
Georgia
Institute

of
Technology SCHOOL OF INFORMATION AND COMPUTER SCIENCE / (404) 894-3152 / ATLANTA, GEORGIA 30332

TIME SHARING SYSTEM

USERS MANUAL

for the

BURROUGHS B5700

July 1972

ACKNOWLEDGEMENTS

This manual describes the B5700 Time Sharing System which
was developed and supplied by Burroughs Corporation, Detroit,
Michigan. It has been previously described in a BUrroughs
publication entitled the "B5700 Time Sharing System Terminal
Users I Guide." The lbrroughs supplied software implementing
many of the Command and Edit language verbs has been modified
by the Rich Electronic Computer Center CRECC) staff. In addi­
tion, software generated by the RECC staff has been added to
implement new verbs. This manual includes the description
of many verbs as contained in the Burroughs publication but
with considerable expansion, including much original material
and many examples. Georgia Tech is indeed grateful to the
Burroughs Corporation for developing and supplying such an
excellent Time Sharing System.

This manuscript was prepared by the Staff of the Rich
Electronic Computer Center and was released to the School of
Information and Computer Science for publication.

Table of Contents

Page

1. FEATURES OF THE TIME SHARING SYSTEM · · · · · · · 1-1
1.1. Development and Installation History · · · · 1-1
1.2. Design Features of the Fundamental System · · · 1-2
1.2.1. The Master Control Program (MCP) · · · · · · 1-2
1.2.2. Hardware Status Monitoring · · · · · 1-3
1.2.3. "Fail-Soft" Capability · . · · · · 1-3
1.2.4. Dynamic Resource "Management · · · · · · · · 1-3
1.2.5. Multiprogramming and Multiprocessing · · · · · 1-4
1.2.6. Automatic File Recognition . · · · · · · · · · · · 1-4
1.2.7. Peripheral Device Independence · · · · · · · · 1-4
1.2.8. Homogeneous Hardware Architecture · · · 1-5
1.2.9. The Georgia Tech B5500 Configuration · · · · · · · · · 1-5
1.2.10. Hardware Stack · . . · · · · · 1-5
1.2.11. Polish Notation Machine Language · · · 1-6
1.2.12. Program Reference Table (PRT) and Reentrant Code 1-6
1.2.13. Hardware Presence Bit Checking · · · · · · · · · · · · · · 1-7
1.2.14. Virtual Memory . . · · · · · · · · · · · · · · 1-7
1.2.15. One-Pass Compilers · · · · · · · · 1-7
1.2.16. Automatic Program Segmentation · · · · · · · · 1-8
1.2.17. System Software Written in ALGOL · · · · 1-8
1.2.18. Comprehensive Accounting · · · · · · · · · 1-8
1.3. Additional Features of the Time Sharing System 1-9
1.3.1. Predictable Response Time of the TSMCP · · · · . 1-9
1.3.2. Time Slicing in the TSMCP · · · · · · · · · · · 1-9
1.3.3. The Time Slicing Algorithm · · · · · · · · · · · · 1-10
1.3.4. Processing Philosophies of the DCMCP and TSMCP · · · · · 1-10
1.3.5. The Command and Edit Language Processor (CANDE) 1-11

2. USING THE TIME SHARING SYSTEM • 2-1
2.1. Overview of a Session · · · · · 2-1
2.2. Input Messages · · · · · 2-1
2.2.1. Backspacing . . · · · · · 2-2
2.2.2. Line Deletion . . . · · · · · · · · 2-2
2.3. CANDE Command Processing · · · · · · · · 2-2
2.3.1. Compound Commands · · · · · · · · 2-3
2.4. CANOE Error Messages · · · · · 2-3
2.5· Typographic Conventions 2-3
2.6· Attachment Procedures · · · · · · · 2-3
2.7. Detachment Procedures · · · · · · 2-4
2.8. Characteristics ofCANDE Commands · · · · · · · 2-5
2.9. Executing Programs from Public Library · · · · 2-6
2.10. Executing User-Defined Programs · · · · · · · · 2-6
2.11. Definition of File, File-name, and File-type 2-8
2.12. Definition of Work-file. · . · · · · · · · · · · · · 2-8

i

2.13.
2.13.1.
2.13.2.
2.13.3.
2.13.4.
2.13.5.
2.13.6.
2.13.7.
2.13.8.
2.13.9.
2.14.
2.14.1.
2.14.2.
2.14.3.
2.14.4.
2.14.5.
2.14.6.
2.14.7.

Table of Contents (Contld.)

Manipulating the Work-file
MAKE • • • • • • • • •
SEQ
FIX ,DELETE
PRINT, RESEQ • •
WARNING
LOAD, ADD, MERGE, RMERGE, COpy •
REPLACE, FIND • • • • .• •
COMPILE, DO, EXECUTE, RUN
SAVE, RENAME, MONITOR .•••
Other Commands • • • • • • . • • •
FILES, REMOVE, CHANGE ••••
WHATS, LIST FILES, LOCK, UNLOCK ,PUBLIC , GUARD
PUNCH, TAPE, ?END ••••
TO • • • • • • •.• • • . • . • •
SET, RESET, TYPE OPTIONS, BREAK, WRU •
EQUATE, LIST PROGRAM FILES •
?, SCHEDULE, STATUS, STOP

3. EXAMPLE REMOTE TERMINAL SESS IONS
3.1. Introduction •.
3.2. Sample Sessions ..••

4. DETAILED CANDE COMMANDS · · · · · · · 4.1. General . · · · · · · · · · · · 4.2. Typographic Conventions · · · 4.2.1. Notation Used in Verb Syntax Formats · 4.2.1.1. Parentheses · · · . . . · · 4.2.1.2. Vertical Bars · · · · 4.2.1.3. Brackets .
4.2.1.4. Lower Case Letters · 4.2.1.5. Upper Case Letters · 4.2.1.6. Ellipsis Periods · · · · . 4.2.1.7. Underlines · · · · . · · · 4.2.1.8. Concatenation · · · · 4.2.2. Examples of Use of Notation
.4.2.3. Definitions of Important Terms . · · · · 4.2.3.1. Sequence-list · · · · · · 4.2.3.2. Resequence-info · · · · 4.2.3.2. Program-parameter-info · · 4.2.3.4. Examples of Use of Definitions · · · · · 4.3. CANDE Commands · 4.3.1. ADD jAPPEND · · · · 4.3.2. BYE
4.3.3. CALL .
4.3.4. CC · . · · 4.3.5. CHANGE FACTOR
4.3.6. CHANGE . . · · · · ·

ii

· ·
· · · · ·
·

· · ·

· ·

· · ·
· · · ·
· · ·

· ·

·

·

· ·

· ·

· ·

2-9
2-9
2-9
2-9
2-10
2-10
2-10
2-11
2-11
2-12
2-12
2-12
2-13
2-13
2-13
2-14
2-14
2-15

3-1
3-1
3-1

4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4'~.2

4-3
4-3
4-3
4-3
4-3
4-5
4-5
4-9
4-10
4-13
4-14
4-15

4.3.7.
4.3.8.
4.3.9.
4.3.10.
4.3.11.
4.3.12.
4.3.13.
4.3.14.
4.3.15.
4.3.16.
4.3.17.
4.3.18.
4.3.19.
4.3.20.
4.3.21.
4.3.22.
4.3.23.
4.3.24.
4.3.25.
4.3.26.
4.3.27.
4.3.28.
4.3.29.
4.3.30.
4.3.31.
4.3.32.
4.3.33.
4.3.34.
4.3.35.
4.3.36.
4.3.37.
4.3.38.
4.3.39.
4.3.40.
4.3.41.
4.3.42.
4.3.43.
4.3.44.
4.3.45.
4.3.46.
4.3'.47.
4.3.48.
4.3.49.
4.3,.'50.
4.3.51.
4.3.52.
4.3.53.

Table of Contents

CHANGE TYPE
COMPILEIC
COpy
CREATE
DELETE • • •
DISPLAY ID • •
DO I EXECUTE IE
EQUATE ••
FILE IFILES.
FIND
FIX
GUARD
HELLO
LISTIL
LIST FILES
LIST PROGRAM FILES
LOAD
LOCK •
MAKE
MERGE
MONITOR
PRINTlp
PUBLIC
PUNCH
REMOVE
RENAME ••
REPLACE I REP
RESEQ
RESET
RMERGE
RUNIR
SAVE.. •
SCHEDULElsCH
SEQ IS. • •
SET
SS
STATUS
STOP.
TAPE.
TIME.
TO
TYPE.
TYPE OPTIONS
UNLOCK
UPDATE.
WHATS
?

iii

(Cant I d.)

4-16
4-18
4-23
4-27
4-29
4-33
4-35
4-37
4-40
4-41
4-44
4-47
4-50
4-51
4-55
4-59
4-60
4-61
4-63
4-64
4-66
4-68
4-69
4-70
4-72
4-74
4-75
4-79
4-83
4-84
4-81
4-91
4-93
4-97
4-98
4-100
4-101
4-102
4-103
4-106
4-107
4-109
4-111
4-112
4-113
4-117
4-119

5·
5·1.
5·2 ·
5·3·
5·4.
5·4.1.
5·4.1.1.
5·4.1.2.
5·4.1·3·
5·4.1.4.
5.4.1·5·
5·4.1.6.
5·4.2.
5·4.2.1.
5·4.2.2.
5·4.2.3·
5·4.2.4.
5·4.2·5·
5·4.3.
5·4.3.1.
5·4·3.2.
5·4.4.
5·4.4.1.
5.4.4.2.
5·4.4.3.
5·4.4.4.

APPENDIX A -
APPENDIX B -
APPENDIX C -
APPENDIX D -
APPENDIX E -
APPENDIX F -

Table of Contents (Contrd.)

FILE HANDLING ON THE B5700 TIME SHARING SYSTEM
General • • • . • . •
Storage Media Available • • . . • • . • . . .
Comparison of Different Storage Media • • . .
Procedures for Using Different Storage Media
Disk Files • • • •
General • . . • . • • • •
Weekly Disk Usage Report
ACTIVE and EXPIRED Files
Disk File Naming Conventions

• •

Disk File Blocking and Other Conventions
Transferring Files Between Batch and Remote Modes
Magnetic Tape Files • . • • • . • • • • • • •
General Procedure . . • • • • • • • • • •
How to Determine Tapes Currently Mounted
How to Purge a Saved Tape • • • . •
How to Copy Disk Files to Tape
How to Reload Tape Files to Disk
Remote Terminal Files • • • . • .
How to Declare REMOTE Files • . • • • • • • • •
How to Use Free-Field Input and Output
PRINTER, CARD PUNCH, and CalcompPlotter Files ••••
Retrieval of Output
Line Printer Files ••••
Card Punch Files
Calcomp Plotter Files •

B5700 REMOTE CHARACTER SET •
CANDE RESERVED WORDS . • •
B5700 FILE SECURITY SYSTEM • •
CANDE MESSAGES • • . • • • .
I/O ERROR MESSAGES • • • • •
B5700 CANDE COMMANDS--QUICK REFERENCE INFORMATION

iv

5-1
5-1
5-1
5-1
5-3
5-3
5-3
5-4
5-4
5- 5
5-6
5-11
5-14
5-14
5-15
5-15
5-15
5-16
5-17
5-17
5-18
5-18
5-18
5-19
5-20
5-20

A-I
B-1
C-l
D-l
E-l
F-l

1. FEATURES OF THE TIME SHARING SYSTEM

The Time Sharing System utilizes the most recent operating system software

to be developed by Burroughs Corporation for the B5500/B5700 hardware. Both

the current hardware and software result from many years of evolutionary

development under the Burroughs approach to computer system design. This

approach is to totally integrate both hardware and software through a policy

of cross-training the design specialists. Hardware engineers learn the

intricacies of software architecture, and software specialists learn the

subtleties of hardware logical design. These people are then merged into a

single system design team.

1.1. Development and Installation History

In the late 1950's, such a team produced the hardware and software design

specifications for the Burroughs B5000 computer system. In 1963, one of the

first B5000's was installed at Georgia Tech using the original software

operating system called the Master Control Program (MCP). At that time the

B5000 was used only for batch processing, the only access mode for which it was

designed. In 1965, the hardware configuration was expanded. The most signifi­

cant changes were the addition of a second central processor and the replace­

ment of auxiliary drum storage with disk storage. A revised software operating

system, called the Disk File Master Control Program (DFMCP), was supplied to

utilize the new storage medium. Batch processing was still the only mode of

access. At this time, Burroughs changed the name of the system from the B5000

to the B5500.

In 1966 and 1967, the hardware configuration was again expanded. This

time the most significant change was the addition of telephone interface equip­

ment. A revised operating system, called the Data Communications Master

Control Program (DCMCP), was supplied by Burroughs to support the remote

terminal access mode in addition to the usual batch processing. These events

made available for the first time at Georgia Tech the new dimension of remote

computing. The features of the original Master Control Program software were

broad enough to require only a modest amount of alteration to produce the DCMCP. ,
Although the DCMCP permitted remote users to interact and converse with their

programs, it treated remote jobs more or less the same way it treated batch

jobs. This caused some remote users to sit idle for extended periods of time

1-1

before their jobs were initiated; however, once the job was initiated, the

response time was usually satisfactory. Psychologically, this left something

to be desired. One solution which developed for this problem was time slicing,

or true time sharing.

The B5500 Time Sharing System eliminated this inadequacy and has been in

use at Georgia Tech since June 21, 1971. No hardware enhancements were

required, nor have any been made since 1967. Again, only the software

operating system was modified and called the Time Sharing Master Control Pro­

gram (TSMCP). Since both the DCMCP and the TSMCP evolved from the same origin,

they both contain the same important features of the original design, and

they differ only in certain resource management strategies. Currently, the

TSMCP is used during certain hours of each day for remote operations with some

concurrent background batch processing, and the DCMCP is used during other

hours for batch processing only.

In 1970, Burroughs announced the availability of certain additional hard­

ware for the B5500, such as extended core memory and a data communications

processor. Newly installed B5500 systems with these hardware features are

called B5700 systems. The Georgia Tech system does not contain either of these

features. Subsequent to the B5700 announcement, some new Burroughs publications

and several revisions to older manuals used the term B5700 in their titles.

At the present time, all software and programmer reference manuals with either

B5500 or B5700 in their titles are pertinent to the Georgia Tech system.

1.2. Design Features of the Fundamental System

The original B5000 system contained many significant features, primarily

as a result of the unified hardware and software design approach. All of these

original features are still present in the system as it now exists, although

many changes and enhancements have been made in the interests of user convenience

and operational efficiency. Some of the more significant features will be

described rather briefly.

1.2.1. The Master Control Program (MCP)

One of the B5000 design objectives was a system capable of controlling

its own resources and scheduling work on a dynamic basis. This was accom­

plished with the operating system software, originally called the Master Control

Program, or MCP. Later, as significant capabilities were added to the MCP,

it was called the DFMCP, the DCMCP, and now the TSMCP. The MCP (all of them)

1-2

is the controlling traffic director of the entire system. It is always in

control of the hardware, or has the means of regaining control. Its main func­

tion is to permit the hardware to process all the user jobs presented to it

by the human operator. Furthermore, it must perform all of the many, many

tasks associated with job processing as efficiently as possible. To be

efficient it must be cognizant of the resources available, the resources

needed by each user job, and be able to allocate and deallocate resources to

the job stream as quickly as possible.

1.2.2. Hardware Status Monitoring

In many operating systems the available resources (hardware configuration)

are specified as parameters when the software is assembled for loading (system

generation). In such systems, if the hardware configuration should change,

either by adding more devices such as core memory, tape units, card readers,

etc., or by removing some device, possibly for temporary maintenance, the

operating system may require partial or complete regeneration. In Burroughs

systems, the MCP continually checks the status of the total system. It main­

tains comprehensive but compact availability tables that indicate the number

of tapes, disks, printers, lines, I/O channels, and other devices which are

available and ready. Changes in status are easily detected because of the high

degree of hardware-software integration.

1.2.3. "Fail-Soft" Capability

This dynamic assessment of .current resources permits a fail-soft capability;

i.e., malfunctioning devices can'be dynamically removed for maintenance and

the system continues to function. Of course, there are fewer resources and

throughput decreases, but, nevertheless, the machine continues to function.

A memory module, an I/O channel, a peripheral device, or even a central

processor in a two-processor system, can be taken off-line and the MCP will

reroute the work around the missing components; certain devices may even be

removed while the system is operating without causing system failure.

1.2.4. Dynamic Resource Management

Provided with up-to-date resource availability tables, the MCP is able to

dynamically assign certain resources to a particular user job. Rather than,

at job initiation time, assign all the resources that will ever be needed,

specific resources are dynamically assigned and deassigned to each job as

required. This dynamic assignment is accomplished not only for peripheral

devices such as tapes, printers, etc., but also for the floating I/O channels

1-3

and main core memory. This means that only that portion of main core memory

(the most expensive resource) which is actually required at that instant is

ever assigned to a job.

1.2.5. Multiprogramming and Multiprocessing

Because most jobs require only a portion of the total system resources at

any given instant (especially core memory), the MCP is able to initiate

several jobs concurrently and assign them disjoint sets of resources. With

only one or two central processors, only one or two of the jobs "in the mix"

may be in execution at any given instant; however, the processor(s) may be

assigned to different active jobs during brief, disjoint intervals of time.

This ability to have many jobs (or programs) concurrently active is called

multiprogramming. If a system contains two or more central processors and is

able to execute simultaneously a job in each processor, it is said to be

capable of both multiprocessing and multiprogramming. Furthermore, the sets

of resources assigned to the active jobs need not necessarily be disjoint.

Since assignments are made dynamically, they need only be disjoint with respect

to time. This leads directly to the concept of "time-sharing" of resources,

although the current discussion pertains to a feature of the batch processing

MCP.

lQ2.6. Automatic File Recognition

A practical necessity of the multiprogramming MCP is the authority to

make specific peripheral device assignments. A desirable consequence is that

the programmer need not, in fact can no~, make specific unit assignments. The

programmer need only specify the type of device and then address all program

and data files by name only. For example, if a program needs to create a

tape file, the MCP assigns an available tape unit and thereafter associates

that unit with the programmer's choice of file name. Similarly, if a program

requires some particular tape file for input, it is called by name only. The

operator can mount the tape on any available unit and the MCP automatically

recognizes the file name and makes the unit assignment.

1.207. Peripheral Device Independence

Automatic file recognition also facilitates the realization of true

device independence. This permits magnetic tape and disk to be used as

backup, or pseudo-devices, for the card readers, line printers, and card punch.

Instead of forcing a job to wait for access to a busy peripheral device, the

MCP automatically. assigns a temporary backup device. This feature provides a

considerable increase in efficiency and throughput.

1-4

1.2.8 Homogeneous Hardware Architecture

The hardware architecture which makes multiprogramming and dynamic resource

allocation practical is centered around two exchanges--the memory exchange and

the input-output (I/O) exchange. Each central processor can access any of the

eight core memory modules through the memory exchange. Likewise any of the

four floating I/O channels can access memory without interfering with the

processors. In turn, the I/O channels can access any of the peripheral devices

through the I/O exchange. Thus, both processors and all I/O channels could

simultaneously access different modules of memory. The exchanges contain the

logic necessary to float the access requests to a free I/O channel. Each I/O

channel contains the logic and registers necessary to autonomously complete

the information transfer once it has been initiated.

1.2.9. The Georgia Tech B5500 Configuration

The Georgia Tech configuration is as follows:

2 Central processing units

8 Core memory modules (4,096 words each)

4 Floating I/O channels

10 Magnetic tape units, 7-track, 200 and 556 BPI

3 Disk storage modules (1,200,000 words each)

2 Line printers (1100 lines per minute)

2 Card readers (1400 cards per minute)

1 Card punch (300 cards per minute)

1 Operator console (called Spa)

12 Telephone line adaptors and buffers

1.2.10. Hardware Stack

The machine language instructions of most computer systems consist of a

command part and an address part--the command specifies the action and the

address specifies the location of the operand. Instead of the usual format,

the Burroughs hardware executes instructions expressed in "Polish notation,"

and utilizes a push-down stack. The stack consists of two registers and a

contiguous area of core memory. Some instructions cause new operand values

to be placed in the top of the stack (the registers) causing older values

to be pushed down (into core memory). Other instructions remove the value

at the top causing lower values to be automatically raised, thus keeping

the two registers at the top effectively always full. Other i~structions

specify an arithmetic operation to be performed, where the operands are by

definition the values in the top of the stack.

1-5

1.2.11. Polish Notation Machine Language

For example, the ALGOL assignment statement (just like FORTRAN except for

the assignment operator :=)

D := (A + B)/C

when expressed in Polish notation becomes

AB+C/D:=

Polish notation eliminates the need for conventional rules of arithmetic

precedence and bracket grouping of values within expressions. The rule that

applies is: Follow two arithmetic values (the operands) with the operation

(the command) that is to use those·values. Thus, by definition, every mathe-

matical operator works on the most recently obtained pair of operands which

are always in the two registers at the top of the stack. The instructions

needed· to execute the assignment statement shown above are as follows:

Push the value of A into the top of the stack.

Push the value of B into the top of the stack.

Add, destroying the values of A and B and leaving (A+B) in the top of

the stack.

Push the value of C into the top of the stack.

Divide, destroying the values of (A+B) and C and leaving the quotient

in the top of the stack.

Store the top of the stack as the new value of D, leaving the stack

empty.

1.2.12. Program Reference Table (PRT) and Reentrant Code

The B5500/B5700 machine language instructions may be placed anywhere

in core memory and are fetched sequentially by a central processor for

execution. The values of simple variables, pointers to the locations of

multidimensional data arrays, pointers to subroutines, etc., are kept

separately from the instructions and the stack in a contiguous area of core

called the Program Reference Table (PRT). Notice that the instructions need

only reference certain relative positions in the PRT (and the stack). This

means that the same set of instructions could produce different results

depending on the contents of the PRT. Such instructions are said to be

reentrant, meaning that two or more jobs, each with its own separate PRT

and stack, could be concurrently executing .the same set of instructions.

B5500 instructions, or code, are always reentrant, yielding great economy

in the use of core memory.

1-6

1.2.13. Hardware Presence Bit Checking

A further economy in the use of core memory is accomplished by a unique

hardware feature called the "presence bit." A pointer (descriptor) to each

data array (and code segment) is kept in each job's PRT. When an instruction

attempts to call a value from a data array into the stack (or branch to a new

code segment), the central processor examines the presence bit in the

descriptor. If the bit indicates the data array is currently located in

core, the value is obtained and execution continues. If the presence bit

indicates it is not present, the program is suspended and the MCP is auto­

matically called. From the descriptor the MCP determines where the array is

located on disk, copies the array into some available core area, places the

address of this area in the descriptor, and turns the presence bit on. The

same instruction is then reexecuted. By this means, all data arrays (and

all code segments) for a job need not be present in core at the same time.

This permits the MCP considerable latitude in allocating and deallocating

core space as a function of time, thus minimizing the total core memory

resource requirements.

1.2.14. Virtual Memory

The hardware presence bit and the MCP's ability to dynamically manage

core space provide the programmer with a luxury called "virtual memory." This

means that the total core requirements for a program may be far in excess of

the actual core installed (32,768 words) and the program will still run.

Furthermore, this is accomplished completely automatically by the system

without programmer awareness. The MCP allocates and deallocates core space

in exact area sizes demanded by the programs, and the hardware guarantees

the data or code is actually present before it is referenced. The only

remaining requirement is automatic program segmentation which is accomplished

by the compilers, or language processors.

1.2.15. One-Pass Compilers

The function of a language processor is to convert a program written in

some high-level language, such as ALGOL, BASIC, COBOL, FORTRAN, or GTL into

machine language instructions and at the same time organize the data to be

used as operands for those instructions. Depending on the nature of the

machine language instructions and hardware organization, the compilation

process can sometimes be quite tedious and time consuming, requiring many

passes through the source language statements to fill in all the core

1-7

addresses and organize the data. The resulting object code is often not as

efficient as it might have been if the programmer had used some lower level

language, such as an assembly language (similar to machine language). However,

the integrated hardware-software design of the B5500 permits extremely fast,

one-pass compilers to usually produce the most efficient object code possible.

1.2.16. Automatic Program Segmentation

The compiler-oriented hardware only requires the compilers to produce

machine language instructions in Polish notation, which is, itself, a high

level language. The hardware push-down stack to automatically hold inter­

mediate results, the hardware indirect addressing through the PRT, the hard­

ware presence-bit checking, and the software in the MCP to manage core space,

all contribute to further simplify the compilers' tasks. Each compiler con­

tributes to core management efficiency by automatically segmenting each

program on the logical boundaries of the language; for example ALGOL according

to blocks, COBOL according to paragraphs, and FORTRAN according to subroutines.

1.2.17. System Software Written in ALGOL

With fast, efficient compilers there is no need for programmers to use

anything but high level languages, such as ALGOL, GTL, FORTRAN, COBOL, or

BASIC. Each different language has its own unique features and its own

group of devotees. However, some features of ALGOL, such as the ability of

a procedure (subroutine) to call itself recursively, coupled with the ability

of the stack to hold a large number of intermediate results, make it an

extremely attractive language in which problem solutions may be stated very

concisely. For this reason, Burroughs chose ALGOL as the language in which

to write all the system software which has evolved, for all practical pur­

poses, without an assembly language. Not only is the MCP written in ESPOL

(a special dialect of ALGOL) but all of the compilers, including the ALGOL

compiler itself, are written in ALGOL. Thus, all the system software is

quite concisely documented, but, nevertheless, quite efficient.

1.2.18. Comprehensive Accounting

A v~ry necessary feature of the multiprogramming MCP is the ability to

account for the resources used by each individual job that is processed.

A very comprehensive logging system provides detailed information concerning

processor time, I/O channel time,peripheral device usage, and disk space

occupied. This detailed information is summarized and reported to Georgia

Tech users in weekly Status Reports. The Status Reports show itemized charges

incurred by each user for the current week plus the cumulative charges for the

fiscal year.

1-8

1.3. Additional Features of the Time Sharing System

In addition to the features already described, the Time Sharing System

contains two additional ones. The first is the use of the Time Sharing

Master Control Program (TSMCP) instead of the Data Communications Master Con­

trol Program (DCMCP). The second is the Command and Edit (CANDE, pronounced

candy) language processor.

1.3.1. Predictable Response Time of the TSMCP

The most serious disadvantage of the DCMCP is the fact that it processes

remote jobs in the same manner as batch jobs. Its batch processing capabilities

are excellent, providing high utilization of all resources and good throughput

via multiprogramming. When the core memory requirements of the active batch

jobs reach a certain threshold, the DCMCP refuses to initiate additional jobs

in order to avoid an excessive overlay situation. A certain amount of core

memory overlay is healthy, but an excessive amount is highly inefficient. For

this reason the DCMCP is quite efficient over long periods of time and gives

good response to the active jobs, but may force both batch and remote jobs to

remain uninitiated for uncertain periods of time. Even a few minutes of com­

plete inactiv~ty can be most frustrating to a remote user. Thus, the

unpredictable response time of the DCMCP to remote users' demands is its most

serious deficiency. The TSMCP overcomes this deficiency by providing a predict­

able response time.

1.3.2. Time Slicing in the TSMCP

Each remote user desires fast and predictable responses. In fact, each

remote user desires to have the exact kind and quantity of system resources

made available to him whenever he needs them; i.e., to have sole use of the

entire system. However ideal this might be from the viewpoint of the remote

user, it is highly inefficient and impractical. The TSMCP attempts to create

this sole-user illusion to many remote users by providing each user with

reasonably fast, predictable, and equitable responses. Each remote job is

executed for a short period, or slice, of time. It is then rolled out (swapped)

from core memory to disk and the next job is rolled in and executed during

its time slice. Therefore, each remote user receives his fair share of time,

and within a brief cycle of time, all users receive a response from the

system. All of the time required for the TSMCP to roll jobs in and out of

core is, in many cases, wasted time. However, this inefficiency is the price

that must be paid for predictable response time.

1.3.3. The Time Slicing Algorithm

The number of successive time slices required to complete a given task

depends on the nature and magnitude of the task. Simple tasks, such as

listing a source language statement or entering a data value to a program,

can usually be completed during one time slice. More complex tasks, such

as inverting a large matrix, may require many, many time slices. The total

time required to cycle through all remote jobs and give each user a response

depends on the number of users and whether each job utilizes its full time

slice. When a job is first initiated (enters the mix), it is assigned to an

area in core which minimizes conflict with other active jobs. It is then

given an immediate time slice. If necessary, jobs in core are rolled out

to make room for the new job, unless they are also getting their first time

slice. In that case, the new job is placed at the head of the queue of jobs

waiting for a time slice. There are five main conditions which cause a

remote program to be rolled out:

(1) The program is input limited; i.e., it is waiting for data from

the remote terminal.

(2) The program is output limited; i.e., it has generated enough data

to fill the disk buffer a'rea assigned to it.

(3) The program has used its time slice without becoming input or

output limited.

(4) The program has reached completion.

(5) The program is forced out to make room for an entering or re-entering

job.

1.3.4. Processing Philosophies of the DCMCP and TSMCP

This swapping feature of the TSMCP is the major difference between it

and the DCMCP. The job processing philosophy of the DCMCP may be summarized

as follows:

(1) Don't initiate a new job unless its initial core requirement can

be satisfied, but initiate as many as possible.

(2) Once initiated, don't interrupt a job unless it needs assistance,

such as an input/output operation, more core space, or job completion.

(3) Once interrupted, don't reassign all of a job's core space but

only those areas that can be easily restored.

1-10

The job processing philosophy of the TSMCP may be summarized as follows:

(1) Always initiate a new remote job as soon as it is presented.

(2) Always interrupt a job at the end of its time slice.

(3) Always give each active job its time slice in cyclic order.

(4) Always make core space available for a new or reentering job, even

if all areas assigned to older jobs need to be swapped.

(5) If none of the remote jobs can utilize their time slices during a

cycle, then devote a time slice to a batch job.

From these two descriptions, it should be clear that the TSMCP, or any

other time sharing system, is inherently inefficient. The TSMCP attempts to

overcome some of this inefficiency by dividing core memory into two parts

separated by a "fence." The area below the fence, in which only certain

kinds of tasks are run, is managed according to the DCMCP philosophy, while

the area above the fence is managed according to the TSMCP philosophy. Never­

theless, inefficiency does exist, but the compensation is the predictable

response time required in any satisfactory time sharing system.

1.3.5. The Command and Edit Language Processor (CANOE)

The primary function of any operating system, such as any version of

the MCP, is to process the jobs as they are presented. The MCP must be

provided with certain information about each job, such as the name of a program

to be executed, or which compiler is required, etc. Such information is

supplied on control records in batch mode, and takes the form of commands to

the MCP. Under the Time Sharing System, remote users converse with a program

called CANDE, which accepts users' commands. Some of these commands are

acted upon by CANDE, itself; others are passed to the TSMCP along with additional

information supplied by CANDE. CANOE acts as the interface between the remote

user and the rest of the system. One of CANOE's most useful functions is to

assist in creating and editing source language and data files, prior to

passing the file name to a compiler or program. Each CANOE command takes the

form of a special verb which is usually followed by one or more parameters,

some of which may be optional. The order in which various commands are entered

by the user, and the options of particular commands, depend on what the user

desires to accomplish. An overview of CANDE capabilities, along with the

corresponding verbs, is presented in Section 2. The syntax of each verb is

presented in alphabetical order in Section 4, accompanied by all the optional

parameters and their meanings.

1-11

2. USING THE TIME SHARING SYSTEM

2.1 Overview of a Session

The B5700 Time Sharing System (TSS) can be accessed during specified

hours of the day from a Teletype, or other similar terminal. Each remote user

should consult his Departmental Computer Coordinator for the most current infor­

mation on the hours of availability of TSS and the departmental procedures for

using a terminal. The Departmental Computer Coordinators are also responsible

for obtaining RECC Reference Numbers (account numbers), user-codes, and pass­

words and issuing them to each individual user.

A user begins a TSS session by dialing the proper B5700 telephone

number and then, when requested, supplying his own personal user-code and

password. If these are recognized as valid, he is logged on and may start

to work. His session may terminate in a variety of ways, but usua11y·by

his entering BYE, in which case he is logged off and his terminal is discon­

nected. These attachment and detachment procedures are explained in detail

in subsequent paragraphs.

Once a user is logged on, he is in communication with the Command and

Edit Language Processor, called CANDE. CANDE is a conversational, multi-user

program that acts as an interface between the user and the rest of the system.

A user's specific requests are expressed in the form of CANDE commands. Each

command takes the form of an English language verb which is usually followed

by one or more parameters, some of which may be optional. There are about

fifty CANDE verbs, each of which results in an action closely resembling its

English language connotation. This resemblance, and the fact that some

pairs of verbs are synonymous, make the CANDE language quite easy to learn.

The many possible combinations of optional parameters add to its richness.

The sequence in which a user enters commands and the optional parameters he

specifies depend solely on what he desires to accomplish. The same end

results can usually be achieved in a variety of ways; the particular choice

is left to the knowledge, expertise, and style of the user.

2.2 Input Messages

Input to the system consists of messages entered from a remote terminal,

usually from a keyboard or paper-tape reader. Each such message must be

followed by an end-of-message indicator, which is a carriage return (CARR RET)

2-1

or a left arrow (~). After this indicator has been entered, the system

normally responds with a carriage return and line feed which positions the

print head for the next input message. For the purposes of this manual, it

is considered advantageous to have a single printable character to represent

the end-of-message indicator, and the left arrow will be used for this pur­

pose. The system ignores line feed characters entered by the user. They

may thus be used to enhance the readability of inputs to the system.

2.2.1. Backspacing

The apostrophe (') may be used as an equivalent backspace (the print

head does not move backward) to delete the most recently typed character.

Repeated use of the backspace deletes a corresponding number of characters,

but only to the start of the current line. For example

MAKE XYZ'2

would appear to CANDE as

MAKE XY2

2.2.2. Line Deletion

Prior to entering the left arrow, an entire line can be easily deleted

by typing an exclamation point (!) After a delete is entered, the system

types DEL and sends a carriage return and line feed to position the print

head at the start of the next line. The delete can be used repeatedly; however

only the current line can be deleted with the exclamation point. For example:

X = SQRT(X','d'-2+Z !DEL

100X = SQRT (X~b''-2+Z**2)~

2.3~ CANDE Command Processing

As previously stated, most CANOE commands may be followed by a list of

parameters. The parameters in the list must be separated from the verb and

from each other by either commas or blanks. The choice is completely optional

and need not be consistent within a given command.

When CANDE has finished processing a command, it types a message either

confirming successful completion or indicating an error. After certain verbs,

a number sign is typed to indicate successful completion. Errors terminate

the processing of a command and the entire line must be retyped correctly.

Between the time a command is entered and response is received from CANDE,

the user should not normally enter anything from his terminal.

2-2

2.3.1. Compound Commands

If complete commands are separated by semicolons, more than one command

may be entered on a single line. However, if an error is contained in a

command, any further commands on that line are ignored.

2.4. CANDE Error Messages

CANDE error messages consist of the characters ERR: followed by a very

terse error description, such as ERR:NOFILE. The user may obtain a more

detailed explanation of any error by entering a question mark and left arrow.

These detailed explanations are printed automatically if the HELPFUL option

is set (see the SET and RESET verbs). Error messages are discussed along

with the description of each verb in Section 4. Appendix D contains a

complete alphabetical list of all CANDE responses.

2.5. Typographic Conventions

A Teletype terminal (or similar device) only prints upper case charac­

ters. Where upper case characters appear in the example, that exact sequence

of characters is implied. Variable information is indicated by lower case

characters, usually by hyphenated English words, such as "time-of-day".

2.6. Attachment Procedures

The attachment procedure is initiated by the user depressing the

ORIG (originate) button, obtaining a dial tone, and dialing the B5700 telephone

number. The telephone equipment automatically searches for a non-busy line.

If all lines are busy, the user will hear a busy signal; he should depress

the CLR (clear) button and try again later. If a non-busy line is available,

the user will hear a ringing sound. When the computer accepts the call, the

ringing changes to a short high-pitched tone (a beep) and a few seconds later

the system will type

B5700 TIME SHARING - LINE logical-line-number

where lo&ical-line-number is the system's recognition of the particular line

that was reached.

On the next line, CANDE should begin the log-in sequence by typing

ENTER USER CODE, PLEASE-

2-3

The user should comply by entering his uniquely assigned user-code (followed,

of course, by a left arrow).

The system will then respond with

AND YOUR PASSWORD

and will then black out seven spaces on the next line. The user should then

enter his uniquely assigned password on the blocked out spaces (followed by

a left arrow).

If the user-code and password do not agree with the current account

file, the system types

BADCODE
ENTER USER CODE,PLEASE-

and the log-in procedure begins again. If the user does not log in success­

fully within three minutes, the terminal is automatically disconnected.

If the user-code and password are in agreement with the current account

file, the system types the following message:

mm/dd/yy time-of-day
GOOD salutation, user-name: YOU HAVE LINE logical-line-number

The first line gives the date and time of day. The second line says "GOOD

MORNING", or "GOOD AFTERNOON", or "GOOD EVENING", as appropriate, and is

followed by the user-name that is associated with the user-code and password

just supplied, typed exactly as it appears in the account file. The logica1-

line-number is repeated.

At this point the attachment and log-in procedures are complete and the

user's session begins. He may now enter various CANDE commands and proceed

to accomplish his desired tasks. More information about this part of the

session will follow.

2.7. Detachment Procedures

When the user has completed his tasks, he must terminate the session

in one of three ways. The first method is used when no other user is waiting

to use the terminal and consists of entering the CANDE command

BYE

2-4

The system normally responds by typing

ON FOR time

C&E USE time

EXECUTE time

IO TIME time

OFF AT time-of-day

GOODBYE user-code

mm/dd/yy

and then spaces up about twelve lines and automatically disconnects the

terminal. The first line of this accounting information is the elapsed time

of the session; the second line shows the overhead processor time incurred

by CANDE for this session; the third and fourth lines show the processor

and IO times, respectively, used for processing CANDE commands, compiling,

and executing programs; the fifth and seventh lines give the time of day

and date when the session ends; the sixth line repeats the user-code that

was supplied at log-in time.

The second method of terminating a session is to depress the EOT key

on the keyboard (CTRL D). This causes the user to be logged off and his

terminal to be immediately disconnected without printing any accounting

information.

The third method of terminating a session is used when some other user

is waiting to use the terminal. In this case, the first user should enter

HELLO

which causes the system to print the same accounting information as for the

BYE command and to space the paper up about twelve lines. At this point,

instead of disconnecting the terminal, the log-in sequence is initiated

for the second user. Thus, the HELLO command accomplishes the same function

as BYE, except that the telephone connection is maintained for the convenience

of the next user.

2.8. Characteristics of CANDE Commands

After a user has successfully logged-in and his session has begun he

may proceed to accomplish his desired tasks by entering appropriate CANDE

commands. Every CANDE command, along with its parameters and possible error

messages, is explained in detail in Section 4. The commands are arranged in

2-5

alphabetical order for easy reference. Appendix F also contains an alpha­

betical list of commands along with a concise explanation of their functions

for quick reference. The user is expected to consult these two portions of

the manual for details concerning each command. However, the major functions

of some of the most frequently used commands will be introduced in the fol­

lowing paragraphs. In addition, some definitions of important terms and

concepts will be presented. The CANDE commands will always appear in upper

case characters; e.g., BYE, HELLO, CALL, DO, RUN, MAKE, etc.

2.9. Executing Programs from Public Library

A user may execute any program in the public library with the CALL

command. A complete list of these programs is given with the description of

the CALL command in Section 4. Most of these programs were designed to

solve specific kinds of problems. For example, GPSS solves simulation prob­

lems, MATRIX performs matrix manipulations, ECAP analyzes· electrical circuits,

etc. However, two of these public library programs are different in that

they permit almost any type of problem solution to be stated in their

special languages and executed interpretively. They are named APL and WIPL.

APL is a very powerful and concise language that provides many numerical and

logical operators. WIPL is a very simple and easy to learn language that

is quite useful for small problems and the interactive design of problem

solutions. APL, WIPL, and most of the other public library programs are

described in separate publications available at the Bookstore.

2.10. Executing User-Defined Programs

A user may execute a program in his own private library with the DO

command. DO and EXECUTE are synonymous and may be used interchangeably. He

may also EXECUTE a program from some other user's library provided the other

user has given his permission. Access to other users files is controlled

by a comprehensive file security system based on each user's uniquely assigned

user-code. When originally created with the SAVE command, each file is called

a sole user file, since only the creator can access it. All users can be

given blanket permission to read from a file (or execute it) with the UNLOCK

command; the creator still retains sole authority to modify its contents or

REMOVE it. The PUBLIC command (not to be confused with the public library)

permits any user to read or write or execute a file; only the creator can

REMOVE it. Its creator may return an unlocked or public file to sole user

2-6

status with the LOCK command. A variation of the LOCK command permits only

certain users or programs to access a file. The particular user-codes or

program names and the desired degree of access are contained in a separate

guard-file which is created with the GUARD command and attached to the file

with the LOCK command.

2.11. Definition of File, File-name, and File-type

As implied above, a file is any collection of information which is

regarded as a unit. It is the primary means by which a user establishes

continuity between sessions. Each file in the system has a unique identifi­

cation consisting of a file-name and a user-code. When a file is created,

the user supplies the file-name and CANDE automatically adds his user-code

to form the complete file identifier. File-names may be from one to six

characters long. The first character must be a letter and any remaining

characters must be either letters or digits in any combination. If the

user supplies more than six characters, the rightmost characters are truncated.

If a user, whose user-code is RCC1234, should create a file named PROG4, the

complete file identifier would be PROG4/RCC1234.

In addition to a file-name, a file-type is also associated with every

file in the system. A file-type must be one of the following: ALGOL, BASIC,

COBOL, CODASYL, DYNAMO, FORTRAN, GTL, TSPOL, XALGOL, INFO, LOCK, SEQ, DATA. The

first nine types specify that the file contains statements written in the

corresponding programming language. The last four types specify that, in

general, the file contains something other than program statements. A file

whose file-type is INFO usually contains the output from a line initiated by

a user with the SCHEDULE command; such jobs are to be run non-interactively

at a later time. A file-type of LOCK is associated with a guard-file which

contains particular user-codes and program names for file security purposes.

File'-types of INFO and LOCK are assigned automatically at creation time and

are of little concern to the user.

File-types of SEQ and DATA must be specifically designated by the user

and such files may contain any kind of information (including program state­

ments). Files of type SEQ (as well as all other types except DATA) contain

sequence-numbers within each record, whereas files of type DATA are not

sequenced. A sequence number is a positive integer consisting of eight

digits. All files consist of a number of 80 character records (one Teletype

2-7

line). When lines are being entered that are destined to become a record in

some sequenced file (all except DATA), the sequence-number must appear as

the first item on each Teletype line. The sequence-number specifies the

desired position of the line in the file. Even if lines are typed out of

order, CANDE arranges them in ascending numerical order. Although the

sequence-numbers are actually stored in character positions 73 through 80

in each record and are used by CANOE for ordering and editing purposes,

they are not considered to be part of the information in a sequenced file,

except for programs written in the BASIC language. Thus, only 72 characters

of information may be stored in each record of a sequenced file.

The records of files of type DATA do not contain sequence-numbers and

permit all 80 characters to be referenced for any purpose. Such files might

be created by a user program for subsequent editing by CANDE. They must

contain 10 words per record and 300 words per block. Individual records in

DATA files are referenced by their relative position in the file. The first

record is record 1, the second is record 2, etc. When records are deleted

from a type DATA file, the relative positions of the remaining records may

change.

The file-type may be specified with the TYPE command when the file is

being created. After creation, the file-type may be changed with the CHANGE

command, although caution should be exercised. A variation of the CHANGE

command also permits the file-name to be changed.

2.12. Definition of Work-file

The CANDE language allows a user to create or modify the contents of

only one file at a time--that file is referred to as the work-file. A new

work-file can be created with the LOAD command, but is more often created

with the MAKE command. A user may LOAD a copy of the entire contents of

some existing file into a newly created work-file or he may MAKE a new, but

initially empty, work-file. Once a work-file is created, its contents may

be edited with a variety of commands, which will be discussed later.

The contents of the work-file may be edited, compiled, or run just like

any other file, with one exception. The contents of the work-file do not

become permanent until the user enters a SAVE command. Thus, a work-file

may be created, edited, used and then discarded if it is no longer needed.

Similarly, a copy of an existing file can be modified and used without

affecting the original file. In the latter case, the original file could be

2-8

permanently changed, if desired, by entering a SAVE command. By choosing a

work-file file-name that is different from the original file-name, and then

SAVEing the work-file, both versions can be retained. In other words, the

work-file serves as a temporary scratchpad--its contents either can be

explicitly retained with the SAVE command or can be automatically discarded

by creating a new work-file or terminating the session.

2.13. Manipulating the Work-file

2.13.1. MAKE

Ifa user desires to write a new program in ALGOL (or any of the other

programming languages) he would probably begin by entering a MAKE command

similar to the following

MAKE ABCl ALGOL-

where ABCl becomes the file-name and ALGOL becomes the file-type of the work­

file. Since this file-type must be a sequenced file, each line he enters

must contain a sequence-number as the first item. After the left arrow

terminating each line entered by the user, CANDE stores the line in his work­

file and issues a carriage return and line feed indicating it is ready to

accept the next line. The sequence-numbers of successive program statements

are usually incremented by 100 to permit insertions at a later time. When

an insertion is necessary, simply choose a sequence-number between those of

the two desired lines, and CANDE will automatically place the new line in

the proper position.

2.13.2. SEQ

When many sequentially-numbered lines are to be entered, it is more

convenient to use automatic sequencing by entering the SEQ command. This

causes CANDE to automatically type the next sequence-number (with a constant

increment)--the user then need only enter his program statement as the

remainder of the line. Optional parameters of the SEQ command permit the

starting sequence-number and the increment to be specified. Automatic

sequencing is terminated by entering a null line; i.e., just a left arrow.

2.13.3. FIX,DELETE

It quite frequently becomes necessary to replace or delete a line that

has already been entered. To replace an existing line, terminate automatic

sequencing (if being used) and enter the desired sequence-number and the new

line. CANDE will replace the old line with the new one. The FIX command

can be used to replace a portion of a line. The DELETE command can be used

2-9

to delete lines from the work-file or another file. Small groups of lines

should be deleted individually.

2.13.4. PRINT, RESEQ

After entering several lines out of order, or making several changes

or deletions, it may be desirable to obtain an ordered listing with the

PRINT command. Variations permit a single line, a group of lines, groups

of lines, or the entire work-file to be printed on the terminal in various

manners (see LIST command syntax) •. The RESEQ command can be used to assign

new constant increment-sequence-numbers, or to move records in a file.

2.13.5 WARNING

Much time can be either consumed or conserved depending on the relative

order in which various CANDE commands are entered. As explained above, lines

of the work-file may be entered, changed, or deleted in any order. However,

CANDE does not necessarily process each editing command as it is entered.

Instead, it stores many such commands and accomplishes the desired actions

in one efficient, combined operation only when necessary. Commands which

necessitate the complete reordering of the work-file, such as PRINT, should

be used sparingly. For example, do not change a line, PRINT it, change

another, PRINT it, etc. Instead make as many changes as possible before

printing all of them. This requires that the work-file be placed in order

only once rather than many times. The UPDATE command causes the work-file

to be placed in order without printing it, but should be used only when

necessary. The PRINT CHANGES option may be used to print the changes to the

work-file since the last updating.

2.13.6. LOAD, ADD, MERGE, RMERGE, COpy

In the development of a new program it is sometimes desirable to use

all or part of some existing program, or possibly bits and pieces from

many different existing files. As already explained, the LOAD command per­

mits a new work-file to be created from a copy of an entire file. Similarly,

an entire file can be appended to the end of an existing work-file with the

ADD or APPEND command. Any portion of a file may be inserted anywhere in

the work-file with the COPY command, which also has many other useful

variations. The MERGE and RMERGE commands permit part or all of another file

to be merged by sequence number with the work-file. The FIND command is quite

useful in determining the location of the first or all occurrences of an

arbitrary character string in a file. This helps determine the parameters

needed for subsequent COpy or MERGE commands.

2-10

2.13.7. REPLACE, FIND

The REPLACE command is used to locate some character string and replace

it with another string. The FIND command may be used similarly to locate

some character string in a file without replacement. The search may span an

entire file or a specified portion of it. This provides a convenient manner,

for example, in which to change the name of some program variable in all the

statements in which it appears. However, caution must be exercised in

specifying the sought-string,else damage may be done to the file that is

difficult to repair.

2.13.8. COMPILE, DO, EXECUTE, RUN

After a source language work-file has been created and edited, the

user is ready to have it compiled and executed. These two steps can be

accomplished individually with the COMPILE and EXECUTE (or DO) commands, but

are more easily combined in the simple RUN command. The RUN command requests

CANDE to do whatever is necessary to execute the program. In the case of a

newly created work-file, it means first, to use the appropriate compiler

(as specified by file-type) to create an object code version of the program

and, second, to immediately execute the object code (if it was successfully

compiled).

If the compiler detects syntax errors, they will be printed on the

terminal along with the corresponding sequence-number. If any syntax

errors are found, no object code is produced and the implied execution con­

tained in the RUN command is inhibited. The contents of the work-file are

still intact, so after a compilation phase has ended, the user may correct

any syntax errors by entering editing commands, just as he did when creating

the work-file initially. He may alternately edit and RUN the work-file as

often as necessary. When no syntax errors are detected, an object code

file is produced and immediately executed. The user may now proceed to

test the logic of his program. He may desire to RUN it several times in

succession with different sets of test data. When a RUN command is entered

and there have been no intervening changes to the work-file source language,

the implied compilation is automatically inhibited o When changes are made

to the source language, an existing object version is automatically deleted,

thus indicating the need to recompile.

2-11

As described above, CANDE recognizes both versions of the work-file by

its single file-name and uses the appropriate one in response to the RUN

command. In contrast, the COMPILE and EXECUTE (or DO) commands specifically

refer to the source language and object versions, respectively. If the user

desires to retain the efforts of some session and enters a SAVE command,

both source language and object code versions (if both exist) are saved

under the single file-name of the work-file, such as ABCl. The file-type

is also retained (ALGOL in the example). At his next session, the user

need only enter

LOAD ABCl

and proceed as if no time had elapsed between sessions. This capability to

distinguish between source and object versions and to remember the file-type

are most convenient--the user need only remember a single file-name for each

of his programs and CANOE chooses the proper version and compiler.

2.13.9. SAVE, RENAME, MONITOR

In the example above, the work-file (both source and object versions)

were saved for use during a future session. During the course of developing

a program it might become desirable to save intermediate copies during a

single session. This is also accomplished with the SAVE command. However,

since each file in the system must have a unique file identifier, the work­

file's file-name must be changed with the RENAME command prior to entering

each SAVE command. If this is not done, each intermediate copy will be

permanently overwritten by the next one, leaving only the final copy. The

MONITOR command can be used to retain a permanent record of all changes to

the work-file. This type of audit trail can be quite useful when recalling

the events of a busy session.

2.14. Other Commands

2.14.1. FILES, REMOVE, CHANGE

Although saving intermediate copies of a program can be quite useful,

large amounts of disk storage space can be consumed. Each user should

frequently and routinely perform housekeeping chores, called library main­

tenance, especially at the end of each session. The FILES command causes

the file-name of each file created by the requesting user to be printed on

his terminal. Since the source language and object code versions of the

same program are stored in separate areas on disk, the same file-name may

2-12

be printed twice if both versions exist. The file-names of object code ver­

sions are preceded with an asterisk. Each user should examine this list of

files and REMOVE those that he no longer needs. Variations of the REMOVE

command permit source and object versions to be removed either independently

or jointly. The CHANGE command permits the file-name of any permanent file

to be altered (both source and object versions are changed jointly).

2.14.2. WEATS, LIST FILES, LOCK, UNLOCK, PUBLIC, GUARD

If the file-name as printed by the FILE command is not sufficient to

remind the user of its contents, he may enter the WHATS command and obtain

more details about a particular file. The LIST FILES command produces similar

detailed information about many files. While performing library maintenance,

the user may desire to alter the security status of his files with the LOCK,

UNLOCK, PUBLIC, or GUARD commands, as previously explained.

2.14.3. PUNCH, TAPE, ?END

All users are urged to make use of the paper tape feature of most ter­

minals. A copy of any source language file (either the work-file or a per­

manent file) can be punched into paper tape with the PUNCH command, and

provides a more permanent and economical means of storing valuable or seldom

used programs. When needed, a paper tape can be rapidly read into the work­

file with the TAPE command. The ?END command is entered to terminate TAPE

mode. Considerable time can be saved if a paper tape is prepared off-line

prior to the beginning of a session.

that produced by the PUNQH command.

The tape format must be the same as

While off-line from the computer, the

lines of the work-file that would have been entered from the keyboard can be

punched into tape. Typing mistakes can be corrected by overpunching with the

rub-out character, by recording for later editing, or by regenerating the

tape. The edited tape can then be read into the work-file very rapidly

during an on-line session.

2.14.4. TO

Sometimes it becomes necessary, or desirable, for a user to communicate

with the operator or some other active user. The TO command is used to

transmit a one-line message of the sender's own composition. TO spa sends

it to the operator and TO user-code sends it to the terminal logged in with

that user-code. Communication with the operator might be used to properly

2-13

identify or request magnetic tapes. Communication with some other user might

be desirable to discuss programming details or to request permission to use

his files, etc. When a message is received, the sender is identified so that

he may send an answer.

2.14.5. SET, RESET, TYPE OPTIONS, BREAK, WRU

When a user is running a program, CANOE attempts to· leave him alone

until it terminates. This avoids printing some extraneous message in the

middle of a neat tabular printout. However, if the user desires, he may

override this feature in certain instances. For example, he may precede

certain commands with a question mark (?) and force CANDE to accept them.

He may also SET the ALLOWMSG option indicating that he is willing to receive

any incoming messages. It might happen that a user specifically desires to

terminate a program in execution. If the program is in a print loop, he

may accomplish this by depressing the "BREAK" key on the keyboard. If the

program is not printing, he should depress the "WRU" key.

The user may SET and RESET several other options at any time during a

session. The HELPFUL option causes a full explanation of each error message

to be automatically printed, just as if the user had entered a question mark

to ask for more. Note that the question mark alone asks for an explanation

of some error message, but a question mark preceding certain commands, such

as ?TO, is used to force CANOE to accept the command at a time when it

would normally ignore it. The CONCISE option inhibits the printing of many

CANOE messages. The MONITOR option can be used to control the recording

of work-file changes, and operates in conjunction with the MONITOR command.

2.14.6. EQUATE, LIST PROGRAM FILES

There are many occasions when a user desires to change certain attri­

butes of program files. One very awkward method is to modify the source

language and recompile the program. However, this may not always be possible

and, in any event, is time consuming and undesirable. Usually, all that is

desired is to change some attributes of a few files for only one run. For

example, a new program can be more easily checked out by supplying small

quantities of test data directly from the terminal. Large quantities of

production data can be more easily read from another file which has been

previously created and edited. The EQUATE command can be used immediately

preceding a RUN, EXECUTE (or DO), or CALL command to temporarily change the

2-14

attributes of one or more files just for the duration of the following run.

The internal program file-name may be temporarily equated to some other

external file-name. In addition, the internal peripheral unit type may be

temporarily changed to any other unit type, such as the remote terminal,

the line printer, magnetic tape, disk, etc. The LIST PROGRAM FILES command

may be used to determine the internal file attributes of any object version

program to which file security will otherwise permit access. This is

especially useful with respect to programs for which documentation is not

conveniently at hand.

2.14.7. ?, SCHEDULE, STATUS 1 STOP

As stated previously, once a program is in execution CANDE will not

accept further commands. The few exceptions are those that may be preceded

by a question mark, such as TO (or SS), TAPE, DATA, END, or STATUS. This

means that normally only one program at a time can be initiated from a

terminal. Frequently this feature may be undesirable. For example, after

initiating a lengthy production run it might be desirable to begin creating

and editing another data file for a subsequent run. The SCHEDULE command

permits this to be accomplished by instructing CANDE to process commands

from a file (instead of from the terminal) and to place all its output in

some other file. Thus, while the scheduled job is running the user may be

performing other tasks. With the STATUS command, he may inquire about the

progress of the scheduled joh, or he may terminate it (where possible) with

the STOP command.

2-15

3. EXAMPLE REMOTE TERMINAL SESSIONS

3.1 Introduction

The following example sessions are intended to illustrate several

attributes of the B5700 Time Sharing System and CANDE. In several of

them, the same problem is solved several different programming languages

available on the B5700 to illustrate the techniques used in each language

for handling remote terminal files. Others illustrate specific points.

The remaining pages of this chapter are used to display a collection of

sample sessions.

3.2 Sample Sessions

3-1

M~XE EXALG ALGOL~
FILE:EXALG - TYPE:ALGOL -- CREATED
SE:]~

100BEGIN'"
200FILE REM REMOTE(1~9);~
300FO:oi!\1AT FL'1TOUTCIt N = "~U ... "AVEH~GE = ".,U>;'"
400INTEGER I,N;~
500REAL SUM,AVERAGEJ ...
600ARRAY A[O:50J;~
700READ(REM,/I,N~FOR 1:=1 STEP 1 UNTIL N DO ACII])J~
800FOd 1:=1 STEP 1 UNTIL N DO SUr1:=SU(~+A.(IJ;~

900AVE~AGE:=SUM/N;~

1000 VoIR I TE(HEM, F~·1TOUT.t ~,J., l\ VEHA GE) ; ..
1 1 OOENDtI'~
1200 ...

RUN'"

~I]l\ IT ..

c 0 L~P I LIN G •
00000700:COL ~6:II #100
UNDECL4RED IDENTIFIER.

ERR COMPILE 3.7 S~C.

*700/11/1'"
RUN ..

v/l~IT ..

CO~PILING.

RU.'JNING

10'"

-DIV BY ZERO, NEAR LINE 00000900

ERR EXALG .3 SEC.

RUN'"
RUNNING

19 ...
11 2 3 4 5 6 7 8 9~

N = 9 AVER~GE = 5.0

END EXALG .5 SEC.

REMOvE'"
I

3-2

CALL APL ..
HUNNING

APL/B5500 UW COMPUTER SCIENCE # 12122/71
LOGGED IN MONDAY 03-13-72 07:04 p~

$AVEiV~GE" ..
[1 J "N = If; (RHO X) ; fI

[2J $.-

AVEHf-lGE.-
(] ;

1 2 3 4 5 6 7 8
N ::: 9 AVEtt~GE = 5

>OFP DISCARD"

END APL 7.6 SEC.

REMOVE APLI8RY ..
t1

A V ERA G E = "; (+ / X) % RH a X: = (J ...

9 ..

3-3

MAKE EXBAS BASIC~
FILE:EXBAS - TYPE:BASIC
SEQ ...
lOOINPUT N ...
200FO?{ 1=1 ,TO N'"
300INPUT A(I)'"
400NEXT 1«-
sao FOB. ·1 = 1 TO N ..
6005=S+(.\(I)«-
700NEXT 1--
800.A=S/N'"

CREATED

900Pl"{1 NT uN = .. ,; N; It AVEi1A.GE = It,; A'"
100DEND'"
1100'"
II
RUN'"

\elAI T.

COYlPILING.

END COMPILE 3.2 SEC.

RUNNING

19~

?1,2,3,4,S,6,7,8,9,~

N = 9 AVERAGE = 5

END EXBAS .5 SEC.

REMOVE"

3-4

MAKE ExeOB COBOL~
FILE:EXCOB - TYPE:COBOL -- CREATED
SEQ ...
lOOIDENTIFICATION DIVISION.~
200PROGRAM-ID. COBOL EXAMPLE.~
300ENVIRONMENT DIVISION
400CONFIGURATION, SECTION ,
500S0URCE-COMPUTER. B-5700.~

6000BJECT-COMPUTER. B-5700.~
700INPUT~OUTPUT SECTION
800FILE-CONTROL
900 SELECT REMIN,ASSIGN TO REMOTE
1000 SELECT REMOUT ASSIGN TO REMOTE
1100DATA DIVISION.~
1200FILE SECTION
1300FD REMIN'" ,
1400 DATA RECORD REMINOl
I 50 00 1 R Ei'<1 I NO 1
1600 02 RI PICTURE 99 OCCURS 40
1 700 FD REt10UT'"
1800 D~TA RECORD REMOUT01
190001 REMOUT01
2000 02 NVAL PICTURE ZZZZZ99
2100 ,02 FILLER PICTURE X(12).~
2200 02 RESLT PIGTURE 99.99.~
2300 T,}ORKING-STORAGE.... , _
240077 N PICTURE 9(8) COMPUTATIONAL-l/'
250077 I PICTURE 9(8) COMPUTATIONAL-!
260077 SSUM PICTURE 9(8~ COMPUTATIONAL-I
2700PROCEDURE DIVISION.... ' '
2800START
2900 OPEN INPUT HEMIN OUTPUT HEMOUT
3000 ,READ REMIN AT END STOP RUN
3100 EXAMINE REMINOl REPLACING ALL SPACES BY ZEROES
3200 MOVE RI~N'l) TO N
3300 MOVE "N = AVERAGE = II TO,REMOUT01.~

3400 MOVE ZERO TO I SSUM
3 SOOL1.... .
3600 ADD 1 TO I
3700,IF I IS O'NOT GREATER THAN N ~
3800 ADD 1 TO JDEL
3800 ADD RI(~ ,+ l~,TO SSUM~
3900 GO TO LI."

.4000 MOVE N TO NVAL ...
4100 DIVIDE N INTO SSUM GIVING RESLT."
4200 WRITE REMOUTOl
4300 STOP RUN ... ,
4400~ND-OF-JOB.~

4500 ... ,
'RUN'"

WAIT-

3 .. 5

CONPILING.
**ERROR G0024001 SYNTAX ERROR

END COMPILE 7.5 SEC.

RUNNING

1,9 1 2 3 4 5 6 7 8 9~

09 AVERAGE = 05.00

END EXCOB .7 SEC.

1950 02 FILLER PICTURE ZZZZZ ...
2'*2000/ZZZZZ/'"
*2300/~/ SECTION ...
RUN ...
\'JAI T. '

COMPILING.
1"
YOUR. PHOGRAN r. S BEING GOr.~P·ILED.

END COMPILE 7.4 SEC,.

RUNNING

1 9 1 2 3 4 5 6 7 8 9 ..
N = 09 AVERAGE = 05.00

END EXCOB .6 SEC.

REMOVE"

3-6

MAKE EXFOR FORTRAN~
FILE:EXFOR - TYPE:FORTRAN -- CRE~TED
SEQ~

lOOFILE 5=REMIN~UNIT=REMOTE~RECORD=9~

200FILE 6=REMOT,UNIT=REMOTE,RECORD=9~

300REAL A(SO)'"
400READ(5~/)N~(A(I)~I=1,N)"

soono 10 I=l,N ...
60010 SUM=SUM+A(I)'"
700AV=SUM/N ...
800W~ITE(6,500)N,AV'"

900500 FOR~1~T'" N = ~·,I2,"· AVERAGE = ",F5.2); ' ...
IOOOSTOP'"
1100END'"
1200~

RUN ...

HAlT.

COMPILING.

END COMPILE 3.8 SEC.

RUNNING

19, ·1,2,3,4,5,6,7,8,9, ...
N = 9 AVERA~E = 5.00

END EXFOR .5 SEC.

REMOVE ...
(I

3-7

r·1AI{E EXGTL GTL ...
FILE~EXGTL - TYPE:GTL CREATED
SEQ'"
100BEGIN FILE REMOrE;'"
200INTEGER I~N;~
300RR~L SUM,AVERAGEJ ...
400READCNJ;~

500FOR 1:=1 STEP 1 UNTIL N DO ~
6005U£1 :'=SUM+AC! DEL
600SUM:=SUM+READNCTWX); ...
700AVERAGE:=SUM/N;'"
800PRINT UN= # N # AVERAGE = n AVERAGEJ~
900END. ~
1000'"
11
RUN ...

WAIT.

COMPILING.

END COMPILE 6.6 SEC.

RUNNING

N =
19 ...
11 2 3 4 5 6 7 8 9~
N = 9 AVER~GE = 5

END EXGTL 1.0 SEC.

REMOVE~

3-8

GALL '~IPL"
RUNNING

PLEASE HAlT.
TYPE HELP IF YOU HAVE QUESTIONS <WIPL VERSION 1.5>
11.0 DIMENSION A(50J~
1 1 .01 ACCEPT N"
11.02 DO PART 2~ FOR l=l~N~

11.03SUM=O"
11.04 DO PART 3~ FOR I=l~N"
11.05 AVEaAGE=SUM/N~
71.06 PRINT FORM 1.9~N~AVERAGE"
11 .07 STOP ..
11.9 FORM N = && AVERAGE = &&.&&.-
12.0 ACCEPT ACIJ".
13.0.SUM=SUM+ACIJ~

1 RUN..-
N=1

79..­
A (1 l=7

11..-'
A(2J=1

12.-
AC3J=?

13.-
. A[4J=1

14.­
AC 5J=?

15'­
AC6]=1

16..-
A C 7]=7

17.­
ACBJ=?

18.-
A[9J=?

?9.-
N = 9 AVERAGE = 5.00

STOP AT STATEMENT 1.07
1 QUlr ...

END WIPL 7.1 SEC.

3-9

CALL DEnIV'"
RUNNING

DERIVATIVE-TAKING PROGRAM.
ENTER HELP FOR ASSISTANCE
? iC*~~ +Y*2,· '-
res: «X*2)+(Y*2»
1 DERIV X ...
TOS: (CX*2)\(2/X»
? SET X=/.j ... ·

X=4
? EVAL"
8
?FOR X:=O STEP 1 UNTIL 10 DO"
o a
1 2
2 I-}

3 6
4 8

·5 10
6 12
7 14
8 16
9 18
10 20
RESULT t1AY BE INCOHRECT BECAUSE OF THE FOLLOWING ERRORS:·

DIVISION BY ZERO
?PLOT X:=O STEP 1 UNTIL 10 DO"
•
•
•
•
•
•
• • RA.NGE IS o TO 20
0 0 * 1 2 0 * ·2 4 0 1 * 3 6 0 1 2 * 4 8 0 1 2 3 * 5 10 0 1 2 3 4 * 6 12 0 1 2 3 4 5 * 7 14 0 1 2 3 4 5 ~ 6 * 8 16 0 1 2 3 4 5 6 7
9 18 0 1 2 3 4 5 6 7 * 6 * 10 20 02468024680246802468024680246802468024680246802468*
•
•
• ..
•
•
RESULT MAY BE INCORRECT BECAUSE OF THE FOLLO~ING ERRORSI

DIVISION BY ZERO

3-10

?SIN(X)\COS(Y)'"
TOS: <SIN (X)\COS (Y»
? PUSH ...
? DERIV X'"
TOS: (COS (Y)\COS (X»
? DEF I V ' , 'R I V Y t-
TOS: (COS (X)\CO-SIN CY»)
? EVAL'"
y=
? 1 .57"­
• 83907
?POP'"
4 (COS CY)\COS (X»
1DERIV y ...
TOS: ecos (X)\(O-SIN CY»)
? DERIV X ..
TOS: CCO-SIN (Y»\(O-SIN ex»)
? EVAL ...
- .5'1402 .
? CONTOUR X y ..
ENTER 8ASE~INcnEMENT,MAXIMUM VALUES FOR X, SEPARATED BY COMMAS
? - 3. 14, • 1, 3. 14'"
TOO MANY ITERATIONS INDICATED:
FOR X:=(-3.14,.1,3.14)
1SIN(X)*2+COS(Y)*2"
TOS: «SIN (X)*2)+CCOS (Y>*2»
?CONTOUT'R x y ...
ENTER BASE" INCREMENT, MAXIMUM VALUES FOR X, SEPARATED BY COMMAS,
1-3.14, .2,3.14 ...
ENTER BASE,~NCREMENT"MAXIMUM VALUES FOR Y
10.,.2,6.28.-
ERROR.AT •
?LIST'"
TOS: 0 .
?SIN(X>*2+COSCY)*2'"
TOS: C(SIN CX)*2)+CCOS,(Y)*2»
?GONTOUR X y ...
ENTER BASE,INCREMENT,MAXIMm~ VALUES FOR X, SEPARATED BY COMMAS
? -3. 14, • 2, 3. 14'"
ENTER BASE" INCREMENT, MAXIMUM VALUES FOR Y
1-3.14, .2,3.14.-
ARGUMENT OF LN LEG 0
?POP'"
6 ,3.14
?POP"
~ (COS (X)\(O-SIN.CY»)
?POP POP POP POP pOP"
4 (COS (Y)\COS (X»
3 (SIN (X)\COS CY»
2 (SIN (X)\COS (Y»
1 (eX*2)\C2/X»
o (eX*2)+CY*2».
?SIN(X)*2+COSCY)*2"
TOSt «(SIN (X)*2)+(COS (Y)*2»
'?SIN(X)+COSCY) ..
TOSa (SIN (X~+COS Cy»
? CONTOUR X y ..
ENTER BASE,INCREMENT,MAXIMUM VALUES FOR x~ SEPARATED BY COMMAS
? -:-3.14, .2,3. 14"
ENTER" BASE, INCR&"'1ENT~MAXIMUM VALUES FOR Y
? -3.14, .2,3.14"

3-11

•
•
•
•
•
•
•• RANGE IS -1.9995 TO 1.9942
•

•
-3.14
-2.94
-2.74
-2.5/-J

-2.34
-2.1 Lt

-1.9 Ll

-1.7/4
-1.54
- 1 .3L.1.
-1 .14
-.94
-.74
- • 51!

- .3 Ll

- .14
6@-2
.26
.46

, .66
.86
1.06
1.26
1.46

. 1 ."66
1.86
.2.06
2.26
2.46
2.66

, ·2.86
3.06
•
•
•
•
•
•
?STOP ..

o 1 2 345 6 7 8 9 0
024680246802468024680246802468024680246802468024680
0123456789ABCDEFGHIJKLMNOPQRSTUV~~YZE(&$*)/%=J#@:+

8974310 0135 7ACFHJLt1NOOONLJHFD
C975310 002358ADFHJLNOOOONLKIFD
CA8542100012468BDGIKMNOPPPOMKIGE
EB9753211221.157ACEHJLNPOQQQPNMKHF
FDA86543334579BEGJLNPQRSSRQPNLJG
HFCA8765556798DGILNPRSTUUTSRPNLI
JHFCB9877789BDFIKNPRTUV\,]Ht'JVTRPNL
MJHFDBAA 9ABC DFI KNPRUVXYYYYX \·]USPN
OMKHFEDCCC DEG! }{NP S Ut,JYZ (((C ZYHUSP
ROMKIGFFEFGHIKNPSUWZE&$$$$&CZXUS
TROt11{JI BHHI JLNP S Uli,lZ ($*) II) *$ (ZXU .
VTROl1LKJJJKLNPHUvJZ ($) 1%=::%/) $(Zv]
XVSQONI'1LLLMNPB. T\t]);" ($) %= J H #.] =%) $ (Y
ZtvUSQONt1MNNPQ.SVXl: &*/={I@€}@@#=%) &[

·[XVTRPONNOOQRTta}Y($)=JO::: :(J]=I$(
[Y \tlTR QP 0 0 0 P Q 5 U tolZ C * / = rf @ : + of. : G If = / * (
(YWTSQPOOO?QSUWZ(*/=#@:+++:I=I*&
[¥VTRQOOOOPQSU\IT($I=#@:++:@'=I*(
ZXtJSQPONNNOPRTVY[&)%]ff@::@#J%)$[
YVTRPNMMLMNOPRUWZ($/%]###IJ=/*(Z
WUHPNMLKKKLHOQSUXZ&*/%=Jl=%/*&CX
USPNLKIIIIJ~'10QSVX(&*)/%%/)*&(YV

SPNLJHGGFGGIJLOQTVX($****$&[YVT
PNLIGFEDDDEFHJLOQTVXZ(&&C[ZXVTQ
NKI GECBBABCDEGJLOQSV{aTYZZZZYXVTQO
KI GDBA98889ACEGJLOQSUV\,}XXWWUSQOL
IGDB98666678ACEGJLOQSTUVVUTSQOMJ
GEB9764444568ACEHJMOQRSTTSRQOMKH
EC975432223468ADFIKMOPQRRQPOMKIF
DA8642110123479BEGILMOPPPPO~LJGE
C9753100 012468ADFIKLNOOOONMKIFD
C974310 01357ACFHJLMNOOONLJHFD

END DERIV 16.5 SEC.

3-12

4. DETAILED CANDE COMMANDS

4.1. General

The commands available with the Burroughs B5700 Time Sharing System are

described in detail in this section. These commands give the computer direc­

tions as to specific actions which must be executed in order to perform the

required tasks. The commands are presented in alphabetical order and in a

modular format. The first subsection here displays the typographic conven­

tions and the second subsection displays the CANDE commands themselves.

4.2. Typographic Conventions

The notation conventions described below are used throughout the

remainder of the manual to describe the syntax of each command.

4.2.1. Notation Used in Verb Syntax Formats

First, the syntax of a command is pre'sented. This gives the user a con­

cept of the potential power of the command. For example,

(C I COMPILE) [fi1e-name][compi1er-fi1e-type I :first-1etter-of-compi1er­

fi1e-type]program-parameter-info

4.2.1.1. Parentheses

Inforrnation that is enclosed within parentheses indicates that a choice

must be made between the entries. In the example given above, a selection

must be made between C and COMPILE.

4.2.1.2. Vertical Bars

Entries separated by vertical bars indicate that a choice is to be made

betw~en them. In the example above, a choice is to be made betweenC and COMPILE.

4.2.1.3. Brackets

Information that is enclosed within brackets infticates that? choice

may be made between the entries, but not necessarily. In the example given

above~ a selection may be made between comoi1er-fi1e-tvne,andlfirst-'

1etter_of-compi1er-fi1e-type, or the option may be ignored~

4.2.1.4. Lower Case Letters

Words that appear in lower case letters indicate that a value must be

supplied. In the example given above, the word file-name indicates that a

value of one to six characters must be supp1ied~ if the option is chosen.

4-1

4.2.1.5. Upper Case Letters

Words that appear in upper case letters indicate that the word is a

literal and must be substituted verbatim, when used. In the example given

above, the word COMPILE or the letter C would be entered first when construc­

ting this command statement.

4.2.1.6. Ellipsis Periods

Ellipsis periods denote the occurrence of the immediately preceding

syntactical item one or more times. For example,

VERB[fi1e-name ... J

indicates that the command VERB may be followed by a file-name which in turn

mayor may not be followed by one or more file-names to form a longer list.

4.2.1.7. Underlines

Normally, in the examples in this manual, a line followed with a - is

assumed to be entered in its entirety by the user, and a line not terminated

with a - is assumed to be typed by the system. In the cases in which part

of a line is entered by the user and part is typed by the system, that part

typed by the system is underlined only if otherwise ambiguous. In most cases,

it is not ambiguous or confusing, and underlines will not normally be used.

4.2.1.8. Concatenation

Terms written adjacent to each other denote the incidence of each

represented term in the order they appear in the command. Spaces are required

to separate alphanumerical and/or numerical terms. Commas are allowed to

separate parameters.

4.2.2. Examples of Use of Notation

The following represents an expansion of the example syntax presented

earlier:

COMPILE
COMPILE f
COMPILE c
COMPILE f c
COMPILE :cl
COMPILE f:c1
COMPILE p
COMPILE f p
COMPILE c p
COMPILE f c P
COMPILE :c1 p
COMPILE f:c1 p

4-2

where f is the file-name,

c is a compi1er-file-type,

c1 is the first letter of a compi1er-file-type,

p is program-parameter-info.

The term COMPILE may be abbreviated to C, thus doubling the above list

of possible variations of this command.

4.2.3. Definitions of Important Terms

The following definitions illustrate the use of the notation used here.

4.2.3.1. Sequence-list

Sequence-list is defined to be

[(sequence-number-1\END)[(TO\-) (sequence-number-2\END)]]

where the sequence-numbers are in ascending order from left to right.

4.2.3.2. Resequence-info

Resequence-info is defined to be

[sequence-1ist[base-sequence-number] [+resequence-incre ment]]

4.2.3.3. Program-parameter-info

Program-parameter-info is defined to be

[WITH [(STACK 1 PROCESS \ 101 COMMON) = integer] ...]

4.2.3.4. Examples of Use of Definitions

Following the definitions given above, some of the possible combinations

may be enumerated as follows:

sequence-list:

(empty)
sl
sl TO s2
sl TO END
sl - s2
sl - END
sl,s2
sl,s2 TO s3,s4
sl,s2,s3 - END

where sl, s2, s3, s4 represent sequence-numbers and ~s~s2~s~s4<100000000,

4-3

resequence-info:

(empty)
sl
sl TO s2
sl-s2, s3
sl + i1
sl, s2, s3-END, s4+il
+ i1

where sl, s2, s4 are as before and 0<i1<50000000, where i1 represents an increment,

program-parameter-info:

(empty)
WITH STACK = sl
WITH PROCESS = pI
WITH 10 = i1
WITH COMMON = c1
WITH PROCESS = pI, 10 = jl
WITH COMMON = c1, STACK = sl, PROCESS = pI

where sl represents stack size (512~sl~4096),

pI represents processor time limit in minutes (0~p1~10000),

jl represents 1/0 channel time limit in minutes (0~j.1~10000),

c1 represents common value (0~c1~99999999).

Some specific examples are as follows:

sequence-list:

(empty)
100
200 - 900
1 - END
450 - 1500, 2000 TO END
100, 300, 500, 1000 - END
100, 200 - 1000, 2000, 3000 - 5000, 7000 - 9000

resequence-info:

(empty)
100
100 + 100
+ 200
100 - 1000, 2000 + 10
1000 - 2000, 14000, 15000 + 1000

program-parameter-info:

(empty)
WITH STACK = 1000
WITH PROCESS = 10, 10 = 5
WITH STACK = 1000, COMMON = 2, 10 = 1
WITH 10 = 1, STACK = 200, PROCESS = 2

4-4

ADD

4.3. CANDE Commands

Following are the CANDE commands, arranged in alphabetical order, for

reference purposes.

4.3.1. ADDIAPPEND

Records from a given file may be copied onto the end of the existing

work-file with the ADD or APPEND command. The format is as follows:

(ADD\APPEND) file-name [/user-code] sequence-list [RESEQ resequence-info]

If no sequence-numbers are specified, the entire file is appended. Otherwise,

only the specified portions are added. If the file is not of type DATA, the

appended lines are given sequence-numbers equal to their old sequence-numbers

plus the highest sequence-number originally in the work-file, unless the

RESEQ option is used.

If the RESEQ option is specified, the base and increment for resequencing

are assumed by default to be 100, and moving of records (RESEQ 100,300) is not

permitted.

If the sequencing process for a non-file-type DATA file would result in

a sequence-number of more than eight digits, the following error message

ERR:TOOBIG

is typed, indicating an invalid sequence-number, and the remaining lines are

not APPENDed.

File Adjustment

The CANDE APPEND command provides for proper file adjustment depending

upon the file-types of the work-file and input file. The different types of

file adjustment, described in the following paragraphs, are as follows:

Work-file is a sequential file, and the input file is a type DATA file.

Work-file is a sequential file, and the input file is a sequential
file.

Work-file is a type DATA file.

Work-file : Sequential File - Input file : Type DATA File

If the RESEQ option is not specified, the APPEND command attempts to

convert the characters in the input file in record positions 73 through 80 into

a sequence-number. If this would otherwise result in an improperly-sequenced

file, error messages are given and the sequence-numbers are adjusted, if

possible; otherwise, the operation is terminated. If only a portion of the

4-5

~D

input file is to be copied, the records to be copied are referenced by their

position in the file, not by sequence-number. The sequence-numbers of the

records APPENDed to the work-file are obtained by adding the values of the

sequence-numbers produced by the APPEND command to the sequence-number of

the last record in the work-file prior to execution of the APPEND command.

Work-file : Sequential File - Input File : Sequential File

If the RESEQ option is not specified, the APPEND command expects to find

sequence-numbers in the input file in record positions 73 through 80. If

the input file is not properly sequenced, error messages are given, and the

sequence-numbers are adjusted, if possible; otherwise, the operation is

terminated. If only a portion of the input file is to be APPENDed, the records

to be APPENDed are referenced by their sequence-numbers.

Work-file : Type DATA File

When the work-file has file-type DATA, the APPEND command does not examine

the input file sequence field, but transfers the records as 80-character units

onto the end of the work-file. If the input file is, in fact, a sequential

file, an 8-digit sequence-number is normally present in character positions 73

through 80, though this information is ignored by the APPEND command.

4-6

MAl{E FI LEi ...
FILE:FILEl - TYPE:SEQ -- CREATED
SEQ ...
100l1ECORD ONE ...
2doRECO~D 2.. .
300RECORD THE'REE~
400RECO?iD 4 ...
500RECORD 5'"
600HECORD SIX ..

. 700 ...

SAVE ...

\oJA.I T.

FILE:FILEI - TYPE:SEQ SAVED.

1\1A.KE FILE8'"
FILE:FILE2 - T¥PE:SEQ -- CREATED
SEQ ...
100REG 1.-
200REC 2'"
300REC 3'"
400REC Ltt-

500REG 5'"
600REG 6 ...
700 ...

APPEND FILEl'"
\!}~ IT.

WAIT.
6 RECOaDS APPENDED (LAST RECORD APPENDED=1200)

END APPEND 1.4 SEG~

p ..
100 REG 1
200 REG 2
300 REC 3
400 REG 4
500 REC 5
600 REC 6
700_RECOrlD ONE
800 RECORD 2
900 RECORD THREE
1000 RECORD 4
1100 RECORD 5
1200 RECORD SIX

. ,
4-7

ADD

ADD

ADD FILEI 400 TO END RESEQ 100 TO END + 10~
WAITe

3 RECO~DS APPENDED (LAST RECORD APPENDED=1320)

END APPEND 1.3 SEC.

p ..
100 HEC 1
200 HEC 2
300 HEC 3
400 REG /-1

500 REG 5
600 i1EC 6
700 RECOHD ONE
BOO RECOHD 2
900 !1ECO;1D THFlEE
1000 !,,{EGO;~D Li
1100 HECO:tD 5
1200 RECOaD SIX
1300 fiECO:1.D 4
1 310 RECORD 5
1320 RECORD SIX

4-8

BYEfoo

BYE

4.3.2. BYE

The BYE command terminates a user's session. The format is as follows:

BYE

After the user types BYE, the system normally responds with statistics con­

cerning the user's current session, and then performs a terminal disconnect.

The user may also log-out by entering a HELLO command or by striking the

EaT character (CTRL D); in this case, the system response cannot be given.

If the terminal is idle for five minutes, the system will assume that a BYE

command has been entered.

The system response, if any, contains the following information:

elapsed time of session,
overhead processor time incurred by CANOE during session,
processor time used by programs during session,
r/o channel time used by programs during session,
time of day at end of session,
date at end of session.

ON FOR 44 MIN, 02.6 SEC.
CeE USE 24.4 SECo
EXECUTE 25.9 SEC.
10 TIME 58.7 SEC.
OFF AT 7:50 PM.
GOODBYE HCC63YH

03/06/72

4-9

CALL

4.3.3 CALL

The remote user may execute a program in the public library through the

use of the CALL command. The format of the CALL command is as follows:

CALL program-name[/suffix] program parameter-info

Currently the following programs are in the public library:

APL B5700 version of APL language

CIRCUS

CONTROL

CXREF

DERIV

ECAP

ELIZA

FCTNS

GPSS

MATRIX

MIX

POLY

OL

REFORM

SEARCH

SIMULA

TAPDUMP

WIPL

electrical circuit simulator

enters MCP control records

conversational manual-writing system

symbolic differentiation and evaluation

electrical circuit analysis

psychiatric examination program

special function evaluation language

B5700 version of GPSS/360

matrix manipulation

B5700 version of MIX Assembly Language

polynomial manipulation

lists labels of mounted tapes

ALGOL and GTL source file reformatter

interactive LIST FILES program

B5700 version of SIMULA/67

interactive tape file list to remote terminal

WIPL language

In case the user decides to prematurely discontinue a program, and the

program is not typing at the time, he may depress WRU(CTRL D). If the program

is typing at the time, it may be necessary to depress BREAK to stop the typing;

if BREAK itself does not discontinue the program, he may then depress WRU.

The CALL verb may be preceded by EQUATE commands or immediately followed

by program-parameter-info. If no program-parameter-info occurs, the following

parameters are assumed:

PROCESS = (maximum allowed for user)

IO = (maximum allowed for user)

STACK = 512

COMMON = 0

The term suffix is required only when the program in the public library

has a second name not equal to "TSHARER".

4-10

CALL i'1ATEIX ..

ENTE~ 1-0 FILE NAMES

?TE TE
ENTER PROGRAM NAME

?INVERT"
INVALID ANStllER INVEHT
ENTER PROGRAM NAME

THE PROGRAMS ARE
1 e LINEQ.N
2. DETLINEQN
3. LINEQNIt1PRV
4. bETLINEQNIMPRV
5. INVERSE
6 • .INVHITHII1PHV
7. EIGENVALUES
8. EIGENVECTOR
9. DETOFA
PLEASE USE FULL NAt1E
ENTER PROGRAM NAME

?INVERSE"
ENTER N

13"

N::: 3

4-11

CALL

EtvTEH. HO'" 1

1 1 2 3'-
ENTEl1 HO \y 2

13 2 1.-
ENTER 110\01 3

? 2 3 1 ...
CHANGES OR DISPLAY DESIRED?

.?NO

INVERSE £-lATRIX

N = 3

-0.08333333 0.58333333 -0.33333333

-0.08333333 -0.41666667 0,,66666667

o • Ll1 6 6 6 6 6 7 0.08333333 -0.33333333

DETERMINANT = 12.0000000001

RUN AGAIN?

?NO ..

END MATRIX 2.5 SEC.

4-12

CC

4.3.4. CC

The remote user may change the parameter which CANOE uses to determine

the length of a station's carriage. The format of the CC command is the

following:

CC (SHORT\LONG)

Since the system assumes that each teletype or equivalent station has a

standard carriage length of 72 characters, the CC command allows a user to

notify the system that the carriage is not SHORT (standard 72 character

length), but is LONG (greater than 72 characters in length).

When the system attempts to send a message to the terminal which is

longer than 72 characters, and the carriage is SHORT, the message will be

split into segments each shorter than 72 characters. No such splitting is

performed if the carriage is LONG. Also, for LONG carriages, the proper

timing is invoked such that the mechanism should never print "on the fly,"

even for an extremely long line.

CC SHORT ...

CC LONG ..
H

4-13

CHANGE FACTOR

4.3.5. CHANGE FACTOR

The CHANGE FACTOR command allows the user to alter the save-factor

which is associated with a user's disk file. The format of the CHANGE FACTOR

is as follows:

CHANGE [SOURCE!OBJECT] file-name FACTOR TO integer

The SOURCE or OBJECT option may be used to specify that only the source or

the object version's save-factor is to be changed. If neither SOURCE nor

OBJECT options appear after the CHANGE portion of the command, the save­

factors of both the source and object files are altered, if they are present.

t,}HATS G22 ...

F'ILE G22, TYPE GTL.I 18 HECOHDS" C::1EATED 03/02/72 (19L14) SF=7

WHATS ODJECT G22~
FILE OG221 TYPE GTL, 21 RECORDS, CREATED 03/02/72 (1944) SF=8

CHANGE G22 FACTOR TO 50 ...
1/
\iJHf\ 1S G22"

FILE Gee, TYPE GTL~ 18 RECORDS, CREATED 03/02/72 (1944) SF=50
Ii
WHATS OBJECT G22~
FILE OG22 .. TYPE GTL..t 21 Rt:COY'[DS" CnE{~'fED 03/02/'12 (19/44) SF'=50
II
CHANGE SOURCE G22 FACTOR TO 10 ..
CHANGE ODJECT G22 FACTOR TO 20 ..
II
IJ
t'JHATS G22--
FIJ .. E G22" TYPE GTL" 1. B HECORDS, CREATED 03/02/72 C 1944) 'SF= 10
II-

WHATS OBJECT G22~
FILE OG22, TYPE GTL, 21 RECORDS, CREATED 03/02/72 (1944) SF=20
1/

4-14

CHANGE

4.3.6. CHANGE

The CHANGE command allows a user to change a file's file-name. The

format of the CHANGE command is the following:

CHANGE file-name TO file-name

When this command is used, both source and object versions of the desig­

nated file (if they exist) will have the old file-name changed to the new

file-name. In order to change the file-name of the work-file, the RENAME

command must be used.

CHANGE"GTW02 TO G22~

CHANGE GTW02 TO G12453~

ERR: CANNOT
1~

FILE NOT IN YOUR LIBRARY.

4-15

CHANGE TYPE

4.3.7. CHANGE TYPE

The CHANGE TYPE command allows a user to change a file's file-type.

The format of the CHANGE TYPE command is as follows:

CHANGE[fi1e-name]TYPE[TO]fi1e-type

This command causes the file-type of the source version of the designated

file or work-file to be changed. The object version's file-type is always

associated with the compiler used for its creation, and normally cannot be

changed. When the file-name term is omitted, CHANGE TYPE may be shortened

to TYPE.

The file-type of a file may be changed from DATA to sequential and

vice versa. A work-fi1e's file-type may be changed from sequential to DATA

only.

4-16

CHANGE TYPE

HHATS SEAHCH ..
FILE SEARCH~ TYPE GTL~ 33 RECORDS, CRE4TED 03/02/72 (1210) SF=7
II

{"HATS OBJECT SEAl1CH4-
FILE OSEARCH, TYPE GTL, 67 RECORDS~ CRE~TED 03/02/72 (1210) SF=8

CHANGE SEARCH TYPE TO ALGOL ..

HHA'r'S SEARCH ..
FILE SE~RCH, TYPE ALGOL~ 38 RECORDS, CRE~TED 03/02/72 (1210) SF=7

WHATS OBJECT ,SEARCH"
FILE OSEA3CH, TYPE GTL~ 67 RECORDS, CREATED 03/02/72 (1210) SF=8
If
LOAD SEAHCH ...
FILE~SEARCH - TYPE:ALGOL -- LOADING

38 RECORDS LOADEDo

END LOAD 100 SEC.

CHANGE TYPE TO GTL"
J{
11'

HHATS'-
FILE SEAHCH (\·]OHI{FILE).. TYPE GTL.. 38 RECORDS

HH{-\TS OBJECT"
ERR: OBJECT
1.-
FILE NOT IN YOUR LIBRARY.

TYPE ALGOL ...
(I

HHf.\TS"
FILE SEARCH (WORKFILE), TYPE ALGOL, 38 RECORDS
(J

CHANGE TYPE GTL ..
I
REMOVE"
II
CHANGE SEARCH TYPE GTL ...
II
'r]HATS SEARCH ..
FILE SEARCH, TYPE GTL, 38.RECOnDS, CRK4TED 03/02/72 (1210) SF=?
Ii

4-17 .

COMPILE

4.3.8. COMPILEIC

To compile a source program in order to create an object file, the user

may enter a COMPILE command. The format is as follows:

(CICOMPILE)[file-name][compiler-file-type\:first-letter-of-compiler­

file-type]program-parameter-info

If a file-name is not given, the source version of the work-file is compiled;

otherwise, the source version of the specified file is compiled and the resul-,

tant object file is saved. If the work-file is compiled, the object file is

kept with the work-file so that both source and object versions can be saved

with a SAVE command. Program parameter information applies to the object

program being compiled, not to the compiler.

It should be noted that a SAVE command is ignored if data has not been

entered into the work-file since being created or saved. Thus, it is not

necessary to enter the sequence of commands

LOAD X;COMPILE;SAVE

in order to create and save the object version of X. The command which should

be used is

COMPILE X

which causes the object version of the file to be saved.

The compiler-file-type may be ALGOL, BASIC, COBOL, CODASYL, DYNAMO, ESPOL,

FORTRAN, GTL, TSPOL, XALGOL, or an abbreviation consisting of a colon followed

by the first letter of the compiler-file-type, when non-ambiguous. Specifying

a compiler is required when the file is associated with a non-compiler-file­

type. In order to override a compiler-file-type which is associated with the

source version of a work-file, a compiler-file-type may be specified in the

command.

In case the user decides to prematurely discontinue a compilation, and

the compiler is not typing at the time, he may depress WRU(CTRL E). If the

compiler is typing at the time, the user may depress BREAK.

COBOL, CODASYL, and FORTRAN source language input is assumed by default

to be entered and stored in remote free-field format.

4-18

COMPILE

For COBOL and CODASYL, the following describes the remote free-field format:

column 1 is margin A,

column 2 is margin B,

continuation is denoted by a hyphen in column 1,

compiler control card images are denoted by a dollar sign in column 1,

NOTE card images are denoted by an asterisk in column 1,

only 66 columns of input text per line are allowed,

sequence-number is in columns 73-80.

For FORTRAN, the following describes the remote free-field format:

continuation is denoted by a hyphen in column 1,

comment card images are denoted by the characters lie-" in
columns 1 and 2,

labels may be a maximum of five columns long; a non-blank non­
numeric character, or the seventh column after the start of the
label, ends the label and starts the card text; a label should
be separated from the sequence-number by one or more blanks,

FILE card images must start in column 1; the word FILE must be
followed by two blanks,

compiler control card images are denoted by a dollar sign in column 1,

for other card images, text begins with the first non-blank
character,

only 66 columns of input text per line are allowed.

ALGOL and GTL allow mnemonic syntactic substitutions to be made for

the relational and assignment operators, as shown by the following table:

°Eerator Mnemonic

- -.-
> GTR

< LSS

~ GEQ

~ LEQ

f. NEQ

= EQL

Since most of the characters on the left may not be entered from nor printed

on a remote terminal as data, the mnemonics should be used in the correct

syntactic positions. In addition, GTL allows QMARK as a substitution for the

one-character string containing the question mark character.

4-19

The B5700 DYNAMO compiler accepts all of DYNAMO II except for the

following differences:

no MACRO definitions are allowed,

SAMPLE function has only two arguments, as in DYNAMO I,

STEP and RAMP functions can be initialized to nonzero values,

the RUN card must precede the run to which it pertains,

implicit multiplication is allowed,

no equation types or numbers are required,

a table definition must have an ~', following the table name,

RUN, PRINT, PLOT, etc. must begin in column 1; equations may
begin in column 2-72,

continuation is denoted by the " symbol as the last character
of the continued line and the next line starting in column 2
of the next image.

Plotting and printing may be produced on the remote terminal, automatically

scaled to the width, by placing the following image first in the DYNAMO source

program, starting in column 1:

REMOTE LIST PRINT

Otherwise printing and plotting will be produced on the high-speed onsite

printer.

If a work-file is not open when required, the error message printed is

the following:

ERR:NO FILE

If a source version of the file-name is not present, the error message

printed is as follows:

ERR: file-name

If the work-file has a non-compiler-file-type, the error message

printed is the following:

ERR: TYPE

If the input file is found and compilation has begun, CANDE types the

following message:

COMPILING

4-20

COMPILE

and, when the compilation is finished, the following message:

END COMPILE n.m SEC.

is typed indicating the amount of processor time used during the compilation,

if the compilation was successful. If the compilation was not successful,

the following message is typed:

ERR COMPILE n.m SEC.

4-21

COMPILE

M AI{E TES T GTL'"
FILE:TEST - TYPE:GTL -- C~EATED
SEQ ...
lOOBEGIN'"
200FILE REMOTE; ...
300INTEGER 1;.-
400paINTCENTER I#;~
50aI:~READN(TWX);~

6001 ::-;I~;';2;'"
700PRINY #1 SQUARED =#,I;~
8 00 d : =:1 E/) D ~ (T ~,]X) ; ...
90JPHINT J; ...
lOQJEND
1100 ...

C Oi'1P I LE'"

HAlT.

COMPILING.
00000800:COL 02:J #100
UNDECLARED IDENTIFIER.
00000900:COL OS:J #100

ERR COMPILE 3c9 SEC.

* 300/; /, J;'"
COMPILE ...

\\lAI T.

CO~1PILING.

END COMPILE 6.2 SEC.

RUN'"
RUNNING

ENTER ~
1144"
I SQU~RED = 20736
11234"
1234

END TEST .9 SEC.

REMOVE" , 4-22

COpy

4.3.9. COpy

The COpy command is used to copy a file or a set of files into the work­

file, another file, or onto a peripheral unit. The format of the COpy command

is the following:

'COPY([file-name[/user-code]]TO(PRINTER\PUNCH\TAPElfile-name) I
file-name[/user-code]sequence-list[RESEQ resequence-info])

If the COpy operation is successful, the number of records copied and

the sequence-number of the last record copied are returned to the terminal.

When the COPY ... TO ..• option is used, the entire designated file is

copied to a peripheral unit or to another, newly-created file. When the COpy

TO TAPE form is used, all the user's files are copied to a dump tape labeled

with his unique user-code for more permanent retention. The user should allow

a sufficient time for his files to have been copied to tape, then request

the reel number from the operator, if the operator has not already sent the

reel number to the terminal. When the COPY ... TO PUNCH form is used, the proper

information is sent to the operator for identifying the deck to be punched.

If the cards are to be charged to a different account number than the reference

number, this information must be sent to the operator.

Within the rules of file security (see Appendix C), the COpy command

may be used to access files under another user's user-code by including a/and

the proper user-code after the file-name. If the user issuing the COpy command

has not been authorized by the other user to access that user's files, the

COpy is not performed and CANDE types the following message:

ERR:user-code

If the file is not in the library, CANOE types the following message:

ERR: file-name

If there is no work-file, and one is required, the error message is as follows:

ERR:WRKFILE

Otherwise, except for COpy TO TAPE, after the copy has been performed, CANDE

types the following:

mm RECORDS COPIED (LAST RECORD COPIED = dddd)

END COpy n.m SEC.

4-23

COpy

File Adjustment

The CANDE COpy command provides for the proper file adjustment depending

upon the file-types of the work-file and input file. The different types of

file adjustment, described in the following paragraphs, are as follows:

Work-file is a sequential file, and the input file is
a type DATA file.

Work-file is a sequential file, and the input file is
a sequential file.

Work-file is a type DATA file.

Work-File : Sequential File - Input File : Type DATA File

If the RESEQ option is not specified, the COpy command attempts to

convert the characters in the input file in record positions 73 through 80

into a sequence-number. If this would otherwise result in an improperly

sequenced file, error messages are given and the ~equence-numbers are adjusted,

if possible; otherwise, the operation is terminated. If only a portion of the

input file is to be copied, the records to be copied are referenced by their

position in the file, not by sequence-number.

Work-File : Sequential File - Input File : Sequential File

If the RESEQ option is not specified, the COpy command expects to find

sequence-numbers in the input file in record positions 73 through 80. If the

input file is not properly sequenced, error messages are given, and the

sequence-numbers are adjusted, if possible; otherwise the operation is ter­

minated. If only a portion of the input f~le is to be copied, the records

to be copied are referenced by their sequence-numbers.

Work-File : Type DATA File

When the work-file has file-type DATA, the COpy command does not examine

the input file sequence field, but transfers the records as 80-character units

to the work-file. If the input file is, in fact, a sequential file, an

8-digit sequence-number is normally present in character positions 73 through

80, though this information is ignored by the COpy command.

4-24

M~KE EXAMPL SEQ~

FILE:EXAMPL - TYPE:SEQ -- CRE~TED
SEQ ...

lOOllEC 1'"
200HEC 8'"
~~OOREC 3'"
11OOl1EC '! ...
500:"{EC 5··
600'"
J.r .r

Sf.tVE'""
t,.}.CiI T"

FILE:EXAMPL - TYPE:SEQ -- SAVED.

Io1Al{E FILEi1'"
FILE:FILER- TYPEgSEQ -- CREATED
COpy EXA.L-1PL ...

\<JA IT.
5 RECO~DS COPIED (L~ST RECORD CO?IED=SOO)

END COpy 1 .2 SEC"

p ...

100 REG 1
200 REC 2
300 REG 3
400 REG 4
500 l1EG 5

COpy EXAMPL 100, 400-END RESEQ 10+2 ...

\·JAI T.
3 RECO~DS COPIED 'L~ST RECORD COPIED=14)

END COpy 1.1 SEC.

p ...
10 REC 1
12 REC 4
1 '1 REC S

II

COpy

"NOTE THAT COpy DESTROYED PREVIOUS CONTENTS OF WORK-FILE'"
COPY EXAMPL RESEQ 1000 ...

WAIT.
S RECO~DS COPIED 'L~ST RECORD CO?IED=1400)

END COPY 1.2 SEC.

4-25

COpy

p
1000 nEe 1
1100 nEe 2
1200 HJ:~G 3
1 300 HEC Lt

1 Ll00 HEC 5

COpy 1'0 PHINTEHt-
hl{\I T.

5 RECORDS COPIED (LAST REGORD COPIED=140Q)

END CO:-"Y ,,8 SEC"

c Opy EXt-J.~\l:") TO PHI NTER(~
\},'\ 1 T ..

EBH: EX(.\I"}P

FILE NOT IN YOUR LIBRARY.

COpy EXAMPL TO PRINTER
HAl Tf>

5 RECORDS COPIED CLAST RECO~D COPIED=500)

END COpy .9 SEC.

COpy EXAMPL TO NEWFIL~
\1}41 To

5 REC03DS COPIED (L~ST RECORD COPIED=500)

END COpy .9 SEC.

COpy EXAr·1PL TO PUNCH f­

\rIAIT.
PUNCHING. e 0

5 RECO~DS COPIED (LAST RECORD COPIED=50Q)

END COpy .9 SEC.

REMOVE;REMOVE EXAMPLt­
(I

4-26

CREATE

4.3.10. CREATE

The CREATE command creates a new file and establishes it as the work

file. Format for the CREATE command is the following:

CREATE fi1e-name[fi1e-typel:first-1etter-of-fi1e-type]

The file-type may be ALGOL, BASIC, COBOL, CODASYL, DATA, DYNAMO, ESPOL, FORTRAN,

GTL, INFO, SEQ, TSPOL, or XALGOL which can be abbreviated as colon, followed

by the first letter of the file-type, when nonambiguous. If no file-type is

specified, then sequenced (SEQ) is assumed.

If the file has been successfully created with the CREATE command,

CANOE responds with the following message:

FILE:fi1e-name - TYPE:fi1e-type -- CREATED

If a file with the specified file-name already exists, CANOE sends the

following message:

FILE:£i1e-name - TYPE:£i1e-type -- DUPLICATE NAME

If no user disk is available, an error message will be given and the

CREATE command will be ignored.

4-27

CREATE

CEF:f.\T;~: B}i'ILE BASIX 'C~
FILE:n}"ILE - TYPE:BASIC
n Er\10VE'"

C HEr.\TE>-
EHR: .NO NAt·1E
7 4-

GHEf\TED

TH;,l..T COt:l'!lAND RE(lUIHES A FILE NANE"

CREATE f~F'ILE'"

FILEi~FILE - TYPE:SEQ -- CREATED

FILE:FO~T~N - TYPE:FO~TnAN -- CREATED

F lL.E~))/IT?'..Fl ~ TYPE~ DATA - ... CHEATED
1 E t D!·\r{~'""

Ol{
THIS EECORD HAS ENTEHED IN DATA MODEC'C>o
?END~

p ...
T HIS REG Oi1D \,JAS ENTER ED IN DATP. ~~O DE.

HEt10VE:~

CHEATE FILE33 ...
FILE:FILE33 - TYPE:SEQ
SAVEt~

FILE:FILE33 - TYPE:SEQ

CREATE FILE33~

CREATED

SAvr::De

FILE:FILE33 - TYPE:SEQ -- DUPLICATE NAME
HHATS--
FILE FILE33 (WORKFILE)~ TYPE SEQI 0 RECORDS
Ii
REMOVE ...
n
REMOVE FILE33"
fI

DELETE

4.3.11. DELETE

The DELETE command is used to delete all or part of the contents of a

work-file or of another file. The format is the following:

DELETE[file-name][ALL\sequence-list][RESEQ resequence-info]

If there are no parameters following the DELETE command, the ALL option

is assumed. The parameter ALL causes the contents of the work-file to be

removed, but does not affect the file-name associated with the work-file, nor

the SEQ base or increment.

If the RESEQ option is specified, the base and increment for resequencing

are assumed by default to be 100, and MOVING records (RESEQ 100,300) is not

permitted. If the file has file-type DATA, the records to be DELETEd are

referenced by their position in the file, not by sequence-numbers. If the

file has file-type SEQ, the records to be DELETEd are referenced by their

sequence-numbers.

The file-type of a file may be changed from DATA to SEQ and vice versa.

A work-file's file-type may be changed from SEQ to DATA only. The COpy command,

with RESEQ option used if necessary, may also be used to effect this conversion.

The DELETE command should never be used to delete just a few lines;

deleting them individually by typing their ~equence-numbers, followed by group

marks is much more efficient in terms of computer time.

If sequence-number parameters are used, an entry of the form s causes

the line with that sequence-number to be deleted. An entry of the form sl-s2

causes the deletion of all lines from the first through the second sequence­

number, inclusively. The use of the word END is equivalent to using the

highest sequence-number in the file. Thus, if the last entry is END, the last

line in the file is deleted and, if the last entry has the form s TO END, all

lines with a sequence-number greater than or equal to s are deleted. The

sequence-numbers must be arranged in ascending numerical order. A maximum

of nine sequence-numbers are allowed in a given list. A request to delete

non-existent records according to sequence-number reference is ignored.

4-29

DELETE

r'J.6.HE DEL. F I L~
F'ILE:DELF'IL - TYPE:SEQ _ ... CHF:A.TED
10011 EG 1 ~-
200:·~EC 2(-
300REC 3'-
I..!OOHEC " ...
....
DEL.ETE [~OO4-

\'JA IT.

'.,Y) ITt'
1 HEGO;lD~; DELETEDc'

p~

100
300
'400

.rt
Jl

HEG
HEG 3
BEG Lt

500RE c"e 5'"
600HEC 61--
DELETE 500-END RESEQ 1000

".TAl T.

v.'Al T.
2 RECORDS DELETED.

END DELETE 1.1 SECc

p
1000 REG 1
1100 REG 3
1200 REG 4

(j

DELETE ALL ...
Ii
p ...

4-30

H l!:MOVE'"
.r..
If

i(. [} 1\ E F I L J~] Dl\ T~ .. ~·
FILE~FrLEl - TYPEr DATA
1 j){),TA ...

OK
nEe 1 (~
B.J.~G 2(~

nEe ~.~ .,.
HJ~C /!'~

B EC 5~·

HEG 6~-

'f ENDO 't-
If
SAVE ...

HAITo

CHE(.\TED

FILE:FILEl - TYPE;DATA -- SAVED.

DELETE 2-4<­
\t)f\ IT.

3 RECOflDS DELETED.

END DELETE .8 SEC G'

p ...

REC 1
REG 5
REG 6

4 ... 31 .

DELETE

DELETE

P FILEl4-
HEG 1
R. !::(~ 2
HEC 3
REG 14
HEe 5
REC 6

DELETE FILEl ~~- 5«-

1'"
I C(.\Ni\'OT AI... TEn rH{-{ T FI LE - 1 TIS ,YOUR ~!.lOHl{-Fl LE.

n 'I::i·~ G \,TE: 1-·­

{I

DELETE FILE! 3- Sf"
H,~l Te

3 l1ECORDS DELETED"

END DELETE ~7 SEes

P FILE1 «­

REC 1
REC 2
i1EC 6

II
REt-'IOVE FILEl ...

4-32

DISPLAY

4.3.12. DISPLAYID

The DISPLAY command is a variation of the PRINT or LIST command and is

used to print records on the terminal. Its format is as follows:

DISPLAY[($ICHANGES) Ifi1e-name[/user-code]]sequence-1ist

[~I~ I SQUASHED] [iff I NUMBERED]

The sequence-numbers printed will be to the entire eight digits. This

variation is useful in certain applications to eliminate a conflict with the

first character in a record being numeric or to line up printed output.

For more details, see the LIST command.

4-33

DISPLAY

MAI{E FILE9 ..
FILE:FILE9 - TYPEtSEQ -- CilEATED
1 REC 1.-
lOHEC 2 ..
lOOREC 3"
1 000 21EC LIt.

IOOOOREC 5.-
100000HEC 6'"
lOOOOOOREC 7 ...
10000000REC 8..-
p ...

I HEC 1
10 nEG 2
100 HEe 3
1000 BEG 11

10000 REC 5
100000 HEG 6
1000000 nr:c 7
10000000 HEG 8

DISPLAY ...
OOOOOOOlREC 1
OOOOOOlOHEC 2
OOOOOlOOHEC 3
0000 lOOOHEC /4.
OOOlOOOOREC· 5
00100000EEG 6
OlOOOOOOHEC 7
lOOOOOOOHEC 8

ff
LIST~

FILE:FILE9 - TYPE:SEQ --03/07/72 7:21 PM.

1 REG 1
10 REC 2
100 REC 3
1000 REC 1-1

10000 REG 5
100000 REG 6
1000000 REC 7
10000000 REC 8

END QUIKLST 1.0 SEC.

• REMOVE ..
I

4-34

DO

4.3.13. DO/EXECUTE IE

The work-file or an object file on disk can be executed by using the

EXECUTE (or the DO) command. Its formats are as follows:

(DO/EXECUTEIE) [fi1e-name[/user-code]]program-parameter -info

The program is run from the object file associated with the file

specified in the command. If authorized to do so, a user may execute the

object versions of files in another user's library by following the file-name

with a slash and then the other user-code.

The EXECUTE (or DO) command may be preceded with EQUATE commands and

followed by program-parameter-info. In case no program-parameter-info occurs,

the following parameters are assumed:

PROCESS = 2

10 = 2

STACK = 512

COMMON = 0

In case the user decides to prematurely discontinue a program and the

program is not typing at the time, he may depress WRU(CTRL E). If the program

is typing at the time, it may be necessary to depress BREAK to stop the

typing; if BREAK itself does not discontinue the program, he may then depress

WRU.

If there is no object version of the designated file, the error

message is as follows:

ERR: NOFILE

If the object file is found, CANDE types the following message:

RUNNING

and then any terminal output the program produces.

If the program finishes successfully the message typed is as follows:

END file-name n.m SEC

If it finishes with an error finish, the message typed is as follows:

ERR file-name n.m SEC.

In either case, the processor time used to execute the job is given as

n.m SEC.

4-35

DO

DO SE{\.RCH ..
RUNNING

?RESET CONCISE OPTION FOR THIS pnOG~AM"
? SEAr~CH ..
Ree 6~'}YH LOCl{
FILE TYPE GTL DATA
LOGrC(~L ~1E.:GOHD L.Y~::\:G'.~·H 10
PHYSICAL RECO~D LENGTH 300
BLOC}{I :\}C l"P:C TO~1 30
CREATION DATE 72067
CREATION TIME 1936
DATE OF LAST ACCESS 72066
SAVE Ft~CTOR 7
NUI<1DEH OF LO GI CAL RECORDS 79
5 EGi,lE:\vTS/RO\IJ 30
NUMBEH OF R01,'}S IN USE 1
SIZE OF FILECSEGMENTS) 30
? OSE(~BCH ...

RCC63YH UNLOCK
FILE TYPE GIL CODE
LOGICAL RECORD LENGTH 30
PHYSICAL RECORD LENGTH 30
BLOCKING FACTOR 1
CREATION DATE 72067
CREATION TIME 1936
DATE OF LAST ACCESS 72068
SAVE FACTOR 8
NU~1BEH OF LOG1 CAL REcoaDS 86
5 EGr·1ENTs/ao t'l 87
NUl1BEit OF ROHS IN USE 1
SIZE.OF FILECSEGMENTS) 87
?END'"

END SEARCH 1.8 SEC.

4-36

EQUATE

4.3.14. EQUATE

The user may change certain of the attributes of the files in his

programs (or other users' programs) without recompiling them through the

use of the EQUATE command. The format of it is as follows:

. EQUATE internal-name = [prefix/]suffix[unit ...]

The term internal-name is the name of the file as referenced in the program,

prefix is the first name of the desired file-name, suffix is the second name,

and unit is the peripheral unit desired to be accessed, and may be selected

from the following table:

unit meaning

BACKUP DISK printer backup disk

BACKUP TAPE printer backup tape

CARD card reader

DISK serial disk file access method

DISK RANDOM random disk file access method

DISK SERIAL serial disk file access method

DISK UPDATE update disk file access method

FORM special forms on output

PAPER remote terminal

PAPER TAPE remote terminal

PRINT printer backup tape

PUNCH punch backup tape

RANDOM random disk file access method

REMOTE remote terminal

SERIAL serial disk file access method
SPO supervisory printer
TAPE magnetic tape

UPDATE update disk file access method
(empty) serial disk file access method

4-37

EQUATE

If the unit references any type of disk file, and the term [prefix/] is

not specified, the system will automatically assume a prefix of the user-code

of the user entering the EQUATE command. If the unit references any type of

disk file, and the term [prefix/] is specified, the system will check for the

existence of a disk file with name prefix/suffix which the user is capable of

accessing; if such a file does not exist, the EQUATE command will be rejected

with an appropriate error message.

An EQUATE command may be legally followed only by an EQUATE, RUN,

EXECUTE, DO, or CALL command. If any other type of command is entered, all

previous EQUATE commands in the current chain will be forgotten and an

appropriate error message will be given. Each EQUATE command must appear on a

separate line of input. Any number of EQUATE commands may be entered prior to

the execution of a program, and all will apply only to that one program being

executed.

The LIST PROGRAM FILES command may be used to determine the proper inter­

nal-names of program files for use in the EQUATE command. No error message

will be given if an EQUATE command references a non-existent internal file­

name. Not all legal internal file-names may appear in EQUATE commands;

the only legal ones are those which begin with a letter and are composed of

letters and digits. Thus COBOL and CODASYL programs may require correction

on certain internal file-names which may begin with a digit or contain one

or more hyphens, and yet must be used in EQUATE commands. The REPLACE command

may be used to great advantage in this case.

4-38

~'Ij A i\ E E (~'1' (-~ 1'1.. (-
FI LE: EQT - 'IYf'E: GTL -- CHEA'1J~L

1 00 r J'~ (.: I \J t-
~;~OOF J L~:.. Io-J EO'l F I J.. D1 5.< ~J~:jd AL (~" 1 0, 300) ,; ...
~~, OO}-d.~A DC f:Cn'j'l i ...) ;

L~OOE\] D. --
F U'J --

~,'.' ,A, IT.

c I) :~l PI L I .\! (i.

E>.J!i C:)"IPILE 2.9 SEC.

EHE EOT • /-1 SEC.

EQUATE EG)TF I L=h FE:'-:J TE-­
EU'.] -

R u.~~:-J l'~ G

EQUATE

1 ~ 0 TIC E TH AT Trl 1ST I C"i E E (~'1 r 1 L REF E Ii E:.J C E D l'F: t:A I .'J AL , :,J iJ T 11 I srC--

E:-JD EQT • 3 SEC.

EQUATE EQTFIL=A~Y/T~I~G TAPE ...
SEQ-
FRE: SEQ
? ...
A HU'J OR EXECUTE 'JR CALL Oh EQUA1E .'1U5T }-;)LLJ tl. A,'-l EQUATE CJ.'L1A~L

BI'-':1,) vE ...

4-39

FILE

4.3.15. FILEI FILES

The FILES command may be used to obtain the file-names and versions of

the files in the user's library. Its format is the following:

(FILE IFILES)

The file-names of all the files with names of the form file-name/user-code

are listed. The end of the list is indicated by a number symbol. An asterisk

is used to indicate object versions of files.

If' I L E:~.
*SE~.:lCH *G22
TAP

If
SCHL

*5 S:·{CH S I~GH~
*TAP GET

SEHCH G22 SEARCH *GET

4-40

FIND

4.3.16. FIND

The FIND command allows the user to search a file or a subset of a file

for the records containing a given string. The FIND command has the following

format:

(FIND [FILE file-name[/user-codeJ]

[FIRST] [LITERAL]

(delimiter sought-string delimiter I mnemonic)

sequence-list

[PRINT(SEQUENCE\TEXTISITE\FILE file-name) ,) ...

If the FILE option is specified, the designated file is searched, if it

is present and the user has access to it. If the FILE option is not specified,

the work-file is searched, if it is present.

When the first record with the required characteristics being sought is

found, the FIRST option, when used, terminates the search of the file; other­

wise the entire designated portion of the file is searched.

The LITERAL option is used to specify that the element which is contained

between the delimiters is to be sought as an entity.

The mnemonic option allows the user to search a file for records con­

taining special characters most of which may not be entered from the remote

terminal. These are ARROW, GEQ, LEQ, GTR, LSS, NEQ, EQL, with interpretations

as -, ~, ~, >, <, *, =, respectively.

The sequence-list option may be used to limit the area in which records

with the required characteristic are to be sought. By default the entire file

is searched.

The PRINT option is used to specify the output form. The PRINT SEQUENCE,

which is the default for this option, causes only the sequence-number of the

records containing desired strings to be printed on the terminal. When more

than one sought-string exists in a record and the PRINT SEQUENCE option is

used, an asterisk will precede the sequence-numbers. The PRINT TEXT option

causes the entire record to be listed on the terminal. The PRINT SITE causes

the records to be written on a printer at the site. The PRINT FILE file-name

option causes the records to be written to a file named file-name.

The REPLACE command is similar to the FIND command except that a search­

and-replace operation is allowed in the earlier command. Both commands may be

iterated by following each iteration except the last with a space, a comma, and

a left arrow. Only one PRINT option is allowed in the string of commands.

4-41

FIND

MAKE FlhJDER'"
FILE:FINDER - TYPE:SEQ
1 BOEND'- .
190END OF JOB~
200ENDOpJOB'" .
FIND LITERAL/END(~

v}AI T.

\,,11) ITo
180 190 200

N th"iBEn OF STRI NOS FOUND =

J!
rf

END FIND -7 SECo

FIND FIRST /END/~
\·JAI T.
1 (:0

NU(\'IBER OF ST!~I NGS FOUND =

END FIND .7 SEC.

IF
FIND/END/ ...

",TAl T.
1 eo 190

NUI-1BER OF STRINGS FOUND =

END FIND .7 SECCI

!J
R EPLAC E/ JOB I t·11 TH ARRO \oJ ..

tvA I T.

CREATED

3

1

2

NUMBER OF STRINGS REPLACED =

END REPLACE .9 SEC.

II

4-42

1

. \.

FIN}) {'~nHO hl PRINT TEXT··
\.,it\ 1 To

190 r~ND OF ?

NUi>lBEH OF STfiINGS F'OUND :::

END FIND .7 SEC c

FIND LITERAL IENDI 190-END~

\'JAI To
190 200

NUMBEfi OF ST~INGS FOUND =

END FIND It 8 SEC"

REt10VEf­
If.

FIND

1

4-43

FIX

4.3.17. FIX

The FIX command is used to delete or replace a portion of a line of

input. It has the following format:

(*\FIX) sequence-number delimiter sought-string delimiter

[replacement-string]

A FIX command causes CANDE to replace the characters that are

specified by the old string with the characters in the new string. CANOE

performs this action by searching the line with the given sequence-number

from left to right until it finds the first string of characters in the line

which is identical to the specified sought-string. It then discards those

characters and, if a replacement-string is included in the command, it inserts

the characters of the replacement-string in their place. Therefore, any given

string of characters in a line may be deleted or replaced by another string.

The delimiter is used to mark the beginning and end of the sought-string.

It may be any valid non-blank character that does not appear in the old string.

The first non-blank character after the sequence-number is taken as the

delimiter. All characters, including blanks, between the first two appearances

of the delimiter, are taken into the sought-string.

All characters up to but not including the left arrow following its

second appearance are taken into the replacement-string. Neither of the

strings may exceed 63 characters in length. If the FIX command results in a

record of more than 72 characters (80 for type DATA files), the record is

truncated to 72 (80) characters. If it results in a record of less than 72 (80)

characters, the record is space-filled from the right.

When type ,DATA records are FIXed and a sequence-number appears in charac­

ter positions 73 through 80, the user must include sufficient spaces in

representing the existing string so that the replacement string is not longer or

shorter than the existing string. If the replacement string is longer or

shorter, the sequence characters are shifted to the right, or left, rendering

them useless as a sequence-number. When the sequence field is empty, or

unimportant, the user need not be concerned with string sizes.

CANOE does not apply the change when it is entered. Instead, it stores

the contents as a record with other data entries in the work-file. Then,

when a command which affects the work-file is issued, such as LIST, RUN, SAVE,

etc., all of the changes are made, and any errors in the FIX commands are

4-44

FU

noted. Thus, error messages for non-match and truncation are typed following

the first command which uses the work-file. Except for causing error messages

to be typed, FIX commands in error are ignored and processing continues. FIX

commands containing syntactical errors are ignored and a suitable error message

is typed when an offending FIX command is entered.

Because of this, it is good practice to use the UPDATE command after

the desired set of corrections has been made to the work-file. The FIX errors,

if any, will be printed at this point. If, instead of UPDATE, the user had

entered COMPILE, and errors were found, the compilation would already haye

been started before the user knew of any FIX errors he had made.

Since CANOE initially treats a FIX command as if it is a record in the

work-file, more data or another command may be entered after the FIX command.

However, the FIX command may not be combined with other commands through

the use of the semicolon.

If the specified string cannot be found, the following message is

typed:

CANNOT LOCATE YOUR FU STRING FOR RECORD sequence-number

If the specified string is found, but would cause nonblank information

to be truncated, the following message is typed:

NOT ENOUGH ROOM FOR YOUR FIX IN RECORD sequence-number

4-45

FIX

MAHE FIXF.H~

FILE:FIXER - TYPE:SEO -- CREnTED
100 ABCDEFGHI JI{LI"j{'.jOPQHSTUV\·.!;'~YL.""
*/AH/ ...
EHR: /
>.':100/A/s.;+-
* 10Q/!\Tl/ ... * 100/ Z/ ••• 0 •••••••• 0 •• " II •••• to 0 G 0 • II ••••• 0 0 •• e 4>

u-
CANNOT LOCATE YOUR FIX STRING FOR RECORD 100
NOT ENOUGH ROOM FOR YOUR FIX IN RECORD 100

P (-
100 s)BCDEF'GHX JKLI1NOPG\RSTUV\'}XYZ

I,?ELETE ALL~

100THIS IS A SAMPLE'"
200TO SHOW HOW FIX ...
300 t·]ORKS'"
FIX 100. S.N EX~
F I X 200 # H 0 H Ii THE HAY IN \'JH I C H
P ,-
lOa THIS IS AN EXAMPLE
200 TO STHE HAY IN l'lHICH HOH FIX
300 ,yORKS

/f
*200 lITHE \,,'AY IN l'JH! CH$...
*300 .5.ING ...

100 THIS IS AN EXAMPLE
200 TO S HOH FIX
300 HORl{ING

/I
*20Qt5 +S'"
p ...

100 THIS IS AN EXAMPLE
200 TO SHO\.] FIX
300 v]ORKING

()

REMOVE ...
I

4-46

GUARD

4.3.18. GUARD

The GUARD command permits the user to build or modify a GUARD file in

order to allow other users or user's programs to read or to read and write

a file. Its format is as follows:

GUARD

The program starts by typing the following message:

NEW OR OLD GUARD FILE?

and the user responds with the word NEW if the user wishes to create a new

GUARD file, or OLD if the user wishes to update an existing GUARD file. The

program then types the following message:

LOCK FILE NAME?

and the user types the name of the old file or the name of the new file. If

a current GUARD file is being updated, the program types the following message:

ADD, DELETE, LIST, SAVE, OR QUIT?

The user then responds with an applicable choice causing the program

to again type the following message:

ADD, DELETE, LIST, SAVE, OR QUIT?

With the exception of QUIT, the user can type any of these words in

any order until all operations on the file are accomplished. Actions are taken

for each option as follows:

ADD is used to add user-codes and/or program names to the

file. After ADD is typed, CANDE types the following message:

READ ONLY NAMES?

The user may then enter a list of user-codes and/or program

names which are added to the file. These user-codes/program

names are allowed to read but not to change those files with

which this GUARD file is associated. Program names must be

entered in the following format:

file-name/user-code (of the owner of the file)

4-47

GUARD

The items in the list must be separated by commas or blanks. If

the user does not wish to add any read-only names to the GUARD

file, he should enter a left arrow.

If the user does not wish to add any read-only names to the

GUARD file, he should enter a left arrow.

Next the program sends the following message:

READ/WRITE NAMES?

In this case, any user-codes and program names that are entered are

able to access and change those files with which this GUARD file is

associated. If the user does not wish to add read/write names to

the GUARD file, he should enter a left arrow.

DELETE causes the program to type the following message:

NAMES TO BE DELETED?

The user then enters those user-codes and program names ahat are

desired for removal from the GUARD files.

LIST produces a list of all the user-codes and programs in the file.

Read-only user-codes and programs are preceded by (R) and read/write

user-codes and programs are preceded by (W).

SAVE must be entered to save the GUARD file. The file can be saved

more than once, in which case only the version last saved remains

on disk.

QUIT causes the program to terminate. Any additions or deletions

made since the last SAVE are not entered into the GUARD file. The

use of the WRU key to discontinue GUARD may result in an undefined

GUARD file, and should not normally be used.

When a new file is being created, the program first asks for read-only names

and then for read/write names, just as it does for an ADD command.

Then the program types the following message:

ADD, DELETE, LIST, SAVE, OR QUIT?

and the user may use any of the options which are described above.

The LOCK .•. WITH command must be used to actually attach the GUARD file

to the file to be guarded.

4-48

GUARD'"

i~ E f,l] 011 0 L D L 0 C 1 { F 1 L E r ? i\l E Q t-

L. GCI{ FILE NAt·1E'! ?jJE~)'f~
READ O~LY NAMES1?ONE, EYEDI JACKS~
EEAD/I',i!{1 TE N!'i~"JES? ?L.EFT~ HA:0DED., 1(1 r\JC:;5~'"
ADD." DELI-;:TE" L1 ST ... S/-\VE .. OJ, our 1'1

(R) Oi'JE:
(11) EYED
(H) JACl{S
(\oJ) LEFT
(\0]) HANDED
(H) I(INGS
ADD, DELETE, LIST# SAVE, OR QUIT?
7D'ADD ..

READ ONLY NAMES??VILD DEUCES~
R EA.DI \'.8 I TE I~A.MES?'/ i~
ADD, DELETE, LIST, SAVE, OR QUIT?
?LIST4-
(}1) ONE
(R) EYED
(R) Jf-\CI{S
(\.J) LEFT
("') HAN DED
(t·]) KINGS
(H) HILD
(R) DEUCES
ADD, DELETE, LIST, SAVE, OR QUIT?
?SAVE'"

LOCK FILE SAVED.
ADD, DELETE, LIST, SAVE, OR QUIT?
?QUIT4-
THANK you.

END GUARD 1.8 SEC.

LOCK G22 WITH BEST'"
(/

LIST FILES G22 ..
03/07/72 RCC63YH 7:43 PM.
NAME TYPE RECS SEGS CREATED

G22
CE2
IJ

GTL
*GT1.

18
21

10 03/02/72
21 03/02/72

4-49

GUARD --

ACCESSED W/R W/B S-F LOCKD BY

03/07/72
03/07/72

10 300
30 30

10 BEST
20 BEST

HELLO

4 . 3 . 19 . HELLO

The HELLO command is used to initiate a log-in sequence. The format is:

HELLO [user-codeJ[passwordJ

The HELLO command causes the session of the current user to be terminated and

a new session to be initiated without physically performing a terminal discon­

nect. The password should be entered in this command only if the printed

output may be disposed of securely.

"-1 t.'· I) : r....1 ' ~ t-

o\} FJ L 1 ~'. 1 SF;C.
C!},·I'. USE .;~ SEC.
E.·~F.CUTE • 0 SEC.

" rOT 1 ,vj Eo • 0 SEC ...
OFF AT 2:08 P~.
(~:) IJ U13'f E he c 6 3Y:l

O:~/13/72

E>lTEH U~Eh CJDE, PLF.4SE-hCC63{d­
A>J 1) YOU h PAS St·;) n 1)

B fH9! tBJB!I
O~3/ 1 3/72 2: 09 PYle
GOOD A~TEh~OO~, PASS E ~: YOU ~AVE LI~E 20

HELLO HCCE3(!"! ..
;'6SJPJ8Bli
03/ 13/72 2: 09 P:1.

,

G:) :) D AFT E h ~~ J J ,'1 , PAS S t.: yl: Y r) U ti A \,: E L 1." E 20

4-50

LIST

4.3.20. LISTIL

The LIST command is used to list the contents of a file. Its format

is as follows:

(LILIST)C($ICHANGES) IfilenameC/user-code]]sequence-list

Co;', I SQUASHED][ffo I NUMBERED]

The PRINT command is similar to the LIST command, except that the heading

identifying the file is omitted in the output resulting from the PRINT com­

mand. The DISPLAY command is similar to the PRINT command, except that

sequence-numbers are printed to the full eight digits.

Without a file-name, the LIST command lists the work-file, if present.

With a file-name, the specified file is listed. If a list of sequence-numbers

is not included, the entire file is listed. Otherwise, the lines with the

specified sequence-numbers are listed. An entry of the form s causes that

line, if present, to be listed. An entry of the form sl-s2 produces a list

of all lines (if any) with sequence-numbers in the range from the first

sequence number through the second sequence-number. The word END is equivalent

to the highest sequence-number in the file. A maximum of nine sequence­

numbers are allowed in the list. The sequence-numbers in the list must be in

ascending numerical sequence. Requests to list non-existent records according

to sequence-number reference are ignored, and no error message is given. In

order to LIST file without sequence-numbers, CHANGE its TYPE to INFO. If

necessary, after it is listed, CHANGE its TYPE back to what it was originally.

CHANGES Option

The CHANGES option, or the dollar symbol, may be used to obtain a list

of the alterations made to the work-file since the last update.

SQUASHED Option

The SQUASHED option, or the asterisk symbol, may be used to list record

contents with extraneous blanks removed. This option is particularly useful

for type DATA files in which a digit string appears in the sequence field or

for fast listing of source language files.

NUMBERED Option

The NUMBERED option, or the number symbol, has meaning only with type

DATA files, and it is ignored when listing sequential files. This option causes

the printing of a record location on the line immediately preceding the data

record.
4-51

LIST

Llf5T'"
EHH: NOF'IJ .. E

NO H0111{ ·FILE - US1~ t1AKE OR LOAD.

MAKE LISTER DATA~
FILE:~ISTER - TYPE:DATA -- CREATED
1 DATA ...

OK
REG 1t:""
REG 2~
REC 3··
11 EC to} ..

...
c-

if
LIS T~·

FILE:LISTER - TYPE:DAT{.~ --03/07/72 7:L16 Pt·1.

REG 1
HEG 2.
REG 3
HEC 4

END LIST 1.3 SEC.

FILE:LISTER - TYPE:DATA --03/07/72 7:47 PM.

1
REC 1
2
.REC 2
3
REC 3
4 .

REC 4
5

6

END QUIKLST.8 SEC.

*1/1/ 1 ..

4-52

LIST .. l"

FILE:LISTER - TYPE:DATA --03/07/72 7:47 PM.

REC 1

END LIST 1.2 SEC.

LIST SQUASHED'"

FILE:LISTER - TYPE:D~TA --03/07/72 7:48 PM.

REG 1
REG 2
BEG 3
BEG 4

END QUIKLST .6 SEC.

SAVE'"
FILE:LISTER - TYPE:DATA

CHANGE LISTER TYPE TO SEQ ...

RESEQ LISTER"
EHR: vJRl{FILE

SAVED.

I CANNOT ALTER THAT FILE - IT IS YOUR WORK FILE.

RE110VE"
{) .
RESEQ LISTER'"

\'11\1 T.

ENDRESEQ .9 SEC.

LIST'"
ERR: NOFILE.
LIST LISTER'"

FILE:LISTER -03/07/72 7:49 PM.

100 REC 1
200 REC 2
300 REC 3
400 REC 4
500
600

END QUIKLST .7 SEC.

4-53

LIST

LIST

LIST LISTEn lOa L,OO-END S0.UASHED ...

FILE:LISTER -03/07/72 7:50 PM.

100 nEG 1
400 HEG 4
500
600

END QUII{LST .7 SEC.

CHAi\TGE LISTER TYPE TO D~~TA~

LIST LISTER'"

FILE:LISTER -03/07/72 7:51 PM.

REG 1
\\ 00000100

HEG 2
\\ 00000200

REC 3
\\ 00000300

REC Lj

\\ 00000400

\\ 00000500

\\ 00000600

END QUIKLST .5 SEC.

LIST NUHBERED!DEL

LIST LISTER NUMBEl1ED SQUASHED'"

FILE:LlSTER -03/07/72 7:53 PM.

1
REC 1 00000100
2
REG 2 00000200
3
REG 3 00000 300
4
REG 4 00000400
5

00000 500
6

00000600

END QUIKLST .7 SEC.

4-54

\\

\,

\\

\\

\\

\\

LIST FILES

4.3.21. LIST FILES

The LIST FILES command may be used to obtain much relevant information

about disk files to which the user has access. The format of the command is

as follows:

LIST FILES [TO (PRINTER\TELETYPE\fi1e-name)]

[[file-type]

[SOURCE][OBJECT]

[LOCKED][UNLOCKED][PUBLIC][SOLEUSER]

[LITERAL string]

[file-name][/user-code]]

The information which may be obtained through the use of this command

is as follows:

NAME

TYPE

RECS

SEGS

CREATED

ACCESSED

W/R

W/B

S-F

LOCKED BY

FILES

SEGMENTS

RECORDS

name of each file (alphabetical order).

associated file-type of each file. If the file
version being described is object it is indicated by
an ok.

number of records contained in the file.

number of disk segments used.

date of creation.

date last accessed. If accessed today, an asterisk
flags the date.

words per record.

words per block.

save factor of file.

if the file is locked, with a security file, then
this reflects the security file used in the GUARD
command. If the file has been UNLOCKed or PUBLICed,
such is indicated; otherwise this entry is blank.

total number of files listed.

total number of disk segments occupied by the files
listed.

total number of records in the files listed.

4-55

LIST FILES

The information normally sent to the user's terminal may be sent instead

to the high-speed onsite printer or into a newly-created disk fiie through the

use of the TO PRINTER or TO file-name option.

The default action of the LIST FILES command is to list all of the disk

files belonging to the user entering the command. This action may be

modified or restricted through the use of the other terms in the syntax.

They may be entered in any order and, other than the [/user-code] term, form

a restriction of the set of files listed. The [/user-code] term allows a user

to interrogate another user's library; the only files listed in this case

will be those to which the requesting user has access.

4-56

LIST FILES

LIST FILES ...
03/08/72 HGC63YH 08:39 Pl~1

N /\lvlE TYPE REGS SEGS CREATED ACr.ESSED ~·)IR H/B S-F' LOC I';r: 3Y

GET GTL 40 20 02/2/.1/72 03/03172 10 300 7
(-j22 GTL 1.8 10 U3/02/78 -!. 03/0g/7(~ 10 300 10 t7>JLOCl{D -r-

LSEHC OTL. :38 2.0 03/02/72 !~: 03/08/72 10 300 7 U.\~LOC1{D

SCHL lYl.TA 108 /-10 03/02/72 03/03/72 10 300 10
SEARCH GTL 80 30 03/07/72 * 03/08/72 10 300 7
T{-\P GTL 176 60 03/03/72 03/03/72 10 300 7
GET *GTL 108 102 02/2/-!/72 03/03172 30 ,30 ($

G82 *GTL 21 21 03/02/72 * 03/08/7f-~ 30 30 20 thH .. OCl{D

LSERC *GTL 67 67 03/02/72 * 03/06/72 30 30 8 U~LOCKD

, SEARCH *GTL 87 87 03/07/72 * 03/08/72 30 30 8 UNLOC1{D
TAP *GTL 97 97 03/03/72 03/03/72 30 30 8

1 1 FILES 554 SEm~ENTS 83/1 HECORDS

END LFILES .9 SECo

LIST FILES UNLOCK ...
EHR: UNLOCK
LIST FILES UNLOCKED(-
03/08/72 RCC63YH 08: 1!2 PM
NAr"lE TYPE RECS SEGS CREATED ACCESSED \oJ/R H/B S-F LOCKD BY

G22 GTL 18 10 03/02/72 * 03/08/'"/2 10 300 10 UNLOCKD
LSERC GTL 38 20 03/02/72 * 03/08/72 10 300 7 UNLOCKD
G22 *GTL 21 21 03/02/72 * 03/08/72 30 30 20 UNLOCKD
LSERC *GTL 67 67 03/02/72 * 03/08/72 30 30 8 UNLOCKD
SE~RCH *GTL 87 87 03/07/72 * 03/08/72 30 30 8 U;\1LOCKD

5 FILES 205 SEGMENTS 231 ' RECORDS

END LFILES .9 SEC.

LIST FILES SE.4RCH ..
03/08/72 RCC63YH 8:43 PM.
NAME TYPE RECS SEGS CREATED ACCESSED W/R W/S S-F LOCKD BY

SEARCH GTL 80 30 03/07/72 03/08/72 10 300 7
SEARCH *GTL 87 87 03/07/72 03/08/72 30 30 8 UNLOCKD
()

4-57

LIST FILES

LIST FILES IRISGHLv]'''
03/08/72 l1ISGlJJLW 08:143 PN
NAME TYPE RECS SEGS CREATED ACCESSED W/R "lIB S-F LOCKO EY

ACCESS SEG 18 10 02/23/72 >.': 03/08/72 10 300 7 tINLOCKD
ALLoe SEQ 40 20 03/08/72 ~ 03/08/72 10 300 7 UNLOCKD -"
DELETE SEQ 25 10 02/23/72 * 03/08/72 10 300 7 UNLOCKD
FIELD SEQ 31 20 02/18/72 * 03/08/72 10 300 7 UNLOCKD
INSERT SEQ 26 10 02/23/72 * 03/08/72 10 300 7 UNLOC}{D
LALLoe SEQ 42 20 q3/08/72 * 03/08/72 10 300 7 UNLOCKD
LINKF SEQ 52 20 02/23/72 * 03/08/72 10 300 7 UNLOCKD
LLIST SEQ 69 30 03/08/72 * 03/08/72 10 300 7 UNLOCI{D
NODE SEQ 9.5 40 03/08/72 * 03/08/72 10 300 '7 tINLOCKD
OPEHNS SEQ 16 10 03/08/72 * 03/08/72 10 300 7 UNLOCKI:'
QUEUE SEQ 40 20 02/23/72 * 03/08/72 10 300 7 tTNLOCVT
SALLoe SEQ 49 20 03/08/72 * 03/08/72 10 300 7 UNLOCi{D
SCRPT3 SEQ 143 50 02/18/72 02/23/72 10 300 7 UNLOC}{D
SCa?T4 SEQ 120 /40 02/23/72 * 03/08/72 10 300 7 UNLOC}O:
S TACI{ SEQ 42 20 02/23/72 * 03/08/72 10 300 7 UNLOC!{I)
S 'fI{QUE SEQ 1 L1 ' 10 03/08/72 * 03/08/72 10 300 7 UNLOC}(D
XPLAIN DATA. 27 10 06/29/'71 02/25/72 10 300 7 UNLOCKD

17 FILES 360 SEGMENTS 8L!9 RECORDS

END LFILES 1.3 SEC.

4-58

LIST PROGRAM FILES

4.3.22. LIST PROGRAM FILES

The user may request a listing of the attributes of the files of a

given object program with the LIST PROGRAM FILES command. Its format is

the following:

LIST PROGRAM FILES [file-name[/user-code]]

If no file-name is included, the object version of the work-file is

assumed by this command. The information printed may be used to properly

construct EQUATE commands to change the program file attributes when the

program is run.

t1AKE TESTF GTL ..
FILE:TESTF - TYPE:GTL CREATED
SEC)'"
100BEGIN- '
200FILE TEHM REHOV t' TE '1 .. 1. 7);" ,
300FILE DISKIN DISK "FILER" <1,10 .. 300); ...
I!OOFILE DISH:OUT DlSK SERIAl. (20:300] tlDISSEHL'" (2,10,300"SAVE 2);'"
500FILE PRINTER PRINTEBt'(2~15);"
600FILE TAPE 2(2,305);'"
700FILE CPUNCH 0(1,10);-,
BOOFILE PTPUNCH 8(2,401);"
900END."
1000'"
J1
1r

CO I1P I LIN G 0

END Cor~lPILE 3.2 SEC.,

LIST PROGRAM FILES-

TYPE

REMOTE
DISK (RANDOM)
DISK (SEHIAL.>

PRINT
TAPE OR READER

CARD PUNCH'
PAPER TAPE UNLAB

END FILES .7 SEC.

FIRST
NAME

LAST
NAME

OOOOOOO/TERM
FILER. /RCC63YH
DISSER /RCC63YH
aooOOOO/PRINTER
ooaOOOO/TAPE
oaOOOOQ/CPUNCH
OOOOOOO/PTPUNCH

4-59

INTERNAL NAME

TERM
DISKIN
DISKOUT
PRINTER
TAPE
CPUNCH
PTPUNCH

LOAD

4.3.23. LOAD

The LOAD command loads an existing disk file into a newly-created

work-file. The format is the following:

LOAD file-name

If the load is successful, CANDE types information concerning the name, type,

and size of the file. However, if the file is not ip the user's library,

CANDE types the following message:

ERR: file-name

LOAD SEARCH--
FILE:SEARCH - TYPE:GTL -- LOADING

3B RECORDS LOADED.

END LOAD 1.2 SEC.

SAVE~

FILE:SEARCH - TYPE:GTL

LOA.D+­
ERR: NAi'·1E
1 (-

SAVED.

"VERB" CONTAINS TOO MANY PARAMETERS.

LOAD NOTHER ...
ERR: NOTHER

FILE NOT IN YOUR LIBRARY.

MA.KE AFILE'"
FILE:AFILE -.TYPE:~E'
100 A RECORD'"
NAK
LOAD G22'"
ERR: NO SAVE
1 ...

CREATED

\.lORKFILE HAS UNSAVED RECORDS IN IT - PLEASE SAVE OR REMOVE IT.

REMOVE'"
/I

4-60

LOCK

4.3.24. LOCK

The LOCK command restores a file to its original security status or

attaches a GUARD file to another file. Its format is as follows:

LOCK[[SOURCE!OBJECT]fi1e-name •••] ..• [WITH guard-fi1e-name]

All files which are SAVEd or COMPILEd are initially LOCKed under the user's

user-code. The initial LOCKing is an automatic function giving the file

the file security status of sole user. Thus, only the creator may access

the file. The major function of the LOCK command is to return a file's

security to its original security status (sole user under the user's user­

code).

The purpose of the GUARD command is to create a GUARD file with

additional user-codes. The LOCK •.• WITH command assigns the GUARD file to

a source or object file in order to regulate the file's security. This

device limits the number of users allowed to access the file and controls

their class of access individually.

HHATS SEARCH ...
FILE SEARCH, TYPE GTL, 38 RECORDS, CREATED 03/02/72 (1128) SF=7

LIST FILES SEARCH~
03/07/72 RCC63YH 8:10 PM.
NAME TYPE RECS SEGS CREATED ACCESSED W/R W/B S-F LOCKD BY

SEARCH GTL 38 20 03/02/72 03/07/72 10 300 7
SEARCH *GTL 67 67 03/02/72 03/07/72 30 30 8 UNLOCKD
/I
LOCK SEARCH ..
I
~IST FILES SEARCH ..
03/07/72 RCC63YH 8:11 PM.
NAME TYPE RECS SEGS' CREAT.ED . ., ACCESSED \!J/R W/B S-F LOCKD BY

SEARCH GTL 38 20 03/02/72 03/07/72 10 300 7
SEARCH *GTL 67 67 03/02/72 03/07/72 30 30 8 ,

4-61

LOCK

LOCK SOUHCE SEAnCE tH TH LOCKE:i~"-
EHH: LOCHEH

1--
GUAn.D FILE MUST BE OF TYPE "LOCK".

REt·10VE LOC1~EB"
II
GUP\RD--

NEW OR OLD LOCK FILE1?NEW~
LOCK FILE NAME??BEST~
R E{i D ONY... Y N:~t"·lES??"'.
RE~D/ Hl1I TE N?\l'lES'~? 4'"

ADD~ DELETE~ LIST, SAVE~ OR QUIT?
? SAVE ...
LOCK FILE SAVED.
ADD, DELETE~ LIST~ SAVE$ OR QUIT?
?QUIT'-'
THANI{ YOU.

END GUARD 1.5 SEC.

LOCK SOURCE SEARCH HITH .BEST.­
/I
LIST FILES OBJECT !DEL

~IST FILES SE~RCH'"

L OCI{ SQUl7{CE SEARCH vlI TH BEST ...
I .
LIST FILES SOURCE SEAToRCH ...
03/07/72 RCC63YH 8:14 PM.
NAME TYPE RECS SEGS CREATED ACCESSED W/R W/B S-F LOCRD BY

SEARCH GTL
SEARCH *GTL ,
.

LOCK SEARCH~
I .

38
67

20 03/02/72
67 03/02/72

LIST FILES. SEARCH ...
03/07/72 RCC63YH 6:16 PM.
NAME TYPE RECS SEGS CREATED

SEARCH GTL
SEARCH *GTL ,

38
67

20 03/02/72
67 03/02/72

4-62

03/07/72
03/07/72

10 300
30 30

7 BEST
8

ACCESSED W/R ~/B S-F LOCKD BY

03/07/72
03/07/72

10 300
30· 30

7
8

MAKE

4.3.25. MAKE

The MAKE command creates a new disk file and establishes it as the work­

file. The format of the MAKE command is as follows:

MAKE file-name[file-typelfirst-letter-of-file-type]

The file-type may be ALGOL, BASIC, COBOL, CODASYL, DATA, DYNAMO, ESPOL, FORTRAN,

GTL, INFO, LOCK, SEQ, TSPOL, or XALGOL which can be abbreviated as colon,

followed by the first letter of the type, for non-ambiguous cases. If no

type is specified, then sequenced (SEQ) is assumed.

If the file has been successfully created with the MAKE command, CANDE

responds with the following message:

FILE: file-name - TYPE: file-type CREATED

If a file with the specified file-name already exists, CANDE sends the

following message:

FILE: file-name - TYPE: file-type -- DUPLICATE NAME

If no user disk is available, an error message will be given and the

MAKE command will be ignored.

l>1AKE FIL11 BAS I C ...
FILE;FILM - TYPE:BASIC
SAVEc-
FILE:FILM - TYPE:BASIC

11AKE FILl-l ..
FILE:FILM - TYPE:SEQ

MAKE~
EI:iR: NO NAME
1'"

CREATED

SAVED.

DUPLICATE NAME

THAT COMMAND REQUIRES A FILE-NAHE.

REMOVE. FILM ..
ERR: \lJRKFILE
1"
I CANNOT REMOVE THAT FILE--I T IS YOUR lI}ORK-FILE.

REMOVE" ,
REMOVE FILN'M"
I

MAKE FORTR:F"
FILE:FORTR - TYPE:FORTRAN
REMOVE ...
I

CREATED

4-63

MERGE

4.3.26. MERGE

An existing file can be merged into the work-file by the use of the

MERGE command. It has the following format:

MERGE file-name[/user-code]sequence-list[RESEQ resequence-info]

The specified file, or the indicated portions of it, are MERGEd into the

work-file according to sequence-numbers. In case of duplicate sequence­

numbers, the record in the work-file is used in the case of the MERGE

command and the record in the input file is used in the case of the RMERGE

command.

The numbers in the sequence-list must be in ascending numerical order.

END is equivalent to the last sequence-number in the list. A maximum of

nine entries are allowed in the list. If a work-file has not been opened,

the message typed is the following:

ERR:WRKFILE

For information concerning the RESEQ option, see the RESEQ command.

This option can be used to move records about in a file while merging the

file with another, and can be very powerful or very destructive, depending

upon how well it is used. An especially useful variant of the MERGE com­

mand allows the user to copy a portion of the work-file into itself at a

different location with resequencing if necessary. For example, in order

to reproduce the records with sequence-numbers a-b in the work-file into

the location starting with sequence-number s with sequence increment i,

the following commands may be used:

SAVE;MERGE work-file-name a-b RESEQ s+i

For further examples of the use of the MERGE command, see the RMERGE

command. Information there concerns the differences between the MERGE and

RMERGE commands in terms of resolving sequence-number conflicts between

the input file and work-file.

The base and increment for resequencing are assumed by default to be

100, and moving of records within the file (RESEQ 100,300) is not permitted.

At the completion of the merging operation, the number of records

merged and the sequence number of the last record are printed.

4-64

~lAl{E F 1 ..
FILE:Fl - TYPE:SEQ -- CREATED
100 1 t;'"
200 2,:-
300 3"
SAVE'"

HAlT.

FILE:Fl - TYPE:SEQ -- SAVEDe

l'1AKE F2'"
FILE:F2.- TYPE:SEQ
1 50 1. 5e:-
250 205<:-
3 50 ~j e 5" .
NE!1GE F'l+-

\J2.I T.

vJAI T.

CREATED

3 RECORDS MERGED CLAST RECORD MERGED=300)

END l1ERGE

p ...
100 1
1 50 1.5
200 2
250 2.5
300 3
350 3.5

II

REMOVE ...
IJ
REMOVE FI
I

102 SEC.

4-65 .

MERGE

MONITOR

4.3.27 MONITOR

The use can specify a more permanent facility for recording work-file

changes than provided through PRINT CHANGES through the use of the MONITOR

command. Its format is the following:

MONITOR file-name

When the MO~ITOR file-name command is entered, CANOE searches the user's

files for the presence of the specified file. If the file is already present,

an error message will be given. If the file is not present, CANOE creates

a file for the user, and places the file-name in the REMOTE/USERS record for

subsequent reference. This file-name will remain in the record until it is

replaced with another name by entering another MONITOR command.

The execution of the MONITOR command also sets a toggle in the LIST/

CANDE program. When this toggle is ON, all changes (additions, FIXes,

deletions) to the work-file will be recorded on the MONITOR file each time

that the work-file is updated. If MONITORing is no longer required, the

user may enter

RESET MONITOR

RESETting the MONITOR toggle does not remove the current MONITOR file-name

from the REMOTE/USERS record, nor does it alter the MONITOR file itself.

MONITORing the work-file changes may be resumed by entering

SET MONITOR

When CANDE receives this command, the REMOTE/USERS record is accessed to

determine the name of the current MONITOR file. If no file-name is listed

there, the following message will be given:

ERR:MON.FIL

If a file-name is, in fact, listed there, CANDE then proceeds to determine

whether the specified file is actually on disk. If the file is not found

in the user's library, an error message is given. If the file is found,

the file-name is printed on the user's terminal, and the MONITOR toggle

is again SET.

The name of the MONITOR file may be changed at any time by entering

another MONITOR file-name command, bearing in mind that the file specified

may not be on disk prior to entering the MONITOR request. If the MONITOR

file is removed after the MONITOR toggle is set, the LIST/CANOE program will

ignore the MONITOR request.
4-66

MON I TOa. i'10NF I L ...
/.;

110NI TaB. ;'·10NFI I., ..
EHIl: t·10NFIL
1'"
YOU ALREADY HAVE A FILE BY 1~AT NAMEc

111AKE TES T ...
FILE:TEST.- TYPE:SEQ -- CnEI\TED
100 REG lc:-
200 HEG 2e:-
300 REC 3'"
U ..

200 REG 2 AGAIN ..
300.HEC 3 ONCE MORE~
100'"
U'-

fr
*3001' /
U ...

p ...
200 REC 2 AGAIN
300 REC 3 ONCE MORE ••

/I
RESET HONITorr ...

400 NO CHANGE HERE"

I! .
SAVE'"
FILE:TEST - TYPE:SEQ

p ...
200 REC 2 AGAIN
300 REC 3 ONCE MORE ••
400 NO CHANGE HERE
I

SAVED.

P MONFIL SQUASHED~
MONITOR 15020 08:26 P.M. ********

REC 1 00000100
REC2 00000200
REG 3 00000300

MONITOR 15020 08:27 P.M. ********
00000100
REG 2 AGAIN 00000200
REC 3 ONCE MORE 00000300

MONITOR 15020 08:27 P.M. ********
REC 3 ONCE MORE •• 00000300

4-67

NONITOR

PRINT

4.3.28. PRINTlp

The PRINT command is used to print a portion of or all of a file. It

is different from the LIST command in that it suppresses the heading and

causes CANDE to type only a number sign when finished. The formats are as

follows:

(P \PRINT) [($ \ CHANGES) \file-name[/user-code]] sequence-list

sequence-list]*\SQUASHED][#\NUMBERED]

The PRINT command causes the work-file, the file specified, or a

sequence range within the file to be listed. When a file-name is not

specified, the work-file, if present, is used for the input. The lack of

a sequence option causes the entire file to be listed.

The PRINT command is equivalent to the LIST command except that the

header and trailer printed by the LIST command are deleted. For further

information, see the LIST command.

MAl{E IJRI NTH
FILE:PRINTR - TYPE:SEQ -- CREATED
100 BEG 1~

200 REG 2'"
LIST"

FILE:PRINTR - TYPE:SEQ --03/07/72 8:32 PM.

100 l1EG 1
200 BEC a

END LIST 1.8 SEC.

PI tnINT"
100 HEC 1
200 REG 2

(J

REHOVE'"
II

4-68

PUBLIC

4.3.29. PUBLIC

The PUBLIC command allows any user to access a file for read/write (if

source), or execute/only (if object). The creator may continue to access

it in any manner. The format is the following:

PUBLIC[[SOURCEIOBJECT][file-name] ..•]

For further information, see APPENDIX C.

LIST FILES G22"
03/07/72 RCC63YH 8:33 PM.
NAME TYPE REes SEGS CREATED ACCESSED "7/R H/B· S-F LOCKD BY

G22 GTL - 18 10 03/02/72 03/07/72 10 300 10
G22 *GTL - 21 21 03/02/72 03/07/72 30 30 20
I}

PUBLIC SOURCE G22c-
I)

LIST FILES G22'"
03/07/72 RCC63YH 8: 33 PI'1.
NAME TYPE RECS SEGS CREATED ACGESSED W/R ~]IB S-F LOCKD BY

G22 GTL 18 10 03/02/72 03/07/78 10 300 10 PUBLIC
G22 *GTL 21 21 03/02/72 03/07/72 30 30 20
U

.~

4-69

PUNCH

4.3.30. PUNCH

The PUNCH command may be used to punch the contents of a work~fi1e or

a file on disk onto paper tape on the user's teletype or simi1ar1y~equipped

device. The format is as follows:

PUNCH [fi1e-name[/user-code]][RESEQ resequence-info]

The base and increment for resequencing are assumed by default to be

100, and moving of records (RESEQ '100,300) is not permitted.

After entering a PUNCH command, the user must turn on the paper tape

punch. The system then sends 39 rubouts, the file-name, 40 rubouts~ the

contents of the file, and 40 more rubouts. Each line of data is ended with

a carriage return, a line feed, and a rubout. The tape can be read back

to the system using the TAPE command by initially positioning it in the

first set of 40 rubouts.

Graphically, the format of the tape is equivalent to that shown below:

39 - RO

40 - RO

RO

RO

40 - RO

where

file-name CR LF

First-data-1ine CR LF

second-data~line CR LF

1ast-data-1ine CR LF

CR means carriage return,

LF means line feed, and

RO means rubout.

4-70

MA!tE PFILE'"
FILE:PFILE - TYPE:SEQ -- CREATED
100 REG 1 t;-
200 REG 2~
300 HEG 3'"
LIOO REG LI0· ...

PUNCH ..
HA.IT.

\'lAI T.
PFILE
100 REC 1
200 REG :2
300 REC 3
400 R~C 4

END PUNCH .6 SEC.

4-71

PUNCH

REMOVE

4.3.31. REMOVE

The REMOVE command is used to remove files creat~d by the requesting

user. Its format is the following:

REMOVE[[SOURCEIOBJECT][file-name ...]]

If the optional words SOURCE and OBJECT are not used, both versions of

the files that are named in the list are removed. The SOURCE and OBJECT

options are included to indicate that the files following them in the list

should have only the source or object versions removed, respectively. If only the

object version of a file exists, and the source does not, then the OBJECT

option must be chosen. These options apply to all files following them in

the list until another option is invoked or until the end of the list. For

instance,

REMOVE FILEl, FILE2, SOURCE FILE3, FILE4, OBJECT FILES

would result in the removal of both versions of FILEI and FILE2, the source

versions of FILE3 and FILE4, and the object version of FILES. Note that all

files for which both the source and object versions are to be removed must

appear in the beginning of the list. If the source version is removed, a

file can only be run or executed; it may not be easily modified or recompiled

in its current form.

A maximum of nine entries--i.e., file-names and uses of the SOURCE and

OBJECT options--are allowed in the list. After the REMOVE command has been

completed, a number sign is typed which indicates that CANOE is ready for

the next command.

Reference to a non-existent file is noted by the following message:

ERR: file-name

4-72

N.L\i),E FILE1"
F I [~E: F I L E 1 - TYP E: SEQ C::1EATED
SAVE"
FILE:FILEl - TYPE:SEQ SAVED.

M{\KE.FILE2'"
FILE:FILE2 - TYPE:SEQ CREATED
SAVE ..
FILE:FILE2 - TYPE:SEQ SAVED.

MAKE FILE2'3 BASIC'"
FILE:FILE3 - TYPE:BASIC -- CREATED
100 END"
SAVE'"

HAlT.

FILE:FILE3 - TYPE:BASIC

cor1PILE'"
CO>l? ILl NG.

END COMPILE 203 SEC.

SAVE ..
FILE:FILE3 - TYPE:BASIC

REMOVE OBJECT FILE2 ...
Ii
REMOVE OBJECT FILE3~
ERR: , t'lR.l{F I L E
SAVE.-
FILE:FILE3 - TYPE:BASIC

REMOVE OBJECT FILE3 ...
~

SAVED"

SAVED.

SAVED.

"REi'10VE OBJECT, NOT SOURCE, VERS I ON OF FILE3 ...
REMOVE FILEt ..
ERa: HRKFILE
1'"
I CANNOT REt-10VE THAT FILE--IT IS YOUR \al0RK-FILE.

REl'10VE ..
(J

REMOVE FILE1 ..
fI

"REMOVE ALL TRACES OF FILE1 ..
REMOVE OBJECT FILE2 ...
I
REMOVE FILE2 ..
(J

REMOVE SOURCE FILE3 ...
II

4-73

REMOVE

RENAME

4.3.32. RENAME

The RENAME command changes the file-name associated with the work-file.

The format is as follows:

RENAME file-name

The RENAME command may be used to give the work-file a new name so that a

subsequent SAVE command does not destroy an existing file. A number sign

is sent to indicate that the renaming operation has been performed.

HA}{E Fl.-
FILE:Fl - TYPE:SEQ -- CREATED
RE£\TA!vlE F1234S'"
t!

HHATS'"
FILE F12345 (WORKFrLE)~ TYPE SEQ, 0 RECORDS
fJ
SAVE'"
FILE:F12345 - TYPE:SEQ

vlHATS F1 ...
ERR: Fl
1 ...
FILE NOT IN YOUR LIBRARY.

t'lHATS F12345'"

SAVEDe

FILE F12345, TYPE SEQ, 0 RECORDS, CREATED 03/07/72 (2046) SF=7

"

REMOVE ... ,

4-74

REPLACE

4.3.33. REPLACE I REP

The REPLACE command allows the user to search a file or a subset of a

file for the records which contain a given string and to replace occurrences

of that string with another string. The format of the REPLACE command is as

follows:

«REPLACEtREP) [FILE file-name[/user-code]]

[FIRST] [LITERAL]

(delimiter sought-string delimitertmnemonic)

[WITH(delimiter replacement-string delimiterlmnemonic]

sequence-list

[PRINT(SEQUENCE\TEXTtSITEtFILE file-name)] ,) ..•

If the FILE option is specified, the designated file is searched for

replacement, if it is present and the user has read/write access to it.· If

the FILE option is not specified, the work-file is searched for replacement,

if it is present.

The FIRST option, when used, terminates the search and replace operation

after the first replacement has been performed on the first record which

contains the characteristics which are sought; otherwise, the entire desig­

nated portion of the file is searched for replacement.

The LITERAL option is used to specify that the element (string, constant,

literal, constant-string, or literal-string) which is contained between the

delimiters is to be sought and replaced as an entity.

The mnemonic option allows the user to search a file for records which

contain certain special characters (ARROW, GEQ, LEQ, GTR", LSS, NEQ, EQL)

and replace any of these characters with an element or replace an element in

a record in a file with those characters. The interpretation of those

mnemonics is ~, ~, ~, >, <, ~, =, respectively. Caution should be exercised

when replacing an element using the mnemonic option as only the element is

replaced. That is, the previous data to the left and right of the replaced

element remains intact.

The sequence-list option may be used to limit the area in which records

containing the sought-string are to be search. By default the entire file

is searched.

4-75

REPLACE

The PRINT option is used to specify output form. The PRINT SEQUENCE option

causes only the sequence-number of the records containing the sought-string

to be printed on the terminal. The PRINT TEXT option causes the records

containing the sought-string to be listed on the terminal after replacement.

The PRINT SITE option causes the records containing the sought-strings to be written

on a high-speed printer at the computer site after replacement. The PRINT

FILE file-name option causes the records containing the sought-strings to

be written to a file named file-name after replacement. When working with

files of file-type DATA containing sequence-numbers in characters 73-80, the

sought-string and replacement-string should be of the same length to avoid

problems.

Multiple replacements may be made by continuing the REPLACE command to as

many lines as is necessary, duplicating the REPLACE verb at the beginning of

each segment, and by following each iteration except the last with a space,

,a comma, and a left arrow. Only one PRINT option is allowed in the string

of commands.

4-76

NAKE REPFIL ...
FILE:REPF~L - TYPE:SEQ -- CREATED
100 REG 1--
200 REC 3~

300 HEG 5~

400 REC 7'"
REPLACE/REC/WITH/RECORD ..
ERR: HEGORD
1 ..
MISSING DELIMITER OR STRING TOO LONG.

REP IRECI \tJI TH IRECOHD/ ..
HAlT.

NUMBER OF STRINGS REPLACED =

END REPLACE .8 SEC.

p ..

100 RECORD 1
200 RE:CORD 3
300 RECORD 5
400 RECORD 7

{}

REP/3/HI TH/2/ ~
REP/5/\I.'I TH/31 A

REP/7/\·II THI 41 ..
\I]AI T.

NUMBER OF STRINGS REPLACED =

END REPLACE 1.1 SEC.

4

3

4-77

REPLACE

REPLACE

p ...
100 RECORD 1
200 HECORD 2
300 RECORD 3
400 HEGOnD /4

/I
REPLACE IRECI WITH IXXXI 100 PRINT TEXT'"

")AI T.

NUMBER OF STRINGS REPLACED ::: o

END REPLACE 1.0 SEC.

REPLACE LITERAL IREGI WITII IXXXI 100 PRINT TEXT~
HAIT~

100 XXXORD 1

NUtr1BER OF STRINGS' REPLACED ::: 1

END REPLACE 1.0 SEC.

II
REPLACE FIRST LITERAL IXI 'v!TH IYI PHINT TEXT'"

';]AI T.
100 YXXORD 1

NUMBER OF STRINGS REPLACED =

END REPLACE .9 SEC.

II

REMOVE'"
I

1

4-78

RESEQ

4.3.34. RESEQ

The RESEQ command is used to change sequence-numbers or move records

in a designated file or in the work-file. It has the following format:

RESEQ[file-name]resequence-info

The RESEQ command may not be used on files with file-type DATA.

CHANGE OPTION

If only a base-sequence-number is used, the entire file is resequenced

using the base-sequence-number as the first sequence-number and increasing

each successive number by the resequence-increment. If the base-sequence­

number and/or the resequence-increment-number are not given, they are as­

sumed by default to be 100. If a pair of sequence-numbers is used, the

lines between the two sequence-numbers are resequenced using the given

increment. If the resequencing processing results in a sequence-number

of more than eight digits, resequencing is abandoned and the following

message:

ERR: TOOBIG

is typed. This leaves the last lines of the file with incorrect sequence­

numbers. A correct RESEQ command should normally be given before proceeding.

MOVE OPTION

The numeric parameters to the RESEQ command may be unsigned integers, +

followed by an unsigned integer, or hyphened integers. The word TO, immedi­

ately preceding an integer, is intepreted as a hyphen, and the word END is

interpreted as meaning the last record in a file. The rules for determining

how CANDE interprets the numeric parameters to the RESEQ command are as

follows:

An unsigned integer preceded by a + is always interpreted as a

resequence-increment. If no resequence-increment is specified

by the user, a resequence-increment of 100 is assumed.

An integer preceded by a - is always interpreted as the upper

bound of a sequence range. The first unsigned integer which

immediately precedes the hyphen is interpreted as the lower

bound for the sequence range.

4-79

~SEQ

When only one unsigned integer appears after the RESEQ command, it

is interpreted as the following:

The lower bound of a sequence range if a hyphen followed by

an integer follows it,

A base for resequencing if a hyphen and an integer do not

follow it.

When two unsigned integers appear after the RESEQ command verb,

the first is interpreted as the lower bound of a sequence range,

and the second is interpreted as the b~se for resequencing. If a

hyphen and an integer do not follow the first unsigned integer,

the sequence range is assumed to be the single record specified by

the lower bound value (RESEQ 100,300 would resequence record 100

starting at a resequence base of 300, or, in effect, would move the

record at position 100 to position 300).

When both a sequence range and a resequence base are specified, records can

be lost from the file if the resequenced records have sequence-numbers which

are identical with the sequence-numbers of other records in the file. (RESEQ

300,900 would produce a record with a sequence-number of 900. If there had

already been a record with a sequence-number of 900 in the file, the old 900

record would be replaced by the new 900 record.) The user should therefore

exercise caution in moving records within a file.

4-80

NAl(E RF4-
FILE:RF - TYPE:SEQ
190 nEC 1'"
200 REC 2 ...
20002 HEG 3
4030 QO nEG 4+-

SAVE'"
t~AI T.

CREATED

FILE:RF - TYPE:SEQ -- SAVED.

RESEQ ...
HA1To

END RESEQ

p~

100 REG
200 REG
300 REC
400 REe

If
REJ.\10VE'"

1
2
3
'4

1.0 SECo

RESEQ RF RESEQ 100 300 +10.- .
ERR: RESEQ
1 ...
ONE OF YOUR PARAHETERS IS ILLEGAL.

RESEQ RF 100 300 +10'"
tvA I T.

END MERGE 1.0 SEC.

P RF'"
190 REC 1
200 REC 2
20002 REC 3
403050 REC 4

II
RESEQ RF'"

WAIT.

END RESEQ .8 SEC.

4-81

RESEQ

RESEQ

RESEQ HF 100 300<­
\~AI T.

END MERGE 1.2 SEC.

P RF
200 REC 2

'300 REG 1
1-100 REG 4

(f
R Et'10 VE RF

4-82

RESET

4.3.35. RESET

The RESET and SET commands may be used to change certain attributes of

the remote terminal's interaction with the system. For a complete discussion,

see the SET command. The format of the RESET command is as follows:

RESET option-list

RESET CONCIE'SE,BUSY~
(I

RESET 110NI TOR4-
{)

4-83

RMERGE

4.3.36. RMERGE

The RMERGE command allows the user to reverse the actions of the MERGE

command. When a library file is MERGEd into a work-file, and a record with

the same sequence-number appears in both files, the work-file record is the

record saved. In certain instances, it is desirable to accomplish the

reverse of the process; i.e., to eliminate the work-file record and retain

the library-file record. The format for the RMERGE command is the following:

RMERGE file-name[/user-code~equence-list[RESEQ resequence-info]

For further information, see the MERGE command.

The RMERGE command may not be used on files with file-type DATA.

4-84

MAKE FILEt ...
FILE:FILEl - TYPE:SEQ -- CREATED
100F 1 REC 1--
300F 1 REC 2'"
500F 1 REC 3--
SAVE'"

vJ.l~I T.

FILE:FILEl - TYPE:SEQ SAVED.

MAI{E FILE2 ...
FILE:FILE2 - TYPE:SEQ -- CREATED
200F 2 REC 1"
300F 2 REC 2"
400F ~ REC 3"
SAVE'"

WAIT.

FILEtFILE2 - TYPE:SEQ SAVED.

MAKE FILE3"
FILE:FILE3 - TYPE:SEQ CREATED
COpy FILEl"

HAlT.'
3 RECORDS COPIED CLAST RECORD COPIED=500)

END COpy 1.0 SEC.

MERGE FILEa .. '
~]AI T.

2 RECOnDS MERGED (LAST'RECORD'MERGED=400)

END MER.GE 1.1 SEC.
t

p ..
100 F 1 REC 1
200 F 2 REC 1
300 F 1 REG 2
400 F 2 REC 3
500 F 1 REC 3

I

4-85

RMERGE

RMERGE

REMOVE"
if
M4KE FILE'4"
FILE:FILE4 - TYPE:SEQ -_. CREATED
COpy FILE 1 e-

WAIT.
3 RECO~DS COPIED (LAST RECOan COPIED=500)

END CO?Y 1.1 SEC.

Rt1ERGE FI LE2.-.
\alAI T.

3 RECORDS MERGED (L~ST RECORD MERGED=40Q)

END MERGE 1 • 1 SEC.

p ..
100 F 1 REG 1
200 F 2 REC 1
300 F 2 REG 2
400 F 2 REG 3

"sao F 1 REG 3

/I

4-86

R~

4.3.37. RUNIR

The RUN command causes CANOE to take whatever actions are necessary to

run the specified program. It has the following format:

(R\RUN)[file-name[/user-code]][compiler-file-time\:first-letter-of­

compiler-file-type]program-parameter-info

CANOE runs the specified file by executing the object version if it is

available, or, if there is no object version, by compiling and executing

the source version, if it is available. If a file-name is not included in

the RUN command, the work-file is executed.

The RUN command may be preceded by EQUATE commands or immediately

followed by program-parameter-info. If no program-parameter-info appears, the

following parameters are assumed:

PROCESS = 2

10

STACK

COMMON

=
=
=

2

512

0

If RUN file-name requires the file-name to be compiled, the resulting

object file, if any, is executed but not saved. However, if the work-file

is compiled with RUN, the object file is kept in the work-file so that, if

the work-file has been changed since it was created or last saved, both

versions can be saved.

The compi1er-fi1e-type can be ALGOL, BASIC, COBOL, CODASYL, DYNAMO, ESPOL,

FORTRAN, GTL, TSPOL, XALGOL, or an abbreviation consisting of a colon followed by

the first letter of the compi1er-file-type, if unambiguous. It is required

for files of non-compi1er-fi1e-type, but in any case, it overrides the

original file-type and can be used for a work-file with any file-type. For

further information about the compilation process, see the COMPILE command.

If it has been arranged through the user of the LOCK, UNLOCK, PUBLIC, and

GUARD commands, object files belonging to another user can be executed by

including that user's user-code in the RUN command. Note that one user can

only execute the object version of another user's file. The user cannot

directly compile the source version, even if available to him, without copying

it first. Therefore, a RUN command specifying a file in another user's library

is equivalent to an EXECUTE command specifying that file. The RUN command

may be preceded with EQUATE commands and followed by program-parameter-info.

4-87

R~

The messages typed by CANDE are similar to those typed for the COMPILE

and EXECUTE commands. Thus, if compiling is necessary, the messages printed

are the following:

COMPILING

(any syntax errors here)

END COMPILE n.m SEC.

The messages printed for execution are the following:

RUNNING

(any output here)

END file-name n.m SEC.

In case the user decides to prematurely discontinue a program, and the

program is not typing at the time, he may depress WRU(CTRL E). If the program

is typing at the time, it may be necessary to depress BREAK to stop the typing;

if BREAK itself does not discontinue the program, he may then depress WRU.

4-88

MAKE EXAMPL BASIC~
FILE:EXAMPL - TYPE:BASIC
lOOLE! X=Y=L, ...
. 150pnINT "X="X,"y=",y ..
1 75LET ABC:::.:D~-:F''''

RUN

CREr-~TED

1 rI6Lf'lST LINE f.,.IILt. Ct-\USE A. SYNTAX EHROH" AS trILL THIS ONE ..
200END ...
HUN ...
HAIT~

co toj P I LIN G "
175 UNRECOGNIZABLE STATEMENT OR MISSING EQUAL.
176 UNHECOGNIZABLE ST!-\TEMENT 011 t'1ISSING EQUAL.

ERR COMPILE 2c4 SEC.

1 75.-
17611Et·l NO,·,T GOOD4-'
RUN··

HAl To

C a 1~1l") I LIN G •

END COMPILE 2.4 SEC.

RUNNING

X= 4 y=

END EXAMPL .4 SEC.

RUN ..
RUNNING

X= 4 y=

END EXAMPL 05 SEC.

50RE~D '(...
100 LET X=Y+S"
RUN ...

WAIT.

COMPILING.

4

4

END COMPILE 2.7 SEC.

RUNNING

-OUT OF DATA, NEAR LINE 00000050

ERR EXAMPL 06 SECo

* 50; HEAD; INPUT"
HUN

\oJAi T.

END COMPILE 2.8 SEC.

RUNNING

? 7.9 ..
X= 18.9 ¥=

END EXAMPL .4 SEC.

RUN ...
RUNNING

? 4381 .90654.-
X= 4326.907.·· ¥=

END EXAMPL .4 SEC.

REMOVE
I

4381.907

4-90

SAVE

4.3.38. SAVE

The SAVE command causes the current copy of the current work-file to

be saved. Its format is as follows:

SAVE [save-factorJ[file-typeJ

The SAVE command does not clear the work-file but it does establish a

permanent disk file which reflects the work-file at the time the SAVE command

is processed. Any previous copies of the file are removed. If the work-file

is saved more than once, only the version last saved remains on disk.

If the work-file has not been changed since being initially created or

last saved, the SAVE command is ignored. If the SAVE is performed and

there is an object version of the work-file which agrees with the source

version, both versions are saved. Otherwise, the object file is not saved

and the disk space allocated for it is returned to the system. Whenever a

SAVE is done, the old versions of both the source and object files are

removed.

If save-factor and/or file-type are specified, the work-file will be

saved with the revised specifications. The work-file itself will not be

altered, however.

Each file is saved as a locked file unless the user has previously

specified a different form of file security through the use of the GUARD,

LOCK, PUBLIC, and UNLOCK commands.

When the file is saved, CANDE types the following message:

FILE:file-name - TYPE: file-type -- SAVED

If there is no work-file, .CANDE types the following message:

ERR:WRKFILE

4-91

SAVE

MAKE TESTSV'"
FILE:TESTSV - TYPE:SEQ
100 HEG 1 ...
200 REG 2.-
300 REG :~c-

SAVE ..
HAITe

FILE:TESTSV

400 REG 4--
500 HEC 5'"
200"
*1001 /
p ...

100 REG 1
300 REC 3
400 REG 'I
500 REG 5

II

P TESTSV'"
1 00 REG 1
200 HEG 2
300· REG 3

SAVE· ..

- TYPE:SEQ

........
- .. • 0 • •

CHEATED

SAVED.

FILE:TESTSV - TYPE:SEQ -- SAVEDe

P TESTSV'"
100 REG 1 •••••
300 REG 3
400 REG 4
500 REC 5

(J

RE~10VE ..
I
REMOVE TESTSV'"
I

4-92

SCHEDULE

4.3.39. SCHEDULE\SCH

The SCHEDULE command is used to schedule a series of commands to be

processed independently of the user. The format of the SCHEDULE command is

the following:

(SCHEDULE \SCH) [file-name[/user-codeJ] TO file-name [AFTER integer]

The first file-name in the format, cGlled file 1 here, specifies the input

file to be scheduled. This file may be altered or removed after the

SCHEDULE command has been acknowledged py CANDE. The second file-name in the

format, called file 2 here, must not be present on disk before the SCHEDULE

command is entered. All output from file 1 that would normally be sent to

the remote user's terminal is placed in this file. File 2 is created when

the SCHEDULE command is given.

Once a SCHEDULE command has been successfully entered, the user is said

to occupy a schedule line, or to be performing a scheduled task.

The AFTER integer clause, if used, specifies the time of day after

which the task may be initiated. From 0001 to 0759 is considered after 2400.

If the AFTER clause is not specified, the task is started as soon as possible.

The file 1 to be scheduled contains CANDE commands, possibly intermixed

with input data sets for programs. The input data sets must appear in the

proper place, such as after a RUN or EXECUTE command. At the time the

scheduled job is initiated, CANDE sequentially processes each command and

the programs in the schedule line receive the remote input from the scheduled

input file. A copy of each input record and all remote output are written

into file 2. An error condition, such as an invalid command, duplicate file,

syntax error on a compilation, or error prog~am termination, other than a

reference to a non-existent file in a REMOVE command, c~uses termination of

the scheduled job, unless the NOSTOP option is set. In file 1, trailing

blanks are ignored: there is an implicit carriage return immediately after

the last non-blank character or as the first character of a blank record.

The HELPFUL option is automatically set for a SCHEDULE line.

The following commands are invalid in a schedule file: HELLO, PUNCH,

TAPE, and special functions of a question mark.

A user may have more than one schedule line simultaneously in the sche­

dule queue. Of course, he may differentiate among them, because they all

have unique output file-names.

SCHEDULE

MAKE SCBLH DATf-l'"
FILE~SCHLR - TYPE:DATA -- C~EATED
? DATA'"

01{
l1AKE BBB BASIC ..
SEQ ...
READ N! DEL
INPUT N ...
PHINT N ...
HEAD N ...
PRINT N ..
END'"
...
? END! DEL
RUNt-
+ 1.2345.­
?END"

SAVE~

\·)AI T.

FILE:SCHLR - TYPE:DATA -- SAVED.

LOAD SCHLR~
FILE:SCHLR - TYPE:DATA -- LOADING

END LOAD
p ...
l'wlAKE BBB BASIC
SEQ
INPUT N
PRINT N
READ N
PRINT N
END

RUN
+1.2345

I
SCHEDULE TO XXX ..

'WA! T.

END SCHEDUL .9 SEC.

4-94

S Tf.\TU~; xxx c-

RUNNI NG(9)
STATUS XXX'"
H UL'JN IN Cl (9)
STATUS XXXt ..
DONE.
P XXX,-

l>1AI{E BBB BAS I C
FILE:BBB - TYPE:BASIC -- CREATED
SEQ
lOOINPllT N
200?RINT N
300~~EA.D N
L!OOpnINT N
500END
600
HUN

H{~I T.

COt-1P IL I NG.

END COMPILE 2.4 SEC.

RUi'JNING

?+1.23L!5
1&2345

-OUT OF DATA~NEAR LINE 00000300

ERR BBB .6 SEC.

BYE
ERR: NO SAVE

SCHEDULE

WORKFILE HAS UNSAVED RECORDS IN IT - PLEASE SAVE OR REMOVE IT.

BYE
C&E USE 1.6 SEC.
EXECUTE 4.8 SEC.
10 TIME 10.9 SEC.
GOODBYE RCC63YH

03/08/72

4 .. 95

SCHEDULE

f!
11 Et-10VE XXX ...

SGH TO XXX ...

HAITt-

END SCHEDUL .9 SEC~

S TOP XXXi­
RUNNING(9)
P xxx ...

I'-Jf.U{E BBB BAS Ie
FILE:BBB - TYPE:BASIC -- CREATED
SEG1
lOOINPUT N
200PRINT N
300READ N
400PHINT N
500END
600
RUN

HAIl'.
**TASK TERMINATED BY USER

-USER DS-ED,NEAR LINE 00054000

ERR LIST .8 SEC.

BYE
ERR: NO SAVE
WORKFILE HAS UNSAVED RECORDS IN IT· - PLEASE SAVE OR REMOVE IT.

BYE
C&E USE 1.6 SEC.
EXECUTE .8 SEC.
10 TIME 2.2 SEC.
GOODBYE RCC63YH

03/08/72

4-96

4 . 3 .40 . SEQ \ S

The SEQ command is used to request CANOE to generate the sequence-numbers

for the user as input is entered to the system. It has the following format:

(SEQ\S)[base-sequence-number][+resequence-increment]

If the resequence-increment is missing, the one last entered for this work­

file is used; if none has been entered, 100 is assumed. If base-sequence­

number is missing, the highest sequence-number currently in the work-file

plus the current resequence-increment is used~ When automatic sequencing is

used, the user must wait (if necessary) for the sequence-number to be typed

before entering data. Automatic sequencing is terminated by entering a group

mark or WRU immediately following the sequence-number; not even backspace

characters may be used on this last line. CANDE types a number sign to

indicate that it is ready for further input.

t1AI{E X BAS I C'"
FILE:X -'TYPE:3ASIC -- CREATED
SEQ. 1000+10.-
l..Q...,QO.DIl'-j XC 20) ~
!.D.lo.L EY Y::: 3 ~1:X (8) t ..

1ll2DJ.,.ET Z:::Y:.j'~~~2'"

LO 3Q4-

*lOlO/Y/T4-.
150INPUT p ...
S EC-l c-

1 030 I 'LET I = I + 14-
1 040 END'"
l.O.15.Q,'"
()

p ..

1 50 INPUT P
1000 DIL1 X(20)
1010 LET ¥=3*X(3)
1020 LET Z=Y**2
1030 LET 1=1+1
1040 END

REMOVE"
1/

4-97

SET

4.3.41. SET

The user may change certain options concerning the remote terminal's

interaction with the system through the use of the SET and RESET commands.

The format of these commands is as follows:

(RESET\SET) (ALLOWMSG/BUSY/CONCISEIHELPFULIMONITOR\NONSTOP I
QUICKBYE\QUICKLOG) ...

The interpretation of the options is as follows:

ALLOWMSG

BUSY

CONCISE

HELPFUL

MONITOR

NOS TOP

QUICKBYE

QUICKLOG

"SET ALLOWMSG" allows TO messages to be received even
while the terminal is busy.

"SET BUSytl inhibits TO messages being received even
while the terminal is not busy.

tlSET CONCISE" inhibits the printing of many CANDE messa.ges
on the terminal.

tlSET HELPFUL" causes more complete error messages to be
printed whenever an error occurs, just as if a question
mark input message had been entered.

"RESET MONITOR" inhibits the updating of the MONITOR file
(see the MONITOR command).

"SET NOSTOP" inhibits the flushing of a SCHEDULE file if
an error occurs.

"SET QUICKBYE tI inhibits almost all of the messages nor­
mally printed at log-out time.

"SET QUICKLOG" inhibits almost all of the messages nor­
mally printed at log-in time.

By default, all the options are RESET. A user's options carryover to

any SCHEDULE files he starts. Since they are associated with his user-code,

they remain in effect until changed or a new REMOTE/USERS file is loaded.

The settings of the options may be interrogated through the use of the

TYPE OPTIONS command.

4-98

T { }-'}; 'J F T r) \J ~'c­
t L1 ... I) ': ,·1 ~:.(~ h }'. 5 L 'j
},U~·{ hl:.~·;'_'i

(;tJ\}CI SE hF~·}· T
i j j--1- lj;... i;'~':< '1

... ~ 'J' ~ 1 T J h }', J: ~..: 1', 'i
.• J I.).~ I T) }-: r 1 L }~,: <\J t)."J }:,~:

:-J 0 S'l") 1..1 hE SE,1'
(~Ul C;'a?Y E hE-SET

, QUI C:':L') l~ BESET
Ii .f

./1
~t

SET' OUI c:'a.,·) G ...
:1 <,

HE SET \JJ S TJ }..I o•

Ii

SET t») \J C I S£'­
{;

SET d EL P F 1 'UL ...
JI
rr

TY PE 'OJ PTIJ >J S-­
.C\LLi}f .. >1 Sl~ BE SF T
PU~'{ hESE'i
l» \j CI ~E SET
H FL.P}· UL SET
~vjO>J I TO H SET
~O~110R FILE: ~O~FIL

:JOSTOP EESET
OUI C!{ p.'{ E HE SET
QUI Ct\LOG SET

HE SET CO 1\1 CI SE, H EL PF UL, :1D>J I TO B, QUIC:{LO G­
tl

SET

ss

4.3.42. SS

The SS command allows the remote user or con$ol~ operator to send a

message to any user with the ability to receive it. The format of this com­

mand is as follows:

[?J(TOISS)(logical-lineluser-co~elsPoISITE)[meSsageJ

For further information, see the TO command syntax.

55 SPO PLEASE SEND A MESSAGE TO MY TERMINALeo.TESTING IT.~
J1
Jr

SS 23 MESSAGE TO MYSELF~
** FROI·1 HCC63Yll (23) MESSAGE TO NYSELF

55 32 IS ANYBODY THEHE?(·
NOT O:\J

5S RCC63YH MESSAGE TO ME~
** FROM RCC63YH (23) MESSAGE ~O ME

55 INVUSEH NOT THEHE ...
~JOT ON

4-100

STATUS

4.3.43. STATUS

The STATUS command is used to obtain the present condition of a user's

jobs or schedule lines. The format of the STATUS command is the following:

[?]STATUS[file-name]

The ? must be used if and only if the user is currently running a program.

If the file-name term is included CANOE will respond in one of the following

manners:

SCHEDULE

RUNNING(n)

DONE

ERR: file-name

If the task has not yet been initiated.

If the task is running. The integer n indicates the
record number of the last record read in the input file.

If the task is completed.

If the file-name specified is not on disk or is not a

schedule output file.

For further information and examples, see the SCHEDULE command.

If the file-name term is not included, and the user is currently running

or compiling a program from the terminal, information concerning the status

of the program or compiler will be displayed on the terminal.

4-101

4.3.44. STOP

A scheduled task may be terminated with the STOP command. Its format

is as follows:

[?]STOP file-name

The ? must be used if and only if the user is currently running a program.

CANOE will respond in the same manner as to the STATUS command, then

terminate the task, if possible. The schedule output file remains on disk

and may be handled as desired.

For further information and examples, see the SCHEDULE command.

4-102

TAPE

4.3.45 TAPE

The TAPE command is used to sp~cify that a paper tape file is to be

read from the remote terminal. Its ,format is as follows:

(?TAP~ TAPE [SEQ[base-sequence-number][+resequence-increment]])

The system sends the message OK and then sends an X-ON character which

initiates the tape reader if it is set to AUTO-START. If the reader i.s not

set for AUTO-START, the user must manually start the reader after the OK

message has been sent. After the tape has been read, the user must turn off

the reader and enter ?END~ to terminate TAPE mode. The system responds with

a number sign to indicate that it is no longer in TAPE mode. All system

output to a terminal in TAPE mode is suppressed between the time the X-ON

and the number sign are sent. The tape itself should be prepared in the

format described under the PUNCH command. The tape should be positioned

somewhere within the group of rubouts between the file-name and the data.

When the SEQ option is not used, the data is treated the same way as

ordinary input. Each line must have a seq~enc~-number, but the lines may

be out of order. Corrections, in the form of FIX commands or retyped lines,

may be included on the tape. Other system commands may not be included on

the tape.

When SEQ is used, the first line is given a sequence-number equal to

the base-sequence-number, and the sequence-number for each succeeding line

is increased by the resequence-increment. If base-sequence-number or response­

increment is missing, the action is similar to that in the SEQ command.

The lines must be in order and they cannot contain sequence-numbers or any

CANDE commands, including FIX commands.

A work-file must be specified by the use of LOAD or MAKE commands before

the TAPE command without a preceding ? may be entered. If a work-file is

not open when required, the system types the following message:

ERR:WRKFILE

and ignores the TAPE command.

Paper tape may also be entered to a program by preceding the word TAPE

with a question mark. In this case, all progr?rnrnatic and system output is

4-103

TAPE

saved until after the ?END is entered. All output to the terminal appears

after the number sign in the order in which it would have been sent if the

terminal were not in TAPE mode. Also, the program receives the ?END­

message to signify end of TAPE mode to it and normally would be written to

discard the message.

4-104

TAPE;
EHR: NO FIL~
l'1Al{E TAPFIL ..
FILE:TAPFIL TYPE:SEQ -- CHEATED

· TAPE'"
OI{
100 REG 1
200 REG 2
300 HEG 3
400 nEG 4
?ENDt7'

· \rlAI T.

tJ
p ..

100 REG
200 REG
300 REC
400 REG

REMOVE"

1
2
3
'1

PLEASE HAl T.
TYPE HELP IF YOU HAVE QUESTIONS CWIPL VERSION 1.5)
? ?TAPE"
OK
1.1 THI'" TYPE"THI S "lAS ENTER.ED FROM TAPE"
1.2 THIS "JILL GAUSE A SYNTAX ERROR
1.3 STOP
?END"
UNRECOGNIZABLE STATEMENT
?LIST"
1.1 TYPE"THIS vIAS ENTERED FROM TAPE"
1.3 STOP

?RUN ..
THIS WAS ENTERED FROM TAPE
STOP AT STATEMENT 1.3

· ? QUI T"

END WIPL 2.8 SEC.
4-105

TAPE

TIME

4.3.46. TIME

The TIME command allows a remote user to interrogate the general

statistics concerning his use of the system during the current session. The

format of the TIME command is as follows:

TIME

TINE ..
USER IS
TIt·1E IS
C&E USE
EXECUTE
10 TIt1E

03/08/72

II

RCC63YH LINE 23
8:00 PM.

29.7 SEC.
t MIN" 01e8 SEC.
2 t1IN" 25.3 SEC.

4-106

TO

4.3.47. TO

The TO command is used to send a message to other attached users or to

the computer operator at the central site. The format is as follows:

[?](TOISS) (logical-line luser-code ISPO ISITE) [message]

The question mark must be used if the user is running a program to

distinguish the message from program input data.

Depending on whether SPO, a user-code, or logical-line is used in the

command, the message is typed at the operator's console, at the terminals of

any users logged on with the specified user-code, or at the terminal connected

to the specified line, respectively. In all cases, the message is sent in

the following format:

FROM sender's-user-code(sender's-logical-line-number) message

If the message is sent successfully, CANDE types either a number sign

if the sending user is not currently running a program or types a dollar

sign if the user is currently running a program.

If there are no users connected with the given user-code, or if the

specified line is not logged in, CANDE responds with the following message:

NOT ON

If the receiving user is running a program and has not set the ALLOWMSG

option, or has set the BUSY option, CANDE sends the following message to the

sending user:

BUSY

4-107

TO

TO 3/4 HI JOE'"
NOT ON·

TO INVUSER NOT THERE ...
NOT ON

TO 23 HI HE(-
** FROM nCC63YH (23)

HI lYlE

TO RCC63YH HELLO THERE A.GA.IN ...
** FROM RCC63YH (23) HELLO; THERE AGAIN

RUN PROGJ ...

RUNNING

?TO SPO PLEASE DISNOUNT OUTPUT TAPE NOT'H"
4'"

$
? TO 23 HELLO NEt­

$

** FROM RCC63YH (23)

END PROGJ 1.2 SEC.

HELLO tw1E

4-108

TYPE

4.3.48. TYPE

The TYPE command is used to change the file-type which is associated

with the work-file. The format of the TYPE command is the following:

TYPE(file-typelttirst-letter-of-file-type)

The file-type options allowed in this command are ALGOL, BASIC, COBOL, CODASYL,

DATA, DYNAMO, ESPOL, FORTRAN, GTL, INFO, LOCK, SEQ, TSPOL, and XALGOL; however,

a work-filets file-type may be changed from sequential to DATA only. All of

the file-types may be abbreviated with the first letter of the file-type

preceded by a colon, if nonambiguous.

If a work-file has not been declared by the user, the following error

message is typed:

ERR:WRKFILE

CANOE responds with a number sign after the file-type has been changed.

4-109

TYPE

MAKE F23 SEQ ...
FILE:F23 - TYPE:SEQ -- CREATED
HHATSE-
FILE F23 (WORKFILE)~ TYPE SEQ, 0 RECORDS

TYPE BASIC ...
II
1 00 TY P E " SIN (1) ...
200. END'"
"RUN'"

vIAl T ~

CONPILING.
100 UNRECOGNIZABLE STATE£1ENT OR lo1ISSING EQUALo

kRR COMPILE 2.2 SEC.

*10Q/TYPE/PRINT'"
RUN"

HAlT.

COMPILING.

END COMPILE 2.2 SEC.

RUNNING

0.841471

END F23 .4 SEC.

" WHATS"
FILE F23
I

(WORKFILE)~ TYPE BASICI 2 RECORDS

SAVE"
FILEaF23"· TYPE:BASIC SAVED.

'4-110

TYPE OPTIONS

4.3.49. TYPE OPTIONS

The current setting of the remote terminal options manipulated with

the SET, RESET, and MONITOR commands may be interrogated through the use of

the command TYPE OPTIONS. Its format is as follows:

TYPE OPTIONS

For examples of the use and manipulation and interrogation of remote terminal

options, see the SET command.

4-111

UNLOCK

4.3.50. UNLOCK

The UNLOCK command allows any user to access a fi1e- for read only

(if source version), or execute only (if object version). The creator may

continue to access it in any manner. Its format is the following:

UNLOCK[[SOURCEIOBJECT][fi1e-name] •••]

For further information, see APPENDIX C.

t..IST FILES G22"
03/08/72 RGC63YH . 8: 10 PH.
NAME TYPE RECS SEGS CRE/\TED ACCESSED H/B. W/B S-F LOCKD BY

G22 GTL 18 10 03/02/72 03/07/72 10 300 10 PUBLIC
G22 *GTL 21 21 03/02/72 03/07/72 30 30 20
tl
UNLOCI{ G22.-·
II
LIST FILES G22"
03/08/72 RGC63YH 8: 11 P~·l.

NAt1E TYPE REGS SEGS CREATED ACCESSED \lJ/a \1]/8 S-F LOGf{D EY

622 GTL 18 10 03/02/72 03/08/72 10 300 10 UNLOCKD
G22 . ~GTL 21 21 03/02/72 03/08/72 30· 30 20 UNLOCKD
11
LOCK SOURCE G22.-

LIST FILES G22'"
03/08/72 RCC63YH 8: 12 Pr.l.
NAME TYPE RECS SEGS CREATED ACCESSED '~lIR \llIB \ S-F LOCKD BY

G22 GTL 18 10 03/02/72 03/08/72 10 300 10
G22 *GTL 21 21 03/02/72 03/08/72 30 30 20 UNLOCKD
11

UNLOCK SOURCE G22.-
II
LIST FILES G22.-
03/08/72 RCC63YH 8:13 PM.
NAME TYPE RECS SEGS CREATED ACCESSED W/R W/B S-F LOCKD BY

I

G22 GTL 18 10 03/02/72 03/08/72 10 300 10 UNLOCKD
G22 *GTL 21 21 03/02/72 03/08/72 30 30 20 UNLOCKD
I

4-112

UPDATE

4.3.51. UPDATE

The UPDATE command allows the user to update his \~orkfile with

the latest additions and changes. The format of the UPDATE command is as

follows:

(UPDATE/U)

Generally, the UPDATE command is implicitly invoked by CANDE more often

than the user invokes it explicitly. At any point in which the work-file

must be brought physically into order and is not currently in order, an

implicit UPDATE command is invoked. Usually, unless the CONCISE option is

set, when this occurs, the following message is typed:

WAIT

However, this is not the only case in which this message is typed to

the terminal.

The UPDATE command may be used explicitly by the user quite advantageously

in many cases to ensure that the work-file is placed into order and updated

with the latest additions and changes. FIX errors are printed at the time

the work-file is updated, and thus would be printed, if any exist, when an

UPDATE command is issued. If some other operation is used, instead, and

FIXes are in error, computer time may be wasted due to an incorrect copy

of the work-file being used.

It is advantageous for the user to be aware of the manner in which CANDE

actually maintains work-files in order to prevent unnecessary recopying

of work-files.

CANDE maintains internal files for each user's work-file. These files

are named the following:

IP line-number

IS line-number

IT line-number

DIS line-number

(record pointers to disk tank)

(sorted, updated, record pointers)

(record pointers to new source file)

(object version of work-file)

4-113

UPDATE

They are maintained in the following manner:

- Inputs from a remote terminal are placed into the lP file;

when enough records are acquired or updating is required, the

lP file is transferred into the IS file.

-when an updating operation is required, the IS file is transferred

into the IT file.

-when the work-file is compiled, the object code is placed into the DIS

file.

The process of updating requires that all additions and/or changes to

a user's work-file be merged with the version of the file which previously

existed, since no holes are permitted in a user's file. A work-file con­

sists of a set of contiguous records, arranged in a serial fashion. The

merging process may, or may not, require that the old version of the file

be re-copied in order to produce a valid new version.

The old version of the file must be re-copied whenever either of the

following conditions are satisfied:

A new record must be inserted into (placed between two existing

records) or added to (placed before the first or after the last

existing record) the file.

An old record is deleted from the work-file, and is not replaced with

another record with the same sequence-number.

The old version need not be re-copied whenever only the following conditions

are satisfied, and not the preceding ones:

Records are FIXed.

Records are replaced with other records with the same sequence-numbers.

The exception to this rule is as follows:

A re-copy is always required after the first change is made to a loaded

or saved file.

Therefore, frequent saving of files, followed by additional changes to the

work-file, require more time than frequent updating of the work-file. The

difference in processor time becomes more dramatic as the file size increases.

4-114

UPDATE

Consider the following example as a case in point:

File NUFILE is a relatively large library file, containing approximately

2000 records. To alter this file, the user would normally LOAD the file,

make the necessary corrections, and then SAVE the file.

WHATS NUFILE~

FILE NUFILE, TYPE SEQ, 2014 RECORDS, CREATED 03/16/72 (1108)SF 99

LOAD NUFILE~

FILE:NUFILE - TYPE:SEQ -- LOADING

2014 RECORDS LOADED.

END LOAD 6.2 SEC.

The loading process prepares a table relating the sequence-numbers of the

file records to their position in the file. The file has not yet been copied,

so that only one version of the file exists on the disk. For instance,

PRINT 23100 ~

23100 MSG2(WORK,STRTIME,FINTIME); TWXOUT(LL,WORK[0],45, 2);

This is one of the records which requires changing. Since a COpy command

is required after the first change to a loaded file, it makes no difference

which records are altered here. For instance,

FIX 23100 /MSG2/MSG3~

A request to LIST CHANGES causes CANDE to callout an UPDATE routine. A

re-copy is required here in order to produce a second version of the library

file while maintaining the integrity of the original file. For instance,

LIST CHANGES~

FILE:NUFILE - TYPE:SEQ -- 03/19fi2 6:43 PM.

23100 MSG3(WORK,STRTlME,FINTIME); TWXOUT(LL,WORK[O],45, 2);

END LIST 11.3 SEC.

The large amount of processor time, as shown above, reflects the fact that

the file is relatively large and has been copied in its entirety.

4-115

UPDATE

Observe the reduction in processor time as compared with the previous

example.

After the file is saved, only one file is available for use (the work­

file replaces the previously-saved file, and another change to the file

requires another re-copy. For instance,

SAVE.-

FILE:NUFILE - TYPE:SEQ -- SAVED.

FIX 23100' /45/50'-

LIST CHANGES'-

FILE:NUFILE - TYPE:SEQ -- 03/18/72 6:44 PM.

231000 MSG3(WORK,STRTIME,FINTlME); TWXOUT(LL,WORK[1],50, 2);

END LIST 11.4 SEC.

If the file is not SAVEd, a re-copy is not mandatory for this change,

and a considerable saving in processor time is realized. Therefore, unneces­

sary SAVE should be avoided whenever possible to take advantage of the

faster update methods available for the work-file. The CANDE command UPDATE

is used to update the work-file without printing any information on the

user's terminal, and thus to facilitate this action.

HAKE UP SEQ~
FILE:UP ~ TYPE:SEQ -- CREATED
lOOREC 1
aoo BEG 2.-
300 REG 3«-
UPDATA 'E'"

If
v]HATS uP"
EHR: UP
1"
FILE NOT IN YOUR LIBnARY.

HHATS"
FILE UP (WORKFILE)~ TYPE SEQ, 3 RECORDS
.

U ...
/I

400 REC 4'"
U ..

I.

4-116.

WHATS

4.3.52. WHATS

The WHATS command returns the file-name, tile-type, size, creation­

date, creation-time, and save-factor for a file. Also, for a file saved

on disk, it shows the number of records it contains. The WEATS command

has the following format:

WHATS [OBJECT\SOURCE][fi1e-name]

If the file-name is not included, and a work-file is open, the answer

returned is as follows:

FILE: file-name (WORKFILE) ,TYPE: fi1e-type,number RECORDS

Otherwise, if the file-name is included and denotes a file currently on

disk, the answer returned is as follows:

FILE:fi1e-name.TYPE file-type. number RECORDS.CREATED nn/nn/nn (time)·

SF = integer

If the word OBJECT immediately follows the WHATS command, CANDE searches

for the OBJECT version of the file. Omission of the word OBJECT implies a

search for the source version. If no file-name follows the WHATS command,

the information concerning the work-file is listed.

4-117

WHATS --

1'1AI{E FILE2 ALGOL.-
FILE:fILE2 - TYPE:ALGOL CREATED
\oJ HATS"
FILE FILE2 (\')0111(FILE) " TYPE ALGOL, 0 HECORDS

SAVE··
FILE: FILE2 - TYPE: ALGOL. SAVED.

{.]HA.T'S FILE2 ...
FILE FILE2, TYPE ALGOL, 0 REC03DS, CRE~TED 03/08/72 (2018) SF=?
t!

1 BF:GIN"
2ENlh"
\oJHTS"
ER.R: \·Tt{TS
HHATS"
"l~I T ..

FILE FILE2 CWORKFILE)~ TYPE ALGOL, 2 RECORDS
f!
SAVE"
FILE:FILE2 - TYPE:ALGOL -- SAVED.

FILE FJ.L'G~~.~ T\"PE ALGOL .. f~ B.ECOHD~), CHEA.TED 03/08/72 (2019) SF=7

C Ol-'jp ILEt­
COII1P IL I NG.

END COMPILE 109 SEC.

SAVE'"
FILE:FILE2 - TYPE:ALGOL -- SAVEDo

\.

WH~TS OBJECT FILE2 ..
FILE OFILE2, TYPE ALGOL, 9 RECORDS, CREATED 03/08/72 (2019) SF=8
.
\tlHATS FILE2"
FILE FILE2, TYPE ALGOL, 2 RECORDS, CREATED 03/08/72 (2019> SF=7
(I .

RENOVE FILE2"
ERR: \'}HKF I L E
REi"iOVE"
I .
REt'10VE FILE2"
I .
WHATS FILE2"
EaR: FILE2
1.-
FILE NOT IN YOUR LIBRARY.

I

4-118

?

4.3.53. ?

The ? command is used to request special actions by CANDE. Its format

is as follows:

?[DATAIENDISSI(STATUSISTOP)file-nameITAPEITO]

The special functions which may be requested from CANDE are as follows:

(empty)

DATA

END

SS

STATUS [file-name]

STOP file-name

TAPE

TO

Requests further information concerning last message
from CANDE.

Places the line in DATA mode. In DATA mode, input
is placed into the end of the work-file, which
must be of file-type DATA.

Terminates DATA or TAPE mode.

Sends a message when user's line is attached to a
program.

Requests information about a job or scheduled
task when user's line is attached to a program.

Terminates a previously-scheduled task when user's
line is attached to a program.

Initiates programmatic TAPE mode.

Sends a message when user's line is attached to a
program.

4-119

5. FILE HANDLING ON THE B5700 TIME SHARING SYSTEM

5.1. General

All users of the B5700 Time Sharing System must, of necessity, be con­

cerned with various files. The degree of concern varies between users and

depends on the nature and complexity of their objectives. The task of

creating, compiling, and debugging a program usually involves a work-file

only. The fact that a work-file is a temporary disk file is of little con­

cern and is almost totally transparent to the user. If a user should SAVE

his work-file for later use, a "permanent" disk file is created. This fact

may also be of little concern unless disk space should become scarce or

his file should disappear, for various reasons. When an executing program

causes small amounts of data to be read from or written on the user's ter­

minal, the fact that a programmatic remote file is involved may also be of

small concern. However, when a program is required to transfer data

directly from some file, other than the terminal, many aspects of file­

handling become of vital concern.

5.2. Storage Media Available

A very important aspect of every file is the particular medium on

which it is stored or by which it is accessed. The available media are disk,

magnetic tape, punched cards, high speed line printer listings, remote ter­

minals (including the hard copy listing and punched paper tape), and Calcomp

plots. Line printer listings, remote terminal listings, and Calcomp plots

are output media only; i.e., once a file exists on these media there is no

automatic method of getting it back into the system. Disk, magnetic tape

(hereafter referred to as tape), punched cards, and punched paper tape may

be used for both input and output.

5.3. Comparison of Different Storage Media

Almost every program requires at least one input file and one output

file. In batch mode these are usually punched cards for input and the line

printer for output. The remote user usually desires both of these files

to be his remote terminal--his keyboard for input and his printer for output.

Alternatively, he may use punched paper tape for either input or output via

the TAPE and PUNCH commands as previously described. Paper tape is the

5-J.

most economical medium on which to store relatively short, infrequently-needed

source language or data files. The terminal keyboard and printer are the

easiest means for effecting small quantities of programmatic input and output.

Such files are called remote terminal files and are described more fully in

Section 5.4.3.

When source-language or data files are needed quite frequently, it is

more convenient to have them stored on disk. This saves the time required

to read them from paper tape each time they are needed. Disk files are by

far the most convenient storage medium for the remote user, since they are

immediately available. However, disk is the most expensive medium and the

one in shortest supply. For these reasons only those files of moderate

size that are needed frequently should be stored on disk. Good housekeeping

practices and the procedures for periodically removing certain files are

described in Section 5.4.1.2. Although every effort is made to preserve

the integrity of disk files, each user should maintain his own backup copy

in some other medium. Disk catastrophes are rare, but they can, and do,

happen.

Large and infrequently-needed files, which should not be stored on disk,

may be kept on magnetic tape, the next most convenient medium for the remote

user. One reel of tape can hold more than one million computer words of

information, or many, many short files. Although the user actually controls

the reading and writing process, the machine room operator must mount and

dismount the proper reel on one of the ten tape units. The proper tape

handling procedures are described in Section 5.4.2. Even though very rigid

procedures are followed for labeling, storing, and handling tapes, human

mistakes are bound to happen from time to time. Also, the magnetic properties

can deteriorate or dust particles can accumulate so as to make a tape

unreadable. Tape unit malfunctions can also physically destroy a tape,

sometimes quite spectacularly. For these reasons, users should maintain

backup. copies of important files, either on another tape or on some other

medium.

The next most convenient backup medium is probably punched cards. With

the COpy command, a user can cause the contents of a disk file to be punched

into cards. This, of course, occurs in the machine room, not at the remote

terminal, and requires the user to retrieve them from the I/O counter. The

5-2

retrieval process is described in Section 5.4.4.1. When it becomes necessary

to create a disk file from a punched card deck, the user must follow the

procedures described in Section 5.4.1.6, and submit the deck at the I/O

counter. This same procedure is quite useful for preparing large data files

on punched cards and then loading them on disk (or tape) for remote processing.

Punched card decks are a very economical, permanent, and private means of

file storage provided the decks are tightly stacked in a cool, dry place

(without rubber bands).

Line printer listings and Calcomp plots are inconvenient as backup

media, but are almost indispensable for displaying large quantities of data

in tabular or graphic form. Source language program listings may be generated

in the machine room via the COpy command, or programmatic output may be

directed to a line printer file. These details are discussed in Section 5.4.4.2.

The procedures for creating a Calcomp plot are fully described in a separate

manual available at the Bookstore entitled "B5500 Calcomp Plotter Manual."

The disadvantage of having to retrieve printer and plotter output from the

I/O counter is somewhat balanced by the saving in remote terminal printtime

and the labor involved in manual plotting. Each user must judge accordingly.

The operational procedures for using the different storage media are

described in Section 5.4, along with details for declaring and using the

corresponding programmatic files. The above comparison of the different

media is intended only as an overview of certain advantages and disadvan­

tages. Section 5.4 and possibly the appropriate language manual should be

consulted for details.

5.4. Procedures for Using Different Storage Media

5.4.1. Disk Files

5.4.1.1. General

All disk files with an associated remote user-code are available for

use only during the authorized hours for remote operations. At the end of

each period of remote operation, all such disk files are dumped to magnetic

tape and removed from disk by RECC personnel. Prior to the beginning of the

next period of remote operations, these files are reloaded to disk. This

is done to make more disk space available for batch operations and in an

attempt to insure the integrity of the remote users' disk files.

5-3

5.4.1.2. Weekly Disk Usage Report

Once each week, a disk usage report is produced and forwarded to each

Departmental Computer Coordinator, if applicable. It shows disk usage by

user-name and gives summary totals for the School, Department, or Division.

Each Coordinator should examine this report and note the quantity, size,

and information-packing density of his users' files. He should then make

this listing available to each of his users, along with any necessary recom­

mendations about reducing the size or improving the blocking or packing

densities of his users' files. Each user is urged to consult these listings

regularly and make every effort to remove unneeded files and improve the

packing density of those that are needed.

5.4.1.3. ACTIVE and EXPIRED Files

Each file shown in the weekly disk usage report is classified as being

either ACTIVE or EXPIRED. ACTIVE files are those that have been accessed

within the last week; all others are EXPIRED.

All EXPIRED files are removed from disk and dumped to a tape labeled

EXPdddc, where ddd is the Julian date on which the tape was created, and

where £ is 0, 1, 2, ••• , for uniqueness. The expired tape label is shown

for each EXPIRED file on the weekly usage report. A tape containing EXPIRED

files is normally purged four weeks after its creation.

If it should become necessary or desirable for a user to retrieve an

EXPIRED file, he should first ask the operator to mount the tape with a

message of the form (see Section 5.4.2)

TO SPO PLEASE MOUNT EXPIRED TAPE EXPddc~

After the tape is mounted as determined by a message from the operator or

from CALL OL, the user should then enter

CALL CONTROL~

and answer NO to the question HELP REQUIRED (YES OR NO)? The user should then

enter

ADD FROM EXPdddc fi1e-1/user-code,~

fi1e-2/user-code, ••• , file-n/user-code;END.~

where EXPdddc represents the expired tape label, and fi1e-1, fi1e-2, ... ,
fi1e-n represent one or more file-names thought to be on the mounted tape.

If more than one expired tape is required, the above procedure must be repeated.

5-4

5.4.1.4. Disk File Naming Conventions

As explained in Section 2.11, all disk files created by a remote user

are identified by the creator's user-code (for file security purposes), by

a file identifier (for referencing a specific file), and by a file-type

(for distinguishing data files and specific source language files). The

file identifier is of the form

prefix/suffix

As explained in Section 2.11, the user supplies a file-name for the prefix,

and CANDE automatically supplies his user-code as the suffix. The prefix

will normally be of the form

XXXXXXb

OXXXXXX

for source language files, or

for object files,

where b represents one space, 0 is the zero character, and XXXXXX represents

the user-supplied file-name. This file-name must be an identifier of one

through six characters, left justified in a field of blanks. The first

character of the identifier must be a letter; the five or fewer following

characters must be either letters or digits.

As explained later, disk files may be created by means other than CANDE

commands. In such cases, the creator is responsible for choosing a compatible

prefix as described above. The creator is also responsible for choosing

the suffix to be, in all but the rarest cases, his own user-code. The user­

codes assigned to individual remote users are of the form RaaXXXX, where aa

is a two-letter department abbreviation (see Section 5.4.4.1), and XXXX

represents four randomly-chosen letters or digits. One non-human, but valid,

user of the system is CANDE itself, whose rruser-code rr is TSHARER. A user

is not permitted to create a disk file whose suffix is TSHARER. A remote

program will be terminated with the following error message:

-BAD FILNAME prefix suffix, NEAR LINE line

if it attempts to create a disk file whose prefix begins with a digit, or

whose suffix is TSHARER, or whose suffix is not the creator's user-code, but

is of the form RaaXXXX.

5-5

There is a single exception to the above rules which exists only to

permit batch programs to be run under the Time Sharing System without any

source language changes. If a remote program attempts to reference or

create a disk file whose identifier is of the form

OOOOOOO/yyyyyyX

the MCP will automatically change the external identifier of the file to be

of the form

yyyyyyb/user-code

In other words, if the prefix is seven zeroes and the suffix is seven or

fewer characters beginning with a letter (a valid prefix/suffix for a batch

program disk file), the MCP will automatically use the first six characters

of the old suffix as the new prefix, and will automatically attach your user­

code as the new suffix. Note that the internal file identifier contained jn

in the source language is not affected--only the external name is automatically

changed. Therefore, each time such a program is run, the MCP will automa­

tically make the necessary change.

If a program executed from a remote terminal attempts to reference a

disk file which is not present, it will be discontinued with the following

message:

-NO FILE ON DISK prefix suffix~ NEAR LINE line

If a program attempts to enter a disk file into the directory with the same

prefix/suffix as a file which already exists, two cases are possible. If

the existing file and new file were created under the same user-code, the

old file will be removed and replaced by the new file. If that is not the

case, the program will be terminated with the following message:

-FILE prefix suffix IN USE, NEAR LINE line

5.4.1.5. Disk File Blocking and Other Conventions

There are certain blocking parameters associated with each disk file

(in fact, with every file) that describe its logical and physical structure.

These parameters are used by both the MCP and the program referencing the

file to accomplish a steady, buffered, transfer of information between disk

5-6

and core memory. Programs read and write information in units called

logical records. The size of a logical record is measured in computer

words; e.g., a 10-word logical record. The actual transfer of information

between disk and core memory is accomplished in units called physical records.

The size of a physical record is also measured in computer words. Each

physical record must contain an integral number of logical records; hence,

the physical record size must be an integral multiple of the logical record

size. Certain electro-mechanical characteristics of the disk mechanism

impose an additional requirement that the physical record size be an integral

multiple of 30 words. Other blocking parameters specify the maximum number

of equal-sized areas that the file may ever occupy and the size of each

area, measured as a number of logical records. Since areas are not allocated

unless they are actually needed, disk space can be conserved by specifying

a small area size; however, the area size must contain an integral number

of physical records. The user should consult the appropriate programming

language manual for further details.

Most users create disk files with CANDE commands, such as CREATE and

SAVE. The blocking parameters of such files are automatically specified by

CANDE, and are of little concern to the user if he references these files

with CANDE commands only. When some program must create or reference a disk

file, knowledge of the blocking parameters becomes more important. Blocking

parameters are always specified at the time a disk file is created, and

compatible parameters must be specified in any program that references an

existing disk file. The parameters that CANOE specifies when it creates a

file for a user are fixed and are not under the user's control. Similarly,

when CA1~E references an existing file it expects it to have the same

fixed parameters. Therefore, it is the user's responsibility to guarantee

that his program specifies correct disk file blocking parameters whenever a

programmatically created file is to be referenced by CANDE or whenever a

CANDE-created file is to be referenced programmatically.

An integer save-factor is another parameter associated with every disk

file. It was originally intended to specify the number of days the file was

to be retained on disk; however, this is not the interpretation at Georgia

Tech. A save-factor of zero identifies a temporary disk file that may be

removed without warning at any point in time. Any positive save-factor,

such as 1, 5, 365, etc., identifies a permanent disk file, which will be

reloaded provided it has been accessed within the last week, regardless of

the integer value.

CANDE specifies, and expects, all source language and type DATA disk

files to be blocked with 10~ora logical records and 300-word physical

records. Since each computer word can hold 8 characters, the 10-word

logical record is sufficient to contain 80 characters (one Teletype line or

one card image). Each 300-word physical record can contain 30 logical

records.

If a programmatically created disk file is blocked with la-word logical

records and 300-word physical records, its file-type will be DATA; otherwise,

its file-type will be UNKNOWN.

Users writing ALGOL or GTL programs should consult the appropriate

Programmers Reference Manual for details concerning disk specifications.

An existing CANDE-compatible disk file should be referenced through a

FILE declaration of the form

FILE Fl DISK SERIAL "file-name" (2,10,300,SAVE factor)

where integer represents one twentieth of the maximum number of logical

records in the file and must be a multiple of 3, and factor represents the

save-factor of the file.

The construct LOCK(fileid,*) may be used on newly created disk files to

cause them to be entered in the MCP disk directory and to return as much

unused space as possible. In most cases this is the easiest method for

minimizing the space actually occupied, though it is not necessarily optimum.

Users writing BASIC programs should declare new disk files with a

statement of the form

FILES FI(integer 1), ••. , Fn(integer n)

where Fl, F2, etc. are the file-names and the integers in parentheses desig­

nate the maximum number of logical records in each file. The integers must

be integral multiples of 60. All other blocking parameters are automatically

chosen to be compatible with CANDE.

5-"8

Users writing COBOL programs should consult the B5500 COBOL Reference

Manual for details concerning disk file specifications. The following

portions of disk file descriptions may be used for CANDE-compatible disk

files:

SELECT FI ASSIGN TO DISK.

APPLY TECHNIQUE-A ON Fl.

FD Fl
FILE CONTAINS 20;'~ integer RECORDS
ACCESS MODE SEQUENTIAL
BLOCK CONTAINS 30 RECORDS
RECORD CONTAINS 80 CHARACTERS
VALUE OF IDENTIFICATION "file-name"
SAVE-FACTOR factor

for new disk files:

OPEN OUTPUT Fl.

CLOSE FI WITH CRUNCH

for existing disk files:

OPEN INPUT Fl.

CLOSE Fl.

where integer represents one-twentieth of the maximum number of logical

records in the file and must be a multiple of 3, and factor represents the

save-factor of the file. The construct CLOSE fileid WITH CRUNCH may be used

to return unused disk space in a newly-created disk file. Note that the

internal file identifier, here represented by Fl, should start with a

letter and contain no hyphens.

Users writing CODASYL programs should consult the B5700 COBOL Reference

Manual for details concerning disk file specifications. The following portions

of disk file descriptions may be used 'for CANDE-compatible disk files:

SELECT FI ASSIGN TO 20 * integer DISK
ACCESS MODE SEQUENTIAL

FD Fl
BLOCK CONTAINS 30 RECORDS
RECORD CONTAINS 80 CHARACTERS
VALUE OF IDENTIFICATION "file-name"
SAVE-FACTOR factor

for new disk files:

OPEN OUTPUT FI

CLOSE Fl WITH CRUNCH

for existing disk files:

OPEN INPUT F I

CLOSE Fl.

where the parameters and other comments are the same as for COBOL.

Users writing FORTRAN programs referencing disk files must use FILE

card images, as explained in Appendix B of the B5700 FORTRAN Compiler

Reference Manual. FILE card images must appear before any other source

language statements. An existing CANDE-compatible disk file should be

referenced using a FILE card image of the form

FILE u = file-name, UNIT = DISK,BLOCKING = 30, RECORD = 10,

where u represents the file's unit number. To be CANDE-compatible a new

disk file should be declared with a FILE card image of the form

FILE u=fi1e-name,UNIT=DISK,BLOCKING=30,RECORD=10,
- SAVE-factor,LOCK,AREA=integer

where factor designates the file's save-factor and integer designates the

maximum number of logical records in the file; integer must be an integral

5-10

multiple of 60. In both forms above, RECORD=lO was chosen to designate

a 10-word logical record and BLOCKING=30 was chosen to designate a 300-

word physical record.

5.4.1.6. Transferring Files Between Batch and Remote Modes

Sometimes it is desirable to have remote terminal access to files that

were created in batch mode, or, conversely, to have batch mode access to files

created in remote mode. The user can accomplish such transfers in either

direction by dumping the desired files to magnetic tape in one access mode,

either batch or remote, and subsequently loading them to disk from tape in

the opposite mode. The proper file security status is important for trans­

fer in either direction, and CANOE compatibility is important for transfer

from batch to remote mode.

At Georgia Tech, each user-code and password pair is valid for only one

mode of access, whichever was requested. If a user requires both access

modes, two separate requests must be made and two pairs of user-codes and

passwords are issued. A user with dual mode access credentials appears to

the operating systems to be two different users. Hence, files created with

one set of credentials cannot be accessed with the other set, unless the

proper file secur.ity status has been assigned.

To be compatible with CANDE, both the file naming conventions (see

Section 5.4.1.4) and file blocking conventions (see Section 5.4.1.5) must be

followed. CANOE compatibility is actually required only when the file is

to be manipulated with CANDE commands, but is desirable for all files

accessed in remote mode. In addition to the naming and blocking conventions,

there is one further restriction on the transfer of batch mode files to

remote mode. The object version of a program compiled in batch mode ~ not

be executed from a remote terminal--the source language file must be trans­

ferred from batch to remote mode and then recompiled under the Time Sharing

System.

The steps for transferring files in either direction require that the

procedures for handling magnetic tape files be carefully followed (see

Section 5.4.2).

5-11

Transferring Files to Remote Mode

Step 1. In batch mode, assure that the desired disk files are properly

named and blocked, and that the security status of each file is

FREE. Then follow the batch mode tape handling procedures to

dump the files to tape.

Step 2. In remote mode, follow the procedures described in Section 5.4.2

to have the operator mount the tape. Then enter

CALL CONTROL~

and to the question

HELP REQUIRED (YES OR NO)?

enter

then enter

ADD FROM tapelabe1 file1/user-code, ••• , fi1en/user-code; END.~

Step 3. In remote mode, and after the files have finished loading, use the

CANDE commands LOCK, UNLOCK, or PUBLIC to assign the desired

security status to each file. If this is not done, the disk files

will remain FREE and will be subject to removal at any time.

Transferring Remote Files to Batch Mode

Step 1. In remote mode, follow the procedures described in Section 5.4.2

to have a scratch tape mounted, then enter

CALL CONTROL~

and to the question

HELP REQUIRED (YES OR NO)?

enter

NO~

then enter

FREE fi1el/user-code, .•• , fi1en/user-code;~

DUMP TO tape1abel fi1e1/user-code, ••• , fi1en/user-code; END.~

5-12

Step 2.

Step 3.

In remote mode, and after the operator has informed you of the

tape reel number, return the disk files to the desired security

status with the LOCK, UNLOCK, or PUBLIC CANOE commands. If this

is not done, the disk files will remain FREE and will be subject

to removal at any time.

In batch mode, follow the batch mode tape handling procedures to

load the files from tape to disk.

Creating Disk Files from Punched Card Decks

The procedures described above for transferring files between batch and

remote modes require the same person to be both a batch user and a remote

user. There are many people who are remote users only, and who may desire

to create remote disk files from punched card decks. Such punched card

decks may have been produced by the procedures described in Section 5.4.4.3,

or they may have been originally prepared on keypunch machines. A remote

user may create a LOCKed CANOE compatible disk file from a punched card

deck by following the steps of a special procedure given below.

Step 1. Prepare a punched card deck as follows:

?USER = user-code. (to be stamped "REMOTE")

?EXECUTE CARD/DISK.

?FILE DISK = file-name/user-code SERIAL.

?DATA CARD.

(punched cards to be loaded to disk)

?END. (special orange colored, prepunched card)

Step 2. Submit the above card deck to a Programmer Aide. If he approves

the deck setup, he will stamp the top card "REMOTE" in large

letters, and return the deck to the user.

Step 3. Fill out an I/O bin receipt and submit both the receipt and

stamped deck to the I/O attendant, calling his attention to the

"REMOTE" stamp. The attendant will place the deck in a special

tray. Decks submitted between the time remote operations have

begun and one hour prior to the end of remote operations will

usually be processed within about 30 minutes. Decks submitted

5-13

outside the above times will be held and processed during the

first 30 minutes of the next scheduled period of remote operations.

Your card deck may be retrieved from the numbered bin stated on

your bin receipt, not your permanent department bin.

5.4.2. Magnetic Tape Files

5.4.2.1. General Procedures

For tapes to be used as input to programs, the operator needs the reel

numbers and labels of the tapes, and the user's name. For tapes to be

created by programs, he needs the number of tapes required, the user's name,

reference number, and labels of tapes to be saved, in order to be able to

catalog them in the tape library. The remote user must give the operator a

reasonable amount of time to obtain and mount input tapes and to ensure that

enough scratch tapes are available before running his program. If the

program is run too soon, the terminal may appear to be hung, as the system

will not answer inputs from the terminal while the program is waiting for

tape units for input or output. Thus, at least two minutes before tape

activity is required, the user should send a message to the operator. The

suggested form for each input tape is the following:

TO SPO I NEED TAPE #12345 LABELED SPCTRM

The suggested form for output tapes is as follows:

TO SPO I NEED 3 SCRATCH TAPES FOR SORT~

TO SPO AND TWO TAPES FOR OUTPUT~

TO SPO THEY WILL BE LABELED T1A AND T1B~

TO SPO #15C1250l BURDELL GP~

BURDELL GP~

The user should promptly receive a message from the operator when his tapes

are mounted and ready; only then should he proceed to run his program.

If, after a reasonable time following program termination, the operator

has not sent the reel numbers of the tapes the program has created, the user

should prompt him.

5~4

Prior to creating a magnetic tape, each user should consult his

Departmental Computer Coordinator about current procedures governing tape

storage charges.

5.4.2.2. How to Determine Tapes Currently Mounted

At any point in time that the user is not running a program, he may

receive a listing of information concerning all tapes currently mounted and

ready for use by entering

CALL OL-

By this means a user may determine if his tapes are actually mounted and

ready for use.

5.4.2.3. How to Purge a Saved Tape

Once saved by a user, a tape may be purged only on the signature of the

creator, or his representative, on the proper forms.

The purge request forms may be obtained in the Computer Center and

submitted there, or through the U. S. Postal Service or Campus Mail, to the

following address:

GEORGIA TECH
RECC
OPERATIONS BRANCH
ATLANTA, GEORGIA 30302

ATTN: TAPE LIBRARIAN, B5500

5.4.2.4. How to Copy Disk Files to Tape

When a user decides that his disk files are in a condition suitable for

somewhat secure, permanent retention, he may SAVE his current work-file (if

any), request and get permission to create and save a tape (labeled by his

user-code) from the operator, then enter the command

COPY TO TAPE-

This will produce a tape labeled with the user's user-code that contains all

disk files created by the user. The operator should send the reel number to

the user, as described above.

5-15

5.4.2.5 How to Reload Tape Files to Disk

When a user desires to reload one or more files that he previously

dumped to tape by the above procedure, he should first SAVE his current

work-file. He should then request the operator to mount his tape, giving

him the reel number, his user-code, his Reference Number, and his user-name.

The user should then enter

CALL CONTROL.-

and to the question

HELP REQUIRED (YES OR NO)?

he should answer

To reload selected files not currently on disk, he should then enter

ADD FROM user-code filel/user-code, ••. , file/user-code; END.'­

Or, to reload all files on that tape not cur~ently loaded, he should enter

ADD FROM user-code =/=; END.'-

When a user desires to reload one or more EXPIRED files (see Section

5.4.1.3) he must first consult the weekly Disk File Usage Report to deter­

mine the label of the tape containing his files (see Section 5.4.1.2). The

user should then request the operator to mount the desired expired tape

with a message of the form

TO SPO PLEASE MOUNT EXPdddc.-

After the tape is mounted (as determined by a message from the operator or

from CALL OL), the user should then enter

CALL CONTROL.-

and to the question

HELP REQUIRED (yES OR NO)?

answer

NO,­

and then enter

ADD FROM EXPdddc filel/user-code, ••• , filen/user-code; END.'-

5-16

5.4.3. Remote Terminal Files

All attributes of REMOTE files are ignored except for record length.

There is no major advantage nor disadvantage in opening more than one

REMOTE file per program, except in COBOL and CODASYL, in which a REMOTE

file may not be opened 1-0. Every READ from the terminal first types a

question mark on the terminal, unless the READ STOP variant is used, the

user is entering data faster than the program is accepting it, or the ter­

minal is in TAPE mode.

5.4.3.1. How to Declare REMOTE Files

The following describes the manner in which REMOTE files are declared

and used in various source languages:

ALGOL and GTL

FILE F REMOTE (1,9)

FILE F WITH ,I~, ,,~, ,'~ , ,'~ , ,'~ ,19

F.TYPE := 19

READ(F, .•.) or READ(F[STO~], ...)

WRITE(F, ...) or WRITE(F[STOP] .••) or WRITE(F[~O], •..) or

WRITE (F [n], ••.)

COBOL and CODASYL

SELECT F-IN ASSIGN TO REMOTE

SELECT F-OUT ASSIGN TO REMOTE

OPEN INPUT F-IN OUTPUT F-OUT

READ F-IN [INTO data-name][BEFORE ADVANCING data-name LINES]

WRITE F-OUT-REC[FROM data-name][BEFORE STOP] or

WRITE F-OUT-REC[FROM data-name][BEFORE ADVANCING data-name LINES]

FORTRAN

READ with no unit and

PRINT compiled from terminal automatically reference terminal, otherwise

FILE u=R,UNIT=REMOTE,RECORD=9

is required for each unit u which is to reference terminal; carriage control

on output is printed as first character of record.

5-17

5.4.3.2. How to Use Free-Field Input and Output

The following describes the manner in which free-field I/O may be

used in various source languages:

ALGOL and GTL

READ(F,//,L)[:ERR]

WRITE(F,//,L) [EOF]

where F is a REMOTE file,

L is an explicit or implicit list of variables,

EOF is break label,

ERR is input data error label,

data separator is space or end of line.

COBOL and CODASYL

(no direct method)

FORTRAN

READ/ ,L

WRITE//,L

READ(u,/,ERR=n) L

WRITE(u,//,EOF=n) L

where u is the REMOTE

L is a list of

m is the break

n is the input

data separator

file unit number,

variables

label,

data error label,

is comma or end of

input must match list types

line,

5.4.4. PRINTER, CARD PUNCH, and calcomp Plotter Files

5.4.4.1. Retrieval of Output

A special I/O bin is maintained for each campus School, Department, or

Division that has remote terminal users. Each bin is labeled with a two­

letter department abbreviation, the same as the second and third letters of

your individual user-code. During remote operations, all punched card

decks, line printer listings, and Calcomp plots are placed in these permanent

bins as determined by the user-code of the creator. Each departmental com-

5-18

puter coordinator (when necessary) is issued two permanent, plastic encap­

sulated bin receipts for his bin. When a permanent bin receipt is

presented at the I/O counter, the bearer will be given the entire contents

of his department's bin--not just a portion of it. The subsequent distribu­

tion of the contents is the responsibility of the hearer and his departmental

coordinator.

5.4.4.2. Line Printer Files

Line printer output may be generated either via the COpy TO PRINTER

command or directly from a user's program. Both methods automatically

label the output properly so that it will be placed in the correct depart­

mental I/O bin. However, it is suggested that the user's name appear in

the printer file label, if possible, to facilitate subsequent distribution.

No advance permission or communication with the operator is normally

required prior to creating printer output. However, it is good practice

to send him a message afterwards saying that you have generated some out­

put, and giving him your name and user-code. This will assist the

operator in case he is having mechanical trouble with the printer. Each

user should consult his departmental ' Computer Coordinator about procedures

governing excessive output.

In case of special forms required on the printer, the EQUATE command

may be used to great advantage. Specifically, the user must inform the

operator that special forms are to be used, giving the names of the files,

carriage tapes, special paper, and other special instructions. Then he

must execute his program with the proper files being produced on printer

backup tapes with FORM option specified. In ALGOL and GTL, this may be

done internally in the program by specifying an output media digit of 38

on the proper files. In other languages, the EQUATE command must be used.

Examples:

EQUATE PRINTI = PRINTI BACKUP TAPE FORM'­

EQUATE PRINT2 = PRINT2 BACKUP TAPE FORM'­

EXECUTE PROG32 WITH 10 = 15'-

5-]9.

5.4.4.3. Card Punch Files

Punched cards may be generated either via the COpy to PUNCH command or

directly from a user's program. The COpy TO PUNCH command is the preferred

method and should be used in almost all cases. It automatically interacts

with the operator and labels the output properly. Program output should be

directed to a disk file and then punched with the COPY TO PUNCH command,

rather than going directly to the punch.

If the COpy TO PUNCH command is used, no advance permission from the

operator is required. However, it is good practice to send him a message

afterwards saying that you have generated some output, and giving him your

name and user-code. This will assist the operator in case he is having

mechanical trouble with the card punch. Each user should consult his
\

Departmental Computer Coordinator about current procedures governing exces-

sive output.

Disk files may be created from punched card decks as described in

Section 5.4.1.6.

5.4.4.4. Calcomp Plotter Files

Both the operational procedures and programming techniques for creating

Calcomp plots are described in a separate RECC publication available at the

Bookstore entitled "B5500 Calcomp Plotter Manual."

No communication with the operator .i.s __ reauired either before or after

creating a plotter ;ile. All plot~er output generated during remote operations is

automatically labeled with the user's Reference Number, name, and permanent

departmental bin.

Prior to generating a Calcomp plot, each user should consult his Depart­

mental Computer Coordinator about current procedures governing plotter

charges.

5-20

APPENDIX A

B5700 REMOTE CHARACTER SET

The following tables define the character set acceptable to the B5700

Time Sharing System. The left table is arranged in octal sequence, with

o low and "high. The right table is arranged in collating sequence, with

blank low and ? high. For both tables, the column on the extreme left

gives the first octal digit and the row above the table gives the second

octal digit.

OCTAL
Ot2345f>7

COLLATING

n g123 4567. ,[«4-8,$

1 ()#~?I>~ .);~ .. /,i;
? +ABCDEfr, =]"'~I>~

" H T • [& (<+-' +ABCDEF'G
4)(JKLMNnp HlxJKL~N
; QR$*-)J~ OPQ~,tST~
I, /STUVWX VWX ~O1
1 Y 7·, I ¢= 1"· 3456 897

Several of the characters are interpreted by the system on input as

control characters only. They are the following:

character keyboard character

- or CARR RET

meaning

line terminator

line delete

backspace

In addition, the ? may be interpreted in some contexts as a control character

when it appears in the first position of input (see SS, STATUS) STOP, TAPE)

TO) ? connnands).

The following characters will all print as a ? when transmitted by the

A-I

system to the remote terminal:

~, ~, <, >, *
In addition, ~ will print as a ? when transmitted to a remote terminal if

nonblank characters follow it on the line being transmitted and will terminate

the line if it is followed only with blanks.

A-2

APPENDIX B

CANOE RESERVED WORDS

The reserve words as recognized by CANOE are dependent upon a positional

format. Hence, the following list of reserved words have been logically

divided into the following classes:

CANDE Connnands,

File-types,

Compiler-file-types,

Parameters.

Words which are followed by one or more words in parenthesis are all inter­

changeable alternatives. The use of CANOE reserved words as file-names is

generally illegal; since many reserved words are one character in length,

the use of one-character file-names is not reconnnended.

ADD (APPEND)
APPENO (ADD)
BYE
C (COMPILE)
CALL
CC
CHANGE
CHARGE
COMPILE (C)
COPY
CREA TE (MAKE)
DELETE
D (DISPIAY)
DISPIAY (D)
DO (E) (EXECUTE)
E (E) (EXECUTE)

A (ALGOL)
ALGOL (A)
APL
B (BASIC)
BASIC (B)
C (COBOL)
COBOL (C)
CODASYL

CANOE Conunands

EQUATE
EXECUTE (DO) (E)
FILE (FILES)
FILES (FILE)
FIND
FIX ('I''')
GUARD
HELLO
L (LIST)
LIST (L)
LOAD
LOCK
MAKE (CREATE)
MERGE
MONITOR
P(PRINT)

File-types

D (DATA)
DATA (D)
DYNAMO
E (ESPOL)
ESPOL(E)
F (FORTRAN)
FORTRAN (F)
G(GRAMMAR)

B-1

PUNCH
PRINT(P)
R (RUN)
REMOVE
RENAME
REP (REPIACE)
REPIACE (REP)
RESEQ
RESET
RMERGE
RUN (R)
S (SEQ)
SAVE
SCH (SCHEDULE)
SCHEDULE (SCH)
SEQ (S)

GRAMMAR (G)
GTL
I (INFO)
L(LOCK)
LOCK (L)
S (SEQ)
SEQ (S)
T (TSPOL)

SET
SS (TO)
SSFlLE
STATUS
STOP
TAPE
TIME
TO (SS)
TYPE
U (UPDATE)
UNLOCK
UPDATE (U)
WHATS

W(WIPL)
WIPL (W)
X '(XAGOL)
XALGOL (X)

Compiler-file-types

A (ALGOL) COBOL (C) F (FORTRAN) X (ALGOL)
ALGOL (A) CODASYL FORTRAN (F) XALGOL (X)
B (BASIC) DYNAMO GTL
BASIC (B) E (ESPOL) T (TSPOL)
C (COBOL) ESPOL (E) TSPOL (T)

Parameters

ABORT FILE NUMBERED Uf) SOLEUSER
ADAPTER FIND OBJECT SOURCE
ADDRESS FIRST OPTIONS SPO
AFTER FROM PASSWORD SQUASHED (*)
ALL GEQ PRINT STATION
ALLOWMSG GTR PRINTER TAPE
ARROW HELPFUL PUBLIC TELETYPE
AT HEX PUNCH TEXT
BACKSPACE INTERRUPT QUICKBYE TO (-)
BUSY LIBRARY QPICKLOG TRANSMIT
CANDE LITERAL RECEIVE TSHARER
CARDS LEQ REP TYPE
CHANGES ($) LOCKED REPlACE UNLOCKED
CONCISE LONG RESEQ WITH
DELETE LSS SEQ $ (CHANGES)
DISK MONITOR SEQUENCE if (NUMBERED)
END NAME SHORT -J~ (SQUASHED)
EOR NEQ SITE - (TO)
EQL NOSTOP SIZE
FACTOR NUMBER

B-2

APPENDIK C

B5700 FILE SECURITY SYSTEM

The B5700 Time Sharing System uses the file security system developed

for the B5700 Data Communications System. This system recognizes one privi­

leged user-code which is allowed access to all disk files in the system. On

the Time Sharing System, it is defined to be that of the installation

running the computer.

All other user-codes are subject to the constraints of the file security

system. For them, there are four levels of file security:

A locked file may be accessed only under the user-code under which

it was created. This type of security is created by the use of

the SAVE and LOCK commands. All disk files are initially locked

files when created.

A private file may be accessed by the user-code and programs

listed in the GUARD file associated with the private file. A pri­

vate file can be created by the use of the GUARD and the LOCK

commands.

An unlocked file can be read (or executed, if the file has an

object version) under any user-code, but it can only be changed

under the user-code by which it was created. Unlocked files are

created by the use of the UNLOCK command.

A public file can be read or written (or executed), if the file has

an object version under any user-code. Public files are created by

the use of the PUBLIC commandD

The security status of a file is treated in much the same way as the

file-name or the file-type. In effect, the security status is loaded with

the file and, if neither the file nor the security status is changed by the

user, it remains with the file when the file is saved, even if the file-name

has been changed.

A GUARD file can specify two levels of access for either programs or

users:

C-l

-Read-only - the program or user-code may only read the file (or

execute if object code).

-Read/write - the program or user-code may read from or write into

the file (not allowed on object code).

The general forms of the commands used to change the security status of

files are as follows:

(LOCKI . UNLOCK I PUBLIC)[,SOURCE I OBJECT][file-name] ••• J •••
and

LOCK [file-name] [WITH guardfile-name]

If the SOURCE or OBJECT parameter is empty, both source and object versions

are implied. If the file-name parameter is empty, the work-file is implied.

The many combinations of these verbs and parameters are summarized in

the following table:

command degree of access for another user-code

source file object file

READ WRITE EXECUTE

PUBLIC YES YES YES

PUBLIC SOURCE YES YES unchanged

PUBLIC OBJECT unchanged unchanged YES

UNLOCK YES NO YES

UNLOCK SOORCE YES NO unchanged

UNLOCK OBJECT unchanged unchanged YES

LOCK NO NO NO

LOCK SOURCE NO NO unchanged

LOCK OBJECT unchanged unchanged NO

LOCK •.• WITH GUARD file GUARD file GUARD file

C-2

to

APPENDIX D

CANDE MESSAGES

The following is a list of CANDE messages and a description of the

meaning of each message.

Message

ARliN OR EXECUTE OR CALL OR
EQUATE MUST FOLLOW AN EQUATE
COMMAND

ARRGH

B5700 TIME SHARING SYSTEM-LINE
line-number

B5700 TIME SHARING SYSTEM
MARK level

BASIC

. BAD CODE

BAD TYPE

BUSY

BYE

CC

D-l

Meaning

User has entered one or more EQUATE
commands, followed by a command
illegal to follow EQUATE. Chain of
EQUATE is forgotten.

User has attempted to CHANGE the file­
type of a file belonging to another
user.

User has completed connection to
B5700. He will be asked to log in.

User has entered WRU, ?, and ~.
Response identifies system and gives
level of operating system.

User has attempted to RESEQ only a
portion of a BASIC program.

A user-code or password which cannot
be verified has been entered when user
attempts to log-in on the system.

A command is being used giving an
invalid file-type.

A message is being sent to a station
which is running a program but the
receiving user has not set the ALLOWMSG
option.

A station is being logged-out of the
system.

User has attempted to change the car­
riage length of a device without a
carriage.

Message

CANNOT COMPILE THIS TYPE OF FILE-­
PLEASE INCLUDE FILE-TYPE NEXT TIME.

CHANGE IGNORED--FILE MAY BE IN USE
BY ANOTHER USER.

CHANGE REQUIRES AT LEAST TWO
PARAMETERS.

CHARGE

COMMAND NOT YET IMPLEMENTED

COMPILING

CONTROL RECORD ERROR
OCCURRED ON ZIP COMMAND.

COpy OR RE-LOAD REQUIRED TO
CHANGE DATA FILE-TYPE

COPYING

DID Nor COMPILE ••• CHECK SYNTAX
AND RETRY, PLEASE.

DISK SPACE FOUND. YOU ARE
RUNNING AGAIN.

DONE.

ENTER USER CODE, PLEASE.

ENTER YOUR PASSWORD

ERR:

D-2

Meaning

File-type of work-file is not a compiler­
file-type; see Appendix B.

A CHANGE command has been ignored since
the file was not in a state capable of
being changed.

A parameter to CHANGE command is illegal,
misspelled, or mis~ing.

CHARGE command en·tered illegally.

User has entered an option of a command
which has not been implemented yet.

User's program has begun to compile.

A programmatic ZIP contains an error.

User has attempted to change the file­
type of a type DATA work-file. This
is illegal, because DATA files are
referenced by record-number and other
type files are referenced by sequence­
number.

COpy TO TAPE operation has begun.

Compilation was incorrect because
of syntax errors.

Notification that disk space has been
found for a file which was in a no­
user-disk situation. Processing is
now continuing.

Response to STATUS or STOP command.

Response to a HELLO command or on
initial call-up of the system.

Response to a HELLO command or on
initial call-up of the system.

This is the prefix to the short error
messages which are given by CANDE.
Further explanation may be elicited
by entering 1's.

Message

ERROR IN FIND OR REPLACE
STATEMENT.

ESP DISK TABLE IS CURRENTLY
FULL. PLEASE TRY AGAIN IATER.

FILE NOT IN YOUR LIBRARY.

FILE SPECIFIED IS NOT A
SCHEDULE OUTPUT FILE.

FILENAM

FILE-NAMES CAN HAVE AT MOST
SIX CHARACTERS.

FILTYPE

FIX SYNTAX ERR @ sequence number

FLAG BIT: FILE file-name at DISK
ADDRESS address-FILE DISCARDED.

FOUND MORE THAN ONE FILE-TYPE IN
THE COMMAND.

FOUND "s IZE" MORE THAN ONCE IN
YOUR INPUT.

FROM

D-3

Meaning

Improper parameters or delimiters
appear in a FIND or REPLACE command.
Refer to syntax of the command.

An EQUATE command was entere~ but
not enough scratch-pad disk
storage was available to store it,
and it was ignored.

A file-name was specified which
could not be found.

Refer to a specification parts for
the SCHEDULE, STATUS,STOP command
syntax. The SCHEDULE output file
may be created with a SCHEDULE com­
mand interrogated with a STATUS
command, and its line may be ter­
minated with a STOP command.

File-name was expected but was not
found in command.

An illegal file-name was specified.

Illegal file-type specified in
LIST FILES command.

Illegal FIX command entered.

Notification of trouble with work­
file. CANDE will discard file and
allow you to proceed. You should
check the file you were processing
to determine the extent of the
damage.

Command specified two file-types
such as the following:

CHANGE ALGOL TO GTL.

The reserved word SIZE was used
more than once in the last command.

Illegal user-code designation in
LIST FILES command.

Message

FUNNY ••

GUARD FILE MUST BE OF THE
TYPE "LOCK" e

I CANNOT ALTER THAT FlLE­
IT IS YOUR WORK-FILE

I CANNOT REMOVE THAT FILE
IT IS'YOUR WORK-FILE.

I CANNOT FIND THAT FILE IN
YOUR LIBRARY

IGNORED

ILLEGAL: PARAMETER IN SAVE.

ILLEGAL PARAMETER IN REMOVE.

IMPROPER "FILE" SPECIFIER.

INCCMPLETE FIND OR REPIACE
STATEMENT (COMMA OR END).

INCOMPL

INCORRECT COMMAND-PLEASE 'REFER
TO THE B5700 TERMINAL USERS
GUIDE.

INPUT MUST START WITH A VERB
OR SEQUENCE-NUMBER.

D-4

Meaning

The user has attempted to bypass
system security by not entering a
user-code or password when the
system asked for his credentials.

User has attempted to LOCK a file
or update a GUARD file which was
not the output of the GUARD command e,

A CHANGE file-name ••• command has
been used where a RENAME or TYPE
command should have been used.

A REMOVE file-name command has been
used where a REMOVE command should
have been used, if that is what is
desired.

The file-name indicated in the last
CANDE command is not present on
disk.

Notification that a command has
been ignored due to the current
disposition of a file or the user's
terminal.

Refer to the SAVE command syntax.

Refer to the REMOVE command syntax.

Illegal FILE option syntax in FIND
or REPLACE command.

Check delimiters in the FIND or
REPLACE command.

Additional parameters or specifica­
tion parts are required for this
comrnand.

A CANDE reserved word has been used
improperly.

Last input was not a CANDE command
or data for the work-file.

Message

INPUT TOO LONG ..• RE-ENTER
PLEASE.

INPUT RESTORED THRU ••••

INSTRUCTION NOT RECOGNIZED.

LITERAL

LOADING

MERGE

MISSING DELIMITER OR STRING
TOO LONG.

MISSING DELIMITER OR INCORRECT
INSTRUCTION.

MON.FIL

NAME

NO CHECKPOINT FROM WHICH TO
RESTART--PLEASE START FROM
SCRATCH.

NO CODE

NO ERRORS TO REPORT.

D-5

Meaning

The last input is physically too
long to process; CANDE commands must
be restricted to 200 characters.

Notification pertaining to the vali­
dity of the user's work-file fol­
lowing a system failure.

Command does not meet syntax speci­
fications. Refer to syntax of
command.

Illegal LITERAL designation in
LIST FILES command.

Notification that the LOAD command
has been accepted and initiated.

MERGE attempted on type DATA file,
usually.

Strings in CANDE commands are
restricted to 63 characters in length.
Either this limit has been exceeded,
or right delimiter of string has
not been included in last command.

User has entered illegal parameters
to a CANDE command.

Missing MONITOR file.

Command requires a file-name as
parameter.

Notification pertaining to the in­
validity of the user's previous
work-file following a system failure.

Response to a DO, E, EXECUTE, R, or
RUN command when the specified ob­
ject file is not on disk, and no
source file could be found from which
to generate it.

Response to a ? command with no
errors resulting from the last
operation.

Message

NO FILE

NO NAME

NO OBJ.

NO ROOM

NO SAVE

NO WORK-FILE - USE MAKE
OR LOAD.

NO USER

NOFlIE

NOPARAM

NOPRGRM

NOT ON

NOTDONE

NOT ENOUGH ROOM FOR YOUR
FIX IN RECORD sequence-number

OK.

ONE OF YOUR PARAMETERS IS
ILLEGAL.

D-6

Meaning

A file-name has not been specified
in the command or has not been found
in the user's library.

A file-name has not been specified in
the command.

A valid object file was not found,
as required to process the last
command.

Not enough area for this file on disk
or to complete the command.

Work-file needs to be SAVEd or
REMOVEd before that command may be
processed.

A command was entered which requires
a work-file, but the user had not
yet declared one.

No user was found with the specified
user-code, or slash was not followed
with a user-code.

A file could not be located with the
specified file-name.

A parameter which must be specified
for this command has not been entered.

A ? TAPE command was entered, but
the terminal was not attached to a
program.

Given station has logged-off.

Current command is still being pro­
cessed; please wait a while longer.

Fix command caused nonblank infor­
mation to be truncated on record
sequence-number.

Terminal is now in TAPE mode.

A parameter to a command the user
has entered is illegal.

Message

OBJECT PROGRAM FILE IS NOT
ON DISK.

ONE OF YOUR PARAMETERS IS OUT
OF SEQUENCE

ONLY ONE FILE-NAME ALLOWED.

PARAMETERS MUST OCCUR IN PAIRS.

PATrENCE--YOUR LAST REQUEST IS
TAKiNG LONGER THAN I EXPECTED.

PLEASE CALL BACK AT YOUR
SCHEDULED TIME.

P
L
o

P

P*L*O*P

PLEASE WAIT -NO USER DISK

PROCEED

RESEQ

D-7

Meaning

A valid object version was not found
by the specified file-name.

User has entered a valid command with
valid parameters, but they are out
of order. Refer to syntax of
command.

The last command may not be made
compound, such as in the following:

COPY AA,BB,CC TO PRINTER.

Check the parameter specifications
for the last command.

This normally indicates that the
system is under heavy use and the
request is being processed more
slowly than normal. It may also
indicate that the command has not
been executed because a file is not
currently available for use - so
CANDE is waiting.

Your user~code is restricted as to
the time of day you may use the
system.

The system has failed and has been
restarted. The user will be re­
quested to re-enter his credentials.

A system failure occurred during the
processing of the schedule time. The
user should further check the output
file and restart the line, if
necessary.

The system disk tank requires. ex­
pansion and no disk is available
for .such an action - wait for OK
to proceed.

Continue entering commands and data.

RESEQ attempted on type DATA file,
usually.

Message

RESERVED WORDS MAY NaI BE
USED AS FILE-NAMES

RUNNING.

RUNNING (n) •

SAVE UNNECESSARY - NO CHANGES
SINCE lAST SAVE OR LOAD

SAVED •

SCHEDULED.

SECURITY

SRC-OBJ

SSFILE

SEQUENCE-NUMBER TOO LONG.

SORRY, YOU ARE NOT SCHEDULED
FOR TIME AT THIS HOUR.

SORRY, BUT YOU ARE PAST YOUR
SCHEDULED TIME AND WE MUST
DISCONNECT YOU.

SYSTEM OK - YOU MAY PROCEED.

TASK WAS DISCONTINUED.

D-8

Meaning

Refer to appendix B for a list of
CANDE reserved words. They cannot
be used as file-names.

Response to indicate object pro­
gram has started.

Response to STATUS or STOP command.

File on disk corresponds to work­
file - no SAVE required.

Response to a SAVE command in
CONCISE mode.

Response to indicate RUN/DO/EXECUTE/
CALL/SCHEDULE command has been
scheduled to run, rather than
starting execution immediately.

Illegal security designation in
LIST FILES command.

Illegal security designation in
LIST FILES command on object version
of file.

User has attempted to enter on
SSFILE command.

A sequence-number was generated
which was longer than eight digits.

Your user-code is restricted as to
time of day you may use the system.

Your user-code is restricted as to
time of day you may use the system.

System trouble (not enough disk) has
been corrected and processing has
continued 0

Response to a STOP file-name com­
mand referencing a schedule output
file, or last program executed
from terminal terminated abnormally.

Message

THAT COMMAND IS Nor COMPATIBLE
WITH YOUR TERMINAL.

THAT COMMAND REQUIRES A
FILE-NAME

THAT CONSTRUCT CANNOT BE· USED
WITH TYPE DATA FILES

THAT CONSTRUCT IS NOT AVAIIABLE
FOR YOUR USE AT THIS TIME.

THERE IS NO OBJECT CODE AVAIIABLE •••
TRY RUN OR COMPILE.

THE FILE IS NOT OBJECT CODE

THE PARAMETERS ARE IMPROPER-CHECK
THE B5700 TERMINAL USERS GUIDE.

THIS IS IMPROPER FOR SCHEDULE
TASKS.

TIME

TIME MUST BE BETWEEN 800 & 2400.
lAST TWO DIGITS MUST BE LESS THAN
60.

TO

TOOBIG.

TOOLONG.

TOOMANY.

D-9

Meaning

User has entered a command which
is impossible to perform on his
class of terminal device.

User has entered a command which
requires a file-name parameter,
but none was given.

User has entered a command, such as
RESEQ, or MERGE which is impossible
to perform with files of file-type
D.A:TA.

User has entered a command which
he is not capable of using.

A valid object version was not found
by the specified file-name.

File specified was not compiled on
B5700 Time Sharing System, or at all,
but is present.

User has attempted a valid CANDE com­
mand with improper parameters.

Illegal syntax for Schedule command,
or for commands in a SCHEDULE line.
Refer to syntax of SCHEDULE command.

In AFTER option.of SCHEDULE command;
illegal time was entered.

In AFTER option of SCHEDULE command,
illegal time was entered.

Illegal output designator in LIST FILES
command.

A sequence-number or sequence range in
a command is too large or illegal.

Last input to CANDE is physically
too long to handle.

Only 9 parameters are allowed for
the last command.

Message

TOOMUCH

user ... code

"VERB" REQUIRES AT LEAST
1 PARAMETER.

"VERB" CONTAINS TOO MANY
PARAMETERS.

WE MUST DISCONNECT YOU.

WE HAVE TEMPORARILY RUN OUT
OF DISK SPACE. PLEASE WAIT
FOR OK.

WHAT?

WHAT.

WORK-FILE HAS UNSAVED RECORDS
IN IT - PLEASE SAVE OR REMOVE IT.

WORK-FILE DOES NOT HAVE FILE-TYPE
DATA.

WORK-FILE OK.

YOU ALREADY HAVE A FILE BY THAT
NAME.

YOU ARE SCHEDULED TO USE THE
SYSTEM UNTIL time.

YOU ARE IN DATA MODE
)

D-lO

Meaning

A command has been given to CANDE
which contains too many elements.

In last command, user attempted to
reference a file to which he was
not allowed access.

User has entered a command without
parameters, and parameters are
required.

User has entered a command with
more parameters than are allowed.

User-code is limited according to
the time of day - time is up.

Your command has requested more
disk space than is currently avail­
able. Either enter WRU to dis­
continue the command or wait for OK.

A·CANDE command has been given
which may not be compound; correct
and reenter the command.

Illegal parameter has been entered
to TAPE command.

An attempt has been made to log-out,
or LOAn another file without cleaning
up the current work-file.

User has.entered ?DATA~ for work-file
with file-type not DATA.

Notification pertaining to the vali­
dity of the user's work-file fol­
lOWing a system failure.

User has entered a command with a
file-name as parameter which must
not be already on disk.

Your user-code is restricted as to
the time of day you may use the
system.

?DATA has been entered, but ? ENDS
has not yet been entered by the user.

Message

YOU ATTEMPTED TO ACCESS A
SECURED FILE.

YOU HAVE ENTERED AN ILLEGAL
FILE-TYPE.

YOU HAVE PUT TOO MUCH ON ONE
LINE. PLEASE SEPARATE.

YOU MUST SPECIFY A FILE-NAME
IN AN EQUATE COMMAND.

YOU MUST SPECIFY AN OUTPUT
FILE FOR SCHEDULE.

YOU MAY USE THAT CONSTRUCT ONLY
WITH THE RESET COMMAND.

YOU MAY NOT SPECIFY A USERCODE
ON THE OUTPUT FILE NAME.

YOUR JOB NEEDS DISK THAT IS NOT
AVAlIABLE NOW. WAIT OR DS IT.

YOUR NEXT SCHEDULED TIME IS FROM
time to time.

YOUR PROGRAM IS BEING COMPILED.

YOUR PROGRAM IS RUNNING.

YOUR REQUEST IS INCOMPLETE.

ZIPERR: "

D-11

Meaning

The user has entered a command which
attempted to access a file belonging
to another user.

A file-type must be one of those in
the file-type table in Appendix B.

Input message was too long for
CANOE to handle, either in terms of
number of characters or commands and
parameters.

Refer to the syntax of the EQUATE
command.

Refer to the syntax of th"e SCHEDUIE
command.

User has entered a command which at­
tempts to move records in a file to
another position in that same file.
This may be done only with the
RESEQ connnand.

Refer to the syntax of the FIND
and REPIACE commands.

User's program is requesting more
disk space than is currently avail­
able. Either enter WRU to discon­
tinue the program or wait for OK.

Your user-code is restricted as to
the time of day you may use the
system.

User has entered a connnand which re­
quired that a program be compiled,
and the compiler has not yet finished.

User has entered a command which
required that a program be run, and
it is not yet finished.

Additional parameters are required.
for your last command.

Following line contains first 72
characters control record which was
zipped by a program and contains
an error.

APPENDIX E

1/0 ERROR MESSAGES

Most error termination messages are self-explanatory. However, 1/0 error

messages are identified only by an integer error number and have the following

form:

-1/0 ERROR integer file-name, NEAR LINE line

The table shown below lists each possible 110 error number (they are not

consecutive integers) and its meaning:

1/0 Error Number

1

3

5

6

11

12

15

16

17

18

Meaning

A program attempted to OPEN an input file that was not
closed.

A program attempted to OPEN REVERSE a file that was not
closed.

A program attempted to OPEN REVERSE a file that was not
blocked properly.

A program attempted to OPEN an output file that was not
closed.

An attempt was made to CLOSE an input file which was
closed or never opened.

An attempt was made to CLOSE an output file which was
closed or never opened.

An attempt was made to READ a file for which AT END has
already been processed.

The record count on an input tape does not agree with the
internally accumulated record count. The external record
or block count is printed out first in the error message;
then the' internal record or block count is printed.

The block count on an input tape does not agree with the
internally accumulated block count. The external record
or block count is printed out first in the error message;
then the internal record or block count is printed.

The HASH TOTAL on an input tape does not agree with the
internally accumulated HASH TOTAL.

E-l

I/O Error Number

19

20

21

22

23

24

25

26

28

29

Meaning

An irrecoverable parity error has occurred during reading'
of a file assigned to disk or tape. The message is typed
once for each block which is in error unless a USE
procedure has been specified. The USE procedure (if any)
will be executed and control will be transferred to the
statement following the READ statement.

An irrecoverable parity error occurred on an output tape
or disk file. The USE procedure has been executed,
allowing programmatic closing of files which must be
saved.

An attempt was made to READ from a file opened as OUTPUT.

An attempt was made to read from a row of a disk file
which was never referenced. To get this error, the
record number must be less than the highest record number
written and greater than 1. For example, when a RANDOM
file is written, but records fall only in rows 1 and 3 of
a 3-row file, attempts to access records in row 2 will
cause I/O ERROR 22 instead of executing INVALID KEY state­
ments.

A row of disk space will be assigned, and the appropriate
record will be made available. The contents of the
record will be unpredictable.

An attempt was made to write on a file which was opened
as INPUT.

An attempt was made to WRITE on a file which was opened
REVERSED.

Improper code was passed to the COBOL 10 intrinsics.

A block of less than eight characters has been read, or
a zero record size has been encountered during the reading
of a variable-record-1ength which utilizes the SIZE
DEPENDING option.

While operating under the Time Sharing System, a SEEK has
been issued for a data communications device.

An irrecoverable parity error has occurred while reading
a tape file which was opened REVERSED. The message will
be typed once for each block which is in error unless a
USE procedure has been specified. The USE procedure (if
any) will be executed, and control will be transferred
to the statement following the READ statement.

E-2

Ilo Error Number

31

32

34

35

37

69

71

72

74

76

79

80

Meaning

An attempt was made to READ from a file which is closed
or never opened.

An attempt was made to WRITE to a file which is closed
or was never opened.

An attempt was made to SEEK on a file which is closed
or was never opened.

An attempt was made to WRITE BLOCK on an INPUT file.

An attempt was made to WRITE BLOCK on a file opened
REVERSED.

An attempt was made to WRITE BLOCK on a file which is
closed.

An attempt was made to write on disk at an address less
than 1000. The program will hang in a loop. The program
must be discontinued by the user.

The number of records within a string on a tape read or
written by a SORT was incorrect. This was due to an
incorrect READ or WRITE on that tape.

Parity or blank tape on write in the SORT has' occurred.

Parity or blank tape on write in the MERGE has occurred.

An error occurred within a string being written by a
SORT: the number of records that should have been written
did not equal the number written on the designated unit.

The number of records that should have been read from
other tape units in the final merge pass of a SORT did
not equal the number of records written onto the final
output tape. However, after action was taken to type
this message, the SORT closed the final output reel or
executed the user's output routine, signaling end of
file. Consequently, the output tape may be used in spite
of this error message. The tape unit indicated in this
message is meaningless.

The total number of records entered as input to the SORT
was not equal to the number of records produced as out­
put from the SORT in the final merge pass. However,
after action was taken to write this message, the SORT
closed the final output file or executed the user's out­
put routine, signaling end of file. Consequently, the
output tape may be used in spite of this message. The
tape unit indicated in this message is meaningless.

E-3

I/O Error Number

81

82

83

84

85

86

87

Meaning

The amount of available disk is insufficient for a SORT.

The number of records read from the input does not match
the number written io the final output in a SORT.

A disk file was passed as an output file to a SORT which
was not large enough to hold all of the sorted output data.

The amount of disk specified is insufficient to do a
disk-only SORT. The program must be rerun with a disk
and tape SORT.

The number of records read from a string on tape is not
the same as the number written by a SORT.

No records have been passed to the SORT in a program.

A sort record description is greater in length than the
record descriptor of a file which is passed as an output
file to a SORT.

E-4

APPENDIX F

B5700 CANDE COMMANDS--QUICK REFERENCE INFORMATION

sequence-list is defined as follows:

[(sequence-number\END)[(TO\-) (sequence-number lEND)]]

resequence-info is defined as follows:

[sequence-list [base-sequence-number] [+resequence-incre ment]]

program-parameter-info is defined as follows:

[WITH«PROCESS/IO\STACKICOMMON) = integer) •••]

(ADD\APPEND) file-name[/user-code]sequence-list[RESEQ resequence-info]

- Adds specified records from file-name onto end of work-file.

APPEND - see ADD

BYE
- Logs user out and disconnects terminal.

C - see COMPILE

CALL program[/suffix]program-parameter-info

- Executes a program in the public library.

CC(SHORT\LONG)

- Changes assumed length 0 f terminal carriage.

CHANGE [SOURCE\OBJECT] file-name FACTOR TO integer

- Changes save-factor of existing disk file.

CHANGE file-name TO file-name

- Changes existing disk-filets file-name.

GHANGE [file-name] TYPE [TO] file-type

- Changes disk file's file-type.

(COMPILE\C) [file-name][compiler-file-type]program-parameter-info

- Compiles source version of a disk file to produce object version.

F-I

COpy [file-name[/user-code]] TO (PRINTERIpUNCHITAPElfile-name)

file-name[/~ser-codeJsequence-list[RESEQ resequ~nce-infoJ)

CREATE

?DATA

- Copies a disk file or a portion of it to another file or peripheral
unit.

- see DISPLAY

- Places terminal in DATA mode.

DELETE [file-name] (ALLlsequence-list) [RESEQ resequence-info]

- Clears some or all of a disk file by sequence-number.

DISPLAY - see LIST

DO - see EXECUTE

E - see EXECUTE

?END
- Places terminal in normal status from TAPE or DATA mode.

EQUATE internal-name = file-name[/user-codeJ[unit .••]

- Changes program file attributes.

(EIEXECUTEIDO) [file-name[/user-code]]program-parameter-info

- Executes specified file-name's object version.

FILE - see FILES

(FILEIFILES)

- Lists names of user's disk files.

(F1NDIREPLACE)[FILE file-name[/user-code]J[FIRSTJ[LITERAL]

(delimiter sought-string delimiter\mnemonic)

[WITH(delimiter replacement-string delimiter\mnemonic)]

sequence-list [PRINT(SEQUENCEITEXTISlTE\FILE file-name)] ,) •.•

- Searches disk file for sought-string, optionally replacing
(REPLACE only) by replacement-string.

(F1Xl*) sequence-number delimiter sought-string delimiter[replacement-stringJ

-Corrects a portion of a record in work-file.

GUARD
Assists in constructing GUARD disk file to be associated with
private disk file.

F-2

HELLO [user-code[password]]

- Logs out old user, may log in new user.

L - see LIST

(LISTILlpRINTlpIDISPLAYID)[($ICHANGES)\file-name[/user-code]]

sequence-list[*ISQUASHED][#INUMBERED]

- Lists part or all of contents of disk file on terminal.

LIST FILES [TO(PRINTERITELETYPElfile-name)]

[[file-type][SOURCE][OBJECT]

[LOCKED][UNLOCKED] [PUBLIC] [SOLEUSER]

[LITERAL string][file-name][/user-code]]

- Lists much information concerning user's disk files.

LIST PROGRAM FILES [file-name[/user-code]]

- Lists program file attributes.

LOAD file-name

- Loads existing disk file into newly-created work-file.

(LOCKIUNLOCKlpUBLIC)[[SOURCEIOBJECT]file-name ••.] ••. WITH guard-file-name]

- Changes disk file security status of specified disk files (WITH
used only with LOCK).

(MAKEICREATE) file-name[file-typeJ

- Establishes new work-file named file-name having given file-type.

(MERGEIRMERGE) file-name[/user-code]sequence-list[RESEQ resequence-info]

- Merges specified disk file, or portions ofi~, with work-file.

MONITOR file-name

Causes changes to work-file to be saved in file-name.

p - see LIST

PRINT - see LIST

PUBLIC - see LOCK

PUNCH file-name[/user-code]sequence-list[RESEQ resequence-info]

- Punches specified disk file, or portions of it, on paper tape
in a form suitable for reading back into system.

F-3

R - see RUN

REMOVE[[SOURCEIOBJECT] file-name •••]

- Removes specified files.

RENAME file-name

- Changes file-name associated with work-file.

REPLACE - see FIND

RESEQ [file-name]resequence-info

- Changes sequence-numbers and moves records about within a file.

RESET - see SET

RMERGE - see MERGE

(RUNIR) [file-name[/user-code]] [compiler-file-type]program-par ameter-info

- Attempts to execute specified file.

S - see SEQ

SAVE [save-factor][file-type]

- Stores a copy of current work-file on disk.

SCH - see SCHEDULE

(SCHEDULEISCH) [file-name[/user-code]] TO file-name[AFTER integer]

- Schedules a series of CANOE commands to be processed.

(SEQ IS) [base-sequence-number][+ resequence-increment]

- Initiates automatic sequencing mode for input.

(SET I RESET) (ALLOWMSGIBUSylCONCISEIHELPFULIMONITORINOSTOP I QUICKBYE I QUICKLOG)

- Changes remote terminal options.

[?]SS - see TO

[?]STATUS[file-nameJ

- Returns status of SCHEDULE line with output file file-name, or
status of currently-running program or compiler.

[?]STOP file-name

- Terminates SCHEDULE line with output file file-name.

(?TAPEITAPE [SEQ[base-sequence-numher][+ resequence-increment])

- Places terminal in TAPE mode.

F-4

TIME

[?](TO\SS) (logical-line-number\user-code\SITE\SPO)[message]

- Sends message to operator or to another terminal.

TYPE file-type

- Changes file-type of work-file.

TYPE OPTIONS

- Prints remote terminal options.

U - see UPDATE

UNLOCK - see LOCK

(UPDATE\U)

- Updates work-file.

WHATS[SOURCE\OBJECT][file-name]

?[command]

Returns file-name, file-type, size, creation-date, creation-time,
and save-factor for a disk file.

Notifies CANDE that special action is required.

* - see FIX

command ••• ; command

- Concatenates CANDE commands.

, or blank

- Concatenates parameters to CANDE commands.

"[comment]

- Introduces a comment for CANDE.

[message]t-

- Ends current line of input to system.

[message]!

- Causes system to delete current line of input.

[message]
- Logically backspaces one input character.

F-S

(BREAK)

(EOT)

- Causes terminal to stop typing and accept input.

- Terminates currently executing programs (if any).

- Terminates currently executing program (if any), logs user
out, detaches terminal from system.

F-6

