
.

The Gerber Format Specification

A format developed by Ucamco

Revision 2019.06

Copyright Ucamco NV 2
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Contents

Contents .. 2

Preface ... 7

1 Introduction .. 8

1.1 Scope and Target Audience .. 8
1.2 Further Resources ... 8
1.3 Reference Gerber Viewer .. 8
1.4 Questions .. 8
1.5 Copyright and Intellectual Property .. 10
1.6 About Ucamco ... 10

2 Overview ... 11

2.1 File Structure ... 11
2.2 Apertures ... 11
2.3 Graphics Objects ... 12
2.4 Draws and Arcs ... 12
2.5 Operations (D01, D02, D03) .. 14
2.6 Graphics State ... 14
2.7 Polarity .. 17
2.8 Blocks .. 18
2.9 Attributes ... 18
2.10 Command Overview .. 19
2.11 Processing a Gerber File ... 20
2.12 Glossary .. 22
2.13 Example Files ... 25

 Example: Two Square Boxes .. 25
 Example: Polarities and Apertures .. 26
 Example: A Drill File .. 30

2.14 Conformance .. 32

3 Syntax ... 34

3.1 Conventions for Syntax Rules.. 34
3.2 File Extension, MIME Type and UTI .. 35
3.3 Character Set .. 36
3.4 Data Blocks ... 36
3.5 Commands .. 37

 Command Syntax Overview .. 37
 Function Code Commands ... 37

mailto:gerber@ucamco.com

Copyright Ucamco NV 3
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Extended Commands ... 38
3.6 Data Types .. 40

 Integers ... 40
 Decimals ... 40
 Coordinate Data .. 40
 Hexadecimal ... 40
 Names .. 40
 Strings .. 41
 Fields .. 41

4 Graphics ... 42

4.1 Format Specification (FS) .. 42
4.2 Unit (MO) ... 43
4.3 Aperture Definition (AD)... 44

 AD Command ... 44
 Zero-size Apertures .. 44
 Examples .. 45

4.4 Standard Aperture Templates .. 46
 Overview ... 46
 Circle .. 46
 Rectangle.. 48
 Obround .. 49
 Polygon ... 50
 Transparency of Holes .. 51

4.5 Aperture Macro (AM) ... 52
 AM Command ... 52
 Exposure Modifier ... 54
 Rotation Modifier ... 55
 Primitives .. 56
 Syntax Details ... 66
 Examples .. 70

4.6 Block Aperture (AB) ... 74
 Overview of block apertures .. 74
 AB Statement Syntax .. 74
 Usage of Block Apertures ... 75
 Example .. 76

4.7 Set Current Aperture (Dnn) .. 78
4.8 Operations (D01/D02/D03) .. 79

 Coordinates .. 80
 D01 Command .. 81
 D02 Command .. 81
 D03 Command .. 81
 Example .. 82

4.9 Linear Interpolation Mode (G01) .. 83

mailto:gerber@ucamco.com

Copyright Ucamco NV 4
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 G01 Command ... 83
 D01 Command .. 83

4.10 Circular Interpolation (G02/G03) and (G74/G75) ... 84
 Circular Arc Overview ... 84
 G02 & G03 Command ... 86
 G74 & G75 Command ... 86
 D01 Command .. 86
 Example: Single Quadrant Mode .. 89
 Example: Multi Quadrant Mode ... 90
 Numerical Instability in Multi Quadrant (G75) Arcs 91
 Using G74 or G75 May Result in a Different Image 91

4.11 Object Transformations (LP, LM, LR, LS) .. 93
 Overview ... 93
 Load Polarity (LP) ... 95
 Load Mirroring (LM) .. 95
 Load Rotation (LR) .. 95
 Load Scaling (LS) ... 96
 Examples .. 96

4.12 Region Statement (G36/G37) .. 99
 Region Overview ... 99
 Region Statement Syntax ... 100
 Valid Contours .. 101
 Examples .. 102
 Power and Ground Planes .. 119

4.13 Step and Repeat (SR) ... 122
4.14 Comment (G04) .. 125
4.15 End-of-file (M02) ... 126
4.16 Numerical Accuracy in Image Processing and Visualization 127

 Visualization .. 127
 Image Processing ... 127

5 Attributes .. 129

5.1 Attributes Overview ... 129
5.2 File Attributes (TF) ... 131
5.3 Aperture Attributes (TA) ... 131

 Aperture Attributes on Regions ... 132
5.4 Object Attributes (TO) .. 132
5.5 Delete Attribute (TD) .. 132
5.6 Standard Attributes .. 133

 Overview ... 133
 .Part .. 135
 .FileFunction ... 136
 .FilePolarity ... 140
 .SameCoordinates .. 141

mailto:gerber@ucamco.com

Copyright Ucamco NV 5
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .CreationDate .. 141
 .GenerationSoftware ... 142
 .ProjectId .. 142
 .MD5 ... 143
 .AperFunction ... 145
 .DrillTolerance ... 153
 .FlashText ... 153
 .N (Net) ... 154
 .P (Pin) .. 156
 .C (Component) .. 158

5.7 Text in the Image ... 159
5.8 PCB Fabrication Data .. 159

 Structure ... 159
 Alignment .. 159
 Essential Attributes ... 159
 The Profile .. 160
 Drill files .. 160
 Drawings and Data ... 161
 The CAD Netlist .. 161

5.9 Examples .. 164

6 Errors and Bad Practices ... 166

6.1 Errors .. 166
6.2 Bad Practices .. 169

7 Deprecated Format Elements .. 171

7.1 Deprecated Commands ... 171
 Overview ... 171
 Axis Select (AS) .. 172
 Image Name (IN) .. 173
 Image Polarity (IP) .. 174
 Image Rotation (IR) ... 174
 Load Name (LN) ... 175
 Mirror Image (MI) .. 176
 Offset (OF) .. 177
 Scale Factor (SF) .. 177

7.2 Coordinate Data without Operation Code .. 179
7.3 Format Specification Options ... 180

 Trailing Zero Omission .. 180
 Incremental Notation ... 180
 Low resolution ... 181

7.4 Using G01/G02/G03 in a data block with D01/D02 .. 181
7.5 Deprecated usage of SR ... 182

mailto:gerber@ucamco.com

Copyright Ucamco NV 6
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.6 Rectangular Hole in Standard Apertures ... 182
7.7 Painting or Vector-fill ... 184
7.8 Deprecated Terminology ... 184
7.9 Deprecated Attribute Values .. 184
7.10 Standard Gerber (RS-274-D) .. 185

8 References .. 186

9 History ... 187

10 Revisions .. 189

10.1 Revision 2019.06 .. 189
10.2 Revision 2018.11 .. 189
10.3 Revision 2018.09 .. 189
10.4 Revision 2018.06 .. 189
10.5 Revision 2018.05 .. 189
10.6 Revision 2017.11 .. 190
10.7 Revision 2017.05 .. 190
10.8 Revision 2017.03 .. 190
10.9 Revision 2016.12 .. 190
10.10 Revision 2016.11 .. 191
10.11 Revision 2016.09 .. 191
10.12 Revision 2016.06 .. 191
10.13 Revision 2016.04 .. 192
10.14 Revision 2016.01 .. 192
10.15 Revision 2015.10 .. 192
10.16 Revision 2015.07 .. 192
10.17 Revision 2015.06 .. 192
10.18 Revision J4 (2015 02) ... 193
10.19 Revision J3 (2014 10) ... 193
10.20 Revision J2 (2014 07) ... 193
10.21 Revision J1 (2014 02) ... 193
10.22 Revision I4 (2013 10) .. 193
10.23 Revision I3 (2013 06) .. 193
10.24 Revision I2 (2013 04) .. 193
10.25 Revision I1 (2012 12) .. 194

mailto:gerber@ucamco.com

Copyright Ucamco NV 7
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Preface
The Gerber file format is the de facto standard for printed circuit board (PCB) design data
transfer. Every PCB design system outputs Gerber files and every PCB fabrication software
inputs them. Implementations are thoroughly field-tested and debugged. Gerber's widespread
availability allows PCB professionals to exchange PCB design data securely and efficiently. It
has been called “the backbone of the electronics fabrication industry”.
The Gerber format is an open ASCII vector format for 2D binary images specifying copper
layers, solder mask, legend, etc. The Gerber file format is simple, compact and unequivocal. It
describes an image with very high precision. It is portable and easy to debug by its use of
printable 7-bit ASCII characters.
A set of well-constructed Gerber file precisely defines the PCB image and the function of the
objects, reliably and productively transferring PCB fabrication data from design to fabrication.
Attributes transfer the meta-information needed by fabrication. Attributes are akin to labels
providing information associated with the image or features in it. Examples of metadata
conveyed by attributes are:

• The function of the file. Is the file the top solder mask, or the bottom copper layer, etc.?
• The function of a pad. Is the flash an SMD pad, or a via pad, or a fiducial, etc.

Files containing attributes are called Gerber X2 files, files without attributes Gerber X1.
RS-274X or Extended Gerber, either X1 or X2, is the current Gerber format. RS-274-D of
Standard Gerber is obsolete and now revoked. It was superseded by RS-274X decades ago.
Do not use Standard Gerber any longer.
Although other data formats have appeared, they have not displaced Gerber. The reason is
simple. The problems in PCB fabrication data transfer are not due to limitations in the Gerber
format but poor practices and poor implementations. To quote a PCB fabricator: “If we would
only receive proper Gerber files, it would be a perfect world.” The new formats are more
complex and less transparent to the user. Poor practices and errors in unfamiliar, new and more
complex formats are more damaging than in a well-known, well-tested and simple format. The
industry has not adopted new formats. Gerber remains the standard.
Ucamco continuously clarifies this document based on input from the field and adapts it to
current needs. Ucamco thanks the individuals that help us with comments, criticism and
suggestions. We urge Gerber software developers to monitor these revisions.
The emergence of Gerber as a standard for PCB fabrication data is the result of efforts by many
individuals who developed outstanding software for Gerber files. Without their dedication there
would be no standard format in the electronics fabrication industry. Ucamco thanks these
dedicated individuals.

Karel Tavernier
Managing Director,
Ucamco

mailto:gerber@ucamco.com
https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/File_formats#Vector_formats
https://en.wikipedia.org/wiki/Binary_image

Copyright Ucamco NV 8
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1 Introduction

1.1 Scope and Target Audience
This document specifies the Gerber file format, an ASCII vector image file format representing a
2D bi-level (binary, having two colors) images. It is intended for developers and users of Gerber
software.
The Gerber format is the de facto standard in the printed circuit board (PCB) industry but it also
used in other industries. A basic knowledge of PCB CAD/CAM is helpful for understanding this
specification.

1.2 Further Resources
The Ucamco website contains articles about the use of the Gerber format as well as sample
files. For more information about Gerber or Ucamco see www.ucamco.com.

1.3 Reference Gerber Viewer
Ucamco provides a reference X1 and X2 Gerber file viewer - free of charge – at gerber-
viewer.ucamco.com.
The Reference Gerber Viewer provides an easy-to-use reference for both X1 and X2 Gerber
files. - the utmost care was taken to display valid Gerber files correctly. It gives a clear warning
on risky errors. It is a convenient complement to the written specification (The specification has
precedence if it conflicts with the viewer.)
It is allowed to integrate a link to the online reference viewer in your website to help keep Gerber
files on the straight and narrow path of full compliance to the specification.
The Reference Gerber Viewer also provides an easy tool to review PCB fabrication date. For
convenience, it reverse engineers the intended image on an invalid Gerber file. For
completeness, it will also display drill files in NC format as well as netlists in IPC-D-356 files. If X2
is used the layer structure is displayed, and the function of all objects can be checked – e.g.
whether a pad is a via pad or not.
As the Reference Gerber Viewer is a cloud-based on-line web service there is no software to
download, install and maintain –it is always up to date. It is kept simple and easy to learn. It
offers the following benefits:

• For developers, it provides an easy way to test their Gerber output and to answer
questions about the interpretation of the specification.

• For recipients of Gerber files, it provides an easy way to check the image of the file they
are about to send.

• For creators of Gerber files, it provides an easy way to validate their input and arbitrate in
discussions about the valid interpretation of a file.

1.4 Questions
Ucamco strives to make this specification easy to read and unequivocal. If you find a part of this
specification unclear, please ask. Your question will be answered, and it will be considered to
improve this document. We are grateful for any suggestion for improvement.

mailto:gerber@ucamco.com
http://www.ucamco.com/

Copyright Ucamco NV 9
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The Gerber format includes a set of standard attributes to transfer meta-information in the PCB
industry. We are open to your suggestions for other new generally useful attributes.
We can be reached at gerber@ucamco.com.

mailto:gerber@ucamco.com
mailto:gerber@ucamco.com

Copyright Ucamco NV 10
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1.5 Copyright and Intellectual Property
© Copyright Ucamco NV, Gent, Belgium
Ucamco owns copyrights in this document. All rights reserved. No part of this document or its
content may be re-distributed, reproduced or published, modified or not, translated or not, in any
form or in any way, electronically, mechanically, by print or any other means without prior written
permission from Ucamco. One reason Ucamco must retain its copyrights in the Gerber Format®
specification is to maintain the integrity of the standard.
The information contained herein is subject to change without prior notice. Revisions may be
issued from time to time. This document supersedes all previous versions. Users of the Gerber
Format®, especially software developers, must consult www.ucamco.com to determine whether
new revisions were issued.
Ucamco developed the Gerber Format®. All intellectual property contained in it is solely owned
by Ucamco. By publishing this document Ucamco has not granted any license or alienated any
rights to the intellectual property contained in it. To use this intellectual property, developers of
software interfaces based on this format specification must make a reasonable effort to comply
with the latest revision of the specification; this is necessary to maintain the integrity of the
standard.
Gerber Format® is a Ucamco registered trade mark. By using this document, developing
software interfaces based on this format or using the name Gerber Format®, users agree not to
(i) rename the Gerber Format®; (ii) associate the Gerber Format® with data that does not
conform to the Gerber file format specification; (iii) develop derivative versions, modifications or
extensions without prior written approval by Ucamco; (iv) make alternative interpretations of the
data; (v) communicate that the Gerber Format® is not owned by Ucamco, explicitly or implied.
The material, information and instructions are provided AS IS without warranty of any kind,
explicit or implied. Ucamco does not warrant, guarantee or make any representations regarding
the use of the information contained herein, or the results of its use. Ucamco shall not be liable
for any direct, indirect, consequential or incidental damages arising out of the use or inability to
use the information contained herein.
All product names cited are trademarks or registered trademarks of their respective owners.

1.6 About Ucamco
Ucamco (former Barco ETS) is a market leader in PCB CAM software and imaging systems. We
have more than 25 years of continuous experience developing and supporting leading-edge
front-end tooling solutions for the global PCB industry. We help fabricators world-wide raise
yields, increase factory productivity, and cut enterprise risks and costs.
Today we have more than 1000 laser photoplotters and 5000 CAM systems installed around the
world with local support in every major market. Our customers include the leading PCB
fabricators across the global spectrum. Many of them have been with us for more than 20 years.
Key to this success has been our uncompromising pursuit of engineering excellence in all our
products. For 25 years our product goals have been best-in-class performance, long-term
reliability, and continuous development to keep each user at the cutting-edge of his chosen
technology.
For more information see www.ucamco.com.

mailto:gerber@ucamco.com
http://www.ucamco.com/

Copyright Ucamco NV 11
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2 Overview

2.1 File Structure
The Gerber format is a 2D bi-level vector image file format: the image is defined by resolution-
independent graphics objects. (Bi-level or binary means that the image takes one of two values
in each point, typically black or white.) A single Gerber file specifies a single image. A Gerber
file is complete: it does not need external files or parameters to be interpreted. One Gerber file
represents one image. One image needs one file only.
A Gerber file uses printable 7-bit ASCII characters. It is printable and human readable.
A Gerber file is a stream of commands. The commands create a stream of graphics objects
(see 2.2) that are put on the image plane to create the final image. Other commands add
attributes to structures in the image- attributes are labels defining meta-information.
A Gerber file can be processed in a single pass. Names, parameters and objects must be
defined before they are used.
As an illustration here is a small Gerber file with one command per line. It creates a circle of 1.5
mm in the origin.

%FSLAX26Y26*%

%MOMM*%

%ADD100C,1.5*%

D100*

X0Y0D03*

M02*

2.2 Apertures
An aperture is a 2D plane figure. Typically, apertures have the shape of a pad, such as a circle,
a rectangle or a rectangle with rounded corners, but can take more complicated shapes such as
a thermal pad or.
The AD (Aperture Define) command creates an aperture based on an aperture template and
parameter values and gives it a unique D code or aperture number for reference later in the
command stream.
There are two kinds of apertures templates:
 Standard apertures are pre-defined: the circle (C), rectangle (R), obround (O) and regular

polygon (P). See 4.4.
 Macro apertures are created with the AM (Aperture Macro) command. Any shape and

parametrization can be created. They are identified by their given name. (See 4.4.6).
Standard apertures can be considered as built-in macro apertures. The example AD command
below creates an aperture with D-code D123. It uses the standard aperture R with parameters
2.5 and 1.5 mm which creates a rectangle of 2.5 by 1.5 mm.

%ADD123R,2.5X1.5*%

Macros are a powerful feature of the Gerber format. Templates of any shape can be created. A
file writer can easily define the apertures needed. A file reader can handle any such aperture by
implementing the small number of macro primitives. This single flexible mechanism replaces the
need for a large - but always insufficient - set of built-in apertures. New apertures can be
created without extending the format.

mailto:gerber@ucamco.com

Copyright Ucamco NV 12
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Block apertures are another type of apertures. They are an ordered set of graphics objects.
Block apertures are not created from templates. They are created by an AB command, which
defines a block and directly assigns a D-code to it (see 2.8).
An aperture has an origin. When an aperture is flashed, its origin is positioned at the
coordinates in the D03 flash command (see 4.1). The origin of a standard aperture is its
geometric center. The origin of a macro aperture is the origin used in the AM command defining
the macro. The origin of a block aperture is the origin used when defining the block.

2.3 Graphics Objects
A Gerber file creates an ordered stream of graphics objects. A graphics object represents plane
figure. It has a shape, a size, a position and a polarity (dark or clear). The stream of the
graphics objects creates the final image by superimposing the objects on the plane in the order
of the stream, with dark polarity objects darkening the plane and clear ones erasing all dark
areas under them.
There are four types of graphics objects:
 Draws are straight-line segments, stroked with the current aperture. Circular and

rectangular apertures can stroke a straight line. Thickness and draw endings depend on the
current aperture: line endings are round for circle apertures and square or triangle for
square apertures (see 2.4).

 Arcs are circular segments, stroked with the current aperture. Only a circular aperture can
stroke an arc. The thickness is the diameter of the circle. Arc endings are always round as
only stroking with a circle is allowed (see 2.4).

 Flashes are replications of the current aperture in the image plane. Any valid aperture can
be flashed (see 4.8.4). An aperture is typically flashed many times.

 Regions areas defined by its contour (see 4.12.1). A contour is a closed sequence of
connected linear or circular segments.

In PCB copper layers, tracks are typically represented by draws and arcs, pads by flashes and
copper pours by regions. Tracks is then a generic name for draws and arcs.

2.4 Draws and Arcs
A draw object is created by a command with D01 code in linear interpolation mode. The
command results in stroking a straight-line segment with a solid circle or solid rectangle
standard aperture. If stroked with a circle aperture the draw has round endings and its thickness
is equal to the diameter of the circle. The effect of stroking a line segment with a rectangle
aperture is illustrated below.
If the rectangle aperture is aligned with the line being stroked the result is a draw with line
endings which have right angles:

1. Creating a draw: the aperture is aligned with line

If the rectangle is not aligned the result is as in the illustration below. The rectangle is not
automatically rotated to align with the line being stroked.

Line being stroked Aperture Draw

mailto:gerber@ucamco.com

Copyright Ucamco NV 13
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2. Creating a draw: the aperture is not aligned with line

The solid circle and the solid rectangle standard apertures are the only apertures allowed for
creating draw objects. Neither other standard apertures nor any macro apertures can be used to
create a draw, even if their effective shape is circle or a rectangle.
An arc object is created by a command with D01 code in circular interpolation mode. In this
case the command results in stroking an arc segment with a solid circle standard aperture. The
arc has round endings and its thickness is equal to the diameter of the circle. An arc object
cannot be created using a rectangle or any other aperture.
A circle aperture with diameter zero can be used for creating a draw or an arc. It creates
graphics objects without image which can be used to transfer non-image information, e.g. an
outline.
Zero-length draws and arcs are allowed. The resulting image is a replica of the aperture, the
limiting image when the draw/arc length approaches zero. Thus the image is what is expected if
a small draw/arc is accidentally rounded to a zero-length draw/arc. Although the image is
coincidentally identical to a flash of the same aperture the resulting graphics object is not a flash
but a draw/arc. Do not use zero-length draws to represent pads. Pads must be represented by
flashes for unequivocal identification.

Line being stroked Aperture Draw

mailto:gerber@ucamco.com

Copyright Ucamco NV 14
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.5 Operations (D01, D02, D03)
D01, D02 and D03 are the operations. An operation is a command containing coordinate data
followed by a single operation code: each operation code is associated with a single coordinate
pair and vice versa. Operations create the graphics objects and/or change the current point by
operating on the coordinate data.

 Example:
X100Y100D01*

X200Y200D02*

X300Y-400D03*

The operations have the following effect.
 D02 moves the current point (see 2.5) to the coordinate pair. No graphics object is created.
 D01 creates a straight or circular line segment by interpolating from the current point to the

coordinate pair. Outside a region statement (see 2.5) these segments are converted to
draw or arc objects by stroking them with the current aperture (see 2.4). Within a region
statement these segments form a contour defining a region (see 4.12).

 D03 creates a flash object by flashing (replicating) the current aperture. The origin of the
current aperture is positioned at the specified coordinate pair.

Only D01 and D03 operation codes result in a graphics object creation. The effect of the
operation codes depends on the graphics state (see 2.5).

2.6 Graphics State
The graphics state is a set of parameters affecting the result of the operation codes (see 2.5).
Before an operation code is issued all graphics state parameters affecting it must be defined.
The most important graphics state parameter is the current point. This is a point in the image
plane set implicitly by each operation command (D01, D02, D03) to the coordinates contained in
that operation command after finishing.
All other graphics state parameters are set explicitly by corresponding commands. Their values
remain constant until explicitly changed.
The table below lists the graphics state parameters. The column ‘Constant or variable’ indicates
whether a parameter remains fixed during the processing of a file or whether it can be changed.
The column ‘Initial value’ is the default value at the beginning of each file; if the default is
undefined the parameter value must be explicitly set by a command in the file before it is first
used.

Graphics state
parameter

Value range Constant or
variable during
file processing

Initial
value

Coordinate parameters

Coordinate format Coordinate resolution. See the FS command in 4.1 Constant Undefined

Unit Inch or mm. See MO command in 4.2 Constant Undefined

Generation parameters

Current point Point in plane Variable Undefined

Current aperture Used for interpolating and flashing.
See D01 and D03 commands in 4.8

Variable Undefined

mailto:gerber@ucamco.com

Copyright Ucamco NV 15
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Interpolation mode Linear, clockwise circular, counterclockwise circular
See G01, G02 and G03 commands in 4.9 and 4.10

Variable Undefined

Quadrant mode Single-, multi-quadrant. See G74 and G75 in 4.10 Variable Undefined

Aperture transformation parameters

Polarity Dark or clear. See the LP command in 4.11.2 Variable Dark

Mirroring See the LM command in 4.11.3 Variable No mirror

Rotation See the LR command in 4.11.4 Variable No rotation

Scaling See the LS command in 4.11.5 Variable No scaling

Graphics state parameters

The graphics state determines the effect of an operation. If a parameter is undefined when it is
required to perform an operation the Gerber file is invalid. A graphics state parameter that is not
needed can remain undefined. For example, if the interpolation mode has been set by G02 or
G03 code command (circular interpolation) the quadrant mode is required to perform a D01
code operation and thus must be defined; if the interpolation mode has been set by G01 code
command (linear interpolation) then the quadrant mode is not needed and may remain
undefined.
The relevance of the graphics state parameters for the operations is represented in the table
below.

Graphics state
parameter

Operation codes

D01 D02 D03

Coordinate format Yes Yes Yes

Unit Yes Yes Yes

Current point Yes (interpolation
starting point)

No No

Current aperture Yes outside a region
statement, no inside

No Yes

Interpolation mode Yes No No

Quadrant mode Yes if interpolation
mode is clockwise or

counterclockwise
circular interpolation

No if interpolation mode
is linear

No No

Polarity Yes No Yes

Mirroring Yes No Yes

Rotation Yes No Yes

mailto:gerber@ucamco.com

Copyright Ucamco NV 16
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Scaling Yes No Yes

Relevance of graphics state parameters for operation codes

If a table cell contains ‘Yes’ it means the graphics state parameter is relevant for the
corresponding operation. Thus the graphics state parameter must be defined before the
operation code is used in the file. If the parameter does not have an automatically assigned
initial value it must be explicitly set by the corresponding command.

mailto:gerber@ucamco.com

Copyright Ucamco NV 17
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.7 Polarity
The final image of the Gerber file is created by superimposing the objects in the order of their
creation. Objects have a polarity, either clear or dark. Objects can overlap. A dark polarity object
darkens its image in the plane. A clear polarity object clears its image in all objects beneath it
(generated before). Subsequent dark objects may again darken the cleared area. See
illustration below. Another example is in 4.12.4.7.

3. Superimposing objects with dark and clear polarities

An object is totally dark or totally clear. It cannot be partially dark and partially clear.
The order of superimposed objects with different polarities affects the final image.
The LP command sets the polarity mode, a graphics state parameter (see 4.11). Objects that
are created when the polarity mode is dark are dark; when the mode is clear the objects are
clear.

Dark polarity

Clear polarity

Dark polarity

Image plane Graphics objects

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

mailto:gerber@ucamco.com

Copyright Ucamco NV 18
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.8 Blocks
A block is a substream of graphics objects that can be added one or more times to the final
graphics objects stream. Blocks can be mirrored, rotated, scaled, shifted and its polarity can be
toggled. By using blocks sub-images that occur multiple times must only be defined once, thus
slashing file size, boosting processing speed and preserving the information that these sub-
images are identical.
A block is not a macro of commands called repeatedly in the command stream. The command
stream is processed sequentially, in one pass, without procedure or macro calls. Gerber is not a
programming language.
Blocks can contain objects with different polarities (LPD and LPC). Blocks can overlap.
The origin of the block is the (0, 0) point of the file coordinate space.
Once a block is added to the graphics objects stream its objects becomes part of the overall
stream. The effect of these objects does not depend on whether they were part of a block or not.
Only their order is important. A clear object in a block clears all objects beneath it, not only the
objects not contained in the block.
There are two commands to create a block: SR and AB.

2.9 Attributes

Attributes add meta-information to a Gerber file. These are akin to labels providing additional
information about the file or features within. Examples of such meta-information are:
 The function of the file: is it the top solder mask, or the bottom copper layer etc.
 The function of a pad: is the pad a component pad, or a via pad, or a fiducial, etc.

 Example:
This command defines an attribute indicating the file represents the top solder mask.

%TF.FileFunction,Soldermask,Top*%

Attributes do not affect the image. A Gerber reader will generate the correct image even if it
simply ignores the attributes.
Attributes can be attached to objects, apertures or to the complete file.
The attribute syntax provides a flexible and standardized way to add meta-information to the
images, independent of the specific semantics or application.
Attributes are needed when PCB data is transferred from design to fabrication. The PCB
fabricator needs more than just the image: for example, he needs to know what are the via pads
to manufacture the solder mask. The attributes transfer the design intent from CAD to CAM in
an unequivocal and standardized manner. This is sometimes rather grandly called “adding
intelligence to the image”. Without these attributes the fabricator must reverse engineer the
design intent of the features in the file, which is a time-consuming and error-prone process.
Gerber files containing attribute commands (TF, TA, TO, TD) are called Gerber X2 files, files
without attributes Gerber X1 files.
Attributes are described in detail in the chapter 5.

mailto:gerber@ucamco.com

Copyright Ucamco NV 19
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.10 Table with Commands
Command Description Section

FS Format specification. Sets the coordinate format, e.g. the number of decimals. 4.1

MO Mode. Sets the unit to inch or mm. 4.2

AD Aperture define. Defines a template based aperture and assigns a D code to it. 4.3

AM Aperture macro. Defines a macro aperture template. 4.5

AB Aperture block. Defines a block aperture and assigns a D-code to it. 4.6

Dnn (nn≥10) Sets the current aperture to D code nn. 4.7

D01 Interpolate operation. Outside a region statement D01 creates a draw or arc
object using the current aperture. Inside it creates a linear or circular contour
segment. After the D01 command the current point is moved to draw/arc end
point.

4.8

D02 Move operation. D02 does not create a graphics object but moves the current
point to the coordinate in the D02 command.

4.8

D03 Flash operation. Creates a flash object with the current aperture. After the D03
command the current point is moved to the flash point.

4.8

G01 Sets the interpolation mode to linear. 4.9

G02 Sets the interpolation mode to clockwise circular. 4.10

G03 Sets the interpolation mode to counterclockwise circular. 4.10

G74 Sets quadrant mode to single quadrant. 4.10

G75 Sets quadrant mode to multi quadrant. 4.10

LP Load polarity. Loads the polarity object transformation parameter. 4.11.2

LM Load mirror. Loads the mirror object transformation parameter. 4.11.3

LR Load rotation. Loads the rotation object transformation parameter. 4.11.4

LS Load scale. Loads the scale object transformation parameter. 4.11.5

G36 Starts a region statement. This creates a region by defining its contour. 4.12.

G37 Ends the region statement. 4.12

SR Step and repeat. Open or closes a step and repeat statement. 4.13

G04 Comment. 4.14

TF Attribute file. Set a file attribute. 5.2

TA Attribute aperture. Add an aperture attribute to the dictionary or modify it. 5.3

TO Attribute object. Add an object attribute to the dictionary or modify it. 5.4

TD Attribute delete. Delete one or all attributes in the dictionary. 5.5

M02 End of file. 4.15

Command Overview

mailto:gerber@ucamco.com

Copyright Ucamco NV 20
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.11 Processing a Gerber File
The image below illustrates how a Gerber file is processed.

4. Gerber file processing diagram

Syntax parser

Gerber file

Image plane

Stream of
commands

Stream of
graphics objects

Aperture templates
dictionary

AM command

M02 command

Graphics state

Graphics
object

Commands processor

Apertures dictionary

AD command

A

Legend

A B
Command As the result of Command execution A

forces B to change or perform a task

B A affects B

A B A passes stream of data to B

A B A processes B

mailto:gerber@ucamco.com

Copyright Ucamco NV 21
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The syntax parser reads the Gerber file and produces the stream of commands for the
commands processor. The commands processor is responsible for handling the stream of
commands and as the result it generates the stream of graphics objects. All the created objects
are superimposed on the image plane in order of their creation.
The graphics state is a core part of the commands processor. How the processor creates
graphics objects from the operation codes (see 2.5) depends on the graphics state. Conversely,
the processor modifies the graphics state when processing certain commands (see 2.5).
The aperture template dictionary holds all the templates available. The AD command (see 4.3)
instantiates the templates to apertures and adds them to the aperture library. Standard, or built-
in, aperture templates are automatically added to the dictionary when file processing is started.
Macro aperture templates are created with an AM command (see 4.5); they are added when the
AM command is processed.
The current aperture is a graphics state parameter that is maintained by Dnn command (see
4.7). When the processor executes a Dnn command a referenced aperture from apertures
dictionary is set as the current aperture.
The graphics state also affects the generation of aperture templates and apertures: the
templates and apertures depend on ‘coordinate format’ and ‘unit’ graphics state parameters
(see 2.5).
The graphics object stream is without state. Objects are superimposed as they are, in their
order of appearance.
After processing the M02 command (see 4.14) the processor interrupts the syntax parser and
stops the graphics objects generation.
The image from above illustrates the processing of a Gerber file without attributes.

mailto:gerber@ucamco.com

Copyright Ucamco NV 22
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.12 Glossary
AB statement: A statement defining a block aperture.
Aperture: A 2D shape that is used for stroking or flashing. (The name is historic; vector
photoplotters exposed images on lithographic film by shining light through an opening,
called aperture.)
Aperture macro: The content of an Aperture Macro (AM) command. Defines a custom
aperture template by combining built-in primitives.
Aperture template: A template is used to create the specific apertures used in the file.
The AD command defines the parameters to instantiate the template to a defined
aperture. There are three types of templates: standard or built-in apertures, macro
apertures and block apertures.
Aperture templates dictionary: The object that holds all the aperture templates.
Apertures dictionary: The object that holds all the apertures.
Arc: A graphics object created by a D01 command in a circular interpolation mode.
Attribute: Metadata that is attached to the file or to objects in it; it provides extra
information without affecting the image.
Attributes dictionary: The object that holds all the current attributes during the
processing of a Gerber file.
Bi-level image: A two-dimensional (2D) image represented by two colors, usually
black and white.
Block: A substream of graphics objects that can be added to the final objects stream.
Circular interpolation: Creating a circular segment (circular arc) that is either an arc
graphics object or used as a circular contour segment.
Clear: Clearing or erasing part of the image in the image plane. When a graphics
object with clear polarity is added to the stream it erases its shape from any image that
was already there.
Command: Commands are the basic unit of a Gerber file. Commands create graphics
objects, define apertures, manage attributes, modify the graphics state and so on. For
historic reasons, there are two syntax styles for commands: function code commands
and extended commands.
Command code: A code that identifies the command.
Contour: A closed a sequence of connected linear or circular segments. Contours are
used to create regions or outline primitives in macro apertures.
Coordinate data: A number whose interpretation is determined by the FS command. It
is used to specify the X and Y coordinates of a point in the image plane and a distance
or offset in the X and Y direction.
Coordinate format: The specification of how to convert coordinate data to
coordinates. It is file-dependent and is defined by an FS command.

mailto:gerber@ucamco.com

Copyright Ucamco NV 23
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Current aperture: The graphics state parameter that specifies the last aperture
selected by a Dnn command. The current aperture is always used to create flashes,
draws and arcs.
Current point: The graphics state parameter that specifies the point in the plane used
as a begin point of a circular or linear interpolation or as the location flash.
Darken: Darken the shape of a graphics object on the image plane; this happens when
a graphics object with dark polarity added to the image.
Data block: The low level syntactical element of a Gerber file that is represented by a
sequence of characters ending with ‘*’ character. Data blocks are used to build
commands. Many commands consist of a single data block.
Draw: A graphics object created by D01 code command in linear interpolation mode.
Extended commands: Commands enclosed in a pair of ’%’ characters.
File image: The bi-level image that is the visual representation of a Gerber file. It is
created by superimposing the graphics objects in the plane.
Flash: A graphics object created by D03 or flash command.
Function code commands: Commands consisting of a single data block containing a
function code. A function code is a letter ‘D’, ‘G’ or ‘M’ followed by a code number.
Gerber file: A file in the Gerber format.
Gerber format: The vector image file format defined by the current specification and
used for representing a bi-level image.
Graphics object: A graphics object is a 2D object with a shape, a size, a position in
the plane and a polarity (dark or clear). It is of one of the following types: flash, draw,
arc or region. The file image is created by superimposing graphics objects on the
image plane. Attributes can optionally be attached to a graphics object.
Graphics state: The set of parameters that at each moment determine how the
operation codes create graphics objects. For example, it determines whether a D01
operation code creates a draw or an arc.
Header: The part of the file from the file beginning to the point where the first operation
code is encountered. The header typically holds the definitions of file attributes,
aperture definitions, scale and unit.
Image plane: The 2D plane in which the image defined by the file is created.
Interpolation mode: The graphics state parameter defining the current interpolation
mode. See linear and circular interpolation.
Linear interpolation: Creating a straight segment that is either converted to a draw
graphics object or used as a linear contour segment.
Macro aperture: An aperture template defined using AM command.
Multi quadrant mode: A mode defining how circular interpolation is performed. In this
mode a circular arc is allowed to extend over more than 90°. If the start point of the arc
is equal to the end point the arc is a full circle of 360°.
Operation: A command containing one of the operation codes D01, D02 or D03 and
coordinate data. The operation code defines the type of the operation that is performed

mailto:gerber@ucamco.com

Copyright Ucamco NV 24
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

using the coordinate data. Operations may create graphics objects, create contours,
and change the current point of the graphics state.
Polarity: A graphics state parameter that can take the value dark or clear. It
determines the polarity of the graphics objects generated. Dark means that the object
marks the image plane in dark and clear means that the object clears or erases
everything underneath it. See also ‘Darken’ and ‘Clear’.
Quadrant mode: The graphics state parameter defining the current quadrant mode.
See multi quadrant mode and single quadrant mode.
Region: A graphics object with an arbitrary shape defined by its contour.
Region statement: A statement creating a region by defining its contour.
Resolution: The distance expressed by the least significant digit of coordinate data.
Thus the resolution is the step size of the grid on which all coordinates are defined.
Single quadrant mode: A mode defining how circular interpolation is performed. In
this mode a circular arc cannot extend over more than 90°. If the start point of the arc is
equal to the end point, the arc has length zero, i.e. covers 0°.
SR statement: A statement defining a block and step & repeating it.
Standard aperture: A built-in aperture template.
Standard attribute: A built-in attribute with a pre-defined semantics. See also user
attribute.
Statement: A coherent sequence of commands delimited by an open and close
command defining a higher-level structure (block or region).
Stroke: To create a draw or an arc graphics object using the current aperture.
Track: Either a draw or an arc. Typically used for a conductive traces on a PCB.
Unit: The measurement unit ‘mm’ or ‘inch’ used to interpret the coordinate data. The
effective unit is stored as the value of the corresponding graphics state parameter.
User attribute: A third-party defined attribute to extend the format with proprietary
meta-information.

mailto:gerber@ucamco.com

Copyright Ucamco NV 25
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.13 Example Files
These annotated sample files illustrate the use of the elements of the Gerber file format. They
will give you a feel for the Gerber file format if it is new to you and thus will make the formal
specification easier to read.

 Example: Two Square Boxes
This example represents a single polarity image with two square boxes.

5. Example: two square boxes

Syntax Comments

G04 Ucamco ex. 1: Two
square boxes*

A comment

%FSLAX25Y25*%

Coordinate format specification:

Leading zero’s omitted

Absolute coordinates

Coordinates format is 2.5:

2 digits in the integer part
5 digits in the fractional part

%MOMM*%

Unit set to mm

%TF.Part,Other,example*% Attribute: the file does not describe a PCB part - it is just an example
%LPD*% , Set the polarity to dark
%ADD10C,0.010*%

Define aperture with D-code 10 as a 0.01 mm circle

D10* Set aperture with D-code 10 as current aperture
X0Y0D02* Set current point to (0, 0)
G01* Set linear interpolation mode
X500000Y0D01* Create draw graphics object using the current aperture D10: start

point is the current point (0,0), end point is (5, 0)
Y500000D01* Create draw using the current aperture: (5, 0) to (5, 5)

mailto:gerber@ucamco.com

Copyright Ucamco NV 26
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

X0D01* Create draw using the current aperture: (5, 5) to (0, 5)
Y0D01* Create draw using the current aperture: (0, 5) to (0, 0)
X600000D02*

Set current point to (6, 0)

X1100000D01* Create draw using the current aperture: (6, 0) to (11, 0)
Y500000D01* Create draw using the current aperture: (11, 0) to (11, 5)
X600000D01* Create draw using the current aperture: (11, 5) to (6, 5)
Y0D01* Create draw using the current aperture: (6, 5) to (6, 0)
M02* End of file

 Example: Polarities and Apertures
This example illustrates the use of polarities and various apertures.

6. Example: various shapes

mailto:gerber@ucamco.com

Copyright Ucamco NV 27
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

G04 Ucamco ex. 2: Shapes* A comment
%FSLAX26Y26*% Format specification:

Leading zero’s omitted

Absolute coordinates

Coordinates format is 2.6:

2 digits in the integer part
6 digits in the fractional part

%MOIN*% Units are inches
%TF.Part,Other,Example*% Attribute: the file is not a layer of a PCB part - it is just an

example
G04 Define Apertures* Comment
%AMTARGET125* Define the aperture macro ‘TARGET125’
6,0,0,0.125,.01,0.01,3,0.003,0.
150,0*%

Use moiré primitive in the macro

%AMTHERMAL80* Define the aperture macro ‘THERMAL80’
7,0,0,0.080,0.055,0.0125,45*% Use thermal primitive in the macro
%ADD10C,0.01*% Define the aperture: D10 is a circle with diameter 0.01 inch
%ADD11C,0.06*% Define the aperture: D11 is a circle with diameter 0.06 inch
%ADD12R,0.06X0.06*% Define the aperture: D12 is a rectangle with size 0.06 x 0.06

inch
%ADD13R,0.04X0.100*% Define the aperture: D13 is a rectangle with size 0.04 x 0.1

inch
%ADD14R,0.100X0.04*% Define the aperture: D14 is a rectangle with size 0.1 x 0.04

inch
%ADD15O,0.04X0.100*% Define the aperture: D15 is an obround with size 0.04 x 0.1

inch
%ADD16P,0.100X3*% Define the aperture: D16 is a polygon with 3 vertices and

circumscribed circle with diameter 0.1 inch
%ADD18TARGET125*% Define the aperture: D18 is the instance of the macro

aperture called ‘TARGET125’ defined earlier
%ADD19THERMAL80*% Define the aperture: D19 is the instance of the macro

aperture called ‘THERMAL80’ defined earlier
G04 Start image generation* A comment
D10* Set the current aperture: use aperture with D-code 10
X0Y250000D02* Set the current point to (0, 0.25) inch
G01* Set linear interpolation mode
X0Y0D01* Create draw using the current aperture

mailto:gerber@ucamco.com

Copyright Ucamco NV 28
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

X250000Y0D01* Create draw using the current aperture
X1000000Y1000000D02* Set the current point
X1500000D01* Create draw using the current aperture
X2000000Y1500000D01* Create draw using the current aperture
X2500000Y1500000D02* Set the current point.
X2500000Y1000000D01* Create draw using the current aperture
D11* Set the current aperture: use aperture with D-code 11
X1000000Y1000000D03* Create flash using the current aperture D11 at (1.0, 1.0). Y is

modal.
X2000000D03* Create flash using the current aperture D11 at (2.0, 1.0). Y is

modal.
X2500000D03* Create flash using the current aperture D11 at (2.5, 1.0). Y is

modal.
Y1500000D03* Create flash using the current aperture D11 at (2.5, 1.5). X is

modal.
X2000000D03* Create flash using the current aperture D11 at (2.0, 1.5). Y is

modal.
D12* Set the current aperture: use aperture with D-code 12
X1000000Y1500000D03* Create flash using the current aperture at (1.0, 1.5)
D13* Set the current aperture: use aperture with D-code 13
X3000000Y1500000D03* Create flash using the current aperture at (3.0, 1.5)
D14* Set the current aperture: use aperture with D-code 14
Y1250000D03* Create flash using the current aperture at (3.0, 1.25)
D15* Set the current aperture: use aperture with D-code 15
Y1000000D03* Create flash using the current aperture at (3.0, 1.0)
D10* Set the current aperture: use aperture with D-code 10
X3750000Y1000000D02* Set the current point. This sets the start point for the

following arc object
G75* Set multi quadrant mode
G03* Set counterclockwise circular interpolation mode
X3750000Y1000000I250000J0D01* Create arc using the current aperture D10. This creates a

complete circle
D16* Set the current aperture: use aperture with D-code 16
X3400000Y1000000D03* Create flash using the current aperture D16
X3500000Y900000D03* Create flash using the current aperture D16 again

mailto:gerber@ucamco.com

Copyright Ucamco NV 29
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

D10* Set the current aperture: use aperture with D-code 10
G36* Start a region statement
X500000Y2000000D02* Set the current point to (0.5, 2.0)
G01* Set linear interpolation mode
X500000Y3750000D01* Create linear segment of the contour
X3750000Y3750000D01* Create linear segment of the contour
X3750000Y2000000D01* Create linear segment of the contour
X500000Y2000000D01* Create linear segment of the contour
G37* Close the region statement

This creates the region by filling the created contour
D18* Set the current aperture: use aperture with D-code 18
X0Y3875000D03* Create flash using the current aperture D18
X3875000Y3875000D03* Create flash using the current aperture D18
%LPC*% Set the polarity to clear
G36* Start the region statement
X1000000Y2500000D02* Set the current point to (1.0, 2.5)
X1000000Y3000000D01* Create linear segment
G74* Set single quadrant mode
G02* Set clockwise circular interpolation mode
X1250000Y3250000I250000J0D01* Create clockwise circular segment with radius 0.25
G01* Set linear interpolation mode
Y3250000X3000000D01* Create linear segment
G75* Set multi quadrant mode
G02* Set clockwise circular interpolation mode
X3000000Y2500000I0J-375000D01* Create clockwise circular segment with radius 0.375
G01* Set linear interpolation mode
Y2500000X1000000D01* Create linear segment
G37* Close the region statement

This creates the region by filling the created contour
%LPD*% Set the polarity to dark
D10* Set the current aperture: use aperture with D-code 10
X1500000Y2875000D02* Set the current point
X2000000 Y2875000D01* Create draw using the current aperture

mailto:gerber@ucamco.com

Copyright Ucamco NV 30
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

D11* Set the current aperture: use aperture with D-code 11
X1500000Y2875000D03* Create flash using the current aperture D11
X2000000Y2875000D03* Create flash using the current aperture D11
D19* Set the current aperture: use aperture with D-code 19
X2875000Y2875000D03* Create flash using the current aperture D19
M02* End of file

 Example: A Drill File
This example is a drill file.

7. Example: drill file

Syntax Comments

%FSLAX26Y26*% Format specification:

Leading zero’s omitted

Absolute coordinates

Coordinate format is 2.6:

2 digits in the integer part
6 digits in the fractional part

mailto:gerber@ucamco.com

Copyright Ucamco NV 31
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%MOIN*% Units are inches
%TF.FileFunction,Plated,1,8,PTH*% Attribute: this drill file describes plated-through holes
%TF.Polarity,Positive*% Always positive polarity for drill files
%TF.Part,Single*% Attribute: the file is part of a single PCB
%LPD*% Set the polarity to dark
%TA.DrillTolerance,0.002,0.001*% Set the drill tolerance attribute to 2 mil in plus and 1 mil in

minus in the attribute dictionary. It will be attached to all
aperture definitions until changed or deleted

%TA.AperFunction,ComponentDrill% Attribute indicates that the following apertures define
component drill holes.

%ADD10C,0.014000*% Define the aperture: a plated hole for a component lead,
with 14 mil end (or inner) diameter and 2 mil positive and 1
mil negative tolerance.

%TA.AperFunction,Other,SpecialDri
ll*%

Attribute indicates that the following apertures are special
drill holes

%ADD11C,0.024000*% Define the aperture: a plated hole for a special purpose, with
24 mil end (or inner) diameter and 2 mil positive and 1 mil
negative tolerance.

%TA.DrillTolerance,0.015,0.015*% Change the drill tolerance attribute for the following
apertures to 15 mil in both directions

%TA.AperFunction,MechanicalDrill*
%

Change the tool function attribute in the dictionary to
mechanical

%ADD12C,0.043000*% Define the aperture: a circular aperture defining a plated
mechanical drill hole with 43 mil end diameter, and a
tolerance of 15 mil in both directions.

%ADD13C,0.022000*% Define the aperture: another tool with the same attributes
but a smaller end diameter

%TD.AperFunction*% Remove the .AperFunction aperture attribute from the
attributes dictionary

%TD.DrillTolerance*% Remove the .DrillTolerance aperture attribute from the
attributes dictionary

G01* Set linear interpolation mode
D10* Set the current aperture: use drill tool 10
X242000Y275000D03* Create several flash graphics objects using the current

aperture D10: drill plated component drill holes with
diameter 14 mil at indicated coordinates

X242000YY325000D03*

X217000Y300000D03*

X192000Y325000D03*

X292000Y275000D03*

X192000Y275000D03*

X292000Y325000D03*

mailto:gerber@ucamco.com

Copyright Ucamco NV 32
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

X267000Y300000D03*

D11* Set the current aperture: use drill tool 11
X124000Y0D03* Create several flash graphics objects using the current

aperture D11: drill plated special drill holes with diameter 24
mil at indicated coordinates

X0Y-124000D03*

X-124000Y0D03*

X88000Y88000D03*

X-88000Y88000D03*

X0Y124000D03*

X88000Y-88000D03*

X-88000Y-88000D03*

D12* Set the current aperture: use drill tool 12
X792000Y350000D03* Create several flash graphics objects using the current

aperture D12: drill plated mechanical drill holes with
diameter 43 mil at indicated coordinates

X492000Y-350000D03*

D13* Set the current aperture: use drill tool 13
X767000Y-600000D03* Create several flash graphics objects using the current

aperture D13: drill plated mechanical drill holes with
diameter 22 mil at indicated coordinates

X567000Y-600000D03*

X-233000Y200000D03*

X-233000Y400000D03*

X-233000Y0D03*

X-233000Y-200000D03*

X-233000Y-600000D03*

X-233000Y-400000D03*

X-33000Y-600000D03*

X167000Y-600000D03*

X367000Y-600000D03*

%TF.MD5,b5d8122723797ac635a1814c0
4c6372b%

Attribute: the MD5 checksum of the file

M02* End of file

 Note: One might be surprised to see drill files represented as Gerber files. Gerber is
indeed not suited to drive drilling machines, but it is the best format to convey drill information
from design to fabrication. After all, it defines where material must be removed, and this is
image information that Gerber files describe perfectly. For more information, see 5.6.2.

2.14 Conformance
A file violating any requirement of the specification or containing any part is wholly invalid. If
the interpretation of a construct is not specified or not obvious the construct is invalid. An invalid
Gerber file is meaningless and does not represent an image.

mailto:gerber@ucamco.com

Copyright Ucamco NV 33
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

A conforming Gerber file writer must write files according to this specification. A current
conforming Gerber file writer cannot use deprecated constructs. A writer is not required to
consider limitations or errors in particular readers. The writer may assume that a valid file will be
processed correctly.
A conforming Gerber file reader must render a valid Gerber file according to this specification. A
current reader may support some or all deprecated format elements as they can be present in
legacy files. To prepare for future extensions of the format, a Gerber file reader must give a
warning when encountering an unknown command or macro primitive; it must then continue
processing ignoring the unknown construct. Otherwise there is no mandatory behavior on
reading an invalid Gerber file. It is not mandatory to report any other errors – this would impose
an unreasonable burden on readers and may result in useless messages in some applications.
It allowed to generate an image on an invalid file, e.g. as a diagnostic help or to reverse
engineer the intended image; however, as an invalid Gerber file is meaningless, it cannot be
stated interpretation of the file is valid and another invalid.
The responsibilities are obvious and plain. Writers must write valid and numerically robust files
and readers must process such files correctly. Writers are not responsible to navigate around
problems in the readers, nor are readers responsible to solve problems in the writers. Keep in
mind Postel’s rule: “Be conservative in what you send, be liberal in what you accept.”

Standard Gerber (RS-274-D) is obsolete and therefore non-conforming. The responsibility for
misunderstandings of its non-standardized wheel file rests solely with the party that decided to
use Standard Gerber rather than Extended Gerber. See 7.10.
This document is the sole specification of the Gerber format. Gerber viewers, however useful,
do not overrule this document.

mailto:gerber@ucamco.com

Copyright Ucamco NV 34
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3 Syntax

3.1 Conventions for Syntax Rules
The syntax is expressed in Backus-Naur form:
 Syntax rules are written with bold font, e.g. <elements set> = {<elements>}
 Optional items enclosed in square brackets, e.g. [<optional element>]
 Items repeating zero or more times are enclosed in braces, e.g. <elements set> =

<element>{<element>}
 Alternative choices are separated by the ‘|’ character, e.g. <option A>|<option B>
 Grouped items are enclosed in regular parentheses, e.g. (A|B)(C|D)
Examples of Gerber file content are written with mono-spaced font, e.g. X0Y0D02*.

mailto:gerber@ucamco.com

Copyright Ucamco NV 35
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.2 File Extension, MIME Type and UTI
The Gerber Format has a standard file name extension, a registered mime type and a UTI
definition.
Standard file extension: .gbr or .GBR
Mime type: application/vnd.gerber

(see http://www.iana.org/assignments/media-types/application/vnd.gerber)
Mac OS X UTI:
<key>UTExportedTypeDeclarations</key>
<array>
 <dict>
 <key>UTTypeIdentifier</key>
 <string>com.ucamco.gerber.image</string>
 <key>UTTypeReferenceURL</key>
 <string>http://www.ucamco.com/gerber</string>
 <key>UTTypeDescription</key>
 <string>Gerber image</string>
 <key>UTTypeConformsTo</key>
 <array>
 <string>public.plain-text</string>
 <string>public.image</string>
 </array>
 <key>UTTypeTagSpecification</key>
 <dict>
 <key>public.filename-extension</key>
 <array>
 <string>gbr</string>
 </array>
 <key>public.mime-type</key>
 <string>application/vnd.gerber</string>
 </dict>
 </dict>
</array>

mailto:gerber@ucamco.com

Copyright Ucamco NV 36
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.3 Character Set
A Gerber file is expressed in the 7-bit ASCII codes 32 to 126 (i.e. the printable characters in
ANSI X3.4-1986) plus codes 10 (LF, Line Feed) and 13 (CR, Carriage Return). No other
characters are allowed. Gerber files are therefore printable and human readable.
The line separators CR and LF have no effect, they can be ignored when processing the file.
They are used to improve human readability.
Space characters can only be used inside strings (see 3.6.6).
Gerber files are case-sensitive. Command codes must be in upper case.

3.4 Data Blocks
Data blocks are the building blocks for a Gerber file. Each data block ends with the end-of-block
character asterisk ‘*’. A data block may contain a function code, coordinate data, aperture
primitive description, variable definition and so on.
<Data block> = {<Character>}*

 Example:
G01*

X50000Y3200D01*

1,1,$1,$2,$3*

$4=$1x0.75*

Tip: One of the strengths of the Gerber format is its human readability. Use line breaks to
enhance readability; put one command per line; avoid lines longer than a page width. Do not put
a needless line separator within a data block, except after a comma separator in long data
blocks.

mailto:gerber@ucamco.com

Copyright Ucamco NV 37
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.5 Commands

 Command Syntax Overview
Commands are higher level semantic elements of a Gerber file. Commands define the graphics
state, create graphics objects, defines apertures, manage attributes and so on. A Gerber file
consists of a stream of commands. There is no limitation on the number of commands.
For historic reasons, there are two command syntax styles: function code commands and
extended commands.
Command syntax:

<Command> = <Function code command>|<Extended command>
<Function code command> = <Data block>
<Extended command> = %<Data block>{<Data block>}%

All extended command except the AM consist of a single data block.
The example below shows the stream of Gerber file commands of different types.

Example:
G04 Beginning of the file*

%FSLAX65Y26*%

%MOIN*%

%LPD*%

%ADD10C,0.000070*%

X123500Y001250D02*

…

M02*

 Function Code Commands
Function code commands are identified by a code letter G, D or M followed by a code number,
e.g. G02.

A code number is a positive integer number without preceding ‘+’. The available code numbers
are described in this specification. A code number can be padded with leading zeros, but the
resulting number record must not contain more than 10 digits.

 Example:
X100Y125D1*

X100Y125D01*

X100Y125D0001*

G002*

G0000074*

The conventional representation of a code number contains exactly two digits, so if the number
is less than 10, it is padded with one leading zero. This representation is used everywhere in the
specification.

 Example:
X100Y125D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 38
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X100Y125D02*

G01*

G74*

The codes D01, D02, D03 have a special function and are called operation codes. They are
used together with coordinate data to form commands called operations.
In the example below the command consists of a single data block with D01 function code
together with a coordinate pair and offset in X and Y.

 Example:
X0Y100I-400J100D01*

Each operation must end with one and only one operation code. The operation code defines
how the preceding coordinate data is used.
In the next example there are two operations. The first operation sets the current point to (300,
200). The second operation creates a graphics object (arc or draw, depending on the
interpolation mode) from the current point to the end point (1100, 200).

 Example:
X300Y200D02*

X1100Y200D01*

Operations are described in detail in chapter 4.1. Other function code commands are described
in chapters from 4.7 to 4.14.

 Extended Commands
Extended commands are responsible for setting graphics state parameters, defining macro
aperture templates and instantiating apertures, manipulating attributes.
Extended commands affecting the entire image must be placed in the header of the file. Other
extended commands are placed at the appropriate location.
An extended command consists of a two-character command code followed by command data.
The command code identifies the command. The structure and meaning of the command data
depends on the command code.
An extended command is enclosed into a separate pair of delimiter ‘%’ characters. Usually a
command consists of a single data block ending with a ‘*’. The AM command however can
include more than one data block.
The ‘%’ must immediately follow the ‘*’ of the last data block without intervening line separators.
This is an exception to the general rule that a data block can be followed by a line separator.

 Example:
%FSLAX24Y24*%

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

There can be only one extended command between each pair of ‘%’ delimiters. It is allowed to
put line separators between data blocks of a single command.
The following example is an AM function code command built of three data blocks.

mailto:gerber@ucamco.com

Copyright Ucamco NV 39
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example:
%AMDONUTFIX*

1,1,0.100,0,0*

1,0,0.080,0,0*%

 Tip: For readability it is recommended to put one data block per line in the AM command.
The syntax for an individual extended command is:

<Command> = <Command code><Command data>*{<Additional command data>*}

Syntax Comments

Command code 2-character code (AD, AM, FS, etc…)

Command data The data necessary for the command. Normally it
includes:

required modifiers: must be entered to complete definition

optional modifiers: may be necessary depending on the
required modifiers

Additional command data Additional command data in the extra data blocks (used
for AM command only)

We distinguish two classes of extended commands:
 Graphics commands affect the image generation. They define how the function codes and

coordinates are processed. The graphics commands are described in the section 4.
 Attribute commands do not affect the image generation but attach attributes to either the

image as a whole or to the individual graphics objects. The attribute commands are
described in the section 5.

mailto:gerber@ucamco.com

Copyright Ucamco NV 40
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.6 Data Types

 Integers
Integers are a sequence of one or more digits optionally preceded by a ‘+’ or ‘-’ sign. They must
fit in a 32 bit signed integer.

 Decimals
Decimals are a sequence of one or more digits with an optional decimal point optionally
preceded by a ‘+’ or a ‘-’ sign. They must fit in an IEEE double.

 Coordinate Data
Coordinate data is used to express coordinates in operation commands.
Coordinate data is string of one or more digits representing a fixed-point decimal number.
Explicit decimal points are not allowed. Leading zeroes may be omitted, as in human number
writing. The FS command - see 4.1 - specifies the max number of integer (I) and decimal (D)
digits. I and D must each be ≤ 6. Signs are allowed; the ‘+’ sign is optional. Coordinate data
must have at least one digit - zero therefore must be encoded as “0”.
<coordinate data> = [(-|+)]<digit>{<digit>}
To interpret the coordinate string, it is first padded with leading zeros until the total number of
digits is I+D; then the decimal point is placed at I integer and D decimal digits. For example, the
format 26 specifies 2 integer and 6 decimal digits. The coordinate string “01500” is padded in
front to reach 2+6 = 8 digits, or “00001500”; the decimal point is placed to have 2 integer and 6
decimal digits, or "00.001500"; the coordinate "015" therefore represents the decimal number
0.0015.

 Hexadecimal
A hexadecimal value is a sequence of characters that matches the regular expression:

[a-fA-F0-9]+

The letters in a hexadecimal value can be upper case or lower-case characters; 'A9' and 'a9'
represent the same value.

 Names
Names consist of upper- or lower-case letters, underscores (‘_’), dots (‘.’), a dollar sign (‘$’) and
digits. The first character cannot be a digit.

Name = [a-zA-Z_.$]{[a-zA-Z_.0-9]+}

Names can be maximally 127 characters long.
Names are case-sensitive: Name ≠ name

Names beginning with a dot ‘.’ are reserved for standard names defined in the specification.
User defined names cannot begin with a dot.
The scope of a name starts at its definition and runs till the end of the file.

mailto:gerber@ucamco.com

Copyright Ucamco NV 41
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Note: The variable names within macro’s follow their own rules.

 Strings
Strings are made up of all valid characters except the reserved characters CR, LF, ‘%’ and ‘*’.

String = [a-zA-Z0-9_+-/!?<>”’(){}.\|&@# ,;$:=]+

Strings can be maximally 65,535 characters long (65,535 fits in an unsigned int 16).
Strings are case-sensitive: String ≠ string

Any character with a Unicode code lower than 65,536 can be included in a string by specifying
the Unicode character code in hexadecimal in the Unicode escape sequence:

\uXXXX

The four characters XXXX are a hexadecimal number (see 3.6.4) indicating the code of the
Unicode character represented by the escape sequence. For example, \u00a9 represents the
copyright symbol.
Unicode escape sequence must be six characters long. It means there must be exactly four
characters following \u. If the character code contains less hexadecimal digits, it must be
padded with leading zeros.
A hexadecimal number syntax allows upper case and lower case letters so both '\u00A9' and
'\u00a9' are allowed and represent the same character.
The Unicode escape sequence syntax conforms to the regular expression:

\\u[a-fA-F0-9]{4}

A literal backslash character ‘\’ inside a string shall be represented using the backslash
character code as \u005c, otherwise, if ‘\’ character and 5 next characters conform to the regular
expression \\u[a-fA-F0-9]{4}, the whole sequence will be interpreted as the Unicode
escape sequence.
For the string length the Unicode escape sequence is counted as one character.

 Note: The Unicode escape sequences can be used only inside strings.

 Fields
The fields follow the string syntax in section 3.6.6 with the additional restriction that a field must
not contain commas. Fields are intended to represent comma-separated items in strings. If a
field must contain a comma it can be represented by the Unicode above.

mailto:gerber@ucamco.com

Copyright Ucamco NV 42
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4 Graphics

4.1 Format Specification (FS)
The FS (Format Specification) specifies the format of the coordinate data – see 3.6.3 - used in
operation commands. (The MO command specifies the unit in which the coordinates are
expressed, see 4.2.)
The FS command is mandatory. It must be used once and only once, in the header, before the
first use of coordinate data. It is recommended to put it as the very first non-comment line.
The syntax for the FS command is:

<FS command> = FSLAX<Format>Y<Format>*
<Format> = <digit><digit>

Syntax Comments

FS FS for Format Specification

LA These fixed characters are necessary for backwards
compatibility. See 7.3 for more details.

X<Format>Y<Format> Specifies the format of X and Y coordinate data. The format
of X and Y coordinate must be the same; it is specified as X
and Y separately for backwards compatibility.

<Format> = <digit><digit> The first digit sets the number of integer digits in the
coordinate data, the second the number of decimal digits.

The number of integer digits can be is up to 6; use the
smallest number that fits the size of the image; 2 or 3
integer digits is typical. The number of decimal digits must
be 5 or 6.

 Example:

Syntax Comments

%FSLAX26Y26*% Coordinates have 2 integer and 6 decimal digits maximum.

The resolution of a Gerber file is the distance expressed by the least significant digit of
coordinate data. The resolution of a Gerber file must be at least 0.001 mil or 25 nm. When the
unit is inch, the number of decimals must be set at 6; the resolution is then 0.001 mil or 25 nm.
When the unit is mm, the number of decimals must be at least 5, with a resolution of 10 nm, or
6, with a resolution of 1 nm.

mailto:gerber@ucamco.com

Copyright Ucamco NV 43
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.2 Unit (MO)
The MO (Mode) command sets the units used for coordinates and for parameters or modifiers
indicating sizes or coordinates. The units can be either inches or millimeters. This command is
mandatory. It must be used once and only once at the beginning of a file, before the first use of
coordinate data. Normally MO command follows immediately after FS command (see 4.1).
The syntax for the MO command is:

<MO command> = MO(IN|MM)*

Syntax Comments

MO MO for Mode

IN|MM Units of the dimension data:

IN – inches

MM – millimeters

Examples:

Syntax Comments

%MOIN*% Dimensions are expressed in inches

%MOMM*% Dimensions are expressed in millimeters

 Note: Always use mm, the metric unit, with 6 decimals. This expresses any imperial value
with a resolution of 1/100 of a mil or larger without any rounding – amply sufficient for PCBs. An
application may need to display imperial units, but that does not require the underlying file to be
imperial. Inch is only there for historic reasons and is now a useless embellishment.

mailto:gerber@ucamco.com

Copyright Ucamco NV 44
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.3 Aperture Definition (AD)

 AD Command
The AD command creates an aperture and adds it to the apertures dictionary. It starts with ‘AD’
letters, followed by
 ‘D’ letter and D-code number (or aperture number)
 the aperture template name
 optional modifiers
The D-code identifies the aperture. The Dnn command uses the D-code to select it as the
current aperture (see 4.7).
The AD command must precede the first use of the D-code. It is recommended to put all AD
commands in the file header.
The allowed range of D-code is from 10 up to 2.147.483.647 (max int 32). The D-codes 0 to 9
are reserved and cannot be used for apertures. Once a D-code number is assigned it cannot be
re-assigned – thus apertures are uniquely identified by their D-code.
The syntax for the AD command is as follows:

<AD command> = ADD<D-code number><Template>[,<Modifiers set>]*
<Modifiers set> = <Modifier>{X<Modifier>}

Syntax Comments

ADD ‘AD’ is the command code and ‘D’ for D-code

<D-code number> The D-code number being defined (≥10)

<Template>[,<Modifiers set>] The template name, optionally followed by modifiers

The template name refers to the template selected from the aperture templates dictionary (see
2.2). The required modifiers in <Modifiers set> are specific to the template used. Modifiers are
separated by the upper case ‘X’ character. All sizes are decimal numbers, units follow the MO
command.

 Example:
%ADD10C,.025*%

%ADD10C,0.5X0.25*%

 Zero-size Apertures
As a general rule, apertures with size zero are not valid, and so are objects created with them.
There is one exception. The C (circular) standard aperture with zero diameter is allowed, and so
are objects created with it. Attributes can be attached to them. For the avoidance of doubt, it is
the C aperture only where zero-size that can be valid, not another aperture whose shape
fortuitously happens to be circular.

mailto:gerber@ucamco.com

Copyright Ucamco NV 45
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Zero-size objects do not affect the image. They can be used to provide meta-information to
locations in the image plane.
Allowed does not mean recommended, quite the contrary. If you are tempted to use a zero-size
circle, consider whether it is useful, or if there is no proper way to convey the intended
information. The goal is not to have zero-size apertures. (Of course, do not simply replace zero-
size by a positive size when there is no object just to avoid zero size; this would falsify the
image.)
Do not abuse a zero-object to indicate the absence of an object, e.g. by flashing a zero-size
aperture to indicate the absence of a flash. Needless zero-objects are just confusing as they
direct the reader to look for meta-information that is not there. If there is nothing, put nothing.

 Examples

Syntax Comments

%ADD10C,.025*% Create aperture with D-code 10: a solid circle with
diameter 0.025

%ADD22R,.050X.050X.027*%
Create aperture with D-code 22: a rectangle with
sides of 0.05 – therefore forming a square - and
with a 0.027 diameter round hole

%ADD57O,.030X.040X.015*% Create aperture with D-code 57: an obround with
sizes 0.03 x 0.04 with 0.015 diameter round hole

%ADD30P,.016X6*% Create aperture with D-code 30: a solid polygon
with 0.016 outer diameter and 6 vertices

%ADD15CIRC*%

Create aperture with D-code 15: instantiate a
macro aperture described by aperture macro CIRC
defined previously by an aperture macro (AM)
command

mailto:gerber@ucamco.com

Copyright Ucamco NV 46
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.4 Standard Aperture Templates

 Overview

Standard Aperture Templates

Name Shape Modifiers Section

C Circle Diameter, Hole diameter 4.4.2

R Rectangle X size, Y size, Hole diameter 4.4.3

O Obround X size, Y size, Hole diameter 4.4.4

P Polygon Outer diameter, # vertices, Rotation, Hole diameter 4.4.5

Table with standard aperture templates

 Circle
The syntax of the circle standard aperture template:

C,<Diameter>[X<Hole diameter>]

Syntax Comments

C Indicates the circle aperture template.

<Diameter> Diameter. A decimal ≥0.

<Hole diameter> Diameter of a round hole. A decimal >0. If omitted the aperture
is solid.

See also section 4.4.6.

 Examples:
%ADD10C,0.5*%
%ADD10C,0.5X0.25*%

These commands define the following apertures:

mailto:gerber@ucamco.com

Copyright Ucamco NV 47
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

8. Circles

mailto:gerber@ucamco.com

Copyright Ucamco NV 48
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Rectangle
The syntax of the rectangle or square standard aperture template:

R,<X size>X<Y size>[X<Hole diameter>]

Syntax Comments

R Indicates the rectangle aperture template.

<X size>

<Y size>

X and Y sizes of the rectangle. Decimals >0.

If <X size> = <Y size> the effective shape is a square.

<Hole diameter> Diameter of a round hole. A decimal >0. If omitted the aperture is
solid.

See also section 4.4.6.

 Examples:
%ADD22R,0.044X0.025*%
%ADD23R,0.044X0.025X0.019*%

These commands define the following apertures:

9. Rectangles

mailto:gerber@ucamco.com

Copyright Ucamco NV 49
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Obround
Obround (oval) is a shape consisting of two semicircles connected by parallel lines tangent to
their endpoints. It can be viewed as a rectangle where the smallest side is rounded to a half-
circle. The syntax of the obround standard aperture template:

O,<X size>X<Y size>[X<Hole diameter>]

Syntax Comments

O Indicates the obround aperture template.

<X size>

<Y size>

X and Y sizes of enclosing box. Decimals >0.

If <X size> = <Y size> the effective shape is a circle.

<Hole diameter> Diameter of a round hole. A decimal >0. If omitted the aperture is
solid.

See also section 4.4.6.

 Example:
%ADD22O,0.046X0.026*%

%ADD22O,0.046X0.026X0.019*%

These commands define the following apertures:

10. Obrounds

mailto:gerber@ucamco.com

Copyright Ucamco NV 50
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Polygon
Creates a regular polygon aperture. The syntax of the polygon standard aperture template:

P,<Outer diameter>X<Number of vertices>[X<Rotation>[X<Hole diameter>]]

Syntax Comments

P Indicates the polygon aperture template.

<Outer diameter> Diameter of the circumscribed circle, i.e. the circle through the
polygon vertices. A decimal > 0.

<Number of vertices> Number of vertices n, 3 ≤ n ≤ 12. An integer.

<Rotation angle> The rotation angle, in degrees counterclockwise. A decimal.

With rotation angle zero there is a vertex on the positive X-axis
through the aperture center.

<Hole diameter> Diameter of a round hole. A decimal >0. If omitted the aperture
is solid.

See also section 4.4.6.

 Examples:
%ADD17P,.040X6*%

%ADD17P,.040X6X0.0X0.019*%

These commands define the following apertures:

11. Polygons

Outer diameter

Outer diameter

mailto:gerber@ucamco.com

Copyright Ucamco NV 51
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Transparency of Holes
Standard apertures may have a round hole in them. When an aperture is flashed only the solid
part affects the image, the hole does not. Objects under a hole remain visible through the hole.
For image generation the area of the hole behaves exactly as the area outside the aperture. The
hole is not part of the aperture.

 Warning: Make no mistake: holes do not clear the objects under them.
For all standard apertures the round hole is defined by specifying its diameter as the last
modifier: <Hole diameter>. If <Hole diameter> is omitted the aperture is solid. If present the
diameter must be ≥ 0. The hole must strictly fit within the standard aperture. It is centered on the
aperture.

 Example:
%FSLAX26Y26*%

%MOIN*%

%ADD10C,10X5*%

%ADD11C,1*%

G01*

%LPD*%

D11*

X-10000000Y-2500000D02*

X10000000Y2500000D01*

D10*

X0Y0D03*

M02*

12. Standard (circle) aperture with a hole above a draw

Note that the draw is visible through the hole.

mailto:gerber@ucamco.com

Copyright Ucamco NV 52
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5 Aperture Macro (AM)
The AM command creates a macro aperture template and adds it to the aperture template
dictionary (see 2.2). A template is a parametrized shape. The AD command instantiates a
template into an aperture by suppling values to the template parameters.
Templates of any shape or parametrization can be created. Multiple simple shapes called
primitives can be combined in a single template. An aperture macro can contain variables
whose actual values are defined by:
 Values provided by an AD command referencing the template
 Arithmetic expressions with other variables
The template is created by positioning primitives in a coordinate space. The origin of that
coordinate space will be the origin of all apertures created with the state.
A template must be defined before the first AD that refers to it. The AM command can be used
multiple times in a file.

 AM Command
The syntax for the AM command is:

<AM command> = AM<Aperture macro name>*<Macro content>
<Macro content> = {{<Variable definition>*}{<Primitive>*}}
<Variable definition> = $K=<Arithmetic expression>
<Primitive> = <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
<Modifier> = $M|< Arithmetic expression>
<Comment> = 0 <Text>

Syntax Comments

AM AM for Aperture Macro

<Aperture macro name> Name of the aperture macro. The name must be unique, i.e. a
name once given cannot be reused for another macro. See
3.6.5 for the syntax rules.

<Macro content> Macro content describes primitives included into the aperture
macro. Can also contain definitions of new variables.

<Variable definition> Definition of a variable.

$K=<Arithmetic
expression>

Definition of the variable $K. (K is an integer >0.) An arithmetic
expression may use arithmetic operators described later,
constants and variables $X where the definition of $X precedes
$K.

<Primitive> A primitive is a basic shape to create the macro. It includes
primitive code identifying the primitive and primitive-specific
modifiers (e.g. center of a circle). All primitives are described in
4.5.4. The primitives are positioned in a coordinates system
whose origin is the origin of the resulting apertures.

mailto:gerber@ucamco.com

Copyright Ucamco NV 53
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

<Primitive code> A code specifying the primitive (e.g. polygon).

<Modifier> Modifier can be a decimal number (e.g. 0.050), a variable (e.g.
$1) or an arithmetic expression based on numbers and
variables. The actual value for a variable is either provided by
an AD command or defined within the AM by some previous
<Variable definition>.

<Comment> Comment does not affect the image.

<Text> Single-line text string

 Note: Each AM command must be enclosed in a pair of ‘%’ characters (see 3.5.3).
Coordinates and sizes are expressed by a decimal number in the unit set by the MO command.

mailto:gerber@ucamco.com

Copyright Ucamco NV 54
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Exposure Modifier
The exposure modifier that can take two values:
 0 means exposure is ‘off’
 1 means exposure is ‘on’
Primitives with exposure ‘on’ create the solid part of the macro aperture. Primitives with
exposure ‘off’ erase the solid part created earlier in the same macro. Exposure off is used to
create a hole in the aperture – see also 4.4.6.
The erasing action of exposure off only acts on other primitives within the same macro
definition. When a macro is flashed the hole does not clear objects in the final image – the hole
is transparent. Another way of expressing it is that the macro definition is flattened before it is
used, and the result is a positive image.

 Warning: When the macro aperture is flashed, the erased area does not clear the
underlying graphics objects. Objects under removed parts remain visible.

 Example:
%FSLAX26Y26*%

%MOIN*%

%AMSquareWithHole*

21,1,10,10,0,0,0*

1,0,5,0,0*%

%ADD10SquareWithHole*%

%ADD11C,1*%

G01*

%LPD*%

D11*

X-10000000Y-2500000D02*

X10000000Y2500000D01*

D10*

X0Y0D03*

M02*

13. Macro aperture with a hole above a draw

mailto:gerber@ucamco.com

Copyright Ucamco NV 55
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Note that the draw is still visible through the hole.

 Rotation Modifier
All primitives can be rotated around the origin of the macro definition, i.e. its point (0, 0). (Make
no mistake: rotation is not around the geometric center of the primitive, unless of course it
coincides with the origin.)
A rotation angle is expressed by a decimal number, in degrees counterclockwise. A positive
angle means counterclockwise rotation, a negative angle clockwise. The rotation angle is
defined by the rotation modifier, the last in the list of the primitive modifiers.
To rotate a macro composed of several primitives it is sufficient to rotate all primitives by the
same angle. See illustration below.

14. Rotation of an aperture macro composed of several primitives

 Warning: Rotation is around the origin of the macro definition, not around the geometric
center of the primitive – unless the two coincide of course. The reason is obvious: if rotation
were about the center of each primitive a composite aperture like the one above would fall apart
under rotation.

(0, 0)

mailto:gerber@ucamco.com

Copyright Ucamco NV 56
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Primitives

4.5.4.1 Overview

Macro Primitives

Code Name Modifiers Section

0 Comment 4.5.4.2

1 Circle Exposure, Diameter, Center X, Center Y, Rotation 4.5.4.3

20 Vector Line Exposure, Width, Start X, Start Y, End X, End Y, Rotation 4.5.4.4

21 Center Line Exposure, Width, Hight, Center X, Center Y, Rotation 4.5.4.5

4 Outline Exposure, # vertices, Start X, Start Y, Subsequent points..., Rotation 4.5.4.6

5 Polygon Exposure, # vertices, Center X, Center Y, Diameter, Rotation 4.5.4.7

6 Moiré Center X, Center Y, Outer diameter rings, Ring thickness, Gap, Max
rings, Crosshair thickness, Crosshair length, Rotation

4.5.4.8

7 Thermal Center X, Center Y, Outer diameter, Inner diameter, Gap, Rotation 4.5.4.9

Table with macro primitives

4.5.4.2 Comment, Code 0
The comment primitive has no effect on the image but adds human-readable comments in an
AM command. The comment primitive starts with the ‘0’ code followed by a space and then a
single-line text string. The text string follows the syntax for strings in section 3.6.6.

 Example:
%AMBox*

0 Rectangle with rounded corners, with rotation*

0 The origin of the aperture is it’s center*

0 $1 X-size*
0 $2 Y-size*

0 $3 Rounding radius*

0 $4 Rotation angle, in degrees counterclockwise*

0 Add two overlapping rectangle primitives as box body*

21,1,$1,$2-$3-$3,0,0,$4*

21,1,$2-$3-$3,$2,0,0,$4*

0 Add four circle primitives for the rounded corners*

$5=$1/2*

$6=$2/2*

$7=2X$3*

1,1,$7,$5-$3,$6-$3,$4*

1,1,$7,-$5+$3,$6-$3,$4*

1,1,$7,-$5+$3,-$6+$3,$4*

1,1,$7,$5-$3,-$6+$3,$4*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 57
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.4.3 Circle, Code 1
A circle primitive is defined by its center point and diameter.

Modifier number Description

1 Exposure off/on (0/1)

2 Diameter. A decimal ≥ 0

3 Center X coordinate. A decimal.

4 Center Y coordinate. A decimal.

5 Rotation angle of the center, in degrees counterclockwise. A decimal.

The primitive is rotated around the origin of the macro definition, i.e. the
(0, 0) point of macro coordinates.

The rotation modifier is optional. The default is no rotation.

15. Circle primitive

Below there is the example of the AM command that uses the circle primitive.

 Example:
%AMCIRCLE*

1,1,1.5,0,0,0*%

3, 4

 2

mailto:gerber@ucamco.com

Copyright Ucamco NV 58
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.4.4 Vector Line, Code 20.
A vector line is a rectangle defined by its line width, start and end points. The line ends are
rectangular.

Modifier number Description

1 Exposure off/on. (0/1)

2 Width of the line. A decimal ≥ 0.

3 Start point X coordinate. A decimal.

4 Start point Y coordinate. A decimal.

5 End point X coordinate. A decimal.

6 End point Y coordinate. A decimal.

7 Rotation angle, in degrees counterclockwise. A decimal.

The primitive is rotated around the origin of the macro definition, i.e. the
(0, 0) point of macro coordinates

16. Vector line primitive

Below there is the example of the AM command that uses the vector line primitive.

 Example:
%AMLINE*

20,1,0.9,0,0.45,12,0.45,0*%

3, 4

 2

 5, 6

mailto:gerber@ucamco.com

Copyright Ucamco NV 59
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.4.5 Center Line, Code 21
A center line primitive is a rectangle defined by its width, height, and center point.

Modifier number Description

1 Exposure off/on. (0/1)

2 Width. A decimal ≥ 0.

3 Height. A decimal ≥ 0.

4 Center point X coordinate. A decimal.

5 Center point Y coordinate. A decimal.

6 Rotation angle, in degrees counterclockwise. A decimal.

The primitive is rotated around the origin of the macro definition, i.e. (0,
0) point of macro coordinates.

 Warning: The rotation is not around the center point. (Unless the
center point happens to be the macro origin.)

17. Center line primitive

Below there is the example of the AM command that uses the center line primitive.

 Example:
%AMRECTANGLE*

21,1,6.8,1.2,3.4,0.6,30*%

2

 4, 5

3

mailto:gerber@ucamco.com

Copyright Ucamco NV 60
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.4.6 Outline, Code 4
An outline primitive is an area defined by its outline or contour. The outline is a polygon,
consisting of linear segments only, defined by its start vertex and n subsequent vertices. The
outline must be closed, i.e. the last vertex must be equal to the start vertex. The outline must
comply with all the requirements of a contour according to 4.12.3.

Modifier number Description

1 Exposure off/on (0/1)

2 The number of vertices of the outline = the number of coordinate
pairs minus one.

An integer ≥3.

3, 4 Start point X and Y coordinates. Decimals.

5, 6 First subsequent X and Y coordinates. Decimals.

... Further subsequent X and Y coordinates. Decimals.

The X and Y coordinates are not modal: both X and Y must be
specified for all points.

3+2n, 4+2n Last subsequent X and Y coordinates. Decimals.

Must be equal to the start coordinates.

5+2n Rotation angle, in degrees counterclockwise, a decimal.

The primitive is rotated around the origin of the macro definition, i.e. the
(0, 0) point of macro coordinates.

18. Outline primitive

The maximum number of vertices is 5000. The purpose of this primitive is to create apertures to
flash pads with special shapes. The purpose is not to create copper pours. Use the region
statement for copper pours; see 4.12.

3, 4

5, 6
 7, 8

mailto:gerber@ucamco.com

Copyright Ucamco NV 61
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example:
The following AM command defines an aperture macro named ‘Triangle_30’. The macro is a
triangle rotated 30 degrees around the origin of the macro definition:

%AMTRIANGLE_30*

4,1,3,

1,-1,

1,1,

2,1,

1,-1,

30*%

Syntax Comments

AM Triangle _30 Aperture macro name is ‘Triangle _30’

4,1,3 4 – Outline

1 – Exposure on

3 – The outline has three subsequent points

1,-1 1 – X coordinate of the start point

-1 – Y coordinate of the start point

1,1,

2,1,

1,-1,

Coordinates (X, Y) of the subsequent points: (1,1), (2,1), (1,-1).
Note that the last point is the same as the start point

30 Rotation angle is 30 degrees counterclockwise

19. Rotated triangle

(0, 0)

Rotation center

mailto:gerber@ucamco.com

Copyright Ucamco NV 62
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.4.7 Polygon, Code 5
A polygon primitive is a regular polygon defined by the number of vertices n, the center point
and the diameter of the circumscribed circle.

Modifier number Description

1 Exposure off/on (0/1)

2 Number of vertices n, 3 ≤ n ≤ 12. An integer.

The first vertex is on the positive X-axis through the center point
when the rotation angle is zero.

3 Center point X coordinate. A decimal.

4 Center point Y coordinate. A decimal.

5 Diameter of the circumscribed circle. A decimal ≥ 0.

6 Rotation angle, in degrees counterclockwise. A decimal.

With rotation angle zero there is a vertex on the positive X-axis
through the aperture center.

The primitive is rotated around the origin of the macro definition, i.e. the
(0, 0) point of macro coordinates.

20. Polygon primitive

 Example:
%AMPOLYGON*

5,1,8,0,0,8,0*%

3, 4

5

First
vertex

mailto:gerber@ucamco.com

Copyright Ucamco NV 63
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.4.8 Moiré, Code 6
The moiré primitive is a cross hair centered on concentric rings. Exposure is always on.

Modifier number Description

1 Center point X coordinate. A decimal.

2 Center point Y coordinate. A decimal.

3 Outer diameter of outer concentric ring. A decimal ≥ 0.

4 Ring thickness. A decimal ≥ 0.

5 Gap between rings. A decimal ≥ 0.

6 Maximum number of rings. An integer ≥ 0.

The effective number of rings can be less if the center is reached. If
there is not enough space for the inner ring it becomes a full disc.

7 Crosshair thickness. A decimal ≥ 0. If the thickness is 0 there are no
crosshairs.

8 Crosshair length. A decimal ≥ 0. If the length is 0 there are no
crosshairs.

9 Rotation angle, in degrees counterclockwise. A decimal.

The primitive is rotated around the origin of the macro definition, i.e. the
(0, 0) point of macro coordinates.

21. Moiré primitive

5

1, 2

 8
3

7

4

mailto:gerber@ucamco.com

Copyright Ucamco NV 64
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Below there is an example of a AM command that uses the moiré primitive.

 Example:
%AMMOIRE*

6,0,0,5,0.5,0.5,2,0.1,6,0*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 65
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.4.9 Thermal, Code 7
The thermal primitive is a ring (annulus) interrupted by four gaps. Exposure is always on.

Modifier number Description

1 Center point X coordinate. A decimal.

2 Center point Y coordinate. A decimal.

3 Outer diameter. A decimal > inner diameter

4 Inner diameter. A decimal ≥ 0

5 Gap thickness. A decimal < (outer diameter)/√2.

The gaps are on the X and Y axes through the center without
rotation. They rotate with the primitive.
Note that if the (gap thickness)*√2 ≥ (inner diameter) the inner circle
disappears. This is not invalid.

6 Rotation angle, in degrees counterclockwise. A decimal.

The primitive is rotated around the origin of the macro definition, i.e.
(0, 0) point of macro coordinates.

22. Thermal primitive

 4 3

 5

mailto:gerber@ucamco.com

Copyright Ucamco NV 66
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Syntax Details
An AM command contains the following data blocks:
 The AM declaration with the macro name
 Primitives with their comma-separated modifiers
 Macro variables, defined by an arithmetic expression
Each data block must end with the ‘*’ character (see 3.4).
An aperture macro definition contains the macro name used to identify a template created by
the macro. An AD command uses the macro name that is the name of the corresponding
template in aperture templates dictionary.
An aperture macro definition also contains one or more aperture primitives described in 4.5.4.
Each primitive, except the comment, is followed by modifiers setting its position, size, rotation
etc. Primitive modifiers can use macro variables. The values for such variables is either
provided by an AD command or calculated with arithmetic expression using other variables.
A modifier can be either:
 A decimal number, such as 0, 2, or 9.05
 A macro variable
 An arithmetic expression including numbers and variables
A macro variable name must be a ‘$’ character followed by an integer >0, for example $12.
(This is a subset of names allowed in 3.6.5.)
Each AM command must be enclosed into a separate pair of ‘%’ characters. Line separators
between data blocks of a single command can be added to enhance readability. These line
separators do not affect the macro definition.

4.5.5.1 Variable Values from an AD Command
An AM command can use variables whose actual values are provided by an AD command
that instantiates the template. Such variables are identified by ‘$n’ where n indicates the serial
number of the variable value in the list provided by an AD command. Thus $1 means the first
value in the list, $2 the second, and so on.

 Example:
%AMDONUTVAR*1,1,$1,$2,$3*1,0,$4,$2,$3*%

Here the variables $1, $2, $3 and $4 are used as modifier values. The corresponding AD
command should look like:

%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the value of variable $1 becomes 0.100, $2 and $3 become 0 and $4 becomes
0.080. These values are used as the values of corresponding modifiers in the DONUTVAR
macro.

4.5.5.2 Arithmetic Expressions
A modifier value can also be an arithmetic expression consisting of arithmetic operators,
constants, with or without decimal point, and other variables. The standard arithmetic
precedence rules apply. The brackets ‘(‘ and ‘)’ are available to overrule the standard
precedence.

mailto:gerber@ucamco.com

Copyright Ucamco NV 67
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The following arithmetic operators are available:

Operator Function

+ Unary plus (expressions are positive even
without the unary plus)

- Unary minus (negates an expression)

+ Add

- Subtract

x (lower case, preferred) Multiply

X (upper case, not preferred) Multiply

/ Divide. The result is a decimal; it is not
rounded or truncated to an integer.

Arithmetic operators

Their precedence is as follows:
 ‘(’ and ‘)’
 The unary ‘+’ and ‘-‘, ‘x’, ‘X’ and ‘/’
 ‘+’ and ‘-‘

 Example:
%AMRect*

21,1,$1,$2-$3-$3,-$4,-$5,0*%

The corresponding AD command could look like:
%ADD146Rect,0.0807087X0.1023622X0.0118110X0.5000000X0.3000000*%

4.5.5.3 Definition of a New Variable
The AM command allows defining new macro variables based on previously defined
variables. A new variable is defined as an arithmetic expression that follows the same rules as
described in previous section. A variable definition also includes ‘=’ sign with the meaning
‘assign’.
For example, to define variable $4 as a variable $1 multiplied by 1.25 the following arithmetic
expression can be used: $4=$1x1.25

 Example:
%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x1.25*

1,0,$4,$2,$3*%

The values for variables in an AM command are determined as follows:
 All variables used in AM command are initialized to 0

mailto:gerber@ucamco.com

Copyright Ucamco NV 68
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 If an AD command that references the aperture macro contains n modifiers then variables
$1,$2, ..., $n get the values of these modifiers

 The remaining variables get their values from definitions in the AM command; if some
variable remains undefined then its value is still 0

 The values of variables $1, $2, …, $n can also be modified by definitions in AM, i.e. the
values originating from an AD command can be redefined

 Example:
%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x0.75*

1,0,$4,$2,$3*%

The variables $1, $2, $3, $4 are initially set to 0.
If the corresponding AD command contains only 2 modifiers then the value of $3 will remain 0.
If the corresponding AD command contains 4 modifiers. e.g.

%ADD35DONUTCAL,0.020X0X0X0.03*%

the variable values are calculated as follows: the AD command modifier values are first
assigned so variable values $1 = 0.02, $2 = 0, $3 = 0, $4 = 0.03. The value of $4 is modified by
definition in AM command so it becomes $4 = 0.02 x 0.75 = 0.015.
The variable definitions and primitives are handled from the left to the right in the order of AM
command. This means a variable can be set to a value, used in a primitive, re-set to a new
value, used in a next primitive etc.

 Example:
%AMTARGET*

1,1,$1,0,0*

$1=$1x0.8*

1,0,$1,0,0*

$1=$1x0.8*

1,1,$1,0,0*

$1=$1x0.8*

1,0,$1,0,0*

$1=$1x0.8*

1,1,$1,0,0*

$1=$1x0.8*

1,0,$1,0,0*%

%ADD37TARGET,0.020*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 69
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Here the value of $1 is changed by the expression ‘$1=$1x0.8’ after each primitive so the value
changes like the following: 0.020, 0.016, 0.0128, 0.01024, 0.008192, 0.0065536.

 Example:
%AMREC1*

$2=$1*

$1=$2*

21,1,$1,$2,0,0,0*%

%AMREC2*

$1=$2*

$2=$1*

21,1,$1,$2,0,0,0*%

%ADD51REC1,0.02X0.01*%

%ADD52REC2,0.02X0.01*%

Aperture 51 is the square with side 0.02 and aperture 52 is the square with side 0.01, because
the variable values in AM commands are calculated as follows:
For the aperture 51 initially $1 is 0.02 and $2 is 0.01. After operation ‘$2=$1’ the variable values
become $2 = 0.02 and $1 = 0.02. After the next operation ‘$1=$2’ they remain $2 = 0.02 and $1
= 0.02 because previous operation changed $2 to 0.02. The resulting primitive has 0.02 width
and height.
For the aperture 52 initially $1 is 0.02 and $2 is 0.01 (the same as for aperture 51). After
operation ‘$1=$2’ the variable values become $1 = 0.01 and $2 = 0.01. After the next operation
‘$2=$1’ they remain $1 = 0.01 and $2 = 0.01 because previous operation changed $1 to 0.01.
The resulting primitive has 0.01 width and height.
Below are some more examples of using arithmetic expressions in AM command. Note that
some of these examples probably do not represent a reasonable aperture macro – they just
illustrate the syntax that can be used for defining new variables and modifier values.

 Examples:
%AMTEST*

1,1,$1,$2,$3*

$4=$1x0.75*

$5=($2+100)x1.75*

1,0,$4,$5,$3*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 70
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

%AMTEST*

$4=$1x0.75*

$5=100+$3*

1,1,$1,$2,$3*

1,0,$4,$2,$5*

$6=$4x0.5*

1,0,$6,$2,$5*%

 Examples

4.5.6.1 Fixed Modifier Values
The following AM command defines an aperture macro named ‘DONUTFIX’ consisting of two
concentric circles with fixed diameter sizes:

%AMDONUTFIX*

1,1,0.100,0,0*

1,0,0.080,0,0*%

Syntax Comments

AMDONUTFIX Aperture macro name is ‘DONUTFIX’

1,1,0.100,0,0 1 – Circle

1 – Exposure on

0.100 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

1,0,0.080,0,0 1 – Circle

0 – Exposure off

0.080 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

An example of an AD command using this aperture macro:

%ADD33DONUTFIX*%

4.5.6.2 Variable Modifier Values
The following AM command defines an aperture macro named ‘DONUTVAR’ consisting of two
concentric circles with variable diameter sizes:

%AMDONUTVAR*

1,1,$1,$2,$3*

1,0,$4,$2,$3*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 71
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

AMDONUTVAR Aperture macro name is ‘DONUTVAR’

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD command

$2 – X coordinate of the center is provided by AD command

$3 – Y coordinate of the center is provided by AD command

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is provided by AD command

$2 – X coordinate of the center is provided by AD command (same
as in first circle)

$3 – Y coordinate of the center is provided by AD command (same
as in first circle)

The AD command using this aperture macro can look like the following:
%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the variable modifiers get the following values: $1 = 0.100, $2 = 0, $3 = 0, $4 =
0.080.

4.5.6.3 Definition of a New Variable
The following AM command defines an aperture macro named ‘DONUTCAL’ consisting of two
concentric circles with the diameter of the second circle defined as a function of the diameter of
the first:

%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x0.75*

1,0,$4,$2,$3*%

Syntax Comments

AMDONUTCAL Aperture macro name is ‘DONUTCAL’

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD command

$2 – X coordinate of the center is provided by AD command

$3 – Y coordinate of the center is provided by AD command

$4=$1x0.75 Defines variable $4 to be used as the diameter of the inner circle;
the diameter of this circle is 0.75 times the diameter of the outer
circle

mailto:gerber@ucamco.com

Copyright Ucamco NV 72
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is calculated using the previous definition of this
variable

$2 – X coordinate of the center is provided by AD command (same
as in first circle)

$3 – Y coordinate of the center is provided by AD command (same
as in first circle)

The AD command using this aperture macro can look like the following:
%ADD35DONUTCAL,0.020X0X0*%

This defines a donut with outer circle diameter equal to 0.02 and inner circle diameter equal to
0.015.

mailto:gerber@ucamco.com

Copyright Ucamco NV 73
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5.6.4 A useful macro
The following example creates a rectangle with rounded corners, useful as SMD pad.
It uses the following construction:

23. Construction of the Box macro

%AMBox*

0 Rectangle with rounded corners, with rotation*

0 The origin of the aperture is it’s center*

0 $1 X-size*
0 $2 Y-size*

0 $3 Rounding radius*

0 $4 Rotation angle, in degrees counterclockwise*

0 Add two overlapping rectangle primitives as box body*

21,1,$1,$2-$3-$3,0,0,$4*

21,1,$2-$3-$3,$2,0,0,$4*

0 Add four circle primitives for the rounded corners*

$5=$1/2*

$6=$2/2*

$7=2X$3*

1,1,$7,$5-$3,$6-$3,$4*

1,1,$7,-$5+$3,$6-$3,$4*

1,1,$7,-$5+$3,-$6+$3,$4*

1,1,$7,$5-$3,-$6+$3,$4*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 74
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.6 Block Aperture (AB)

 Overview of block apertures
The AB command creates a block aperture. The command stream between the opening and
closing AB command defines a block aperture which is stored in the aperture dictionary. Thus
the AB commands add an aperture to the dictionary directly, without needing an AD command.
The LM, LR, LS and LP commands affect the flashes of block apertures in as any other
aperture: when a block aperture is flashed, it is first transformed according to the transformation
parameters in the graphics state and then added to the object stream.
The origin of the block aperture is the (0,0) point of the file.
A block aperture is not a single graphics object but a set of objects. While a standard or macro
aperture always adds a single graphics object to the stream, a block aperture can add any
number of objects, each with their own polarity. Standard and macro apertures always have a
single polarity while block apertures can contain both dark and clear objects.
If the polarity is dark (LPD) when the block is flashed then the block aperture is inserted as is. If
the polarity is clear (LPC) then the polarity of all objects in the block is toggled (clear becomes
dark, and dark becomes clear). This toggle propagates through all nesting levels. In the
following example the polarity of objects in the flash of block D12 will be toggled.

%ABD12*%

…

%AB*%

….

D12*

%LPC*%

X-2500000Y-1000000D03*

A D03 of a block aperture updates the current point but otherwise leaves the graphics state
unmodified, as with any other aperture.
The AB command was introduced in revision 2016.12

 AB Statement Syntax
The syntax for the AB command is:
<AB command> = AB[<block D-code>]*

Syntax Comments

AB AB for Aperture Block. Opens an AB statement.

<block D-code> The D-code under which the block is stored in the aperture
dictionary.

mailto:gerber@ucamco.com

Copyright Ucamco NV 75
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Examples:

Syntax Comments

%ABD12*% Opens the definition of aperture D12

%AB*% Closes the current AB statement.

The section between the opening and closing AB commands can contain nested AB
commands. The resulting apertures are stored in the library and are available subsequently until
the end of the file, also outside the enclosing AB section.
Here is the Backus-Naur form definition of an AB statement. We use the following primitives:
<single command> = all commands except SR, AB, G36, G37 and M02

<region statement> see 4.12.

<any statement> = <region statement>|<AB statement>|<SR statement>

The AB statement is then:

<AB open> = %ABD<integer>*% (The integer must be ≥ 10.)

<AB close> = %AB*%

<AB statement> = <AB open>{<single command>|<any statement>}<AB close>

Consequently, an AB statement can contain embedded AB or SR statements. The scope of
names defined by an AB statement is the whole file.
The current point is undefined after an AB statement.

 Usage of Block Apertures
The main purpose of block apertures is to repeat a sub-image without the need to repeat all the
generating commands. Block apertures can be repeated at any location and individually mirrored,
rotated and scaled. Block apertures are more powerful than the SR command: the SR only allows
repeats on a regular grid, without mirror, rotate or scale, and, crucially, without nesting. Blocks
are typically used to create panels without duplicating the data.
The second purpose of block apertures is to complement macro apertures. A block aperture
consisting of a single region creates a single object with one polarity– as with standard or macro
apertures. Thus, single object apertures of any shape can easily be created. Such a block
aperture can be used to define pads. Blocks are simpler to create than macros. However, macros
can have parameters and blocks cannot. On the other hand, a macro outline primitive support
only linear segments while the contours in blocks support both linear and circular segments.
Do not use blocks – or macros - when a standard aperture is available. Standard apertures are
built-in and therefore are processed faster.

mailto:gerber@ucamco.com

Copyright Ucamco NV 76
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example

 A complete Gerber file with nested blocks

G04 Ucamco copyright*

%TF.GenerationSoftware,Ucamco,UcamX,2016.04-160425*%

%TF.CreationDate,2016-04-25T00:00;00+01:00*%

%TF.Part,Other,Testfile*%

%FSLAX46Y46*%

%MOMM*%

G04 Define standard apertures*

%ADD10C,7.500000*%

%ADD11C,15*%

%ADD12R,20X10*%

%ADD13R,10X20*%

G04 Define block aperture D100, consisting of two draws and a round dot*

%ABD100*%

D10*

X65532000Y17605375D02*

Y65865375D01*

X-3556000D01*

D11*

X-3556000Y17605375D03*

%AB*%

G04 Define block aperture D102, consisting of 2x3 flashes of D101 and 1
flash of D12*

%ABD102*%

G04 Define nested block aperture D101, consisting of 2x2 flashes of D100*

%ABD101*%

D100*

X0Y0D03*

X0Y70000000D03*

X100000000Y0D03*

X100000000Y70000000D03*

%AB*%

D101*

X0Y0D03*

X0Y160000000D03*

X0Y320000000D03*

X230000000Y0D03*

X230000000Y160000000D03*

X230000000Y320000000D03*

D12*

X19500000Y-10000000D03*

%AB*%

G04 Flash D13 twice outside of blocks*

D13*

X-30000000Y10000000D03*

mailto:gerber@ucamco.com

Copyright Ucamco NV 77
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X143000000Y-30000000D03*

G04 Flash block D102 3x2 times*

D102*

X0Y0D03*

X0Y520000000D03*

X500000000Y0D03*

X500000000Y520000000D03*

X1000000000Y0D03*

X1000000000Y520000000D03*

M02*

24. Block aperture example 1

mailto:gerber@ucamco.com

Copyright Ucamco NV 78
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.7 Set Current Aperture (Dnn)
The command Dnn (nn≥10) sets the current aperture graphics state parameter.
The syntax is:

<Dnn command> = D<D-code number>*

Syntax Comments

D Command code

<D-code number> The D-code number (≥10) of an aperture from the
apertures dictionary

The aperture must be previously added in the
apertures dictionary by AD command

The allowed range of D-code is from 10 up to 2.147.483.647 (max int 32). The D-codes 0 to 9
are reserved and cannot be used for apertures.
The D01 and D03 commands use the current aperture to create track and flash graphics
objects. The current aperture must be explicitly defined before it is used – see 2.5.

 Example:
D10*

mailto:gerber@ucamco.com

Copyright Ucamco NV 79
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.8 Operations (D01/D02/D03)
D01, D02 and D03 are the operation codes. Together with coordinate data the operation codes
define commands called operations. An operation operates on its coordinate data.
Syntactically an operation contains the coordinate data followed by its operation code. An
operation must contain a single (1) operation code: each operation code is associated with a
single coordinate pair and vice versa.
The operations have the following effect.
 Operation with D01 code is called interpolate operation. It creates a straight-line segment or

a circular segment by interpolating from the current point to the operation coordinates. The
segment is then converted to a graphics object outside a region statement or to a contour
segment inside.

 Operation with D02 code is called move operation. It moves the current point to the
operation coordinates. No graphics object is generated.

 Operation with D03 code is called flash operation. It creates a flash object by replicating the
current aperture at the operation coordinates.

 Note: The code representation 01, 02, 03 (with one leading zero) is conventional; it is
allowed to use a different number of leading zeros: 1, 001, 0002, etc. See 3.5.2 for more details.
The operations are controlled by the graphics state (see 2.5).
The D03 operation directly creates a flash object by replicating (flashing) the current aperture.
When the aperture is flashed its origin is positioned at the coordinates of the operation. The
origin of a standard aperture is its geometric center. The origin of a macro aperture is the origin
of the coordinates (the origin of the macro definition) used in the AM (Aperture Macro)
command.
Sequences of D01 and D02 operations create segments that are turned into a graphics objects
by one of two following methods:
 Stroking. The segments are stroked with the current aperture, see 2.4.
 Region building. The segments form contour that defines a region, see 4.12.
Outside a region statement stroking is used to convert a segment into draw or arc graphics
object. Inside a region statement a segment becomes the linear or circular contour segment.
There is another graphics state parameter called interpolation mode that affects operations. It
defines the form of the interpolated segment: linear interpolation mode results in a draw or linear
contour segment; circular interpolation mode results in an arc or circular contour segment. This
is described in detail in the section 4.9.
The circular interpolation mode can be clockwise and counterclockwise. In circular interpolation
mode the quadrant mode becomes relevant. See 4.10 for more details.
The table below summarizes the results of the operations depending on the graphics state
parameter values.

mailto:gerber@ucamco.com

Copyright Ucamco NV 80
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Operation
code

Graphics state parameters values

Inside a region statement (G36) Outside a region statement (G37)

Linear
interpolation
mode (G01)

Circular interpolation mode
(G02, G03) Linear

interpolation
mode (G01)

Circular interpolation mode
(G02, G03)

Single
quadrant

mode (G74)

Multi
quadrant

mode (G75)

Single
quadrant

mode (G74)

Multi
quadrant

mode (G75)

D01
Linear contour

segment

Circular
contour
segment

(0°≤α≤90°)

Circular
contour
segment

(0°<α≤360°)

Draw Arc
(0°≤α≤90°)

Arc
(0°<α≤360°)

Moves current point Moves current point

D02 Closes current contour and moves current
point Moves current point only

D03 Not allowed Flash; moves current point

Effect of operation codes depending on graphics state parameters

The table describes only the parameters which have direct influence on the types of objects
created by the operation codes. The effect of the other parameters is described elsewhere.

 Coordinates
The syntax of coordinates in the operations is as follows:

<Coordinates> = [X<Number>][Y<Number>][I<Number>][J<Number>]

Syntax Comments

X, Y Characters indicating X or Y coordinates of a point

I, J Characters indicating a distance or offset in the X or Y direction. They are
mandatory in D01 operations in circular interpolation mode (see 4.8.2) and only
allowed there.

<Number> Coordinate number - see section 3.6.3 - defining either a coordinate (X, Y) or an
offset or distance (I, J). The number must have at least one digit

The FS and MO commands specify how to interpret the coordinate data. The coordinate data
define points in the plane using a right-handed orthonormal coordinate system. The plane is
infinite, but implementations can have size limitations.
Coordinates are modal. If an X is omitted, the X coordinate of the current point is used. Similar
for Y. (This legacy compression technique has lost its usefulness.)
Offsets are not modal. If I or J is omitted, the default is zero (0). The offsets do not affect the
current point.

 Examples:

mailto:gerber@ucamco.com

Copyright Ucamco NV 81
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X200Y200D02* point (+200, +200) operated upon by D02
Y-300D03* point (+200, -300) operated upon by D03
I300J100D01* point (+200, -300) and offset (+300, +100) operated upon by D01
Y200I50J50D01* point (+200, +200) and offset (+50, +50) operated upon by D01
X200Y200I50J50D01* point (+200, +200) and offset (+50, +50) operated upon by D01
X+100I-50D01* point (+100, +200) and offset (-50, 0) operated upon by D01

In an operation without explicit X and Y the coordinates of the current point are used. In the
example below D03 results in a flash at the current point.

 Example
D03*

 D01 Command
The interpolation command defines a draw or arc graphics object, depending on the
interpolation mode. See sections 4.9.2 and 4.10.4.

 D02 Command
Performs a move operation, moving the current point to a new value. The syntax for the D02
code (move) operation is the following:

<D02 operation> = [X<Number>][Y<Number>]D02*

Syntax Comments

X<Number> <Number> is coordinate data – see section 3.6.3. It defines the X
coordinate of the new current point.

The default is the X coordinate of the old current point.

XY<Number> <Number> is coordinate data – see section 3.6.3. It defines the Y
coordinate of the new current point.

The default is the Y coordinate of the old current point.

D02 Move operation code

The D02 command sets the new value for the current point. On top of that, inside a region
statement it also closes the current contour. (see 4.12).

 Example:
X200Y1000D02*

 D03 Command
Performs a flash operation, creating a flash graphics object. After the flash operation the current
point is set to the origin of the flash

mailto:gerber@ucamco.com

Copyright Ucamco NV 82
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The syntax for the D03 code (flash) operation is the following:
<D03 operation> = [X<Number>][Y<Number>]D03*

Syntax Comments

X<Number> <Number> is coordinate data – see section 3.6.3. It defines the X
coordinate of the aperture origin.
The default is the X coordinate of the old current point.

Y<Number> <Number> is coordinate data – see section 3.6.3. It defines the Y
coordinate of the aperture origin.
The default is the Y coordinate of the old current point.

D03 Flash operation code

 Example:
X1000Y1000D03*

 Example
The example shows a stream of commands in a Gerber file. Some of the commands are
operation codes, others are G code commands (G01, G03, G36, G37, G74, and G75). The G
code commands set the graphics state parameters that are relevant for the operations:
interpolation mode (G01 – see 4.9, G03 – see 4.10), region statement (G36, G37 – see 4.12),
quadrant mode (G74, G75 – see 4.10).

 Example:
G36*

X200Y1000D02*

G01*

X1200D01*

Y200D01*

X200D01*

Y600D01*

X500D01*

G75*

G03*

X500Y600I300J0D01*

G01*

X200D01*

Y1000D01*

G37*

mailto:gerber@ucamco.com

Copyright Ucamco NV 83
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.9 Linear Interpolation Mode (G01)
When linear interpolation mode is enabled a D01 code operation generates a straight line from
the current point to the point with X, Y coordinates specified by the operation. The current point
is then set to the X, Y coordinates.
The G01 command sets linear operation.

 G01 Command
The syntax for the G01 command is as follows:

<G01 command> = G01*

Syntax Comments

G01 Sets interpolation mode graphics state parameter to ‘linear
interpolation’

 Example:
G01*

 D01 Command
In G01 mode the interpolate command Dcreates a draw. After the D01 command the current
point is moved to the end point of the draw. The D01 command syntax is:

<D01 operation> = [X<Number>][Y<Number>]D01*

Syntax Comments

X<Number> <Number> is coordinate data – see section 3.6.3. It defines the X
coordinate of the straight segment.

The default is the X coordinate of the old current point.

Y<Number> <Number> is coordinate data – see section 3.6.3. It defines the Y
coordinate of the straight segment.

The default is the Y coordinate of the old current point.

D01 Interpolate operation code

 Example:
G01*

X200Y200D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 84
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.10 Circular Interpolation (G02/G03) and (G74/G75)

 Circular Arc Overview
A circular arc is a circular segment created by a D01 (interpolate) operation when the graphics
state set to circular interpolation, G02 or G03. Outside a region statement a track is added to
the graphics object stream. Inside a region statement a contour segment is added to the current
contour.
D01 code operation in circular interpolation mode generates a circular arc starting from the
current point and with end point at the X, Y coordinates specified by the operation; the center of
the arc is specified by the offsets I and J. The current point is then updated to the end point.
There are two orientations:
 Clockwise, set by G02 command
 Counterclockwise, set by G03 command
The orientation is defined around the center of the arc, moving from begin to end.
There are two quadrant modes:
 Single quadrant mode, set by G74 command
 Multi quadrant mode, set by G75 command

Quadrant mode Comments

Single quadrant
(G74)

In single quadrant mode the arc is not allowed to extend over more
than 90°. The following relation must hold:

0° ≤ A ≤90°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc has length
zero, i.e. it covers 0°. A separate operation is required for each
quadrant. A minimum of four operations is required for a full circle.

Multi quadrant
(G75)

In multi quadrant mode the arc is allowed to extend over more than
90°. To avoid ambiguity between 0° and 360° arcs the following
relation must hold:

0° < A ≤ 360°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc is a full
circle of 360°.

Quadrant modes

The commands with codes G74 and G75 allow switching between single- and multi-quadrant
modes. G75 command turns on multi quadrant mode. G74 command turns on single quadrant
mode. The quadrant mode remains valid until changed by another G75 or G74.

 Warning: A Gerber file that attempts to create an arc without a preceding G74 or G75 is
invalid.
Mathematically, the distance from the center to the start point must be exactly equal to the
distance to the end point. However, a Gerber file has a finite resolution. It is therefore generally
not possible to position the center point exactly so that both distances – radii - are indeed
exactly equal. Furthermore, the software generating the Gerber file unavoidably adds rounding

mailto:gerber@ucamco.com

Copyright Ucamco NV 85
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

errors of its own. In real files the center is unavoidably not positioned exactly, and the two radii
are not equal. We will call the difference between the start and end radius the arc deviation.
A mathematically exact circle has of course zero deviation. The interpretation of the arc
command is then obvious. However, which curve is represented by a “circular arc” with a non-
zero deviation? It cannot be a circular arc with the given center. Either it is not circular, it has
another center, or it does not go from start to end. It is defined as follow.
Any continuous and monotonic curve starting at the start point and ending at the end point,
approximating the ring with the given center point and with inner and outer radii equal to the
start radius and end radius is a valid rendering of the arc command. See figure 25.

25. Arc with a non-zero deviation

The arc therefore has a fuzziness of the order of magnitude of the arc deviation. The writer of
the Gerber file accepts any interpretation within the fuzziness above as valid. If the writer
requires a more precise interpretation of the arc he needs to write more precise arcs, with lower
deviation.
It is however not allowed to place the center point close to the straight line through begin and
end point except when it is strictly in between these points. When the center is on or outside the
segment between start and end point the construct is nonsensical. See figure 26.

26. Nonsensical center point

Note that self-intersecting contours are not allowed, see 4.12.3. If any of the valid arc
interpretations turns the contour in a self-intersecting one, the file is invalid, with unpredictable
results.

mailto:gerber@ucamco.com

Copyright Ucamco NV 86
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The root cause of most problems with arcs is the use a low resolution. One sometimes attempts
to force arcs of size of the order of e.g. 1/10 of a mil in a file with resolution of 1/10. This is
asking for problems. Use higher resolution. See 4.16.

 G02 & G03 Command
The G02 command sets clockwise circular interpolation mode, the G03 counterclockwise. The
syntax is as follows:

<G02 command> = G02*
<G03 command> = G03*

Syntax Comments

G02 Sets interpolation mode graphics state parameter to ‘clockwise
circular interpolation’

G03 Sets interpolation mode graphics state parameter to
‘counterclockwise circular interpolation’

 Examples:
G02*

 G74 & G75 Command
The G74 command sets single quadrant mode, G75 multi-quadrant mode. The syntax is as
follows:

<G74 command> = G74*
<G75 command> = G75*

Syntax Comments

G74 Sets quadrant mode graphics state parameter to ‘single quadrant’

G75 Sets quadrant mode graphics state parameter to ‘multi quadrant’

 Example:
G74*

 D01 Command
In G02 or G03 mode the interpolate command D01 creates an arc. After the D01 command the
current point is moved to the end point of the arc. The D01 command syntax is:

 <D01 operation> = [X<Number>][Y<Number>][I<Number>][J<Number>]D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 87
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

X<Number> <Number> is coordinate data – see section 3.6.3. It defines the X
coordinate of the circular arc.

The default is the X coordinate of the old current point.

Y<Number> <Number> is coordinate data – see section 3.6.3. It defines the Y
coordinate of the circular arc.

The default is the Y coordinate of the old current point.

I<Number> In single quadrant mode: the distance between the circular arc
start point and the center measured parallel to the X axis. Number
is ≥ 0.

In multi quadrant mode: the offset or signed distance between the
circular arc start point and the center measured parallel to the X
axis.

The default is a 0 distance.

<Number> is coordinate data – see section 3.6.3.

J<Number> In single quadrant mode: the distance between the circular arc
start point and the center measured parallel to the Y axis. Number
is ≥ 0.

In multi quadrant mode: the offset or signed distance between the
circular arc start point and the center measured parallel to the Y
axis.

The default is a 0 distance.

<Number> is coordinate data – see section 3.6.3.

D01 Interpolate operation code

The coordinates of the endpoint, center distances and offsets are interpreted according to the
coordinate format specified by the FS command and the unit specified by the MO command.
The following image illustrates how circular arcs are interpolated.

mailto:gerber@ucamco.com

Copyright Ucamco NV 88
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

27. Circular interpolation example

In single quadrant mode, because the sign in offsets is omitted, there are four candidates for the
center: (<Current X> +/- <X distance>, <Current Y> +/- <Y distance>). The center is the
candidate that results in an arc with the specified orientation, not greater than 90° and with the
least deviation.

 Example:
G74*

G03*

X700Y1000I400J0D01*

 Note: In multi quadrant mode the offsets in I and J are signed. If no sign is present, the
offset is positive.

 Example:
G75*

G03*

X-300Y-200I-300J400D01*

 Warning: If the center is not precisely positioned, there may be none or more than one
candidate fits. In that case the arc is invalid. The creator of the file accepts any interpretation.

Y axis

0,0 X axis

X

Y

J

End point

Start point
(current
point)

Arc center
I

mailto:gerber@ucamco.com

Copyright Ucamco NV 89
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example: Single Quadrant Mode

Syntax Comments

G74*

D10*

X1100Y600D02*

G03*

X700Y1000I400J0D01*

X300Y600I0J400D01*

X700Y200I400J0D01*

X1100Y600I0J400D01*

X300D02*

G01*

X1100D01*

X700Y200D02*

Y1000D01*

Set single quadrant mode

Set the current aperture to D10 aperture

Set the current point to (11, 6)

Set counterclockwise interpolation mode

Create quarter arc object (radius 4) to (7, 10)

Create quarter arc object (radius 4) to (3, 6)

Create quarter arc object (radius 4) to (7, 2)

Create quarter arc object (radius 4) to (11, 6)

Set the current point to (3 ,6)

Set linear interpolation mode

Create draw object to (11, 6)

Set the current point to (7, 2)

Create draw object to (7, 10)

28. Single quadrant mode example: arcs and draws

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 90
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

29. Single quadrant mode example: resulting image

 Example: Multi Quadrant Mode

Syntax Comments

X300Y-200D02*

G75*

G03*

X-300Y-200I-300J400D01*

Set the current point to (3, -2)

Set multi quadrant mode

Set counterclockwise interpolation mode

Create arc object counterclockwise to (-3,-2). The
offsets from the start point to the center point are
3 for X and 4 for Y, i.e. the center point is (0, 2)

2

4

6

8

10

12

2 4 6 8 10 12

mailto:gerber@ucamco.com

Copyright Ucamco NV 91
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

30. Multi quadrant mode example: resulting image

 Numerical Instability in Multi Quadrant (G75) Arcs
In G75 mode small changes in the position of center point, start point and end point can swap
the large arc with the small one, dramatically changing the image.
This most frequently occurs with very small arcs. Start point and end point are close together. If
the end point is slightly moved it can end on top of the start point. Under G75, if the start point of
the arc is equal to the end point, the arc is a full circle of 360°, see 4.10.1. A small change in the
position of the end point has changed the very small arc to a full circle.
G75 rounding must be done carefully. Using high resolution is an obvious prerequisite. See
4.16.
The Gerber writer must also consider that the reader unavoidably has rounding errors. Perfectly
exact numerical calculation cannot be assumed. It is the responsibility of the writer to avoid
unstable arcs.
G74 arcs are always less than 90° and this numerical instability does not exist. G74 is
intrinsically stable. Another option is not to use very small arcs, e.g. by replacing them with
draws - the error is very small and draws are stable.

 Using G74 or G75 May Result in a Different Image
An arc command can define a completely different image under G74 and G75. The two sample
files below differ only in G74/G75, but they define a dramatically different image.

End point (-3, -2) Start point (3, -2)

(0, 0)

Arc center (0, 2)

mailto:gerber@ucamco.com

Copyright Ucamco NV 92
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

D10*

G01*

X0Y600D02*

G74*

G02*

X0Y600I500J0D01*

Set the current aperture to D10 aperture

Set linear interpolation mode

Set the current point to (0, 6)

Set single quadrant mode

Set clockwise circular interpolation mode

Create arc object to (0, 6) with radius 5

The resulting image is small dot, an instance of the aperture at position (0, 6)

Syntax Comments

D10*

G01*

X0Y600D02*

G75*

G02*

X0Y600I500J0D01*

Set the current aperture to D10 aperture

Set linear interpolation mode

Set the current point to (0, 6)

Multi quadrant mode

Set clockwise circular interpolation mode

Create arc object to (0, 6) with center (5,6)

The image is a full circle.

mailto:gerber@ucamco.com

Copyright Ucamco NV 93
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.11 Object Transformations (LP, LM, LR, LS)

 Overview
The commands LP, LM, LR and LS load the following object transformation graphics state
parameters:

Aperture transformation commands
Command Parameter
LP Polarity

LM Mirror

LR Rotate

LS Scale

An object transformation parameter transforms the current aperture when it is used to create
object. The transformation is temporary, after the object is created the current aperture returns
to its original value. Consequently, the parameter is always applied on the original shape of the
current aperture.
The polarity option directly sets the polarity of the objects. The mirror/rotate/scale parameters
affect the shape of the objects by temporarily transforming the current aperture before the object
is created. Flashes are mirrored/rotated/scaled around the flash point according to the
transformation parameters. Draws and arcs (D01) are also affected; however, the only useful
application seems to rotate a square aperture to align it with a draw. As the current aperture
does not affect regions shape, the mirror/rotate/scale parameters do not affect the region shape
either.
Object transformation parameters become effective immediately after loading and remain in
effect until a new value is loaded. No other command alters the object transformation
parameters. The object transformation parameters affect nor the aperture dictionary nor the
current aperture.

 Example on how the parameter changes affect the image
D123* Select D123
X5000Y7000D03* Flash D123
%LR90.0*% Set object rotation to 90 degrees
X6000Y8000D03* Flash D123 rotated 90 degrees
D124* Select D124
X6000Y8000D03* Flash D124 rotated 90 degrees
%LR0.0*% Set object rotation to 0 degrees
X7000Y9000D03* Flash D124, not rotated
D123* Select D123
X1000Y2000D03* Flash D123, this is the original, not rotated

mailto:gerber@ucamco.com

Copyright Ucamco NV 94
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Example of the effect on interpolations (draws and arcs)
%MOMM*%
%FSLAX26Y26*%
%ADD10C,1*% Define D10 as a 1mm circle

D10* Select aperture 10
G01* Set linear interpolation
X00000000Y00000000D02* Move to origin
X01000000D01* Draw a 1mm thick line
%LS1.5*% Set scale factor to 1.5
Y02000000D01* Draw a 1.5mm thick line
M02*

This results in the following image:

mailto:gerber@ucamco.com

Copyright Ucamco NV 95
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Load Polarity (LP)
The LP command sets the polarity graphics state parameter, see 2.5. It defines the polarity
applied to objects when they are created. Polarity can be either dark or clear. Its effect is explained
in 2.7. There is an example in 4.12.4.7.
The syntax for the LP command is:

<LP command> = LP(C|D)*

Syntax Comments
LP LP for Load Polarity

C|D C – clear polarity
D – dark polarity

The LP command can be used multiple times in a file. The polarity remains as set until overruled
by another LP command.

 Load Mirroring (LM)
The LM command sets the mirroring graphics state parameter, see 2.5. The mirroring option
defines the mirroring axis used when creating objects. The aperture is mirrored around its origin
(which may not be its geometric center) before being used.
The syntax for the LM command is:

<LM command> = LM(N|X|Y|XY)*

Syntax Comments
LM LM for Load Mirroring

N|X|Y|XY N – No mirroring
X – Mirroring along the X axis; mirror left to right; the signs of the x
coordinates are inverted
Y – Mirroring along the Y axis; mirror top to bottom; the signs of the
y coordinates are inverted
XY – Mirroring along both axes; mirror left to right and top to bottom;
the signs of both the x and y coordinates are inverted

Mirroring is performed before the rotation.
The LM command can be used multiple times in a file. The mirroring remains as set until overruled
by another LM command. Mirroring is set at the value in the command, it is not cumulated with
the previous value.
The LM command was introduced in revision 2016.12.

 Load Rotation (LR)
The LR command sets the rotation graphics state parameter, see 2.5. It defines the rotation angle
used when creating objects. The aperture is rotated around its origin (which may or may not be
its geometric center).
The syntax for the LR command is:

<LR command> = LR<Rotation>*

mailto:gerber@ucamco.com

Copyright Ucamco NV 96
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments
LR LR for Load Rotation

<Rotation> The rotation angle, in degrees, counterclockwise. A decimal.

Mirroring is performed before the rotation.
The LR command can be used multiple times in a file. The object rotation remains as set until
overruled by a subsequent LR command. Rotation is set at the value in the command, it is not
cumulated with the previous value.
The LR command was introduced in revision 2016.12.

 Load Scaling (LS)
The LS command sets the scaling graphics state parameter, see 2.5. It defines the scale factor
used when creating objects. The aperture is scaled centered on its origin (which may or may not
be its geometric center).
The syntax for the LS command is:

<LS command> = LS<Scale>*

Syntax Comments
LS LS for Load Scaling

<Scale> A decimal > 0.

The LS command can be used multiple times in a file. The object scaling remains as set until
overruled by a subsequent LS command. Scaling is set at the value in the command, it is not
cumulated with the previous scale factor.
The LS command was introduced in revision 2016.12.

 Examples
Syntax Comments
%LPD*% Sets the object polarity to dark
%LPC*% Sets the object polarity to clear
%LMX*% Sets object mirroring to mirroring along the X axis
%LMN*% Sets object mirroring to no mirroring
%LR45.0*% Sets object rotation to 45 degrees counterclockwise
%LR-90*% Sets object rotation to 90 degrees clockwise
%LS0.8*% Sets object scaling to 80%

mailto:gerber@ucamco.com

Copyright Ucamco NV 97
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example of a block flashed in different mirroring, orientation, scaling

G04 Ucamco copyright*

%TF.GenerationSoftware,Ucamco,UcamX,2016.04-160425*%

%TF.CreationDate,2016-04-25T00:00:00+01:00*%

%FSLAX26Y26*%

%MOMM*%

%ADD10C,1*%

%LPD*%

G04 Define block aperture D12*

%ABD12*%

%ADD11C,0.5*%

D10*

G01*

X-2500000Y-1000000D03*

Y1000000D03*

%LPC*%

D11*

X-2500000Y-1000000D03*

%LPD*%

X-500000Y-1000000D02*

X2500000D01*

G75*

G03*

X500000Y1000000I-2000000J0D01*

G74*

G01*

%AB*%

G04 Flash block aperture D12 in four different orientation*

D12*

X0Y0D03*

%LMX*%

X10000000D03*

%LMY*%

%LR30.0*%

X0Y8000000D03*

%LMXY*%

%LR45.0*%

%LS0.8*%

X10000000D03*

%LPD*%

%LMN*%

%LR0.0*%

%LS1.0*%

M02*

mailto:gerber@ucamco.com

Copyright Ucamco NV 98
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

31. Block flashed in different orientations

mailto:gerber@ucamco.com

Copyright Ucamco NV 99
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.12 Region Statement (G36/G37)

 Region Overview
A region is a graphics object defined by its contour(s) - see 4.12.3.
The G36 command begins a region statement and G37 ends it. A region statement creates
contour objects by defining its contour. In a region statement the D01 and D02 commands
create the contour segments. The first D01 encountered in a region statement starts the first
contour by creating the first segment. Subsequent D01’s add segments to it. When a D02
command is encountered the contour is considered finished. (Note that a D02 without effect on
the current point, e.g. a D02*, also finishes the current contour.) A D02 is only allowed if the
preceding contour is closed. The next D01 command starts a new contour. Thus an unlimited
number of contours can be created between a single G36/G37 commands pair.
When a G37 command is encountered, the region statement is closed and region graphics
objects are added to the object stream by filling the newly created contours. A G37 is only
allowed when all contours are properly closed. A G37 finishes the last contour in the absence of
a finishing D02. Each contour is filled individually. The overall filled area is the union of the filled
areas of each individual contour. The number of region objects created by a single G36/G37
pair is intentionally not specified to leave more freedom to implementations; - for example, two
overlapping contours may be merged in a single region object.
Holes in a region are defined with cut-ins (see 4.12.3 and 4.12.4.8).
D01 and D02 are the only D code commands allowed in a region statement; D03 and Dnn
(nn≥10) are not allowed. Extended commands are not allowed. The M02 (end-of-file) command
is not allowed. However, G code commands are allowed – they are needed to control the
interpolation modes.
Contour segments are not in themselves graphics objects –they define the regions which are
graphics objects.
Aperture attributes can be attached to a region, see 5.3.1.

mailto:gerber@ucamco.com

Copyright Ucamco NV 100
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Region Statement Syntax
The G36 and G37 commands begin and end a region statement respectively. The syntax is:

<G36 command> = G36*
<G37 command> = G37*

Syntax Comments

G36 Begins a region statement.

G37 Ends a region statement.

This creates the set of region graphics object.

 Examples:
G36*

G37*

We now provide a Backus-Naur form of the region statement. The G01, G02, G03, G74, G75,
D01, D02, G04 commands are the primitives in this Backus-Naur form. We first define <iso> as
the set of interpolation state operators:
<iso> = (<G01>|<G02>|<G03>|<G74>|<G75>)
Syntactically, a contour is a sequence of interpolation state operators and draw/arc commands.
<contour> = {(<iso>|<D01>|<G04>)}
A D02 (move) separates one contour from the next.
We can now define the syntax for a region statement.
<region statement> = <G36><contour>{<D02><contour>}<G37>
A valid contour must not only comply with this syntax, but the sequence of draws/arcs must
represent a connected closed contour that does not self-intersect. See 4.12.3.

mailto:gerber@ucamco.com

Copyright Ucamco NV 101
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Valid Contours
A contour is a sequence of connected linear or circular segments. A pair of segments is said to
connect only if they are defined consecutively, with the second segment starting where the first
one ends. Thus, the order in which the segments are defined is significant. Non-consecutive
segments that meet or intersect fortuitously are not considered to connect. A contour is closed:
the end point of the last segment must coincide with the start point of the first segment. A
contour thus defines a closed curve.
There are two classes of valid contours.
Simple contours. A contour is said to be simple if all its segments are disjoint, except for
consecutive segments sharing their connection points only. However, zero-length segments
have no effect: readers can remove them before processing the contour. (Avoid zero-length
segments as they are useless and can only cause confusion.) A simple contour does not self-
intersect or self-touch. It is obvious which part of the plane lies inside the contour. The inside of
the contour constitutes the region object. A simple contour defines a simple region, without
holes.
Simple cut-in contours. These contours allow to create a region with holes. A cut-in connects
the contour defining the hole to its enclosing contour, thus joining them into a single contour. If
one travels along the contour in the direction of the segments and the inside must always be to
the same side, just as for simple contours. See the illustration below; see 4.12.4.8 for a fully
worked out example.

32. A contour with a cut-in

A cut-in is subject to strict requirements: it must consist of two fully coincident linear segments;
a pair of linear segments are said to be fully coincident if the segments coincide completely, with
the second segment starting where the first one ends; cut-ins must be either horizontal or
vertical; all cut-ins in a contour must have the same direction; cut-ins cannot intersect the
contour in any other location than their start and end points.
All contours except simple contours and simple cut-in contours are called self-intersecting and
are not allowed. Segments cannot cross, overlap or touch except

 connected segments in their end points.
 cut-ins in their end points.

mailto:gerber@ucamco.com

Copyright Ucamco NV 102
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Any other form of self-touching or self-intersection is not allowed. For the avoidance of doubt,
not allowed are, amongst others: segments that partially overlap, fully coincident linear
segments that are diagonal, fully coincident circular segments, circular segments that are
tangent to another segment, vertices on a segment at another location than its endpoints, points
where more than two segments end, full arcs anywhere in a contour other than at the end of a
cut-in or when the contour consist solely of that full arc.
An invalid contour has no specified interpretation.
For the mathematically inclined: A contour is said to be weakly simple if there exists an
arbitrarily small perturbation of the vertices changing it in a simple contour. Simple contours with
cut-ins are weakly simple. The winding number for valid Gerber contours is for the outside 0 and
for the inside everywhere either +1 or -1, depending on the orientation. However, not all weakly
simple contours or contours with these winding numbers are valid.
Contours are also used to define outline primitives in macro apertures (see 4.5.4.6).
Processing Gerber files is inevitably subject to rounding errors. Contours must be constructed
robustly so that perturbations due to this rounding do not turn an otherwise valid contour in a
self-intersecting one. See 4.16.2.
In Gerber, the orientation of the contour is not significant.

 Warning: Use maximum resolution. Low file coordinate resolution brings uncontrolled
rounding and often results in self-intersecting contours, see 4.1.

 Warning: Sloppy construction of cut-ins can lead to self-intersecting contours – in fact this
is the most prevalent cause of missed clearances in planes. Construct cut-ins carefully or avoid
them altogether by making holes in regions with negative objects.

 Examples

4.12.4.1 A Simple Contour

Syntax Comments

G36*

X200Y300000D02*

G01*

X700000D01*

Y100000D01*

X1100000Y500000D01*

X700000Y900000D01*

Y700000D01*

X200000D01*

Y300000D01*

G37*

Begins a region statement

Set the current point to (2, 3)

Set linear interpolation mode

Create linear segment to (7, 3)

Create linear segment to (7, 1)

Create linear segment to (11, 5)

Create linear segment to (7, 9)

Create linear segment to (7, 7)

Create linear segment to (2, 7)

Create linear segment to (2, 3)

Create the region by filling the contour

mailto:gerber@ucamco.com

Copyright Ucamco NV 103
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

33. Simple contour example: the segments

34. Simple contour example: resulting image

4.12.4.2 How to Start a Single Contour
The first D01 starts the contour at the current point, independent of how the current point is set.

2

4

6

8

10

12

2 4 6 8 10 12

2 4 6 8 10 12

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 104
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Below there are three examples of similar images; differences with the previous column are
highlighted and explained in the last table row.

Example 1 Example 2 Example 3
…

G01*

D11*

…

X300Y500D01*

G36*

X5000Y5000D02*

X6000D01*

Y6000D01*

X5000D01*

X5000Y5000D01*

G37*

…

…

G01*

D11*

…

X300Y500D01*

X5000Y5000D02*

G36*

X6000D01*

Y6000D01*

X5000D01*

X5000Y5000D01*

G37*

…

…

G01*

D11*

…

X300Y500D01*

X5000Y5000D01*

G36*

X6000D01*

Y6000D01*

X5000D01*

X5000Y5000D01*

G37*

…

This sequence creates a
square contour after the linear
segment created by the
operation:
X300Y500D01*

Swap D02 and G36 commands.
Exactly the same image.

Replace D02 by D01
command. The same contour
is created. But the difference is
that the additional draw object
is added to the image by this
operation:
X5000Y5000D01*

4.12.4.3 Use D02 to Start a Second Contour
D02 command can be used to start the new contour. All the created contours are converted to
regions when the command G37 is encountered. The example below creates two non-
overlapping contours which are then converted into two regions.

 Example:
G04 Non-overlapping contours*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

X-10000D02*

X-50000Y10000D01*

X-90000Y50000D01*

X-50000Y90000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 105
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X-10000Y50000D01*

G37*

M02*

This creates the following image:

35. Use of D02 to start an new non-overlapping contour

Two different contours were created. Each contour is filled individually. The filled area is the
union of the filled areas.

4.12.4.4 Overlapping Contours
The example below creates two overlapping contours which are then converted into one region.

 Example:
G04 Overlapping contours*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

X10000D02*

X50000Y10000D01*

X90000Y50000D01*

X50000Y90000D01*

X10000Y50000D01*

G37*

mailto:gerber@ucamco.com

Copyright Ucamco NV 106
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

M02*

This creates the following image:

36. Use of D02 to start an new overlapping contour

Two different contours were created. Each contour is filled individually. The filled area is the
union of the filled areas. As the second contour is completely embedded in the first, the effective
filled area is the one of the first contour. So the created region object is the same as would be
defined by the first contour only.

4.12.4.5 Non-overlapping and Touching
The example below creates two non-overlapping touching contours which are then converted
into one region.

 Example:
G04 Non-overlapping and touching*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

D02*

X-50000Y10000D01*

X-90000Y50000D01*

X-50000Y90000D01*

X0Y50000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 107
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

G37*

M02*

This creates the following image:

37. Use of D02 to start an new non-overlapping contour

As these are two different contours in the same region touching is allowed.

4.12.4.6 Overlapping and Touching
The example below creates two overlapping touching contours which are then converted into
one region.

 Example:
G04 Overlapping and touching*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

D02*

X50000Y10000D01*

X90000Y50000D01*

X50000Y90000D01*

X0Y50000D01*

G37*

M02*

mailto:gerber@ucamco.com

Copyright Ucamco NV 108
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

This creates the following image:

38. Use of D02 to start an new overlapping and touching contour

As these are two different contours in the same region touching is allowed.

4.12.4.7 Using Polarity to Create Holes
The recommended way to create holes in regions is by alternating dark and clear polarity, as
illustrated in the following example. Initially the polarity mode is dark. A big square region is
generated. The polarity mode is set to clear and a circular disk is added to the object stream;
the disk is cleared from the image and creates a round hole in the big square. Then the polarity
is set to dark again and a small square is added to the stream, darkened the image inside the
hole. The polarity is set to clear again and a small disk added, clearing parts of the big and the
small squares.

 Example:
G04 This file illustrates how to use polarity to create holes*

%FSLAX25Y25*%

%MOMM*%

G01*

G04 First object: big square - dark polarity*

%LPD*%

G36*

X2500000Y2500000D02*

X17500000D01*

Y17500000D01*

X2500000D01*

Y2500000D01*

G37*

G04 Second object: big circle - clear polarity*

%LPC*%

G36*

G75*

X5000000Y10000000D02*

mailto:gerber@ucamco.com

Copyright Ucamco NV 109
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

G03*

X5000000Y10000000I5000000J0D01*

G37*

G04 Third object: small square - dark polarity*

%LPD*%

G01*

G36*

X7500000Y7500000D02*

X12500000D01*

Y12500000D01*

X7500000D01*

Y7500000D01*

G37*

G04 Fourth object: small circle - clear polarity*

%LPC*%

G36*

G75*

X11500000Y10000000D02*

G03*

X11500000Y10000000I2500000J0D01*

G37*

M02*

Below there are pictures which show the resulting image after adding each object.

39. Resulting image: first object only

mailto:gerber@ucamco.com

Copyright Ucamco NV 110
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

40. Resulting image: first and second objects

41. Resulting image: first, second and third objects

mailto:gerber@ucamco.com

Copyright Ucamco NV 111
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

42. Resulting image: all four objects

4.12.4.8 A Simple Cut-in
The example below illustrates how a simple cut-in can be used to create a hole in a region. The
coinciding contour segments must follow the requirements defined in 4.12.3.

mailto:gerber@ucamco.com

Copyright Ucamco NV 112
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%FSLAX26Y26*%

…

G75*

G36*

X20000Y10000000D02*

G01*

X12000000D01*

Y20000000D01*

X2000000D01*

Y6000000D01*

X5000000D01*

G03*

X50000Y60000I30000J0D01*

G01*

X20000D01*

Y100000D01*

G37*

Format specification

Set multi quadrant mode

Begins a region statement

Set the current point to (2,10)

Set linear interpolation mode

Create linear contour segment to (12,10)

Create linear contour segment to (12, 2)

Create linear contour segment to (2, 2)

Create linear contour segment to (2, 6)

Create linear contour segment to (5, 6),1st fully coincident segment

Set counterclockwise circular interpolation mode

Create counterclockwise circle with radius 3

Set linear interpolation mode

Create linear contour segment to (2, 6), 2nd fully coincident segment

Create linear contour segment to (2, 10)

Create the region by filling the contour

43. Simple cut-in: the segments

2 4 6 8 10 12

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 113
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

44. Simple cut-in: the image

Note the orientation of the inner circle. If the orientation would be different the contour would be
self-intersecting. This becomes immediately apparent if you try to perturb the contour to convert
it to a simple contour.

4.12.4.9 Fully Coincident Segments
The first example below illustrates how one contour may result in two regions. This happens
because there are two fully coincident linear segments which give the gap between filled areas.

 Example:
G04 ex1: non overlapping*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

G04 first fully coincident linear segment*

X-10000D01*

X-50000Y10000D01*

X-90000Y50000D01*

2 4 6 8 10 12

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 114
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X-50000Y90000D01*

X-10000Y50000D01*

G04 second fully coincident linear segment*

X0D01*

G37*

M02*

This creates the following image:

45. Fully coincident segments in contours: two regions

The second example illustrates how one contour allows creating region with hole.

 Example:
G04 ex2: overlapping*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

G04 first fully coincident linear segment*

X10000D01*

X50000Y10000D01*

X90000Y50000D01*

X50000Y90000D01*

X10000Y50000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 115
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

G04 second fully coincident linear segment*

X0D01*

G37*

M02*

This creates the following image:

46. Fully coincident segments in contours: region with hole

4.12.4.10 Valid and Invalid Cut-ins
Contours with cut-ins are susceptible to rounding problems: when the vertices move due to the
rounding the contour may become self-intersecting. This may lead to unpredictable results. The
first example below is a cut-in with valid fully coincident segments, where linear segments which
are on top of one another have the same end vertices. When the vertices move due to rounding,
the segments will remain exactly on top of one another, and no self-intersections are created.
This is a valid and robust construction.

 Example:
G36*

X1220000Y2570000D02*

G01*

Y2720000D01*

X1310000D01*

Y2570000D01*

X1250000D01*

Y2600000D01*

X1290000D01*

Y2640000D01*

X1250000D01*

Y2670000D01*

X1290000D01*

Y2700000D01*

X1250000D01*

Y2670000D01*

Y2640000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 116
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Y2600000D01*

Y2570000D01*

X1220000D01*

G37*

This results in the following contour:

47. Valid cut-in: fully coincident segments

This creates the following image:

mailto:gerber@ucamco.com

Copyright Ucamco NV 117
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

48. Valid cut-in: resulting image

The next example attempts to create the same image as the first example from above, but it is
invalid due to the use of invalid partially coinciding segments (see the description of a valid
contour in 4.12.3). The number of linear segments has been reduced by eliminating vertices
between collinear segments, creating invalid overlapping segments. This construction is invalid.
It is prohibited because it is not robust and hard to handle: when the vertices move slightly due
to rounding, the segments that were on top of one another may become intersecting, with
unpredictable results.

 Example:
G36*

X1110000Y2570000D02*

G01*

Y2600000D01*

X1140000D01*

Y2640000D01*

X1110000D01*

Y2670000D01*

X1140000D01*

Y2700000D01*

X1110000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 118
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Y2570000D01*

X1090000D01*

Y2720000D01*

X1170000D01*

Y2570000D01*

X1110000D01*

G37*

This results in the following contour:

49. Invalid cut-in: overlapping segments

mailto:gerber@ucamco.com

Copyright Ucamco NV 119
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Power and Ground Planes
The simplest way to construct power and ground planes is first to create the copper pour with a
region in dark polarity (LPD), and then erase the clearances by switching to clear polarity (LPC)
and flash the anti-pads.

 Example:
G04 We define the antipad used to create the clearances*

%TA.AperFunction,AntiPad*%

%ADD11C….*%

….

G04 We now define the copper pour as a region*

LPD*

G36*

X…Y…D02*

X…Y…D01*

…

G37*

G04 We now flash clearances*

%LPC*%

D11*

X…Y…D03*

This is simple and clear. In the CAD layout, the location of the anti-pads is known. With negative
anti-pads this information is transferred directly to CAM in a simple way.

mailto:gerber@ucamco.com

Copyright Ucamco NV 120
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Clearances in power and ground planes can also be constructed with cut-ins, as below.

50. Power and ground planes with cut-ins.

The cut-ins are rather complex to create on output; on input in CAM the cut-ins must be
removed and the original clearances restored, again rather complex. Use this more complex
construction only if there is a good reason not to use the anti-pad method.

mailto:gerber@ucamco.com

Copyright Ucamco NV 121
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Care must be taken to only create valid cut-ins. Sloppy cut-ins are the most frequent cause of
scrap due to faulty Gerber files, causing a self-intersecting contour and a missing clearance.
Below is an example of such sloppy cut-in; it is a real-life example that lead to expensive scrap.
Watch out for rounding errors. Make sure that coincident points indeed are coincident in the file.
Using the highest resolution on outputs reduces rounding errors.

51. Power plane with invalid cut-in.

It is sometimes recommended to avoid the cut-ins altogether by splitting the plane in separate
pieces, where no piece has holes. Do not follow this terrible recommendation. The remedy is
worse than the disease. Splitting the single contour in separate contours without holes is as
complex as adding cut-ins. All clearance boundaries must be cut in pieces and split over
different contours; not much of an improvement over finding cut-in points. Rounding errors still
lurk, and can lead to pieces that are no longer connected; not much of an improvement over
invalid cut-ins. The situation is far worse on input. If the plane consists of a single contour it is
clear it is a single plane. When planes are split in pieces the coherence is lost. The file reader
must figure out from a bewildering set of contours that a single plane is intended. It must
recover clearances which boundaries are scattered over different contours. Cutting a plane in
pieces to avoid clearances is bad practice. It is asking for problems. See also 4.16.

mailto:gerber@ucamco.com

Copyright Ucamco NV 122
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13 Step and Repeat (SR)
The purpose of the SR command is to replicate a set of graphics objects without replicating
the commands that creates the set.
The SR command %SRX…Y…I…J…*% opens an SR statement. All subsequent commands are
part of the SR statement until it is closed by an %SR*%. The parameters X, Y specify the number
of repeats in X and Y and I, J their respective step distances. The graphics objects generated by
the command stream in a SR statement are collected in a block - see 2.8 - instead of being
added directly to the object stream. When the SR command is closed by an %SR*%, the block is
step-repeated (replicated) in the image plane according to the parameters X, Y, I and J in the
opening SR command. Blocks are copied first in the positive Y direction and then in the positive
X direction. The syntax for the SR command is:

<SR command> = SR[X<Repeats>Y<Repeats>I<Distance>J<Distance>]*

Syntax Comments

SR SR for Step and Repeat

X<Repeats> Defines the number of times the block is repeated along the X axis
<Repeats> is an integer ≥ 1

Y<Repeats> Defines the number of times the block is repeated along the Y axis

<Repeats> is an integer ≥ 1

I<Distance> Defines the step distance along the X axis

<Distance> is a decimal number ≥ 0, expressed in the unit of the MO
command

J<Distance> Defines the step distance along the Y axis

<Distance> is a decimal number ≥ 0, expressed in the unit of the MO
command

Examples:

Syntax Comments

%SRX2Y3I2.0J3.0*% Opens an SR statement and starts block accumulation

When block accumulation is finished the block will be repeated 2 times
along the X axis and 3 times along the Y axis. The step distance
between X-axis repeats is 2.0 units. The step distance between Y-
axis repeats is 3.0 units.

%SRX4Y1I5.0J0*% Opens an SR statement and starts block accumulation

When block accumulation is finished the block will be repeated 4 times
along the X axis with the step distance of 5.0 units. The step distance
in the J modifier is ignored because no repeats along the Y axis are
specified.

%SR*% Closes the SR statement and repeats the previously accumulated
block

mailto:gerber@ucamco.com

Copyright Ucamco NV 123
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

To define the Backus-Naur form of the SR statement we use the following primitives:
<single command> = all commands except SR, AB, G36, G37 and M02

<region statement> see 4.12

The Backus-Naur form of the SR statement is then:

<SR open> = %SRX<Repeats>Y<Repeats>I<Step>J<Step>*%

<SR close> = %SR*%

<SR statement> = <SR open>{<single command>|<region statement>}<SR close>

 Example:
G04 A block of two flashes is repeated 3x2 times*

%SRX3Y2I5.0J4.0*%

D13*

X123456Y789012D03*

D14*

X456789Y012345D03*

%SR*%

52. Blocks replication with SR command

Note that a block contains the graphics objects, not the Gerber source code. The graphics
objects in each copy are always identical, even if the graphics state is modified during the SR
statement.
The current point is undefined after an SR statement.
A file can contain multiple SR statements. The number of steps and the step distances can be
different in X and Y. The number of repeats along an axis can be one; it is then recommended
to use the step distance 0.
A step & repeat block can contain different polarities (LPD and LPC – see 4.11.2). A clear object
in a block clears all objects beneath it, including objects outside the block. When repeats of

mailto:gerber@ucamco.com

Copyright Ucamco NV 124
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

blocks with both dark and clear polarity objects overlap, the step order affects the image; the
correct step order must therefore be respected: step the complete block first in Y and then in X.

 Warning: As the correct order is not correctly implemented in some Gerber readers, it is
prudent to avoid overlapping blocks containing both clear and dark polarity objects. Overlapping
blocks where all objects have identical polarity are safe.

mailto:gerber@ucamco.com

Copyright Ucamco NV 125
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.14 Comment (G04)
The G04 command is used for human readable comments. It does not affect the image. Gerber
readers must ignore the command when generating the image.
The syntax for G04 is as follows.

<G04 command> = G04<Comment content>*
The <Comment content> must follow the syntax for strings in section 3.6.6.
Content starting with ” #@! “ is reserved for standardized comments. They can only be used as
defined in the specification. Gerber readers must of course also ignore such comments when
generating the image.

 Example:
G04 This is a comment*

G04 The space characters as well as ‘,’ and ‘;’ are allowed here.*

mailto:gerber@ucamco.com

Copyright Ucamco NV 126
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.15 End-of-file (M02)
The M02 command indicates the end of the file.
The syntax for M02 is as follows:

<M02 command> = M02*

 Example:
M02*

The last command in a Gerber file must be the M02 command. No data is allowed after an M02.
Gerber readers are encouraged to give an error on a missing M02 as this is an indication that
the file has been truncated.
Note that a block or region statement must be explicitly closed. Consequently, an M02
command cannot be issued within a block or region statement.

mailto:gerber@ucamco.com

Copyright Ucamco NV 127
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.16 Numerical Accuracy in Image Processing and
Visualization

The coordinates of all points and all geometric parameters (e.g. a diameter) have an exact
numerical value. Graphics objects are therefore in principle defined with infinite precision with
the exception of arcs, which are intrinsically slightly fuzzy (see 4.10.1.). A Gerber file specifies
an image with infinite precision.
However, Gerber file writers cannot assume that file readers will process their files with infinite
precision as this is simply impossible. Nemo potest ad impossibile obligari. This raises the
question to what a Gerber file reader is held, and what a Gerber writer can assume.

 Visualization
Gerber files are often used to visualize an image on a screen, a photoplotter, a direct imager.
Visualization is unavoidably constrained by the limitations of the output device. Nonetheless,
visualization must comply with the following rules:
 Each individual graphics object must be rendered within the stated accuracy of the output

device.
 No spurious holes may appear - solid objects must be visualized solid.
 No spurious objects may appear.
 Zero-size objects are not visualized.
 Graphics object can be rendered individually, without considering neighboring objects. In

other words, each graphics object is handled individually, regardless of context.
It is intentionally not specified if rendering must be “fat” or “thin” - fat meaning that features
below the device accuracy are blown up to be visible, thin meaning that they disappear.
These rules have several noteworthy consequences:
 Gerber objects separated by a very small gap may touch in the visualized image.
 Gerber objects that touch or marginally overlap may be separated by a gap in the

visualized image.
 Gerber objects smaller or thinner than the device resolution may totally disappear in the

visualized image.
 When what is intended to be a single object is broken down in simpler graphics objects,

and these elementary objects do not sufficiently overlap, the resulting image may not be
solid - it may have internal holes or even break up in pieces. To avoid these effects the best
and most robust approach is not to break up the single object at all: the Gerber format has
powerful primitives to create almost any shape with a single graphics object or possible a
succession of dark and clear objects.

Construct files robustly.

 Image Processing
Gerber files are processed for visualization but often also to complex image processing
algorithms: e.g. etch compensation, design rule checks in CAM and so on. These algorithms
perform long sequences of numerical calculations. Rounding errors unavoidably accumulate.
This means that all coordinates can move and object sizes can vary. The specification limits the
allowed perturbation to [-0.5µm, +0.5 µm]; furthermore coincident coordinates must remain

mailto:gerber@ucamco.com

Copyright Ucamco NV 128
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

coincident. The writer can assume that the perturbation is within this limit. Higher accuracy
cannot be blindly assumed; if it is needed it must be checked that the applications downstream
can handle this. A file is therefore only robust if, under any allowed perturbation, it remains valid
and represents the same image.
The perturbation has some noteworthy consequences:
 Contours that are not self-intersecting by a margin of ≤1µm can become self-intersecting

under a valid perturbation. Such contours are therefore invalid; see section 4.12.3.
Contours must be constructed robustly so that allowed processing perturbations do not turn
an otherwise valid contour in a self-intersecting one. See 4.16.2. Consequently, points and
segments that are not coincident must be separated by at least 1µm. Furthermore, circular
segments add their own intrinsic fuzziness, see 4.10.1. If any valid interpretation of the arc
violates the requirement of 1µm separation the contour is invalid. Construct contours
defensively. Observe sufficient clearances. Marginal contours can and do lead to problems

 Objects that touch or overlap marginally can become separated under perturbation. This is
important for electrical connection. An electrical connection that is realized by touching
objects can get separated by a valid perturbation. Such marginal construction can be validly
interpreted as either isolating or connecting. Make proper and robust electrical connections,
with an overlap of the order of magnitude of at least the minimum conductor width.

 Arcs with end points separated by less than 1 µm can toggle between very small or nearly
360 degrees under valid perturbations. Do not write such arcs.

 Avoid objects smaller than 1 µm.
Construct files robustly.

mailto:gerber@ucamco.com

Copyright Ucamco NV 129
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5 Attributes

5.1 Attributes Overview
Attributes add meta-information to a Gerber file. Attributes are akin to labels providing
information about the file or features within them. Examples of meta-information conveyed by
attributes are:
 The function of the file in the layer structure. Is the file the top solder mask, the bottom

copper layer, …?
 The function of a pad. Is the pad an SMD pad, or a via pad, or a fiducial, ...?
The attribute syntax provides a flexible and standardized way to add meta-information to a
Gerber file, independent of the specific semantics or application.
Attributes do not affect the image. A Gerber reader will generate the correct image if it simply
ignores the attributes.
Each attribute consists of an attribute name and an optional attribute value:

<Attribute> = <AttributeName>[,<AttributeValue>]*
Attribute names follow the name syntax in section 3.6.5.
The attribute value consists of one or more comma-separated fields, see section 3.6.7.

<AttributeValue> = <Field>{,<Field>}

There are three types of attributes by the item they attach to:

Attachment type The item to which they attach meta-information

File attributes Attach meta-information to the file as a whole.

Aperture attributes Attach meta-information to an aperture or a region. Objects created by
the aperture inherit the aperture meta-information

Object attributes Attach meta-information to on object directly

There are two types of attributes by the scope of their use:

 Standard attributes. Standard attribute names, values and semantics are defined in this
specification and are part of it. As they are standardized they can exchange meta-
information between all applications.

 User attributes. User attributes can be chosen freely by users to extend the format with
custom meta-information. Use custom attributes only for unequivocally defined
machine-readable information, use G04 for mere human-readable comments.

In accordance with the general rule in 3.6.5 standard attribute names must begin with a dot ‘.’
while user attribute names cannot begin with a dot. The dot, if present, is part of the attribute
name and indicates that it is a standard attribute whose syntax and semantics are defined in
section 5.6.

 Example of a user attributes:
%TFMyAttribute,Yes*%

%TFZap*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 130
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

%TFZonk*%

The following commands govern attributes. (They start with a T as the more obvious A is
already taken by the aperture commands.)

Command Description Section
TF Attribute file. Set a file attribute. 5.2
TA Attribute aperture. Add an aperture attribute to the dictionary or modify it. 5.3
TO Attribute object. Add an object attribute to the dictionary or modify it. 5.4
TD Attribute delete. Delete one or all attributes in the dictionary. 5.5

During the processing of a Gerber file an attribute dictionary is maintained. Dictionary entries
consist of the attribute name, its domain and its value. The attribute name is the key of the
entry; it must consequently be unique, even for attributes with a different domain.
The current aperture dictionary is defined after each command by the following rules:

 Initially the attribute dictionary is empty
 File attributes are added with the TF command
 Aperture attributes are added or updated with the TA command
 Object attributes are added or updated with the TO command
 Attributes are deleted with the TD command

When an aperture or a graphics object is created all attributes with the proper domain present in
the dictionary at the time of creation are attached to it. They remain fixed and cannot be
changed.
In the following example the command TF defines an attribute with name “.FileFunction” and
value composed of the two fields: “Soldermask,Top”.

 Example:
%TF.FileFunction,Soldermask,Top*%

Note that attribute commands are not allowed within a region statement, see 4.12.2.

mailto:gerber@ucamco.com

Copyright Ucamco NV 131
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.2 File Attributes (TF)
File attributes provide meta-information about entire files.
The semantics of a file attribute specifies where it must be defined, typically in the header of the
file. A file attribute can only be defined once. It cannot be redefined.
File attributes are set using the uppercase TF command using the following syntax

<TF command> = %TF<AttributeName>[,<AttributeValue>]*%
<AttributeValue> = <Field>{,<Field>}

The attribute name must follow the syntax in section 3.6.5, fields this in 3.6.7. The name is
unique and cannot be used for any other attribute, even of another type.

 Example:
%TF.FilePolarity,Negative*%

5.3 Aperture Attributes (TA)
An aperture attribute is attached to an aperture or a region. They typically provide information
about the graphics objects that will be created with the aperture; for example, a via attribute on
an aperture means that all pads flashed with this aperture are via pads. Providing information
about graphics objects via their apertures is elegant, compact and efficient.
The TA command adds an aperture attribute into the attributes dictionary. It has the following
syntax:
<TA command> = %TA<AttributeName>[,<AttributeValue>]*%

<AttributeValue> = <Field>{,<Field>}
The attribute name must follow the syntax in section 3.6.5, fields the one in 3.6.7. The name
must be unique. The value of an aperture attribute can be modified by a new TA with the same
attribute name.
The example below defines several attributes.

 Example:
%TA.AperFunction,ComponentPad*%

%TAMyApertureAttributeWithValue,value*%

%TAMyApertureAttributeWithoutValue*%

In the next example the aperture value is initially set to ComponentPad and later overruled to
ViaPad.

 Example:
%TA.AperFunction,ComponentPad*%

…

%TA.AperFunction,ViaPad*%

When an AD or an AB command creates an aperture all aperture attributes then in the attribute
dictionary are attached to it. Once an aperture is defined its attributes cannot be changed.

mailto:gerber@ucamco.com

Copyright Ucamco NV 132
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Aperture Attributes on Regions
Counterintuitively, aperture attributes can be attached to regions. When a G36/G37 creates a
region all aperture attributes in the attribute dictionary at that moment are attached to it, in the
same way as they would be attached to an aperture created with an AD command.
Aperture attributes on regions are necessary. Aperture attributes are a way to attach properties
to objects such as draws or flashes created with that aperture. It is sometimes necessary to
attach the same property to region objects, which are created without an aperture. For example,
the function ‘conductor’ must be assigned both to tracks – draws, created with an aperture –
and copper pours – regions. This is done by attaching the aperture attribute
.AperFunction,Conductor both to the track aperture and the region. Without the ability to
attach aperture to regions a double set of attributes would be needed or another less elegant
mechanism.
A way to view this is that the G36 command creates a virtual region aperture and attaches
attributes to it in the same way as an AD does with a real aperture.

5.4 Object Attributes (TO)
An object attribute is attached to graphics objects. When a D01, D03 or region statement
(G36/G37) creates an object all object attributes in the attribute dictionary are attached to it. As
attribute commands are not allowed inside a region statement, all regions created by that
statement have the same object attributes. Once attached to an object they cannot be changed.
The TO command adds an object attribute into the attributes dictionary. It has the same syntax
as the TF command:

<TO command> = %TO<AttributeName>[,<AttributeValue>]*%
<AttributeValue> = <Field>{,<Field>}

The attribute name must follow the syntax in section 3.6.5, fields the one in 3.6.7. The name is
unique and cannot be used for any other attribute, even of another type. The value of an object
attribute can be modified by a new TO command with the same attribute name.

 Example:
%TO.C,R6*%

5.5 Delete Attribute (TD)
The TD command deletes an attribute from the attributes dictionary. Note that the attribute
remains attached to apertures and objects to which it was attached before it was deleted.

<TD command> = %TD[<AttributeName>]*%
The <AttributeName> is the name of the attribute to delete. If omitted, the whole dictionary is
cleared.

mailto:gerber@ucamco.com

Copyright Ucamco NV 133
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.6 Standard Attributes

 Overview

Name Usage Section Attached
to

.Part Identifies the part the file represents, e.g. a single
PCB

5.6.2 File

.FileFunction Identifies the file’s function in the PCB, e.g. top
copper layer

5.6.3 File

.FilePolarity Defines whether the file represents the presence
or absence of material in the PCB layer,
expressed by positive or negative

5.6.4 File

.SameCoordinates All files in a fabrication data set with this attribute
use the same coordinates. In other words, they
align.

5.6.5 File

.CreationDate Defines the creation date and time of the file. 5.6.6 File

.GenerationSoftware Identifies the software creating the file. 5.6.7 File

.ProjectId Defines project and revisions. 5.6.8 File

.MD5 Sets the MD5 file signature or checksum. 5.6.9 File

.AperFunction Function objects created with the apertures, e.g.
SMD pad

5.6.10 Aperture

.DrillTolerance Tolerance of drill holes 5.6.11 Aperture

.FlashText If a flash represents text allows to define string,
font, …

5.6.12 Aperture

.N The CAD net name of a conducting object, e.g.
Clk13.

5.6.13 Graphics
Object

.P The pin number (or name) and reference
descriptor of a component pad on an outer layer,
e.g. IC3,7.

5.6.14 Graphics
Object

.C The component reference designator linked to an
object, e.g C2.

5.6.15 Graphics
Object

Table with the standard attributes

Attributes are not needed when the image only needs to be rendered. However, attributes are
needed in PCB fabrication data, when transferring PCB data from design to fabrication. For
example, the fabricator needs to know what are the via pads to handle the solder mask
properly. The standard attributes transfer the design intent from CAD to CAM in an unequivocal
and standardized manner. This is sometimes rather grandly called “adding intelligence to the
image”. Without standard attributes the design intent must be gathered from various documents,

mailto:gerber@ucamco.com

Copyright Ucamco NV 134
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

unwritten rules, conversations or reverse engineering, with all the risks of error and delay that
this entails.
It is strongly recommended to use standard attributes as comprehensively as possible. If you
cannot provide all the attributes or are unsure of their use then provide all the attributes you are
comfortable with. Partial information is better than no information. For professional PCB
production the bare minimum is to set .FileFunction and .FilePolarity.
Note that standard attribute values typically contain a value “Other” to cater to requirements not
yet foreseen in the specification. The intention is to add new values as the need arises to
reduce the use of “Other” over time.
If a user has a need for standard meta-information for which there is no attribute name or
attribute value please contact Ucamco at gerber@ucamco.com to request it. Authors will be
properly acknowledged when their suggestions are included in the standard.

 Warning: Do not invent your own standard attribute names (names starting with a dot).
This would defeat the purpose of standardization. User attributes cater to specific needs that are
not covered by the standard attributes. Feel free to invent any user attribute you wish.

mailto:gerber@ucamco.com
mailto:gerber@ucamco.com

Copyright Ucamco NV 135
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .Part
The value of the .Part file attribute identifies which part is described. The attribute – if present -
must be defined in the header.

.Part value Usage

Single Single PCB

Array A.k.a. customer panel, assembly panel, shipping panel,
biscuit

FabricationPanel A.k.a. working panel, production panel

Coupon A test coupon

Other,<mandatory
field>

None of the above. The mandatory field informally
indicates the part

.Part file attribute values

 Example:
%TF.Part,Array*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 136
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .FileFunction
The .FileFunction file attribute identifies the function of the file in the PCB layer structure. Of all
the attributes it is the most important.

Example:
%TF.FileFunction,Copper,L1,Top*%

The attribute must be defined in the header.
The existence of a file function does not mean that it must be included in each PCB fabrication
data sets. Include the files that are needed: no more, no less.
The file functions are designed to support all file types in current use. If a type you need is
missing please contact us at gerber@ucamco.com.

.FileFunction value Usage

Data files

Copper,L<p>,(Top|Inr|Bot)[,<type>] A conductor or copper layer.
L<p> (p is an integer>0) specifies the physical
copper layer number. Numbers are
consecutive. The top layer is always L1. (L0
does not exist.) The mandatory field
(Top|Inr|Bot) specifies it as the top, an inner or
the bottom layer; this redundant information
helps in handling partial data. The specification
of the top layer is “Copper,L1,Top[,type]”,
of the bottom layer of an 8 layer job it is
Copper,L8,Bot[,type]

The top side is the one with the through-hole
components, if any.
The optional <type> field indicates the layer
type. If present it must take one of the following
values: Plane, Signal, Mixed or Hatched.

Plated,i,j,(PTH|Blind|Buried)
[,<label>]

Plated drill/rout data, span from copper layer i
to layer j. The from/to order is not significant.
The (PTH|Blind|Buried) field is mandatory.
The label is optional. If present it must take one
of the following values: Drill, Rout or Mixed.

NonPlated,i,j,(NPTH|Blind|Buried)
[,<label>]

Non-plated drill/rout data, span from copper
layer i to layer j. The from/to order is not
significant. The (NPTH|Blind|Buried) field is
mandatory.
The label is optional. If present it must take one
of the following values: Drill, Rout or Mixed.

mailto:gerber@ucamco.com

Copyright Ucamco NV 137
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

.FileFunction value Usage

Profile,(P|NP) A file containing the board profile (or outline)
and only the board profile. Such a file is
mandatory in a PCB fabrication data set. See
5.8.1.

 The mandatory (P|NP) label indicates whether
board is edge-plated or not.

Soldermask,(Top|Bot)[,<index>] Solder mask or solder resist.
Usually the image represents the solder mask
openings; it then has negative polarity, see
5.6.4.
The optional field is only needed when there is
more than one solder mask on one side – top
or bottom. The integer <index> then numbers
the solder masks from the PCB side outwards,
starting with 1 for the mask directly on the
copper. Usually there is only one solder mask
on a side, and then <index> is omitted. An
example with two top solder masks:
Soldermask,Top,1 Mask on the copper

Soldermask,Top,2  Mask on the first mask

Legend,(Top|Bot)[,<index>] A legend is printed on top of the solder mask to
show which component goes where. A.k.a.
‘silk’ or ‘silkscreen’.
See the Soldermask entry for an explanation of
the index.

Paste,(Top|Bot) Locations where paste must be applied.

Glue,(Top|Bot) Glue spots used to fix components to the board
prior to soldering.

Carbonmask,(Top|Bot)[,<index>] See Soldermask for the usage of <index>.

Goldmask,(Top|Bot)[,<index>] See Soldermask for the usage of <index>.

Heatsinkmask,(Top|Bot)[,<index>] See Soldermask for the usage of <index>.

Peelablemask,(Top|Bot)[,<index>] See Soldermask for the usage of <index>.

Silvermask,(Top|Bot)[,<index>] See Soldermask for the usage of <index>.

Tinmask,(Top|Bot)[,<index>] See Soldermask for the usage of <index>.

Depthrout,(Top|Bot) Area that must be routed to a given depth
rather than going through the whole board.

mailto:gerber@ucamco.com

Copyright Ucamco NV 138
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

.FileFunction value Usage

Vcut[,(Top|Bot)] Contains the lines that must be v-cut. (V-cutting
is also called scoring.)
If the optional attachment (Top|Bot) is not
present the scoring lines are identical on top
and bottom – this is the normal case. In the
exceptional case scoring is different on top and
bottom two files must be supplied, one with Top
and the other with Bot.

Viafill Contains the via’s that must be filled. It is
however recommended to specify the filled via’s
with the optional field in the .AperFunction
ViaDrill.

Drawing files

ArrayDrawing A drawing of the array (biscuit, assembly
panel, shipment panel, customer panel).

AssemblyDrawing,(Top|Bot) A drawing with the locations and reference
designators of the components. It is mainly
used in PCB assembly.

Drillmap A drawing with the locations of the drilled
holes. It often also contains the hole sizes,
tolerances and plated/non-plated info.

FabricationDrawing A drawing with additional information for the
fabrication of the bare PCB: the location of
holes and slots, the board outline, sizes and
tolerances, layer stack, material, finish choice,
etc.

Vcutmap A drawing with v-cut or scoring information.

OtherDrawing,<mandatory field> Any other drawing than the 4 ones above. The
mandatory field informally describes its topic.

mailto:gerber@ucamco.com

Copyright Ucamco NV 139
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Other files

Pads,(Top|Bot) A file containing only the pads (SMD, BGA,
component, …). Not needed in a fabrication
data set.

Other,<mandatory field> The value ‘Other’ is to be used if none of the
values above fits. By putting ‘Other’ rather than
simply omitting the file function attribute it is
clear the file has none of the standard
functions, already useful information. Do not
abuse standard values for a file with a vaguely
similar function – use ‘Other’ to keep the
function value clean and reliable.
The mandatory field informally describes the
file function.

.FileFunction attribute values

 Examples. File functions of a four layer board (One for each Gerber file):
%TF.FileFunction,Legend,Top*%

%TF.FileFunction,Soldermask,Top*%

%TF.FileFunction,Copper,L1,Top*%

%TF.FileFunction,Copper,L2,Inr,Plane*%

%TF.FileFunction,Copper,L3,Inr,Plane*%

%TF.FileFunction,Copper,L4,Bot*%

%TF.FileFunction,Soldermask,Bot*%

%TF.FileFunction,NonPlated,1,4,NPTH,Drill*%

%TF.FileFunction,NonPlatd,1,4,NPTH,Rout*%

%TF.FileFunction,Plated,1,4,PTH*%

%TF.FileFunction,Profile,NP*%

%TF.FileFunction,Drillmap*%

%TF.FileFunction,Drawing,Stackup*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 140
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .FilePolarity
The .FilePolarity specifies whether the image represents the presence or absence of material.
The .FilePolarity attribute does not change the image - no attribute does. It changes the
interpretation of the image. For example, in a copper layer in positive polarity a round flash
generates a copper pad. In a copper layer in negative polarity it generates a clearance.
The attribute must be defined in the header.

 Warning: Solder mask images nearly always represent the solder mask openings and are
therefore negative. This may be counter-intuitive.
Drill and rout files represent the removed material. Drill files are therefore positive, as is intuitive.

.FilePolarity value Usage

Positive The image represents the presence of material
(recommended)

Negative The image represents the absence of material

.FilePolarity attribute values

 Example:
%TF.FileFunction,Copper,L2,Inr,Plane*%

%TF.FilePolarity,Positive*%

Note: It is recommended output copper layers in positive. Power/ground planes in negative
was introduced in the 1970s and 1980s to get around the limitations in the vector photoplotters
then used. There no longer any reason to use them, and they have a problem: they cannot not
define how close the copper gets to the outline of the PCB. See 4.12.5 in how to create
power/ground planes in positive. But if you need to output negative copper layers, make it clear
they are negative by setting the .FilePolarity attribute.

mailto:gerber@ucamco.com

Copyright Ucamco NV 141
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .SameCoordinates
All layers in a PCB fabrication data set- a folder or archive - must use the same coordinate
system. In other words, they must align or register as the layers in the physical PCB do. For
example, the pads, drill holes, pads and solder mask openings of a pad stack must all have the
same coordinates.
Layers must not be offset, mirrored of flipped versus one another. This may seem obvious but
unfortunately in 1/3 of the data sets layers do not align. The fabricator consequently cannot trust
the alignment of the incoming data. This uncertainty interferes with fast and automatic
processing; worse, it can lead to scrap with boards where wrong alignment is not obvious, such
as very symmetric HF boards.
The .SameCoordinates attribute allows CAD to inform the fabricator that the alignment is correct
and instruct him to use the alignment in the data.
The attribute must be defined in the header. The syntax is as follows:

%TF.SameCoordinates[,<ident>]*%

 Example – without ident:
%TF.SameCoordinates*%

If in a PCB fabrication data set this attribute is present in a number of Gerber files then they
are in alignment with each other.

 Example – with a GUID as ident:
%TF.SameCoordinates,f81d4fae-7dec-11d0-a765-00a0c91e6bf6*%

The ident is optional. Its purpose is the following. There may be situations where files in the
fabrication data are output at different times, with different coordinate systems. In that
situation simply outputting the attribute would wrongly signal the layers do align. Adding the
ident avoids this error by distinguish between these different coordinate systems at output
time. If the attribute with the same ident is present in a number of Gerber files then they
align. If the ident is different they may not align – which would be an error because all files
must align. For the fabricator the only important fact is whether the ident, if present, are
identical or not; otherwise the ident has no meaning. A very safe ident is a GUID. When all
files are output at the same time, with the same coordinates, the ident is not needed.

Note that anyhow all data files must align, attribute or no attribute, ident or not.

 .CreationDate
The .CreationDate file attribute identifies the moment of creation of the Gerber file.
The attribute – if present - must be defined in the header. The attribute value must conform to
the full version of the ISO 8601 date and time format, including the time and time zone. A
formally defined creation date can be helpful in tracking revisions – see also 5.6.8

 Example:
%TF.CreationDate,2015-02-23T15:59:51+01:00*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 142
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .GenerationSoftware
The .GenerationSoftware file attribute identifies the software that generated the Gerber file.
The attribute – if present - must be defined in the header. The syntax is as follows:

%TF.GenerationSoftware,<vendor>,<application>[,<version>]*%

 Example:
%TF.GenerationSoftware,Ucamco,UcamX,2017.04*%

 .ProjectId
Usually a Gerber file is part of a PCB project with a sequence of revisions. It is important to be
able to determine if different files belong to the same revision of a project, different revisions of
the same project or completely different projects. This is the purpose of the .ProjectId file
attribute. It uniquely identifies project and revision.
The attribute – if present - must be defined in the header. The syntax is as follows:

%TF.ProjectId,<Name>,<GUID>,<Revision>*%

The field <Name> is id or reference used by the design owner, <GUID> defines the project
using a global unique ID and <Revision> specifies its revision. All parameters must conform to
the string syntax, with the additional restriction that the ‘,’ character cannot be used. The
<GUID> must be a string representation of a UUID conforming to RFC4122 version 1 or version
4.

Examples:
%TF.ProjectId,My PCB,f81d4fae-7dec-11d0-a765-00a0c91e6bf6,2*%

%TF.ProjectId,project#8,68753a44-4D6F-1226-9C60-0050E4C00067,/main/18*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 143
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .MD5
The .MD5 file attribute sets a file signature (checksum, hash, digest) that uniquely identifies the
file and provides a high degree of security against accidental modifications.
The .MD5 checksum is not intended for CAD to CAM data transfer which is probably sufficiently
protected by the checksum of the zip, but rather for individual files used within fabrication, with a
bewildering collection of legacy systems and protocols, and where file transmission errors
sometimes occur.
The 128 bit signature is calculated with the MD5 algorithm and expressed as a 32 digit
hexadecimal number (see 3.6.4). The signature is calculated over the bits from the beginning of
the file up to but excluding the .MD5 file attribute command. Note that this excludes the closing
M02*. The complete .MD5 file attribute command, with both ‘%’and ‘*’, is excluded. Any CR
and LF are excluded from signature calculation. As CR and LF do not affect the interpretation of
the file but may be altered when moving platforms excluding them makes the signature portable
without sacrificing security.
The signature, if present, must be put at the end of the file, just before the closing M02*. Thus
the file can be processed in a single pass.

 Example:
Consider the following Gerber file segment, without checksum:

…

D11*

X1500000Y2875000D03*

X2000000D03*

D19*

X2875000Y2875000D03*

M02*

As the CR and LF characters are skipped the checksum is taken over the following data:

…D11*X1500000Y2875000D03*X2000000D03*D19*X2875000Y2875000D03*

With the checksum the file then becomes:
…

D11*

X1500000Y2875000D03*

X2000000D03*

D19*

X2875000Y2875000D03*

%TF.MD5,6ab9e892830469cdff7e3e346331d404*% <- Excluded from the MD5
M02* <- Excluded from the MD5

mailto:gerber@ucamco.com

Copyright Ucamco NV 144
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The following Perl script specifies precisely how the .MD5 is calculated:

#script expects one parameter (original Gerber X2 file)

use Digest::MD5;

local $_ = shift;

local *IN;

my $content;

local $/;

open(IN, "<$_") or die "Cannot open $_ due to $!";

$content = <IN>; #read file to the variable

close IN;

$content =~ s/\r|\n//g; #remove all CRLF (end of line) characters

$content =~ s/M02*//; #remove M02 from the end of file

#calculate MD5

$md5 = Digest::MD5->new; #init MD5

$md5->add($content); #send content of the file to MD5 engine

print "Add 2 following lines to the Gerber file, please.\n";

print "%TF.MD5,";

print $md5->hexdigest; #print correct MD5 hash

print "*%\nM02*\n\n";

mailto:gerber@ucamco.com

Copyright Ucamco NV 145
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .AperFunction
The .AperFunction aperture attribute defines the function or purpose of an aperture, or rather
the graphics objects created with it. PCB CAM needs to know the function of graphics objects,
especially pads. If this is not possible define the function of all attributes then at least define if
for those where you can - partial information is better than no information. The bare minimum is
to identify via pads: the PCB fabricator must know where the via pads are.
One function, one aperture. Objects with different functions must have different apertures,
even if they are of the same shape and size. Apertures with multiple functions are devilishly
hard to handle in CAM to start with: the CAM operator can no longer perform functions per
aperture, but must check each individual hole. Furthermore, their functions cannot be identified
by an aperture attribute: all objects created with it have the same function. This also applies to
drill tools: e.g. if the same diameter is used for component holes and via holes, these still must
be separate apertures. It is recommended to also use different apertures for drill holes and rout
slots.
Regions. Counterintuitively, regions can carry aperture attributes, see 5.3.1. Use .AperFunction
to define the function of the regions.
Painting (aka vector-fill).
It is strongly recommended not to use painting, see 7.7 . If you still construct objects by painting,
the function of the painted object is set by the function of apertures used for painting. For
example, if aperture 21 is used to paint SMD pads then the function of aperture 21 is SMDPad.
If aperture 50 is used to paint a conductive region then the function of aperture 50 is conductor.
The .AperFunction values are defined in the tables below. Note that the attribute values typically
can only be applied to specific layers - for example, an SMD pad can only be defined on an
outer copper layer.

Drill and rout files
Note that these values can apply to drill holes and rout slots.

.AperFunction value Usage

ViaDrill[,Filled|NotFilled] A via hole. This is reserved for holes whose sole
function is to connect different layers. It is not to be
used for holes for component leads.
An optional field Filled|NotFilled.

BackDrill A hole to remove plating over a sub-span by drilling that
sub-span with a larger diameter.

ComponentDrill

[,PressFit]
A hole for a through-hole component leads.
The optional label PressFit indicates that the drill holes
are intended for press fit component leads. Press fit
leads are pressed in properly sized plated-through
holes to realize the electrical contact. The label can
only be applied on PTH holes.
See also ComponentPad.

mailto:gerber@ucamco.com

Copyright Ucamco NV 146
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

MechanicalDrill

[,(Tooling|Breakout|Other)]
A hole with mechanical function (registration, screw,
etc.) The specifier is optional. If present it can take one
of the following values:

• Tooling: Tooling holes to attach the board or
panel temporarily to test fixtures during
assembly and test. Also called mounting holes.

• BreakOut: Non-plated holes forming a break-
out tab used in break routing.

• Other

Example:
.AperFunction,MechanicalDrill,Breakout

.AperFunction,MechanicalDrill

CastellatedDrill Plated holes cut- through by the board edge; used to
join PCBs.

 Image courtesy Eurocircuits.

OtherDrill,<mandatory field> A hole, but none of the above. The mandatory field
informally describes the type.

The values in All layers
 can also be used

mailto:gerber@ucamco.com

Copyright Ucamco NV 147
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Copper layers

.AperFunction value Usage

ComponentPad A pad associated with a through-hole component lead.
The pads around a ComponentDrill on all layers take
the value ComponentPad although indeed on inner
layers they only have a via function. In other words, the
pad attribute value follows the drill tool attribute value.
Only for through-hole components; SMD and BGA
which have their own dedicated type.
See also ComponentDrill.

SMDPad,(CuDef|SMDef) A pad belonging to the footprint of an SMD component.
They are pasted or otherwise electrically connected to
the PCB. The purpose of these pads is normally to
connect the component circuitry to the PCB but for
specific components some pads may not connected to
the component inside the package. Excludes BGA pads
which have their own type. This function is valid only for
the normal electrical pads, thermal pads have their own
function; see HeatsinkPad.
The specifier (CuDef|SMDef) is mandatory. CuDef
stands for copper defined; it is by far the most common
SMD pad; the copper pad is completely free of solder
mask; the area to be covered by solder paste is defined
by the copper pad. SMDef stand for solder mask
defined; the solder mask overlaps the copper pad; the
area to be covered by solder paste is defined by the
solder mask opening and not by the copper pad.
(CuDef is sometimes rather awkwardly called non
solder mask defined.)
Only applicable for outer layers.
When an SMD pad contains a via hole the pad where
the SMD is soldered, on the outer layer with the SMD,
is SMDPad, all other pads in the stack are ViaPad. If
the SMD pad contains an embedded via pad, as it
should, then that embedded pad is of course ViaPad.

mailto:gerber@ucamco.com

Copyright Ucamco NV 148
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

BGAPad,(CuDef|SMDef) A pad belonging to the footprint of an BGA component.
They are soldered or otherwise electrically connected to
the PCB. The purpose of these pads is normally to
connect the component circuitry to the PCB but for
specific components some pads may not connected to
the component inside the package.
The specifier (CuDef|SMDef) is mandatory. CuDef
stands for copper defined, SMDef for solder mask
defined; see SMDPad.
Only applicable for outer layers.
When a BGA pad contains a via hole the pad where the
BGA is soldered is BGAPad, all other pads in the stack
are ViaPad. If the BGA pad contains an embedded via
pad, as it should, then that embedded pad is of course
ViaPad.

ConnectorPad An edge connector pad.
Only applicable for outer layers.

HeatsinkPad Heat sink or thermal pad, typically for SMDs

ViaPad A via pad. It provides a ring to attach the plating in the
barrel. This is reserved for pads that have no other
function than making the connection between layers:
Component pads often also have a via function;
however their main function is component pad and they
must have this function; similar for test pads, via in BGA
etc.

TestPad A test pad. Only applicable for outer layers.
Sometimes a test pad is drilled and also has a via
function, to save space. Such a pad must be specified
as test pad. (It is clear from the construction that it has
a via function, but the fabricator must know it is a test
pad, and this is not obvious. Similarly, a component pad
can also function as a via, but it remains a component
pad.)

CastellatedPad Pads on plated holes cut- through by the board edge;
used to join PCBs.

 Image courtesy Eurocircuits.

FiducialPad,(Global|Local) A fiducial pad. The specifier (Global|Local) is
mandatory.
Local refers to a component fiducial; Global refers to a
fiducial on the entire image or PCB.

mailto:gerber@ucamco.com

Copyright Ucamco NV 149
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

ThermalReliefPad A thermal relief pad connected to the surrounding
copper while restricting heat flow.

WasherPad A pad around a non-plated hole without electrical
function. Several applications, e.g. a pad that
strengthens the PCB where fixed with a bolt – hence
the name washer.

AntiPad A pad with clearing polarity (LPC) creating a clearance
in a plane. It makes room for a drill pass without
connecting to the plane. Note that setting the AntiPad
attribute itself has no effect on the image, and therefore
does not turn the pad into LPC as a side effect– this
must be done explicitly by an %LPC*% command.

OtherPad,<mandatory field> A pad not specified above. The mandatory field
informally describes the type.

Conductor

Copper whose function is to connect pads or to provide
shielding, typically tracks and copper pours such as
power and ground planes. Note that conductive copper
pours should carry this attribute, whether made properly
by a region statement or by painting – see Regions.
(Note that painting is very poor practice, but if you have
to use it, at least add the attribute so that it is clear what
the tangle of draws mean.)

EtchedComponent Etched components are embedded inductors,
transformers and capacitors which are etched into the
PCB copper. The following illustration shows two
etched inductors:

For the CAD netlist these are components like others:
the net names are different on both sides. (However, for
bare-board electrical test they may be conducting
copper and connect the net on both sides.)

NonConductor Copper that does not serve as a conductor; typically
text and graphics without electrical function. This value
can only be applied to copper that is part of the PCB,
not to drawing elements; see NonMaterial

CopperBalancing Copper pattern added to balance copper coverage for
the plating process.

mailto:gerber@ucamco.com

Copyright Ucamco NV 150
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Border The copper border of a production panel.

OtherCopper,<mandatory
field>

Indicates another function. The mandatory field
informally describes the type.

The values in All layers
can also be used

mailto:gerber@ucamco.com

Copyright Ucamco NV 151
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

All layers
The values in this table can be used on all layers, including plated, non-plated and copper.

.AperFunction value Usage

Profile Identifies the draws and arcs that exactly define the
profile or outline of the PCB. This is the content of the
Profile file but can also be present in other layers. See
5.8.1

NonMaterial NonMaterial can occur on files that define the pattern of
material layers of a PCB such as copper layers or solder
mask. Sometimes such files not only contains data
representing material but also drawing elements such as
a frame and a title block. The attribute value NonMaterial
identifies objects that do not represent material. (Note:
Such objects that should not be there at all, see 5.8.3).

Material Identifies the proper part of the data file.
Solder masks are traditionally negative. The image
represents the solder mask openings. The apertures take
the value ‘Material’ – they define solder mask material,
but in a negative way.
For copper and drill layers Material is split into more
specific functions such as SMD pad. Use the specific
functions when available rather than ‘Material’.

Other,<mandatory field> The value ‘Other’ is to be used if none of the values
above fits. By putting the value ‘Other’ rather than crudely
omitting the attribute it is made explicit that the value is
none of the above – an omitted attribute can be one of
the above. Certainly do not abuse existing values by
horseshoeing an attribute with a vaguely similar function
into that value that does not fit perfectly – keep the
identification clean by using ‘Other’.
The mandatory field informally describes the aperture
function.

.AperFunction aperture attribute values

mailto:gerber@ucamco.com

Copyright Ucamco NV 152
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Functions on extra layers. The solder mask, paste and other extra layers openings cannot
take the pad values. Pad values are reserved for outer copper layers. The solder mask
openings and paste pads take their function from the underlying copper pads. The reason for
this is that a single solder mask opening may have multiple underlying copper pads – e.g. an
SMP pad with an embedded via pad - and hence multiple functions.
Consequently, solder mask openings have the aperture function ‘Material’. Admittedly this is
somewhat a misnomer in this context as solder masks are usually negative, and the presence
of image indicates therefore the absence of material; this has nothing to do with the pad
functions but with the layer being negative.
The following file creates a circular hole in the solder mask. In negative file polarity the image
represents the absence of material.

%FSLAX26Y26*%
%MOIN*%
%TF.FileFunction,Soldermask,Top*%
%TF.Part,Single*%
%TF.FilePolarity,Negative*%
%TA.AperFunction,Material*%
%ADD10C,0.070*%
%LPD*%
D10*
X1235000Y0012500D03*
...
M02*

If the file polarity is positive an otherwise identical file creates a circle consisting of solder mask.
%FSLAX26Y26*%
%MOIN*%
%TF.FileFunction,Soldermask,Top*%
%TF.Part,Single*%
%TF.FilePolarity,Positive*%
%TA.AperFunction,Material*%
%ADD10C,0.070*%
%LPD*%
D10*
X1235000Y0012500D03*
...
M02*

mailto:gerber@ucamco.com

Copyright Ucamco NV 153
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .DrillTolerance
.DrillTolerance defines the plus and minus tolerance of a drill hole end diameter. Both values
are positive decimals expressed in the MO units. The attribute value has the following syntax:

<plus tolerance>,<minus tolerance>

 Examples:
%TA.DrillTolerance,0.01,0.005*%

 .FlashText
Gerber intentionally does not contain fonts or typographic text – this would introduce a complexity
out of proportion to its benefits. Any text can be represented with the available graphic constructs,
especially with contours. However, such generic graphic constructs do not maintain the
information which text string is represented; this is sometimes a disadvantage.
The .FlashText aperture attribute transfers this otherwise lost information. .FlashText is designed
for text image created with a flash. If the text is created with draws and arcs rather than a flash, it
can always be flashed by collecting them in a block aperture.
Bar codes are handled as text – one can view a barcode as a special font.
Syntax and semantic of the attribute value is as
follows:

<Text>,(B|C),[(R|M)],[],[Size],[<Comment>]

.FlashText fields Usage

<text> The text string represented by the aperture image.

(B|C) Indicates if the text is represented by a barcode – B -or
by characters - C.

(R|M) Indicates if the text is readable or mirrored left-right .
Optional.

 Font name. Content not standardized. Optional.

<Size> Font size. Content not standardized. Optional.

<Comments> Any extra information one wants to add. Optional.

An empty field means that the corresponding meta-data is not specified.
Examples:

%TA.FlashText,L1,C,R,Courier,10,Layer number (L1 is top)%

Text: L1
B|C: Characters,
(R|M): Readable
Font: Courier
Size: 10

mailto:gerber@ucamco.com

Copyright Ucamco NV 154
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Comment: Layer number (L1 is top)

%TA.FlashText,XZ12ADF,B,,Code128,,Project identifier *%

Text: XZ12ADF
B|C: Barcode
(R|M) Not specified
Font: Code128
Size: Not specified
Comment: Project identifier

 .N (Net)
The .N object attribute attaches a CAD netlist name to any conducting object. The attribute can
be attached to objects on any copper layer or plated drill/rout file. It indicates the object is part of
the given net. The .N attribute is intended to allow quick visualization of nets and, more
importantly, to define the CAD netlist.
Normally an object is fully connected and consequently belongs to a single net. However, if an
object consists of different disconnected parts or is split in several disconnected parts by clear
(LPC) objects it may belong to different nets. Then the .N attribute value must include all net
names involved. It is recommended to avoid creating disconnected objects: one object, one net.
The syntax is:

<.N Attribute> = .N,<netname>{,<netname>}

.N field Usage

<netname> The CAD net name. It can take any value conforming to
the field syntax.

 Example:
%TA.aperFunction,Conductor*%

%ADD21C,1*% Create aperture 21, for conductive tracks

…

D21* Select aperture 21

%TO.N,Clk3*% Select net Clk3

X5600000Y1200000D02* Move to the start of a track

X5600000Y1202500D01* Draw the tracks with Clk3 is attached

X5605000Y1205000D01*

X5605000Y1220000D01*

…

There are two reserved net names:
1) The empty string, defined by %TO.N,*% identifies objects not connected to a net, such as

tooling holes, text, logos, pads for component leads not connected to the component
circuitry.

2) The name N/C, defined by %TO.N,N/C*%, identifies a single pad net, as an alternative to
giving each such net a unique name.

Except the reserved names all net names must be unique.
It is recommended to attach a .N attribute to all copper objects, also those without net. The
absence of the .N attribute does not mean there is no net; the absence is therefore ambiguous.

mailto:gerber@ucamco.com

Copyright Ucamco NV 155
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Normally an object is fully connected and consequently belongs to a single net. However, if an
object consists of different disconnected parts or is split in several disconnected parts by clear
(LPC) objects it may belong to different nets. Then the .N attribute value must include all net
names involved. It is recommended to avoid creating disconnected objects: one object, one net.

5.6.13.1 Etched Components
Etched components are embedded inductors, transformers and capacitors which are etched
into the PCB copper. The following illustration shows two etched inductors.

They are identified by the .AperFunction attribute value ‘EtchedComponent’ on to the aperture
used to create them. See EtchedComponent.
For the CAD netlist these are components like others: the net names are different on both sides.
(However, for bare-board electrical test they may be conducting copper and simply connect the
nets on both sides.)
Etched components do not need and normally do not have pads. T there is no .P associated
with them. The net on each side is different however.

mailto:gerber@ucamco.com

Copyright Ucamco NV 156
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .P (Pin)
The .P object attribute attaches the reference descriptor and pin number of a component pin to
a pad. The syntax is:

<.P Attribute> = .P,<component>,<number>[,<function>]

.P fields Usage

<component> The component reference descriptor. It can take any
value conforming to the field syntax.

<number> The pin number. It can take any value conforming to
the field syntax. It is normally simply a number.

<function> The pin function. It can take any value conforming to
the field syntax. It is optional because it is not needed
for the netlist, but it contains useful information.

 Example, for netlist only:
D13* Select aperture 13 for the pads for R5

%TO.P,R5,1*%

X5600000Y1200000D03* The pad for R5, pin 1

%TO.P,R5,2*%

X5600000Y1202500D03* The pad for R5, pin 2

 Example, with pin function:
Take the following integrated circuit:

The pin attributes could be as follows:

D13* Select aperture 13 for the pads for IC12

%TO.P,IC12,1,GND*%

X5600000Y1200000D03*

%TO.P,IC12,2,TRIG*%

X5600000Y1202500D03*

…

The .P attribute can be attached to any pad belonging to a component and only those. The pin
number must be a non-empty field, with one exception: if the pad is part of the component
footprint but not connected to the component circuitry the name may be an empty field, e.g.
defined by %TO.P,U3,*%; pads with an empty name are normally not part of a net and
therefore also have an empty net name attached defined by %TO.N,*%.

mailto:gerber@ucamco.com

Copyright Ucamco NV 157
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Consequently, it can only be used in copper layers that carry the components. Typically, these
are the outer layers and then the .P attribute can only be used in the outer layers. Embedded or
etched components can be on inner layers and then these inner layers can also carry the .P
attribute.
A single component pad can consist of multiple flashes. Each flash then carries the same
reference descriptor and pin number.
It is technically possible to create a single object representing multiple pads. For example, a
single macro aperture can describe a complete component footprint. This is possible but not
allowed. (It would be a neat way to make life miserable for CAM engineers though.)
The .P attribute can be attached to flashed pads only, not to painted pads.

mailto:gerber@ucamco.com

Copyright Ucamco NV 158
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 .C (Component)
The .C object attribute attaches the component reference descriptor of a component to an
object. It indicates that the object belongs to the given component. The attribute can be
attached to objects on any layer. It is intended to identify e.g. which objects on a legend belong
to which components.
The syntax is:

<.C Attribute> = .C,<RefDes>

.C field Usage

<RefDes> The component reference descriptor. It can take any
value conforming to the field syntax.

 Example in a legend layer:
D21* Select aperture 21, used for component symbols
%TO.C,R2*% Select reference descriptor R2
X5600000Y1200000D02* Move to the start of the symbol
X5600000Y1202500D01* Draw the symbol
X5605000Y1205000D01*

X5605000Y1220000D01*

…

The attribute .C,R2 is attached to all tracks drawing the resistor symbol.

mailto:gerber@ucamco.com

Copyright Ucamco NV 159
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.7 Text in the Image
Gerber has no native font support – this adds too much complication in relation to the modest
text requirements in PCB fabrication data. Text must be represented as pure image data, best
as regions (contours), see 4.12.
Font definitions often contain splines and Gerber does has linear and circular segments but no
splines. The splines must therefore be approximated to either linear or circular segments.
Circular is more precise with less objects than linear, but mathematically more complicated.
An issue with representing text as image is that the information is lost that this image is text, and
which string it represents. This is easily solved with the attributes .AperFunction (5.6.4.1) and
.FlashText (5.6.4.3). (It may be counterintuitive, but these aperture attributes can be associated
with regions; see 5.3, attributes on regions.) An example; suppose one needs to add the text
‘Intercept’ on the bottom copper layer. Here is how it goes:

%TA.AperFunction,NonConductor*% <- Indicates the copper is not a conductor,
 typically text and graphics
%TA.Flashtext,Intercept,C,M*% <- Indicates the copper represents the string
 ‘Intercept’, as characters and mirrored
G36*

… <- Draws creating the contours
G37*

%TD.AperFunction*% <- Deletes the attribute
%TD.FlashText*% <- Deletes the attribute

5.8 PCB Fabrication Data

 Structure
PCB Fabrication data is a set of Gerber files and possibly files in other portable formats such as
PDF. The files can either be in a directory or combined in a zip file. (Other archive formats such
as rar, 7z are not allowed.)

 Alignment
All data files in a fabrication data set must be scaled 1/1 and align perfectly – same offset, no
mirroring, seen from the top to bottom.

 Essential Attributes
A single Gerber file defines a single layer image. A PCB, however, is not a set of independent
layers. To define the complete PCB image one must not only define the individual layer images
but also their position in the layer structure. This is done with the file attributes .FileFunction and
.FilePolarity. Considering the complete PCB these attributes are not meta-information but image
definition data without which the PCB image is not fully defined. These two attributes can be
viewed as mandatory in PCB fabrication data.

mailto:gerber@ucamco.com

Copyright Ucamco NV 160
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 The Profile
The profile defines the physical extent or the area covered by the PCB. An area is described by
its contour (see 4.12.1) in the Gerber format. A fabrication data set must contain a separate file
with the profile, defined by a contour (G36/G37). This file is identified by the file function value
Profile,(P|NP).
Normally a profile will not have holes. Slots are part of the PCB and are defined in the drill/rout
files. A big hole that is not considered part of the PCB can be defined by a contour with a cut-in
(see 4.12.3).
Sometimes one defines the profile layer by a line drawn with a small or a zero-size aperture
instead of the profile. Such a line does not represent an area as defined in Gerber data but is a
drawing, useful for human reading. While not correct, it is not difficult to convert it to a contour if
the line is drawn accurately, obeying the same rules as for contour segments (see 4.12.3). So if
for whatever reason you must represent the profile by a line ensure that the line is properly
constructed. Essential is that the profile is clearly defined, in a separate file, so that it is clear it
ís a profile, and is not hidden in the copper layers or drawings. Corner marks are not good
enough as they are only suitable for manual processing.

 Drill files
In CAD to CAM workflows drill information can and is best represented in Gerber than in an NC
format. Of course, a Gerber file cannot be sent to a drill machine, but this is not the issue here.
No fabricator uses his client’s incoming design files directly on his equipment. The design files
are always read in a CAM system, and it is the CAM system that will output drill files in the
appropriate NC format, including feeds and speeds and all the information exactly as needed by
the driller. To transfer data from CAD to CAM Gerber is more suitable. As the copper, mask, drill
and rout files are all image files to be read into the CAM system, it is best to use the same
format for them all, thereby ensuring optimal accuracy, registration and compatibility. Mixing
formats needlessly is asking for problems. Most importantly, NC formats do not have attributes.
The drill/rout file image represents the end diameter of the hole, after plating, aka inner
diameter.
This specification does not differentiate between drilling and routing because these two
admittedly distinct fabrication processes are identical from the point of view of their image
descriptions: the image simply represents where material is removed. The fabricator will
determine what to drill and what to rout.
Each drill span (from-to layers) must be put in a separate Gerber file. PTH and NPTH must be
split in two separate files.

5.8.2.1 Backdrilling
An example explains best how to structure a job with backdrilling. Suppose we have an 8 layer
job with backdrilling to remove via plating between layers 8 and 7. We need two files:
One file contains the via’s. It has .FileFunction Plated,1,8,PTH. The drill tool has the via end
diameter. Its .AperFunction value is Via.
The second file contains the backdrills. It has .FileFunction NonPlated,8,7,Blind. The drill tool
has the same diameter as the via – the manufacturer will determine the tool diameter. Its
.AperFunction value is Backdrill.

mailto:gerber@ucamco.com

Copyright Ucamco NV 161
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Drawings and Data
Gerber files in PCB fabrication data contains two types of images.

• Drawings, such as a drill map, a fabrication drawing or an assembly drawing. Such
images are intended to be looked at by humans, and may contain vital fabrication
instructions.

• Digital data representing the patterns of the copper, the solder mask, legend, drills. This
digital data is intended to be processed by CAM software.

Unfortunately, the two are sometimes mixed, and drawing elements added to copper files etc.
as in the example below.

53. Confusing a drawing and digital data

Such a file is no longer machine readable. An operator must first manually remove the drawing
elements. Before doing so he must check if these elements do not contain vital information and
write this down somewhere for future reference. Keep data files pure. The drawings must
contain all information that belongs to drawing. If need be, information that belongs to a specific
file can be put in attributes. Less manual work, less risk of error. Simpler and cleaner.

 The CAD Netlist
The CAD netlist describes which component pins are connected. Pins are identified by their
component reference descriptor and pin number or name. Nets are identified by the net name.
Here is an example of a CAD netlist; The first line lists all pins of net Clk3.

Clk3: U1-4,U2-3,U5-9,U6-9,U7-9

Sig11: U1-3,U5-12

Data8: U2-4,U5-10,U6-10,U7-8,U8-1

GND: U1-1,U2-1,U3-8,U4-16,U5-16,U6-1,U7-8,U8-8

mailto:gerber@ucamco.com

Copyright Ucamco NV 162
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

…

The CAD netlist links component pads to nets. It specifies the function of the PCB and is the
basis for the layout.
In Gerber the CAD netlist is defined by attaching both the pin and the net attribute to each
component pad. This defines a pad - net entry in the CAD netlist, and at the same time
associates a pad location and shape to it. For instance, the first entry in the CAD netlist above is
given by the following sequence:

%TO.P,U1,4*%

%TO.N,Clk3*%

X…Y…D03* The flash that creates the pad

…

If the .P attribute is present then the complete CAD netlist must be present, including all edge
connectors test points and etched components. In other words, all the end points of the nets
must be included, all the pads, not only the pads of the physical components that are part of the
BOM. Although vias are part of a net, they are not component pads and cannot have a .P
attached. Washer pads or any pads that are not part of an component cannot have a .P
attached.

5.8.4.1 Benefits of Including the CAD Netlist.
For the assembly process the location and orientation of each component must be known. This
can easily be extracted from the Gerber file.
The netlist and component names facilitate the communication between the parties involved in
design and fabrication. Viewers show more complete PCB information.
More importantly, the netlist information dramatically increases the security of the design to
fabrication data transfer. If the image CAM reads from a Gerber file significantly differs from the
image intended by CAD, due to bugs, operator errors or transmission errors, the inevitable
result is scrap. Such a difference in image results in a difference in board netlist, which can be
detected by comparing the calculated board netlist with the supplied CAD netlist. The CAD
netlist therefore provides a very powerful redundancy check against image errors. To be
precise, the following assert must be valid:

- Interpret all N/C’s as unique names
- Flashes with the same reference descriptor and pad are deemed connected
- Etched components are removed before connection is calculated
- Assert 1: pads with the same net name must be connected
- Assert 2: pads with different net names must be isolated.

Lastly, a bare board PCB fabricator is expected to perform an electrical test on the bare PCB
and guarantee the PCB conforms to the CAD netlist. It then is logical to provide him with the
netlist to test against. Without providing the netlist the fabricator is expected to reverse engineer
the netlist and must test against a reverse engineered net – hardly a secure procedure.

5.8.4.2 IP Considerations
Net names such as Clk13 provide information about the design. This may be a concern. A
solution is to replace the meaningful names with obfuscated names such a sequential number.
This still allows to compare the design netlist with the image netlist as a redundancy check –
meaningful names are not needed for that. The obfuscated names are a little less convenient
when communicating between creator and receiver of the Gerber file, but both can still identify
the same net as long as the creator can identify the net corresponding to the obfuscated name

mailto:gerber@ucamco.com

Copyright Ucamco NV 163
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

he created. Obfuscated names are sometimes a sensible balance between IP protection and
data transfer security.
It is sometimes alleged that even a net list with obfuscated names pose an IP security risk as it
still shows the connections between the pads. This is an obvious fallacy as the connections
between the pads can be worked out from the image. In fact, if this were not true, a fabricator
would be unable to perform a bare board electrical test without netlist information.

mailto:gerber@ucamco.com

Copyright Ucamco NV 164
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.9 Examples
The example below shows the usage of a simple aperture attribute.

 Example:
G01*

%ADD13R,200X200*% G04 this aperture has no attribute*

D13*

%TAIAmATA*% G04 add attribute IAmATA in attributes

dictionary*

X0Y0D03* G04 this flash object has no attribute*

%ADD11R,200X200*% G04 this aperture now has attached attribute

IAmATA*

%TDIAmATA*% G04 delete attribute IAmATA from current

attributes dictionary*

%ADD12C,5*% G04 this aperture does not have attribute IAmATA*

D11*

X100Y0D03* G04 this flash object has attribute IAmATA*

X150Y50D02*

D12*

X100Y150D01* G04 this draw object has no attribute*

The next example illustrates an aperture attribute definition and changing value.

mailto:gerber@ucamco.com

Copyright Ucamco NV 165
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example:
G01*

%TA.AperFunction,SMDPad*% G04 Adds attribute .AperFunction in the
current dictionary with value SMDPad to
identify SMD pads*

%ADD11…*% G04 Aperture with D-code 11 gets the
.AperFunction,SMDPad attribute attached*

%TA.AperFunction,Conductor*% G04 Changes the value of .AperFunction
attribute to define conductors*

%ADD20…*% G04 Aperture with D-code 20 gets the
.AperFunction,Conductor attribute attached*

%TACustAttr,val*% G04 Adds attribute CustAttr in the current
attributes dictionary and sets its value to
val*

%ADD21…*% G04 Aperture with D-code 21 is a conductor
with attached attribute CustAttr = val*

%TD.AperFunction*% G04 Deletes the .AperFunction attribute from
the attributes dictionary*

%ADD22…*% G04 Aperture with D-code 22 has no attached
.AperFunction attribute, but has attribute
CustAttr = val*

%TDCustAttr *% G04 Deletes the CustAttr attribute from the
attributes dictionary*

%ADD23…*% G04 Aperture with D-code 23 has no attached
aperture attributes*

…
D11* G04 Set current aperture to aperture 11*
X1000Y1000D03* G04 Flash an SMD pad*
D20* G04 Use aperture 20 for graphical objects &

attach it to regions*

X2000Y1500D01* G04 Draw a conductor*

%TA.AperFunction,Conductor*% G04 Changes the value of .AperFunction
attribute to define conductors*

G36* G04 Start a conductive region. IT TAKES ON
THE ATTRIBUTE VALUES FROM THE DICTIONARY*

….
G37*
%TD*% G04 Clear attribute dictionary*
G36* G04 Start a region, without attributes*
….
G37*

mailto:gerber@ucamco.com

Copyright Ucamco NV 166
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

6 Errors and Bad Practices

6.1 Errors
Poor implementation of the Gerber format can give rise to invalid Gerber files or – worse – valid
Gerber files that do not represent the intended image. The table below lists the most common
errors.

Symptom Cause and Correct Usage
Clearances in planes disappear. This is often the consequence of invalid cut-

ins resulting in self-intersecting contours. The
root cause is usually sloppy rounding
aggravated by low-resolution output.
See 4.12.3.

Rotating aperture macros using
primitive 21 gives unexpected results.

Some CAD systems incorrectly assume that
primitive 21 rotates around its center. This is
wrong, it rotates around the origin.
See 4.5.4.5.

Unexpected image after an aperture
change or a D03.

Coordinates have been used without an
explicit D01/D02/D03 operation code. This
practice is deprecated because it leads to
confusion about which operation code to use.
Coordinate date must always be
combined with an explicit D01/D02/D03
operation code.
See 7.2.

Objects unexpectedly appear or
disappear under holes in standard
apertures.

Some CAD systems incorrectly assume the
hole in an aperture clears the underlying
objects. This is wrong; the hole has no effect
on the underlying image.
See 4.4.6.

Objects unexpectedly appear or
disappear under holes in macro
apertures.

Some systems incorrectly assume that
exposure off in a macro aperture clears the
underlying objects under the flash. This is
wrong, exposure off creates a hole in the
aperture and that hole has no effect on the
image.
See 4.5.2.

Polygons are smaller than expected. Some CAD systems incorrectly assume the
parameter of a Regular Polygon specifies the
inside diameter. This is wrong: it specifies the
outside diameter.
See 4.4.5.

mailto:gerber@ucamco.com

Copyright Ucamco NV 167
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Full circles unexpectedly appear or
disappear.

The file contains arcs but no G74 or G75
commands. This is invalid because quadrant
mode is undefined by default. A G74 or G75
command is mandatory if arcs are used.
See 2.5 and 4.10.7.

The result of the MI command is not as
expected.

The MI command mirrors coordinate data but
not apertures. A number of implementations
unfortunately also mirror apertures making MI
unsafe to use. It is therefore deprecated. Do
not use the MI command but apply the
transformation directly in the coordinate data.
See 7.1.7.

The result of the SF command is not as
expected.

The SF command scales coordinate data but
no other sizes in the file. A number of
implementations unfortunately also scale
other elements making SF unsafe to use. It is
therefore deprecated. Do not use the SF
command but apply the transformation
directly in the coordinate data.
See 7.1.9

A single Gerber file contains more than
one image, separated by M00, M01 or
M02

This is invalid. A Gerber file can contain only
one image.
One file, one image. One image, one file.

Standard Gerber or RS-274-D Standard Gerber is revoked. It is therefore no
longer valid Gerber. It was designed for a
workflow that is as obsolete as the
mechanical typewriter. It requires manual
labor to process. It is not suitable for today’s
image exchange. See 7.10.
Always use Gerber X!

Sending a PCB layer as several
positive/negative files that must be
merged together.

This is invalid in Gerber X. See 2.1. (It was
valid in Standard Gerber but became
obsolete with the introduction of LPD/LPC in
Gerber X.) Apart from being invalid this
obnoxious practice requires manual work and
is error prone. One wonders why someone in
his right mind would use this archaic method,
which has a serious risk of scrap.
One file = one layer

Strange error message. Some files contain the strange pseudo
command %ICAS*%. One wonders what this
is supposed to achieve. Anyhow, it is invalid.

Error message; not the intended
image.

Invalid format specification %FSD….*%
The only valid zero omission options in the
%FS are L and T. D is invalid. See 7.3.1.

mailto:gerber@ucamco.com

Copyright Ucamco NV 168
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Strange error message. *Presence of %FSLAN2X26Y26*%
The N2 in the format specification is invalid.
See 4.1 One wonders what it is supposed to
do.

Strange error message. …X5555Y5555IJ001 ..
Missing zero after the “I”. The number after I
must have at least one digit, see 4.10.

Reported errors

mailto:gerber@ucamco.com

Copyright Ucamco NV 169
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

6.2 Bad Practices
Some Gerber files are syntactically correct but are needlessly cumbersome or error-prone. The
table below summarizes common poor practices and gives the corresponding good practice.

Bad Practice Problems Good Practice
PCB fabrication data
sets without netlist.

PCB fabrication data is complex
geometric data with an infinite
number of variations. Differences in
the interpretation of image data is
very rare but does happen and then
is costly. A netlist is a powerful
check on the image data – it is akin
to the redundancy checks used in
all data transfer protocols. Omitting
a netlist is omitting a basic security
check.

Always include a
netlist in a PCB
fabrication data set.
A netlist can be
provided in IPC-D-
356A file or with
Gerber attributes –
see 5.8.4.

Writing files with
deprecated
constructs.

Each construct was deprecated for
a reason. Many carry the risk of a
misinterpretation. Continuing to use
deprecated constructs is bad
corporate citizenship as it blocks the
industry from taking the next steps.

Generated files with
current constructs
only. (Note: it is OK
for readers to handle
deprecated constructs
to cater for legacy
files.)

Low resolution
(numerical precision)

Poor registration of objects between
PCB layers; loss of accuracy; self-
intersecting contours; invalid arcs;
small arcs turning in full circles,
missing clearances. Poor numerical
accuracy is the main cause for
errors in geometric software. Low
resolution is the root cause for most
problems with Gerber files and
sometimes leads to scrap.
Why would one use low resolution?
To save a few bytes? It is
sometimes argued that there are
Gerber readers can only handle low
resolutions. This may have been
true in a distant past, but we doubt it
is true now. Ask yourself, will you
risk scrap to cater for a few bad
implementations?

Use 6 decimals in
inch units and 5 or 6
decimals in mm
units. See 4.1 and
7.3.

Cutting a single
plane in several
sections through the
clearances to avoid
regions with holes.

The information what the plane is
and where the clearances are is
lost. The reader must attempt to
reverse engineer that information
but may be thwarted by rounding
errors. Risk of scrap.
See section 4.12.5.

Construct planes
with clearances
using dark polarity
for the plane and
clear polarity for the
clearances (anti-
pads).

mailto:gerber@ucamco.com

Copyright Ucamco NV 170
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Imprecisely
positioned arc center
points

An imprecisely positioned center
makes the arc ambiguous and open
to interpretation. This can lead to
unexpected results.
See 4.10.1

Always position arc
center points
precisely.

Painted copper pours
(aka stroking or
vector-fill)

Painted copper pours produce the
correct image but the file size
explodes and getting rid of the
painting require time consuming
and error-prone manual work by
CAM operators. Painting was
needed for vector photoplotters in
the 1960s and 1970s, devices now
as outdated as the mechanical
typewriter. There is not a single
reason left to use painting.

Always define
copper pours with
contours (G36/G37)

Painted pads (aka
stroking or vector-fill)

See painted copper pours above.
Painting is even more damaging for
pads. as the fabricator needs to
know where the pads are. The only
practical way to identify them is to
use flashes for pads exclusively.

Always use flashed
pads. Define pads,
including SMD pads,
with the AD and AM
commands.

Pads as contours
instead of flashes

See above. Always use flashed
pads. Define pads,
including SMD pads,
with the AD and AM
commands.

Non-standard file
extensions

When you use a non-standard file
extension the reader must open the
file to know what format it is and
which application to use.
See 3.2.

Please use “.gbr” or
“.GBR” as file
extension for all
your Gerber files.

Poor/good practices

mailto:gerber@ucamco.com

Copyright Ucamco NV 171
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7 Deprecated Format Elements

7.1 Deprecated Commands

 Overview
Current Gerber writers must not use the deprecated commands. Gerber readers may implement
them to support legacy applications and files. The next table lists deprecated commands.

Code Function Comments

G54 Select aperture This historic code optionally precedes an aperture
selection D-code. It has no effect.

Sometimes used.

G55 Prepare for flash This historic code optionally precedes D03 code. It
has no effect.

Very rarely used nowadays.

G70 Set the ‘Unit’ to inch These historic codes perform a function handled by
the MO command. See 4.2.

Sometimes used. G71 Set the ‘Unit’ to mm

G90 Set the ‘Coordinate format’ to ‘Absolute
notation’

These historic codes perform a function handled by
the FS command. See 4.1.

Very rarely used nowadays. G91 Set the ‘Coordinate format’ to ‘Incremental
notation’

M00 Program stop This historic code has the same effect as M02. See
4.14.

Very rarely used nowadays.

M01 Optional stop This historic code has no effect.

Very rarely used nowadays.

IP Sets the ‘Image polarity’ graphics state
parameter

IP can only be used once, at the beginning of the
file.

Sometimes used, and then usually as %IPPOS*%
to confirm the default – a positive image; it then
has no effect. As it is not clear how %IPNEG*%
must be handled it is probably a waste of time to
try to fully implement it, and sufficient to give a
warning if an image is negative.

AS Sets the ‘Axes correspondence’ graphics
state parameter

These commands can only be used once, at the
beginning of the file. The order of execution is
always MI, SF, OF, IR and AS, independent of
their order of appearance in the file. IR Sets ‘Image rotation’ graphics state

parameter

mailto:gerber@ucamco.com

Copyright Ucamco NV 172
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

MI Sets ‘Image mirroring’ graphics state
parameter

Rarely used nowadays. If used it is almost always
to confirm the default value; they have no effect. It
is probably a waste of time to fully implement
these commands; simply ignoring them will
handle the overwhelming majority of Gerber files
correctly; issuing a warning when used with a
non-default value protects the reader in the very
rare cases this occurs.

OF Sets ‘Image offset’ graphics state parameter

SF Sets ‘Scale factor’ graphics state parameter

IN Sets the name of the file image. Has no
effect. It is comment.

These commands can only be used once, at the
beginning of the file.

Use G04 for comments. See 4.14.

Sometimes used.

LN Loads a name. Has no effect. It is a
comment.

Can be used many times in the file.

Use G04 for comments. See 4.14.

Sometimes used.

Deprecated Gerber Commands

The table below contains deprecated graphics state parameters.

Graphics state
parameter

Values range Fixed Value at the beginning
of a file

Axes
correspondence

AXBY, AYBX
See AS command

Yes AXBY

Image mirroring See MI command Yes A0B0

Image offset See OF command Yes A0B0

Image polarity POS, NEG
See IP command

Yes Positive

Image rotation 0°, 90°, 180°, 270°
See IR command

Yes 0°

Scale factor See SF command Yes A1B1

Deprecated graphics state parameters

 Axis Select (AS)
The AS command is deprecated since revision I1 from December 2012.
The historic AS command sets the correspondence between the X, Y data axes and the A, B
output device axes. It does not affect the image in computer to computer data exchange. It only
has an effect how the image is positioned on an output device.
The AS command can only be used once, at the beginning of the file.

mailto:gerber@ucamco.com

Copyright Ucamco NV 173
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.1.2.1 AS Command
The syntax for the AS command is:

<AS command> = AS(AXBY|AYBX)*

Syntax Comments

AS AS for Axis Select

AXBY Assign output device axis A to data axis X, output device axis B to
data axis Y. This is the default.

AYBX Assign output device axis A to data axis Y, output device axis B to
data axis X.

7.1.2.2 Examples

Syntax Comments

%ASAXBY*% Assign output device axis A to data axis X and output device axis B
to data axis Y

%ASAYBX*% Assign output device axis A to data axis Y and output device axis B
to data axis X

 Image Name (IN)
The IN command is deprecated since revision I1 from December 2012.
The historic IN command gives a name to the image contained in the Gerber file. The name
must comply with the syntax rules for a string as described in section 3.6.6. This command can
only be used once, at the beginning of the file.
IN has no effect on the image. A reader can ignore this command.
The informal information provide by IN can also be put a G04 comment.

7.1.3.1 IN Command
The syntax for the IN command is:

<IN command> = IN<Name>*

Syntax Comments

IN IN for Image Name

<Name> Image name

7.1.3.2 Examples

mailto:gerber@ucamco.com

Copyright Ucamco NV 174
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%INPANEL_1*% Image name is ‘PANEL_1’

 Image Polarity (IP)
The IP command is deprecated since revision I1 from December 2012.
IP sets positive or negative polarity for the entire image. It can only be used once, at the
beginning of the file.

7.1.4.1 Positive Image Polarity
Under positive image polarity, the image is generated as specified elsewhere in this document.
(In other words, the image generation has been assuming positive image polarity.)

7.1.4.2 Negative Image Polarity
The purpose of negative image polarity is to create a negative image, clear areas in a dark
background. The entire image plane in the background is initially dark instead of clear. The
effect of dark and clear polarity is toggled. The entire image is simply reversed, dark becomes
white and vice versa.
In negative image polarity, the first graphics object encountered must have dark polarity.

7.1.4.3 IP Command
The syntax for the IP command is:

<IP command> = IP(POS|NEG)*

Syntax Comments

IP IP for Image Polarity

POS Image has positive polarity

NEG Image has negative polarity

7.1.4.4 Examples

Syntax Comments

%IPPOS*% Image has positive polarity

%IPNEG*% Image has negative polarity

 Image Rotation (IR)
The IR command is deprecated since revision I1 from December 2012.
IR rotates the entire image counterclockwise in increments of 90° around the image origin (0, 0).
All image objects are rotated.

mailto:gerber@ucamco.com

Copyright Ucamco NV 175
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The IR command affects the entire image. It must be used only once, at the beginning of the
file.

7.1.5.1 IR Command
The syntax for the IR command is:

<IR command> = IR(0|90|180|270)*

Syntax Comments

IR IR for Image Rotation

0 Image rotation is 0° counterclockwise (no rotation)

90 Image rotation is 90° counterclockwise

180 Image rotation is 180° counterclockwise

270 Image rotation is 270° counterclockwise

7.1.5.2 Examples

Syntax Comments

%IR0*% No rotation

%IR90*% Image rotation is 90° counterclockwise

%IR270*% Image rotation is 270° counterclockwise

 Load Name (LN)
The LN command is deprecated since revision 2013.10
This historic command has no effect on the image and can be ignored.
LN assigns a name to the subsequent part of the file. It was intended as a human-readable
comment. Use the normal G04 command for human-readable comment.
The LN command can be used multiple times in a file.

7.1.6.1 LN Command
The syntax for the LN command is:

<LN command> = LN<Name>*

Syntax Comments

LN LN for Load Name

<Name> The name must comply with the syntax for a string, see section
3.6.6.

mailto:gerber@ucamco.com

Copyright Ucamco NV 176
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.1.6.2 Examples

Syntax Comments

%LNVia_anti-pads*% The name ‘Via_anti-pads’ is to the subsequent file section

 Mirror Image (MI)
The MI command is deprecated since revision I1 from December 2012.
MI sets the mirroring for the coordinate data. All the coordinate data – and only coordinate data
- are mirrored according to the specified factor. Step and repeat distances are not
coordinate data – see 4.11 - and hence are not mirrored. Apertures are not mirrored.
This command affects the entire image. It can only be used once, at the beginning of the file.
The default is no mirroring.

Quite a number of implementations incorrectly also mirror apertures and/or
step and repeat distances. These incorrect implementations make the MI
too risky to use. We strongly recommend not to use MI on output as you do
know how the reader will interpret the file. If an image must be mirrored,
write out the mirrored coordinates and apertures.

7.1.7.1 MI Command
The syntax for the MI command is:

<MI command> = MI[A(0|1)][B(0|1)]*

Syntax Comments

MI MI for Mirror image

A(0|1) Controls mirroring of the A-axis data:

A0 – disables mirroring

A1 – enables mirroring (the image will be flipped over the B-axis)

If the A part is missing, then mirroring is disabled for the A-axis data

B(0|1) Controls mirroring of the B-axis data:

B0 – disables mirroring

B1 – enables mirroring (the image will be flipped over the A-axis)

If the B part is missing, then mirroring is disabled for the B-axis data

7.1.7.2 Examples

Syntax Comments

%MIA0B0*% No mirroring of A- or B-axis data

%MIA0B1*% No mirroring of A-axis data

mailto:gerber@ucamco.com

Copyright Ucamco NV 177
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Mirror B-axis data

%MIB1*% No mirroring of A-axis data

Mirror B-axis data

 Offset (OF)
The OF command is deprecated since revision I1 from December 2012.
OF moves the final image up to plus or minus 99999.99999 units from the imaging device (0, 0)
point. The image can be moved along the imaging device A or B axis, or both. The offset values
used by OF command are absolute. If the A or B part is missing, the corresponding offset is 0.
The offset values are expressed in units specified by MO command.
This command affects the entire image. It can only be used once, at the beginning of the file.

7.1.8.1 OF Command
The syntax for the OF command is:

<OF command> = OF[A<Offset>][B<Offset>]*

Syntax Comments

OF OF for Offset

A<Offset> Defines the offset along the output device A axis

B<Offset> Defines the offset along the output device B axis

The <Offset> value is a decimal number n preceded by the optional sign (‘+’ or ‘-’) with the
following limitation:
0 ≤ n ≤ 99999.99999
The decimal part of n consists of not more than 5 digits.

7.1.8.2 Examples

Syntax Comments

%OFA0B0*% No offset

%OFA1.0B-1.5*% Defines the offset: 1 unit along the A axis, -1.5 units along the B axis

%OFB5.0*% Defines the offset: 0 units (i.e. no offset) along the A axis, 5 units along
the B axis

 Scale Factor (SF)
The SF command is deprecated since revision I1 from December 2012..

mailto:gerber@ucamco.com

Copyright Ucamco NV 178
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

SF sets a scale factor for the A- and/or B-axis coordinate data. All the coordinate data – and
only coordinate data - are multiplied by the specified factor for the corresponding axis. Step and
repeat distances – see 4.11 - are not coordinate data and hence are not scaled. Apertures
are not scaled.
This command affects the entire image. It can only be used once, at the beginning of the file.
The default scale factor is ‘1’. The factor values must be between 0.0001 and 999.99999. The
scale factor can be different for A and B axes.

Quite a number of implementation incorrectly also scale step and repeat
distances. These incorrect implementations make the SF too risky to use.
We strongly recommend not to use SF on output as you do know how the
reader will interpret the file. If an image must be scaled, write out the scaled
coordinates.

7.1.9.1 SF Command
The syntax for the SF command is:

<SF command> = SF[A<Factor>][B<Factor>]*

Syntax Comments

SF SF for Scale Factor

A<Factor> Defines the scale factor for the A-axis data

B<Factor> Defines the scale factor for the B-axis data

The <Factor> value is an unsigned decimal number n with the following limitation:
0.0001 ≤ n ≤ 999.99999
The decimal part of n consists of not more than 5 digits.

7.1.9.2 Examples

Syntax Comments

%SFA1B1*% Scale factor 1

%SFA.5B3*% Defines the scale factor: 0.5 for the A-axis data, 3 for the B-axis data

mailto:gerber@ucamco.com

Copyright Ucamco NV 179
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.2 Coordinate Data without Operation Code
Coordinate data without explicit operation code after a D01, on other words the modal use of
D01, is deprecated since revision I1 from December 2012.
 A D01 code sets the deprecated operation mode to interpolate. It remains in interpolate mode
till any other D code is encountered. In sequences of D01 operations this allows omitting an
explicit D01 code after the first operation.

 Example:
D10*

X700Y1000D01*

X1200Y1000*

X1200Y1300*

D11*

X1700Y2000D01*

X2200Y2000*

X2200Y2300*

The operation mode is only defined after a D01. The operation mode after a D02, D03 or an
aperture selection (Dnn with nn≥10) is undefined. Therefore a file containing coordinates without
operation code after a D03 or an aperture selection (Dnn with nn≥10) is invalid.

 Warning: Coordinate data without explicit operation code saves a few bytes but its exact
use is not intuitive in relation to D03. The risk of scrap far outweighs the meager benefit.

mailto:gerber@ucamco.com

Copyright Ucamco NV 180
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.3 Format Specification Options

This section describes deprecated options of the FS command (see 4.1).
The FS command could also be used to specify the following format characteristics:
 Trailing zero omission
 Incremental coordinate notation
 Low resolution (less than 6 decimals in inch units and less than 5 in mm units).

 Trailing Zero Omission
Trailing zero omission is deprecated since revision 2015.06.
Trailing zero omission some or all trailing zero’s can be omitted but all leading zero’s are
required. To interpret the coordinate string, it is first padded with zero’s at the back until its
length fits the coordinate format. For example, with the “23” coordinate format, “15” is padded to
“15000” and therefore represents 15.000.
The coordinate data must contain at least one digit. Zero therefore should be encoded as “0”.
Trailing zero omission is specified by ‘T’ after the FS code. (The normal leading zero omission is
specified by ‘L’ after the FS code.)

 Example:
%FSTAX25Y25*%

Trailing zero omission is rarely found in legacy files. Gerber readers will go a long way without
supporting it.

 Incremental Notation
Incremental notation is deprecated since revision I1 from December 2012.
Incremental notation means that coordinate values are as the incremental distances from the
previous coordinate position. It is specified by the "I" in the FS command, after the "L" or "T" for
leading or trailing. (The normal absolute notation is specified by ‘A’ in the FS command.)

 Example:
%FSLIX25Y25*%

%FSTIX36Y36*%

Incremental notation was sometimes used as a simplistic compression when saving a few bytes
was a fantastic advantage, and before the invention of Lempel–Ziv–Welch (LZW) and other
lossless compression methods. The problem is that the accumulation of rounding errors leads to
significant loss or precision. This results in poor registration, invalid arcs, self-intersecting
contours, often resulting in scrap. Avoid incremental notation like the plague.
Incremental notation is fortunately but rarely used in legacy files. Gerber readers will go a long
way without supporting it.

mailto:gerber@ucamco.com

Copyright Ucamco NV 181
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Low resolution
Low resolution, this is using less than 6 decimals in inch units and less than 5 decimals in mm
units is deprecated since revision 2015.06.
Low resolution was introduced in the 1960's as a simplistic compression method when saving a
few bytes was of paramount importance, and computers were to feeble for proper lossless
compression methods such as Lempel–Ziv–Welch (LZW).
Alas, low resolution loses numerical precision and it is well known that poor numerical precision
is the main cause of often obscure bugs in geometric software. It is not different in Gerber
software. It leads to poor registration of objects between PCB layers; loss of accuracy; self-
intersecting contours; invalid arcs; small arcs turning in full circles, missing clearances.
Unfortunately, low resolution files are quite common. There are even files in inch with 3
decimals, or a resolution of 1 mil; this is asking for problems. Low resolution is the main cause
of problems with Gerber files, sometimes leading to scrap. It is sometimes recommended to use
low resolution because many Gerber readers allegedly only handle low resolutions. Do not
listen. This may - just may - have been true in a distant past, but no longer, if ever. Ask yourself:
does it make sense to risk scrap to save a few bytes or to cater for a few rumored stone-age
implementations? The days that saving a few bytes was important are long gone. The risks of
low resolution remain. Avoid low resolution like the plague.
Low resolution files are unfortunately quite common in legacy files. Gerber readers will fail to
handle a significant fraction of Gerber files of they do not support low resolutions.

7.4 Using G01/G02/G03 in a data block with D01/D02
This construction is deprecated since revision 2015.06.
The function codes G01, G02, G03 could be put together with operation codes in the same data
block. The graphics state is then modified before the operation coded is executed, whatever the
order of the codes.

 Example:
G01X100Y100D01*

X200Y200D01*

G01 sets the interpolation mode to linear and this used to process the coordinate data
X100Y100 from the same data block as well as the coordinate data X200Y200 from the next
data block. This construction is a useless variation and now it is deprecated. However, it
happens quite frequently in legacy files, so readers may want to support it.

The syntax for G01, G02, G02 codes in operations with codes D01 and D02 was the following:

<Operation> = G(1|01|2|02|3|03)<Coordinate data>D(01|02)*

 Example:
G01*

X100Y100D01*

G01X500Y500D01*

X300Y300D01*

G01X100Y100D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 182
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.5 Deprecated usage of SR
These constructions are deprecated since revision 2016.01.
The command %SRX1Y1I0J0*% strictly speaking starts a step and repeat of 1x1, i.e. no step
and repeat at all. It is historically sometimes used as an alternative for an %SR*% to close an
SR statement. This is still used quite frequently.
Sometimes an SR command other than 1x1 such as %SRX2Y3I1,5J2.2*% is put seemingly
inside an SR statement. Its effect is then to terminate the current SR statement and start a new
one with its parameters. This is used rarely.
The Backus-Naur form for such a deprecated SR statement is:
<single command> = all commands except SR, AB, G36, G37 and M02

<region statement> See 4.12

<SR open> = %SRX<Repeats>Y<Repeats>I<Step>J<Step>*%

<SR close> = (%SR*%|%SRX1Y1I0J0*%)

<SR body> = <SR open>{<single command>|<region statement>}

<SR statement> = <SR body>{<SR body>}<SR close>

Another deprecated variation is that an SR statement at the end of a file is not closed. The end
of file M02* is then an implicit close. This is used rarely.

Another variation is that the file header contains a %SRX1Y1I0J0*%. This does not mean a
futile 1x1 step and repeat is started. It just indicates that the file does not start with a step and
repeat, which is obvious. This command can be ignored. This is used quite frequently.

7.6 Rectangular Hole in Standard Apertures
Rectangular holes in standard apertures are deprecated since revision 2015.06.

In addition to the round hole described in section 4.4 older versions of this
specification also allowed rectangular holes. Rectangular holes do not rotate
with the aperture, according to these historic specifications. This is very
counterintuitive and a source of errors. Because of this problem and
because rectangular holes are not very useful they were deprecated. Do not

use them. If you need a rectangular hole construct a macro aperture.
The syntax of a rectangular hole is common for all standard apertures:

<Hole> = <X-axis hole size>X<Y-axis hole size>
The modifiers specify the X and Y sizes of the hole. Decimals >0.
The hole must strictly fit within the standard aperture. It is centered on the aperture.

 Example:
%FSLAX26Y26*%

%MOIN*%

%ADD10C,10X5X5*%

%ADD11C,1*%

G01*

%LPD*%

D11*

mailto:gerber@ucamco.com

Copyright Ucamco NV 183
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X-10000000Y-2500000D02*

X10000000Y2500000D01*

D10*

X0Y0D03*

M02*

54. Standard (circle) aperture with a rectangular hole above a draw

Note that the draw is visible through the hole.
Rectangular holes appear very rarely in legacy files.

mailto:gerber@ucamco.com

Copyright Ucamco NV 184
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.7 Painting or Vector-fill
In the 1960’s and 1970s, the era of vector plotters, when the region statement was not
available, the only way to define a copper pour was by painting it with a large number of
overlapping draws. This produces the correct image but the file size explodes and, more
importantly, such painted data cannot be handled properly in PCB CAM; the painted data must
laboriously be converted to proper regions.
Painted areas and pads are not suited for PCB fabrication. Sending files with painted to a PCB
fabricator is quite disrespectful.

7.8 Deprecated Terminology
 Mass parameters was the original term for extended commands. Mass parameters made

sense at the moment of its introduction but became awkward over time.
 Polygon fill was used for contour fill.
 Coordinate date block was used of operation.
 The following synonyms for “darken” could be used: mark, expose, paint
 The following synonyms for “clear” could be used: unmark, rub, erase, scratch
 The term “stroking” is used as the synonym of “painting”
 Incremental position: position expressed as a distance in X and Y from the current point

7.9 Deprecated Attribute Values
The following values for the .AperFuntion attribute were deprecated in 2019.06

CutOut PCB cut-outs. This is the generic term for a hole other

than a drill hole.

Slot PCB slots. This is a subset of the cut-outs. Which cut-
outs are called slots is subjective. In case of doubt use
the value CutOut.

Cavity Cavities in a PCB.

mailto:gerber@ucamco.com

Copyright Ucamco NV 185
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.10 Standard Gerber (RS-274-D)

The current Gerber file format is also known as RS-274X or Extended Gerber. There is also a
historic format called Standard Gerber or RS-274-D format.
Standard Gerber is technically obsolete. It and was revoked in revision I1 from December 2012
and superseded by RS-274X.

Standard Gerber is revoked and superseded by Extended Gerber, which is the current Gerber
format. Consequently, Standard Gerber no longer complies with the Gerber specification. Files
in that format can no longer be correctly called Gerber files. Standard Gerber files are not only
deprecated, they are no longer valid.

It differs from the current Gerber file format (RS-274X), in that it:

• does not support G36 and G37 codes
• does not support any extended comands

Standard Gerber does not allow defining the coordinate format and aperture shapes. It is
incomplete as an image description format. It lacks the imaging primitives needed to
unequivocally transfer information from PCB CAD to CAM.
The word “standard” is misleading here. Standard Gerber is standard NC format. It is not a
standard image format: image generation needs a so-called wheel file, and that wheel file is not
governed by a standard. The interpretation of a wheel files, and consequently of a Standard
Gerber files, is subjective. In Extended Gerber (RS-274X) image generation is fully governed by
the standard. Extended Gerber is the true image standard.
Standard Gerber has major drawbacks compared to the current Gerber file format and does not
offer a single advantage. Standard Gerber is obsolete. There is not a single valid reason to use
standard Gerber rather than Extended Gerber.
Always use Extended Gerber (RS-274X). Never use Standard Gerber.

 Warning: The responsibility of errors or misunderstandings about the wheel file when
processing a Standard Gerber file rests solely with the party that decided to use revoked
Standard Gerber, with its informal and non-standardized wheel file, rather than Extended
Gerber, which is unequivocally and formally standardized.

mailto:gerber@ucamco.com

Copyright Ucamco NV 186
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

8 References
American National Standard for Information Systems — Coded Character Sets — 7-Bit
American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-1986
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Binary_image
https://en.wikipedia.org/wiki/Zip_(file_format)
http://www.rfc-base.org/txt/rfc-4122.txt
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378623(v=vs.85).aspx
https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSUUID_Class/

mailto:gerber@ucamco.com
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Binary_image
http://www.rfc-base.org/txt/rfc-4122.txt
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378623(v=vs.85).aspx
https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSUUID_Class/

Copyright Ucamco NV 187
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

9 History
The Gerber file format derives its name from the former Gerber Systems Corp. A leading
supplier of vector photoplotters from the 1960s onwards, Gerber based its plotter input on a
subset of the EIA RS-274-D NC format, and in1980, it published a well-written specification
titled “Gerber Format: a subset of EIA RS-274-D; plot data format reference book”. The format
was so well suited for its task that it was widely adopted and became the de-facto standard
format for vector plotters, known as Standard Gerber.
Vector photoplotters are NC machines, and Standard Gerber, which is dedicated to vector
photoplotters, is an NC format. As of the 1980s, vector photoplotters started losing ground to
raster plotters. Based on bitmap technology, these newer devices demanded rather more than a
simple NC format, so Gerber extended the original NC format with so called “Mass Parameters”,
converting it to a fully-fledged image file formats. This resulted in a family of effective image
description formats designed specifically to drive Gerber's PCB devices and raster plotters. In
1998 Gerber Systems Corp. was taken over by Barco and incorporated into its PCB division –
Barco ETS, now Ucamco. At this point, Barco drew all the variants in Gerber's family of formats
into a single standard image format.
On September 21, 1998 Barco-Gerber published the Gerber RS-274X Format User's Guide.
The format became known as Extended Gerber or GerberX. This is a full image description
format, which means that an Extended Gerber file contains the complete description of a PCB
layer, providing everything needed for an operator to generate a PCB image, and enabling any
aperture shape to be defined. Unlike Standard Gerber, it does not need the support of additional
external files, and it specifies planes and pads clearly and simply without the need for painting
or vector-fill. The Extended Gerber format quickly superseded Standard Gerber as the de facto
standard for PCB image data, and is sometimes called "the backbone of the electronics
industry". A sequence of revisions clarifying the specification was published over the years,
culminating in revision H of January 2012.
During 2012, Ucamco reviewed the entire format in depth in “the great reform”. Over 10.000
files from all over the world were gathered into a representative library to help establish current
practice. Rarely used and historic format elements were deprecated. Format elements with
conflicting interpretations in the market were either deprecated or clarified. The specification
document itself was re-organized, the quality of the text and the drawings improved and many
new drawings were added. This resulted in The Gerber Format Specification, revision I1
published in December 2012. Revisions I2, I3 and finally I4 from November 2013 further
improved the document. The result was a powerfully clear and simple format, without needless
embellishments, focused on the current needs of the PCB industry. This version of the Gerber
Format was developed by Karel Tavernier and Rik Breemeersch. They were assisted by an
advisory group including Ludek Brukner, Artem Kostyukovich, Jiri Martinek, Adam Newington,
Denis Morin, Karel Langhout and Dirk Leroy. Grateful thanks are extended to all those who
helped the development of the revision by posting their questions, remarks and suggestions on
the Ucamco website. Particular thanks are due to Paul Wells-Edwards whose insightful
comments contributed substantially to the revision.
Until this point, Gerber was purely an image description format. Recognizing that a PCB image
must be supported with meta-information that describes, say, the function of an image file in the
layer structure, Ucamco realized that it could convey that information clearly and unequivocally
using attributes. Accordingly, and in June 2013, the company publicly proposed to extend the
Gerber format using attributes, and invited feedback on its proposal from the Gerber user
community. The outcome of this was revision J1, completed in February 2014, during which
Gerber got its attributes. It was a major step forward for the format, at least on a par with the
changes made when Standard Gerber became Extended Gerber. Sometimes called the second
extension, the latest version of the Gerber format is known as Gerber version 2, or X2 (as

mailto:gerber@ucamco.com

Copyright Ucamco NV 188
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

opposed to X1, which is Gerber without attributes). Gerber version 2 is fully backward
compatible as attributes do not affect the image at all. Subsequent revisions, J2 to J4, clarified
the specification and added new standard attributes. Gerber version 2 was developed by Karel
Tavernier, Ludek Brukner and Thomas Weyn. They were assisted by an advisory group
including Roland Polliger, Luc Samyn, Wim De Greve, Dirk Leroy and Rik Breemeersch.
In September 2014 Ucamco published an open letter declaring Standard Gerber obsolete and
revoking it.
In August 2015, Ucamco published a draft specification adding nested step and repeat and
block apertures to make panel descriptions more efficient, calling for comments from the user
community. In November 2016 the review process was closed after substantial input and
modifications and the final version included in revision 2016.12. This revision was developed by
Karel Tavernier and Rik Breemeersch.
Early in 2015, the entire specification was reviewed once again by Karel Tavernier, Thomas
Weyn and Artem Kostyukovich focused on making the specification easier to read and
understand, while taking great care to ensure consistent and precise terminology. Some further
elements were identified as superfluous and were deprecated. Not least, special attention was
given to the 'Overview' chapter, with the aim of turning it into a tutorial that can be understood
by non-experts. The result of this work is revision 2015.06.

In July 2016 Karel Tavernier from Ucamco published a draft specification to include netlist
information in Gerber for public review. Several revisions of the draft were triggered by input
from users. The final version was in included in revision 2016.11 from November 2, 2016.

In March 2017 Karel Tavernier from Ucamco published a draft specification to include fab
documentation in Gerber for public review.

mailto:gerber@ucamco.com

Copyright Ucamco NV 189
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

10 Revisions

10.1 Revision 2019.06
The .AperFunction values CutOut, Slot and Cavity were deprecated. See 7.9.
Made it more explicit that macro aperture names cannot be reused, see 4.5.1. Corrected an
error in the examples in 4.12.4.2, pointed out by Abe Tusk, and in 2.1, pointed out by Radim
Halíř.

10.2 Revision 2018.11
Removed the .PF attribute, and replaced its content by an additional optional field to the .P
attribute. See 5.6.14.
Fixed a number of typos and minor errors pointed out by Jörg Naujoks, Rik Breemeersh and
Radim Halíř.
Revision 2018.11 was developed by Karel Tavernier,

10.3 Revision 2018.09
Corrected an error in the polygon aperture, section 4.4.5, and polygon primitive, section 4.5.4.7.
Clarified the rotation of the deprecated rectangular holes in apertures, section 7.6 These issues
were pointed out by Remco Poelstra.
Corrected an error in the moiré primitive specification, section 4.5.4.8. The error was pointed out
by Vasily Turchenko.
Clarified how object attributes are attached to regions, triggered by remarks from Radim Halíř.
Defined allowed range of the scale factor in 4.11.5, as suggested by Andreas Weidinger.
Defined orientation of text mirroring in section 5.6.12. Triggered by Nicholas Meeker.
Nicholas Meeker, Andreas Weidinger, Radim Halíř and Denis Morin carefully proofread the
document, which resulted in many text corrections.
Revision 2018.09 was developed by Karel Tavernier.

10.4 Revision 2018.06
Removed PressFit option from the ComponentPad attribute value; it is also a ComponentDrill
option and that is sufficient.
Clarified pad attribute values for via, component, SMD, BGA on inner layers. Clarified FS
command, see 4.1 and 7.3. Fixed broken links to references indicated by Vasily Turchenko.
Revision 2018.06 was developed by Karel Tavernier.

10.5 Revision 2018.05
Added .PF attribute, as suggested by Matthew Sanders.
Corrected errors in an example in 4.11.1 pointed out by Erik Forwerk. Corrected errors in the
SR definition and Backus-Naur form pointed out by Remco Poelstra, see 4.13. Simplified the

mailto:gerber@ucamco.com

Copyright Ucamco NV 190
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Backus-Naur form of the region statement, see 4.12.2. Corrected an error in 5.4 pointed out by
Dries Soentjens.
Revision 2018.05 was developed by Karel Tavernier.

10.6 Revision 2017.11
Allow the .N attribute not only on copper layers but also on plated drill layers, see 5.6.13.
Remove .FileFunction value Keep-out. Use Profile instead.
Specified that to combine files zip is the only allowed archive format, as suggested by Rafal
Powierski.
Simplified the Backus-Naur form of aperture blocks, see 4.6.2. Added synoptic table with macro
primitives in 4.5.4.1. Added synoptic table one with standard apertures in 4.4.1. Added Backus-
Naur form of the region statement. Added link to the Reference Gerber Viewer in 1.3. Fixed
typos pointed out by Forest Darling. Fixed a number or typos pointed out by Radim Halíř.
Revision 2017.11 was developed by Karel Tavernier.

10.7 Revision 2017.05
Added the new file attribute .SameCoordinates, see 5.6.5.
Added file functions Depthrout, Viafill, Vcut, and Vcutmap.
Created section 5.7 with guidelines on the use of attributes in fabrication data; added guidelines
on how to define the PCB profile in 5.8.2.
Reorganized and edited the chapter Overview. Clarified section on zero-size apertures.
Corrected an error in the comment in example 2.13.3 pointed out by Nav Mohammed.
Corrected errors in the examples in 5.6.5 pointed out by Rik Breemeersch,
Revision 2017.05 was developed by Karel Tavernier.

10.8 Revision 2017.03
Added section 5.7, specifying how to put text in the image.
We now allow upper case ‘X’ as well as the multiply operator on macro’s, next to the lower case
‘x’. This conforms to wide-spread practice. This was triggered by a question from Oliver Broad.
Changed file function Gluemask to Glue; added explanation; see 5.6.3.
Reorganized chapter 4. Extended section 4.12.5.
Corrections in 4.11.1, 4.11.5, 4.12.1 and in Aperture Attributes on Regions triggered by remarks
from Remco Poelstra. Corrected an error in example 2.13.2 pointed out by Danilo Bargen.
Revision 2017.03 was developed by Karel Tavernier.

10.9 Revision 2016.12
This is a major revision with powerful new imaging functions: 4.6, 0, 4.11.4 and 4.11.5. These
allow nested step and repeat to define panels efficiently, see 4.6.3 and 4.6.4.
Thera are fixes for errors in examples, pointed out by Danilo Bargen and Urban Bruhin.

mailto:gerber@ucamco.com

Copyright Ucamco NV 191
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Revision 2016.12, and especially the new imaging function for panels was developed by Karel
Tavernier and Rik Breemeersch. The first draft of these functions was published in August 2016.
During the public review process. Thomas Weyn, Bruce McKibben, Masao Miyashita and
Remco Poelstra provided essential input.

10.10 Revision 2016.11
This major revision allows to include the CAD netlist to Gerber files by adding three new
standard object attributes – see 5.7 above. The goal of the Gerber CAD netlist is to facilitate
upfront communication between the different parties involved in design, assembly and
automation. The X2 attributes proposed include CAD netlists in Gerber fabrication data and
allow to:

• Attach the component reference designator, pin number and net name to the component
pads in the outer copper layers. This information is essential for a complete board
display and for a complete board display. More importantly, the netlist provides a
powerful checksum to guarantee PCB fabrication data integrity.

• Attach the netlist name to any conducting object on any copper layer. Lightweight
viewers can then display netlists without the need for an algorithm to compute
connectivity

• Attach the component reference to any object, e.g. to identify all the legend objects
belonging to a given component, for example.

Several text improvements. Section 4.12.3 on regions clarified triggered by deep questions
asked by Remco Poelstra.
Revision 2016.11 was developed by Karel Tavernier. Jean-Pierre Charras provided essential
input on the CAD netlist, and further remarks by Remco Poelstra and Wim De Greve were
included.

10.11 Revision 2016.09
New or modified attribute values – see 5.6.10:

• Replaced file function Drawing with OtherDrawing.
• Added the optional field Filled|NotFilled to ViaDrill.
• Added aperture function EtchedComponent.

Added object attributes – see 5.4. Object attributes attach information to individual graphics
objects.
Corrected an error in example 4.12.4.7. The error was pointed out by Thomas van Soest and
Siegfried Hildebrand. Clarified the syntax of attaching aperture attributes to regions. Added Perl
script to show precisely how to calculate the .MD5. Several other clarifications.
Revision 2016.09 was developed by Karel Tavernier.

10.12 Revision 2016.06
Added a section on back-drilling job triggered by questions from Alexey Sabunin. See 5.8.2.1.
The .ProjectID UUID was changed to RFC4122; rewritten by Remco Poelstra. See 5.6.8.
Aperture function attributes were clarified triggered by remarks from John Cheesman. Drill sizes
were clarified triggered by remarks from Jeff Loyer.

mailto:gerber@ucamco.com

Copyright Ucamco NV 192
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

10.13 Revision 2016.04
Added PressFit label to component drill and pad attributes; see ComponentPa and
ComponentDrill. Revoked default on current point.
Text improvements that do not change the format: Removed superfluous concept of level and
replaced the name ‘Level Polarity’ by ‘Load Polarity. Various other text improvements.

10.14 Revision 2016.01
Added drill and pad functions for castellated holes. Added optional types break-out and tooling
on MechanicalDrill.
Deprecated closing an SR with the M02.
Text improvements that do not change the format: Clarified .AperFunction attribute values.
Clarified when to use of standard or user attributes. Clarified how aperture attributes can be set
on regions.

10.15 Revision 2015.10
Added items to section Errors and Bad Practices.
Added file function attribute .FilePolarity.
Refined drawing .FileFunction attributes Replaced Mechanical by FabricationDrawing and
Assembly by AssemblyDrawing. Added definitions to the drawing types. Added mandatory
(Top|Bot) to .AssemblyDrawing, as suggested by Malcolm Lear. Added ArrayDrawing.

10.16 Revision 2015.07
The superfluous and rarely, if ever, used macro primitives 2 and 22 were revoked. The
.AperFunction aperture attribute was simplified:

• Filled / NotFilled option is removed for the ViaDrill function

• ImpC / NotC option is removed from the Conductor function

10.17 Revision 2015.06
The entire document was revised for clarity. The readability of the text was improved. The
terminology was made consistent. The glossary was expanded. A number of additional images
were added, including the Gerber file processing diagrams, command types diagram, aperture
macro rotation illustration. Some of existing images were recreated to improve the quality.
Several new tables were added to explain the relation between D code commands and graphics
state parameters. The glossary was updated. The sections were rearranged. Several new
sections (0, 4.12.3, 4.7, 7.2, 7.3) and subsections (4.9, 4.10, 4.12, 5) were added.
The use of G codes in a data block together with D codes was deprecated. The rectangular hole
in standard apertures was deprecated. Usage of low resolutions and trailing zero omission in
the FS command was deprecated
The number after D/G/M letter in function code commands now can contain more leading zeros.
The mistakenly omitted rotation parameter of the circle macro primitive was restored. Unicode
escape sequences in strings are now possible.

mailto:gerber@ucamco.com

Copyright Ucamco NV 193
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

New file attributes were specified: .GenerationSoftware (5.6.5), .CreationDate (5.6.5) and
.ProjectId (5.6.8).
As of now the revision numbering follows the year.month scheme as in 2015.06.

10.18 Revision J4 (2015 02)
The .AperFunction values “Slot”, “CutOut” and “Cavity” were added. The text on standard
attributes was made more explicit. An example of a poorly constructed plane was added.

10.19 Revision J3 (2014 10)
The .FileFunction values for copper and drill layers were extended to contain more information
about the complete job.

10.20 Revision J2 (2014 07)
Attaching aperture attributes with regions was much simplified. A section about numerical
accuracy was added.

10.21 Revision J1 (2014 02)
This revision created Gerber X2 by adding attributes to what was hitherto a pure image format.
See chapter 5. X2 is Gerber version 2, with “X1” being Gerber version 1, without attributes.
Gerber X2 is backward compatible as attributes do not affect image generation.

10.22 Revision I4 (2013 10)
The commands LN, IN and IP were deprecated. The possibility of re-assigning D codes was
revoked.
The regions overview section 4.12.1 was expanded and examples were added different places
in 4.12 to further clarify regions. The chapters on function codes and syntax were restructured.
The constraints on the thermal primitive parameters were made more explicit. Wording was
improved in several places. The term ‘(mass) parameter’ was replaced by ‘extended command’.

10.23 Revision I3 (2013 06)
Questions about the order and precise effect of the deprecated commands MI, SF, OF, IR and
AS were clarified. Coincident contour segments were explicitly defined.

10.24 Revision I2 (2013 04)
The “exposure on/off” modifier in macro apertures and the holes in standard apertures are
sometimes incorrectly implemented. These features were explained in more detail. Readers and
writers of Gerber files are urged to review their implementation in this light.

mailto:gerber@ucamco.com

Copyright Ucamco NV 194
Having a question or remark about the spec? Please contact us at gerber@ucamco.com

10.25 Revision I1 (2012 12)
General. The entire specification was extensively reviewed for clarity. The document was re-
organized, the quality of the text and the drawings has been improved and many new drawings
were added.
Deprecated elements. Elements of the format that are rarely used and superfluous or prone to
misunderstanding have been deprecated. They are grouped together in the second part of this
document. The first part contains the current format, which is clean and focused. We urge all
creators of Gerber files no longer to use deprecated elements of the format.

Graphics state and operation codes. The underlying concept of the graphics state and
operation codes is now explicitly described. See section 2.5 and 2.5. We urge all providers of
Gerber software to review their implementation in the light of these sections.

Defaults. In previous revisions the definitions of the default values for the modes were scattered
throughout the text, or were sometimes omitted. All default values are now unequivocally
specified in an easy-to-read table. See 2.5. We urge all providers of Gerber software to review
their handling of defaults.

Rotation of macro primitives. The rotation center of macro primitives was clarified. See 4.5.3.
We urge providers of Gerber software to review their handling of the rotation of macro
primitives.
G36/G37. The whole section is now much more specific. We urge providers of Gerber software
to review their contour generation in this light.

Coordinate data. Coordinate data without D01/D02/D03 in the same data block can lead to
confusion. It therefore has been deprecated. See 7.2. We urge all providers of Gerber software
to review their output of coordinate data in this light.

Maximum aperture number (D-code). In previous revisions the maximum aperture number
was 999. This was insufficient for current needs and numerous files in the market use higher
aperture numbers. We have therefore increased the limit to the largest number that fits in a
signed 32-bit integer.
Standard Gerber. Standard Gerber is revoked because it has many disadvantages and not a
single advantage. We urge all users of Gerber software not to use Standard Gerber any longer.

Incremental coordinates. These have been deprecated. Incremental coordinates lead to
rounding errors. Do not use incremental coordinates.
Name change: area and contour instead of polygon. Previous revisions contained an object
called a polygon. As well as creating confusion between this object and a polygon aperture, the
term is also a misnomer as the object can also contain arcs. These objects remain unchanged
but are now called areas, defined by their contours. This does not alter the Gerber files.
Name change: level instead of layer. Previous revisions of the specification contained a
concept called a layer. These were often confused with PCB layers and have been renamed as
levels. This is purely narrative and does not alter the Gerber files.

mailto:gerber@ucamco.com

	Contents
	Preface
	1 Introduction
	1.1 Scope and Target Audience
	1.2 Further Resources
	1.3 Reference Gerber Viewer
	1.4 Questions
	1.5 Copyright and Intellectual Property
	1.6 About Ucamco

	2 Overview
	2.1 File Structure
	2.2 Apertures
	2.3 Graphics Objects
	2.4 Draws and Arcs
	2.5 Operations (D01, D02, D03)
	2.6 Graphics State
	2.7 Polarity
	2.8 Blocks
	2.9 Attributes
	2.10 Table with Commands
	2.11 Processing a Gerber File
	2.12 Glossary
	2.13 Example Files
	2.13.1 Example: Two Square Boxes
	2.13.2 Example: Polarities and Apertures
	2.13.3 Example: A Drill File

	2.14 Conformance

	3 Syntax
	3.1 Conventions for Syntax Rules
	3.2 File Extension, MIME Type and UTI
	3.3 Character Set
	3.4 Data Blocks
	3.5 Commands
	3.5.1 Command Syntax Overview
	3.5.2 Function Code Commands
	3.5.3 Extended Commands

	3.6 Data Types
	3.6.1 Integers
	3.6.2 Decimals
	3.6.3 Coordinate Data
	3.6.4 Hexadecimal
	3.6.5 Names
	3.6.6 Strings
	3.6.7 Fields

	4 Graphics
	4.1 Format Specification (FS)
	4.2 Unit (MO)
	4.3 Aperture Definition (AD)
	4.3.1 AD Command
	4.3.2 Zero-size Apertures
	4.3.3 Examples

	4.4 Standard Aperture Templates
	4.4.1 Overview
	4.4.2 Circle
	4.4.3 Rectangle
	4.4.4 Obround
	4.4.5 Polygon
	4.4.6 Transparency of Holes

	4.5 Aperture Macro (AM)
	4.5.1 AM Command
	4.5.2 Exposure Modifier
	4.5.3 Rotation Modifier
	4.5.4 Primitives
	4.5.4.1 Overview
	4.5.4.2 Comment, Code 0
	4.5.4.3 Circle, Code 1
	4.5.4.4 Vector Line, Code 20.
	4.5.4.5 Center Line, Code 21
	4.5.4.6 Outline, Code 4
	4.5.4.7 Polygon, Code 5
	4.5.4.8 Moiré, Code 6
	4.5.4.9 Thermal, Code 7

	4.5.5 Syntax Details
	4.5.5.1 Variable Values from an AD Command
	4.5.5.2 Arithmetic Expressions
	4.5.5.3 Definition of a New Variable

	4.5.6 Examples
	4.5.6.1 Fixed Modifier Values
	4.5.6.2 Variable Modifier Values
	4.5.6.3 Definition of a New Variable
	4.5.6.4 A useful macro

	4.6 Block Aperture (AB)
	4.6.1 Overview of block apertures
	4.6.2 AB Statement Syntax
	4.6.3 Usage of Block Apertures
	4.6.4 Example

	4.7 Set Current Aperture (Dnn)
	4.8 Operations (D01/D02/D03)
	4.8.1 Coordinates
	4.8.2 D01 Command
	4.8.3 D02 Command
	4.8.4 D03 Command
	4.8.5 Example

	4.9 Linear Interpolation Mode (G01)
	4.9.1 G01 Command
	4.9.2 D01 Command

	4.10 Circular Interpolation (G02/G03) and (G74/G75)
	4.10.1 Circular Arc Overview
	4.10.2 G02 & G03 Command
	4.10.3 G74 & G75 Command
	4.10.4 D01 Command
	4.10.5 Example: Single Quadrant Mode
	4.10.6 Example: Multi Quadrant Mode
	4.10.7 Numerical Instability in Multi Quadrant (G75) Arcs
	4.10.8 Using G74 or G75 May Result in a Different Image

	4.11 Object Transformations (LP, LM, LR, LS)
	4.11.1 Overview
	4.11.2 Load Polarity (LP)
	4.11.3 Load Mirroring (LM)
	4.11.4 Load Rotation (LR)
	4.11.5 Load Scaling (LS)
	4.11.6 Examples

	4.12 Region Statement (G36/G37)
	4.12.1 Region Overview
	4.12.2 Region Statement Syntax
	4.12.3 Valid Contours
	4.12.4 Examples
	4.12.4.1 A Simple Contour
	4.12.4.2 How to Start a Single Contour
	4.12.4.3 Use D02 to Start a Second Contour
	4.12.4.4 Overlapping Contours
	4.12.4.5 Non-overlapping and Touching
	4.12.4.6 Overlapping and Touching
	4.12.4.7 Using Polarity to Create Holes
	4.12.4.8 A Simple Cut-in
	4.12.4.9 Fully Coincident Segments
	4.12.4.10 Valid and Invalid Cut-ins

	4.12.5 Power and Ground Planes

	4.13 Step and Repeat (SR)
	4.14 Comment (G04)
	4.15 End-of-file (M02)
	4.16 Numerical Accuracy in Image Processing and Visualization
	4.16.1 Visualization
	4.16.2 Image Processing

	5 Attributes
	5.1 Attributes Overview
	5.2 File Attributes (TF)
	5.3 Aperture Attributes (TA)
	5.3.1 Aperture Attributes on Regions

	5.4 Object Attributes (TO)
	5.5 Delete Attribute (TD)
	5.6 Standard Attributes
	5.6.1 Overview
	5.6.2 .Part
	5.6.3 .FileFunction
	5.6.4 .FilePolarity
	5.6.5 .SameCoordinates
	5.6.6 .CreationDate
	5.6.7 .GenerationSoftware
	5.6.8 .ProjectId
	5.6.9 .MD5
	5.6.10 .AperFunction
	5.6.11 .DrillTolerance
	5.6.12 .FlashText
	5.6.13 .N (Net)
	5.6.13.1 Etched Components

	5.6.14 .P (Pin)
	5.6.15 .C (Component)

	5.7 Text in the Image
	5.8 PCB Fabrication Data
	5.8.1 Structure
	5.8.2 Alignment
	5.8.3 Essential Attributes
	5.8.1 The Profile
	5.8.2 Drill files
	5.8.2.1 Backdrilling

	5.8.3 Drawings and Data
	5.8.4 The CAD Netlist
	5.8.4.1 Benefits of Including the CAD Netlist.
	5.8.4.2 IP Considerations

	5.9 Examples

	6 Errors and Bad Practices
	6.1 Errors
	6.2 Bad Practices

	7 Deprecated Format Elements
	7.1 Deprecated Commands
	7.1.1 Overview
	7.1.2 Axis Select (AS)
	7.1.2.1 AS Command
	7.1.2.2 Examples

	7.1.3 Image Name (IN)
	7.1.3.1 IN Command
	7.1.3.2 Examples

	7.1.4 Image Polarity (IP)
	7.1.4.1 Positive Image Polarity
	7.1.4.2 Negative Image Polarity
	7.1.4.3 IP Command
	7.1.4.4 Examples

	7.1.5 Image Rotation (IR)
	7.1.5.1 IR Command
	7.1.5.2 Examples

	7.1.6 Load Name (LN)
	7.1.6.1 LN Command
	7.1.6.2 Examples

	7.1.7 Mirror Image (MI)
	7.1.7.1 MI Command
	7.1.7.2 Examples

	7.1.8 Offset (OF)
	7.1.8.1 OF Command
	7.1.8.2 Examples

	7.1.9 Scale Factor (SF)
	7.1.9.1 SF Command
	7.1.9.2 Examples

	7.2 Coordinate Data without Operation Code
	7.3 Format Specification Options
	7.3.1 Trailing Zero Omission
	7.3.2 Incremental Notation
	7.3.3 Low resolution

	7.4 Using G01/G02/G03 in a data block with D01/D02
	7.5 Deprecated usage of SR
	7.6 Rectangular Hole in Standard Apertures
	7.7 Painting or Vector-fill
	7.8 Deprecated Terminology
	7.9 Deprecated Attribute Values
	7.10 Standard Gerber (RS-274-D)

	8 References
	9 History
	10 Revisions
	10.1 Revision 2019.06
	10.2 Revision 2018.11
	10.3 Revision 2018.09
	10.4 Revision 2018.06
	10.5 Revision 2018.05
	10.6 Revision 2017.11
	10.7 Revision 2017.05
	10.8 Revision 2017.03
	10.9 Revision 2016.12
	10.10 Revision 2016.11
	10.11 Revision 2016.09
	10.12 Revision 2016.06
	10.13 Revision 2016.04
	10.14 Revision 2016.01
	10.15 Revision 2015.10
	10.16 Revision 2015.07
	10.17 Revision 2015.06
	10.18 Revision J4 (2015 02)
	10.19 Revision J3 (2014 10)
	10.20 Revision J2 (2014 07)
	10.21 Revision J1 (2014 02)
	10.22 Revision I4 (2013 10)
	10.23 Revision I3 (2013 06)
	10.24 Revision I2 (2013 04)
	10.25 Revision I1 (2012 12)

