing the uniquing character in the sixth
position, to ensure that no conflicts arise.

Integer Constants

Since it is sometimes necessary to use other than decimal integer constants in a program,
‘rp’ accepts integers in bases 2 through 16. Integers consisting of only digits are, of
course, considered decimal integers. Other bases can be indicated with the following
notation:

<base>r<number>

where <base> is the base of the number (in decimal) and <number> is number in the desired base
(the letters ‘a’ through ’‘f’ are used to represent the digits ‘10’ through ‘15’ in bases
greater than 10). For example, here are some Ratfor integer constants and the decimal values
they represent:

Number Decimal Value
8r77 63

16rff 255

=2rid -3

7ri3 10

Some care must be exercised when using this form of constant to generate bit-masks with
the high-order bit set. For example, to set the high-order bit in a 16-bit word, one might be
tempted to use one of the constants

16r8000 or 8r 100000

Either of these would cause incorrect results, because the value that they represent, in
decimal, is 65536. This number, when encountered by Prime Fortran, is converted to a 32-bit
constant (with the high order bit in the second word set). This is probably not the desired
result. The only solutions to this problem (which occurs when trying to represent a negative
twos-compiement number as a positive number) are (1) use the correct twos-complement
representation (-32768 in this case), or (2) fall back to Prime Fortran‘s octal constants
(e.g. :100000).

String Constants

Under the Software Tools Subsystem, character strings come in various flavors. Because
various internal representations are used for character strings, Fortran Hollerith constants
are not sufficient to easily provide all the different formats required.

A1l types of Ratfor string constants consist of a string body followed by a string format
indicator. The body of a string constant consists of strings of characters bounded by pairs
of quotes (either single or double quotes), possibly separated by blanks. All the character
strings in the body (not including the bounding quotes) are concatenated to give the value of
the string constant. For example, here are three string constant bodies that contain the same
string:

"I am a string constant body"
“I" ¢ am ‘/ “Ya" ’ string ‘ "constant" ’ body’
"I am a string "‘constant body’

The string format indicator is an optional letter that determines the internal format to
be used when storing the string. Currently there are five different string representations
available:

omitted Fortran Hollerith string. When the string format indicator is omitted, a standard
Fortran Hollerith constant 1is generated. Characters are left-justified, packed in

-4 -

RaLTvwlr wd

A 2} 2 WWive

words (two characters per word on the Prime), and unused positions on the right are
filled with blanks. .

c Single character constant. The ‘c’ string format indicator causes a single character
constant to be generated. The character is right-justified and zero-filled on the
left in a word. Only one character is allowed in the body of the constant. Since it
is easy to manipulate and compare characters in this format, it 1{is the preferred

format for all single characters in the Software Tools Subsystem.

P Packed (Hollerith) period-terminated string. The ‘p’ format indicator
generation of a Fortran Hollerith constant containing the characters in t
body followed by a period. 1In addition, all periods in the string body ar
by an escape character ("€"). The advantage of a "p" format string over
Hollerith string is that the length of the "p" format string can be determi
time.

causes the
he string
e preceded
a Fortran
ned at run

v PL/1 character varying string. For compatibility with Prime’s PL/I and because this

data format is required by some system calis, the "v" format indicator will
Fortran declarations to create a PL/I character varying string. he fir

generate
st word cr

the constant contains the number of characters; subsequent words contain the charac-
ters of the string body packed two per word. "V" format string constants may only be

used in executable statements.

s E0S-terminated unpacked string. The “"s" string format indicator caus
generate declarations necessary to construct an array of characters contai
character in the string body 1in a separate word, right-justified and z
(each character is in the same format as is generated by the “c" format i
Following the characters is a word containing a value different from any
value that marks the end of the string. This ending value is defined as th
constant EOS. EOS-terminated strings are the preferred format for multi
strings 1in the Subsystem, and are used by most Subsystem routines de

es ‘rp’ to
ning each
ero-filled
ndicator).
character
e symbolic
-character
aling with

character strings. "S" format string constants may only be used 1in executable

statements.

Here are some examples of strings and the result that would be generated
Fortran. On a machine with a different character set or word length, different code
generated.

String Constant Resulting Code

‘v’ec the integer constant 246

“=doc="s an integer array of length 6 containing 189, 228, 239,
(o)

"a>p e>d"v an integer array containing 7, “a>", *b ", “c>", *d *

".main."p the constant Shé.maine..

"Hollerith" the constant 9hHollerith

Logical and Relational Operators

Ratfor allows the use of graphic characters to represent logical and relational
instead of the Fortran ".EQ." and such. While use of these graphic characters is e
it is not incorrect to use the Fortran operators. The following table shows the
syntaxes:

atfor Fortran Function

> .GT. Greater than

>= .GE. Greater or equal

< LLT. Less than

<= .LE. Less or equal

== .EQ. Equal to

~= .NE. Not equal to

~ .NOT. Logical negation »
& .AND. Logical conjunction

! .OR. Logical disjunction

Note that the digraphs shown in the table must appear in the Ratfor program with no
spaces.

For example, the two following if statements are equivalent in every way:
if (2 .eq. b .or. .not. (¢ .ne. d .and. f .ge. g))

if (a==b | ~ (c ~=d&f > g))

for Prime
might be

227, 189,

operators
ncouraged,
equivalent

imbedded

Ratfor User‘s Guide

In addition to graphics representing Fortran operators, two additional operators are
available in any logical expression parsed by ‘rp’ (i.e. anywhere but assignment statements).
These operators, ‘&&’ ("and if") and ‘||’ ("or if") perform the same action as the 1logical
operators ‘&’ and ’{’. except that they guarantee that the expression is evaluated from left
to right, and that evaluation is terminated when the truth value of the expression is known.
They may appear within the scope of the ‘~’ operator, but they may not be grouped within the
scope of ‘&’ and ‘}’.

These operators find use in situations in which it may be illegal or undesirable to
evaluate the right-hand side of a logical expression based on the truth value of the left-hand
side. For example, in

while (i > O && str (i) ==’ ‘¢)
i= i -1 .

it 1is necessary that the subscript be checked weifLre it is used. The order of evaluation of
Fortran logical"expressions is not specified, so in this example, it would be technically
illegal to wuse ‘&’ in place of ‘&&‘’. 1If the value of ‘i’ were less than 1, the illegal sub-
script reference might be made regardless of the range check of the subscript. The Ratfor
short-circuited 1logical operators prevent this problem by insuring that "i > 0" is evaluated
first, and if it is false, evaluation of the expression terminates, since its value (false) is
known.
Assignment Operators
Ratfor provides shorthand forms for the Fortran idioms of the form

<variable> = <variable> <operator> <expression>

In Ratfor, this assignment can be simplified to the form

<variable> <assignment operator> <expression>

with the use of assignment operators. The following assignment operators are available:

Operator Use Result

+= <v> += <@> <v> = <v> + (<e>)

-= <v> -= <> <v> = <v> - (<e>)

x= <v> x= <e> <v> = <v> * (<e>)

= <v> /= <e> <v> = <v> / (<e>)

%= <v> %= <e> <v> = mod (<v>, <e>)
= <v> &= <e> <v> = and (<v>, <e>)
I= <v> |= <e> <v> = or (<v>, <e>)
Az <v> ~= <e> <v> = xor (<v>, <e>)

The Ratfor assignment operators may be used wherever a Fortran assignment statement is
allowable. Regrettably, the assignment operators provide only a shorthand for the programmer;
they do not affect the efficiency of the object code.

The assignment operators are especially useful with subscripted variables; since a com-
plex subscript expression need appear only once, there is no possibility of mistyping or for-
getting to change one. Here are some examples of the use of assignment operators

i += 1

fact *= i + 10

subs (2 = § - 2, 5 j - 23) -= 1
int %= 10 *=* §

mask &= 8r12

For comparison, here are the same assignments without the use of assignment operators:

i = 1 + 1

fact = fact * (1 + 10)

subs (2*1-2, 5%j-23) = subs (2*1-2, 5%j-23) - 1
int = mod (int, (10 =x j))

mask = and (mask, 8ri12)

Fortran Statements in Ratfor Programs

Ratfor provides the escape statement to allow Fortran statements to be passed directly to
the output without the usual processing, such as case mapping and automatic continuation. The
escape statement has three forms, summarized below. In the first form l1isted below, the first
non-blank character of the Fortran statement is output in column seven. In the second form,
the first non-blank character of the Fortran statement is output in column seven, but column
six contains a "$" to continue a previous Fortran statement to that stream. In the third

RALTUI WUDSSIT D VW iue

form, the Fortran statement is output starting in column one, so that the wuser has full
control of the placement of items on the line. The following is a summary of this descrip-
tion:

Escape Statement Format Qutput Column
%<stream><Fortran statement> 7
%<stream>&<Fortran statement> 6
%<stream>%<Fortran statement> 1

"Stream" can take on the following values:

1 declaration
2 data
3 code
If no stream is specified (i.e. %%<Fortran statement>), the Fortran statem:it is sent to the
code stream. (.
Escaped statements must occur inside a program unit, i.e., between a function or

subroutine statement, and its corresponding end statement. Otherwise ‘rp’ gets confused about
where the escaped statements should go, since it won’t have any streams open. If you have a
large amount of self contained Fortran that you want ‘rp’ to include in its output, you can
accomplish this in two steps. First, put ‘%1%’ at the beginning of each 1ine, and then put
the Fortran at the beginning of your ratfor source file.

Incompatibilities

Even with the great similarities between Fortran and Ratfor, an arbitrary Fortran program
is not necessarily a correct Ratfor program. Several areas of incompatibility exist:

- In Ratfor, blanks are significant -- at least one space must separate adjacent
identifiers.

- The Ratfor do statement, as we shall soon see, does not contain the statement number
following the "do". Instead, its range extends over the next (possibly compound)
statement.

- Two-word Fortran key phrases such as doubie precision, block data, and stack header
must be presented as a single Ratfor identifier (e.g. “blockdata" or "block_data").

- Fortran statement functions must be preceded by the Ratfor keyword stmtfunc. To
assure that they will appear 1in the correct order in the Fortran, they shouild
immediately precede the end statement for the program unit.

- Hollerith literals (i.e. SHABCDE) are not allowed anywhere in a Ratfor program.
Instead, ’‘rp’ expects all Hollerith 1literals to be encliosed in single or double
quotes (i.e. “ABCDE" or ‘ABCDE’). ‘Rp’ will convert the qguoted string into a
proper Fortran Hollerith string.

- ‘Rp’ does not allow Fortran comments. In Ratfor, comments are introduced by a sharp
sign ("#") appearing anywhere on a line, and continuing to the end of the line.

- ‘Rp’ does not accept the Fortran continuation convention. Continuation is implicit
for any line ending with a comma, or any conditional statement containing unbalanced
parentheses. Continuation between arbitrary words may be indicated by placing an
underscore, preceded by at least one space, at the end of the line to be continued.

- ‘Rp’ does not ignore text beyond column 72.

- Fortran and Ratfor keywords may not be used as identifiers in a Ratfor program.
Their use will result in unreasonable behavior.

Ratfor User’s Guide
Ratfor Text Substitution Statements

‘Rp’ provides several text substitution facilities to improve the readability and
maintainability of Ratfor programs. You can use these facilities to great advantage to hide
tedious implementation details and to assist in writing transportable code.

Define

The Ratfor define statement bears a vague similarity to the non-standard Fortran
parameter declaration, but 1is much more flexible. 1In Ratfor, any legal identifier may be
defined as almost any string of characters. Thereafter, ‘rp’ will replace all occurrences of
the defined identifier yith the definition string. In addition, identifiers may be defined
with a formal parameter list. Then, during replacement, actual parameters specified in the
invocation are substituted for oci.rrences of the formal parameters in the replacement text.

Defines find their principle use in helping to clarify the meaning of "magic numbers"
that appear frequently. For example,

while (getlin (line, -10) ~= -1)
call putlin (line, -11)

is syntactically correct, and even does something useful. But what? The use of define to
hide the magic numbers not only allows them to be changed easily and uniformly, but also gives
the program reader a helpful hint as to what is going on. If we rewrite the example, replac-
ing the numbers by defined identifiers, not only are the numbers easier to change uniformly at
some later date, but also, the reader is given a little bit of a hint as to what is intended.

define (EOF, -1)
define (STANDARD_INPUT, -10)
define (STANDARD_OUTPUT, -11)

while (getlin (1ine, STANDARD_INPUT) ~= EOF)
call putlin (line, STANDARD_OUTPUT)

The last example also shows the syntax for definitions without formal parameters.

Often there are situations in which the replacement text must vary slightly from place to
place. For example, let’s take the 1last situation in which the programmer must supply
"STANDARD_INPUT" and "STANDARD_OUTPUT" in calls to the line input and output routines. Since
this occurs in a large majority of cases, it would be more convenient to have procedures
named, say “"getl" and “putl" that take only one parameter and assume "STANDARD_INPUT" or
"STANDARD_OUTPUT". We could, of course, write two new procedures to fill this need, but that
would add more code and more procedure calls. Two define statements will serve the purpose
very well:

def ine (STANDARD_INPUT. -10)
define (STANDARD_OUTPUT, -11)
define (getl (1n), getlin (1n, STANDARD_INPUT))
define (putl (1n), putlin (1n, STANDARD_OUTPUT))

while (get! (1ine) ~= EOF)
call putl (line)

In this case, when the string "getl (line)" is replaced, all occurrences of "1n" (the formal
parameter) will be replaced by "line" (the actual parameter). This example will give exactly
the same results as the first, but with a little less typing when "getl"” and "putl" are called
of ten.

The full syntax for a define statement follows:
Al
define (<identifier> [(<formal params>)], <replacement>)

When such a define statﬁment is encountered, <replacement> i{is recorded as the value of
<identifier>. At any later time, if <identifier> is encountered in the text, it is replaced
by the text of <replacement>. If the original define contained a formal parameter 1list, the
1ist of actual parameters following <identifier> is collected, and the actual parameters are
substituted for the corresponding formal parameters in <replacement> before the replacement is
made.

There is a file of “"standard" definitions used by all Subsystem programs called
"=incli=/swt_def.r.i". The define statements in this file are automatically inserted before
each source file (unless ‘rp’ is told otherwise by the "-f* command 1line option). For
information on the exact contents of this file, see Appendix D.

There are also a few other facts that are helpful when using define:

Ratfor User’s Guide

The <replacement> may be any string of characters not containing unbalanced parentheses
or unpaired quotes :

<Formal parameters> must be identifiers.

<Actual parameters> may be any string of characters not containing unbalanced
parentheses, unpaired quotes, or commas not surrounded by quotes or parentheses.

Formal parameter replacement in <replacement> occurs even inside of quoted strings. For
example,

define (assert (cond), {
if (~(cond))
call error ("assertion cond not valid"'p)}
assert (i < j)
would generate

if (~(i < j))
call error (“"assertion i < j not valid"p)}

During replacement of an identifier defined without a formal parameter 1list, an actual
parameter 1ist will never be accessed. For exampie,

define (ARRAYNAME, tablet)
ARRAYNAME (i, j) = O

would generate

tablet (i, j) = O
The number of actual and formal parameters need not match. Excess formal parameters will
be replaced by null strings; excess actual parameters will be ignored.
A define statement affects only those identifiers following it. In the following exam-
ple, STDIN would not be replaced by -11, uniess a define statement for STDIN had occurred

previously:

1 = getlin (buf, STDIN)
define (STDIN, -11)

A define statement applies to all lines following it in the input to ‘rp’, regardless of
subroutine, procedure, and source file boundaries.

After replacement, the substituted text itself is examined for further defined
identifiers. This allows such definition segquences as

define (DELCOMMAND, LETD)
define (LETD, 100)

to result in the desired replacement of "100" for "DELCOMMAND". Actual parameters are
not reexamined until the entire replacement string is reexamined.

Identifiers may be redefined without error. The most recent definition supersedes all
previous ones. Storage space used by superseded definitions is reclaimed.

Here are a few more examples of how defines can be used:

Ratfor User'’s Guide

define (NO, O)
define (YES, 1)
define (STDIN, -11)
define (EOF, -2)
define (RESET (flag), flag = NO)
def ine (CHECK_FOR_ERROR (flag, msg),
if (flag == YES)
call error (msg)

)
def ine (FATAL_ERROR_MESSAGE,
"Fatal error -- run terminated"p)
define (PROCESS_LINE,
count = count + 1
-a.1 check_syntax (buf, count, errer_flag)
)

while (getlin (buf, STDIN) ~= EOF) {
RESET (error_flag)
PROCESS_LINE
CHECK_FDOR_ERROR (error_flag, FATAL_ERROR_MESSAGE)
}

After Defines Have Been Processed:
while (getlin (buf, =-11) ~= -2) {

.error_flag = O

count = count + 1

call check_syntax (buf, count, error_flag)

if (error_flag == 1)

call error ("Fatal error -- run terminated"p)
}

Undef ine

The Ratfor undefine statement allows termination of the range of a define statement. The
identifier named in the undefine statement is removed from the define table if it is present;
otherwise, no action is taken. Storage used by the definition is reclaimed. For example, the
statements

define (xxx, a = 1)
XXX

undefine (xxx)

XXX

would produce the following code:

a=1
XXX

Inciude

The Ratfor include statement allows you to include arbitrary files in a Ratfor program
(much 1ike the COBOL copy verb). The syntax of an include statement is as follows:

include “<file name>"

If the file name is six or fewer characters in length and contains only alphanumeric charac-
ters, the quotes may be omitted. For the sake of uniformity, we suggest that the quotes
always be used.

When ‘rp’ encounters an include statement, it begins taking input from the file specified
by <file name>. When the end of the included file is encountered, ‘rp’ resumes reading the
preempted file. Files named in include statements may themselves contain include statements;
this)nesting may continue to an arbitrary depth (which, by the way, is arbitrarily limited to
five).

For an example of include at work, assume the existence of the following files:

Ratfor User‘s Guide

f1:
include "f2"
i= 1
include "f3"
f2:
include "f4"
me= 1
f3:
j= 1
4.
k = 1
If “f1" were the original file, the f»1°c., " © tax. is what would actually be processed:
k = 1
m= 1
i= 1
y=1

Ratfor Declarations

There are several declarations available in Ratfor in addition to those usually supported
in Fortran. They provide a way of conveniently declaring data structures not available in
Fortran, assist in supporting separate compilation, alliow declaration of 1local variables
within compound statements, and allow the declaration of internal procedures. Declarations in
Ratfor may be intermixed with executable statements.

String

The string statement is provided as a shorthand way of creating and naming EOS-terminated
strings. The structure and use of an EOS-terminated string is described in the section on
Subsystem Conventions. Here it is sufficient to say that such a string is an integer array
containing one character per element, right justified and zero filled, and ending with a
special value (EDS) designating the “end of string." Since Fortran has no construct_ for
specifying such a data structure, it must either be declared manually, as a Ratfor string
constant, or by the Ratfor string statement.

The string statement is a declaration that creates a named string in an integer array
using a Fortran data statement. The syntax of the string statement is as follows:

string <name> <guoted string>

where <name> is the Ratfor identifier to be used in naming the string and <quoted string>
specifies the string’s contents. As you might expect, either single or doubie quotes may be
used to delimit <quoted string>. In either case, only the characters between the quotes
become part of the string; the quotes themselves are not included.

String statements are quite often used for setting up constant strings such as file names
or key words. For instance,

string file_name "//mydir/myfile"
string change command “change"
string delete_command “delete"

def ine such character arrays.

Stringtable

The stringtable statement creates a rather specialized data structure -- a marginally
indexed array of variable Jlength strings. This data structure provides the same ease of
access as an array, but it can contain entries of varying sizes. A stringtable declaration

defines two data items: a marginal index and a table body. The marginal index is an integer
array containing indices into the table body. The first element of the marginal index is the
number of entries following in the marginal index. Subsequent elements of the marginal index
are pointers to the beginning of items in the table body. Since the beginning of the table
body is always the beginning of an item, the second entry of the marginal index is always 1.

The syntax of a stringtable declaration is as follows:

Ratfor User’s Guide

string_table <marginal index>, <table body>,
[/] <item> { / <item> }

<Marginal index> and <table body> are identifiers that will be declared as the marginal index
and table body, respectively. <Item> is a comma-separated 1ist of single-character constants
(with a "c¢" string format indicator), integers, or EOS-terminated character strings (with no
string format indicator -- a little inconsistency here). The values contained in an <item>
are stored contiguously in <table body> with no separator values (save for an EOS at the end
of each EOS-terminated string). An entry is made in the marginal index containing the posi-
tion of the first word of each <item>.

For example, assume that you have a program in which you wish to obtain one of three
integer values based on an input string. You want to allow an arbitrary number of synonyms in
the input (1ike "add", "insert", etc.).

string_table cmdpos, cmdtext,

/ ADD, "add" _
/ ADD, "insert" _
/ CHANGE, "change" _
/ CHANGE, “update" _
/ DELETE, "delete" _
/ DELETE, "remove"
This declaration creates a structure something like the following:
cmdpos cmdtext
1: 6
2: 1 i: ADD, ‘a’‘c, ‘d’c, ‘d’‘c, EOS
3: 6 } 6: ADD, ‘i’e, ‘n’c, ’‘s’c, ‘e’‘c,
‘r‘c, ‘t’c, EOS
4: 14 14: CHANGE, ‘c’c, ‘h’c, ‘a‘c, ’‘n’‘c,
‘g’c, ‘e’c, EOS
5: 22 22: CHANGE, ‘u‘c, ‘p‘c, ‘d‘c, ‘a‘c,
‘t‘c, ‘e’c, EOS
6: 29 29: DELETE, ‘d’‘c, ‘e’c, ‘1‘c, ‘e’c,
‘t‘c, ‘e’c, EOS
7: 36 36: DELETE, ‘r‘c, ‘e’c, ’‘m’c, ‘oO’‘c,

‘v‘’c, ‘e’c, EOS

There are several routines in the Subsystem 1library that can be used to search for
strings in one of these structures. You can find details on the use of these procedures in
the reference manual/’help’ entries for ’‘strisr’ and ‘strbsr’.

Linkage

The sole purpose of the linkage declaration is to circumvent problems with transforming
Ratfor identifiers to Fortran identifiers when compiling program modules separately. To relax
the restriction that externally visible names (subroutine, function, and common block names)
must contain no more than six characters, each separately compiled module must begin with an
identical linkage declaration containing the names of all external symbols -- subroutine
names, function names, and common block names (the identifiers inside the slashes -- not the
variable names). Except for text substitution statements, the 1inkage declaration must be the
first statement 1in each module. The order of names in the statement is significant -- as a
general rule, you should include the same file containing the 1linkage declaration in each
module.

Linkage looks very much 1ike a Fortran type declaration:
1inkage identifieri, identifier2, identifier3

Each of the identifiers is an external name (i.e. subroutine, function, or common block
name). If this statement appears in each source module, with the identifiers in exactly the
same order, it is guaranteed that in all cases, each of these identifiers will be transformed
into the same unique Fortran identifier. For Subsystem-specific information on the mechanics
of separate compilation, you can see the section in the applications notes devoted to this
topic.

Local

With the 1ocal deciaration, you can indicate that certain variables are "local® to a
particular compound statement (or block) just as in Algol. Local declarations are most often
used inside internal procedures (which are described later), but they can appear in any com-
pound statement.

MAELI W wWeS! W ww i we

The type declarations for 1local variables must be preceded by a 1ocal declaration
containing the names of all variables that are to be local to the block:

local 1, j, a

integer i, j
real a

The local statement must precede the first appearance of a variable inside the block. while

this 1isn’t the greatest syntax in the world, it is easy to implement local variables in this
fashion.

Scope rules similar to those of most block-structured languages apply to nested compound
statements: A local variable is visible to all blocks nested within the block in which it is
declared. Declaration of a local variable obscures a variable by the same name declared in an
outer block.

There are several cautions you must observe when using local variables. ‘Rp’ s
currently not well versed 1in the semantics of Fortran declarations and therefore cannot
diagnose the incorrect use of local declarations. Misuse can then result in semantic errors
in the Fortran output that are often not caught by the Fortran compiler. If the declaration
of a variable within a block appears before the variable is named in a local declaration, ‘rp’
will not detect the error, and an ‘"“undeclared variable" error will be generated in the
Fortran. External names (i.e. function, subroutine, and common block names) must never be
named in a local declaration, unless you want to declare a local variable of the same name.
Finally, the formal parameters of internal procedures should never appear in a local declara-
tion in the body of the procedure, again, unless you want to declare a local variable of the
same name.

Here is an example showing the scopes of variables appearing in a local declaration:

level O
subroutine test

integer i, j, k

{ ### Yevel 1
local i, m; integer i, m
accessible: level O j, k; level 1 i, m
{ ### level 2
local m, k; real m, k
accessible: level O j; level 1 i; level 2 m, Kk

end

Ratfor User‘s Guide

Ratfor Control Statements

As was said by Kernighan and Plauger in Software Tools, except for the control struc-
tures, "Ratfor is Fortran." The additional control structures just serve to give Fortran the
capabilities that already exist in Algol, Pascal, and PL/I.

Compound Statements

Ratfor allows the specification of a compound statement by surrounding a group of Ratfor
statements with braces ("{}"), just like begin - end in Algol or Pascal, or do - end in PL/I.
A compound statement may appear anywhere a single statement may appear, and is considered to
be equivalent to a single statement when used within the scope of a Ratfor control statement.

There is normally no need for a compound statement to appear by itself -- cogpaund
statements usually appear in the context of a control structure -- but for completeness, here
is an example of a compound statement.

{ # end of line -- set to beginning of next line
line = l1ine + 1
col = i
end_of_line = YES
}

If - Else

The Ratfor if statement is much more flexible than its Fortran counterpart. In addition
to allowing a compound statement as an alternative, the Ratfor if includes an optional else
statement to allow the specification of an alternative statement. Here is the complete syntax
of the Ratfor if statement:

if (<condition>) <statementi>
[else <statement2>]

<Condition> is an ordinary Fortran logical expression. If <condition> is true, <statementt>
will be executed. If <condition> is false and the else alternative is specified, <statement2>
will be executed. Otherwise, if <condition> is false and the else alternative has not been
specified, no action occurs.

Both <statementi> and <statement2> may be compound statements or may be further {f
statements. In the case of nested if statements where one or more @lse alternatives are not
specified, each else is paired with the most recently occurring if that has not already been
paired with an else.

Although deep nesting of {f statements hinders understanding, one situation often occurs
when it is necessary to select one and only one of a set of alternatives based on several con-
ditions. This can be nicely represented with a chain of if - else if - else if . . . else
statements. For example,

if (color == RED)
call process_red
else if (color == BLUE | color == GREEN)
call process_blue_green
else if (color == YELLOW)
call process_yellow
else
call color_error

could be used to select a routine for processing based on color.

While

The Ratfor while statement allows the repetition of a statement (or compound statement)
as long as a specified condition is met. The Ratfor while loop is a "test at the top* 1loop
exactly 1like the Pascal while and the PL/I do while. The while statement has the following
syntax: .

while (<condition>)
<statement>

If <condition> is false, control passes beyond the loop to the next statement in the program;
if <condition> is true, <statement> is executed and <condition> is retested. As should be
expected, if <condition> is false when the while 1is first entered, <statement> will be
executed zero times.

KaiTor user > Juilue

The while statement is very handy for controlling such things as skipping blanks in
strings: .

while (str (i) == BLANK)
i= i+

And of course, <statement> may also be a compound statement:

while (getlin (buf, STDIN) ~= EOF) {
call process (buf)
call output (buf)
}

R:pf & ' %

The Ratfor repeat l1oop allows repetitive execution of a statement until specified con-
di.ion is met. But, wunlike the while loop, the test is made at the bottoh of the loop, so
that the controlled statement will be executed at least once. The repeat loop has syntax as
follows:

repeat
<statement>
[until (<condition>)]

when the repeat statement is encountered, <statement> is executed. If <condition> is found to
be false, <statement> is reexecuted and the <condition> is retested. Otherwise control passes
to the statement following the repeat loop. If the until portion of the loop is omitted, the
loop is considered an "infinite repeat" and must be terminated within <statement> (usually
with a break or return statement). Pascal users should note that the scope of the Ratfor
repeat is only a single <statement> (which of course may be compound).

Repeat 1oops, as opposed to while loops, are used when the controlled statement must be
evaluated at least once. For example,

repeat
call get_next_token (token)
until (token ~= BLANK_TOKEN)

The "infinite repeat" is often useful when a l1oop must be terminated "in the middle:"

repeat {
call get_next_input (inp)
call check_syntax (inp, error_flag)
if (error_flag == NO)
return
call syntax_error (inp) # go back and get another

Do

Ratfor provides access to the Fortran do statement. The Ratfor do statement is identical
to the Fortran do except that it does not use a statement label to delimit its scope. The
Ratfor do statement has the following syntax:

do <limits>
<statement>

<Limits> is the normal Fortran notation for the limits of a do, such as "i{ = 1, 10" or "j = §,
20, 2". The same restrictions apply to <limits> as apply to the limits in the Fortran do.
<Statement> is any Ratfor statement (which may be compound).

The Ratfor do statement is just l1ike the standard Fortran one-trip do0 loop -- <statement>
will be executed at least once, regardless of the l1imits. Also, the value of the do control
variable is not defined on exit from the loop.

The do l1oop can be used for array initialization and other such things that can never
require "zero trips", since it produces slightly more efficient object code than the for
statement (which we will get to next).

do i = 1, 10
array (i) = 0O

One slight irregularity in the Ratfor syntax occurs when <statement> appears on the same
line as the do. Since ’‘rp’ knows very little about Fortran, it assumes that the <limjts>

- 15 -

Ratfor User'’s Guide

continue until a statement delimiter. This means that the <limits> must be followed by a
semicolon if <statement> is to begin on the same line. This often occurs when a compound
statement is to be used:

do i = 1, 10; {
array_1 (i)
array_2 (1)

For

The Ratfor for statemgnt is an all-purpose looping construct that takes the best features
of both the while and do statements, while allowing more flexibility. The syntax of the for
statement is as follows:

for (<initialize>; <condition>; <reinitialize>)
<statement>

when the for is executed, the statement represented by <initialize> is executed. Then, if
<condition> is true, <statement> is executed, followed by the statement represented by
<reinitialize>. Then, <condition> is retested, etc. Any or all of <initialize>, <condition>,
or <reinitialize> may be omitted; the semicolons, however, must remain. If <initialize> or
<reinitialize> is omitted, no action is performed in their place. If <condition> is omitted,
an "infinite 1loop" 1is assumed. (Both <initialize> or <reinitialize> may be compound
statements).

As you can see, the for loop with <initialize> and <reinitialize> omitted is identical to
the while loop. With the addition of <initialize> and <reinitialize>, a zero-trip do loop can
be constructed. For instance,

for (i = 1
array_1
array_2

}

is identical to the last do example, but given a certain combination of 1imits, the for 1loop
would execute <statement> zero times while the do 1oop would execute it once.

The for 1loop can do many things not possible with a do 1oop, since the for loop is not
constrained to the ascending incrementation of an index. As an example, assume a l1ist struc-
ture in which "list" contains the index of the first item in a list, and the first position in
each 1list item contains the index of the next. The for statement could be used to serially
examine the list:

for (ptr = 1ist; ptr ~= NULL; ptr = array (ptr)){
[examine the item beginning at array (ptr + 1)]

Break

The break statement allows the early termination of a loop. The statement
break [<level>]

will cause the immediate tebminat1on of <level> loops, where <level>, if specified, 1is an
integer in the range 1 to the depth of loop nesting at the point the break statement appears.
Where <level> is omitted, only the innermost loop surrounding the break is terminated.

In the following example, the break statement will cause the termination of the inner for
loop if a blank is encountered in ’‘str’:

while (getlin (str, STDIN) ~= EOF) {
for (i = 1; str (i) ~= EOS; i += 1)
if (str (i) == BLANK)
break

str (i) = EOS # output just the first word
call putlin (str, STDOUT)

call putch (NEWLINE, STDOUT)

}

Replacing the break statement with "break 1" would have exactly the same effect. However,
replacing it with "break 2" would cause termination of both the inner for and outer while
loops. Unless this fragment is nested inside other loops, a value greater than 2 would be an
error.

Ratfor User’s Guide

Next

The next statement is very similar to the break statement, except that a statement of the
form

next [<level>]

causes termination of <level> - 1 nested loops (zero when <level> is omitted). Execution then
resumes with the next iteration of the innermost active loop. <Level>, if specified, is again
an integer in the range 1 to the depth of loop nesting that specifies which loop (from inside
out) is to begin its next iteration.

In this example, the next statement will cause the processing to be skipped when an array
element with the value "UNUSED" is encountered.

for (i = 1; i <= 10; i += 1)
for (j = 1; j <= 10; j += 1) {
if (array (i, j) == UNUSED) (.
next

process array (i, j)
}

when an array element with the value "UNUSED" is encountered, execution of the next statement
causes the <reinitialize> portion of the innermost for statement, "j += 1", to be executed
before the next iteration of the inner loop begins. You should note that when used with a for
statement, next always skips to the <reinitialize> part of the appropriate for locop.

If the statement "next 2" had been used in place of “"next", the inner for loop would have
been terminated, and the "i += {" of the outer for loop would have been executed 1in prepara-
tion for its next iteration.

Return

The Ratfor return statement normally behaves exactly 1ike the Fortran return statement in
all but one case. In this case, Ratfor allows a parenthesized expression to follow the
keyword return inside a function subprogram. The value of this expression is then assigned to
the function name as the value of the function before the return is executed. This 1is just
another shorthand and does not provide any additional functionality.

Normally in a Fortran function subprogram, you place an assignment statement that assigns
a value to the function name before the return statement, like this:

integer function calc (x, y, 2z)
calc = x +y - 2
return

...

If you like, Ratfor alliows you to express the same actions with one line less code:
integer function calc (x, y, 2z)

return (x + y - z)

This segment performs exactly the same function as the preceding segment.

Select

The Ratfor select statement allows the selection of a statement from several alter-
natives, based either on the value of an integer variable or on the outcome of several logical
conditions. A select statement of the form

b4

Ratfor User’s Guide

select
when (<expression list 1>)
<statement 1>
when (<expression list 2>)
<statement 2>

when (<expression list n>)
<statement n>
[ifany
<statement n+1>]
[else
<statement n+2>]

(where <expression l1ist> i a comma-separated list of logical expressions) performs almost the
same function as a chain of if - else if . . . else statements. Each <logical expression>
is evalua*ted 1in turn, and when the first true expression is encou.iterzd, the corresponding
statement is executed. If any when alternative is selected, the statement in the ifany part
is executed. If none of the when alternatives are selected, the statement in the else part is
executed.

Although 1its function is very similar to an if - else chain, a select statement has two
distinct advantages. First, it allows the "ifany" alternative -- a way to implement a rather
frequently encountered control structure without repeated code or procedure calls. Second, it
places all the logical expressions in the same basic optimization block, so that even a dumb
Fortran compiler can optimize register loads and stores.

For example, assume that we want to check to see if the variable ‘color’ contains a valid
color, namely ‘RED’, ‘YELLOW’, ‘BLUE’, or ‘GREEN’. If it does, we want to execute one of the
three subroutines ‘process_red’, ‘process_yellow’, or ‘process_blue_green’ and set the flag
‘color_valid’ to YES. Otherwise, we want to set the ‘color_valid’ to NO. A select statement
performs this trick nicely, with no repeated code:

select
when (color == RED)
call process_red
when (color == YELLOW)
call process_yellow
when (color == BLUE, color == GREEN)
call process_blue_green
ifany
color_valid = YES
else
color_valid = NO

The second variant of the select statement allows the selection of a statement based on
the value of an integer (or character) expression. It has aimost exactly the same syntax as
the logical variant:

select (<integer expression>)
when (<expression list 1>)
<statement 1>
when (<expression list 2>)
<statement 2>
when (<expression list n>)
<statement n>
[ifany
<statement n+1>]
[else
<statement n+2>]

Using this variant, a statement is selected when one of its corresponding integer expressions
has the same value as the <integer expression> following the ‘select’. The i{fany and else
clauses behave as they do in the logical variant. The most visible difference, though, is
that the order of evaluation of the integer expressions is not specified. If two values in
two expression 1ists are i{dentical, it is difficult to say which of the statements will be
executed; it can only be said that one and only one will be executed.

The integer variant offers one further advantage. If elements in the expression 1ists
are integer or single-character constants, ‘rp’ will generate Fortran computed goto
statements, rather than Fortran {f statements, where possible. This code is wusually
considerably faster and more compact than the code generated by {if statements.

The example given for the logical variant of select would really be much more easily done
with the integer variant:

select (color)
when (RED)
call process_red
when (YELLOW)
call process_yellow
when (BLUE, GREEN)
call process_blue_green
ifany
color_valid = YES
else
color_valid = NO

As a final example of select, the following program fragment selects an insert, update,
delete, or print routine based on the input codes "“i", "u', 'd" or "p":

while (getlin (buf, STDIN) ~= EOF)

select (buf (1))
when (‘i‘c, ‘I‘c) # insert record
call insert_record
when (‘u‘c, ‘U‘’c) { # update record
call delete_record
call insert_record

when (‘d‘’c, ‘D’c) # delete record
call delete_record
when (‘p‘c, ‘P’c) # print record
ifany # always print after command
call print_record
else # 1llegal input

call command_error

This example shows the use of both a compound statement within an alternative (the ‘“"update"
action deletes the target record and then inserts a new version), and a null statement
consisting of a single semicolion.

Procedure

Procedures are a convenient and useful structuring mechanism for programs, but in Fortran
there often are reasons for restricting the unbridlied use of procedures. Among these reasons
are (1) the run-time expense of procedure calls, and argument and common block addressing; (2)
external name space congestion; and (3) difficulty 1in detecting errors in parameter and
common-block correspondence. Ratfor attempts to address these problems by allowing
declarations of procedures within Fortran subprograms that are inexpensive to call (an
assignment and two gotos), are not externally visible, and allow access to global variables.
In addition, when correctly declared, Ratfor internal procedures can call each other recur-
sively without requiring recursive procedures in the host Fortran.

Currently, Ratfor internal procedures do not provide the same level of functionality as
Fortran subroutines and functions: internal procedure parameters must be scalars and are pas-
sed by value, internal procedures cannot be used as functions (they cannot return values), and
no automatic storage is available with recursive integer procedures. But even with these
restrictions, internal procedures can significantly improve the readability and modularity of
Ratfor code.

Internal procedures are declared with the Ratfor procedure statement. Internal
procedures may be declared anywhere in a program, but a declaration must appear before any of
its calls. Here is an example of a non-recursive procedure declaration:

putchar --- put a character in the output string
procedure putchar (ch) {

character ch

str (i) = ch
i += 1

}

This procedure has one parameter, "ch", which must appear in a type declaration inside the
procedure.

Internal procedures always exit by falling through the end of the compound statement. A
return statement in an internal procedure will return from the Fortran subprogram in which the
internal procedure is declared.

Ratfor User’s Guide

After the above declaration, "putchar" can be subsequently called in one of two ways:
putchar (’=‘c)
-or-
call putchar (’='c)
The second form is preferable, so that a procedure can be converted to a subroutine, and vice-
versa. The number of parameters in the call must always match the number of parameters in the
declaration. If parameter 1ist is omitted in the declaration, then it also must be omitted in
its calils.
If "putchar" were recgrsive, the declaration would be

procedure putchar (ch) recursive 128

The value "i28" is an integer constant that is the maximum number of recursive calls to
"putchar" outstanding at any one time.

Since internal procedures may be mutually recursive, and since they must be declared tex-
tually before they are used, procedures may be declared "forward" by separating the procedure
declaration from its body. Here is "putchar" declared using a "forward" declaration:

procedure putchar (ch) forward

putchar -~-- put a character in the output string
procedure putchar {

character ch

str (i) = ch
i o+= 1

}

As you can see, the parameters must appear in the "forward" declaration; they may appear in
the body declaration, but are ignored. For maximum efficiency, all internal procedures should
be presented in a "forward" declaration. The procedure bodies should then be declared after
the final return or stop statement in the body of the Fortran subprogram, but before the
terminating end statement (then the program never has to jump around the procedure body).

In general, a procedure declaration contains five parts: the word "procedure", the
procedure name, an optional list of formal parameters, an optional "recursive <integer>" part,
and either a compound statement or the word "forward". An internal procedure call consists of

three parts: optionally the word "call", the procedure name, and an optional parameter list.

- 20 -

RQIUTUIT UdTIT D vu IuUe

Ratfor Language Reference

This section contains a summary of the Ratfor syntax and source program format. 1In addi-
tion to serving as a reference for Ratfor, it can also be used by someone who is familiar with
Fortran and wants to quickly gain a reading knowledge of Ratfor.

Differences Between Ratfor and Fortran

Source Program Format

- ‘Rp’ 1is sensitive to letter case. Keywords must appear in lower casr.. Case is
significant in identifiers. ¢

- ‘Rp’ is blank sensitive in that words (seguences of letters, digits, dollar signs,
and underscores) must be separated by special characters or blanks.

- ‘Rp’ 1is not sensitive to card columns. Statements may begin at any position on a
line.

- ‘Rp’ allows multiple statements per 1ine by separating the statements with
semicolons.

- A Ratfor statement may be labeled by placing the numeric label in front of the
statement. The label must be separated from the statement by at least one space.

- ‘Rp’ will expect a continuation l1ine if it encounters a l1ine ending with a trailing
comma, a condition with unbalanced parentheses, a missing statement following a
control statement, or a 1ine ending with a trailing underscore.

- Any line may contain a comment. Comments begin with a sharp sign ("#") and continue
until the end of the tine.

Identifiers

Ratfor identifiers consist of letters, digits, underscores, dollar signs, and may be up
to 100 characters long. An identifier must begin with a letter. Underscores may be included
for readability, but are completely ignored. An identifier may not be the same as a Fortran
or Ratfor keyword. ‘Rp’ transforms all 1long Ratfor identifiers 1into unique Fortran
identifiers.

Integer Constants

‘Rp’ allows integer constants of the form "<base>r<number>" where <base> is an integer
between 2 and 16. The letters "a" - "f" are used for digits in bases greater than 10.

String Constants

String constants in Ratfor consist of a string body and a string format indicator. The
string body is a group of strings, bounded by quotes, and possibly separated by blanks. The
string format indicator designates the data representation to be used for the characters in
the string body. It has one of the following values:

omitted Fortran Hollerith string. A standard Fortran Hollerith constant 1is generated.
Characters are left-justified, packed in words (two characters per word on the
Prime), and unused positions on the right are filled with blanks.

c Single character constant. A single character constant »is generated. The character
is right-justified and zero-filled on the left in a word. Only one character is
allowed in the body of the constant. This is the preferred format for all single
characters in the Software Tools Subsystem.

P Packed (Hollerith) period-terminated string. The ‘p’ format indicator causes the
generation of a Fortran Hollerith constant. All1 periods 1in the string body are
preceded by an escape character ("e").

v PL/I character varying string. Fortran decliarations are generated to create a PL/I
character varying string. "V" format string constants may only be used in executable
statements.

Ratfor User‘s Guide

s EOS-terminated unpacked string. Fortran declarations are generated to construct an
array in which each element contains one character of the string body, right-
justified and zero-filled (each character is in the same format as is generated by
the "c" format indicator). Following the characters is a word containing the value
E0S. EOS-terminated strings are the preferred format for multi-character strings in
the Subsystem. "S* format string constants may only be used in executable
statements.

Logical and Relational Operators

Ratfor allows the use of graphic characters to represent logical and relational operators
instead of the Fortran ".EQ." and such. These characters will be replaced by their Fortran
equivalents during preprocgssing. The following table shows the equivalent syntaxes:

T 3 T g
Ratfor Fortran Function

> .GT. Greater than
>= .GE. Greater or equal
< LT, Less than
= .LE. Less or equal
== .EQ. Equal to
~= .NE. Not equal to
~ .NOT. Logical negation
& .AND. Logical conjunction
! .OR. Logical disjunction
&8& (none) Short-circuited conjunction
N (none) Short-circuited disjunction

Note that the digraphs shown in the table must appear in the Ratfor program with no imbedded
spaces. The short-circuited operators may appear only in the <condition> part of Ratfor
control statements.

Assignment Operators

Assignment operators provide a shorthand for the common Fortran idiom "<v> = <v> <op>
<expr>". Assignment operators may appear anywhere a Fortran assignment statement may appear.
The following assignment operators are available in Ratfor:

Operator Use Result
+= <v> += <e> <v> = <v> + (<e>)
-= <v> -z <e> <v> = <v> - (<e>)
x= <y> x= <e> <y> = <v> x (<e>)
= <v> /= <e> <v> = <v> [/ (<e>)
%= <v> %= <e> <v> = mod (<v>, <e>)
&= <v> &= <e> <v> = and (<v>, <e>)
I= <v> = <e> <v> = or (<v>, <e>) .
A= <v> = <e> <v> = xor (<v>, <e>)

Escape Statements

Escape statements can be used to output Fortran statements that will not be touched by
the Ratfor preprocessor. The escape statement has three possible forms. In the first form
listed below, the first non-blank character of the Fortran statement is output in column
seven. In the second form, the first non-blank character of the Fortran statement 1is output
in column seven, but column six contains a "$" to continue a previous Fortran statement to
that stream. In the third form, the Fortran statement is output starting in column one, so
that the user has full control of the placement of items on the 1ine. The following is a sum-
mary of this description:

Escape Statement Format Output Column
%<stream><Fortran statement> 7
%<stream>&<Fortran statement> 6
%<stream>%<Fortran statement> 1

"Stream" can take on the following values:

1 declaration
2 data
3 code

-22-

RAlTUlr UdEl™ > auviIue

If no stream value is given, it is assumed to be the code stream. EScaped statements have to
come between a function or subroutine statement and the corresponding end statement.

Incompatibilities

Even with the great similarities between Fortran and Ratfor, an arbitrary Fortran program
is not necessarily a correct Ratfor program. Several areas of incompatibilities exist:

- Blanks are significant -- at least one space or special character must separate
adjacent keywords and identifiers.

- The Ratfor do statement does not contain a statement number following the “do". 1Its
range always extends over the next statement.

- “wo word Fortran key phrases such as double precisior m ! : r evented as a single
Ratfor identifier (e.g. ‘“doubleprecision" or "double_precision").

@
- Fortran statement functions must be preceded by the Ra.for keyword stmtfunc. To

assure that they will appear in the correct order in the Fortran, they should
immediately precede the end statement of the program unit.

- Hollerith literals (i.e. G5HABCDE) are not allowed anywhere 1in a Ratfor program.
Instead, ‘rp’ expects all Hollerith 1literals to be enclosed in single or double
quotes (i.e. "ABCDE" or ‘ABCDE’).

- ‘Rp’ does not allow Fortran comments. Ratfor comments must be introduced by a sharp
sign ("#").

- ‘Rp’ does not accept the Fortran continuation convention. Continuation is implicit
for any 1ine ending with a comma, or any conditional statement containing unbalanced
parentheses. Continuation between arbitrary words may be indicated by placing an
underscore, preceded by at least one space, at the end of the line to be continued.

- ‘Rp’ does not ignore text beyond column 72.

- Fortran and Ratfor keywords may not be used as 1identifiers in a Ratfor program.
Their use will result in unreasonable behavior.

Ratfor Text Substitution Statements

define (<identifier> [(<formal params>)], <replacement text>)

when a define statement is encountered in a source program, <replacement text> is recor-
ded as the replacement for <identifier>. If <identifier> is encountered later in the program,
it will be replaced by <replacement text>. If <formal params> was present in the definition
of <identifier>, and the subsequent occurrence of <identifier> is followed by a parenthesized,
comma-separated 1ist of strings, occurrences of the formal parameters in <replacement text>
will be replaced by the corresponding strings in the actual parameter 1list.

<Identifier> must be an alphabetic Ratfor identifier, while <replacement text> may
contain any characters except unmatched quotes or parentheses. <Formal params> must be a
comma-separated 1ist of identifiers; corresponding actual parameters may contain any charac-
ters except unmatched quotes, unbalanced parentheses, or unnested commas. During replacement,
<replacement text> is also examined for occurrences of defined identifiers. Formal parameter
replacement occurs on identifiers in <replacement text>, even if the identifiers are surroun-
ded by quotes or parentheses. Redefinition of an <identifier> causes the new <replacement
text> to replace the old.

undefine (<identifier>)

The undefine statement removes the definition of <identifier> from the 1ist of defined
identifiers. Subsequent occurrences of <identifier> in thesprogram will not be replaced
unless <identifier> appears in a subsequent define statement.

include ‘<path name>’

An include statement instructs ‘rp’ to begin taking input from the file specified by

<path name>. when the end of the file is reached, ‘rp’ resumes taking input from the file
containing the include statement. The path name may be surrounded by either single or double
quotes. The file specified by <path name> may contain further include statements, up to a

maximum depth of 5.

-23-

Ratfor User‘s Guide
Ratfor Declarations

linkage <identifier> { , <identifier>)}

The linkage declaration is used to guarantee that long external names are transformed
into the same unigue Fortran name. Names are transformed as they are presented in the 1inkage
declaration. The same 1linkage statement should appear as the first statement of each
separately compiled source module, and should contain the names of all subroutines, functions,
and common blocks in the program.

local <identifier> { , <identifier> }

L
The local declaration allows the declaration of variables with names local to the scope

of a compouna siccement (block). The.. local. .declaration should appear inside a compound
statement and must precede all occurrences of the idgntifiers to be declared 1local to the

block. A1l identifiers appearing in a local declaration must subsequently appear in a type
declaration in the same compound statement. .

string <name> <quoted string>

The string statement generates declarations to produce an EOS-terminated string in the
integer array <name>. <Quoted string> must be surrounded by either single or double quotes.

stringtable <index>, <body>, [/] <item> { / <item }

The stringtable declaration creates a marginally indexed array of integers and character
strings. <Index> and <body> are variables to be deciared as the index and body arrays respec-
tively. <Body> is a one-dimensional array in which the values generated by the <item>s are
stored consecutively. The first element of <index> contains the number of remaining elements
in <index>; subseguent elements each contain the index in <body> of the first position of the
corresponding <item>.

<Item>s are comma-separated 1ists of integers, single-character constants, and strings (with
no string format indicators). Integers and EOS-terminated strings are generated and stored
consecutively in <body>. The first position of each <item> in <body> is stored in the
corresponding entry of <index>.

Ratfor Control Statements

bresk [<integer>]

The break statement aliows the user to terminate the execution of a for, while, or repeat
loop and resume control at the first statement following the loop. The <integer> specifies
the number of 1loops to terminate; if absent, 1 is assumed (only the innermost loop is
terminated). If the integer is N, then the N innermost loops currently active are terminated.

do <limits>; <statement>

The do statement provides a means of accessing the local Fortran do-statement. <Limits>
includes whatever parameters are necessary to satisfy Fortran, minus the statement number of
the last statement to be performed, which is generated by Ratfor. The semicolon must not be
used if the statement to be iterated does not appear on the same 1ine as the do.

for ‘(’ <init>; <condition>; <reinit> ')’ <statement>

The for statement is a very general looping construct. <init> is a statement to be
executed before loop entry; it is frequently used to initialize a counter. <Condition> 1is a
condition to be satisfied for every iteration; the condition is tested at the top of the loop.
<Condition> becoming false is the most often used method of terminating the loop. <Reinit> is
a statement to be executed at the bottom of the loop, just before a jump is made to the top to
test the <condition>. <Reinit> s wusually used to increment or decrement a counter.
<Statement> may be any legal Ratfor statement.

if /(’ <condition> /)’ <statement> [else <statement>]
If is a generalization of the Fortran logical-if statement. 1If the condition is true,
the first <statement> is executed. If the optional else clause is missing, control is then

passed to the statement following the if; otherwise, the <statement> following the else is
executed before passing control.

- 24 -

Ra1rTor user- s uuiae

next [<integer>]

The next statement complements the break statement. It is used to force the next itera-
tion of a for, repeat or while loop to occur. The parameter <integer> specifies the number of
levels of nested loops to jump out; if omitted, the innermost loop is continued; otherwise,
for <integer> = 2, the next-to-innermost loop is continued, etc.

procedure <procid> [/(’ <id> {, <id>} ‘)’]
[recursive <integer>]
(forward | <compound statement>)

[cal1] <procid> [/(/ <expr> {, <expr> } ‘)’]

The procedure declaration allows the declaration of internal Ratfor procedures. <Procid>
is the name of the internal procedure. For«." . pe.ers (scalar, pass-by-value) are declared
following the <procid>. Formal parzmeteirs must appear in a type declaration in the body of
the procedure. If the procedure is to be called recursively, the recursive (<integer> clause
must be included; <integer> is the maxinum number of recursive calls in process at any given
time. Following the heading, either a compound statement or the word forward must appear. If
the forward option is used, a procedure declaration containing <compound statement> must fol-
low at some point in the program unit. Formal parameters specified on the second declaration
may be present, but are ignored.

A <procid> must be defined before it is referenced by a call. The call can appear exac-
tly as a Fortran call, or the word call can be omitted. Actual parameters must correspond in
number to formal parameters. If the formal parameters list is omitted in the declaration, no
actual parameter list may be present.

repeat <statement> [until ‘(’ <econdition> /)’]

The repeat statement is used to generate a loop with the iteration test at the bottom.
The <statement> is performed, then the <condition> checked; if false, the <statement> is
repeated. If true, control passes to the statement following the until. If the until is
omitted, the loop is repeated indefinitely, and must be terminated with a stop, break, or

goto.

return [/(’ <expression> ’)’]

The return statement behaves exactly like its Fortran counterpart, except that if the
optional parenthesized expression is included inside a function subprogram, the value of
<expression> will be assigned to the function name as the function value before the return is
executed.

select
{when ‘(’ <condition> {, <condition>} ‘)’ <statement>)}
[ifany <statement>] [else <statement>]

select ’'(’ <integer expr> ‘)’
{when ’'(’ <integer expr> {, <integer expr>} ‘)’ <statement>
[ifany <statement>] [else <statement>])

Select is a generalization of the {f statement. In its first alternative, the when
<condition>s are evaluated in order; the <statement> associated with the first one found to be
true is executed. If any <condition> is found true, the <statement> associated with ifany is
executed; if none are found true, the <statement> associated with @lse is executed.

Similarly, in the second alternative, the <integer expr> associated with select is

evaluated. The result is then compared to the <integer expr>s associated with the when parts
in an unspecified order. When an equal comparison is made, the <statement> following the
corresponding when is executed. If an equal comparison is made, the <statement> following

ifany is executed; if no equal comparison is made, the <statement> following else is executed.

while ‘(’ <condition> ’)’ <statement>
The while statement is the basic test-at-the-top loop. The <condition> is evaluated; if

true, the <statement> is executed and the l1oop is repeated, otherwise control passes to the
statement following the loop.

- 25 -

Ratfor User's Guide

Ratfor Programming Under the Subsystem

This chapter describes the use of Ratfor in the programming environment provided by the
Software Tools Subsystem. In addition to demonstrating the use of the Ratfor preprocessor,
Fortran compiler, and linking loader, the programming conventions necessary for the use of the
Subsystem support subprograms are described.

In this chapter, a number of programming conventions are presented. Since very few of
the conventions can be enforced by the Subsystem, adherence to these conventions must be left
up to the programmer. Many conventions, such as those dealing with indentation and comment
placement, are shown becauge they assist in producing readable, maintainable programs. Viola-
tion of these conventions, while not critical, may result in unmaintainable programs and
ex iended debugging times. Other conventions, such as those dealing . with character string
representations and input/output, are crucial to the proper operatieon of the Subsystem and its
support subprograms. Violation of these conventions can and will cause undesirable results.

.

Requirements for Ratfor Programs

The Software Tools Subsystem is not an operating system. Rather, it is a collection of
cooperating user programs. To run successfully under the Subsystem, a program must cooperate
with it. Several things are required of Subsystem programs:

- The program must terminate with a stop statement, or a call to the routine "error". The
program must not "call exit" or invoke any of the Primos error reporting subroutines with
the "immediate return" key. A program’s failure to terminate properly will also cause
the Subsystem command interpreter to be terminated, leaving the user face-to-face with
Primos.

- The program should not have initialized common blocks (i.e. block data). Initialize the
common areas with executable statements. (To 1ink a program that must have initialized
common, see appendix b.)

- Local variables 1in a subprogram are placed on the stack unless they appear in a data or
save declaration. The value of variables not appearing in one of these declarations is
not defined on entry to a subprogram.

Several conventions apply to the file containing the Ratfor source statements:
- The file name should end with the suffix ".r".

- Any number of program units (main program, functions, and subroutines) may be included in
the file, but the main program must be first.

- A1l variables and functions must be declared in type statements (the Primos Fortran com-
piler enforces this restriction, except in the case of function names).

- Each program unit must end with an end statement.

- Since defines apply globally to all subsequent program units, a main program and all of
its associated subprograms can be contained in the same file. Only one copy of
definitions need be included at the beginning of the source file.

Running Ratfor Programs Under the Subsystem

Three steps are required to obtain an executable program from Ratfor source statements.
The first step, preprocessing, produces ANSI Fortran statements from the Ratfor source
statements. The second step, compilation, results in a relocatable binary module, which lacks
all of the Primos, Fortran and Subsystem subroutines. The last step, 1linking., produces an
executable object program by linking the relocatable binary module with the Primos, Fortran
and Subsystem support routines necessary for its execution. The object program produced dur-
ing 1inking may then be executed.

Preprocessing

In the preprocessing step, the Ratfor preprocessor, ‘rp,‘’ is used to translate Ratfor
source statements into semantically equivalent ANSI Fortran statements acceptable to the
Primos Fortran compiler. The Ratfor preprocessor is invoked with a command 1ine of the fol-
lowing syntax:

_26-

NE LI W W w o -

rp [-o <output file>] <input file> [<rp options>]

If you do not want a conventionally named output file, you may specify the option "-o
<output file>", where <output file> is the name you want given to the Fortran output. If you
do not include a "-o <output file>" option, ’‘rp’ will name the output file by appending ".f*"

to the name of the first <input file>. If the name of the first <input file> ends in ".r",
the ".r" will be replaced by the ".f".

Next comes a 1ist of the files containing Ratfor source statements to be preprocessed.
‘Rp’ reads the files in the order specified on the command 1ine and treats the contents as if
they were together in one big file. This means that defines in each input file apply to alil
subsequent input files.

Finally, there are preprocessor options which may be specified to change the output in
some way or affect p-er ..uisor Operation. For a complete list of :available options and a
more detailed description of the command l1ine syntax, see Appendix F.

In spite of all tr..s complicated stuff, the ‘rp’ preprocessor is quite éasy to use if you
follow the recommended naming conventions for files. For instance, if you have a Ratfor
program in a file called "prog.r", you can have it preprocessed by just typing

rp prog.r
This command will cause the program contained in "prog.r" to be preprocessed, and the Fortran
output to be produced on the file '"prog.f" (which is exactly what the Fortran compiler
expects).

Here are some more examples to éhow other ways in which ‘rp’ can be called:

preprocess the files "pt.r", "p2.r", and "p3.r"
and produce Fortran output on "pi1.f"

I W

rp pi.r p2.r p3.r
preprocess the files "pti.r", "p2.r", and "p3.r"
and produce Fortran output on "fin_out"
rp pi.r p2.r p3.r -o ftn_out
preprocess the file "pi.r", produce the Fortran

on "ftn_out" and include code to produce
subprogram level trace

* B n

rp -t pl.r -o ftn_out

Compiling

After turning your Ratfor source code into Fortran with the preprocessor, the next step
is to compile the Fortran code. Since the Subsystem uses the Primos Fortran compiler, the
‘fc’ command just produces a sequence of Primos commands to cause the compilation. The fol-
lowing command will call the Fortran compiler for a compilation:

fc [<options>] <input> [-b [<binary>]] [-1 [<listing>]]

The Fortran source code must be in the file <input>. The relocatable binary output will be
placed in the file <binary>, unless "-b <binary>" is omitted. Then, following Subsystem con-
ventions, the binary file name is constructed by appending the input file name with ".b"; if
the input file ends with “.f", the “f" will be replaced by the "b". Normally no 1listing is
produced; however, if one is requested, it will appear on the file <listing>, or if the list-
ing file name is omitted, the name will be constructed by appending the ".1" to the input file
name; again, if the input file name ends in ".f", the "f" will be replaced with the "1".

’
<Options> is a series of single letter options that specify how the compiler is to
generate the object code. Since there are too many options to completely describe here, we
will only mention a few of the more important ones. For those who wish to make full use of
the Fortran compiler, or for those just curious, the Software Tools Subsystem Reference
Manual, or the ‘help’ command will give complete information.

Here are brief descriptions of the options of interest:
-V Generate pseudo-assembly code describing the object code produced.
-i Unless otherwise specified, consider all integers to be "long" (32-bit) rather

than “short" (16-bit). (This is useful for programs ported from machines with

- 27 -

Ratfor User’s Guide

longer word lengths.)
-t Insert code to produce a statement-level trace during execution.
Of course, more than one of these options may be specified.

Again, even though all of this looks very complicated, it is really very simple, if vyou
have used the Subsystem file naming conventions. If you have your Fortran code in a file
named "prog.f" (remember where Ratfor put its output), you may compile it, using the default
options, by just entering

fc prog.f

The command will call the Fortran compiler to produce binary output in the file "prog.b".
Just for completeness, here are some other examples of ‘fc’ commands:

Compile "pi.f" to produce the binary "pi.b"
and a listing on "p1.1"

fc p1.f -1

Compile "pi1.f" to produce the binary "bin" and
the listing on "list"

fc p1.f -b bin -1 list

Compile "p3.f", produce a pseudo-assembly code
listing and default to 32-bit integers

fc -v =i p3.f -1

One problem you may encounter when using ’‘fc’ is that the Primos Fortran compiler pays no
attention to i/o redirection when it is writing error messages to the terminal. This is a
problem common to all Primos commands called from the Subsystem. If you want to record the
terminal output of the Fortran compiler, you must use the Primos command output facility.
This facility is accessed through the Subsystem ‘como’ command; for details, see the Software
Jools Subsystem Reference Manual or use the ‘help’ command.

Linking

The last step in preparing the program for execution is linking. The linking step fixes
the memory 1locations of the Subsystem common areas; assigns the binary module for each sub-
program to an absolute memory location; and 1inks in the required Subsystem support routines,
Fortran run-time routines, and Primos system calls. The memory image file produced by this
step may then be executed. It should be noted here that programs 1inked under the Subsystem
can run only under the Subsystem; they may not run without it.

The ’1d’ command is used to invoke the Primos loader to to do the linking. 1Its syntax is
as follows:

1d [-u] <binary file> . . . [-1 <library file>] . . .
[-t -m] [-o <output file>]

This 1is not the entire syntax accepted by ‘1d,’ but a complete discussion requires detailed
knowledge of the Primos loaders. For more information, see the Subsystem reference manual.

The "-u" option causes the locader to print a 1ist of undefined subprograms. Any number
of binary files to be included may be listed. The only restriction is that the main program
must be the finst binary subprogram encountered -- it must be the first program unit in a

binary file, and that binary file must be the first <binary file> to appear on the command
l1ine. Any number of libraries (residing in "=1ib=") may then be specified with the *"-1*"
option. The "-t -m" options cause a load map to be produced on a file with the name as the
output file (or first <binary file>, if an output file is not specified) with ".m" appended.
If the file name ends with ".b", the ".b" is replaced by the ".m". The "-o" option specifies
the name of the output file. If the "-o" option is omitted, the output file will have the
same name as the first <binary file>, with ".o" appended. If the name of the first <binary
file> ends in ".b", the ".b" will be replaced by the ".o".

Even though 1inking is a mysterious process, it need not be traumatic. Most of the time,
you will be 1inking a single binary file with no additional libraries. For instance, if vyou
had a binary file named "prog.b," you could produce an object program by just typing the com-
mand

1d prog.b

- 28 -

Ratfor user- s Guide

The Primos loader would be invoked, and after a great deal of garbage was printed on the
terminal, the executable program "prog.c" would be produced. -

The only thing that you must do is look for the message "LOAD COMPLETE" lurking somewhere
near the end of this garbage. If you find this message, it means that all of the external
references in your program (subroutine and function calls) have been satisfied, and linking is
complete. If you don’t find this message, there are unsatisfied references in your program.
You may then call ‘1d’ with the "-u" option and the loader will print the names of the
unsatisfied references on the terminal. You will probably then find that these references are
caused by misspelled subprogram names, missing subprograms, or undimensioned arrays (remember,
the Fortran compiler treats undimensioned arrays as functions calls, so you may not aiways get
an error message from the compiler).

Again, for completeness, here are some examples of ‘1d’ at work:

« the binary files "pi.b", "p2.b", and "p3.b"
to produce "pi.o" as output

1d pi.b p2.b p3.b
1ink the binary file "nprog.b",

include the library “vshlib*",
and produce the output file "nprog"

N w

1d nprog.b -1 vshlib -o nprog

link the binary files "npi" and *np2",
produce a load map,
and output "my_new_prog"

> n R

1d np1 np2 -t -m -0 my_new_prog

The Primos loader also pays no attention to i/o redirection. If you want to catch its
terminal output, you must use the Primos ‘como’ commands. For details, see the reference
manual or use the ‘help’ command. :

Executing

Executing a Subsystem program is the easiest step of all. All you have to do to execute
it is to type its name. For instance, if your object program was named “prog.o", all you need
type is

prog.o

.to make it go. Because the shell also 100ks in your current directory for executable
programs, "prog.o" is now a full-fledged Subsystem command. You may give it arguments on its
command 1l1ine, redirect its standard inputs and outputs, include it in pipelines, or use it as
a function. Of course to be able to do all of these things properly, it must observe the Sub-
system conventions and use the Subsystem 1/0 routines.

Shortcuts

There are several shortcuts that speed things up and save typing when developing
programs.

Shell Programs. Shell programs can be a great help when performing repetitive tasks.
Quite often one of these tasks is preprocessing, compiling, and linking a program during its
development. A simple shell program can save a great deal of typing in this situation. For

instance, let’s say we are writing a Ratfor program that is in the file “np.r". We are in the
process of adding new features to "np" and will probably compile and test it several times.
We can make a very simple shell program that will keep us from having to type ‘rp,’ ‘fc,’ and
‘1d’ commands every time we want to make a test run. All we have to do is make a file
containing these three commands with ‘cat’:

] cat >enp

rp np.r

fc np.f

1d -u np.b -o np
Teontrol-c>

Now the file "cnp" contains the following text:

- 29 -

Ratfor User’s Guide

rp np.r
fc np.f
1d -u np.b -0 np

A1l we need do now to preprocess, compile, and 1ink our program is just type the name of the
shell program as a command:

cnp
and the shell will execute all of the commands contained in it.

The ‘Rf1’ Command. Of course, it is so common to preprocess, compile, and 1link a
program, there is an already-built shell program that works nicely in most cases. ‘Rf1’
contains the necessary commands to preprocess, compile and l1ink a Ratfor program contained in
a file whose name ends with ".r". A1l you have to do is type

rfl np.r

and ‘rf1’ will execute the necessary commands to produce an executable file named "np". (note
that the executable file is named "np" and not "nmp.o"!) ‘Rf1’ can also do some other handy
things that you can find out about in the Subsystem reference manual.

Storing Source Programs Separately. When you write fairly large programs or test modules
independently, it is often convenient to store the programs in separate files. If this is the
case, creating an executable program is just a little bit more complicated. The easiest solu-
tion is to just name all of the programs on the ’‘rp’ command line, like this:

rp pi.r p2.r p3.r

‘Rp’ will preprocess all of the files together and produce output on the file '"pi.f", The
define statements in "pi.r" will still be in effect when "p2.r" is preprocessed, etc. so
‘pi.r", "p2.r", and "p3.r" might just as well be together in one file.

Compiling Programs Separately. A little bit harder, but sometimes much faster, is to
preprocess and compile the modules separately and then combine them during linking. There are
two things that you have to watch. The first probliem with separate compilation is that define
statements in one file cannot affect subprograms in the other files. For a large program that
would benefit from separate compilation, this nastiness can be avoided by placing all of the
defines together in one file and placing an include for that file at the beginning of each of
the files containing the program. The defines will then be applied uniformly to all parts of
the program.

The second thing is that since Ratfor chooses unique Fortran names in the order that it
is presented with "long" Ratfor names, it cannot guarantee that a long name in one file will
be transformed into exactly the same Fortran name as the same 1long name in a second file
(although the probability is quite high). To avoid problems, subprogram names that are cross-
referenced 1in the separate binary files should be given six-character or shorter names, or a
linkage declaration containing the names of all subroutines, function, and common bilocks
should be inserted at the beginning of each module. It is usually easiest to handle the lin-
kage declaration just like the define statements: put it in a separate file, and add an
include statement for it at the beginning of each module.

Then, the program units in each file may be preprocessed and compiled separately. The
binary files from the separate compilations are 1linked together by just listing the names of
all of the files on the ‘1d‘’ command:

1d pt.b p2.b p3.b

The only restriction 1is that the main program must appear first. The object file from this
example would be named "pi.o", but this could have been overridden by including the “-o
<output file>" option.

when compiling parts of a program separately, you should be aware that incorrect use of
the l1inkage declaration can cause totally irrational behavior of the program with no other
indication of error. Since no checking is done on the linkage declaration, you must be
certain that every external name appears in the statement. More importantly, when you add a
subroutine, function, or common block, you must remember to change the l1inkage declaration.
In addition, if you do not add the name to the very end of the declaration, you must
immediately recompile all modules! If you compile separately, and are confronted with a
situation in which your program is misbehaving for no apparent reason, re-check the 1linkage
declaration and recompile all the modules.

Debugging

Debugging unruly programs under Primos is at best a grueling task, as currently there is
aimost no run-time debugging support. Except for a couple of machine-language level debug-
gers, you‘ll get very 1little help from Primos (except for some nasty error messages) while
debugging programs. This means that such techniques as top-down design, reading other

_30-

RALTWIT UdDEl D auIlIue

programmers’ code, and reasonably careful desk checking will pay off in the long run. But
even with all the care in the world, some bugs will creep through (especially or an unfamiliar
system). The next few paragraphs will be devoted to techniques for exterminating these stub-
born bugs.

For an experienced user, a load map, the Primos DMSTK command, and VPSD (the V-mode sym-
bolic debugger) can very quickly isolate the location, if not the cause, of a bug. With more
complicated programs that are dependent on the internal structure of the machine and operating
system, such machine level debugging cannot always be avoided. If you find yourself in such a
position, you can begin to learn some of these things by examining the following reference
manuals: .

MAN 1671 System Reference Manual, Prime 100-200-300
MAN 2798 System Reference Manual, Prime 400
FDR 3059 The PMA Programmer’s Guide

FDR 3057 User Guide for the Fortran Programmer

Most often, the bug can be found by one or more of the following techniques:
(1) Inserting ‘print’ calls to display the intermediate results within the program.
(2) Using the Ratfor subroutine trace.
(3) Using the Fortran statement number and assignment trace.

It is usually quickest to use the Ratfor subroutine trace (by including the "-t" option on the
‘rp’ command line). Although this trace 1ists only subroutine nesting, it will narrow down
where a program is blowing up to a single subprogram. If the program is very modular and
contains mostly small subprograms, quite often, the error can be spotted.

If the Ratfor trace fails to pinpoint the probiem, the Fortran statement and assignment
trace will give a great deal more information (possibly hundreds of pages). The Fortran trace
can be produced by specifying the "-t" option on the ‘fc’ command. The Fortran code produced
by ‘rp’ must be examined to locate the statement numbers, but given the 1large number of
statement labels generated by ‘rp,’ study of this trace can isolate the problem practically to
within one statement.

The above debugging methods are quick and easy to use when the program contains a
catastrophic error that causes an error termination or an infinite 1loop. while this 1is
sometimes the case, more often a subtie error is the problem. In finding these errors, there
is no substitute for carefully inserted debugging code (such as calls to ‘print‘’) at critical
points in the program. .

The rest of this section is devoted to a brief description of many of the terminal errors
that may do away with programs (and sometimes the Subsystem). About the only terminal error
cause the Subsystem command interpreter to be terminated along with the user’s delinguent
program is one which clobbers the stack. You can tell that you’ve been booted into Primos by
the appearance of the "OK," or "ER!" prompt. All error messages that cause an exit to Primos
are briefly explained in appendix A-4 of the Prime Fortran Programmer’s Guide (FDR3057). Some
very common programming errors can cause cryptic error messages with explanations that are
close to unintelligible. Hopefully, most of these messages are described below.

Many Primos error messages are dead giveaways of program errors. Messages that begin
with four asterisks are from the Fortran runtime packages -- they usually indicate such things
as division by zero or extraction of the square root of a negative number. For example,

*xxx SQRT -- ARGUMENT < O
oK,

results from extracting the square root of a number less than zero.

Other, more mysterious, error messages can also be caused by simple program errors.

’

Error: condition "POINTER_FAULTS$" raised at <addr>

can be caused by referencing a subprogram which has not been included in the object file. An
obvious indication of a missing subprogram is the failure to get the

LOAD COMPLETE

message from ‘1d’. (Note that the Fortran compiler treats references to undimensioned arrays
as function calls!) A more insidious cause of the "POINTER FAULT" message is a reference to
an unspecified argument in a subprogram; i.e. the calling routine specifies three arguments
and the calied routine expects four. The error occurs when the unspecified argument is
referenced in the subprogram, not during the subprogram call.

- 31 -

Ratfor User’s Guide

Error: condition "ACCESS_VIOLATIONS$" raised at <addr>
Error: condition "RESTRICTED_INST$" raised at <addr>
Error: condition "ILLEGAL_SEGNO$" raised at <addr>
Error: condition "ARITH$" raised at <addr>

Program halt at <addr>

all can result from a subscript exceeding its bounds. Because the program may have destroyed
parts of its code, the memory addresses sometimes given may well be meaningless. Even so, you
may locate the routine in which the program blew up by using the Primos DMSTK command and a
1oad map. For instance, given the following scenario (ellipses indicate irrelevant
information),

Error: condition "POINTER_FAULTS$" raised at 3.4000.001000.
Abort (a), Continue (g) or Call Primos (p)? p
OK, dmstk

éiéck Segment is 6002.

6) 001464: Condition Frame for "POINTER_FAULTS$";
Raised at 3.4000.017202; LB= 0.4000.017402,

7) 001374: Fault Frame; fault type= 000064
Returns to 3.4000.017202; LB= 0.4000.017402,
Fault code= 100000, Fault addr= 3.4000.017204
Registers at time of fault:

The numbers following "LB=" on the underlined portion of the stack dump show the address of
the data area of the procedure executing when the fault occurred. The segment number portion
of this address (the four-digit part) tells who the routine belongs to:

Segment Use

0000 - 0033 Operating System

2030 Software Tools Shell
2031 Software Tools Screen Editor
2035 Software Tools Library
2050 Fortran Library

4000 - 4037 User Program

4040 Software Tools Common
4041 Software Tools Stack
6001 Fortran Library

6002 Primos Ring 3 Stack

If the executing routine is not part of your program, you can trace back the stack (see below)
until you find which of your subprograms made the call. If the segment number begins with
"4", you need only look down the right-most two columns of the load map (see the ‘1d’ command)
for ‘the two numbers (4000 17402 in this case). If you get an exact match, just look across to
the name on the left -- this is the subprogram that was executing. Otherwise, if none of the
numbers match then either the program has clobbered itself and jumped intoc nowhere, you left
off an argument to a library subprogram, or one of the library routines has caused an excep-
tion trap with no fault vector.

Subsequent entries in the stack dump (following the information in the last scenario) can

be used to find what procedure calls were in process when the error occurred. The entries are
of the following form:

Stack Segment is 4041.

8) 002222: Owner= (LB= 0.4000.017402).
Called from 3.4000.017700; returns to 3.2035.017702.

9) 002156: Owner= (LB= 0.4000.013026).
Called from 3.4000.013442; returns to 3.2030.013450.

Each entry on the Subsysfem stack (segment 4041) represents a procedure call in process. You
can use the numbers following the "LB=" and the load map to trace back through the "stack" of
procedure calls, just as with the "fault frame" mentioned above.

If you find yourself at a compliete and total loss at finding why your program is blowing
up, here is a 1ist of some of the errors that have caused us great anguish:

- Subscript out of range. This error can cause any number of strange results.

- Undefined subprogram. This error can be detected by the lack of a "LOAD COMPLETE" mes-
sage from the ’‘1d’ command.

- Too few arguments passed. This error aimost always causes a "POINTER_FAULT$" when the

- 32 -

Ratfor User’s Guide

missing argument is referenced.

- Code and initialized local data requires more that one segment (64K words). The load map
shows how much space is allocated. No linkage or procedure frame should appear in any
segment other than 4000.

- Delimiter character is missing in a packed string. This includes periods in packed
strings passed to ‘print’ and ’‘input’. This error causes the program to run wild, writ-
ing all over the place.

- Type declaration is missing for a function. This error can causes failure of routines
such as ‘open’ which return an integer result. The Primos Fortran compiler does not flag
undeclared functions. This error may also cause an erratic real-to-integer conversion
error or cause the program to take an exception trap.

- A subprogram is changing the value of 2 constant. If you pass a single constant as a
function or subroutine argument, and the subprogram changes the corresponding parameter,
the values of all occurrences of that constant in the calling program will be changed.
wWith this error, it is quite possible for the constant 12 to have the value -37 at some
time during execution.

The Subsystem will catch almost all the errors enumerated above. The only exception is
one that clobbers the stack (like a negative argument passed to SQRT). 1In this case, a
"login.comi" file containing the "swt" command will automatically put you back 1in the Sub-
system.

Performance Monitoring

In most cases, it is very difficult to determine how much processing time is required by
different parts of a program. Since it is nearly impossible to determine which parts of a
program are "inefficient", especially before the program is written, it is often more effec-
tive to write a program in the most simple and straightforward manner, and then use per-
formance monitoring tools to find where the program is spending its time. It has many times
been our experience to find even though parts of a program are coded inefficiently, only a
very small amount of time is wasted.

There are two available methods for obtaining an execution time “"profile" of a Ratfor
program. The first method provides statistics on the number of calls to and the amount of
time spent in each subprogram. The second method provides a count of the number of times each
statement in the program is executed.

To invoke the subroutine profile, just preprocess (in one run) all the subprograms to be
profiled. Add the "-p" option to the ‘rp’ command 1ine when the programs are preprocessed.
Then compile, 1ink and execute the program normally. When the program terminates (it must
execute a stop statement, and not call "error"), type the command

profile

’Profile’ accesses the files “timer_dictionary" (output by ‘rp’) and "_profile" (output by
your program) and prints the subroutine profile to standard output.

To 1invoke the statement count profile, put all the subprograms to be profiled (you must
also include the main program) in a single file. Then preprocess the file with ‘rp’ and the
"-c" option. Compile, link, and execute the program. When the program terminates normally,
type the command

st_profile myprog.r

(0f course, assuming your source file name is “myprog.r".) A 1listing of the program with
execution count for each line will be printed.

When running a profile, there are several things to keep in mind. First, the program
with the profiling code can be more than twice as large as the original program. Second, the
program can run an order of magnitude more slowly. Third, there can be a considerable delay
between the execution of the stop statement and the actual end of the program. Finally, you
should remember that the main program and all subprograms to be profiled must be preprocessed
at the same time.

Conditional Compilation

Conditional compilation is a handy trick for inserting debugging code or setting compile-
time options for programs. Conditional compilation can be approximated in Ratfor by defining
an identifier, such as "DEBUG" to a sharp sign or null (for off and on respectively). Lines
in the Ratfor program beginning with the identifier "DEBUG" (i.e. debugging code) are not
compiled if "DEBUG" is defined to be "#", but are compiled normally if "DEBUG" is defined as a
null string.

- 33 -

Ratfor User’s Guide

For instance, the following example shows how conditional compilation can be used to
"turn off" print statements at compile time:

define (DEBUG, #)

fd = open (fn, READ)
DEBUG call print (ERROUT, "fd returned:*ixn"s, fd)

.1en = getlin (str, fd)
DEBUG <call print (ERROUT, "str read: *s"s, str)

In this example, all lines beginning with “DEBUG" are ignored, unless the define statement is
replaced with

define (DEBUG,)°

Then, all lines beginning with "DEBUG" will be compiled normally.

Portability

If your intent is to produce portable Fortran code, the Ratfor preprocessor, ‘rp’ can be
invoked with the following four options:

-h Produce Hollerith-format string constants rather than guoted string constants. This
option useful in producing character strings in the proper format needed by your
Fortran compiler.

-v Output "standard"” Fortran. This option causes ‘rp’ to generate only standard
Fortran constructs (as far as we know). This option does not detect non-standard
Fortran usage 1in Ratfor source code; it only prevents ‘rp’ from generating non-
standard constructs in implementing its data and control structures.

-x Translate character codes. ’'Rp‘’ uses the character correspondences in a translation
file to convert characters into integers when it builds Fortran "data" statements
containing EOS-terminated or PL/I strings. 1If the option is not specified, ‘rp’
converts the characters using the native Prime character set.

-y Do not output "call swt". This option keeps ‘rp’ from generating a "call swt" in
place of all "stop" statements, which are required for Fortran programs to run under
the Subsystem.

The following option for ‘fc’ may also help:

-1 Consider all integers to be "long" (32-bit) rather than short.

Source Program Format Conventions

After considering many program formatting styles, we have concluded that the convention
used by Kernighan and Plauger in Software Tools is the most expedient in terms of clarity and
ease of modification. As a consequence, we have tried to be consistent in the use of this
convention throughout the Subsystem to provide uniformly readable and modifiable code. we
present the convention here in the hope that you can use it to the same advantage.

Statement Placement

The placement of statements in program units is perhaps the most important part of the
formatting convention. Through uniform placement of statements, many documents can be
produced directly from the source code. For instance, the skeleton for Section 2 of the Sub-
system Reference Manual was produced originally from the subprogram headers of the Subsystem
1ibrary subprograms. Then the detail was filled in using the text editor.

The order of a program unit (including a main program) should be as follows:

1. A comment l1ine of the following format:

<program name> --- <one-1ine description>
2. The subroutine or function statement (or nothing if it is a main program).
3. The declarations of all arguments passed to the subprogram, if any.

- 34 -

NERLI W USS! @ wwiws

A blank 1ine

Declarations for all local variables in the program unit.

A blank 1line.

. Executable program statements.
. The end statement.

4
5
6
7
8
=} Three blank lines.

Of course, extra blank 1lines should be used freely to separate different logical groups of
declarations and different logical blocks of executable statements.

As an example, here ‘s the source code for the subroutine “cant" taken dir~ctl: €-~-- 1.
Subsystem library:

cant --- print cant open file message
subroutine cant (str)
character str (ARB)

call putlin (str, ERROUT)
call error (": can’‘t open.")

return
end

Indentation

The indentation convention is very simple. It is based on the idea that a statement
should be indented three spaces to the right of the innermost statement controlling it.

Braces are placed as unobtrusively as possible, without affecting the ease of adding or delet-
ing statements.

Statements, with the exception of the program heading comment, are placed three spaces to
the right of the 1left margin. A1l statements are placed in this position, uniess they are
subordinate to a control statement. 1In this case, they are placed three spaces to the right
of the beginning of the controlling statement.

Braces do not affect the placement of statements. An opening brace is placed on the line
with the controlling statement. A cliosing brace is placed on a separate 1ine three spaces to
the right of the beginning of the controlling statement.

Multiple statements per line are forbidden, except when a chain of if - else if . . . el-
se statements is used to implement a case structure. In this event, the else if is considered

a single statement, appearing on the same 1ine, and subsequent lines are indented only three
spaces to the right.

If all of this seems terribly confusing, here are some examples that show the indentation
convention in action (the bars are just to show you the matching of braces):

for (i = 1; str (i) ~= EOS; 1 += 1) {
if (str (i) == ‘a‘c) {
j = ctoi (str (2), i)
select (j)
' when (1)
! call alti
when (2)
| call alt2
when (3) {
i call alti
| call alt2
.
1se
call error ("number must be >= {1 and <= 3"s)

else if (str (i) == ’‘s’c)
repeat {
i j = etoi (str (2), 1)
} status = getnext (j)
---} until (status == EOF)

else {
i call clean_up
i stop
---}
===}

- 35 -

Ratfor User’s Guide

Subsystem Definitions

The use of the define statement plays a large part in producing readable, maintainable
programs. Hiding implementation details with define statements not only produces more
readable code, but allows changes in the implementation details to be made without necessitat-
ing changes in applications programs. The development of a large part of the Subsystem wouild
have been greatly hindered if it had not been possible to redefine the constant "“STDIN" from
"{* to "-11", with no more than recompilation.

The Subsystem definitions file, "=incl=/swt_def.r.i" exists primarily to hide the dirty
details of the Subsystem support routines from Ratfor programmers. We sincerely believe that
the character string "EOF" is inherently more meaningful than the string "-1". (Would you

believe that after three years of using the Subsystem, the author of this section had to 1ook
up the value assigned to "BOF" in order to write the preceding sentence?)

Of course, the use of the Subsysia2m Jefinitions also allow the developers to change these
values when necessary. Of course, these changes force recompilation of all existing programs,
but we feel that this is a small price to pay for the availability of more advanced features.
A1l users of the Subsystem support routines are therefore warned that the values of the Sub-
system definitions may change between versions of the Subsystem. (At Georgia Tech, this may
be daily.) Programs that depend on the specific values of the symbolic constants may well
cease to function when a new version of the Subsystem is installed.

Appendix D contains specific information about (but not specific values for) the standard
Subsystem definition file. As a general rule, all symbolic constants mentioned in Section 2
of the Subsystem Reference Manual can be found in "=incl=/swt_def.r.i".

Using the Subsystem Support Routines

Many of the capabilities available to a Subsystem programmer are provided through the
Subsystem support routines. The Subsystem support routines consist of well over one hundred
Ratfor and PMA subprograms that either perform common tasks, insulate the user from Primos and
Fortran, or conceal the internal mechanisms of the Subsystem. By default, the 1library
containing all of these routines ("=1ib=/vswtib") is included in the l1inking of all Subsystem
programs. Therefore, no special actions need be taken to call these routines.

If you notice that there are some "holes" in the functionality of the Subsystem 1library,
you are probably quite correct. The Subsystem library has grown to its present size through
the effort of many of its users. The instance often arises that a routine is required to fill
a specific function. 1In keeping with the Software Tools methodology, instead of writing a
very specific routine, we ask that the author write a slightly more general routine that can
be used in a variety of instances. The routine can then be documented and placed in the Sub-
system 1library for the benefit of all users. Many of the support routines, including the
dynamic storage management routines, have come from just such instances. The *holes" in the
Subsystem library are just waiting for someone to fill them; if you need a routine that isn’t
there, please write it for us.

Termination

The subprogram ‘swt’ terminates the program and causes a return to the Subsystem command
interpreter. Any Subsystem files left open by the program are closed. Ratfor automatically
inserts a "call swt" any time it encounters a Fortran stop statement. A1l Ratfor programs
should stop rather than ‘“call exit". Fortran and PMA programs should invoke ‘swt’ to
terminate.

Character Strings

Most of the support routines use characters that are unpacked, one per word (i.e.
integer variable), right-justified with 2zero fill, rather than the Fortran default, two
characters per word, left-justified, with blank fill (for an odd last character). In addition
to the simplicity of manipulating unpacked strings, the unpacked format represents characters
as small, positive integers. Thus, character values can be used in comparisons and as indexes
without conversion.

Most of the support routines that manipulate character strings expect them to be stored
in an integer array, one character per word, right-justified and zero-filled, and terminated
with a word containing the symbolic constant ‘EO0S’. Strings of this format are usually called
EOS-terminated strings.

Support for the use of unpacked characters is provided in several ways: (1) the Sub-
system 1/0 routines perform conversion to and from unpacked format, (2) single-character
constants ‘a‘c, ‘b’c, ‘’,’c, etc. are provided for use in place of single-character Hollerith
literals, and (3) the Ratfor string statement is provided to initialize EOS-terminated
strings.

- 36 -

KaITor user- s uuiae

In a few cases, it 1is more convenient to use a Hollerith literal instead of an EOS-
terminated string. Since it is impossible to tell the length of a Hollerith 1literal at run
time, Hollerith literals used with the Subsystem are required to contain a delimiter character
(usually a period) as the last character. Hollerith literals or integer arrays that contain
Hollerith-format characters and end with a delimiter character are referred to as packed
strings.

Following are brief descriptions for the most generally useful character manipulation
routines. For specific information, see the Software Tools Subsystem Reference Manual.

Equal. ‘Equal’ is an integer function that takes two EOS-terminated strings as
arguments. If the +two strings are identical, ‘equal’ returns YES; otherwise it returns NO.
For exampile,

string dash_x "-x"
integer equal

;% (equal (argument, dash_x) == YES) ¢
call cross_ref

Index. ‘Index’ is used to find the position of a character in an EOS-terminated string.
If the character is in the string, its position is returned, otherwise zero is returned.
‘Index’ is very similar to the built-in function of the same name in PL/I. Example:

string options "acx"
integer ndx
integer index

ndx = index (options, opt_character)
select (ndx)
when (1)
call list_all
when (2)
call list_common
when (3)
call cross_reference
else
call remark ("illegal option's)

This example selects one of a number of subroutines to be executed depending on a single-
character option specifier. Of course, this particular example could be done with just select
alone. ‘Index’ is also useful in character transliteration and conversion from character to
binary integer.

Length. ‘Length’ is an integer function that returns the 1length of an EOS-terminated
string. The 1length of a string is zero if and only if its first character is an EO0S; it is
the number of characters before the EOS in all other cases. ‘Length’ is often useful in
deciding where to start appending additional text, as in the following example:

integer len

integer length

len = length (str)

call scopy (new_str, 1, str, len + 1)

Mapdn and Mapup. These functions accept a single character as an argument and if the
character is alphabetic, force it to lower or upper case, respectively. ‘Mapdn’ and ‘mapup’
quite often find use in mapping option letters to a single case before comparison. Since non-
alphabetic characters are not modified, these routines may be used safely even if non-
alphabetic characters appear. In addition, these routines provide a very good place to
isolate character set dependencies. For example,

character ¢
character mapdn

if (mapdn (c) == ‘a’c) {
handle ‘a’ option

else if (mapdn (¢) == ‘1’¢c) {
handle ‘1’ option

Mapstr. ‘Mapstr’ provides case mapping for alphabetic characters in E0S-terminated
strings. As arguments, ‘mapstr’ takes a string and the symbolic constant ‘LOWER’ or ‘UPPER’.
Alphabetic characters 1in the string are then forced to lower or upper case, depending on the
constant specified.

Ratfor User’s Guide

Scopy. The subroutine ’‘scopy’ is used for copying EOS-terminated strings. It requires
four arguments: the source string, the position from which to start copying, the destination
string, and the position at which filling begins in the destination string. Since Ratfor

provides no string assignment, ‘scopy’ is normally used to provide the capability. The simple
movement of a string from one place to another is coded as

character stri (MAXLINE), str2 (MAXLINE)
call scopy (stri, 1, str2, 1)

‘Scopy’ is also capable of appending one string to another, as in the following example:
character str1 (MAXLINE), str2 (MAXLINE) 7

ééil scopy (str1: i1, str2, length (str2) + 1)
o

Note that ‘scopy’ makes no attempt to avoid writing past the end of ‘str2’!

Type. ‘Type’ is another of the routines that is intended to isolate character depen-
dencies. Type is a function that takes a single character as an argument. If that character
is a letter, ‘type’ returns the constant ‘LETTER’; if the character is a digit, ‘type’ returns
the constant ‘DIGIT’; otherwise, ‘type’ returns the character. ’‘Type’ often finds use in a
lexical analyzer:

character c
character type

if (type (c) == LETTER) {
collect identifier

else if (type (c) == DIGIT) {
collect integer

else {
handle special character

File Access

File access is one of the more important aspects of the Subsystem. It is through the
Subsystem I1/0 routines that device independence and I/0 redirection are accomplished;
moreover, the Subsystem routines provide a much less complicated interface than comparablie
Primos routines.

The basic method of access to a Subsystem file is through the contents of an integer
variable called a file descriptor. File descriptors can be set by one of several routines or
they can be set to one of the six standard descriptors representing the six standard ports
provided to all Subsystem programs.

Quite often, the standard ports provide all of the file access required by a program.
Values for the standard port descriptors can be accessed from defines contained in
"=incl=/swt_def.r.i* (‘Rp’ automatically includes this file in each run). The following table
gives the symbolic names for the three standard 1input and three standard output ports
available:

Input Ports Output Ports
STDIN1 (or STDIN) STDOUTY (or STDOUT)
STDIN2 STDOUT2
STDIN3 (or ERRIN) STDOUT3 (or ERROUT)

These constants may be used wherever a file descriptor is required by a Subsystem 1/0 routine.

Other files may be accessed or created through the routines ‘open’, ‘create’, and
‘mktemp’ that are described later. At the moment, it is sufficient to say that these routines
are functions that return a file descriptor that may be used in other Subsystem 1/0 calls.

Once a file descriptor has been obtained, the file it references may be read with the
routines ‘getlin’, ‘getch’, or ‘input’; written with the routines ‘putlin’, ‘putch’, or
‘print’; positioned with the routines ‘wind’ or ‘rewind’; or closed with the routines ‘close’
or ‘rmtemp’.

Open and C(Close. ‘Open’ takes an EOS-terminated path name and a mode (one of the
constants READ, WRITE, or READWRITE) as arguments and returns the value of a file descriptor
or the symbolic constant ERR as a function value. ‘Open’ is normally used to make a file
available for processing in the specified mode. If the mode is READ, ‘open’ will open the
file for reading; if the file doesn’‘t exist or cannot be read (i.e. no read permission),
‘open’ will return ERR. If the mode is WRITE or READWRITE, ‘open’ will open an existing file

- 38 -

or create a new file for writing or reading and writing, if possible; otherwise it will return
ERR. I1f ‘open’ opens an existing file, it will never destroy the contents, even if mode is
WRITE. To be certain that a "new" file is empty, use ’‘create’ instead of ‘open’.

‘Close’ takes a file descriptor as its argument; it closes and releases the file attached
to the descriptor. 1If ‘close’ is called with a standard port, it takes no action.

Opening and closing a file is really very easy. This example opens a file named
"zextra=/news/index" and returns the file descriptor in “fd’. If the file can’t be opened,
the program will terminate with a call to ‘cant’.

file_des fd
integer open
string fn "=extra=/news/index"
fd = open (fn, READ) # open "=exttras’,.:.a -~ - Jex"
if (fd == ERR)
call cant (fn)
<process the contents of =extra=/news/index>

call close (fd) # release the file
stop

If the file can’‘t be opened, ‘cant’ will print the message
=extra=/news/index: can’t open
and terminate the program.

Create. ‘Create’ takes the same arguments as ‘open’, but also truncates the file (makes
it empty) to be sure that there are no remnants of its previous contents.

Mktemp and Rmtemp. Quite often, programs need temporary files for their internal use
only. ‘Mktemp’ and ‘rmtemp’ aliow the creation of unique temporaries in the directory
"=temp=". ‘Mktemp’ requires only a mode (READ, WRITE, or READWRITE) as an argument and

returns a file descriptor as its function value. ‘Rmtemp’ takes a file descriptor as its
argument and destroys and closes the temporary file. (One should use caution, for if a
descriptor for a permanent file is passed to ‘rmtemp’, that file will also be destroyed.)

Typical use of ‘mktemp’ and ’‘rmtemp’ usually involves the writing and reading of an
intermediate file:

file_des fd
integer mktemp

fd = mktemp (READWRITE) # create a temporary file
<code to write the intermediate file>
call rewind (fd) # reposition the temporary

<code to read the intermediate file>

call rmtemp (fd) # close and destroy the temporary
wind and Rewind. The subroutines ‘wind’ and ‘rewind’ allow the positioning of an open

file to its end and beginning, respectively. Both take a file descriptor as an argument.
Usually, ‘rewind’ is used when a program creates a file and then wishes to read it back;
‘'wind’ is often used when a program wants to add to the end of an existing file.

A program wishing to extend a file would make a call to ’‘wind’ just after successfully
opening the file to be extended:

file_des fd
integer open
string fn *myfile"

fd = open (fn, READWRITE)
if (fd == ERR)
call cant (fn)

call wind (fd) # file is now positioned at the
end, ready for appending.
Trunc. 'Trunc’ truncates an open file. Truncating a file means releasing all of its
disk space, hence making it empty, but retaining its name and attributes. ‘'Trunc’ takes a

file descriptor as its argument.

-39-

’

Ratfor User’s Guide

Remove. ‘Remove’ removes a file by name, deleting it from the disk directory. It takes
an EOS-terminated string as its argument, and returns the constant OK or ERR, depending on
whether or not it could remove the file. (‘Remove’ will also delete a Primos segment direc-
tory without complaining.)

Cant. ‘Cant’ is a handy routine for handling exceptions when opening files. For its
argument, ‘cant’ takes an EOS-terminated string containing a file name. It prints the message

<file name>: can’t open
and then terminates the program.

Getlin. A1l Subsystem character input 1is done through ‘getlin’. ‘Getlin’ takes a
character array (at least MAXLINE long) and a file descriptor and returns a line of 1input in
the array as an EOS-terminated string. Although the last character in the string is normally
& NEwiINE character, if the l1ine is longer than MAXLINE, no.NEWLINE wil! be present and the
rest of the 1ine will be obtained on the next call to ‘getiin’. For its function value, ‘get-
1in’ returns the length of the line delivered, (including the NEWLINE, if any) or the constant
EOF if end-of-file was encountered. :

Most 1line-oriented i/0 is done with ‘getlin’. For instance, using ‘getlin’ with its
analog ‘putlin’, a program to select only those lines beginning with the letter "a" can be
written very quickly:

character buf (MAXLINE)
integer getlin

while (getlin (buf, STDIN) ~= EOF)
if (buf (1) == ’‘a‘c)
call putlin (buf, STDOUT)

‘Getlin’ i{is guaranteed to never return a 1line longer than the symbolic constant MAXLINE
(including the terminating EOS).

If needed, there are a number of routines that you can call to convert the character
string returned by ‘getlin’ into other formats, such as integer and real. Most of these
routines are described later in the section on "Type Conversion".

Getch. ‘Getch’ returns one character at a time from a file; it requires a character
variable and a file descriptor as arguments; it returns the character obtained, or the
constant EOF, in the supplied argument and as the function value. Calls to ‘getch’ and ‘get-
1in’ may be interleaved; ‘getlin’ will pick up the rest of a 1ine not read by ‘getch’.

‘Getch’ 1{is very useful 1in lexical analyzers or just when counting characters. For
instance, the following routine counts both characters and lines at the same time:

character ¢
integer c_count, 1_count
integer getch

c_count = 0O

1_count = O

while (getch (c, STDIN) ~= EOF) {
c_count = c_count + 1
if (c == NEWLINE)
) 1_count = 1_count + 1

This example assumes that since each 1ine ends with a NEWLINE character, lines can be counted
by counting the NEWLINES.

Input. ‘Input’ 1is a rather general routine created to provide easy access to both
interactive and file input. For interactive input, ’‘input’ will prompt at the terminal,
accept input, and call the proper conversion routines to produce the desired data formats. In
case of unexpected input (1ike letters in an integer), it will ask for a 1ine to be retyped.
For file input, ‘input’ recognizes that its input is not coming from a terminal (even if from
a standard port) by turning off all prompting. It will then accept fixed or variable-length
fields from the file under control of the format string.

‘Input’ requires a variable number of arguments: a file descriptor, a format string, and
as many destination fields as required by the format string. It returns the constant EOF as
its function value if it encountered end-of-file; otherwise it returns OK.

The file descriptor passed to ‘input’ describes the file to be read. Al11 prompting out-
put (if any) always appears on the terminal. The format string passed to ‘input’ indicates
what prompting information is to be output and what data format to expect as input. Prompts
to be output are specified as l1iteral characters; i.e. to output "Input X:", the characters
"Input X:*" would appear in the format string. Prompting characters may only appear at the
beginning of the string and immediately after “skip-newline® ("*n") format codes. Data items

- 40 -

Ra&IToOor user's uuliae

to be input are described by an asterisk followed by optionally one or two numbers and a let-
ter. For instance the code to input a decimal integer would be "*i" and the code to 1input a
double precision floating point number would be "x*xd".

when a call to ‘input’ is executed, the format string is interpreted from left to right.
When leading l1iteral characters are encountered, they are output as a prompt. When the first
format code 1is encountered, a line is read from the file, the corresponding item is obtained
from the input 1ine, and the item is placed in the next item in the argument 1ist. More items
are removed from the input 1ine until the end of the format string is reached or a newline
appears in the input. If the end of the format string is encountered, the rest of the input
line is discarded, and ‘input’ returns OK. Otherwise, if a newline 1is encountered in the
input, fields designated by the format are filled with empty strings, blanks, or zeroes, until
the format string is exhausted, or a code ("*n") to skip the NEWLINE and read a new line is
encountered.

The format string ru-t .. :i'a’. exactly as many input indicators as there are receiving
data items in the call. In any cas2, the maximum number of input items per call is 10.

Before we go any furtier, here is an exampie of an ‘input’ call to obtain three integers:

call input (STDIN, "Type i: =*i*nType j: =*i*nType k: =*i's,
i, . k)

If this statement were executed the following might appear at the terminal (user input is bol-
dfaced):

Type i: 22 <newline>
Type j: 476 <newline>
Type k: 1 <newline>

We could also type all three integers on the same l1ine, and ‘input’ would omit the prompting
for the second and third numbers:

Type i: 22 476 1 <newline>
There are a number of input indicators available for use in the format string. Since

there are a large number of them with many available options, only a few are mentioned in the
following table. For further information, see the Subsystem reference manual.

Item Data Type Input Representation

*n skip newline If there is a NEWLINE at the current position, skip over it and -read
another 1line. Otherwise do nothing. (‘Input’ will never read more
than one 1ine per call, unless this format code is present.

* i 16 bit integer Input an integer with optional plus or minus sign, followed by a
string of digits, delimited by a blank or newline. Leading blanks are
ignored. The input radix can be changed by preceding the number with
"<radix>r" (e.g. octal should be expressed by “8r").

*1 32 bit integer Same as "xi".

*r 32 bit real Input a real number with optional plus or minus sign, followed by a

possible empty string of digits, optionally followed by a decimal
point and a possibly empty string of digits. Scaling by a power of 10
may be indicated by an "e" followed by an optional plus or minus sign,
followed by a string of digits. The number is delimited by a blank;
leading blanks are ignored.

xd 64 bit real Same as “xr",

xS string Input a string of characters delimited by a blank or newline. No more
than MAXLINE characters will be delivered, regardiess of input size.
Use "xis" to read in a single character. (Admittedly, this is an

inconsistency; there really should be a "*c' format.)
£

Fixed size 1input fields can be requested by placing the desired field size immediately
following the asterisk in the format code. For instance, to read three integers requiring
five spaces each, you can use the following format string:

"x5ix5{*x5{"

You can also change the delimiting character of a field from its default value of a blank.
Just place two commas followed by the new delimiter immediately after the asterisk. For
instance, two strings delimited by slashes can be input with the following format string:

*,,/s%,,/s

- 41 -

Ratfor User‘s Guide

Regardless of the delimiter setting, a newline is always treated as a delimiter. One caution:
if the delimiter is not a blank, leading blanks in strings are not ignored.

Readf. You can use ‘readf’ to read binary (memory-image) files that were created with
‘writef’. ‘Readf’ is the fastest way to read files, since no data conversion is performed.
However, use of ‘readf’ and ‘writef’ tend to make a program dependent on machine word size,
and hence, non-portable.

‘Readf’ takes three arguments: a receiving data array, the maximum number of words to be
read, and a Subsystem file descriptor. When called, ‘readf’ attempts to read the number of
words requested; if there are not that many in the file, it returns all that are left. If
there are no words left in the file at all, ‘readf’ returns EOF as its function value; other-
wise, it returns the number of words actually read as its function value.

«

Putlin. ‘Putlin’ is the primary output routine of the Subsystem. It takes an EO0S-
terminated string and a file descriptor as arguments, and writes the characters in the string
on the file specified by the descriptor. There is no restriction on the length of the input
string; ‘putlin’ will write characters until it sees an EOS. ‘Putliin‘ does not supply a
newline character at the end of the l1ine; if one is to be written, it must appear in the
string. For a simple example, see the description of ‘getlin’.

Putch. A single character can be output to a file with ‘putch’; it takes a character and
a file descriptor as arguments and writes the character on the file specified by the descrip-
tor. Calls to ‘putch’ and ‘putlin’ can be interleaved as desired.

Print. ‘Print’ is a general output routine that accepts a format string and up to ten
output data items. Interpreting the format string, ‘print’ calls the appropriate type conver-
sion routines to produce character data, and outputs the characters as directed by the format
string. ‘Print’ requires several arguments: a file descriptor; an EOS-terminated format
string; and zero to ten output data arguments, depending on how many are required by the
format string.

The format string contains two kinds of items: 1literal items which are output when they
are encountered, and output items, which cause the next data argument to be converted to
character format and output. Literal items are just characters in the string; i.e. to output

"X =", the format string would contain "X =". Output items consist of an asterisk, followed
by two optional numbers, followed by a letter. For instance an output item for an integer is
"xi" and an output item for single precision floating point is "*r", The next example shows

the output of three integers:

call print (STDOUT, "1 = *i, j = *i, k = *i*n"s,
i, 3. k)

If this call were executed, the following might be the result:
i = 342, j = 1, k = -3382

Some of the more useful output items are described in the following table:

Item Data Representation

* 9§ short (16 bit) integer

*1 long (32 bit) integer .

*r single precision (32 bit) real
*d double precision (64 bit) real
*P packed, period-terminated string
xS EOS-terminated string

*C single character

*n newl ine

It is possible to exert much more control over the format of output using ‘print’; for more
information, see the Subsystem reference manual.
)

writef. ‘Writef’ s the companion routine to ‘readf’; it writes words to a binary
(memory-image) file. It is the fastest of the output routines, since it performs no data con-
version. It is called with three arguments: a data array containing the words to be written,
the number of words to write, and a Subsystem file descriptor. Here is an example of a fast
file-to-file copy using ‘readf’ and ‘writef’ together.

integer 1, buf (1024)
integer readf
file_des in_fd, out_fd

repeat {
1 = readf (buf, 1024, in_fd)
if (1 == EOF)
break
call writef (buf, 1, out_fd)
}

- 42 -

e o

Ratfor User’s Guide

Fcopy. ‘Fecopy’ is a very simsiz routine that copies files. You open and position the
input and output files and call ‘fcopy’ with the input and output file descriptors. It then
copies 1lines from the input file to the output file. ‘Fcopy’ uses a great deal of “secret
knowledge" of the workings of the Subsystem input-output routines, and as a consequence. it
copies disk-file to disk-file very quickly (even when the descriptors are of standard ports).

Markf and Seekf. ‘Markf’ and ’‘seekf’ are companion routines that implement random access
on disk files. ‘Markf’ takes a file descriptor as its argument and returns a “file_mark"
(currently a 32-bit integer). ‘Seekf’ takes the file mark along with a file descriptor and
sets the file pointer so that the file is positioned at the same place as when the "mark" was
taken.

To be used portably, ‘markf’ and ‘seekf’ may only be used between calls to ‘readf’ and
‘writef’, or immediately after input or output of a newline character (i.e. at the ends of
1ines). 1In addition, a call to ‘putlin’ or ‘putch’ on a file effectively (although not
actuall:) ¢os~i~.8 information following the current position of the file. For axample, if
you want to write a line in a file, go off and do other operations on the file, and then be
able to re-read the line later, you can use ‘markf’ and ‘seekf’: N

file_mark fm

file_mark markf
file_des fd

character 1ine (MAXLINE)

fm = markf (fd)
call putlin (line, fd)

perform other operations on ‘fd’

call seekf (fm, fd)
call getlin (line, fd) # get ‘l1ine’ back

Non-portably, you can assume that a "file mark" is a zero-relative word number within the
file -- to get word number 12 in the file, just execute

call seekf (int1 (12), fd)
call readf (word, 1, fd)

(Remember: file marks are 32 bits, not 16! We use ‘intl1’ here to make "12" into a 32 bit
integer.) Keep in mind that this "secret knowledge" is useful only with "readf" and “writef",
not with any other input or output routine. Blank compression is used in line oriented files,
so the position of a 1ine is dependent not only on length of previous lines, but also on their
content. This usually makes the position of a 1ine in a file quite unpredictable.

Getto. ‘Getto’ exists primarily to interface with the Primos file system calls. ‘Getto’
takes a path name (in an EOS-terminated string) as its first argument. It follows the path
and sets the current directory to that specified for the file in the path name. It then packs
the file name into its second argument, a 16 word array (with blank padding), ready for a call
to the Primos file system. It fills its 3-word third argument with the password of the last
node of the path (if there was one). 1Its fourth argument, an integer, 1is set to YES if
‘getto’ changed the attach point, and NO otherwise.

‘Getto’ often finds use when functions other than those supported by Subsystem routines
need to be performed, such as setting the passwords on a directory:

integer pfn (16), opw (3), npw (3), pw (3), att
integer getto
string fn “=vars=/system"

if (getto (fn, pfn, pw, att) == ERR)

call print (ERROUT, “can’‘t get to *s*n"s, fn)
call spas$$ (pfn, 32, opw, npw) # set passwords
if (att == YES)

call follow (EOS, ©O) # attach back to home

Type Conversion

There are a very large number of type conversion routines available to convert most data
types into character strings and back. Because keeping up with all the conversion routine
names and calling sequences can be quite a chore, two routines ‘decode’ and ‘encode’ exist to
handle conversion details in a consistent format. These two routines are described at the end
of this section.

Most of the "character-to-something" routines require at least two arguments. The first

argument is usually the character string, and the second is an integer variable indicating the
first of the characters to be converted. The result of conversion is then returned as the

- 43 -

Katrtor user’= Gul0e

function wvaiue, and the position variable is updated to indicate the first position past the
characters used in the conversion.

For exampie, the simplest "character-to-integer" routine, ‘ctoi’ requires the two
arguments mentioned above. Since it skips leading blanks, but stops at the first non-digit
character, it can be called several times in succession to grab several blank-separated
integers on a 1ine:

character str (MAXLINE)
integer i, k (4), pos
integer ctoi
pos = 1
do i = 1, 4
k (i) = ctoi (str, pos)
if (str (pos) ~= EOS)
call remark ("illegal character in input"s) (
This routine will assume unspecified values to be zero, but complain if non-numeric, non-blank
characters are specified.

Here is a list of all of the currently supported "character-to-something" routines.

ctoc Character-to-character; copies character strings and pays attention to the
maximum length parameter.

ctod Character-to-double precision real; handlies general floating point input.

ctoi Character-to-integer (16 bit); does not handle plus and minus signs;
decimal only.

ctop Character-to-packed-string; converts to packed format with no delimiter
character.

ctor Character-to-single precision real; handles general floating point input.

ctov Character-to-PL/I-character-varying; converts to PL/I character varying
format.

gctoi Generalized-character-to-integer (16 bit); handles plus and minus signs; in

addition to program-specified radix, accepts an optional user-specified
radix from 2-16.

gctol Generalized-character-to-long-integer (32 bit); handles plus and minus
signs; i{in addition to program-specified radix, accepts an optional user-
specified radix from 2-16. .

In addition to the “character-to-something" routines, there are the “something-to-
character" routines. Most of these routines require three arguments: the value to be con-
verted, the destination string, and the maximum size allowable. They return the length of the
string produced as the function value. An EOS is always placed in the position following the
last character 1in the destination string, but the EOS is not included when the size of the
returned string is calculated.

Since the functions will accept a sub-array reference for the output string, you may
place several objects in the same string. For example, using the "integer-to-character" con-
version routine ‘itoc’, you can place the four integers in the array ‘k’ into ’‘str’ in charac-
ter format:

character str (MAXLINE)
integer i, k(4), pos
integer itoc
pos = 1
do i = 1, 4; {
pos = pos + itoc (k (i), str (pos), MAXLINE - pos) *
if (pos >= MAXLINE - 1) # there’s no room for any more
break
str (pos) = BLANK
pos = pos + 1
}

str (pos) = EOS # cover up the last blank
This code will place the four integers in ‘str’, separated by a single blank. Although alil

conversion routines leave an EOS in the string, we have to replace it here because we clobber
it with the blank.

- 44 -

It’s worth noting that the maximum size parameter always includes the EOS -- the conver-
sion routine will never touch any more characters than are specified by this parameter.

Here is a list of all available “"something-to-character" conversion routines:

ctoc Character-to-character; copies character strings and pays attention to the
maximum length parameter.

dtoc Double-precision-reail-to-character; handies general floating point conver-
sions in Basic or Fortran formats.

gitoc Generalized-integer-to-character (16 bit); handles integer conversions;
program-specified radix. .

gltoc Generalized-long-integer-to-character (32 bit); handies long integer con-
version; program-specified radix. 5:

1toc Integer-to-character (16 bit); handles integer conversion; decimal only.

1toc Long- integer-to-character (32 bit); handles 1long integer conversion;

decimal only.

ptoc Packed-string-to-character; accepts arbitrary delimiter character; will
i unpack fixed length strings if delimiter is set to EOS and maximum is set
to (length + 1).

rtoc Single-precision-real-to-character; handles general real conversion in
Basic or Fortran formats.

vtoc PL/I-character-varying-to-character; converts PL/I character varying format
to character.

Decode. ‘Decode’ handles conversion from character strings to all other formats. It is
written to be used in concert with ‘getlin’ and other such routines, and as such, has a rather
odd calling sequence. It requires a minimum of five arguments: the usual string, and string
index; a format string; a format string index and an argument string index. Following are
receiving arguments, depending on the data types specified in the format string. In almost
all cases, you should just supply variables with a value of 1 for the format index and the
argument index. The string index behaves just as it does in all other character-to-something
routines -- on successful conversion, it points to the EOS in the string. The specifics of
the format string and receiving fields are identical to ’'input’. The only differences are
that ‘decode’ returns with OK in the situations in which ’‘input’ would read another 1ine of
input, and EOF otherwise, and that all characters in the format string that are not format
codes are ignored.

Encode. ‘Encode’ 1is a companion routine to ‘decode’: it can access all of the
something-to-character conversion routines in a consistent way. For arguments it takes a
character string, maximum Jlength of the string, a format string, and a varying number of
source arguments, depending on the format string. ‘Encode’ behaves exactly 1like ‘print’,

except that it puts the converted characters into the string, rather than putting them onto a
file.

Argument Access

Programs often find it necessary to access arguments specified on the command 1ine.
These arguments can be obtained as EOS-terminated strings, ready for processing or passing to
a routine such as ‘open’.

Getarg. ‘Getarg’ is the only routine that retrieves arguments from the shell’s argument
buffer. It is called with three arguments: an integer describing the position of the
argument desired, a character array to receive the argument, and an integer describing the
maximum size of the receiving array. ‘Getarg’ tries to retrieve the argument in the specified
position; 1if it can, it returns the length of the string placed in the array; if it can‘t, it
returns the constant EOF. ‘Getarg’ will never write farther in the character array than the
size specified in the third argument.

b4

Arguments are numbered O through the maximum specified on the command line. Argument O
is the name of the command, argument 1 is the first argument specified, and so on. The number
of arguments present on the command 1ine can be determined by the point at which ‘getarg’
returns EOF.

As a short example, here is a program fragment that attempts to delete all files
specified as arguments on its command line:

- 45 -

Ratfor User’s Guide

character file (MAXLINE)
integer i
integer remove, getarg

i =1
while (getarg (i, file, MAXLINE ~= EOF)) {
if (remove (file) == ERR)
call print (ERROUT, "*s: cannot remove*n's,
file)
i= 1+ 1
}

Parscl. In many programs, argument syntax is quite complex. :.’Parscl’ exists for the
benefit of both programmers and users: it makes coding argument %arsing simple and it helps
keep argument conventions uniform. Of course, ‘to do this, 1t must auturatically enforce
certain argument conventions. ‘Parscl’ and its accompanying macros expect to recognize
arguments of a single letter without regard to case. Rather than a lengthy explanation, let’s
look at an exampie:' For its arguments, a program requires a page length (which should default
to 66 if not present), a title (which may also not be present), a flag to tell whether to
format for a printer or a terminal, and a 1ist of file names to process. In this case, a
reasonable option syntax is

prog [-1 <page length>] [-t [<titie>]] [-p] {<file name>}

We have used single letter flags to avoid the need for always specifying arguments. Now, in
terms of ‘parscl’, what we have is'a "required integer®, an “"optional string“, and a “flag".
This means that "-1" cannot be specified without a <page length>, but *"-t" can be specified
without a <title> (in this case, of course, we would use an empty title). Be sure to note
that a "required" argument means that if the letter is specified, it must be followed by a
value. It does not mean that the letter argument must always be present. In other circum-
stances, we can also have "optional integer" and "required string® arguments.

To use ‘parscl’ in our program, we must first include the argument macros and declare the
argument data area:

include ARGUMENT_DEFS
ARG_DECL

Then, near the beginning of the main program, we use a macro call to call ’‘parscl’ that
contains the syntax of the command line and a “usage" message to be displayed if the command
1line is incorrect. For our example, we can use

PARSE_COMMAND_LINE ("1<req int> t<opt str> p<flag>"s,
"prog [-1 <page len>] [-t [<title]] [-p] {<file}>"s)

For "optional integer" and "required string" arguments, the argument types are “<opt int>" and
*<req str>", respectively.

If the command line is parsed successfully, ‘parscl’ returns and the program continues;
otherwise, ‘parscl’ prints the "usage® message with a call to ‘error’. Once ‘parscl’ has
returned, we can set the default values, test for the presence or absence of arguments, and
obtain values of arguments. First we usually set default values:

ARG_DEFAULT_INT (1, 66)
1f (ARG_PRESENT (t))
ARG_DEFAULT_STR (t, ""s)
else
ARG_DEFAULT_STR (t, "Listing from prog"s)

Remember, default values are set after the call to ‘parscl’!

In the preceding example, we set the value of the argument for "1" to 66. This is simple
enough. But for the "t" argument, we really have three different cases: the argument was
specified with a string; the argument was specified without a string (meaning that we must use
an empty title), or the argument was not specified at all (meaniflg that we use some other
default). In the first case, neither call to ARG_DEFAULT_STR will do anything, since the
string was specified by the user: in the second case, ARG_PRESENT (t) will be ".true.* set-
ting the default to the empty string (since the *t" argument was specified, even though it was
without a string); and 1in the third case ARG_PRESENT (t) will be ".false.", setting the
default to "Listing from prog".

Now that we have finished setting defaults, we can obtain the values of arguments with
more macros: ‘the call ARG_VALUE (1) will return the page length value: either the value
specified by the user or the value 66 that we set as the default. ARG_TEXT (t) references an
EOS-terminated string containing the title: either the value specified by the user, an empty
string, or "Listing from prog". Use of the values in our example might look like this:

- 46 -

page_len = ARG_VALUE (1)
call ctoc (ARG_TEXT (t), title, MAXTITLE)
if (ARG_PRESENT (p))
do printer formatting
else
do terminal formatting

And now, here’s how all of the argument parsing will look:

include ARGUMENT_DEFS
ARG_DECL

PARSE_COMMAND_LINE ("l1<req int> t<opt str> p<flag>"s,
"prog [-1 <page len>] [-t [<titie]] [-p] {<file}>"s)

ARG_DEFAULT_INT (1, 66)
if (ARG_PRESENT (t))
ARG_DEFAULT_STR (t, ""s) ¢
else) {
ARG_DEFAULT_STR (t, "Listing from prog"s)

page_len = ARG_VALUE (1)
call ctoc (ARG_TEXT (t), title, MAXTITLE)
if (ARG_PRESENT (p))
do printer formatting
else
do terminal formatting

Now, what about the file name arguments we were supposed to parse. Where did they go?
‘Parscl’ deletes arguments that it processes; it also ignores any arguments not starting with
a hyphen (that do not appear after an letter-argument looking for a string). So the file name
arguments are still there, ready to be fetched by ‘getarg’, with none of the "-t «<title>"
stuff left to confuse the logic of the rest of the program.

Now, how about some example commands to call this program:

prog -p
(page_len = 66, title = "Listing from prog",
formatted for printer)

prog -134 -t new title
(page_len = 34, title = “new",
file name = “"title",
formatted for terminal)

prog filet file2 -p -t =170
(page_len = 70, title = ",
file names = filet1 file2,
formatted for printer)

prog filea -i"my new title" -1 60
(page_len = 60, title = "my new title",
file name = filea, formatted for printer)

prog -x filea
(the "usage" message is printed)

prog fileb -1
(the “usage" message is printed)

As you can see, ‘parscl’ allows you to specify arguments in many different ways. For more
information on ‘parsci’, see its entry in the Reference Manual.

Dynamic Storage Management

14
Dynamic storage subroutines reserve and free variable size blocks from an area of memory.
In this implementation, the area of memory is a one-dimensional array. Each block consists of
consecutive words of that array.

The dynamic storage routines assume that you have included the following declaration in
your main program and in any subprograms that reference dynamic storage:

DS_DECL (mem, MEMSIZE)
where ‘mem’ is an array hame that can be used to reference the dynamic storage area. You must

also define MEMSIZE to an integer value between 6 and 32767 inclusive. This number is the
maximum amount of space available for use by the dynamic storage routines. In estimating for

- 47 -

Ratfor User'’s Guide

the amount of dynamic storage required, you must allow for two extra ‘overhead’ words for each
block allocated. Three other overhead words are required for a pointer to the first available
block of memory and to store the value of MEMSIZE.

Dsinit. The call
call dsinit (MEMSIZE)

initializes the storage structure’s pointers and sets up the 1ist of free blocks. This call
must be made before any other references to the dynamic storage area are made.

Dsget. ‘Dsget’ allocates a block of words in the storage area and returns a pointer
(array index) to the first useable word of the block. It takes one argument -- the size of
the block to be allocated (in words).

After a call to ‘dsget’, you may then fill consecutive words in the ‘mem’ array beginning
at the pointer returned by ‘dsget’ (up to the number of words you requested in the block) with
whatever information called for by your application. If you should write more words to the
block than you allocated, the next block will be overwritten. Needless to say, if this hap-
pens you may as well give up and start over.

If ‘dsget’ finds that there is not enough contiguous storage space to satisfy your
request, it prints an error message, and if you desire, calls ‘dsdump’ to give you a dump of
the contents of the dynamic storage array.

Dsfree. A call to ‘dsfree’ with a pointer to a block of storage (obtained from a call to
’dsget’s deallocates the block and makes it available for later use by ‘dsget’. ‘Dsfree’ will
warn you if it detects an attempt to free an unallocated block and give you the option of
terminating or continuing the program.

Dsdump. The dynamic storage routines cannot check for correct usage of dynamic storage.
Because block sizes and pointers are also stored in ‘mem’ it is very easy for a mistake in
your program to destroy this information. ‘Dsdump’ is a subroutine that can print the dynamic
storage area in a semi-readable format to assist in debugging. It takes one argument: the
constant LETTER for an alphanumeric dump, or the constant DIGIT for a numeric dump.

The following example shows the use of the dynamic storage routines and uses ‘dsdump’ to
show the changes in storage that result from each call.

define (MEMSIZE, 35)

pointer post, pos2 # pointer is a subsystem defined type
pointer dsget

DS_DECL (mem, MEMSIZE)

call dsinit (MEMSIZE)
call dsdump (LETTER) # first call

posi = dsget (4)

call scopy (“aaa's, 1, mem, pos1)
call dsdump (LETTER) # second call
pos2 = dsget (3)

call scopy ("bb"s, 1, mem, pos2)
call dsdump (LETTER) # third call

call dsfree (pos2)
call dsdump (LETTER) # fourth call

stop
end

The first call .to ‘dsdump’ (after ‘init’) produces the following dump:

* DYNAMIC STORAGE DUMP =

1 3 words in use .
4 32 words available
* END DUMP =*

The first three words are used for overhead, and 32 (MEMSIZE - 3) words are available starting
at word four in ‘mem’.

The second call to ’‘dsdump’ (after the first write to dynamic storage) produces the fol-
lowing:

- 48 -

kT —

* DYNAMIC STORAGE DUMP x
1 3 words in use
4 26 words available
30 6 words in use
aaa
* END DUMP x

Note that only four characters were written, three a‘s and an EOS (an EOS is a nonprinting

character), but two extra control words are required for each block. That block is comprised
of words 30 - 35 in the array ‘mem’.

The third call to ‘dsdump’ (after the second ‘scopy’) produces the following:

* DYNAMIC STORAGE DUMP =
1 3 words in use
4 21 words available
25 5 words in use
bb
30 6 words in use
aaa
* END DUMP =

The final call to ‘dsdump’ produces:

* DYNAMIC STORAGE DUMP =
1 3 words in use
4 26 words available
30 6 words in use
aaa
* END DUMP =

As you can see, the second block of storage that began at word 25 has been returned to the
1ist of available space.
Symbol Table Manipulation

Symbol table routines allow you to index tabular data with a character string rather than
an integer subscript. For instance, 1in the following table, the information contained in

*field1", *field2", and "field3" can be obtained by specifying a certain key value (e.g.
*firstentry").

lkey lfield1 | field2 |field3]
if1rstentry i 10268 i data i u i
!socondentry ! 27043 ! moredata ! a !

A1l Subsystem symbol table routines use dynamic storage. Therefore, the declarations and

initialization required for dynamic storage are also required for the symbol table routines;
namely:

DS_DECL (mem, MEMSIZE)
call dsinit (MEMSIZE)

where ‘mem’ is an array name that can be used to reference the dynamic storage area, and MEM-
SIZE 1is a user-defined identifier describing how many words are to be reserved for items in
dynamic storage. MEMSIZE must be a integer value between 6 and 32767 inclusive. For a
discussion on how to estimate the amount of dynamic storage space needed in a program, you can
refer back to the section on the dynamic storage routines.

A symbol table entry consists of two parts: an identifier and i1ts associated data. 1lhe
identifier is a variable length character string;: it is dynamically created when the symbol is
entered into a symbol table. The data associated with the symbol’ is treated as a fixed-length
array of words to be stored or modified when the associated symbol is entered in the table and
returned when the symbol is looked up. The size of the data is fixed for each symbol table --
each entry in a table must have associated data of the same size, but different symbol tables
may have different lengths of data.

Mktab1. A symbol table 1is created by a call to the pointer function ‘mktabl‘’ with a
single integer argument giving the size of the associated data array or the “node size".
‘Mktabl’ returns a pointer to the symbol table in dynamic storage. This returned pointer
identifies the symbol table -- you must pass it to the other symbol table routines to identify
which table you want to reference. A symbol table is relatively small (each table reqguires
about 50 words, not counting the symbols stored in it), S0 you may create as many of them as

-49-

Ratfor User’s Guide

you like (as long as you have room for them).

In the table above, if "fieldi" and "field3" require one word each, and *field2" requires
no more than 9 words, then you can create the symbol table with the following caill:

pointer extable
extable = mktabl (11)

The argument to ‘mktabl’ is 11 -- the total length of the data to be associated with each sym-
bo1.

Enter. To enter a symbol in a symbol table, you must provide two items: an EOS-
terminated string containipg the identifier to be placed in the table, and an array containing
the data to be associated with the symbol. O0Of course this array must be at least as large as

the "nodesize" declared when the part.cularr symbol table was created. A call to the
subroutine ‘enter’ with the identifier, the data array, and the symbol table pointer will make
an entry in the symbol table. However, i{if the identifier is already in the table, its

associated data will be overwritten oy the new data you’ve just supplied. It is not possible
to have the same identifier in the same symbol table twice.

Now, continuing our example, to enter the first row of information in the table, you can
use the following statements:

info (1) = 10268

call scopy ("data"s, 1, info, 2)

info (11) = ‘u’c

call enter ("firstentry"s, info, extable)

Lookup. Once you’ve made an entry in the symbol table, you can retrieve it by supplying
the identifier in an EOS-terminated string, an empty data array, and the symbol table pointer
to the function ‘l1ookup’. If ‘lookup’ can find the identifier in the table, it will fil11 1in
your data array with the data it has stored with the symbol and return with YES for its func-
tion value. Otherwise, it will return with NO as its function value.

In our example, to access the data associated with the "firstentry" we can make the fol-
Towing call:

foundit = lookup ("firstentry"s, info, extable)

After this call (assuming that "firstentry" was in the table), "foundit" would have the value
YES, “info (1)" would have the value for *fieldi", "info (2)" through "info (10)" would have
the value for “"field2", and "info (11)" would have the value for *field3".

Delete. If you should want to get rid of an entry in a symbol table, you can make a call
to the subroutine ‘delete’ with the identifier you want to delete in an EOS-terminated string
and the symbol table pointer. If the identifier you pass 1is in the table, ‘delete’ wil)
delete it and free i{ts space for later use. If the identifier is not in the table, then
‘delete’ won’t do anything.

Using our example again, if you want to delete ’‘firstentry’ from the table, you can just
make the call

call delete ("firstentry"s, extable)
and “"firstentry" will be removed from the table.

Rmtab1. when you are through with a table and want to reclaim all of its storage space,
you pass the table pointer to ‘rmtabl’. ‘Rmtabl’ will delete all of the symbols in the table
and release the storage space for the table itself. Of course, after you remove a table, you
can never reference it again.

h)
To complete our example, we can get rid of our symbol table by just calling ‘rmtabil’:

call rmtabl (extable) ”

Sctabl. So far, the routines we‘ve talked about have been sufficient for dealing with
symbol tables. It turns out that there is one missing operation: getting entries from the
table without knowing the identifiers. The need for this operation arises under many circum-
stances. Perhaps the most common is when we want to print out the contents of a symbol table
for debugging.

To use ‘sctabl’ to return the contents of a symbol table, you first need to initialize a
pointer with the value zero. We’ll call this the position pointer from now on. Then you call
‘sctable’ repeatedly, passing it the symbol table pointer, a character array for the name, a
data array for the associated data, and the position pointer. Each time you call it, ‘sctabl’
will return another entry in the table: it will fi11 in the character string with the entry’s

.

-50_

identifier, fill in your data array with the entry’s data, and update position in the position
pointer. When there are no more entries to return in the table, ‘sctabl’ returns EOF as its
function value.

There are two things you have to watch when using ‘sctabl’. First, if you don’t keep
calling ‘sctabl’ until it returns EOF, you must call ‘dsfree’ with the position pointer to
release the space. Second, you may call ‘enter’ to modify the vatue of 2 symbol while scan-
ning a table, but you cannot use ‘enter’ to add a new symbol or use ‘delete’ to remove a sym-
bol. If you do, ‘sctabl’ may lose its place and return garbage, or it may not return at all!

Here is a subroutine that will dump the contents of our example symbol table:

¥ stdump --- print the contents of a symbol table

subroutine stdump (table)

pointer table

integer posn

integer sctabl

character symbol (MAXSTR)

untyped info (11)

call print (ERROUT, “*4xSymbolx*12xInfo*n"s)

posn = O

while (sctabl (table, symbol, info, posn) ~= EOF)
call print (ERROUT, "*15s|x61i|*9s)=c*n"s,

symbol, info (1), info (2), info (9))

return
end

If you made a call to ‘stdump’ after you had made the entry for *"firstentry”, it would print
the following:

Symbo1l Info
firstentry ! 10268 |data lu

Other Routines

There are a number of miscellaneous routines that provide often needed assistance. The
following table gives their names and 2 brief description. For full information on their use,
see the Subsystem reference manual:

date Obtain date, time, process id, login name

error Print an error message and terminate

follow Follow a path and set the current and/or home directories

remark Print a string followed by a2 newline

tquit$ Check if the break key was hit

wkday Determine the day of the week of any date

- 51 -

Ratfor User’s Guide

Appendixes

Appendix A -- Implementation of Control Statements

This appendix contains flowcharts of the code produced by the Ratfor control statements
along with actual examples of the code Ratfor produces.

In different contexts, a given sequence of Ratfor control statements can generate
slightly different code. First, where possible, statement labels are not produced when they
are not referenced. For ipstance, a repeat loop containing no break statements will have no
"exit" label generated, since one is not needed. Second, continue statements are generated
only when two *t-t:me '~ -.ibers must reference the same statement. Finally, internally
generated goto statements are omitted when control can never pass to them; e.g. a when clause
ending with a return statement. :

These code generation techniques make no fundamental difference in the control-flow of a
program, but can make the code generated by very similar instances of a control statement
appear quite different. Please keep in mind that the examples of Fortran code generated by
‘rp’ are included for completeness, and are not necessarily character-for-character descrip-
tions of the code that would be obtained from preprocessing. Rather, they are intended to
illustrate the manner in which the Ratfor statements are impiemented in Fortran.

- 852 -

RGITT7or uvser s wwiage

Break

Syntax:

break [<levels>]
Function:

Causes an immediate exit from the referenced loop.

Example:

for (i = length (str); i > 0; i = i - 1)
if (str (i) ~= ¢ ‘c)
break

i=length(str)
goto 10002
10000 i=i-1
10002 if((i.1e.0))goto 10001
if((str(i).eq.160))goto 10003
goto 10001
10003 goto 10000
10001 continue

e

- §3 -

Ratfor User’s Guide

Do
Syntax:
do <limits>
<statement>
Function:
]
U
v
................... 2=
1]
! initiatize :in ;
| I
R L EE PR PP PP PP PP TP
v
= <statement> !
i 1
]
U
v
*
* x 020200 eescsceccsecccescccwecccaenes
* * false i i
* do satisfied? = --->I reinitialize do |-" >
* * i 1
* *x = eeeseccccccecccecccccene
*
| true
"
Exampie:

do 1 = 1, 10
array (i) = 0

do 10000 i=1,10
10000 array(i)=0

- 54 -

Syntax:

for ([<initialize>); [<condition>]; [<reinitialize>])

Function:

Example:

<statement>

P e e e

for (i = limit - 1; i > O; i

array_1 (1) = array_1 (i + 1)
array_2 (i) = array_2 (i + 1)

}
1=1imit-1
goto 10002
10000 i=i-1

10002 if((i.1e.0))goto 10001

arrayi(i)=arrayi(i+1)
array2(i)=array2(i+1)
goto 10000

10001 continue

—e s s e ccc e ca .-

i

For

-55-

NG LYW

2 W Iue

Ratfor User’s Guide

If

if((a.ne.b))goto 10000

Syntax:
if (<condition>)
<statement>
Function:
]
1
v
E 3
*x *
* *x
* <condition>
* *
* *
false
Example:
if (a == b) {
c =1
d= 1
}
c=1
d=1

10000 continue

- 56 -

- -

Syntax:

Function:

Example:

If - Else
if (<condition>)
<statement_1>
else
<statement_2>
1
U
v
* *
true * * false
i< ----- * <condition> % ~---- >i
' * *
[* * !
v * v
TTTTTTTTTTTTTTTTY yooTTTTTTTTT T
<statement_1> { { <statement_2> %
) 1]
! '
[U
v v
Ssmmmmmsssceeemccocooooooooo-
1
v

if (i >= MAXLINE)
i= 1

else
i= i+ 9

if((i.11.102))goto 10000
i=1
goto 10001
10000 i=i+1
10001 continue

- 857 -

NG LW

2 wauiue

Ratfor User‘’s Guide

Next

Syntax:

next [<levels>]
Function:

A1l loops nested within the loop specified by <levels> are terminated. Execution resumes
with the next iteration of the loop specified by <levels>.

Example: .

output only strings containing no blanks E
for (1 = 1; 1 <= LIMIT; i = 1 + 1) { C
for (j = 1; str (j, 1) ~= EOS; j = § + 1)
if (str (j, 1) == ¢ ‘/¢)

next 2
call putlin (str (1, i), STDOUT)
}
i=1
goto 10002
10000 i=i+1 .
10002 if((i.gt.50))goto 1000
j=1
goto 10005

10003 j=j+1
10005 if((str(j,i).eq.-2))goto 10004
if((str(j,i).ne.160))goto 10006
goto 10000
10006 goto 10003
10004 call putlin(str(1,i),-11)
goto 10000
10001 continue

o

- 58 -

Ratfror user- s uwuiae

Repeat
Syntax:
repeat
<statement>
[until (<condition>)]
Function:
1
P
v
| TTTTTTTTTTTTTH
{ <statement> l o
1 1
1
i
\"
*
* *
* = faise
* <condition> * cccece >
* *
* *
*
! true
v
Example:
repeat {
i =3 + 1
=3+

} until (str (i) ~= * ‘¢)

10000 i=i+1
jsj+1
if((str(i).eq.160))goto 10000

- 59 -

Ratfor User’s Guide

Return

Syntax:

return [‘(’ <expression ‘)’]

Function:

Causes <expression> (if specified) to be assigned to the function name, and then causes a
return from the subprogram.

Example: .
integer function fcn (x)
return (a + 12)
integer function fcn (x)
fcn=a+12
return

- 60 -

Syntax:

Function:

*

select

when (<condition_1>)
<statement_1>

when (<condition_2>)
<statement_2>

when (<condition_3>)
<statement_3>

.

when (<condition_n>)

<statement_n>
[ifany
<statement_i>]
[erse
<statement_e>]
!
1
v
*
* *
* * true i
<condition_1> = --—>'
* * |
* *® ---
*
! false
v
*
* * -
* * true
<condition_2>
* *
* *
*
| false
v
*
* * -
* * true i
<condition_3> = --->|
* * H
* *
*
| faise
v
| faise
v
*
* *
* * true i
<condition_n> x* —-->'
* * \
* *
*
! faise
v

Select

I
* --->= <statement_2>
'

1
<statement_n> =->
1

- 61

Ratfor User‘'s Guiae

Example:

select
when (i == 1)
call add_record
when (i == 2)
call delete_record
else
call code_error

goto 10001
10002 call addreQ
goto 10000,
10003 call deletO
goto 10000
10001 if((i.eq.1))goto 10002
if((i.eq.2))goto 10003
call codeeO
10000 continue

- 62 -

Select (<integer expression>)
Syntax:
select (<i0>)
when (<i1.1>, <i1.2>, ...)
<statement_1>
when (<i2.1>, <i2.2>, ...)
<statement_2>
when (<i3.1>, <i3.2>, ...)
<statement_3>
when (<in.1>, <in.2>, ...)
<statement_n>
[ifany
<statement_i>]
[else
<statement_e>]
Function:
[}
U
\%
*
* ®* === eesscssccccccccccccces
* {0 == *x true i i
* i1.1 or 1.2 * --->I <statement_1> |~
* or ... * | H
* * === eeccrcccccccccccecccen
»*
| faise
\Y
*
* * === eecsccccccccacccceccen=
* i0 == * true i i
* 2.1 0or i2.2 * --->| <statement_2> |->
* or ... * h i
* *¥ =0 eeeccccccccccecmmeme==—-
%
| faise
v
*
* * =20 eesecmcccccccecccceomm==
* {0 == x true i i
* i3.1 or i3.2 * —-’>| <statement_3> |->
* or ... * H H
* * = eesscmcccccccccccc-o-
»*
| faise
\Y
| faise
\'
*
* ® === eeeccccccccccmcmmem——-
* 10 == x true i i
* in.{ or in.2 * --->| <statement_n> |->
* or ... * y 1
* * = emesmscesceccccc---c--o
*
| faise
\' \
]]]
} <statement_e> } = <statement_i>
1 | !
1]
! v
.
v

Ratfor User‘’s Guide

Exampie:

select (1)
when (4, 6, 3003)
call add_record
when (2, 12, 5000)
call delete_record
else
call code_error

integer aaaaa0,aaaab0
aaaaa0s={i
goto 10001
10002 call addre0O
goto 10000
10003 call deletO
goto 10000
10001 aaaabO=aaaaaO-1
goto(10003, 10004, 10002, 10004, 10002,
* 10004, 10004, 10004, 10004, 10004,
* 10003) , aaaab0
if (aaaaa0.eq.3003)goto 10002
if (aaaaa0.eq.5000)goto 10003
10004 continue
10000 continue

- 64 -

While

syntax:
while (<condition>)
<statement>
Function:
[}
.............. y
\
*
* *
* * false
* <condition> * cmemce- >
* *
* *

*
! true
v

{ <statement> =

1 1
i
U
\
| cccccrcercnceeeeee
1
A"

Example:

while (str (i) ~= EOS)
i= 4§ + 1

10000 if((str(i).eq.-2))goto 10001
i=i+1
goto 10000
10001 continue

- 65 -

e

Ratfor user-‘s

Guide

Ratfor User'’s Guide

Appendix B -- Linking Programs With Initialized Common

The Subsystem 1ink procedure makes the assumption that all common areas are uninitialized
to allow programs to access up to 27 64K word segments of data space. A program which uses
initialized common areas must be linked with one of two slightly different procedures: If the
object file can be a segment directory (this is usually not a problem), you can have the
object file placed in a segment directory. Just add the "-d" option to the ‘1d’ command line.
Assuming your binary file is named "prog.b", you can use the command

id -d prog.b

If you would rather the object program be stored in a regular file, you can use a
slightly different procedure. With this procedure, the program is restricted to one segment
(64K words) for both code and data spice. 17 this limit is exceeded, no warning will be
given, and unpredictable results will occur during execution. If more than 64K words of space
is required, the common areas must be initialized at run time, or the program must be placed
in a segment directory.

This modification to the 1ink procedure is as follows: the option string "-s ‘co ab
4000‘" must appear on the ‘1d’ command 1ine before the first binary file. For instance, if
the file "prog.b" contained a program with block data statements, an ‘1d’ command to 1ink it
might appear as follows: :

1d -s ‘co ab 4000’ prog.b

The executable program would be placed in the file "prog.o".

- 66 -

Ratfor User’s Guide
Appendix C -- Requirements for Subsystem Programs

This appendix gives the technical specifications of requirements for programs that run
under the Subsystem. It is included to allow non-Ratfor programs to run under the Subsystem.
325 and 16S addressing modes

- There is no support for the execution of these addressing modes.

4R & 32R addressing modes

- The 64R mode library routines cannot access the Subsystem common areas, so 32R and 64R
mode programs cannot execute under the Subsystem.

d
FN
<

addressing mode ' &
- Segments ‘4040 and ‘4041 may not be disturbed.

- When a Subsystem program is executed, the stack is already constructed in segment
‘4041. However, the executing program may rebuild it if desired.

- Programs that use native i/o routines must inform their native i/o routines of the Sub-
system (if they wish to take advantage of Subsystem 1/0) by calling the proper
initialization routines, 1i.e. ‘init$f’ for Fortran 66 and Fortran 77, ‘init$p’ for
Pascal and ‘init$plg’ for PL/I G.

- The program must terminate with a call to the Subsystem routine ‘swt’ at the end of its
execution or its main program must return to its caller. A stop statement 1{in Ratfor
will be transformed into a call to ‘swt’.

- The program must not tamper with any file units already open by the Subsystem. It
should always use a Subsystem or Primos call to obtain an unused file unit.

- The program must be in a P300 format runfile or a SEG-compatible segment directory.

- If the program is in a P300 format runfile, it must have been loaded by the modified
version of the segmented 1loader, ‘swtseg’, or the entry control block for the main
program must be at location ‘1000 in segment ‘4000.

- The runfile must not expect any segment othér than ‘4000 to be initialized before
execution, unless it is loaded from a SEG-compatible segment directory.

- The default load sequence produced by ‘1d’ will correctly 1ink programs requiring up to
64K words of procedure (code) and linkage (initialized local data) frames. Up to 27
64K word segments may be used for uninitialized common blocks. Up to 64K words of
local data may be allocated on the stack. Programs loaded from SEG-compatible segment
directories may be as large as the operating system permits, as long as they do not
modify segments ‘4040 and ‘4041.

321 addressing mode

- Programs in 321 mode may be executed under thza Subsystem subject to the same
constraints as 64V mode programs.

- 67 -

Ratfor User’s Guide
Appendix D -- The Subsystem Definitions

The file “=incl=/swt_def.r.i" contains Ratfor define statements for all the symbolic
constants required to use the routines 1in the Subsystem support library. This appendix
describes the more frequently used constants and the constraints placed on them.

Characters

ASCII Mnemonics. Character definitions for the ASCII control characters NUL, SOH, STX,
..., GS, RS, US, as well as SP and DEL.

Control characters. Character definitions for the ASCII control characters CTRL_AT,
CTRL_A, CTRL_B, ..., CTRL_LBRACK, CTRL_BACKSLASH, CTRL_RBRACK, CTRL_CARET, and
CTRL_UNDERLINE.

BACKSPACE S n-ny. F.r ASCII BS.

TAB Synonym for ASCII HT.

BELL Synonym for ASCII BEL.

RHT Relative horizontal tab character (used for blank compression in Primos text
files).

RUBOUT Synonym for ASCII DEL.

Data Types
bits Bit strings (16 bit items).
bool Boolean (logical) values: .true. and .false. (16 bit items).

character Single right-justified zero-filled character (scalar), or a string of these
characters terminated by an EOS (array).

file_des File descriptor returned ‘open’, ’‘create’, etc.

file_mark File position returned by ’‘seekf’.

longint Double precision (32 bit) integer.

longreal Double precision (64 bit) floating point.

pointer Pointer for use with dynamic storage and symbol table routines.

Macro Subroutines

fpchar (<packed array>, <index>, <character>) Fetches <character> from <packed array> at
character position <index> and increments <index>. The first character in the
array is position zero.

spchar (<packed array>, <index>, <character>) Stores <character> 1in <packed array> at
character position <index> and increments <index>. The first character in the
array is position zero.

getc (<char>) Behaves exactly like ‘getch’, except the character is always obtained from
STDIN.

putc (<char)) Behaves exactly like ‘putch’, except the character i{s always placed on
STDOUT.

SKIPBL (<character array>, <index>) Increments <index> until the corresponding position
in the character array is non-blank.

DS_DECL (<ds array name>, <ds array size>) Declares the dynamic storage array with the
name <ds array name> with size <ds array size>.

Language Extensions

ARB Used when dimensioning array parameters in subprograms (since their length is
determined by the calling program, not the subprogram).
FALSE Represents the Fortran logical constant .false.

IS_DIGIT (<char>) Logical expression yielding TRUE if <char> is a digit.

IS_LETTER (<char>) Logical expression yielding TRUE if <char> is an upper or lower case
letter.

IS_UPPER (<char>) Logical expression yielding TRUE if <char> is an upper case letter.

IS_LOWER (<char>) Logical expression yielding TRUE if <char> is a lower case letter.

SET_OF_UPPER_CASE Sequence of 26 character constants representing the upper case letters
for use in the when parts of select statements.

SET_OF_LOWER_CASE Sequence of 26 character constants representing the lower case letters
for use in when parts of select statements.

SET_OF_LETTERS Sequence of 52 character constants representing the upper and lower case
letters for use in when parts of select statements.

SET_OF_DIGITS Sequence of 10 character constants representing the digits for use in when
parts of select statements.

SET_OF_CONTROL_CHAR Sequence of 32 character constants representing the first 32 ASCII
control characters for use in when parts of select statements.

TRUE Represents the Fortran logical constant .true.

- 68 -

Limits

KaITor user- s uulge

CHARS_PER_WORD Maximum number of packed characters per machine word.

MAXINT
MAXARG
MAXCARD
MAXDECODE
MAXLINE
MAXPAT
MAXPATH
MAXPRINT
MAXTREE
MAXFNAME

Standard Ports

STDIN

STDIN1

STDIN2
ERRIN

STDIN3
STDOUT
STDOUT 1
STDOUT2
ERROUT
STDOUTS

Largest
Max i mum
Max imum
Max imum
Max imum
Max imum
Max imum
Max imum
Max imum
Max imum

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

16-bit
Tength
input 1
size of
input 1
size of
size of
number
number
number

input
input
input
input
input
output
output
output
output
output

Argument and Return Values

ABS
REL

DIGIT
LETTER
UPPER
LOWER
READ
WRITE
READWRITE
EOF

oK

ERR

EOS
LAMBDA
PG_END
PG_VTH
YES

NO

integer.
of a command 1ine argument (EOS-terminated character string).
ine length (excluding the EO0S).
string processed by ‘decode’.
ine length.
a pattern array.
a Subsystem pathname.
of characters that can be output by a single call to ‘print’.
of characters in a Primos tree name.
of characters in a simple file name.

WWN - =

WWN = -

Request absolute positioning (‘seekf’).

Request relative positioning (‘seekf’).

Character is a digit (‘type’).

Character is a letter (’type’).

Map to upper case (‘mapstr’).

Map to lower case (‘mapstr’).

Open file for reading.

Open file for writing.

Open file for reading and writing.

End of file (guaranteed distinct from all characters and from OK and ERR).
No error (guaranteed distinct from all characters and from EOF and ERR).
Error occurred (guaranteed distinct from all characters and from EOF and OK).
End of string (guaranteed distinct from all characters).)
Null pointer (guaranteed distinct from all pointer values).

Make ‘pa

ge’ ret

urn after the last page of input.

Make ‘page’ use the VTH routines when writing to the terminal.
Affirmative response (guaranteed distinct from NO).
Negative response (guaranteed distinct from YES).

e

- 69 -

Ratfor User’s Guide
Appendix E -- ‘Rp’ Reserved Words

The following identifiers are reserved keywords in Ratfor and cannot be used as
identifiers. ‘Rp’ will not diagnose the use of reserved keywords as identifiers; results of
misuse will be unreasonable behavior such as misleading error messages and mis-ordered Fortran
code.

blockdata 1inkage
break local

call logical
case next
common parameter
complex procedure
continue real

data recursive
def ine repeat
dimension return

do save
doubleprecision select
else shortcall
end stackheader
equivalence stmtfunc
external stop

for string
forward stringtable
function subroutine
goto trace

if undef ine
ifany until
implicit when
include while
integer

- 70 -

MELI VI wew! @ Uuiue

Appendix F -- Command Line Syntax

‘Rp’ provides a rich set of processing options to allow the user much flexibility and
control over the code which is produced. The command 1ine syntax is as follows:

rpl-fajbjlcidifiginhilimipisitiv]yl

[-o0 <output_file>] {<input_file>} [-x <translation file>]

The following is a full description of each option:

Abort all active shell programs if any errors were encountered during preprocessing.
This option is useful in shell programs like ‘rfl1’ that wish to inhibit compilation
and loading if preprocessing failed. By default, this option is not selected; that
is, errors in preprocessing do not terminate active shell programs.

Do not map 1long indentifiers or identifiers containing upper case letters into
unique six character Fortran identifiers. This option is useful é@f your Fortran
compiler will accep: names longer than six characters.

Include statement-count profiling code in the generated Fortran. When this option
is selected, calls to the library routines ‘c$init’, ‘c$incr’, and ‘c$end’ will be
placed (unobtrusively) in the output code. When the preprocessed program is run, it
will generate a file named "_st_count" containing execution frequencies for each
line of source code. The utility program ‘st_profile’ may then be used to combine
source code and statement counts to form a readable report.

Inhibit generation of the long-name dictionary. Normally, a dictionary listing all
long names used in the Ratfor program along with their equivalent short forms is
placed at the end of the generated Fortran as a series of comment statements. This
option prevents its generation.

Suppress automatic inclusion of standard definitions file. Macro definitions for
the manifest constants used throughout the Subsystem reside in the file
“zincl=/swt_def.r.i". ‘Rp’ will process these definitions automatically, unless the

"-f* option is specified.

Make a second pass over the code and remove GOTDOs to GOTOs generated in Ratfor
control structures. Use of this option lengthens preprocessing time significantiy,
but can result (sometimes) in a 2-5% speedup of the object program.

Produce Hollerith-format string constants rather than quoted string constants. This
option useful in producing character strings in the proper format needed by your
Fortran compiler.

Inciude Ratfor 1line numbers 1{in the sequence number field of the Fortran output.
This may be useful in tracking down the Ratfor statement that caused a Fortran
syntax error. By default, no sequence field is generated.

Map all identifiers to lower case. When this option is selected, ’‘rp’ considers the
upper case letters equivalent to the corresponding lower case letters, except inside
quoted strings.

Emit subroutine profiling code. When this option is selected, ’‘rp’ places calls to
the library routines ‘t$entr’, ‘t$exit’, and ‘t$clup’ in the Fortran output, and
creates a text file named "timer_dictionary" containing the names of all subprograms
seen by the preprocessor. When the profiled program is run, a file named "_profile"
is created that contains timing measurements for each subprogram. The utility
program ‘profile’ may then be used to print a report summarizing the number of times
each subprogram was called and the total time spent in each.

Short-circuit all logical conditions. The order of evaluation of 1logical operands
in Fortran is unspecified; that is, in the expression “a&b" there is no guarantee
that "a" will be evaluated before "b". Occasionally this creates inconveniences;
one would 1like to say something l1ike "if(i>t1&array(i)~=0)...%. ‘Rp’ supplies the
short-circuit logical operators “8&" and "|!" (read "andif" and "orif") for these
occasions. Both operators evaluate their left operands,’; if the value of the logical
expression is predictable solely on the basis of the value of the left operand, then
the right operand remains unevaluated and the correct expression value is yielded.
Otherwise the right operand is evaluated and the proper expression value is
determined. The "-s" option may be used to automatically convert all "logical and"
operators in a program to "andifs," and all "logical or" operators to ‘"orifs." In
addition to improving program portability, this option may also reduce execution
time. By default, however, this option is not in effect.

Trace subprograms. Wwhen a program preprocessed with the "-t" option 1is run, an
indented trace of the subprograms encountered will be printed on ERROUT. This trace
output is generated by calls to the library routine ‘t$trac’ that are inserted
automatically by ‘rp’.

- 71 -

Ratfor User’s Guide

\ Output “standard" Fortran. This option causes ‘rp’ to generate only standard
Fortran constructs (as far as we know). This option does not detect non-standard
Fortran usage in Ratfor source code; it only prevents '‘rp’ from generating non-
standard constructs in implementing its data and control structures. Programs
preprocessed with this option are slightly 1larger and slower; the intermediate
Fortran and binary files are approximately 10% larger.

x Translate character codes. ‘Rp’ uses the character correspondences in the
<translation file> to convert characters into integers when it builds Fortran DATA
statements containing EOS-terminated or PL/I strings. If the option 1is not
specified, ‘rp’ converts the characters using the native Prime character set. The

format of the translation file is documented below.

y Do not output “*call swt". This option keeps ‘rp’ from generating “call swt" in
place of all "stop" statements.

The remainder of the command line is used to specify the names of the Ratfor input
file(s) and the Fortran output file. If the "-o" option, followed by a filename, is selected,
then the named file is used for Fortran output. Any remaining filenames are considered Ratfor
source files. If no other file names are specified, standard input is read. If the "-o"
option is not specified, then the output filename is constructed from the first input filename
by changing a ".r" suffix (if present) to ".f*. If the ".r" suffix is not present, the output
filename is the input filename followed by the suffix ".f".

The format of the translation file used with the "-x" option is as follows. Each 1line
contains descriptions of two characters: the Prime native character to be replaced, and the
character value to replace it. These descriptions may be any one of the following: a single:
non-blank Prime ASCII character, a number in a format acceptable to ‘gctoi’ (must be more than
one digit), or an ASCII mnemonic acceptable to ‘mntoc’. In addition, the character to be
replaced may also be the mnemonic “EO0S" to indicate that the value of the end-of-string
indicator 1is to be changed. For example, here is a portion of the table for converting the
EBCDIC character set:

A 16rci
B 16rc2

;Gres
16rf0

ON-

16rfF9
P 16r40

no:-

-72-

Software Tools Text Formatter
User’s Guide

Terrell L. Countryman
Perry B. Flinn
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

Basics s e s s esacseassssessssesssasasanen s e esenseseesssnn s esessnessssansanssseans 1
Usageccvveeennnns N Ce e iees e
Commands and Textcictieenaenas S et et et aseaacssesesteren et eaaeennnnn e

Filling and Margin Adjustment ittt rnenenrsnnnnnn 1
Filled TexXtcctiiitirieererorecesessnassarnssscnsnsns Ceessre ettt 1
Hyphenation et seretecea et . 2
Margin Adjustment 000000 nann P esscccasseresansarsnanecscinnansanns e 2
CeNteriNgttt eiinanreesssesssnsseansaananssssnssanonssaneas c et 2
Sentence Punctuation e eeescseeenesenssacsnnens ettt esaessesec ettt 3
Summary - Filling and Margin Adjustmentci0tunnen Ceseeiaaas e 3

Spacing and Page Control iiiiiinnrrecncnnnoneans I Connnnnnns 3
LinNe SPACIMG .. ittt ittt ittt ieeteneansaaacassssanesssssssssansascnnnonss A 3
PagEe DivIiBION ...t iiiiiiitietieseetneeneaceacassssssssessnssssanssnssnscanasennsas 4
'NO-Space’ MOOeiiciiiieeinnsnocsannnaseannnnns T, et e reeeaen 5
Summary - Spacing &nd Page Controlc..itiiiitttetnesnecacanannnannnns e 1

Margins and Indentationttt ittt 5
Marginscceeiiinenn e et et es s eeeesses e e s eats e ataeatasansaer e 5
Top and Bottom Marginsc.ciitteeencenncsennsnnns C et cescesace i 5
Left and Right Marginsot ititeinenersiiaccanases Ce e isesease sttt 6
B0 7= 1= 0 - T Gk 1 = o T 6
PaAgEe DFffSEtttt ittt ittt ttessacaeasesosesessssssseessansensenosnnssanenannnns 6
Margin CharaCtersttt itineieienoeensosssesnsnensnsnaseeasonsanassasansssansas 7
Summary - Margins and Indentationiiiittinrernnracrinasasoacacrsaanoaanas 7

Headings, Footings and Titles i iiiiiiiiiiiiiertireeenncennaneennnnannn 7
Three Part Titles ittt ittt ateeeeseeoaeseseensssenssenssnasennsnnsanns 7
Page Headings and FOOtINGSt tiiierieeeernernessesasnanssonsanaanasasansansons 8
Summary - Headings, Footings and Titlesttt ittt ieroenonnnnenaassnnnnns]

R - T S - T T 9
TabS it it i e e C ot ta et e e e e e a ettt ettt]
SuMMAary = TADUT@tIONttt it iittieieeetassesssssssssssnssassssasnsssncsnncsns 10

MisCellaneous COMMANAScitctieueuneneeneeansensassasesnasssnencsaansssanas 10
COMMBNE S . i . ittt ittt cenesnneoensnseeasnsasseenassosseessssonssesosssssscsnssssesossssns 10
Boldfacing, Underlining, and Italicizing et eeeceeiate et 10
Control Characterscciitiiieierenennencnns s e e ce s s e e s es s s e 11
Lo = 11T~ 3 T St e a e 11
Premature Terminationttt eeeoasnsacesssssssssonssssosnsscssnssssssssasnsss 12
Summary - MisScellaneousS COmMMANGASccieeeeetenssesesosssnossscenncnssssaseees 12

Input/Output Processing et e eeeaeai i isaaasaeitaae e et 12
Input File COoNtrO) i ittt it ittt eeessesnssnsosscnsenssesssrnsesaasnns e e 12
OBULPUL File COoNtrOlttt ittt ittt tiaeeseeasoneseseneansooesannsernesanassans 13
Functions, Variables and Special Characters e et ettt e 13
NUMDEr REOISTOIS ...ttt ittt ieeenostatsaeeassssasneassssesssssanssessocnnnnnssas 14
Functionsciiiinnennn et e e et asa e saas ettt 14
B2 T o = =T 15
SPECIAB] ChBPACTEINS ittt ertrrrssnoeneensesnnsanenenanseennssnssssansnnesensnenssess 15
Summary = INPUt ProCeSSiNguctireeuiesesesesesasososssosensasanssssnsssennssensns 17

MaCIrOSiiiieriiernnnnn s o e ccecaceaacsnssecsssaesesssasesesesaananeseasassenaeas 17
Macro Definition e Cie et e e et i e et e 17
MaCrO INVOCRTIONciiieeeenoossnesecesoeseanosasacasnssssssnsassnsssnaassannsssssans 17
APPENdINg TO A MACIOtuiveeeroosoanenntansassaasansansosssstsosasseassnsssascsss 18
Summary - Macros et i e e eatiseeasestsees ettt et 18

Conditional Line ProCesSSingoutiiiinminnererenneeeenoacnnceennnnns e 19
INtrodUCEIONt iiiiieeerenerecenectnennnsnannnnsanacnas e e a et e e 19
The .if COMMANGccioeeeesnonsasnsssscncssssaaresssssseloreeeossencscscnsonnans 19
Conditional FUNCtiOoNSc.cciitiiinnitninnnnconnnnnnns et ettt i aacae et 19
Summary - Conditional Line Processing e et eetace e 20

Applications NOteS ittt ittt retetneraieenananaensonnnnnnns 21
LT o Y= ¥ = o - 21
L0 LT Y- - B I o« T 21
Major HBadingst titneittieeneeeentnnnnaceenassessssenaseenenassnsonaasannens 21
Tables Of COMTBNMES it ittt it ittt it te s toonansssnnsanssaseenassosenssssassnnansass 22

- 1ii -

[1 T - O = o - I 22

8 - I = 23
12T < o= Vo = 23
EXBMP T @S .ttt ittt ittt tttnnsososeeosoasenssssannssassassasssesssssnannsnssnscnss 23
Table Constructioniiiiveneenen Ctee e eseiitee st e ettt nan 23
SUDSYStEmM MaCrO PaCKagBS00ttt iuneenenenerenoncenaeonsocaneansnaanasaassnans 24
INtrodUCEION ..ttt i it il ittt ittt seaceeenceeaeaancaeasasssessssssssessasnsssssansssssosns 24
Accessing The UsSer GUIde MactroScccciueenenoecoecansccacsceenanssnssoansnsanns 24
Using The User GUIde MacCrOSc.iiteeuitnoseeeensncennnscseanessnssscacenannnas 24
The Printing Environment And The .HE MABCIrOiiitieececeacaoanncancennannns 26
CONCTIUSTION Lttt ittt i it itiieetcseasesacsosansanssosssssssnscancssnsssonssnsssss P 26

Summary of Commands Sorted.Alphabetically

- iv -

Foreword

‘Fmt’ is a program designed to facilitate the preparation of neatly formatted text. It
provides many features, such as automatic margin alignment, paragraph indentation, hyphenation
and pagination, that are designed to greatly ease an otherwise tedious job.

It is the intent of this guide to familiarize the user with the principlies of automatic
text formatting in general and with the capabilities and usage of ‘fmt’ in particular.

Basics

Usage

‘Fmt’ takes as input a file containing text with interspersed formatting instructions.
It is invoked by a command with various optional parameters, discussed below. The resultant
output is appropriately formatted text suitable for a printer having backspacing capabilities.
The output of ‘fmt‘’ is made available on its first standard output port, and so may be placed
in a file, sent to a line printer, or changed in any of a number of ways, simply by applying
standard Software Tools Subsystem 1/0 redirection.

When ‘fmt’ is invoked from the Subsystem, there are several optional parameters that may
be specified to control its operation. The full command 1ine syntax is

fmt [-8] [-p<first>!-<last>]] { <file name> }

A brief explanation of the cryptic notation: the items enclosed within squane brackets ("[]")
are optional -- they may or may not be specified; items enclosed between braces (“{;) may
occur any number of times, including zero; items enclosed in angle brackets ("<>") designate
character strings whose significance is suggested by the text within the brackets; everything
else should be taken literally.

And now for an explanation of what these parameters mean:

-s If this option is selected, ‘fmt‘’ will pause at the top of each page, ring the bell
or buzzer on your terminal, and wait for a response. This feature 1is for the
benefit of people using hard-copy terminals with paper not having pin-feed margins.
The correct response, to be entered after the paper is mounted, is a control-c (hold
the ‘control’ key down and type ‘c’).

P ... This option allows selection of which pages of the formatted document will actually
be printed. Immediately following the "-p", without any intervening spaces, should
be a number indicating the first page to be printed. Following this, a second num-
ber may be specified, separated from the first by a singlie dash, which indicates the
last page to be printed. If this second number is omitted, all remaining pages will
be produced.

<file> Any number of file names may be specified on the command line. ‘Fmt’ will open the
files in turn, formatting the contents of each one as if they constituted one big
file. wWhen the last named file is processed, ‘fmt’ terminates. 1If no file names

are specified, standard input number one is used. In addition, standard input may
be specified explicitly on the command line by using a dash as a file name.

Commands and Text

‘Fmt’, 1ike almost every other text formatter ever written, operates on an input stream
that consists of 2 mixture of text and formatting commands. Each command starts at the begin-
ning of a 1ine with a ‘control character’, usually a period, followed by a two character name,
in turn followed by some optional ‘parameters’. There must not be anything else on the 1line.
For example, in

.ta 11 21 31 41

the control character is a period, the command name is ta, and there are four parameters:
4q®, ®%21, "31* and "41". Notice that the command name and all the parameters must be
separated from each other by one or more blanks. Anything not recognizable as a command is
treated as text.

Filling and Margin Adjustment

Filled Text

»

‘Fmt’ collects as many words as will fit on a single output'line before actually writing
it out, regardiess of line boundaries in its input stream. This is called ‘filling’ and is
standard practice for ‘fmt’. It can, however, be turned off with the ‘no-fill1’ command

.nf

and 1ines thenceforth will be copied from input to output unaltered. When you want to turn
filling back on again, you may do so with the ‘fill’ command

.Fi

and ‘fmt’ will resume its normal behavior.

Text Formatter User’s Guide

If there is a partially filled 1ine that has not yet been written out when an nf command
is encountered, the line is forced out before any other action is taken. This phenomenon of
forcing out a partially filled 1line is known as a ‘break’ and occurs implicitly with many
formatting commands. To cause one explicitly, the ‘break’ command

.br

is available.

Hyphenation
If, while filling an output line, it is discovered that the next word will not fit, an
attempt is made to hyphenate it. Although ‘fmt’ is usually quite good in its choice of where
to split a word, it occasionally makes a gaffe or two, giving reason to want to turn the
feature off. Automatic hyphenation can be disabled with the ‘no-hyphenation’ command
N
.nh

long enough for a troublesome word to be processed, and then reenabled with the ‘hyphenate’
command

-hy

Neither command causes a break.

Margin Adjustment
After filling an output line, ‘fmt’ inserts extra blanks between words so that the last
word on the line is flush with the right margin, giving the text a “"professional" appearance.
This is one of several margin adjustment modes that can be selected with the ‘adjust’ command
.ad <mode>
The optional parameter <mode> may be any one of four single characters: "b", "¢c", "1" or "r*.
If the parameter is "b"* or missing, normal behavior will prevail -- both margins will be made
even by inserting extra blanks between words. This is the default margin adjustment mode. If
“c* s specified, 1ines will be shifted to the right so that they are centered between the
left and right margins. If the parameter is *1*, no adjustment will be performed; the 1line
will start at the left margin and the right margin will be ragged. If "“r" is specified, lines
will be moved to the right so that the right margin is even, leaving the left margin ragged.
The ‘no-adjustment’ command
.ha
has exactly the same effect as the following ‘adjust’ command:
.ad 1
No adjustment will be performed, leaving the left margin even and the right margin ragged. In
no case does a change in the adjustment mode cause a break.
Centering
Input lines may be centered, without filling, with the help of the ‘center’ command
.ce N
The optional parameter N is the number of subsequent input 1ines to be centered between the
left and right'margins. If the parameter is omitted, only the next 1line of input text is
centered. Typically, one would specify a large number, say 1000, to avoid having to count
lines; then, immediately following the 1ines to be centered, give a ‘center’ command with a
parameter of zero. For example: ’
.ca 1000
more 1ines
than I care
to count
.ce O
It is worth noting the difference between
.ce

and

-2 -

.ad c

when the former is used, an implicit break occurs before each l1ine is printed, preventing fil-
1ing of the centered lines; when the latter is used, each 1ine is filled with as many words as
possible before centering takes pilace.

Sentence Punctuation

By default, ‘fmt’ adds an extra blank after punctuation at the end of a sentence;
specifically, after periods, colons, exclamation points and question marks. This may not be
desirable, particularly when abbreviations or a person’s initials are involved. Thus, it can
be turned on and off at will. The ’‘single-blank’ command

.sb

_'.f-:u.q:fﬁ

turns the mode off, while the ‘extra-blank’ command
[
.xb s

turns it back on again. As with hyphenation, neither command causes a break.

Summary - Filling and Margin Adjustment

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.ad <mode> ‘b *b* no . Set margin adjustment mode.

.br - - ves Force a break.

.ce N N=0O N=1 yes Center N input text lines.

.fi on - no Turn on fi1l mode.

.hy on - no Turn on automatic hyphenation.

.ha - - no Turn off margin adjustment.

.nf - - yes Turn off fi1l mode. (Also inhibits adjustment.)
.nh - - no Turn off automatic hyphenation.

.sb of f - no Single blank after end of sentence.
.xb on - no Extra blank after end of sentence.

Spacing and Page Control

Line Spacing

‘Fmt’ usually produces single-spaced output, but this can be changed, without a break,
using the ‘l1ine-spacing’ command

.18 N

The parameter N specifies how many 1lines on the page a single 1ine of text will use; for
double spacing, N would be two. If N is omitted, the default (single) spacing is reinstated.

Blank 1ines may be produced with the ’‘space’ command
.Sp N »

The parameter N is the number of blank 1ines to be produced; if omitted, a value of one is
assumed. The sSp command first causes a break; this not only causes a partially filled line to
be output, but if the current line spacing is more than one, the break will cause the extra
blank lines to be output as well. Then the blank 1ines generated by sp are output. Thus, if
output is being double-spaced and the command

.sp 3

is given, four blank lines will be generated: one from the double-spacing that is in effect,
and three from the sp command. If the value of N calls for more blank 1ines than there are

Text Formatter User’s Guide

remaining on the current page, any extra ones are discarded. This ensures that, normally,
each page begins at the same distance from the top of the paper.

Page Division

‘Fmt’ automatically divides its output into pages, leaving adequate room at the top and
bottom of each page for running headings and footings. There are several commands that
facilitate the control of page divisions when the normal behavior is inadequate.

The ‘begin-page’ command
.bp *N

causes a break and a skip to the top of the next page. If a parameﬁpr is given, it serves to
alter the page ru.be,: °nd so it must be numeric with an optional plus or minus sign. If the
parameter is omitted, the page number is incremented by one. If the command occurs at the top
of a page before any text has been printed on it, the command is ignored, except perhaps to
set the page number. This is to prevent the random occurrence of blank pages.

The optionally signed numeric parameter is a form of parameter used by many formatting
commands. When the sign is omitted, it indicates an absolute value to be used; when the sign
is present, it indicates an amount to be added to or subtracted from the current value.

The page number may be set independently of the ‘begin-page’ command with the ’‘page-
number’ command

.pn N

The next page after the current one, when and if it occurs, will be numbered +N. No break is
caused.

The 1length of each page produced by ‘fmt’ is normally 66 lines. This is standard for
eleven inch paper printed at six 1ines per inch. However, if non-standard paper is used, the
printed length of the page may easily be changed with the ‘page-length’ command

.p1 *N
which will set the length of the page to +N lines without causing a break.

It is possible skip an arbitrary number of pages in a controlled fashion. To do this,
use the ‘page-skip’ command

.PS <max> <modulus>

<Max> is the maximum number of pages plus one that ‘fmt’ will skip. <Modulus> is the number
which ‘fmt‘’ uses modulio the next output page number to count skipping pages. It works as fol-
Tows: ‘Fmt’ sees the .ps command. It computes the page number of the current page plus one,
and then takes the remainder of that number divided by the <modulus>, and saves 1it. ‘Fmt’
skips pages, adding one to this saved value. As long as this value is less than <max>, it
continues to skip pages. For instance, if the current page is 15, and you issue a

.ps 35
command, ‘fmt’ would compute ((15 + 1) mod 5), yielding (16 mod 5), which is one (16 divided
by 5 is 3, with 1 left over). It will then skip two pages, since it started with one, then
skipped one, which is two. This is still less than three, so it skips one more page, yielding
three, which is not less than three, so it stops. It is really quite simple. For instance,
to skip to the next even page, use

.ps 2 2

and to skip to.the next odd page, use

ps12
This feature is particu1ar1y useful for writing macros which a?d with large documents. For
example, it may be necessary that a chapter always start on an odd numbered page. So the

‘begin chapter’ macro would have a ‘.psS 1 2’ as one of its 1ines. (See later for more details
on how to write macros.)

Finally, 1if it is necessary to be sure of having enough room on a page, say for a figure
or a graph, use the ‘need’ command

.ne N
‘Fmt’ will cause a break, check if there are N lines left on the current page and, if so, will

do nothing more. Otherwise, it will skip to the top of the next page where there should be
adequate room.

- 4 -

TEAL W HEA L LW W W W

‘No-space’ Mode

‘No-space’ mode 1s a feature that assists 1in preventing unwanted blank 1ines from
appearing, usually at the top of a page. When in effect, certain commands that cause blank
lines to be generated, such as bp, ne and sp, are suppressed. For the most part, ‘no-space’
mode is managed automatically; it is turned on automatically at the top of each page before
the first text has appeared, and turned off again automatically when a 1ine of output is
generated. This accounts for the suppression of bp commands at the top of a page and the
discarding of excess blank lines in Sp commands.

‘No-space’ mode may be turned on explicitly with the ‘no-space’ command -
.NS

and turned off explicitly with the ‘restore-spacing’ command
.rs »

Netither command causes a break.

Summary - Spacing and Page Control

Command Initial 1f no Cause

Syntax Value Parameter Break Explanation

.bp *N N=1 next yes Begin a new page.

.1s N N=1 N=1 yes Set 1ine spacing.

.ne N | - N=1 yes Express a need for N contiguous lines.
.ns on - no Turn on ‘no-space’ mode.

.P1 #N N=66 N=66 no Set page length.

.pn *N N=1 ignored no Set page number.

.pS N M N=M=0 N=M=0 yes Skip pages while (page number mod M) is less than N.
.rs - - no Turn off ‘no-space’ mode.

.sp N - N=1 yes Put out N blank lines.

Margins and Indentation

Margins

A1l formatting operations are performed within the framework of a page whose size is
defined by four margins: top, bottom, left and right. The top and bottom margins determine
the number of 1ines that are left blank at the top and bottom of each page. Likewise, the
left and right margins determine the first and last columns across the page into which text
may be placed.

Top and Bottom Margins

Both the top and the bottom margins consist of two sub-margins that fix the location of
the header and footer lines. For the sake of clarity, the first and second sub-margins of the
top margin will be referred to as ‘margin 1’ and ‘margin 2’, and the first and second sub-
margins of the bottom margin, ‘margin 3’ and ‘margin 4°‘.

- E

The value of margin 1 is the number of l1ines to skip at the top of each page before the
header line, plus one. Thus, margin 1 includes the header 1ine and all the blank 1lines
preceding it from the top of the paper. By default, its value is three. Margin 2 is the num-
ber of blank lines that are to appear between the header l1ine and the first text on the page.
Normally, it has a value of two. The two together form a standard top margin of five 1lines,
with the header line right in the middle. It is easy enough to change these defaults if they
prove unsatisfactory; just use the ‘margin-1‘’ and ‘margin-2’ commands

.m1 +N
.m2 N

to set either or both sub-margins to #+N.

Text Formatter User’s Guide

The bottom margin is completely analogous to the top margin, with margin 3 being the num-
ber of blank 1ines between the last text on a page and the footer line, and margin 4 being the
number of lines from the footer to the bottom of the paper (including the footer). They may
be set using the ‘margin-3‘ and ‘margin-4’ commands

.m3 N
.m4 +N

which work just 1like their counterparts in the top margin; none of these commands cause a
break.

Left and Right Margins

&
The l1eft and right margins define the first and last columns into which text may be
pr'n.ea. ey affect such things as adjustment and centering. The left margin is normally
set at column one, though this is easily changed with the ‘left-margin’ command

.im #N

The right margin, which is normally positioned in column sixty, can be set similarly with the
‘right-margin’ command

.rm N

To ensure that the new margins apply only to subseguent text, each command causes a break
before changing the margin value.

Indentation

It is often desirable to change the effective value of the left margin for indentation,
without actually changing the margin itself. For instance, all of the examples in this guide
are indented from the left margin in order to set them apart from the rest of the text.
Indentation is easily arranged using the ’‘indent’ command,

.in N

whose parameter specifies the number of columns to indent from the left margin. The initial
indentation value, and the one assumed if no parameter is given, is zero (i.e., start 1in the
left margin).

For the purpose of margin adjustment, the current indentation value is added to the left
margin value to obtain the effective left margin. In this respect, the Im and i{n commands are
quite similar. But, whereas the left margin value affects the placement of centered 1lines
produced by the ce command, indentation is completely ignored when lines are centered.

Paragraph indentation poses a sticky problem in that the indentation must be applied only
to the first 1line of the paragraph, and then normal margins must be resumed. This can’t be
done conveniently with the ‘indent’ command, since it causes a break. Therefore, ‘fmt’ has a
‘temporary-indent’ command

Lt N

whose function is to cause a break, alter the current indentation value by *N until the next
line of text is produced, and then reset the indentation to its previous value. So to begin a
new paragraph with a five column indentation, one would say

.t1 +5

Page Offset

As if control over the left margin position and indentation were not enough, there is yet
a third means for controlling the position of text on the page. 7The concept of a page offset
involves nothing more than prepending a number of blanks to each and every 1ine of output. 1It
is primarily intended to allow output to be easily positioned on the paper without having to
adjust margins and indentation (with all their attendant side effects) and without having to
physically move the paper. Although the page offset is initially zero, other arrangements may
be made with the ’‘page-offset’ command

.po +N
which causes a break.
‘Eo’ and ‘oo’ commands allow you to specify different page offsets for even- and odd-

numbered pages respectively. Like ‘po’, they are initialized to zero and revert to that value
when no parameter is specified. For instance,

.80 +N

will change the even-numbered page offset by N (6r to N if no sign is specified).

Margin Characters

It is common practice in the revision of technical literature to indicate parts of the
text that are different from previous versions of the same document. Such changes are usually
indicated by "revision bars" which are vertical 1ines in the left margin of lines that are new
or revised. ‘Fmt’ provides for this capability with two formatting commands. The ‘margin-
offset’ command,

.mo +N
without causing a break, specitius ih.! .. columns are to be reserved between the ‘page-
offset’ columns and the ‘left-mai-gin’ column for revision bars or other marginal characters.
The margin offset starts out at zero, and reverts to that value if no parameter is specified.

Once a non-zero margin offset has been set, any arbitrary character may be placed in the
leftmost column of the area with the ‘margin-character’ command:

.mCc <char>
Initially, and when <char> is omitted, this character has blank as its value. For revision

bars, <char> would be specified as "|". Whatever character is specified, it is placed next to
the left margin on every line of output as long as the margin offset is non-zero.

Summary - Margins and Indentation

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.eo0 *N N=0 N=0 yes Set even page offset.

.in #N N=0 N=0 yes Indent left margin.

.1m +N N=1 N=1 yes Set left margin.

.mi +N N=3 N=3 no Set top margin before and incliuding page heading.
.m2 *N N=2 N=2 no Set top margin after page heading.

.m3 +N N=2 N=2 no Set bottom margin before page footing.

.m4 +N N=3 N=3 no Set bottom margin including and after page footing.
.mc <char> BLANK BLANK no Set margin character.

.mo *N N=0O N=0 no Set margin offset.

.00 +N N=0O N=0 yes Set odd page offset.

.po *N N=0 N=0 yes Set page offset.

.rm N N=60 N=60 yes Set right margin.

.ti N N=0O N=0 yes Temporarily indent left margin.

Headings, Footings and Titles

Three Part Titles ’

A three part title is a 1ine of output consisting of three segments. The first segment
is left-justified, the second is centered between the left and right margins, and the third is
right-justified. For example

left part center part right part

is a three part title whose first segment is "left part", whose second segment is "center
part", and whose third segment is "right part".

Text Formatter User'’'s Guide

To generate a title at the current position on the page, the ‘title’ command is
available:

.t1 /left part/center part/right part/

In fact, this command was used to generate the previous example. The parameter to the title
command is made up of the text of the three parts, with each segment enclosed within a pair of
delimiter characters. Here, the delimiter is a slash, but any other character may be used as
long as it 1is used consistently within the same command. If one or more segments are to be
omitted, indicate this with two adjacent delimiters at the desired position. Thus._

.t1 ///Page 1/
specifies only the third segment and would produce something like this:
Page 1
It is not necessary to include the trailing delimiters.

To facilitate page numbering, you may include the sharp character ("#") anywhere in the
text of the title; when the command is actually performed, ‘fmt’ will replace all occurrences
of the "#" with the current page number. To produce a 1iteral sharp character in the title,
it should be preceded by an “"e"

e#

so that it loses its special meaning.

The first segment of a title always starts at the left margin as specified by the Im com-
mand. while the third segment normally ends at the right margin as specified by the rm com-
mand, this can be changed with the ‘length-of-title’ command:

Lt N

which changes the length of subsequent titles to #N, still beginning at the left margin. Note
that the title length is automatically set by the Im and rm commands to coincide with the
distance between the left and right margins.

Page Headings and Footings

The most common uses for three part titles are page headings and footings. The header
and footer lines are initially blank. Either one or both may be set at any time, without a
break, by using the ‘header’ command

.he /left/center/right/
to set the page heading, and the ‘footer’ command
.fo /left/center/rignt/

to set the page footing. The change will become manifest the next time the top or the bottom
of a page is reached. As with the t1 command, the "#" may be used to access the current page
number.

It is often desirable when producing text to be printed on both sides of a page to have
different headings and footings on odd- and even-numbered pages. Although the he and fo com-
mands affect the headings and footings on all pages, it is possible to set up independent
headings and footings for odd- and even-numbered pages. For odd-numbered pages, the ‘odd-
header’ and ’‘odd-footer’ commands are available:

.0h /left/center/right/
.0of /1eft/center/right/

while the ‘even-header’ and ’‘even-footer’ commands are provided for even-numbered pages:
.eh /left/center/right/
.ef /1eft/center/right/

As an ililustration, the following commands were used to generate the page headings and
footings for this guide:

.eh /Text Formatter User’s Guide///

.oh ///Text Formatter User’s Guide/
fo //- # -//

Summary - Headings, Footings and Titles

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.ef /1/c/r/ blank blank no Set even-numbered page footing.

.eh /1/c/r/ blank blank no Set even-numbered page heading.

.fo /1/c/r/ blank blank no Sset running page footing.

.he /1/c/r/ bilank blank ‘no Set running page heading.

1t #N N=60 N=60 no Set length of header, footer and titles.

.of /1/e/r/ leik blank no Set odd-numbered page footing.

.oh /1/e¢/r/ blank blank no Set odd-numbered page heading. ‘V

.11 /1/e/r/ blank blank yes Generate a three part title. h
Tabulation

Tabs

Just like any good typewriter, ‘fmt’ has facilities for tabulation. When it encounters a
special character in its input called the ‘tab character’ (analogous to the TAB key on a
typewriter), 1t automatically advances to the next output column in which a ‘tab stop’ has
been previously set. Tab stops are always measured from the effective left margin, that is,
the left margin plus the current indentation or temporary indentation value. Whatever column
the left margin may actually be in, it is always assumed to be column one for the purpose of
tabulation.

Originally, a tab stop is set in every eighth column, starting with column nine. This
may be changed using the ‘tab’ command

.ta <col> <col> ...
Each parameter specified must be a number, and causes a tab stop to be set in the correspond-
ing output column. A1l existing stops are cleared before setting the new ones, and a stop is
set in every column beyond the last one specified. This means that if no columns are
specified, a stop is set in every column.

By default, ‘fmt’ recognizes the ASCII TAB, control-i, as the ‘tab character’. But since
this is an invisible character and is guaranteed to be interpreted differently by different
terminals, it can be changed to any character with the ‘tab-character’ command:

.tc <char>
While there is no restriction on what particular character is specified for <char>, it is wise
to choose one that doesn’t occur too frequently elsewhere in the text. If you omit the
parameter, the tab character reverts to the default.

when ‘fmt’ expands a tab character, it normally puts out enough blanks to get to the next
tab stop. In other words, the default ‘replacement’ character is the blank. This too may
easily be changed with the ‘replacement-character’ command:

.Prc <char>
As with the tc command, <char> may be any single character. If omitted, the default is used.

A common alternate replacement character is the period, which is frequently used in
tables of contents. The following example illustrates how one mfbht be constructed:

-9 -

Text Formatter User’s Guide

.ta 52

.te \

Section Name\Page
.re .

.Sp
.nf

.ta 53

Basics\1

Filling and Margin Adjustment\2
Spacing and Page Control\5

.Sp
fi

The result should 100k about like this:

Section Name

BasiCsS.......c0000000n G e eetecsrecsse e en s ennn 1
Filling and Margin Adjustment.................cccu.. 2
Spacing and Page Control............ccciirienennnnnn 5

A final word on tabs: Since the default replacement character is a blank you might think
that, in the process of adjusting margins (i.e., when the adjustment mode is “b"), ‘fmt’ might
throw in extra blanks between words that were separated by the tab character. Since this is
definitely not the expected or desired behavior, ‘fmt’ uses what is called a “phantom blank"
as the default replacement character. The phantom blank prints as an ordinary blank, but is
not recognized as one during margin adjustment.

Summary - Tabulation

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.ta N ... 9 17 ... al no Set tab stops.

.tc ¢ TAB TAB no Set tab character.

.rc c BLANK BLANK no Set tab replacement character.

Miscellaneous Commands

Comments

It is rare that a document survives its writing under the pen of just one author or
editor. More frequently, several different people are likely to put in their two cents worth
concerning its format or content. So, if the author is particularly attached to something he
has written, he is well advised to say so. Comments are an ideal vehicle for this purpose and
are easily introduced with the ‘comment’ command

.# <commentary text>

Everything after the # up to and including the next newline character is completely ignored by
‘fmt’ .
Boldfacing, Underlining, and Italicizing

‘Fmt’ makes provisions for boldfacing, underlining, and ftalicizing 1ines or parts
thereof with three commands: »

.bf N
boldfaces the next N lines of input text, while
it N
italicizes the next N lines of input text, and
.Ul N
undertines the next N lines of input text. 1In all three cases, if N is omitted, a value of

one is assumed. Neither command causes a break, allowing single words or phrases to be bold-

- 10 -

et 1wt me m mwr e w wwvw §wa

faced, italicized, or underlined without affecting the rest of the output line.

It is also possible to use them in combination. For instance, the heading at the begin-
ning of the table of contents was produced by a sequence of commands and text similar to the
following:

-bf
.ul
TABLE OF CONTENTS

As with the ‘center’ command, these commands are often used to bracket the lines to be affec-
ted by specifying a huge parameter value with the first occurrence of the command and a value
of zero with the second:

.bf 1000

.ul 1000

lots of lines

to be <
boldfaced -
and

under1ined

.bf O

.ul 0

On a 1ine printer, italicized text, and underlined text will look the same. But the sequences
of characters that ‘fmt’ generates for these two types of text are different, and the ‘1z’
program distinguishes between the two when producing output for the local Xerox 8700 1aser
printer. On a CRT terminal, italicized text will show up as just a sequence of underscores.
In short, if you are not producing text to be post-processed by ‘1z‘, just use underlining,
and not italicizing.

Control Characters

As mentioned in the first section, command lines are distinguished from text by the
presence of a ‘control character’ in column one. 1II:
select a new value:

.CC <char>

The parameter <char>, which may be any single character, becomes the new control! character.
I1f the parameter is omitted, the familiar period is reinstated.

It has been shown that many commands automatically cause &a break before they perform
their function. when this presents a problem, it can be altered. If instead of using the
basic control character the ‘no-break’ control character is used to introduce a command, the
automatic break that would normally result is suppressed. The standard no-break control
character is the grave accent (“‘*), but may easily be changed with the following command:

.62 <char>

As with the ¢Cc command, the parameter may be any single character, or may be omitted if the
default value is desired.

Prompting
Brief, one-line messages may be written directly to the user’s terminal using the
‘prompt‘ command

.er <brief, one-1ine message>

The text that is actually written to the terminal starts with the first non-blank character
following the command name, and continues up to, but not including, the next newline charac-
ter. If a newline character should be included in the message, the escape sequence

en ’

»

may be used. Leading blanks may also be included in the message by preceding the message with
a quote or an apostrophe. ‘Fmt’ will discard this character, but will then print the rest of
the message verbatim. For instance,

.er '/ this is a message with 10 leading blanks

would write the following text on the terminal, leaving the cursor or carriage at the end of

- 119 -

Text Formatter User‘s Guide

the message
this is a message with 10 leading blanks
For a multiple-1ine message, try
.er multipleenl ineénmessageen
The output should look 1like this:
multiple
line

L
Prompts are particularly useful in form letter applications where there may Le several
pieces of information that ‘fmt’ has to ask for in the course of its work. | The next section
describes how ‘fmt’ can dynamically obtain information from the user.
Premature Termination
If ‘fmt’ should ever encounter an ‘exit’ command

in the course of doing its job, it will cause a break and exit immediately to the Subsystem.

Summary - Miscellaneous Commands

Command Initial If no Cause

Syntax Value Parameter Break Explanation

H - - no Introduce a comment.

.bf N N=0 N=1 no Boldface N input text lines.

.c2 ¢ * * no Set no-break control character.
.cc ¢ . . no Set basic control character.

.er text - ighored no Write a message to the terminal.
.ex - - yes Exit immediately to the Subsystem.
.it N N=0 N=1 no Italicize N input text lines.

.Ul N N=0 N=1 no Underline N input text lines.

Input/Output Processing

Input File Control

Up to this point, it has been assumed that ‘fmt’ reads only from its standard input file
or from files specified as parameters on the command line. It is aiso possible to dynamically
include the contents of any file in the midst of formatting another. This aids greatly in the
modularization -of large, otherwise unwieldy documents, or in the definition of frequently used
sequences of commands and text.

The ’‘source’ command is available to dynamically include the:contents of a file:
.80 <file>

The parameter <file> 1is mandatory; it may be an arbitrary file system pathname, or, as with
file names on the command line, a single dash ("-") to specify standard input number one.

The effect of a ‘source’ command is to temporarily preempt the current input source and
begin reading from the named file. When the end of that file is reached, the original source
of input is resumed. Files included with ‘source’ commands may themseives contain other
‘source’ commands; in fact, this ‘nesting’ of input files may be carried out to virtually any
depth.

fext rormaIter user s usulige

‘Fmt‘’ provides one additional command for manipulating input files. The ‘next file’ com-
mand

.nx <file>

may be used for either one of two purposes. If you specify a <file> parameter, all current
input files are closed (including those opened with 80 commands), and the named file becomes
the new input source. You can use this for repeatedly processing the same file, as, for exam-
ple, with a form letter. If you omit the <file> parameter, ’‘fmt‘’ still closes all of its
current input files. But instead of using a file name you supply with the nx command, it uses
the next file named on the command l1ine that invoked ‘fmt’. If there is no next file, then
formatting terminates normally.

Neither the $0 command nor the nx command causes a2 break.

Output File Control
The output of the formatter is always written on STDOUT unless you divéft it with the
divert output stream command, ‘dv’. ‘Dv’ can be used to divert fmt’s output to a named file:

.dv <file>

A1l output is written in <file> until a ‘dv’ command with no parameter is specified. ‘Dv’ can
also be used to divert output to a temporary file that can be later read with the ‘so’ com-
mand. This is useful for generating tables of contents for documents (see the “Application
Notes" section). The command

.dv N
diverts output to stream ‘N’ and can be read at any time and repeatedly by the command
.80 N

Dutput will be diverted until the the ‘dv’ command is seen again without parameters. (N can
be an integer between 1 and 100; the upper 1imit may be somewhat less for you --- it depends
on the number of file units that you can have open and the number of file units that you
actually have open at the time the command is executed).

The basic difference between the two variants of ‘dv’ is that ‘dv <file>’ opens <file>
for WRITE access; <file> cannot be used as an input file. ‘Dv N’ opens a temporary file for
READ/WRITE access; therefore, ‘so N’ causes the temporary file to be rewound and read. If the
command ‘dv N’ occurs a second, third, fourth etc. time, diverted lines are appended to the
end of that same temporary file.

One final important comment is necessary. We were hesitant to even tell you about ‘dv’
because of its rather nasty habit of executing commands instead of diverting them. Since it
is the only way for you to generate automatic table of contents we decided to document it.
Just keep in mind that when you want to divert commands, precede them by a character other
than your control character; you can later designate that character as your control character
before you read the stream.

Functions, Variables and Special Characters

whenever ‘fmt’ reads a line of input, no matter what the source may be, there is a
certain amount of ‘pre-processing’ done before any other formatting operations take place.
This pre-processing consists of the interpretation of ‘functions’, ‘variables’ and ‘special
characters’. A ‘function’ is a predefined set of actions that produces a textual result, pos-
sibly based on some user supplied textual input. For example, one hypothetical function might
be named ‘time’, and its result might be a textual representation of the current time of day:

14:32:25

A ‘variable’ is simply one of ‘fmt’s internal parameters, such as the current page length or
the current line-spacing value; the name of each variable is the same as the two-character
name of the corresponding command to set the value of tha%t parameter. The result of a
variable is just a textual representation of that value.

A ’‘special character’ is 1ike a function or variable, but its result is a single charac-
ter that cannot be conveniently generated from the keyboard.

From the standpoint of a user, functions, variables and special characters are all very
similar. 1In fact, they are invoked identically by enclosing the appropriate name, plus any
text to be used as arguments, in square brackets:

[bf This text to be boldfaced]

[1s]
[alpha 5]

- 43 -

Text Formatter User’s Guide

Such a construct is known as a "function call.*®
when ‘fmt’ sees a function call in an input 1ine, it excises everything in between the
brackets, including the brackets themselves, and inserts the results in its place. Naturally,
anything not recognizable is left alone. If by chance you want the name of a function,
variable or special character enclosed in square brackets included literally as part of the
text, you can inhibit evaluation by preceding the left bracket with the escape character:
e[time]

Similarly, a right bracket may appear literally inside a function call when preceded by an
escape character:

[bf [item 10]] .,

It is also possible to ‘"nest' function calls so that the res '1ts of one may be used as
arguments to another: .

[bf [1date]]

Number Registers
The ‘number registers’ are a group of 200 accumulators (numbered 1-200) on which simple
arithmetic operations may be performed. They find their greatest use in the preparation of
documents with numbered sections and paragraphs. Number registers are accessed and
manipulated by a special set of functions. The ‘set’ function
[set reg value]

assigns the integer ‘value’ to the register ‘reg’ and yields the empty string as its result.
The ’‘add’ function

[add reg value]

adds the integer ‘value’ (which, by the way may be positive or negative) to the register
‘reg’. This function also yields an empty result. Finally, the ‘num’ function

[num reg]
yields the current value of the register ‘reg’ as its result. In addition, ‘reg’ may either
be prefixed or postfixed by a plus or minus sign. If the sign appears before the register
number, the register is incremented or decremented (according to the sign) by one, before the
function’s result is yielded. 1If the sign follows the register number, though, the register’s
current value is yielded and then the register is incremented or decremented.
Functions

The following table summarizes the available functions:

add Add constant to number register

bf Boldface the arguments on output

cu Output the arguments with a continuous underline

date Current date; e.g., 08/16/85

day Current day of the week; e.g., Friday

ldate Current date: e.g., August 16, 1985

num Output value of number register with optional pre- or post-incrementation or
decrementation

rn Convert the argument to a lower-case Roman numeral

RN Convert the argument to an upper-case Roman numeral

set Set number register to value

sub Output the arguments as a subscript (reguires post-processor, e.g. ‘sprint’)

sup Output the arguments as a superscript (requires post-processor)

time Current time of day; e.g., 14:32:29 »

ul Underline the arguments on output

letter Convert a number to its lower case equivalent

LETTER Convert a number to its upper case equivalent

vertspace Change the vertical spacing on a NEC Spinwriter (requires spinwriter)

even Test if number is even

odd Test if number is odd

cap Capitalize Text

small Map all characters of text to lower case

plus Add two numbers

minus Subtract two numbers

header Return the page header

evenheader Return the even page header

oddheader Return the odd page header

TEAL TUITNAL LS WOwl | WMV IUS

footer Return the page footer

evenfooter Return the even page footer

oddfooter Return the odd page footer

cmp Perform string comparison

icmp Perform integer comparison

it Italicize the arguments on output

bottom Return the number of the last printed line
top Return the number of the first printed line
Variables

The formatting parameters whose values are available through function calls are sum-
marized in the following table:

cc Current basic contrcl character ﬁ

c2) Current no-break control character

in Current indentation value .
m Current left margin value t
n Current 1ine number on the page

1s Current 1ine-spacing value

1t Length of titles

ml Current macro invocation level

mi Current margin 1 value

m2 Current margin 2 value

m3 Current margin 3 value

m4 Current margin 4 value

ns True or false if no-space is in effect

pl Current page length vaiue

pn Current page number

po Current page offset value

rm Current right margin value

tc Current tab character

ti Current temporary indentation value

tepn Current page number, right justified in 4 character field

Special Characters

The following table summarizes the available special characters. In each case, a
positive integer may be included as an argument following the name to produce multiple
instances of the character. For example, "[b] 5]" yields five contiguous phantom blanks.
NOTE: in order for the Greek letters and mathematical symbols to be printed correctly, a
post-processor such as ‘dprint’ (see Section 3 of the S$Software 7JTools Subsystem Reference
Manual) and/or special printing equipment is required.

bl Phantom blank
bs Backspace
alpha lower-case Greek alpha

* ALPHA upper-case Greek alpha
beta lower-case Greek beta

* BETA upper-case Greek beta

* chi lower-case Greek chi

* CHI upper-case Greek chi
delta lower-case Greek delta

* DELTA upper-case Greek delta
epsilon lower-case Greek epsilon

* EPSILON upper-case Greek epsilon
eta lower-case Greek eta

= ETA upper-case Greek eta
gamma lower-case Greek gamma
GAMMA upper-case Greek gamma
infinity infinity symbol
integral integration symbol

* INTEGRAL large integration symbol

* jota lower-case Greek iota

*= IOTA upper-case Greek iota i

* kappa lower-case Greek kappa

* KAPPA upper-case Greek kappa
1ambda lower-case Greek lambda
LAMBDA upper-case Greek lambda
mu lower-case Greek mu

* MU upper-case Greek mu
nabla inverted delta (APL del)
not EBCDIC-style not symbol

* nu lower-case Greek nu

* NU upper-case Greek nu
omega lower-case Greek omega
OMEGA upper-case Greek omega

Text Formatter User’s Guide

* *

*

ERE B N BE R E B BE R R I N R R N N E R R R R B I N N R N N B A A AR R

certain of

omicron
OMICRON
partial
phi

PHI

psi

PSI

pi

P1

rho

RHO
sigma
SIGMA
tau

TAU
theta.
THETA
upsilon
UPSILON
x 1

X1

zeta
ZETA
downarrow
uparrow
backslash
tilde
largerbrace
largeibrace
proportional
apeq
ge

imp
exist
AND

ne
psset
sset

le
nexist
univ

OR

iso
1fioor
rfloor
1ceil
rceil
smallo
small1
small2
small3
smalld
smalls
smallé
small7
smalls
small9
scolon
dquote
dollar

The special

In particular, thqji characters require that the special
wheel be in the Spinwriter. This wheel, in order to accommodate the special characters,
These are substituted for by special functions.

the regular ASCII graphics.

lower-case Greek omicron
upper-case Greek omicron
partial differential symbol
lower-case Greek phi
upper-case Greek phi
lower-case Greek psi
upper-case Greek psi
lower-case Greek pi
upper-case Greek pi
lower-case Greek rho
upper-case Greek rho
lower-case Greek sigma
upper-case Greek sigma
lower-case,Greek tau
upper-case Greek tau
lower-case Greek theta
upper-case Greek theta
lower-case Greek upsilon
upper-case Greek upsilon
lower-case Greek xi
upper-case Greek xi
lower-case Greek zeta
upper-case Greek zeta
arrow pointing down

arrow pointing up

back slash symbol

tilde symbol .

large square right brace
large square left brace
proportional symbol
approximately equal to
greater than or equal to
implies

there exists

logical and

not equal to

proper subset

subset

less than or equal to
there does not exist

for every

logical or

congruence

left floor

right floor

left ceiling

right ceiling

small
small
small
small
small
small
smalil
small
small
small
semicolon
double guote
dollar sign

PEOIPIDOD DD
COIONBWN =0

characters marked with an asterisk (*) are only available on the NEC
writer, and so the output of ‘fmt’ must be post-processed with ’‘sprint’.

example, [scolon] is used to produce a semi-colon.

16 -

T imes-Roman/Mathematics

Spin-

type
lacks
For

Summary - Input Processing

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.dv [stream] - end ‘.dv’ no Temporarily divert the output stream to a *“filename*
or to a temporary file designated by an integer "N"
(to be later read by a ".so N" command) until a ‘dv’
command with no arguments 1s seen.

.nx file - next arg no Move on to the next input file.

.80 <stream> ignored no Temporarily alter the input source. "Stream can be a
- t0 indicate standard input, a “filename," or an
integer “N" corresponding to a temporary file created

by a previous ‘.dv N’ commanc.

Macro Definition

A macro is nothing more than a frequently used sequence of commands and/or text that have
been grouped together under a single name. This name may then be used just like an ordinary
command to invoke the whole group in one fell swoop.

The definition (or redefinition) of a macro starts with a ‘define’ command
.de xx

whose parameter is a one or two character string that becomes the name of the macro. The
macro name may consist of any characters other than blanks, tabs or newlines; upper and lower
letters are distinct. The definition of the macro continues until a matching ‘end’ command

8N XX

is encountered. Anything may appear within a macro definition, i{ncluding other macro
definitions. The only processing that is done during definition i{s the interpretation of
variables and functions (i.e. things surrounded by square brackets). Other than this, lines
are stored exactly as they are read from the input source. To include a function call in the
definition of a macro so that its interpretation will be delayed until the macro is invoked,
the opening bracket should be preceded by the escape character "e". For example,

tm --- time of day
.de tm
e{time]
.8Nn tm

would produce the current time of day when invoked, whereas

tm --- time of day
.de tm
[time]
8N tm

would produce the time at which the macro definition was processed.

Macro Invocation

Again, a macro is invoked like an ordinary command: a control character at the beginning
of the 1ine immediately followed by the name of the macro. So to invoke the above ‘time-of-
day’ macro, one might say 4

»

.tm

As with ordinary commands, macros may have parameters. 1In fact, anything typed on the
1ine after the macro name is available to the contents of the macro. As usual, blanks and
tabs serve to separate parameters from each other and from the macro name. If it is necessary
to include & blank or a tab within a parameter, it may be enclosed in quotes. Thus,

“parameter one"

would constitute a single parameter and would be passed to the macro as

- 47 -

Text Formatter User’s Guide

parameter one

To include an actual guotation mark within the parameter, type two quotes immediately adjacent
10 each other. For instance,

uwnvguoted string“""
would be passed to the macro as the single parameter
"quoted string"
within the macro, parameters are accessed in a way similar to functions and variables:
the number of the desired parameter is enciosed is square brackets. Thus,
[11
would retrieve the first parameter,
[2]

would fetch the second, and so on. As a special case, the name of the macro itself may be
accessed with

[ol]
Assume there is a macro named "mx" defined as follows:
.# mx --- macro example
.cde mx
Macro named ‘[0]’, invoked with two arguments:
‘[1]1’ and “[2]}’.
.8n mx
Then, typing
.mx “"param 1" “"param 2"
would produce the same result as typing

Macro named ‘mx’, invoked with two arguments:
‘param 1’ and ‘param 2°’.

Macros are quite handy for such common operations as starting a new paragraph, or for
such tedious tasks as the construction of tables like the ones appearing at the end of each
section in this guide. For some examples of frequently used macros, see the applications
notes in the following pages.

Appending To A Macro

It is possible to add text to the body of a previously defined macro, using the ‘append
macro’ command:

.am xXXx

where xx 1is a previously defined macro. It is an error to append to a macro which has not
been previously defined. The additional text of the macro is terminated with a ‘.en xx’ com-
mand, just like the initial definition of the macro. The rules for the additional text of the
macro are the same as for the initial text, i.e. any function calls or special characters
must be escaped with an "e" sign to prevent their immediate evaluation.

Summary - Macros

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.de xx - ignored no Begin definition or redefinition of a macro.

.en xx - ignored no End macro definition.

.am xx - ignored no Add additional text to the body of a previously

def ined macro.

Conditional Line Processing

Introduction

This sections discusses the features of ‘fmt’ which provide you with considerable control
and flexibility over the formatting of your documents.

The .{f command

‘Fmt’ allows you to test a condition and if that condition is true, it will execute a
command. Optionally, you may specify a command to be executed if the condition is not true
(an ‘else’ part). This is done using the ‘if’ command:

.if cond delim true_part [delim else_par-:]

This evaluates a condition (‘cond’) which, if 1t 1is true, will cause (.true_part’ to be
executed, just as if ‘true_part’ had been on a l1ine by itself. If the condition is false, and
the ‘else_part’ is present, then ‘else_part’ will be executed as if it had been on a 1line by
itself. The ‘delim’ is any single non-blank character. For instance, the command

.1f [odd [pn]] / .er odd pageen / .er even pageén

will write either ‘odd page’ or ‘even page’ to the terminal, depending on whether or not the
current page is odd (the [odd] function will be discussed shortly).

The ‘cond’ can be negated by putting a ‘~’ in front of it. Note that ‘fmt’ only checks
for a single ’‘~’ to see if the condition is to be inverted. '‘Fmt’ is not a true programming
language! It is probably almost always better to rewrite your condition than to use a ’'~’ to
negate it. The functions discussed below, and the ability to specify an ‘else’ part, provide
ampie flexibility to do whatever needs to be done.

A .if command with no arguments has no effect on the formatted output. The .if command
may or may not cause a break, depending on the contents of the ‘if’ and ‘else’ parts.
Conditional Functions

‘Fmt’ provides four function calls which return either true or false (1 or 0O) depending

on the truth values of the conditions specified in their arguments. The four functions are as
follows:

odd Return true (false) if its integer argument is odd (even).
even Return true (false) if its integer argument is even (odd).
cmp Does a string comparison on its arguments, returning true if the specified relation

is true, false otherwise. The form of this call is described below.

icmp Does an integer comparison on its arguments, returning true if the specified rela-
tion is true, false otherwise.

The two comparison functions are callied with three arguments, the first operand, a
relational operator, and the second operand. The relational operators are:

<= Less than or equal to.

=< Less than or equal to.

< Less than.

== Equal to.

= Equal to.

~= Not equal to.

<> Not equal to.

>< Not equal to. 4
>= Greater than or equal to. ’
=> Greater than or equal to.

> Greater than.

A missing or incorrect operator is an error, and will cause ‘fmt’ to exit. As an example, to
determine where you are, you could do the following:

Text Formatter User’s Guide

This must be
.if [cmp [day] = Tuesday] / Belgium. / Somewhere.

would cause the output to be "This must be Belgium." if it were Tuesday. Otherwise your text
would simply wonder where it is.

Summary - Conditional Line Processing

Command Initial If no Cause
Syntax Value Parameter Break Explanation
.if <args> - ignored maybe Conditional execution of an input line.

L

-20-

Applications Notes

This section will illustrate the capabilities of ‘fmt’ with some actual applications.
Most of the examples are macros that assist in common formatting operations, but attention has
also been given to table construction. A1l of the macros presented here are available for
general use in the file *//extra/fmacro/report", which may be named on the command 1ine invok-
ing ‘fmt’ or may be included with a ‘source’ command as follows:

.80 =fmac=/report

Paragraphs

One standard way of beginning a new puoragraph is to skip a line and indent by a few
spaces, as was done throughout this guide. This can be done by giving an sp command followed
by a ti command. A better way is to define a macro. This allows procrastination on deciding
the format of paragraphs and facilitates change at some later date without a major editing
effort.

Here is the paragraph macro used in this document:

pp --- begin paragraph
de pp

sp

ne 2

.ti el[in]

.ti +5

.ns

.en pp

First a 1ine is skipped via the ’‘space’ command. Then, after checking that there is room on
the current page for the first two lines of the new paragraph, a temporary indentation is set
up that is five columns to the right of the running indentation with the two ti commands.
Finally, no-space mode is turned on to suppress unwanted blank lines.

Sub-headings
Sub-headings such as the ones used here may be easily produced with the following macro:

.# sh --- sub-heading
.de sh

.8p 2

.ne 4

.ti e[in]

bf

£1]
.PP

First, two blank l1ines are put out. Then it is determined if there are four contiguous 1ines
on the current page: one for the heading itself, one for the blank 1ine after the heading,
and two for the first two lines of the next paragraph. The temporary indentation value is
then set to coincide with the current indentation value. Next, the first parameter passed to
the macro (the text of the sub-heading) is boldfaced and a new paragraph is begun. The "pp*
macro will insert the blank 1ine after the heading.

Major Headings

Each section of this guide is introduced by a major heading that is boldfaced, under!ined
and centered on the page. The macro used to produce these headings is the following:

.# mh --- major heading

.de mh *
.8p 3 ’
.ne 5

.ce

.ul

.bf

[1]

. Sp

-PP

.en mh

This is similar to the sub-heading macro: three blank lines are put out; a check for enough
room is made; the parameter is centered, underlined and boldfaced; another blank line is put

- 21 -

Text Formatter User’s Guide
out; and a new paragraph is begun.

Tables of Contents

Table of contents can be automatically generated by writing the contents to a temporary
file, then at the end reading that file to produce the table of contents. 1In the examples
above we could divert subheadings and headings to a temporary file; e.g., add the following to
the ‘sh’ and ‘mh’ macros. (These examples are similar to what is used to produce the table of
contents of this guide; for pedagogical reasons we have simplified it a little).

.# generate a table of contents entry for a heading

.av 5

.CC # ‘ i
#sp ki
#ne 8)

[bf [1]1] e[tcle[tcpn] \
#cec .

.dv

.# table of contents entry for sub-heading
.dv 5

.CC #

#ne 4 :

[1] e[tcle[tecpn]

#br

#cec .

.av

Each time a heading is printed a 1ine is written to temporary file "5" containing the heading,
boldfaced, followed by a blank, a tab and finally the current page number right justified 1in
four columns. Each time a subheading is printed a 1ine is written containing three blanks,
the subheading, a blank, a tab and finally the current page number. Note that we precede
diverted commands by a different control character because ‘dv’ will execute commands instead
of diverting them.

The very last command of the document would be a generate table of contents macro, e.g.,

.# TC --- generate table of contents
.de TC

#fo ..- e[rn e[pn]] -..
#ce "TABLE OF CONTENTS"
#rm -6

#ta e[rm]

#rm +6

This macro will set the control character to correspond to the control characters written to
output stream "5," advance to the top of the next page, center the heading "TABLE OF:
CONTENTS", set the footer to print the page number in small roman numerals (the page number
must be set prior to calling ‘TC’), set the tab column to 6 columns to the left of the right
margin (this generates 2 blanks followed by the page number which is right justified 1in four
columns), sets the replacement tab character to "." and reads the contents of temporary file
uge,

Quotations

Lengthy quotations are often set apart from other text by altering the left and right
margins to narrow the width of the quoted text. Here is a pair of macros that may be used to
delimit the beginning and end of a direct quotation:

.# bq --- begin direct quote
.de bq

-Sp

.ne 2

.in +5

.rm -5

.1t 45

.en bqg

- 22 -

TSXALT TOrmMatTIer wvaswer > wsuiuw

.# eq --- end direct guote
.de eq

-8p

.in -5

.rm +5

.8n eq

Notice the 1t command in the first macro. To avoid affecting page headings and footings, the
left margin i{is not adjusted; rather, an additional indentation is applied. But to increase
the right margin width, there is no other alternative but to use the rm command. The “‘title-
length’ command 1is thus necessary to allow headings and footings to remain unaffected by the
interim right margin.

Italics

Since most printers can’t easily produce italics, they are frequently simulated by under-
1ining. The following macro ‘{talicizes’ its parameter by underlining it.

.# it --- italicize (by underlining)
.de it

ul

[1]

.en it

Boldfacing

wWhile ‘fmt’ has built-in facilities for boldfacing, their use may be somewhat cumbersome
if there are many short phrases or single words that need boldfacing; each phrase or word
requires two input lines: one for the bf command and one for the actual text. The following
macro cuts the overhead in half by allowing the command and the text to appear on the same
line.

.# bo --- boldface parameter
.de bo

.bf

[1]

.en bo

Examples

This guide is peppered with examples, each one set apart from other text by surrounding
blank 1lines and additional indentation. The next two macros, used like the "bg" and “eq"
macros, facilitate the production of examples.

.# bx --- begin example text
.de bx

.Sp

.ne 2

.nf

.in +10

.en bx

.# ex --- end example text
.de ex

-Sp

fi

.in -10

.8Nn ex

Note that the definition of the “ex" macro causes the @x command to become inaccessible.
»

Table Construction

One example of table construction (for a table of contents) has already been mentioned in
the section dealing with tabs. Another type of table that occurs frequently is that used in
the command summaries in this guide. Each entry of such a table consists of a number of
‘fields’, followed on the right by a body of explanatory text that needs to be filled and
adjusted.

The easiest way to construct a table 1ike this involves using a combination of tabs and
indentation, as the following series of commands illustrates:

-23-

Text Formatter User’s Guide

.in +40
.ta 14 24 34 a1
.te \

The idea is to set a tab stop in each column that begins a field, and one 1last one 1in the
column that 1is to be the l1eft margin for the explanatory text. The extra indentation moves
the effective left margin to this column. To begin a new entry, temporarily undo the extra
indentation with a ti command, and then type the text of the entry, separating the fields from
one another with a tab character:

.ti -40
field 1\field 2\field 3\field 4\Explanatory text

The first 1ine of the entry will start at the old left margin. Then all subsequent lines will
be filled and adjusted between coilumn forty-one and the right margin (inclusive).

Subsystem Macro Packages

Introduction

The previous section discussed how you might go about writing macros which do all kinds
of nifty things, including building a table of contents. Fortunately, you do not have to
write your own macro packages, since the Subsystem comes with several already written.

The two major packages are the User Guide Macros, and the Report macros. The Report
macros are an older set of macros; their use is discouraged in favor of the User Guide Macros,
which can actually be easily adapted for almost any kind of paper you may have to write.
Users who wish to use the Report macros may print them off to see what they do and how they
work. They are in =fmac=/report and =fmac=/ds_report for single- and double-spaced reports,
respectively.

There are also macros for formatting Master’s and Ph.D. theses. These are contained in
=fmac=/gt_thesis. They are meant to be used by themselves, without any of the =fmac=/ev?*
files (discussed below). The macros are documented in the file itself; see there for details
on using them. You will probably want to change them to have your school’s name, instead of
Georgia Tech.

Accessing The User Guide Macros

To use the User Guide Macros in your paper, you may name them on the command line, or
more conveniently, use one of the lines

.80 =fmac=/ugh
-or—

.$0 =fmac=/ugnh
as the first line in your ‘fmt’ input file. The first command provides you with a report that
uses plain headings (1ike the ones in this guide), while the second provides you with numbered
headings (useful for technical reports). In either case, the macros are used in an identical
fashion. You should not need to change the text of your document in order to get either num-
bered or plain headings; you just need to switch macro packages.

Each of these files sets up the macros for headings, and then does a
.80 =fmac=/ugm

to include the rest of the User Guide macros.

Using The User Guide Macros ’

The User Guide macros will automatically produce a titie page and table of contents. The
macros and their functions are:

.TP Start the Title Page.
.AU List the name(s) of the author(s).
.PD [<date>] Give the publication date.

- 24 -

.CH [<heading text>] Chapter heading.

.MH [<heading text>] Major heading (within a chapter).

.SH [<heading text>] Sub-heading (within a major heading).

.PH [<heading text>] Paragraph heading (within a sub-heading).

.ppP Start a new paragraph (do not use after .PH).

.bq [<1ength>] Begin an indented quote.

.eq End an indented quote.

.be [<length>] Begin an example.

.ee End an example.

.ep Skip to an even page. :

.op Skip to an odd page.

HI Produce a hanging Indent. Used for l1ists 1ike this one.
.TC Generate the table of contents (reset the page number with a

.bp n, first).
So, a full paper might 1ook something 1ike this:

.TP

On The Preservation Of The Arithmetic IF
.AU

Arnold D. Robbins

.PD "[ldate]"

.op

.HE "Saving The Arithmetic IF"

.# The .HE macro will be explained shortly
.fo 0 - # -’

.CH “Chapter 1"

:ﬁg “Major 2"

"SH *"Sub 3"

.PH “Par 4"
.bp 3
.TC

The title page produced would 1ook just like the title page of this guide. You may want
to change the .PD macro in =fmac=/ugm to have the name and address of your school or business,
instead of Georgia Tech. .

The heading macros each use two additional macros; one to help generate the table of
contents, and one to actually produce the heading. For instance, .CH calls .Ch to produce the
table of contents entry, and .ch to produce the chapter heading. The other header macros are
impiemented in a similar fashion. It is occasionally useful to access these macros directly;
for instance in order to produce a foreword to a document, without having the foreword show up
in the table of contents.

You should use all the .?H macros when writing your papers, i.e., the .CH macro, as well
as the .MH and .SH macros. If you do not use the .CH macro, and you wish to use the numbered
headings macros, your major sections will be sections 1, 2, 3, ... of Chapter O, not Chapter
1, so bear this in mind.

It is never necessary to use a .pp macro after any of the hehding macros, since they all
do a .pp for you. In particular, the .PH heading macro should ndt be followed by a .pp; while
after the other macros a .pp will only cause an extra line to be skipped.

The .be and .bq macros each take an optional argument, which is the length of the example
or quote. For a small quote or exampie, you probably do not need to provide the length.

Since your entire document has to be formatted before the table of contents can be
produced, the .TC macro should come at the end of your paper. You need to do a .bp n to the
proper page for the table of contents (usually n = 3). The macros use diversion stream number
five for the table of contents, so you should not use stream five for doing any of your own
diversions.

-25-

Text Formatter User’s Guide

The Printing Environment And The .HE Macro

The User Guide macros are designed so that a paper which uses them may be formatted on a
variety of output devices, without changing the text of the paper. This is done by defining
the printing environment in a macro; specifically the .EV macro. This macro takes care of
setting the margin values, the page and margin offsets, the even and odd offsets, and the page
length, among other things.

There are different environment files for different output devices. The files and the
environments they are designed for are:

=fmac=/evd Format output for the Diablo.
L3
=fmac=/evp Format output for the line printer.
=fmac=/ev] Format output for the Georgia Tech Xerox 9700 laser printer (See the

help on ‘1z’). These macros are for the User Guides.

=fmac=/ev12 Format output for the Georgia Tech Xerox 9700 laser printer. These
macros are for the Reference Manual.

=fmac=/evt Format output for *"typesetting" on the Spinwriter. The output
produced is designed to be photo-reduced to 8 1/2% by 11*.

Unless you are positive that you will always use a particular output device, these files
should not be included in your ‘fmt’ input file. Instead, they should be named on the command
line. The .TP macro automatically calls the .EV macro to reset the environment.

The ev? files also define the .HE macro, which 1is used for designating the page
headings. For single sided output, .HE is:)

.de HE <left> <center> <right>
elcclhe *[1]1'[2]1'[3]"
.en HE
while for double sided output (1ike the printed user guides), .HE is:
.de HE <left> <center> <right>
e[cclen *[1]'[2]) [3]"

elccloh ‘[3]'[2] [1]®
.en HE

The .HE macro should be placed right after the .bp 1 command for the first page of your
document, and before the first .CH command.

There is no special macro for footers. They are left to the .f0 command. The usual
choice is:

f0 - # =11
which places the page number at the bottom of the page.

There are environment files for the Report macros as well. The files are =fmac=/envd and
sfmac=/envp for the Diablo and line printer, respectively.

Conclusion

The macros available to you with the Subsystem should satisfy most of your documentation
needs, particularly with the variety of output devices that are supported. They can also be
easily changed to suit your requirements, since the source files for the macro packages are
included with the Subsystem.

- 26 -

Command
Syntax

.ad

.bf

-bp

.br
.c2
.cc

.ce

.dv

.ef
.eh
.en
.eo
.er
.ex
-fi
.fo
-he
.hy

Lif

.in #
it &

.Im +

.1s

Lt o+

.m2

.m3 +

.m4 +

.mc

.mo

-ha

N
xx

<stream>

/v/c/r/
/1/e/r/
xX
+N

text

/1/e/r/

/1/e/r/

<args>

<char>

+N

Initial
Value

both

N=0

N=1

N=0

blank

blank

N=0

on
blank
blank

on

N=1
N=1
N=60

N=2

N=2

BLANK

N=0

Summary of Commands Sorted Alphabetically

If no Cause
Parameter Break
- no
both no
- no
N=1 no
next yes
- yes
N no
. no
N=1 yes
ignored no
end ‘.dv’ no
blank no
blank no
ignored no
N=0 yes
ignored no
- ves
- no
blank no
blank no
- no
ignored maybe
N=0 yes
N=1 no
N=1 yes
N=1 no
N=60 no
N=3 no
N=2 no
N=2 no
N=3 no
BLANK no
N=0 no
- no

Explanation
Introduce a comment.
Set margin adjustment mode.

Add additional text to the body of a previously
def ined macro.

Boldface N input text 1ines.

Begin a new page.
Force a break. - <

Set no-break control character.

Set basic control character.

Center N input text 1ines.

Begin definition or redefinition of a macro.
Temporarily divert the output stream to a "filename"
or to a temporary file designated by an integer "“N*®
(to be 1later read by a ".so N" command) until a ‘dv’
command with no arguments is seen.

Set even-numbered page footing.

Set even-numbered page heading.

End macro defintition.

Set even page offset.

write a message to the terminal.

Exit immediately to the Subsystem.

Turn on fill mode.

Set running page footing.

Set running page heading.

Turn on automatic hyphenation.

Conditional execution of an input line.

Indent left margin.

Italicize N input text lines.

Set left margin.

Set line spacing.

Set length of header, footer and titles.

Set top margin before and including page heading.

Set top margin after page’ heading.

Set bottom margin before page footing.

Set bottom margin including and after page footing.
Set margin character.

Set margin offset.

Turn off margin adjustment.

- 27 -

Text Formatter User'’s Guide

Command
Syntax

-.ne

.nf

.nh

.ns

-.nNx

.of

.oh

.00

Pl o+
.pn #

.po

.ps

.rc

.rm +

.rs
.sb

.S0

.sp
. ta
.tc
.t
.11
ul

.xb

N

file
/1 /c/r/
/1/e/r/

<stream>

*N
l]lclryl

N

Initial
Value

on
blank
blank
N=0
N=66
N=1
N=0
N=M=0
BLANK

N=60

off

9 17 ...
TAB
N=0

blank

on

If no
Parameter

N=1

next arg
blamk
blank
N=0

N=66
ignored
N=0
N=M=0
BLANK
N=60 |

ignored

all
TAB
N=0
blank

N=1

OSSN

Cause
Break

yes
yes
no
no
no
no
no
yes
no
no
yes
yes
no
yes
no
no

no

yes
no
no
yes
yes
no

no

Explanation

Express a need for N contiguous lines.

Turn off fill mode. (Also inhibits adjustment.)
Turn off automatic hyphenation.

Turn on ‘no-space’ mode.

Move on to the next input file.

Set odd-numbered page footi?g.

Set odd-numbered page head:™3.

Set odd page offset.

Set page length.

Set page number.

Set page offset.

Skip pages while (page number mod M) is less than N.
Set tab replacement character.

Set right margin.

Turn off ‘no-space’ mode.

Single blank after end of sentence.

Temporarily alter the input source. "Stream can be a
“-" 0 indicate standard input, a “"filename," or an
integer "N" corresponding to a temporary file created
by a previous ‘.dv N’ command.

Put out N blank lines.

Set tab stops.

Set tab character.

Temporarily indent left margin.

Generate a three part title.

Underline N input text 1ines.

Extra blank after end of sentence.

-28-

	001
	002
	003
	004
	1-001
	1-002
	1-003
	1-004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-001
	2-002
	2-003
	2-004
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-001
	3-002
	3-003
	3-004
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-001
	4-002
	4-003
	4-004
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28

