
E:mx®
E:mx E:mx E:mx c:mx E:mx E:mx E:mx E:mx E:mx E:mx E:mx
E:mx E:mx E:mx E:mx E:mx E:mx

GMX 020BUG v2.7x

020Bug Debugging Package

User's Manual

GMX 020BUG v2.7x

January 1987

GHX 020BUG v2.7x

020Bug Debugging Package

User's Manual

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, GHX reserves the right to make changes to any products herein to
improve reliability, function, or design. GMX does not assume any liability
ar is i ng out of the app I i cat i on or use of ~ny pi~oduct or c i rcu it descr i bed
here·i n; ne i ther does it convey any license under· its patent rights or the rights
of others.

First GMX Edi t i on F ebnlary 1986
Copyright 1986, 1981

GMX Inc.
1337 W. 37th Place
Chicago, IL 60609

312-927-5510 * TWX 910-L21-4055

All rights reserved

Reproduction of this manual,
written permission from GMX Inc.

in whole or part. by any means, without express
is strictly prohibited.

First Motorola Edition October 1984
Copyright 1984 by Motorola Inc.

EXORmacs. VME/IO, VERSAdos. and 020bug are trademarks of Motorola Inc.
ARCnet is a trademark of Datapoint Corporation.
GMX Micro-20 is a trademark of GMX Inc.

GMX 020Bug Debugging Package Manual

Revision History

Revision A 02/04/86 First edition
Revision B 04/29/86 Second edition
Revision C 07/21/86 Third edition
Revision D 08/22/86 Fourth edition
Revision E 09/16/86 Fifth edition
Revision F 11/04/86 Sixth edition
Revision G 01/13/87 Seventh edition

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1. 5.1
1.5.2
1.5.3
1.5.4
1.6
1.7
1.8

CHAPTER 2

2. 1

TABLE OF CONTENTS

GENERAL INFORMATION

DESCRIPTION OF 020Bug .••••..••••.••.••••.•••••••••••••••••
HOW TO USE TH I 5 GU I DE •••••••••••••••••••••••••••••••••••••
INSTALLATION AND STARTUP ••••••••••••••••••••••••.•.•••••••
SW ITCHES ••
RESTART I NG THE SYSTEM ••.••••••••••••••••••••••••••••••.•••

Res et •••••••••••••••.•••••.••••••••••••••••••.•••.••••.•
RS COI'1'fT\Bnd ••
Abort .. .
Break •...••.•..••...•.•••••••••.•••.••••••••••••••••••••

MEMORY REQUIREMENTS .•.......••.••.•.......•.•.........•..•
TERMINAL INPUT/OUTPUT CONTROL •••••••••••••••••••••••••••••
DIAGNOSTIC FACILITIES ••••••.•••••••••••••••••.••••••••••••

USING THE 020Bug DEBUGGER

ENTERING DEBUGGER COMMAND LINES
2.1.1
2.1.1.1
2.1.1.2
2.1.1.2.1
2.1.1.2.2
2.1.2
2.1.3

Syntact 1 c Var t ab 1 es •••••••••••••••••••••••••••••••••••••
Expression as a Parameter •••••••••••••••••••••••••••••
Address as a Parameter .••.•.••.••.•.••.•.•....•..•.•.•

Address Formats .•....•••...••••.•.•.•.••........••..
Offset Registers•.•.••..•.•....•.....••........

Port Numbers .. .
Mu 1 t , p 1 e cOl'llMnds on ali ne ••••••••••••••••••••••••••••••

2.2
2.3
2.4
2.4.1
2.4.2
2.4.3.1
2.4.3.2

. 2.4.3.3

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3. 11
3.12
3. 13
3.14
3.15
3.16
3.17
3. 18
3.19

ENTERING AND DEBUGGING PROGRAMS •••••••••••••••••••••••••••
CALLING SYSTEM UTILITIES FROM USER PROGRAMS •••••••••••••••
PRESERVING THE SYSTEM ENVIRONMENT •••••••••••••••••••••••••

020Bug Vector Table and Workspace •••••••••••••••••••••••
Maintaining a User Vector Table •••••••••.•••••••••••••••

Sharing 020Bug's Vector Table •••••••••••••••••••••••••
Creating a Separate Vector Table ••••••••••••••••••••••
020Bug Generalized Exception Handler ••••••••••••••••••

THE 020Bug DEBUGGER COMMAND SET

1 NTRODUCT I ON
BF - BLOCK OF MEMORY FILL .•.•••••.•.••••••••••.•••••••••••
BM - BLOCK OF MEMORY HOVE •••••••••••••••••••••••••••••••••
BR/NOBR - BREAKPOINT INSERT/DELETE ••••••••••••••••.•••.•••
BS - BLOCK OF MEMORY S~ARCH ••••••••••••••••••••.••••••••••
DC - DATA CONVERS I ON
OU - DUMP S-RECOROS
GO - GO DIRECT (IGNORE BREAKPOINTS) •••••••••••••••••••••••
GN - GO TO NEXT INSTRUCTION ••••••••••••••.••••.•.•••••••••
GO - GO EXECUTE USER PROGRAM •••••••••••••••••••..•••••••••
GT - GO TO TEMPORARY BREAKPOINT •••••••••••••••••••••••••••
HE - HELP
LO - LOAD S-RECORDS FROM HOST •••.••••.••.•••••••••••••••••
HO - MEMORY 0 I SPLAY
HM - MEMORY HOD 1 FY
MS - MEMORY SET .. "
OF - OFFSET REGISTERS DISPLAy/MODIFy •••••••.•••••••••••••.
os - OS STARTUP
PA/NOPA - PRINTER ATTACH/DETACH

1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-3
1-4

2-1
2-2
2-2
2-2
2-3
2-3
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-8
2-9

3-1
3-2
3-4
3-6
3-7
3-9
3-10
3-12
3-13
3-15
3-17
3-19
3-20
3-23
3-25
3-28
3-29
3-31
3-32

TABLE OF CONTENTS (cont'd)

PF PORT FORHAT •• 3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.21
3.28
3.29
3.30
3.31

RD REGISTER DISPLAY ••••••••••••••••••••••••.••••••••••••
RH REG I STER HOD I FY •••••••••••••••••••••••••••••••.••••••
RS RESTART SYSTEM •••••••••••••••••••••••••••••••••••••••
SO SWITCH DIRECTORIES •••••••••••••••••••••••••••••••••••
T - TRACE •••••• ' •••
TC TRACE ON CHANGE OF CONTROL FLOW •••••••.•••••••••••.••
TO T I HE 0 I SPLAY ••••••••••••••••••••••••••••••.••••••••••
TM TRANSPARENT MODE •••••••••••••••••••••••••••••••••••••
TS T I HE SET •••
TT TRACE TO TEMPORARY BREAKPOINT ••••••••••••••••••••••••
VE VERIFY S-RECORDS AGAINST MEMORy ••••••••••••••••••••••

CHAPTER 4

4. I

USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

I NTROOUCT I ON ••
HC68020 Assembly Language ••••••••••••••••••••••••.••••••

Machine-Instruction Hnemontcs •••••••.•••••••••••••••••
o f rect i yes
Operand Expressions .••.•.••.•••......•.•.•..•••••...••

Comparfson wfth HC68020 Restdent Structured Assembler •••
SOURCE PROGRAM COD I NG •••••••••••••••••••••••••••••••••••••

4. 1 • I
4.1.1.1
4.1.1.2
4.1.1.3
4.1.2
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.2
4.2.3
4.3
4.4
4.4. I
4.4.2
4.4.3
4.5

CHAPTER 5

5. 1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.1
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12

Source L t ne F orrnat •••..•••••••••••••••...•••••••••.•••••
OperatIon Ft-eld ••••••••••.•••••••••••••••••••••.••••••
Operand Fteld ...
Hnemonics and Delimiters ••••••••••••••••••••••••••••••
Character Set .. .

Addres s 'ng Hodes .••..•••••.•••••••..••.••••• ' •...••••.•••
Define Constants Word dtrecttve •••••••••••••••••••••••••

DISASSEMBLNG OBJECT CODE ••••••••••••••••••••••••••••••••••
ENTERING AND MODIFYING SOURCE PROGRAMS ••••••••••••••••••••

Enter t n9 Source Code •••••••••••••.•••••.•••••••••••.••••
Entering Branch and Jump Addresses ••••••••••••••••••••••
Inserting Additional Instructions •••••••••••••••••••••••
ASSEMBLER OUTPUT/PROGRAM Ll STI NGS

SYSTEM CALLS

I NTROOUCT I ON ••
Invoking System Calls Through TRAP #15 ••••••••••••••••••
String Formats for 1/0 .••••.•••••••••.••.•.•••••••••••••

SYSTEM CALL ROUTINES ••••••••.••••••••••••.•••••••••• ~ •••••
· I NCHR Funct i on ••••••••••••.••••••••••••••.••.••...•••••
• I NSTA T F unct 'on
• I NLN F unct t on •.•••••.•••.•••••.•••...••••.••••.•.••••••
• REAOSTR Funct I on •••••••••••••••••.•••••••••••••••••••••
• READLN F unct i on .•••...••.•.•••••••••.•••.••••••••••••••
.OUTCHR F unct ton ••.•••••••••••••••••.•••••.•••••••••••••
.OUTSTR, .OUTLN Functions •••••••••..••••••••••••.•••••••
.WRITE, .WRITELN Functions .••••••••••.•••••••.••..•••.••
.WRITD, .WRITEDLN Functions •••••••••.•••••••.••••••.••.•
• PCRLF F unct 1 on .•... _ ••.••••.•••......•.•••......•..•.••.
.ERASLN Function ..
• GETCLK F unct ion •••..•••••..••••......•....•..••...•....

3-33
3-35
3-38
3-40
3-41
3-43
3-44
3-45
3-46
3-47
3-48
3-50

4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-6
4-6
4-1
4-8
4-9
4-9
4-10
4-10

5-1
5-1
5-1
5-2
5-3
5-4
5-5
5-6
5-1
5-8
5-9
5-10
5-11
5-13
5-14
5-15

TABLE OF CONTENTS (cont'd)

5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.19

. PUTCLK Funct t on •••••..•••.•••...•••••••...•.....•.•..•. 5-16
.OUTCLK Funct f on ... 5-17
.REDIR Function ••••.•••.••.••.•.••.••••••••••••••••••••• 5-18
.REDIR_I, .REDIR_O Functfons •••.•••••••••.••••.••••••••• 5-19
.RETURN Function.. 5-20
• B I NOE C F unct t on .. 5-2 1

APPENDIX A Alternate ROM Programs •••••..•••.••.•••••••.••••••.••••••••• A-I
APPENDIX C S-Record Output Format ••••••••••••.••••••.•••.•..••.•••••••• C-l

o 020Bug Diagnostic Firmware Guide ••..•••••••••.••.•••••••••.• 0-1
Appendix 0 Table of contents ••••••••••••••••••••••.•..•••••• 0-1

LIST OF TABLES

Table 2-1
2-2
3-1
3-2
4-1
5-1

Formats for Debugger Address Parameters ••••••••••••••.••••••
Exception Vectors Used By 020Bug •••••••••••••••••.•••.••••••
Debugger Commands by Type ••.••.............•..•.....•.•....•
PF C()('[V'I\Snd Oefau I t Va 1 ues •••••••••••••••••••••••••••••••••••
020Bug Assembler Addressing Modes •.•••••••••••••••••••••••••
020Bug System Call Routines •••••••••••••••.••••••.••••••••••

iii

2-3
2-6
3-1
3-32
4-6
5-2

CHAPTER 1

GENERAL INFORMATION

1.1 DESCRIPTION OF 020Bug

The 020Bug package is a powerful evaluation and debugging tool for systems built
around the GMX Micro-20 processor module. Facilities are available for loading
and executing user programs under complete operator control for system
evaluation. 020Bug includes commands for display and modification of memory,
breakpoint capabilities, a powerful assembler/disassembler useful for patching
programs, and a self-test on power up feature which verifies the integrity of
the system. Various 020Bug routines that handle I/O. data conversion, and
string functions are available to user programs through the TRAP #15 handler.

020Bug consists of three parts; (1) a command-driven user-interactive software
debugger, described in Chapter 2 and hereafter referred to as the "debugger",
(2) a command-driven diagnostic-package for the GMX Micro-20 hardware, described
in Appendix D and hereafter referred to as the "diagnostics", and (3) a user
interface which accepts commands from the system console terminal.

When using 020Bug the user will either operate out of the debugger directory or
out of the diagnostic directory. If the user is in the debugger directory then
the debugger prompt, "020Bug)", will be displayed and the user will have all of
the debugger commands at his disposal. If the user is in the diagnostic
directory then the diagnostic prompt. "M20Diag)", will be displayed and the user
will have all of the diagnostic commands at his disposal as well as all of the
debugger commands. The user may switch between directories by using the "SO"
command. described in section 3.23 or may examine the commands in the particular
directory that he is currently in by using the "HE" commmand, described in
section 3.12.

Since 020Bug is command-driven, it performs its various operations in response
to u~er commands entered at the keyboard. Figure 1-1 illustrates the flow of
control in 020Bug. When a command is entered, 020Bug will execute the command
and the prompt will reappear. However, if a command is entered which causes
execution of user target code (f.e •• "GO") then control mayor may not return to
020Bug, depending on the outcome of the user program.

Those users who have used one or more of Motorola's other debugging packages
(f.e., MACSbug, VERSAbug, TENbug, etc.) will find 020Bug very similar. There
are two noticeable differences. Many of the commands are more flexible and
powerful. Also, the debugger in general is more "user-friendly", with more
detailed error messages and an expanded on-line help facility.

1.2 HOW TO USE THIS GUIDE

If the user has never used a debugging package before, then he should read all
of Chapter before attempting to use 020Bug. This will give an idea of
020Bug's structure and capabilities.

For a question about syntax or operation of a particular 020Bug command, the
user may turn to the entry for that particular command in the section describing
the command set (Chapter 3).

1-1

Some debugger cOllV'llands take advantage of the built-in one-line
assembler/disassembter. The command descriptIons in Chapter 3 assume that the
user already understands how the assembler/disassembler works. See the
assembler/disassembler description in Chapter 4 for details on its use.

1.3 INSTALLATION AND STARTUP

Procedures for installing the GMX Micro-20 and setting it up for operation are
described in the "GMX Micro-20 Hardware Setup Manual".

1 .4 SW ITCHES

Positions 1 and 2 of the DIP switch bank SI on theGMX Micro-20 board determine
what happens upon power-up or reset after the confidence test is completed. If
switch SI-1 Is OFF, then the GMX Micro-20 will begin execution of the alternate
ROM program, fetching the start address and initial stack value as described in
Appendix At "Alternate ROM Programs".

If switch Sl-1 is ON, then switch SI-2 is tested. If Sl-2 is OFF then execution
continues in 020BUG: the user will see the 020BUG startup message and prompt,
and can enter 020BUG commands.

If Sl~l is ON, and Sl-2 is ON, then 020BUG will enter a special mode. In this
mode, 020BUG does not prompt the user for a command, but immediately begins
execution of the self-test diagnostics in a special mode. See sections 4.9
(Loop Continuous) and 4.11 (Self Test Led) in Appendix D.

1.5 RESTARTING THE SYSTEM

There. are three ways for the user to initialize the system to a known state.
Each has characteristics which make it more appropriate than another in certain
situations.

1. 5.1 Reset

DepressIng and releasing the RESET button connected to the RESET input of the
GMX Micro-20 will Initiate a system reset. The processor's program counter and
stack pointer are loaded from the first two longwords of the ROM, and execution
begins at the address so specified. During the reset routIne a total system
initialization takes place, as if the GMX Micro-20 had just been powered up.
All static variables are restored to their default states. The Breakpoint table
is cleared. The offset regIsters are cleared. The target registers are
fnvalidated. Input and output character queues are cleared. Serial ports 0, 1,
and 2 are reconfigured to their default state. The other on-board devices (port
3, the PI/T, the FDC, and the SASI), and any devices connected to the I/O
expansion bus are reset, but not reinitialized. The Time-of-day clock is not
affected.

Reset must be used if the processor ever halts (as evidenced by the GMX
Micro-20's halt light glowing), for example after a double bus fault, or if the
020Bug environment is ever lost (vector table is destroyed, etc).

1-2

1.5.2 RS command

This command causes the processor to load the program counter and stack pointer
from the first two longwords of the ROH, just-as if the RESET button had been
pressed. The RESET routine includes a RESET instruction, which causes the
processor to send out a RESET signal to the rest of the system, so performing
the RS command also causes hard reset.

1. 5. 3 Abort

Abort is invoked by pressing and releasing the ABORT button connected to the GHX
Micro-20 ABORT input. Whenever Abort is invoked, a "snapshot" of the processor
state is captured and stored in the target registers. For this reason Abort is
most appropriate when terminating a user program that is being debugged. Abort
should be used to regain control if the program gets caught in a loop, etc. The
target PC, stack pointers, etc will help to pinpoint the malfunction. Abort
generates a level seven interrupt~ (non-maskable). The target registers,
reflecting the machine state at the time the ABORT button was pushed, will be
displayed to the screen. Control will be returned to the debugger.

1.5.4 Break

A "Break" fs generated by pressfng and releasing the BREAK key on the terminal
keyboard. Break does not take a snapshot of the machine state nor does it
dfsplay the target registers. The user may want to terminate a debugger command
before its completion, for example, the display of a large block of memory.
Break allows the user to terminate the command without overwriting the contents
of the target registers. as would be done if Abort were used. Break does not
interrupt program operation 1n any way; it is only detected by polling during
serial 1/0. A program which does no serial 1/0 cannot be interrupted by Break.

1.6 MEMORY REQUIREMENTS

The program portion of 020Bug is approximately 64K bytes of code. The EPROM
sockets on the GHX Hicro-20 are mapped at locations $00800000 to $0083FFFF. The
first 64K bytes of this space are reserved for 020BUG. 020Bug requires a
minimum of 16K bytes of read/write memory at $00000000 to operate. The first 8K
bytes are used for 020Bug stack and static varfable space and the next 8K bytes
is reserved as user space. Whenever the GHX H'cro-20 fs reset the target
program counter Is initfalized to the address correspondfng to the begfnning of
the user space and the target stack pointers are initialized to addresses within
the user space, wfth the target ISP set to the top of the user space. The
limits for memory testing are set at Reset to $00020000 and $OlFFFFC.

1.7 TERHINAL INPUT/OUTPUT CONTROL

When entering a command at the prompt the following control codes may be entered
for limited command line editing. (Note: The presence of the upward caret ""'''
before a character indicates that the Control or "CTRL" key must be held down
while striking the character key).

1-3

"H

"0

(cancel line) - The cursor is backspaced to the beginning of
If the terminal port is configured with the
or TTY option (see PF command), then a
prompt is Issued also.

the line.
hardcopy

CR/LF and ,

(backspace)

(delete or
rubout)

(redisplay)

- The cursor is moved back one position. The character
at the new position is erased. If the hardcopy option
is selected, a "I" is typed along with the deleted
character.

- Same as AH

The entire command line as entered so far is
redisplayed on the following line.

When any program or command is send I ng output to th.e 020BUG conso 1 e, the
XON/XOFF characters which are in effect for the terminal port may be entered to
control the output, if the XON/XOFF protocol is enabled (default). These
characters are initialized to "S and AQ respectively by 020Bug but may be
changed by the user using the PF command. In the initialized (default) mode
operation is as follows:

"S (wait) - Console output is halted.

"Q (resume) - Console output is resumed.

1.8 DIAGNOSTIC FACILITIES

Included in the 020Bug packages are a complete set of hardware diagnostics
Intended for testing and troubleshooting of the GHX Hicro-20. In order to use
the diagnostics the user must be in the diagnostic directory of 020Bug. In the
debugger directory. the user can switch to the diagnostic directory by entering
the debugger command "SO" for "switch directories". The diagnostic prompt
("H20Diag>") should appear. See Appendix 0 for complete descriptions of the
diagnostic routines availables and instructions on how to invoke them.

1-4

CHAPTER 2

USING THE 020Bug DEBUGGER

2.1 ENTERING DEBUGGER COMMAND LINES

As mentioned previously, 020Bug Is command-driven and performs its various
operations in response to user commands entered at the keyboard. When the
debugger prompt ("020Bug)") appears on the terminal screen then the debugger is
ready to accept commands.

As the command line is entered it is stored in an internal buffer. Execution
begins only after the carriage return is entered, thus allowing the user to
correct entry errors if necessary using the control characters described in
sect ion 1. 7.

When a command is entered the debugger will execute the command and the prompt
will reappear. However, if the command entered causes execution of user target
code, for example "GO", then control mayor may not return to the debugger,
depending on what the user program does. For example, if a breakpoint has been
specified then control will return to the debugger when the breakpoint is
encountered during execution of the user program. Alternately the user program
could return control to the debugger by means of the TRAP #15 function ".RETURN"
(described in section 5.2.18). For more about this, see the description in
sections 3.8, 3.10, and 3.11 for the GO, GO, and GT commands.

In general. a debugger command is made up of the following parts:

1) The command identifier (i.e., "MD" for the memory display command).

2) A port number if the command is set up to work with more than one port.

3) At least one intervening space before the first argument.

4) Any required arguments, as specified by command.

5) An option field, set off by a semicolon (;) to specify conditjons other than
the default conditions of the command.

The commands are shown using a modified Backus-Naur form syntax. The
metasymbols used are:

<) The angular brackets enclose a symbol, known as a syntactic variable, that
is replaced in a command line by one of a class of symbols it represents.

[] Square brackets enclose a symbol that is optional.

This symbol indicates that a choice is to be made. One of several symbols.
separated by this symbol, should be selected.

/ The slash indicates that one or more of the symbols separated by this
symbol can be selected.

{} These brackets enclose an optional symbol that may occur zero or more
times.

2-1

2.1. 1 Syntactic Variables

The following syntactic variables will be encountered in the command
descriptions which follow. In addition, other syntactic variables may be used
and will be defined in the particular command description in which they occur.

<EXP>
<ADDR>
<COUNT>
<RANGE>

<TEXT>

- Delimiter; either a convna or a space.
- Expression (described in detail in section 2.1.1.1).
- Address (described in detail In section 2.1.1.2).
- Count; the syntax is the same as for <EXP>.
- A range of memory addresses which may be specified either by

<ADDR> <ADDR> or by <ADDR> : <COUNT>.
- An ASCII string of up to 255 characters, delimited at each

end by the single quote mark (').

2.1.1.1 Expression as a Parameter

An expression can be one or more numeric values separated by the arithmetic
operators plus C+) or minus (-). Numeric values may be expressed in either
hexadecimal, decimal, octal or binary by immediately preceding them with the
proper base identifier.

Base Identifier Examples
=========== ========== =============
Hexadecimal $ $FFFFFFFF
Decimal & &1974, &10-&4
Octal @ @456
Binary 2 21000110

If no base identifier is specified then the numeric value is normally assumed to
be hexadecimal. The only exceptions occur when using the one-line assembler/
disassembler, which assumes a default of decimal, and when using the PF convnand,
which also assumes a default of decimal.

Examples of valid expressions:

Expression

FFOOll
45+99
&45+&99
@35+@67+@10
210010110
210011110+21001

Result (in hexadecimal)
--

FFOOII
DE
90
5C
96
A7

The total value of the expression must be between 0 and $FFFFFFFF.

2.1.1.2 Address as a Parameter

Many commands use <ADDR> as a parameter. The syntax accepted by 020Bug is
similar to the one accepted by the MC68020 one-line assembler. All control
addressing modes are allowed except the PC-relative modes. An address + offset
register mode is also provided.

2.1.1.2.1 Address Formats

Table 2-1 summarizes the address formats which are acceptable for address
parameters in debugger command lines.

TABLE 2-1. FORMATS FOR DEBUGGER ADDRESS PARAMETERS
==

Format Example Description
==
N

N+Rn

(An)
(d,An)
or
deAn)
(d,An,Xn)
or

140

130+RS

(AI)
(l20,Al)

120(Al)
(&120,Al,D2)

Absolute address + contents of automatic
offset register.
Absolute address + contents of the speci­
fied offset register (not an assembler­
accepted syntax).
Address register indirect.
Address register indirect with displace­
ment (two formats accepted).

Address register indirect with index and
displacement (two formats accepted).

d(An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)

&120(Al,D2)
([C,A2,A3],&100)
([12,A3],D2,&10)

Memory indirect pre-indexed.
Memory indirect post-indexed.

For the memory indirect modes, fields can be omitted, but two consecutive commas
are not allowed. For example, two of many permutations are as follows:

([An] ,od)
([bd])

([Al],4)
([FCIE])

The following is not a valid mode:

([bd~ ,Xn]) ([8,,02])
==
Notes: N - Absolute address (any valid expression)

An - Address register n
Xn - Index register n (An or On)
d - Displacement (any valid expression)
bd - Base displacement (any valid expression)
od - Outer displacement (any valid expression)
n - Register number (0 to 7)
Rn - Offset register n

==

2.1.1.2.2 Offset Registers

Eight pseudo-registers (RO-R7) called offset registers are used to simplify the
debugging of relocatable and position independent modules. The listing files in
these types of programs usually start at an address (normally 0) that is not the
one in which they are loaded, so it is harder to correlate addresses in the
listing with addresses in the loaded program. The offset registers solve this
problem by taking into account this difference and forcing the display J of
addresses in a relative address+offset form, with the relative address portion
matching the listing address. Address arguments required by 020Bug commands can
also be entered in the relative address+offset format.

2-3

Example: The l'sting fIle of a relocatable module assembled with the HC68020
VERSAdos Resident Assembler is shown below:

I
2 *
3 * HOVE STRING SUBROUTINE

.4 *
5 o 00000000 48E78080 HOVESTR HOVEH.L 00/AO,-(A7)
6 o 00000004 4280 CLR.L DO
7 o 00000006 1018 HOVE.B (AO)+,oO
8 o 00000008 5340 SUBQ.W #1,00
9 o OOOOOOOA 1208 LOOP HOVE.B (AO)+, {Al)+

10 o OOOOOOOC 51C8FFFC HOVS oBRA DO, LOOP
II o 00000010 4CoFOIOl HOVEM.L (A7)+,00/AO
12 o 00000014 4E75 RTS
13
14 END

****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

The above program was loaded at address 0001327C. The disassembled code is
shown next:

020Bug> Mo 1327C;~<CR>
0001327C 48E78080
00013280 4280
00013282 1018
00013284 5340
00013286 1208
00013288 51C8FFFC
0001328C 4CoFOIOI
00013~90 4E75
020Bug>

MOVEM.L
CLR.L
MOVE.B
SUBQ.W
MOVE.B
oBF
MOVEM.L
RTS

00/AO,-(A7)
DO
(AO)+,oO
#1,00
(AO) +, (A I) +
00,$13286
(A7}+,00/AO

By using one of the offset registers, the disassembled code addresses can be
made to match the l'sting file addresses as follows:

020Bug> OF RO <CR> RO =000000001
020Bug> Ho O+RO;~<CR>
OOOOO+RO 48E78080
00004+RO 4280
00006+RO 1018
00008+RO 5340
OOOOA+RO 1208
OOOOC+RO 51C8FFFC
000lO+RO 4CoFOIOI
OOOI4+RO 4E75
020Bug>

1327C.<CR>

HOVEM.L
CLR.L
MOVE.B
SUBQ.W
HOVE.B
oBF
MOVEM.L
RTS

00/AO,-(A7)
DO
(AO)+,oO
#1,00
(AO)+, (AI)+
oO,$OOOOA+RO
(A7)+,00/AO

For additional informatIon about the offset registers, see the OF command
description.

2-4

2.1.2 Port Numbers

Some 020Bug commands give the user the option of choosing the port which will be
used to input or output. The valid port numbers which may be used for these
commands are:

2.1.3

o
1
2

GMX Micro-20 Terminal Port
GMX Micro-20 Host Port
GMX Micro-20 Printer Port

Multiple commands on a line

(DUART #1 channel A)
(DUART #1 channel B)
(DUART #2 channel A)

A single line of 020Bug input may contain more than one 020BUG commands. No
separator is required between command strings if the earlier command does not
accept parameters (i.e., the "SO" command). In other cases, a command string
can be terminated with a tt!" character, which is treated like an end of line by
the command parsing routine. Command strings of any complexity can be placed on
the same line provided they are separated by "1" chracters.

2.2 ENTERING AND DEBUGGING PROGRAMS

There are two ways to enter a user program into system memory for execution.
One way is to create the program using the MM (Memory Modify) command with the
assembler/disassembler option. The program is entered by the user one source
line at a time. After each source line is entered, it is assembled and the
object code is loaded to memory. Refer to Chapter 4 for complete details of the
020Bug Assembler/Disassembler.

The other way to enter a program is to download an object file from a host
system, for example, an EXORmacs. The program must be in S-Record format
(described in Appendix C) and may have been assembled or compiled on the host
system. Alternately the program may have been previously created using the
020Bug MM command as outlined above and stored to the host using the DU (Dump)
command. A communication link must exist between the host system and the GMX
Micro-20's port 1 (see hardware configuration details in the GMX Micro-20
Hardware Setup Manual). The file is downloaded from the host into GMX Micro-20
memory with the debugger's LO command.

Once the object code has been loaded into memory, the user can set breakpoints
if desired and run the code or trace through it.

2.3 CALLING SYSTEM UTILITIES FROM USER PROGRAMS

A convenient way of doing character input/output and many other useful
operations has been provided so that the user does not have to write these
routines into the target code. The user has access to various 020Bug routines
via the MC68020 TRAP #15 instruction. Refer to Chapter 5 for details on the
various TRAP #15 utilities available and how to invoke them from within a user
program.

2.4 PRESERVING THE DEBUGGER OPERATING ENVIRONMENT

This section explains how to avoid contaminating the operating environment of
the debugger. 020Bug uses certain of the GMX Micro-20's on-board resources to
contain temporary variables. exception vectors. etc. If the user disturbs
resources which 020Bug depends on, then the debugger may function unreliably or
not at all.

2.4.1 020Bug Vector Table and Workspace

As described in section 1.6, "Memory Requirements", 020Bug needs 8K bytes of
read/write memory to operate and also allocates another 8K bytes as user space
for a total of 16K bytes allocated at $00000000. On power-up/reset, the
exception vector table is built there, and the MC68020 Vector Base Register
(VBR) is made to point to the start of the table. Next, 020Bug reserves space
for static variables and initializes these static variables to predefined
default values. After the static variables, 020Bug allocates space for the
system stack and then initializes the system stack pointer to the top of this
area.

The user must be extremely careful not to use the above-mentioned memory areas
for other purposes. If, for example, a user program inadvertently wrote over
the static variable area containing the serial communication parameters, these
parameters would be lost, resulting in a loss of communication with the system
console terminal. If a user program corrupts the system stack then an incorrect
value may be loaded into the processor's program counter, causing a system
crash.

2.4.2 Maintaining a User Vector Table

If a user program is written to do exception processing, it must write the
address of its exception handling routine(s) into the vectors at the proper
offset from the address pointed to by the VBR. Often it is desirable to switch
from running the user program to running the 020Bug debugger and back again. In
these cases it is necessary to avoid conflicts between exception vectors used by
the user program and exception vectors used by the debugger.

The exception vectors used by the debugger are shown in Table 2-2. Of these
vectors, only the TRAP #15 vector is absolutely necessary for the debugger to
operate. Any time that the debugger code is entered the vector at offset $BC in
the original 020Bug vector table MUST contain the address of the 020Bug TRAP #15
handler. This is because the debugger uses the system call functions internally
to do console I/O and other functions. Other vectors in Table 2-2 are required
if the user desires to use the associated debugger facilities (breakpoints,
trace mode. etc.).

?-h

TABLE 2-2. EXCEPTION VECTORS USED BY 020Bug
==
Offset from
Vector Base Exception 020Bug Facility
==

$10

$24

$BC

$100

Illegal Instruction

Trace

TRAP #15

Level 7 Interrupt

Breakpoints (Used by GO, GN, GT)

T, TC, TT

System calls (See Chapter 5)

ABORT pushbotton

==

When the debugger handles one of the exceptions listed in Table 2-2, the target
stack pointer is left pointing past the bottom of the exception stack frame
created; that is. it reflects the system stack pointer values just before the
exception occurred. In this way, the operation of the debugger facility
(through an exception) is transparent to the user.

Example: Trace one instruction using the debugger.

020Bug> RO <CR>
PC =00002000 SR =2700=TR:OFF S. 7 .••••
USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =o=xx OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =00000000 01 =00000000 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00002000 203900100000 MOVE.L ($lOOOOO).L,OO
020Bug> I-<CR>
PC =00002006SR =2700=TR:OFF S. 7 •••.• e
USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =12345678 01 =00000000 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00002006 0280 AOO.L 00,01
020Bug>

Notice that the value of the target stack register has not changed even though a
trace exception has taken place. The user program may either share the
exception vector table used by 020Bug or it may create a separate exception
vector table of its own. The two following sections detail these two methods.

2.4.3.1 Sharing 020Bug's Vector Table

The user program may share the 020Bug vector table by simply writing its own
exception vectors into the vector table. 020Bug uses only a few of the many
MC68020 vector locations to operate. These vectors are listed in Table 2-2.

2-7

The user program may even overwrite some of the debugger's vectors if the user
does not need-those particular debugger functions. Care must be taken, however,
not to overwrite the TRAP #15 vector because this exception is used internally
by the debugger.

The beginning address of the 020Bug vector table is loaded into the target-state
VBR at power-up and reset. The user can find out what this beginning address is
by resetting the GMX Micro-20 using RESET, then displaying the target state
registers using the Ro command. The value displayed for the VBR will be the
020Bug vector table start address.

2.4.3.2 Creating a Separate Vector Table

A user program may create a separate vector table in memory to contain its
exception vectors. Then the user program must change the value of the VBR to
point at the new vector table. In order to use the debugger facilities the user
can copy the proper vectors from the 020Bug vector table into the corresponding
vector locations in the user vector table.

As mentioned in section 2.4.2, 020Bug saves the address of its vector table and
workspace such that it may be recovered if the user changes the MC6B020's VBR
contents and then re-enters 020Bug. When the debugger code is entered, 020Bug
will automatically change the VBR to point at its original vector table. The
VBR value set up by the user will be saved in the target-s~te VBR.

The vector for the 020Bug generalized exception handler (described in detail in
section 2.4.3.3) may be copied from offset $08 (Bus Error vector) in020Bug's
vector table to all locations in the user's vector table where a separate
exception handler is not used. This will provide diagnostic support in the
event that the user program is stopped by an unexpected exception. The
generalized exception handler gives a formatted display of HC68020 registers and
identifies the type of the exception.

The following is an example of a user routine which builds a separate vector
table and then moves the VBR to point at it:

*

*

BUILoX - Build exception vector table ****

BUILoX

LOOP

MOVEC.L
LEA
HOVE.L
MOVE.W
HOVE.L
SUBQ.W
BNE.B
MOVE.L
HOVE.L
MOVE.L
LEA.L
MOVE.L
HOVEC.L
RTS
END

VBR,AO
$IOOOO,Al
$8(AO),00
$3FC,01
DO, (AI ,01)
#4,01
LOOP
$10(AO),$10(AI)
$24(AO},$24(AI)
$BC(AO} ,$BC(Al)
COPROCC(PC),A2
A2,$2C(Al)
AI, VBR

Get copy of 020Bug VBR.
New vectors at $10000.
Copy generalized exception vector.
Load count (all vectors).
Store generalized exception vector.

Initialize entire vectortable.
Copy breakpoints vector.
Copy trace vector.
Copy system call vector.
Get user exception vector.
Install as F-Line handler.
Change VBR to new table.

2-8

It may turn out that the user program uses one or more of the exception vectors
that are required for debugger operation. Debugger facilities may still be
used, however, if the user's exception handler can determine when to handle the
exception Itself and when to pass the exception to the debugger.

When an exception occurs which the user wants to pass on to the debugger (ABORT,
for example) the user's exception handler must read the vector offset from the
format word of the exception stack frame. This offset is added to the address
of the 020Bug vector table (which the user program saved), yielding the address
of the 020Bug exception vector. The user program then jumps to the address
stored at this vector location, which is the address of the 020Bug exception
handler.

The user program must make sure that there is an exception stack frame in the
stack and that it is exactly the same as the processor would have created it for
the particular exception before jumping to the address of the exception handler.
Below is an example of a user exception handler which can pass an exception
along to the debugger:

*

*

EXCEPT - Exception handler ****

EXCEPT SUBQ.L
LINK
MOVEH.L
MOVE.L
MOVE.W
ANo.W
MOVE.L
110VEH.L
RTS

#4,A7
A6,#0
AO-A5/DO-D7,-(SP)
BUGVBR,AO
14(A6),DO
#$OFFF,oO
(AO,DO.W),4(A6)
(SP)+,AO-A6/o0-o7

Reserve a longword In the stack.
New vectors at $10000.

Pass exception to debugger; Get VBR.
Get the vector offset from stack frame.
Mask off the format information.
Store address of debugger exc handler.

Put address of exc handler in PC and go.

2.4.3.3 020Bug Generalized Exception Handler

020Bug has a generalized exception handler which it uses to handle all of the
exceptions not listed 1n Table 2-2. For all these exceptions, the target stack
pointer is left pointing to the top of the exception stack frame created. In
this way, if an unexpected exception occurs, the user is presented with the
exception stack frame to help determine the cause of the exception. The
following example illustrates this:

Example: Bus error at address $FOOOOO.
access of memory location
processing.

020Bug> RD <CR>

It is assumed for this example that an
$FOOOOO will initiate Bus Error exception

PC =00002000 SR =2700=TR:OFF S. 7 .••••
USP =00003830 MSP =~0003CI8 ISP*=00004000 VBR =00000000
SFC =O=XX oFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =00000000 01 =00000000 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00002000 203900FOOOOO MOVE.L ($FOOOOO}.L,oO
020Bug> L<CR>

2-9

Exception: Long Bus Error
Format/Vector=B008
SSW=0145 Fault Addr.=OOFOOOOO Data In=OOOOOOOO Data Out=00002006
PC =00002000 SR =A700=TR:ALL S. 7 •••••
USP =00003830 MSP =00003C18 ISP*=00003FA4 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =00000000 01 =00000000 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00003FA4
00002000203900FOOOOO MOVE.L ($FOOOOO).L,OO
020Bug)

Notice that the target stack pointer is different. The target stack pointer now
points to the last value of the exception stack frame that was stacked. The
exception stack frame may now be examined using the MO command:

020Bug) MO (A7):&44 <CR)
00003FA4 A700 0000 2000 B008 3E2C 0145 0000 0027 .O.),.E ... '
00003FB4 OFOO 0000 OFOO 0000 0000 IBCC 2039 0000 .p ..• p •.•.. L 9 ••
00003FC4 0000 200A 0000 2008 0000 2006 0000 0000 ·
00003F04 OOFO 0000 100F 0487 0000 A700 4003 0000 • p •••.•••• '.@ •••
00003FE4 0000 7FFF 0000 0000 COlO 0000 0000 4000 • ••••••• @ ••••• @.
00003FF4 0000 0000 FFF8 086C · x. 1
020Bug>

CHAPTER 3

THE 020Bug DEBUGGER COMMAND SET

3. 1 I NTRODUCT I ON Th i s chapter conta i ns desc·r i pt Ions of each of the
commands. It also provides one or more examples of each command.
summarizes the 020Bug debugger commands, grouped by type.

TABLE 3-1. DEBUGGER COMMANDS BY TYPE

debugger
Table 3-1

===
Command Mnemonic Tttle Section Page
===

BF Block of Memory Fill 3.2 3-2
BM Block of Memory Move 3.3 3-4
BR/NOBR Breakpoint Insert/Delete 3.4 3-6
BS Block of Memory Search 3.5 3-7
DC Data Conversion 3.6 3-9
DU Dump S-Records 3.7 3-10
GO Go Direct (Ignore Breakpoints) 3.8 3-12
GN Go to Next Instruction 3.9 3-13
GO Go Execute User Program 3.10 3-15
GT Go To Temporary Breakpoint 3.11 3-17
HE Help 3.12 3-19
LO Load S-Records From Host 3.13 3-20
MD Memory Display 3.14 3-23
MM Memory Mod i fy 3.15 3-25
MS Memory Set 3.16 3-28
OF Offset Registers Display/Modify 3.17 3-29
OS OS Startup 3.18 3-31
PA/NOPA Printer Attach/Detach 3.19 3-32
PF Port Format 3.20 3-33
RD Register Display 3.21 3-35
RM Register Modify 3.22 3-38
RS Restart System 3.23 3-40
SO Switch DirectorIes 3.24 3-41
T Trace 3.25 3-42
TC Trace On Change of Control Flow 3.26 3";44
TO Time Display 3.27 3-45
TM Transparent Mode 3.28 3-46
TS Time Set 3.29 3-47
TT Trace To Temporary Breakpoint 3.30 3-48
VE Verify S-Records Against Memory 3.31 3-50

===

Each of the individual commands is described in the following pages. The
command's syntax is shown using the symbols explained in section 2.1.

In the examples shown, all user input is underlined. This is done for clarity
in understanding the examples (to distinguish between characters input by the
user and characters output by 020Bug). No underline is typed in actual input.
The symbol <CR> represents the carriage return key on the user's terminal
keyboard. Whenever this symbol appears it means that a carriage return was
entered by the user.

3-1

3.2 BLOCK OF MEMORY FILL

BF <RANGE><data> [; B:W:L]

where:

options:

<data> is an expression parameter

B - Byte
W - Word
L Longword

BF

The BF command fills the specified range of memory with the specifIed data
pattern. The data entered by the user is right-justIfied in either a byte, word
or longword field (as specified by the option selected). The default field
length is W (word).

If the user-entered data does not fit into the data field size then leading bits
are truncated to make it fit. If truncation occurs then a message wIll be
printed stating the data pattern which was actually written. .

If the range 15 specified usIng a count then the count 15 assumed to be In terms
of the data size.

If the upper address of the range is not on the correct boundary for an integer
multiple of the data to be stored then data Is stored to the last boundary
before the upper address. No address outside of the specified range will ever
be disturbed In any case. The "Effective address" messages displayed by the
command will show exactly where data was stored.

Example 1: (Assume memory from $20000 to $2002F Is clear)

020Bug) BF 20000,2001F 4E71 <CR>
Effective address: 00020000
Effective address: 0002001F
020Bug> MD 20000:30;§, <CR)
00020000 4E 71 4E 71 4E 17 4E 71
00020010 4E 71 4E 71 4E 17 4E 71
00020020 00 00 00 00 00 00 00 00

4E 71 4E 71 4E 71 4E 71
4E 71 4E 71 4E 71 4E 71
00 00 00 00 00 00 00 00

NqNqNqNqNqNqNqNq
NqNqNqNqNqNqNqNq

Since no optIon was specifIed, the length of the data field defaulted to word.

Example 2: (Assume memory from $20000 to $2002F is clear)

020Bug) BF 20000:10 4E71 ;~<CR)
Effective address: 00020000
Effective count : &16
Data = $71
020Bug) MD 20000:30;~<CR)
00020000 71 71 71 71 71 17 71 71
00020010 00 00 00 00 00 00 00 00
00n20020 00 00 00 00 00 00 00 00

71 71 71 71 71 71 71 71
00 00 00 00 00 00 00 00
00 00 00 00 00 00 0000

qqqqqqqqqqqqqqqq

The specified data did not fit Into the ·specifled data field size. The data was
truncated and the "Data = " message was output.

3-2

Example 3: (Assume memory from $20000 to $2002F is clear)

020Sug> SF 20000,20006 12345678
Effective address: 00020000
Effective address: 00020003
020Sug> MO 20000:30;~<CR>
00020000 12 34 56 78 00 00 00 00
00020010 00 00 00 00 00 00 00 00
00020020 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

• 4Vx ••••••.•••••

The longword pattern would not fit evenly in the given range. Only one longword
was written and the "Effective address" messages reflect the fact that data was
not written all the way up to the specified address.

3-3

3.3 BLOCK OF MEMORY MOVE

BM <RANGE><OEL><AOOR> [; B:W:L]

options:

B - Byte
W - Word
L - Longword

BM

The BM command copies the contents of the memory addresses defined by <RANGE> to
another place in memory, beginning at <AOOR>.

The option field is only allowed when <RANGE> was specified using a count. In
this case the B, W, or L defines the size of data that the count is referring
to. For example a count of 4 with an option of L would mean to move 4 longwords
(or 16 bytes) to the new location. If an option field is specified without a
count in the range an error results.

Example 1: (Assume memory from 20000 to 2000F is clear)

020Bug> MO 21000:20;~ <CR>
00021000 54 48 20 53 20 49 53 20 41 20 54 45 53 54 21 21
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

020Bug> BM 21000 2100F 20000 <CR>
Effective address: 00021000
Effective address: 0002100F
Effective address: 00020000

020Bug> MO 20000:20;B <CR)
00021000 54 48 49-S3-Z0~9 53 20 41 20 54 45 53 54 21 21
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
020Bug>

TH I SIS A TEST!!

THIS IS A TEST!!

Example 2: This utility is very useful for patching assembly code in memory.
Suppose the user had a short program in memory at address 20000 ...

020Bug> MO 20000 2000A;~<CR)
00020000 0480
00020002 E2A2
00020004 2602
00020006 4E4F
00020008 0021
0002000A 4E71

AOO.L
ASR.L
MOVE.L
TRAP
OC.W
Nap

00.02
01,02
02.03
#15
$21

Now suppose the user would like to insert a Nap between the ADD.L
instruction and the ASR.L instruction. The user should Block Hove
the object code down two bytes to make room for the Nap.

020Bug) BM 20002 2000B 20004 <CR>
Effective address: 00020002
Effective address: 0002000B
Effective address: 00020004

3-4

020Bug) HD 20000 2000C;~<CR)
00020000 0480
00020002 E2A2
00020004 E2A2
00020006 2602
00020008 4E4F
0002000A 0021
0002000C 4E71

AOO.L
ASR.L
ASR.L
HOVE.L
TRAP
OC.W
NOP

00,02
01,02
01,02
02,03
#15
$21

Now the user needs only to enter the NOP at address 20002.

020Bug) HM 20002;~<CR>
00020002 E2A2
00020002 4E71
00020004 E2A2
020Bug>

020Bug) MD 20000 2000C;~<CR>
00020000 0480
00020002 4E71
00020004 E2A2
00020006 2602
00020008 4E4F
0002000A 0021
0002000C 4E71
020Bug)

ASR.L
NOP
ASR.L

ADO.L
NOP
ASR.L
HOVE.L
TRAP
DC.W
NOP

3-5

01,02? NOP <CR>

D 1. 02 ?

00.02

01.02
02,03
#15
$21

3.4 BREAKPOINT INSERT/DELETE

BR [<ADDR>(:<COUNT>]]
NOBR «ADDR>]

BR
NOBR

The BR command allows the user to set a target code instruction address as a
"breakpoint address" for debugging purposes. If during target code execution a
breakpoint with 0 count is found, the target code state is saved in the target
registers and control is returned back to 020Bug. This allows the user to see
the actual state of the processor at selected instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept in a table
which is displayed each time either BR or NOBR are used. If an address is
specified with the BR command that address is added to the breakpoint table.
The count field specifies how many times the instruction at the breakpoint
address must be fetched before a breakpoint is taken. The count, if greater
than zero, is decremented with each fetch. Every time that a breakpoint with
zero count is found, a breakpoint handler routine prints the CPU state on the
screen and control is returned to 020Bug.

NOBR is used for deleting breakpoints from the breakpoint table. If an address
is specified then that address will be removed from the breakpoint table. If
NOBR <CR> is entered then all entries will be deleted from the breakpoint table
and the empty table will be displayed.

Example:

020Bug> BR 14000,14200 14700:&~<CR>
BREAKPOINTS
00014000 00014200
00012700:C
020Bug> NOBR 14200 <CR>
BREAKPOINTS
00014000 0001270Q:C
020Bug> NCBR <CR>
BREAKPOINTS
020Bug>

Set Some Breakpoints

Delete One Breakpoint

Delete All Breakpoints

3-6

3.5 BLOCK OF MEHORY SEARCH BS

BS <RANGE> <TEXT> [iB:W:L]

or

BS <RANGE> <OEL> <data> [<mask>] [;B:W:L,N]

The block search command searches the specified range of memory for a match with
a user-entered data pattern. This command has two modes, as described below.

Mode 1 - LITERAL STRING SEARCH -- In this mode a search is carried out for the
ASCII equivalent of the literal string entered by the user. This mode is
assumed if the single quote (') indicating the beginning of a <TEXT> field is
encountered following <RANGE>. The size as specified in the option field tells
whether the count field of <RANGE> refers to bytes, words, or longwords. If
<RANGE> is not specified using a count then no options are allowed. If a match
is found. then the address of the first byte of the match is output.

Mode 2 DATA SEARCH -- In this mode a data pattern is entered by the user as
part of the command line and a size is either entered by the user in the option
field or is assumed (the assumption is word). The size entered in the option
field also dictates whether the count field in <RANGE> refers to bytes, words,
or longwords. The following actions occur during a data search:

1) The user-entered data pattern is right-justified and leading bits are
truncated or leading zeroes are added as necessary to make the data pattern
the specified size.

2) A compare is made with successive bytes, words, or longwords (depending on
the size in effect) within the range for a match with the user-entered data.
Comparison is made only on those bits at bit positions corresponding to a
"1f1 in the mask. If no mask is specified then a default mask of all one's
is used (all bits wil I be compared). The size of the mask is taken to be
the same size as the data.

3) If the "N" (flNon-aligned") option
searched for on a byte-by-byte basis,
regardless of the size of <data>.
pattern is being searched for, but is
longword) boundary.

has been selected then the data is
rather than by words or longwords
This is useful if a word (or longword)
not expected to I ie on a word (or

4) If a match is found then the address of the first byte of the match is
output along with the memory contents. If a mask was in use then the actual
data at the memory location is displayed, rather than the data with the mask
app lied.

For both modes, information on matches is output to the screen in a four-column
format. If more than 24 lines of matches are found then output is inhibited to
prevent the first match from rolling off of the screen. A message is printed at
the bottom of the screen indicating 'that there is more to display. To resume
output the user should simply depress any character key. To cancel the output
and exit the command the user should press the break key.

3-7

If a match is found with a series of bytes of memory whose beginning is within
the range but whose end is outside of the range then that match will be output
and a message will be output stating that the last match does not lie entirely
within the range. The user may search non-contiguous memory with this command
without causing a Bus Error.

Examples: (Assume the following data is in memory).

00030000 0000 00 45 72 72 6F 72
00030010 34 46 2F 2F 43 6F 6E 66
00030020 74 61 72 74 3A 00 00 00

20 53 74 61 74 75 73 3D
69 67 54 61 62 6C 65 53
00 00 00 00 00 00 00 00

020Bug> BS 30000 3002F 'Task Status'_<CR>
Effective address: 00030000
Effective address: 0003002F
-not found-

020Bug> BS 30000 3002F 'Error Status' <CR>
Effective address: 00030000
Effective address: 0003002F
00030003

020Bug> BS 30000 300lF 'ConfigTableStart' <CR>
Effective address: 00030000
Effective address: 0003001F
00030014 -last match extends over range boundary-

020Bug> BS 30000:30 '!'_i_<CR>
Effective count : &48
0003000A 0003000C 00030020 00030023

020Bug> BS 30000:~.2F2F <CR>
Effective address: 00030000
Effective count : &24
00030012:2F2F

020Bug> bs 30000.3002F 3d34 <CR>
Effective address: 00030000
Effective address: 0003002F
-not found-

020Bug> bs 30000,3002F 3d34 in-<CR>
Effective address: 00030000
Effective address: 0003002F
0003000F:3D34

020Bug> BS 30000:30 60.FO i!L<CR>
Effective address: 00030000
Effect i ve count :. &48
00030006:6F 0003000B:61 000300015:6F 00030016:6E

00030017:66 00030018:69 000300019:67 0003001B:61

0003001C:62 0003001D:6C 00030001E:65 00030021:61

::I-A

••• Error Status=
4F//ConffgTableS
tart:

3.6 DATA CONVERS ION DC

DC <EXP> : <ADDR>

The DC command
This equivalent
representation.
number (i .e., if
of the number
displayed.

is used to simplify an expression Into a single numeric value.
value is displayed in its hexadecimal and decimal
If the numeric value could be interpreted as a signed negative

the most significant bit of the 32-bit internal representation
is set) then both the signed and unsigned interpretations are

DC can also be used to obtain the equivalent effective address of an MC68020
addressing mode.

Examples:

020Bug> DC 10 <CR>
00000010 = $10 = &16

020Bug> DC &lQ-&20 <CR>
SIGNED : FFFFFFF6 = -$A = -&10
UNSIGNED: FFFFFFF6 = $FFFFFFF6 = &4294967286

020Bug> DC 123+&345+@67+~1100001 <CR>
00000314 = $314 = &788

The subsequent examples assume AO=00030000 and the following data resides in
memory:

00030000 11111111 22222222 33333333 44444444 .••• """"33330000

020Bug) DC (AO)_<CR>
00030000 = $30000 = &196608

020Bug) DC ([AO])_<CR>
11111111 = $11111111 = &286331153

020Bug> DC (~.AO)_<CR>
00030004 = $30004 = &196612

020Bug) DC ([~,AO])_<CR>
22222222 = $22222222 = &572662306

3.7 DUMP S-RECORDS DU

DU«port>]<RANGE>[<TEXT>][<ADDR>][;B:W:L]

The DU command outputs data from memory in the form of Motorola S-Records to a
port specified by the user. If port is not specified then the S-Records are
sent to the host port.

The option field is allowed only if a count was entered as part of the range and
defines the units of the count (bytes, words or longwords).

The optional <TEXT> field is for text that will be incorporated into the header
(SO) record of the block of records that will be dumped.

The optional <ADDR> field is to allow the user to enter an entry address for
code contained in the block of records. This address is incorporated into the
address field of the block's termination record. If no entry address is entered
then the address field of the termination record will consist of zeroes. The
termination record will be an S7, S8, or S9 record, depending on the address
entered. See Appendix C for additional information on S-Records.

Example 1: Dump memory from $20000 to $2002F to port 1.'

020Bug> DU 20000 2002F <CR>
Effective address: 00020000
Effective address: 0002002F
020Bug>

Example 2: Dump 10 bytes of memory beginning at $30000 to the terminal screen
(port 0).

020Bug> DUO 30000:&~<CR>
Effective address: 00030000
Effective count : &10
S0030000FC
520E03000026025445535466084E4F7B
59030000FC
020Bug>

Example 3: Dump memory from $20000 to $2002F to host (port 1). Specify a file
name of "TEST" in the header record and specify an entry point of $2000A.

020Bug> DU 20000 2002F 'TEST' 2000A <CR>
Effective address: 00020000
Effective address: 0002002F
020Bug>

The following example shows how to upload S-Records to a host computer (in this
case an EXORmacs running the VERSAdos operating system), storing them in the
file "FILEl.MX" which the user will create with the VERSAdos utility UPLOADS.

020Bug> TM <CR>
Escape character: $01=AA
<BREAK>

"

(Go into transparent mode to'establish
(communication with the EXORmacs.
(Press BREAK key to get VERSAdos login
(prompt.

~_In

)
)
)
)

" (log in)
"
"

= UPLOADS FILEI <CR>

(User must log onto VERSAdos and enter the
(catalog where FILEl.MX will reside.

(At VERSAdos prompt invoke the UPLOADS
(utility and tell it to create a file
(named "FILEl" for the S-Records that will
(be uploaded.

The UPLOADS utility will at this point display some messages like the following:

volume=xxxx
cat I g=xxxx
fi I e=FILE

ext=HX

UPLOAD "5" RECORDS
Version x.y

Copyrighted by MOTOROLA, INC.

UPLOADS Allocating new file

Ready for "5" records, •••

= <_"'A)
020Bug)

(When the VERSAdos prompt returns enter the)
(escape character to return to 020Bug.)

Now enter the command for 020Bug to dump the S-Records to the port.

020Bug) DU 20000 2000F 'FILEI'_<CR)
Effective address: 00020000
Effective address: 0002000F
020Bug)

020Bug) TM <CR>
Escape character: $Ol="'A
lli!!L<CR)

Go into transparent mode again.

(Tell UPLOADS to quit looking for records.

The UPLOADS utility wil I now display some more messages like this:

volume=xxxx
cat I g=xxxx
fi le=FILE

ext=MX

UPLOAD "5" RECORDS
Version x.y

Copyrighted by MOTOROLA, INC.

·STATUS· No error since start of program

Upload of S-Records complete.

= OFF <CR>

<_AA>
020Bug>

(The 'VERSAdos prompt should return.
(Log off of the EXORmacs.
(Enter the escape character to return to
(020Bug.

3-11

3.8 GO 0 I RECT (l GNORE BREAKPO I NTS) GO

GO [<AOOR>]

GO is used to start target code execution. If an address is specified, it is
placed in the target PC. Execution starts at the target PC address. As opposed
to GO, breakpoints are not inserted.

Once execution of target code has begun, control may be returned to 020Bug by
various conditions:

1) The user pressed ABORT or RESET.
2) An unexpected exception occurred.
3) By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $10000)

020Bug> MD 10000;~<CR)
00010000 2200
00010002 4282
00010004 0401
00010006 E289
00010008 66FA
0001000A E20A
0001000C 55C2
0001000E 60FE
020Bug) RM DO <CR>

MOVE.L
CLR.L
AOO.B
LSR.L
BNE.B
LSR.B
SCS
BRA.B

Initialize DO and start target program:

DO =OOOOOOOO? 52A9C._<CR)
020Bug) GO 10000 <CR>
Effective address: 00010000

To exit target code, press ABORT pushbutton.

Exception: Abort
Format Vector = 0100
PC =OOOlOOOE SR =2711=TR:OFF S. 7 X ... C

00,01
02
01,02
1,01
$10004
#1,02
02
$1000E

USP =0000F830 HSP =0000FC18 ISP*=0000FFF8 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =00052A9C 01 =00000000 02 =OOOOOOFF 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =0000FFF8

Set PC to start of program and restart target code:

020Bug> RM PC <CR>
PC =OOOlOOOE? 10000._<CR>
020Bug> GO <CR>
Effective address: 00010000

':I_I?

3.9 GO TO NEXT. INSTRUCTION GN

GN

GN sets a temporary breakpoint at the address of the next instruction, that is,
the one following the current instruction, and then starts target code
execution. After setting the temporary breakpoint, the sequence of events is
similar to that of the GO command.

GN is especially helpful when debugging modular code because it allows the user
to "trace" through a subroutine call as if it were a single instruction.

Example: The following section of code resides at address $2000.

020Bug> MO 2000:~;~<CR>
00002000 7003
00002002 7201
00002004 6100FFA
00002008 2600
020Bug>

MOVE.L
MOVEQ.L
BSR.W
MOVE.L

#3,00
#I,Ol
$3000
00,03

The following simple subroutine resides at address $3000.

020Bug> MO 3000:g;~<CR>
00003000 0081
00003002 4E75
020Bug>

Execute up to the BSR instruction.

020Bug> RH PC <CR>
PC =OOOOOOOO? 2000._<CR>
020Bug> GT 2004 <CR>
Effective address: 00002004
Effective address: 00002000
At Breakpoint
PC =00002004SR =2700=TR:OFF 5.7

AOD.L 01,00
RT5

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =o=xx OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =00000003 01 =00000001 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00002004 6l000FFA BSR.W $3000
020Bug)

Use the GN command to "trace" through the subroutine call and display the
results.

020Bug) GN <CR>
Effective address: 00002008
Effective address: 00002004
At Breakpoint

PC =000020085R =2700=TR:OFF 5.7
U5P =00003830 M5P =00003C18 15P*=00004000 VBR =00000000
5FC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
00 =00000004 01 =00000001 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00002008 2600 HOVE.L 00,03
020Bug)

3. 10 GO EXECUTE USER PROGRAM GO

GO [<AOOR>]

The GO command (alias "G") is used to initiate target code execution. All
previously set breakpoints are enabled. If an address is specified, it is
placed in the target PC. Execution starts at the target PC address.

The sequence of events is as follows:
1) First, if an address is specified, it is loaded in the target PC.
2) Then, if a breakpoint is set at the target PC address, the instruction at the

target PC is traced (executed in trace mode).
3} Next, all breakpoints are inserted in the target code.
4) Finally, target code execution resumes at the target PC address.

At this point control may be returned to 020Bug by various conditions:

1) A breakpoint with 0 count was found.
2) The user pressed ABORT or RESET.
3) An unexpected exception occurred.
4) By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $10000)

020Bug> HO 10000;~<CR>
00010000 2200
00010002 4282
00010004 0401
00010006 E289
00010008 66FA
OOOlOOOA E20A
0001000C 55C2
0001000E 60FE
020Bug> RM DO <CR>

HOVE.L
CLR.L
AOO.B
LSR.L
BNE.B
LSR.B
SCS
BRA.B

00,01
02
01,02
#1,01
$10004
#1,02
02
$1000E

Initialize 00. set some breakpoints. and start target program:

00 =OOOOOOOO? 52A9C._<CR>

020Bug> BR 10000,1000E <CR>
BREAKPOINTS
00010000 OOOIOOOE
020Bug> GO 10000 <CR>
Effective address: 00010000
At Breakpoint
PC =OOOlOOOE SR =2011=TR:OFF S. 0 x ... C
USP =0000F830 HSP =0000FC18 ISP*=00010000 VBR =00000000
SFC =o=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
00 =00052A9C 01 =00000000 02 =OOOOOOFF D3 =00000000
D4 =00000000 05 =00000000 06 =00000000 D7 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =OOOOOCOO A5 =00000000 A6 =00000000 A7 =00010000
000 I OOGE 6GFE BRA. B $100GE

3-15

Note that in this case breakpoints are inserted after tracing the first
instruction, therefore the first breakpoint is not taken.

Continue target program execution.

020Bug> ~<CR>
Effective address: OOOlOOOE
At Breakpoint
PC =OOOlOOOE SR =2011=TR:OFF S. 0 X ••. C
USP =0000F830 HSP =0000FC18 ISP*=OOOIOOOO VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =000S2A9C 01 =00000000 02 =OOOOOOFF 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00010000
OOOlOOOE 60FE BRA.B $lOOOE

Remove breakpoints and restart target code.

020Bug> NCBR <CR>
BREAKPOINTS 020Bug> GO 10000 <CR>
Effective address: 00010000

To exit target code, press the ABORT pushbutton.

Exception: Abort
Format Vector = 0100
PC =OOOlOOOE SR =2011=TR:OFF S. 0 X ••• C
USP =0000F830 HSP =0000FC18 ISP*=0000FFF8 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =000S29AC 01 =00000000 02 =OOOOOOFF 03 =00000000
04 =00000000 05 =00000000 06 =0000000007 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFF8

i-If..

3. 11 GO TO TEMPORARY BREAKPOINT GT

GT <AOOR>

GT allows the user to set a temporary breakpoint and then start target code
execution. A count may be specified with the temporary breakpoint. Control is
given at the target PC address. All previously set breakpoints are enabled.
The temporary breakpoint is removed when any breakpoint with 0 count is
encountered.

After setting the temporary breakpoint, the sequence of events is similar to
that of the GO command. At this point control may be returned to 020Bug by
various conditions:

!} A breakpoint with 0 count was found.
2) The user pressed ABORT or RESET.
3) An unexpected exception occurred.
4) By execution of the .RETURN TRAP #IS function.

Example: (The following program resides at $2000)

020Bug> MD 2000;~<CR>
00002000 2200
00002002 4282
00002004 0401
00002006 E289
0000200B 66FA
0000200A E20A
0000200C 55C2
0000200E 60FE
020Bug> RM DO <CR>

Initialize DO and set a breakpoint:

DO =00000000 1 52A9C._<CR)

020Bug) BR 200E <CR>
BREAKPOINTS
OOOlOOOE
020Bug>

MOVE.L
CLR.L
AOO.B
LSR.L
BNE.B
LSR.B
SCS
BRA.B

OO,O!
02
01,02
#I,Ol
$2004
#1,02
02
$200E

Set PC to start of program, set temporary breakpoint, and start target code:

020Bug) RM PC <CR>
PC =OOOlOOOE 1 2000._<CR>

020Bug) GT 2006 <CR)
Effective address: 0002006
Effective address: 0002000
At Breakpoint
PC =00002006 SR =2711=TR:OFF S. 7 X •.. C
USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO

3-17

DO =00052A9C 01
04 =00000000 05
AO =00000000 Al
A4 =00000000 AS
00002006 E289
020Bug)

=90000029 02 =00000009 03 =00000000
=00000000 06 =00000000 07 =00000000
=00000000 A2 =00000000 A3 =00000000
=00000000 A6 =00000000 A7 =00004000

LSR.L #1,01

Set another temporary breakpoint at $10002 and continue the target program
execution.

020Bug) GT 2002 (CR)
Effective address: 00010006
At Breakpoint
PC =0000200E SR =2711=TR:OFF S. 7 X ••• C
USP =00003830 HSP =00003C18 ISP*=00004000 VBR =00000000
SFC =O=XX oFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =000S2A9C 01 =00000000 02 =OOOOOOFF 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
0000200E 60FE BRA.B $200E
020Bug)

Note that a breakpoint from the breakpoint table was encountered before the
temporary breakpoint.

~ to

3. 12 HELP HE

HE [<COMMAND>]

HE is the 020Bug help facility. HE <CR> displays the command name of all
available commands along with a brief description of each one. HE <COMMAND>
displays only the command name and description for that particular command.

Example: 020Bug> HE <CR>

MD
HM
H
MS
RD
RM
DC
BR
NOBR
T
TC
IT
GO
G
GT
GO
GN
BF
BM
BS
LO
VE
DU
TM
OF
OS
PA
NOPA
PF
SO
TS
TO
020Bug>
TC
020Bug>

Memory Display
Memory Modify
"Alias" for previous command
Memory Set
RegisterDisplay
Register Modify
Data Conversion and Expression Evaluation
Breakpoint Insert
Breakpoint Delete
Trace Instruction
Trace on Change of Flow
Trace to Temporary Breakpoint
GO to Target Code
"Alias" for previous command
Go and Insert Temporary Breakpoint
Go Direct (no breakpoints)
Go and Stop after Next Instruction
Block Fi II
Block Move
Block Search
Load S-Records
Verify S-Records
Dump S-Records
Transparent Mode
Offset Registers
Switch to Operating System
Printer Attach
Printer Detach
Port Format
Switch Directory
Set time-of-day clock
Display time-of-day clock
HE TC <CR>
Trace on Change of Flow

3. 13 LOAD S-RECORDS FROM HOST LO

La [<ADDR» [;<X/-C» [=<text»

This command is used when data in the form of a file of Motorola S-Records is to
be downloaded from a host system to the GMX Micro-20. The LO command accepts
serial data from the host and loads it into memory.

The optional <ADDR> field allows the user to enter an offset address which is to
be added to the address contained in the address field of each record. This
will cause the records to be stored to memory at different locations then would
normally occur. The contents of the automatic offset register are not added to
the S-Record addresses.

The optional text field, entered after the equals sign (=), will be sent to the
host before 020Bug begins to look for S-Records at the host port. This allows
the user to send a command to the host device to initiate the download. This
text should NOT be delimited by any kind of quote marks. The text is understood
to begin immediately following the equals sign and terminate with the carriage
return. If the host is operating full duplex, the string will also be echoed
back to the host port by the host and will appear on the user's terminal screen.

In order to accommodate host systems that echo all received characters, the
above-mentioned text string is sent to the host one character at a time and
characters received from the host are read one at a time. After the entire
command has been sent to the host LO will keep looking for a LF character from
the host, Signifying the end of the echoed command. No data records will be
processed until this LF is received. If the host system does not echo
characters, LO will still keep looking for a LF character before data records
are processed. For this reason it is required in situations where the host
system does not echo characters that the first record transferred by the host
syst~m be a header record. The header record is not used but the LF after the
header record serves to break LO out of the loop so that data records will be
processed.

The other options have the fol lowing effects:

-C option - Ignore checksum. A checksum for the data contained within an
SRecord is read in at the port. Normally, this calculated checksum
is compared to the checksum contained within the S-Record and if
the compare fails an error message is sent to the screen on
completion of the download. If this option is selected then the
comparison is not made.

X option - Echo. Echoes the S-Records to the user's terminal as they are read
in at the host port.

The S-Record format (see Appendix C) allows for an entry point to be specified
in the address field of the termination record of an S-Record block. If the
address field of the termination record contains an address other than zero then
that address (plus the offset address, if any) will be put into the target PC.
Thus after a download the user need only enter G or GO instead of G <addr> or GO
<addr) to execute the code that was downloaded.

If a non-hex character is encountered within the data field of a data record
then the part of the record which had been received up to that time will be

3-20

printed to the screen and 020Bug's error handler will be invoked to point to the
faulty character.

As mentioned, if the embedded checksum of a record does not agree with the
checksum calculated by 020Bug AND if the checksum comparison has not been
disabled via the "-C" option then an error condition exists. A message will be
output stating the address of the record (as obtained from the address field of
the record), the calculated checksum and the checksum read with the record. A
copy of the record is also output. This. is a fatal error and causes the command
to abort.

When a load is in progress, each data byte is written to memory and then the
contents of this memory location are compared to the data to determine if the
data stored properly. If for some reason the compare fails then a message is
output stating the address where the data was to be stored, the data written and
the data read back during the compare. This is also a fatal error and will
cause the command to abort.

Since processing of the S-Records is done character-by-character, any data that
was deemed good will have already been stored to memory if the command aborts
due to an error.

Examples:

Suppose a host system (a VME/IO with VERSAdos In this case) was used to create a
program that looks like this:

1 * Test Program.
2 *
3 65040000 ORG $65040000
4
5 . 65040000 1001 MOVEQ.L #1,00
6 65040002 0088 AOO.L AO,DO
1 65040004 4AOO TST.B DO
8 65040006 4E15 RTS
9 END

****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

Then this program was converted into an S-Record file named TEST.MX that looks
I ike this:

SOOF00005445535453335331202001015E
S30D650400007001D0884A004E15B3
57056504000091

Load this file into the GMX Micro-20 memory for execution at address $40000 as
follows:

020Bug>TM_<CR>
Escape character: $01= A
<BREAK>

..

Go into transparent mode to establish
communication with the VME/IO.
Press BREAK key to get VERSAdos login
prompt .

3-21

(log in)
"
"

= <"A>

User must log onto VERSAdos and enter the
proper catalog t~ access the file TEST.MX

(Enter escape character to return to
(020Bug prompt.

020Bug> LO -65000000 ;~=COpy TE5T.MX,#_<CR>
COpy TEST.MX,#
530065040000700100884A004E75B3
57056504000091
020Bug>

The 5-Records are echoed to the terminal because of the "X" option. Note that
the SO header record is not echoed.

The offset address of -65000000 was added to the addresses of the records in
FILE.MX and caused the program to be loaded to memory starting at $40000. The
text "COpy TE5T.MX,#" is a VER5Ados command line that caused the file to be
copied by VER5Ados to the VME/IO port which is connected with the GMXMicro-20's
host port.

020Bug> HO 40000:~;~<CR>
00040000 7001
00040002 0088
00040004 4AOO
00040006 4E75
020Bug>

HOVEQ.L
AOO.L
T5T.B
RT5

#1,00
AO,OO
00

The target PC now contains the entry point of the code in memory ($40000).

3-22

3. 14 MEMORY DISPLAY MO

HO(S] <AOOR>[:<COU~T> : <AOOR>][; [B:W:L:S:O:X:P:Dl]]

This command Is used to display the contents of multiple memory locations all at
once. HDaccepts the following data types:

B - Byte
W - Word
L - Longword
S - Single precision floating-point
o - Double precision floating-point
X - eXtended precision floating-point
P - Packed decimal floating-point

The default data size is word. Integer data is displayed in hex; floating-point
data is displayed in hex and also in decimal scientific notation. The OJ option
selects the built-in 020Bug disassembler. No other option is allowed if OJ is
selected.

The optional count argument in the HD command specifies the number of data items
to be displayed (or the number of instructions to disassemble if the disassembly
option is selected}. The default value is 8 if none is entered. Entering only
<CR> at the prompt immediately after the command has completed will cause the
command to re-execute, displaying an equal number of data items or lines
beginning at the next address.

Example 1:

020Bug> md 12000 <CR>
00012000 2800 1942 2900 1942 2800 1842 2900 2846 (.. B) .. B(.. B} •• F
020Bug> <CR>
00012010 FC20 0050 E007 9F61 FFOO OOOA E860 F060 . .Pm •• a .••• h'p' .

Example 2: Assume the following processor state: A2=00013500,D5=53F00127

020Bug) md (a2,d5}:&19;~<CR>
00013627 4F 82 00 C5 9B 10 33 7A OF 01 6C 3D 4B 50 OF OF
00013637 31 AB 80

O •. E •• 3z_.I=KP •.
+1.

020Bug>

Example 3:

020Bug> md 50008;~<CR>
00050008 46FC2700
0005000C 61FF0000023E
00050012 4E7A0801
00050016 41ED7FFC
0005001A 5888
0005001C 2E48
0005001E 2C48
00050020 13C7FFFB003A
020Bug>

HOVE.W
BSR.L
MOVEC.L
LEA.L
AOOQ.L
HOVE.L
HOVE.L
HOVE.B

3-23

#9984,SR
$5024C
VBR,A5
32764(A5),AO
#4,AO
AO,A7
AO,A6
D7,($FFFB003A).L

Example 4:

020Bug> md 6000;~<CR>
00060000 0_50C8_4E81D1514C3B4682= 2.05868705929099575E-293
0006000C O_49F4_47AE30E44567A615= 1.1848124282926256_E+767
00060018 0_4321_40DA90773E9405A8= 1.3513932923024227_E+241
00060024 0_3C4D_3A06FOOA37C0653B= 7.6215797862099370_E-286
00060030 1_3579_333349FD30ECC4CE=-4.2389212673767906_E-812
0006003C 0_2EA6_2C5FAF302AI92461= 4.6313284761559737_E-338
00060048 0_67D2_258COEC3234583F4= 2.9388148G82109845_E-068
00060054 0_20FE_1EB86E561C71E387= 1.2739189165036265_E-390

3-24

3.15 MEMORY MODIFY HM

HH <ADDR> [i[[N][BIWILISIDIXIPIA1IDI]

This command Is used to examine and change memory locations. HH accepts the
followIng data types:

B - Byte
W - Word
L - Longword
S - Single precIsion floating-point
D - Double precision floating-point
X - eXtended precision floating-point
P - Packed decimal floating-point

The default data type Is word. The HH command (alias "Hit) reads and displays
the contents of memory at the specified address and prompts the user with a
question mark ("1"). The user may enter new data for the memory location,
followed by <CR>, or may simply enter <CR>, which leaves the contents unaltered.
That memory location will be closed and the next memory location will be opened.

The user may also enter one of four specIal characters, either at the prompt or
at the end of an Input data string, which change what happens when carriage
return Is entered. These special characters are as follows:

"V" or "v" - The next successive memory locatIon wi 11 be opened. (This is the
default. It Is In effect whenever HH Is invoked and remaIns In
effect until changed by enterIng one of the other special
characters).

""'"
"="

" " .

- HH will back up and open the previous memory location.

- HH will re-open the same memory location (thIs Is useful for
examIning I/O registers or memory locations that are changing over
time.

- Terminates HH command. Control wIll return to 020Bug.

The N option of the MH command disables the read portion of the command. The' A
option forces alternate location accesses only.

If any floating-poInt format Is selected, data may be entered in any of the
input formats described in section 3.22 (Register Hodify), but will be stored in
the selected format. Because of the complexity of these formats, using one of
the specIal characters after the data may cause the Input to be rejected. If
the input is single precision. double precision, extended precision, or packed
hexadecimal, and the number of mantissa digIts entered's less than the maximum
allowed, or the input is in scientific notation, a trailing special character
will cause the input to be rejected. The specIal character will still take
effect.

Example 1:

020Bug> mm 10000 <CR>
00010000 12341 <CR>
00010002 56781 4321 ,<CR>

Access location 10000

Hodify memory

3-25

00010004 9ABC1 8765~ <CR>
00010002 43211 <CR>
00010000 12341 abcd._<CR>

Example 2:

020Bug> 1M! 10001;12-<CR>
00010001C04321871 <CR>
00010009 000680101 68010+1Q=_<CR>
00010009 000680201 <CR>
00010009 000680201 ._<~~>

Example 3:

020Bug> mm 780Q8;E-<CR)
00078008 1000_816_356780258255045001
00078008 1000_816_356780258255045001
00078008 0000 023 625000000000000001
00078008 0100:027:119931191718441131
00078008 0100_221_563660019126207001
00078008 1100_794_455781455568081641
00078008 0000_050_478900000000000001
00078008 0000_001_140000000000000001

0007800C\ 0100_027_119931191718441131

Modify memory and back up -

Hodify memory and exit

Longword access to location 10001
(Alternate location accesses)
Modify and reopen location

Exit 14M

=_<CR>
0000 023 -- 625<CR>
o 25 3E009F<CR>
o 123 45FF5<CR>
1 35B3 BF00349<CR>
~.7893E50<CR>
&ll<CR>
o 25 3EOOOOv<CR>

._<CR>

Packed decimal
Access same address
packed decimal
single precision
double precision
extended precision
scientific notation
integer
single precision;
trailing Os allow
step-to-next code
Exit HH

The 01 option enables the one-line assembler/disassembler. All other options
are invalid If 01 is selected. The contents of the specified memory location
witl be disassembled and displayed and the user will be prompted with a question
mark ("1") for Input. At this point the user has three options:

1) Enter <CR>. This witl close the present location and will continue with
disassembly of next Instruction.

2) Enter a new source instruction followed by <CR>. This invokes the
assembler, which will assemble the instruction and generate a "listing file"
of one instruction.

3) Enter .<CR>. This will close the present location and will extt the HH
conmand.

If a new source line is entered (#2 above), the present ltne will be erased and
replaced by the new source line entered. If a hardcopy terminal is being used,
port 0 should be reconfigured for hardcopy operation with the PF conmand. In
the hardcopy mode, a line feed will be done instead of erasing the line.

If an error is found during assembly, the symbol "~" will appear below the field
suspected of the error, followed by an error message. The location being
accessed will be redtsplayed.

For additional information about the assembler, see Chapter 4.

3-26

Example 4: Assemble a new source line.

020Bug> mm IOOOO;~<CR>
00010000 46FC2400
00010000 85E2
00010002 2400

Example 5: New source line with error.

00010008 4E7A0801
~#$~,~(a5,d6}}_<CR>
00010008

··*Unknown Field * ••

00010008 4E7A0801

MOVE.W #9216.SR 1 divs.~-(a2}.d2 <CR>
OlVS.W -(A2).02
MOVE.L 00.021

MOVEC.L VBR,A5 1

BCHG #$12,9(A5.06»

MOVEC.L VBR,A5 1

Example 6: Step to next location and exit MH.

020Bug> m 1000c;21-<CR>
0001000C OOOOOOFF
00010010 20C9
020Bug>

OR.B #255.00? <CR>
HOVE.L Al,(AO}+ 1 .<CR>

3-27

3.16 MEMORY SET HS

MS <ADDR> Hexadecimal number / 'string'

Memory Set is used to write data to memory starting at the specified address.
Hex numbers are not assumed to be of a particular size, so they can contain any
number of digits (as allowed by command line buffer size). If an odd number of
digits are entered, the least significant nybble of the last byte accessed will
be unchanged.

ASCII strings can be entered by enclosing them in single quotes ('). To Include
a quote as part of the string two consecutive quotes should be entered.

Example: Assume that memory is initially cleared:

020Bug> ms 25000 0123456789abcDEF
020Bug> md 25000:20;~<CR>
00025000 01 23 45 67 89 AB CD EF
00025010 27 30 32 30 42 75 67 27
020Bug>

'This Is "020Bug'" 23456 <CR>

54 68 69 73 20 69 73 20
23 45 60 00 00 00 00 00

3-28

.#Eg.+MoThls is
'020Bug'#E' ••••.

3.17 OFFSET REGISTERS DISPLAY/MODIFY OF

OF (Rn(;A]]

OF allows the user to access and change pseudo-registers called offset
registers. These registers are used to simplify the debugging of relocatable
and position Independent modules (see discussion about offset registers in
section 2.1.1.2.2).

There are 8 offset registers (RO-R7), but only RO-R6 can be changed. R7 Is
always 0 and It Is used to override the effect of the automatic register (see
below).

Command usage:

OF - To display all offset registers.
register is the automatic register.

An asterisk indicates which

OF Rn - To display/modify Rn. The user can scroll through the registers in a
way similar to that used by the MM command.

OF Rn;A - To display/modify Rn and set it as the automatic register. The
automatic register is one that Is automatically added to each
absolute address argument of every command except if an offset
register Is explicitly added. An asterisk indicates which register
is the automatic register.

Offset register rules:

1) At power up/reset R7 Is the automatic register.

2) At power up/reset all offset registers are set to zero.

3} R7 is always zero, and cannot be changed.

4) Any offset register can be set as the automatic register.

5) The automatic register is always added to every absolute address argument of
every 020Bug command, except when an offset register is explicitly added to
an argument (see Table 2-1).

6) There is always an automatic register. Note that a convenient way to
disable the effect of the automatic register is by setting R7 as the
automatic register. (Note: This Is the default condition, see Item
above).

Examples:

Display offset registers.

020Bug> OF <CR>
RO = 00000000 Rl
R4 = 00000000 R5

=00000000 R2 =00000000 R3 =00000000
=00000000 R6 =00000000 R7* =00000000

3-29

Modify some offset registers.

020Bug> OF RO <CR>
RO =000000001 20000 <CR>
Rl =000000001 20000 A<CR>
RO =000200001 ._<CR>

Look at locatfon $20000.

020Bug> M 20000;~<CR>
OOOOO+RO 41F954455354
020Bug> H O+RO;~<CR>
OOOOO+RO 41F954455354
020Bug>

Set RO as the automatic register.

020Bug> OF RO;A-<CR>
RO*=000200001 ._<CR>

To look at location $20000.

020Bug> H O;~<CR>
OOOOO+RO 41F954455354
020Bug>

LEA

LEA

($54455354).L,AO ._<CR>

($54455354).L,AO ._<CR>

LEA.L ($54455354).L,AO ._<CR>

To look at location 0, overrfde the automatic offset.

020Bug> H O+R7;~<CR>
00000000
020Bug>

DC.W $FFF8._ <CR>

3-30

3.18 OPERATING SYSTEM OS

OS

This command causes control to be transferred to a program in the other part of
the GMX Hfcro-20 ROM, which is normally the bootstrap for an operating system.
A longword address at location $000014 In the ROM points to the start of this
other program. The OS command causes a starting execution address and Initial
stack pointer value to be fetched from the first two longwords at the address
pointed to by the value at $000014 In the ROM. Execution then begins with at
the starting address with the new SP value in A7. Refer to Appendix A,
"Alternate ROM Programs", for further explanation.

This function is normally used to initiate the bootstrap loader for an operating
system supplied with the GMX Micro-20. However, the program started by the OS
command could be anything at all that can be stored in the ROM, Including a
user-supplied program. Also note that the program started by the OS command Is
the same program which is automatically started In place of 020Bug If switch
51-1 is set OFF at RESET or Power-up, as described In Section 6 of the Hardware
Setup Manua 1 •

Example:

020Bug> as <CR>
< •••• operating system startup message •.•• >

3-31

3.19

PA
NOPA

PRINTER ATTACH/DETACH PA
NOPA

These two corrrnands "attach" or ttdetach" a serial printer from the GMX Mlcro-20
port 2. When the printer 1s attached, everything that appears on the system
console terminal is also echoed to port 2 and Is printed out by the printer. PA
is used to attach the printer. NOPA is used to detach the printer.

The NOPA command detaches the printer such that activity at port 0 Is no longer
echoed to port 2. NOPA does not change the configuration of port 2. If no
printer Is attached when NOPA is invoked then the user receives a message to
that effect.

The port characteristics that will be used when port 2 is configured for the
prfnter can be examined and/or changed using the Port Format (PF) command.

Examples:

020Bug> PA <CR>
020Bug>

(The printer is now attached. Echoing will be done to the printer.)
(This Is useful for keeping a record of a debugging session. The)
(user may also obtain a listing of a program which is in memory)
(by invoking the MD command with the disassembly option. The)
(disassembled source lines will sent to the prInter as they are)
(displayed on the termInal screen.)

020Bug> NOPA <CR>
020Bug>

(The printer Is now detached.

020Bug) NQPA <CR>
No printer was attached.
020Bug)

3-32

3.20 PORT FORMAT PF

PF[n]

Port format al lows the user to configure the on-board serial ports. There are
three serial ports accessible to 020BUG, ports O. 1, and 2. Port 0 is the
system console port, port I is the data link to a host system, and port 2 is the
printer port. The parameters that can be changed for each port and their
default values are given in the table below.

TABLE 3-2. PF COMMAND DEFAULT VALUES
===

Port 0 Port 1 Port 2
======= ====== =======

Parameter Console Host Printer Description
===
Hardcopy N Hardcopy console device
XON/XOFF Y Y Y XON/XOFF protocol
XON char "Q "Q "Q XON character
XOFF char "5 "5 "5 XOFF character
Char Null s 0 0 0 Number of nulls after every char
<CR> Nulls 0 0 0 Number of nul Is after <CR>
Baud Rate (..) 19200 19200 19200 Baud rate
RTS/CTS Y Y Y RTS/CTS handshake
Parity N N N Parity generated and checked
Even/Odd E E E Generate odd or even parity
Bits/char 8 8 8 Bits per character
Stop bits 1 1 1 stop bits after each character
===
(* Default if no baud rate is specified in ROM parameter area)
===

The baud rates avai lable include 75, 110, 135, 150, 300, 600, 1200, 2000, 2400,
4800, 1800, 9600, 19200, and 38400. Use PFn To access the configuration table
for port n. The changes to a configuration table will take effect after the
last item has been entered. Use the BREAK key to abort the PF command and
cancel any changes made to a configuration table

Examples:

020Bug) EFO <CR>
Hardcopy=N (Y/N)? <CR>
XON/XOFF=Y (Y/N)? <CR>
XON char :$1 1="Q1 _A~<~~>
XOFF char:$13=AS'? $20 <CR>
Char Nul Is=&O? <~8>

Null s=&07 <CR>
Baud Rate =&96001 <~8>
RTS/CTS =Y (Y/N) <CR>
Parity =N (YIN) Y
Parity (E/O) =EVEN? <CR>
Bits per character (5.6,7.8) =&8?
Stop 8its (1.2) =&I? <CR>

Access console configuration.

Change XON
And XOFF characters

Enable parity <CR>

<CR>

3- 33

020Bug> PE1-<CR> Access printer configuration
XON/XOFF=Y (Y/N)? <~8>

XON char :$ll=AQ1 <C~>

XOFF char:$13=AS? <CR>
Char Nulls=&01 <CR>
Nulls=&O? <CR>
Baud Rate =&3007 ~600 <CR> Change baud rate
RTS/CTS =Y (Y/N) (CR>
Parity =N (Y/N) <CR>
Bits per character (5.6.7.8) =&81 <~B>

Stop bits (1,2) =&11 <CR>
020Bug>

Note: the system uses set #2 of the baud rates generated internally by the
MC68681 DUART. This set includes 19,200 baud but not 38.400 baud. This latter
rate is made available by programming the DUART's internal timer/counter to
divide the master 3.6864 Mhz time base down to a 16x clock for 38.400 operation.
If the user's application makes use of the DUART's timer/counter for any other
purpose, the 38.400 baud rate cannot be used.

3-34

3.21 REGISTER DISPLAY RO

RD [+FPC]

The RO command is used to display the target state, that Is, the processor state
associated with the target program (see GO command). The instruction pointed to
by the target PC is disassembled and displayed also. The processor registers
are:

Number of
registers

(AO-A7) 8
8

10

A - Address Registers
o - Data Registers
S - System Registers

(00-07)
(PC,SR,USP,MSP,ISP,V8R,SFC,DFC,CACR,CAAR)

Note that A7 represents the active stack pointer, which leaves 25 different
registers.

Example:

0208ug> RO <CR>
PC =00008000 SR =2705=TR:OFF S. 7 •• Z.C
USP =0000F830 MSP =0000FC18 ISP*=OOOIOOOO VBR =00000000
SFC =7=CS OFC =1=UO CACR=l=.E CAAR=OOOOOOOO
DO =00000000 01 =00000000 02 =00000000 03 =00000000
04 =00000120 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00009000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00010000
00008000 4AF34000 TAS.B 0(A3,04.W)
020Bug>

An asterisk following a stack pointer name indicates that it Is the active stack
pointer. The status register includes a mnemonic portion to help in reading It:

5, M Bfts:
otherwise a

Trace Bits
===
T1 TO Mnemonfc Description
===
0 0 TR:OFF Trace off

0 TR:CHG Trace on change of flow

0 TR:ALL Trace all states

TR: INV Inval td mode

===

The bit name appears (S,M) If the
"." indicates that it is cleared.

respective bit Is set,

Interrupt Mask: A number from 0 to 7 indicates the current processor
priority level.

3-35

Condition Codes: The bit name appears (X,N,Z,V,C) if the respective bit is
set, otherwise a "." indicates that it Is cleared.

The source and destination function code registers (SFC, DFC) include a two
character mnemonic:

Function Code
=============

o
1
2
3
4
5
6
7

Mnemonic
==========

xx
UD
UP
XX
XX
SO
SP
CS

Description
====================
Undefined
User Data
User Program
Undefined
Undefined
Supervisor Data
Supervisor Program
CPU Space

The CACR register shows mnemonics for two bits: Enable and Freeze. The bit name
(E, F) appears If the respective bit Is set, otherwise a "." indicates that it
is cleared.

The RD command also can display the target state of the HC68881 Floating Point
Coprocessor, which is saved and loaded Just like the main processor's state (If
an FPC is installed). Including "+FPC" on the command line enables this
feature; "-FPC disables it. The FPC registers are

8
3

Example:

FP - Floating Point data registers
S - System Registers

020Bug> RO +FPC<CR>
PC =00008000 SR =2705=TR:OFF S. 1 •• Z.C

(FPO-FP7)
(FCR, FSR, FAR)

USP =0000F830 HSP =0000FC18 ISP*=OOOlOOOO VBR =00000000
SFC =1=CS OFC =I=UO CACR=l=.E CAAR=OOOOOOOO
DO =00000000 01 =00000000 02 =00000000 03 =00000000
04 =00000120 05 =00000000 06 =00000000 01 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00009000
A4 =00000000 A5 =00000000 A6 =00000000 A1 =00010000
FCR =00000000 FSR =OFOOOOOO-(CC=NZI[NAN]) FAR =00000000
FPO =0_0000_0000000000000000= O.OOOOOOOOOOOOOOOO_E+OOO
FPl =0_0000_0000000000000000= O.OOOOOOOOOOOOOOOO_E+OOO
FP2 =0_3FFF_90F3B645AICAC083= 1.2340000000000000_E+000
FP3 =0_0000_0000000000000000= O.OOOOOOOOOOOOOOOO_E+OOO
FP4 =0_000o_0000000000000000= O.OOOOOOOOOOOOOOOO_E+OOO
FP5 =0_3033_9A28000000000000= 3.4936087938152341_E-216
FP6 =0_0000_0000000000000000= O.OOOOOOOOOOOOOOOO_E+OOO
FP7 =0_0000_0000000000000000= O.OOOOOOOOOOOOOOOO_E+OOO
00008000 4AF34000 TAS.B 0(A3,04.W)

3-36

The floating-point data registers are displayed as extended precision operands.
For a complete explanation of floating point data formats the user should
consult the MC68881 User's Manual. The hex display is organized as follows.
The leading single digit represents the sign bit. The next block of four digits
represents the is-bit signed exponent. The third block (of 16 digits)
represents the 64-bit mantissa.

Note that the Floating point Status Register (FSR) display Is shown in mnemonic
form as well as hexdecimal. The four FSR bits are the second digit in the hex
display and represent the N, Z, I, and NAN bits of the fSR.

3-37

3.22 REGISTER MODIFY RM

RM <REG>

RH allows the user to display and change the target registers. It works in
essentially the same way as the MM command. and the same special characters are
used to .control the display/change session (see MM command).

Example 1:

020Bug> RM 04 <CR>
05 =123456781 ABCDEF<CR>
04 =000000001 3000._<CR>
020Bug>

Example 2:

020Bug> rm
SFC =7=CS
SFC =1=UD
020Bug>

sfc <CR>
7 1=<CR>
7 .<CR>_

Modify register and backup
Modify register and exit

Modify register and reopen
Exit

The RH command also can be used to examine and change the target registers of
the MC68881 Floating Point Coprocessor if one is installed. Values for the
three system registers of the FPC are entered as 32-bit hex values. However.
only the most significant 8 bits of the FSR value are used; the other 24 bits of
the FSR value are ignored. Values for the FPC data registers (FPO-FP7) may be
entered in six different formats. which are shown in the following table. The
numbers in parenthesis indicate the number of sign, exponent. and mantissa bits
which will be extracted from the input string. The image at the right indicates
the largest digits acceptable in each field. The underscore character is the
only acceptable field separator. and underscores must be positioned exactly as
shown or the input will be rejected. If the input string is accepted. it is
converted to the appropriate format and stored in memory, then converted to
extended precision by loading it into an FPC data register, and finally stored
in the memory image of the selected register in extended precision format.

Single precision
Double preCision
Extended precision
Packed decimal
Scientific notation
Dec i ma 1 integer

(1.8.23)
(1,11,52)
(1 • 15,64)
(4.12,68)
(4.12,68)
(32)

I_FF_7FFFFF
1_7FF_FFFFFFFFFFFFF
1_7FFF_FFFFFFFFFFFFFFFF
1111_999_99999999999999999
(-]9.9999888877776666[E(-]999)
&999999999

3-38

In the first four formats, the first field is the sign bit(s), the second field
is the exponent, and the last field is' the mantissa. The number of sign
diglt{s) and exponent digits entered must be the same as shown here.

In packed decimal format, the first field of four single bits represents the two
sign bits and two bits used to Indicate NANs and Infinities. The first bit Is
the mantissa sign bit, the second is the exponent sign bit, and the last two are
the special flag bits.

Scientific notation input is converted to a packed decimal result. The special
flag bits are always set to O. The exponent field at the end is optional; if it
is omitted, the exponent value defaults to O. The sign characters in front of
the mantissa and exponent are also optional; if omitted, the value is positive.
Leading Os may be omitted from the exponent field.

In all floating-point formats, all digits of the mantissa field except the first
are optional; trailing Os may be omitted. In decimal integer format, all digits
after the first are optional; leading Os may be omitted.

Example:

020Bug> RH FSR <CR>
FSR =OOOOOOOO-(CC=....) 1 FOOOOOO <CR>
FAR =00000000 1 _<CR>
FPO =0_0000_0000000000000000= 0.0000000000000000_E+0001
FPl =0_3033_9A28000000000000= 3.4936087938152341_E-2161
FP2 =0 3FFF 90F3B64SAICAC083= 1.2340000000000000 E+0001
FP3 =0:0000:0000000000000000= 0.0000000000000000=E+0001
FP4 =0_0000_0000000000000000= 0.0000000000000000_E+0001
FP5 =0_000o_0000000000000000= 0.0000000000000000_E+0001
FP6 =0_0000_0000000000000000= 0.0000000000000000_E+0001
FP7 =0_0000_0000000000000000= 0.0000000000000000_E+0007

020Bug> RO <CR>
PC =00008000 SR =270S=TR:OFF S. 7 .• Z.C
USP =0000F830 HSP =0000FC18 ISP*=OOOlOOOO VBR =00000000
SFC =7=CS OFC =1=UO CACR=I=.E CAAR=OOOOOOOO
DO =00000000 01 =00000000 02 =00000000 03 =00000000
04 =00000120 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00009000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
FCR =00000000 FSR =OFOOOOOO-(CC=NZl[NAN) FAR =00000000
FPO =1_3FA2_B333330000000000=-1.4136387180819289_E-028
FPl =0_3EE4_CC3891EF70S80000= 1.0266008193855691_E+000
FP2 =1_0088_373FOOOOOOOOOOOO=-6.3205089947598130_E-892
FP3 =0_3F09_8A46971E78B1462F= 3.9303300000000000_E-012
FP4 =0_3F5F_E6080BFABBCC0831= 1.2340000000000000_E-048
FPS =0_4001_0F9A042C3C9EECCO= 6.9876500000000000_E+000
FP6 =0_4014_0590940000000000= 3.4990450000000000_E+006
FP7 =0_0000_0000000000000000= O.OOOOOOOOOOOOOOOO_E+OOO
00008000 4AF34000 TAS.B 0(A3,04.W)

3-39

1 22 333333 <CR>
o 2E4 9871230EFAB <CR>

1 0088 373F <CR>
0100 012 3930033 <CR>
1.234E-48 <CR>
§..98765 <CR>
&3499045 <CR>
._<CR>

3.23 RESTART SYSTEM RS

RS

This command Is causes the system to be restarted as if the RESET button had
been pressed. The stack pointer is reset to. the power-up value and execution
starts at the values in the power-up vectors at the beglning of the ROMs. The
stack value is in $800000, and the execution address is in $800004. The
confidence test Is performed, and a RESET instruction Is executed. which causes
the CPU to send a RESET signal to the rest of the system.

Example:

020Bug> RS<CR>
GHX Hfcro-20 Debugger/Diagnostics Version 2.41 - 7/17/86
THURSDAY 01/23/87 12:21:42
020Bug>

If the system is configured for automatic self-test operation (see section 1.4).
entering the RS command will cause self-test operation to be restarted.

3-40

3.24 SWITCH DIRECTORIES SO

SO

This command is used to change from the debugger directory to the diagnostic
directory or from the diagnostic directory to the debugger directory.

The commands In the current directory (the directory that the user is in at the
particular time) may be listed using the help (HE) command.

The way the directories are structured, the debugger commands are available from
either directory but the diagnostic commands are only available from the
diagnostic directory.

Example 1:

020Bug> SO <CR>
H2001ag>

Example 2:

H2001ag> SO <CR>
020Bug>

(The user has changed from the debugger
(directory to the diagnostic directory,
(as can be seen by the "1'1200iag>" prompt.

(The user is now back in the debugger
(directory.

3-41

)
)
)

)
)

3.25 TRACE T
HF)C

T [<COUNT>]

The T command allows execution of one instruction at a time, displaying the
target state after execution. T starts tracing at the address in the target PC.
The optional count field (which defaults to 1 if none entered) specifies the
number of instructions to be traced before returning control to 020Bug.

Breakpoints are monitored (but not inserted) during tracing for all trace
commands, which allows the use of breakpoints in ROM or write protected memory.
In all cases, if a breakpoint with a count is encountered, control will be
returned to 020Bug.

The trace functions are implemented with the trace bits (TO, Tt) in the MC68020
status register, therefore, these bits should not be modified by the user while
using the trace commands.

Example: (The following program resides at location $10000)

020Bug> MO 10000;~<CR>
00010000 2200
00010002 4282
00010004 0401
00010006 E289
00010008 66FA
0001000A E20A
0001000C 55C2
0001000E 60FE
020Bug>
Initialize PC and DO:

020Bug> RH PC <CR>
PC =00008000 1 10000.
020Bug> RM DO <CR>
DO =00000000 1 8F41C.

MOVE.L
CLR.L
AOO.B
LSR.L
BNE.B
LSR.B
SCS
BRA.B

00,01
02
01,02
#1,01
$10004
#1,02
02
$1000E

Display target registers and trace one instruction:

020Bug> RO <CR>
PC =00010000 SR =2100=TR:OFF S. 1 ..•••
USP =0000382C MSP =00003Ct4 lSP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =0008F41C 01 =00000000 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 01 =00000000
AO =00000000 At =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A1 =00004000
00010000 2200 MOVE.L 00,01
020Bug) L<CR>

3-42

PC =00010002SR =2700=TR:OFF S. 7 •.•••
USP =0000382C HSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
00 =0008F41C 01 =0008F41C 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
000 I 0002 4282 CLR. L 02
020Bug)

Trace next instruction:

020Bug) <CR>
PC =00010004SR =2700=TR:OFF S. 7 •• Z ••
USP =0000382C HSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
00 =0008F41C 01 =0008F41C 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00010004 0401 AOO.B 01,02
020Bug>

Trace the next two instructions:

020Bug) LL<CR)
PC =00010006SR =2700=TR:OFF S. 7 •••••
USP =0000382C HSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =0008F41C 01 =0008F41C 02 =OOOOOOIC 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00010006 E289 LSR.L #1,01
PC =00010008SR =2700=TR:OFF S. 7 •••••
USP =0000382C HSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =0008F41C 01 =00047AOE 02 =OOOOOOIC 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
000 10008 66F A BHE. B $10004
020Bug>

3-43

3.26 TRACE ON CHANGE OF CONTROL FLOW TC

TC [<COUNT>]

TC will start execution at the address In the target PC and will begin tracing
upon the detection of an Instruction that causes a change of control flow. such
as JSR, BSR, RTS, etc. This means that execution will be In real time until a
change of flow instruction is encountered. The optional count field (which
defaults to 1 if none entered) specifies the number of change of flow
Instructions to be traced before returning control to 020Bug.

Breakpoints are monitored (but not inserted) during tracing for all trace
commands, which allows the use of breakpoints In ROM or write protected memory.
Note that the TC command will recognize a breakpoint only If it is ata change
of flow instruction. In all cases, If a breakpoint with 0 count is encountered,
control will be returned to 020Bug.

The trace functions are Implemented with the trace bits (TO. Tl) in the MC68020
status register, therefore, these bits should not be modified by the user while
using the trace commands.

Example: (The following program resides at location $10000)

020Bug> MO 10000;~<CR>
00010000 2200
00010002 4282
00010004 0401
00010006 E289
00010008 66FA
OOOIOOOA E20A
OOOIOOOC 55C2
OOOIOOOE 60FE
020Bug>

Initialize PC and 00:

020Bug> RM PC <CR>
PC =00008000? 10000.
020Bug> RH 00 <CR>
DO =OOOOOOOO? 8F41C.

Trace on change of flow:

020Bug> TC <CR>

MOVE.L
CLR.L
AOO.B
LSR.L
BNE.B
LSR.B
SCS
BRA.B

00,01
02
01,02
#1,01
$10004
#1,02
02
$1000E

00010008 66FA BNE.B $10004
PC =00010004 SR =2700=TR:OFF S. 7
USP =0000382C HSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =0008F41C 01 =00047AOE 02 =OOOOOOlC 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A1 =00004000
00010004 0401 AOD.B 01,02
020Bug>

Note that the above display also shows the change of flow instruction.

3-44

3.27 TIME DISPLAY TO

TO

Th's command displays the current value in the GMX Micro-20's time-of-day
clock/calendar.

Example:

020Bug> TO <CR>
THURSDAY 01/23/86 12:21:42
020Bug>

3-45

3.28 TRANSPARENT HOOE TH

TH [<ESCAPE>]

TH essentially connects the two on-board serial ports (port 0 and port I)
together, allowing the user to communicate with a host computer. A message
displayed by TH shows the current escape character, i.e., the character used to
exit the transparent mode. The two ports remain "connected" until the escape
character is received by port O. The escape character Is not transmitted to the
host and at power up or reset Is initialized to $OI=~A.

The ports do not have to be at the same baud rate, but the terminal port baud
rate should be equal to or greater than the host port baud rate for reliable
operation. To change the baud rates use the PF command.

The optional escape argument allows the user to specify the character to be used
as the exit character. This can be entered in three different formats:

ASCII code $03
ASCII character 'c
control character: ~c

Example 1:

020Bug> TH <CR>
Escape character: $OI=~A

Example 2:

020Bug> ~A9-<CR>
Escape character: $07= AG

<-~§>
020Bug>

Set escape character to AC
Set escape character to "cIt
Set escape character to AC

Enter TH
Exit code is always displayed

Exit transparent mode

Enter TH and set escape character
to AG

Exit transparent mode

3-46

3.29 TIME SET TS

TS

TS allows the user to set the GMX Micro-20's hardware time-of-day clock and
calendar to a new value. The current clock con.tents are dlsplayed, and the user
is prompted as to whether he wants to enter a new value. Each element of the
time and date is displayed and prompted for separately. An empty line in
response to a prompt defaults to the current value.

Example:

020Bug> TS <CR>

Current time value = THURSDAY 01/23/86 12:21:42

Set the clock (Y-N)1 H-<CR>
020Bug> TS <CR>

Current time value = THURSDAY 01/23/86 12:21:49

Set the clock (Y-N)1 Y-<CR>
Year (00-99) = 861 <CR>
Month (01-12) = 011 <CR>
Day (01-31) = 231 <CR>
Weekday (01-07, 1=Monday) = 41 <CR>
Hour (00-23) = 121 <CR>
Minutes (00-59) = 211 <CR>
Seconds (00-59) = 491 55 <CR>
Current time value = THURSDAY 01/23/86 12:21:55

Is this time correct {Y-N)1 Y-<CR>

3-47

3.30 TRACE TO TEMPORARY BREAKPOINT TT

TT <AOOR>

TT will set a temporary breakpoint at the specifIed address and will trace until
a breakpoint with 0 count Is encountered. The temporary breakpoint Is then
removed (TT Is analogous to the GT command) and control Is returned to 020Bug.
Tracing starts at the target PC address.

Breakpoints are monitored (but not Inserted) during tracing for all trace
commands, which allows the use of breakpoints In ROM or write protected memory.
If a breakpoint with 0 count is encountered, control will be returned to 020Bug.

The trace functIons are implemented with the trace bits (TO, Tl) in the MC68020
status register, therefore, these bits should not be modified by the user while
using the trace commands.

Example: (The following program resides at location $10000)

020Bug> MO 10000;~<CR>
00010000 2200
00010002 4282
00010004 0401
00010006 E289
00010008 66FA
OOOlOOOA E20A
OOOIOOOC 55C2
OOOlOOOE 60FE
020Bug>

Initialize PC and 00:

020Bug> RM PC <CR>
PC =00008000 1 10000.
020Bug> RM DO <CR>
00 =00000000 1 8F41C.

Trace to temporary breakpoint:

020Bug> TT 10006 <CR>

MOVE.L
CLR.L
AOO.B
LSR.L
BNE.B
LSR.B
SCS
BRA.B

PC =00010002SR =2700=TR:OfF S. 7 •••••

00,01
02
01,02
#1,01
$10004
#1,02
02
$IOOOE

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =0008F41C 01 =0008F41C 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00010002 4282 CLR.L 02
PC =00010004SR =2704=TR:OFF S. 7 .• Z ••
USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC ~O=XX CACR=O=.. CAAR=OOOOOOOO
00 =0008F41C 01 =0008F41C 02 =00000000 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00010004 0401 AOO.B 01,02

3-48

At Breakpoint
PC =00010006SR =2700=TR:OFF S. 7 .••••
USP =0000382C HSP =00003C14 ISP*=00004000 VBR =00000000
SFC =O=XX OFC =O=XX CACR=O=.. CAAR=OOOOOOOO
DO =0008F41C 01 =0008F41C 02 =OOOOOOIC 03 =00000000
04 =00000000 05 =00000000 06 =00000000 07 =00000000
AO =00000000 At =00000000 A2 =00000000 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
00010006 E289 LSR.L #1,01
020Bug)

3-49

3.31 VERIFY S-RECORDS AGAINST MEMORY VE

VE [<ADDR>] [;<X/-C~] [=<text>]

This corrrnand is identical to the LO command with the exception that data is not
stored to memory but merely compared to the contents of memory.

The VE corrrnand accepts serial data from a host system in the form of a file of
Motorola S-Records and compares it to data already in the GMX Micro-20 memory.
If the data does not compare then the user is alerted via information sent to
the terminal screen.

The optional <ADDR> field allows the user to enter an offset address which Is to
be added to the address contained in the address field of each record. This
will cause the records to be compared to memory at different locations then
would normally occur. The contents of the automatic offset register are not
added to the S-Record addresses.

The optional text field, entered after the equals sign (=), will be sent to the
host before 020Bug begins to look for S-Records at the host port. This allows
the user to send a command to the host device to initiate the download. This
text should NOT be delimited by any kind of quote marks. The text is understood
to begin immediately following the equals sign and termi~ate with the carriage
return. If the host is operating full duplex, the string will also be echoed
back to the host port by the host and will appear on the user's terminal screen.

In order to accommodate host systems that echo all received characters, the
above-mentioned text string is sent to the host one character at a time and
characters received from the host are read one at a time. After the entire
command has been sent to the host LO will keep looking for a Lf character from
the host, signifying the end of the echoed command. No data records will be
processed until this Lf Is received. If the host system does not echo
characters, LO will still keep looking for a Lf character before data records
are processed. for this reason it Is required In situations where the host
system does not echo characters that the first record transferred by the host
system be a header record. The header record is not used but the Lf after the
header record serves to break LO out of the loop so that data records will be
processed.

The other options have the following effects:

-c option - Ignore checksum. A checksum for the data contained within an
S-Record is calculated as the S-Record is read in at the port.
Normally, this calculated checksum is compared to the checksum
contained within the S-Record and If the compare fails an error
message Is sent to the screen on completion of the download. If
this option Is selected then the comparison is not made.

X option - Echo. Echoes the S-Records to the user's terminal as they are
read in at the host port.

During a verify operation, an S-Record's data is compared to memory beginning
with the address contained in the S-Record's address field, (plus the offset
address, if it was specified). If the verification fails then the non-comparing
record Is set aside until the verify'is complete and then It is printed out to
the screen. If three non-comparing records are encountered in the course of a

3-50

verify operation then the command Is aborted.

If a non-hex character is encountered within the data field of a data record
then the part of the record which had been received up to that time will be
printed to the screen and 020Bug's error handler wIll be Invoked to point to the
faulty character.

As mentioned. If the embedded checksum of a record does not agree with the
checksum calculated by 020Bug AND If the checksum comparison has not been
disabled via the "-C" option then an error condition exists. A message will be
output stating the address of the record (as obtained from the address field of
the record). the calculated checksum and the checksum read with the record. A
copy of the record Is also output. This is a fatal error and causes the command
to abort.

Examples:

This short program was developed on a host system.

1 * Test Program.
2 *
3 65040000 ORG $65040000
4
5 65040000 7001 MOVEQ.L #1.00
6 65040002 0088 AOO.L AO.OO
7 65040004 4AOO TST.B DO
8 65040006 4E75 RTS
9 END

****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

Then this program was converted Into an S-Record file named TEST.MX that looks
I ike this:

SOOF00005445535453335337202001015E
S300650400007001D0884A004E75B3
57056504000091

This file was downloaded into memory at address $40000.
examined in memory using the Memory Display command.

020Bug> MO 40000:~;~<CR>
00040000 7001
00040002 0088
00040004 4AOO
00040006 4E75
020Bug>

MOVEQ.L
AOD.L
TST.B
RTS

#1.00
AOtOO
DO

The program may be

Suppose that the user wants to make sure that the program has not been destroyed
in memory. The VE convnand will be used to perform a verification.

020Bug> VE -65000000;~=COPY TEST.MX,#_<CR>
S30065040000700100884A004E75B3
57056504000091

3-51

Verify passes.
020Bug)

The verification passes. The program stored in memory was the same as that tn
the S-Record file that had been downloaded. Now change the program in memory
and perform the verification again.

020Bug) H 40002 <CR>
00040002 00881 D089._<CR>
020Bug> VE -65000000;~=COPY TEST.HX,#_<CR>
530065040000700100884A004E75B3
57056504000091

The following record(s) did not verify ••.••
530065040000------88--------B3
020Bug>

The byte which was changed in memory does not compare with the corrresponding
byte in the S-Record.

3-52

CHAPTER 4

USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

4.1 INTRODUCTION

The 020Bug firmware includes a one-line assembler and disassembler. The
assembler is a mode of the Memory Modify command which accepts assembler source
code lines and generates 68020 object code in the target memory. The
disassembler is used by several commmands to display memory in the form of 68020
instruction mnemonics and associated operand information. Both the assembler
and disassembler function on a 1 ine-by-line basis only.

The assembler supports all 68020 instructions except ILLEGAL, and also the DC.W
directive for creating constants. The disassembler recognizes all 68020
instructions, and also all the instructions of the MC68881 Floating-Point
Coprocessor (FPC), provided that the coprocessor ID number in the instruction is
1 (the Motorola default for the FPC). Other coprocessor instructions are
disassemble in the generalized coprocessor instruction format described in the
MC68020 User's Manual.

4.1.1 MC68020 Assembly Language

The symbolic language used to code programs for processing by the assembler is
MC68020 assembly language. Assembly language consists of machine-instruction
mnemonics, assembler directives (pseudo-ops), and operand expressions.

4.1.1.1 Machine-Instruction Mnemonics

The mnemonics for the MC68020 machine instructions are described in the MC68020
User's Manual (MC68020UM). The user should refer to this manual for the
definition and description of each mnemonic.

4.1.1.2 Directives

Assembly language can contain mnemonic directives which specify actions to be
performed by the assembler other than the generation of object code. The 020Bug
assembler recognizes only the Define Constant Word directive, abbreviated
"DC.W". This directive is used to define data within the program. Its use is
explained in section 4.2.3.

4.1.1.3 Operand expressions

Nearly all MC68020 machine instructions operate on a specific object or objects.
These operands may be defined as a register label, a constant value, a relative
address, or a complex indirect addressing expression.

4.1.2 Comparison with MC68020 Resident Structured Assembler'

There are several major differences between the 020Bug assembler and the MC68020
Resident Structured Assembler. The Resident assembler is a two-pass assembler

4-1

that processes an entire program as a unit, while the 020Bug assembler processes
each line of. a program independently. Because of this basic functional
d i f·ference, the capab iIi ties of the 020Bug assemb I er are more restr f cted:

1 • Labe 1 s are not used or recogn; zed. In trle Res' dent 8ssemb 1 er, 1 abe I va lues
are defined in pass 1, and used in pass 2to reference lines and locations
in a. program. The one-line assembler has no information about any line of
code other than the one being processed, and therefore has no way to
associate a label with an address elsewhere in the program.

2. Source lines are not saved. In order to read back a program after it has
been entered, the user must use the ;01 option of the MM and MO commands.

3. Only one directive is accepted (OC.W).

4. Macros cannot be defined or invoked.

5. No conditional assembly is used.

6. The "1", n>" and "<n symbols are recognized by the Resident assembler, but
not by the 020Bug assembler. A leading ampersand character (&) specifies a
decimal number when used with the 020Bug assembler (although numbers with no
prefix are assumed to be decimal), but cannot.represent a logical AND
function as in the Resident assembler.

7. The Resident assembler can process arithmetic expressions including multiply
and divide operations; the 020Bug assembler can only process add and
subtract. The "I" character is only recognized as an item separator in
register lists, and cannot be used as an arithmetic divide operator. The
fI_" character is recognized in arithmetic expressions as the location
pointer; it is also used when a scale factor is to be included in an indexed
address expression, I.e., "00-4".

8. The Resident assembler accepts TOIV and TMUL as mnemonics' for 32-blt
multiply and divide with 32-bit results. The 020Bug assembler accepts the
formats described in the MC68020 User's Manual for these instructions. This
applies to both the signed and unsigned variants of these instructions.

Although functional differences exist between the two assemblers, the one-line
assembler is a true subset of the Resident assembler. The format and syntax
used with the 020Bug assembler are acceptable to the Resident assembler except
as described in entries 6, 7, and 8 above.

4.2 SOURCE PROGRAM CODING

A source program is a sequence of source statements, which the assembler
converts to object code, which can be executed by the processor to perform a
predetermined task. Each source statement occupies a line and must be either an
executable instruction or a OC.W assembler directive. Source statements must
have the correct source line format.

4-2

4.2. 1 Source Line Format

Each source statement is a combination of operation and. as required. operand
fields. Line numbers. labels and comments are NOT used.

4.2.1.1 Operation Field

Since there is no label field. the operation field may begin in the first
available column. It may also follow one or more spaces. The operation field
may contain an instruction mnemonic corresponding to a MC68020 machine
instruction, or a OC.W directive.

The size of the data object processed by an instruction is determined by the
data size code. Some instructions can operate on more than one data size. For
these operations. the data size code must be specified or a default size
applicable to that instruction will be assumed. The size code need not be
specified if only one data size is permitted by the operation. The data size
code is specified by a period (.). appended to the operation field. and followed
by B, W, or L. where:

B = byte integer
W = word integer

(8-bit data or displacement)
(16-bit data or displacement)
(32-bit data or displacement) L = long word integer

No data size code is permitted when the instruction does not have a data size
attribute. If no data size code is included with a sized instruction, the
020Bug assembler will default to word size.

Unlike the Resident assembler, the 020Bug assembler does not recognize
suffix as indicating an 8-bit displacement in branch instructions.
suffix must be used for this.

the .5
The .B

Examples (legal):

LEA 2(AO),Al Longword size is assumed (.B, .W not allowed); this instruction

AOO.B (AO) ,00

ADO 01.02

Aoo.L A3,03

loads the effective address of the first operand into Al.

This instruction adds the byte whose address is (AO) to the
lowest order byte in 00.

This instruction adds the low order word of 01 to the low order
of 02. (W is the default size code.)

This instruction adds the entire 32-bit (longword) contents of
A3 to 03.

Example (i Ilegal):

SUBA.B #5,A1 Illegal size specification (.B not allowed on SUBA). This
Instruction would havesubstracted the value 5 from the low
order byte of Al; byte operations on address registers are not
allowed.

4-3

4.2.1.2 Operand Field

If present, the operand field follows the operation field and is separated from
the operation field by at least one space. When two or more operand subfields
appear within a statement, they must be separated by a comma. In an instruction
like 'ADO 01,02' the first subfield (01) is called the source effective address
field (source <ea», and the second subfield (02) is called the destination
effective address field (destination <ea>. 0 in this example, the contents of
01 are added to the contents of 02 and result is saved in 02. In the
instruction 'MOVE 01,02' the first subfield (01) is the sending field and the
second subfield (02) is the receiving field. In other words, for most
two-operand instructions, the general format 'operation source,destination'
applies.

4.2.1.3 Mnemonics and Delimiters

The assembler recognizes all MC68020 instruction mnemonics except ILLEGAL.
Numbers are recognized as both decimal and hexadecimal, with decimal the default
case (note that this is reverse to the 020Bug commands):

a. Decimal - is a string of decimal digits (0-9) without a prefix (default)
or preceded by an optional ampersand (&). Examples:

12334
&1234

b. Hexadecimal - is a string of hexadecimal digits (0-9, A-F) preceded by a
dollar sign ($). Example:

$AFE5

One or more ASCII characters enclOSed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero filled (if necessary),
whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a longword
boundary if the string contains more than two characters.

005000
005002
00500B

5300
223C41424344
3536

OC.w 's'
MOVE.L #'ABCO',OI
OC.W '56'

The following register mnemonics are recognized by the assembler:

PC Program Counter (only in PC-relative addressing)

SR Status Register

CCR Condition Codes Register (lower 8 bits of SR)

USP User Stack Pointer

MSP Master Stack Pointer

4-4

ISP Interrupt Stack Pointer

VBR Vector Base Register

SFC Source Function Code register

DFC Destination Function Code register

CACR CAche Control Register

CAAR CAche Address Register

00-07 Data registers 0-7

AO-A7 Address registers 0-7

Address register A7 represents the active system stack pointer, that is, one of
USP, HSP, or ISP, as specified by the M and S bits of the status register (SR).

4.2.1.4 Character Set

The character set recognized by the 020Bug assembler is a subset of ASCII, as
listed below:
1. The letters A through Z and a through z

2. The digits 0 through 9

3. Arithmetic operators: + -

4. Asterisk * (location pointer value, or scale factor code)

4. Parentheses () and brackets [] (used in address expressions)

5. Braces ((used in bitfield specifications)

5. Characters used as special prefixes:

(pound sign) specifies the immediate form of addressing.
$ (dollar sign) specifies a hexadecimal number.
& (ampersand) specifies a decimal number.
@ (commercial at sign) specifies an octal number.

%, (percent sign) specifies a binary number.
, (apostrophe) specifies an ASCII literal character.

6. Six separating characters:

Space
, (comma)
. (period)
/ (s 1 ash)
- (dash)

(colon)

4-5

4.2.2 Addressing Modes

Effective addressing and data organization are described in detail in Section 2,
"Data Organization and Addressing Capabilities", of the MC68020 User's Manual.
Table 4-1 lists the addressing modes of the MC68020 which are accepted by the
020Bug one-line assembler. These expressions can be combined with an
instruction mnemonic as a valid line of assembly source code.

TABLE 4-1. 020Bug ASSEMBLER ADDRESSING MODES
--------------~---

Format Description
===
On
An
(An)
(An)+
-(An)
deAn} or (d,An)
d(An,Rn) or (d,An,Rn)
([bd] ,od)

([bd, An] ,od)

([bd,An],Rn,od)
([bd,An,Rn),od)
(xxx) • W
(xxx).L
LABEL(PC)
LABEL(PC,Rn)
([LABEL,ZPC])

([LABEL,PC])
([LABEL,PC).Rn,od)
([LABEL.PC,Rn].od)
#xxx

Data register direct
Address register direct
Address register indirect
Address register indirect with postincrement
Address register indirect with pre-increment
Address register indirect with displacement
Address register indirect with index
Memory indirect (without base register. without index

register)
Memory indirect with base register. without index

register)
Memory indirect before indexing
Memory indirect after indexing
Absolute short
Absolute long
Program counter relative
Program counter relative with index
PC relative memory indirect (PC suppressed, without

index register)
PC relative memory indirect (without index register)
PC relative memory post-indexed
PC re 1 at i ve memory i nd i rect pre- indexed .
Immediate

==~====

Note: Remember that this assembler/disassembler has no notion of labels. The
"LABEL" field in the PC-relative addressing modes represents an expression.

4.2.3 DC.W Define Constant Word directive

The format for the DC.W directive is:

DC.W <operand)

The function of the directive is to define a constant in memory. The DC.W
directive can have only one operand (16-bit value) which can be the desired
decimal, hexadecimal. or ASCII value, or an expression to be evaluated as a
numeric value by the assembler. The constant is aligned on a word bou~dary, as
word (.W) size is specified.

An ASCII string is recognized when characters are enclosed inside single
quotes('). Each character (7 bits) is assigned to a byte of memory, with the
eighth bit (MSB) always zero. If only one byte is entered, the data is left

4-6

justified in the word. A maximum of two ASCII characters may be entered with a
DC.W directive.

Examples:

00010022
00010024
00010026
00010028
OOOl002A

0402 DC.W
AAFE DC.W
4142 DC.W
5443 DC.W
4300 DC.W

1234
$AAFE
'AB'
$5542+1
'c'

4.3 DISASSEMBLING OBJECT CODE

Decimal number
Hexadecimal number
ASCII string
Expression
ASCII character is left justified

020Bug has a facility for displaying the numeric object code of a program in
memory as assembler source statements. This facility is used the Trace and
Register Display commands, to show what instruction will be executed next, by
the Memory Display command, when the 01 option is selected, and by the Memory
Modify command, when the 01 option is selected.

The disassembler receives an address as a parameter, and assumes that the word
at that address is an instruction word in a program. It will identify the
instruction, and decode the effective address field(s) and extension word{s) if
any. If the instruction is not a legal one, or the address modes or extension
words are illegal in some way, the word will be decoded as a DC.W directive.

The output of the 020Bug disassembler looks like one line of a listing generated
by the Resident assembler, and includes the base address of the instruction, its
hexadecimal image, the instruction mnemonic and size code, and the operand value
or address expression. Example:

ADDRESS IMAGE MNEMONIC OPERAND

00008AOO 5468007B ADDQ.W 2,123(AO)

Numeric values generated by disassembly may be displayed in- either hexadecimal
or decimal, depending on the context. Address values, immediate values used for
AND, OR, or EOR operations, immediate values moved to processor control
registers. and immediate values used in floating point instructions are
displayed in hexadecimal; all other values are displayed in decimal. Examples:

00008800 028045612301
00008806 068045612301
0000880C 30280078
00008810 44FC0078
00008814 303C0078
00008818 F23C441C9999AAAA

ANOI.L
ADDI.L
MOVE.W
MOVE.W
MOVE.W
FACOS.S

$45612301,00
$116399357,00
123(AO),DO
$78.CCR
123.00
$9999AAAA,FPO

If the instruction is a branch, or contains a PC-relative data reference, the
displacement value contained in the instruction will be added to the base
address of the instruction word or extension word to get the actual operand
address, which is displayed in the operand field. Examples:

00008A04 67FA BEQ.8 $8AOO

00008AIA 4A7A15E4 TST.W $OOOOAOOO(PC)

4-7

Up to ten bytes of hex image data will be disp)ayed in the image field of the
disassembly output line. If the instruction and its extension words exceeds ten
bytes, a "+" will be displayed after the tenth byte, indicating more hex data
not displayed. Example:

00007918 OC8000060D000170016+ CMPI . L 4500000,([($00160000).L,AO,ZDO.W*])

If the user has set up one or more of the 020Bug offset registers, any address
which is in the range of one of these registers will be displayed in the form
hhhhh+Rn, where Rn is the offset register the address is in the range of, and
hhhhh is the displacement from the value of Rn to the address. This conversion
is done for the instruction address at the beginning of the displacement line,
and for all branch destination addresses. Other PC-relative addresses are
displayed normally. Example:
020Bug>MD 7400:2;DI<cr>
00007400 603E
00007402 4A7A8C2E
020Bug>OF RO<cr>
RO =000000001 7400<cr>
Rl =000000001.<cr>
020Bug>MD 7400:2;OI<cr>
OOOOO+RO 603E
00002+RO 4A7A8C2E

BRA.B
TST.W

BRA.B
TST.W

$7440
$00032(PC)

$00040+RO
$00032(PC)

4.4 ENTERING AND MODIFYING SOURCE PROGRAMS

Entering or modifying program code in memory can be performed with the Memory
Modify command, using the 01 option. When this command is entered, 020Bug
disassembles the instruction at each successive memory location, and replaces it
with a new instruction assembled from the user's input.

4.4.1 Entering Source Code

The assembler is invoked using the ;01 option of the Memory· Modify (MM) command,
as shown here:

MM <ADOR>;OI

This will cause 020Bug to set the current memory location pointer to <AODR>
disassemble the instruction at that address, and prompt the user for input. The
address must be an even value, so that instructions will be properly word
aligned. Example:

020Bug>MM 4680;01 <cr>
00004680 00000000 ORI . B $00,00 1

If the user enters a valid source code statement, the assembler will process it,
store the resulting object code at the current memory location, and rewrite that
same I ine: the address is redisplayed, followed by the hex' image of the new
instruction. followed by the user's input line. Note that this is not a
disassembly line. Example:

4-8

020Bug>MM 4680;01 <cr>
00004680 00000000 OR I. B
(above line erased and rewritten as follows)
00004680 42680078 CLR
00004684 FFFF ~C. W

$00,00 ? CLR 120{AO)

120(AO)
$FFFF ?

If the hardcopy printer is attached, the new line of code wil I be printed on the
line below the original line.

After the input line is assembled and stored, the location pointer is moved up
to the first byte after the end of the assembled instruction, and the process
repeats, as shown above. Entering <cr> with no input line sequences to the next
instruction. Example:

020Bug>MH 4684;01 <cr>
00004684 FFFF
00004686 FFFF

OC.W
OC.W

$FFFF ? <cr>
$FFFF ?

Entering. fol lowed by <cr> terminates the command as usual. Example:

020Bug>HM 4684;01 <cr>
00004684 FFFF
0208ug>

OC.W $FFFF ? • <cr>

If the assembler cannot process the input line, the input line is redisplayed
with a pointer to the part of the line the assembler could not process and the
label "*** Unknown Field ***" Then the original line is displayed again.
Example:

020Bug>HM 4680;01 <cr>
00010000 528B
(line above overwritten)
00010000

*** Unknown Field ***
00010000 528B

AOOQ.L

LEA

AOOQ.L

1,A3 ? lea. I 5(aO,d8),a4 <CR>

5(AO,D8),A4

1 ,A3 ?

4.4.2 Entering Branch and Jump Addresses

When entering a source line containing a branch instruction (BRA~ BGT, BEQ, etc)
do not enter the offset to the branch's destination in the operand field of the
instruction. Enter the destination address; the offset will be calculated by
the assembler. The user must append the appropriate size extension to the
branch instruction.

To refer to the current location in an operand expression the character "*"
(asterisk) can be used. Examples:

00030000 60004094 BRA *+$4096

00030000 60FE BRA.B *

00030000 4EF900030000 JMP *

00030000 4EF001300030000 JMP (",AO,DO)

4-9

In the case of forward branches or jumps the absolute address of the destination
may not be known as the program is being entered. The user may temporarily
enter an "*" for branch to self in order to reserve space. After the actual
address is discovered, the line containing the branch instruction can be
re-entered using the correct value.

4.4.3 Inserting Additional Instructions

It may be neccessary for the user to go back and insert one or more additional
instructions to a program already in memory. This can be done using the Block
Move (BM) command to move part of the program up in memory, leaving a space
where additional instructions can be placed. However, this will not alter any
of the PC-relative addresses or branches in the program, and any such references
which cross the gap must be corrected. Any reference which is not corrected can
cause the program to fail.

4.5 ASSEMBLER OUTPUT/PROGRAM LISTINGS

A listing of the program can be obtained by using the Memory Display (MO)
command with the ;01 option. The MO command expects a starting address and a
line count in the command line. When the ;01 option is selected, the the line
count is the number of instructions disassembled and displayed. If no line
count is given the number defaults to B.

A hard copy listing of the program can be obtained by using the Printer Attach
(PA) command to activate the Port 1 printer before entering the MO command.
This will produce a listing on the printer as well as on the console terminal.

Note again, that the listing may not correspond exactly to the program as
entered.

4-10

SYSTEM CALLS

5.1 INTRODUCTION

This chapter describes the 020Bug TRAP #15 handler, which al lows system calls
from user programs. The system calls can be used to access selected functional
routines contained within 020Bug, including input and output routines. Trap #15
may also be used to transfer control to 020Bug at the end of a user program (see
the .RETURN function, section 5.2.17).

In the descriptions of some input and output functions, reference is made to the
"default input port" or the "default output port". After power-up or reset, the
default input and output port is initialized to be port 0 (the GMX Micro-20
terminal port). The defaults may be changed, however, using the .REDIR_I and
.REDIR_O functions, as described in section 5.2.16.

5. 1 • 1 Invoking System Calls Through TRAP #15

To invoke a system call from a user program simply insert a TRAP #15 instruction
into the source program. The code corresponding to the particular system
routine is specified in the word fol lowing the TRAP opcode, as shown in the
following example.

Format in user program:

TRAP #15
DC.W $xxxx

System call to 020Bug
Routine being requested (xxxx = code)

In some of the examples shown in the following descriptions a SYSCALL macro is
used~ This macro simply does the TRAP #15 call followed by the Define Constant
for the function code. For clarity, the SYSCALL macro is as follows:

SYSCALL
TRAP
DC.W
ENDH

MACRO
#15
\1

Using the SYSCALL macro, the system call would appear in the user program as
follows:

SYSCALL <routine name>

It is of course necessary to create an equate file with the routine names
equated to their respective codes.

5. 1 .2 String Formats for I/O

Within the context of the TRAP #15 handler there are two formats for strings:

Pointer/Pointer Format The string is defined by a pointer to the first
cnaracter and a pointer to the last character + 1.

C;-1

Pointer/Count Format - The string is defined by a pointer to a count byte
which contains the count of characters in the string
followed by the string itself.

Aline is defined as a string followed by CRLF.

5.2 SYSTEM CALL ROUTINES

Table 5-1 summarizes the TRAP 15 functions.
utilities for specific use information.

Refer to the write-ups on the

TABLE 5-1. 020Bug SYSTEM CALL ROUTINES
===

~~1 ;~~:====~~:~~~~:========================~::~:~~~~~~=======================~:::=
0000
0001
0002
0003
0004
0020
0021
0022
0023
0024
0025
0026
0027
0028
0050
0051
0052'
0060
0061
0062
0063
0064

• I NCHR
• I NSTAT
· I NLN
.READSTR
.READLN
.OUTCHR
.OUTSTR
.OUTLN
.WRITE
.WRITELN
.WRITDLN
.PCRLF
.ERASLN
• WRITD
.GETCLK
.PUTCLK
.OUTCLK
.REDIR
.REDIR_I
.REDIR_O
• RETURN
.BINDEC

Input character
Input serial port
Input line

status

Input string
Input line
Output character
Output string
Output line
Output string
Output line
Output line with data
Output carriage return
Erase line

(pointer/pointer format)
(pointer/count format)
(pointer/countformat)

(pOinter/pointer format)
(pointer/pointer format)
(pointer/count format)
(pointer/count format)
(pointer/count format)

and line feed

Output string with data (pointer/count
Get time data from clock

format)

Write time data to clock
Output time data as a string
Redirect I/O of a TRAP 15 function
Redirect input
Redirect output
Return to 0208ug
Convert binary to decimal

5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-9
5-10
5-10
5-11
5-13
5-14
5-11
5-15
5-16
5-17
5-18
5-19
5-19
5-20
5-21

===

5-2

5.2.1 .INCHR FUNCTION .INCHR

TRAP FUNCTIO~: .INCHR - Input character routine-

CODE: $0000

DESCRIPTION: Wi 11 read a character from the default input port. The character
is returned in the stack.

ENTRY CONDITIONS:

SP ==> Space for character (byte>
Word fil I (byte>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Character (byte>
Word Fill (byte>

EXAMPLE: SUSQ.L #2.SP Allocate space for result
SYSCALL .INCHR Call INCHR
MOVE.S (SP)+ ,DO Load character in DO

5-3

5.2.2 ~ I NSTAT FUNCTION . I NSTAT

TRAP FUNCTION: .1NSTAT - Input serial port status-

CODE: $0001

DESCRIPTION: INSTAT is used to check the status of the default input port. The
condition codes are set to indicate ,the port status. Input.
output, and BREAK status are checked and returned. The port
hardware is checked for a received character, and any that are
present are moved into the internal buffer. with handshaking as
Rppropriate. If at thi~ point the buffer is empty. the Z
condition code is returned set. If the port hardware is NOT ready
to accept a character for transmission, or an XOFF character has
been received as a handshake code (and not cancelled by a
subsequent XON character), the C conod it i on code is returned set.
If the BREAK detect flag in the port hardware is set, the N
condition code is returned set.

ENTRY CONDITIONS:

No arguments or stack allocation required

EXIT CONDITIONS DIFFERENT FROM ENTRY:

Z = 1 if the receiver buffer is empty
C = 1 if the transmitter is not ready or waiting for XON
N = 1 if the BREAK flag is set

EXAMPLE: LOOP SYSCALL . I NSTAT get status
BMI EXIT BREAK? exit loop
BEQ NOIN input?
SUBQ.L #2,A7 if so
SYSCALL .1NCHR read one character
MOVE.B (SP)+, (AO)+ into program's input
BRA LOOP

NOIN BCS NOOUT ready for output?
MOVE.B (Al)+,-(SP) get char from output
SYSCALL .OUTCHR and send it
BRA LOOP check for more

EXIT

5-4

buffer

buffer

5.2.3 .INLN FUNCTION .INLN

TRAP FUNCTION: .INLN - Input line routine-

CODE: $0002

DESCRIPTION: Used to read a I ine from the default input port. The buffer size
should be at least 256 bytes.

ENTRY CONDITIONS:

SP ==> Address of string buffer <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Address of last character in the string+l <long>

EXAMPLE: If AO contains the address where the string is to go;

SUBQ.L
PEA
TRAP
DC.W
MOVE.L

#4,A7
(AO)
#15
2
(A7)+,Al

Allocate space for result
Push pointer to destination
(May also invoke by SYSCALL
macro ("SYSCALL

Retrieve address of last character+l

NOTES: A line is a string of characters terminated by <CR). The maximum
allowed size is 254 characters. The terminating <CR> is not included in
the string. Control character processing as described in section 1.6,
Terminal Input/Output Control, is in effect.

5.2.4 .READSTR FUNCTION .READSTR

TRAP FUNCTION: .READSTR - Read string into variable-length buffer-

CODE: $0003

DESCRIPTION: READSTR is used to read a string of characters from the default
input port into a buffer. On entry the first byte in the buffer
indicates the maximum number of characters that can be placed in
the buffer. The buffer size should at least be equal to that
number+2. The maximum number of characters that can be placed in
a buffer is 254 characters. On exit the count byte indicates the
number of characters in the buffer. Input terminates when a <CR>
is received. All characters wfll be echoed,to the default output
port. The <CR> will not be echoed.

ENTRY CONDITIONS:

SP ==> Address of input buffer <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
The count byte contains the number of bytes in the buffer.

EXAMPLE: If AO contains the string buffer address;

NOTES:

PEA
TRAP
DC.W

(AO)
#15
3

Push buffer address
{May also invoke by SYSCALL
macro ("SYSCALL .READSTR")

This routine allows the caller to dictate the maximum length of input to
be less than 254 characters. If more than characters are entered. then
the buffer input is truncated. Control character processing as
described in section 1.6. Terminal Input/Output Control, is in effect.

5-6

5.2.5 .READLN FUNCTION .READLN

TRAP FUNCTION: .READLN - Read Line to fixed-length buffer-

CODE: $0004

DESCRIPTION: READLN is used to read a string of characters from the default
input port. Characters are echoed to the default output port. A
string consists of a count byte followed the characters read from
the input. The count byte indicates the number of characters in
the input string, excluding <CR><LF>. A string may be up to 254
characters.

ENTRY CONDITIONS:

SP ==> Address of input buffer <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
The first byte in the buffer contains the number
of bytes in the buffer.

EXAMPLE: If AO points to a 256 byte buffer;

PEA (AO) Load buffer address
SYSCALL .READSTR and read a line from default input port

NOTES: The caller must al locate 256 bytes for a buffer. Input may up to 254
characters. CRLF is sent to default output following echo of input.
Control character processing as described in section 1.6. Terminal
Input/Output Control, is in effect.

c ,

5.2.6 .OUTCHR FUNCTION .OUTCHR

TRAP FUNCTION: .OUTCHR - Output Character routine-

CODE: $0020

DESCRIPTION: This function will output a character to the default output port.

ENTRY CONDITIONS:

SP ==> Character {byte>
Word fill (byte> (Placed automatically by MPU)

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Character is sent to the default I/O port.

EXAMPLE: MOVE.B DOt-(SP)
SYSCALL .OUTCHR

Send character in DO
To ·default output port

5-8

5.2.7 .OUTSTR, .OUTLN FUNCTIONS

TRAP FUNCTIONS: .OUTSTR - Output string to default output port­
.OUTLN - Output string along with CR/LF-

CODES: $0021
$0022

.OUTSTR
.OUTLN

DESCRIPTION: OUTSTR will output a string of characters to the default output
port. OUTLN will output a string of characters followed by a
<CR><LF> sequence.

ENTRY CONDITIONS:

SP ==> Address of first character <long>
+4 Address of last character+1 <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

EXAMPLE: If AO = start of string
Al = end of string+1

HOVEM.L AO/A1,-(SP)
SYSCALL .OUTSTR

Load pointers to string
And print it

5.2.8 .WRITE, .WRITELN FUNCTIONS . WR ITE . WR ITELN

TRAP FUNCTIONS: .WRITE - Output string-
.WRITELN - Output string with CR/LF-

CODES: $0023
$0024

DESCRIPTION: These output functions are designed to output strings formatted
with a count byte followed by the characters of the string. The
user passes the starting address of the string. The output goes
to the default output port.

ENTRY CONDITIONS:

Four bytes of parameter positioned in stack as follow:

SP ==> Address of string <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

EXAMPLE: For example, the following section of code •••.•

MESSAGEl
MESSAGE2

DC.B
DC.B
PEA
SYSCALL
PEA
SYSCALL

9, 'MOTOROLA'
9, 'QUALITY!'
MESSAGE 1 (PC)
.WRITE
HESSAGE2(PC)
.WRITE

Push address of string
Use TRAP #15 macro
Push address of other string
Invoke function again

would print out the following message:

MOTOROLA QUALITY !

Using function .WRITELN, however, instead of function .WRITE would
output the following message:

MOTOROLA
QUALITY !

NOTES: The string must be formatted such that the first byte (the byte pointed
to by the passed address) contains the count (in bytes) of the string.

5.2.9 .WRITDLN, .WRITD FUNCTIONS

TRAP FUNCTIONS: .WRITDLN - Output string with data and CR/LF­
.WRITD - Output string with data-

CODES: $0025
$0028

.WRITDLN
. WR ITO

DESCRIPTION: These trap functions takes advantage of the monitor I/O routine
which outputs a user string which has embedded variable fields in
it. The user passes the starting address of the string and the
address of a data stack from whence the data which wil I be
inserted into the string will be read. The output goes to the
default output port.

ENTRY CONDITIONS:

Eight bytes of parameter positioned in stack as follows:

SP ==> Address of string <long>
Data list pointer <long)

A separate data stack or data list arranged as follows:

Data list pointer => Data for 1st variable in string <long>
Data for next variable <long>
Data for next variable <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

EXAMPLE: For example, the following section of code

ERRHESSG DC.S

MOVE.L
PEA
PEA
SYSCALL
TST.L

$14. 'ERROR CODE = :10.8Z:'

#3.-(AS)
(AS)
ERRMESSG(PC)
.WRITDLN
(A5)+

Push error code on data stack
Push data stack location
Push address of string
Invoke function
Deallocate data from data stack

would print out the following message:

ERROR CODE = 3

NOTES: 1) The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the count (in bytes) of
the string (including the data field specifiers, described in #2
be low).

2) Any data fields within the string must be represented as fol lows:
":<radlx>,<fieldwldth>[Z):" where <radix> is the base that the data
is to be displayed in (in hexadecimal, i.e., "A" is base 10. "10" is
base 16, etc.) and <fieldwidth> is the number of characters this
data is to occupy in the output. The data is right justified and

t: I I

left-most characters are removed to make the data fit. If the "Z"
is included. leading zeroes will be suppressed in the output. except
that one zero will always be printed for a zero value.

3) All data is to be placed in the stack as longwords. Each time a
data field is encountered in the user string a longword wil I be read
from the data stack to be displayed.

4) The data stack is not destroyed by this routine. If it is necessary
that the space in the data stack be deallocated then this must be
done by the calling routine. as shown in the above example.

t:;_1?

5.2.10 .PCRLF FUNCTION .PCRLF

TRAP FUNCTION: .PCRLF - Print <CR><LF> sequence

CODE: $0026

DESCRIPTION: PCRLF wil I send a <CR><LF> sequence to the default output port.

ENTRY CONDITIONS:

No arguments or stack allocation required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

None

EXAMPLE: SYSCALL .PCRLF Output CRLF

5.2.11 .ERASLN FUNCTION .ERASLN

TRAP FUNCTION: .ERASLN - Erase line-

CODE: $0027

DESCRIPTION: Erase line is used to erase the line at the present cursor
position. If the terminal type flag is set for hardcopy mode a
<CR> <LF> is issued instead.

ENTRY CONDITIONS:

No arguments required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

The cursor is position at the beginning of a blank line.

EXAMPLE: SYSCALL .ERASLN

5.2.12 .GETCLK FUNCTION .GETCLK

TRAP FUNCTION: .GETCLK - Get clock contents -

CODE: $0050

DESCRIPTION: .GETCLK is used to read time and date data from the GMX Micro-20's
hardware time-of-day clock.

ENTRY CONDITIONS:

SP ==> space for time data <8 bytes>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==>

EXAMPLE:

current second
current minute
current hour
current weekday
current day
current month
current year
padding

SUBQ.L #8,SP
SYSCALL .GETCLK

(00-59)
(00-59)
(00-23)
(01-07)
(01-31)
(01-12)
(00-99)
(00)

(byte>
<byte>
<byte>
(byte>
<byte>
<byte>
<byte>
<byte>

Allocate space for result
Call GETCLK

NOTES: This function reads the clock twice to insure that the value is stable.
If the value read is not the same each time, then the clock is read
again. If after five tries the clock has not returned the same value,
all ODs is returned to the call ing routine .. GETCLK assumes the clock
is in 24-hour mode.

c:: 1 c::

5.2.13 .PUTCLK FUNCTION .PUTCLK

TRAP FUNCTION: .PUTCLK - Get clock contents -

CODE: $0051

DESCRIPTION: .PUTCLK is used to write time and date data into the GMX
Micro-20's hardware time-of-day clock.

ENTRY CONDITIONS:

SP ==> current second (00-59) (byte>
current minute (00-59) (byte>
current hour (00-23) (byte>
current weekday (01-07) (byte>
current day (01-31) (byte>
current month (01-12) (byte)
current year (00-99) (byte>
padding (OO) (byte)

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

EXAMPLE: MOVE.L TI MELO, -(SP) put time data on the stack
MOVE.L TIMEHI,-(SP)
SYSCALL .PUTCLK Ca 11 PUTCLK

NOTES: This function writes the clock with the data given regardless of its
value. Nonsense values can cause the clock to malfunction.

5-16

5.2.14 .OUTCLK FUNCTION .OUTCLK

TRAP FUNCTION: .OUTCLK - Output clock data -

CODE: $0052

DESCRIPTION: .OUTCLK is used to output a set of time and date data to the
default I/O path.

ENTRY CONDITIONS:

SP ==> address of clock data block

data pointer ==> current second
current minute
current hour
current weekday
current day
current month
current year
padding

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

(00-59)
(00-59)
(00-23)
(00-06)
(01-31)
(01-12)
(00-99)
(OO)

EXAMPLE: if AO points to a time data block ..•.

PEA (AO)
SYSCALL .OUTCLK Call OUTCLK

produces a string in the form

WEDNESDAY 01/02/99 23:34:56

<byte>
<byte>
<byte)
<byte>
<byte>
<byte)
<byte)
<byte>

NOTES: This function outputs a time and date string followed by a CR/LF. The
data source could be either the GMX Micro-20 hardware clock, read using
the .GETCLK function, or a program or data file. If the weekday given
is not from 0 to 6, "BAD WEEK DAY" wi11 be disp1ayed instead of the day
name.

5.2.15 .REDIR FUNCTION .REDIR

TRAP FUNCTION: .REDIR - Redirect I/O function-

CODE: $0060

DESCRIPTION: .REDIR is used to select an [/0 port and at the same time invoke a
particular I/O function. The invoked I/O function will read or
write to the selected port;

ENTRY CONDITIONS:

SP ==> Port
I/O function to call
Parameters of I/O function
Space for results

<word>
<word>
<size specified by function>
<size specified by function)

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Result . <size specified by function>

EXAMPLE:

NOTES: To use .REDIR, the caller should first allocate space and push the
parameters required by the desired I/O function in the stack:

SUBQ.L #2,A7 Allocate space (no parameters required by
.INCHR)

Then the parameters required by .REDIR should be pushed and a call is
made to .REDIR:

MOVE.W
MOVE.W
SYSCALL

#.INCHR,-(SP) Load function code
#l,-(SP) Load port number
.REDIR Redirect I/O function

Finally, the results are popped from the stack:

MOVE.B (SP)+,DO Read character

The above example reads a character from port using .REDIR.

5-18

5.2.16 .REDIR_l, .REDIR_O FUNCTIONS

TRAP FUNCTIONS: .REDIR_I - Redirect input­
.REDIR_O - Redirect output-

CODES: $0061
$0062

DESCRIPTION: The .REDIR_I and .REDIR_O functions are used to change the default
port number of the input and output ports, respectively. This is
a permanent change, that is, it wil I remain in effect until a new
.REDIR command is issued.

ENTRY CONDITIONS:

SP ==> Port Number <word>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
.SIO_IN - Loaded with a new mask if .REDIR_I called
.SIO_OUT - Loaded with a new mask if .REDIR_ ° called

EXAMPLE: HOVE.W #l,-(SP)
SYSCALL .REDIR_I

Load port number
Set it as new default

... 1 r.

5.2.17 .RETURN FUNCTION .RETURN

TRAP FUNCTION: .RETURN - Return to 020Bug-

CODE: $0063

DESCRIPTION: . RETURN is used to return control to 020Bug from the target
program in an orderly manner. First any breakpoints inserted in
the target code are removed. Then the target state is saved in
the register image area. Finally the routine returns to 020Bug.

ENTRY CONDITIONS:

No arguments required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

Control is returned to 020Bug.

EXAMPLE: SYSCALL . RETURN Return to 020Bug

5-20

Cj)ft

5.2.1B .BINDEC FUNCTION .BINDEC

TRAP FUNCTION: .BINDEC FUNCTION (Used to calculate the BCD equivalent of the
binary number specified)

CODE: $0064

DESCRIPTION: .BINDEC takes a 32-bit unsigned binary number and changes it to an
equivalent BCD (Binary Coded Decimal Number).

ENTRY CONDITIONS:
<e, :t 30 ------ f8

SP ==> Argument:Hex number<long>
Space for result <2 long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

EXAMPLE:

SP ==> Decimal number (2 HS DIGITS) <long>
(B MS DIGITS) (long>

SUBQ.L
MOVE.L
SYSCALL
MOVEM.L

#B,A7
OO,-(SP)
.BINDEC
(SP)+,Dlj02

Allocate space for result
Load hex number
Call .BINDEC
Load result

APPENDIX A

ALTERNATE ROM PROGRAMS

The GMX Micro-20 has four EPROM sockets, which can hold up to 256 Kbvtes of
EPROM. 020Bug is instal led in the first part of this memory. Tr,e remaining
memory may be used for many different functions. For example, the bootstrap
loader for a disk operating system could be placed there. This is done by GMX
if an operating system was purchased with the GMX Mlcro-20. The user may also
place his own programs in the ROM.

The address space of the ROM Is $00800000 to $0083FFFF, allowing 256 Kbytes of
ROM. However, the board is shipped with four 32K x 8 devices, which provide
only 128 Kbytes of ROM. Version 2.5 of GMX 020Bug occupies the first 88 Kbytes,
so a user program should start at $816000 or higher to avoid conflicts with
020Bug. If a bootstrap loader Is installed, it wil I begin at $816000; its size
wi II depend on the operating system purchased, and can be determined by
examining the ROM with the MD command. A user program can be safely instal led
in the ROM above the boot area.

Adding More ROt!

The EPROM sockets on the GMX Micro-20 can accept four 64K x 8 EPROMs· for 256
Kbytes of ROM. A user who needs more ROM should replace the supplied parts with
larger parts. Refer to the Hardware Technical Manual section on "ROM Sockets"
for details of this conversion.

ROM Data Organization

The ROM is organized as 64K longwords of 32 bits each, so that a longword read
from ROM fetches one byte from each device. Therefore. any information
(programs or data) stored in the ROM must be "split up" among the four EPROMs.
The first byte of each longword goes in EPROM #1 (referred to as . part U-13 in
the Hardware Technical Manual), the second in EPROM #2 (U-I0), the third in
EPROM #3 (U-8), and the fourth in EPROM #4 (U-6). The diagram below shows how
the longwords $OOOOlFFC and $0080079C would be stored at $800000.

Address

$800000
$800004

EPROM #1
(U-13)
$00
$00

EPROM #2
(U-l 0)
$00
$80

EPROM #3
(U-8)
$IF
$07

EPROM #4
(U-6)
$FC
$9C

There are several ways to invoke a program in the ROM. It can be cal led by a
user program in RAM, or started from 020Bug with tile "GO" command. A ("articular
ROM p~-oqram can be selected to be started by the "OS" command. This 13~t meU\od
is accomplished by using the Operating System vector in 020Bug.

At address $00014 in the ROM (absolute address $800014), there is a four-byte
vector which contains the address of an eight-byte block of data. This block
contains the starting address and initial stack pointer value for a program in
ROM, as shown below. If the user enters the 020Bug command "OS", 020Bug uses
the vector at $800014 to fetch a stack pointer value and execution address, and
jumps to the specified address.

Address

$800014

$816000
$816004

$817000

Contents

$816000

$003FFC
$817000

xxx

points to $816000

new stack pointer value
starting address of user program

first instruction of user program

This process can be invoked automatically at power-up/Reset, by setting switch
SI-1 to the "OFF" position. Refer to Section 6 of the Hardware Setup Manual,
"DIP-SWITCH OPTIONS".

NOTE: The hardware confidence test is always performed at power-up/Reset. Even
if switch SI-1 is OFF, the confidence test is performed before the user program
starts. If the system does not pass the confidence test, the user program will
not start. Also, no useful initialization of any system hardware is performed;
the user program must do all needed initialization for itself.

APPENDIX C

5-RECORD OUTPUT FORHAT

The 5-record format for output modules was devised for the purpose of
programs or data files in a printable format for transportation between
systems. The transportation process can thus be visually monitored
5-records can be more easily edited.

encoding
computer
and the

~-RECORD CONTENT

When viewed by the user, 5-records are essentially character strings made of
several fields which identify the record type, record length, memory address,
code/data and checksum. Each byte of binary data is encoded as a 2-character
hexadecimal ~umber: the first character representing the high-order 4 bits, and
the second the low-order 4 bits of the byte.

The 5 fields which comprise an 5-record are shown below:

type record length address code/data checksum

where the fields are composed as follows:

Field

type

record length

address

code/data

checksum

Printable
Characters

2

2

4, 6, or 8

0-2n

2

Contents
==
5-records. type -- SO, 51, etc.

The count of the character pairs in the record,
excluding the type and the record length.

The 2-, 3-, or 4-byte address at which the data
field is to be loaded into memory.

From 0 to n bytes of executable code, memory­
loadable code, or descriptive informantion. For
compatibility with teletypewriters, some programs
may limit the number of bytes to as few as 28 (56
printable characters in the S-record).

The least significant byte of the one's complement
of the sum of the values represented by the pairs
of characters making up the records length, ad­
dress, and the code/data fields.

Each records may be terminated with a CR/LF/NULL. Additionally, an S-record may
have an initial field to accommodate other data such as I ine numbers generated
by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and
checksum fields.

r-l

,S-RECORO TYPES

Eight types of 5-records have been defined to accommodate the several needs of
the encoding, transportation and decoding functions. The various Motorola
upload, download and other records transportation control programs, as well as
cross assemblers, linkers and other file-creating or debugging programs, utilize
only those 5-records which serve the purpose of the program. For specific
information on which 5-records are supported by a particular program, the user's
manual for the program must be consulted. 020Bug supports SO, 51, 52, 53, 57,
58, and 59 records.

An 5-record format module may contain 5-records of the following types:

50 The header record for each block of 5-records. The code data field may
contain any descriptive information identifying the following block of
5-records. Under VER5Ados, the resident 1 inker's IDENT command can be used
to designate module name, version number, revision number, and cescription
information which will make up the header records. The address field is
normally zeroes.

51 A record containing code/data and the 2-byte address at which the code/data
is to reside.

52 A record containing code/data and the 3-byte address at which the code/data
is to reside.

S3 A record containing code/data and the 4-byte address at which the code/data
is to reside.

S5 A record containing the number of 51, 52 and 53 records transmittted in a
particular block. This count ap~ears in the address field. There is no
code/data field.

57 A termination record for a block of 53 records. The address field may
optionally contain the 4-byte address of the instruction to which control is
to be passed. There is no code/data field.

58 A termination record for a block of 52 records. The address field may
optionally contain the 3-byte address of the instruction to which control is
to be passed. There is no code/data field.

59 A termination record for a block of 51 records. The address field may
optionally contain the 2-byte address of the instruction to which control is
to be passed. Under VER5Ados, the resident linker's ENTRY command can be
used to specify this address. If not specified, the first entry point
specification encountered in the object module Input will be used. There is
no code/data field.

Only one termination record is used for each block of 5-records. 57 and 58
records are usually used only when control is to be passed to a 3- or 4-byte
address. Normally, only one header record is used, although it is possible for
multiple header records to occur.

C-2

CREATION OF S-RECOROS

S-record-format programs may be producted by several dump utilities, debuggers,
VERSAdos' resident linkage editor, or several cross assemblers or cross linkers.
On VERSAdos, the Butld Load Module (HBlH) utility al lows an executable load
module to be build from S-records, and has a counterpart utility in BUILDS,
which allows an S-records file to be created from a load module. Several
programs are available for downloading a file in S-records format from a host
system to an 8-bit microprocessor-based or a 16-bit microrocessor-based system.
Programs are also available for uploading an S-records file to or from an
EXORmacs system.

EXAMPLE

5hown below is a typical S-record-format module, as printed or displayed:

500600004844521B
51130000285F245F2212226A000424290008237C2A
511300100002000800082629001853812341001813
5113002041E900084E42234300182342000824A952
5107003000144E0492
59030000FC

The module consists of one 50 record, four 51 records, and an 59 record.

The SO record is comprised of the following character pairs:

50 5-record type SO, indicating that it is a header record.

06 Hexadecirral 06 (decimal 6), indicating that six character pairs (or ASCII
bytes) follow.

00
00 Four-character 2-byte address field, zeroes In this example.

48
44 ASCII H, 0 and R - "HOR".
52

16 The checksum.

The first 51 record is explained as follows:

51 5-record type 51, indicating that it is a code/data record to be loaded/
verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that
representing 19 bytes of binary data, follow.

19 character pairs,

00 Four-character 2-byte address field; hexadecimal address 0000, where the 00
data which follows Is to be loaded.'

The next 16 character pairs of the first 51 record are the ASCII bytes of the
actual program code/data. In this assembly language example, the hexadecimal
opcodes of the program are written in sequence in the code/data fields of the 51
records:

Qocode
285F
245F
2212
226A0004
24290008
237C

MOVE.L
MOVE.L
MOVE.L
HOVE.L
MOVE.L
MOVE.L

Instruction
(A7}+,A4
(A7)+,A2
(AZ),Ol

-4 (AZ) ,At
FUNCTION(Al) ,02
OORCEFUNC,FUNCTION(Al)

(The balance of this code is continued in the code/data
fields of the remaining 51 records and stored in memory
location 0010, etc.)

2A The checksum of the first 51 record.

The second and third 51 records each also contain $13 (19) character pairs and
are ended with checksums 13 and 52, respectively. The fourth 51 record contains
07 character pairs and has a checksum of 92.

The 59 record is explained as follows:

59 5-record type 59, indicating that it is a termination record •
.

03 Hexadecimal 03, indicating that three character pairs (3 bytes) follow.

00
00 The address field, zeroes.

FC The checksum of the 59 record.

Each printable character in an 5-record is encoded in hexadecimal (ASCII in this
example) representation of the binary bits which are actually transmited. For
example, the first 51 record above is sent as:

C-4

I I
I Type Length Address I
I I
I S 1 1 300 001
I I I I I I I
I 5 3 I 3 1 3 1 I 3 3 3 0 I 3 0 I 3 0 I 3 0 I
\ I I I I I I I I I I I I I \
\ 01011 00111 00111 0001 00111 0001\ 0011\ 0011 0011\ 0000\ 0011\ 0000\ 0011\ 0000\ 0011\ 0000\

I I
\ Code/Data Checksum \
\ I \
I 2 8 5 F \ 2 A I
I I \ I I I I
\ 3 2 \ 3 8 \ 3 5 \ 4 6 I 3 2 I 4 1 \
\ I I '\ I I I I I \ I' I I
\ 0011\ 0010\ 0011\ 1000\ 0011\ 01011 0100\ 0110\ •••• 0011\ 0010\ 01001 00011,

APPENDIX 0

020Bug DIAGNOSTIC FIRMWARE GUIDE

TABLE OF CONTENTS
==
Section Title Page
==
1.0
2.0
3.0
4.0
4. 1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4. 1 1
4.12
4.13
4. 14
5.0
5. 1
5.2
5.3
5.4
6.0
6. 1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6. 11
6. 12
6. 13
6. 14
7.0
7. 1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7. 10
7 • 1 1

SCOPE •••.•••••••••...•••.•••.•••••••••••••••••••••••..••••••
OVERV I EW OF 0 I AGNOST I C FIRMWARE ••..••.•.•.••••.•..••...••...
SYSTEM START-UP•.••.••.••.••••••••.•••••.•.•••...•••
01 AGNOST leMON I TOR •.••.•••••••.••...••.••••••.••••••.•.•.•••

Hen; tor Start-Up
Command Entry and Directories .••..•••••••.•••••••••.•••..•
HELP - COfllFTland "HE" •...••.••.•••.••••.••..••••••.•••...•.•
SELF-TEST - Prefix "STU ••••••••••.•••.••.•.•••..••••••.•..
SELF-TEST LED - Prefix "STL" .•••••.•••••••••.••..•.•••••••
SWITCH DIRECTORIES - Command "SO" .•••.•••••.•••.••.•.•...•
DISPLAY PASS COUNT - Command "OP" •.•••.••••.••••.•••••••••
ZERO PASS COUNT - Command "ZP" •••••••••••.••••.•••••••.•.•
DISPLAY ERROR COUNTERS - COITVTIand "DE" •••.•.•..••••...••..•
ZERO ERROR COUNTERS - Command "ZE" ••••••••••••..••...••.••
NON-VERBOSE MODE - Prefix "NV" ••••.••••••••.••.••••...••••
LOOP CONTI NUOUS - Pref i x "LC" •••••••••.••••...••••••.•••••
LOOP ON ERROR MODE - Prefix "LE"•.•• ~ •..••••••••••.••
STOP ON ERROR MODE - Prefix "SE" ••••.•••.••.••••••••..••••

UTILITIES .•.•.••.•..•........•..••.•.••••••.••.•.....•.••.••
WR I TE LOOP - Command "WL. size It ••••••••••••••••••••••••••••

READ LOOP - Command "RL. size" •••••••••••.••••••••••••••.••
o I SPLAY SW ITCHES - Corrrnand liDS" •••••..•••••••••••.•••••..•
DISPLAY JUMPERS - Command "0J" •••••••••••..•.•.••••.•••.••

RAM TESTS .••.•.•••••••••••..•••••••••.•••••••.•••.•.•••••••
Genera 1 Oeser i pt i on ...•..•...••••.•..•..••.•....•••••••..

MT A - Set funct i on code ••••••••••••.•.•...••.•••••••••
HT B - Set starting address •••.•••••••••••••••••• ~ •••••
MT C - Set stop address •.••••..•••••••.•.•••••.••.•.•••
MT 0 - Random Inversion Test •••••••••••.••••••••••••••••
MT E - March Address Test •••••••••.••••••••.••••••••.••
MT F - Walk a bit Test ••••••••••••••••••••..•.•.•.•.•••
MT G - Refresh Test •.......•.•.•..•....•.....•.•......•
MT H - Random Byte Test .•..•••••••.••....••.••.....•.•.
MT I - Program Test ••...•...•.••••.•.•.•••...••.•.•....
HT J - TAS Test •...•....••••....•••••.••.•••.•...•....•
MT K - Test 0000-IFFF ..••.••••••••••••••••••••••.••••••
MT L - Partial Longword Writes Test •••.•.••.•••.•••..•.

Description of Memory Error Display Format •.•...•.....•••
SER 1 AL 1/0 PORT TESTS •.•.•.••.••••••••••.•••••..••...•••••.

Genera I Oescr i pt i on ...•..•.........•••.•••..•.•....••.•.•
Hardware requ i rements ...•..•••.•••••••..••.•..••. ; .•••.••

SIO A - Select oUARTs for testing •...•.•...............
S lOB - I nterna 1 loopback funct i on .••.•..••.••....•....
SIO C - External loopback connnector .•.•...•..•........
S10 0 - Baud rates ..•.......•.••.•...•...••.....•....••
S I 0 E - Par i ty modes•...••.•....•••.. ~ ...•...•.
SID F - Character lengths .••..••••..••.•.••............
S10 G - Handshake lines•••..•........•.............
S I 0 H - BREAK detect •...••.•.•........••...............
SID I - Interrupt generation •.•••..••.••.........•.....

0-1
o-}
0-1
0-2
0-2
0-2
0-3
0-3
0-3
0-3
0-4
0-4
0-4
0-4
0-4
0-4
0-5
0-5
0-5
0-5
0-5
0-6
0-6
0-7
0-7
0-8
0-9
0-10
0-11
0-12
0-13
0-14
0-15
0-16
0-17
0-18
0-20
0-21
0-22
0-22
0-22
0-24
0-25
0-26
0-27
0-28
0-29
0-30
0-31
0-32

TABLE OF CONTENTS (cont'd)
==
Section Title Page
==
7.12
7. 13
8.0
8.1
8.2
8.3
8.4
8.5
9.0
9. 1
9.2
9.3
9.4
9.5
10.0
10. 1
10.2
10.3
10.4
11.0
11. 1
11.1.1
11.1.2
11.2
11.3
11.4
11.5
11.6
11 • 7
11.8
11.9
11. 10
11. 11
1 I • 12
11 • 13
11 • 14
12.0
12. 1
12.1.1
12.1.2
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12. 10
12. 1 1
12. 12
12. 13
12.13

S I 0 J - Handshake togg 1 e ••••.•..•..••..••.••••.••••..••
5 I 0 Error report i ng:

MC68020 (ON-CHIP) CACHE TESTS •••• ~ •••••.••••••...•....••..•
Genera 1 Oeser i pton

CA20 A - Bas i c cachi ng ••••••••••••••.•.•.•...•••••••..•
CA20 B - Unlike fn. codes •••••••...••••.•••••••••••••••
CA20 C - Disable test
CA20 0 - Clear test ••••••••••••••••••••••••••••.••••.••

GMX MICRO-20 MISCELLANEOUS HARDWARE TESTS ••••••••••••••••••
Genera 1 Oeser i pt i on

MH A - FPC j nstruct ions
MH B - FPC control functions ••••••••.••••••••••••••••••
MH C - T f ck generator .. .
MH 0 - Interrupt generation ••••••••••••••••••••••••••••

PARALLEL PORT TESTS ••••••••••••••••••.•••••••••••••••••••••
Genera 1 Oeser i pt; on ...•.•••••.••.•...•...•.••.•••••••••..

PP A - Print test pattern on parallel port ••••••.••••••
PP B - Send test bit pattern to parallel port ••.•••••••
PP C - Send test bit pattern to PlfT •••••••••••••••••••

FLOPPY DISK CONTROLLER TESTS .•.••••••••••• ~ .•••••••.•••••••
Genera 1 Oeser t pt i on ..••.•..•••••.••••.•..•....•••...•...•
Hardware requ i rements .•••.•••••.••...•...••••..•..•...•••
Floppy d f sk forrnatt; ng•.......................

FO A - Set parameter ••.••.•••••••..•••..••••...•••••..•
FD B - Drive select•..................•...........
FD C - Side se 1 ect ..•.•••..••.•••.....•......•.....•...
FD 0 - Restore .•......................•••..............
FD E - Seek•..•...•.••••••.•••.•..•...•.••.•.•.•..•
FD F - Format track ..•.............•...................
FD G - Read ••••••...•••••..•.•••••••••.•.•••••••..•....
FD H - Write .•••..••.•..•...••.•••.•.•.•..•..•...••.•.•
FO I - Copy read buffer to write buffer •• ~ ••.••••••••••
FO J - Compare read and write buffers •.••••••••••.•••••
FO K - Fi 11 write buffer with data ••.•.••••.•••...••.••

Looping and chaining FO commands •••••••••••••••••••••••••
Status returned by FOC test commands .•••.••••••••••••••••

SASI TESTS ••••••••••••••••••••••••••••.•••••••••••••••..•••
Genera 1 Oeser 1 pt 1 on ••.•••••.••••••••.•.••••.•.•••.....•••
Hardware requ i rements••.•...•..•..•.........
Hard disk addresses ...•....•.•...•.......................

SA A - Set dr i ve parameters ••••••••••••••.•••••..••.••.
SA 8 - Scan data 11 nes ..•....•..•..••...•............•.
SA C - Restore••........•............•..•........
SA 0 - Seek .••.•..•.••.•.....•••.•.••.••..•............
SA E - Read .••••••..•.•••.••...••.••..•••.••.•••..•.•••
SA F - Wr f te •...•..•.••...••••••••.••..•.••.••...••..•.
SA G - Compare read and write buffers .••••••......•...•
SA H - Fill wr i te buffer with data•..•••.••..••.••.
SA I - Test interrupt .,•..•..•..•....•.•... ,•....
SA J - Park head••.......••.•..•......•.••.........
SA K - Format hard disk ..•.•.•.•..••...•.•.•...••••....

Loop i ng and cha i n i ng SA commands ..•..•.....••............
SAS I contro 11 er error report i ng ..•..........•..•.........

i i

0-33
0-34
0-35
0-35
0-36
0-37
0-38
0-39
0-40
0-40
0-41
0-42
0-43
0-45
0-46
0-46
0-47
0-48
0-49
0-50
0-50
0-50
0-51
0-52
0-54
0-55
0-56
0-'57
0-58
0-59
0-60
0-61
0-62
0-63
0-64
0-65
0-67
0-67
0-67
0-67
0-68
0-72
0-73
0-74
0-75
0-76
0-77
0-78
0-79
0-80
0-81
0-82
0-83

TABLE OF CONTENTS (cont'd)
====~===

Section Title Page
==
12. 14
13.0
13. 1
13.2
13.3
13.4
13.5
14.0
14. 1
14.1.1
14.1.1.1
14.1.1.2
14.2
14.3
14.4

SAS I handshake error report i ng •.••••....•.••.••••.•.•.•.•
ARCnet TESTS ..•...•.....•....•.•...•..•.•.•.••.•••....••.••

Genera I Descr i pt i on•..•.••.•............•.••.••
AN A - ARCnet wake-up test ..•.•••....•.•..••••.••..•.••
AN B - ARCnet DIP-switch test ...•.•.•...•..•.......•.•.
AN C - ARCnet interrupts test •.••.•...••.•..•.....•••.•
AN 0 - ARCnet buffer test ..••••..•.•..•.••...•.•...•...

PARALLEL 1/0 EXPANSION BOARD TESTS •.••.•••.•••.•.•..•.....•.
Genera I Oescr i pt i on •..••..•......•......••••••..•••••.•..
Hardware requirements •••..•.•.••.•..••••.....•••.••.••..•
ReQu i rement s for PX A .•....•..•.••••.••.•••.•.•••..•.....
Requ i rement s for PX B ..•.••••••..•....••.....•..••••....•

PX A - Data. handshake. and IRQ test •..•••.••.•.•.••..•
PX B - P4 connector test •.•••..••.•••.••....••..•.••..•
PX C - Data and handshake toggle •.•••••••••.•••••••.••.

iii

0-83
0-84
0-84
0-85
0-86
0-87
0-89
0-90
0-90
0-90
0-90
0-91
0-93
0-94
0-95

TABLE OF CONTENTS (cont'd)
=====================================.===
Section Title Page
==

tv

1.0 SCOPE

This diagnostic guide contains information about the operation and use of the
GHX Micro-20 Diagnostic Firmware Package, hereafter referred to as "the
diagnostics". Sections 3 and 4 give the user guidance in setting up the system
and invoking the various utilities and tests. Section 5 describes utilities
available to the user. Sections 6, 7, 8, 9, 10, 11, and 12 are guides to using
each test.

2.0 OVERVIEW OF DIAGNOSTIC FIRMWARE

The GMX Micro-20 diagnostic firmware package consists of the 020Bug monitor plus
a battery of util ities and test modules for exercising, testing, and debugging
the GMX Micro-20's hardware.

The diagnostics are menu-driven for ease of use. The "HE" command (explained
fully in section 5.1) displays a menu of al I available diagnostic functions (the
tests and utilities). Each test has a subtest menu which may be called using
the "HE" command.

3.0 SYSTEM START-UP

When the system is turned on, a short "confidence test" is performed to insure
that the MPU, ROMs, address decoders. and RAM memory are all working at a
minimum level. If any defects in the system are detected at this time, it is
possible that the system will not work well enough even to do console output.
So 020BUG does not "come up"; instead an error code is output in the form of
coded flashes of LED 2. The code is four bits long, with Is represented by
steady pulses of the LED and Os by flickering pulses. Bits are separated by
short pauses. Thus error code 1001 would be represented by

Steady - Flicker - Flicker - Steady

After the code is completed, there is a longer pause, then the code is repeated.
This will continue until the system is restarted. Each code indicates a
different hardware problem as shown in the table below.

0000 0
0001 1
0010 2
00 1 1 3
0100 4
0101 5
01 10 6
01 1 1 7
1000 8
1001 9
1010 10
1 0 1 1 1 1
1100 12
1 101 13
1 1 1 0 14

Confidence Test Error Codes

Not used
68020 register error
68020 instruction error
Reset failure
PROM checksum error
Addressing mode error
Exception failed to occur
Wrong exception generated
Stuck interrupt mask bit in 68020 Status Register
Unexpected interrupt
Memory error
Unexpected bus error
Bus error in accessing DUARTs
Partial longword write error
Console port output inhibited

0-1

4.0 DIAGNOSTIC MONITOR

The test described herein are called via a common diagnostic monitor, hereafter
cal led "monitor". This monitor is menu driven and provides input/output
facil ities, command parsing, error reporting, interrupt handling, and a
multi-level directory. A complete description of the capabilities and structure
of the monitor can be found in the GMX Micro-20 diagnostic monitor
speCification.

4.1 Monitor Start-Up

When the monitor is first brought up, following power up or reset, the following
text should be displayed on the console video display terminal:

GMX Micro-20 Debugger/Diagnostics Version 2.4 - 05/19/86
FRIDAY 09/24/86 12:00:08
020Bug>

To switch to the diagnostics directory, enter "SO"; the prompt will change to
"M20oiag>". "SO" is explained in detail in section 4.6.

4.2 Command Entry and Directories

Entry of commands is made when the prompt "M20oiag>_ "appears. The name of the
command is entered before pressing "RETURN". Multiple commands may be entered.
If a command expects parameters and another command is to follow it, separate
the two with an exclamation mark "!". For instance, to invoke the commands HT A
and MT B, the command line would read "MT A! MT B". Spaces are not required
but are shown here for legibility.

Most commands consist of a command name that is listed in a main (root)
directory and a subcommand that is listed in the directory for that particular
command. In the main directory are commands like "MH" and "MT". These commands
are used to refer to a set of lower level commands.

To call up a particular bus test, one would enter (on the same line) "CA20 A".
This command would cause the monitor to find the "CA20" subdirectory, and then
to execute the command "A" from that subdirectory.

The diagram shown below is provided to illustrate the directory structure.

Single Level Commands HE Help
LE Loop on Error

Two Level Commands CA20 F On-chip cache

F Basic caching

MH A Miscellaneous Hardware

A FPC instructions

D-2

4.3 HELP - Command "HE"

Online documentation has been provided in the form of a "HELP" command (syntax:
"HE"). This command will display the main menu if no parameters are entered. or
a menu of each subdirectory if the name of that subdirectory is entered. For
example. to bring up a menu of all the on-chip cache tests. one would enter "HE
CA20". When a menu is too long to fit on the screen. it will pause until the
operator depresses "RETURN".

4.4 SELF-TEST - Prefix "ST"

The monitor provides an automated test mechanism called "Self Test". Prefixing
a cOmrf,and 1 ine with "ST" wi 11 cause the monitor to run the tests specified if
they are included in the internal self test directory. Entering "ST" with no
parameters will run most of the GMX Micro-20 diagnostics. To run most of the
memory tests. one would enter "ST MT". Entering "ST CA20 G CA20 H" would cause
the monitor to run the tests CA20 G and CA20 H.

Each test that is not included in the self test chain for that particular
command is 1 isted in the section pertaining to the command (i.e., see section 10
for the HT commands that are not in the self test chain).

4.5 SELF-TEST LED - Prefix "STL"

This command is identical to the ST command. except for one special feature.
When the set of specified test modules invoked with "STL" is completed. a test
for errors is made. If any of the tests returned an error, the MPU enters a
loop which bl inks the Status LED (LED 2) rapidly and continuously until a RESET
occurs or BREAK is received on the console.

This'command allows the user to start a test or set of tests, then disconnect
the console terminal for other uses. If the "LC" command is used, the test or
tests will be repeated until an error occurs or the user intervenes. If the
blinking LED signals that an error has been is detected, then the user can
attach a terminal, enter BREAK to resume normal command entry, and use the "DE"
command to display the error table, and find out which test failed.

If switch 51-2 is ON. then at power-on/reset the "LC" and "STL" commands will be
invoked immediately, causing the system to execute the full self-test command
set in this mode. and no terminal is required at all.

4.6 SWITCH DIRECTORIES - Command "SO"

The debugger is the root or main directory after power-on/reset. At this point.
only the commands for 020Bug will function. Another directory is maintained for
the diagnostic commands. To access the diagnostic directory (and enable the
diagnostic tests), enter "SD". The diagnostic commands are now available in
addition to the debugger commands. To return to the debugger directory, the
command "SO" is entered again. When the 020Bug directory is selected, the
prompt wi I 1 read "020Bug>". When the diagnostiC directory is selected, the
prompt will read "M20Diag>". The purpose of this feature is to al low the end
user to access 020Bug without the diagnostics being visible.

4.7 DISPLAY PASS COUNT - Command "DP"

When Loop Continuous mode is used (see below), a counter is incremented for each
pass through the specified test or tests. This counter is preserved after the
test loop is exited by BREAK or error, and can be displayed by using the DP
command.

4.8 ZERO PASS COUNT - Command "ZP"

The pass counter is automatically set to zero at power-on/reset, but is never
reset otherwise, except by this command. Using this command before beginning a
test run insures that the pass count reflects only passes in the current run,
and not in a previous run. However, if the user needs to interrupt and restart
the test run, the pass count is preserved.

4.9 DISPLAY ERROR COUNTERS - Command "DE"

Each test or command in the diagnostic monitor has an individual error counter.
As errors are encountered in a particular test, that error counter will be
incremented. If one were to run a self test or just a series of tests, the
results could be broken down as to which tests passed by examining the error
counters. "DE" will display the results of a particular test if the name of
that test follows "DE".

4.10 ZERO ERROR COUNTERS - Command "ZE"

The error counters are
occasionally desirable
reset a I I of the error
reset by entering the
A will clear the error

initialized to zero at power-on/reset, but it is
to reset them to zero at a later time. This command will
counters to zero. The error counters can be individually
specific test name following the command. Example: ZE MH
counter associated with MH A.

4.11 NON-VERBOSE MODE - Prefix "NV"

The tests included for the GMX Micro-20 will frequently display a substantial
amount of data upon detecting an error. To avoid the necessity of watching the
scrol ling display, a mode is provided that supresses all' messages except
"PASSED" or "FAILED". This mode is called "nonverbose" and is invoked prior to
calling a command by entering "NV". "NV ST MT" would cause the monitor to run
the memory self test, but only show the names .of the subtests and the results
(pass/fail).

4.12 LOOP CONTINUOUS MODE - Prefix "LC"

To endless repeat a test or series of tests, the prefix "LC" is entered. This
loop will include everything on the command line with the "LC". To break the
loop, depress "BREAK". Certain tests disable the "BREAK" key interrupt, so
depressing the reset button may become necessary.

4.13 LOOP ON ERROR MODE - Prefix "LE"

Occasionally. when an oscilloscope or logic analyzer is in use, it becomes
desirable to repeat a test at the point where an error is detected. "LE"
accomplishes that for most of the tests. To invoke "LE", enter it before the
test that is to run in "loop on error" mode on the same command line.

4.14 STOP ON ERROR MODE - Prefix "SE"

This command sets a flag which halts testing as soon as any test reports an
error. If this command is entered on a command line before a self test command
or any other, testing will stop at the first error detected. This pievents
error information from scroll ing off the screen. It is compatible with Loop
Continuous mode, but not with Loop on Error.

5.0 UTILITIES

The monitor is supplemented by two utilities that are separate and distinct from
the monitor itself and the diagnostics.

5.1 WRITE LOOP - Command "WL.size"

The "WL.size" corrrnand causes a repeated write of the
specified memory location. This command is intended as a
debug once specific fault areas are identified. The write
execution so that measuring devices such as oscilloscopes
tracking failures.

specified size to the
technician aid for

loop is very short in
may be utilized in

The size of the command may be specified as B for byte, W for word, or L for
longword.

The command requires two parameters: target address and data to be written. The
address and data are both hexadecimal values and must be preceded by a O'if the
first digit is other than 0-9, i.e .• $FF would be entered as "OFF". To write
$00 out to address $FFFB0030, one would enter "WL.B OFFFB0030 00". Omission of
either or both parameters will cause prompting for the missing values.

This command is set up to continue writing even if the write produces a Bus
Error Exception, so writing to an address which fails to respond is possible.

5.2 READ LOOP - Command "RL.size"

The RL.size command
memory location.
specific fault areas
so that measuring
fai lures.

causes a repeated read of specified size from the specified
This command is intended as a technician aid for debug once
are identified. The read loop is very short in execution
devices such as oscilloscopes may be utilized in tracking

The size of the command may be specified as B for byte, W for wcrrj. or L for
longword.

The command requires one parameter: target address.
hexadecimal value and must be preceded by a 0 if the first
0-9, i.e., $FFFB0030 would be entered as "OFFFB0030".
$FFFB0030, one would enter "RL.B OFFFB0030". Omission of
cause prompting for the missing value.

The address is a
digit is other than

To read from address
the parameter will

This command is set up to continue reading even if the read produces a Bus Error
Exception, so reading from an address which fails to respond is possible.

5 . 3 0 I SPLA Y SW ITCHES - Command "OS"

This command reads the five-position DIP switch (SWl) on the GHX Micro-20 and
displays its value in binary, where 0 represents a switch in the ON position and

represents a switch in the OFF position. It repeats this display on the same
line indefinitely, until terminated by BREAK. If the user changes a switch, the
display will be updated immediately.

5.4 DISPLAY JUMPERS - Command "OJ"

This command reads the baud rate jumper block (JAx) and displays the setting as
two binary digits, where 0 represents an installed jumper and 1 represents a
missing jumper. It repeats this display on the same line indefinitely, until
terminated by BREAK. If the user changes a jumper, the display will be updated
imTIediately.

0-6

6.0 RAM TESTS

6.1 General Description

This set of tests exercises the GMX Micro-20's on-board RAM, or any selected
segment of the RAM.

TABLE T-1. MEMORY DIAGNOSTIC TESTS

==
Monitor COlMland Title Section Page

==
MT A Set Function Code 6.2 0-8
MT B Set Starting Address 6.3 D-9
I1T C Set Stop Address 6.4 D-I0
MT D Random Inversion Test 6.5 D-l1
I1T E March Address Test 6.6 0-12
MT F Walk A Bit Test 6.7 0-13
MT G Refresh Test 6.8 D-14
MT H Random Byte Test 6.9 D-15
I1T I Program Test 6.10 D-16
MT J TAS Test 6.11 D-17
I1T K Test 000O-1FFF 6.12 D-18
I1T L Partial Longword Writes Test 6. 13 D-20

==

D-7

6.2 Set Function Code HT A

6.2.1 Description

This command al lows the user to select the function code used in most of the
memory tests. The exceptions to this are "TAS test" and "program test".

6.2.2 Command Input

M20Diag>MT A [new value] <CR>

6.2.3 Response/Messages

If the user suppl ied the optional new value, then the display will appear as
follows:

H20Diag>MT A [new value] FUNCTION CODE=<new value>
M20diag>

If a new value was not specified by the user, then the old value will be
displayed and the user wil 1 be prompted for a new value.

M20Diag>MT A FUNCTION CODE=<current value> ?[new value]<CR>
FUNCTION CODE=<new value>
M20Diag>

This command may be used to display the current value without changing it by
depressing "RETURN" without entering the new value.

M20Diag>MT A FUNCTION CODE=<current value> ?<CR>
FUNCTION CODE=<current value>
M20Dlag>

O-R

6.3 Set Starting Address HT B

6.3.1 Description

This command allows the user to select the start address used by all of the
memory tests. The default starting address (set at power-on/reset) is $2000.
Memory below this address is used for monitor variables and for the monitor
stack. Use the MT K command to test this memory.

6.3.2 Command Input

H20Diag>MT B [new value] <CR>

6.3.3 Response/Messages

If the user supplied the optional new value, then the display will appear as
follows:

M20Diag>HT B [new value]
Start Addr=<new value>
M20Diag>

If a new value was not specified by the user, then the old value will be
displayed and the user will be prompted for a new value.

M20Diag>HT B
Start Addr=<current value> ?[new value]<CR>
Start Addr=<new value>
M20Diag>

This'command may be used to display the current value without changing it by
depressing "RETURN" without entering the new value.

M20Diag>MT B
Start Addr=<current value> ?<CR>
Start Addr=<current value>
M20Diag>

Note: If a new value is specified, it will be truncated to a longword boundary
and, if greater than the value of the stop address, will replace the stop
address. The start address is never allowed to be higher in memory than the_
stop address. These changes wil I occur before another command wil I be processed
by the monitor.

6.4 Set Stop Address MT C

6.4.1 Description

This command allows the user to select the stop address used by all of the
memory tests. If the user enters a value less than the current start address,
it will be replaced by the start address. The stop address is also truncated to
a longword boundary.

6.4.2 Command Input

M20Diag>MT C (new value] <CR>

6.4.3 Response/Messages

If the user supplied the optional new value, then the display will appear as
follows:

H20Diag>HT C [new value]
Stop Addr=<new value>
M20Diag>

If a new value was not specified by the user, then the old value will be
displayed and the user will be prompted for a new value.
M20Diag>MT C
Stop Addr=<current value> ?[new value]<CR>
Stop Addr=<new value>
H20Diag>

This command may be used to display the current value without changing it by
depr~ssing "RETURN" without entering the new value.

M20Diag>MT C
Stop Addr=<current value> ?<CR>
Stop Addr=<current value>
H20Diag>

Note: If a new value is specified, it will be truncated to a longword boundary
and, if less than the value of the starting address, will be replaced by the
starting address. The stop address is never allowed to be lower in memory than
the starting address. These changes will occur before another command wil I be
processed by the monitor.

0-10

6.5 Random Inversion Test MT D

6.5.1 Description

This test performs an
ADDRESS to STOP ADDRESS.

inversion test with pseudo-random data from STARTING
It is implemented as follows:

Step 1. The time-of-day clock is read to provide a seed for the pseudo-random
sequence.

Step 2. Each longword from START to STOP is written with a value in the
pseudo-random sequence and then with its inverse.

Step 3. Each longword from STOP to START is checked for the inverse of its
pseudo-random value, and then written with the value itself.

Step 4. Each longword from START to STOP is checked for its pseudo-random
value.

6.5.2 Command Input

M20Diag)MT D <CR)

6.5.3 Response/Messages

After the command is entered, the display should appear as follows:

D Random Inversion Test ...•.... Running ---)

If an error is encountered, then the memory location and other related
information will be displayed (see section 6.13).

o Random Inversion Test ...••... Running ---)

(error-related information) •.•.. FAILED

If no errors are encountered, then the display will appear as follows:

o Random Inversion Test•. Running ---) PASSED

6.7 March Address Test HT E

6.6.1 Description

This command performs a march address test from STARTING ADDRESS to STOP
ADDRESS.

The march address test has been implemented in the following manner:

Step 1. All memory locations from STARTING ADDRESS up to STOP ADDRESS are
cleared to O.

Step 2. Beginning at STOP ADDRESS and proceeding downward to STARTING ADDRESS,
each memory location is checked for bits that did not clear, and then
written with all Fs (all the bits are set). This process will reveal
address lines that are stuck high.

Step 3. Beginning at STARTING ADDRESS and proceeding upward to STOP ADDRESS,
each memory location is checked for bits that did not set, and then
cleared to O. This process will reveal address lines that are stuck
low.

6.6.2 Command Input

H20Diag>MT E <CR>

6.6.3 Response/Messages

After the command is entered, the display should appear as follows:

E March Addr. Test •...•......... Running ---)

If an error is encountered, then the memory location and other related
information wil I be displayed (see section 6.13).

E March Addr. Test .•..•...•.••.• Running --->

(error-related information) ..••• FAILED

If no errors are encountered, then the display will appear as follows:

E March Addr. Test•.......•. Running ---> PASSED

6.7 Walk A Bit Test MT F

6.7.1 Description

This command performs a "walking bit" test from STARTING ADDRESS to STOP
ADDRESS.

The walking bit test has been implemented in the following manner:

For longwords from STARTING ADDRESS to STOP ADDRESS
Test value = 1 (only lowest bit set in 32-bit value)
For 32 bit positions

Write test value to memory
Read it back
Verify that the value written equals the one read
Report any errors
Shift the 32-bit value to move the bit up one position

Repeat
Repeat

6.7.2 Command Input

M20Diag>MT F <CR>

6.7.3 Response/Messages

After the command is entered, the display should appear as fol lows:

F Walk a Bit Test ••••••..••.•.•. Running --->

If an error is encountered, then the memory location and other related
information will be displayed (see section 6.13).

F Walk a Bit Test •••..•......... Running --->

(error-related information) FAILED

If no errors are encountered, then the display will appear as follows:

F Walk a Bit Test ..•......•..••. Running ---> PASSED

6.8 Refresh Test

6.8.1 Description

This command performs a refresh test from STARTING ADDRESS to STOP ADDRESS.

The refresh test has been implemented in the fol lowing manner:

Step 1. For each memory location:
Write out Value $FC84B730.
Verify that the location contains $FC84B730.
Proceed to next memory location.

Step 2. Delay for 500 milliseconds (1/2 second).

Step 3. For each memory location:
Verify that the location contains$FC848730.
Write out the complement of $FC84B730 ($037848CF).
Verify that the location contains $037B48CF.
Proceed to next memory location.

Step 4. Delay for 500 milliseconds.

Step 6. For each memory location:
Verify that the location contains $037848CF.
Write out value $FC84B730.
Verify that the location contains $FC848730.
Proceed to next memory location.

6.8.2 Command Input

M20Diag>MT G

6.8.3 Response/Messages

After the command is entered, the display should appear as follows:

G Refresh Test ..•............... Running --->

MT G

If an error is encountered, then the memory location and other related
information wil I be displayed (see section 6.13).

G Refresh Test.................. Runn i ng --->

(error-related information)

If no errors are encountered, then the display will appear as fol lows:

G Refresh Test Running ---) PASSED

'"' ,.

6.9 Random Byte Test HT H

6.9.1 Description

This command performs a random byte test from STARTING ADDRESS to STOP ADDRESS.

The random byte test has been implemented in the fol lowing manner:

Step 1. A register is loaded with the value $ECA86420.

Step 2. For each memory location:
Copy the content of the register to the memory location, one

byte at a time.
Add $02468ACE to the contents of the register.
Proceed to the next memory location.

Step 3. Reload $ECA86420 into the register.

Step 4. For each memory location:
Compare the contents of the memory to the register to verify
that the contents are good, one byte at a time.

Add $02468ACE to the contents of the register.
Proceed to the next memory location.

6.9.2 Command Input

M20Diag>MT H

6.9.3 Response/Messages

After the command is entered, the display should appear as follows:

H Random Byte Test •...•.•.•.•••. Running --->

If an error occurs, then the memory location and other information
will be displayed (see section 6.13).

H Random Byte Test .••..•.•.•.•.. Running ---)

(error-related information) FAILED

If no errors occur, then the display wil I appear as follows:

H Random Byte Test Running ---) PASSED

6.10 Program Test MT I

6.10.1 Description

This command moves a program segment into RAM and executes it. The
implementation of this is as follows:

Step 1. The program is moved into the RAM, repeating it as many times as
necessary to fill the available RAM (i.e., from STARTING ADDRESS to
STOP ADDRESS-8).

Note: Only complete copies of the program are moved. The space remalnlng from
the last program segment copied into the RAM to STOP ADDRESS-8 is fil led with
NOP instructions. Attempting to run this test without sufficient memory (around
400 bytes) for at least one complete program segment to be copied wil I cause an
error message to be printed out: "INSUFFICIENT MEMORY".

Step 2. The last location, STOP ADDRESS receives an RTS instruction.

Step 3. Finally, the test performs a JSR to location STARTING ADDRESS.

Step 4. The program itself performs a wide variety of operations, with the
results frequently being checked and a count of the errors maintained.
Errant locations are reported in the same fashion as any memory test
failure (see section 6.13).

6.10.2 Command Input

t120Diag>MT

6.10~3 Response/Messages

After the command is entered, the display should appear as fol lows:

I Program Test ...•••..••.•.••••. Running --->

If the operator has not allowed enough memory for at least one program segment
to be copied into the target RAM, then the fol lowing error message will be
printed. To avoid this, make sure that the Stop Address is at least 388 bytes
($00000184) greater that the Start Address.

I Program Test.................. Runn i ng --->
Insufficient Memory
PASSED

If the program (in RAM) detects any errors, then the location of the error and
other information wil I be displayed (see section 6.13).

I Program Test Running ---)
(error-related information) FAILED

If no errors occur, then the display will appear as fo1 lows:

Program Test.................. Runn i ng ---) PASSED

r. Ir

6. 1 1 TAS Test HT J

6. 11 . 1 Oeser i pt i on

This command performs a Test And Set (TAS) test from STARTING ADDRESS to STOP
ADDRESS.

The test is implemented as follows:

For each memory location:
Clear the memory location to o.
Test And Set the location (should set upper bit only).
Verify that the location now contains $80.
Proceed to next location (next byte).

6.11.2 Command Input

M20Diag)HT J

6.11.3 Response/Messages

After the command is entered, the display should appear as follows:

J TAS Test•.•.•...•..••...•.• Running ---)

If an error occurs, then the memory location and other information are displayed
(see section 6.13).

J TAS Test ••.•.••..•...•..•..•... Running ---)
(error-related information) .•... FAILED

If no errors occur, then the display will appear as follows:
J TAS Test .•.••.•..•..•......••.• Running ---) PASSED

" ,....,

6.12 Test OOOO-IFFF MT K

6.12.1 Description

This command performs the full suite of RAM tests on memory from $0000 through
$IFFF. For each test D through J, the working contents of low memory (monitor
stack, static variables, ~nd vector table) are saved at $4000-$5FFF, and the
test command is invoked with bounds of $0000 and $IFFF. The working contents
are restored when each test is completed. If an error is detected, the test
values in low memory are saved at $6000-$7FFF, the working contents are
restored, the error is reported, the working contents are saved again, the test
values are restored, and the test continues. Anything stored at $4000-$7FFF
wil I be lost if MT K is run. Each test is logged to the console as it is begun.

6.12.2 Command Input

M20Diag>HT K

6.12.3 Response/Messages

After the command is entered, the display should appear as fo! lows:

K Test 0000-IFFF ..•.•....•....... Running ---)

- Random Inversion Test
- March Address Test
- Walk A Bit Test
- Refresh Test
- Random Byte Test
- Program Test
- TAs Test

If an error occurs, then the memory location and other information are displayed
(see section 6.13). Errors detected by the invoked tests are accumulated; if
any of the invoked tests detects an error, MT K fails.

K Test OOOO-lFFF•..••..•... Running ---)

- Random Inversion Test
- March Address Test
- Walk A Bit Test

(error-related information)
- Refresh Test
- Random Byte Test
- Program Test
- TAS Test
..... FAILED

If no errors occur, then the display will appear as fol lows:

K Test OOOO-IFFF•.. Running ---)

- Random Inversion Test
- March Address Test
- Walk A Bit Test
- Refresh Test
- Random Byte Test
- Program Test
- TAS Test

PASSED

0-19

6. 13 Partial Longword Writes Test MT L

6.13.1 Description

This command tests for a control logic failure during the write of a partial
longword to RAM. The 68020 always drives al I 32 data lines of the bus during a
write cycle, but if the write is anything other than an aligned longword write.
one or more of these bytes should be disregarded by the RAM array. The 68020
can signal to the RAM array which bytes are actually being written. See section
5.1.4, "Address. Size. and Data Bus Relationships" in the 68020 User's Manual
for a complete explanation. If the RAM array control logic fails to Interpret
these signals correctly. data may not be written correctly to RAM. This test
performs all possible partial longword writes to the memory array. and checks
for errors. Since each half of the memory array has its own control logic. the
test is repeated separately for both halves.

The test is performed by loading a register with the pattern $87654321. and
performing nine writes to a target longword: byte writes to byte O. byte 1. byte
2. and byte 3. word writes to bytes 0 and 1. bytes 1 and 2, and bytes 2 and 3.
and three-byte writes to bytes 0, 1. and 2. and bytes 1. 2. and 3. Before each
write. the target longword is zeroed. and after the write. the contents of the
longword are compared to a copy of the correct result. If the contents don't
match uP. the error is reported as shown below.

6.13.2 Command Input

M20Dlag>MT L

6.13.3 Response/Messages

After the command is entered, the display should appear as follows:

L Partial Longword Writes Test .. Running --->

If no errors occur, then the display will appear as follows~

L Partial Longword Writes Test .. Running ---> PASSED

If an error is encountered, then the error will be reported as follows:

L Partial Longword Writes Test .. Running --->
Error on <size> write to <location>
Expected pattern: 65432100
Actual pattern: 65432187

If the error caused data to be written to RAM when it should have been Ignored.
this will show UP as one or more zero bytes over non-zero bytes. If the error
caused data to be ignored when it should have been written to RAM. this will
show up as one or more non-zero bytes above zero bytes.

A fault of this type will usually render the GMX Micro-20 unusable till
repaired. But if one's program avoids odd-address writes, or'stores data only
as aligned long words (as many 68020 programs do), the fault may be masked
almost completely. and cause very subtle and confusing errors.

0-20

6.14 De'scription of Memory Error Display Format

This section is included to describe the format used to display errors during
memory tests 0 - K.

The error reporting code is designed to conform to two rules:

1) The first time an error occurs, headings are printed out before the values
are printed

2) After 20 memory errors, the printing of error messages ceases for the
remainder of the test.

The figure below is included as an example of the display format.

FC TEST ADDR
5 00010000
5 00010004

10987654321098765432109876543210
-----------------------X--------
-------------------X-------X----

EXPECTED READ
00000100 00000000
FFFFEFFF FFFFFEFF

Each line displayed consists of five items: function code, test address, graphic
bit report, expected data, and read data. The test address, expected data, and
read data are displayed in hexadecimal. The graphic bit report shows a letter
'X' at each errant bit position and a dash ('-') at each "good" bit position.

The heading used for the graphic bit report is intended to make the bit position
easy to determine. Each numeral in the heading is the one's digit of the bit
position. For example, the leftmost "bad" bit at test address $10004 has the
numeral 2 over it. Since this is the second "2" from the right, the bit
position is read "12" (base 10).

0-21

7.0 S10 TESTS

7.1 General Description

This set of tests exercises the GMX Micro-20's serial 1/0 hardware (MC68681
DUARTs). Both HC68681s (four ports) on the GHX Micro-20 board are tested
automatically. Four or eight additional MC68681s on one or two SBC-8S serial
1/0 expansion boards can be tested as well.

TABLE T-2. SERIAL 1/0 DIAGNOSTIC TESTS

==
Monitor Conmand Title Section Page

==
51 A
51 B
51 C
51 0
51 E
51 F
51 G
51 H
51 1
51 J

Select DUARTs for testing
Internal loopback function
External loopback connector
Baud rates
Parity modes
Character lengths
Handshake lines
BREAK detect
Interrupt output
Handshake toggle

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7. 1 1
7.12

0-24
0-25
0-26
0-27
0-28
0-29
0-30
0-31
0-32
0-33

==

7.2 Hardware Requirements

Tests 51 B, 51 0,51 E, 51 F, 51 H, and 51 1 use the internal loopback function
of the HC68681. No external hardware is required for these tests.

Tests 51 C and 51 G require an external loopback circuit for each port which
connects the Tx output to the Rx input and the OTR output to the CTS input.
This circuit can be provided by plugging a "Ioopback connector" into the
corresponding D-connector on the GHX RS-232 Adapter Board. A male OB-25
connector must be used with the SAB-25 Adapter board. A female DB-9 connector
must be used with the SAB-9D and SAB-NT Adapter boards. The correct wiring
pattern for each connector type is shown on the next page.

The fourth connector on an SAB-25 or SAB-90 adapter board has two additional
handshake lines. and jumpers for configuring the connector pinout. This supports
applications such as modem control. The jumpers must be positioned correctly
for the loopback connector to function properly.

The fourth connector on an SAB-NT board is wired to support the RS-485 high
speed interface and network operations. Its transmit and receive lines can be
"looped back" externally through the network support circuitry, but its
handshake lines cannot be "looped back" at all. Therefore no loopback connector
is needed or usable with this connector, and the SI G test will skip the
corresponding OUART channel if an SAB-NT board is installed.

0-22

o o

o o

Wiring of 09-25 male loopback connector

o o o o

o o o

o o
5
o

+------------+
o

20
o

Connect

o

o

o o

--
From To

==
2 Rx data
5 OTR

3 Tx data
20 CTS

--

Wiring of 09-9 female loopback connector

2 3 4
0 0----0 0 0

/
0 0 0 0

8

Connect
==

From To
==

2 Rx data
8 OTR

3 Tx data
4 CTS

==

0-23

3 2
0----0 o

o o

1.3 Select oUARTs for testing 51 A

1.3.1 oescrfptfon·

This command allows the user to select oUARTs for testing and determine which
oUARTs are installed in the system. Each possible oUART address in the range
<low oUART> through <high oUART> is accessed by the MPU. If no bus error occurs
that oUART is flagged as "Installed" and selected for testing. If only one
oUART number is specified, only that oUART is tested and flagged. If no range
is given, the defau I t range 1 s 0 through 1. The user f s then informed wh' ch
DUARTs are selected. The permitted oUART numbers are from 0 to 11. 0 and 1 are
the on-board oUARTs. 2 through 11 are located on expansion boards. When a
spec i f i c oUART test is se I ected i·t wIll be performed for a I 1 oUARTs wh i ch are
selected.

51 A may be used to test the address decoding and bus handshake logic of the I/O
expansion port and boards, or of oUART #1 (if DUART #0 malfunctions console I/O
is impossible).

When an 5AB-NT Adapter Board is used, one oUART will have the R5-485/network
interface on its channel A, which does not allow external loopback of the
handshake lines. The SI A command tests for the network interface, and any
oUART which Is connected to the R5-485 connector of an. SAB-NT board will be
flagged with a "*" after Its number in 51 A's report line.

1.3.2 Command Input

H20oiag>SI A [low oUART [high oUART]]

1.3.3 Response/Hessages

After the command lfne 1s entered a response should appear as follows:

H2001ag>SI A 1 2 <CR>
These oUARTs are selected:
H20oiag>

H20ofa9>SI A <CR>
These oUARTs are selected: 0 1
H20olag>

(no expansion boards Installed)

(default to 0 through 1)

H200fag>SI A 0 11 <CR> (one expansion board
These OUARTs are selected: 0 1 2 3* 4 561 8 9 installed; RS-485 interface
H200ia9> on OUART #3 channel A)

H200lag>SI A 1 0 <CR>
These OUARTs are selected: 1 6 1 8 9 ABC 0
H200iag)

H200lag>SI A 2 <CR>
These OUARTs are selected: 2
1120olag>

H2001a9>SI A 1 <CR>
These oUARTs are selected:
112001ag>

0-24

(two expansion boards
installed, decoding failu~e
on first board)

(expansion board Installed)

(OUART #1 not responding)

7.4 Internal loopback function 51 B

7.4.1 Description

This test uses the 68681's internal loopback functiom to transmit a 256-byte
buffer of pseudo-random data from the send side to the receive side of each
channel of each DUART selected for testing. The data rate is 19200 baud.

7.4.2 Command Input

M20Diag)SI B

7.4.3 Response/Messages

After the command is entered, the display should appear as follows:

B Internal loopback function •••. Running ---)

If an error is encountered, then the related information will be displayed (see
section 1.12). The display will then appear as follows:·

B Internal loopback function ..•• Running --->
Now testing DUART #1
(error-related information)

FAILED

If no errors occur, then the display will appear as follows:

B Internal loopback function •••• Running ---)
Now testing DUART #1
PASSED

0-25

7.S External loopback connector 51 C

7.5.1 Description

This test transmits a 256-byte buffer of pseudo-random data from the send side
to the receive side of each channel through an external loopback circuit (see
section 7.2, Hardware Requirements). Both channels of all selected DUARTs are
tested except channel A of DUART #1, which is used by the console. This test
does NOT exercise the external loopback of the handshake lines, which must be
checked with the 51 G command.

When an SAB-NT adapter board is used, this test will exercise the high-speed
external clock input from the nework interface to the the DUART.

7.5.2 Command Input

M20Diag)SI C

7.5.3 Response/Messages

After the command is entered, the display should appear as follows:

C External loopback connector ... Running ---)

If an error is encountered, then the related information will be displayed (see
section 7.12). The display will then appear as follows:

C External loopback connector •.. Running ---)
Now testing DUART #1
(error-related information)

FAILED

If no errors occur, then the display will appear as follows!

C External loopback connector ..• Running ---)
Now testing DUART #1
PASSED

0-26

7.6 Baud rates 51 0

7.6.1 Description

This test
a 256 byte
channels.
~UARTs are

exercises the baud
buffer through the

Baud rates from
tested.

rate generation functions of each DUART by sending
internal loopback circuit on both the A and B
75 baud to 38400 baud are tested. and all selected

7.6.2 Command Input

M200iag)Sl D

7.6.3 Response/Messages

After the command is entered. the display should appear as follows:

Q Baud rates ••...•.•....•..•••••• Running ---)

If an error is encountered, then the baud rate will be displayed along with
other related information (see section 7.12). The display will then appear as
follows:

Q Baud rates •.•.••••••.....•••... Running ---)
Now testing QUART #1
(error-related information)
Baud rate = 19200

FAILED

If no errors occur, then the display will appear as follows:

D Baud rates .••••••••..•...•••... Running ---)
Now testing DUART #1
PASSED

0-27

7.7 Parity modes S I E

7.7.1 Description

This test exercises the four parity modes (odd, even, space, mark, and none) for
both channels of all the selected DUARTs by sending a 256 byte buffer through
the internal loopback circuit in each mode on both channels of each DUART.

7.7.2 Corrroand Input

M20Diag>SI E

7.7.3 Response/Messages

After the command is entered, the display should appear as follows:

E Parity modes ..•......••.••.... Running --->

If an error is encountered. then the parity
information will be displayed (see section 7.12).
as follows:

E Par i ty modes.................. Runn i ng --- >
Now testing DUART #1
(error-related information)
Even parity

FAILED

mode and other error related
The display will then appear

If no errors occur, then the display will appear as follows:

E Parity modes •...••.••...••..•• Running ---)
Now testing DUART #1
PASSED

0-28

7.8 Character lengths 51 F

7.8.1 Description

This test exercises the different character lengths of the MC68681 (5, 6, 7, or
8 bits/character) by sending a 256 byte buffer through the internal loopback
circuit of both channels each selected DUART.

7.8.2 Command Input

M20Diag)SI F

7.8.3 Response/Messages

After the command is entered, the display should appear as follows:

F Character lengths •.•..•..••..• Running ---)

If an error is encountered, then the character length and other error related
information will be displayed (see section 7.12). The display will then appear
as follows:

F Character lengths •.•..•..•...• Running ---)
Now testing DUART #1
(error-related information)
5 bits per character

FAILED

If no errors occur, then the display will appear as follows:

F Character lengths •••....•••.•• Running ---)
Now testing DUART #1
PASSED

0-29

7.9 Handshake lines 51 G

7.9.1 Description

This test exercises the handshake functions of each OUART by toggling the
handshake output and examining the handshake input of both channels port. An
external loopback connector must be installed for this test to work. Both
channels of all selected OUARTs are tested except channel A of OUART #0, which
is used by the console, and any other OUART's channel A which is attached to a
R5-485 interface. External loopback connectors must be installed for this test
to work correctly.

7.9.2 Command Input

H20Diag>SI G

7.9.3 Response/Messages

After the command is entered, the display should appear as follows:

G Handshake lines ..••.•........ Running --->

If the handshake lines do not operate correctly, then the channel location and
error type will be reported as follows:

G Handshake lines •.•........... Running --->
Now testing QUART #1
Handshake error on DUART #1 channel A
Handshake line stuck low

FAILED

If no errors occur, then the display will appear as follows:

G Handshake lines .•.••••....... Running --->
Now testing DUART #1
PASSED

0-30

7.10 BREAK detect 51 H

7.10.1 Description

This test exercises the BREAK detect and BREAK transmit functions of the MC686Bl
by sending a BREAK on the internal loopback·circuit of both channels of each
selected DUART.

7.10.2 Command Input

M200iag)SI H

7.10.3 Response/Messages

After the command is entered, the display should appear as follows:

H BREAK detect ..••••••..•.•••.•• Running ---)

If BREAK is not correctly detected, a message reporting this will be printed on
the screen. and the display will appear as follows

H BREAK detect .••••.•.•.•••••.•• Running ---)
Now testing OUART #1
No DELTA BREAK detect on DUART #1 channel A

FAILED

or

H BREAK detect ••••••••.•••.••••• Running ---)
Now testing DUART #1
No valid BREAK flag in channel status on OUART #1 channel_A

FAILED

If no errors occur. then the display will appear as follows:

H BREAK detect •.••••.•.•••.••... Running ---)
Now testing DUART #1
PASSED

0-31

7. 1 1 Interrupt generation SI I

7.11.1 Description

This test exercises the interrupt output of the DUART by causing a TxRDY
interrupt from both channels of each selected DUART using the internal loopback
circuit.

7.11.2 Command Input

M20Diag)SI I

7.11.3 Response/Messages

After the command is entered, the display should appear as follows:

I Interrupt generation ..•......• Running ---)

If no interrupt is generated, the error will be reported and the display will
then appear as follows:

I Interrupt generation .•..•...•• Running ---)
Now testing DUART #1
No interrupt on DUART #1 channel A

FAILED

If no errors occur, then the display will appear as follows:

I Interrupt generation .•••.••... Running ---)
Now testing DUART #1
PASSED

0-32

7. 12 Handshake toggle 5 I J

7.12.1 Description

This test performs a continuous toggle of both handshake lines of all selected
DUARTs, except DUART#O channel A (the console port). All the handshake lines
are set high one at a time, starting from the lowest selected DUART. Then the
lines are set back low in the same order. This process will continue until a
BREAK is entered on the console. This command is useful to a technician who
needs to examine the handshake lines changing state.

7.12.2 Command Input

M20Diag)SI J

7.12.3 Response/Messages

After the command is entered, the display should appear as follows:

J Handshake toggle ..•.•••••••••• Running ---)

A standard n!IBreak!!n message is displayed when the user terminates the command
by entering a BREAK on the console.

0-33

7.13 510 Error Reporting

When an error is detected by one of the 51 tests, the error is reported to the
user on the screen. In addition to reporting the type of error, the test will
also display the number of the DUART which displayed the fault and which channel
failed.

For tests which send a data buffer through an external or internal loopback
circuit, additional error conditions are reported. These include timeout while
waiting to transmit or receive, and parity, framing, or overrun errors reported
by the MC68681. These error conditions are indicated separately, and the number
of bytes previously received is reported.

Thus, if the 53rd byte in a buffer being sent to test the external loopback
connector generates a parity error, the display would be as follows:

M20Diag>SI C
Now testing OUART #1
Receiver error on OUART #1 channel A at byte 053
Parity error

If a buffer transmission is completed without errors detected, then the received
data buffer is compared against the sent data buffer. If a mismatch is found,
the buffer position, byte sent, and byte received are displayed. A maximum of
twenty data errors will be reported. If the 254th byte of the buffer was
received with a wrong value, the display would be as follows:

Data error on OUART #1 channel A at byte 254
Position Sent Received

FE AB A7

0-34

8.0 MC68020 (ON-CHIP) CACHE TESTS

8. 1 General Description

This section details the diagnostics provided to test the MC68020 cache.

TABLE T-2. MC68020 CACHE DIAGNOSTIC TESTS

===
Monitor Convnand Title Section Page
===

CA20 A
CA20 B
CA20 C
CA20 0

Basic Caching
Unlike Function Codes
Disable Test
Clear Test

8.2
8.3
8.4
8.5

0-36
0-37
0-38
0-39

===

The normal procedure for fixing a MC68020 cache error is to replace the MPU.

0-35

8.2 Basic Caching Test CA20 A

8.2.1 Description

This command tests the basic caching function of the MC68020 microprocessor.
The test caches a program segment that resides in RAM, freezes the cache,
changes the program segment in RAM, then re-runs the program segment. If the
cache is functioning correctly, the cached instructions will be executed.
Failure is detected if the MC68020 executes the instructions that reside in RAM;
any cache misses will cause an error.

The process is first attempted in supervisor mode for both the initial
through the program segment and the second pass. It is then repeated,
user mode for the initial pass and the second pass. A bit is included in
cache entry for distinguishing between supervisor and user mode. If this
stuck or inaccessible, the cache will miss during one of these two tests.

8.2.2 Command Input

M20Diag)CA20 A

8.2.3 Response/Messages

After the command is entered, the following line will be printed:

A Basic Caching ..••.....•.....•.... Running ---)

pass
using
each

bit is

If there are any cache misses during the second pass through the program
segment, then the test fails and the display will appear as follows.

A Basic Caching ..•...••...•.••.••.• Running ---)
2 CACHE MISSES!
CACHED IN SUPY MODE, RERAN IN SUPY MODE
••••• FAILED

If there are no cache misses during the second pass, then the test passes.

A Basic Caching ...••..•....••.•..•. Running ---) PASSED

0-36

8.3 Unlike Function Codes Test CA20 B

8.3.1 Description

This command tests the ability of the on-chip cache to recognize function codes.
Bit 2 of the function code is included in the tag for each entry. This provides
a distinction between supervisor and user modes for the cached instructions. To
test this mechanism, a program segment that resides in RAM is cached in
supervisor mode. The cache is frozen, then the program segment in RAM is
changed. When the program segment is executed a second time in user mode, there
should be no cache hits due to the different function codes. Failure is
detected if the MC68020 executes the cached instructions.

After the program segment has been cached in supervisor mode and rerun in user
mode, the process is repeated, caching in user mode and re-running in supervisor
mode. Again, the cache should miss during the second pass through the program
segment.

8.3.2 Command Input

M20Diag)CA20 B

8.3.3 Response/Messages

After the command is entered, the following line will be printed:

B Unlike fn. Codes ••..••••..•...... Running ---)

If there are any cache hits during the second pass through the program segment,
then the test fails and the display will appear as follows.

B Unlike fn. Codes ..•....•.•••••••• Running ---)
5 CACHE HITS!
CACHED IN SUPY MODE, RERAN IN USER MODE
.•••• FAILED

If there are no cache misses during the second pass, then the test passes.

B Unlike fn. Codes ...••...••••.•••. Running ---) PASSED

0-37

8.4 Disable Test

8.4.1 Description

In the MC68020 cache control register ("CACR") a
enable the cache. When this bit is clear, the
regardless of whether the address and function codes
mechanism, a program segment is cached from RAM. The
serve its contents, then the enable bit is cleared.
is then changed and rerun. There should be no cache
clear. Failure is declared if the cache does hit.

8.4.2 Command Input

M20Diag)CA20 C

8.4.3 Response/Messages

CA20 C

control bit is provided to
cache should never hit,
match a tag. To test this
cache is frozen to pre
The program segment in RAM

hits with the enable bit

After the command is entered, the following line will be printed:

C Disable Test •......•••...••.....• Running ---)

If there are any cache hits during the second pass through the program segment,
then the test fails and the display will appear as follows.

C Disable Test Running ---)
1 CACHE HIT!
CACHED IN SUPY MODE, RERAN IN SUPY MODE
.•••• FAILED

If there are no cache misses during the second pass, then the test passes.

C Disable Test •.•••..••.•.......•.• Running ---) PASSED

0-38

8.5 Clear Test CA20 D

8.5.1 Description

A control bit is included in the HC68020 Cache Control register ("CACR") to
clear the cache. Writing a one to this bit invalidates every entry in the
on-chip cache. To test this function, a program segment in RAM is cached and
then frozen there to preserve it long enough to assert the cache clear control
bit. The program segment in RAM is then modified and rerun with the cache
enabled. If the cache hits, the clear is incomplete and failure is declared.

8.5.2 Command Input

H20Diag)CA20 D

8.5.3 Response/Messages

After the command is entered, the following line will be printed:

D Clear Test .••..•.••.••....•.••.•. Running ---)

If there are any cache hits during the second pass through the program segment,
then the test fails and the display will appear as follows.

D Clear Test •...•.•.•••....••••.••• Running ---)
58 CACHE HITS!
CACHED IN SUPY MODE, RERAN IN SUPY MODE
••••• FAILED

If there are no cache misses during the second pass, then the test passes.

D Clear Test ••...•..••.•••••..•..•. Running ---) PASSED

0-39

9.0GMX MICRO-20 MISCELLANEOUS HARDWARE TESTS

9.1 General Description

This section details the diagnostics provided to test various hardware functions
of the GMX Micro-20.

TABLE T-3. GMX MICRO-20 MISCELLANEOUS HARDWARE TESTS

===
Monitor Conmand Title Section Page
===

MH A
MH B
MH C
MH 0

FPC instructions
FPC control functions
Tick generator
Interrupt generation

9.2
9.2
9.3
9.4

0-41
0-42
0-44
0-45

===

0-40

9.2 . FPC Instructions MH A

9.2. 1 Description

This test checks the functioning of the MC68881 floating-point coprocessor and
its interface circuitry. Bit 6 of the SASI status register at $FFFF800E is a 1
if the coprocessor is instal led. If this bit is a 0, then the test terminates
with a message and no error is generated.

If the coprocessor is installed, then each of the arithmetic instructions of the
MC68881 floating-point coprocessor are executed, using preset operand values and
checking the results against known correct values. If a result does not match,
then the erring instruction is reported.

The normal procedure for fixing a coprocessor error is to replace the
coprocessor.

9.2.2 Corrmand Input

H20Diag)MH A

9.2.3 Response/Messages

After the command Is entered, the following line will be printed:

A FPC instructions .•.•.••.........• Running ---)

If no FPC is installed the display will look like this:

A FPC. instructions •••••••.••••••••• Running ---)
No coprocessor installed
PASSED

If a coprocessor instruction produces a wrong result, the display will look like
this:

A FPC instructions •••.••••.•••.•••• Running ---)
Floating point error in FSIN instruction
• • • .• FA I LED

If the coprocessor is instal led, but does not execute instructions, the display
wi 1 1 look like th is:

A FPC instructions •.••..•.......... Running ---)
F-l ine exception -Coprocessor not responding
..... FAILED

If there are no wrong results generated, then the test passes.

A FPC instructions Running ---) PASSED

0-4\

9.3 FPC control functions MH B

9.3.1 Description

This test exercises the control functions of the MC68881 floating-point
coprocessor. Like the MH A test, it exits without generating an error if no FPC
is instal led. If the coprocessor is installed, a series of tests is performed
which exercises all of the format conversion functions, FPC exception
generation, FPC save and restore, and the floating-point condition code bits.
An error message is printed if any of these functions does not work correctly.

The normal procedure for fixing a coprocessor error is to replace the
coprocessor.

9.3.2 Command Input

M20Diag)MH B

9.3.3 Response/Messages

After the command is entered, the following line will be printed:

B FPC control functions .•.•....•... Running ---)

If no FPC is installed the display will look like this:

B FPC control functions ••...•••...• Running ---)
No coprocessor installed
PASSED

If a coprocessor control function does not work correctly, the display will look
like this:

B FPC control functions .•.•..•.•••• Running ---)
Control failure in floating-point coprocessor
.•.•. FAILED

If all the control functions work correctly, then the test passes and the
display will look like this:

B FPC control functions•.•• Running ---) PASSED

0-42

9.4 Tick generator MH C

9.4.1 Description

The GMX Micro-20 has a tick generator which produces level 6 Autovector
interrupts at regular intervals. (See the GMX Micro-20 Hardware Manual for more
details.) This test checks the operation of the tick generator by turning it on
and counting the ticks generated in 20 seconds. The 20 second interval is
measured using the BUSY output of the time of day clock. The tick generator is
factory jumpered for 10 mill isecond tick intervals, so 2000 ticks should be
generated in 20 seconds. There is a small amount of error possible in the
length of 20 second interval, so the count may be one tick more or less than
2000. Therefore if the count is 1999, 2000, or 2001 ticks the test is passed.

If the count is not in this range, then the count is reported and an error is
recorded. If the user has jumpered the board for a different tick rate, this
test can be used to check the result. It is also possible that the time-of-day
clock is malfunctioning.

The tick generator uses the 68230 PI/T to count ticks directly, so the system
can compensate for ticks which occur while the level 6 interrupt is masked.
Also, a rollover flag is provided for cases where level 6 is masked so long that
the counter overflows. These functions are also exercised in this test.

9.4.2 Command Input

M20Diag)MH C

9.4.3 Response/Messages

After. the command is entered, the following line will be printed:

C Tick generator ...•....•.•.......• Running ---)

If the count of tick interrupts is not 1999, 2000, or 2001. an error message
will be displayed:

C Tick generator•••...• Running ---)
1234 ticks generated per second
..... FAILED

If the tick count in the PI/T is not correct. an error message will be
displayed:

C Tick generator Running ---)
Hard tick counter not counting correctly
..... FAILED

If the overflow bit in the PI/T is not set when it should be, an error message
wil 1 be displayed:

0-43

C Tick generator •.••...••.•••••...• Running ---)
No rollover flag on hard tick counter
••••• FAILED

Finally, if the time of day clock never sets its BUSY output the test will be
aborted with this error message:

C Tick generator ••••...•••••••••••• Running ---)
Test aborted - time of day clock not working
..... FAILED

0-44

9.5 Interrrupt generation HH 0

9.5.1 Description

There are seven on-board devices in the GMX Micro-20 which generate Autovector
interrupts. This test exercises the interrupt generation function for three of
these devices which can be tested without any external hardware, and are not
otherwise tested in the diagnostics: the Floppy Disk Controller (level 5), the
68230 Timer section (level 4). and the 68681 DUARTs (level 3). Only one DUART
is tested.

The test program causes each of these devices to generate its Autovector
interrupt. and then checks to see that the interrupt was generated at the
correct level. and that no other interrupts were generated.

9.5.2 Command Input

H20Diag)HH D

9.5.3 Response/Messages

After the command is entered, the following line will be printed:

D Interrupt generation .•.•........•. Running ---)

If the expected interrupt was not generated, an error message will be printed:

D Interrupt generation ..•.•....•..•• Running --->
Did not receive level 5 interrupt
..••• FAILED

If the interrupt generated was the wrong level, an error message will be
printed:

o Interrupt generation•.....••. Running --->
Wrong interrupt - expected 5 received 4
..... FAILED

If the Spurious Interrupt Exception was generated instead of an Autovector
interrupt, an error message will be printed:

D Interrupt generation•.... Running ---)
Spurious interrupt instead of level 5
..... FAILED

D-45

10.0 PARALLEL PORT TESTS

10.1 General Description

This section describes the tests
Micro-20's parallel I/O port.
detect or report errors. They
port which can be checked

functions available for exercising the GMX
Unlike the serial I/O tests, these tests do not

are used to send test patterns to the parallel
by examining printout or by, testing with an

oscilloscope.

TABLE T-4. PARALLEL PORT DIAGNOSTIC TESTS

===
Monitor Command Title Section Page
===

PP
PP
PP

A
B
C

Print test pattern on parallel port
Send test bit pattern to paral lei port
Send test bit pattern to PI/T port

10.2
10.3
10.4

0-47
0-48
0-49

==~=

0-46

10.2 Print test pattern on parallel port PP A

10.2.1 Description

This command sends a continuous stream of ASCII characters to the parallel
output port. If the port is configured for "Centronics" parallel output
operation, and a printer is connected, then a "barberpole" pattern will be
printed by the printer. This pattern will be 80 columns wide, and includes the
characters (space) through DEL. Printing will continue until the user
enters a BREAK on the console.

10.2.2 Command Input

M20Diag)PP A

10.2.3 Response/Messages

After the command is entered, the display will look like this:

A Print test pattern on parallel port Running ---)

A standard "!!Break!!" message will be displayed when the user types a BREAK to
exit the command.

0-47

10.3 Send test bit pattern to parallel port PP B

10.3.1 Description

This COlTYTland puts a rotating bit pattern on the parallel output port, consisting
of seven Os and a 1. The 1 starts in bit position 0, and in each successive
byte is shifted one position higher, wrapping around from position 7 to position
O. Meanwhile, a technician with an oscilloscope can examine the outputs
individually to check for open, shorted, or coupled lines. Output of the test
pattern will continue until the user types a BREAK on the console.

10.3.2 Command Input

M20Diag>PP B

10.3.3 Response/Messages

After the command is entered, the display will look like this:

B Send test bit pattern to parallel port Running --->

A standard "!!Break!!" message will be displayed when the user types a BREAK to
exit the command.

0-48

10.4 Send test bit pattern to PI/T port PP C

10.4. 1 Description

This command sends the same test pattern as the PP C command to the parallel
output port, but automatically stops after 10-20 seconds (depending on processor
speed). Typing a BREAK does not interrupt this command. It is coded as part of
the self-test sequence to give the parallel outputs some exercise while a GHX
Hicro-20 is burning in.

10.4.2 Command Input

H20Diag>PP C

10.4.3 Response/Messages

After the command is entered. the display will look like this:

C Send test bit pattern to PI/T port Running ---)

When the test terminates. a "PASSED" message will always be displayed.

0-49

11.0 FLOPPY DISK CONTROLLER TESTS

11.1 General Description

This section describes the tests functions available for exercising the GMX
Micro-20's WD1772 Floppy Disk Controller. For these tests to be useful, a
floppy disk drive should be connected to the GMX Micro-20's floppy disk
interface. The tests support single or double sided operation, single or double
density data recording, 40 or 80 track drive configuration, and one or two
drives. However, the WD1772 only supports 5 1/4" drives or equivalents.

The FOC commands use certain areas of RAM as buffers for read and write
operations. The read buffer is at $20000, and the write buffer is at $10000.
Up to 7 Kbytes of RAM at each of these addresses may be overwritten during FOC
diagnostics.

Some of the FDC diagnostics execute W01772 commands. Whenever a WOl772 command
is executed. the resulting values of the WOl772 Status register and the GMX
Micro-20 Control/Status Register (CTSR) are displayed in binary. See section
11.13 for further explanation of the various bits in these registers. For a
more complete explanation of the concepts and hardware involved the user should
obtain the data sheet for the W01772.

TABLE T-5. FLOPPY DISK CONTROLLER DIAGNOSTIC TESTS

==========.===
Monitor Command Title Section Page
=='===

FO A Set parameters 11.2 0-52
FO B Drive select 11.3 0-54
FO C Side select 11.4 0-55
FO 0 Restore 11.5 J(~-.---1> 0-56
FO E Seek tt: 11.6 x· '" 0-57
FO F Format track 11.7 0-58
FO G Read sector ''''V'1"

t: 11.8 0-59
FD H Write sector 11.9 0:..60
FO I Copy read buffer to write buffer 11. 10 0-61
FD J Compare read and write buffers II. 11 X 0-62
FO K Fill write buffer with data ''1-...,£",

7 II. 12 0-63
--

11.1.2 Hardware requirements

To use these tests, the system must have a standard 5 1/4" floppy disk drive or
equivalent device connected to the floppy disk interface connector. Single or
double density, single or double sided, and 40 or 80 track operations are all
supported. Head stepping intervals from 2 to 12 milliseconds may be selected.
A drive with a minimum step interval of more than 12 milliseconds will not work
properly with these commands.

0-50

11.1.1 . Floppy disk format

The user can format-a track on a floppy with the FD F command. When this is
done, a track format block is created in memory at $10000, and then written to
the disk with a WD1772 Write Track command. The track format is standard IBM as
described in the manufacturer's data sheet for the WD1772. Sectors on a track
are numbered starting from 1. No interleave factor is used: the sectors are
numbered in their physical order on the disk. The side number fields of the
sector address blocks on the disk are filled, but the sector numbers start at
on both sides of the disk. The number of sectors created is the maximum allowed
for the current data density and sector size: this number can be found in the
following table.

Sector size 128 256 512 1024

Single density sectors per track 28 16 9 5

Double density sectors per track 16 9 5 2

0-51

11.2 Set parameters Fo A

This command displays the parameters for floppy disk operations, and allows the
user to change these parameters. It must be run before any other floppy disk
operations are performed. All the parameters are entered as single characters.
If the character typed is not a valid entry the prompt will be repeated.
Example: .

M20oiag>Fo A
Drive = 0 -------------------------- 0 or 11 0
Density = 0 ------------ S(ingle) or o(ouble)1 0
Side = 0 -------------------------- 0 or 11 0
DRQ Disabled ----------- E(nable) or o(isable)1 0
Step rate= 6 ms - 0 (6ms) 1 (12ms) 2 (2ms) 3 (3ms)? 0
No verify ------------ V(erify) or N(o verify}? N
Write precomp on --- P(recomp} or N(o precomp}? P
No settle delay -------- D{elay} or N(o delay}1 N
of tracks= 80 ----------------- 4(0} or 8(O)? 8
Sector size= 0128 - (0=128 1=256 2=512 3=l024)? 1
M20oiag>

The effect of each parameter is as follows:

Drive = 0 -------------------------- 0 or 11

This parameter sets one of two bits in the mask written to the CTSR when a
W01772 command is performed. It has no effect on the operation·of the Fo B
convnand.

Density = 0 ------------ S(ingle} or o(ouble}1

This parameter sets or clears a bit in the CTSR which determines the data clock
rate 9f the W01772 and the density of data recording on the disk.

Side = 0 -------------------------- 0 or 1

This parameter sets or clears a bit in the CTSR which selects the side of the
drive to be read or written.

oRQ Disabled ----------- E(nable} or o(isable)?

This parameter sets or clears a bit in the CTSR which enables the oRQ {Data
Request output as the level 7 Autovector Interrupt. oRQ is generated during any
WD1772 Read or Write commands when a~ .. ata byte is to be read from or written to
the Wo1772's data register. If oRQ i. nabled, the Fo F, FO G, and FO H
commands are performed using interrupt; if ORQ is disabled, register polling is
done instead.

Step rate= 6 ms - 0 (6ms) 1 (12ms) 2 (2ms) 3 (3ms)?

This parameter sets up a two bit mask which is used in WD1772 Restore and Seek
commands to control the stepping rate of the floppy disk drive. To determine
the best value for this parameter, the manufacturer's description of the drive
should be consulted. "ms" stands for "milliseconds".

0-52

No verify ------------ V(erlfy) or N(o verify)]

This parameter sets or clears a bit which is masked Into WD1712 Seek and Restore
command bytes. It controls whether the WD1772 verifies each track movement
operation by reading an address off the destination track, reporting an error if
it cannot read an address which matches the updated internal Track register. It
has nothing to do with the verification of a newly formatted track in the FD F
command.

Write precomp on --- P(recomp) or N(o precomp)?

This parameter sets or clears a bit which is masked into WD1772 Write and Write
Track commands and tells the WD1772 whether or not to perform precompensation
while writing to the disk. This bit is used if it is set and the track number
is greater than half the maximum specified with the FD A command.

No settle delay -------- D(elay) or N(o delay)7

This parameter sets or clears a bit which is masked into WD1772 Read and Write
Track commands and tells the WD1772 whether or not to perform Write parameters
and tells the WD1772 whether or not to wait 30 milliseconds for the head to load
on the disk and settle into place.

of tracks= 80 ----------------- 4(0) or 8(0)7

This parameter sets or clears a flag which is used to determine the limit of
track numbers for the Seek parameter and for deciding whether Write Precomp
should be used.

Sector size= 0128 - (0=128 1=256 2=512 3=1024)7
This parameter sets up a two bit mask which is used in track formatting
as the sector size field, and by various parameters to determine the
size of a sector data field.

0-53

11.3 Drive select FD B

FD B

This command prompts the user for a drive number, entered as a single character.
When the drive number is enters, the select line for that drive only is made
active, and the prompt is repeated. If a CR is typed instead of a Oor I, the
command terminates with both drives deselected. This command is useful for a
technician checking for shorted or open lines. Example:

M200iag>FO B
O=select drive 0 I=select drive CR=exit 1 (selects drive 1)
O=select drive 0 I=select drive CR=exit 0 (selects drive 0)
Q=select drive 0 l=select drive CR=exit <cr> (deselects both)
M200iag>

0-54

11.4 Side select FD C

FD C

This command toggles the side select line to the floppy disk interface. It
stops and exits when the user types one character on the console. This command
is useful for a technician checking for shorted or open lines. Example:

M20Diag)FD C
Side select toggl ing - Hit any key to exit
H20Diag)

0-55

11.5 Restore FD 0

FD 0

This command executes a WD1772 Restore command using the defaults established by
the FD A command. Example:

M20Diag)FD D
D Restore •.•••..••.••••••...•.•• Running ---)
WD1772 status = 10100110 GMX status = 00011110
PASSED
M20Diag)

If the FD A command has not been performed (so that no drive is selected) or the
selected drive is not connected, or the drive fails to go ready in 10 seconds,
the display wi 11 look 1 ike this:

M20Diag)FD D
o Restore •.•••.••.••....•.••..•. Running ---) No drive selected

WD1772 status = 00000000 GMX status = 00111110
FAILED
M20Diag)

0-56

11.6 Seek FD E

FD E «track>]

This command executes a WD1772 Seek command using the defaults established by
the FD A command. The target track for the seek may be entered on the command
line in hexadecimal. Example:

M20Diag)FD E 10
E Seek•...•..••.•...•.•..... Running --->
WD1772 status = 10100000 GMX status = 00011110
PASSED
M20Diag>

If the target
prompted for it.

M20Diag>FD E

track is
Example:

not entered on the command line. the user wil I be

E Seek•.••.....•...•....•... Running ---) Track number (0-$4F)? 10

WD1772 status = 10100000 GMX status = 00011110
PASSED
M20Diag>

The user will be reprompted if the entered track number exceeds the limit of the
drive as specified by the FD A command.

This command assumes that the current value in the WD1772 Track register is the
actual position of the selected drive's head. If the user's system has two
drives. when the user switches between them this register is not updated and
errors may be generated.

0-57

11.7 Format track FD F

FD F

This command sets up a track format block using the defaults set by the FD A
command. then writes it to the disk with the WD1772 Write Track command. No
track number is specified: the track at the current head position will be
formatted. and the track ID number is taken from the WD1772 Track register. The
number of sectors created is the maximum allowed for the given density and
sector size, as described in section 11.1.1. The data field of each sector is
fil led with the worst-case data pattern for the current data density; that is.
the data pattern most likely to result in errors when read back. After the
track write is finished. the track is verified by reading all sectors with a
multiple sector Read command. Example:

H20Diag>FD F
E Format track ..•.•............. Running --->
W01772 status = 10000000 GHX status = 00011110
Track written - verifying .•.
PASSED
H20Diag>

The status registers are not displayed after the track verify unless it
terminated abnormally. The "Record Not Found" will be normally be set. as this
is how the W01772 terminates a multiple sector read. If the command terminated
from some other cause or the wrong number of sectors was read back the registers
will be displayed. Example:

M20Diag>FD F
F Format track ••••.•••...•••.••. Running --->
WD1772 status = 10000000 GMX status = 00011110
Track written - verifying .•.

WD1772 status = 10001000 GMX status = 00011110
H20Diag>

0-58

11.8 Read FD G

FD G [<sector>]

This command executes a WD1772 Read command using the defaults established by
the FD A command. The target track is simply the current head position; the
target sector for the read may be entered on the command line in hexadecimal.
The address of the read buffer is reported along with the status, and the user
can use the MD command to display the buffer's contents. Example:

M20Diag>FD G 10
G Read ..•..•.•..•..•.•••...••••• Running --->
WD1772 status = 10100000 GMX status = 00011110
Read buffer at $20000-$2007F
PASSED
M20Diag>

If the target
prompted for it.

M200iag>FD G

sector is
Example:

not entered on the command line, the user will be

G Read ..•••••••••..•••.••..••••• Running ---> Sector number (0-$4F)? 10

WD1772 status = 10100000 GMX status = 00011110
PASSED
1'1200iag>

The user will be reprompted if the entered sector number is zero or exceeds the
number of sectors per track allowed for the data density and sector size
specified by the FD A command.

0-59

11.9 Write FD H

FD H [<sector>]

This command executes a WD1772 Write command using the defaults established by
the FD A command. The target track is simply the current head position; the
target sector for the write may be entered on the command line in hexadecimal.
The address of the write buffer is reported along with the status, and the user
can use the SF, MM, MS, or FOK commands to set up whatever sort of test data is
desired in the buffer. Example:

11200iag>FD H 10
H Write ...•.....•.......•.••.... Running --->
W01772 status = 10100000 GMX status = 00011110
Write buffer at $10000-$1007F
PASSED
11200iag>

If the target
prompted for it.

H20Diag>FD H

sector is
Example:

not entered on the command line, the user will be

H Write ••..••..•.•..••.••..•..•. Running ---> Sector number (O-$4F)? 10

WD1772 status = 10100000 GMX status = 00011110
PASSED
M200iag>

The user will be reprompted if the entered sector number is zero or exceeds the
number of sectors per track allowed for the data density and sector size
specified by the FO A command.

0-60

1 1 • 1 0 Copy read buffer to write buffer FDI

FD I

This command provides a convenient way of moving data which has been read from a
disk into position to be written back to the disk. It copies data from $20000
to $10000, and moves as many bytes as the sector length specified by the FD A
command. No errors are possible.

0-61

11. 1 1 Compare read and write buffers FD J

FD J

This command performs a byte by byte comparison of the contents of the read and
write buffers. As many bytes are compared as the sector length specified by the
FD A command. Example:

M20Diag>FD J
J Compare read and write buffers Running ---> PASSED

If any bytes do not match the differences are reported and an error is recorded.
Example:

M20Diag>FD J
J Compare read and write buffers Running --->
Data error at byte 10 - data written = FF - data read = DB
Data error at byte lE - data written = FF - data read = DB ..•.• FAILED
M20Diag>

0-62

11 . 12 Fill write buffer with data FO K

FO K [<data>]

This command fills the write buffer
pattern or the worst-case data pattern
address of the write buffer is reported.

with either a specified longword data
for the current data density. The

Example:

M200iag>FO K 12349999
Write buffer at $10000-$1007F
M200iag>MO 10000
00010000 1234 9999 1234 9999 1234 9999 1234 9999
1'1200iag>

.4 ... 4 ... 4 ... 4 ..

If no data pattern is specified on the command line, the buffer is filled with
the worst-case data pattern for the current data density; that is, the data
pattern most likely to result in errors when read back. Example (single
density):

t1200iag>FO K
Write buffer at $10000-$1007F
M200iag>MO 10000
00010000 9249 2492 4924 9249 2492 4924 9249 2492
1'1200 lag>

Example {double density}:

1'1200iag>FO K
Write buffer at $10000-$1007F
1'1200iag>MO 10000
00010000 60B6 OB60 B60B 60B6 OB60 B60B 60B6 OB60
t1200iag>

0-63

.1$.1$.1$.1$.1$.

m6[m6Im6[m6[m6[m

1 1 • 1 3 Looping and chaining FDcommands

In many cases, the user wil I want to execute an FD command repeatedly. Also,
the user may want to execute several commands with parameters as a group. The
LC (Loop Continuous) command and the "t" command line separator allow the user
to do this.

For example, suppose the user wants to carry out the following sequence: restore
drive, seek to track $4F, write sector 1 with a pattern, write sector 2 with
worst case data. read sector 1, read sector 2, and repeat. This sequence would
be performed by the following command line:

H20Diag)LC FD D!FD E 4F!FD K 1234D6D6!FD H I!FD K!FD H 2!FD G l!FD G 2

Assuming that a diskette is in the drive, that 128 bytes per sector is selected,
and that track $4F has been formatted, entering the above command line would
produce a display like this:
o Restore Running ---) WD1772 status = 10100100 GMX
status = 00011110 PASSED E Seek•.••••••••.•.••.• Running ---) WD1772
status = 10100000 GHX status = 00011110 PASSED H Write ..••.•.••.•••.•••••.•••••
Running ---) WDI772 status = 10100000 GMX status = 00011110 Write buffer at
$10000-$1007F PASSED H Wr i te ..•••.........•••....•... ' Runn i ng ---) WD 1772
status = 10100000 GHX status = 00011110 Write buffer at $10000-$ID07F G
Read Running ---) WD1172 status = 10100000 GMX
status = 00011110 Read buffer at $20000-$2007F PASSED G
Read Running ---) WD1772 status = 10100000 GMX
status = 00011110 Read buffer at $20000-$2007F PASSED ** Pass count = 1 Total
Errors = 00000000000

This display will repeat, accumulating passes and errors, until the user enters
a BREAK on the console.

0-64

1 1 • 14 Status returned by FDC test commands

The WD1772 Floppy Disk Controller has an eight bit Status register which
indicates the device's current state or the result of the last command executed
by the part. Whenever one of the FD tests in 020Bug has the WD1772 execute a
command the resulting status is displayed in binary, so the user can examine
individual bits conveniently. The GMX Micro-20's CTSR is also displayed; its
contents are defined in the System Memory Map included in the GMX Micro-20
hardware documentation. The definitions'of the WD1772 status bits are given
below.

Bit 0 - BUSY

This bit is 1 while the WD1772 is executing a command. It is a when the command
is completed.

Bit 1 - Data Request/Index

This bit is a 1 during the execution of read or write commands when a byte is to
be transferred in or out of the WD1772. It is a 1 at the end of a command only
if the command did not finish normally. If the command is a Restore command
this bit is a 1 when the index hole sensor of the selected drive is active.

Bit 2 - Lost Data/Track 00

On a Read, Write, or Write Track command, this bit is a 1 if a byte was not
transferred in or out of the WDl772 in time to keep up with the data clock. If
the command is a Restore command this bit is the state of the Track 00 sensor of
the selected drive.

Bit 3 - CRe Error

This bit is a 1 when a data or address field is read from the diskette and the
eRe generated then does not match the corresponding CRe on the diskette. It can
be set as a result of Restore, Seek, Read, and Write commands. This bit is a
common indicator of soft errors, such as arise from defective diskettes or
marginal disk drives.

Bit 4 - Record Not Found

On Read or Write commmands, this bit is a 1 if the WD1772 could not find an
address field on the current track which matched the track and sector in the
WD1772's Track and Sector registers. On a Restore command, this bit is a 1 if
Verify is on and either the Track 00 sensor is not active, or the WD1772 cannot
find an address field with a track number of 00. On a Seek command, this bit is
a 1 if Verify is on and the WD1772 cannot find an address field with the current
track number. The WD1772 reads the current track five times before gIvIng up
and setting this flag. If Bit 3 (eRC Error) is also set, the address field was
found, but its eRC did not match.

Bit 5 - Record Type/Spin-up

On Read or Write commands, this bit is a 1 if a Deleted Data
read or written, Or for a normal Data Address Mark.
com~nds it is a 1 if the drive motor spin-up sequence is

0-65

Address Mark was
On Resto~e and Seek
complete. and the

?
o

drive is up to speed.

Bit 6 - Write Protect

On write commands, this bit is a 1 if the Write Protect sensor of the selected
disk drive is active, indicating that the Write Protect notch on the diskette is
covered.

Bit 7 - Motor on

On any command, this bit is a 1 if the Hotor On output of the WD1772 is active.

The FO commands also
Register (CTSR).
conditions.

Bit 5 - ROY

return status from the GHX Micro-20's Control/Status
Bits 5, 6, and 7 of this register indicate additional status

This bit indicates the status of the READY signal from the selected drive. If
it is returned as a 1, then the drive did not come ready after being selected,
i.e., the door is open. This bit may be forced to 0 by jumper JA8 for drives
without a Ready output. See p. 8 and p. 11 of the Hardware Technical Manual.

Bit 6 - INT

This bit indicates the status of the INTRQ output of the WD1772. This bit
normally is a 1 when a WD1772 command is completed. A level 5 Autovector
Interrupt exception will be generated when this bit is set.

Bit 7 - ORQ

This bit indicates the status of the ORQ output of the WD1772. When it is a 1,
the W01772 needs to have a byte of data read from it or written to it. When ORQ
interrupts are enabled, a level 7 Autovector Interrupt exception will be
generated for each DRQ.

Bits 0 through 4 of this register are set by the sense switch, and not related
to the floppy disk interface.

0-66

12.0 SAS! TESTS

12.1 General Description

This section describes the tests functions available for exercising the GMX
Micro-20's SASI port. These tests interact with a controller and hard disk
attached to the SAS! port to perform I/O and other SAS! functions.

TABLE T-6. SAS! TESTS

===
Monitor Command Title Section Page
======================================~==

SA A Set drive parameters 12.2 D-69
SA B Scan data lines 12.3 D-72
SA C Restore 12.4 0-73
SA 0 Seek 12.5 0-74
SA E Read 12.6 0-75
SA F Write 12.7 0-76
SA G Compare read and write buffers 12.8 D-77
SA H Fill write buffer with data 12.9 0-78
SA I Test interrupt 12. 10 0-79
SA J Park head 12. 11 D-80
SA K Format hard disk 12. 12 D-81

===

12.1.1 Hardware requirements

The SASI tests require a controller and hard disk to be attached to the GMX
Micro-20. The controller must be either an OMTI model 20C-l or a Xebec S1410A.
The drive may be any drive model which is compatible with the controller;
however, sets of parameters are predefined for five drive models: MiniScribe
3425, Micropolis 1325. Vertex V185, Vertex V170, and Maxtor 1140. The drive
must be assigned to the controller'S LUN O.

12.1.2 Hard disk addresses

Nearly all SAS! controllers, including the OMT! 20C-l and the Xebec S1410A,
allow the host to treat the disk drive as a continuous block of sequentially
numbered sectors starting from O. These sector numbers are the "logical sector
numbers", and are the only address information the host sends to the controller.
The controller then converts the logical sector number into a specific cylinder,
surface, and sector, based on the drive parameters previously supplied. The
sector size jumper on the controller also affects this process, as different
numbers of 512 byte and 256 byte sectors fit on a track.

Some of the SASI test commands allow the user to enter an address, but this
address is a logical sector number. A user who wishes to access a specific
cyl inder. surface, and sector must calculate the sector's logical sector number
and enter it in hexadecimal.

Example: A media flaw is suspected at cyl inder 104, surface 2. of a MiniScribe
3425, which has four surfaces. (Cylinder, surface. and head numbers begin with

D-67

0.) The controller is set up for 256 byte sectors, which is 32 sectors per
track. The logical sector number of the start of the track is therefore

«104 x 4) + 2) x 32 = 13,376 = $3440

Accessing sectors in the range $3440 to $345F will test for the flawed spot.

0-68

12.2 Set drive parameters SA A

This command begins by determining whether a controller is attached attached to
the GMX Micro-20's SAS! port, and reports whether the controller is an OMT!
20C-\ or a Xebec S1410A. It also reports what model of drive is selected, and
displays the current drive parameters. The user may then specify drive
parameters by selecting one of the defined drive models or by selecting "other
model" and entering parameters individually. If "other model" is selected, the
user should read the manufacturer's descriptions of the disk drive and
controller installed in the particular system before editing the disk drive
parameters.

The parameters which can be edited by the user with the "SA A" command are
number of heads, number of cylinders, starting cylinder for write
precompensation, starting cylinder for reduced write current, number of sectors
per track, fixed or removable drive media, soft or hard sectors, step pulse
width, step period, maximum ECC burst length, and sector size. Some of these
parameters are defined differently for the OMT! 20C-I and Xebec S14IOA. All but
the last of these are set automatically when a defined drive model is selected.

The prompts and definitions for each parameter are given below. All numeric
parameters should be entered in decimal, ancd must be terminated by CR. All
single letter parameters, including sector size and Xebec step rate, are entered
by typing a single valid character, and no CR is needed.

1. Number of heads (1-16) ..••..•..••..•.. 1

This parameter is the number of separate read/write heads which are used in the
drive to access data surfaces. Heads which are used to access servo positioning
information only should not be included in this number.

2. Number of cylinders (1-65535) •.••••••. 1

This parameter is the number of data tracks on the surface of a drive platter.
Tracks which are contain only servo positioning information, or are reserved as
a head parking area should not be included in this number.

3. Write precomp at cylinder (0-1023) •.•• 1
Write precomp at cylinder (O-65536} ••• 1

<OMT! 20C-I)
<Xebec S1410A>

This parameter is the lowest number cylinder for which the controller should
enable write precompensation. Cylinder numbering starts at O. If write precomp
is not used, this parameter should be set to the total number of cylinders on a
Xebec S1410A, and to 0 on an OMT! 20C-I.

4. Reduced write at cylinder (0-65536) ... 1 <Xebec S1410A only)

This parameter is the lowest number cylinder for which the controller should
enable reduced write current. Cylinder numbering starts at O. If reduced write
is not used, this parameter should be set to the total number of cylinders.

5. Maximum ECC burst length (0-11) ? <Xebec S1410A only>

This parameter is the maximum length of error which
permitted to correct. Any group of error bits which is no
value wi I I be corrected automatica!!y by the Xebec S1410A.

0-69

the Xebec S1410A is
longer than this

This valu~ should be

set to 11 for normal operations, but setting to a smaller value· or even 0 is
useful when testing for marginal disk drive operation.

6. Sectors/track (1-255, O=default)•. ? (OMTI 20C-l only>

This parameter indicates the number of data sectors to be recorded on each
track. If a zero value is entered the controller will use the default value
appropriate to the sector size: 32 sectors per track with 256 byte sectors, and
17 sectors per track with 512 byte sectors.

7. Fixed/removable (F or R) .•......•..... ? <OMTI 20C-I only>

This parameter sets a flag which tells the controller whether the drive has
fixed media or a removable cartridge.

8. Soft/hard sector (S or H) •..•......... ? <OMTI 20C-l only>

This parameter sets a flag which tells the controller whether the drive media
has a fixed sector layout or must be formatted.

9. Step pulse width in usec (O-255} ••.••• ? <OMTI 20e-l>

This parameter is the length in microseconds of a step pulse sent by the
controller to the drive.

10. Step period (N x 50 usec, 0=3.5 usec) ? <OMTI 20C-I>

This parameter is the length in microseconds of the gap between two successive
step pulses sent by the controller to the drive. Maximum value for N is 255.

II. Step rate:
o = 3 msec unbuffered
4 = 200 usee
5 = 70 usec
6 = 30 usee
7 = 15 usee
8 = 12 usec ?

<Xebec S1410A>

This parameter is the interval from the beginning of one step pulse sent by the
controller to the drive to the beginning of the next.

12. Imbedded servo information (Y/N) ? <Xebec S1410A>

This parameter sets a flag which tells the controller whether the disk's format
includes imbedded pulses of servo control information.

13. Sector size (0=256 1=512) ..••••.•.•.. 1

The sector size parameter (256 or 512 bytes/sector) is independent of drive
type. It is set by installing a jumper on the controller board, but cannot be
read from the controller by the host. So it must always be entered, even when a
defined drive model has been selected.

0-70

Example:

M20Diag>SA A

OMTI controller installed

Drive model selected: other model
Cyl inders = 612 Heads = 4 Sectors/track = 17 Max sector address = $OOOOA290
Write precomp at cylinder 0
Step pulse width = 2 usec Step period = 3.5 usec
Fixed disk ------- Soft sectors --- 512 bytes/sector
Drive models:
1 = MiniScribe 3425
2 = Hicropolis 1325
3 = Vertex Vl85
4 = Vertex V170
5 = Maxtor 1140
6 = other model (enter parameters)
Enter 1-6: 6
Number of heads (1-16)••..•...••. ? 4
Number of cylinders (1-65535) .•....••. ? 612
Write precomp at cylinder (0-1023) .•.• ? 0
Sectors/track (1-255, O=default) ..•... ? 0
Fixed/removable (F or R) ..•.••••.•.... ? F
Soft/hard sector (S or H) ...•......... ? S
Step pulse width in usec (0-255) .•.•.. ? 2
Step period (N x 50 usec, 0=3.5 usec) ? 0
Sector size (0=256 1=512) ..•......... ? 1

Drive model selected: other model
Cylinders = 612 Heads = 4 Sectors/track = 17 Max sector address = $0000A290
Write precomp at cylinder 0
Step pulse width = 2 usec Step period = 3.5 usec
Fixed disk ------- Soft sectors --- 512 bytes/sector

Parameters OK (Y or N) ? Y

M20Diag>

D-71

12.3 Scan data lines

This command places a rotating data
I ines of the SASI port, which are set to
user hits any key on the console.
checking for open or shorted data lines.

M20Diag>SA B
M20Diag>

<any key terminates>

SA B

pattern of seven Os and a 1 on the data
outputs. The test continues until the
This command is useful for a technician

Example:

0-72

12.4 Restore

SA C

This command has the controller perform a Restore command on LUN O.
the drive's head assembly to be moved to the outermost track
unbuffered stepping rate. Example:

M20Diag>SA C
C Restore........................ Runn i ng --- > PASSED
M20Diag)

SA C

This causes
at a slow,

If the controller cannot restore the drive, it will return an error to the host,
which is displayed; see section 12.13 for the explanation of SASI error
reporting.

0-73

12.5 Seek SA D

SA D [<sector>]

This command performs a seek to the specified sector. The target sector may be
specified on the command line; if it is not the user will be prompted for it.
Example:

M20Diag>SA D 1234
D Seek•.•..•.•..........•.. Running ---> PASSED
H20Diag>

or

M20Diag>SA D
o Seek ...•.....•................ Running ---> Sector number? $1234
PASSED
H20Diag>

If the sector number is out for range for the specified drive model, a message
will be printed and the prompt issued again. Example:

M20Diag>SA D
o Seek .•..........•............. Running ---> Sector number? $123467
Sector too large
Sector number? $1234
PASSED
M20Diag>

If the controller cannot seek the drive to the specified sector, it will return
an error to the host, which is displayed; see section 12.13 for the explanation
of SASI error reporting.

0-74

12.6 Read SA E

SA E [<sector>]

This command performs a read of the specified sector. The read data buffer is
at $20000. The target sector may be specified on the command line; if it is not
the user will be prompted for it. Example:

H20Diag>SA E 1234
E Read ...•......•.•....•.••••.•• Running ---> Read buffer at $20000
PASSED
H20Diag>

or

H20Diag>SA E
E Read .••••••.•..•..•••.••••.... Running ---> Sector number? $1234
Read buffer at $20000
PASSED
H20Diag>

If the controller cannot read the specified sector, it will return an error to
the host, which is displayed; see section 12.13 for the explanation of SASI
error reporting.

0-75

12.7 Write SA F

SA F [<sector>]

This command performs a write to the specified sector. The write data buffer is
at $10000. The target sector may be specified on the command line; if it is not
the user will be prompted for it. Example:

H20Diag>SA F 1234
E Read •....•.•.••••........•.... Running ---> PASSED
H20Diag>

or

M20Diag>SA F
F Wr i te•.................•.. Runn i ng --- > Sector number? $1234
PASSED
M20Diag>

If the controller cannot write'the specified sector, it will return an error to
the host, which is displayed; see section 12.13 for the explanation of SASI
error reporting.

0-76

12.8 Compare read and write buffers SA G

SA G

This command
write buffers.

performs a
Example:

byte by byte comparison of the data in the read and

M20Diag>SA G
G Compare read and write buffers Running ---> PASSED
M20Diag>

If any differences are found, they are reported and an error is recorded.
Example:

H20Diag>SA G
G Compare read and write buffers Running --->
Data error at byte OBI - data written = 09 - data read = 00
Data error at byte OF5 - data written = 02 - data read = 48• FAILED
M20Diag)

0-77

12.9 Fill write buffer with data SA H

SA H [<pattern>]

This command fills the write buffer with a specified longword data pattern. The
write buffer is at $10000. Example:

M200iag>SA H 1234ACEO
M200iag>MO 10000
00010000 1234 ACEO 1234 ACEO
M200iag>

1234 ACEO 1234 ACEO .4,'.4,'.4,'.4,'

If no data pattern is specified on the command line, then the buffer is filled
with the worst case data pattern, that is the data pattern most likely to cause
read errors. Example:

M200iag>SA H
M200iag>MD 10000
00010000 60B6 OB60 B60B 60B6 OB60 B60B 60B6 OB60
M200iag>

0-78

m6[m6[m6[m6[m6[m

12. 10 Test interrupt

SA I

This command tests the interrupt generation function of the SASI port.
can produce a level 1 Autovector Interrupt; this command enables the
and performs a controller command which should generate this interrpt.

H20Diag>SA I
I Test Interrupt .•...•...•....•. Running ---> PASSED
H20Diag>

If the interrupt does not occur, an error is reported. Example:

H20Diag>SA I
I Test 1 nterrupt. • • Runn i ng --- > •..•• FA I LED
H20Diag)

0-79

SA I

The port
interrupt
Example:

1 2. 1 1 Park head SA J

SA J

When a system containing a hard disk drive is moved or shipped, a Jolt or bump
may cause the head assembly to bang against the recording surfaces, causing
media diefects and loss of recorded data. To prevent this. disk drive
manufacturers designate a cylinder outside the normal data storage area as a
"landing zone". where the heads may be "parked" without endangering the useful
parts of the disk. This command allows the user to move the drive's head
assembly to the park area for shipping or other movement. Drives which have a
voice coil positioning cannot be parked by the user: they park themselves
automat i ca 11 y.

**** WARNING!!l! ****
Trying
00.

to park a voice coil drive will overwrite a data track. probably track

The complete procedure for parking a drive Is as follows:

First. the user is prompted for and selects the Logical Unit Number of the drive
to be parked.

Second. the user is prompted for and selects the sector size the controller is
set for.

Third. the user is prompted for and enters the cylinder number of the park area.
This number should be obtained from the manufacturer's description of the drive
being parked. This number must be correct; if it is wrong a track containing
data (possibly track 00) will be overwritten.

Fourth. the user is prompted for two confirming responses to ensure that the
cylinoer number is correct. Then the drive is restored to cylinder 00.

Last. the user is prompted for a final confirming response. and then the drive
is parked. Example:

M20Diag)SA J

OMTI controller installed
Which LUN to park (0/1) ? a
Sector size (0=256 1=512)•... ? 1
Cylinder number (decimal) in park area? 629
Park head at cyl inder 0629 (Y/N) ? Y
Reenter cylinder number to confirm: 629

***** WARNING *****

Parking at the wrong address will destroy data!
This could lose everything on the drive!
The confirm code is 21386.
Enter this number to verify the cylinder again: 21386
Drive is parked
M200iag>

0-80

12. 12 Format hard disk SA K

SA K

This command allows the user to format an entire hard disk drive. This command
should be used with great caution, as all data on the reformatted drive will be
lost. The procedure for formatting a drive with the SA K command is as follows:

First, the current selected drive model and parameters are reported.
parameters are wrong, the drive will not be formatted correctly.

If the

Second, the user is prompted for and selects the Logical Unit Number of the
drive to be formatted.

Third, the user is prompted for three further confirming responses.

Then the drive is formatted. Example:

M20Diag>SA K

Drive model selected: MiniScribe 3425
Cylinders = 612 Heads = 4 Sectors/track = 17 Max sector address = $OOOOA290
Write precomp at cylinder 0
Step pulse width = 2 usec Step period = 3.5 usec
Fixed disk ------- Soft sectors --- 512 bytes/sector
Which LUN to format (0/1) 1 0
Are you sure (Y/N) 1 Y
Enter lUN again: 0

***** WARNING *****

Formatting the drive will destroy all data on it!
Make sure you have the correct drive, model, and lUNl
The confirm code is 7968.
Enter this number to verify the cylinder again: 7968
Now formatting drive •••••••• Done
M20Dfag>

0-81

12. 13 Looping and chaining SA commands

In many cases. the user will want to execute an SA command repeatedly. Also,
the user may want to execute several commands with parameters as a group. The
LC (Loop Continuous) command and the "!" command line separator allow the user
to do this.

For example. suppose the user wants to carry out the following sequence: restore
drive. write sector $4201 with worst case data, write sector $BCDE with a
pattern, read sector $4201, read sector $BCDE, and repeat. This sequence would
be performed by the following command line:

M20Diag)LC SA CISA H!SA F 4201lSA H 3232999lSA F 9BDF!SA E 4201!SA E BCDE

Assuming that a comtrol ler and formatted drive are connected, entering the above
command line would produce a display like this:
C Restore....................... Running ---) PASSED Write buffer at $10000 F
Write ..•.••..••...•.....•...•. Running ---) PASSED Write buffer at $10000 F
Write......................... Running ---) PASSED E
Read •....••...•••..•........•. Running ---) Read buffer at $20000 PASSED E
Read.......................... Running ---) Read buffer at $20000 PASSED **
Pass count = 1 Total Errors = 00000000000

This display will repeat, accumulating passes and errors, until the user enters
a BREAK on the console. When an errors is detected, error information will be
reported in the display.

0-82

12. 13 SASI controller error reporting

Many of the SASI test commands invoke controller commands. If a controller
command terminates with an error. four bytes of error information is returned to
the host. This error information is displayed by the SASI test commands.
Example:

H20Diag>SA C
C Restore .•.....•••....•....•.. Running ---)
Controller error: status = 21000001
•.... FAILED
H20Diag)SA C

Consult the manufacturer's manual for a complete explanation of this error
status information.

12. 14 SASI handshake error reporting

Executfon of a controller command requires the exchange of several bytes of
information between the host and controller. and the handshake logic of the SASI
port functions to keep these exchanges in order. There are ffve handshake
signals from the controller to the host; the GMX Micro-20 has a special circuit
which converts these signals into a BUSY bit and four status bits in the SASI
Status Register (SASR), which is described in the System Memory Map in the GMX
Hicro-20 Hardware Technical Manual. Each stage in the performance of a
controller command is indicated by the setting of one and only one of these four
bits. These steps are checked by the test commands. and if an error is
detected, it is recorded and reported. Example:

1120Diag)SA C
C Restore ••••••.•••.••.••.••••• Running ---)
TestiD9 for SCMD - SASR = 11110000 Bit not set in SASR
.•.•. FAILED

The handshake checker reports if a bit is not set when it should be. and if a
bit is set when it shouldn't be, and if the BUSY bit is cleared before the
command is finished.

D.,..83

13.0 ARCnet INTERFACE TESTS

13.1 General Description

This section describes the tests available for testing a GMX SBC-AN ARCnet
network interface board plugged into the GMX Micro-20's 1/0 expansion port. If
no SSC-AN is instal led, these tests wit I report "No ARCnet interface instal led".
These tests check out some basic functions of the board's hardware and
connection to the GMX Micro-20. No testing of network operation is performed,
so no connection to any outsi.de equipment- is required.

For a complete explanation of the SBC-AN hardware and functions, refer to the
"GMX SSC-AN ARCnet Interface Board User's Manual".

TABLE T-6. ARCnet INTERFACE TESTS

==~============================

Monitor Command Title Section Page
===~=========

AN A
AN B
AN C
AN 0

ARCnet wake-up test
ARCnet DIP-switch test
ARCnet interrupts test
ARCnet buffer test

13.2
13.3
13.4
13.5

0-B5
0-86
0-87
0-89

==.===

D-84

13. 1 ARCnet wake-up test AN A

13.2.1 Description

After power-up or RESET the SBC-AN should go to a specific state. The control
register of the COM 9026 network controller should read $95, and the value $Dl
should be stored in the first byte of the on-board buffer RAM. Both of these
conditions are checked.

13.2.1 Command Input

M20Diag)AN A

13.2.2 Response/Messages

After the command is entered, the display should appear as follows:

A ARCnet wake-up test Running ---)

If the wake-up data is not correct, then the values found will be displayed
along with the values expected, as fol lows:

A ARCnet wake-up test Running ---)
Status byte+wake-up byte =$6789, not $95Dl
..... FAILED

If no errors occur, the display will appear as follows:

A ARCnet wake-up test •.......••... Running ---) PASSED

If no SSC-AN is installed, the display will appear as follows:

A ARCnet wake-up test .••.•.•..••. Running ---) No ARCnet interface installed
PASSED

0-85

13.3 ARCnet DIP-switch test AN B

13.3. I Description

The COM 9026 network controller uses the value of the DIP-switch bank on the
SSC-AN as its node 10 in network operations. At power-up or RESET, the COM 9026
reads the switches and stores the value in the second byte of the on-board
buffer RAM. This test causes a reset of the SSC-AN, waits for the COM 9026 to
complete its initial ization, then reads the DIP-switch value from the buffer RAM
and displays it in binary. This proceis is repeated until the user enters a
BREAK on the console. No line feed is issued between displays, so the output is
rewritten on the same line of the screen. If the user changes a switch, the
display wi1 I be updated immediately. No errors are possible.

13.3.2 Command Input

M20oiag>AN B

13.3.3 Response/Messages

After the command is entered, the display should appear as fol lows:

DIP switches on ARCnet board = 00001000

This display wil I continue until terminated by BREAK.
installed, the display will appear as follows:

No ARCnet interface installed

0-86

If no SSC-AN is

13.4 ARCnet interrupts test AN C

13.4.1 Descrfption

This test exercises the interrupt generation function of the SSC-AN. When the
COM 9026 network controller issues an interrupt, the SSC-AN produces a level 3
or level 4 autovector interrupt to the 68020. The interrupt level is selected
by an on-board jumper, and interrupt output is enabled or disabled by a bit in
the SSC-AN control register. At RESET. the COM 9026 generates a paR interrupt.
which is used in this test.

13.4.1 Command Input

M20Diag)AN C

13.4.2 Response/Messages

After the command is entered, the display should appear as fol lows:

C ARCnet interrupts test •........ Running ---)

If a level 3 or 4 interrupt is generated, the interrupt level is reported as
follows:

C ARCnet interrupts test ...•.•... Running ---)
Level 3 interrupt received
PASSED

If any other interrupt is received, the test will report an error as follows:

C ARCnet interrupts test •.•....•• Running ---)
ERROR - Level 5 interrupt received
..... FAILED

If no interrupt is received, the test will report an error as follows:

C ARCnet interrupts test .•..••... Running ---)
ERROR - no interrupt generated
. . • .. FA I LED

If an interrupt is received after the paR flag in the COM 9026 is cleared. the
test will report an error as follows:

C ARCnet interrupt test Running ---)
ERROR - interrupt repeated after paR was cleared
..... FAILED

If an interrupt is received while interrupt generation is disabled, the test
wi! I report an error as follows:

C ARCnet interrupts test Running ---)
ERROR - interrupt was not properly masked
..... FAILED

0-87

If a spurious interrupt is generated, an the test will report an error as
fol lows:

C ARCnet interrupts test Running ---)
ERROR - spurious interrupt

FAILED

If no SSC-AN is installed, the display will appear as follows:

C ARCnet interrupts test Running ---) No ARCnet interface installed
PASSED

D-88

13.5 ARCnet buffer test AN D

13.5.1 Description

This test checks out the 2 Kbyte RAM buffer on the SBC-AN. The buffer is used
for storage of incoming and outgoing network messages. It is accessible to the
68020 in four pages of 512 bytes. selected by two bits in the SBC-AN control
register. This test invokes five of the tests in the memory test package for
each page, with the bounds of the accessable buffer page as the bounds of the
test area. Errors are reported as in section 6.13, "Description of Memory Error
Display Format". The test also checks for correct decoding of the page select
bits.

13.5.1 Command Input

M20Diag>AN D

13.5.2 Response/Messages

After the command is entered. the display should appear as follows:

D ARCnet buffer test •.•...•...•.. Running ---)
Now testing page 0 of the ARCnet buffer
- Random Inversion Test
- March Address Test
- Walk a bit Test
- Random Byte Test
- TAS Test

(repeated for pages 1, 2. and 3)

If no SBC-AN is installed. the display will appear as follows:

o ARCnet buffer test •.•....•••••• Running ---) No ARCnet interface installed
PASSED

If errors are detected in a page. they are reported as described in section
6.13. If an error is detected in page decoding, it is reported as follows:

D ARCnet buffer test •••••..•...•. Running ---)
Now testing page 0 ...
Now testing page 1 •••
Now testing page 2 ...
Now testing page 3 ••.
ERROR in buffer paging - Page 0 written Page 1 modified
•••.. FAILED

D-89

14.0 PARALLEL I/O EXPANSION BOARD TESTS

14.1 General Description

This section describes the functions available for exercising an SBC-60P
Paral lei I/O Board attached to the GMX Micro-ZO's I/O Expansion Connector.

TABLE T-7. PARALLEL EXPANSION BOARD TESTS

===
Monitor COrTVTland Title Section Page
===

PX A
PX B
PX C

Data, handshake, and IRQ test
P4 connector test
Data and handshake toggle

14.Z
14.3
14.4

0-93
0-94
0-95

===

14.1.1 Hardware requirements

The tests described in this section will work only if an SBC-60P Para.1lel I/O
Board is installed in the GMX Micro-20's I/O Expansion Port. The address of the
SBC-60P may be jumpered either to $00FF9000 or to $OOFF90BO.

14.1.1.1 Requirements for PX A

For test PX A, a set of dummy plugs must be installed in connectors PI, P2, and
P3. Each of these plugs makes a loopback connection of the Port A data lines to
the Port B data lines of the corresponding 68230 PI/T. The loopback path
includes the external buffers for each port. The PI/T's handshake lines are
also looped back: HI to H2. and H3 to H4. To make these loopback paths. the
dummy plug for each connector must connect certain pins, as shown below.

Pin IS
Pin 11
Pin 47
Pin 45
Pin 43
Pin 41
Pin 39
Pin 37
Pin 35
Pin 33

(H 1)
(H3)
(PAO)
(PA 1)
(PAZ)
(PA3)
(PA4)
(PAS)
(PA6)
(PA7)

to
to
to
to
to
to
to
to
to
to

Pi n 14
Pin 9
Pin 31
Pin 29
Pin 27
Pin 25
Pin 23
Pin 21
Pin 19
Pi n 17

(H2)
(H4)
(PBO)
(PBI)
(PB2)
(PB3)
(PB4)
(PBS)
(PB6)
(PB7)

Jumper blocks JAI, JA3, and JA5 determine control of the switching of the
external bidirectional data buffers on Ports A and B of the PI/Ts. Test PX A
requires control of the direction by the PCO and PCI outputs of each PI/T, so
these jumpers must be set as shown below.

JA3-20 (PI/T A PCO) to JA3-19 (Port A buffer pin I)
JA3-23 (PI/T A PC 1) to JA3-24 (Port B buffer pin 1)
JA5-4 (PI/T B PCO) to JA5-3 (Port A buffer pin 1)
JA5-7 (P 1/T B PC 1) to JA5-6 (Port B buffer pin 1)
JAl-6 (PI/T C PCO) to JAI-5 (Port A buffer pin I)
JAI-9 (PIIT B PC 1) to JAI-IO (Port B buffer pin 1)

0-90

Data lines PAD through PA3 of PI/T A may be individually jumper configured to
function in reverse of the direction selected at pin 1 of the Port A external
buffer. Jumper block JA3 controls this option, which must not be selected, so
these jumpers must be set as shown below.

Pin 16 (PI/T A PAD) to Pin 14 (Buffer pin 18)
Pin 12 (PI/T A PAl) to Pin 10 (Buffer pin 17)
Pin 8 (PI/T A PA2) to Pin 6 (Buffer pin 16)
Pin 4 (PI/T A PA3) to Pin 2 (Buffer pin 15)

Pin 15 (Buffer pin 2) to Pin 13 (connector P2 pin 47)
Pin 1 1 (Buffer pin 3) to Pin 9 (connector P2 pin 45)
Pin 7 (Buffer pin 4) to Pin 5 (connector P2 pin 43)
Pin 3 (Buffer pin 5) to Pin 1 (connector P2 pin 41)

The handshake lines of PI/T B are wired directly to Pins 9 through 14 of
connector P3. However, those of PI/T A and PI/T C are not wired directly to
connectors P2 and Pl. These lines are routed through jumper blocks JA7 and JA6
respectively. To complete the loopback of the handshake lines, connections must
be made in each jumper block as shown below.

Pin 22
Pin 19
Pin 16
Pin 13

(H 1)
(H2)
(H3)
(H4)

to Pin 23
to Pin 20
to Pin 17
to Pin 14

(connector pin 15)
(connector pin 14)
(connector pin 11)
(connector pin 9)

The H2 and H4 handshake lines of all three PI/Ts pass through buffers which must
be jumper selected for output. This is done by connecting pin 1 to pin 3 and
pin 2 to pin 4 in jumper blocks JA8 through JA13.

Test PX A also
generate level 3
generate level
JA18 must be set

requires the PC5/PIRQ output of the PI/Ts to be configured to
Autovector Interrupts, and PC3/TOUT to be configu~ed to

4 Autovector Interrupts. For this configuration, jumper block
as shown below.

Pin 5
Pin 3

(PC5/PIRQ)
(PC3/TOUT)

to Pin 6
to Pin 4

(Pin 32 of 1/0 Expansion Port)
(Pin 30 of 1/0 Expansion Port)

14.1.1.2 Requirements for PX B

For test PX B, a dummy plug and cable set must be installed in connectors P4 and
P3. This test rig must loop back the Port A and Port B data lines of PIIT C as
for test PX A. Additionally, three of the Port C data lines of PI/T C (PC6,
PC4, and PC7) must be connected to the PC2/TIN lines of the three PIITs, as
shown below.

P4 pin 23 (PI/T C
P4 pin 21 (PI/T C
P4 pin 31 (PI/T C

PCG)
PC4)
PC7)

to P3 pin 3
to P3 pin 5
to P3 pin 7

0-91

(PI/T A PC2/TIN)
(PI/T B PC2/TIN)
(PI/T C PC2/TIN)

The paths from connector P3 to the PC2/TIN lines of the PItTs are interrupted by
jumper block JA17 .. The connections must be completed by setting these jumpers
as shown below.

Pin 1 (PI/T C PC2/TIN) to Pin 2 (P3 pin 7)
Pin 3 (PI/T A PC2/TIN) to Pin 4 (P3 pin 5)
Pin 5 (PI/T B PC2/TIN) to Pin 6 (P3 pin 3)

Test PX B also requires the buffer direction control jumper blocks (JA3. JA5.
and JA7) to be configured the same as for test PX A.

0-92

14.2 Data. handshake, and IRQ test PX A

This command exercises most of the external connections of the three PI/Ts. All
of the Port A and Port B data lines are tested, the handshake lines are tested,
and both of the IRQ outputs are tested. The board must be configured as
described in section 14.1.1.1.

14.2.2 COrTmand Input

M20Diag)PX B

14.2.3 Response/Messages

After the command is entered, the display should appear as follows:

A Data, handshake, and IRQ test. Running ---)

If defective data lines are detected, the error will be reported as follows:

A Data. handshake. and IRQ test. Running ---)
Error on PI/T A Data lines error mask = 01100001
• •• Fa i led

In the error mask, Is represent malfunctioning data lines. Because each path
includes both the Port A and Port B data lines, a fault on either side produces
the same message.

If a handshake line fails to operate, the error will be reported as follows:

A Data, handshake. and IRQ test. Running ---)
Error on PItT B Port A handshake [HI-H2]
••• Failed

Because each path includes two handshake lines, a fault in either line produces
the same message.

The PCS/PIRQ output should produce a level 3 Autovector Interrupt. and the
PC3/TOUT output should produce level 4 Autovector Interrupt. If one of these
interrupt outputs malfunctions. the test will report no interrupt:

A Data, handshake, and IRQ test. Running ---)
Error on PI/T A No interrupt from PIRQ [PCS]
••• Failed

or wrong IRQ:

A Data, handshake, and IRQ test. Running ---)
Error on PI/T A Wrong IRQ - level S AV from PIRQ [PC5]
· .. Fa i led

or spurious interrupt:

A Data, handshake. and IRQ test. Running ---)
Error on PI/T A -- Spurious interrupt from TOUT [PC3]
· .. Fa i led

0-93

14.3 P4 connector test PX B

This test exercises the PI/T C inputs and outputs through connector P4. These
lines include the Port A and Port B data lines, and three lines of Port C.
These last are connected to the PC2/TIN lines of the three PI/Ts, which are also
tested. The board must be configured as described in section 14.1.1.2.

14.3.2 Command Input

M20Diag>PX B

14.3.3 Response/Messages

After the command is entered, the display should appear as follows:

A P4 connector test ••.•••••••.•. Running --->

If defective data lines are detected, the error will be reported as in test PX
A. If a PCn-to-PC2/TIN path fails to operate, the error will be reported as
follows.

A P4 connector test ..•••••••••.• Running --->
Error on Pl/T A PC2/TIN stuck

Because each of these paths includes two lines, a fault on either line will
produce the same error message.

0-94

14.4 Data and handshake toggle PX C

This command causes the Port A data lines, Port B data 1 ines, and handshake
outputs (H2 and H4) of al I three PI/Ts to toggle between high and low states,
which is useful to a technician checking for shorted or coupled lines. This
toggling is rapid (each line should change state about once every 100 usee), and
pseudo-random (to avoid coupling). Once started, the command will run
indefinitely, but can be terminated by BREAK.

WARNING: when this command is started, the dummy plugs and cables used with
tests PX A and PX B must not be in place. If any such plugs or cables are
installed when PX C is run, this may result in output buffers with conflicting
levels being connected, which could damage one or both buffers.

14.4.2 Command Input

M20Diag>PX C

14.4.3 Response/Messages

After the command is entered, the display should appear as follows:

M20Diag>PX C
Now toggling •••

0-95

