
MICROWARE

INTERACTIVE DEBUGGER

USERIS MANUAL

INTERACTIVE DEBUGGER

USERIS MANUAL

(C) 1980, 1981,. 1982 Microware Systems Corporation.
All Rights Reserved

This manual, the Interactive Debug Program, and any information
contained herein is the property of Microware Systems Corporation.
Reproduction by any means electrical or otherwise is strictly
prohibited except by prior written permission from Microware
Systems Corporation.

The information contained herein is believed to be accurate as of
the date of publication, however Microware will not be liable for
any damages, including indirect or consequential, resulting from
reliance upon the OS-9 Interactive Debug Program or this
documentation.

Fourth Revision
Publication Date: June 12, 1982

Microware System Corporation
5835 Grand Avenue
Des Moines, Iowa 50312 U.S.A.
Telephone 515-279-8844
Software Support 515-279-8898
Telex 91G-520~2535

OS-9 INTERACTIVE DEBUGGER
Debug Commands

MEMORY COMMANDS

The interact1ve debugger has two memory-related commands to
display large blocks of memory, and to clear and test memory.

Clear and Test Memory Command

The command C followed by TWO expressions simultaneously
performs a nwalking bit n memory test and clears all memory
between the ~wo evaluated addresses. The first expression gives
the starting address, and the second the ending address (which
must be higher). If any byte(s) fail the test, its address is
displayed~ Of course, only RAM memory can be tested and
cleared.

WARNING: THIS COMMAND CAN BE DANGEROUS FOR OBVIOUS REASONS. BE
SORE OF WHAT MEMORY YOU ARE CLEARING.

Example:

DB: C 1200 l5FF
DB: C •• +256 .

Dump Memory Command

The M command, which is also tollowed by two addresses,
displays a screen-sized display of memory contents in tabular
form, in both hexadecimal and ASCII form.. The starting address
of each line is printed on the left, followed by the contents of
the 16 subsequent memory locations. On the far right is the
ASCII representation of the same memory locations. Those
locatl.ons containing non-displayable characters have periods in
their place. The high order bit is ignored for the display of
the ascii character.

Search Memory Command

The nSn command is used to search an area of memory for a
one- or two-byte pattern. The search begins at the present Dot
address., The nSn is followed by two expressions: the first
expression is the ending address of the search, and the second
expression is the data to be searched for. If this value is
less than 256 a one-byte comparison is used, otherwise two bytes
are compared. If a matching pattern is found in memory, Dot is
set to the address where it was located (which is displayed).
If no match occurred, another nDB:- prompt is displayed.

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
page 3-7

OS-9 INTERACTIVE DEBUGGER
Debug Commands

This Page Intentionally Left Blank

(C) 1980, 1981, 19°82 MICROWARE SYSTEMS CORPORATION
Page 3-8

OS-9 INTERACTIVE DEBUGGER USERS MANUAL
Table of Contents

CHAPTER 1 - INTRODUCTION TO'DEBUG

Basic Concepts

CHAPTER 2 - EXPRESSIONS

Constants - - - -
Special Names - - - -
Register Names - - -
Operators - - - - - -
Indirect Addressing

\ - - - ~ -

CHAPTER 3 - DEBUG COMMANDS

~ - - -
- - - _0_

Calculator Command - - - - - - - - - - - - -
Memory Examine - - - - - - - - - - - - - - -
Memory Change - - - - - - - - - -
Register Commands - - - - - - -

Displaying Registers - - - - - - - - - - -
Changing Register Contents - - - -

Breakpoint Commands - - - - - - - - - - - - -
Set Breakpoint - - - - - - - - - - - - - -
Display Breakpoints - - - - - - - - - -
Remove Breakpoints - - - - - - - - - - - - - - - - - -

Go Command (Resume Program Execution) - - - - - -
Memory Commands - - - - - - - - - - -

Clear and Test Memory - - - - - - - - - - - - -
Dump Memory - - - - - - - - - - - - - - -
Search Memory - - - - - - - - - - - - -

CHAPTER 4 - OS-9 RELATED COMMANDS

1-1

2-1
2-2
2-2
2-3
2-4

3-1
3-2
3-2
3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-7

Shell - 4-1
Quit - ~ - ~ - - - - - - - - - - - - - - - - 4-1
Execute Module - - - - - - - - - - - - - - - - - 4-1
Link to Module - - - - - - - - - - - - - - - 4-2

CHAPTER 5 - USING THE DEBUGGER WITH A REAL PROGRAM

Example Program - - - - - - - - - - - - - - - 5-1
A Session With The Debu9ger - - - - - - - - - - - - - - - 5-2

APPENDIX A - COMMAND SUMMARY

APPENDIX B - ERROR REPORTING

(C) 1980, 1981, 1982 Microware Systems Corporation
0-1

OS-9 INTERACTIVE DEBUGGER OSERS MANUAL
Table of Contents

This Page Intentionally Left Blank

\

(C) 1980, 1981, 1982 Microware systems Corporation
0-2

OS-9 INTERACTIVE DEBUGGER
Introduction to Debug

INTRODUCTION

The Microware Interactive Debugger is a powerful tool .for
system diagnostics or testing 6809 machine language programs.
It is also useful when you need to directly access the
computer's memory for any of a number of reasons: testing I/O
interfaces, verifying data, etc. The. calculator mode can
simplify computation of addresses, radix conversion, and other
mathematical problems often encountered by machine-language
programmers.

Basic Concepts

The debugger operates in response to single line commands
typed in from the keyboard. You can tell when you are "talking
to" the debugger because it always displays a "DB:" prompt when
it expects a command line.

Each line is terminated by a carriage return ("new line" on
some keyboards). If you make a mistake while typing, you can use
the backspace key (control H), or delete the entire line using
the control-X key.

Each command line starts with· a single cha:racter. command
which may be followed by text, or one or two arithmetic

. expressions, depending on the specific command. Opper-case and
lower-case character can be us~d interchangeably. Here's an
example of the • space " command which displays the result of an
expression in hexadecimal and decimal notation:

DB: A+2
$OOOC 100012

DB:

Numbers entered into or displayed by the debugger are in
hexadecimal notation, unless special commands are used, such as
the decimal conversion command shown above. Two important topicS
must be covered before beginninq the command descriptions
themselves; expression syntax and DOT.

(C) 1980, 1981,1982 MICROWARE SYSTEMS CORPORATION
Page 1-1

OS-9 INTERACTIVE DEBUGGER
Introduction to Debug

This Page Intentionally Left Blank.

(C) 1980, 1981,1982 MICROWARE SYSTEMS CORPORATION
Page 1-2

OS-9 INTERACTIVE DEBUGGER
Expressions

EXPRESSIONS

A powerful capability of the Interactive Debugger is its
integral expression interpreter, which permits you to type in
full expressions wherever an input number is called for in a
command. Expressions used by the Interactive Debugger are
similar to those used with high-level languages such as BASIC,
except there are some extra operators and operands that are
unique to the debugger.

Numbers used in expressions are 16 bit unsigned integers,
which is the 6809's nnative n arithmetic representation. The
allowable range of numbers is therefore zero to 65535. Two's
complement addition and subtraction is performed correctly, but
will print out as large positive numbers in decimal
representations. Some commands require byte values and an
error message wll1 be given if the result of the expression is
too large to be stored in a byte (> 255). Also, some operands
are only a byte long (such as individual memory locations and
some registers). These are automatically converted to 16-bit
·words n without sign extension. Spaces may be used between
operators and operands as desired to improve readability but do
not atfect evaluation.

Constants

Constants can be in base 2 (nbinaryn), base 10 (ndecima1n),
or base 16 (hexadecimal or -hex·). Binary and decimal constants
require a prefix character: % (binary) or t(decima1). All other
numbers are assumed to be hex. Hex numbers may also have an
optional $ prefix. Bere are some examples:

DEC + MAL HEXADECIMAL BINARY
-~ .. -.. -- -~-------.. --- ~----~-----------

#100 64 $64 %1100100
#255 - FF $FF %11111111
#6000 1770 $1770 %1011101110000
#65535 FFFF $FFFF %1111111111111111

Character constants may also be used. A single quote I for one
character constants and a double quote n for two-character
constants. These produce the- numerical value of the ASCII codes
for the character(s) which follow. For example:

fA = $0041
'0 = $0030
-AB = $4142
n99 = $3939

(e) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 2-1

Special Names

OS-9 INTERACTIVE DEBUGGER
Expressions

There are other legal operands in expressions; Dot, Dot-Dot,
and register names.

Dot is simply the debugger's current working address in
memory. It can be examined, changed, updated, used in
expressions or recalled. It has the main effect of e11minating a
tremendous amount of memory address typing. The following debug
command prints the current working address:

DB: •
2204 82

Dot-Dot is the previous value of Dot, if it was changed. The
following debug command prints the previous value of Dot:

DB: ••
0500 12

Register Names

MPU Registers may be specified by a colon character ":" followed
by the mnemonic name of the register; for example:

:A Accumulator A
:B Accumumator B
:D Double Accumulator
:X X Register
:Y Y Register
:U U Register
:DP Direct Page Register
:SP Stack Pointer
:PC Program Counter
:CC Condition Codes Register

The values returned are of the program under test's registers,
which are "stacked" when the debugger is active. Those
registers which are a single byte long are promoted to a word
when used in expressions.

NOTE: When a program is interrupted by a break point, the SP
will be pointing at the bottom of the MPU register stack.

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 2-2

Operators

05-9 INTERACTIVE DEBUGGER
Expressions

Operators indicate arithmetic or logical operations. The
operators having a higher precedence are executed before those
having lower precedence. For example, all multiplications are
performed before additions. Operators in a single expression
having equal precedence are evaluated left to right.
Parentheses may be used to override precedence as desired. Here
are the operators, in precedence order from weaker to stronger:

+ addition
* muliplication
& logical AND

nega

subtraction
/ division
! logical OR

(e) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 2-3

OS-9 INTERACTIVE DEBUGGER
Expressions

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 2-4

OS-9 INTERACTIVE DEBUGGER
Debug Commands

DEBUG COMMANDS

Calculator Command

To use the calculator command, enter a line starting with one or
more spaces followed by any legal expression, then "return n •

The expression is evaluated and the result is displayed on the
following line in both hexadecimal and decimal representations.

Here are some examples:

DB: 5000+200
$5200 120992

DB: 8800/2
$4400 117408

os: #100+'12
$0070 .00112

These commands are also handy for converting values from one
representation to another:

DB: %11110000
$OOrO 100240

DB: 'A
$0041 100065

DB: .100
$OOC4 .00100

You can also use indirect addressing to look at memory without
changing Dot:

DB: <.>
$004r .00079

Another trick is simulating 6809 indexed or indexed indirect
instructions. For example:

DB: (:D+:Y]

is the same as the assembly language syntax [D,Y1.

ec) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 3-1

Memory Examine

OS-9 INTERACTIVE DEBUGGER
Debug Commands

Several commands relate directly to Dot. For example, typing
just "." causes the current value of Dot and the contents of
that memory address to be displayed, for example:

DB: •
2201 SO

DB:

The first number, 2201, is the present value of Dot, and BO is
the contents of memory location 2201. Typing a line with
nothing (just a return) increments Dot and prints its new value
and contents. This is how to "step through" sequential memory
locations:

DB:
2202 05

DB:
2203 C2

DB:
2204 82

The minus sign is the opposite: it decrements Dot and prints its
value and contents:

DB: •
2204 82

DB: -
2203 C2

DB: -
22'02 05

To change the value of Dot, you type a period, followed by an
expression, which is evaluated and becomes the new value' for
Dot:

DB: • 500
0500 12

Memory Change

To change the contents of the memory location pointed to by Dot,
you type an equal sign followed by an expression. The expression
is evaluated, and the result stored at Dot, which is then
incremented and the next address/contents are displayed. The
memory location is checked after the new value is stored to make
sure it actually changed to the correct value. If it didn't, an
error message is displayed. This will happen when an attempt is
made to alter non-RAM memory. In particular, many 6800-family
interface devices (such as PIAS, ACIAs, etc.) have registers
that will not read the same as when written to.

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 3-2

DB: •
2203

DB: =FF
2204

DB: -
2203

DB:

C2

01

FF

OS-9 INTERACTIVE DEBUGGER
Debug Commands

One additional feature: whenever Dot is changed, its last value
is saved, and can be restored by typing two periods:

DB: •
1000 23

DB: • 2000
2000 9C

DB: • •
1000 23

REGISTER COMMANDS

Several forms of the register command can be used to examine
one or all registers, or to change a specific register's
contents. A word about registers: the registers accessed are
mimages n of register values on a stack. When the debugger is
first entered, an initlal stack is automatically set up for the
user. The register images on this stack are passed to the
program under test the first time the ftG" command is used. The
registers are also valid after breakpoints are encountered and
are passed back to the program upon the next nG n command.

IMPORTANT NOTE ABOUT CHANGING REGISTER CONTENTS:

1. IF YOU CHANGE THE SP REGISTER, YOU WILL MOVE YOUR STACK
AND THE OTHER REGISTER CONTENTS WILL CHANGE •.

2. BIT 7 OF THE CC REGISTER (THE E FLAG) MUST ALWAYS BE SET
FOR THE G COMMAND TO WORK. IF YOU FORGET, THE DEBUGGER
WILL NOT RETURN TO THE PROGRAM CORRECTLY.

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 3-3

05-9 INTERACTIVE DEBUGGER
Debug Commands

Displaying Registers

To aisplay the contents of a specific register, enter a colon
n:n followed by the register name. The Debugger will respond by
displaying the current register contents in hex. Examples:

DB: :PC
C499

DB: :B
007E

DB: :SP
42FD

To display all registers, type n:n, then hit return. The
debugger responds by, displaying the register names with their
corresponding hex contents beneath.

DB: :
SP CC A B DP X Y U PC

C499 C4 20 lC 01 D03E 239A 0000 240C

Changing Register Contents

To assign anew value:to a register, type the register name
followed by an expression. The expression is evaluated and
stored in the register specified. When 8-bit· registers are
named, the expression given must have a value that fits in a
single byte, or an error message is displayed and the register
is not changed.

Here are some examples:

DB: :X 14096

DB: :OP 0

DB: :0 24CF+:Y

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 3-4

Breakpoint Commands

OS-9 INTERACTIVE DEBUGGER
Debug Commands

The breakpoint capabilities of the debugger allow you to
specify addresses where execution of the program under test is
to be suspended, and the debugger re-entered. When a breakpoint
is encountered, the values of the MPU registers and the "DB:"
prompt will be displayed meaning the debugger is ready to accept
a command. Registers can be examined or changed, memory can be
altered, etc. Breakpoints may be inserted at up to 12 different
addresses.

Breakpoints are implemented by using the 6809 SWI
instruction, which when executed, interrupts the program and
saves its complete state on the stack. The SWI instructions are
automatically inserted and removed by the debugger at the right
times so you will not ·seen them in memory. Because the SWls
operate by temporarily replacing an instruction opcode, there
are three restrictions on their use:

1. Breakpoints cannot be used in programs in ROM.

2. Breakpoints must be located in the first (opcode) byte
of the instruction.

3. User programs cannot utilize the SWI instruction tor
other purposes (but CAN use SWI2 and SWI3)

When the breakpoint is encpuntered durin9 execution of the
program under test, the debugger is reentered and the program's
register contents are displayed using the same format as the
ndisplay regi.ster" command.

Setting Breakpoints
Display Breakpoints

The B command is used to insert a breakpoint if followed by
an expression, or to display all present breakpoint addresses if
given without an expression.

DB: B lCOO
DB: B 4FD3
DB: •

1277 39

DB: B •
DB: B

lCOO 4FD3 1277
DB:

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 3-5

08-9 Ilft'EBACl'IVE DEBUGGER
Debug Commands

Remove Breakpoint

The K command removes
",address if followed by
~reakpoints if used alone.

\
DB: B

lCOO 4FD3 1277
DB: K 4FD3
DB: B

lCOO l2n
DB: K
DB: B

DB:

("Kills") a breakpoint at a specific
an expression, or ALL (caution!)

GO- RESUME PROGRAM EXECUTION

The G (nGo n) command is used to resume program execution after a
breakpoint. If a breakpoint exists at the present program
counter address, that breakpoint is not inserted so that it is
not immediately re-executed. A loop must have at least two
breakpoints in it if execut10n is 'to be su.spended each time
through the loop.

Note that the "En command is usually used before the first
"G" command to set up the program to be tested. As mentioned
previously, the Interactive Debugger initially sets up a default
stack so the command:

G expression

can be used to start a program at the address the expression
evaluates to.

Here are some examples:

DB: G 4COO
DB: G :PC+100
DB: G [.]

(C)l980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 3-6

SHELL COMMAND

OS-9 INTERACTIVE DEBUGGER
05-9 Related Commands

OS-9 RELATED COMMANDS

This command calls the shell to execute one or more system
command lines. Its format is a dollar sign optionally followed
by a shell command line. If the command line is given, the
shell will execute just that line and return back to the
debugger. If the dollar sign is immediately followed by an end­
of-line, the shell will print prompts for one or more command
lines in its usual manner. You can return to the (undisturbed)
debugger by typing an end-of-file character (usually ESCAPE).

This command is useful for calling the system ut111ty'
programs and the Interactive Assembler from within the debugger.

DB~ $dir

DB: $unlink mypgm7 mdir e7 load testS

DB: $asm myprogram o=myprogram

QUIT COMMAND

This command (0) causes the Inte:cactive debugger to execute a
EXIT system call which normally kills it and notifies its parent
process. This generally returns you to the program that you were
previously executing (typically the Shell).

Example:

DB: Q

059:

EX.ECUTE COMMAND

The Execute Command (E followed by a text line) performs the
rough equivalent of the CHAIN system command, except instead of
starting the new program (and overlaying the Interactive
Debugger itself), it sets up its stack and all the debugger
commands operate on the new program (G starts it). Note that
this command will allocate program and data area memory as
appropriate. The new program uses the debugger1s current
standard I/O paths, but can open other paths as necessary_ In
effect, the debugger and the program become coroutines.

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 4-1

OS-9 INTERACTIVE DEBUGGER
OS-9 Related Commands

This command is acknowleged by a register dump showing the
programls in1tial register values. The nGn command is used to
begin actual program execution.

The nE n command will set up the MPO registers as if you had just
performed an F$CHAN service request as shown below:

high

low

+--------~------+ <-- Y
1 1
1 parameter I
1 area I
! 1
+---------------+ <-- x, SP
1 I
1 !
1 data area 1
I 1
1 !
+---------------+
! direct page 1
+---------------+ <-- 0, DP

o = Parameter area size
PC = Module entry point absolute address
CC = (F=O), (1=0)

Example:

OBi E myprogram
SP CC A B DP X Y PC

OCF3 C8 00 01 OC OCFF ODOO 9214
DB:

LINK COMMAND

This command (L followed by text) attempts to link to the
whols name is given in the text line. If successful, Dot
to the address of the first byte of the program
displayed.

Example:

DB: L FPMATH
ECOO 87

DB:

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 4-2

module
is set
and is

OS-9 INTERACTIVE DEBUGGER USERS MANUAL
Using the Debugger with a Real Program

USING THE DEBUGGER WITH A REAL PROGRAM

The example program shown below is presented here to show how
the various debug commands may be used with a real program.
This program prints "HELLO WORLD" and then waits for a line of
input:

0000
0000
0002
0052
00E7
00E8

0000 87CD0047
0000 45584140

0014
0014 308])0020
0018 108£000C
OOlC 8601
OOlE 103F8C
0021 2512
0023 3042
0025 108£0050
0029 8600
002B 103F88
002E 2505
0030 109FOO
0033 C600
0035 103F06
0038 48454C4C
0043 00
OOOC
0044 268A06
0047

NAM EXAMPLE
OPT O,-M
USE /DO/~EFS/OS9DEFS

* * 08-9 System Definition File Included
*

opt
ORG

LINLEN RMB
INPBUF RMB

RMB
STACK EOU
DATMEM EOU

NAME

EN'l'RY

ERROR
OOTSTR

STRLEN

ENDPGM

MOD
FCS

EQU
LEAX
LDY
LOA
OS9
BCS
LEAX
LDY
LOA
OS9
Bes
STY
LDB
OS9
FCC
FCB
EOU
EMOD
EOU

1
o
2
80
150
.-1
•

LINE LENGTH
LINE INPUT BUFFER
HARDWARE STACK

DATA AREA MEMORY SIZE

ENDPGM,NAME,$11,$8l,EN'l'RY,DATMEM
/EXAMPLE/ MODULE NAME STRING

* ·MODULE ENTRY POINT
OUTSTR,PCR OUTPUT STRING ADDRESS
tSTRLEN GET STRING LENGTH
tl STANDARD OUTPUT PATH
I $WRLN WRITE THE LINE
ERROR BRA IF ANY ERRORS
INPBUF,U ADDR OF INPUT BUFFER
t80 MAX OF 80 CHARACTERS
to STANDARD INPUT PATH
I$RDLN READ THE LINE
ERROR BRA IF ANY I/O ERRORS
LINLEN SAVE THE LINE LENGTH
to RETURN WITH NO ERRORS
F$EXIT TERMINATE THE PROCESS
/HELLO WORLD/ OUTPUT STRING
$00 END OF LINE CHARACTER
*-OUTSTR STRING LENGTH

END OF MODULE
* END OF PROGRAM

ec) 1980, 1981, 1982 MICROHARE SYSTEMS CORPORATION
Page 5-1

05-9 INTERACTIVE DEBUGGER USERS MANUAL
Using the Debugger with a Real Program

A Session With The Debugger

Below is an example of how DEBUG might be used on the program
above. DEBUG is called from OS-9, the $ command is used to tell
SHELL to load "EXAMPLE" into memory, the "L" command is used to
link to it, etc.

OS9:DEBUG 12K

Interactive Debugger
DB: $LOAD /Dl/EXAMPLE
DB: L EXAMPLE

9200 87

DB: •
9200 87

DB: M • .+44
9200 87CD 0047 0000 1181 9300 1400 E845 5841 ••• D ••••••••• EXA
9210 4050 4CC5 3080 0020 108E OOOC 8601 103F MPL.O ••••••••• ?
9220 8C25 1230 4210 8EOO 5086 0010 3F8B 2505 .%.OB ••• P ••• ?%.
9230 109F OOC6 0010 3F06 4845 4C4C 4F20 574F •••••• ?HELLO WO
9240 524C 4400 A484 7F8D. D4A6 A02A F639 3432 RLD •••••••• * .942
DB: E EXAMPLE

SP CC A B DP X Y U PC
ODF3 C8 00 01 OD ODFF OEOO 0000 9214

DB: •
9200· 87

DB: B .+2E
DB: G
HELLO WORLD
hello computer

BKPT:
SP CC -A B DP X Y U PC

ODF3 CO 00 01 00 0002 OOOF 0000 922E
DB: M:U :U+20
0000 FA31 6865 6C6C 6F20 636F 6070 7574 6572 .lhello computer
0010 ODDF COOS E9Fl 95FA 4COD IDFA OAC4 5900 •••••••• L ••••• Y.
0020 OB64 360B CFBl 0091 F820 5AE2 SAF8 SAF8 .d6 •••••• Z.Z.Z.·
DB: • :U+2

DB:

DB:

DB:

DB:

OS9:

0002 68

0003 65

0004 6C

0005 6C
Q

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 5-2

OS-9 INTERACTIVE DEBUGGER
Debugger Command summary

INTERACTIVE DEBUGGER COMMAND SUMMARY

Calculator Command - - - - - - - - - - - - - - - 3-1
CSP) expr Evaluate 1 display result in hex and decimal - - 3-1

Dot Commands - - - - - - - - - - - 3-2

e •

e expr
= expr

(CR)

Print Dot address and contents - - - - - - 3-2
Restore last DOT, print address and contents - 3-3
Set Dot to result, print address and contents - 3-2
Set memory at Dot to result - - - - - - - - - - 3-2
Backup Dot, print address and contents - - - - 3-2
Move Dot forward, print address and contents - 3-2

Breakpoint Commands - - - - - - - - - - - - - - - - - - .3-5

B Display all breakpoints - - - - - - - - - - 3-5
B expr Set breakpoint at result address - - - - - 3-5
K Kill all breakpoints - - - - - - - - - 3-6
K expr Kill breakpoint at result address - - - - - - - 3-6
G Go to program - - - - - - - - - - - - - - - - - 3-6
G expr Go to program at result address - - - - - - 3-6

Memory Commands - 3-7

M exprl expr2 Tabular display of memory (dump) - - - - 3-7
C exprl expr2 Clear and test memory - - - - - - - 3-7
S exprl expr2 Search memory for pattern - - -- - - - 3-7

Register Commands - - - - - - - - - - - - - - - .. - - - 3-3

. •
:req
:reg expr

Display all register contents - - - - - - - - 3-4
Display specific register contents - - - - - - 3-4
Set register to result - - - - - - - - 3-4

05-9 Related Commands - - - - .. - - - - .. - - - - - - - 4-1

$ text
L text
Q
E text

Call OS-9 shell - - - - - - - - - -
Link to module named, print address

- - - - 4-1
- - - - 4-2

Quit debugging - - - - - - - - - - - - - - 4-1
Prepare for execution - - - - - - - - - - - 4-1

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page A-I·

05-9 INTERACTIVE DEBUGGER
Debugger Command summary

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page 1\-2

OS-9 INTERACTIVE DEBUGGER
Error Reporting

ERROR REPORTING

The Interactive Debugger will detect several types of errors
which cause an error message and code number to be displayed.
The error codes are always displayed in decimal notation. The
various ~odes and descriptions are listed below. Error codes
other than those listed are standard OS-9 error codes returned
by various system calls.

o ILLEGAL CONSTANT: The expression included a constant that
had an illegal character or was too large (> 65535).

1 DIVIDE BY ZERO: A division was attempted using a divisor of
zero ..

2 MULTIPLICATION OVERFLOW: the product of the multiplication
was greater then 65535

3 OPERAND MISSING: An operator was not followed by a legal
operand.

4 RIGHT PARENTHESIS MISSSING: misnested parentheses

5 RIGHT BRACKET MISSING: misnested brackets

6 RIGHT CARAT MISSING: misnested byte-indirect (< and >)

7 INCORRECT REGISTER: misspelled, missing or' illegal
register name followed the colon.

a BYTE OVERFLOW: attempted to store a value greater than
255 in a byte-sized destlnation.

9 COMMAND ERROR: misspelled, missing or illegal command.

-10 NO CHANGE: the memory location did not match the value
assigned to it.

11 BREAKPOINT TABLE FULL: the maximum number of twelve
breakpoints already exist.

12 BREAKPOINT NOT FOUND: no breakpoint exists at the address
given.

13 ILLEGAL SWI: A SWI instruction was encountered in the
user program at an address other than a breakpoint.

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page B-1

08-9 INTUACTIVa DEBUGGER
Error Reporting

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 MICROWARE SYSTEMS CORPORATION
Page B-2

