
Georgia
Institute

of
Te chnolo gy RICH ELECTRONIC COMPUTER CENTER 1(404) 873-42111 ATLANTA, GEORGIA 30332

APL

for the

Burroughs B5500

Time Sharing System

August 1971

A P L

for the

Burroughs B5500

Time Sharing System

August 1971

ACKNOWLEDGMENT

Georgia Tech is fortunate and very grateful to have received this
implementation of APL/B5500 (A Programming Language) from the Computer
Center and the Computer Science Department at the University of Washington.
With their permission, we are republishing their manual with only a slight
amount of editing. Appendix G was developed at Georgia Tech and provides
a useful comparison between APL/B5500 and APL\360.

1.

TABLE OF CONTENTS

Introduction • • • •

1.1
1.2

Gaining Access to APL/B5500
User Communication with APL

1.1.1 Use of the Break Key.

1.3
1.4
1.5

The APL/ B5500 Character Set
Reserved Words and Symbols ••
Use of Delimiters •

.

.

Page

1

1
2

2

2
3
3

2. Starting and Ending an APL Run 3

3.

4.

5.

2.1
2.2

The <login> • •
The <logout>.

<monitor command>s and the Workspace •

3.1
3.2
3.3
3.4
3.5

The Workspace • • • • • • • • • • • • • •
Workspace Interrogation and Maintenance <command>s ••
<run parameter> <command>s. • • • • • ••
<library maintenance> <command>s. • • ••••
The <buffer edit> • • • • • • • • • • ••••

<data element>s and Data Structures.

4.1 <identifier>s.
4.2 <constant>s ••

4.2.1
4.2.2
4.2.3
4.2.4

<number>s . • • • • • •
Boolean Elements .••.
Character <string>s • • • .
The Null Element. •

4.3 Scalars, Vectors, and Arrays ••

4.3.1
4.3.2

Vectors •
Arrays. •

The <basic statement>.

. . . . ~ .

3
3

4

4
4
5
6
7

7

7
7

7
8
8
8

8

9
9

9

5.1 The <expression> .•• • • 10

5.1.1
5.1.2

5.1.3
5.1.4

The <expression> as an <operand>. . . 10
The <expression> as a Combination of Operators,
<operand>s, and <expression>s •••••••••• 10
The <expression> as an <assignment statement> . • 11
Ou t1ine 0 f APL Operators. •. •••.•••• 11

5.1.4.1
5.1.4.2

The <monadic operator>s • •
The <dyadic operator>s ••

• 11
• 12

6.

7.

8.

TABLE OF CONTENTS (continued)

5.2
5.3

The <subroutine call> •••
The <transfer statement> .

· 13
· • 13

Description of APL Operators. • • • • 14

6.1 <monadic scalar operator>s · · · · · · · 15
6.2 Monadic Mixed Operators. · · · · · · · · 16
6.3 Monadic Suboperators · . · · · · · · · · · · · · 17
6.4 Dyadic Scalar Operators. · · · · · · · · · · · · 19
6.5 Dyadic Mixed Operators · · · · · · · · · 21
6.6 Dot Operators. . . . · · · · · · · · 23
6.7 Dyadic Suboperators. · · · · · · · · · · · · 24

APL Stored Programs • 26

7.1 The Mechanics of <stored program definition> .••• 26

7.1.1 The <header> • • • • • 26

7.1.1.1
7.1.1.2
7.1.1.3
7.1.1.4

The <function specifier> • • • • . • • • • • 26
The <formal parameter>s. . ••.•••• 26
The Name of the Stored Program • • •. • 27
The Local Variables. • • . .•.•••. 27

7.1.2 The <stored program body> ••

7.1.2.1
7.1.2.2
7.1.2.3

The <compound statement> • • . • .
The Use of <labe1>s •..•
The Use of "Global Variables".

· • • • 27

• • • 28
• • • • • 28
·28

7.1.3 Example of a <stored program definition> . . 28

7.2 The <edit>ing of a <stored program definition> . 28

7.2.1 The <display> Command. · · · · 29
7.2.2 The <insertion> Command. · · · · · · · · 29
7.2.3 The <change> Command · · · · · · · · · · · · · · 30
7.2.4 The <delete> Command · · · · · · · · · · 31
7.2.5 The <resequence> Command · · · · · · 31

7.3 Execution of a stored program. • · 31

Miscellaneous APL Conventions and Notations • · . 32

8.1
8.2
8.3
8.4

Quad ([]) and Quote-Quad ([,,]) Input .
Display • • . . • •. .• .
The <subscript option> . . • • .
Modes of Operation

· 32
· 32

32
• • • • • • • 34

8.4.1
8.4.2
8.4.3
8.4.4

Execution or Calculator Mode•••• 34
<stored program definition> 34
Stored Program Execution Mode . • . • . . . 34
Suspended Mode • . . •• ••..••. • 35

8.5 Error Messages .•. 35

TABLE OF CONTENTS (continued)

Appendix A - Syntax. ••••••• • ••• ••• 37
Appendix B - Summary of edit command s. • ••••••• 42
Appendix C - Summary of monitor command s • • • • • 43
Appendix D - Index to APL/B5500 Symbols and Their

APL 360 Equivalents. • • • • • • • • • • • • • • • •• 45
Appendix E - Examples •• • • • • • • • • • • • • • • • • • 46
Appendix F - Octal Equivalents for B5500 Character Codes • • 53
Appendix G - Comparison of APL/B5500 and APL/360 . • 54

1. Introduction

APL/B5500 is an interpreter for a conversational pro-
gramming language implemented on the Burroughs B5500 computer at the
University of Washington. The language is patterned after APL/360(1) ,
an implementation of "Iverson Notation"(2). The APL/B5500 inter­
preter provides line by line evaluation of APL statements as input
by a programmer at a remote teletype station. The interpreter pro­
vides both "desk calculator" and "stored program" capabilities. The
large number of special purpose operators operate on the basic data
elements to allow concise expression of mathematical and manipulative
constructs. The basic data elements of APL are constants and
identifiers whose values may be characters or numbers. Data elements
may take scalar, vector, and array structures.

The APL programmer may define "stored programs" which group APL
statements together to be executed at a later time. The stored pro­
grams may be either the standard "subroutine" type or the "function"
type. The ALGOL 60 notion of local and global quantities is pre­
served with respect to APL stored programs.

A comprehensive set of commands allows communication with the
APL interpreter monitor. These commands allow maintenance of data
areas and specification of run parameters.

Appendix A contains a set of Backus-Naur syntax equations which
define the APL/B5500 programming language. Each syntax equation is
written in terms of metalinguistic variables (enclosed in the broken
brackets "<" and ">") and terminal symbols (capital letters or special
symbols). The metalinguistic variable to be defined appears on the
left side of the symbol "::=" (read as "is defined as"). The right
side of each syntax equation contains combinations of metalinguistic
variables and terminal symbols, and serves to define the variable on
the left. The symbol "I" (read as "or") separates multiple defini­
tions. The braces "{" and ,,}" enclose an English language definition,
used whenever definition in terms of metalinguistic variables and
terminal symbols is impossible or unenlightening.

As the elements of the language are explained in this manual,
the metalinguistic variables will be enclosed in broken brackets
wherever they occur in the text. Broken brackets may be ignored in
reading the manual since they serve to indicate that the item appears
in the syntax equations of Appendix A.

1.1 Gaining access to APL/B5500

A user logs onto the Time Sharing System by entering his usercode and password
when requested. He then can call APL/B5500 by entering the command

CALL APL.-

(1) Iverson, K. E. and A. D. Falkoff, "APL/360: User's Manual",
International Business Machines Corporation, 1968.

(2) Iverson, K. E., A PROGRAMMING LANGUAGE, John Wiley and Sons, Inc.,
NevI York, 1962.

2

1.2 User Communication with APL

The user is provided with input and output buffers which are
200 characters long. On output, APL "folds" the buffer across the
terminal in pieces determined by the current WIDTH (Section 3.3) ,
indenting two spaces when a row is continued to the next line.

On input, the user terminates each logical transmission with a
left arrow ("+"). In order to transmit more than one teletype line
(72 characters), the user depresses the line-feed and carriage-return
keys on the teletype and continues typing.

After a line has been sent (indicated by the "+"), the following
sequence of events occurs:

a) When APL has queued the input line for processing, it
causes the teletype carriage to return.

b) The line is processed and resulting output (if any) is
written on the teletype.

c) APL indents six characters on the next line and waits
for the next input.

1.2.1 . Use of the Break Key

Hitting the BREAK key on the teletype while APL is writing causes termination
of the output. Entering a left arrow while APL is executing but is not typing
or reading has the effect of stopping the executing process. In
either case, if a stored program is executing, it is placed in suspended mode.
Throughout the remainder of this manual, a reference to hitting the "break key"
means hitting the BREAK key or entering a left arrow, whichever is appropriate.

1.3 The APL/B5500 Character Set

The character set of APL/B5500 is a subset of the characters
available on the model 33 teletype. These characters are the
<visible string character>s, the ", and the single space. The
<visible string character>s consist of the <letter>s:
ABCDEFGHIJKLMNOPQRSTUVWXYZ, the <digit>s: 0123456789, and a number
of <special symbol>s: ().,:;+-=/$#*@%&[] +.

3

1.4 Reserved Words and Symbols

APL reserves several words and symbols to specify the special­
purpose operators. They are listed in Appendix D and may not be
used as <identifier>s.

1.5 Use of Delimiters

Reserved words and <identifier>s (see Section 4.1) must be
preceded and followed by at least one delimiter~ Delimiters are
the <special symbol>s listed in 1.3, and any number of <single
space>s. The start of a line is also considered a delimiter.

The remaining sections serve to describe an <apl program>
which begins with a <login> and ends with a <logout>. In between,
it may include <monitor command>s (Section 3), and may operate on
<data element>s (Section 4) in <basic statement>s (Section 5)
using APL operators (Section 6) or user-defined stored programs
(Section 7). Section 8 describes some miscellaneous APL constructs
such as subscripting, defines the various modes of operation
available to the user, and describes the error messages the user
may receive.

2. Starting and Ending an APL Run

2.1 The <login>

The user activates APL/B5500 from the terminal according to
normal job initiation procedures at his installation. APL responds
by typing

APL/B5500 UW COMPUTER SCIENCE # (version date)
LOGGED IN (current date and time)

2.2 The <logout>

To terminate an APL session, the user types

a))~FF or
b))~FF DISCARD

In either case, the user is disconnected from APL and APL types
'END OF RUN". Option a) causes the current active workspace to
be saved in "APLIBRY" /<user code> (Section 3.1); in case b), the
active workspace is discarded. APL then goes through the normal
end of job process.

4

3. <monitor command>s and the Workspace

The workspace allows the user to save his work from session
to session, and the <monitor command>s allow him to interrogate and
maintain the workspace, specify <run parameter>s, and create and
maintain workspace libraries.

3.1 The Workspace

Defined <identifier>s and their values, definitions of stored
programs, and <run parameter>s are kept in a "workspace". The
workspace associated with an active run is called the "active work­
space". Successful <login> causes activation of the last active
workspace or, if there is none, creation of a new workspace. Active
workspaces may be saved in libraries. These libraries are inactive,
but may be activated using certain <library maintenance><command>s.

3.2 Workspace Interrogation and Maintenance <command>s.

Command APL Response

) CLEAR Discards the active workspace except for the
<run parameter>s. Not allowed while in
suspended mode (Section 8.4.4).

)ERASE <identifier list> Removes each global variable and its value,
or stored program and its definition named
in the <identifier list> from the active
workspace. The <identifier list> is a list
of <identifier>s, separated by one or more
blanks. Not allowed while in suspended
mode (Section 8.4.4).

)VARS Lists the names of all the variables and
stored programs in the active workspace.
Stored program names are followed by the
characters "(F)".

)FNS Lists the names of all stored programs in
the active workspace.

)SI Lists in order the names of stored programs
which have. been suspended during execution
(Section 8.4.4).

)SIV Lists in order the names of stored programs
which have been suspended during execution,
as well as the names of variables local to
these stored programs (Section 8.4.4).

)AB~RT

)ST~RE

5

Terminates all suspended stored programs and returns
directly to execution mode (Section 8.4).

When in suspended mode (Section 8.4.4), causes APL to
store into the active workspace the values of global
variables which have been changed (they are not stored
until a stored program is terminated normally).

When the <command> calls for a list (VARS, FNS, SI, SIV) and no
elements exist" in the requested category, APL types "NULL".

3.3 <run parameter> <command >s

These <command>s allow the user to select values for certain
parameters or to ascertain the current values of them. To change the
value, the user types a ")", followed by the parameter name, followed
by a number (except for SYN and N~SYN). If no number is given, APL
responds with the current value of the parameter. Where an integer
is required, the number given is rounded to an integer. The
following table gives the <command>, the value the parameter is given
when a new workspace is initialized, any restrictions on the value
of the number to be "given, and the use of the parameter.

Command

)~RIGIN <integer>

)WIDTH <integer>

)DIGITS <integer>

)SEED <integer>

) FUZZ <number>

Initial Value Restrictions

I

72

9

59823125

between 10
and 72,
inclusive

between 0
and 12,

" inclusive

absolute
value is
taken;
for best

Usage

The starting index of
arrays. Also the starting
point for index and random
number generation.

The width of a teletype
line for output. Lines
longer than WIDTH will be
"folded over".

The maximum number of
digits written after the
decimal point on output.
(APL removes non-signifi­
cant zeroes.)

The "seed" for the random
number generator; value
changes with each call to
the random number genera-

results, tor.
should take
previously-
held values.

absolute
value is
taken

To counter truncation error
and use in comparisons.
A is considered equal to B
if I A-B I ::; FU~-£ x I B I.

6

Command Initial Value Restrictions

)SYN on

)N0SYN off

3.4 <library maintenance> <command>s

Usage

Causes APL to check the syn­
tax of each line of a stored
program as it is being de­
fined (Sec. 7). This is the
default state.

Turns off the syntax check­
ing option during stored pro­
gram definition.

These <command>s allow the user to save the active workspace or to activate
previously saved workspaces, or parts thereof. Library files are saved under the
user's B5500 TSS <USERCODE>. The library name used takes the form of an <identi­
fier> not more than six characters long. For) LOAD ,)COPY, and) CLEAR, the mes­
sage: "FILE NOT ON DISK" may occur with obvious meaning.

Note: For APL/B5500 under B5500 TSS, all APL disk files have a file-ID
(i.e., <file-ID>/<multi-file-ID» that starts with a "/". This is a convention
used to distinguish APL files from CANDE files on other types of files. This
may be easily changed and the use of this convention is really installation de­
pendent.

a))SAVE <library name> <lock option> saves the current active work­
space on disk under the generated <library name> provided that a file with the
same name is not already on disk. Otherwise, the message "FILE ALREADY 0N DISK"
is typed. The <lock option> may be "L0CK" or <empty>. If "L0CK" is used, no
user may access the file unless he is logged in to APL under the same <user code>
as that generated for <library name>.

b))L0AD <library name> loads the previously SAVEd workspace referenced
by <library name> into the active workspace (subject to restrictions on L0CKed
files). When a name in the library workspace matches a name in the active work­
space, the corresponding item is not L0ADed unless the name in the active work­
space is for a variable and the name in the library file is for a stored program.
When an item is not L0ADed, APL responds with an appropriate message.

c))C0PY <library name> <copy name> copies the value of the variable
or definition of the stored program named by the <copy name> (an <identifier»
from the library file referenced by <library name> into the active workspace
(subject to the restrictions on L0CKed files.) The rule for replacing matching
variables is the same as for L¢ADing.

d))CLEAR <library name> removes the library file referenced by the
generated <library name> from the disk.

e))FILES lists the <library name>s of the user's APL workspace library
files which have been saved and are present on disk.

7

3.5 The <buffer edit>

APL retains each user's last input. This <command> allows
the user to change the last line of input without retyping the
entire line. It is given by typing

)" <line edit> where <line edit> takes the form
"<search string>

<search string> "<insert string> or <empty> APL responds as
follows:

a) The
cations given in

last input line is edited according to the specifi­
line edit --the rules for which are discussed in

Section 7.2.3.

b) The resulting line is typed on the teletype.

c) The new line is processed as if the user had just
typed it in.

4. <data element>s and Data Structures

The basic <data element>s of APL are <identifier>s and <constant>s.
These in turn may take on various structures as given below. Exact
syntax for <data element>s is given at the end of Appendix A.

4.1 <identifier>s

An APL <identifier> is a combination of <letter>s and <digit>s,
beginning with a letter (except for the reserved words listed in
Appendix D). Only the first seven characters of an <identifier> are
significant. <identifier>s may be assigned values via the <assignment
statement> (Section 5.1.3). <identifier>s which have not been assigned
values are "null" (Section 4.2.4).

4.2 <constant>s

A <constant> may be a <number>, a character <string>, or "null".

4.2.1 <number>s

For input, a <number> takes the following form:
<integer> <decimal fraction> <exponent part> where all but one of the
three entities may be omitted. An <integer> is a sequence of decimal

8

digits which may be preceded by a sign ("+" or <empty> for a
positive number, "#" for a negative number--sorry, the "_" has
another use). A decimal fraction is a "." followed by a sequence
of decimal digits. The exponent part is an "E" or "@" followed by
an <integer> (except that here a "-" may be used instead of "#" if
desired). The <exponent part> must begin with "@" if it stands
alone since the number would otherwise be interpreted as an
<identifier>. The "E" or "@" means "times ten to the power given
by the following integer"--e.g. 2.3@-2 means .023, @-2 means .01.
Output of <number>s is governed by the value of DIGITS (Section 3.3).
Extraneous zeros are omitted, and "_" is used instead of "#".

Examples: 47 47.2
#.34l@-ll

47.2@3
#@45

.341 .34l@#11 #47 #47.2E+3

There is no distinction in APL between integers and real numbers.
They are both carried in B5500 "floating point form". Numbers whose
significant digits (disregarding sign, decimal point, and exponent)
do not exceed 549755813887 are carried to full precision. Absolute
values of numbers must be less than about 4.3l4@68 to stay within
the limits of the B5500. Numbers with absolute value less than
10@-47 are converted to zero.

4.2.2 Boolean Elements

A <constant> is sometimes used in a "logical" context and is
considered to be "true" (if it is 1) or "false" (if it is 0).
However, these Boolean elements may be used in arithmetic computa­
tions regardless of previous usage. Using <number>s other than 0
or 1 in Boolean operations yields an error.

4.2.3 Character <string>s

For input, a character <string> is a sequence of <letter>s,
<digit>s, <special symbol>s, and <space>s enclosed in quotation marks.
A quote within a string is indicated by a double quote--"". A null
string is indicated by enclosing nothing in quotes--that is "". On
output, the string is typed without the enclosing quotes. For
example, if the user types

"HE SAID, ""2+2=4""", APL would interpret the <string> as
HE SAID, "2+2=4".

4.2.4 The Null Element

<identifier>s which have not been assigned values and the results
of certain operations have the special value "null"--that is, they
have no value. Usually, attempting to apply an operator to a null
eleme~t yields an error. However, it has a special meaning for
certa~n operators (see Section 6).

4.3 Scalars, Vectors, and Arrays

A scalar is a single <number>. A vector is a one-dimensional
list of <number>s or a character <string>. Arrays are an extension

9

of vectors with up to 31 dimensions. The number of dimensions is
called the rank (e.g. an array of rank 2 is a matrix; an array of
rank 1 is a vector).

Every array must consist entirely of numbers or entirely of
characters. In the former case, each number is one element of the
array; in the latter case, each character is an element of the
array (e.g. "45A2-*" is a vector of 6 elements, each of which may
be accessed). There are no null elements in a non-null array.
With one exception (Section 5.1.4.2 (b», one-element arrays are
treated as scalars.

4.3.1 Vectors

Vectors may be input directly, provided they do not exceed 200
characters. A numeric vector is input by typing a list of <number>s,
separated by one or more blanks, and is treated as a <constant>--e .. g.

5 7 #42 @-7
Character vectors are also <constant>s and are input by
typing a character <string>. A <string>with one element is stored
as a one-element vector rather than as a scalar. Elements may be
added to vectors using the catenate operator (Section 6.5).

4.3.2 Arrays

Arrays of rank greater than 1 may not be input directly, but
may be created using the restructure operator RH0 (Section 6.5) or
may result from other operations. Subsets of named arrays (that is,
arrays which have been assigned to <identifier>s via <assignment
statement>s--Section 5.1.3) may be accessed by subscripting
(Section 8.3). The exact structure of an array is given by its
"dimension vector" which has as many elements as the rank of the array.
In other words, if the dimension vector is 2 3, the array is a matrix
with 2 rows and 3 columns; if the dimension vector is 4 5 6, it is an
array of 4 submatrices, each of which has 5 rows and 6 columns.

5. The <basic statement>

The <basic statement> does all the computing in APL. It is a
sequence of <constant>s, special symbols, <identifier>s, and
<function name>s in some syntactically correct order.

Formation of <constant>s and <identifier>s is reviewed at the
end of Appendix A, and they have the usual programming significance.
The special symbols are listed and indexed in Appendix D. <function
name>s are <identifier>s which have been associated with stored
programs (via <function definition».

There are three types of <basic statement>s in APL:

a) the <expression>, which causes APL to respond with the
value of the <expression> or to associate its value with an <identifier>;

b) the <subroutine call>, which causes the appropriate
subroutine to be executed;

c) the <transfer statement>, which causes a transfer to
occur.

10

5.1 The <expression>

The <expression> may be an <operand>, a combination of
operators, <expression>s, and <operand>s, or an <assignment statement>.

5.1.1 The <expression> as an <operand>

In its simplest form, the <expression> is an <operand>. The
<operand> may be a <constant>, an <identifier> (possibly sub­
scripted--see Section 8.3), an <expression> enclosed in parentheses,
a < ni ladic function name>, [], or ["].

When an <operand> is typed in alone, APL responds according
to the table below.

<operand>

< constant>

< iden ti f ier>
<subscript option>

« expres sion>)

<niladic function
name>

[]

["]

APL Response

Types the <constant>.

Types the value of the data item associated
with <identifier> <subscript option>. If
it is null, APL types nothing.

Evaluates the <expression> and types the
result.

Executes the corresponding function and
types its value.

*Types []: and waits for input (input must
be an APL <expression».

*Returns to next line and waits for
character input without indenting.

*See Sectlon 8.1 for further explanation.

5.1.2 The <expression> as a Combination of Operators,
<operand>s, and <expression>s.

The next simplest form of the <expression> introduces APL
operators. If the operator is monadic, the <expression> takes the
form <monadic operator> <expression>; if it is dyadic, the
<expression> takes the form <operand> <dyadic operator> <expression>.
In either case, the <expression> to the right of the operator (which
may also include operators) is evaluated and then the <monadic
operator> is applied to the result or the <dyadic operator> is
applied between the <operand> and the value of the <expression> to
the right of the operator. Thus, there is no operator precedence
in APL--evaluation of <expression>s proceeds directly from right
to left. The order of evaluation may be changed by the use of
parentheses--which is equivalent to using «expression» as an
<operand>. Using this form of the <expression> causes the
<expression> to be evaluated and the result typed out.

11

5.1.3 The <expression> as an <assignment statement>

The value of an <expression> may be assigned to an <identifier>
or to a subset of a previously defined array <identifier> (see
<subscript option» via the <assignment statement>. It takes the
form <assign operand> := <expression>. The <assign operand> may be
an <identifier> followed by <subscript option>, or a []. Since this
form is itself an <expression>, intermediate results may be saved
or displayed during the execution of the <basic statement>.

If the <assign operand> is a non-subscripted <identifier>, the
value of the <expression> is associated with that <identifier> and
any previous value associated with it, regardless of its structure,
is lost. If the <assign operand> is subscripted, the value of
<expression> is assigned to the portion of the array <identifier>
specified by <subscript option>. Permanent assignment is not made
in the user's workspace until the entire <basic statement> has been
evaluated successfully. However, a temporary assignment is made to
allow using an <assign operand> "later" in the basic statement. If
any error occurs, the evaluation was unsuccessful.

If the <assign operand> is [], the result of the <expression>
is displayed immediately.

5.1.4 Outline of APL Operators
(See Section 6 for detailed descriptions.)

APL operators provide several built-in functions for the user's
convenience. They may be monadic or dyadic, depending on whether
they have one or two "arguments" or operands. Many APL symbols
represent operators having both forms. Context decides whether the
interpretation should be monadic or dyadic. A few APL symbols
(CEIL, FLR, ABS, FACT and MAX, MIN, RESD, C0MB) are syntactically
equivalent although they are visibly distinct. Since no special
symbols were available, the names were made different for mnemonic
clarity. The equivalents are shown in Appendix D.

5.1.4.1 The <monadic operator>s

There are four types of <monadic operator>s:

a) <monadic function name>s are user-defined APL functions
which return a value and have one <formal parameter>. Mention of a
<monadic function name> causes the corresponding function to be
executed and its value returned.

b) The <monadic scalar operator>s are defined in
Section 6.1. They are defined for scalars and extended to vectors
and arrays by applying the operator to each element of the vector
or array. The arguments must be numeric.

Example: % 5 is .2
% 5 248

(% stands for multiplicative inverse)
is .2.5 .25 .125

c) The ~onadic mixed operator>s are defined in
Section 6.2.

12

d) The <monadic suboperator>s are operators which are,
in effect, subscripted. The value of the subscript determines
the exact action of the operator. If no subscript is given, the
highest valid subscript is used. <monadic suboperator>s also
include the <reduction type operator>s where the preceding
<dyadic scalar operator> also determines the action to be taken.
They are defined in Section 6.3.

5.1.4.2 The <dyadic operator>s

There are five types of <dyadic operator>s:

a) <dyadic function name>s are user-defined functions
which have two <formal parameter>s. Use of a <dyadic function name>
causes the corresponding function to be executed with the appropriate
values sUbstituted for its <formal parameter>s and its value to be
returned.

b) The <dyadic scalar operator>s are defined in
Section 6.4.

They are defined for scalars and extended to vectors as follows.

For clarity, consider the basic form argl d arg2 where argl
and arg2 are operands and d is a dyadic scalar operator. If arg1
(arg2) is a scalar or one-element array, the operator is applied
between argl (arg2) and each element of arg2 (argl) and the result
has the same structure as arg2 (argl). If argl and arg2 are both
arrays, their ranks and dimension vectors (that is, their structures)
must match and the operator is applied between corresponding elements
of argl and arg2--thus the result has the same structure as arg1 and
arg2. However, if arg1 and arg2 are one-element arrays of different
ranks, an error results unless one of them is a character array of
rank 1. In this case, the result has the same structure as the
one-element array having rank greater than 1.

Examples:

2 + 2 is 4
is

1 + 2 3 4 is 3 4 5

(::) + 3 is (::)

1 2 3 4 5 + 2 3 1 4 2 is 3· 5 4 8 7

c) The <dyadic mixed operator>s are defined in Section 6.5.

d) The <dot operator>s are defined in Section 6.6.

e) The <dyadic suboperator>s are operators which are, in
effect, subscripted. The value of the subscript determines the action
taken. If no subscript is specified, the highest valid subscript of
the right-hand argument is taken. They are defined in Section 6.7.

13

5.2 The <subroutine call>

User-defined stored programs which do not return values are
called subroutines. Following the usual conventions, the call
takes the following forms:

a) <niladic subroutine name> if the subroutine has no
<formal parameter>s;

b) <monadic subroutine name> <expression> if the
subroutine has one <formal parameter>;

c) <operand> <dyadic subroutine name> <expression>
if the subroutine has two <formal parameter>s.

In each case, the corresponding subroutine is executed. In
b) and c), the <expression> is evaluated and its value substituted
for the right-hand <formal parameter>. Notice that in c) the
left-hand argument must be an <operand> as its value must be
obtained before execution of the subroutine so it can be substituted
for the left-hand <formal parameter>.

5.3 The <transfer statement>

The <transfer statement> takes the form =: <expression>.
"G~" may be used instead of "=:". Its main use is in providing
transfer capabilities in functions and subroutines. It is not
valid outside of stored programs, except that it is used to provide
instructions for recovering from suspension of a stored program
(see Section 8.4.4). The <transfer statement> may cause three
different actions, depending on the value of the <expression>.
(See table below.)

Value

An <expression> whose first
element is a statement number
which occurs in the stored pro­
gram being executed.

An <expression> which specifies
a line which is not in the
stored program being executed.

Null.

Action

The statement specified by the
statement number is executed
next, and execution proceeds
from there.

Normal exit (actually, a return
transfer) from the stored pro­
gram--local variables are re­
leased and the value, if any,
is returned to the <basic
statement> which invoked the
stored program.

No transfer occurs. The next
statement in sequence is
executed.

14

6. Descriptions of APL Operators

APL operators differ as to the structure of the operands to
whiqh they may be applied and as to the types of values the
operands may have. Definitions will be given for the operators
as if they were applied to identifiers. Restrictions on structure
will be indicated by the identifiers used for arguments as follows:

x, Y
V, W
L, M
A, B

mean scalar or one-element array
mean vector or scalar
mean matrix or vector
mean any structure

Notice that, while monadic and dyadic scalar operators are defined
for scalars, they are extended to arrays as discussed in 5.1.4.1
b) an d 5. 1 • 4 • 2 b).

Restrictions on types of values of the arguments will be
given in a special column as follows:

R means the set of real numbers
N means the set of integers
B means the set of Boolean elements qO,l~)
C means the set of characters

null means the null element

If no restrictions are given, there are none. Restrictions on
actual values will be given using the standard relational operators.

Example: V RH~ A V E N u null, V) 0, A ~ null
"/

means that for RH~ (restructuring), the right-hand argument
can have any structure and any values except null, while the
left-hand argument must be either null or a vector (or scalar)
composed of non-negative integers.

Since APL does not formally distinguish between integers and
real numbers, errors will not result from using real numbers where
integers are required. In such cases, the real numbers will be
rounded to integers (.5 is rounded up).

All examples given in this section assume an ~RIGIN of 1.
For further examples of the more complicated APL operators, see
Appendix E.

15

6.1 <monadic scalar operators>

APL Symbol Name of Operator Form Used Restrictions Result

+ identity +X X E R X

&

%

*

CEIL

FLR

ABS

FACT

RNDM

CIRCLE

additive inverse -x

sign

multiplicative
inverse

exponential

natural
logarithm

ceiling

floor

absolute value

factorial

random number

negation

circular

&X

%X

*X

L~G X

CEIL X

FLR X

ABS X

FACT X

RNDM X

N~T X

CIRCLE X

X E R

X E R

X E R

X :f °
X E R

X E R
X > 0

X £ R

X £ R

X £ R

X £ R
X 3 0

X £ N
X ~ ~RIGIN

X £ B

X £ R

negative 1 times X

1 if X > 0
o if X = 0

-1 if X < 0

1 divided by X

e to the power X
e=2. 71828 •••

natural logarithm
of X

smallest
integer ~ X
(FUZZ is used)
largest integer ~ X
(FUZZ is used)

absolute value of X

X factorial if X is
an integer. f(X)
to 7 significant
digits if X is not
an integer
an integer selected
randomly between
¢RIGIN and X,
inclusive. (A
pseudo-random number
generator is used
with SEED changing
with each use of RNDM

1 if X=O, 0 if X=l

3.14159265 times X

16
6.2 Monadic Mixed Operators

APL Symbol Name of Operator Form Used Res tri ctions

I¢TA index generator I¢TA X X N

RH¢ dimension vector RH¢ A A ¥ null

ravel ,A

TRANS transpose TRANS A A ¥ null

BASVAL base-2 value BASVAL V V R

EPS execution of a EPS V v C
or XEQ character string

Result

A vector containing the first X integers
starting at ¢RIGIN. If X < ¢RIGIN, the null
vector results. (e.g. I¢TA 5 is 1 2 3 4 5)
The dimension vector of A. If A is a scalar,
result is null. (e.g. RH¢3 5 6 2 is 4;
If B is the matrix (3 4 7 2 3 ,RH¢ B is 2 5

21689
A vector containing the elements of A taken in
row order (rightmost subscript varying most
rapidly). If A is a scalar, result is a vector.
If A is null, result is null. (e.g. ,B is
3 4 7 2 3 2 1 6 8 9 where B is defined as in
RH¢ example.)
An array with the last two coordinates of A
transposed. If A is a scalar or vector, result
is A. (e.g. if C is the matrix

(~ ~ ~), TRANS C is(~ iY
if C is

the array (:
2
;; TRANS C

is 1 4
5 2 5

3 6
8
3 7 2

8 3
9 4

Result is 2 BASVAL V(see <dyadic mixed operator>s

Result is the value of the APL <expression> giver
by V. (e.g. EPS "2+3%4" is 2.75)

-----------~- .. ,--~~-~- ... - - ~----------~---~----~-----.

17
6.3 Monadic Suboperators

Name of Operator

reduction

d + &

identity 0 1
d LSS =

!identity 0 1

scan

Form Used

d/[X]A or d/A
where d is a
dyadic scalar
operator

Restrictions

A E R u null
X E N
ORIGIN~X~(rank of A)+
ORIGIN-l
If d is relational or
or Boolean, A E B.
More generally, ele­
ments of A and partial
results must be in
domain of d unless A
is null.

- % * RESDIMIN I MAX ~fZJMB
0 1 1 o 14.314@681-4.314@68 1

GEQ GTR NEQ LEQ I AND I ~R J NAND j N~R 1 L0G CIRCLE
1 0 0 1 J

d '[Xl A
or d\A where d
is a dyadic
scalar operator

1 J 01 n ullj n ulll null null

X E N
ORIGIN~X~(rank of A)+
ORIGIN-l
A E R
Partial results must be
in correct domain for
d (as in reduction) .

Result

If A is scalar, result is A. If A is null,
result is the identity of the operator d if
one exists, (see insert below), null other­
wise. If A is a vector, result is formed
by inserting d between each pair of elements
of A and evaluating right to left as usual;
e.g. +/1 2 3 4 5 is 15; -/5 4 3 2 1 is 3.
If A is an array of rank 2, the reduction
proceeds along the Xth coordinate (with
respect to ORIGIN). When X is not given,
it is taken to be (rank of A)+ORIGIN-l.
For A a matrix and X=l, d is applied between
corresponding row elements; for A a matrix
and X=2, d is applied between corresponding
column elements. Where right-to-left
evaluation does not apply, evaluation is
bottom to top. The rank of the result is
one less than the rank of A. (e.g.
If A is (1 2 3), +/ [l]A is 5 7 9

4 5 6 +/[2]A is +/A is 6 15 .)

If A is scalar, result is A. Otherwise,
scan proceeds along the Xth coordinate with
respect to ORIGIN where X=(rank of A)+
ORIGIN-l if X is not given. Result has
same structure as A, where each element is
d applied between the last-obtained element
and the corresponding element of A. Scan
goes from left to right or top to bottom,
depending on X, and the topmost or leftmost
element of the result is the corresponding
element of A.
(e.g. + \1 2 3
If A is (1 2 3

567
034

4 5 is 1 3 6 10 15.

:),+(i
A ~s ~\i~)]A is

7 5 11 18 26
o 3 7 14

and +\[l]A

is (i J i~ iD

Monadic Suboperators, continued

Name of Operator

reversal

sorting up

sorting down

Form Used

PHI[X]A
or PHI A

S~RTUP[X]A
or S¢RTUP A

S~RTDN[X]A
or S~RTDN A

18

Restrictions

X E N
~RIGIN~X~ (rank of A)+~RIGIN-l
A t- null

s arne as revers al

same as reversal

Result

An array with the same structure
as A where elements of the result
are elements of A in reverse order
along the Xth coordinate with
respect to ~RIGIN. If X is not
specified, (rank of A)+~RIGIN-l is
used. (e.g.
PHIl 2 3 4 5 is 5 4 3 2 1;

If A is(~ ~ ~ :)' PHI[l]A is(i ~ ~!)
an d P HI[2] A is P HI A is (4 3 2 1')).

876 5

If A is scalar, result is ~RIGIN.
Otherwise, the permutation of indices
which would order A along the Xth
coordinate with respect to ~RIGIN.
If X is not specified, (rank of A)+
~RIGIN-1 is used. Order is ascend­
ing, with topmost and leftmost ele­
ments given first if they are equal.
For a vector V, V[sortup V] does the
actual ordering. (See subscripts -­
Section 8.3.) (e.g.
S~RTUP 5 3 7 9 .3 2 is 6 2 5 1 3 4;
if A is (1 6 3 4), S~RTUP [1] A is

5 2 7 8 (1 2 1 1)
212 2

S¢RTUP A is S¢RTUP[2]A is (1 342)).
2 1 3 4

Same as sorting up, except the per­
mutation is for descending order.
(e.g. S~RTDN 5 3·7 9 3 2 is
431256).

----~--------.----~--------

19

6.4 Dyadic Scalar Operators

IL Symbol

+

&

%

*

MAX

MIN

RESD

C~MB

LSS

. LEQ

=

Name of Operator

addition

subtraction

multiplication

division

exponentiation

logarithm

maximum

minimum

residue

combinatorial

less than

less than
or equal

equals

Form Used

x + Y X,YER

X - Y X,YER

X & Y X,YERunu11

X % Y X,YER, Y~O

X<O and YEN
X * Y , or X>O

or X=O and Y>O
X, YER

X L~G Y X,YER
X>l, Y>O

X MAX Y X,YER

X MIN Y X,YER

X RESD Y X,YER
see result

X C~MB Y X,YER

X LSS Y X,YER
or X,YEC

X LEQ Y X,YER
or X,YEC

X = Y X,YERuC

Resul't

sum of X and Y

X minus Y

if X or Y is null,
result is null;
otherwise X times Y

X divided by Y

X raised to the
power Y

logarithm of Y to
the base X
((L¢G Y) % L~G X

X or Y, whichever
is greater

X or Y, whichever
is smaller
the smallest non­
negative element of
the set {Y-I&X}
where I is any
positive integer.

{

Y-(ABS X)&FLR Y%ABS X
if xto
Y if X=O and Y~O
domain error if
x=o and Y<O
(FACT Y) % (FACT xr­
& FACT Y-X; if
X,YEN and X>Y,
result is o. (recall
that FACT may give
the gamma function)

*1 if X<Y, 0 other­
wise (FUZZ is used)

*1 if X~Y, 0 other­
wise (FUZZ is used)

*1 if X=Y, 0 other­
wise (FUZZ is used)

*When characters are compared, their octal equivalents, listed in Appendix F,
are used.

20
Dyadic Scalar Operators, continued

'PL Symbol Name of 0Eerator Form Used Restrictions Result

NEQ not equal X NEQ Y X,Y£RuC *1 if X~Y, o otherwise
(FUZZ is used)

GEQ greater than X GEQ Y X,Y£R *1 if X~Y, o otherwise
or egual or X,Y£C (FUZ Z is used)

GTR greater than X GTR Y X,Y£R *1 if X> Y, o otherwise
or X,Y£C (FUZZ is used)

AND and X AND Y X,Y£B 1 if X and Y are l,
0 otherwise

~R or X ~R Y X,Y£B 0 if X and Y are l,
1 otherwise

NAND nand X NAND Y X,Y£B 0 if X and Y are 1,
1 otherwise

N~R nor X N~R Y X,Y£B 1 if X and Y are 0,
0 otherwise

CIRCLE circular X CIRCLE Y X£N, Y£R See table below. Angles
(ABS X) LEQ 7 are in radians

(-X) CIRCLE Y Restrictions X X CIRCLE Y Restrictions

(l-Y*2)*.5 (ABS Y) LEQ 1 0 (l-Y*2)*.5 (ABS Y) LEQ 1

arcsine of Y (ABS Y) LEQ 1 1 sine of Y

arccosine of Y (ABS Y) LEQ 1 2 cosine of Y

arctangent of Y 3 tangent of Y o ~ cosine of Y

(#l+Y*2)*.5 (ABS Y) GEQ 1 4 (l+Y*2)*.5

arcsinh of Y 5 sinh of Y

arccosh of Y Y GEQ 1 6 cosh of Y

arctanh of Y (ABS Y) LSS 1 7 tanh of Y

*When characters are compared, their octal equivalents, listed in Appendix F,
are used.

6.5 Dyadic Mixed Operators 21

APL Symbol Name of Operator Form Used Restrictions Result

I~TA indexing

RH~ restructuring

catenation

RNDM random deal

BAS VAL base value

V I~TA A AERvC
VERvCvnull

V RH~ A VENunull
V~O
A~null

V , W V,WERvnull
or V,WECunull

X RNDM Y X,YEN
X~Y-~RIGIN+l

V BASVAL W V,WER
vto

If V is null, result is ~RIGIN; otherwise, result
has same structure as A where for each element
X of A, the corresponding element of the result is
the least index I of V such that V[I]=X. If V[I]~X
for any valid I, then I is ~RIGIN + (length of V).
(e.g. 1 8 7 I~TA 3 6 781 4 6 is 4 432 1 4 4).
If V is null, result is a scalar; if any element
of V is 0, result is null. Otherwise, result is
an array whose dimension vector is given by V with
elements taken from ,A (A ravelled), repeating ,A
as many times as necessary.
(e.g. 3 3 RH~ 1 0 0 0 is (1 0 0)).

010
001

A vector composed of the elements of V followed by
the elements of W. If V (W) is null, result is
the same as W (V).
(e.g. 1 2 3 , 4 2 6 is 1 2 3 4 2 6.)

A vector composed of X elements taken at random
(using a pseudo-random number generator as in

monadic RNDM) , without replacement, from I~TA Y.
If X~O, result is null.
(e.g. 8 RNDM 8 might be 4 7 5 3 8 2 6 1.) X calls
to the random number generator are made.
The decimal value of W with respect to the base
given by V. Notice that V may be of mixed radix
variety. V is effectively modified to make the
lengths of V and W equal by extending V to the
left (copying it over) as many times as necessary.
If V is longer than W, the rightmost elements of­
V are used. Where N is the length of W, the
formula is N N

(~W[I-l] ~ V[J]) + W[N].
1=2 J=I

Note that if V is a scalar, it is extended to a
vector of length N with each element equal to V,
and the formula becomes N

E W [I] & V * (N - I) •
1=1

(e.g. the number of pennies in 3 half-dollars,
4 quarters; 6 nickels, and 8 pennies is
2 2 5 5 BASVAL 3 4 6 8 is 288. 2 BASVAL 1 1 0
2 3 BASVAL 4 1 ~' is the s arne as 3 2 3 B_~SVA:. 4

is (,
.,
..l ~.

Dyadic Mixed Operators, continued

APL Symbol

REP

EPS

TAKE

DR~P

Name of Operator Form Used Restrictions

representation V REP X V,XER
V~O

membership A EPS B A,BERuC

take V TAKE A VEN

rank of A~l
length of V
= rank of A

drop V DR~P A same as

heterogenous
output

V w

take

see result.
Note that if
I;' appears
between '['
and ']' it
will be in­
terpreted as

22

Result

The digits of the base V representation of the
decimal integer X in vector form.
Length of result is same as length of V.
(e.g. 2 2 2 REP 6 is 1 1 0;
2 2 5 5 REP 288 is 5 1 2 3; 60 60 REP 3721 is 62 1.)
A Boolean array with the same structure as A where
for each element X of A, the corresponding element
in the result is 1 if X = Y for some element Y of
B, 0 otherwise. (e.g. 3 4 9 7 EPS (1 2 3 4\is
1 1 0 1.) 5 6 7 8)
V[I] determines the number of elements to be taken
from the Ith coordinate of A. If V[Il~O, the first
V[I] elements of the Ith coordinate of A are taken.
If V[I]<O, the last ABS V[I] elements of the Ith
coordinate of A are taken. If V[I]=Q for any I,
result is null. If V[I] is greater than the size
of the Ith coordinate, a domain error occurs. If
V is a scalar, it is extended to a vector ot the
appropriate length. (e.g. if A is (1 2 3 4)'

5 6 7 8
3 1 3 5
426 7

2 TAKE A is(l 2)and #2 3 TAKE A is(3 1 3) .)
. 5 6 4 2 6

Result is like TAKE except that the indicated
elements are dropped rather than taken. Thus, if
V[I] = the size of the Ith coordinate, result is
nUll. (e.g. with A as in TAKE example,

2 DR0P A is(~ ~), 1 #2 DR0P A is(~ ~) .)
V is an operand and W is an expression. V and W
when evaluated must have rank not greater than 1.
Result is a character vector which is the con­
catenation of the strings which would be typed for
V and W. (e.g. if X is 1 2 3 and Y is 3,
fly PLUS X = " , X + Y is fly PLUS X = 4 5 6";
fly PLUS X = " ; A:=X+Y gives the same result.)

a subscript delimiter.

Dyadic Mixed Operators, continued

APL Symbol

TRANS

e.g. if A

then

Name of Operator

dyadic transpose

2 3 4 RHO IOTA 24

1 3 2 TRANS A 159
2 6 10
3 7 11
4 8 12

13 17 21
14 18 22
15 19 23
16 20 24

3 1 2 TRANS A 1 13
2 14
3 15
4 16

5 17
6 18
7 19
8 20

9 21
10 22
11 23
12 24

Form Used

V TRANS A

22b

Restrictions

V £ N,
V exhausts
IOTA MAX/V,
RHO V = RHO RHO A
unless V is scalar,
A =F null

2 1 3 TRANS A = 1 2 3 4
13 14 15 16

5 6 7 8
17 18 19 20

9 10 11 12
21 22 23 24

1 1 2 TRANS A :: 1 6 11
13 18 23

Result

V is a permutation vector with respect to ORIGIN.
Rank of the result is (MAX/V)-ORIGIN +1 and is
less than or equal to rank of A. The dimension
vector of the result is found as follows: let
R = RHO A and NEWRHO be the dimension vector of
the result. Then for each I £ IOTA MAX/V, NEWRHO
[I] = least element of R [J] such that V [J] = I.
Each element of the result is found by permuting
the subscripts of the result according to V to
find the correct element of A. That is, if V =
3 1 2, then RESULT [I;J;K] = A [K;I;J]. If V =
1 1 2, RESULT [I;J] = A [I;I;J]. If V is scalar
and A is vector or scalar, then V must be equal
to ORIGIN and the result is A.

6.6 The Dot

Name of °Eerator

inner product

outer product

°Eerators

Form Used

I dl . d2 M
where dl and
d2 are dyadic
scalar opera-
tors and dl is
not CIRCLE

A CIRCLE . d B
where d is a
dyadic scalar
operator

Restrictions

L,M ~ null. Size
of last coordinate
of L must equal
size of first co­
ordinate of M
unless one or
both is scalar.

23

dl and d2 must be
defined on the ele­
ments to which they
are applied.

A,B ~ null. d must
be applicable be­
tween each pair of
elements of A and B.

Resul ts

An array of rank (rank of L)+(rank of M)-2 or a
scalar if that rank is negative, whose
dimensions are given by the size of the first
coordinate of L and the size of the last coordi­
nate of M. (Note that the first coordinate of L
and the last coordinate of M are null if they
are vectors.) When Land M both have rank 2, the
[I;J]th element of the result is formed by
applying d2 between the Ith row of L and the Jth
column of M and then reducing this new vector
over dl (see reduction--dl is effectively in­
serted between pairs of elements of the vector
and this new entity is evaluated). If L (M) is a
vector, it is treated as a row vector--a 1 by
RH¢ L matrix--(a column vector--a RH¢ M by
1 matrix--) and the result is evaluated as if it
were a matrix. If L (or M) is a scalar, it is
treated as a row (or column) vector of appropri­
ate length, each element of which has the value
L (or M). +.& is standard matrix multiplication.
(e.g. if A is(l 2 3)and B is(l 2),

45634
5 6

2+.&A is 2 2; +.& A is 10 14 18; A+.&B is(22 28\;
. \49 6~

3 +.& 5 is 15).
An array of dimension (RH¢ A) I RH~ B which is
formed by applying d between each element of A
and all of B.
(e . g . if B is (1 2 3), 2 CIRCLE. & B is (2 4 6) ;

4 5 6 8 10 12
1 2 3 CIRCLE.& 1 2 is(~ :)).

6.7 The Dyadic Suboperators

Name of Operator Form Used

rotation

compression

A PHI [X] B
or A PHI B

v I[X] A
or V I A

Restrictions

A,XsN

0RIGIN~X~(rank of B)+
0RIGIN-l. Dimension(s)
of A must equal the
dimension(s) of B with
the Xth coordinate
removed unless A is
scalar. B ~ null.

XsN; VsB.
0RIGIN~X~(rank of A)+
0RIGIN-l. Length of V
must equal the size of
the Xth coordinate of
A unless V is scalar.

24

Result (<.

An array \vi th same structure as B where the ele­
ments of B have been rotated according to the
specifications of A. Rotation is along the Xth
coordinate with respect to 0RIGIN and X is taken
to be (rank of B)+0RIGIN-l if not specified. Cor­
responding elements of A (see examples) give the
number of positions to rotate--if the element is
positive, rotation is to the left or top; if the
element of A is negative, rotation is its absolute
value to the right or down. If A is a scalar, it
is treated as an array of appropriate structure,
each element of which has the value A.)
(e.g. 0 1 2 0 PHI[l](l 2 3 4)iS(1 6 11 4

5 6 7 8 5 10 3 8 ;
9 10 11 12 9 2 7 12

(1
0 1 2 0~HI[2] 1 2 3 4

o #1 2) 5 6 7 8
9 10 11 12

1 6 11 4
5 10 3 8
9 2 7 12

14 15 16 14 23 24
18 19 20 18 15 16
22 23 24 22 19 20).

If V is scalar, result is A if V=l, null if V=O.
If A is null, result is null. If A is scalar, re­
sult is A if V is 1, null if V is O. Otherwise, A
is compressed along the Xth coordinate with re­
spect to 0RIGIN where X is (rank of A)+~RIGIN-1 if
not specified. The coordinate is deleted if the
corresponding element of V (see example) is 0, in­
cluded in the result if the corresponding element
of V is 1. (e. g. 1 0 0 1 I 1 2 3 4 is 21 4 ;

if A is(l 2 3 4~' 1 0 1 l/A is(l 3 4)
5 6 7 8 578
9 10 11 12 9 11 12

and 1 0 1 l[l]A is(lg 2 3 4)
10 11 12

Dyadic suboperators, continued.

Name of Operator

expansion

Form Used

V\[X]A
or V\A

Restrictions

Vt:B ; X£N.
A :f null.
¢RIGIN~X~(rank of A)+
¢RIGIN-1. The number of
l's in V must equal the
size of the Xth coordi­
nate of A.

25

Result

An array formed by expanding A along the Xth
coordinate with respect to ¢RIGIN where X is
(rank of A)+¢RIGIN-1 if it is not specified.

Where an element of V is 0, O's (blanks if A
is a character array) are inserted for the
corresponding "row" or "column" of the result.
(e.g. if A is(l 2 3 4)

567 8
9 10 11 12

10101 I '\ A is(1 a 2 0 3 Ii) ;
5 0 6 0 7
9 0 10 0 11

and 1 0 1 1 \ [1] A

is(~
2 3 j) 0 0
6 7

10 11

1 0 1 0 1 \ "ABC" is "A B C"

26

7. APL Stored Programs

As mentioned earlier, APL statements can be grouped together
to form stored programs for later execution. There are two basic
types of stored programs, those which return a value (called
"functions"), and those which do not (called IIsubroutines ll

).

These classes are further subdivided by the number of <formal
parameter>s in their definitions. This section discusses <stored
program definition> and <edit> capabilities, and the execution of
stored programs.

7.1 The Mechanics of <stored program definition>

The <stored program definition> consists of two parts, the
<definition entry> and the <stored program body>, enclosed in
dollar signs ("$"). The <definition entry> may be a) the <stored
program name> of a previously defined stored program, in which case
the specified stored program is reopened for further definition, or
b) a <header>, in which case a new stored program is being defined.
The <stored program body> is a set of APL <basic statement>s which
may be labelled, ordered by statement numbers. <edib commands
(which alter, display and delete lines) are also considered part
of the <stored program body> although they do not appear in the
completed definition.

7.1.1 The <header>

The <header> is always followed by a "+-". It specifies the
name, number of <formal parameter>s and their names, type and
<local variable>s of the stored program. The <header> may not be
changed without removing the entire stored program. It takes the
form <stored program option>s <local variable>s. The <stored
program options> may take any of the six forms given in the table
below. In the table, Z stands for the <variable name> in the
<function specifier>, PRG stands for the name of the stored
program, and A and B stand for the names of the <formal parameter>s.
All of these are simply <identifier>s.

Subclass: type Niladic Monadic Dyadic
Z:=PRG Z:=PRG A

PRG PRG A

7.1.1.1 The <function specifier>

Z:=A PRG
A PRG

B
B

function
subroutine

The presence of a <function specifier> (of the form <variable
name> :=) in the <header> indicates that the stored program is to
be a function. The value of the function becomes the value last
assigned to the <variable name> given in the <function specifier>
during execution. The value of the function is initialized to
null at each call.

7.1.1.2 The <formal parameter>s

The <formal parameter>s are <identifier>s which serve as names
for the arguments that will actually be used when the stored program

27

is invoked. They are positioned about the name of the stored
program in the same way the actual arguments are placed when it
is invoked. They are "called by value"--that is, changing the
value of a <formal parameter> during execution of the stored
program will not affect the corresponding actual argument.

7.1.1.3 The Name of the Stored Program

The name of the stored program becomes permanently associated
with the <header> and definition given by the <stored program body>.
It is specified by type and subclass as indicated in the table of
7.1.1 (e.g. <monadic function name>, <dyadic subroutine name>,
etc.). It is, in effect, a user-defined operator and as such has
at most two arguments.

7.1.1.4 The Local Variables

The user may specify <identifier>s which are "local" to the
stored program by following the stored program options with a "i"
followed by a list of <identifier>s separated by semicolons. For
instance, the <header> for a dyadic function with three local
variables might look like Z:= A FUNC Bi Xi Yi Z+. The local
variables X, Y, and Z are initialized to null at each call of
the stored program and have no relation to variables of the same
name in the user's workspace or in other stored programs. They
cease to exist when execution of the stored programs has been
completed.

7.1.2 The<stored program body>

Once <definition entry> has been accomplished and a"+-"
supplied, the following sequence of events occurs repeatedly
until the user types in another "$".

1) APL provides a statement number (the last statement number
used plus an increment) inclosed in brackets and waits for
user input. The increment between statement numbers is
usually 1, but may be altered through <edit>ing
(Section 7.2). For defining a new stored program, APL
provides [1].

2) The user types in a line, which may be
a) a <compound statement>, or
b) an <edit> command.

3) a) If the line is a <compound statement>, A?L stores it
with the rest of the definition. If the SYN option
is in effect (Section 3.3), syntax errors are noted
where possible. If the line is not a <compound
statement>, but does not start with a "[" (which
distinguishes the <edit~, the line will be stored
anyway. Thus a "stored program" might be used to
document other stored programs.

b) If the line is an <edit>, the appropriate action is
taken (Section 7.2).

28

If the <definition entry> re-opened the definition of a
stored program, the <stored program body> may start on the same
line as the <definition entry>. The "$" concluding the <stored
program definition> need not appear on a separate line.

7.1.2.1 The <compound statement>

The <compound statement> is either a <basic statement>
(Section 5) or a <basic statement> preceded by one or more <label>s.

A <label> is an <identifier> followed by a ":". A label is
normally used when a forward transfer is desired.

7.1.2.2 The Use of <label>s

When a stored program is invoked, each <identifier> used in a
<label> is initialized to the statement number of the line it
appears on. However, it is otherwise treated like a local variable.
Thus, the value of the "label" may change, and it may be used in
computations.

7.1.2.3 The Use of "Global Variables"

"Global variables" are the <identifier>s associated with
<data element>s and definitions of stored programs which are stored
in the user's workspace. Global variables may be used or changed
in stored programs, except that values are not changed permanently
until the stored program has been executed successfully.
(Section 3.2). Global variables are superseded by local variables
of the same name during the execution of a stored program. How­
ever, a variable which is local to stored program PI is not global
to stored program P2 when PI invokes P2.

7.1.3 Example of a <stored program definition>
(See Appendix E for further examples.)

$ S := STDEV X+
[1] AVE:= (+/X) % N:=RH¢ X+
[2] S:= «+/(X-AVE)*2) % N-l)*.5+
[3] $+

This is a definition for a function, STDEV, with one <formal
parameter>, X, whose value is the standard deviation of a vector X.
As a side effect, it also sets the global variable AVE to the
average value of the vector, and the global variable N to the
number of elements of X.

If the above side effects were not wanted, the <header> line
should have been $ S := STDEV Xi Ni AVE+, which makes N and AVE
into local variables.

A subroutine to perform the same operation, storing the answers
in S, AVE, and N would have the following <header> line: $ STDEV X+.

7.2 The <edit>ing of a <stored program defintion>

The APL user is provided with a number of <edit>ing capabilities.
They are <display> , <insertion> , <change>ing, <delete>ing, and
<resequence>ing.

29

The concept of the <line reference> is basic to all of the
<edit> commands. The simplest sort of <line reference> is the
statement number of the line which is being referred to.
Another type of <line reference> is a label which occurs on the
line in question. The most complex <line reference> is the form
<identifier> + <number>. This simple expression is evaluated
to determine the <line reference>. This construct allows the
user to refer to a line relative to a line which has a label. A
<line reference> may not reference statement number zero, which
is reserved for the <header>. Examples of the <line reference>,
where "LAB" is a <label>: 23 LAB LAB+5.1 LAB-2 LAB+@2 14.

7.2.1 The <display> Command

The <display> command causes APL to list a set of lines of
the stored program currently being defined. It takes the form
[<line option> []<line option>]. The n[]" is read as a single
symbol, "quad", and may not have blanks in it. The <line option>
may be a <line reference> or <empty>, except that the first <line
option> may not be <empty> unless both are. The following table
gives the meaning of the various types of <display> commands:

Display Command

[[]]

[2 []]

[2[]6]

[LAB []]

[LAB-3 []LAB+5]

Meaning

The entire stored program is displayed.

Line 2 of the stored program is displayed.

Lines 2 through 6 are displayed.

The line with the <label> "LAB" is displayed.

Lines from number LAB-3 through number
LAB+5 are displayed.

7.2.2 The <insertion> Command

The <insertion> command takes the form
<line reference> <compound statement>. It causes the specified
<compound statement> to be inserted at the statement number
position specified by <line reference>. If the <line reference>
specified is a <number>, APL will change the increment between
statement numbers to lO-k, where k is the number of digits after
the decimal point (if any) in <number>. (There may be as many
as four digits ahead of the decimal point, and four digits after
the decimal point, making an implicit restriction of 99,999,999
lines per stored program. The practical limit is considerably
smaller.) If the <line reference> is a <number> which already
appears as a statement number, or a <label>, the specified line is
overwritten.

30

Insertion Command APL Action

[2]A:=3 4 + 6 2 Line is inserted at 2, increment becomes 1.

[LAB]B:=C+D Line is inserted over the line labelled
II LAB II , increment is unchanged.

[9.001] 2+2 Line is inserted at 9.001, increment
becomes .001.

7.2.3 The <change> Command

This command allows alteration of the text of a stored program
without retyping the lines. It takes the form
[<line option> ["] <line option>] <line edit>. The symbol" ["]" is
read as a single symbol, "quote quad" and may not have blanks in
it. The <line option> has the same meaning as in the <display>
command.

The <line edit> takes the form <search string>"<insert
string >{"<search string>

or <empty> .

Each of the strings may be either a <proper string> (a
character string without a quotation mark), or <empty>. The
action of the APL interpreter when the command is issued is the
following:

1. Search the line for the first occurence of the character
string specified by the first <search string> (the null string is
found immediately).

2. When it is found, insert the string of characters
specified in the <insert string>.

3. Delete characters to the point where the second <search
string> matches characters in the line (the null string is found
immediately) .

The above action is taken for each line specified by the
<line option>s. Suppose the line in question were ABCDEFGHLMNOP.
The following table shows the result of a <change> command on that
line.

Change Command

[2["]] GH"IJK"LM

[LAB ["]] GH"IJK

[2 [II] 6] GH" IJK II

[["]] GH"IJK"P

[LAB["]5] GH "IJK"L

Resulting Line

ABCDEFGHIJKLMNOP

ABCDEFGHIJKLMNOP

ABCDEFGHIJKLMNOP

ABCDEFGHIJKP

ABCDEFGHLMNOP ("GH II is not
found)

31

7.2.4 The <delete> Command

The <delete> command takes the form [<line
[<line reference>]. The first form removes the
reference>, while the second form deletes lines
through the second <line reference>, inclusive.
APL's response.

Delete Command APL Response

[2] Removes line 2.

reference>] or [<line reference>]
single line referred to by <line
from the first <line reference>
The following table illustrates

[3] [10]
[LAB-I] [LAB+l]

Removes lines 3 through 10.
Removes lines LAB-l through LAB+l.

7.2.5 The <resequence> Command

The user may resequence the lines of his stored program by typing [IOTA].
The new line numbers start at [1] with an increment of 1.

7.3 Execution of a Stored Program

A stored program is invoked by the appearance of its name (surrounded by
the appropriate number of arguments) in a <basic statement> (Section 5).

At this time, the correspondence is set up between copies of the actual
arguments and the <formal parameter>s given in the <header>. Local variables
and the value of the stored program (if it is a function) are initialized to
null, and <identifier>s used in <label>s in the definition are initialized to
the statement numbers of the lines on which they appear.

Each line of the stored program is analyzed and executed as if "it had been
input directly except that the conventions about local variables apply in ref­
erencing variables, and that line-feed, carriage-return is given only if the line
has generated some output. Lines are fetched sequentially according to statement
number except when a branch occurs (Section 5.3). The stored program terminates
normally either by "running off the end" of the definition or by transferring to
a statement number that is not in the definition (this method is called a return
transfer). Global variables are not permanently changed in the user's workspace
until the <basic statement> which invoked the stored program is evaluated success­
fully. The same rule applies when there are nested calls, except that successful
evaluation of the original <basic statement> is required. If the stored program
is a function, the value is returned upon normal exit.

If an error occurs, an error message is typed out and the stored program be­
comes suspended--see Section 8.4.4.

Helpful hints: For more efficient execution, previously executed lines of
a stored program are kept in a semi-compiled form until the <basic> statement
which caused the stored program to be invoked has been completed. It is faster
to execute a stored program which loops, than one which calls a non-looping
version iteratively since the labels, local variables and parameters do not have
to be re-initialized in the former case.

32

If a stored program is in an infinite loop, hit the break key
when a time-out "jiggle" occurs (Section 1.2.1). This will stop the
loop and suspend the stored program (Section 8.4.4).

8. Miscellaneous APL Conventions and Notations

Certain concepts and notations, while not operators in the
strictly manipulative sense, need further explanation. Error
messages and modes of operation are also described.

8.1 Quad ([]) and Quote-Quad (["]) Input

When [] appears as an operand in a <basic statement>, APL
types []: when evaluation reaches the [] and waits for the user
to supply input. The input given is evaluated as an APL
<express1on>. The value of the [] then becomes the result of the
given <expression>, provided that no errors have occurred.

When ["] appears in a <basic statement>, APL spaces to the
left margin and waits for input when evaluation reaches the ["].
The value of the ["] becomes the character string the user
supplies, up to the first +. Quotes (") may appear in the string
since ["] assumes character input and does not require the string
to be enclosed in quotation marks.

8.2 Display

When the form []:= appears in an <expression>, the action
is the same as it would have been had the [] been an <identifier>
except that the value is displayed on the teletype rather than
associated with an <identifier> and stored. Thus, for following
through a calculation, the sequence of APL <basic statement>s

A := 2 + B := 3 + C := 2 + (D := 7) + 5+
D+
c+
B+

gives the same result as

A : = 2 + [] : = 3 + [] : = 2 + ([] : = 7) + 5+

except that the intermediate results indicated are not stored and
the user does not have to request results one at a time in the
latter case. In either case, APL would respond with

7
14
17 •

8.3 The <subscript option>

When an <identifier> is referenced and the <subscript option>
is <empty>, the entire scalar, vector, or array is referenced.

33

When the ~ubscript option> is not <empty>, it takes the form'
[<subscript list>] and the <subscript list> references a subset
of a previously defined array. Unnamed <expression>s may not
be subscripted.

APL provides a powerful extension of the usual capability
of selecting or replacing single elements of arrays. (e.g. if
A is(l 2 3\then A[2il] is 4.) In APL, a subscript can be an

4 5 6)
expression , and its value can be an array. The following rules

and examples explain this concept more precisely.

The number of <subscript>s in a <subscript list> must be the
same as the rank (number of dimensions) of the subscripted array.
The <subscript>s in the list are separated by semicolons (i).
Note that for this reason the <dyadic mixed operator>, "i", is
not allowed in any <expression> within a <subscript list>.

A <subscript> can be either an <expression> or <empty> where
the value of the <expression> must be either numeric or null.
(E.g. A[2+2;61, B[3;;51, and A[X;31 where X is(! ~)are all valid

<subscript list>s.) If any value is not an integer, it will be
rounded to an integer. If the Ith <subscript> is neither null nor
<empty>, it must take values in the range ~RIGIN to ~RIGIN + (size
of Ith dimension) - 1.

If every <subscript> evaluated is a scalar, the element is
selected in the usual fashion (rightmost represents column, the
next gives the row, and additional <subscript>s select the higher
dimensions as one moves left). The result in this case is a
scalar.

When any of the <subscript>s is an array, <empty>, or null,
further rules are used to select the elements referenced.

A null or <empty> in the Ith subscript indicates that all
values of that dimension are to be selected. The subscript
effectively becomes I~TA (size of the Ith dimension).

The rank of the set of elements selected is the sum of the
ranks of the <subscript>s (recall that the rank of a scalar is 0
and since <empty>s and nulls have been effectively replaced by
vectors, their ranks are considered to be 1). The dimension
vector of the set can be found by concatenating the dimension vectors
of each <subscript>, taken left to right, except that the size of
the Ith dimension of the subscripted array is substituted if the
Ith subscript is <empty> or null. (Recall that the dimension
vector of a scalar is null.)

The elements of the result are selected by first selecting
the first element of each <subscript>, and then finding the
corresponding element of the subscripted array as is done when
all of the <subscript>s are scalars. Succeeding elements are
found by stepping through the <subscript> elements with the

34

rightmost <subscript> "running fastest". At each step the
corresponding element of the subscripted array is selected.
The elements found in this manner are then structured according
to the dimension vector as discussed above. A few simple
examples should illustrate this. More complicated examples
are given in Appendix E.

Let A be (1 5 16)and let B
947
382

2; 3 2] is(I~ n. A[2;] is

beG D· A[l;l 2] is 1 5. A[2 3;2] is 4 8.

A[l 9 4 7. A[;3] is 16 7 2. A[B;2]

If an <assign operand> is subscripted, (e.g. A[;l] := 2 4 6),
the structure of the subset of the array specified by the <subscript
list> must be the same as the structure of the <expression> on ·the
right hand side of the" :=". In this case, replacement of correspond-­
ing elements occurs. (e.g. A[;l] := 2 4 6 would change A to(2 46)).

9 4 7
3 8 2

8.4 Modes of Operation

The mode of operation a user is currently in will affect
what he may do and may alter the effects that certain actions have.

8.4.1 Execution or Calculator Mode

Definition: The user is typing in statements to be executed.
Before this, there must have been an even number of "$" so he is
not in stored program definition mode.

Effects: Each line up to the "+" is evaluated. APL responds
according to the nature of the line and indents six spaces on the
teletype to signal that evaluation of the line has been completed.
<basic statement>s and <monitor command>s are allowed. Stored
program editing and <transfer statement>s are not allowed.

8.4.2 <stored program definition>

Definition: While in execution mode, the user has typed a "$"
and has not typed a second "$".

Effects: <monitor command>s are ignored since lines given are
stored rather than evaluated. If the user has typed)SYN before
entering <stored program definition> mode, each line will be checked
for syntax errors as it is given. <edit> commands are allowed. If
execution of APL terminates during <stored program definition> mode,
the definition will continue where it left off and the user will
get the message "C91NTINUE DEFINITI91N 91F <stored program name>" the
next time he logs in to APL.

8.4.3 Stored Program Execution Mode

Definition: During evaluation of a line given while in
execution mode or in stored program execution mode, a stored program
has been invoked and it is being executed.

35

Effects: Each line of the stored program is evaluated in
order as if it had been given in calculator mode (except that
<monitor command>s will produce syntax errors) and the appropriate
responses are made. Permanent changes in the user's workspace
are not made until the entire <basic statement> which invoked the
stored program(s) has been evaluated successfully--but temporary
changes are made as described in the discussion on the <assignment
statement> .

8.4.4 Suspended Mode

Definition: While in stored program execution mode, an error
has occurred or user has hit the "break key" and input from the
user is needed to recover from the error.

Effects: <transfer statement>s may be input to transfer to
other statements within the suspended stored program--normal rules
on valid <transfer statement>s and actions taken apply, except
that statement numbers refer to the stored program most recently
suspended. A return transfer causes the last-suspended stored
program to be removed from the list of suspended stored programs
and it becomes "un-suspended". Values of local variables can be
displayed (e.g. X+) or changed (e.g. X:=52+). When <local
variable>s have the same name as other <local variable>s in a
chain of suspended functions or have the same name as global
variables, the most recently active local variable is the one
referenced. The <monitor command>s)SI,)SIV,)AB0RT and)ST0RE
may be used to diagnose the problem and/or recover. Other
<monitor command>s and <basic statement>s (except for)CLEAR and
) ERASE) may also be used. If the user attempts to enter stored
program definition mode from suspended mode, he will receive the
message "AB0RT SUSP. FeNS" and will not be allowed to enter.

8.5 Error Messages

Syntax scan and execution of APL statements goes from right
to left. When an error is found, APL types out the name of the .
error and the six characters to the right of the point where the
error was discovered. If any of these errors occur during
evaluation of a <basic statemenb while in execution mode,
permanent assignment of values to variables does not occur (see
<assignment statement». If they occur during stored program
execution mode, the line number is also typed out and the stored
program becomes suspended (see suspended mode). The APL error
messages and typical causes are listed on the next page.

36

D~MAIN The values of operands given do not fall within the
class of allowable operands listed in Section 6.
Things like dividing by zero or using a null
operand where it is not allowed are included.

INDEX An attempt was made to access a non-existent subset
of an array.

RANK Rank of operand not consistent with restrictions
given in Section 6 or wrong number of subscripts
given.

SYNTAX Syntax inconsistent with Appendix A or invalid para­
meters on monitor command. (E.g.)¢FF DR¢P,
)WIDTH 97, A := 2 + 2 N~T B)

N~NCE What you tried has not been implemented.

DEPTH Either the execution stack or list of active and sus-
pended stored programs is too long (there are
practical--but reasonable--limits on how compli­
cated a statement may be and how deeply stored
program calls may go).

LENGTH Input or output line too long or arguments are not
conformable due to unequal lengths
(e.g. 2 3 + 2 3 4)

LABEL Attempt to transfer to a label that doesn't exist.
Attempt to send a message to a station not logged
in. Attempt to CLEAR, ERASE, or delete a non­
existent identifier or <user code>. Attempt to
assign a <user code> already assigned.

FLYKITE User is politely told to go fly a kite for attempting
to calculate too large an integer or real number,
for attempting to make too large an array, in
general, for trying something unreasonable.

SP FULL Users have managed to fill all allowable temporary
storage without completing a calculation. Also,
a <basic statement> has used too many global
variables or is too complex.

SYSTEM Something weird happened but APL recovered enough
to continue. Please save your listing and give
it and the time the error occurred to the APL
systems programmers.

37

APPENDIX A - SYNTAX

<apl prQgram> ::=) <login>+<statement set>+) <logout>

<login> ::= {normal job activation process}

<user code> ::= {user account number}

<logout> ::= ~FF<off option>

<off option> ::= DISCARD I <empty>

<statement set> ::= <statement> I <statement set>+<statement>

<statement> ::= <monitor command> I <apl statement> I <empty>

<monitor command> ::=) <command>

<command> ::= <library maintenance>ICLEARIERASE<identifier list>IFNSI

VARSlsIlsIVIAB~RTlsT0REI<buffer edit> I <run parameter>

<library maintenance> ::= L0AD<library name> I <copy> I <clear> I <save>IFILES

<library name> ::= <identifier>

<copy> ::= C0PY<library name><copy name>

<copy name> ::= <stored program~<variable name

<stored program name> ::= <identifier>

<variable name> ::= <identifier>

<clear> ::= CLEAR<library name>

<save> ::= SAVE<library name><lock option>

<lock option> ::= L~CKI<empty>

<identifier list> ::= <identifier> I <identifier list><space><identifier>

<buffer edit> ::= n<line edit>

<line edit> ::= <search string>n<insert string><quote option>

<search string> ::= <proper string> I <empty>

<insert string> ::= <proper string> I <empty>

<quote option> ::= n <search string> I <empty>

<run parameter> ::= <parameter type><number>ISYNIN0SYNI<parameter type>

<parameter type> ::= 0RIGINIWIDTHIDIGITSISEEDIFUZZ

38

APPENDIX A (Continued)

<apl statement> ::= <stored program definition> I <basic statement>

<stored program definition> ::= $<definition entry><stored program

body>$

<definition entry> ::= <stored program name> I <header>

<header> ::= <stored program options><local variables>+

<stored program options> ::= <function specifier><parameter options>

<function specifier> ::= <variable name> := I<empty>

<parameter options> ::= <niladic name> I <monadic name><formal

parameter> I <formal parameter><dyadic name>

<formal parameter>

<niladic name> ::= <niladic subroutine name> I <niladic function name>

<dyadic name> ::= <dyadic subroutine name> I <dyadic function name>

<monadic name> ::= <monadic subroutine name> I <monadic function name>

<niladic subroutine name> ::= <identifier>

<niladic function name> ::= <identifier>

<dyadic subroutine name> ::= <identifier>

<dyadic function name> ::= <identifier>

<monadic subroutine name> ::= <identifier>

<monadic function name> ::= <identifier>

<formal parameter> ::= <identifier>

<local variables> ::= <local set>l<empty>

<local set> ::=i <identifier> I <local set>i<identifier>

<stored program body> ::= <stored program statement> I <stored program

body>+<stored program statement>

<stored program statement> ::= <edit> I <compound statement> I <empty>

<edit> ::= [<edit command>

<edit command> ::= <resequence> I <display> I <insertion> I <change> I <delete>

<resequence> ::= rOTA]

<display> ::= <line option> [] <line option>]

<line option> ::= <line reference> I <empty>

<line reference> ::= <label expression> I <number>

<label expression> ::= <identifier><relative location>

<relative location> ::= <direction><number>l<empty>

39

APPENDIX A (Continued)

<direction> ::= +1-
<insertion> ::= <line reference>] <compound statement>

<change> ::= <line option> ["]<line option>] <line edit>

<delete> ::= <line reference>] <delete option>

<delete option> ::= [<line reference>]1 <empty>

<compound statement> ::= <label set><basic statement>

<label set> ::= <label> I <label set><label>!<empty>

<label> ::= <identifier>:

<basic statement> ::= <expression> I <subroutine call>1 <transfer

statement>

<expression> ::= <operand> I <assignment statement>1 <left part>

<expression>

<operand> ::= <constant> I <identifier> <subscript option>1

«expression»\ [ll ["l\<niladic function name>

<subscript option> ::= [<subscript list>]' <empty>

<subscript list> ::= <subscript> 1 <subscript list>;<subscript>

<subscript> ::= <expression>\ <empty>

<assignment statement> ::= <assign operand>:=<expression>

<assign operand> ::= <identifier><subscript option>

<left part> ::= <monadic operator> I <operand> <dyadic operator>

<monadic operator> ::= <monadic function name> I <monadic scalar

operator>! <monadic mixed operator>1

<monadic suboperator>

<monadic scalar operator> ::= +I-\&I%I*IL~GICEILIFLRIABS\FACTIRNDMI
N0T' CIRCLE

<monadic mixed operator> ::= ,I RH¢I 10TA1BASVAL! TRANSjXEQIEPS

<monadic suboperator> ::= <monadic suboperator type><dimension part>

<monadic suboperator type> ::= <reduction type operator>! PHIl

S0RTUp ls¢RTDN

<reduction type operator> ::= <dyadic scalar operator>/I<dyadic

scalar operator>\

<dimension part> ::= [<expression>]1 <empty>

<dyadic operator> ::= <dyadic function name>1 <dyadic scalar operator>1

<dyadic mixed operator> I <dot operator>' <dyadic

suboperator>

40

APPENDIX A (Continued)

<dyadic scalar operator> ::= +/-/&/*/L0G/MAX/MIN/%/RESn/C0MB/ANDI0R/NAND/N0R/LSS/

LEQ/=/GEQ/GTR/NEQ/CIRCLE

<dyadic mixed operator> ::= EPS/ ,/RHO/IOTA/ ;/BASVAL/REP/RNDM/TAKE/DROP/TRANS

<dot operator> ::= <dyadic scalar operator>.<dyadic scalar operator>

<dyadic suboperator> ::= <dyadic suboperator type><dimension part>

<dyadic suboperator type> ::= PHI/I/\
<subroutine call> ::= <operand><dyadic subroutine name><expression>/<monadic

subroutine name><expression>/<niladic subroutine name>

<transfer statement> ::= =:<expression>

APL SYNTAX - CONSTANTS & IDENTIFIERS

<data element> ::= <identifier>l<constant>

<identifier> ::= <letter> 1 <identifier><letter> 1 <identifier><digit>

<letter> ::= AIB/C/D/E/F/G/HlrIJIK/L/M/N/O/pIQIRls/Tlulv/wIXlyIZ

<digit> ::= 0111213141516171819
<constant> ::= <number>l<string>

<number> ::= <decimal number><exponent part> 1 <decimal number> 1 <exponent part>

<decimal number> ::= <integer><decimal fraction> 1 <integer> 1 <decimal fraction>

<integer>::= <unsigned integer>l+<unsigned integer>IU<unsigned integer>

<unsigned integer> ::= <digit> 1 <unsigned integer><digit>

<decimal fraction> ::= .<unsigned integer>

<exponent part> ::= <exponent symbol><exponent sign><unsigned integer>

<exponent symbol> ::= @IE

<exponent sign> ::= ul-I+I<empty>

<empty> ::= {the null string of symbols}

<string> ::= "<proper string>H

<proper string> ::= <string element> 1 <proper string><string element>

41

APPENDIX A (Continued)

<string element> ::= <string character> I ""
<string character> ::= <visible string character>1 <space>

<visible string character> ::= <letter>1 <digi t> I <special symbol>

< s pe c i al s ymb 0 1 > :: = ., (')' ' , & , $, * , + , ; I : 1#' % 1 = I @ I /1\ I [1]'-
<space> ::= <single space>1 <space><single space>

<single space> ::= fa single unit of horizontal spacing which is

blank}

42

APPENDIX B
SUMMARY OF <EDIT COMMAND>S

[[]]
[2 []]
[LAB- 3 [] LAB+ 5]

Display the entire stored program.
Display line 2 of the stored program.
Display lines LAB-3 through LAB+5 of

the stored program.

Insertion: [<line reference>] <compound statement>

[46.5]A:=2

[LAB]A:=2

Insert the line A:=2 at position 45.6
of the stored program and change line
increment to .1, replacing line 45.6
if it existed.

Replace the statement on line labelled
LAB with A: = 2 •

Change: [<line option> ["] <line option>] <search string>"<insert
string>"<search string>

or <empty>

[["]]AAA"BBB"CCC For every line of the stored program,
find the first occurrence of the
string AAA, insert the string BBB
after it, and delete all characters
until the string CCC is found.

[2[1]]AAAIBBB"CCC Perform above operation on line 2 of
the stored program only.

[LAB["]RAB]AAA"BBB"CCC Perform above operation on lines
labelled LAB through RAB, inclusive.

[2[1]]LAB I R" Search line 2 for the string LAB and
insert an R directly after it. The
rest of the line remains unchanged.

[2[1]]LAB"R Same as above.

Delete: [<line reference>] [<delete option>]

[2]
[2] [7]

Resequence: [IOTA]

Delete line 2 of the stored program.
Delete lines 2 through 7.

Resequences the lines of the stored
program, starting at [1] with an in­
crement of 1.

)FILES

)SAVE XXX

)SAVE XXX LOCK

)LOAD XXX

)COPY XXX FUNC

) CLEAR

)CLEAR XXX

)ERASE NT~P

)FNS

)VARS

)SI

)SIV

)AB~RT

43

APPENDIX C
SUMMARY OF <MONITOR COMMAND>S

Lists the <library name>s of the user's
APL workspace library files that have
been SAVEd and are present on disk.

Saves the current active workspace on disk
and associates /XXX and the user's
<USERCODE> with it for future reference.
(i.e.,)SAVE WKA will save the current
active workspace by creating a file on
disk called "/WKA"/<USERCODE>

Same as above, except file is locked and
may only be loaded by executing APL with
the same <USERCODE> that the file was
SAVEd under.

Adds the workspace SAVEd under "/XXX"/
<USERCODE> to the active workspace.

Adds the <stored program definition> or
variable named FUNC, which is SAVEd in
file "/XXX"/<USERCODE>, to the active
workspace.

Removes current workspace and provides a
"clean" workspace.

Removes the SAVEd workspace "/XXX"/
<USERCODE> from disk.

Removes the variable or <stored program
definition> named NT¢P from your work­
space.

Lists the stored program names in your
active workspace.

Lists the stored program names (followed
by "(F)") and vari able names in your
active workspace.

Lists names of stored programs which have
been suspended (suspended mode).

Lists names of stored programs which have
been suspended and the names of their
local variables (suspended mode).

Terminates all suspended stored programs
and returns user to execution mode
(suspended mode).

44

APPENDIX C (Continued)

)ST¢RE

) "<search string>"<insert
string> "<search string>

or <empty>

)¢RIGIN 3

)WIDTH 65

)DIGITS 5

)SEED 47235475

)FUZZ 1@-9

) SYN

)N¢SYN

When in suspended mode, stores
values of global variables which
have been changed while in stored
program execution mode.

When in execution mode, edits last
input line according to specifica­
tions given after the)" (see
APPENDIX B).

*Changes ¢RIGIN of subscripts on
arrays to 3.

*Changes width of output line to 65
characters.

*Changes number of digits written
after decimal point to 5.

*Changes current base of pseudo-random
number generator used with the
operator RNDM to 47235475.

*Changes "fuzz factor:gused in rela­
tional tests to 10 .

Causes lines input during <stored
program definition> mode to be
checked for syntax.

Turns off)SYN--syntax check not done
in <stored program definition> mode.

*If no number is given, APL types the current value of the
<run parameter> specified.

45

APPENDIX D
INDEX TO APL/B5500 SYMBOLS AND THEIR APL\360 EQUIVALENTS

.\PL\360 APL/B5500
+ +
- -
x &

· % · * *
~ L~G
r CEIL or MAX
L FLR or MIN
I ABS or RESD
I FACT or C~MB · ? RNDM

'I.J N~T
0 CIRCLE
< LSS
~ LEQ
= =
t NEQ
~ GEQ
> GTR
1\ AND
v ~R
'A NAND
~ N~R
1 I¢TA
p RH¢
, ,
~ TRANS
J. BAS VAL

none XEQ
T REP
E EPS
t TAKE
{- DR~P
; ;

/ /

~ \
PHI

~ S¢RTUP
t S~RTDN

. .
+

D []

~ [II]

~ =: or G¢
+ :=

[. . .] ... , ... , ... , ... [. . .] .. , .. , .. , ..
- #
E @ or E

I V $
I

MONADIC FORM REFERENCE
l.denti ty
add. inverse
sign
mult. inverse
exponential
natural log.
ceiling
floor
absolute value
factorial
random number
negation
circular

index generator
dimension vector
ravel
transpose
base-2 value
execute string

execute string

reduction
scan
reversal
sorting up
sorting down

6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1

6.2
6.2
6.2
6.2
6.2
6.2

6.2

6.3
6.3
6.3
6.3
6.3

USAGE REFERENCE
end of line

signal 1.2

DYADIC FORM REFERENCE
addition 6.4
subtraction 6.4
multiplication 6.4
division 6.4
eXponentiation 6~4

logarithm 6.4
maximum 6.4
minimum 6.~
residue 6.4
combinatorial 6.4
random deal ~.5

circular 6.4
less than 6.4
less or equal 6.4
equals 6.4
not equal 6.4
greater or equal 6.4
greater than 6.4
and 6.4
or
nand
nor
indexing
restructuring
catenation
dyadic transpose
base value

representation
membership
take
drop
het. output
compression
expansion
rotation

6.4
6.4
6.4
6.5
6.5
6 .-~
6.5
6.5

6.S
6 .. 5
6 .5
6.5
6.7
6.7
6.7

inner/outer prod. 6.6

input/display 8.1/8.2
character input 8.1
transfer 5.3
assignment 5.1.3
subscripts 8.3
minus sign 4.2.1
power of ten 4.2.1
stored program 7

definition

46

APPENDIX E - EXAMPLES

APL/BSSOO UW CONPUTER SCIENCE' 01-11-71
LOGGED IN THURSDAY 01-28-71 08113

1)VARS"

INTERP (F) LAGRANG(F) POLY
? VECT"

2 1& 6 8 10 12

1 +/VECT"
42

? 4 6 RHO VECT"
2 l& 6 8 10 12
2 4 6 8 10 12
2 II 6 8 10 12
2 4 6 8 10 12

(F) SUM

? 1 1 TRANS II 6 RHO VECT"
2 4 6 8

? VECT +.& TRANS VEeT"
364

? XEQ "VECT+VECT""
4 8 t 2 t 6 20 2la

? SUM"

VECT

-0.026041667 0.520833333 -3.645833333 11.416666667 -8

? SUH[2 3 5J ..
0.520833333 -3.645833333 -8

? $Zl= FIB N ..
[1 J, ? =1 O&IOTA ZI=N LSS 2 ..
[2J ? Z:=CFIB N-1)+FIB N-2"
SYNTAX ERROR AT N-2
C3J 1 [[J] ..

Zl= FIB N
C 1 J =1 O&IOTA Za=N LSS 2
C2J Z:=(FIB N-l)+FIB N-2

(3J ? [l["JJTA"(ZI=N)" L ..
C3J ? [tCJJ"

[1 J =1 O&IOTA(Z:=N) LSS 2

[3J ? $..

1 FIB 2"
1

1 FIB 5"
5

? FIB 3"
2

1 FIB 4"
3

47

APPENDIX E (Continued)

? SXa =FX NEWTON DFXJ ERR"
[1 J 1 XI =XO ..
[2J 1 =ICCABS ERR) GEQ .")/2.0 RHO Xla!-ERR.=EPS FX."I""DFX-
[3J 1 $-

1 .. C C X*2) -2" NEWTON "2&X"­
SYNTAX ERROR AT CX*2)-212&

NEWTON
[2J SYNTAX ERROR AT EPS FX."S"

2&X

?)SIV"
NEWTON S DFX
1 DFX-

? ERR"
? FX­

CCX*2)-2

2

? x-
? FIB 3-

?)SIV-
NEWTON S DFX
? FX.=(X*2)-2"

DOMAIN ERROR AT *2)-2
1 FX:="CX*2)-2""
1 =12-

NEWTON
C2l DOMAIN ERROR

1) 51 V"
NEWTON S DFX

? XI= 0-
1 =1 2-

NEWToNr.
[2J DOMAIN ERROR

?)ABORT"
1 XOI=1"

ERR

ERR

ERR

? "(X*2)-2" NEWTON "2&X"-
1

t
? FIB 1"

? XO 1=2-
? FUNC:="CX*2)-2
? DERIVI="2&X" ..
? $NEWTON [[ll ..

X:=FX NEWTON DFX; ERR
X'=XO

FX x

FX x

FX x

[1 J
[2l ='(CABS ERR) GEQ "')/2-0 RH • a XI=X-ERR'=EPS FX""%",,DFX
[3l ?

48

APPENDIX E (Continued)

o

o

? XI=l"
? EPS FUNC""I",,DERIV"

? FUNC:="(""FUNC,,")""
? FUt'lC"

(CX*2)-2)

? FUNC NEWTON DERIV-
1.4142135i2

1 $INTERP [[JJ$-

INTERPJXJYJZJDJN
[ll =:(O=&/CIOTA Nt=RHO X)=X IOTA Xa=C])/UNIQERR"O RHO [la="INPUT X VA
LUES"
[2J =sCN NEQ RHO Ya=Cl)/DIMERR"O RHO C]a="INPUT Y VALUES"
[3J =:CN GEQ D:=X IOTA Z:=Cl)/FOUNDZ"O RHO [la="INPUT VALUE TO INTERPO
LATE"
(4) =:0,,0 RHO [J:="INTERPOLATED VALUE IS"J+/CY&(&/D)IDI=Z-X)S&/CN"N-t)
RHO(CN*2)RHO O"N RHO 1)/"X CIRCLE. -X
[5] FOUNDZa =:0,,0 RHO Clt="INTERPOLATED VALUE IS"JYCDJ
[il UNIQERR: =:0,,0 RHO Cla="X VALUES NOT UNIQUE ERROR"
[7l DIMERR: "DIMENSIONS DO NOT MATCH ERROR"

? INTERP-
INPUT X VALUES

el:
? 2 4 6-

INPUT y VALUES

[Jl

? 1 2 3-

INPUT VALUE TO INTERPOLATE

[l:
1 10-

INTERPOLATED VALUE IS 5

? INTERP­
I NPUT X VALUES

1 1 2 3-
INPUT Y VALUES

[ll

? 2 3 4 5 ,-
DIMENSIONS DO NOT MATCH ERROR

49

APPENDIX E (Continued)

? INTERP ..
INPUT X VALUES

[l I
? a /I a ..

x VALUES NOT UNIQUE ERROR

? INTERP ..
INPUT X VALUES

[ll

? 1.' 4'.3 12 ..
INPUT Y VALUES

ell
1 3 64 5"

INPUT VALUE TO INTERPOLATE

[1 z
? 1-

INTERPOLATED VALUE IS 3.076867'53

1 SLAGRANGE [[]lS"

LAGRANGEiINDEXiXJYJCOMPV
[1 1 It INPUT POINT PAIRS"
[2l INPUTLz Y,=Y,[]
[3J "ARE THOSE ALL THE POINTS"
[4J SUM:=CnJ
C5] =IINPUTL&IOTA"Y"NEQ SUMC1]
[6J X:=(COMPV:=(RHO Y) RHO 1 O)/Y
[7J Y:=(NOT COMPV)/Y
[8] COMPV:=(SUMI=O),Clt+RHO X)RHO 1
[9] BACKL: SUMI=SUM+CPOLY COMPV/X)&YCINDEXll&/COMPV/xCINDEXz=(NOT COM:
V)IOTA Il-X
['.5l =:(1 RHO COMPVa='l PHI COMPV)/BACKL
CI0J SUM:=(O NEQ +\(0 NEQ SUM»/SUM
[1 t J SUM

? SPOLYC [l l$..

Z:=POLY XJLENGX
ttl =:2&(LENGXt=RHO,X)GEQ RHO Za=I,-l RHO X
C2J =:2&LENGX SEQ RHO Za=(Z,O)+O,Z&-XCRHO Zl

? LAGRANGE"
INPUT POINT PAIRS

Clz
? 2 4 ,-

ARE THOSE ALL THE POINTS

? NO"
C]:

? 12 7 14"
ARE THOSE ALL THE POINTS

? YES ..
2 1.1'4153218'-10

50

APPENDIX E (Continued)

, POLY 1 1 1 ..
1 -~ 3 -1

? POLY 5 RHO 1"
1 -5 10 -10 5 -1

? POLY 10 RHO 1 ..
t -10 45 -120 210 -252 210 -120

? POLY 2 3 4"
1 -. 2' -24

? POLY 2 13"
1 1 -,

? VECT"
2 • , 8 10 12

? POLY VEeT"
1 -42 700 -5880 25'84 -56448 46080

? LAGRANGE"
I NPUT POINT PAIRS

el:
? VECT"

ARE THOSE ALL THE POINTS

? NO"
e l:

? VEeT"
ARE THOSE ALL THE POINTS

1 YES"
LAGRANG
t'l DOMAIN ERROR AT I&/COMPV/X

?)SIV"
LAGRANG S BACKL COMPV

? COMPV"
01111 1

? INDEX"
1

? INPUTL"
2

? X ..
2 , 10 2 , 10

? y ..
4 8 12 4 8 12

? INDEX IOTA 1"
1

INDEX

45 -to 1

INPUTL X y

51

APPENDIX E (Continued)

? X ...
2 , 10 2 , 10

? XCll-X'"
o -4 -8 0 -4 -8

? COMPVlXt 1]-X"
-JI -8 0 -4 -8

? 1 DROP VECT'"
11 6 8 10 12

2 4
? II DROP VECT" , 8 10

?)ABORT"
? VECT:=ll DROP VECT'"
? VECT'"

2 4 " 8 10

? LAGRANGE"
INPUT POINT PAIRS

t J:
? VECT"VECT"

ARE THOSE ALL THE POINTS

? YES"
-0.026041"7 0.520833333 -3.645833333 11.416666667 -8

? SUM"
-0.026041667 0.520833333 -3.645833333 11.416666667 -8

?)VARS ..

DERIV FIB CF) FUNC INTERP CF) LAGRANSCF) NEWTON CF) POLY CF)
SUM VECT X XO

?)ERASE DERIV"
?)ERASE FUNC ...
?)ERASE X ...
?)VARS"

FIB CF) INTERP CF) LAGRANGCF) NEWTON CF) POLY CF) SUM VECT

?)FNS"
FIB INTERP LAGRANG NEWTON POLY

?)OFF"
END OF RUN

52

APPENDIX E (Continued)

APLIB5S00 UW COMPUTER SCIEHCE , 01-11-11
LOGBED IN FRIDAY 01-g'-11 01135' P"

1 '"A1=3 4 5 RHO IOTA '0"
1 A"

t 2 3 4 5
, 7 8 9 10
11 12 13 14 15
1 6 1 7 18 19 20

21 22 23 24 25
2' 27 28 29 30
31 32 33 34 35
36 37 38 39 40

41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
5' 57 58 59 60

? AC1;2;4J"
9

? AC2;3JJ"
31 32 33 34 35

? ACi3;lJ"
1 1 31 51

? At;;I]"
1 6 1 1 16
21 26 31 36
41 46 51 56

1 At2 3;lJ1] ..
21 41

? AC1;2 3 RHO 1 2 3 2 4 1;2]"
2 7 12
7 17 2

1 AtJ2 3 RHO t 2 4 3 t t J2]"
2 7 17
12 2 2

22 27 37
32 22 22

42 47 57
~--s2 l&2 42

? B,="ABCDEFGHIJKLMNOPQRSTUVWXYZ
? Bt2 7 RHO 27 27 23 t 12 12 1]"

WALLA
WALLA

?) OFF"
END OF RUN

....

53

APPENDIX F

OCTAL EQUIVALENTS FOR B5500 CHARACTER CODES

Character Dec. Octal Character Dec. Octal

blank 48 60 H 24 30
. 26 32 I 25 31
[27 33 @ 26 32
(29 35 J 33 41
< 30 36 K 34 42
+ 31 37 L 35 43
& 28 34 M 36 44
$ 42 52 N 37 45

* 43 53 0 38 46
) 45 55 P 39 47

46 56 Q 40 50
=:; 47 57 R 41 51

44 54 1= 60 74
/ 49 61 S 50 62
, 58 72 T 51 63
% 59 73 U 52 64
= 61 75 V 53 65

62 76 W 54 66
" 63 77 X 55 67
/I 10 12 y 56 70
@ 11 13 Z 57 71

13 15 0 0 00
> 14 16 1 1 01
2! 15 17 2 2 02
+ 16 20 3 3 03
A 17 21 4 4 04
B 18 22 5 5 05
C 19 23 6 6 06
D 20 24 7 7 07
E 21 25 8 8 10
F 22 26 9 9 11
G 23 27 ? 12 14

54

APPENDIX G

A COMPARISON OF

APL/B5500

and

APL/360

1.

2.

3.

4.

5.

6.

7.

8.

TABLE OF CONTENTS

Introduction.

Terminal Equipment.

Starting and Ending an APL Session.

3. 1
3.2
3.3
3.4

Login.
Workspace Activation at Login.
Logout.
APL\360 User Code Locks •

Workspaces and Workspace Commands.

Run Parameters.

. .
4. 1
4.2 Workspace Maintenance and Interrogation ••

Libraries.

5.1
5.2
5.3

APL\360 Libraries.
APL/B5500 Libraries.
Comparison of Library Commands.

User Communications.

APL/B5500 Buffer Edit.

The APL Language •

8. 1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8. 11
8. 12

Character Set •
Reserved vJords.
Identifiers.
Negative Numbers.
Floating Point Notation.
Precision.
Unassigned Identifiers.
One-element Character Strings.
Character-vector Input.
Symbol Variations - Other than Operators.
Subscripting. • •••••••••
Comparison of APL\360 and APL/B5500 Operators.

• 1

• 2

• 3

3

• 4
• 5
• 5

• 6

• 6
• 7

.10

.10

• 11
• 11

.14

• 15

• 16

• 16
• 1 7
.17
.17
• 1 7
• 18
• 18
• 18
• 18
• 19
• 19
.20

9.

8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
8.12.6
8.12.7

TABLE OF CONTENTS (continued)

Monadic Scalar Operators with Identical Results •• 21
I'~onadic ~1ixed Operators •••••••••••••• 22
Monadic Suboperators •••••••••••••••• 23
Dyadic Scalar Operators with Identical Results ••• 24
Dyadic Mixed Operators. • •.• • • • •••• 25
Dyadi c Suboperators • • • • • • • 27
The Dot Operators • • • • • • • • 27

Stored Programs (Defined Functions). • • 28

9. 1
9.2
9.3

Returned Value of a Function ••
Local and Global Variables •••
Function Definition Mode •••

. • • 28
• 28

• • 28

9.3.1
9.3.2

Opening and Closing Definition Mode.
Procedures of Function Definition.

. . . • • 29
• • 29

9.3.2.1
9.3.2.2

Sample APL\360 Function Definition. • 29
Sample APL/B5500 Stored Program Definition •••• 29

9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8

APL\360 Function Definition Editing ••••
APL/85500 Stored Program Definition Editing ••
APL\360 Locked Functions ••••••••••
Syntax Checking ••••••••••••••
System Commands in Function Definition Mode ••
System Fai lure in Function Definition Mode •••

• 29
• 31

• • • 32
• 32

• • • 32
• 33

9.4 Execution of Stored Programs. 33

9.4. 1
9.4.2
9.4.3
9.4.4

Normal Termination •••
Abnormal Termination.
Trace Control •••••••
Stop Contro I. • •

• • • • • • • • • 33
34

• • • 34
. . • . . • • • . • 34

10. Error Messages • 35

11. Suspended Mode. • • • 37

12, System Dependent Functions •• • • • 38

Footnotes • • • 39

References. • . . . • • • • • 40

i i

1. Introduction

An attempt is made in the following to compare and contrast

APL/B5500 and APL\360 for the purpose of aiding in a transfer from

one system to the other. Introducing APL or instructing in its use
I

is not the goal of this effort; rather, the goal is describing and

explaining the differences in two language implementations. It is

assumed that the reader has some knowledge of APL.

Very little emphasis is placed on the equipment itself, with

the major areas of discussion comprising communication with the systems

and the language differences. Backus-Naur notation, which is used to

define APL/B5500, is purposely avoided, since it is felt that whi Ie

it may be an aid in formal language definition, it is not necessari Iy

useful in learning the actual use of a language.

This APL/B5500 Manual (1) has been the sole avai lable

reference for the B5500 implementation. APL\360: User's Manual (2),

APL\360 Student Primer (3), and the authors' own experience have pro-

vided the information on APL\360.

Frequently, the device of presenting a side-by-side compar-

ison, where simi lar, identical, or equivalent commands, operators, or

features are placed on the same line, is used in this paper. Upper-

case letters in the text indicate keywords which are required or are

actual system responses. Lower-case letters used in APL statements

or system commands and responses describe variable information which

appears in the position indicated. Braces C{ l) indicate optional

items.

1

2. Terminal Equipment

APL/B5500 supports the use of a Teletype model 33, 35, or 37.

APL\360 is used with the IBM 2741, 2740, or 1050, al I of which are

basically Selectric typewriters uti lizing removable typeheads. The use

of Teletype terminals restricts the APL/B5500 character set consider-

ably, as may be seen in Section 8.1. With the Selectric typewriter

terminals, use may be made of different typeheads with APL programs

that are designed to do so. Further discussion of terminal use for

APL\360 is limited to the 2741, which is the most commonly used term-

inal. Special instructions for the 2740 and 1050 are included in the

IBM manuals (2,3).

The difference in terminal equipment requires slightly

different techniques for transmitting APL statements to the computer.

Teletype

Terminate each logical
transmission with ""-".

To transmit more than one
line (72 characters> as a
single logical transmission,
depress LINE FEED and CAR­
RIAGE RETURN. Continue
typing. (200 characters maximum)

No keyboard lock.

Automatic indention of 6
spaces when ready for
next input.

To suspend execution of a
stored program or terminate
output, depress BREAK key.

2

2741

Terminate each logical
transmission with RETURN.

Inconvenient to transmit
more than one line (130
characters). (May be done
by manually returning car­
rier to left. Line limit
not specified.)

Keyboard locked during
transmission and processing.

Autanat·i c indent i on of 6
spaces and keyboard unlock
when ready for next input.

To interrupt execution or
terminate output, depress
ATTN key.

It is possible to correct typing errors before transmission

on the 2741. This is done by backspacing to the error, depressing ATTN

(which spaces down one line, types a caret, and spaces down one more

line for the correction), and typing the line again from that point.

Apparently this capabi lity is not avai lable with the Teletype. However,

the APL/B5500 buffer edit feature (Section 7.) provides a simi lar

capab iii ty.

3. Starting and Ending ~ APL Session

Information is not avai lable on activating the APL/B5500, as

it is implementation-dependent. The procedure does require the use of

a 85500 account number. APL\360 is activated without a 360 account

number, and the APL\360 user code is used as an account number. Direc­

tions for activating APL\360 (operation of the data set, etc.) are

avai lable in the IBM publications (2,3>, with the telephone number the

only variable.

3.1, Log i n

Once activation of the system has been accomplished, login

procedures are somewhat simi lar, except that APL/B5500 wi I I respond to

activation by typing APL/B5500 UW COMPUTER SCIENCE #N (where N is a version

identification). On APL/360, an account number is entered by typing)code.

On APL/B5500, the user's usercode is used as the account number and is not

required nor 'allowed to be entered~ For unsuccessful login attempts, the

system responds as follows.

3

APL\360

Cal INCORRECT SIGN-ON

Cb) NUMBER NOT IN SYSTEM
for invalid number or
password required

Cc) NUMBER LOCKED OUT
authorization for number
wi thdrawn

APL/85500

(d) NUMBER IN USE USER ALREADY 'LOGGED IN

Subsequent attempts are permitted in both systems.

Successful attempts cause the fol lowing response:

port In time date user LOGGED IN date time
name
code

APL\ 360

tSAVED time date!

3.2 Workspace Activation ~ Login

A workspace is activated for the user upon completion of a

successful login. ~lith APL/B5500 the active workspace is the last

active workspace, or if there is none, a new workspace is created. If

the last active workspace has been removed witho~t the user's knowledge,

he is informed by the message WORKSPACE EMPTY.

Workspace activation at login is different for APL\360. The

last active workspace is activated only if it was saved in CONTINUE

4

with no password at the termination of the last session. The termina­

tion could have been with)CONTINUE or)CONTINUE HOLD, or it could have

been an abnormal termination with automatic saving of the workspace

under the name CONT I NUE. The SAVED message i nd i cates that CONT I t·JUE has

been activated and gives the date and time it was saved.

3.3 Logout

To terminate the session, the user types:

APL\360

Ca))CONTINUE HOLD \loCk\

APL/B5500

(a))OFF

Save the active workspace and wait for another login.

(b))OFF HOLD {lock l (b))OFF 0 I SCARD

Do not save the active workspace, but wait for another login.

(c))CONT I NUE flock}

As in (a), but disconnect.

(d))OFF {lock)

As in (c), but disconnect.

APL/B5500 responds with END OF RUN. APL\360 responds with time, date,

and CONTINUE for cases (a) and (c) only, and with accounting informa­

tion for al I cases.

3.4 APL\360 User Code Locks

A feature not avai lable with APL/B5500 is the use of a user

code password to prevent an unauthorized login under a specific user

code. To assign a password to the user code, any of the four logout

commands listed above for the APL\360 system may be fol lowed by a colon

5

and any eight-character password. Subsequent logins must contain the

colon and identical password as part of the user code. To remove the

password, sign off with the colon only. To change the password, sign

off with the colon fol lowed by the new password. Fai lure to login with

the correct password causes the response NUMBER NOT IN SYSTEM.

4. Workspaces and Workspace Commands

The workspace concept is identical in both APL/B5500 and

AP~360; however, there are differences in the system commands regard-

ing the workspace. The commands contrasted in this section deal

exclusively with the active workspace, which is the workspace currently

loaded and accessible from the terminal.

4. 1 Run Parameters

The seven commands below constitute what are referred to as

"run parameters" in APL/85500 terminology. For APL/135500 the commands.

when fol lowed by an appropriate argument are orders to change the

current setting of the run parameter specified. When not fol lowed by

an argument, the commands are inquiries to which the system responds

by typing the current setting. An argument must fol low the command

for APL\360. The system responds by typing WAS and the former setting;

thus, inquiry is possible even though an argument is required.

APL\360
initial restric-

command value tions

)ORIGIN n o or 1
starting index for arrays;
starting point for monadic
and dyadic 1 and? •

6

APL/85500
initial restric-

command value tions

)ORIGIN {n}
starting index for arrays;
starting point for modadic
and dyadic IOTA and RNDM.

APl\360
initial restric-

command value tions

) vI 10TH n 120 30-130
width of output line

)OIGITS n 10 1-16
maximum number of signifi­
cant digits on output

no corresponding command

no corresponding command

10- 13 used for "fuzz"

no corresponding command

no corresponding command

Note: APL\360 performs
syntax checking only
during execution of a
defined function.

APL/B5500
initial restri c-

command value tions

) WIDTH (1 72 10-72 tn,;
width of output line

)OIGITS tn~ 9 0-12
maximum number of digits
after decimal point on
output

)SEED tn~ 59823125
"seed" for random number
generator

)FUZZ in] 10- 11
to counter truncation error
and use in comparisons
A=8 if IA-BI ::;FUZZ xlsl

)SYI~ off
causes APL to check syntax
of each line of a stored
program as it is entered

)NOSYN on
turns off syntax checker
during stored program
definition

4.2 Workspace i~a i ntenance and I nterrogati on

The fol lowing commands faci litate workspace maintenance and

interrogation other than manipulation of run parameters. AI I apply to

the active workspace only. (Note: the terms "stored program" (APL/J5500)

and "defined function" (APL\360) may be used interchangeably.)

7

APL\360

)CLEAR
Discards active workspace.
Resets run parameters to
initial settings. Permit­
ted at al I times.

)ERASE list
Removes global names in
list. Permitted at al I
times. Possible response:
NOT ERASED: list.

) VARS t a)
Lists alphabetically names
of global variables. If
{a) is used, where "a" is
an alphabetic character,
the list begins with those
variables beginning with
the indicated letter.

) FNS [a\
Lists'alphabetical Iy names
of defined functions, or,
if ia~ is specified, the
names beginning with the
indicated letter and con­
tinuing through the alpha­
bet.

)GROUP names
Collect global names
into a group. First
name in list is name
of group.

)GRPS [a\
List alphabetically names
of groups. {a\ as in
)VARS above.

)GRP name
List membership of
designated group.

8

APL/B5500

)CLEAR
Discards active workspace
except for run parameters.
Not permitted in suspended
mode.

)ERASE list
Removes each global name in
list. Not al lowed in sus­
pended mode.

)VARS
Lists al I variables and
stored p rog rams.' "(F)"
marks stored programs.

) FNS
Lists names of stored
programs.

no corresponding command

no corresponding command

no corresponding command

APL \360

)S I
Lists halted functions
and the line number in
each where execution
stopped. Suspended func­
tions distinguished from
pendent functions by *

)SIV
Same as)SI above, but
with local variables
listed for each entry in
)SI list.

)WSID ~'name~ flock~
VJ i thout {name}, ~response
is name of active work­
space. With !~ame~ ,
name of active workspace
is changed. Printed re­
sponse is WAS fol lowed
by former name. A pass­
word may be associated
with the workspace for
security. (See Section
5. 1 •)

no corresponding command

ABORT may be accomplished
by entering "~,, for each
as te r is kin) S I lis t.

no corresponding command

(Variables are stored
during execution.)

APL/85500

)SI
Lists in order the names of
suspended stored programs.

)SIV
Same as)SI above, but with
local variables listed for
each entry in)S I list.

no corresponding command

) ABORT
Terminates al I suspended
stored programs and
returns to execution mode.

) STORE
When in suspended mode,
causes APL to store into
the active workspace the
values of global varia­
bles changed during exec­
ution of the suspended
stored program.

Commands which request lists may receive the typed response

NULL from APL/85500 when the list are empty. For APL\360 the corres-

ponding response is simply the standard indentation of six spaces and

the freeing of the keyboard.

9

5. Libraries

Implementation of the notion of library is somewhat different

in the two systems, although the commands which maintain and uti lize

libraries have some simi larities. Consequently, a section is devoted

to discussing the library concept for each system, after which the

commands wi I I be contrasted in the side-by-side fashion.

5.1 APL\360 Libraries

Each account number (user code or login number) is automatic­

ally assigned sufficient library space to contain a certain number of

workspacesj this number is determined by the manager of the APL system.

Each workspace within the library is identified by the account number

and WSID. There is always a workspace with WSID CONTINUE in the

library.

The library associated with the user code is a private

library. Public I ibraries with workspaces containing defined functions

of general interest are avai lable to al I users.

A password may be associated with a workspace name in the

)WSID or the)SAVE commands. It is then necessary to use this password

as a key to access the workspace after it has been placed in a library.

A workspace in a library may be changed or erased only from

a terminal logged in under the same account number as that associated

with the library. (If a password is associated 'with the account

number, the password must be used for logging in to change a library

workspace.) Library workspaces may be accessed by any user who knows

the account number, WSID, and workspace password (if necessary).

10

5.2 APL/B5500 Libraries

A library may contain only one workspace. When created, a

library is given a name consisting of the B5500 usercode under which APL

was activated from the terminal and a "library prefix" or identifier

chosen by the user. It is possible to exercise a LOCK option when

creating a library. If exercised, this option prevents a user who is

not logged into APL under the same B5500 usercode from accessing the

library. Otherwise any user who knows the usercode and library prefix
l

may access the library, although it may be changed or deleted only from

a terminal logged in under the B5500 usercode used in creating the library.

5.3 Comparison of Library Commands

APL\ 360

)SAVE {name {lock}}

Without the option a copy
of the active workspace
will replace a stored
workspace with the same
identification, or a new
workspace may be stored
if)WSID followed by a
name has been executed
previously. A password
associated with the
active workspace will
continue in effect.

With the {name [lock}}
option, a copy of the
active workspace will be
stored with the name
and password, if used. A
previously-stored workspace
with the same identification
will be replaced with
password in this command.

APL/B5500

)SAVE library suffix {LOCK}

Saves the current active
workspace under the user
B5500 account number and
library suffix. [LOCK}
explained above. FILE
ALREADY ON DISK is a
possible response of obvious
meaning in which case the
active workspace is not
saved.

The active workspace wi I I
assume identification used
in this command.

Possible responses:
If successful, time and
date wi I I be printed. Also
WSID if name option not
used.
NOT WITH OPEN DEFINITION
if terminal is in function
definition mode.
NOT SAVED, WS QUOTA USED UP
Library ful I, and this is
new workspace.
NOT SAVED, THIS WS IS name
WSID of active workspace
does not match that in com­
mand.
IMPROPER LIBRARY REFERENCE
INCORRECT COMMAND

) LOAD [I i brary number~J"/s i d {key~
Activates a copy of the
stored workspace. No
protection of currently
active variables of same
name.

Response:
If successful,
SAVED time date
WS NOT FOUND
WS LOCKED
I NCORRECT COi~1MAND

)PCOPY fl i brary2} ws i d {key) obJ'ect
~umber J l)

Copies the object designa­
ted unless there is already
a global variable by that
name in the active work­
space. Object may be var­
iable, function, or group.

Response:
If successful: SAVED time date.

12

APL/B5500

)LOAD library name3
Loads the stored workspace
into the active workspace
(subject to LOCK). When
a name is in both the
stored and active work­
spaces, the item is not
loaded unless it is a
variable in the active
workspace and a stored
program in the library.
An appropriate message
indicates items not loaded.

)ooPY lib rary3 global name name

Copies the value of a
variable or definition
of a stored program from
the specified workspace
subject to LOCK and the
matching-name rule in
) LOAD.

APL\360

Unsuccessful:
NOT COPIED: name
NOT WITH OPEN DEFINITION
~vS NOT FOUND
';IS LOCKED
OBJECT NOT FOUND
WS FULL
INCORRECT COMMAND

)PCOpy (I ibrary2lwsid fkeyl \numoer) 1: ~

Copy al I global objects
from the specified work­
space. Protect global
variables in active work­
space with identical names.

Responses: same as for
)PCOPY above.

)COpy t~~~~~~Y2~WSid tkey~ obj.

Copy specified object into
active workspace, replac­
ing existing object if
necessary.

Responses: same as above
except NOT COPIED

)COPY JI i brary2Z ws i d {'key' (number J 5

Copy al I global objects,
replacing existing objects
if necessary.

Responses: same as above
except NOT COPIED.

)DROP wsid
Remove designated work­
space form library.

Response: If successful,
time and d?te printed.
Unsuccessful: WS NOT FOUND
I HPROPER LIBRARY REFERENCE
INCORRECT COM~AND

13

APL/B5500

no corresponding command

no corresponding command

no corresponding command

)CLEAR library prefix
Remove 'the library fi Ie
referenced by complete
library name (including
B5500 usercode)
from disk.

APL \360

) LI B 1.1 i brary number2 J
List names of workspaces
in designated library.
Passwords are neither listed
nor indicated.

Unsuccessful responses:
I t~PROPER LIBRARY REFERENCE
INCORRECT COMMAND

6. User Communications

APL/B5500

no corresponding command

The fol lowing commands identify other current users of the

system and permit communication with them and the operator.

APL 360

)PORTS
Lists port numbers and
user-name codes.

)PORT user-name code
Lists port numbers asso­
ciated with current users
identified by the spec­
ified user-name code.

)MSGN port # text
The text, not to exceed
one line, is sent to
the specified port.

I f the port number desig­
nated is not in use, the
message is reflected back
to the sender.

Keyboard is locked during
transmission. Successful
transmission response is
SENT and keyboard is unlocked.

MESSAGE LOST response results
in the event of a transmission'
disturbance.

14

APL/B5500

) LOGGED
Lists station numbers and
user phrases.

no corresponding command

?TO station text
The text, not to exceed
200 characters, is sent
to the specified station.

If the station designated
is not in use, NOT ON is
printed.

APL\360

At receiving terminal:

sending
port # text

)MSG port # text
Same as for ~SGN except
receiving terminal receives
HE" as prefix and sending
keyboard remains locked
(after SENT response)
unti I receiving terminal
rep lies.

)OPRN text
Same as for)MSGN except
text is directed to sytem
recording terminal.

)OPR text
Same as for)MSG except
text is directed to
system recording terminal.

7. APL/B5500 Buffer Edit

APL/B5500

At receiving terminal:

FROM sending-station text

no corresponding command

?TO SPO text
Same as for ?TO station
except text is directed to
operator.

no corresponding command

Buffer edit is an APL/B5500 feature not avai lable with APL\360.

It permits the user to change the last line of input without retyping

the entire line. The command is:

)" search insert r.,search~
string "string l sirlngJ

The operation is the same as that for the change command used in editing

stored programs (Section 9.3.4). The insert string is inserted after

the first occurrence of the first search string. If the second search

string is specified, characters between the insert string and the

first occurrence of the second search string are deleted. The resulting

is retyped by the system and then processed.

15

8. The APL Lang uage

In this section an attempt is made to list only those differences

in the language implementations of APL/B5500 and APL\360 which may be

determined from the avai lable information and which might be of some

importance to a user of both systems. It may wei I be that actual use

of the two systems would reveal other differences which should be

included in this section. Particularly, it is possible that such items

as one-element arrays of different rank would be treated differently

when used as operands for various operations.

Whi Ie data structures and other features are not discussed

unless they do not receive equivalent treatment in the two systems, a

reasonably complete tabular comparison of operators is given. These

operator comparison charts should provide a useful reference for con-

verting from one system to the other.

8. 1 Character Set

APL\360

alphabetic:
ABCDEFGllIJKll1NOPQRSTU~NXYZ

numeric:
0123456789

blank:

special characters:
().,:;+-=/[]\+cn~uLTlarL V
6 0 'D?W€P-t~lO*-~:·- <~~>;tVA;f

Certa in pa i rs of AP~ 360
characters may be used in
combination by backspacing
and overstri king: d ... ~ A <P ~
~ ! t I ¥ '!'c.

16

APL/B5500

alphabetic:
ABCDEFGH I J KLMNOPQRSTUVWXYZ

numeric:
0123456789

blank:

special characters:
().,~;+-+/$#*@%&[]\+

8.2 Reserved Words

APL \360

No reserved words.

8.3 Identifiers

APL \360

Alphabetic, numeric, or
underscored alphabetic
characters; first must be
alohabetic. No maximum
length stated. (May be
longer than seven charac­
ters.)

8.4 Negative Numbers

APL\360

Negative numbers indicated
by - ina I I cases. (Note
distinction between - and -.>

8.5 Floating Point Notation

APL\360

Only "E" may precede the expo­
nent for floating point.

17

APL/B5500

LOG CIRCLE TRANS
CEIL LSS BASVAL
t'~AX LEQ XEQ
FLR NEQ REP
i~IN GEQ EPS
ASS GTR TAKE
RESD AND DROP
FACT OR PHI
COrvl8 NAND SORTUP
RNDM NOR SORTDN
NOT IOTA GO

RHO

APL/B5500

Up to seven alphabetic or
numeric characters; the
first must be alphabetic.
No maximum length is stated;
if over seven characters,
the remainder is truncated.

APL/85500

Negative numbers are indica­
ted by #, except - permitted
for a negative exponent in
floating point notation.

APL/B5500

Either "E" or "@" may pre­
cede the exponent in float­
ing point.

8.6 Precision

AP~ 360

Ig~egers less than
2 = 4501599627370496
are carried to ful I
precision.

Larger numbers and non­
integers are carried to a
precision of about 16 digits.

8.7 Unassigned Identifiers

APL \360

References to identifiers
which have not been assigned
values receive the error
response VALUE ERROR.

APL/B5500

Numbers whose signific~~t
digits do not exceed 2 -1
= 549755813887 are carried
to ful I precision.

Absolute values of al I
numbers must be less than
about 4.314@68.

Numbers with absolute value
less than 10@-47 are con­
verted to zero.

AI I numbers carried in
floating point form.

APL/B5500

Identifiers not assigned
values are considered to
have the value nul I.

8.8 One-element Character Strings

APL\360

A single character is treated
as a scalar.

X+-'A'
pX

(blank line)

8.9 Character-vector Input

APL\360

No limit for character vector
input is stated, but more than
one line's length is inconvenient.

18

APL/B5500

A single character is
treated as a one-element
vector, rather than as a
sea I ar.

X:="A"+­
RHO X+

APL/B5500

A character vector of up
to 200 characters may be
input directly.

8.10 Symbol Variations - Other than Operators

APL\360 APL/B5500

Quad.
LJ

Uses of the symbols are equivalent.

Quote-quad.
~

Uses of the symbols are equivalent.

Assign symbol.
-4-

Uses of the symbols are equivalent.

Transfer or branching symbol.

[J

["]

:=

=:
or GO

Uses of the symbols are equivalent, except that with
APL\360 the symbol "~,, above whi Ie in suspended mode clears
the status indicator back to the last previous suspended func­
tion.

8.11 Subscripting

The subscripting capabi lities are identical in the two systems\

except that for APL/B5500 unnamed expressions cannot be subscripted.

19

8.12

Comparison £i APL\360 and APL/5500 Operators

APL\~60 and APL/5500 operators differ as to the structure of

the operands to which they may be applied and as to the types of values

the operands may have. When no distinction is made between restrictions

on values of the operands, the restrictions are identicaf for operands

appl ied to APL\360 and APL/5500 operators. Restrictions on structure

wi I I be indicated by the identifiers used for arguments as fol lows:

APL\360 APL/5500

S for scalar X,Y for scalar or one element array
V for vector V,W for vector or scalar
M for matrix L,M for matrix or vector
A for any structure A,B for any structure

Except as the first argument of SlA or S[A] in APL\360, a scalar may be

used instead of a vector. Also in APL\360, a one element array may

replace any scalar.

APL\360 and APL/5500 orerators also differ as to the characters

which symbolize the operations performed. Where no distinction is made

between results of performing analogous operations, the results are

identical for APL\360 and APL/5500 operators.

20

8.12.1

Monadic Scalar Operators with Identical Results

APL S~mbol Name of Operator Form Used
360 I 5500 360 I 5500 360 15500

+ + plus identity +B +B

negative additive inverse -B -B

x & signum sign xB &B

of reciprocal mu It i pi i cat i ve fB %B . /0

inverse

* * exponential exponential *B *B

WG natural natural .B WGB
logarithm logarithm

r CEIL cei ling cei ling rB CEIL B

l FLR floor floor lB FLR B

ABS magnitude absolute value IB ABS B

FACT factorial factorial !B FACT B

? RNDM roll random number ?B RNDM B

N(JT not negation -B N~T B

0 CIRCLE pi times circular oB CIRCLE B

21

8.12.2

Monadic Mixed Operators

APL Symbol
360 I 5500

Name of Operator
360 I 5500

Form Used
360 J 5500

IOTA index index lN
generator generator

p RHO size dimension pA
vector

, rave I rave I ,A

TRANS transpose transpose ~A

XEQ

BAS VAL

execution
of
character
stri ng

base-2
value

22

IOTA X

RHO A

TRANS A

XEQ V

BASVAL V

Di sti ncti ons
360 I 5500

N non- X in integers
negative If X less
integer than ORIGIN,

NULL vector.

V in
character
set
Result is the
value of the
APL exp ress ion
given by V.

V in reals
Result is
2 BASVAL V.
(see dyadic
mixed operators)

8.12.3

Monadic Suboperators (X in set of integers)

Name of Operator
360 I 5500

Fonn Used
360 I 5500

Distinctions or Restrictions
360 I 5500

reduction

reverse

grade up

grade
down

reduction f/[X]A
or

f/A

scan

d/[X]A
or

d/A

d\[X]A
or

d\A

f-dyadic scalar
operator
Reduction over
first coordinate
of M obtained by
using expression
f,tM; equivalent
to f[l]M.

d-dyadic scalar
operator.

Proceeds along Xth
coordinate with
resper.t to ORIGIN
where X=(rank of A)
+ORIGIN-l if X not
given. Result has
same structure as
A. Scan goes from
left to right or top
to bottom.

reversal ~[X]A PHI[X]A SA denotes A~NULL

sorting
up

sorting
down

or or reversal along
~A PHI A the first

coordinate which
is equivalent to
~[l]A.

t[X]A S~RTUP[X]A
or or A-array of If A is a scalar,

tA SORTUP A rank greater result is ORIGIN.
than zero. A~NULL

~[X]A SORTDN[X]A Same as Same as sorting up
or or grade up

~A SORTDN A

23

8.12.4

Dyadic Scalar Operators with Identical Results

APL Symbol Name of 0eerator Form Used
360 I 5500 360 I 5500 360 15500

+ + plus addition A+B A+B

mi nus subtraction A-B A-B

x & times mu Itip I ication AxB A&8

. % divide division ATB A%B ...

* * power exponentiation A*B A*B

• L~G logarithm logari thm AeB A Lr;G B

r MAX maximum maximum ArB A MAX B

L MIN minimum minimum ALB A MIN B

RESD residue residue AlB A RESD B

C~MB binomial combinatorial A!B A C~MB B
coefficient

< LSS *Iess less than A<B A LSS B

s LEQ *not greater less than AsB A LEQ B
or equal

= = *equal equals A=B A=B

¢- NEQ *not equal not equal A¢-B A NEQ B

~ GEQ *not less greater than A~B A GEQ B
or equal

> GTR *greater greater than A>B A GTR B

A AND and and AAB A AND B

v fJR or or AvB A ~R B

'It NAND nand nand AjII(B A NAND B

¥ N~R nor nor A¥B A Nr;JR B

0 CIRCLE circular circular AOB A CIRCLE B

*APL/5500 compares characters by using their octal equivalents. APL\360
compares scalars and does not make character comparisons.

24

8. 12.5

Dyadic Mixed Operators

I~PL S~mbol Name of OQerator Form Used Distinctions
1360 I 5500 360 I 5500 360 15500 360 I 5500

IOTA index of indexing V1A V IOTA A I f Vis nu II,
result is
ORI GIN.

p RHO reshape restruct- VpA V RHO A If any If any
uring element of element of

Vis 0, V is 0, the
result is resu I t is
array with nu II.
one of the
dimensions
equal to
zero.

, catenat- catenate V,V V,W
ion

? RN~ deal random 8?S X RNDM Y X less than
deal or equal to

Y-ORIGIN+I.

J. BASVAL decode base VJ.V V BASVAL W Arguments V is effect-
value V and W ively modified

must be of to make the
the same lengths of V
dimension and W equal by
except that extending V to
either may the left as
be a scalar. many times as

necessary.

T REP encode represent VTS V REP S
-ation

€ EPS member- member- A€A A EPS B
ship ship

+ TAKE take take V+A V TAKE A If A is an If V is a
array, then scalar, it
VtA val id is extended
only if V to a vector
has one of the
element for appropriate
each dimen- length. If
sion of A. V(I)=0 for any

I , resu I t is
nu I I.

25

Dyadic rvlixed Operators (continued)

IAPL Symbol Name of Operator Form Used
1360 I 5500 360 I 5500 360 I 5500

transpose

26

Distinctions
360 I 5500

Coordinate I
of A becomes
V[I] of resu It.

8.12.6

Dyadic Suboperators (X in set of integers)

Name of Operator
360 I 5500

Fonn Used
360 I 5500

Distinctions or Restrictionsl
360 I 5500 I

rotate rotation A$[X]A A PHI[X] B AAA denotes

compress compress-
ion

expand expansion

8.12.7

The Dot Operators

Name of Operator
360 I 5500

or or rotation along
A~A A PHI B the first

coordinate of
A.

V/[X]A V/[X]A VI-A denotes
or or;- camp res s ion

I f A is nu I I,
resu It is

VIA VIA along the first NULL.

V\[X]A V\[X]A
or or

V\A V\A

Form Used
360 I 5500

coordinate.

VI-A denotes
expansion
a long the first
coordinate.

Distinctions or Restrictions I
360 I 5500 I

inner
product

inner Md1.d2M Ldl.d2M M can be a
matrix or a
vector.

dl not CIRCLE
The first
coordinate of
L and the last
coordinate of
Mare nu II if
they are
vectors.

outer
product

product

oute r Ao. gA A CIRCLE. dB
product

27

9. Stored Programs (Defined Functions)

The concept of permanently defining and storing a logical

sequence of APL statements is identical in both systems. The APL/B5500

manual (1) makes the distinction between subroutines and functions,

referring to both types as "stored programs." The APL\360 manuals (2,3)

refer to both as "defined functions" but distinguish' those which

return an explicit result. (Returning an explicit result is the ident-

ifying feature of an APL/85500 "function.")

9.1 Returned Value of ~ Function

APL\360

No initialization. Wi I I
return VALUE ERROR if no
assignment is made during
function execution.

APL/85500

Initialized to nul I at
each ca I I.

9.2 Local and Global Variables

APL\360

A variable which is local to
function Pl may be r0.ferred
to by nny function P2 used
within Pl, unless the var­
iable name is also local to
P2.

9.3 Function Definition Mode

APL/85500

A variable which is local
to stored program Pl is
not global to stored pro­
gram P2 when Pl invokes P2.

In both APL\360 and APL/85500, a special mode of operation is

to be entered for the purpose of defining and editing stored programs.

An outline of the differences in function definition for the two systems

fo I lows.

28

9.3.1 Opening and Closing Definition Mode

APL\360 APL/B5500

$

The symbols start and end function definition mode for the

indicated systems.

9.3.2 Procedures 2i Function Definition

Basic procedures of entering a function definition are

equivalent, although editing capabi lities differ. Local variables

fol low semicolons at the end of the header line; labels are identifiers

fol lowed by colons at the beginning of a line; the system prints the

line numbers. Equivalent sample function definitions fol low.

9.3.2.1 Sample APL\360 Function Definition

~S+STDEP X
[1] AVE + (+/X)fN + pX
[2] R + «+/(X- AVE)*2)fN - 1)*.5
[3] V

9.3.2.2 Sample APL/B5500 Stored Program Definition

$S := STDEV X+
[1] AVE:= (+/X) % N := RHO X+
[2] S:= «+/(X-AVE)*2) % N-l)*.5+
[3] $+

9.3.3 APL\360 Function Definition Editing

It is hoped that the fol lowing exampl~s of editing a function

definition wi I I be adequate for illustrating the editing capabi lities

of APL\360.

29

Display

[0] Display the entire function.

[20] Oi sp I ay line 2.

[02] Display al I statements from 2 onward.

Note: Label names may not be used. There is no capabi lity

for displaying from line m to line n.

Insertion

[5.5] A+2

Revision

L2] A+2

[5015] A+B+C+F+E+O
/1 2

r 5] A+8+C+ +E +0
t tt

insert D +F

Deletion

[3]
A.

Insert the line A+2 at position
5.5, replacing line 5.5 if it
exists. Line increment is changed
to 0.1 unti I next entry of a line
number with a different implied
increment.

Replace line 2 with new statement.

Display line 5 and position carriage
under position 15 of line 5. (15 is
an estimate of Dosition of first
change requirea.) A digit, letter,
or / may be typed under any position
in line 5. When RETURN is depressed
the line is retyped with each char­
understruck by / deleted, each char­
acter understruck by a digit k
preceded by k blanks, and each char­
acter understruck by a letter pre­
ceded by 5xR blanks, where R is the
letter's rank in the alphabet. The
carriage moves to the first injected
space. 6orrections are now inserted
and the statement is reentered as
corrected.

Delete statement 3. Type [3]
fol lowed by ATTN and RETURN.

30

APL\360 .automatically renumbers the I ines with integers

when definition mode is closed by entering V.

Reopening a function definition, modifying the definition,

and closing definition mode may be accomplished in one statement. For

example: VNAME[3] X+Y V •

9.3.4 APL/B5500 Stored Program Definition Editing

The fol lowing examples taken from Appendix B of the APL/B5500

manual (1) should suffice to illustrate the editing capabi lities of

APL/B5500.

Display [line []Iine]
: option' option

[[J]
[2[]]
[LAB-3[]LAB+5]

Display the entire stored program.
Display line 2 of the stored program.
Display lines LAG-3 through LAB+5

of the stored program.

. [line] Insertion: reference APL statement

[46.5]A:=2

[LAB]A:=2

Change: [li~e ["] line 1
option option J

[["]]AAA"8BB"CCC

[2["]]AAA"BBB"CCC

[LAB["]RAB]AAA"BBB"CCC

Insert the line A!=2 at position 46.5
of the stored program and change
line increment to .1, replacing
line 46.5 if it existed.

Replace the statement on line
label led LAB with A:=2.

search " insert tt' "search l
string string stringS

For every line of the stored program,
find the first occurence of the
string AAA, insert the string
BBB after it, and delete al I
characters unti I the string CCC
is found.

Perform above operation on line 2 of
the stored program only.

Perform above operation on lines
label led LAB through RAB,
inclusive.

31

[2 ["]] LAB" t~" Search line 2 for the string LAB and
insert an R directly after it.
The rest of line remains as is.

Same as above. [2["]]LAB"R

Delete: [ref~~~~ce] {[ref!~~gce]J
[2]
[2][7]

Resequence a function: [IOTA]

Delete line 2 of the stored program.
Delete lines 2 through 7.

[IOTA] Resequence open function.

9.3.5 APL\360 Locked Functions

With APL\360 a function may be locked to display (though not

to)ERASE) by opening or closing its definition with ~ instead of ~.

This feature is not avai lable with APL/B5500.

9.3.6 Syntax Checking

APL\360

Syntax check is made only
during execution.

APL/85500

Syntax checking at each line
entry during program defini­
tion may be requested with
)SYN,)NOSYN settings.

9.3.7 System Commands in Function Definition Mode

APL\360

Most system commands may be
executed. They are never
taken to be part of a program
definition.

32

APL/85500

Monitor commands are not
executed but accepted as
part of program definition.
Wi I I produce SYNTAX error
at execution of program.

9.3.8 System Fai lure ~ Function Definition Mode

APL \360

Definition mode closed,
workspace stored in
CONTINUE. Workspace
reloaded at subsequent
sign-on. User must
reopen definition mode.

APL/B5500

User gets message
CONTINUED DEFINITION OF name
a ti next log in. He may
continue from the point of
fai lure at previous session.

9.4 Execution of Stored Programs

Stored programs are executed 'in both systems by a reference

to the program name as indicated in the header line. Each line is

evaluated in sequence as if it had been entered one line at a time in

"calculator" mode. The following two comments regarding stored program

execution apply to APL/B5500 only: 1) permanent changes to the work-

space are not made unti I the invoking statement has been evaluated

successfully, and 2) previously executed lines of a stored program are

kept in a semi-campi led form to improve execution of loops.

9.4.1 Normal Termination

APL\360

Normal termination results
from:

(a) "running off at the end"
(executing the last
statement when the last
statement does not branch).

(b) transferring to a
statement number outside
the bounds of the program.

(c) executing ~O.

33

APL/B5500

Normal termination results
from:

(a) "running off at the end."

(b) transferring to a
statement not in the
program definition.

(c) executing=:O.

9.4.2 Abnormal Termination

For both systems, if any error occurs during execution of

a stored program, the session is put in suspended mode, and the appro­

priate error message and line number of the statement in error are

printed. (See Error Messages, Section 10, and Suspended Mode, Section

11 •)

9.4.3 Trace Control

For APL\360 only, it is possible to set a trace vector,

denoted T6P, where P is the function to be traced, to any set of

statement numbers in P. As the function is executed, an automatic

printout is produced for each line of the function which is contained

in the trace vector. The printout gives the function name, line num­

ber, and final value produced by that statement. The trace may be

discontinued by typing T~P + o.

9.4.4 Stop Control

Another feature of APL\360 only is the stop vector, S6P,

where P is a function name. By setting this vector to statement num­

bers in P, it is possible to cause execution to stop just before each

of the designated statements. After the stop, the function name and

statement number are printed, and the system is in the normal suspen­

ded state. Resumption of execution is control led in the usual ways.

(See Suspended Mode, Section 11.)

34

10. Error Messages

A I I error messages may occu r in either "ca I cu I ator" or

stored program executipn mode.

APL\360

When an error is found,
the name of the error
is printed, the offending
statement is retyped with
a caret placed at the
point where the error was
found. Function name and
line number also typed if
in function execution mode.

APL/B5500

When an error is found,
the name of the error is
printed with the six char­
acters to the right of the
point where the error was
discovered. If in program
execution mode, line num­
ber is also typed.

The fo Ilowi ng error messages are identical in appearance and

interpretation for both systems.

DOMAIN
INDEX
RANK
SYNTAX
SYSTE~~

The fo II ow i ng error messages are identical in appearance,

there are slight differences in meaning.

APL\360

(a) excessive depth of
function execution.

(a) name of already exist­
ing function used as
I abel.

(b) colon misused.

DEPTH

LABEL

35

APL/B5500

(a) execution stack is too
long.

(b) list of active and sus­
pended stored programs
is too long.

(a) attempt to transfer to
non-existent label.

(b) attempt to send a mes­
sage to a station not
logged in.

(c) attempt to)ERASE a
non-existent identifier.

but

APL\360 APL/85500

LENGTH

(a) shapes not conformable. (a) arguments not conform­
able due to unequal
lengths.

APL/B5500.

(b) input or output line
too long.

The fol lowing error messages are found in APL\360 but not in

CHARACTER - i I legitimate overstrike.

DEFN - misuse of V or D.

RESEND - transmission fai lure.

SYMBOL TABLE FULL - too many names used.

VALUE - use of name which has not bee assigned a value.

WS FULL - workspace is fi I led.

The fol lowing error messages are found in APL/B5500 but not

in APL\360.

NONCE - attempt to uti lize a non-implemented feature.

FLYKITE - attempt to calculate too large a number;
attempt to make too large an array, etc.

SP FULL - have fi I led al I allowable temporary storage
without completing a calculation; a statement
uses too many global variables or is too
camp Ii cated.

36

ll. Suspended ~

Suspended mode is attained when an error occurs in a stored

program execution, the "break key" (ATTN) is depressed during execution

of a stored program, or, for APL\360, just before execution of a state-

ment whose number is in the appropriate stop vector.

11.1 Permissible Actions whi Ie ~ Suspended Mode

APL\360

Display values of local
and known global varia­
bles.

Change values of variables.

Execute system commands.

Execute basic APL statements.

Transfer (~) to any state­
ment within suspended
function.

Transfer to 0 or to state­
ment outside of suspended
function. Causes normal
termination of that func­
tion.

Reopen definition of sus­
pended function or of any
function which is not
pendent.

Set trace and stop control
vectors.

Enter ~ to clear state
indicator of this suspended
function and any pendent
functions back to next last
suspended function.

37

APL/B5500

Display values of local
and known global varia­
b I es.

Change values of variables.

Execute monitor commands
except)CLEAR and)ERASE.

Execute basic APL statements.

Transfer (=:) to any state­
ment within suspended
function.

Return transfer to a state­
ment outside suspended
program. Causes function to
become "unsuspended."

Cannot enter stored program
definition mode. Wi I I re­
ceive message ABORT SUSP,
FeNS

12. System Dependent Functions

System dependent (or I-beam) functions are defined for

AP~360 but not for APL/B5500. They permit inquiry of system informa­

tion. The function is the.l overstruck with T (or vice-versa) followed

by a number. Here is a list of currently avai lable system dependent

functions with their definitions.

I19 Accumulated keying time this session.

I20 Time of day.

I21 CPU time this session.

I22 Amount of avai lable space (bytes).

I23 Number of terminals currently connected.

I24 Time at beginning of this session.

I25 Date.

I26 First element of the vector I27.

I27 Statement numbers in the state indicator.

FOOTNOTES

1. The APL/B5500 manua I (1) is not c I ear about th,ts. The commands
seem to indicate that the user must know both the B5500usercode

and the I ibrary prefix. I f this is true, it requi res
revealing B5500 account numbers in order to share libraries;
however, a user would have to know bnth t~e 85500 account number
and the APL user code in order to log in and change or delete
a library.

2. If {library numbed is not specified, the user code used in the
login is assumed.

3. "Library name" is 85500 account number followed by
by library suffix.

39

" " , , followed

REFERENCES

1. Ki Idall, G., Smith, L., Swedine, S., and losel, M.
APL/B5500 Manual, University of Washington Computer Center,
Seattle, 1971.

2. Falkoff, A. D. and Iverson, K. E. APL\360: User's Manual,
IBM Corporation, New York, 1968.

3. Berry, P. C. APL\360 Primer, IBM Corporation, New York, 1968.

40

