
Georgia
Institute

of
T e chn 010 gy RICH ELECTRONIC COMPUTER CENTER / (404) 894-3100/ ATLANTA, GEORGIA 30332

PROGRAMMERS REFERENCE MANUAL
for the

UNIVAC 1108

EXEC 8 EXECUTIVE SYSTEM

February 1972
(Revised)

PROGRAMMERS REFERENCE MANUAL
for the

UNIVAC 1108

EXEC 8 EXECUTIVE SYSTEM

February 1972
(Revised)

PREFACE

This manual is one of a series of manuals prepared by the Rich Electronic

Computer Center for the benefit of its users. It is primarily concerned with

a description of the Exec 8 Executive System, its control language, and cer­

tain programs that act as an interface between the user and the executive to

perform utility functions.

Scope

The syntax and semantics of programming languages, such as FORTRAN, COBOL,

and ALGOL, are not described here. Additional RECC and UNIVAC manuals provide

information in this area.

Application programs such as GPSS, SIMULA, SIMSCRIPT, and Linear Program­

ming are likewise not described. This is partly due to the long and rapidly

lengthening list of applications programs available.

Although the basic mechanisms by which language processors (compilers)

and application programs are called out are given here, the documentation on

each individual component usually gives more specific information.

Since the demand mode of operation, from a Teletype or similar device,

cannot be divorced from the executive as a whole, there are many references

to demand mode in this manual. However, there are features of the executive

pertaining only to demand mode, and these have been avoided. The RECC

publication, Demand Terminal Users' Manual for the UNIVAC 1108, presents

examples of demand usage and technical information on exclusively demand

features. However, the serious demand user will want to reference this manual

for detailed information on control statements and system processors used in

both batch and demand modes.

Reading Guide

This is a reference manual, not an instructional manual. This means

that it is ordered by subject and not by degree of difficulty or utility.

Due to the volume of information given, it is not practical to read it from

beginning to end.

i

It is suggested that the novice user begin at the back, with the sample

deck setups. These will often supply enough information to begin running

programs. Also, they will point out frequently used control statements and

FURPUR commands. Through the Table of Contents, the user may find additional

information on the constructs that interest or confuse him. Certainly,

everyone will read the @RUN, @PWRD, processor call, and @FIN statements.

Sooner or 1ater\ most people will tackle the chapter on I/O specification

statements. The @ASG statement often confuses new users, but it is the heart

of the Exec 8 file system. Don't try to understand the whole chapter the

first few times through. Especially 'avoid F-cyc1es, because they are rarely

used.

Glance through the chapter on System Processors, if only to find out

what's available. It will expose you to exclusive Exec 8 features.

You'll undoubtedly be forced to look at the appendix on diagnostic

messages. Exec 8 messages are often in a coded form, to help minimize com­

puter overhead.

If possible, sit down at a Teletype and try some things. It's easier

to learn when errors can be corrected interactively and· when files can be

dynamically inspected. ~lso, the staff of the computer center is available

for help.

The first three chapters contain the lowest density of useful information

about the system. However, do read about Program Protection and Program Files.

Read the rest at your leisure.

In short, don't read the manual, reference it. It would be quite

impossible to comprehend the information given without frequently interacting

with the system. Here's wishing you an enjoyable and productive re1at10nship

with the 1100 series executive system, Exec 8.

Changes in the Second Edition

This is the second edition of this manual. The first edition was

published on April 1, 1969, prior to the full-time use of Exec 8 at Georgia

Tech. Since that time, much knowledge about and experience with Exec 8 have

been gained by both our users and the computer center staff. It is hoped

that this revision of the manual will reflect this knowledge and experience.

ii

We have attempted to clarify points in the manual that have confused

users in the past. Much of the chapter "I/O Specification Statements" was

expanded and rewritten. Answers to repeatedly asked questions, such as

"How do I make extra copies of my printout?" and "How do I change the

printer margins?" were included. Information regarding the Georgia Tech

configuration was added, including descriptions of all mass storage, magnetic

tape, and symbiont devices.

The sections on FORTRAN, ALGOL, COBOL, and Applications Programs were

removed in the belief that these subjects could be handled better in separate

manuals. The remaining sections were renumbered in a more consistent manner

than before.

Of course, much of the work involved bringing the manual up to date.

The newer features such as batch passwords and saving of catalogued files,

and the revised method for saving tapes had to be documented. Also, several

enhancements such as @LIST, TD8, and @TSTCAT are now described. Features

that were described in the original manual, but are not yet operational, were

deleted in hopes of having everything in the manual work as indicated.

We have attempted to create a correct, complete, and useful manual for

our user community. Your suggestions on how we may reach higher toward that

goal will be greatly appreciated.

Acknowledgment

Most of the material in this manual is reproduced (with appropriate

editing for the Georgia Tech environment) with the kind permission of the

UNIVAC Division of Sperry Rand Corporation from their EXEC 8 Programmer's

Reference Manual, UP 4144, and other UNIVAC publications.

iii

1.

2.

TABLE OF CONTENTS

THE EXECUTIVE SYSTEM DESIGN CRITERIA • • • • •
1.1. Operational Capabilities • • • • • . • • •
1.2. Exec Relation to Other System Components •
1.3. Functional Objectives •••••.••
1.4. Range of Executive System Capabilities •

1.4.1. Batch Processing ••••••.
1.4.2. Demand Processing
1.4.3. Real-Time Processing •••••••••

1.5. Program Protection ••••••••.
1.6. Mass Storage Uit1ization Techniques •••..•••
1.7. Program Files •••••..••

1.7.1. Basic Concept •••••••
1.7.2. Program File Elements
1.7030 Element Name and Version •••••.••••
1.7.4. Element Versions.
1.7.5. "Cycle" Parameter

BASIC CONCEPTS OF THE UNIVAC 110B EXECUTIVE SYSTEM •
2.1. Definitions.. • • ••••

2.1.1.
2.1.2.
2.1.3.
2.1.4.
2.1.5.
2.1.6.
2.1.7.
2.1.B.
2.1.9.
2.1.10.
2.1.11.
2.1.~2.
2.1.13.
2.1.14.
2.1.15.
2.1.16.
2.1.17.
201.1B.
2.1.19.
2.1.20.
2.1.21.
2.1.22.
2.1.23.
2.1.24.
2.1.25.
2.1.26.

Acti vity • • • • • • •
Activity Registration
Batch Processing •
Breakpoint • • • .
Central Site • •
Collection • • .
Communication Device •
Demand Processing • • • •
Element • • • • • •
Executive Control Language •
Facilities • • • .
File • • • • • • • •
Granule
Multi-Programming
Packet • • •• ••• • •
Processor Call Statements
Program
Program File • • • • • •
Real-Time Processing • •• • • •
Re-entrant Coding • . • . . • • •
Remote Site . • • •
Run . • • . . • •
Simulated Fastrand
Swapping • • • . •
System Processor •
Task • •• •• • .

2.2. System Conventions
2.2.1. Symbolism

iv

. . .
\

. . .

Page

1-1
1-1
1-1
1-2
1-2
1-2
1-3
1-3
1-4
1-4
1-5
1-5
1-5
1-6
1-7
1-7

2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-2

-2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4

3.

4.

TABLE OF CONTENTS (Cont.)

COMPONENTS OF THE EXECUTIVE SYSTEM • • • •
3.1. Supervisor ..••..
3.2. Executive Requests •••••
3.3. Symbionts. . • . . . • • • .
3.4. Input-Output Device Handlers
3.5. Operator Communications
3.6. File Control System .•
3.7. Data Handling ••••
3.8. File Utility Routines ..•.•
3.9. Auxiliary Processors
3.10. Processor Interface Routines
3.11. The Diagnostic System

EXECUTIVE CONTROL LANGUAGE
4.1. Purpose
4.2. Statements .•...

4.3.

4.2.1. General Content
4.2.2. Statement Format

4.2.2.1. Label Field.
4.2.2.2. Command Field
4.2.2.3. Options Field.
4.2.2.4. Specification Field.
4.2.2.5. Leading Blanks
4.2.2.6. Comments Field ••••.

4.2.3. Continuation Rules .•••••
Statement Types •••. •••• •• • •
4.3.1. General. • • • • • •. • •••.
Organizational Statements •
4.4.1. The @RUN Statement

4.4.1.1. PRIORITY Subfie1d
4.4.1.2. OPTIONS Subfie1d
4.4.1.3. RUNID Field •••
4.4.1.4. REFERENCE-NUMBER Field
4.4.1.5. USER-NAME Field.
4.4.1.6. RUN-TIME Field
4.4.1.7. PAGES Subfie1d
4.4.1.8. CARDS Subfie1d ••••
4.4.1.9. START-TIME Field
4.4.1.10. RUN Restrictions
4.4.1.11. @RUN Statement Examples.

4.4.2. The @FIN Statement
4.4.3. The @MSG Statement •••••
4.4.4. The @HDG Statement . • • • •

4.4.4.1. Print-Control Functions.
4.4.5. The @ADD Statement
4.4.6. The @START Statement ••••••
4.4.7. The @BRKPT Statement .•• 0 •••

4.4.7.10 Examples of the @BRKPT Statement
4.4.8. The @SYM Statement • • • • •••

4.4.8.1. Use of @SYM with PRINT$ and PUNCH$

v

Page

3-1
3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-11

4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-7
4-7
4-7
4-7
4-8
4-9
4-9
4-9
4-10
4-10
4-10
4-10
4-11
4-12
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-18
4-20

4.5.

TABLE OF CONTENTS (Cont.)

4.4.9. The @COL Statement • • • • • •• .•••
4.4.9.1. 026 Mode ..•. • ••.
4.4.9.2. 029 Mode. . . .••

4.4.10. The @PWRD Statement ..••••
4.4.10.1. Format and Placement of @PWRD Statement

4.4.11. The @ BIN Statement . • . • • • •••
4.4.12. The @LOG Statement • . . • • • • •
Input/Output Specification Statements • . • .
4.5.1. General File Information •••..••••

4.5.1.1. Introduction ..••..•.••
4.5.1.2. Input/Output Peripheral Equipment

4~5.1.2.l. Mass Storage Equipment •.

4.5.1.3.
4.5.1.4.
4.5.1.5.
4.5.1.6.
4.5.1.7.
4.5.1.8.

4.5.1.2.2. Magnetic Tape Equipment
Temporary Versus Catalogued Files
Notation for Filenames • • .
Mass Storage Policy and Procedures
Definition of "Assigned" • • •
Methods of Assignment of Files • • • •
Unloaded Mass Storage of Files
4.5.1.8.1. Selection of Files to

Unload • • • . . .
4.5.1.8.2. Reloading of Unloaded Files

4.5.1.9. Disabled Files ••••. ' •.•..••
4.5.1.9.1. Incomplete Write Disable.
4.5.1.9.2. Destroyed Disable
4.5.1.9.3. Bad Backup Disable

4.5.2. The Mass Storage @ASG Statement •••..••••
4.5.2.1. The 'OPTIONS'I Subfield ..

4.5.3.

4.5.4.
4.5.5.

4.5.2.2. The 'FILENAME' Field. • • • •

4.5.2.3.
4.5.2.4.
4.5.2.5.

4.5.2.2.1. The 'READ-KEY' and 'WRITE­
KEY' Subfields

The Facilities Field • •. •• • •
Exclusive Use and Facility Handling
Examples of the Mass Storage @ASG
Statement • • . • . •

4.5.2.6. Diagnostic Messages
The Magnetic Tape @ASG Statement •
4.5.3.1. The' OPTIONS' Subfie1d • • . . • • • .
4.5.3.2. The 'FILENAME' Field •.••••.
4.5.3.3. The Facilities Field. . •..
4.5.3.4. The Reel Field. • . • •. • ••.

4.5.3.4.1. Using Scratch Tapes
4.5.3.4.2. Saving Tapes •...
4.5.3.4.3. Using Tapes Previously

Saved
4.5.3.5. Examples of the Magnetic Tape @ASG

Statement
The @MODE Statement . . • . • •
The @CAT Statement . • . • . . • • •

vi

Page

4-20
4-20
4-21
4-21
4-22
4-22
4-22
4-23
4-23
4-23
4-23
4-24
4-25
4-25
4-26
4-27
4-29
4-29
4-30

4-31
4-31
4-32
4-32
4-32
4-32
4-33
4-33
4-36

4-36
4-37
4-39

4-40
4-41
4-44
4-44
4-45
4-45
4-46
4-46
4-46

4-46

4-46
4-47
4-49

5.

4.6.

4.7.

4.8.

4.9.

TABLE OF CONTENTS (Cont.)

4.5.6. The @FREE Statement. • . •• • ••••••.
4.5.7. The @USE Statement . • • • • . •...•••

4.5.7.1. External, Internal, and Attached Names
4.5.7.2. Format of the @USE Statement ...•.
4.5.7.3. Use of the @USE Statement •.•..
4.5.7.4. Examples of the @USE Statement
4.5.7.5. File Name Uniqueness Within a Run

4.5.8. The @QUAL Statement •.•••.••.•••.•.
Processor Call Statements . . • . . • . • • • .
4.6.1. Notation for Program File Elements •.•••
4.6.2. Statement Format for Language Processors
4.6.3. Format of Correction Lines •••••
4.6.4. The System Program Files, SYS$*RLIB$, SYS$*LIB$,

and TPF$ • . • • . . • • • • •
Program Execution Statements . • • •
4.7.1. The @MAP Statement ••••.
4.7.2. The @XQT Statement .•....•.
4.7.3. The @EOF Statement •••••
4.7.4. The @PMD Statement . • • • • • ••..••.
Conditional Statements • • • • . • • • • . . • • •
4.8.1. Purpose of Conditional Statements
4.8.2. Statement Labels
4.8.3. The @LABEL Statement ••••.
4.8.4. The "CONDITION" Word . • • • • • . • . • •
4.8.5. The @SETC Statement.
4.8.6. The @JUMP Statement ••.•..•.••
4.8.7. The @TEST Statement ...••
Statement Syntax Error Diagnostics

FILE UTILITY ROUTINES (FURPUR)
5.1. General ••.•..
5.2. Statement Format . • . • • ••••.•.••

5.2.1. Contents of Specification Fields
5.2.2. File Assignments
5.2.3. Options Field.

5.3. Shorthand Notation
5.4. FURPUR Statements

5.4.1. @COPY •.
5.4.1.1. Formatting the @COPY Statement .•.•
5.4.1.2. Examples of the @COPY Statement.

5 .4. 2. @COPOUT. • . • . . • • • • • • . • • . • • • • .
5.4.2.1. Formatting the @COPOUT Statement
5.4.2.2. Examples of the @COPOUT Statement ••.

5.4.3. @COPIN •.•••••••••...•••••
5.4.3.1. Formatting the @COPIN Statement ••
5.4.3.2. Examples of the @COPIN Statement

5 • 4 • 4 . @DELETE. • • • . • . • • • • • • • .
5.4.4.1. Formatting the @DELETE Statement
5.4.4.2. Examples of the @DELETE Statement

vii

Page

4-51
4-53
4-53
4-53
4-53

.4-54
4-54
4-55
4-56
4-56
4-57
4-61

4-62
4-63
4-63
4-64
4-65
4-65
4-66
4-66
4-67
4-67
4-68
4-69
4-70
4-70
4-72

5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-6
5-7
5-7
5-8
5-9
5-9
5-10
5-11
5-11
5-12

6.

5.5.

TABLE OF CONTENTS (Cont.)

5.4.5. @PRT. • • • • • • • • • . • • • • • • .
5.4.5.1. Formatting the @PRT Statement ••••
5.4.5.2. Examples of the @PRT Statement.
5.4.5.3. Notes on @PRT,T •••••••••

5 • 4 • 6 • @PCH. • • • • • • • . • • • • • . . . • • •
5.4.6.1. Formatting the @PCH Statement ••••
5.4.6.2. Examples of the @PCH Statement.

5 • 4. 7 • @CHG. • • • • • • • . • • • • • • • • •
5.4.7.1. Examples of the @CHG Statement.

5.4.8. @PACK
5 • 4. 9 • @PREP
5.4.10. @ERS •
5.4.11. @REWIND
5.4.12. @MARK
5.4.13. @CLOSE •.
5.4.14. @MOVE ••••
5. 4. 15. @FIND
5.4.16. @CYCLE ••••••.

5.4.16.1. Formatting the @CYCLE Statement
5.4.16.2. Examples of the @CYCLE Statement •

5.4.17. @ENABLE
Mu1tiree1 Files

SYSTEM PROCESSORS • • • • .
6.1. The COLLECTOR (@MAP Processor) •

6.1.1. General • • • • • • .. • •••
6.1.2. Executive Control Statements.

6.1.2.1. The @MAP Control Statement ••.
6.1.2.2. .The @XQT Control Statement •

6.1.3. COLLECTOR Control Statements. • •••

6.1.4.
6.1.5.
6.1.6.

6.1.3.1. General .•••••.•••••
6.1.3.2. The IN Statement ..•••
6.1.3.3. The NOT Statement
6.1.3.4. The LIB Statement
6.1.3.5. The SEG Statement
6.1.3.6. The DSEG Statement
6.1.3.7. The RSEG Statement ••••
6.1.3.8. The DEF Statement
6.1.3.9. The REF Statement
6.1.3.10. The ENT Statement •• • • . • • •
6.1.3.11. The EQU Statement
6.1.3.12. The CLASS Statement
6.1.3.13. The COR Statement
6.1.3.14. The SNAP Statement •..••••.
6.1.3.15. The END Statement
Functional Aspects • • • . • • • • • •
COLLECTOR Defined Symbols • • • • •
Program Segmentation and Loading •

viii

Page

5-12
5-12
5-13
5-14
5-16
5-16
5-17
5-17
5-18
5-18
5-18
5-18
5-19
5-19
5-19
5-20
5-20
5-21
5-21
5-22
5-22
5-22

6-1
6-1
6-1
6-2
6-2
6-7
6-8
6-8
6-9
6-10
6-11

- 6-11
6-13
6-13
6-13
6-14
6-14
6-15
6-15
6-16
6-17
6-18
6-19
6-21
6-21

7.

8.

9.

TABLE OF CONTENTS (Cont.)

6.2. The Procedure Definition (@PDP) Processor •

6.3.
6.4.
6.5.
6.6.
6.7.

6.2.1. General •....
6.2.2. FORTRAN Procedure
6.2.3. COBOL Procedure
TEXT EDITOR (@ED)
The @ELT Processor
The @DATA Processor
The @END Statement . · . The @LF Processor

· · · · · · ·

6.7.1. The @LF Processor Call Statement
6.7.2. Functional Aspects of @LF · 6.7.3. Examples of the @LF Statement

6.8. The LIST ProcessOr . · . . . · · 6.8.1. The Processor Call Card · · · 6.8.2. Notes on the Printed Output · 6.8.2.1. Symbolic Elements · 6.8.2.2. Relocatable Elements
6.8.2.3. Absolute Elements

6.9. The @TSTCAT Processor ·
THE DIAGNOSTIC SYSTEM . • . • • . .
7.1. The @PMD Statement

7 . 1 • 1 . Gener a 1 . .
7.1.2. Options

7.1.2.1. General Options.

·
·

·

. ·

. ·

· · · · ·
· · · · . .

· · ·
· · · ·
· ·
· · ·

· · .
· ·

· ·
· · ·

7.1.2.2. Special Options .•......
7.1.2.3. Options Used with Special Options.
7.1.2.4. The 'Blank' Option

7.1.3. Examples

UTILITY ROUTINES . • • • .
8.1. Convers ion Aids . .•...• . .

8.1.1. UNIVAC 1108 (EXEC II) to UNIVAC 1108 (EXEC 8) ..
8.1.2. LIFT (FORTRAN II to FORTRAN V Translator) .•

8.2. The TD8 Routine • • . • • • . . • • .
8.2.1. Execution. • ••.
8.2.2. Data Card. . •••••••..
8.2.3. Results ...••..
8.2.4. Example ...•..

SAMPLE DECK SETUPS • • • .
9.1. Compile Only •••.
9.2. Compile and Execute. . •••••
9.3. Compile and Execute Main ,Program With Two Subroutines
9.4. Compile and Catalogue Original Program •••••
9.5. Test Corrections to Existing Program and Execute
9.6. Update Existing Program and Execute •.•••.•
9.7. Execute Existing Programs Using Catalogued Data Files •.

ix

Page

6-23
6-23
6-25
6-25
6-26
6-26
6-29
6-33
6-33
6-33
6-36
6-37
6-38
6-38
6-39
6-39
6-39
6-39
6-40

7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-3
7-4

8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-3
8-4

9-1
9-1
9-1
9-2
9-2
9-4
9-5
9-6

9.8.
9.9.
9.10.
9.11.
9.12.
9.13.

TABLE OF CONTENTS (Cant.)

Compile Program and Store It on Tape • •
Execute Program Stored on Tape . . .
Create Multiple Print Output Copies • • . .
Divert Print Output to Tape
Print Output Previously Diverted to Tape • • .
Run Two Runs in Sequence . • • •

APPEND IX A. CHARACTER CODES FOR THE U 1108

APPENDIX B. DIAGNOSTIC MESSAGES

APPENDIX C. STANDARD TAPE TRANSLATION (BCD-FIELDATA) .

x

Page

9-7
9-8
9-8
9-9
9-10
9-10

A-I

B-1

C-l

1. THE EXECUTIVE SYSTEM DESIGN CRITERIA

1.1. Operational Capabilities

To take maximum advantage of the speed and hardware capabilities of the

UNIVAC 1108 computer and to make effective use of a given hardware configu­

ration, a complex internal operating environment has been created.

This environment allows for the concurrent operation of many programs;

it allows the system to react immediately to the inquiries, requests, and

demands of many different users at local and remote stations; it allows for

the stringent demands of real-time applications; it is able to store, file,

retrieve and protect large blocks of data; and it makes optimum use of all

available hardware facilities, while minimizing job turnaround time.

Only through central control of all activities of the UNIVAC 1108 can

this environment of the combined hardwa~e and software systems be fully

established and maintained to satisfy the requirements of all applications.

This responsibility for efficient, flexible, centralized control is borne

by the Exec. The Exec controls and coordinates the functions of this

complex internal environment and, by presenting ,a relatively simple inter­

face to the programmer, allows him to use the system easily while relieving

him of concern for the internal interaction between his program and other

co-existent programs.

1.2. Exec Relation to Other System Components

The UNIVAC 1108 Executive System includes a complete set of source­

language processors including FORTRAN V, COBOL, and ALGOL. The operation

of all of these processors is controlled by the Exec for the user of the

system. By the Executive's assumption of the responsibility for: 1) calling

in processors as required, 2) providing inputs to the processors, 3) storage

and maintenance of the outputs of the processors, and 4) the integration of

activities involving sequences of processor calls, a processor's operation

can be confined to the actual processing involved in a single activity.

The Executive System will take care of all other functions.

Other components of the 1108 Software System such as SORT/MERGE, APT,

PERT/COST, and LP (LINEAR PROGRAMMING) interface with the Executive System

in a similar manner.

1-1

1.3. Functional Objectives

The primary objectives in the design of the 1108 Executive System are

as follows:

(1) To optimize machine facilities usage, and at the same time optimize

interaction for all users by the use of mu1ti-programming/mu1ti-processing

techniques.

(2) To make available to remote users the complete facilities of the

1108 System.

(3) To provide an Executive Control Language whose structure will

allow simple programs to have a simple means of expressing their requirements.

(4) To provide the flexibility to express a complex environment for

complex programs.

(5) To provide a broad and easily-used spectrum of program construction,

manipulation, and checkout aids, including the permanent storage of program

elements on random-access devices.

(6) To provide for tasks to be executed in either batch, demand, or

real-time mode.

(7) To provide a simple and flexible means of complete software

system generation and maintenance at the individual installation.

(8) To provide system invulnerability to programming error and, as

far as is reasonable, hardware errors.

(9) To provide the simplest possible operational characteristics consis­

tent with full utilization of the capabilities.

1.4. Range of Executive System Capabilities

The technical capabilities of the UNIVAC 1108 Executive System s~an a

broad spectrum of data processing activities. Its design is such that no

penalties of inefficiency are imposed upon one of these activities by the

support provided for the other activities.

1.4.1. Batch Processing

Foremost among system capabilities is the suppor~ provided for batch

processing. Design emphasis has been placed upon the achievement of ease

of run preparation and submission, minimization of job turnaround time,

and minimization of operator intervention and decision requirements. Run

submission may come from many sources, remote and central. These various

1-2

inputs,through the Exec's use and control of efficient multi-programming

techniques, may undergo what is essentially simultaneous input, processing,

and output. Thus, in a demanding environment, the full capabilities of

the 1108 can be utilized efficiently.

1.4.2. Demand Processing

The Exec provides simultaneous use of the 1108 by many users at remote

consoles to optimize the user/system interaction rates. Each user shares

control of the computational facilities and has the full capability of the

1108 configuration at his disposal.

The demand mode of processing is initiated and controlled by the

Executive Control Language. Commands are input via the user's remote console

on a conversational basis; that is, an immediate system response will be

apparent.

Provisions are made for: (1) Dialed communication connection in

addition to leased lines and remote consoles on site; (2) paper tape input

allowing pretyped command programs with data for high efficiency communication

transmission; (3) user communication with the computer operator and the

Exec itself.

1.4.3. Real-Time Processing

A basic responsibility of the Exec is to assist real-time communications

(RT/C) programs with Exec functions provided to allow RT/e programs to

appropriately influence the Exec and the multi-program background. No

attempt is made to generalize the control required in each RT/C program in

recognition of the specific tailoring of a RT/C program to both the hard­

ware configuration and the process controlled.

Exec is sensitive to the nature of RT/C processing and provides

appropriate mechanisms for: lockout protection from simultaneous record

access during program execution; priority sensitivity; protection to RT/C

programs from interference because of peripheral access of background

programs (search functions, etc.)

Interface with non-standard peripherals can be at the hardware level

(I/O commands and interrupts). Exec awareness of individual transmission

lines provides for adequate response and flexibility.

1-3

1.5. Program Protection

The multiprogramming capabilities of the Executive System imply that

many unrelated programs may be residing in main storage at the same time.

Such programs may be real-time runs, production runs, classified runs, or

simple debugging runs. Infringement of privacy in such a mixture is

highly probable especially in cases where debugging runs are executing.

The knowledge or ignorance of an invasion may range from little or no con­

cern for some runs to great concern for classified or realtime runs.

To combat this invasion, intentional or unintentional, the Executive

System has unique features that automatically guarantee absolute protection

for each program. The protection guards against two forms of invasion,

direct and indirect.

Direct protection safeguards all programs in main storage from an

active program that may attempt to read, write, or jump into another program

area. This safeguard is effected by "Locking Out" any area of main storage

that is not assigned to the presently active program or, in effect,

"Locking In" the active program. Any attempt to perform any of the above

functions is immediately reported to· the Executive Sys.tem, which normally

terminates the program with an IGDM (guard mode violation) message.

Indirect protection is realized by reserving certain control functions

for the exclusive use of the Executive System. These functions are of the

type that could cause a system malfunction and, in turn, a program malfunc­

tion if erroneously used. The Executive System will prohibit the use of

these functions.

In both forms of protection, the Executive System is, in reality,

guaranteeing its own safety from abuses that may prove catastrophic to the

system.

1.6. Mass Storage Utilization Techniques

The UNIVAC 1108 Executive System is designed to provide installations

with an effective and efficient utilization of the mass storage devices

available with the 1108. The result is an ability to relieve operators

and programmers of responsibilities in· maintaining and physically handling

cards, magnetic tapes, etc., thus eliminating many of the errors which

previously accompanied the use of large-scale software systems. At the

same time, the overall efficiency of operation is considerably improved.

1-4

Provisions are made for the maintenance of permanent data files and

program files on the mass storage devices, with full facilities for

modification and manipulation of these files. Security measures are invoked

by the Executive System to insure that files are not subjected to unauthorized

use. As unused mass storage space approaches exhaustion, provisions are

also made within the Executive System for automatic relocation of files of

low usage-frequency to magnetic tape. When the use of files relocated in

such a manner is requested, they are retrieved and restored, under control

of the Executive System, with no inconvenience to the user. For the most

part, dynamic assignment of mass storage space is available to the user via

the Executive System. To facilitate efficient utilization of available

facilities, the user is also able to return portions of mass storage to

general use as he finishes with them.

1.7. Program Files

1.7.1. Basic Concept

The concept of a program file is fundamental to an understanding of

the 1108 software system. A program file is essentially a named set of

elements. The file name is the prime identifier for the set of elements.

To identify and locate the elements within a program file, a Table of

Contents is created, and maintained within the program file by the system.

1.7.2. Program File Elements

Within the Table of Contents, each element within the program file is

uniquely identified by the following four parameters:

(1) Element type

(2) Element name

(3) Element version

(4) Element cycle

Also included are various parameters such as the date of element

creation and the current relative location of the element on mass storage.

The elements contained within a program file are of the following

three types:

(1) Source language, or more generally, variable length data images

(2) Re1ocatab1e binary

(3) Absolute binary

1-5

Typical source-language elements are the following:

(1) FORTRAN source program

(2) COBOL source program

(3) COLLECTOR source element

Any of these elements may be introduced into a program file or manipulated

with a file by the use of the appropriate processor (FORTRAN, COBOL, etc.)

or by certain utility routines.

The following elements may be thought of as being special-case source-

language elements:

(1) COBOL procedure elements

(2) FORTRAN proce~ure elements

These elements are available to the language processors essentially as

source-language library elements. Special elements are required by the

system to facilitate the retrieval of source language library elements at

compilation time. However, these elements are created and maintained by

the system and require no concern on the part of the user.

In addition to the above source elements, sets of executive control­

statements may be entered as source elements. These elements may be called

by the @START or @ADD statements.

Relocatable elements are the binary output of the processors such as

FORTRAN, COBOL, ALGOL, and one special use of the COLLECTOR. Absolute

elements are placed in a program file by the COLLECTOR.

1.7.3. Element Name and Version

Each element within a program file is given a name specified by the

user. This name is referred to simply as the element name. To distinguish

between elements of the same name and type, a user may specify a subname

for an element, and this subname is called the element version.

Both an element name and an element version may be from one to twelve

characters in length, and these two parameters together must uniquely

identify one element among all elements of any particular type. Elements

of different types (e.g., source language vs. relocatable binary) may,

however, have the same name and version. An element name is required for

all elements within a program file (a name is supplied automatically by the

Exec in many cases); however, the specification of an element version is

not required.

1-6

1.7.4. Element Versions

Relocatable elements may be further classified by specifying a class

designation which is applied to the version name. The purpose of this

classification is the selection of elements based on parameters suited for

the particular allocation to be made. Letters within the version names of

elements are given meaning by the programmer which can then be used to

select a proper class or classes according to the need. Each required

element need not be named, but the proper element will be selected by

elimination.

1.7.5. "Cycle" Parameter

For differentiation among symbolic elements, an integer parameter

called "cycle" is associated with each element. This allows several "copies"

of the same version of an element to be retained within a program file.

Each item (image) of a symbolic element has a cycle number indicating to

which cycle it belongs, and, if deleted, a delete-cycle number to indicate

in which cycle this item was deleted. When a symbolic element is updated,

the update items are inserted where they belong in the element and given

a cycle number one greater than the last cycle of the element. Any previous

cycle items that have been deleted by this update are marked so. The user

may make references by cycle number. This gives the same effect as though

several different copies of the element were maintained. The user may

set the number of update cycles to be retained at any level he desires;

however, he need set that number if he desires to change it from the stan­

dard system assumption. The standard value is five (5).

In specifying a symbolic element for compilation, the user may reference

a specific update from a sequence of retained updates by specifying the

proper update cycle number as part of the executive control statement calling

for the compiler. In compilation, the update entry will be combined with

the element in its complete state, thereby creating a complete element as

of that cycle.

As soon as the number of updates retained for an element exceeds the

specified maximum, the update of the lowest cycle number (the original,

complete element) is combined with the update next lowest in cycle number;

in effect, the oldest entry is discarded, and the next oldest, in its com­

pleted form, becomes the oldest to make room for the latest cycle entry.

These corrections thus become incorporated permanently into the basic

elements and can only be removed by entering new correction statement's.

1-7

This technique of handling symbolic elements offers two distinct

advantages:

(1) The user is allowed to keep many differing copies of the same

element in a program file while requiring little additional storage over

that needed for a single copy.

(2) The user is able to refer easily to earlier copies of a specific

element without having to prepare corrections deleting previously input

corrections. However, if a set of corrections are applied to any cycle

except the latest and the updated cycle is to be retained, all cycles that

previously followed the cycle to be updated will be deleted. The new

cycle number will be the updated cycle number plus one.

1-8

2. BASIC CONCEPTS OF THE UNIVAC 1108 EXECUTIVE SYSTEM

2.1. Definitions

Certain terms are referred to in this manual with the assumption that

the reader is acquainted with their meaning. The following definitions

are for the convenience of the reader.

2.1.1. Activity

A division of a program which may be executed independent of other

portions of the program. It is usually considered part of a task.

2.1.2. Activity Registration

The act of registering with the Executive System an activity which

can be executed asynchronously with other parts of a program (forking).

2.1.3. Batch Processing

A mode of operation where several runs are grouped prior to processing.

Transition from run to run is effected by the Executive System.

2.1.4. Breakpoint

The division of symbiont defined files. Allows those portions of the

file to be queued independently of run completion. Maximum use of available

printers and punches is achieved in this manner.

2.1.5. Central Site

The 1108 computer and its attached peripheral equipment.

2.1.6. Collection

The process by which elements of a program are collected by satisfying

the external symbols of the initial element and all referenced elements.

The resulting structure defines a program to be allocated and executed.

2.1.7. Communication Device

An input or output device which operates in a real-time mode. The

central processing unit must be prepared to receive input at any time or

the information may be lost.

2.1.8. Demand Processing

The manner of processing in which the Executive System or a processor

spontaneously reacts to the inputs from a remote inquiry terminal which is

sending messages as required. This is essentially a demand and response

type of activity.

2-1

2.1.9. Element

The basic component of a program file usually defined and manipulated

as a unit. The form of an element is dependent upon the program using it.

2.1.10. Executive Control Language

Specifically formatted input information which is used to direct the

activity of the Executive System.

2.1.11. Facilities

The peripheral units, main storage, tape drives, drum storage, etc.

2.1.12. File

An organized collection of data stored in such a manner so as to

facilitate the retrieval of each individual datum.

2.1.13. Granule

The incremental size in which a storage unit is assignable.

2.1014. Multi-Programming

The concurrent execution of several programs which occupy main storage.

This is accomplished by sharing the attentions of the central processor.

2.1.15. Packet

A contiguous set of words which contain information describing an

input/output operation to be performed.

2.1.16. Processor Call Statements

Specifically formatted input information which is used to direct the

activity of a sy~tem processor. A subset of the Executive Control Language.

2.1.17. Program

A collection of instructions, execution of which results in performance

of one or more logical functions. A program is the subdivision of the

executable aspects of a run.

2.1.18. Program File

A file in which the data are the constituents of a program or of several

programs. This data may consist of program elements in symbolic, re10catab1e

binary, or absolute binary form. Special information in the program file

is used to aid the system in the manipulation of the program constituents.

2-2

2.1.19. Real-Time Processing

An operating environment in which the response to an external stimulus

is sufficiently fast to achieve a desired objective. Depending upon the

application, the response time may vary from seconds to microseconds.

Generally, real-time processing is under the influence of asynchronous

inputs from one or more devices.

2.1.20. Re-entrant Coding

A set of instructions coded in such a manner that they may logically

perform the same task on different data sets simultaneously.

2.1.21. Remote Site

A communications terminal which is capable of sending information to

and receiving information from the central processor via some common carrier

or transmission scheme.

2.1.22. Run

A run is the standard unit in which work is entered into the operating

systemo This consists of a run command followed by one or more control

commands which causes the ordered execution of processors and~or worker

programs.

2.1.23. Simulated Fastrand

Drum simulation of Fastrand which allows execution of a program with

files designed for Fastrand allocation allocated to the section of the

"Flying Head" drum storage designated as simulated Fastrand.

2.1.24. Swapping

The process of storing low priority or suspended programs on secondary

storage in order to allow space to retrieve another program into primary

storage for execution.

2.1.25. System Processor

A program which performs specialized functions under the control of

the Executive System.

2.1.26. Task

A logical step in the processing of a run. For example, execution of

a system processor or a user program.

2-3

2.2. System Conventions

2.2.1. Symbolism

1. When it is necessary to indicate particular bits in a word, they

are numbered from right to left,

35 o

except in the case of the FORTRAN FLD statement where they are numbered

from left to right.

2. When parts of words are referenced the following symbols are used:

35 20 29 24 23 18 17 12 11 6 5 o·
Sl S2 S3 54 S5 S6

35 24 23 12 11 0

Tl T2 T3

35 18 17 0

HI H2

3. When referencing an externally defined executive system symbol, the

last character is always the $. Procedure names use the $ as their second

character 0 Therefore, it is recommended that the user not use the $ in his

symbols 0

2-4

3. COMPONENTS OF THE EXECUTIVE SYSTEM

The UNIVAC 1108 ~ecutive System is composed of many different routines,

each of which performs a specific function. These routines are organized

into several separate groups which are the basis of discussion in subsequent

sections of this manual. For introductury purposes, a brief description of

each component group follows.

3.1. Supervisor

The supervisor controls the sequencing, setup, and execution of all

runs. Among those routines included within the supervisor are the scheduling

routines, interrupt processing routines, timing routines, and accounting

routines.

3.2. Executive Requests

Executive requests are entrances into the Executive System which provide

functions for a user program. Depending on the function, it may be performed

asynchronously, synchronously, or immediately. If it is not an immediate

request, a queue is maintained.

3.3. Symbionts

Symbionts provide the interface between the primary unit record equip­

ment and the user program. These routines are referenced by using executive

requests for input and output. Input and output are buffered on the mass

storage devices.

3.40 Input-Output Device Handlers

The input-output handlers are responsible for 'controlling the activities

of all I/O channels and peripheral equipment attached to the UNIVAC 1108.

These device handlers provide the user with a full capability of peripheral

device operations.

3.5. Operator Communications

The communications section of the Executive System handles all communi­

cations between the operator and the operating programs. This communication

takes place via the computer keyboard and on-line printer on the console

channel. Neither the keyboard nor the console printer can be assigned to

operating programs.

3.6. File Control System

The file supervisor controls the creation and maintenance of all program

and data files. It also maintains an up-to-date master directory of all

files catalogued in the system-and the availability of all mass storage.

3.7. Data Handling

The data handling routines are designed to process a wide variety of

file formats using a general technique.

Files may be processed at the item or block levels with general disregard

for the physical characteristics of the I/O device assigned. Data are

presented or accepted, randomly or sequentially, on request of the user thereby

providing complete operational flexibility for efficient file manipulation.

3.8. File Utility Routines

To aid the user in the manipulation of program and data files, a set

of file utility routines is provided by the Executive System. These routines

perform a variety of functions for sy'stem and user data file maintenance.

3.9. Auxiliary Processors

A set of auxiliary processors is included in the executive system.

These processors complement the source language processors such as FORTRAN.

This set of processors includes the COLLECTOR for linking re1ocatab1e sub­

programs, and the PROCEDURE DEFINITION PROCESSOR for inserting and modifying

COBOL or FORTRAN procedure definitions in a program-file.

3.10. Processor, Interface Routines

The processor interface routines provide a simple, standard interface

for all processors within the system. Complete facilities are provided for

the input of source-language statements and the output of the resulting

re1ocatab1e binary code.

3.11. The Diagnostic System

A comprehensive diagnostic system is available within the 1108 Executive

System to aid the checkout of user programs. Commands are available which

can trigger snapshot dumps at the time of compilation or collection of a

user routine. Post-mortem dumps are also available through an Executive

Control Statement.

3-2

4. EXECUTIVE CONTROL LANGUAGE

4.1. Purpose

Control of the operating environment on the UNIVAC 1108 is accomplished

through a set of control statements. These statements direct the executive

in scheduling, assignment of facilities, and in the disposition of program

and data files. The language is designed in a compact and des~riptive manner

to facilitate use and yet provide all of the features and functions of a

modern Executive System.

4.2. Statements

4.2.1. General Content

The basic format of the Executive Control Statements is quite simple

and is amenable to a large number of input devices. Statements are not

restricted to a card-image format; hence, they may be of variable lengths.

Each statement consists of a recognition character in column one, followed

by a command which categorizes the statement, followed by a variable number

of specifications fields, and concluded by a comments field. The recognition

character is a master space (@), which is a multiple (7-8) card punch or

its equivalent for other types of input devices. The end of a statement is

signified by the end of a card for card-image input, or by a carriage

return or its equivalent for other types of input devices.

Executive Control Statements are always logged in a batch run's print

file. If a control statement is in error, the diagnostic is printed

immediately folloWing the statement.

4.2.2. Statement Format

The general format of an Executive Control Statement is:

@LABEL:COMMAND, OPTIONS SPEC1, SPEC2, ••• ,SPECN COMMENT

The following gives a description of each of the "fields" of the

Executive Control Statement as well as format and continuation rules.

4.2.2.1. Label Field

The label field need not appear but may be used to name a control state­

ment. The label is limited to six characters from the alphanumeric set

(A ••• Z, 0 .•• 9), the first of which must be an alphabetic. If a label is

specified, it must be immediately followed by the colon (:). A label is

used only when dynamic adjustment of the control stream is required. The

discussion of their use is deferred to the section entitled 'Conditional

Statements I •

4-1

4.2.2.2. Command Field

The command field must always be specified as it determines the state­

ment's basic operation. The command is limited to six characters from the

alphanumeric set (A ••• Z, 0 ••• 9), the first of which must be alphabetic.

For certain control statements, the options field, which is an appendage to

the command field, is recognized. When the options field is specified,

the command field terminator is the comma (,). However, if an options

field is not specified, blank () is the command field terminator.

4.2.2.3. Options Field

The options field provides the user with the ability to specify certain

options, in the form of unsequenced alphabetic characters, to the particular

processor addressed in the command field or to a specific program as it is

executed. On some control statements the options field can be broken into

subfields, each of which is separated by a slash (I). A blank character or

a series of blank characters separates the command or options field from

the specifications fields.

402.2.4. Specifications Fields

The specifications fields of an Executive Control Statement are separated

by commas and are specified by the user as dictated by his requirements.

The content of each specification field, the number of specification fields,

and whether each is required or optional, varies with the command selected.

Specification fields, in turn, may contain subfields that are separated by

a slash (I). For the most part, these subfields are optional within a

field. Thus, it is possible to specify parts of a field without specifying

the entire field.

In many cases, the specifications on a control statement will be a file

name or element name. In the remainder of this manual, the following con­

ventions apply (where brackets enclose optional fields):

FILENAME is used to indicate

[[QUALIFIER]*]FILE[(F-CYCLE)][/[READ-KEY][/WRITE-KEY]]

ELTNAME is used to indicate

[FILENAME.]ELEMENT[/VERSION] [(ELEMENT-CYCLE)]

4-2

Qualifier, file, element and version names are 1-12 alphanumeric

characters ('$' and '-' are also allowed). Keys have 1-6 characters from

the entire Fie1data character set, excluding only space, comma, slash,

period, and semicolon. F-cycles are numbered upward from 1; element cycles

are numbered upward from O.

When the qualifier is omitted, the USER-NAME from the @RUN control

statement is used, except in the special case where a leading asterisk

appears before the filename and a qualifier has been previously furnished

on a @QUAL statement. When the F-cycle or element-cycle is omitted, the

most recently created cycle is used.

When the filename portion of an e1tname is omitted, the system usually

assumes an implicit reference to the run's temporary program file, TPF$.

TPF$ is automatically assigned to every run by the system.

Although the distinction between filenames and element names is often

evident from the context, there are many cases where. a period must follow

a filename, or it will not be accepted, or wrongly treated as an element

name. In such cases, 'FILENAMEo-or-ELTNAME' will be used. A period may

always follow a filename, except on a @BRKPTstat·ement.

4.2.2.5. Leading Blanks

Leading blanks are allowable following the recognition character (@),

the colon (:) if a label is specified, the field separator C,), and the

subfield separator C/). A blank in any other position acts as the separator

signifying the start of the specification fields or comments field. An

empty field or subfield is one that contains no characters or one or more

blank characters. When all remaining fields or subfields are empty, they

may be omitted.

4.2.2.6. Comments Field

At least one blank character must precede the comment field. The com­

ment itself may contain any character except the semicolon (;), the contin­

uation character. The comment field is ended by end-of-card or its

equivalent for other input devices. The comment field is never required.

If specifications fields are omitted, the comment field must begin with a

period C.) followed by a blank. This is also true when the content of a

specifications field is unrestricted and variable in length (as with the

4-3

@MSG statement). The @XQT statement is an example of a statement where

specifications are possible but may be omitted.

Note: The above paragraph has described the comment field separator as

follows:

@ control card ~.~ comments

4.2.3. Continuation Rules

In certain situations, a statement may require more than one line or

card. In such cases, coding of a semicolon (;) indicates continuation on

the next card or line. A statement may be split at any point, after the

options field, where a leading space is allowable or within the comment

field. It is treated logically as a space. Continuation on the next line

can begin in any column, with one exception: a master space character (@)

should not be·placed in column one on a continuation line.

4.3. Statement Types

4.3.1. General

The 1108 Executive System recognizes five types of control statements:

(1) Organizational statements;

(2) input/output specifications statements;

(3) processor call statements;

(4) program execution statements; and

(5) conditional statements.

Each statement is discussed individually in succeeding paragraphs. The

order of presentation is as shown in the table below.

4-4

Statement Type

Organizational
Statements

Input/Output
Specification
Statements

SUMMARY OF EXECUTIVE CONTROL STATEMENTS

~'.
"

~~

;'(

Command

,';: @RUN

*;'(i'(

,';:i~

;':i'(

@FIN

@MSG

@HDG

@ADD

@START

@SYM

@COL

@PWRD

@ BIN

@LOG

@ASG

@MODE

@CAT

@FREE

@USE

@QUAL

Usage
Appears at the beginning of each run.
Provides accounting, scheduling, and ID
information.

Appears at the end of each run.

Places a message on the central-site con­
sole typewriter.

Used to place a heading line on print output.

Used to dynamically expand the run stream.

Used to schedule the execution of an
independent run.

Used to schedule non-standard symbiont
action.

Used to specify form of input, e.g., key­
punch code.

Used to specify the user's batch password.

Used to specify the bin number for
returning output.

Used to enter text into the system log.

Used to assign a particular input/output
device or mass storage file to a run.
There are two types of €ASG statements;
mass storage and tape. Also used to
catalogue Mass Storage files.

Used to change the mode settings (density,
parity, etc.) of a tape file.

Catalogues Fastrand files.

Used to deassign a file and its input/
output device or mass storage area.

Used to set up a correspondence between
internal and external file names.

Used to define a standard file name qualifier.

* These control statements cannot have labels. The asterisk is not part of
the statement.

** These cards are fixed format. The asterisks are not part of the statement.

4-5

SUMMARY OF EXECUTIVE CONTROL STATEMENTS (Continued)

Statement Type

Processor Call
Statements

Conditional
Statements

Command

@PROCESSOR
NAME

@MAP

@XQT

~'(@EOF

@PMD

@LABEL:

@SETC

@JUMP

@TEST

Usage

Used to execute a processor. @COB for
COBOL compiler, @FOR for FORTRAN, @ALG
for ALGOL, etc.

Used to call the COLLECTOR and prepare
an absolute element.

Used to initiate the execution of a
program.

Used to separate data within the control
stream.

Used to take edited post-mortem dumps of
the program just executed.

Used to attach a label to an existing
control statement.

Places a value in the 'condition' word.

Used to branch control within the control
stream.

Used to test the 'condition' word in'the
course of deciding the effective control
stream.

* These control statements cannot have labels. The asterisk is not part
of the statement.

4-6

4.4. Organizational Statements

4.4.1. The @RUN Statement

The @RUN statement must be the first statement of each run. Its purpose

is to identify the run and to furnish parameters necessary for scheduling

and accounting purposes. The format of the @RUN statement is:

@RUN,PRIORITY/OPTIONS RUNID,REFERENCE-NUMBER,USER-NAME,RUN-TIME,PAGES/CARDS,START-~IME

On the @RUN statement the normal options field is divided into two sub­

fields separated by a slash (/). The first subfie1d specifies the 'PRIORITY'

of the run and the second specifies the 'RUN-OPTIONS.'

The 'RUNID', 'REFERENCE-NUMBER', and USER-NAME' fields are the only

specification fields that need to be specified by the user. For demand runs,

the 'START-TIME' field is not honored.

4.4.1.1. PRIORITY Subfie1d

The priority subfie1d contains an alphabetic character. At system load

time, the following info:mation is specified for each 'REFERENCE-NUMBER' and

'USER-NAME': (1) the highest priority letter allowed for this 'REFERENCE-

NUMBER' and 'USER-NAME'

@RUN statement.

(2) priority to use if none is specified on the

The highest priority allowed and the assumed priority are the same for

each 'REFERENCE-NUMBER' and 'USER-NAME'. If the priority on the @RUN state-

ment is higher than allowed, the run is terminated immediately. If the

priority subfie1d is left blank, the priority character is chosen as specified

in the 'REFERENCE-NUMBER' and 'USER-NAME' file entry.

4.4.1.2. OPTIONS Subfie1d

The run 'OPTIONS' subfie1d may be used to place certain constraints on

the run. This field is never required and when left blank, normal system

action occurs. The available options are:

N disallow all postmortem dumps. Specification of this
option for runs containing no @PMD statements saves the
overhead of dumping core to the diagnostic file at
termination of every user program.

Y allow postmortem dumps of system processors.

4-7

If neither N nor Y options are specified, @PMD's will be allowed of

all programs except system processors (FOR, ALG, COB, MAP, FURFUR, etc.).

X Do not automatically reschedule run if it is active during
a system failure. This option should be specified if
rerunning a partially completed job might destroy data.
Appropriate @MSG statements to the operator should also be
included in the deck.

S Sequenced runs. If two or more runs must be run in sequence
(i.e., a run must finish before the next run can be started),
the S option should be used on all run statements except the
first. A null bin card mus·t separate the run decks. See
Sample Deck Setups for an example of sequenced runs.

4.4.1.3. RUNID Field

The 'RUNID' (identification) field must be specified to identify the

run to the system. This field is limited to a maximum of six characters

from the alphanumeric set (A •.. Z, 0 ••• 9).

If the system finds that a run being submitted has the same runid as

a previous run that has not finished execution, the executive will assign

a unique runid to the run, notify the operator (and the. user, if demand)

of the change, and continue processing the run. The new ID is used for all

operator-executive communications concerning the run. Normally, the new

ID is established by adding an alphabetic character if the original ID is

less than six characters. If the original ID is six characters, the right­

most character is replaced.

If a batch @RUN statement is preceded by a standard @ BIN card, the

bin number (possibly modified for uniqueness) is used for the runid. This

insures that all print files created by this run, and by runs @STARTedby

this run, will bear the proper bin number.

The demand user should use his department abbreviation as the first

two characters of his runid to ensure that any output printed onsite as

a result of the demand run will be returned to the department's permanent

bin. The department abbreviation is the first two characters of the pass­

word; hence the user may determine his department abbreviation from his

passwordo\

For a batch run, the @RUN statement must be followed immediately with

a @PWRD statement.

4-8

For a demand run, run initiation is accomplished as follows:

1. Dial the 1108 -- receive "beep" tone.

2. Enter siteid assigned to terminal -- receive "1108" message.

3. Enter password -- receive "NO RUN ACTIVE".

4. Enter a @RUN statement.

4.4.1.4. REFERENCE-NUMBER Field

The reference number field is used to specify accounting codes, and it

must be filled. The field contains from one to twelve characters from the

set A ... Z, 0 •.. 9. The user must use the NON-BLANK characters assigned by

RECC.

4.4.1.5. _ USER-NAME Field

The user-name field classifies the run for accounting purposes and per­

mits insertion of the implied qualification of file names when no specific

qualification is given. This field is limited to 12 characters from the

set A ... Z, 00 .• 9, and -. This field must be specified. The user must use

the non-blank characters of his name as submitted by his School or Depart­

ment and approved by RECC. For a more detailed explanation of the use of

this field as a file qualifier, see the chapter on INPUT/OUTPUT SPECIFICATION

STATEMENTS.

A set of allowable names and reference numbers is created at system

load time. A run is accepted if its name and reference number are known to

the system. If not, the operator is notified and the run is rejected.

4.4.1.6. RUN-TIME Field

Use of the run-time field is optional. The run-time field specifies

the programmer estimated number of minutes of central processor unit (CPU)

time required for the run. If this time is exceeded, as measured by the

time that the run has control of the CPU, the run is terminated immediately.

The user must not request more time than is specificied for his particular

Section on RECC form 1 or 2 (see your Departmental Computer Coordinator).

If this field is omitted, an estimated RUN-TIME of one (1) minute will be

automatically supplied. If the user wishes to specify his run-time in

seconds instead of minutes, he may do so by prefixing his number with the

letter S; e.g., S60 means 60 seconds or 1 minute.

4-9

4.4.1.7. PAGES Subfield

Use of the pages-subfield is optional; it provides the system with a

page number estimate of printed output that the programmer is expecting.

If this subfield is omitted, a maximum of 50 pages will be assumed. The

run will be automatically terminated when the estimate is exceeded. The

user must not request more pages than is specified for his particular

Section on the RECC form 1 or 2. (See your Departmental Coordinator.)

4.4.1.8. CARDS Subfield

The use of the cards sub field is identical to the pages subfield

except that it applies to the number of punched cards expected during the

run, rather than the number of printed pages. If this field is omitted,

100 cards is assumed for all jobs. Note that CARDS is separated from PAGES

with a slash, not a comma. If a comma is used, the specification is inter­

preted as START-TIME.

4.4.1.9. START-TIME Field

The start-time field is used to specify (delay) the time at which the

run will be considered for execution. In the absence of a start-time

specification, which is the normal case, the run is considered for execu­

tion immediately. When a start-time is specified, the run is not included

in those available for execution until the start-time has arrived. At that

time, it is considered for execution according to the given priority.

The start-time is based on a 24 hour clock. If a 'D' precedes the

time specification, it is taken as the time of day; otherwise, it is taken

as the elapsed time from run submission. The time is given in hours and

minutes and cannot exceed 2400 (24 hours, 0 minutes). For example, a

specification of 'D9l0' would be taken as 9:10 a.m., and 'D2ll0' would mean

9:10 p.m.

The start-time field allows a run to be submitted with the assurance

that it will not be executed prior to the ·given time. This feature is

desirable when input data are not yet ready but will be by start-time.

4.4.1.10. RUN Restrictions

The following is a summary of executive action concerning run restrictions:

A run will not be processed if it contains an invalid 'USER1NAME', 'REFERENCE­

NUMBER', or password, or an invalid priority, time, or page request. All runs

will assume a 100 card punch estimate if the 'CARDS' subfield is not specified.

All runs will be automatically terminated when the estimated time, pages, or

cards is exceeded.
4-10

4.4.1.11. @RUN Statement Examples

Consider the following @RUN statement examples:

(1) @RUN R23l, 5lC12009, DOE-D-J, 10, 100

The options field is not. used, meaning that the priority will be the

assumed priority for this name and reference number and the run-option is

not required. This is run R23l for name 'DOE-D-J' and reference number

'5lC12009'. The estimated running time is ten (10) minutes and the estimate

of print output is 100 pages.

(2) @RUN,X WCMI,99A650,SMITH-L

The priority code is 'X', the runid 'WCMI' for name 'SMITH-L' and

reference number '99A650'. The time and page estimates of one minute and

50 pages respectively will be used.

(3) @RUN KPM2,57CI1200l,JONES-R-T,,/300,D1300

Run 'KPM2' of name 'JONES-R-T' and reference number '57C1200l' is to

be processed. The priority is to be the maximum allowed for this name and
/

reference number. Time and page limits of 1 minute and 50 pages will be

assumed. This run will punch a maximum of 300 cards. The run will not be

considered for execution until 1:00 p.m.

(4) @RUN,T/S TSTACT,89C12005,ALBERT-F-S,15,300/50

Run 'TSTACT' of name 'ALBERT-F-S' and reference number '89C12005' is to

be processed and has a priority of 'T'. The estimated running time is 15

minutes, estimated print output is 300 pages, and. estimated punch output

is 50 cards. It will not be considered for execution until the previous

deck has been processed provided that the @RUN card was preceded by a

null bin card. Otherwise the job will be processed immediately.

(5) @RUN EC8LT,6lC12049,SMITH-G",30

Run 'EC8LT' of name 'SMITH-G' and reference number '6lC12049' will not

be considered for execution until 30 minutes after the deck has been read

in by the computer.

and reference number.

respectively.

The priority will be the maximum allowed for this name

The time and page limits will be 1 minute and 50 pages

4-11

4.4.2. The @FIN Statement

The @FIN statement is used to signal that the end-of-run has been

reached. It is required with all runs and must appear as the last state­

ment. It is never passed as a data image for @ELT or @DATA. This state­

ment cannot be continued on a second card or line.

The @FIN statement's format is:

@FIN

When the @FIN statement is encountered by the coarse scheduler, the

accounting routines are entered and all remaining facilities, temporary

files, and core space are released. Note: For onsite batch, this card

must be the red @FIN card provided by the computer centero

For a demand run, the @FIN statement will terminate the current run

and wait for a new run to be started (by entering a password and @RUN state­

ment). If no new run is to be started, the user should hold down the CTRL

key and press the EOT ("D") key. The user may alternatively press CTRL/EOT

without entering @FIN, and the executive will automatically assume a @FIN.

4.4.3. The @MSG Statement

The @MSG Control Statement is used to type a message on the central

site console typewriter. It has the form:

@MSG,OPTIONS MESSAGE

The message has a maximum length of 50 characters. The first non-blank

character is the beginning-of-information and the end-of-information is the

last character prior to the end-of-1ine, the comment field or the 50 charac­

ter maximum whichever occurs first. The @MSG statement can be used to

direct the operator in such areas as disposal of output, abnormal or

undocumented procedures, etc. The message is prefaced by the runid when

typed.

The @MSG statement may contain the following options:

W Causes the run to be held until the operator responds to
the message. The operator may respond with up to 50 charac­
ters. His response is printed immediately. If the operator
cannot comply, he may abort a batch run via the keyin 'X'.

N Causes suppression of the typing of the message on the con-
sole typewriter. In this case .the statement is listed on
the printer only. When the N option is present, the W option
is not effective.

4-12

The W option can be used to direct the operator in the loading and

general management of peripheral devices (in those cases not automatically

taken care of by the executive), and in communicating directly with the

operator from a demand terminal.

The N option can be used to simply place a message on the printer or

as a way to suppress console action without removing the @MBG statement.

An example of the @MSG Control Statement is

@MSG EXPECT 2 REELS OF OUTPUT FOR FILE XYZ

Another example, where the operator must respond, could be:

@MSG,W IS REMOTE HOOKUP READY

4.4.4. The @HDG Statement

This control statement provides the user with an automatic means of

printing a heading on each succeeding page of the print file. The format

of this statement is:

@HDG,OPTIONS HEADING-TEXT

The allowable options are:

N Turn off printing of the heading.

P Begin page number with 'page I'.

X Do not print date or page count.

The 'HEADING-TEXT' field is variable in length with a maximum of 96

characters allowed. This field is separated from the control field with

a single space, thereby allowing leading spaces in the text. The end of

the text is denoted by the last character prior to the end-of-line, or

the comment field, or the 96 character maximum, whichever occurs first.

The heading is printed on the second line above logi~al print line 1.

If this upper margin is one line or non-existent, the heading will not be

printed. The date and page number will appear to the right of the heading

text. A page count for each print file is maintained by the processing

symbiont 0 When heading is specified without the 'pI option, the page count

current to the file is used to begin page numbering. Any number of @HDG

statements may appear in the control stream.

4-13

A period in the HEADING-TEXT field signifies the end of the printed

heading and the beginning of the print-control sub field.

404.4.1. Print-Control Functions

Print-control functions may be specified on a @HDG statement, formatted

as follows:

@HDG,OPTIONS HEADING-TEXT. PRINT-CONTROL

Operation ,of the @HDG options and text is as described above. The

'PRINT-CONTROL' subfie1d is a string of functions, each of which begins with

a function letter, has its parameters separated by commas, and ends with a

period.

The available functions are:

L,.line-number-to-which-printer-shou1d-be-spaced.

M, number-of-print-1ines, top-margin, bottom-margin.

S, text-requesting-specia1 forms.

'L,l.' in the 'PRINT-CONTROL' subfield will cause a.pageup after the @HDG

statement is printed. 'M,66,6,3.' will reset the print margins to the standard

if they have been changed by a previous print control function.

4-14

4.4.5. The @ADD Statement

The @ADD Control Statement provides a means of inserting images into the

control stream from any file or element in the System Data Format. These

files may contain data or any control cards allowed in a run stream. The

file being added may have been created by the @DATA statement, the @ELT state­

ment, or a user program. The images in the file being added need not exist

until the @ADD command is executed. This means that the user is free to have

worker programs in the first part of a run generate files to be added later

in the run.

The format of the @ADD Control Statement is

@ADD,OPTIONS FILENAME.-or-ELTNAME

where 'FILENAME' may be the name of the file if an entire file is to be

added, or it may be replaced by the standard reference to an element

'[PROGRAM FILE.] ELEMENT[/VERSION][(CYCLE)]'.

The allowable options are:

D Used in data mode (@DATA or @ELT,D in control) to cause the
specified file or element to be added. If the D option is
not used in data mode, the @ADD statement itself will be
used as a single input image.

E Used primarily when adding images to the run stream which
are to be read by an executing user program. After the last
image in the added data has been read, a subsequent read
request returns an end-of-file status, as if there had been
an @EOF control statement at the end of the added data.

P Print the @ADD statement. The @ADD statement is always
printed if an error is detected.

When the @ADD Control Statement is encountered in a control stream, the

first image of the added file replaces the @ADD control image. All subsequent

control stream images will be taken from the added file until the end of file

or, if an element is being added, until the end of the element is encountered.

Following the end of the added file, the control stream is automatically

resumed at the image following the @ADD statement.

@ADD statements may be nested 3 deep provided there is no attempt to

add a given file (or element) twice in the same nest. When this occurs, or

when a non-existent file is specified, the run is terminated, if batch.

The @ADD feature is of particular value to 'the remote user (batch or

demand) in that control statements and/or data can be submitted only once

but used in many subsequent runs.

The following list of control statements are considered illegal within

an @ADD file: @RUN, @COL, @FIN,@ BIN, @PWRD.

4-15

4.4.6. The @START Statement

The @START statement affords the user a means of scheduling of one or

more runs from within a run control stream. Runs to be scheduled in this

manner must be catalogued data files created by the @DATA processor or a

user progr~m or they may be elements of a catalogued program file created

by the @ELT,D statement. The run file and the run element are in system

data file (SDF) form.

The @START feature can be used when one run must generate a data file

for input by another. In fact, the generating run may elect to build a

catalogued file containing an entire run control stream and then call for

it to be scheduled. Notice that the @START statement can be used to allow

the parallel processing of certain operations, since tasks from different

runs can be executed concurrently.

It may also be employed by demand terminals as a means of initiating

a batch run whose control stream has been previously entered into the system

as a data file, thus eliminating the necessity of retyping the required

control statements. The @START is of particular benefit in initiating

prestored utility routines and standard production runs.

In its simplest form, the @START statement's format is:

@START NAME, SET

where NAME is FILENAME. -or-ELTNAME.

The 'NAME' field must be either a data file name or an element name in

the standard format for symbolic element description. The 'SET' field can

contain an octal number to be 'SET' in the condition word of the run being

scheduled in order to determine the effective control stream (see section

on Conditional Statements). The 'SET' specification is never required~

The referenced stream must begin with a @RUN statement for this new, indepen­

dent, asynchronous run. A @PWRD statement must not be included in the

referenced stream. The end of the file or element denotes an implied @FIN.

When scheduling such a run, it is sometimes desirable to be able to change

some of the parameters on the @RUN statement that heads a prestored control

stream. The user may want to supply parameters such as the time and page

estimates.

4-16

A substitution can be made for certain parts of a prestored @RUN state­

ment by the use of a more complex @START statement of the form:

@START,PRIORITY/OPTIONS NAME,SET""RUN-TIME,PAGES/CARDS,START-TIME

Note that the statement has the same format as the @RUN statement

except that the file 'NAME' field and the 'SET' field precede the 'RUNID'

field. Another notable difference from the @RUN statement is that all

fields are optional except the file 'NAME' field. All non-blank fields will

be substituted in place of those on the prestored @RUN statement.

A substitution is always made to replace the 'RUNID', 'USER-NAME', and

'REFERENCE-NUMBER' on theprestored @RUN statement with the respective fields

taken from the @RUN statement of the initiating run.

The replacement of the 'RUNID' is done to insure that output created

by the @START run is returned to the proper bin. The replacement of the

'REFERENCE-NUMBER' and 'USER-NAME' fields is done to insure that unauthorized

use of a reference-number/user-name combination is not made.

4.4.7. The @BRKPT Statement

The @BRKPT statement is used to close out one portion of the PRINT$ or

PUNCH$ file and start a new part. If the part of the file being closed is

system defined, it will be automatically queued for the proper symbiont 0

The formats of the @BRKPT statement are:

(a) @BRKPT PRINT$-or-PUNCH$[/FILE]

(b) @BRKPT FILE

No periods may be used in the 'FILE' fields.

Format (a) is used to close out the currently active print or punch file,

and start a new one. If the file being closed is a standard print or punch

file, it is automatically queued for output at an appropriate peripheral

device.

If the new file being started is to be a standard print or punch file, a

user-defined FILE is not specified. In batch mode, many print or punch files

may be opened or closed in succession, by a series of @BRKPT commands.

Whenever this is done, a @MSG statement must be used to inform the operator

of the number of outputs to be printed.

If a 'FILE' field is specified on a @BRKPT statement, it may only be

a 1-12 character name. A @USE statement may be used to attach this internal

name to an external filename.

4-17

@ASG,URG is normally used to set up the FILE. After it is completed,

@BRKPT, @FREE, and @SYM (in that order) must be used to queue it for printing

or punching.

Format (b) is used to close out an alternate print or punch file. The

'FILE' field contains the file name of the alternate symbiont file being

closed out.

4.4.7.1. Examples of the @BRKPT Statement'

@BRKPT PRINT$

The current print (either system- or user-defined) file is closed and a new

standard print file is opened.

@BRKPT PRINT$/MYPRINT

The current print file (either system- or user-defined) is closed and succeeding

print will be placed in the file MYPRINT. MYPRINT 'must be assigned to the run.

@BRKPT PRTFIL

The alternate print file PRTFIL is closed. There is no effect upon the

current print file.

See the chapter on Sample Deck Setups for examples of @BRKPT used in

complete runstreams.

4.4.8. The @SYM Statement

The @SYM statement provides the user with the capability of selecting

a symbiont, or class of symbionts, to print or punch selected files. A

standard system procedure exists for printing and punching those files pro­

duced with the interface routines PRINT $, PRNTA$, PUNCH$ and/or PNCHA$

(standard symbiont files) during the course of a run if they reside in a

system-defined mass storage file. As these files are completed, they are

entered into the appropriate print or punch queue determined by the run's

associated input source. ~fuen a @SYM statement is enco~ntered the specified

file is entered into the specified symbiont queue.

The format of the @SYM statement is

@SYM,OPTIONS FILENAME, ,SYHB IONT

4-18

The 'OPTIONS' field may contain:

U Do not decatalogue FILENAME after printing or punching.
If U is not specified, FILENAME will be deleted.

C Used with a punch file when the symbiont field indicates
a remote site.

The 'FILENAME' field is used to specify the file to be processed, which

should be a Fastrand file.

The 'SYMBIONT' field is the name of a symbiont, or symbiont group,

which is to output the file. If omitted, the symbiont associated

with the run initiation device is assumed. To transmit a print file to a

remote batch site, the site id must replace the symbiont name. @SYM to a

demand terminal is not allowed.

Georgia Tech has three onsite print devices and two onsite punch

devices. These are:

Symbiont Device Name

PRI

PR2

PR3

CPl

CP2

Description

0755 High-speed printer - up to 1100 lpm

1004 printer - up to 600 lpm

1004 printer

1004 punch - up to 600 cpm - with paper
tape punch

"1004 punch - no paper tape punch

Output may be directed to any of these devices by specifying the appropriate

device name in the 'SYMBIONT' field. Alternatively, one of the following

symbiont groups may be specified:

Symbiont Group Device Selection

PR PRl, PR2, PR3

PRB PRl, PR3, PR2

PR23 PR2, PR3

CP CPl, CP2

CPB CP2, CPl

When a symbiont group is specified, output is sent to the first available

device in the device selection list, searching in the order specified above.

Multiple file printings from mass-storage will be executed concurrently,

if possible, for each @SYM statement encountered.

4-19

4.4.8.1. Use of @SYM with PRINT$ and PUNCH$

Each run entered into the. system has symbionts defined for processing

the system initiated print (PRINT$) file and punch (PUNCH$) file. These out­

put symbionts are classified for each run at system generation time. However,

it may become necessary to redefine eith~r, or both, output symbionts for a

particular run to process all, or portions, of the output file. The 'FILENAME'

field is used to denote the print or punch file with either PRINT$ or PUNCH$

respectively. The symbiont field is used as defined above.

For example, runs punching paper tape must insure that their standard

punch file is processed by CPl, since CP2 has no paper tape punch. This is

accomplished by including

@SYM PUNCH$"CPl

in the runstream.

PRI has the peculiarity that the character # (octal 077) is used to

indicate end-of-line, and is never printed. Thus if a run is to print '#'
characters, the output must be printed by PR2 or PR3. This is done by

including

@SYM PRINT$"PR23

in the runstream.

The device association may be set to send output to a remote batch site

from onsite (provided arrangements are made in advance), and vice versa.

Examples of @SYM in complete runstreams are given in the chapter

entitled Sample Deck Setups.

4.4.9. The @COL Statement

Each 1004 of the system assumes the 80 columns (026) mode for reading

and for punching. The system at Georgia Tech has been modified to allow the

user to read cards in the 029 mode. Note that all cards punched by the system

are in the 026 code.

4.4.9.1. 026 MODE
/

The 026 mode is assumed as standard. If a user's run is all 026 code;

he does not need any cards for conversion. If part of a user's run is 029

code and he needs to revert to the 026 mode, then the following card is used.

4-20

Note: This form of the @COL statement is fixed in format. This form of the

@COL card is written:

co1umn .•.•..• 123456789
characters ..• @COL 6

4.4.9.2. 029 MODE

This form of the @COL card allows the user to run an 029 deck or part of

a deck.

Note: This form of the @COL statement is fixed in format. This form of the

@COL card is written:

co1umn •..•... 123456789
characters ••• @COL 9

Note: The system reverts to 026 mode at each @RUN and @COL 6 statement.

Any number of these two forms of the @COL statement, @COL 6 and @COL 9

may appear in the control stream and may appear anywhere in the deck following

the @PWRD statement.

The @COL 6 and @COL 9 statements are recognized only for onsite batch.

Remote batch sites should modify their communications software to be com­

patible with the keypunches available. Such modifications have been accom­

plished at a number of sites.

4.4.10. The @PWRD Statement

The @PWRD statement is used in onsite batch and remote batch run decks to

specify the userls batch password.

A different batch password is assigned to each authorized user-name. In

order to have his run processed, the batch user must specify his batch pass­

word on a @PWRD statement.

The purpose of passwords is to prevent use of a reference-number/user­

name combination by an unauthorized person. Thus, passwords are useless

unless each user keeps his password secret. The computer center recommends

that when punching a @PWRD statement, the keypunch print function be turned

off. In case of accidental disclosure of a password, a new' password may be

assigned by contacting your Departmental Computer Coordinator. The system

never prints passwords on users l output.

Batch passwords consist of six alphanumeric characters, the first two

of which are an abbreviation for the userls department.

4-21

4.4.10.1. Format and Placement of the @PWRD Statement

The format of the @PWRD statement is fixed and it must be punched as

follows:

column:

contents:

1 2 3 4 5 6 7 8 9 10 11 12

@ P W R D X X X X X X

where XXXXXX represents the assigned password. Columns 13-80 are ignored

by the system.

The @PWRD statement must immediately follow the @RUN statement in each

batch run submitted.

4.4.11. The @ BIN Statement

The @ BIN statement is used to identify the bin at the input/output

counter to which a batch run's output is to be returned. Normally, @ BIN

statements are supplied at the I/O counter.

A @ BIN statement with blanks in the bin number field causes the run

following it to be assigned to the same bin as the run preceding it. This

form of @ BIN statement must be used by the user when submitting sequenced

runs (see the @RUN statement--S option).

A @ BIN statement with other than blanks in the bin number field should

not be used except when a permanent bin has been assigned to the user for

batch work.

The format of the @ BIN statement is fixed as follows:

column:

contents:

1 2 3 4 5 6 7 8 9 10 11 12

@ BIN X X X X

where XXXX is the desired bin number, or blanks for a null bin card. Columns

13-80 are ignored by the system.

4.4.12. The @LOG Statement

The @LOG statement has the format

@LOG text

where 'text' may be any characters, except as follows. The semicolon (;) is

used as a continuation character; therefore it cannot be part of the text.

The character sequence space-period-space (.) is not allowed as part of

the text because this sequence denotes the start of the comment field.

The 'text' will be printed at the end of the user's output, along with

other log and accounting information.

4-22

4.5. Input/Output Specification Statements

4.5.1. General File Information

4.5.1.1. Introduction

The Exec 8 Operating System provides modern Input/Output capabilities

designed for the time-sharing environment, including

(1) Dynamic allocation and release of mass storage space.

(2) Automatic scheduling and selection of facilities such as

tape drives.

(3) Protection from undesired tampering with private data and

programs.

(4) Exclusive use provisions providing synchronization of

accesses to information.

(5) Optional cycling of versions of data and programs, allowing

"backing up".

(6) A filename system that is simple for simple runs, but

generalizes for functions such as library files, etc.

(7) Support of a wide variety of input/output peripherals, varying

in speed and capacity.

This section on General File Information introduces file concepts.

The sections on the @ASG, @MODE, @CAT, @FREE, @USE, and @QUAL statements

provide detailed information allowing file structure manipulation. Manipu­

lation of file contents is performed by the system processors, utility

routines, and user programs.

4.5.1.2. Input/Output Peripheral Equipment

The information in this section is given to (1) acquaint the user with

the various 1/0 peripherals available, (2) allow the user to compare the

relative advantages and disadvantages of the different devices, and (3) give

the user background to properly code the equipment 'TYPE' subfields on I/O

specification statements.

This section deals only with mass storage and magnetic tape devices.

Paper and other peripherals are not generally referenced by users in I/O

specification statements.

4-23

4.5.1.2.1. Mass Storage Equipment

The following table describes the mass storage equipment available in

the Georgia Tech configuration.

Mass Storage Equipment

Number Storage Access Time Rotation Maximum
of Capacity Speed transfer rate

~ Units (words/unit2 min. avg. max. (rpm2 (words/ sec2

FH 432 3 262,144 120 \.l.S 4.3 ms 8.5 ms 7120 240,000

FH 880 3 786,432 160 f..1S 17 ms 34 ms 1770 60,000

FH 1782 1 2,097,152 120 \.l.S 17 ms 34ms 1770 240,000

FASTRAND II 2 22,020,096 1 ms 92 ms 156 ms 870 30, 566~~

*Continuous transfers at this rate are not possible. Effective rate is
roughly 25,590 words/sec.

Note: Each 1108 word contains 36 bits which may be considered as six six~it
characters.

As this table indicates, our configuration provides a considerable amount

of mass storage space with a variety of access times and transfer rates. The

smaller capacity, higher speed FH 432, FH 880, and FH 1782 drums are more

efficiently utilized for performing various functions of the Executive and

for the assignment of temporary user files. The much larger, but slower,

Fastrand II drums are more efficiently utilized for permanent, catalogued,

storage of user files that are moderate in size and are frequently needed.

Fastrand drum units are logically divided into positions, tracks, and

sectors. A sector is 28 36-bit words in length, and is the smallest addres­

sable increment of Fastrand storage. A track is 64 sectors, or 1792 words,

and corresponds logically to the path made by a read/write data head as the

drum makes one revolution. A position is 64 tracks, or 114,688 words, and

corresponds logically to the paths made by all of the 64 read/write data

heads with the "boom" fixed in one of its 192 positions.

The FH series drums are word-addressable and are not physically organized

like Fastrand. However, Exec 8 is equipped to simulate Fastrand on these

drums, providing the capability to run programs written to use Fastrand on

the FH drums, increasing throughput dramatically in some cases. In addition,

this allows the executive to dynamically allocate any drum type to a program

and still insure proper functioning of that program. The FH series drums

may also be used as word-addressable devices.

4-24

4.5.1.2.2. Magnetic Tape Equipment

The Georgia Tech configuration includes one Uniservo 8C Magnetic Tape

Subsystem. The subsystem includes 8 tape units, each with the following

specifications.

Tape Handling Speed

Rewind Speed

Rewind Time

Recording Densities (frames/inch)

Transfer Rates (frames/second)

Recording Format

Features

4.5.1.3. Temporary versus Catalogued Files

120 inches/second

240 inches/second

2.0 minutes for a 2400 foot reel

800, 556, and 200

96,000 @800fpi; 66,666 @556 fpi;
24,000 @200 fpi

7-track, even or odd parity

optional hardware character
translate

The normal user will be concerned with files on two different media-­

tape and mass storage. A tape file is always temporary, meaning that the

executive retains no record of the assignment after run termination. The

physical tape reel itself may be either a scratch tape to be scratched, a

scratch tape to be saved, or·a tape previously saved (see Section 4.5.3.4).

A mass storage (drum or Fastrand) file may be either temporary or catalogued.

A temporary mass storage file may be used for either random or sequential

access throughout a run. At run termination the executive returns the mass

storage space occupied by the file to the available pool and retains no

record of the assignment (other than log entries showing the space used).

A catalogued mass storage file may be used in the same manner as a temporary

mass storage file; however after the run terminates, the executive maintains

the file name and location of the text of the file in its directory, and

the space occupied by ~he file is marked as not available for allocation

to any other file. Thus the information in the catalogued mass storage file

may be referenced and/or updated in a subsequent run.

4-25

4.5.1.4. Notation for Filenames

The syntax of filename is

[[qualifier] *] file [(F-cycle)] [/ [read-key] [/ write-key]]

where brackets enclose syntactically optional fi€lds.

Qualifier and filenames are 1-12 alphanumeric characters ("$" and "_"

are also allowed). Keys have 1-6 characters from the entire Fie1data

character set, excluding only space, comma, slash, period, and semicolon.

F-cyc1es are numbered upward from 1, and may be preceded by a "+" or "_If in

some cases.

When the qualifier is omitted, the user-name from the @RUN control

statement is used, except in the special case where a leading asterisk

appears before the filename and a qualifier has been previously furnished

on a @QUAL statement. When the F-cycle is omitted, the most recently created

F-cyc1e is assumed.

-Por temporary files (both tape and mass storage), the F-cycle, read-key

and write-key are meaningless. A qualifier may be used, but in general

there is no need to do so.

For catalogued mass storage files, the qualifier provides 24-character

uniqueness in the directory. In addition, if a user catalogues files with­

out specifying a qualifier, his user-name is used and the filename will be

unique as long as the file designator is unique for that user. The F-cyc1e

number serves to maintain successive versions of the same file (same

qualifier and file).

F-cycles

As stated earlier, F-cyc1es apply only to catalogued mass storage

files. For a given file and qualifier, say MYNAME*CATFIL, there may be

between 1 and 32 associated F-cycles, denoted MYNAME*CATFIL(l) ,

MYNAME*CATFIL(2), ••• , MYNAME*CATFIL(32). The F-cycles of a file and qualifier

have some attributes of being the same file, and some of being distinct files.

For instance, all F-cycles of a file must have the same read and/or write

keys, if such exist. However, although it may be logically inconsistent

to do so, different F-cycles of a file need not contain data that is related

in any way (they may even be of entirely different format).

4-26

A simple cataloguing action creates absolute F-cycle 1 of a file. To

create the nextF-cycle, '+1' must be specified in the F-cycle field of an

@ASG,C, @ASG,U, or @CAT. (A catalogue request specifying an unsigned or

negative integer will be rejected.) This file is given an absolute F-cycle

one higher than previously existed. Thus the most recently catalogued

F-cycle is the one wi th the highest absolute number, and is called the

current F-cycle.

To assign the current F-cycle of a file, the F-cycle field may be

void, contain '+0', or contain an unsigned integer that is the absolute

F-cycle of the file. F-cycles older than the current one may be referenced

either by their absolute F-cycle or by relative F-cycle. An F-cycle desig­

nation of '-1' refers to the next-to-current F-cycle; '-2' refers to the

F-cycle created before that; and so on.

Suppose absolute F-cycles 1 through 3 of MY*FILE are currently

catalogued. Then the following designations are equivalent:

MY,"FILE and MYi'FILE (+0) and MY''.-F ILE (3)

MY*FILE(-l) and MY*FILE(2)

MY,"FILE (-2) and MY,"FILE (1)

If MY*FILE(+l) is subsequently catalogued, then the following equivalency

holds:

MY,"FILE and MY,"FILE (+0) and MY''.-FILE(4)

MY*FILE(-l) and MY*FILE(3)

MY,"FILE (-2) and MY,"FILE (2)

MY*FILE(-3) and MY*FILE(l)

Users are cautioned not to catalogue more than 32 F-cycles of a file.

4.5.1.5. Mass Storage Policies and Procedures

Following sections will describe the capabilities available for

manipulating mass storage files.· However, abuse of these capabilities,

either knowingly or unwittingly, will degrade system performance for all

users. Therefore, it is requested that all users conform to the following

guidelines.

a) Use the higher speed, FH series drums only for temporary mass

storage files needed within a particular run. That is, do not catalogue

any files with an equipment type other than F2.

4-27

b) Use the Fastrands for catalogued files that are needed frequently.

c) Do not leave very small files catalogued on Fastrand; use punched

cards or punched paper tape instead.

d) Do not leave very large files catalogued on Fastrand; use magnetic

tape instead.

e) Perform housekeeping chores regularly and frequently; delete files

no longer needed; reduce the size of files if possible; store large files

or collections of smaller files on magnetic tape when they are infrequently

needed, etc. Sections in this manual relevant to file housekeeping include

6.7, the Listfi1es Processor; 5.4.8, the @PACK Statement; and 5.4.5, the

@PRT Statement.

The Rich Electronic Computer Center follows procedures that attempt

to guarantee the presence of user files during hours of operations.

Periodically, all user catalogued Fastrand files are copied to magnetic

tape. Whenever it becomes necessary, due to unanticipated failures or due

to anticipated preventive maintenance, the latest copy is reloaded.

In conjunction with the guidelines above, the following procedures are

in effect to help prevent abuse of mass storage.

The computer center has established (1) a maximum allowable file size,

and (2) a file expiration.period. Contact the Office of the Director or

your Departmental Computer Coordinator for current information on these

parameters. At any time, the computer center may delete files

(a) catalogued with equipment type other than F2

(b) of zero size

(c) of size greater than the maximum allowable size, unless

catalogued with the G option

(d) catalogued by users not in the current account file

(e) files that have not been aSSigned for a period longer than

the expiration period.

Additional categories of files may be designated to be deleted in the

future. The Director, Rich 'Electronic Computer, as well as all depart­

mental computer coordinators, will have current information concerning mass

storage policy.

4-28

Each user is responsible for recreating his ow~ files if it should

become necessary. However, if an important file is deleted and cannot be

conveniently recreated by the user, the computer center may be able to help

the user by reloading the file from a backup tape. In such a case a

Programmer Aide should be consulted.

4.5.1.6. Definition of "Assigned"

Each run active in the system has associated with it a program control

table, or PCT. This table is used by the executive to control handling of

the run. The PCT may not be altered by the user.

When an input/output request for a file is made by an activity of a run,

the I/O portion of the executive must have detailed information about the

file immediately available. Thus, one main use of the PCT is to hold detailed

information about all files that may be referenced in I/O requests. In

addition, peripheral units may have to be conditioned before I/O can take

place (e.g., a tape unit may have to be dedicated to the file).

Thus, when a file is assigned, the run's PCT and the computer's peripheral

units are set up to allow efficient I/O'to take place.

On an assignment request for a temporary file or a file to be catalogued,

all information to set up the PCT and peripheral units is obtained from the

assign request (@ASG statement or equivalent), system standard, and configura­

tion constants. On an assignment request for a previously catalogued mass

storage file, information from the directory supplements the above sources.

The directory information is created when the file is originally catalogued,

and may be updated whenever the file is changed.

4.5.1.7. Methods of Assignment of Files

The assignment of a file may occur in one of three ways:

(1) Via an @ASG control statement.

(2) From within the executive itself as a result of an @XQT,

@START, or processor call statement.

(3) Via an executive request from within a user program or system

processor.

The user is always free to assign a file via an @ASG statement. If this is

not done, case (2) or (3) may apply.

4-29

The user must always explicitly assign a tape file, either via an @ASG

statement (the preferred method), or via an executive request from within a

program. Such internal requests may be made, for example, by appropriately

calling the FORTRAN library subprogram, ERTRAN. The user must explicitly

assign a temporary mass storage file, except that if a write is requested on

an unassigned file from ALGOL or FORTRAN, the WRITE routine (which, as far as

the executive is concerned, is part of the user's program) will automatically

make an executive request to assign a temporary mass storage file to the run.

If a file is referenced on an @XQT or @START statement, and the specified

file is not assigned, the executive will attempt to assign the file from its

directory. If the filename is not a catalogued mass storage file, an error

is indicated. Files assigned in this manner are not automatically freed

(de-assigned).

Ordinarily, system processors reside in the catalogued mass storage file

SYS$*LIB$, which is always assigned to every run. However, if a processor

resides in another file, the filename" is given in the command field of the

processor call statement; e.g.,

@SYSTEM*ALTPRO.FOR,IS PF.MAIN

If such a file is not assigned, it is assigned by the executive exactly as

for @XQT and @START.

Files named in the specifications on any type of processor call (PF in

the above example) are not handled by the executive proper but by the proces­

sor called. Again, if the files concerned are not assigned, the processor

attempts an assign out of the directory. Following use of such files, the

processor returns the file to the assign status it had when the processor

received control. Files named in MAP source language statements and on @ADD

control statements are handled identically to files named in the specifications

fields of processor calls.

4.5.1.8. Unloaded Mass Storage Files

Since the available mass storage space is not infinite, it is possible

for it to be exhausted unless special action is taken. To prevent mass

storage overflow, the executive will automatically unload selected catalogued

files. These files will have their text written to magnetic tape (unless a

current copy already exists on a backup tape), and the space occupied by the

text of the file is released to the available pool. The location of the text

is noted in the directory.

4-30

4.5.1.8.1. Selection of Files to Unload

The selection of files to unload is based on the Unload Eligibility

Factor (UEF). When mass storage availability becomes critically low, UEF's

are computed for all files in the system, and those with the largest UEF's

are unloaded until mass storage availability returns to normal.

The most important factor in computing the UEF is the time since last

assignment. The theory is that files not referenced for a long period of

time will not be referenced again soon; hence they are given a large UEF to

start with.

A value is added to the UEF based on the average time between assignments,

computed as the current date and time less the cataloguing date and time, all

divided by the number of assigns. The value added to the UEF increases as

the average time betw~en assignments increases, so that frequently used

files have less chance of being unlo~ded.

It is desirable to minimize the number of unloaded files, so a bias is

added to the UEF based on the size of the file. The larger the file, the

larger the size bias.

If a file is outdated EY ~ more recent F-cycle, its UEF is increased,

because outdated F-cycles are not referenced as often as current F-cycles.

Finally, a private file will have its UEF increased, since unloading a

public file will potentially inconvenience more people.

4.5.1.8.2. Reloading of Unloaded Files

When an unloaded file is assigned by the user, the exec automatically

initiates a reload of the text from tape. If the assignment was via an @ASG

control statement, the run is held ("WAITING ON FACILITIES" is printed for

demand runs). When the reload is complete, the hold is released ("READY is

printed for demand).

If the assignment was by some other method (see 4.5.1.7), the reject

status 400003000000 is returned, usually causing undesirable results. Since

all user catalogued files are subject to being unloaded, an @ASG,A control

statement should be used to assign the file (and reload it if it is unloaded)

prior to referencing the file in any other way.

4-31

4.5.1.9. Disabled Files

Whenever the system encounters an abnormal situation manipulating user

files, it will mark the file "disabled." The user will be notified that a

file is disabled by a FACILITY REJECTED or a FACILITY WARNING message upon

the next attempt to assign the file. The FURFUR command, @ENABLE, may be

used to clear disable flags for the file; however, this may not correct the

condition causing the disable.

4.5.1.9.1. Incomplete Write Disable

The Incomplete Write Disable will be set by the system if (1) the file

was assigned when a system failure occurred, (2) the file is not read only,

and (3) the file was not catalogued with the G option. The message FACILITY

WARNING 000000000200 will be issued when the file is assigned, and the run

will continue. This indicates that a user run that may have been changing

the file did not complete due to a system failure; hence the contents of the

file are questionable. After examining the file, the user may always clear

the Incomplete Write Disable with an @ENABLE command.

4.5.1.9.2. Destroyed Disable

The Destroyed Disable will be set by the system if a hardware or soft­

ware error has malformed the directory entries for the file. The message

FACILITY REJECTED 400000000400 will be issued on the next assign attempt,

and the run will be terminated unless demand. Recovery may be attempted by

using the @ENABLE command, but complete recovery is unlikely. If necessary,

contact a member of the Computer Center staff to reload the latest backup

of the file.,

4.5.1.9.3. Bad Backup Disable

The Bad Backup Disable will be set by the system if (1) a tape error

occ'urred while attempting to load the text of a file from a backup tape, or

(2) a hardware or software error caused the loss of the backup information

(e.g., reel number of the backup tape) from the directory. The message

FACILITY REJECTED 400000000100 will be issued on an assign attempt for the

file, and the run will be terminated unless demand. Recovery may be attempted

via the @ENABLE command. If necessary, contact a member of the Computer

Center staff to reload the file from the latest good backup tape.

4-32

4.5.2. The Mass Storage @ASG Statement

The general form of the mass storage @ASG statement is

@ASG,OPTIONS FILENAME,TYPE/RESERVE/GRANULE/MAXIMUM

The fields of the statement are explained in succeeding paragraphs

and in the order of appearance on the statement.

4.5.2.1. The 'OPTIONS' Subfie1d

The 'OPTIONS' subfie1d is used to cause a file to be catalogued

(or decata10gued) and to place or remove constraints on the use of the

file. It should be noted that when an error condition occurs which would

cause a batch run to be terminated, the demand user receives an error

message and is allowed to submit a new statement.

Cataloguing options are as follows:

C Specifies that the file is to be catalogued if the run
terminates normally. If a @FREE command (control state­
m~nt or executive request) is encountered for the file
prior to termination, the file is catalogued at that
time (see 'the @FREE statement'). If a file by this
name already exists in the master directory, the run
is placed in the error mode.

U Same as 'c' option except that the file is to be catalogued
at run termination regardless of the manner of termination
(beyond this statement). The @FREE command may cause
cataloguing prior to the termination.

R Specifies that the file is to be placed in the
"read-only" state when it is catalogued. This option
is meaningful only when the 'C t or 'u' option is. also
present. The file can only be read or decatalogued.
Any activity requesting to write in the file will be
placed in the error mode.

P Specifies that the file is to be catalogued as a "public"
file rather than a "private" file. The distinction between
them is that only the runs which have the same user-name as
the run which created the file can access a "private" file
while any run can access a "public" file. (For privacy
in "private" files, see the discussion concerning the two
'KEY' subfields.)

4-33

W Specifies that the file is to be catalogued as a write
only file. The file can only be written into, and in the
process extended.

G Specifies that the catalogued file is not to be saved
by the computer center on backup tapes. The file will
disappear whenever a mass storage initialization is
performed by the operators.

V Specifies that the catalogued file is never to be "rolled
out." If the V option is not specified, a file may be
rolled out to provide adequate working space on Fastrand.
If a rolled out file is subsequently assigned, the run
will be held and the file automatically rolled in. The V
option should be used only for special purpose files that
must never be rolled out, such as those used by a real­
time program.

The above options are for use only with files that are not presently

catalogued. If neither of the cataloguing options ('e' and 'U') appear,

the file, unless currently catalogued, is treated as temporary and released

at run termination. It will be released prior to run termination if a @FREE

statement is encountered. In the absence of the 'p' option, a file is

always catalogued as "private".

Options to be used when the @ASG statement names a file that is presently

catalogued are as follows:

D Specifies that the catalogued file is to be deleted from
the directory (decatalogued) if the run terminates nor­
mally or when a @FREE command is encountered prior to
termination. The executive will insure the file is
assigned only to this run at the time of release.

K Same as 'D" option except that the file is to be deleted
at run termination regardless of the manner of termina­
tion. The @FREE command may cause the file to be
decatalogued prior to termination.

X Specifies that this run is to have "exclusive use" of the
file until the run has terminated or the file is released
via the @FREE command. No other run can be using the
file. If the file is not currently catalogued, the 'X'
option is not needed because the run necessarily has
"exclusive use". This option is ignored for files
catalogued with the R option.

4-34

A Specifies that the file is currently catalogued and insures
that the executive will not treat the file as temporary if
the name cannot be found. The run will be terminated if the
name cannot be found in the directory.

The above options are to be used only with files that are currently

catalogued. If neither of the decataloguing options ('D' or 'K') appear,

the catalogued file is left intact at run termination. If either the 'D' or

'K' options appear and the file has either or both keys, the keyes) must be

specified. Failure to do so causes the run to be placed in the error mode.

An option to be used for a temporary file (not catalogued and not to be

catalogued) is as follows:

T Specifies that the file is temporary and allows it to have
a name the same as that of a catalogued file. No thought
need be given as to whether a file by this name is currently
catalogued. If this option is not present for temporary
files, the system will attempt to find the file in the direc­
tory. If a find is made, the assignment will be made from
the directory.

The following options control the dumping of catalogued mass storage

files at a checkpoint, and subsequent system action on restarting:

B Dump the file as a part of any checkpoint.

E Reload this file if any other run has referenced the file
since checkpoint.

H Reload this file only if no other run has referenced the
file since checkpoint.

M If a catalogued file by this name exists when reloading, make
the reloaded file available to this run as a temporary file.

N Rename this file upon reloading if a catalogued file with this
name exists.

Option B forces the file to be dumped on a checkpointo Without one of

the options, E or H, the file is always reloaded on restart. Options M and

N control the manner of reload.

4-35

4.5.2.2. The 'FILENAME' Field

The field 'FILENAME' on the @ASG statement is used to specify the

external name of the file. The name must be present and is specified in

the normal manner:

QUALIFIER*FILE(F-CYCLE)/READ-KEY/WRITE-KEY

where the 'QUALIFIER' and '*' are optional and neither the 'QUALIFIER' nor

the 'FILE' may exceed 12 characters. The 'F-CYCLE' number may need to be

specified for catalogued files.
r

4.5.2.2.1. The 'READ-KEY' and 'WRITE-KEY' Subfields

When cataloguing, the subfields 'READ-KEY' and 'WRITE-KEY' lock a file

against indiscriminate reading and writing, respectively, by other users.

They may contain up to six characters and all characters are legal except

the blank, the slash, the comma, the period, and the semicolon. A file is

catalogued with 'READ' and/or 'WRITE' lock by specifying the 'READ-KEY' and/or

'WRITE-KEY' subfields along with the 'c' or 'u' option. To gain read and/or

write access to such a file, the appropriate key(s) must be specified at

assign time or the request(s) will not be honored. (Once the assignment has

been made, with the appropriate key(s) made available through the @ASG or

@USE statement, the key(s) need not be specified in further references.)

A combination of the two keys is used for cataloguing. The following

table shows the action allowed according to the key(s) given at cataloguing

time and the key(s) given at assign time. Where "message" appears as an

action, a 'FAC WARNING DDDDDDDDDDDD' message will be printed.

If a key is furnished and it does not match the catalogued key, the run

is aborted, and the message will be 'FAC REJECTED DDDDDDDDDDDDD'o

Ke:l~s2 SEecified at Assign Time

Key(s) Specified at Cataloguiqg Time . Read Write Both Neither ---
Read

Read Write Abort Abort Write

Read
Write Abort Write Abort Read

Read Write Read
Both Message Message Write Message

Neither Abort Abort Abort Read
Write

4-36

4.5.2.3. The Facilities Field

On all @ASG statements (mass storage, magnetic tape), the field that

follows the name field is called the 'FACILITIES' field. As shown previously,

the facilities field for the mass storage @ASG statement is

'TYPE/RESERVE/GRANULE/MAXIMUM'

In general, if the file is catalogued and to be read, the entire facilities

field need not be specified.

The subfield 'TYPE' specifies that the statement applies to mass storage

and, in addition, points out the type of equipment to be used.

Fastrand Format (Simulated on FH Drums)

~ EguiEment Used {in order of Ereference2

F4 FH 432, FH 880, FH 1782, FASTRAND II

F8 FH 880, FH 1782, FASTRAND II

F17 FH 1782, FASTRAND II

F same as F4

omitted same as F4

F2 FASTRAND II

Word-Addressable Format

~ EguiEment Used {in order of Ereference2
D FH 432, FH 880, FH 1782

D4 same as D

D8 FH 880, FH 1782

D17 FH 1782

The subfield 'RESERVE' is used to specify the approximate number of

granules to be used by the file. The subfie1d 'GRANULE' is used to specify

the granule size. In certain cases, either or both subfie1ds may be omitted.

If the granule subfield is specified, it must contain either 'TRK' for track

granularity, or 'post for position granularity. Unless a file is larger

than roughly a thousand tracks, track granularity should be used. For very

large files, specifying position granularity will save space in internal

executive tables. If the granule specification is omitted, the granule is

assumed to be 'TRK'. The granule subfield is ignored if the file is

currently catalogued.

4-37

The reserve sub field is ignored and need not be specified when the file

is catalogued and is to be read only. If the file is to be created or up­

dated, the reserve may contain an integer specifying the number of granules

to reserve for the file (on an update the reserve specification includes

that portion of the file that already exists). If the reserve specification

is omitted, no granules (or additional granules) are initially assigned;

they are assigned dynamically as needed. When the reserve is supplied but

exceeded, additional granules are also assigned dynamically as needed.

Note: When creating a file, the reserve subfie1d should contain a reasonable
estimate of the number of granules needed. If a file can be contained
within the limits of the reserve, the run is assured of being able to
create the file without delay. In addition, the specification of a
reserve aids the executive in allocating Fastrand area efficiently.
(If a reserve is used, the tracks will be adjacent, if possible.)

If the file takes fewer granules than reserved, the empty granules are

returned to the available status when the file is catalogued. The reserve

value is placed in the directory and will be used on future updates unless

a reserve is supplied on the update @ASG statement. In that case, it is used

and replaces the previous value in the directory.

The subfie1d 'MAXIMUM' is used to indicate that the run is to be ter­

minated if the length of the file being created or updated exceeds the number

of granules specified. This field is used primarily to insure that a

run-away-fi1e situation does not occur during debugging. However, it may

also be used to override the system-maximum for all files (128 tracks). The

maximum sub field is never a required specification. If the file is being

created or updated and a maximum is given, its value is placed in the direc­

tory along with the name, type, reserve, and granule size.

If a maximum was supplied when the file was catalogued, its value is

retained and used when an update occurs. If a maximum is supplied on the

updating @ASG statement, it is used. It is also placed in the directory,

thereby replacing the previous maximum.

Although space for word-addressable format (types beginning with D) is

physically allocated in granules of the 'TRK' or 'post size specified, the

'RESERVE' and 'MAXIMUM' must be stated in number of words, rather than in

number of granules.

4-38

4.5.2.4. Exclusive Use and Facility Handling

The Exec provides for the placement of @ASG and @FREE statements any­

where within the control stream. Dynamic assign and free requests may appear

within the programs. These features allow the user to assign and free files

as required, without "tying-up" the files and/or facilities from the beginning

of the run until its completion. However, the user might be forced to wait

until the facility or file is made available when the request is for one of

the following:

(1) A magnetic tape unit that is being used by another run.

(2) Exclusive use of a catalogued file that is being used by

another run.

(3) Use of a catalogued file that is assigned exclusively to

another run.

To prevent the possible prolonged wait of a run when requesting an

exclusive use facility and yet not force a run to specify all requirements

before the first program (task) of the control stream, the Executive:

(1) Will not open a run for execution until all the @ASG state­

ments located before the first task in the control stream have been satisfied.

(2) Will not start the execution of a program until all the @ASG

statements located before the program in the control stream have been satisfied.

By placing all magnetic tape and exclusive use requests before the first

task of a batch run, the user will be assured that the run will not open

until all facility requirements can be met, and hence the run will be

processed without delay once it starts.

Should an @ASG statement be encountered which cannot be satisfied due

to assignment of the facilities or file to another run, the run will be held

in wait status until the @ASG can be satisfied. In some cases, this may

cause an infinite wait. The operator will terminate runs waiting for excessive

periods of time unless it is obvious that the wait will be eventually ter­

minated. An example of this is a @START run attempting an @ASG,AX of the

same file it is in. Since that file is assigned to the exec for reading the

runstream, the @ASG,AX can never be satisfied.

4-39

4.5.2.5. Examples of the Mass Storage @ASG Statement

Consider the following examples of @ASG statements for mass storage.

@ASG,CR FILEX,F2/5

If the run terminates normally or a @FREE statement for FILEX is

processed, FILEX will be catalogued in the "read-only" mode. Five tracks

are assigned initially and the system-maximum size is assumed as no maximum

was specified.

@ASG FILEX

The master directory of catalogued files will be searched for FILEX.

If a find is made, it will be assigned as per the options and specifications

(including equipment type) with which it was originally catalogued. If no

find is made, a temporary file named FILEX will be assigned with equipment

type F4.

@ASG,AK FILEX/A2294B

FILEX is currently catalogued and is to be decata10gued at run termina­

tion or if a @FREE statement is processed for file FILEX. The key A2294B

is required to read and/or decata10gue the file.

@ASG,T FILEX,F/4//5

FILEX is a temporary file requiring 4 tracks of the fastest drum available.

Fastrand format is to be .used. Termination is to occur if more than 5 tracks

are required.

@ASG,CPG FILEX,F2

FILEX is to be assigned and will be catalogued on Fastrand II upon­

normal run completion or a @FREE. The computer center is not to copy the

files onto backup tapes. The file is to be public.

@ASG,T FILEX,D/30000

At least 30,000 words of the fastest word-addressable drum available are

to be reserved for the temporary file FILEX. Allocation is by track. Since

a track contains 1792 words, 17 tracks or 30,464 words will actually be

reserved.

4-40

4.5.2.6. Diagnostic Messages

A generalized format is currently used in the print file assigned to

each run for the ASG, MODE, CAT, FREE, and USE statements. The format is

as follows:

(1) (Statement Image)

FAC REJECTED DDDDDDDDDDDD

(2) (Statement Image)

FAC WARNING DDDDDDDDDDDD

The first message will appear for a run that is aborted due to a state­

ment that cannot be honored by the system. The second message is a warning

that the statement could cause a problem. In either case the reason for

rejection or warning is determined by examining the bits set in the octal word

'DDDDDDDDDDDD'. The following table defines the meaning of the bits if set

(1 = set). Bits are numbered 35-0 reading left to right.

BIT ACTION

35 K

34 K

33 W

----~------

32 K

31 K

30

29

28

27

26

25

W

K

K

W

DESCRIPTION OF MEANING IF BIT SET

Request not accepted - examine rest of bits as to why.

Field error in statement other than syntax. Also option
conflict 'MLH', 'OE', 'IB'.

Filename has already been assigned to this run.

File previously catalogued.

Equipment type on ASG statement is not compatible with
catalogued equipment type.

Name found in attached name list in PCT.

l2-character name is not unique (that portion of name used
as internal name for I/O packets).

X (exclusive use) option was already on this file, on an
@ASG,X.

Read key incorrect for catalogued file.

Write key incorrect for catalogued file.

Write key exists in directory, not specified on ASG state­
ment (assigned read mode only).

4-41

BIT

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

o

ACTION

W

K

K

K

K

K

K

K

K

W

K

DESCRIPTION OF MEANING IF BIT SET

Read key exists in directory, not specified on ASG statement
(assigned write mode only).

Read key furnished on ASG statement; none exists in directory.

Write key furnished on ASG statement; none exists in directory.

'A' option specified on ASG statement and filename was not
found in directory.

Invalid reel number on ASG statement for catalogued tape file.

Mass storage file has been rolled out. Loading of file
initiated.

Request on wait status for facilities.

Option conflict for catalogued file, both 'D' and 'K' or
'CUPRW' which are options for new files.

File is assigned exclusively to some other run.

File already assigned to another run. (This is cause for
rejection of an @ASG,X.)

Find made in directory and not assigned.

User name incorrect for catalogued private file.

Equipment type is tape.

Read only file catalogued with 'R' option.

Write only file catalogued with 'Wi option.

Equipment is down.

File has been destroyed due to hardware errors or loss of
directory information. (See note 2.)

File was assigned with write enabled at the time of a system
failure. Attempted writes may not have been completed.
(See note 3.)

File has been lost due to a backup tape error or loss
of backup information. (See note 2.)

Unused.

4-42

Note 1:

Note 2:

Note 3:

K in ACTION means that the run will be terminated, unless it is
demand. W in ACTION means that a warning message will be printed.

Assignments rejected due to "destroyed" or "bad backup" conditions
(bits 8 and 6) may be further processed if an @ENABLE command is
given for the file. This does not imply, however, that the con­
dition causing the original reject will be corrected by the @ENABLE.

After insuring that the file is intact, the user may remove the
"incomplete write" warning (bit 7) via the @ENABLE command.

Examples of Diagnostic Messages

FAC REJECTED 400010000000

Bits set: 35,21

The file named on the @ASG,A was not catalogued. It may have been deleted

by the computer center due to (a) file size 0, (b) file size greater than

allowable maximum, (c) file had G-option and mass storage was reinitialized,

(d) file had not been referenced for the expiration period. Another common

problem is that the file was catalogued under another user-name and no

qualifier was specified in either run. A qualifier of the original user-name

must be added to all references of the file in the current run.

FAC REJECTED 400000020000

Bits set: 35,13

The file was catalogued private under some other user-name. The file may

not be referenced except from runs bearing that user-name.

FAC REJECTED 400000400000

Bits set: 35,17

An attempt was made to catalogue a file that is already catalogued.

FAC WARNING 100000000000

Bit set: 33

An assign was requested for a filename that was previously assigned in

this run. (This may have occurred via an @ASG statement, by reference on a

@START, @XQT, or processor call statement, or from within a user program or

system processor.) If the same file was intended on both @ASG' s, 'no action

is necessary. If different files were intended, the first must be @FREE'd

before the second is a~signed. (Note that in this case, at least one of

the files must be temporary.) If the status of assignment is to be changed

4-43

by adding keys or altering the initial reserve or maximum, the file must be

@FREE'd and reassigned.

FAC WARNING 000300000000

Bits set: 25,24

Both read and write keys exist in the directory, but neither were

specified on the @ASG. The file must be @FREE'd and reassigned with key(s)

to permit any input and/or output to take place.

4.5.3. The Magnetic Tape @ASG Statement

For magnetic tape the format of the @ASG statement is:

@ASG,OPTIONS FILENAME,TYPE/UNITS/LOG/NOISE,REEL1/REEL2 ••• /REELN

4.5.3.1. The 'OPTIONS' Subfield

As explained in section 4.5.1.3., a tape file should always be temporary.

In actuality, tape files may be catalogued similarly to mass storage files,

but this leads to many difficulties and, except in rare cases, is of no real

value. Thus, users should never use the C or U options" on a magnetic tape

@ASG statement".

The option to specify a file as temporary is:

T same as for mass storage

The following options, called the 'MODE OPTIONS', correspond to the 'MODES'

available with the 'SET MODE' function of the magnetic tape handler:

L Low density (200)

M Medium density (556)

H High density (800 - assumed)

E Even parity

° Odd parity (assumed)

B Binary (no translate - assumed)

I Decimal (translate)

Note: If the I option is specified, characters are translated by hardware as
they are read from tape according to the table in Appendix C.

4-44

4.5.3.2. The 'FILENAME' Field

The 'FILENAME' field is the same as for the mass storage @ASG statement,

and is required. It is doubtful that specifying a qualifier would be of any

advantage. F-cyc1e, read-key, and write-key should not be specified, since a

tape file is temporary.

4.5.3.3. The Facilities Field

The field 'TYPE/UNITS/LOG/NOISE' is called the "facilities" field.

The subfield 'TYPE' is used to show that the @ASG statement is for magnetic

tape and contains a symbol denoting the exact type of tape units required.

This specification is required. Exec 8 allows many different tape equipment

type specifications, owing to the large number of possible configurations.

However, since only one equipment type exists in the Georgia Tech configuration,

only one type need be described here. That type and its meaning is as follows:

T TAPE, TYPE INDEPENDENT

The system does not assume the translate option 'I' simply because the

hardware translation feature is available. This action must be called for

either on the @ASG statement or by use of the 'SET MODE' function of the

magnetic tape handler.

The subfie1d 'UNITS' is an integer (lor 2) specifying the number of

units required. If omitted or an integer other than 1 or 2, the number of

units is assumed to be one. A maximum of 2 units per file is allowed.

Specification of 2 units for multiple reel tape files will allow rewinding

of one reel while processing another.

The stibfield 'LOG' is used in configurations containing more than one

tape channel to balance I/O activity between channels. Since Georgia Tech

has only one tape channel, this subfie1d is meaningless and need never be

specified.

The 'NOISE' subfie1d is an integer in the range 1-99 that will override

the system standard (18) if present. The system standard noise constant is

assumed if the 'NOISE' subfield is not specified. Any physical tape block

of length less than the noise constant (in characters) will be disregarded.

If noise blocks are encountered, a message will be placed at the end· of the

run's print file.

4-45

4.5.3.4. The Reel Field

The field 'REEL1/o •• /REELN' is called the reel field and is used to

specify the physical reels to mount for the file. If the reel field is

omitted, the operator will be requested to mount a scratch reel. If the

file is contained on a single reel, the reel number is specified and the

operator is requested to mount that reel. If the file extends over two or

more reels, the reel numbers are specified in order, separated by slashes.

The operator is requested to mount each reel at the proper time.

4.5.3.4.1. Using Scratch Tapes

The reel field is omitted. The tape is returned to the scratch rack

following use.

4.5.3.4.2. Saving Tapes

The reel field is omitted. A @SAVE statement is included which directs

the operator to label the tape, return the reel number to the user, and file

the tape in the saved tape rack following use. The user should contact the

Director, RECC, or his Departmental Computer Coordinator, for information

regarding service charges, etc.

4.5.3.4.3. Using Tapes Previously Saved

The reel number returned by @SAVE in the run creating the tape file

is specified in the reel field. An 'N' or 'R' must be suffixed to the

reel number. An 'N' directs the operator to mount the tape with ~ ring.

If the program subsequently attempts to write on the tape, it will be ter­

minated. An 'R' directs the operator to mount the tape ring in. The program

may then either purposefully or inadvertently write over the information

on the tape.

4.5.3.5. Examples of the Magnetic Tape @ASG Statement

The following are examples of the use of the @ASG control statement for

tape files.

Scratch Tapes:

@ASG,T FILEY,T///36

4-46

File 'FILEY' is a temporary file requiring one unit of the system's

choosing, and one or more scratch reels will be used. The noise constant is

to be set to 36 characters.

@ASG,T 10,T

File '10' is a temporary file requiring one unit of the system's choosing,

and one or more scratch reels will be used. A FORTRAN program may access this

file by a statement of the following form: WRITE(lO) A,B,C

Note: Whenever possible, Fastrand or word-addressable drum should be used
for scratch files.

@ASG,TEM FILEX,T

File 'FILEX' is to be recorded in even parity and medium (SS6) density.

@ASG,T TEMP,T

File 'TEMP' is to be recorded in odd parity and high (800) density.

Tapes to be saved:

Any of the tapes assigned in the above examples may be saved by including

a @SAVE statement in the runstream somewhere following the @ASG. For example,

the tape file FILEX in the third example could be saved by including the

statement

@SAVE FILEX

The reel number will be printed following the @SAVE statement and at the

end of the print file.

Using tapes saved by previous runs:

@ASG,T FILEZ,T,Ul99N

File 'FILEZ' was previously created and saved for this user. The reel

number is U199 and he does not want a write ring in the tape for this run.

@ASG,TEL TAPE,T,U180N/USOR

File 'TAPE' was previously created using even parity and low density (200).

'TAPE' requires one tape unit on any channel. Reels U180 and USO are to be

used with a write ring in USO.

4.S.4. The @MODE Statement

The @MODE statement is used to change the "mode" setting of a tape file.

These modes are set initially when the @ASG statement is processed and may

also be changed internally by use of the "set mode" function of the magnetic

tape handler. The format of the @MODE Statement is:

@MODE,OPTIONS FILENAME,NOISE

4-47

The field 'FILENAME' is the same as for the @ASG statement. The file

must be currently assigned to the run (an @ASG statement with this name must

precede the @MODE statement). If the file is not assigned (never assigned

or released via a @FREE statement), the run is placed in the error mode. The

'NOISE' subfie1d is optional. When specified, it is the same in form and

meaning as for the @ASG statement.

The 'OPTIONS' field may contain the following options:

L Low density

M Medium density

H High density

E Even parity

o Odd parity

I Decimal (translate)

B Binary (no translate)

With the @MODE statement, options (modes) are never assumed in the

absence of others.

Diagnostic Messages

The generalized format as described in the section for the @ASG statement

is used. The following table defines the meaning of the bits (1 = set) when

set •. Bits are numbered 35-0 reading left to·right.

BIT

35

34

33

32

31

30

18

ACTION

K

K

K

K

DESCRIPTION OF MEANING IF BIT SET

Request not accepted - examine rest of bits as to whyo

Field Error - noise constant

File has not been assigned to this run.

Unused.

Equipment type not tape for assigned file.

Unused.

4-48

BIT

17

16

o

ACTION

K

DESCRIPTION OF MEANING IF BIT SET

Option conflict, only one option in the following 3
groups allowed (1) 'MLH' (2) lEO' (3) 'BI'

Unused.

Note: K in ACTION field means that run will be terminated, unless demand.

4.5.5. The @CAT Statement

Cataloguing is normally done in the course of creating the file where

the @ASG statement specifies that the file is to be catalogued. In this case,

cataloguing is done when the run terminates or when a @FREE statement is

found. It may be convenient to be able to catalogue one or more files with­

out having them (and the required facilities) assigned to the run. The @CAT

statement is used for this purpose. The file is catalogued but is not

assigned to the run. No facilities are assigned. In any case, use of the

@CAT statement is illegal if the named file is currently assigned to the run.

The format of the @CAT statement is identical to that of the mass storage

@ASG statement, namely:

@CAT,OPTIONS FILENAME,TYPE/RESERVE/GRANULE/MAXIMUM

The specifications fields are interpreted as they are for the @ASG state­

ment. However, the actual 'RESERVE' is not made. Allowable options are:

R Place in "read-only" state.

W Place in "write-only" state.

P Specifies that the file is to be catalogued as a "public"
file rather than a "private" file.

G Inhibit computer center backup.

V Inhibit unload.

(See the mass storage @ASG section for a more detailed description of

these options.)

'TYPE' should always be F2.

4-49

Examples of the @CAT Statement:

@CAT FILEX/A2962,F2

FILEX is to be catalogued on Fastrand II with the write-key A2962. The

file is to be private; i.e., only the user cataloguing the file may assign it.

@CAT,P PF,F2

The file PF is to be catalogued on Fastrand II. It is to be public; i.e.,

a run under any user-name may reference the file. Initial reserve is 0 tracks;

granularity is TRK (track); maximum file size is 128 tracks.

Diagnostic Messages

BIT

35

34

33

32

31

18

17

16

o

(See @ASG Statement Diagnostics, section 4.5.2.6.)

ACTION

K

K

K

K

K

DESCRIPTION OF MEANING IF BIT SET

Request not accepted - examine rest of bits as to why.

Field error - illegal equipment type, etc.

File already assigned to this run.

Name already exists in directory of catalogued files.

Unused.

Unused

Option conflict - only one option allowed from following
groups (1) 'MLH' (2) 'EO' (3) 'BI' (4) 'RW'

Unused.

Note: K in ACTION field means that run will be terminated, unless demand.

4-50

4.5.6. The @FREE Statement

The @FREE control statement makes provision for the de-assigning of a

file and the release of its input/output facilities. In the absence of a

@FREE statement, the file and its facilities are held until run termination.

Files should be de-assigned at the moment they are no longer needed so as to

allow facilities, reels, and "exclusive use" areas to be assigned to other

runs. The format of the @FREE statement is:

@FREE,OPTIONS FILENAME

where 'FILENAME' is either an external or an attached name (see the @USE

statement). A warning diagnostic is given if the file has not been previously

assigned. The 'OPTIONS' field may contain any of the following options.

R Releases
ships to

A Releases

B Releases
attached
like the

the file assigned but retains the @USE name relation­
the filename and F-cycle.

only the @USE name relationship to the filename.

only the @USE name association to the filename if the
name is not the only attachment. Otherwise, it acts
blank option on the @FREE card freeing the file.

e Releases the file and all names associated with the file.
(Same as no options.)

D Drops a catalogued file regardless of how it was assigned.

I Inhibits final cataloguing action if the file was assigned
with a leI or lUI option.

X Releases the exclusive use option set on the file but does
not free the file.

A file that is named on a @FREE statement can no longer be referenced by

the run; it can of course be reestablished by an @ASG statement provided its

facility requirements can be met.

The actions taken by the system when a file is named on a @FREE state­

ment are discussed below.

For a temporary file (not catalogued or to be catalogued):

MASS STORAGE the mass storage area is made available as a
file space for other runs.

TAPE Units are released for use by other runs. The currently
mounted reel is rewound with interlock, indicating that
the operator may remove it.

4-51

For a file being catalogued (C or U option on @ASG):

MASS STORAGE - Entry is made in the master directory and mass
storage area containing the file is held. The file
can now be referenced by other ruris.

For a file being decata10gued (D or K option on @ASG):

MASS STORAGE --Same as for a temporary file except that the file
area is not released until all runs currently using
the file have also finished. It is no longer
available for assignment.

A typical @FREE statement is shown in the following example of a partial

control stream:

@ASG,C FILEX,F2/3

@ASG,T FILEY,T

~UEFnEX

@FREE FILEY

FILEX is a Fastrand file to be catalogued and requires 3 tracks initially.

FILEY is a temporary tape file requiring 1 tape unit. When the @FUE state­

ment is encountered, FILEX is catalogued with the file area held for future

reference. For FILEY, the tape is rewound with interlock, the unit is made

available to other runs, and the operator will remove the reel and follow

the user's instructions as to its disposal.

Diagnostic Messages:

The generalized format as described in the section for the @ASG state­

ment is used. The following table defines the meaning of the bits (1 = set)

when set. Bits are numbered 35-0 reading left to right

BIT

35

34

33

32

o

ACTION

K

K

DESCRIPTION OF MEANING IF SET

Request not accepted - examine rest of bits as to why.

Error other than syntax.

File is not currently assigned to this run.

Unused

Note: K in ACTION field means that run will be terminated, unless demand.
4-52

4.5.7. The @USE Statement

4.5.7.10 External, Internal, and Attached Names

The following classification of filenames is made.

External

Internal

Attached

The filename of the form given under Notation for
filenames with which the file was initially catalogued
and/or assigned.

A l-to-12 character name by which the file may be
referenced in an I/O request at the ER 10$ level. All
I/O requests are made at this level but the user may
not be directly aware of such requests since system
software such as a processor or language library may
make the request for him. The 'FILE' portion of the
external name is automatically an internal name for
the file, unless it duplicates another internal name.

A l-to-12 character name by which the file may be
referenced in an I/O request, other than the 'FILE'.
portion of the external name.

Note that attached names are also internal names. An attached name may

be used on control statements; other internal names (i.e., the 'FILE' portions

of external names) may not be used on control statements unless standard drop­

out rules allow the omitting of all optional FILENAME subfields.

4.5.7.2. Format of the @USE Statement

The format of the @USE statement is as follows:

@USE ATTACHED, EXTERNAL

or

@USE ATTACHED, ATTACHED

where 'ATTACHED' is the l-to-12 character internal name by which the file is

referred to within programs or control statements following the @USE, and

'EXTERNAL' is the external name under which the file is assigned (and

possibly catalogued) or to be assigned.

4.5.7.3. Use of the @USE Statement

The @USE control statement provides the user with the ability to refer to

any particular file by two or more names. The need for the additional names

arises from three conditions:

(1) Simplify run construction by allowing the equating of an

external name to a shorter attached name.

(2) Resolve identical 'FILE' portions of external filenames.

(3) Connect names coded into programs to external or attached names.

4-53

The @USE statement allows the person setting up the run to choose exter­

nal filenames descriptive to his run or to a particular catalogued file. It

allows a particular internal name (in two or more executions) to point to

different external files during the course of a run; or for different names

to point to the same external file.

The @USE statement causes the 'ATTACHED' name to be linked to an external

name. This external name may be directly specified on the @USE statement or

may be linked to by the 'ATTACHED' name in specification 2. All such attached

names are maintained for an external file. (The 'ATTACHED' name no longer

points to any other external·file, and if the file had a previous attachment,

it is maintained rather than being deleted.) The list of attached names is

always searched first on an I/O reference--with the 'FILE' portions of the

external names used next on a no-find. If an 'ATTACHED' name is the same as

the 'FILE' portion of some external file, that external file must have a @USE

statement in effect before the file can be used. This may also be true for

a recently assigned file (via @ASG statement), since the 'FILE' portion of

its external name may be in the attached list, pOinting to some other file.

However, in this case the conflict can be removed if the reference is made by

a control statement. The 'QUALIFIER' or at least the '*' will specify that

the name is not an attached name.

4.5.7.4. Examples of the @USE Statement

Assume that the internal name 'FILEA' is the name in an I/O request, and

the file 'PROJI*FIL~ is assigned. Then 'PROJI*FILEA' will automatically be

used unless a@USE statement is presented making 'FILEA' point to different

external file, for example, in the statement

@USE FILEA,PROJI*FILEZ

'PROJI*FILEZ' is then used for the I/O request.

4.5.7.5. File Name Uniqueness Within a Run

For each run, the executive maintains a table of all internal names

assigned to the run. For each internal name, a pointer to the detailed descrip­

tion of the file is maintained. When an r/o request is made at ER 10$ level,

only an internal name is given. In order to prevent ambiguity, this

4-54

internal name must be unique. Ambiguity would arise, for example, if the

files A*LIB and B*LIB were concurrently assigned; or if the files ALPHA(l)

and ALPHA(2) were concurrently assigned. In order to resolve ambiguity, a

@USE must be done. If @USE INPUT, A*LIB and @USE OUTPUT, B*LIB were done,

and Ilo requests referenced the internal names INPUT and OUTPUT rather

than LIB, there would be no ambiguity.

For convenience, the exec and system processors always do a dynamic

@USE on files they are about to reference. Thus, if the statement

@COPY A~'''LIB., B~'''LIB. (which calls the FURPUR processor) was given, FURPUR

would automatically attach unique internal names to A*LIB and B*LIB. The

processors always remove such name attachments via a @FREE,A statement before

terminating.

Users should be wary of @USE statements such as @USE LIB,OTHER*LIB.

The executive will issue a FACILITY WARNING message, since LIB will appear

twice in the executive's table of internal names for the run. There is no

actual ambiguity since both point to the same detailed file description;

however, some processors detect the condition and hence refuse to process

the file. It is best to keep names unique, say by @USE OLIB,OTHER*LIB.

4.5.8. The @QUAL Statement

The @QUAL statement allows the user to specify a filename qualification

for implied usage on succeeding control statements involving filenames. The

format of this statement is

@QUAL QUALIFIER

where 'QUALIFIER' is a sequence of 12 or fewer characters used to qualify

subsequent filenames which are headed by an asterisk (*). The 'QUALIFIER'

is limited to the character set A .•• Z, 0 ••• 9, -, and $. An example of the

use of the @QUAL statement follows:

@QUAL JIM

The subsequent statement

@FOR *FILEA.JOE/ABC

would be interpreted as

@FOR JIM~'''FILEA. JOEl ABC

4-55

Any number of @QUAL statements may appear throughout the control stream.

Each will override the effect of the previous one.

4.6. Processor Call Statements

4.6.1. Notation for Program File Elements

A consistent notation is used throughout the system to reference elements

of a program file. Using the COBOL syntax description notation, a reference

to an element has the form:

[[FILENAME].]ELEMENT[/vERSION][(ELEMENT-CYCLE)]

'FILENAME' is described in sections 4.2.2.4 and 4.5.1.4.

An extensive series of dropout rules usually allow abbreviation of

references to program file/elements from the full form shown to something quite

manageable.

The omission of 'QUALIFIER' with the '*' present causes the @QUAL state­

ment to supply the qualifier. used. If the @QUAL statement has not occurred,

the user-name field from the @RUN statement is used as the qualifier. The

omission of both the 'QUALIFIER' and the '*' causes the user-name field from

the @RUN statement to be used as the qualifier, provided the 'FILE', if

specified, is not an attached name which points to a particular filename. If

the 'FILE' subfie1d is also omitted, then the run temporary program file, TPF$,

is intended. The subfield 'ELEMENT' must always be present when referring to

an element. The 'VERSION' subfield is required only in the case when more

than one version of a particular element exists within the program file as is

common when a .program is in checkout.

When two or more specifications are used on a processor call statement,

further abbreviation is possible if the 'FILENAME' part of a specification is

identical to that part of the previous specification. In this case, only the

period is needed before 'ELEMENT' to cause the previous 'FILENAME' to be

assumed for 'this specification.

An 'F-CYCLE' number may be part of the 'FILENAME' field shown above. Its

use is similar to that of the 'CYCLE' field discussed below and is described

in the section on Notation for Filenames (4.5.1.4). Likewise, the two keys

may be attached to the 'FILE' field. Their use and description are described

in the section on @ASG Statements (4.5.2.2.1).

Note: On the various control statements, such as @ADD or @START, which can
specify either a 'FILE' or an 'ELEMENT' name, a method is established
which distinguishes between them. A period following the name will
specify a 'FILE' and no period will specify an 'ELEMENT' in TPF$.

4-56

The cycle number serves to differentiate successive updates of a sym­

bolic element. Omission of the cycle number when referring to a symbolic

element implies that the most recently constructed copy is intended. A

compacting method, as described later, is employed to prevent the retention

of several cycles of a symbolic element from appropriating an excessive

amount of space on whatever storage medium is employed. Some examples will

help make this a bit clearer.

SORT

COST~'(PROG. EDIT

~'(BACKUP. TLU/TWO

PCF6.INTL(14)

The element SORT in the run temporary file TPF$.

The element EDIT in the file COST*PROG.

Version TWO of element TLU in file BACKUP. The
qualifier for BACKUP is taken from the @QUAL
control card.

The 14th generation of the element INTL in
the file PCF6 belonging to the current user­
name.

The notation given here for program file elements does not provide com­

plete identification of the particular data desired since an element can

exist in more than one form; for example, source,language and relocatable.

This is only an apparent ambiguity, however, since in all instances, the

system is aware of the type of element desired.

4.6.2. Statement Format for Language Processors

There are several processors which process a source language element to

produce a relocatable binary element. The general format of the statement

for calling these processors is as follows:

@PROCESSOR,OPTIONS SI,RO,SO

The field 'PROCESSOR' may contain an acronym, including FOR, COB, ALG

(FORTRAN, COBOL, ALGOL, respectively), in which case the indicated processor

is called.

The field 'OPTIONS' may contain anyone or several of the alphabetic

characters 'A' through 'Z'. The use of any of these characters by a processor

is defined in the pertinent processor users manual. However, the following

have a common definition for all language processors and several system

processors.

4-57

STANDARD PROCESSOR OPTIONS

A Accept the results of processing even if errors are detected.
In any case, do not error exit.

I Initial insertion of a new source language input element from the
control stream. The source language output ('SO') parameter is
never used, as the source language input ('SI') parameter specifies
the element name to be given to the source language output.

L Produce the most comprehensive print listing available for this
processor.

N Produce the most abbreviated print listing available for this
processor.

P Specifies that source language output should be in Fieldata code.
Identifies card image input, if any, as being Fieldata. (Compare
wi th Q option.)

Q Specifies that source language output should be in ASCII code.
Identifies card image input, if any, as being in ASCII. (If
neither P nor Q is specified, the code type of the existing source
language input element, if any, is used. Otherwise, Fieldata is
assumed.)

S Produce a moderately comprehensive print listing.

U Update an existing source language input ('SI') element to the
next higher element cycle, thus saving any source language cor­
rections that are currently being applied to the source language
input element.

W List correction lines at the head of the printer listing. (This
is feasible only for a two-pass processor.)

X Take error exit if errors are detected to inhibit further
processing of the run.

The field lSI' specifies the particular program file element to be used

for the source language to be processed, in standard ELTNAME notation.

If present, and there is no I option, the lines immediately folloWi~g

the control statement are taken to be corrections to the source language

element. If an 'I' option is present, then the lines following the control

statement are given to the processor and are inserted into the program file

as well.

The field 'RO' is the name of the element which is the relocatable or

absolute code produced by a processor, in standard ELTNAME notation. This

name (and the names associated with lSI' and 'SO' fields) may include program

filenames, F-cycle, keys, and version if desired. The name is not required

because the name in the first specification field will be used if the field

is blank.

4-58

The field 'SO' is the name of the source-language element produced by

correcting the input source language element. If this field is void, no

updated source language element will be produced unless a 'u' option is

specified. In that case, an updated element is produced, with the same name

and version as the input element, but with a cycle number one greater. No

'SO' field may exist when the I option is used.

For the three most common cases the specifications reduce to trivialities.

If source language is coming from the control stream and no reference is made

to program files on Fastrand, the processor call statement (assuming FORTRAN

as an example) will reduce to

@FOR

SOURCE LANGUAGE IMAGES

In this case, the source-language program is compiled and the resulting relocat­

able element put into the run-temporary file, ready to be accessed by the COLLEC­

TOR. The source language is not filed, but discarded following compilation.

A processor may be used to introduce a source-language element into a

program file for the first time from the control stream. In this case, the I

option is specified and there is no 'SO' field. As an example, consider the

initial processing of the element WINDUP to be inserted into program file PF3.

@FOR,I PF3.WINDUP

SOURCE LANGUAGE IMAGES

In this case program file PF3 would be left with the source language and

relocatableimages of element ·,-JINDUP.

I~ an update is being made to some/element, say WINDUP, in a program file

(PF3) , then the processor call statement would read:

@FOR, U PF3. WINDUP

SOURCE LANGUAGE CORRECTIONS

In this case, the source-language element specified by PF3.WINDUP is updated

by the given correction lines and compiled.

4-59

The resulting re1ocatab1e element is inserted back into program file PF3,

along with the next cycle of the source-language element WINDUP. If the input

source-language element had a cycle number of, say 12, the new source-language

element has a cycle number of 13. The entire element and correction lines are
/

written in the program file, and the old element is marked deleted. If, for

example, three cycles of source-language elements are being kept, the program

file PF3 will contain, before the above statement is executed, the information:

WINDUP 10 Complete Element

Correction lines converting WINDUP 10 to WINDUP 11

Correction lines converting WINDUP 11 to WINDUP 12

After compiling, PF3 contains:

WINDUP 11 Complete Element

Correction lines converting WINDUP 11 to WINDUP 12

Correction lines converting WINDUP 12 to WINDUP 13

The number of cycles retained, say N, is a system standard set at system

generati,on time; thus, a complete element and the N-1 most recent sets of

corrections are kept. Normally this will involve considerably less mass

storage space than even two complete elements and provides considerably more

flexibility in backing up to some particular point in the history of a program.

The number of cycles kept is set at the system standard, unless some

different number is specified by the program file utility routine for the

particular element or particular file. The maximum number of cycles that can

be retained is limited only by the storage space available, although the

process becomes inefficient for an excessive number of cycles. It is possible

to reference any particular available cycle of a source-language element.

Suppose that cycles 10 through 12 of WINDUP are available. The processor call

statement:

@FOR,U PF3.WINDUP(10)

would create a new cycle 11 and would delete cycle 12. On the other hand,

the processor call statement:

@FOR PF3.WINDUP(11),.WINDUP,.WINDUP/NEW

would leave cycle 12 of WINDUP intact but would produce an entirely new source­

language element WINDUP/NEW which would have a cycle number of O. If there

were any other cycles of WINDUP/NEW, they would be deleted, regardless of their

cycle number.

4-60

4.6.3. Format of Correction Lines

Each processor optionally lists the source language input on which it is

operating. On this listing, successive lines are labeled by successive

integral numbers. When altering a source-language element in a program file,

these numbers are used to indicate where corrections are to be inserted. A

line of the form

-N,M

with the '-' on the first column indicates that source lines 'N' through 'M'

are to be replaced by all succeeding lines in the control stream up to the

next line with a '-' in column one, or the next control statement.

A line of the form

-K

indicates that succeeding corrections are to be inserted into the source

language element following line K.

will

For example, the control stream

@FOR,U WEEKLY.REPORT

-30,31

CORRECTION LINE A

-100,115

-120

CORRECTION LINE B

CORRECTION LINE C

CORRECTION LINE D

replace lines 30 and 31 by the correction line

through 115, and insert correction lines B, C and D

If the user wishes to insert corrections before

his old source input, he must place them immediately

statement without specifying a correction line.

A, delete lines 100

following line 120.

the first line item

after the processor

of

call

When corrections follow a processor call statement in a control stream,

the source input routine (SIR) interprets a minus sign '-' in the first

column of a line as a correction line. In certain situations where the

user may have data with the '-' in column one, this is not desirable. This

might happen when making corrections to a @RUN or @ADD stream with the

4-61

@DATA or @ELT processors. The user may wish to insert a set of corrections

that are actually corrections for a processor call in the @RUN or @ADD stream.

These corrections are not to be interpreted until the @RUN or @ADD is

processed. To get around this problem SIR is prepared to handle the following

correction line:

-=x

which says, from here on, SIR is to use 'X' to identify correction lines. 'X'
may be 1,2, or 3 characters in length but must not contain a space or numeric

character. The user may change correction line identifiers as often as he

wishes but SIR will recognize only one identifier at a time. Initially SIR.

is set to recognize '_I as the correction line identifier.

The following example illustrates the use of identifier changes.

@DATA

-2

CORRECTIONS

-=*
*11,13

CORRECTIONS

*=+++

+++22

CORRECTIONS

@END

FILE1,FILE2

Follow line 2

with corrections.

Change identifier to *.

Delete lines 11,12, 'and 13

and insert corrections.

Change identifier to +++.

Follow line 22

with corrections.

4.6.4. The System Program Files, SYS$*RLIB$a SYS$*LIB$, and TPF$

Re10catab1e library (SYS$*RLIB$). This file contains re10catab1e

elements and procedure elements as needed by the system processors (com­

pilers, collector, etc.). The file exists primarily as a place for standard

re10catab1es to be used by the COLLECTOR in putting together programs and as

a place for standard procedures to be picked up by the compilers.

System library (SYS$*LIB$). This file contains absolute elements only.

This includes system processors like the COLLECTOR, FORTRAN, ALGOL, etc.

Additionally, there is a table in core containing the name, relative

, address in LIB$, and program size of selected processors. This table, LIBT,

is referenced before LIB$ is referenced to save mass storage accesses.

4-62

Temporary program file (USER-NAME*TPF$). This file is created auto­

matically by the executive when a run is initiated. The user does not have

to specify the filename since a void filename can be used to reference the

file. The file qualifier is taken from the user name field of the @RUN

statement.

If a filename is not given, the order in which the executive searches

program files is as follows:

On Processor Call Statement

On @XQT Statement

LIB$, then TPF$

TPF$

If a file other than TPF$ or LIB$ is intended on a processor call state­

mentor TPF$ on an @XQT statement, the filename must be given. An example

would be:

@XQT FILEB.PROGA

where the program 'PROGA' is being executed from FILEB.

The search used by the compilers in finding procedures varies, but

includes:

The file from which the symbolic element was taken,

and then SYS$*RLIB$.

See the appropriate compiler manual for additional files that may be

searched.

4.7. Program Execution Statements

The program execution statements are used to control the construction,

running, and diagnosis of a program created by a user.

4.7.1. The @MAP Statement

The @MAP statement is used for calling the COLLECTOR to collect a series

of relocatable programs from one or more program files and to combine them

into an executable program. The format of this statement is:

@MAP,OPTIONS SI,RO,SO

The 'OPTIONS' field is essentially the same as for a language processor

call statement. The fields SI, RO, and SO are used to specify the program file

elements, if any, that contain or are to contain MAP directives, and the name

of the output absolute element. A detailed description of the @MAP statement

and examples of its use are included in the section on the COLLECTOR.

4-63

4.7.2. The @XQT Statement

The @XQT statement is used to initiate the execution of an absolute

program prepared by the COLLECTOR. It has the format:

@XQT,OPTIONS ELTNAME

The options subfield makes a 26-bit mask (each bit that is set represents

an alphabetic character that was specified. A is represented by the 26th bit

from the right, and Z by the rightmost). The 'ELTNAME' field of the state­

ment names the program file element to be executed. Variations of the use

of the @XQT statement are given in the section on the COLLECTOR.

Data cards to be input by the program may follow the @XQT statement.

The program uses the system reference 'READ$' in gaining access to all images

prior to the next executive control statement. When an executive control

statement (other than an @EOF, see below) is detected by READ$, further

reading by the user (or processor) is inhibited and an end-of-data return

is given. Those images not requested by the program are bypassed when the

program is finished. (A message denoting this is placed in run print file.)

An example of the use of the @XQT statement would be

@XQT,BA FILEl.PAYDAY

USER DATA IMAGES

ENDED BY NEXT CONTROL STATEMENT

where the options for controlling the program are 'B' and 'A', the file

'QUALIFIER' is taken as the 'user-name'. The 'FILE' portion of the filename

is 'FILEI', and the element to be executed is 'PAYDAY', taken from 'FILEI'.

If the element to be executed is in the run-temporary file, the filename is

not needed. If such were the case, and options were not required, then the

above @XQT statement would reduce to

@XQT PAYDAY

Additional examples of the @XQT statement are given in the section on

the COLLECTOR.

4-64

4.7.3. The @EOF Statement

The @EOF statement is u~ed as a file divider (general sentinel) within

the data stream which follows the @XQT statement (or processor call state­

ment). It is the only control statement that can be bypassed (read) by a

user program. The format of the @EOF statement is

@EOF S

where IS' is a one-character sentinel, placed in column 6, to be passed to

the requesting program at the time the statement is requested. When the

@EOF is detected by READ $, an abnormal return is made to the requestor with

the character found at'S' made available. A subsequent request will cause

the next image to be transmitted. An @EOF is never transmitted as such.

An example where the @EOF statement is used is

@XQT PROGX

DATA OF PART I

@EOF A

DATA OF PART 2

@XQT PROGY

All cards between the two @XQT statements are to be input by PROGX. The @EOF

statement serves as a marker between the two files.

4.7.4. The @PMD Statement

The @PMD statement may be used to obtain a post-mortem dump of all or

part of the core storage used by an execution task. The format of this

statement may take one of two forms:

@PMD,OPTIONS NAMEI,NAME2,NAME3, ••• ,NAMEN

or

@PMD,OPTIONS NAME,START,LENGTH,FORMAT

4-65

Detailed discussions of each of these forms are given in the section on
/"

DIAGNOSTIC AIDS. Hence only a brief summary is given at this point. All

@PMD statements following an execution are honored until a control statement

is encountered which is not a conditional control statement (i.e., @SETC,

@TEST or @JUMP) or a @EOF statement. (Any other statement will cause the

termination of the PMD mode.) The available 'OPTIONS' are divided into two

classes--special and standard. If a special option is used, the first form

of the @PMD statement is required, and 'NAMEl', 'NAME2', etc., are names of

segments or elements which are to be dumped according to the 'OPTIONS'

specified. If only standard options are specified, the second form is used.

The field 'NAME' may specify an element or segment to be dumped, or it may be

void, in which case all of the user's area of core is dumped. If 'NAME' is

specified, 'START' and 'LENGTH' specify an area of the element or segment to

be dumped, and 'FORMAT' specifies a format to be used for the dump listing.

Standard options allow for conditional dumps, depending upon the termina­

tion of the run, for changed-word dumping and for dumping all of blank

common. Special options allow for dumping all of an element or segment; or

9n1y bank 1 or bank 2 portions of an element; and for specifying only elements

which are not to be dumped.

4.8. Conditional Statements

4.8.1. Purpose of Conditional Statements

The conditional statements are set apart from other executive control

statements because they are special-use features and need not be of concern

in many applications.

The conditional control statements are used to accomplish dynamic adjust­

ment of the control stream as it is being executed. A common "condition"

word is maintained by the system throughout the course of a run. The value

in the "condition" word is referenced (tested or set) from within the con­

trol stream via the conditional statements, causing portions of the stream

to be bypassed. In addition, all user programs within the run and the

executive have the ability to access the word and/or reset their respective

thirds (see the section on the "condition" word). This method may cause the

user program to take different paths and/or to set parts of the word such

that portions of the control stream are skipped. This conditional network

4-66

allows a given control stream to produce many different results with only a

slight modification to the stream or with no modification if the effective

stream is dictated by user programs reacting to stimuli such as amount of data,

data, day of month, time of day, etc.

4.8.2. Statement Labels

The executive language is such that control statements may be labeled.

This feature is provided in order to allow functions (statements) to be

skipped with control being passed to a statement with a particular label.

The @JUMP control statement (described later) is used to move control to a

statement with a particular label.

As described in the first part of this chapter, the labeled executive

control statement has the format:

@LABEL:COMMAND,OPTIONS SPECl,SPEC2, ••• ,SPECN COMMENT

where the label is limited to six characters from the alphanumeric set

(A .•• Z,O ••• 9), begins with an alphabetic, and is immediately followed by

the co Ion (:).

An example of an @XQT statement that is labeled is

@A:XQT PROGX

where 'A' is the label and • PROGX , is the element to be executed.

A label specification on certain control statements is meaningless and

will be ignored. Those statements which fall intQ this class are @RUN, @EOF,

@COL, @ BIN, @PWRD, and @END.

A label (or labels) may be attached to an existing control statement

without physically changing the statement, by use of the @LABEL statement

(see below).

4.8.3. The @LABEL Statement

A label can be placed on an existing control statement by placing a

@LABEL statement immediately preceding the existing statement. The format

of the statement is

@LABEL:

where 'LABEL' is the tag to be attached. If a label is also present on the

existing statement, the statement is recognized by both labels. If more

4-67

than one @LABEL statement is-present, all are attached. As an example, the

@XQT statement below can be referenced by both the label lA' and the label

'B I.

@A:

@B:XQT FROGX

If the same label appears more than once within a run, the first forward

occurrence is taken as the proper label.

4.8.4. The "CONDITION" Word

The system maintains a "condition" word (computer word of 36 bits) for

each active run. The "condition" word is set to zero at the beginning of a

run (in the absence of a I SET ' ~pecification on the @START statement). This

word is divided into three parts from left to right. The left third may be

set by the executive only (for error conditions, etc.). The middle third may

be set externally in the control stream via @SETC, and the right third is set

by the internal user program via an internal reference to SETC$. User

programs can retrieve the entire word (via an internal reference to COND$)

and the word can be tested from within the control stream, causing branching

to a particular statement, via the @TEST control statement. A @JUMP state­

ment is provided for branching when a particular test is met.

The state of the "condition" word, whether set from the control stream

or by user programs, can be monitored at any point within a run to decide

how the run should best proceed.

The executive uses the left third of the condition word to indicate

the type of program termination. The values that may be found in this

portion of the condition word, and their corresponding meanings, are given

below:

o. EXIT$ termination of all activities.

1. EXIT $ termination of last activity; ERR$ - termination

of one or more previous activities.

2. ERR $ termination of last activity; EXIT$ - termination

of all previous activities, if present.

3. ERR $ termination of last activity; ERR$ termination

of one or more previous activities.

4. ABORT$ termination of last activity; EXIT$ - termination

of all previous activities~ if present.

5. ABORT$ termination of last activity; ERR$ termination

of one or more previous activities.

4-68

A value of 2 or 3 causes a batch run to be terminated after processing PMD

control statements and conditional statements. A value of 4 or 5 will cause

immediate termination of a batch run.

4.8.5. The @SETC Statement

The @SETC control statement is used to store (set) a value in the second

third of the "condition" word. The format of the statement is

@SETC,OPTIONS VALUE/J

where 'VALUE' must be specified and 'J' is optional but assumed to be T2 if

absent. The 'VALUE' subfield contains a positive, octal number not to exceed

4 digits. It is treated as 36 bits (right justified, zero filled) prior to

the partial-word store in the "condition" word. If the magnitude of the num­

ber is greater than can be contained in the 'J' designated portion of the

"condition" word, truncation occurs.

Allowable 'J' designators are

T2 Middle Third

S3 Third Sixth from Left

S4 Fourth Sixth from Left

Examples of the @SETC statement are

@SETC 6

where the second third of the "condition" word is set to 6 or 0006, and

@SETC 10/s3

where the third sixth is set to 10 octal, with the rest of the word left

undisturbed.

Options allowed are I and A.

I set indicator in T1 of the run condition word to inhibit
termination of a batch run following error termination of
a program or processor. This does not inhibit run term­
ination due to abort terminationso

A turn off the "inhibit termination" indicator set by the I
option.

4-69

4.8.6. The @JUMP Statement

The @JUMP control statement is used when statement execution is to be

branched to a particular labeled statement. The format of the statement is

@JUMP LABEL

where 'LABEL' appears 'as a label on a subsequent control statement, or is a

decimal numeric (N) specifying that control is to be passed to the Nth con­

'trol statement that follows, except that those statements which cannot have

labels are not considered in the count. Note that the @JUMP statement must

reference in the forward direction (to a statement not yet processed). A

numeric of zero (0) is illegal.

4.8.7. The @TEST Statement

The @TEST control statement is used to test the value of the "condition"

word for the purpose of selecting particular control statements to be executed

(or skipped). The format of the @TEST statement is

@TEST F/VALUE/J,F/VALUE/J, •••

where 'VALUE' contains a positive, octal number not exceeding 12 digits. The

'J' field is optional and when it is not specified the middle third is

assumed. Allowable 'J' designators are

W Whole Word

HI Left Half

H2 Right Half

Tl thru T3 Left Third thru Right Third

Sl thru S6 Left Sixth three Right Sixth

The 'F' field (function field) specifies the test to be made. If more

than one function appears on the statement, scanning continues until a test

is met or all functions are exhausted. The control statement immediately

following the @TEST statement will be skipped if a test is met; otherwise,

it will be executed. Allowable functions are:

TE Test Equal

TNE

(Skip the next control statement if
the 'J' designated portion of the
"condition" word is equal to 'VALUE' or
in simpler terms, skip if C equals V)

Test for not Equal

(Skip if C not equal to V)

4-70

TG

TLE

Test for Greater

(Skip if C greater than V)

Test for Less than or Equal

(Skip if C less than or equal to V)

The specified 'VALUE' is interpreted in the same manner as for the @SETC

statement (full 36 bits). However, it will appear negative if the upper­

most bit is set. This is also true for the "condition" word when the

entire word or a third is being tested.

Note: The @SETC statement is equivalent to the machine instruction
'STORE A'(SA) where the 36-bit 'VALUE' is found in the 'A'
control register.

The test functions are equivalent to the machine instructions
'TE, TNE, TG, and TLE' where the 36-bit 'VALUE' is in the
control register.

An example of the use of the @TEST control statement would be

@TEST TE/6/T2,TG/12/H2

@XQT PROGX

If the middle third of the "condition" word is equal to 6, or if the right

half is greater than 12, the @XQT statement would be skipped; otherwise, it

would be executed.

Consider the following run which utilizes all three of the conditional

control statements @SETC, @TEST and @JUMP:

@RUN

@SETC

@TEST

@XQT

@TEST

@JUMP

@JUMP

@TEST

@JUMP

ID6,PROJl,888294,IO

6 Initial set of "condition" word

TE/6

PROGX

TE/6

2

A

TE/IO,TE/4

3

4-71

@SETC

@JUMP

@TEST

@JUMP

@XQT

@A:XQT

@B:XQT

@C:XQT

@FIN

4

B.

TE/ll

C

PROGY

PROGA

PROGB

PROGC

By changing the value (now 6) on the initial @SETC statement, the run can

be made to produce different results. As the run is now "set", the programs

A, B, and C will be executed. If the initial "set" value were 3, then

program X would also be executed. If octal 10 or 4, programs Y and A would

be skipped. If 11, all programs are executed. If some other number,

Programs Y, A, and B are skipped.

Although not shown in the example, it is important to note that PROGX,

if executed, could have set some part of the right third of the "condition"

word. In the example above, this would not have affected the paths taken,

but if any part of this third were tested via @TEST, it would have had a

part in determining whether the tests were met or not. The same is true

concerning the executive third.

4.9. Statement Syntax Error Diagnostics

While the control statement interpreter is converting the control state­

ments from external to internal format, it performs a syntax check on each

statement. Below are the error messages that may occur on the printer,

immediately following the statement, when a syntax error is detected.

4-72

where

1. XX

2. XX

3. XX

40 XX

5. XX

6.

Illegal Option Z

Illegal Character Z

Max Number of Characters Exceeded

Max Number of Fields or Sub fields Exceeded

Required Field or Suhfie1d Missing

@ in Column 1 of Continuation Card

XX = the character position at which the error was detected.

Z = the illegal character or option.

4-73

5. FILE UTILITY ROUTINES (FURPUR)

5.1. General

In addition to the executive control statements discussed, there is a

set of statements recognized by the executive as calls for the file utility

routines (FURFUR). When the executive encounters a FURPUR statement it

loads the FURFUR processor. FURPUR continues by processing statements until

the executive signals the next statement is not a FURFUR statement.

Statements processed by FURPUR are listed below by command name with

a brief description of the functions they perform.

Command

@CHG

@CLOSE

@COPIN

@COPOUT

@COPY

@CYCLE

@DELETE

@ENABLE

@ERS

@FIND

@MARK

@MOVE

@pACK

@PCH

@PREP

@PRT

@REWIND

Function

Changes the name and/or version of program file element.

Writes two hardware end of file marks on a tape and
rewinds it.

Reads elements in element file format on tape and inserts
them in a program file.

Writes elements of program files to tape in element file
format.

Transfers files or program file elements from one file to
another.

Sets a new maximum number of cycles to be retained for a
symbolic program file element.

Drops a file in the directory or marks a program file
element deleted.

Removes the disable flag from temporarily disabled
catalogued files.

Releases space allocated to program files.

Locates an element on a tape in element file format and
positions the tape before the element's label block.

Writes a hardware end of file mark on tape.

Moves a tape forward or backward over a specified number
of hardware end of file marks.

Rewrites "a program file to exclude elements marked
deleted.

Punches program file elements.

Creates an entry point table for a program file.

Lists directory items for catalogued files, the table of
contents of a program file, or the text of a symbolic
element.

Rewinds tapes.

5-1

5.2. Statement Format

The general form of a FURPUR statement is:

@LABEL:COMMAND,OPTIONS SPEC1,SPEC2, ... ,SPECN

5.2.1. Contents of Specification Fields

A specification field may contain a filename, a filename and element

name, or a parameter value depending on the statement and its intended use.

External or internal filenames may be used. The internal names $FILEA, $FILEB

and the external filename MSDGET should not be used in runs containing

FURPUR statements. External filenames take the form:

QUALIFIER*FILE(F-CYCLE)/READ-KEY/WRITE-KEY.

Element names take the form:

ELEMENT/VERSION (ELEMENT-CYCLE)

The filename should be followed by a period. If the specification

requires an element name, it should follow the period. The element cycle or

the F-cyc1e may be excluded when relative zero (0) is intended. System drop­

out rules for the qualifier apply.

5.2.2. File Assignments

FURPUR will automatically attempt to assign catalogued files not assigned

at the time the FURPUR statement is encountered. FURPUR will require exclusive

use of the files named in many cases, and therefore will attach exclusive use

as necessary to files assigned by the user. FURPUR returns the file to the

assigned status it had prior to the statement, except when the function of

the statement itself is to change the status (e.g., @DELETE). Temporary

files must be assigned by the user.

5.2.3. Options Field

In general, the options used vary with the statement. The options below

have the same meaning for all FURPUR statements.

C

A

R

S

Requests that FURPUR exit normally after an error condition.
A diagnostic message will still be printed. Without the
C option, an error condition will cause FURPUR to exit to
ERR$. The C option may be used on any FURPUR statement.

Process absolute elements.

Process re1ocatab1e elements.

Process symbolic elements and procedure elements.

Additional options are discussed with the commands to which they apply.

5-2

5.3. Shorthand Notation

The filename may be omitted from the specification field on all FURPUR

statements. If the filename is omitted in specification 1, TPF$ is substi­

tuted. If the filename used in specification N is the same as that in

specification N-l, it may be omitted, provided the element name in specifica­

tion N is preceded by a period.

The period may be omitted on any FUR PUR statement not containing an

asterisk (*) other than @CYCLE,@PRT,@COPIN (voption), and @COPOUT (V option)

that does not specify A, R, or S options. If the filename TPF$ was omitted,

the period may also be omitted on the @PCR statement and @PRT statement.

5.4. FURPUR Statements

The following paragraphs discuss in detail the statements processed by

FURPUR.

5.4.1. @COPY

The COPY command is used to copy a file or element from one file to

another.

5.4.1.1. Formatting the @COPY Statement

The @COPY statement has the following format:

@COFY,OPTIONS SPECl,SPEC2,SPEC3

SPECI is the input file or element to be copied.

SPEC2 is the output file to be copied into.

SPEC3 is used only for tape to tape copying of entire files with no options

or with the 'M' option. It specifies the number of input files to copy to

the output tape. If SPEC3 is omitted, one file will be copied. The copy is

terminated regardless of the value of SPEC3 if a void file is copied. The

input tape will be left positioned following the end of file after the last

file is copied. The number of blocks in each file copied, and the number

of files copied will be indicated by messages.

5-3

The options allowed are:

(No option)
or 'M' only
or 'N' only
or 'MN' only

V (and 'M')

G (and 'M')

The 'M' option, when used, is valid only if the output
file is on tape. It indicates the output tape is to
be marked with a hardware end of file mark after each
non-void file copied from the input tape. In addition,
a second end of file is written following the last non­
void file copied, and the tape is then backspaced one
end of file mark.

If the input file is on tape, and the output file is on
Fastrand, the blocks will be copied to Fastrand in a con­
tiguous manner beginning in sector O. Note that a block
size not divisible by 28 will leave a garbage area in
the last sector of the block as it appears on Fastrand.

If the input file is on Fastrand and the output is on
tape, track size blocks will be written.

The 'N' option, when used, is valid only if the input
file is on tape. It indicates that non-integral blocks
(not containing a multiple of 6 characters) are to be
zero-padded. In the absence of the 'N' option, the copy
is terminated upon encountering a non-integral block.

A file is to be copied. SPECI names the input file and
SPEC2 names the output file. The input file and output
file may not both be on tape or on Fastrand. If the
input file is on Fastrand, variable block size will be
assumed. This means the first word of each block con­
tains the block size. This word is stripped before the
block is written to tape. The 'M' option is valid only
when the output file is on tape. It indicates that after
the file is copied, a hardware end of file mark is to be
written on the output tape. This is done by writing two
end of file marks and backspacing one.

If the input file is on tape, a word containing the block
size will be prefixed to the block before it is written
on Fastrand.

Note that a @COPY to or from Fastrand begins in sector O.
Each block on Fastrand starts in a new sector. A garbage
area exists in the last sector of blocks whose size is
not divisible by 28. The input file must be followed by
a hardware end of file if on tape.

A file to be copied. SPECI names the input file and
SPEC2 names the output file. The input and output files
should not both be on Fastrand or both on tape. The 'M'
option is valid only if the output file is on tape. It
indicates that after the file is copied two hardware
end of file marks are to be written, and the tape back­
spaced one.

5-4

F

I

A,R,S

p

If the input file is on Fastrand, each allocated track
beginning with relative track zero will be prefixed with
its relative track number and then written to tape. In
this case, the @COFY is terminated by an attempt to read
outside the file limits. The first block written on
tape will be a label block that indicates the format.

If the input file is on tape, the first word of each block
indicates the relative track the block (minus the first
word) is to be copied onto on Fastrand. The @COFY is ter­
minated when a hardware end of file mark is encountered
on the input tape.

This option supplies the user with an efficient means of
saving and recreating a Fastrand file that contained'voids.
Such voids are created by random access techniques 0

A file is to be copied. SPECI names the input file, and
SPEC2 names tha output file. The input file must be in
system data format (SDF). Reading of the input file is
terminated by an SDF end of file sentinel. If the output
file is put on tape, two hardware end of file marks will
be written and the tape backspaced one. Block sizes for
files on tape must be 224 words. Program files or element
files may not be copied with this option.

The I option adds a file in SDF format to a program file
as an element. SPECI names an input file which must be
SDF format. SPEC2 names a file in program file format
on Fastrand and the element name to be entered in the
program file element table. The new element will be
entered as a symbolic element, cycle O. The cycle limit
is set to the system standard.

Selected elements from a file in program file format on
Fastrand are to be reproduced in another file in program
file format on Fastrarid. SPECI names the input file,
and SPEC2 names the output file; or, SPEC1 names the
input file and input element, and SPEC2 names the output
file and output element. Only non-deleteq elements of the
input file may be inserted in the output file. The options
indicate the element types to be reproduced. If no element
name is given, all elements of the types indicated will be
reproduced in the output file. Any combination of A,R,S
may be given.

All non-deleted elements of one file in program file
format are to be inserted in another file in program
file format.SPECl names the input file. SPEC2 names
the output file.

5-5

When reproducing elements via the A,R,S, or P options, the related procedure

name entries are added to the output file's procedure name table entries. If

a re1ocatab1e element is reproduced the output file's entry point table will

be destroyed. A @PREP statement can be used to recreate the entry point

table when necessary.

5.4.1.2. Examples of the @COPY Statement

T, T1, T2, ••• will be used to indicate tape files; F, F1, F2 ••• will be

used to indicate Fastrand files.

Some typical @COPY statements are given below.

@COPY Fl. ,F2.

The Fastrand file F1 is copied into the Fastrand file named F2.

@COPY,M T1.,T2.,9

Nine files on tape with filename T1 are copied onto tape with filename T2.

Each file on T2 is separated by end of file marks as directed by the 'M'

option. The last file on T2 is followed by 2 end of file marks. T2 is left

positioned between the last two file marks.

@COPY ,GM F. , T .

File F is copied to tape with filename T, in @COFY,G format. The hardware end of

file marks are written following the file. The tape is then backspaced one

end of file mark. If F was a program file, sequential access of elements in

the output file via @FIND and @COPIN are not permitted since they require

element file format. Note that the entire file as it was before the copy,

including all tables of contents and deleted elements, will be reproduced

when the 'file is returned to Fastrand via the 'G' option. Two program files

saved on tape via this option may not be merged as each file would overlay

the other.

@COPY,p. Fl.,F2.

The non-deleted elements of program file Fl are reproduced in program file

F2. Fl is unchanged.

@COPY,I F.,F1.ELTl/VERS

The file F in SDF is reproduced in program file Fl. An entry is created in

the element table of F1 with an element name ELTl, version name VERS, cycle 0,

whose text area contains the contents of F.

5-6

@COPY,I T.,Fl.ELTl/VERS

Same as previous example, except that the input file is on tape.

@COPY,RS Fl.,F2.

The non-deleted relocatable elements and symbolic elements of program file FI

are reproduced in program file F2. FI remains unchanged.

@COFY,RS FI.A,F2.B

The symbolic and relocatable elements with name A in program file Fl are

added to program file F2 with the nameB. Both types Rand S must exist in

Fl as non-deleted elements.

5.4.2. @COPOUT

COPOUT is used to write a program file, or selected elements of a program

file to tape in element file format.

5.4.2.1. Formatting the @COPOUT Statement

The format of the @COPOUT statement is:

@COPOUT,OPTIONS SPECl,SPEC2

The @COPOUT statement is used to write elements of program files on

Fastrand onto tape in element file format. Procedure name entries will be

preserved. Entry points are not preserved. Element file format was designed

to reduce tape movement when it is necessary to read selected elements from

tape, as opposed to treating a group of elements as a single file. Tapes

must be in element file format in order to use @FIND or @COPIN.

The available options are:

No option

A,R,S

All non-deleted elements of a program file are written
onto a tape in element file format. Two hardware end of
file marks are then written on the tape and the tape is
then backspaced over the second one. SPECI names a
program file on Fastrand. SPEC2 contains a filename that
refers to tape.

Non-deleted elements of the types specified by the options
are written onto tape in element file file format. SPECI
names a program file on Fastrand and SPEC2 contains a
filename that refers to tape and the name to be given to
the element written to tape. Any combination of options
may be used whether applied to the entire file or to a
single element name. If no element name is given in SPECl,

5-7

all non-deleted elements of the types specified by the
options are written to the tape with the filename given
in SPEC2. If an element name is included in SPEC1, all
types specified by the options for the element name given
will be written to the tape with the element name given
in SPEC2. Each type specified must refer to a non-deleted
element.

V Non-deleted elements of a program file selected by version
name and type are written in element file format on tape.
The V option may be used in combination with the A,R,
and S options. The V option alone implies all element
types are to be considered. SPECl names a program file
and an element version name. SPEC2 contains the filename
of a tape and element version name. The elements with
the version name given in SPECl of the types specified by
the options will be written to the tape indicated by
SPEC2 in element file format. The version name given in
SPEC2 replaces their original version name. If the ver­
sion name in SPEC2 is omitted, the elements written to
tape will have the same version name as in SPEC1.

5.4.2.2. Examples of the @COPOUT Statement

The @COPOUT statement is typically used in the following manner:

@coPour PROGRAM.,HOLDPROG.

The program file named PROGRAM will be copied onto the output file HOLDPROG.

It will be reformatted as an element file. The R,S, and A options apply as

with the COPY statement.

@coPour A ,TAPE

In the above example the A in SPECl is presumed to be a filename and

the entire file will be copied to TAPE. The file is marked with an end of

file mark because no options are present.

@COPOUT,ARS C. ,D.

The contents of file C are copied to file D and no EOF mark is written.

@COPOUT,R A. ,B.

In the above case all ~elocatable elements are copied from file A to B.

@COPOUT,S A.B,C.D

In the above case the'S' option indicates to the processor that it is

to handle one element, or type of element. That element will be copied to

the file named in SPEC2 ('C') and given the element name named in SPEC field 2.

5-8

@COPOUT A.B,C.

In this case the element name 'B' is ignored and the entire file A is

copied to File C, because no option letters are present. Entry points will

not be copied.

@COPOUT,8V A./B,C.

All symbolic elements in file A~~a version 'B' will be copied to

File C.

@COPOUT,AV A.,C.

All absolute elements in file A with no version name will be copied to

File C.

5.4.3. @COPIN

The @COPIN statement is used to read elements from a tape in element file

format and insert them in a program file on Fastrand. Related procedure names

are entered in the program file's procedure name table. Entry points are not

added to the entry point table. If a relocatable element is added to the

program file as a result of the @COPIN the entry point table will be destroyed

if one existed previous to the @COPIN. The @PREP statement may be used to

recreate the entry point table when necessary. If a tape error occurs, only

those elements entered properly prior to the error will appear in the program

file's table of contents.

5.4.3.1. Formatting the @COPIN Statement

The format of the @COPIN statement is:

@COPIN,OPTIONS SPEC1,SPEC2

The allowable options are:

No option SPECl contains the filename of a tape positioned at the
label block of an element in element file format. SPEC2
names a program file on Fastrand. Elements are read from
the tape named by SPECl and inserted in the program file
named by SPEC2 until a hardware end of file mark is
encountered.

5-9

A.R.S SPECI contains the filename of a tape positioned at the
label block of an element in element file format. SPEC2
names a program file on Fastrand, or SPECI contains the
filename of a tape and the name of the element in element
file format at whose label block the tape must be
positioned, and SPEC2 contains the name of a program file
on Fastrand and the element name to be given to the
element when it is added to the file.

V SPECI must contain the filename of a tape positioned at
the label block of an element in element file format, and
the version name of the elements to be added to the pro­
gram file on Fastrand named by SPEC2.· SPEC2 also con­
tains the version name to be given the elements added.
Elements not having the same version name as given in
SPECI are skippe~. The @COPIN is terminated when a hard­
ware end of file is encountered. ·If only those elements

. with no version name are to be added, the version sub field
may be omitted in SPECI. If the version subfield is
omitted in SPEC2, the elements will retain their same
version name. The V option may be used in any combination
with the A,R, and S options, if only selected types are
to be added.

5.4.3.2. Examples of the @COPIN Statement

The @COPIN statement is typically used in the following manner:

@COPIN HOLDPROG.,PROGRAM.

In this example, the element file HOLDPROG is copied and reformatted on

the Fastrand area assigned to file PROGRAM. When the @COPIN operation is com­

plete, file PROGRAM will be in the standard program file format and may be

treated as a program file in any subsequent operation.

@COPIN,R TEMP. ELTA ,PFI.

The above command causes the relocatable element ELTA to be read from

the element file TEMP and added to the program file PFl. The element file

must be positioned at ELTA (e.g. with @FIND). The entry point table is not

updated (this may be done with @PREP).

@COPIN,RV A. /B ,C.

All relocatable elements in file A with a version 'B' will be copied to

File C.

@COPIN,SV A. ,C.

All symbolic elements in file A with no version name will be copied to

File C •.

5-10

5.4.4. @DELETE

The @DELETE command may be used to drop a catalogued file or to mark an

element of a program file on Fastrand deleted. The effect of the @DELETE

command for catalogued files is the same as the sequence:

@ASG,A FILENAME

@FREE,D FILENAME

When used to mark a program file element deleted, the element entry and

its related procedure names are marked deleted. The element may be removed

subsequently by using a @PACK statement.

5.4.4.1. Formatting the @DELETE Statement

The @DELETE statement has the following format:

@DELETE,OPTIONS SPECl,SPEC2, •.• ,SPECN

The available options are:

(No options) A catalogued file is to be dropped. Each specification
field names a catalogued file. The filenames given may
be external or internal.

A,R,S

If an external name is given, the F-cycle to be dropped
should be specified. The latest cycle is understood if
none is given. Security keys must be given if the file
was catalogued with keys and the file is to be assigned
by FURPUR. The keys will be ignored if the file is
already assigned.

If an internal name is given the external name on the
associated @USE statement must satisfy the same rules as
if it had appeared on the statement itself. Note that
when the file is actually dropped from the directory
older F-cycles will have their relative F-cycle value
increased one. The file is not actually dropped from
the directory until all assignments made before the drop
flag was set have been @FREE'd.

An element of a program file is to be deleted. Each
specification field given names an element and the pro­
gram file that contains it. The types given by the
options will be marked deleted. Any combination of
A, R, and S options may be used, but at least one must
be given. @DELETE requires each element as specified by
name and options on the statement exist in a non-deleted
state prior to the @DELETE statement. Including a cycle
number for symbolic elements is illegal on the @DELETE
statement. Associated entry points and procedure names
will also be marked deleted.

5-11

5.4.4.2. Examples of the @DELETE Statement

@DELETE,S F.ELTl/VERS,Fl.ELTY

The symbolic element ELTI/VERS in program file F, and the symbolic ELTY in

program file Fl will be marked deleted. Associated procedure names, if any,

will also be marked deleted.

@DELETE F.,Tl.

The catalogued filed F and Tl are dropped from the directory (only the most

recent F-cycles).

5.4.5. @PRT

PRT is used to print the table of contents of a program file, or to print

the master file directory items of catalogued files, and to print

the text of symbolic elements.

5.4.5.1. Formatting the @PRT Statement

The @PRT statement has the following format:

@PRT,OPTIONS SPECl,SPEC2, ••• ,SPECN

The available options are:

T (and L)

(no option)

F

List the table of contents of a program file on Fastrand,
or the table of contents items for all elements with a
given name and version. Each specification field names
a program file (with a trailing period) or a program file
and element name. See Notes on @PRT,T, the second sec­
tion following. A compressed format is used for a demand
run, unless the L option is used.

If no specification fields are given, directory information
for all files catalogued under the current USER-NAME will
be listed. The directory items listed will not include
security keys. Items are listed in alphabetical order,
first by reference number, then by qualifier and filename.

If at least one specification is given, a symbolic element
of a program file will be listed with line numbers. Each
specification field given should contain the name of a
program file on Fastrand and the name of a symbolic
element within the file. An element cycle may be specified.
If none is specified, the latest cycle is listed.

List the directory item for a file catalogued under the
current USER-NAME. Each specification field names a
catalogued file. If the specified file was not catalogued
by the current user, an error is indicated. Security keys
are not listed.

5-12

N List the directory items for all files catalogued with
the current USER-NAME and the reference number specified.
Security keys are not listed. Each specification field
names a reference number. If no specification fields
are given, action is identical to @PRT (no options).

5.4.5.2. Examples of the @PRT Statement

@PRT,T PROGFILE.

The table of contents of the program file PROGFILE, on Fastrand, is listed.

The tables listed include the element table, procedure name tables, and the

entry pOint table. Element table entries are listed in the order the elements

were introduced into the file. Other tables are listed in alphabetical order.

@PRT PROGFILE.SAM/XYZ

The latest cycle of the element SAM, version XYZ in program file PROGFILE,

is listed.

@PRT

A listing of the directory items for all files catalogued under the name on

the @RUN statement is generated.

@PRT,N 1lFl9690l,03B6919l0

A listing of the directory items for all files catalogued under the name on

the @RUN statement and reference numbers llFl9690l and 03B6919l0 will be

generated.

@PRT,F FILE1.

A listing of the directory item for FILE1 is generated, assuming that the

name fields agree. If not, an error is indicated.

@PRT,T PROGFILE.MAIN/ONE

A listing of the table of contents items for all elements with the name and

version MAIN/ONE in program file PROGFILE is printed. These elements may

include symbolic, relocatable, absolute, deleted, and non-deleted elements.

5-13

5.4.5.3. Notes on @PRT,T

PRT Format with T Option

The contents of the individual print lines are as follows:

Element Table (1 item per line)

Delete Flag

Element Name

Version

Type

Date and Time

Element Sequence No.

Location (ReI. Sector #)

Length in Sectors
(Including Text and Preamble)

Cycle Limit

Latest Cycle No.

No. of Cycles

Assembler and FORTRAN
Procedure Tables (3 items per line)

Delete Flag

Procedure Name

Location in File
(Relative Word Number)

Element Link
(Element Sequence Number)

COBOL Procedure Table (2 items per line)

Delete Flag

Procedure Name

Location in File
(Relative Word Number)

Element Link
(Element Sequence Number)

Entry Point Table (5 items per line)

Delete Flag

Entry Point Name

Element Link
(Element Sequence Number)

5-14

No. of

No. of

Characters

1

12

12

11

19

6

11

6

4

4

4

90 characters

Character~

1

12

11

6

30 characters

1

30

11

6

48 characters

1

12

6

19 characters

Explanation of Title Headings

Element Table

D-F1ag

Type

Date-Time

Sequence
Number

Text Size

Pre Size

Cycle Word

Location

Procedure Table
Assembler, COBOL
FORTRAN

D-Flag

Location

Link

Entry Point Table

Name

Link

An asterisk means entry deleted. No other symbol is used.

If the element is symbolic, the processor which created
it is indicated.

Time that element was added to this file.

Position of the element in this file (this is sequentially
issued) as elements are added to the file.

This is the text size in sectors. A sector is 28 words.

For re1ocatab1e elements, the preamble length is given in
sectors (28 words).

The cycle word is broken up into three separate parameters;
starting from left to right they are:

1) the number of cycles the system will maintain (maximum).
2) the number of the most current cycle (absolute).
3) the number of cycles currently being maintained.

Refers to the sector position relating to the start of the
file.

An asterisk means entry deleted. No other symbol is used.

Refers to the word position relative to the start of the
file.

The sequence number of the element that contains this
procedure name.

Name of externally defined symbol.

The sequence number of the element that contains this
entry point.

The @PRT,T Command from a Demand Terminal

a) The TOC format from demand stations is:

TYPE ELEMENT NAME/VERSION(CYCLES).

The 'TYPE' will be represented as follows:

ELT Symbolic Elements ELT
ASM Symbolic Elements ASM
COB Symbolic Elements COB
FOR Symbolic Elements FOR
ALG Symbolic Elements ALG
MAP Symbolic Elements MAP
DOC Symbo 1ic Elements DOC

5-15

Assembler Procedures
COBOL Procedures
FORTRAN Procedures
Relocatable Elements
Absolute Elements

ASMP
COBP
FORP
REL
ABS

The '(CYCLES)' will show the number of symbolic cycles accumulated. This TOC

will not include any deleted elements. An 'L' option is available which will

produce the usual @PRT,T command format on demand stations when it is given

with the 'T' option. If the 'L' option is not given on a @PRT,T, the short

version of the TOC will be produced.

NOTE: A period must follow the filename or else the standard dropout rules
apply and the specification will be considered to be an element of
the file TPF$.

b) The TOC information for all elements of the name specified are

printed in the usual TOC format. The format for this command is @PRT,T

FILENAME.ELEMENTNAME, and applies to demand or on-site runs.

NOTE: The TOC information is taken from the element table item entry.

5.4.6 @PCH

The @PCH statement is used to punch program file elements on 80-column

cards (026 code).

5.4.6.1. Formatting the @PCH Statement

The format of the @PCH statement is:

A,R,S

@PCH,OPTIONS SPECl,SPEC2

The allowable options for the @PCH statement are:

An element of a program file is to be punched on 80
column cards. SPECl names a program file on Fastrand
and the name of the element to be punched. The options
designate which types of the element are to be punched.
Any combination of A,R,S may be given, but at least one
option must be given. The element, by name and types
given, must exist in a non-deleted state.

The elements punched will contain the necessary control cards to reinsert

them in a program file. The first card of procedure elements will be a @PDP

control card. The filename referred to on the control card will be the same

as the file from which the element is punched.

5-16

Several other options are available that apply only to symbolic elements.

The S option must be included or they will be ignored. The options are:

G

H

J

The input card images are to be compressed.

The input images are to have columns 73 through 80 over­
laid with a sequence number. SPEC2 should contain up to
three alphanumeric characters. The characters will be
left adjusted and overlay columns 73 through 75 of the
input images.

The input images are to be compressed. The output images
are to be sequenced in columns 73 through 80.

The G and J options may not both appear on the same statement. Sequence

numbers are 100 (decimal) apart. Relocatab1e and absolute elements are

sequenced automatically in columns 79, 80. The sequencing starts with AA

and ends with ZZ. It is repeated if necessary. The compressed form of

punched output uses a space count to strip spaces from the input images.

5.4.6.2. Examples of the @PCH Statement

@PCH,S TPF$.RUNPROG

The symbolic element RUNPROG in the program fi1e'TPF$ is punched on 80-co1umn

cards, one image per card.

@PCH,SRJH A.B,XYZ

The symbolic element B in program file A is punched on 80-column cards. The

input images are sequenced in columns 76-80. The identification field XYZ

is placed in columns 73-75. The sequenced images are compressed in columns 1-72

on the punched cards, and columns 73-80 are then sequenced. The relocatable

element B in program file A is punched. The text has been previously sequenced

by the assembler or compiler. FURPUR sequences the preamble. If the symbolic

element was a procedure element, the deck should be used as input to @PDP,

otherwise to @ELT. The re10catable deck may be used as input to @ELT.

5.4.7. @CHG

The @CHG command may be used to change the name of elements in a program

file. The file must be catalogued or assigned to the run.

The format of the @CHG statement is:

@CHG,OPTIONS SPECl,SPEC2

5-17

One or more of the A, R, and S options must be specified. SPECI names

a program file and an element name. SPEC2 names the same program file and

the new element name. The element name subfields include the element name

and version. Element cycle may not be specified. Only those types

specified by the options will have their names changed.

5.4.7.10 Examples of the @CHG Statement

@CHG,S FILE1.ELT2,FILEloELT5/VERS3

Change symbolic element name ELT2 of program file 'FILEl' to element name

'ELTS' and add a version name 'VERS3.'

5 . 4 • 8 . @PACK

The @PACK statement is used to rewrite an entire program file so as to

exclude deleted elements and their associated entries in the table of

contents. The entry point table is destroyed.

The format of the @pACK statement is:

@PACK SPECI,SPEC2, •• ,SPECN

Each specification field given must name a program file on Fastrand to be

@PACK'ed. All granules no longer needed to contain the file are released

to the system.

5.4.90 @PREP

The @PREP statement is used to create an entry pOint table from the

preambles of the non-deleted elements of a program file. If a previous entry

point table existed, it is destroyed prior to creating the new one. The

entry point table is required in some cases for use by the COLLECTOR .. The

entry point table may be listed by @PRT,T.

The format of the @PREP statement is:

@PREP SPECI,SPEC2, ••• ,SPECN

Each specification field given should name a program file on Fastrand to be

@PREP'ed.

5.4.10. @ERS

The @ERS statement is used to return all granules allocated to a program

file back to the system.

5-18

The format of the @ERS statement is:

@ERS SPEC1,SPEC2, •• ,SPECN

Each specification field given should name a program file on Fastrand to

be @ERS'ed.

5.4.11. @REWIND

The @REWIND statement is used to rewind tapes. The format of the @REWIND

statement is:

@REWIND,OPTION SPEC1,SPEC2, ••• ,SPECN

Each specification should give the name of a tape file. Each tape referred

to by filename will be rewound. The only option allowed on this statement is

the 'I' option. If the I option is present, the tape will be rewound with

interlock.

A @REWIND,I does not free the tape drive for use by other runs. The

statement

@FREE FILENAME

performs a rewind with interlock and, in addition, makes the tape drive

available to other runs. @FREE should be used rather than @REWIND,I whenever

possible.

5.4.12. @MARK

The @MARK statement is used to write a hardware end of file mark on

magnetic tape.. The function is accomplished by writing two end of file

marks and backspacing over the second one.

The format of the @MARK statement is:

@MARK SPEC1,SPEC2, ••• ,SPECN

Each specification field given must contain a filename that refers to tape.
r

5.4.13. @CLOSE

The @CLOSE statement is used to write two hardware end of file marks

on a tape and then rewind the tape.

The format of the @CLOSE statement is:

@CLOSE,OPTION SPEC1,SPEC2, •• ,SPECN

5-19

Each specification field given must contain a filename that refers to tape.

The I option is the only option allowed. The I option indicates the tape

is to be rewound with interlock.

Whenever possible, the statements

@MARK FILENAME

@FREE FILENAME

should be used rather than a @CLOSE,I. This will allow other runs to use the

tape drive.

5.4.14. @MOVE

The @MOVE statement is used to move a magnetic tape over a specified

number of file marks.

The format of the @MOVE statement is:

@MOVE,OPTION SPECl,N

SPECI must contain a filename that refers to tape. N is the number of EOF

marks to move past. B is the only option available with the @MOVE statement.

The tape is moved forward without the B option, backward with the B option.

5.4.15. @FIND

The @FIND statement is used to locate an element on tape in element file

format and position the tape immediately before the label block of the

element. @FIND searches forward until the element is found, or until an

end of file is encountered. In the latter case, the tape is backspaced to the

previous end of file mark and the search is repeated. Encountering an end of

file this second pass is an error exit for the function. Normally the @FIND

statement is used just prior to a @COPIN statement requesting the element just

located to be inserted in a program file on Fastrand or to insert all those

read up to the next hardware end of file mark.

The format of the @FIND statement is:

@FIND,OPTION SPECI

One and only one of the options A,R,S must be given to specify the type of

element to be located. SPECI names a file on tape and the element to be

located.

5-20

5.4.16. @CYCLE

The @CYCLE statement is used to set the maximum number of F-cycles to

be retained for a given filename existing in the directory, or to set the

maximum number of cycles to be maintained for a program file symbolic

element on Fastrand. Procedure elements may not have their maximum changed

(one cycle). The original maximums are 32 for F-cycles and 5 for element

cycles.

5.4.16.1. Formatting the @CYCLE Statement

The format of the @CYCLE statement is:

@CYCLE SPECl,N

The function performed is determined by the contents of SPECI. There

are two cases:

(1) SPECI names a catalogued file. In this case the statement applies

to the number of F-cycles. The filename and the F-cycle specified must both

be in the directory. N specifies the new maximum number of F-cycles to be

retained. If N is 0 the entire F-cycle series and the filename entry will

be dropped. If the current number of F-cycles for this filename is greater

than the new maximum, the drop flag will be set in those F-cycles, starting

with the oldest, necessary to satisfy the new maximum. Both security keys,

if the file was catalogued with both, must be given when the file is

originally assigned to the run. None of the F-cycles may currently be

assigned exclusively to another run, or an error exit will be taken.

The number of F-cycles is taken to be the range of the newest and oldest

absolute F-cycles.

(2) SPECI contains the name of a program file on Fastrand and the name

of a symbolic element in the file, other than a procedure element, that is

to have its maximum changed for number of cycles to be retained. N is the

new maximum number to retain. If the number of cycles currently retained is

actually greater than the new maximum, a new element with the same name will

be created with those oldest cycles of the element eliminated as necessary to

satisfy the new maximumo The old element is marked deleted.

5-21

5.4.16.2. Examples of the @CYCLE Statement

@CYCLE Q"l'>"A. B, 2

Suppose the symbolic element B in program file Q*A originally contained 4

cycles, cycles 5,6,7,8. The new maximum requires that a new element B con­

taining only cycles 7 and 8 be created. The old element B is deleted.

If the new limit were 5, only the parameter field of the element entry

would be changed. No new element would be created.

@CYCLE Q"~A.,2

Suppose the directory entry for the file Q*A indicates that 4 F-cycles exist

with the name Q*A. Then the drop flag in F-cycles (-3) and (-2) will be set.

5.4.17. @ENABLE

The @ENABLE statement is used to remove the disable flag, which may have

been set by the executive as the result of some type of malfunction, from a

catalogued file in the directory. Under normal operation the user will not

need the @ENABLE statement in his run.

The format of the @ENABLE statement is:

@ENABLE SPECl,SPEC2, ••• ,SPECN

Each specification field should contain the name of a catalogued file that

is to be @ENABLE'd. A message will be printed if the file was not previously

disabled. A normal exit is taken whether the file was disabled or not.

5.5. Multireel Files

Some prOVisions exist in FURPUR for the creation of tape files that

extend over more than one reel. The @COPOUT function makes its own call to

TSWAP$ in the event an end of tape condition is encountered. @COPOUT writes

a 14 word end of reel sentinel which is understood by @COPIN as an indication

that the element being read extends onto a second reel. The REWIND statement

returns a user to the first reel of tape assigned the given filename. @COPY,F

and @COPY,I also permit the reading and writing of multireel files o End of

reel sentinels created by functions other than FURFUR may not be interpreted

correctly by FURFUR. The @MOVE statement checks for end of reel sentinels

created by FURPUR.

5-22

6. SYSTEM PROCESSORS

6.1. The COLLECTOR (@MAP Processor)

6.1.1. General

The COLLECTOR for the UNIVAC 1108 is designed to provide the user a

straight-forward means of collecting and interconnecting relocatable

elements to produce a program which is in a form ready for execution under

control of the 1108 executive system. This program form is called an

absolute element. Internal references are linked together, and no modi­

fication is necessary to load the program anywhere in core. Optionally,

the COLLECTOR can be used to produce one re10catable element from a col-

lection of several relocatable elements.

The COLLECTOR is concerned with three basic inputs. These are:

(1) Parameters from the executive control statement causing the

collection.

(2) Source language control statements.

(3) Re1ocatab1e elements from a variable number of sources.

All of these inputs are discussed in detail later; however, a brief

description of each is given here for introductory purposes.

Basically, the COLLECTOR is called whenever a @MAP executive control

statement is encountered within a control input file. The @MAP statement

specifies the input and output elements to the COLLECTOR as it does for

other system processors. The information contained within the @MAP con­

trol statement is comprehensive enough to direct the allocation of most

programs.

For performing the collection of complex programs which require re­

locatable input from many sources, construction of overlay segments, or

the use of multiple libraries, the user must prepare a set of source

language control statements o These statements may follow the @MAP executive

control statement or be contained in an element in a program file.

Complete capabilities are available through the COLLECTOR for

updating the symbolic element in the program file. The procedure is the

same as for updating any other source language (FORTRAN, COBOL, etc.)

element processed by the system.

6-1

Re1ocatab1e elements to enter into the collection are indicated to the

COLLECTOR by way of the two input sources just described. Re1ocatab1e

elements from libraries may be specifically named to be included in the

program or included only if an external reference is made to the element.

Generally, all the relocatab1e elements in the temporary program file

(TPF$) are arbitrarily included in the program being collected. Use of the

system relocatable library to satisfy external references is automatically

implied; the use of user libraries is under control of a source language

control statement to the COLLECTOR. Any specified user libraries are

always searched before the system re1ocatab1e library.

The outputs of the COLLECTOR are as follows:

(1) An absolute or re1ocatab1e element.

(2) A source language control element as discussed above.

(3) Listing information

The primary output of the COLLECTOR is the re1ocatab1e or absolute

element which results from the collecting and linking of the various re­

locatable elements. This element is given a name and placed within a pro­

gram file for subsequent use. Both the element name and the file in which

the element is placed may be dictated by the user.

Normally, the COLLECTOR includes within an absolute element, a set of

tables for use by the diagnostic system. As discussed later, this output

can be suppressed by the user.

For any error condition encountered, the COLLECTOR produces an error

message which is placed in the print file assigned to the run (PRINT$).

The ensuing sections describe in detail the executive control s.tatements

involving the COLLECTOR, the source language control statements processed

by the COLLECTOR, the operational characteristics of it, and procedures for

segmenting a program.

6.1.2. Executive Control Statements

6.1.2.1. The @MAP Control Statement

The @MAP executive control statement is used for specifying that the

COLLECTOR is to be used to combine a set of re1ocatab1e elements into a

6-2

single absolute element or into a single relocatable element. The @MAP

statement has the same format as other processor statements and is:

@MAP,OPTIONS SI, RO, SO

All standard processor options (see the section entitled Statement

Format for Language Processors) are legal on the @MAP statement. These

include A, I, L, N, P, Q, s, U, W, and X. Spec{fic action taken on print

options is as follows:

L - Produce complete listing containing all information about the
core space used by the program, the space allocated to each
element, the program address of all definitions, the external
references of each element, and the scale drawing of segmentation._

S - Produce a summary listing, and include the scale drawing of
program segmentation.

N - Produce no listing, except diagnostics.

The MAP ID line (line a below) will always occur regardless of originating

site or options on the @MAP card. The START line (line b below) will

appear on demand runs when there are no options on the @MAp statement or

when @XQT is used to call and initialize the COLLECTOR. For batch runs or when

option(s) are present on the @MAP control image, but do not include any

listing options (L, S, or N), the COLLECTOR will assume an'S' option.

a. MAP XXXX-MM/DD-HR:MM (IC,OC) where:

XXXX level number of current COLLECTOR

MM/DD - current month and day

HH:MM - time of day in hours and minutes

IC - input cycle number, if any

OC output cycle number, if any

b. START = SSSSSS, PROG SIZE (I/D) = II/DD

where:

SSSSSS - program's starting address in octal

II - total number of I-bank words in decimal

DD - total number of D-bank words in decimal

The following options, unique to the @MAP processor, may also be

specified.

6-3

z

R

D

F

T

E

B

Inhibit generation of the diagnostic information
normally provided to the diagnostic system.

Produce a re1ocatab1e element rather than absolute
element. (Entry points in the re1ocatab1e elements
being combined in an R-option collection, which are
still to be defined as entry points in the single
relocatab1e output element, must be named on the
COLLECTOR DEF statement. The DEF statement is
explained below).

Give a diagnostic message for all possible address
fields over 65K. Error checking of possible
instruction format violations is done.

Set quarter word PSR bit.

Do not set quarter word PSR bit. If neither F nor T
is given, the setting will be determined by the sensi­
tivity of the element containing the starting address.

Allow program to exceed address 0177777 (decimal 65K).
If the E option is not present and a programs D-bank
exceeds 65K, the D-bank starting address is pushed down
toward the last I-bank in order to fit the D-bank
code under 65K. The presence 6f the E option indicates
that the user knows that his program may exceed 65K
and has made special programming considerations to
handle this. Minimum address specifications are not
violated in any case.

Set bit in absolute element's header table indicating
to the loader that the program area need not be zero­
filled prior to loading. In addition, core acquired
by an ER MCORE$ will not be cleared.

'SI' is 'FILE1.ELT1/VERS1 (CYCLE)' • It normally identifies the -symbolic

input element. When the I option is used, it identifies the symbolic output

element.

'RO' is'FILE2.ELT2/VERS2'. It identifies the absolute output element

of the collection. (If the R option is on, this is instead a re1ocatab1e

element. The field is denoted 'RO' regardless of whether output is

re1ocatab1e or absolute.)

'SO' is 'FILE3oELT3/VERS3'. It identifies the (optional) symbolic

output element when the I option is not used. If corrections follow, they

6-4

will be included in the new element. The cycle number of the new element

is set to zero.

Standard system dropout rules apply to these 3 specification subfields.

A single name (with no period) in any of these subfields is assumed to be an

element in the run's temporary program file (TPF$). A single name with a

leading period in 'RO' or 'SO' is assumed to be an element in the file given

in the specification preceding. A single name with a leading period in

lSI' is assumed to be in TPF$.

Here are some examples of the @MAP statement:

@MAP SYMIN/C,BACKUP.ABSOUT

(Element SYMIN version C, latest cycle, from TPF$, is used to
direct the collection of element ABSOUT written into file
BACKUP. If any corrections follow, they will be used but not
saved, because no output symbolic element is produced. Only
the ID and START lines are printed, for demand runs.)

@MAP,I BACKUP .SYMOUT, .ABSOUT

(The statements following the @MAP statement are used to
direct the collection and are output as element SYMOUT in file
BACKUP. The absolute output element is also put into file
BACKUP. A listing is produced as if an S option were specified.)

@MAP,U SYMIN(3),ABSOUT/REVISED

@MAP,1

(Cycle 4 of element SYMIN in TPF$ is produced, saving any
corrections that follow the @MAP statement. Absolute output
element ABSOUT, version REVISED, is also put into TPF$. A
listing is produced as if an S option were specified.)

(This is a special case where the system picks out its own
name for absolute output element: the input symbolics (if any)
are not saved. Both internal table entries, and the printed
output produced by a @PRT,T statement following the collection
will look as if the @MAP statement had co'ntained: @MAp,1 ,TPF$.
NAME $ A listing is produced as if an S option were specified.)

@MAP (This is treated as if it has an I option, which is the same
as the special case above. However, only the ID and START
lines are printed, for demand runs.)

@MAP , IRXLED A ,A

(The statements following the @MAP statement are used to

6-5

direct the collection and are output to TPF$ as symbolic
element A. The result of the collection is output to TPF$
as relocatable element A. If errors of any kind are en­
countered, inhibit continuation of program. Produce a full
listing. Allow DBANK to exceed 6SK. Print diagnostics for
address fields over 6SK and possible bad instructions.)

@MAP OLDFILENAME.OLDELEMENT,A,NEWFILENAME.NEWELEMENT

(The symbolic list of collector commands contained in OLDELEMENT
as amended by any corrections following this @MAP statement,
is used to direct the collection, and is output into a new file
with a new element name. The absolute output element, A, goes
to TPF$.)

These 3 examples follow one another in sequence, and show some actual

COLLECTOR control statements (which are explained later on):

@MAP,I
LIB
SEG
IN
SEG
IN

@MAP,U
LIB
-3,3
IN
SEG
IN
-5
SEG
IN
CLASS
NOT

@MAP,I
LIB
LIB
SEG
IN
SEG
IN
SEG

F8.MAPSYM,.MYPROGRAM
F8.
CONTROL
ELEMENTl
OVERLAY5,(CONTROL)
F9.

F8.MAPSYM,.MYPROGRAM
FlO.

ELEMENT 0
OVERLAY4,(CONTROL)
F7.

HIGHCORE,(OVERLAY4,OVERLAYS)
DATAELEMENT
REVISED
ELEMENTI

(after this second @MAP, element MAPSYM will save the
corrections: because an update of cycle was specified.

The absolute element MYPROGRAM put into file F8 by the
first @MAP will be deleted and replaced by the different
MYPROGRAM produced by this second @MAP o

F8.MAPSYM,.MYPROGRAM
FlO.
F8.
CONTROL
ELEMENT 0
OVERLAY4,(CONTROL)
F7.
OVERLAY5,(CONTROL)

6-6

IN
SEG
IN
CIASS
NOT

F9.
HIGHCORE,(OVERLAY4,OVERLAY5)
DATAELEMENT
REVISED
ELEMENT 1

(Element MYPROGRAM comes out exactly the same here as the
preceding MYPROGRAM which it replaces in file F8. Element
MAPSYM, set here to initial cycle 0, also comes out the same
as the update cycle 1 of MAPSYM which it replaces in file
F8.)

If a program file named on a @MAP statement (or on a 'LIB' or 'IN'

COLLECTOR control statement) has not been assigned, but has been previously

catalogued, it will be assigned automatically during the collection. At the

end of the collection, it will be returned to its original state with a

@FREE (plus X, R, and/or A option).

6.1.2.2. The @XQT Control Statement

For execution of an absolute program created by the COLLECTOR, the

following control statement is used:

@XQT,OPTIONS ELTNAME

Any options specified are available to the user's program by the OPT$ execu­

tive request whenever it is initiated. The field 'ELTNAME' specifies the

absolute program to execute, in standard file/element notation. This field

is the counterpart of 'RO' in the @MAP control statement. If no element is

specified, the last absolute element placed in the file given (TPF$ if no

file is specified) will be loaded and executed. In the absence of an

absolute element, all of the relocatable elements in the file are both

collected and executed (a relocatable element may not be explicitly named

on an @XQT statement, however.)

Examples of the @XQT statement in typical run streams:

(1)

@MAP,8

@XQT

(2)

Compilations to produce relocatable elements in the
run's temporary program file, TPF$#
Generate an absolute element consisting of all the
relocatable elements in the temporary file.
Execute the absolute element generated above.

Compilations producing relocatable elements in the
user specified file, FlLEA.

6-7

@MAP FILEA.SYMBOLIC,FILEA.XYZ

Generate the absolute element XYZ in FILEA as directed
by the source element FILEA.SYMBOLIC.

@XQT FILEA.XYZ

Execute the absolute element generated above.

6.1.3. COLLECTOR Control Statements

6.1.3.1. General

In addition to the information specified in the @MAP control statement,

a set of source language control statements can be processed by the COLLECTOR

to provide the user the capability of controlling the construction of even

the most complex programs. The user can enter these control statements via

his control input stream for each collection, or he can create within a

program file a source language control element containing the statements.

This element can be updated by entering the corrections via the control in­

put stream.

IN

Nm

LIB

REF

SEG

DSEG

RSEG

DEF

ENT

EQU

CLASS

COR

SNAP

E~

The control statements recognized by the COLLECTOR include the following:

Include specific elements in the collection.

Exclude specific elements from the collection.

Specify libraries to be searched.

Specify the external references to be retained in the
absolute or relocatable element.

Direct the segmentation of a program.

Specify a dynamic segment.

Specify a re1ocatab1e segment.

Specify external definitions to be retained in the
absolute or re1ocatab1e element.

Specify the starting address of a program.

Give values to undefined symbols at the time of the
collection.

Specify a mask to use in selecting elements for collection.

Specify that corrections are to be made to an element.

Direct positioning of snapshot dumpso

End of source language statements to be processed.

6-8

6.1.3.2. The IN Statement

The IN control statement allows the user to include any or all elements

from any number of files in his collection and specifically in the segment

named by the preceding SEG statement. The format of this statement is the

following:

IN FILEI.ELTl/VERI,FILE2.ELT2/VER2, •••

The fields 'FILEl.ELTl/VERl,' etc., identify specific elements to be

included in the collection. By specifying only 'FILEl.' the user can specify

the inclusion of all elements in a program file.

Normally all the relocatable elements in the run's temporary program

file TPF$, are included in every collection. If the external definitions of

the temporary file have been collected with a @PREP control statement, the

elements are included selectively. In this case TPF$. is the first program

file examined for element inclusion. Elements that are not associated with

files may be included fr?m TPF$, or any program file named in LIB statements.

An element name may appear on only one IN statement and only once in a

collection. It is important, for FORTRAN programmers especially, to note

that no COMMON block name (labelled, or named common) in the collection may

be identical to any element name. Throughout most of the collection common

blocks and elements are handled in a very similar manner, and their names

must distinguish them from one another.

The following are examples on the use of the IN statement:

IN FILEA.,FILEB.
(All relocatable elements in FIIEA and FILEB are included.)

IN FILEB.BB,.CC,DD

(elements BB and CC from FILEB, and element DD, whose file is
not indicated, are included in the collection.)

A whole file may be named on an IN statement and individual elements in

the file may be named on additional IN statements, possibly in different

segments of the collection. The elements explicitly named are included as

specified, and the 'whole file IN serves to subsoquently bring in only the

balance of the file. For example, suppose file MAKE contains elements

named 0001 through 1500. The following commands position element MAKE.0733

6-9

in segment MAIN, and the remaining elements, 0001 through 0732 and 0734

through 1500, in segment OVERLAY:

SEG MAIN

IN MAKE.0733

SEG OVERIAY

IN MAKE.

6.1.3.3. The NOT Statement

The NOT control statement is essentially the inverse of the 'IN'

statement. It allows the user to state explicity which elements within files

are not to be included in a collection. The format of this statement is

as follows:

NOT FILEl.ELTl/VER1,FILE2.ELT2/VER2, •••

Where the successive fields indicate elements not to be included. If the

version name or file name is omitted, all elements with the specified name

are bypassed.

The following are examples on the use of the NoT statement:

(1) @MAP , I A ,A
NOT AA ,BB

(All relocatable elements in the TPF$ except AA and BB
are included in the collection.)

(2) @MAP,I A,A
IN FlLEA.
NOT FILEA.AA, .BB

(All relocatable elements in FlLEA except AA and BB are
included.)

(3) @MAP,I A,A,
IN FlLEA. ,FlLEB.
NOT FILEA.AA,. BB, FILEB • CC, .DD·

(All relocatable.elements from FlLEA except AA and BB, and
all relocatable elements from FILEB except CC and DD are
included.)

The NOT statement is honored for whole files, and overrides any other

.explicit or implicit specifications to wholly or partially include, or

search any file or files. As with the IN statement,. a period must follow

the file name to show that this is not an element being named.

EXAMPLE: NOT TPF$., SYS$*RLIB$.

6-10

6.1.3.4. The LIB Statement

The LIB control statement allows the user to specify libraries to be

serached by the COLLECTOR for the purpose of satisfying external references

and/or finding elements specified without file names. The format of the

LIB statement is:

LIB. FILE1,FIIE2, •••

The names of files to be treated as libraries are specified in suc­

cessive fields. These libraries are searched in the order in which they

are given and before the system library (SYS$*RLIB$) file. Files may be

specified to be searched more than once by naming them more than once in a

LIB statement. Several LIB statements may be specified and their effect is

cumulative. Files are not searched for external definitions if the file has

not been prepared by the FUR PUR @PREP statement.

Typical LIB control statements are as follows:

LIB USERl (File USER1 is searched before the system library).

LIB USER1,USER2
(File USER1 and then file USER2 are searched before
system library).

6.1.3.5. The SEG Statement

The SEG control statement is used to inform the COLLECTOR of the

beginning of a new segment in those programs requiring segmentation. The

format is:

SEG NAME 1 , NAME 2

or

SEG NAME 1 ,.(NAME2 , NAME 3 , •••)

The field 'NAME 1 , is the name of the segment and must be specified. The

field 'NAME2', etc. gives the names of other segments to which the segment

'NAMEl' is being related. A segment can be specified for automatic (indirect)

loading when referenced by suffixing an asterisk to 'NAME1': 'NAME*'.

If the field 'NAME2' is void, the s~gment being specified is originated

immediately following the segment defined by the preceding SEG statement. The

6-11

field 'NAME2' (not included in parentheses) specifies that the segment

being defined is to originate at the same location as does segment 'NAME2'.

If the right hand field contains one or more segment names enclosed in

parentheses, the segment 'NAMEl' is started following the highest address

occupied by any of these segments.

Each segment may have two program areas (banks), namely, the instruction

area and the data area (also referred to as IBANK and DBANK). Therefore,

a segment specified to follow the highest address of several segments may

have its instruction area follow the instruction area of one segment and its

data area follow the data area of a different segment.

The first segment named in the source input is called the main segment

and is not overlayed by other segments.

Segments may be loaded and executed independently of one another. How­

ever, the placement of elements common to several segments may dictate that

some segments must be in memory when others are being executed. Elements

are not necessarily attached to the main segment when they are referenced in

more than one segment but not explicitly included in.any segme~t. Each seg­

ment has a path leading to the main segment. Elements referenced by two

(or more) segments are attached to the segment that is in the path of all the

referencing segments. Named common blocks are likewise in the path of all

segments referencing the block.

The path to the main segment follows the path of the first segment in

its path. The first segment in its path is determined by its relation

specifications 0

SEG A, (B)

or

SEG B

SEG A

SEG A,B

SEG A, (B,C,D)

Segment A's path starts with segment Band
follows B's path to the main segment.

Segment A's path is identical to segment B's

The first segment in A's path is the segment
common to the pa~hs of segments B,C and D.

At least one IN statement must follow the SEG statement.

6-12

All the elements specified on IN statements after this SEG statement

and before the following SEG statement are a part of this segmento Other

elements referenced are included in this segment or in a segment in its path

to the main segment.

6.1.3.6. The DSEG Statement

The DSEG control statement is used to inform the COLLECTOR of the begin­

ning of a segment with special characteristics. This type of segment is called

a dynamic segment. The core area of the segment in excess of normal segments

may be temporarily released to the executive system with a reference to DREL$.

The area is released automatically when a dynamic segment is overlayed. The

area is released only when it is at the end of the program's area. Since

the executive system may need to move other programs to load a dynamic seg­

ment, discretion should be used in designating what segments are dynamic

segments.

The DSEG statement has the same format as the SEG statement.

6.1.3.7. The RSEG Statement

The RSEG statement is used to inform the COLLECTOR of the beginning of a

segment that is relocatable. The segment contains only an instruction area.

Relocation of address fields is accomplished by adding the beginning address

of the segment to the right or left half of the words to be relocated. Re­

locatable segments may not be designated for indirect loading. The elements

to make up a RSEG segment must be explicitly

lowing the RSEG statement o

6.1.3.80 The DEF Statement

named on IN statements fol-

The DEF control statement is used to list those external definitions to

be retained by the resulting absolute or relocatable element. For absolute

elements, the program may be entered by interpretive code (output of the conver­

sational processors) at any of the external definitions listed. The address

of this table is defined by the COLLECTOR to be ENTRY$. It is add"ressable by

the program using the tag ENTRY$. Also, DEF and/or REF statements cause the

COLLECTOR to build a table defining the labelled COMMON blocks in the program.

This table is addressable by the COLLECTOR defined tag COMMN$. The format

6-13

of the statement is:

DEF DEFI ,DEF2 ,DEF3 , •••

Where the successive 'DEFi' fields are the names of external definitions to

be retained. An example of this statement is as follows:

DEF SIN, COS, SQRT

(The listed external definitions are retained by the
resulting element.)

6.1.3 09. The REF Statement

The REF control statement is used to list those external references to

be retained by the resulting absolute or relocatable element. For absolute

elements, the external references listed may be linked to interpretive code

by the interpreter. The table is addressable by the COLLECTOR defined tag

XREF$. The format of this statement is as follows:

REF REFl,REF2,REF3, •••

Where the successive 'REFi' fields are the names of the external references

to be retained. No attempt is made to satisfy these references from either

user libraries or the system library. An example of the REF statement is:

REF SIN,COS,SQRT
(The listed external references are retained by the
new element)

6.103.10. The ENT Statement

The ENT control statement provides the user the capability of overriding

the starting address specified via the entrance to a main program ge~erated

by FORTRAN, COBOL, ALGOL, etc. The format of this statement is:

ENT NAME

Where NAME is an externally defined symbol. Control is transferred to the

absolute location generated for this symbol whenever the program is subse­

quently executed. In the absence of an ENT statement, the starting address

will be taken to be a transfer address encountered in the processing of re­

locatable elements. The starting address must be in the main segment.

6-14

6.1.3.11. The EQU Statement

The EQU control statement may be used to give a value to an undefined

symbol at the time of collection. The format of this statement is:

EQU NAMEl/VALUEl,NAME2/VALUE2, •••

Where I NAME 1 I is a symbol to be defined and IVALUEl l is the value to be given

to the symbol. The same is true for INAME2/VALUE21, etc. Each subfield

'VALUE ii, may be an octal ordecimal integer, a symbol, or a symbol with an off­

set. If a symbol is used, it must be externally defined by one of the

elements to be included. Examples of the use of the EQU statement are as

follows:

(1) EQU JOE/0200
(External reference JOE is defined to be 0200.)

(2) EQU AL/SAM+lO
(External reference AL is defined to be SAM+lO;
SAM must be externally defined.)

(3) EQU JOE/0200, AL/SAM+lO
(Same as 1 and 2)

6.1.3.12. The CLASS Statement

The CLASS statement may be used to specify the relocatable element to be

included in the collection when otherwise more than one element could qualify.

There are two conditions where more than one element may qualify:

(1) The version is not specified on an IN statement and more than one

relocatable element has that same name.

(2) More than one relocatable element defines an external reference

and none of the elements has been explicitly included in the collection, or

all but one explicity excluded from the collection.

The format of the class statement is:

ClASS STRING

Where the field 'STRING' is twelve characters including the special character

asterisk (*). The asterisk designates a character position that is to be

ignored when making comparisons o When several elements qualify to be included

in the collection, the COLLECTOR compares this string of characters with the

6-15

versions of the qualifying elements o If the element does not have the same

characters in the version as the characters of the 'STRING' (for each

character position), it no longer qualifies for inclusion.

When only one element remains qualified after the comparisons, that ele.­

ment is included in the collection. When more than one element still qualifies,

the versions of these elements are compared to the character string of the

next CLASS statement. If more than one element qualifies after the CLASS

statement parameters have been exhausted a diagnostic message is given. None

of the 'qualifying' elements is included in the program since a unique element

may be found in the next library examined. It should be noted that dif-

ferent orders of CLASS statements may give different results.

Assume that the element named SIZE is named on an IN statement and the

following relocatab1e elements are in the temporary library:

SIZE/A2SMALL
SIZE/B3LARGE
SIZE/D3SMALL
SIZE/D2LARGE

The source language to the COLLECTOR is:

@MAP,I S,A

SEG AA

IN SIZE

CLASS **LA********

CLASS D***********

The element SIZE/D2LARGE is included in the collection. The one class statement:

CLASS

will give the same results.

6 0 1.3.13. The COR Statement

The COR statement is used to specify that relocatable corrections are to

be made to an element included in the collection. The format of the COR

statement is:

COR ELT

The relocatable corrections for the element 'ELT' follow the COR statement.

6-16

Relocatable corrections may be one of three formats:

ADDRESS,LCI F J A X H I U,LC2,ELTl

ADDRESS,LCI DATAWORD

ADDRESS,LCI DATA,LC2 DATA,LC2

The field 'ADDRESS' specifies the relative address under location counter

'LCI' to make the correction. The F, J, A, X, H and I fields correspond to

portions of the UNIVAC 1108 instruction word. The fields lUi and 'DATA'

may be a symbol, symbol and offset or an octal or decimal number. Octal

numbers require a leading zero. The field 'DATAWORD' must be numeric. The

optional field 'LC2' indicates that the lUi or 'DATA' fields are relative to

the value of the location counter 'LC2.' The optional field 'ELTl' ~pecifies

the element in which 'LC2' belongs, if it is other than the element being

corrected. The 'DATA' fields represent the upper and lower halves of the word o

COR statements are bypassed in an R-option collection.

6.1.3.14. The SNAP Statement

The SNAP control statement specifies elements in which snapshot dumps

are to be taken. The format of the statement is:

SNAP ELT

The field 'ELT' is an element included in the collection. Statements

following the SNAP statement give the parameters for the snapshot dump The

format is:

ADDRESS, LCl ADDRESS LENGTH,R T.IMES ,FREQUENCY

The field 'ADDRESS,LCl' specifies the address of the instruction to be

replaced with a dump request. The field 'ADDRESS' gives the address to start

the dump. The field may be 'U,LC2,ELTl' or symbol and offset as in the COR

statement parameters. The field 'LENGTH' specifies the length of the memory

area to dump. The field 'R' is used to indicate which of the registers is to

be printed according to the values:

R = O-no
l-R
2-A
3-A
4-X
5-X
6-X
7-X,

registers
registers
registers
and R registers
registers
and R registers
and A registers
A and R registers

6-17

The 'TIMES' field specifies the number of times the snapshot is to be

taken. If omitted, the value is 100. The field 'FREQUENCY' specifies at

what intervals the dump is to be taken. The value three specifies the dump

to be taken every third reference; five every fifth reference, etc. The

value of one is assumed if the field is omitted.

At most sixteen snapshot parameter statements may be included in one

collection.

What actually happens with a snapshot dump request is that an 'SLJ SNAP$$'

instruction is inserted at the location at which the SNAP is called. SNAP$$

is an entry point in element SNAP$. The replaced instruction word is saved

in a table in element SNAP$. After the dump is taken, the saved instruction

is executed from within SNAP$ as if it had not been moved. If the saved

instruction is a jump, control goes immediately to the jump designation.

Otherwise, control is transferred to the location following the location at

which the SNAP is called.

Because of this execution of the replaced instruction from within SNAP$,

the replaced instruction must not be -

- Altered during the course of program execution.

- Referenced as data.

- Referenced by indirect addressing.

- an SLJ which specifies indirect addressing or indexing.

- an 1MJ which specifies indexing.'

- an EX which indirectly references an LMJ or SLJ.

- a TESr skip instruction.

6.1 0 3.15. The END Statement

If a data statement (as opposed to a control statement -- @ in column 1)

which is unrelated to the collection follows a @MAP statement, an END statement

placed after the last COLLECTOR source statement may be necessary to tell the

COLLECTOR to disregard the data statements following. The format of the

statement is:

END

)

6-18

6.1.4. Functional Aspects

Functionally, the COLLECTOR must interpret the source input language,

find the elements to include, and generate the output listing. The following

description pertains to the procedure for the more general case of a seg­

mented program; however, a non-segmented program can be considered as being

a segmented program with only a main segment.

Initially, parameters from the @MAP (or @XQT) control statement are

obtained and interpreted. All of the COLLECTOR control statements are in­

terpreted and saved in tables internal to the COLLECTOR. Diagnostic mes­

sages are given where appropriate. Elements named on IN statements but not

preceded by a file name are maintained in a list apart from elements named

with a designated file name.

Elements are added to the collection in two steps. The first step in­

volves finding ,the elements explicitly named on IN statements, and processing

the information contained in the preamble section of each element. In

addition to the explicitly named elements, all the elements in the run's tem­

porary program file (TPF$) may be automatically processed in step one. When

TPF$ has been prepared by the @PREP statement (a blank name field on a

@PREP statement always implies TPF$), the automatic processing of its elements

is inhibited. TPF$ elements automatically processed are added to the pro­

gram only if references are made to them, or if there are no IN statements

at all (which the COLLECTOR treats as an implied: IN TPF$).

TPF$ is always the first library searched for elements explicitly named

but without file designation. (the COLLECTOR includes TPF$ as the first entry

in its internal LIB table, as if there had been a LIB TPF$ statement). Files

actually named on LIB statements make up the second level of searching. The

last level of searching covers SYS$*RLIB$ (See EXECUTIVE CONTROL LANGUAGE

CHAPTER: SYSTEM LIBRARIES). SYS$*RLIB$ is @PREp'ed at system boot time,

and the COLLECTOR includes it automatically as the last entry of the interal

LIB table, except in an R-option @MAP.

The preamble of an element includes the definition of each entry point

in the element, the length of each location counter used, every symbol yet un­

defined in the element, and common blocks defined by the element. In processing

the preambles, the entry points of the element are put into the internal

6-19

collector EP table. The undefined symbols are linked to an entry point by

the same name in the EP table, or added to the list of symbols yet undefined

(the UNDE list) from elements previously processed. Symbols are removed

from the UNDE list as entry points of the same names are encountered in

processing preambles.

The second step in adding elements to the collection involves searching

libraries for elements with entry points of the same names as those in the

UNDE list, accumulated in processing preambles of included elements. Only

libraries that have been @PREp'ed (entry point table prepared) will be

searched in the second step. Every undefined symbol currently in the UNDE

list is looked for in each library. When an element is found with an entry

point by the same name, the preamble of that element is then also processed

as described above. The UNDE list is processed from top to bottom with new

symbols added to the bottom. TPF$ is searched first, then files named on

LIB statements, and then SYS$*RLIB$.

The order of the appearance of user-specified elements in any segment of

a program will be the same as that in which they were specified so long as

each was specifically named on an IN statement o When all elements within a

file are included in a segment, the ordering of the elements within a group

so specified will be random. An element included by a library search ap­

pears immediately preceding the user specified elements of the segment in the

path of all segments referencing the element.

The most efficient collection results when every element desired in the

collection is explicitly named, including file name. The reason for this is

the @PREP requirements and library searches are eliminated.

The first address of the instruction area is assigned 01000 (octal).

The address of the data area is always greater than the highest address of

any reentrant processor in the system. Odd location counters of an element

(1,3,5 etc.) are assigned to the instruction area. Even numbered counters

(0,2,4 etce) are assigned to the data area. Blank COMMON is assigned to

the data area of the main segment. A named COMMON block is attached to the

segment (if not named on an IN statement) in the path to the main segment of

all segments referencing it.

Symbolic names of external definitions and external references (see

6-20

comments on the COLLECTOR DEF and REF statements), segment names, qualifier

names, file names, element names, version names, and common block names, insofar

as COLLECTOR restrictions are concerned, may be up to twelve characters in

length and may contain any combination of alphabetic, numeric, $ or hyphen

characters.

6.1.5. COLLECTOR Defined Symbols

In addition to the COLLECTOR defined symbols ENTRY$, COMMN$ and XREF$,

Three more symbols are avilable to the user. The tag LASTD$ is given the

value of the last address of the data area at collection time. Likewise,

LASTI$ is the last address of the instruction area. The address of the

segment load table is made available to the diagnostic system by defining

the tag SLT$.

6.1.6. Program Segmentation and Loading

The following example is given to illustrate the use of the segmentation

facilities of the COLLECTOR.

Assume FILEA has the following relocatable elements with the indicated

references outside of the file:

FILEA elements
NAME/VERSION

MAIN
Al/A
A2/A
A3/A
Bl/B
B2/B
B3/B
Cl/C
C2/C
Dl/D
D2/D
El/E
E2/E
Fl
F2
Gl/G
G2/G
G3/G

References outside of FILEA required
FILE.NAME/VERSION

FILEA .Al, Bl ,Fl

LIBl.SIN/X
LIB2.COS/X
LIB 10 SQRT /X

LIB 1 • SQRT /X

LIB2.CAT/Y

LIB2.CAT/Y

LIBl.SIN/X
LIB2.COS/X

A particular collection setup for segmenting a program from this file

might be as follows:

6-21

@PREP
@PREP
@MAP,LI
SEG
IN
SEG
IN
SEG
IN
SEG
IN
SEG
IN
SEG
IN
SEG
IN
SEG
IN
LIB
@XQT

LIBl.
LIB2.
MAPSYM,MAPABS
MAIN
FILEA.MAIN
A'/(, (MAIN)
FILEA.Al/A, .A2/A, .A3/A
B*, (A)
FILEA.Bl/B,.B2/B,.B3/B
C·/(, B
FILEA.Cl/C,.C2/C
D*, (B ,C)
FILEA.Dl/D, .D2/D
E1(, D
FILEA.El/E, .E2/E
F~'(, (D ,G)
FILEA.Fl, .F2
G1(, (MAIN)
FILEA.Gl/G,.G2/G
LIBl, LIB2

This particular set of control statements would result in the memory

structure illustrated below. The horizontal coordinate is used to denote

increasing memory addresses from left to right. Segments with cornmon hori­

zontal coordinates may not be in memory simultaneously.

INSTRUCTION AREA MEMORY MAP

01000
CAT
SQRT

COS -Al-A2-A3--

--BI-B2-B3----
-Dl-D2--

SIN -El-E2-----
-MAIN---- --Cl-C2-- -F1--F2-----

---Gl---G2-------------------------

DATA AREA MEMORY MAP

N
CAT -Bl-B2-B3---
SQRT -Dl-D2--IDL$

COS
SIN

-Al-A2-A3-- -E1-E2-----
---Cl-C2-------

-LT-BC-MAIN---- --F1-F2---------
--G1--G2------

IDL$ is the name of the indirect load routine and is always in the

main segment.

LT represents the segment load table and indirect load table generated

6-22

by the COLLECTOR.

BC stands for blank COMMON.

Note that the element CAT is attached to segment A and not segment B or

segment C.

The first address of the data area, N, is greater than or equal to the

mimimum data area address specified at system generation time. This enables

the data area to be linked to reentrant processors. N is always a multiple

of 01000.

6.2. The Procedure Definition (@PDP) Processor

6.2.1. General

The PROCEDURE DEFINITION PROCESSOR (PDP) accepts source language defining

1108 FORTRAN or COBOL procedures and builds an element in the user defined

program-file. These procedures may subsequently be referenced in a compila­

tion without definition.

Onetablewill be generated for each type of procedure (FORTRAN,COBOL) in

a program file. This table will contain any labels that are defined externally

to the procedure. In the case of FORTRAN and COBOL procedures, these will be

the labels on the proc line. When a call is made for a procedure in a source

program the system automatically retrieves the procedure. If more than one

procedure of the same type (FORTRAN, COBOL) has the same label an entry will

be made in the table for each procedure, but a calIon that procedure will

produce the last one entered.

The PROCEDURE DEFINITION PROCESSOR is called whenever a PDP executive con­

trol statement is encountered. The format of this statement is as follows:

@PDP,OPTIONS SI,SO

The field 'OPTIONS' may contain any of the standard processor option

letters plus any of the following letters to indicate directions to the

procedure definition processor:

F Indicate a FORTRAN procedure element.

C Indicate a COBOL procedure element.

When the 'F' option is present, PDP assumes it is inserting or updating

a FORTRAN procedure element. When the 'c' option is present, the PDP assumes

it is inserting or updating a COBOL procedure element. The L option causes

6-23

a listing of the output element o The Nand S options are ignored.

The fields 'SI' and 'SO' are of the standard format for symbolic element

description. The field 'SIt normally identifies an input element by file,

element name, version, and cycle. However, when the I option is used, 'SI'

is the identification to be given to the new program file element.

The field 'SO' is used as the identification of a new output element

whenever it appears. Standard system dropout rules apply to both lSI' and

'SO' •

The I option is used solely to introduce source card images into a

program file. When applying corrections to an element, the I option is not

permitted~

PDP will permit processing procedural elements from a tape file that is

in element file format. Furthermore, corrections to this element are permitted

if a source element is produced in a program file. PDP will not attempt to

interpret the names on a control card; i.e., it will make no effort to insure

uniqueness or avoid possible duplication of names in lSI' or 'SO' fields.

Cycle of procedures is permitted. The cycle number may be increased if

the U option is on, but only one is retained, and when the procedure is

called for inclusion, the latest cycle is given.

Some examples on the use of the @PDP statement are as follows:

@PDP ,LC A. B, C

@PDP,LC A.B,.C

@PDP,UF A.B

@PDP,IF AFILE.PROC/AB

Produce a.COBOL procedure element from file A
(if it is PF or tape file) element B and put
the new source code in File TPF$, element Co

Produce a COBOL procedure element from program
file A element B, call it element C and put it
in program file A. Produce a complete listing.
Both elements Band C are retained. A' tape file
is not permitted for 'SO'. PDP will error out
but will not abort unless the 'X' option is on.

If file A is a program file element B has its
cycle increased by 1, and the element is entered
into the program file named 'A'. A may not
designate a tape file.

(Procedure definitions following the @PDP are
introduced into AFILE as element PROC, version
AB, cycle 0.)

6-24

@PDP,UC BFILE.PAT/DE

@PDP,F AF.PRl,BFoPR2

(Corrections are applied to element PAT, version
DE, latest cycle, in BFILE to produce an updated
cycle of the same element in the same file.)

(Any corrections following the @PDP statement are
merged with the most recent cycle of element
PRl from file AF to produce cycle a of element
PR2 in file BF.)

If PDP is processing elements from a tape file, the file must be positioned

so the label block will be read in. If the name in the label block does not

agree with the 'SII element name, PDP takes the error exit.

6.2.2. FORTRAN Procedure

A FORTRAN procedure contains FORTRAN source language that is to be in­

cluded in a compilation by use of the FORTRAN INCLUDE statement. The current

version of the FORTRAN V programmers reference manual (a UNIVAC publication)

should be consulted for rules concerning the files searched for a procedure

at INCLUDE time. See the section on the INCLUDE statement. If no definition

is found, the compiler gives an error indication.

The FORTRAN procedure has the form:

AA PROC

(FORTRAN STATEMENTS)

E~

An entry will be made in the program-file FORTRAN procedure table for the

label 'AA'. The END statement for FORTRAN procedures must begin in column

two (2).

6 0 2.3. COBOL Procedure

A COBOL procedure contains COBOL source language that is to be included

in a compilation by use of the COBOL INCLUDE and COPY verbs. Consult a cur­

rent COBOL manual to determine compiler action upon encountering a COpy

or an INCLUDE. If no definition is found, the compiler gives an error indicatoro

The COBOL procedure has the form:

AA PROC

(COBOL STATEMENTS)

END

6-25

An entry will be made in the program-file COBOL procedure table for the

label· 'AA'. 'END' must begin in column 2.

6.3. TEXT EDITOR (@ED)

The Text Editor is capable of manipulating images in Standard Data File (SDF)

format files and/or elements of program files. It may be used to insert images,

change images or portions of images, and to delete images. It can be used to

make a copy of an SDF format file and insert it into a program file as an element,

or conversely, to overwrite an SDF format (or unformatted) file with the contents

of a symbolic element to produce a new SDF format file. The ED processor is con­

versational in nature and as such is mainly used in demand mode. However, there

are occasional batch applications for which ED is appropriate. Details on the

ED processor may be found in the Demand Terminal User's Manual for the UNIVAC

1108, an RECC publication.

6.4. The @ELT Processor

The @ELT control statement introduces an element into a particular program­

file from the control stream. It may also be used to make corrections to a source

element ~n a program-file. The element or the corrections follow the @ELT state­

ment in the control stream.

The format of the @ELT statement is:

@ELT,OPTIONS SI,SO,SENTINEL

The options are:

A

R

S

D

I

U

Absolute Element

Relocatable Element

Symbolic Element

Data Element

Insert. Initial insertion of an element into a
program file.

Update. Produce a new cycle of source language.

L Produce a listing of the complete source element.

The options 'A', 'R', 'S', and 'D' identify the element types. Types'S' and

'n' are both considered source language elements and may be corrected in the same

manner (see section 4.6 'PROCESSOR CALL STATEMENTS'). A source language element

in a program-file has the same format as the system data file. When an 'A', 'R',

'S', or 'n' option is not present the'S' option is assumed.

The @ELT statement initiates the element processor which operates in one of

two modes. It inserts new elements into the program-file from the control stream

or updates an element already in the program-file.

6-26

The field 'SIt identifies the input element by file, element name,

version, and cycle (when appropriate). Field 'SO', if specified, identifies

the new output element.

When the 'I' option is specified, the element in the control stream

is given the name specified in the 'SI' field and inserted into the program­

file specified in the 'SIt field.

When the 'U' option is specified, the corrections in the control stream

are applied to the element identified in the 'SIt field~ and a new cycle of

the source language is produced.

When the 'SO' field is present the corrections in the control stream

are applied to'SI', and a new source element is produced. It will be given

the name specified in the 'SO' field and inserted into the program-file

specified in 'SO' field.

The 'L' option will produce a complete listing of a source element. The

'L' option is not applicable for absolute or relocatable elements.

When the 'U' or 'I' option is not present and the 'SO' field is void,

the 'L' option is assumed and 'SI' will be listed.

The 'data element' may contain control statements. Therefore, the data

following the @ELT,D statement must be terminated with an @END statement

with a sentinel exactly the same as found on the @ELT,D statement. The sen­

tinel field need not be coded (blank sentinels). It is a six character

field used to search out the proper @END sentinel. All images will be

passed into the data element being created until an @END command is found

with the same character string. The @ELT,D statement may be used to insert

@RUN or @ADD control streams into a program-file as elements which may be

called later by the @START or @ADD statement.

Element types 'A', 'R', and'S' are terminated by the next control

statement in the control stream. They need no corresponding @END command;

therefore, no sentinel is necessary.

When an element is punched by a processor or by program utility routine

(FURPUR), it is always preceded by a @ELT control statement. The 'FILENAME'

on the punched @ELT is that of the file from which the element was punched.

Such decks can simply become part of the input to subsequent runs. (The

file name must be changed if the element is to be added to a file different

6-27

from the one from which it was punched.)

The automatic deletion rules apply to the insertion of elements by an

@ELT control statement.

Examples

@ELT,I PF.E

SOURCE IMAGES

@ELT,U PF.E

CORRECTIONS IMAGES
\

@ELT PF.E,PF.N

CORRECTION IMAGES

@ELT,L PF.E

@E;LT PF.E

@ELT,L PF.E

CORRECTION IMAGES

@ELT,IA PF.E

· A new symbolic element

· 'E' is inserted in the

· Program-file 'PF'.

· The corrections following

· this statement are applied

· to the element 'E' of

Program-file 'PF'.

· The updated element 'E'

Replaces the old 'E' in

• The program-file.

· The corrections following

· This statement are

· Applied to the element

· 'E' to produce a new

· Element 'N'.

· Element 'E' will be listed.

Element 'E' will be listed.

· The corrections following

· This statement are applied

· To the element 'E'. The

· New element will be

· Listed, but a new element
\

· Will not be produced~

· A new absolute element

· 'E' is inserted in the

· Program-file 'PF'.

6-28

ABSOLUTE IMAGES

@ELT,IR PF.E

RELOCATABLE IMAGES

@EOF

PREAMBLE IMAGES

@ELT,DI PF.D"X

DATA IMAGES

@END X

6.S. The @DATA Processor

· A new relocatable element

· 'E' is inserted in the

· Program-file 'PF'.

· A new data element 'D'

· is inserted in the

· Program-file 'PF'.

The @DATA statement may be used to introduce standard format data files,

found in the control stream, into the system for residence on a mass storage

device. A primary use for this feature is to allow the user to build data

files which are ac~ually whole or parts of control streams. These files can

then be called on by the @START statement to start an independent run, or

by the @ADD statement for inclusion into the current run or a subsequent

run. A data file correction feature is also available via the @DATA

statement. The user can make a correction to an independent runstream and

then @START it, or make corrections to a partial stream and then @ADD it

to the run. The @DATA statement can of course simply be used as a conveni~nt

6-29

means of generating and maintaining a user data file, rather than a control­

stream type file.

The format of the file created as a result of the @DATA statement is

the systems data file format.

The format of the @DATA control statement is as follows:

@DATA,OPTIONS FILENAMEl,FILENAME2,SENTINEL

The options field may contain the following characters:

I Insert. Initial insertion of data into the file.

U

L

Update. Produce a new version of the data.

Produce a complete listing of the file.

The 'L' option will produce a complete list1ing of the file which will in­

clude sequential item numbers. These item numbers will be used when making

corrections to the file. Corrections to the file are made in the same manner

as corrections to a source language element. (See section on 'PROCESSOR

CALL STATEMENTS'). If 'L' and 'FlLENAMEl' are the only information present

in the @DATA statement, 'FILENAME 1 , will be listed.

When the 'I' option is present, the data following the @DATA statement

is written to 'FlLENAMEl'.

When the lUI option is present, the data following the @DATA statement

is taken as corrections to 'FlLENAMEr and a new F-cycle of 'FILENAMEl'

is produced. The next F-cycle of 'FILENAMEl' must have been previously

assigned by the user, as in:

@ASG,C FILENAMEl(+l), F2

If neither the lUI or 'I' option is present, the data following the

@DATA statement is taken as corrections to 'FILENAMEl', and a new updated

file ('FlLENAME2') is created.

If neither the 'I' or lUi option is present and ,the 'FlLENAME2' field

is void, the 'L' option is assumed and 'FlLENAMEl' is listed. No new file

will be generated.

The data following the @DATA statement is terminated with an @END

6-30

statement with a matching sentinel. As in the @ELT,D statement a search

is made for the appropriate @END with all images in between placed in the

data file.

Any control statements (except @FIN) appearing between the @DATA

statement and the end of data sentinel @END are treated as data by the

system. This allows control streams to be entered as files and called later

for execution.

Demand users should note that if a @DATA statement is rejected for any

reason, an @END statement is still required. Otherwise, additional control

statements will be considered as data and ignored.

Examples:

This statement will generate a new file 'Xl containing the data

following the statement a

@DATA,I X

data images

@END

This statement will apply the corrections to file 'Xl and create

a new file 'yl.

@DATA X,Y

correction images

@END

This statement will list file 'yl.

@DATA,L Y
@END

This statement will list file 'yl.

@DATA Y
@END

6-31

This statement will apply the corrections following the statement

to file 'X'. The new file will be listed, but a new file will not be generated.

@DATA,L X

... '

correction images

@END

This statement will generate a new file 'A' containing the data

following the statement. File 'A' will also be listed o

@DATA,IL A

data images

@END

This statement will apply the corrections .followipg the statement

to file 'X' and create a new F-cycle of file 'X'.

@DATA,U X

correction images
'I • •

@END

This is an example of nested @DATA statements. The sentinel

field must be coded on one set of @DATA/@END statements.

@DATA, I
@RUN
@ASG,T
@DATA, I
@PACK
@PREP
@PRT,T
@END
@COPY,P
@ADD
@END

RUN

FIL,F
FIL, ,SENT

SENT
PROGFIL
FIL.

6-32

6.6. The @END Statement

The @END control statement marks the end of the data that follows a

@DATA or @ELT,D statement. The format of the @END statement is:

SENTINEL

This statement cannot be continued on a second line. The sentinel

field is optional. It is coded exactly the same as the corresponding field

on a @DATA or @ELT,D statement when being used to bracket images of the

data.

6.7. The @LF Processor

Users need a method of obtaining a list of their catalogued mass storage

files and of determining certain characteristics of each file. The List

Files Processor LF has been designed to do this efficiently, both in terms

of machine time used and printout produced. User convenience was the prime

consideration, and resulted in such features as (1) specially formatted

teletype output, (2) a wide range of listing options so that unwanted infor­

mation need not be printed, (3) the ability to handle all files belonging

to a user or only files specified by him, and (4) processor initiation and

termination messages to inform the user of the status of his run while

directory information is being processed.

6.7.1. The @LF Processor Call Statement

The user directs the action of LF via a processor call statement of

the form:

@LF,OPTIONS FILENAMEl, ... , FILENAMEn

'FILENAMEl, ..• ,FILENAMEn' specify in standard FILENAME format, a list

of catalogued files to be processed by LF. If no such specifications are

given, then LF will process all files belonging to the user.

6-33

The options fall into two categories: listing options and general

options. The listing.options determine what information is to be printed

for each file processed. In general, each listing option causes the

printing of one or more codes (an abbreviation for the type of information

being given), followed by a hyphen and then the actual information. For

example, the S option causes the code SZ (an abbreviation for size) t'o be

printed, followed by a hyphen and the actual size of the file (an integer

equal to the number of tracks the file currently occupies). A summary of

the listing options follows.

LISTING
OPTION -----

A

B

C

H

CODE (S)

F2
F4
F8
F17

TFW

BU

CA

HGA

MEANING

Allocation on Fastrand II
Allocation on FH432
Allocation on FH880
Allocation on FH1782
The number of tracks the file is occupying on each
equipment type. If a particular equipment type is
not allocated on, then its code will not be printed.

Time of First Write since Backup
The date and time that the file was first written
into since the last time the computer center copied
mass storage to tape. NONE is printed if the
file has not been written into, indicating that the
computer center's tape backup has a current copy of
the file on it.

Backup Date and Time
The date and time that the file was last copied to
tape by the computer center.

Current Assigns
The number of runs that currently have the file as­
signed to them.

Highest Granule Assigned
The number of the highest granule, relative to the
beginning of the file, that is assigned to it.

HTR Highest Track Referenced
The number of the highest track referenced, relative
to the beginning of the file.

6-34

N NA -

o (none)

P (none)

R (none)

S sz

T CAT

IR

U (none)

Number of Assigns
The total number of times the file has been assigned.

Options
The options used on the initial @ASG or @CAT for the
file are printed to the left of the filename. These
include P(public) , R(read-only), W(write-only),
G(guarded-no backup allowed), and V(unload inhibit).
X is printed if the file is currently exclusively as­
signed to some run.

Parameter
The facilities field from the initial @ASG or @CAT of
the file is printed to the right of the filename. For
mass storage files, this includes equipment type,
initial reserve, granularity, and maximum granules.
This is the information used to detect files catalogued
with an illegal equipment type.

Reference Number
The reference number under which the file was catalogued.

Size
The number of tracks occupied by the file. This is the
information used to detect files that are too large.

Time of Cataloguing
Date and time are printed.

Time of Last Reference
Date and time the file was last assigned are printed.
This is the information used to detect expired files.

User Name
The user name under which the file was catalogued.

If no listing options are given, then only the filename is printed.

GeneLal options direct the overall operation of the processor, and include

the following.

GENERAL
OPTION

L

D

MEANING

Detailed Listing
Specifying the L option is equivalent to specifying
all the listing options.

Delete Undesirable Files
Files of size 0, of size greater than the current
legal maximum, and with improper equipment type are
deleted. Only the deleted files are listed. The
listing options specify the information to print
concerning each file deleted.

6-35

E Delete Expired Files
Files whose time of last reference is prior to the
current date minus the expiration period are deleted.

F Sort
The listing produced is sorted by qualifier, file,
and F-cycle.

W Wide Page
Output is formatted to fit a 132 character line
(batch or DCT 500). If W is not specified, output is
formatted to fit a 72 character line (telety.pe or
equivalent).

6.7.2. Functional Aspects of @LF

The @LF processor never assigns a user's file to the run; hence an @LF

statement never alters the last reference time for any file. Thus, a

periodic @LF of files is not sufficient, in itself, to protect files from

expiring.

The temporary file TOIR$ is assigned to the run for holding directory

information. If @LF terminates normally, this file is @FREE'd. If no

specifications were given, @LF requests that the executive copy the directory

into the file TOIR$, causing a noticeable delay between the LF s~gn-on and

the first line of information. If specifications were given, a check is made

, to determine if the specified files are assigned to the run. If so, the copy

of the entire directory is avoided and delay is eliminated. Thus a user may

speed up action of @LF by assigning all files named in @LF specifications

prior to entering the @LF processor call.

Whenever an @LF call has been processed, the message END LF and the

total number of tracks occupied by the files processed will be printed. @LF

will not terminate; rather, it will look to see if the next control card is .

an @LF call. If so, it will be processed immediately using directory

information already retrieved. Thus, the delay required to copy the directory

into TDIR$ need only occur once for many @LF ·calls.

For the demand user, this means @LF may be called once to list all files

(causing a directory copy), then again to list detailed information about

particular files. The additional @LF calls will be processed without a

delay for copying the directory.

6-36

This also means that all information listed by a series of @LF calls

will reflect the directory as it was for the first @LF call. If a demand

user wishes to monitor the status of the directory he must enter a control

statement other than @LF between @LF calls. This would be useful, for

example, to monitor the current assigns for a file referenced by a @START

run. When the current assigns increases, the run has started; when it

decreases, the run has finished.

Certain error conditions cannot be handled by @LF. In this case, the

message ERROR IN PROCESSOR is printed. These conditions are limited, for

the most part, to hardware device I/O errors and improper directory struc­

ture. The ERROR IN PROCESSOR message may indicate that the integrity of

the master file directory is in peril, and it would be wise for the user

to transfer recent changes to his mass storage files to another media

such as punched cards, punched paper tape, or magnetic tape.

6.7.3. Examples of the @LF Statement

@LF

The qualifier, file name, and F-cycle for each file catalogued by

the user (under any reference number) are listed.

@LF,L

All catalogued file information pertaining to the user is printed.

It might be instructive to compare this output to the output of a @PRT

statement.

@LF ,OPA PROGFILE, ~UR .. 'cDATAFILE. ,X (3) .

The cataloguing options, cataloguing parameters, and allocation summary

are printed for the most recent F-cycles of files user-name *PROGFILE and

OUR~'(DATAFILE, and for F-cycle 3 of file user-name~~X. Note that if any of

the FILENAME subfields are specified in addition to the FILE subfield, the

field must be terminated with a period.

@LF,PAT

The cataloguing parameters, allocation summary, and dates and times

of cataloguing and of last reference are printed for each of the user's

6-37

files. This information is sufficient to determine if a file is subject

to deletion by the computer center. Note that a file of zero size will

not have any allocation summary, since it does not actually occupy any

equipment type.

6.8. The LIST Processor

The LIST processor is designed to produce a readable edited listing

of all types of elements. In connection with' the notes given below the

listings are self~explanatory. If, because of some error, an element is

too badly formed to be listed, features,are available for dumping the

element in octal.

6.8.1. The Processor Call Card

The general format of the processor call is:

@LIST,options El, ... ,En

Where El, ... ,En are element names in full element notation. The files

mentioned in the element names may be either catalogued or assigned to

the run. If the element name Em (m>l) has a leading '.' then the file

used will be the file used for the previous specification. The element

cycle sub field is ignored.

The following options determine the types of elements listed:

A List absolute elements (type 6),

R List relocatable elements (type 5),

S List symbolic elements (types 1,2,3, and 4).

At most one of these options may be coded. If none of these options

are coded, then the 'Sf-option will be assumed.

If the 'Of-option is coded in addition then the elements will be

dumped in octal with no attempt at editing.

6-38

6.8.2. Notes on the Printed Output

6.8.2.1. Symbolic Elements

1. Every SDF image in the element, including control images, will
be printed along with the image length and the relative word
address of the image.

2. Source images which belong to the most recent symbolic cycle
\

will be numbered. The cycle information for all source images
will be printed.

3. If the symbolic element is an Assembler, COBOL, or FORTRAN
procedure, the appropriate procedure name table will be printed.

6.8.2.2. Relocatable Elements

1. Each text word will be printed as twelve octal digits. The
j-field (bits 29-26), a-field (bits 25-22), x-field (bits 21-18),
and hi-fields (bits 17 and 16) will be printed below the text
word.

2. The following abbreviations are used when the relocation infor­
mation is printed:

LC Location Counter

XR External Reference

LH Left Half (bits 35-18)

RH Right Half (bits 17-0)

LA Left Address (bi ts 33-18)

RA Right Address (bits 15-0)

6.8.2.3. Absolute Elements

1. See note 1 for relocatable elements.

2. The following abbreviations are used when printing the relocation
information for relocatable segments:

L Left half relocated

R Right half relocated

6-39
"

6.9. The TSTCAT Processor

The TSTCAT processor is used to test for the existence of a catalogued

file, recreate it if necessary, and assign said file to the user's run.

Normally, RECC attempts to g~arantee the presence of files such that the

TSTCAT processor need not be used. However, a user may be required to main­

tain a file himself as a G-option file if, for instance, the size of the

file exceeds the current maximum allowable size. In this case, TSTCAT is a

valuable tool.

When TSTCAT is ca lIed, it willI attempt an assign of the specified

filename from the directory. If the attempt is successful, TSTCAT exits

normally. If the assign is rejected because the file is not in the directory,

the options and specifications control TSTCAT processing.

The format of the processor call card is:

@TSTCAT,OPTIONS FILENAME. , TAPE IREEL, MOVE, MAXT

The available options are:

C - Do not terminate run if there is a TSTCAT or FURPUR error

E - Create an entry point table for the file (i".e., issue a @PREP
command)

F - Create the file with @COPY,F instead of @COPIN

G - Create the file with @COPY,G instead of @COPIN

I - Do not free the tape if it had to be assigned

M - Medium density tape (556 bpi)

P - Create public file if recata loguing is done

R - Create read-only file if recataloguing is done

X Assign file with exclusive use

The specifications are interpreted as follows:

FILENAME - Catalogued mass storage file~ame in standard notation.

TAPE

REEL

MOVE

MAXT

- Tape filename to be used if recataloguing is necessary.

- Reel number of TAPE.

Number of end-of-files to move over before file is reached.

Maximum size of file, in tracks.

MOVE and MAXT are optional; if they are present, TAPE/REEL must be

present. If MOVE is omitted, no move is performed; if MAXT is omitted,

6-40

128 is assumed. High density and @COPIN are assumed unless overridden with

options.

If the file can be assigned from the directory (@ASG,A successful),

T3 of the condition word is set to 0000, and TSTCAT exits. If the file is

not in the directory, T3 of the condition word is set to 0001. If only

FILENAME is specified on the processor call card, an exit is taken. The

user may use conditional control statements to control his run, and take

any action he desires upon detecting the absence of the file.

If specifications other than FILENAME are given, TSTCAT will build a

partial runstream in the file TSTCAT$ADDFL and @ADD it to the run. The

added runstream will assign TAPE, catalogue FILENAME with a G option, and

load the text of FILENAME from TAPE as specified by the options.

6-41

7. THE DIAGNOSTIC SYSTEM

7.1. The @PMD Stat,'=ment

7 • 1. 1. Genera 1

A POST-MORTEM DUMP executive control statement may be used to dump core

memory following the execution of a task. Dumps may be made of overlay

segments, elements, or specified parts of elements, as long as they were

currently in core at the time the routine terminated. Several options are

available for output formatting and for selecting the core areas to be dumped.

The general form of the control statement is:

@PMD ,OPTIONS SPECIFICATIONS

If no information was saved by the system when the previous execution

terminated, no dumps are possible. This condition may be caused by a 'z'

option given to the COLLECTOR when the program was constructed, by a mis­

placed @PMD card, or by certain rare error conditions. In the event that

no dump is available, a message is produced 0

The @PMD statements must follow the @XQT statement of the program that

has terminated in order to be honored. Only pure data, @EOF's, and the con­

ditional statements: @SETC, @JUMP, and @TEST may intervene. An example follows:

NO. STATEMENT

1

2

10

11

12

13

14

15

@XQT

DATA

DATA

@TEST

@JUMP

@SETC

@PMD

@XQT

PROGX

TE/6/S3

3

6/S4

ELEMENT-I, ELEMENT-2

PROGY

7-1

If PROGX terminates before processing all of the data statements that

follow the @XQT and, if S3 of the condition word has a value of 6, then s4

of the condition word will be set to 6 and statement numbers 14, 15 will

be honored for processing. When statement 16 is encountered, the run will

be terminated if it is not demand.

7.1.2. Options

Options are selected through use of option letters punched into the

@PMD card. The options fall into the following classes: (1) General,

(2) Special, (3) Options with Specials, and (4) Blank.

7.1.201. General Options

The general options may be used with any others in a @PMD statement.

They are:

(1) 'E' option" if the letter E is placed in the options
field, the @PMD statement will be processed only when
the previous routine terminated in error.

(2) 'c' option: the'C' option will cause a dump of the
words that were changed during the execution of the al­
located program for the area of core prescribed by the
specifications portion of the@PMD statement.

(3) 'B' option: after processing the rest of the @PMD
statement, this option will cause an octal dump of all
of blank common's storage.

(4) 'p' option: the letter 'pi used in conjunction with ~ny
of the other options known to PMD will cause an octal
dump of the PCT b1ock(s) used by the run to be printed
preceding the dump of the program. The blocks are dumped
in octal format. The segment load tables (if any exist)
are also dumped in octal format if the 'p' option
is specified.

7.1.2.2. Special Options

Only one special option should be used on a single @PMD statement. If

more than one special option is used, the special 'A' option is assumed.

All special options require the specifications field described below. If

7-2

no special option is supplied, the blank option rules will be applied o

The specifications field for the special options takes the form of a list

of element or segment names:

NAME 1, NAME 2, NAME 3, (ETC.)

Each entry will be dumped in octal format and in order of allocation.

If the specification field is blank, all elements in memory at termination

of the previous routine will be dumped. These special options are:

(1) 'A' option: an 'A' option will produce a dump of all
memory specified in each element or segment named in
the specification list.

(2) 'D' option: a 'D' option will produce a dump of the
D-bank portion of each element or segment named in the
specification list.

(3) 'I' option: an 'I' option will produce a dump of all
I-bank portions of each element or segment named in the
specification list.

7.1.2.3. Options Used with Special Options

(4) 'x' option: When used in conjunction with the 'A', 'I',
or 'D' options, the 'X' option has an except effect. All
active elements will be dumped except those named in the
specification list, and those belonging to the segments
named in the specification list.

(5) 'L' option: When used with the 'A', 'I', or 'D' options,
the L option, present, causes a dump to be taken of any
active elements from the system library. The 'L' option
when used alone will cause the active library elements
to be dumped.

7.1.2.4. The 'Blank' Option

If no special options are named on the@PMD card, the specification

field must follow the form:

NAME, START, LENGTH, FORMAT

This option allows the user to dump information under a specific

7-3

format without outputting excessive amounts of unnecessary material.

The 'NAME' field is that of an element and must be present.
The 'START' field must of the form:

N/M

Where 'M' represents the location counter of the element to be dumped, and

'N' represents an address, relative to the beginning of 'M', at which

dumping should begin. If 'M', or 'N' is omitted, a zero is assumed to be

its respective value.

The 'LENGTH' field must be the number of words to be dumped. If

omitted, the length will be assumed to be all of location counter 'M' of the

specified element.

The 'FORMAT' field may contain either a one-letter code for a system

defined format, or a user defined format in FORTRAN notation. The system

defined formats are:

F (8 F 14.8) Fixed Decimal

E (8 E 14.8) Floating Decimal

I (8 I 14) Integer

A (16 A 6) Alphanumeric

0 (8 0 14) Octal

S (4 S 30) . Instruction

D (4 D 26.18) Double Precision Floating Point

Standard 'D', 'S', and user defined'formats are not applicable for

changed words dumps; for all other cases the user may apply his own FORTRAN

type formats (enclosed in parentheses) or use the system defined formats

previously mentioned.

7.1030 Examples

@PMD

Results in an octal dump of all active (allocated in core) segments of a

users program. No blank common will be dumped.

@PMD ,EAX L ELEMENT -NAME -1, ELEMENT - NAME - 2

Results in an octal dump of all active elements except ELEMENT-NAME-l,

ELEMENT-NAME-2, and system library elements on an error terminations.

7-4

@PMD,BDI SEGMENT-NAME

Results in an octal dump of SEGMENT-NAME (if active) and blank common area

of core storage.

@PMD,EBCD ELEMENT-NAME

Results in an octal dump of changed words in DBANK of ELEMENT-NAME (if

active) and blank common if the program terminated in error.

@PMD ALPHA,100/3,50,A

Results in a 50-word alphanumeric format dump of element ALPHA (if active

under control of location counter 3 beginning with relative address 100)

of location counter 3.

@PMB,B • DUMP ALL OF PROGRAM INCLUDING BLANK COMMON.

7-5

8. UTILITY ROUTINES

8.1. Conversion Aids

To aid installations in the transition from other computers to the

UNIVAC 1108, (Exec 8), a set of conversion routines are incorporated

into the 1108 Executive System. Those conversion routines desired by an in­

stallation will be included in the systems library, and defined as systems

processors at system set up time. The routines may be called as desired by

use of the executive processor call statement.

The following conversion aid routines are provided:

8.1.1. UNIVAC 1108 (EXEC II) to UNIVAC 1108 (EXEC 8)

This processor will convert magnetic tapes created by the Exec 2 complex

utility routine (CUR) to magnetic tapes acceptable as input to an Exec 8

progra~ file. The processor will accept Exec 2 symbolic elements, COBOL

library elements, and procedure elements and convert them to Exec 8 symbolic

elements, COBOL procedure elements, and assembler procedure elements,

respectively. All other Exec 2 element types will be ignored.

The processor resides in the systems library and is initiated by the

following processor call command

@CON78,OPTIONS FILEl.,FILE2.

The available options which indicate element type are as follows:

S
C
P

Symbolic elements
COBOL library elements
Procedure elements

If none of the options is specified, all elements of type S, C, and P

are converted.

'FILEl' is the input tape file of Exec2 elements and 'FILE2' is the output

assigned to the run with the 'ASG' control command. One call to @CON78 con­

verts one file, two calls converts two files, etc. It should be noted that a

period is required to define the file name. The files are never rewound and

end of file marks are written after each file converted.

COBOL procedures are handled somewhat distinctly. Each procedure is

surrounded by a proc line and an end line. The label on the proc line is that

8-1

of the element name and it is not externally defined. Therefore, in order

to use the procedure in a compilation it will be necessary to PDP it.

8.1.2. LIFT (FORTRAN II to FORTRAN V Translator)

LIFT iS,a source language translator which accepts a FORTRAN II source

language program as input, performs a translation, and prepares a source

language program acceptable to the FORTRAN V Compiler. There is a need for

translation since FORTRAN II is not a proper subset of FORTRAN V.' LIFT itself,

written in FORTRAN V, is fully integrated with the Executive System.

There are nine areas of incompatibility b,etween FORTRAN II and FORTRAN V,

and the basic purpose of LIFT is to generate FORTRAN V Source Statements which

replace the unacceptable FORTRAN II Statements.

1. The "F" Card

2. Functions

3. Boolean Statements

4. Double-Precision and Complex Statements

5. COMMON Statements

6. Arithmetic Statement Functions

7. Dimension Statements

8. Hollerith Literals

9. Implicit Multiplication

There are also five types of FORTRAN II statements that, although ac­

ceptable to the FORTRAN V processor, are converted to their FORTRAN V

equivalents. LIFT offers two features that ease the transfer between com­

puters: the ASSIGN and REPLACE card options. The ASSIGN card allows a,

temporary change to be made to the I/O Assignment Table, and the REPLACE card

allows the user to have every occurrence of a variable name replaced with

another variable. The standard output produced by LIFT consists of a listing

of the FORTRAN II program, an annotated list of the translated program, and

a symbolic program element suitable for use as input to any FORTRAN V Compiler.

8.2. The TD8 Routine

The function of TDB is to produce dumps of tap,es and/or drum areas

(FH-type or FASTRAND).

8-2

8.2.1. Execution

TD8 is called by:

8.2.2. Data Card

An optional data card may follow the @XQT control statement. This

card contains information about the number of blocks (or words, or sectors) to

be dumped and a description of the editing format. The fields on the card

in detail:

Column

1 - 6

7

10 - 12

13 - 18

19 - 30

31 42

Contents

Number of records to be dumped.

A- (for Alpha) or 0- (for octal) format.

Number of data words to be edited on one print line
(~ 8 for 0,~2l for A).

Number of blocks or words or sectors to be skipped
before dumping (blocks for tape, words for FH-drum,
sectors for FASTRAND).

Filename for facility.

Element name '{ only if an element has to be located in
an EXEC 8 element file.

43 - 54 Version name

The term 'records' for the first field represents blocks for tape, 256 words

for FH-drum and 10 sectors for FASTRAND. Anyone of the above fields may be

omitted if all the following fields are omitted too. For the first five

fields the program contains standard definitions. If some or all of these

fields are blank, the standard values will be used. They are:

a) Number records = 100 (=R) .

b) Format = 0 (octal) (=F).

c) Number Words per line = 8 (=1).

d) Skip = a (=S) .

e) Filename = DUMPFACI1$ (=N) •

8.2.3 Results

The TD8 will either read R records or read until it encounters an

8-3

end-of-fi1e condition. The data blocks on tape should not be more than

4096 words in length. Each record is edited according to the format

specifications (F and L). The listing of a record is prec~~ed by one

header line which contains length and number.

Before the read and dump process starts, the skip parameter S is

checked and if the facility type is tape, S blocks are skipped; for drum,

the relative address for the first read will be S (this is for both

FH-drum and Fastrand)o

The name, found in Columns 19-30, or if none is specified, the name

DUMPFACIL$ is used in the I/O packet. Therefore, the runstream must

contain an @ASG and/or @USE control statement, prior to the @XQT GT*LIB.TD8

card.

8.2.4. Example

The following runstream will dump 25 blocks from tape file DATATAPE,

reel U325, in alphabetic format. There will be 14 six-character words per

line in the dump listing.

@RUN TDUMP,15T3905, TRACEY-T-M

@PWRD TT59X5

@ASG,T DATATAPE,T,U325N

@USE DUMPFACIL$,DATATAPE

@XQT GT*LIB.TD8
25A 14

8-4

9. SAMPLE DECK SETUPS

The following sections will cover some of the most common examples

of program deck setups. It should be noted that these examples are general

in nature and do not cover all possible variations. These examples are

batch oriented as demand examples are given in the RECC publication,

Demand Terminal User's Manual for the UNIVAC 1108.

9.1. Compile Only

@RUN TEXNDA,15M800099,DOE-J

@PWRD CCJKLM

@COB,SBE

COBOL Source Language

@FIN

In this example, the COBOL source language program is compiled and the

resulting relocatable element put into the run-temporary file. The specifica­

tions on the @RUN statement refer to the RUNID, REFERENCE-NUMBER, and

USER-NAME, respectively, reading from left to right.

9.2. Compile and Execute

@RUN TESTl,2lS80000l,DOE-T,1,50

@PWRD ME1557

@ALG,IS TSUAC

ALGOL Source Language

@MAP,S

@XQT

data cards

@FIN

In the above example, the ALGOL source language is compiled, and the

resulting relocatable element, TSUAC is @MAP'ed, and the absolute executed.

9-1

9.3. Compile and Execute Main Program With Two Subroutines

@RUN TEST2,25A4l37,DOE-S

@PWRD JC lM9Q

@FOR,IS MAIN

FORTRAN Source Language (main program)

END

@FOR,IS SUBR

SUBROUTINE SUBR

FORTRAN Source Language (subroutine SUBR)

END

@FOR ,IS DIVIDE

SUBROUTINE DIVIDE

FORTRAN Source Language (subroutine DIVIDE)

@MAP ,8

@XQT

END

data cards

@FIN

(

The above example illustrates the compilation of a main program and

two subroutines, which will be allocated together and executed.

9.4. Compile and Catalogue Original Program

@RUN CATE8T,38Hl00250,DOE-D

@PWRD NEHl08

9-2

@DELETE,C PROGFILE/READK/WRITEK.

@ASG,U PROGFILE/READK/WRITEK,F2

@FOR,IS PROGFILE.MAIN

FORTRAN Source language (main program)

END

@FOR,IS PROGFILE.SUBR

SUBROUTINE S UBR

FORTRAN Source language

END

@FOR,IS PROGFILE.DIVIDE

SUBROUTINE DIVIDE

FORTRAN Source language

@MAP,IS

IN

@FIN

END

,PROGFILE.MINT2

PROGFILE.

The @DELETE insures that the file PROGFILE is not already catalogued.

The assign (@ASG) statement is used to name an external file, set up

its I/O requirements, and catalogue the file for future reference. The "u"
option on the ASG card specifies that the file is to be catalogued regard­

less of the manner of termination of the run. "PROGFILE" is the name of

the file to be assigned to the run. "READK" and "WRITEK" are specification

fields which prevent reading and writing of the user's file by other users.

To gain access to the file, the appropriate keys must be specified at assign

time or the assignment will not be made. "F2" indicates that the file will

be located on Fastrand.

The processor call statement (@FOR) specifies that a source language

element will be introduced into the file "PROGFILE" from the control stream

and also given to the processor for compilation. The "I" option on the

9-3

@FOR card directs this introduction of source language from the runstream.

The @MAP and the IN place an absolute element ready for execution in

PROGFIIE.

9.5. Test Corrections to Existing Program and Execute

The existing program will not be altered.

@RUN CATST1,38H100250,DOE-D,20,300

@PWRD NE1108

@ASG,A

@COPY,R

@FOR,WS

-5

-10,10

-31,27

PROGFlIE/READK

PROGFlLE.

PROGFlLE.MAIN,MAIN

CALL DIVIDE

C = SQRT (A*A+B*B)

A = MAX (A, B, C)

CALL SUBR

@MAP,IS

@XQT

data cards

@FIN

On the @RUN statement the "20" in the specifications field is pro­

grammer estimated run-time. If the run exceeds this time, the run will be

terminated. The "300" in the last specification field means that a

maximum of 300 pages of output is expected from this run. If exceeded, the

run will be terminated automatically.

The assign (@ASG) statement is used to name an externa 1 file, "PROGFILE,"

which contains the program source language for this run. Reference 9.4.,

where this file was catalogued.' The write key is not given to prevent

accidental writing into the file.'

9-4

The @COPY,R brings the relocatables from PROGFILE into TPF$. This is

necessary if any of the elements are not going to be recompiled.

The @FOR compiles the sumbolic PROGFILE.MAIN, with corrections as

indicated. (See section 4.6.3 for a discussion of correction statements)

The resulting relocatable is TPF$.MAIN which deletes the relocatable MAIN

copied from PROGFILE.

The @MAP collects the relocatables in TPF$ into the absolute

TPF$.NAME$. These are the new MAIN and the original SUBR and DIVIDE.

9.6. Update Existing Program and Execute

@RUN CATSTl,38Hl00250,DOE-D,20,300
@PWRD NEl108

@ASG,A PROGFILE/READK/WRITEK

@FOR,UWS PROGFILE.MAIN

Correction statements

@MAP, IS , PROGFILE".-MINT2

IN PROGFILE.

@PACK PROGFILE

@PRT,T PROGFILE.

@XQT PROGFILE .MINT2

data cards

@FIN

In 'the above example, corrections will be made to FORTRAN element

"MAIN" before compilation. The correction statements must innnediately

follow the processor call statement. The "U" option on the @FOR statement

specifies that an updated source language element will be produced by

applying the corrections to the input source language. The ''W'' option

specifies that all correction statements will be listed.

Subroutines "SUBR" and "DIVIDE" are also part of this program (see

previous two examples). Since there are no modifications to these routines,

9-5

they are not recompiled.

The main element ''MAIN'' with subroutines "SUBR" and ''DIVIDE'' will be

collected together, forming an absolute element, ''MINT2,'' which will also

be placed in the file, "PROGFILE." "PROGFILE" is @PACK'ed to minimize the

size of the file, and @PRT,T'ed for later reference. The absolute program

is to be executed; data cards follow the @XQT statement.

9.7. Execute Existing Programs Using Cataloged Data Files

@RUN MINT,38HI002050,DOE-D

@PWRD NEII08

@ASG,A PROGFILE/READK

@ASG,AX DOE*MASTER-FLT

@USE MASTER,DOE*MASTER-FLT

@ASG,T TEMP,F/3

@XQT PROGFILE.MINTI

data cards

@FREE DOE*MASTER-FLT

@ASG ,AX. MINT

@USE OLD ,MINT

@ASG,CR MINT(+1),F2

@USE NEW,MINT(+l)

@XQT PROGFILE.MINT2

data cards

@FIN

In this example, two programs, "MINTI" and ''MINT2'', are to be

executed in respective order. The programs are currently contained as

absolute elements in file "PROGFILE"o

The program, ''MINTI'', reads data cards and a file, ''MASTER''. For

this run, a file created under the user name of "DOE" is to be used as

''MASTER''. A temporary file, "TEMP", is created.

9-6

The program "MINT2 " , updates the file, "MINT", referencing the current

cycle of the old file as "OLD" and the updated cycle of the file as "NEW".

Note that the file, "DOE't~MASTER-FLT", is not required by the run after

"MINTI" is terminated. The @FREE statement releases the file so that

another run might gain exclusive access to the file during the time that

"MINT2" is being executed.

9.8. Compile Program and Store It on Tape

@RUN CRTAP,30N991108,DOE-S

@PWRD SMPRIE

@ASG,T PRGTAP,T

@FOR,IS MAIN

FORTRAN Source language

END

@FOR,IS SUBR

SUBROUTINE SUBR

FORTRAN Source language

END

@MAP,IS ,PRGXQT

@COPOUT ,PRGTAP

@SAVE PRGTAP

@FIN

The assign (@ASq) statement is used to inform the operator that a

scratch tape is needed for this run.

The main program and subroutine will be inserted in the temporary pro­

gram file (TPF$). The @MAP statement creates an absolute element for this

program. Note that this will save the allocation time when the job is later

executed (in another run).

The @COPOUT statement transfers all elements in the temporary program

9-7

file (TPF$) to the tape (PRGTAP).

The @SAVE requests the operator to save the tape and return its reel

number.

9.9. Execute Program Stored on Tape

@RUN US TAP , 30N99ll08,DOE-S

@PWRD SMPRIE

@ASG,T PRGTAP,T,U305N

@COPIN PRGTAP

@FREE PRGTAP

@XQT PRGXQT

data cards

@FIN

The assign (@ASG) statement informs the operator,to mount reel number

U305 without a write ring ("N"). This tape was created by the previous

example. The @COPIN statement transfers the program from tape to the

temporary program file (TPF$). Note that in the previous example an ab­

solute element, named "PRGXQT" was created. Hence, the allocation time

will be saved each time ,this program is executed. : The @FREE statement

releases the tape servo so that another run may use it.

9.10. Create Multiple Print Output Copies

@RUN PRODCT, 55K9909, JONES

@PWRD JCSSNI

@DELETE,C PRINT

@ASG,URG PRINT,F2

@MSG EXPECT 5 PRINT FILES

@BRKPT PRINT$/PRINT

@F0R,IS PROG

(FORTRAN statements)

@MAP,S

@XQT
(data)

9-8

@BRKPT PRINT $

@FREE PRINT

@SYM,U PRINT

@SYM,U PRINT

@SYM,U PRINT

@FIN (pink card)

The @DELETE insures that no old copies of the file remain on Fastrand.

The @ASG assigns the file PRINT which will contain the output from the run

to be printed three times. PRINT is to be catalogued regardless of type of

run termination, read-only, and is not to be saved on backup tapes at the

end of day. The @MSG statement informs the operator that five output files

are to be created, all to be returned to the same bin. The 5 in the @MSG

statement specifies the number of copies desired plus ~ (two extra print

file s .fo r the printing of initial and final control statements.) The

first @BRKPT statement closes the initial print file and diverts further

print to the file PRINT. The statements following the first @BRKPT may be

any statements that' generate the desired output •. The second @BRKPT closes

to the file PRINT and opens the final print file for the run. The @FREE

statement causes final cataloguing action on PRINT, and makes it available

to the system. Each @SYM statement directs the queing of the file PRINT

to be printed (there should be one for each copy desired). After printing,

PRINT will remain catalogued until it is deleted by the user or a full

reboot is done.

If the run errors while creating PRINT, only two print files will be

printed, the initial file and a file containing accounting information for

the run. The user must submit a run to @SYM the file PRINT to receive the

remaining output from the run. This may also be done from a demand terminal.

9.11 Divert Print Output to Tape

@RUN PRODCT,55K9903,DOE-J

@PWRD JCSSNI

@ASG,T PRINT,T

9-9

@MEG EXPECT 2 PRINT FILES

@SAVE PRINT

@BRKPT PRINT$/PRINT

(Control statements, source language, and/or data needed to
produce print)

@BRKPT PRINT $

@FIN (pink card)

9.12. Print Output Previously Diverted to Tape

@RUN PRINT,55K9903,DOE-J

@PWRD JCSSNl

@ASG,T PRINT,T,Ul014N

@DELETE,C PF

@CAT,G PF,F2///1000

@COFY PRINT,PF

@SYM PF

@MSG EXPECT 2 PRINT FILES

@FIN

The file PF will be decatalogued following printing.

9.13. Run Two Runs in Sequence

@RUN RUNl,51J9308,SMITH (note no S option)

@PWRD AB1234 .

@MSG FIRST RUN OF 2 IN SEQUENCE

@XQT X.UPDATE

(data cards).

@FIN (pink card)

@. BIN (note fixed format: 1 space between "@If and "BINI!)

@RUN,/S RUN2,51J9308,SMITH (note S option specified)

@PWRD AB1234

@MSG SECOND RUN OF 2 IN SEQUENCE

@F0R,IS LIST

(FORTRAN statements)

@MAP ,S

@XQT

@ADD X.DATA

@FIN (pink card)

9-10

The I/O clerk will add one standard bin card to the front of both decks.

The decks must not be separated. Output for both runs will be returned to

the same bin.

9-11

APPENDICES

A. Character Codes for the U 1108

B. Diagnostic Messages

c. Standard Tape Translation (BCD~Fie1ddata)

APPENDIX A

U 1108 CARD CODES

Char In
Machine

Fie1dat~ I Key On
(Octal) II. 029 Mode 026 MO..;.d.;;;.e~.....-____ 4 Teletype

Char Printed
On TIT

@ (1)
[

00
01

02

Key On I Key OIl I I Key 01\ l1[ey On
I Holes J 029 i 026 I Holes 029 I 026

! 7-8 ?- INone(3)! 7-8 : ~ I None(3)

1

12-4-8 [;) I 12-5-8! (None(3)
I ,I

0-6-8] 'Nonc(3) i 11-5-8 I) None(3)
I .Ii iii

@ @
[(shift K) I [J
] (shift M)

Ii 03 I 3-8 4F \- I 12-7-8:'" ;None(J) Ill' iF

.:1 04 111-7-8 ~ INone(3) , 11-7-81 s: II NOne (3) t t
(Blank) 05 i None (Space) i (Space) i None i (Space) (Space) (Space) (Space)

A 06 112-1 : A I A I 12-1 I A fA i A A
B 07 12-2 I BiB 12-2 'B jiB I BIB
C 10 12-3 i, C ' C 12-3 icc I c I c

S 30 0-2: S S 0-2 ~ S ! S . S S
T 31 0-3' T T 0-3 : TIT ! T T
II 32 0-4 : U i U 0-4 i U i U j U U
V 33 0-5 iV, V 0-5 j V ~ V V V
W 34 0-6: W f W 0-6 : w i w w w
X '35 0-7 jX ,x 0-7 Ix !X jX X

y 36 0-8: Y Y 0-8 I Y ! Y I Y Y
Z i 37 0-9 Z Z 0-9 i Z !, Z , Z Z

12-4-8 Ii))
11 , - (5) 1- (5) , - (5) - (5

: + 12 I & 1+ ! + + +
< 43]2-6-8: < 12-6-8 j < i None (3) i < <

44 0-5-8 3-8 ! 4ft I =:

> 45 6-8: > 6-8 ; > iNone (3)
46 12 : & + 2-8 : None(3) I None (3)
47 11-3-8, $ $ 11-3-8 I $ 1$
50 11-4-8 I ,'r :'r 11-4-8 : :~ ..

>
&
$

_L ______ ~~5~1--~~1~2-~5~-8~~' ~(----~~~~ __ ~0~-74~-8~·~%----~~~~~------~~--------
'/~ 52 0-4-8 % 0-5- ,= None

53 5-8 5-8 None(3) ;:

~?_._.--::-:--:--t~::-_~~~,---~::::-_+~~~~~12::-:-~O:--~+~:----tN~o::.:-n:.::e~3:;.;)~+-i r:-:N~o:-:::t:.::e=-.::::6-4--r-___ _
: (Excla.im): I 11-0 X(Times) 11-0 : X(Times None(3)
,(Comma.) " 0-3-8, (Commaj 0-3-8 ;

2-8 None(3) : 0-6-8 i
() 0 0
1 1 1

j

4
5
6
1
8
9
I (Quote)

• (Period)
o
f:. or s top I

(2) i

2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
0-7-8 11

I 11-6-8
0-1

6
7
8
9 I

None (3) I
None (3) I

I 9
4-8 i @

11-6-8 I

0-1 i /
12-3-8 i
0-7-8 I "
0-2-8 ,

I

A-1

None(3)
/

None(3)
I None(3)

!
I

I
: 1
I 2
! 3
:4

5

,9
I '(Quote)
I

1

i.

1
2
3
4
5
6
7
8
9
'(Quote)

NOTES:

1) The @ is the control card flag if it appears in column 1 of
any card.

2) The ~ will not be printed on the high speed printer or the teletype.
On these two devices the i: character acts as the line termination character.

3) None means that there is no such key. This hole pattern must be
multipunched.

4) This is the underscore character that is under the = sign on the
026 keypunch.

5) This is the minus character and is marked SKIP on the 026 keypunch.
Either upper or lower shift may be used o

6) Normally, the ? key causes deletion of the current line. To enter
? as an input character, press ESC (ESCAPE), then the? key.

A-2

APPENDIX B

DIAGNOSTIC MESSAGES

I. CONTROL STREAM DIAGNOSTIC MESSAGES

The following messages are among the most common and typical of the many

hundreds in the system. A large number of other messages are worded somewhat

differently, but have meanings which are similar to these.

{men a code from 18 to 378 is contained in an error message, it often

points to one of the I/O problems described under type 1, ERR MODE (EMODE) AND

I/O STATUS CODES. Note that most of the messages issued by the FURPUR processor

correspond to a specific I/O error and status code.

When a twelve-octal-digit status code is given in an error message, it

often has bit settings corresponding to one or more of the causes of facilities

rejection (FAC REJECT) or facilities warning (FAC WARNING) described under

@ASG in section 4.5.2.6.

Some diagnostic messages refer to operator response keyins. Here are the

usual meanings of the most common operator response keyins:

A

B

D

E

G

H

I

L

N

Q

R

S

T

X

Y

Try again with standard recovery.

Return I/O status 12 to packet.

Declare device down.

Treat as end of file or error off a run.

Treat as unrecoverable error, since I/O device
positioning appears to be good.

Halt the operation.

Initiate a locked out or suspended symbiont.

Lock out a symbiont.

The reply is "no."

Re-enter a symbiont file in its appropri.ate queue.

Reprint or repuncp a symbiont.

Suspend a symbiont.

Terminate a symbiont.

Abort a symbiont, or abort a run.

The reply is "yes."

B-1

One of three abbreviations, SI (symbolic input), RO (re10catab1e or

absolute output), or SO (symbolic output), is frequently used to identify the

element named in the corresponding specifications sub field of a processor call

statement, such as @ASM, @COB, @FOR, or @MAP. For processors such as @ELT

which have no RO subfield, only SI and SO are meaningful.

PROGRAM NOT FOUND

FILE ERROR

DATA IGNORED
IN CONTROL MODE

@END IGNORED - IN
CONTROL MODE

nn ILLEGAL CHARACTER
C

INTERVENING STATEMENTS
SKIPPED

RUN KILLED VIA AN
X-KEYIN

PCT EXPANDED BEYOND
SYSTEM Lll1ITS

The requested program or processor is not in the given
file, LIB$, or TPF$ (depending on the statement). If
the run is not demand, it is terminated.

The file requested on a @XQT or processor control
statement could not be assigned. If the run is not
demand, it is terminated.

Data statements were encountered when the coarse
scheduler was attempting to read control statements;
that is, a program or processor was not in control of
the run at the time these statements were encountered.

An @END control statement was encountered when the
coarse scheduler was attempting to read control state­
ments; that is, the @DATA or @ELT,D processor was not
in control of the run at the time this statement was
encountered.

The coarse scheduler encountered the illegal or badly
positioned character C at column nn of the above con­
trol statement.

A conditional statement has been encountered and has
caused one or more control statements to be bypassed.

The operator replied with an X to @MSG control state­
ment with a W option; batch runs are terminated in
this case.

The operator typed an unsolicited X keyin for this run.
An unsolicited X keyin for a demand run simply ter­
minates the currently executing program.

The number of main storage blocks required for expansion
of this run's PCT exceeds the systems generation para­
meter PCTMAX. When a run aborts with this message,
a postmortem dump of the PCT (obtained using @PMD,P)
may show one of the following to be the cause:

1) Excessive number of granule tables (change track
granularity to position granularity).

2) Excessive number of activities (check for ER FORK$
loop).

3) Excessive number of fi1es'assigned (check for ER CSF$
loop).

B-2

PMD NOT ALLOWED

PROGRAM TOO LARGE

RUNSTREAM ANALYSIS
TERMINATED

UNRECOVERABLE I/O
ERROR WHEN READING
FILE filename

TIME ESTIMATE
EXCEEDED

USER DID AN ER EABT$

@PMD is not allowed for a system processor (called
from the file SYS$*LIB$) unless a Y option appeared
on the @RUN control statement. If an N option
appeared on the @RUN control statement, no @PMD's of
any programs are allowed.

There is not enough space available in the user area
of main storage to load a program that is this large
or the D bank cannot be loaded because BS + D bank
size is greater than the highest available address.
The hardware does not support negative BI or BD.

The run has been terminated because of an error con­
dition and the remaining control statements are not
processed.

The coarse scheduler encountered an unrecoverable I/O
error when searching file filename for a program or
processor. If the run is not demand, it is terminated.

The total central processor time used by the run
exceeds the estimate in the RUN-TIME field of the @RUN
statement. Batch runs are terminated; demand runs
may continue by entering another control statement.

The running program requested an error abort. All
activities are terminated. Batch runs are terminated
following any post-mortem dumps. This message is
usually preceded by another message giving the reason
for the error abort.

B-3

II. ERROR CODE MNEMONICS

Contingency

Illegal Operation

Guard Mode (see section 1.5)

Floating Point Overflow

Floating Point Underflow

Divide Overflow

Restart

Abort

Console Interrupt

Test and Set Interrupt (R/T only)

'ERR MODE' Entry

Error Name

I/O Call Error

Symbiont Call Error

ERR$ Call

Illegal or Bad ER

Console Call Error

Communications Errors

Communications Errors

Reentrant Processor Call Error

B-4

Contingency Type

1

2

3

4'

5

6

7

10

11

12

Error Type

1

2

3

4

5

6

7

10

Mnemonic

IOPR

IGDM

IFOF

IFUF

IDOF

IRST

IABT

lINT

ITS

IERR$

Mnemonic

I/O

SYMB

ERR $

ER

CONS

COM2

COMM

REP

TIl. ERR MODE (EMODE) AND I/O STATUS CODES

This set of error codes is categorized as being under contingency type 128.

Most of these codes relate to errors users make when setting up executive

requests (ER' s). The most common user errors are improperly set up, improper ly

referenced, and inadvertently overwritten packets.

The following list is the full set of defined ERR mode codes, with two

exceptions:

1) Type 1 (I/O) codes 08 through 178 and 408 are included for the sake

of completeness, even though they represent status conditions that are not

necessarily errors, and do not directly force a run into ERR mode. Many of

these codes cause the system processors to take an error exit, after passing

on t:h~ code to the user in an I/O error diagnostic message.

2) Types 6 and 7 (communications) codes are not included because they are

lengthy and not used by most programmers.

Some of the code definitions refer to obscure, not-yet-implemented, or

to-'be-dropped ER's which the user will probably not encounter.

1

1

1.

1

1

1.

1

Octal
Code

o

1

2

3

4

7

10

Description

Normal r/o completion without complications.

End-of-file (EOF) encountered on read or search functi.on.
The word count actually transferred is supplied in H2 of
the fourth word of the I/O packet.

End-of-tape mark encountered on magnetic tape on a read
backward from load point or on a write.

No find was made on a mass storage device search.

A nonintegral block was read from magnetic tape. The numh~r
of data characters accepted from the last word is indicated
in the AFC (abnormal frame count) field in S3 of the fourth
word of the I/O packet.

An attempt was made to search or read from an unassigned
area of mass storage. If the starting address is legal,
the read is truncated as reflected by the word count :i. n
the I/O packet g

Timeout on an absolute r/o drum read (ABSR$) or write
(ABSW$) •

Fastrand mass sto,rage file timed out before being unlocked.

B-5

~

1

1

1

1

1

1

1

1

1

1

1

1

Octal
Code

11

.12

13

17

20

21

22

23

24

25

26

27

Description

A nonrecoverable error has occurred and either the suppress
recovery mode is set for magnetic tape or an answer of G
was given to an error message.

A read or write error on magnetic tape has resulted in loss
of position on the unit •

. I/O attempted on peripheral unit declared down.

Reference made to an unassigned file (EXEC 8 only).

Write or area release attempted for file in read-only mode,
or read attempted for file in write-only mode.

Reference made to an unassigned file.

Attempt to write beyond assigned area of a mass storage file.
This is a very cornmon error, and results when the maximum
granules sub field on the @ASG control statement is not set
large enough. When this subfield is not specified, a system
standard such as 2 positions = 128 tracks = 8192 sectors is
used. Note that adding elements to a program file, such as
through a @COPIN or @ASM control statement, is equivalent
to doing a write operation.

The I/O packet whose address is given in register AO is
wholly or partially outside of the program's I or D bank
limits.

The requested I/O function is not defined for the assigned
equipment type, or there is a noncompatible field on a set
mode request.

The buffer which is defined in the user's I/O packet is
wholly or partially outside of the program's I or D bank
limits. For GW$, SCR$, and SCRB$ functions, this error
code is given if :the number of access words is zero or
more than 50, or if the total word count is more than 65K.

Illegal interrupt routine starting address.

An I/O request was made with the status field of the I/O
packet set negative, indicating that a previous I/O request
which references this packet has not yet been completed.
The distinction between ER IO$ and ER IOW$ is that the
latter requests a wait until I/O completion before returning
control to the user program. If there is doubt about a
previous I/O function having been completed, an ER WAIT$
ensures delay until completion.

B-6

1

1

1

1

1

1

2

'2

2

2

Octal
Code Description

30 The interrupt activity specified is greater than 35 or is
already in use.

31 A magnetic tape operation which specified user recovery
did not furnish an interrupt activity.

32

33

34

35

36

40

1

2

3

4

5

User program changed I/O packet prior to completion of an
I/O request.

Fastrand-format I/O request not initiated because it would
cause this run's program control table (PCT) to expand past
its maximum. An entry must be kept for each granule that
has been written into for every Fastrand-format file that
is assigned to the run.

An absolute write, an absolute read with illegal or alter­
nate subsystem number, or an absolute read on a non-mass­
storage subsystem was attempted.

A second read and lock (RDL$) request by an activity for a
particular area, or an unlock (UNL$) request for an area
that the activity had not previously locked.

An ER WAIT$ was not immediately preceded by a Test Positive
instruction without hand i designators, or a WAIT$ or
WANY$ request was made without a previous outstanding I/O
request.

Previous I/O request is still in process.

READ$ attempted past the end of file.

Additional READ$ attempted after receiving an AO bit 35
status indicating that next control statement in run stream
has been encountered.

I/O error encountered by READ$o

Attempt to READ$ a standard data format (SDF) file or
element with Fieldata image length exceeding 15 words, or
ASCII image length exceeding 20 words (EXEC 8 control only).

@ADD control statement in control stream cannot be procesHP.I
due to an error. An additional diagnostic message is givei'l.

6 The READ$ packet whose address is given in register AO is
wholly or partially outside of the program's I or D bank
limits.

10 Attempt to @ADD by means of CSF$ of an element from tape.

11 Nested levels exceed maximum allowed on @ADD from CSF$.

B-7

Octal
~ Code

2 12

2 13

2 14

2 15

2 16

2 20

2 21

2 22

2 23

2 24

2 25

2 26

2 27

2 30

2 34

2 35

2 36

2 37

2 40

2 41

Description

The file referenced on an @ADD by means of CSF$ is not
assigned or catalogued.

Element referenced on an @ADD by means of CSF$ not found
in referenced file.

Nested loop on @ADD by means of CSF$.

Attempted @ADD by means of CSF$ from equipment other than
Fastrandmass storage.

@ADD by means of CSF$cannot assign catalogued file because
,it would cause this run's PCT to expand past its maximum.

Attempt to reference an unassigned alternate symbiont
file by a demand or real-time run.

Alternate file could not be assigned for PRINT$ or PUNCH$.

Alternate symbiont ER request is improper for type of file.

The alternate symbiont file packet whose address is given
in register AO is wholly or partially outside of the
program's I or D bank limits.

The read alternate (READA$) file being referenced has not
been assigned.

Bad format encountered in first call to a READA$ file.

Alternate file is not Fastrand-formatted mass storage or
tape file.

Maximum number of alternate files, as specified by systems
generation parameter SMALTM, has been exceeded.

Maximum number of breakpoints for PRINT$ or PUNCH$ exceeded.

Length of print alternate (PRNTA$) file has been exceeded.

Length 6f punch alternate (PNCHA$) file has been exceeded.

Length of PUNCH$ file has been exceeded.

Length of PRINT$ file has been exceeded.

The buffer which is referenced in user's print or punch
packet is wholly or partially outside of the program's I or
D bank limits.

The maximum pages specified in "@RUN control statement (or
system standard, if none was specified) has been exceeded.

B-8

2

3

4

4

4

4

4

4

4

4

4

4

4

Octal
Code

42

1

2

3

4

5

6

7

10

11

20

21

30

31

32

Description

The maximum cards specified in @RUN control statement (or
system standard, if none was specified) has been exceeded.

Since error type 3 results simply from a direct calIon ER
ERR$, there are no type 3 error codes.

An ER was attempted with an ER function code beyond the
range of currently defined ER's, or with a code reserved
for use by EXEC 8. A list of currently defined ER's is
maintained in system relocatab Ie library. SYS$,"RLIB$,
element ERU$, CSF$, for example, is equated to the ER
code 178- These equates are listed in most L option @MAP
listings under EXTERNAL DEFINITIONS.

The ER packet whose address is given in register AO is
wholly or partially outside of the program's I or D bank
limits.

Illegal ER function code within range of those defined.

Improper identity supplied upon AWAIT$ request.

Activity number (ID) supplied on FORK$ request is either
out of range or in use.

This run's account number does not permit requested real
time priority on RT$ or FORK$ call.

Code 7 formerly indicated that the maximum time specified
in @RUN c'ontrol statement has been exceeded. This con­
dition now causes a direct run abort, without reverting to.
error mode.

The FACIL$ packet whose address is given in register AO
is wholly or partially outside of the program's I or D bank
limits.

I/O mass storage read error, or bad information in run's
PCT, while processing FACIL$.

Bad packet or file control table (FCT) address on BBEOF$.

The referenced file is not mass storage format, or it is not
catalogued.

,Requested NRT$ from an activity which is not real time.

Illegal creation of a real time activity by FORK$.

The activity marked as named on a NAME$, ACT$, or DACT$
request has not been properly defined.

B-9

Octal
~ Code

4 33

4 37

4 40

4 41

4 42

4 43

4 44

4 46

4 50

4 51

4 52

4 53

4 54

4 55

4 57

4 60

4 61

5 o

5 1

Description

Illegal 11$ request.

The tape file referenced by TSWAP$ or TINTL$ is not assigned.

Syntax error discovered in control statement image furnished
to CSF$.

Image length of over 40 words specified for CSF$.

Control statement image contains a command which cannot be
serviced by CSF$.

The control statement image whose address is given in
register AO is wholly or partially outside of the program's
I or D bank limits, on CSF$ request.

The number of @LOG control statement entries submitted
exceeds maximum allowed by CSF$.

LOAD$ of re1ocatab1e segment (RSEG) cannot be executed
because it would cause the run's PCT to expand beyond its
maximum.

Nonzero I/O status on ER LOAD$ of segment.

Attempt made to LOAD$ an undefined segment.

The segment load table (SLT$) at start of user's D bank
contains bad information, and has possibly been over­
written. LOAD$ has encount~red an illegal segment defin­
ition, or segment limits outside I or Dbank.

Invalid MCORE$ request.

LCORE$ request to release main storage not currently held.

Request by means of MCORE$ for more main storage than is
available.

Attempt to release a contingency or a re-entry address by
means of LCORE$.

Bad recognition key on DLOC$ or DIW$.

Bad packet for SNAP$.

The COM$ packet whose address is given in register AO is
wholly or partially outside of the program's I or D bank
limits. .

The output buffer which is defined in the user's COM$
packet is wholly or partially outside of the program's I
or D bank limits.

B-lO

5

5

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Octal
Code

2

3

1

2

3

4

5

6

11

12

14

15

16

17

20

21

22

Description

The expected input count field for a type and read operation
exceeds 50 characters.

The input buffer which is defined in the user's COM$ packet
is wholly or partially outside of the program's I or D bank
limits.

The RLIST$ packet whose address is given in register AO is
wholly or partially outside of the program's I or D bank
limits.

REP's entry point was defined as zero (due possibly to being
undefined at @MAP time), and an attempt was made to link to it
by means of LINK$ or RLINK$.

File is not assigned or not on mass storage on an RLIST$
request.

RLIST$ entry name not found.

REP's I bank length exceeds the program's D bank starting
address on'a LINK$, RLINK$, or RLIST$ request.

Attempt through LINK$, RLINK$, or EXLINK$ to attach multiple
REP's to the same program. '

RLIST$ request to remove previous, REP list while other
REP's are still-active.

Specified REP name not found in system search on a LINK$
or RLINK$ request.

EXLINK$ or UNLNK$ request is not from a linked routine.

The number of RLIST$ REP names exceeds the system's
maximum.

LINK$, RLINK$, or RLIST$ request not initialized because
it would cause the run's program control table to expand
beyond its maximum.

The system detected an I/O error in loading a REP, or on
a LINK$, RLINK$, or EXLNK$ request.

The main program plus the REP's core requirements exceed
total user main storage availability.

Attempt to change REP size by MCORE$ or LCORE$.

Same as code 20 except occurred because of main storage
fragmentation due to downed main storage or real time
programs. The effect of an ER UNLNK$ will have occurred
before control is returned to a program's contingency
routine.

B-ll

APPENDIX C

STANDARD TAPE TRANSLATION (BCD -FIELDDATA)

Tape to Processor Processor to Tape

Tape CPU Tape CPU CPU Tape CPU Tape
Code Code Code Code Code Code Code Code

00 46 40 41 00 17 40 74

01 61 41 17 01 75 41 40

02 62 42 20 02 55 42 60

03 63 43 21 03 77 43 76

04 64 44 22 04 57 44 13

05 65 45 23 05 20 45 16

06 66 46 24 06 61 46 00

07 67 47 25 07 62 47 53

10 70 50 26 10 63 50 54

11 71 51 27 11 64 51 34

12 60 52 55 12 65 52 35

13 44 53 47 13 66 53 15

14 72 54 50 14 67 54 72

15 53 55 02 15 70 55 52

16 45 56 73 16 71 56 33

17 00 57 04 17 41 57 36

20 05 60 42 20 42 60· 12

21 74 61 06 21 43 61 01

22 30 62 07 22 44 62 02

23 31 63 10 23 45 63 03

24 32 64 11 24 46 64 04

25 33 65 12 25 47 65 05

26 34 66 13 26 50 66 06

27 35 67 14 27 51 67 07

30 36 70 15 30 22 70 10

31 37 71 16 31 23 71 11

32 77 72 54 32 24 72 14 .

33 56 73 75 33 25 73 56

34 51 74 40 34 26 74 21

35 52 75 01 35 27 75 73

3.6 57 76 43 36 30 76 37

37 76 77 03 37 31 77 32

B-12

