
MICROWARE®

OS-9 OPERATING SYSTEM

SYSTEM PROGRAMMER'S MANUAL

MIC'OWdre System" Corporation
58~5 Grdnd Avenue
Des MOIne. owa ,)0":1 12
Telephone;) I S-2/9 8844
Telex 910-520-2535

OS-9 OPERATING SYSTEM

SYSTEM PROGRAMMER'S MANUAL

Copyright 1980, 1982 Microware Systems Corporation
All Rights Reserved.

This manual, the OS-9 Program, and any information contained herein
is the copyrighted property of Microware Systems Corporation.
Reproduction of this manual in part or whole by any means,
electrical or otherwise, is prohibited, except by written permission
from Microware Systems Corporation. '

The information contained herein is believed to be accurate as of
the date of publication. however, Microware will not be liable for
any damages, including indirect or consequential, related to use of
the OS-9 Operating system or of this documentation. The information
contained herein is subject to change without notice.

Revision F-l, January 1983

OS-9 Level One System Programmers Manual

Errata Summary

PAGE 4-4: Top of page
The four least significant bits of byte 6 describe the
language type as listed below:

o Data (non-executable)
1 6809 object code
2 BASIC09 I-code
3 PASCAL I-code
4 C I-code
5 COBOL I-code
6 FORTRAN I-code

PAGE 4-5: TOp of page
first line should read:

ftuser-definedft types having type codes of 5 through B. They
have four more bytes in their headers defined as follows:

PAGE 6-3: Second paragraph
third sentence should read:

There are a maximum of 2048 bit.s in the map, •••

PAGES 6-17 and 7-13: Top of page
INPUT should read:

INPUT: (U) = Address of the device static storage area
(Y) = Address of the path descriptor
(B) = Status code

PAGE 10-7: add following lines to discussion:
The value of the CRC accumulator after calculation must
be complemented before being stored in the module.

When checking a·module CRC, the CRC calculation should be
performed on the entire module (including the module CRC).
The CRC accumulator will contain the CRC constant bytes
if the module CRC is correct.

PAGE 10-24: Insert the following lines after the register diagram:
NOTE: The R$CC and R$B locations are set by the OS-9
service routine dispatcher. The user service routine should
set CC and B to the appropriate values and return with RTS.
The service dispatcher will then set the values in the
user's register stack.

PAGE 10-24:
with:

Replace all lines after "Function request codes ••• "
I

Function request codes are broken into the two catagories
as shown below:

$00 - $27 User mode service request codes.

$29 - $37 privileged system mode service request codes.
ANY service request code with the sign bit
set will be placed in the system table only.

NOTE: These catagories are defined by convention and are not
enforced by 05-9. Any service code can be made priv­
ileged by setting the sign bit.

Codes $23-$27 and $36-$37 will not be used by MICROWARE and
are free for user definition.

PAGE 10-48: DUP output should be:
OUTPUT: (A) = New path number.

PAGE 10-49: GETSTAT registers should be:
INPUT: (A) = Path number

(B) = Function code
(Other registers depend.on function code)

OUTPUT: (depends upon function code)

PAGE 10-46A: The following page describes the new system call
I$DeletX.

LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Table of Contents

CHAPTER 1 - INTRODUCTION
1.0 Introduction
1.1 History and Design Philosophy
1.2 System Hardware Requirements

SF-CTTON 2 - SYSTEM ORGANIZATION
2.0 Basic System Organization

SECTION 3 - THE KERNEL
3.0 Basic Functions of the Kernel
3.1 Kernel Service Request Processing
3.2 Kernel Memory Management Functions
3.3 Memory Utilization
3.4 OVerview of Multiprogramming
3.5 Process Creation
3.6 Process States

3.6.0 The Active State
3.6.1 The Wait State
2.6.2 The Sleep State

3.7 Execution Scheduling
3.8 Signals
3.9 Interrupt Processing

3.9.0 Physical Interrupt processing
3.9.1 Logical Interrupt Processing

SECTION 4 - MEMORY MODULES
4.0 Memory Modules
4.1 Memory Module Structure
4.2 Module Header Definitions

4.2.0 Type/Language Byte
4.2.1 Attribute/Revision Byte

4.3 Typed Module Headers
4.4 ROMed Memory Modules

SECTTON 5 - UNIFIED INPUT/OUTPnT SYSTEM
5.0 The Unified I/O Systems
5.1 The Input/Output Manager (IOMAN)
5.2 File Managers
5.3 Device Driver Modules
5.4 Device Descriptor Modules
5.5 Path Descriptors

(Continued)

1-1
1-1
1-3

2-1

3-1
3-2
3-3
3-3
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-8
3-9
3-9
3-11

4-1
4-2
4-3
4-3
4-4
4-4
4-7

5-1
5-2
5-2
5-3
5-4
5-6

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 0-1

LEVEL ONE SYSTEMPROGRAMMER'S MANUAL
Table of Contents

SECTION 6 - RANDOM BLOCK FILE MANAGER (RBFMAN)
6.0 Random Block File Manager
6.1 Logical and Physical Disk Organization

6.1.0 Identification Sector
6.1.1 Disk Allocation Map Sector
6.1.2 File Descriptor Sectors
6.1.3 Directory Files

6.2 RBFMAN Definitions of the Path Descriptor
6.3 RBF Device Descriptor Modules
6.4 RBF Device Driver Modules
6.5 RBFMAN Device Drivers

SECTION 7 - SEQUENTIAL CHARACTER FILE MANAGER
7.0 Sequential Character File Manager
7.1 SCFMAN Line Editing Functions
7.2 SCFMAN Definitions of the Path Descriptor
7.3 SCF Device Descriptor Modules
7.4 SCFMAN Device Driver Storage Definitions
7.5 SCFMAN Device Driver Subroutines

6-1
6-2
6-2
6-3
6-4
6-5
6-6
6-8
6-10
6-13

(SCFMAN)
7-1
7-2
7-4
7-6
7-7
7-9

SECTION 8 - ASSEMBLY LANGAUGE PROGruU4MING TECHNIQUES
8.0 Assembly Language Programming Techniques 8-1
8.1 How To write Position-Independent-Code 8-1
8.2 Addressing Variables and Data Structures 8-2
8.3 Stack Requirements 8-2
8.4 Interrupt Masks . 8-2
8.5 Using Standard I/O Paths 8-3
8.6 Writing Interrupt Driven Device Drivers 8-4
8. 7 A Sample Progr am 8-5

SECTION 9 - ADAPTING OS-9 To A NEW SYSTEMS
9.0 Adapting OS-9 To A New System
9.1 Adapting OS-9 to Disk-Based Systems
9.2 Adapting OS-9 To ROM-Based systems
9.3 Adapting the Initialization Module
9.4 Adapting the Sysgo Module

SECTION 10 - OS-9 SERVICE REQUEST DESCRIPTIONS
10.0 Service Request Descriptions
10.1 User Mode Service Requests
10.2 System Mode Service Requests
10.3 I/O Service Requests

APPENJ)!l"ES
Memory Module Diagrams
Standard Floppy Disk Formats
Service Request Summary
Error Codes

9-1
9-2
9-3
9-4
9-5

10-1
10-3
10-30
10-41

A-l
B-1
C-l
0-1

(C) 1980. 1981. 1982 Microware Systems Corporation
PAGE 0-2

OS-9'LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Introduction to OS-9

INTRODUCTION

OS-9 Level One is a versatile multiprogramming/multitasking
operating system for computers utilizing the Motorola 6809
microprocessor. It is well-suited for a wide range of
applications on 6809 computers of almost any size or complexity.
Its main features are:

~ Comprehensive management of all system resources: memory,
input/output and CPU time.

* A powerful user interface that is easy to learn and use.

* True multiprogramming operation.

* Efficient operation in typical microcomputer configurations.

* Expandable, device-independent unified I/O system.

* Full support for modular ROMed software.

* Upward and downward compatability with OS-9 Level Two

This manual is intended to provide the information necessary to
install, maintain, expand, or write assembly-language software for
OS-9 systems. It assumes that the reader is familiar with the 6809
architecture, instruction set, and assembly language.

HISTORY AND DESIGN PHILOSOPHY

OS-9 Level One is one of the products of the BASIC09 Advanced
6809 Programming Language development effort undertaken by
Microware and Motorola from 1978 to 1980. During the course of the
project it became evident that a fairly sophisticated operating
system would be required to support BASIC09 and similar high­
performance 6809 software.

OS-9's design was modeled after Bell Telephone Laboratories'
"UNIX" operating system, which is becoming widely recognized as a
standard for mini and micro multiprogramming operating systems
because of its versatility and relatively Simple, yet elegant
structure. Even though a "clone" of UNIX for the 6809 is
relatively easy to implement, there are a number of problems with
this approach. UNIX was designed for fairly large-scale
minicomputers (such as large PDP-lIs) that have high CPU
throughput, large fast disk storage devices and a static I/O
environment. Also, UNIX is not particulary time or disk-storage
efficient, especially when used with low-cost disk drives.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 1-1

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Introduction to OS-9

For these reasons, OS-9 was designed to retain the overall
concept and user interface of UNIX, but its implementation is
considerably different. OS-9's design is tailored to typical
microcomputer performance ranges and operational environments. As
an example, OS-9, unlike UNIX, does not dynamically swap running
programs on and off disk • This is because floppy disks and many
lower-cost Winchester-type hard disks are simply too slow to do
this efficiently. Instead, OS-9 always keeps running programs in
memory and emphasizes more efficient use of available ROM or RAM.

OS-9 also introduces some important new features that are
intended to make the most of the capabilities of third-generation
microprocessors, such as support of reentrant, position­
independant software that can be shared by several users
simultaneously to reduce overall memory requirements.

Perhaps the most innovative part of OS-9 is its nmemory module n
management system, which provides extensive support for modular
software, particularly ROMed software. This will play an
increasingly lmportant role in the future as a method of reducing
software costs. The nmemory modulen and LINK capabilities of OS-
9 permit modules to be automatically identified, linked together,
shared, updated or repaired. Individual modules in ROM which are
defective may be repaired (without reprogramming the ROM) by
placing a nfixedn module with the same name, but a higher revision
number into memory_ Memory modules have many other advantages,
for example, OS-9 can allow several programs to share a common
math subroutine module. The same module could automatically be
replaced with a module containing drivers for a hardware
arithmetic processor without any change to the programs which call
the module.

Users experienced with UNIX should have little difficulty
adapting to OS-9. Here are some of the main differences between
the two systems:

1. OS-9 is written in 6809 assembly language, not C. This
improves program size and speed characteristics.

2. OS-9 was designed for a mixed RAM/ROM microcomputer memory
environment and more effectively supports reentrant,
position-independent code.

3. OS-9 introduces the nmemory modulen concept for organizing
object code with built-in dynamic inter-module linkage.

4. OS-9 supports multiple file managers, which are modules
that interface a class of devices to the file system.

5. nFork n and nExecuten calls are faster and more memory
efficient than the UNIX equivalents.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 1-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Introduction to OS-9

SYSTEM HARDWARE REQUIR&~ENTS

The 05-9 operating system consists of building blocks called
memory modules, which are automatically located and linked
together when the system starts up. This makes it extremely easy
to reconfigure the system. For example, reconfiguring the system
to handle additional devices is simply a matter of placing the
corresponding modules into memory. Because OS-9 is so flexible,
the "minimum" hardware requirements are difficult to define. A
bare-bones LEVEL I system requires 4K of ROM and 2K of RAM, which
may be expanded to 56K RAM.

Shown below are the requirements for a typical 05-9 software
development system. Actual hardware requirements may vary
depending upon the particular application.

*
*

*

*

*

*

6809 MPU

24K Bytes RAM Memory for Assembly Language Development
40K Bytes RAM Memory for High Level Languages such as BASIC09
(RAM Must Be Contiguous From Address Zero Upward)

4K Bytes of ROM: 2K must be addressed at $F800 - $FFFF, the
other 2K is position-independant and self-locating. Some disk
systems may require three 2K ROMs.

Console terminal and interface using serial, parallel, or
memory mapped video.

Opt~onal printer using serial or parallel interface.

Optional real-time clock hardware.

I/O device controller addresses can be located anywhere in the
memory space, however it is good practice to place them as high as
possible to maximize RAM expansion capability. Standard
Microware-supplied OS-9 packages for computers made by popular
manufacturers usually confor~ to the system's customary memory
map.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 1-3

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Basic System Organization

2.0 BASIC SYSTEM ORGANIZATION

OS-9 is composed of a group of modules, each of which provides
specific functions. When OS-9 is configured for a specific system
various modules are selected to provide a given level of
functionality. For example, a small control computer without a
disk does not need the disk-related OS-9 modules. Most examples
in this manual describe a fully-configured OS-9 system.

OS-9 COMPONENT MODULE ORGANIZATION

+-----------------------+
+----------+ I +---------+
I I I I I
I INIT I - - I OS-9 KE;RNEL - - I Clock I
I I I (ROM) I I
+---------+ I +---------+

+-----------------------+
I
I

+-----------------------+
I
I Input/Output Manager
I (lOMAN)
I
+-----------------------+

+------------~-------+
I
I Disk File Manager
I (RBFMAN)
I
+--------------------+

I I·
I I

+------+
I

I Disk I
I Driver I
I I
+-------+

+--------+
I I
I Disk I
I Driver I
I I
+--------+

I I
I I

+--~-----------------+
I I
I Char. File Manager I More
I (SCFMAN) I -) opt.
I I
+--------------------+

I I
I I

+-------+
II
I ACIA I
I Driver I
I I
+--------+

I I
I I

+--------+
I I
I PIA I More
I Driver I -) opt.
I 1
+--------+

I I
I I

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
IDO I IDI 1 ID2 I ID3 I •• ITI 1 IT2 I IPl I IP2 1-) ·More
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ opt.

RBF Device Descriptors SC~ Device Descriptors

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 2-1

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S ~mAL
Basic System Organization

Notice that the diagram on the previous page indicates a
multilevel organization.

The first level is the KERNEL and the CLOCK MODOLE. The kernel
provide basic system services such as multitasking, memory
management, and links all other system modules. The CLOCK module
is a software handler for the specific real-time-clock hardware.
INIT is an initialization table used by the kernel during system
startup. It specifies initial table sizes, initial system device
names, etc.·

The second level is the Input/Output Manager. If provides
common processing all I/O operations. It is required if any OS­
supported I/O-is to be performed.

The third level is the File Manager level. File managers
perform I/O request processing for similar classes of I/O devices.
The Random Block File Manager (RBFMAN) processes all disk-type
device fuctions, and the Sequential Character File Manager
(SCFMAN) handles all non-mass storage devices that basically
operate a character at a time, such as terminals and printers.
The user can add additional File Managers to handle classes of
devices not covered by SCFMANor RBFMAN.

The fourth level is the Device Driver Level. Device drivers
handle basic physical I/O functions for specific I/O controller
hardware. Standard OS-9 systems are typically supplied with a
disk driver, a ACIA driver for terminals and serial printers, and
a PIA driver for parallel printers. Many users add customized
drivers of their own deSign or purchased from a hardware vendor.

The fifth level is the Device Descriptor Level. These modules
are small tables that are associate specific I/O ports with their
logical names, and the port's device driver and file manager.
They also contain the physical address of the port and
initializat~on data. By use of device descriptors, only one copy
of. each driver is required for each specific type of I/O
controller regardless of how many controllers the system uses.

One important component not shown is the Shell, which is the
command interpreter. It is technically a program and-not part of
the operating system itself, and is described fully in the "OS-9
Osers Manual".

Even though all modules can be resident in ROM, generally only
the KERNEL and INIT modules are ROMed in disk-based systems. All
other modules are loaded into RAM during system startup by a disk
bootstrap module (not shown on diagram) which is also resident in
ROM.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 2-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
~h~-,Ker:gel

3.0 BASIC FUNCTIONS OF THE KERNEL.

The nucleus of OS-9 is the "kernel", which serves as the system
administrator, supervisor, and resource manager. It is about 3K
bytes long and normally resides in two 2K byte ROMs: "Pl" residing
at addresses $F800 $FFFF, and IP2", which is position-inde­
pendent. P2 only occupies about half (lK) of the ROM, the other
space in the ROM is reserved for the disk bootstrap module.

The kernel's main fuctions are:

1. System initialization after restart.
2. Service request processing.
3. Memory management.
4. MPU management (multiprogramming).
5. Basic interrupt processing.

Notice that input/output tunctions were not included in the
list above~ this is because the kernel does not directly process
them. The kernel passes I/O service requests directly to anothe,;
the Input/Output Manager (lOMAN) module for processing. "

After a hardware reset, the kernel will initialize the system
which involves: locating ROMs in memory, determining the amount of
RAM available, loading any required modules not already in ROM

- from the bootstrap device, and running the system startup task
("SYSGO n). The INIT module is a table used during startup to
specify initial table sizes ,and. -system device names.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-1

05-9 ·LEVEL ONE ·SYSTEM··PRGGRAMMER'·S MANUAL·
The Kernel

3.1 KERNEL SERVICE REQUEST PROCESSING"

Service requests (system calls) are used to communicate between
05-9 and assembly-language-level programs . for such things as
allocating memory, creating new processes, etc. System calls use
the SWI2 instruction followed by a constant byte representing the
code. parameters for system calls are usually passed in MPU
registers. _In addition to I/O and memory management functions,
there are other. service request functions including interprocess
control and timekeeping.

A system-wide assembly language equate file called nOS9Defs n
defines symbolic names for all service requests. This file is
included when assembling hand-written or compiler-generated code.
The 05-9 Assembler has a built-in macro to generate system calls,
for example:

OS9 I$READ

is recongnized and assembled as the equivalent to:

SWI2
FCB I$READ

, - -- - - ~ '. ,

Service requests ar~ ¢1~video. ~nto two categories:

I/O REQUESTS perform various input/output. functions ... -. Requests of
this type are' passed by the: kernel· ot lOMAN for proce·ssing. The
symbolic names for this category have a nI$n prefix, for example,
the nreadn service request is called nI$READ n•

FUNCTION REQUESTS perform memory management, multiprogramming, and
miscellaneous funct1ons. Most are processed by the kernel. The
symbolic names for this category begins with nF$".

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.2 KERNEL MEMORY MANAGEMENT FUNCTIONS
-- .

Memory management is an important operating system function.
OS-9 manages both the physical assignment of memory to programs
~ the logical contents of memory, by using entities called
"memory modules". All programs are loaded in memory module format,
allowing OS-9 to maintain a directory which contains the name,
address, and other related information about each module in
memory. These structures are the foundation of OS-9's modular
software environment. Some of its advantages are: automatic run­
time "linking" of programs to libraries of utility modules;
automatic "sharing" of reentrant programs; replacement of small
sections of large programs for update or correction (even when in
ROM); etc.

3.3 MEMORY UTILIZATION

All usable RAM memory must be contiguous from address a upward.
During the OS-9 start-up sequence the upper bound of RAM is
detemined by an automatic search, or from the configuration
module. Some RAM is reserved by OS-9 for its own data structures
at the top and bottom of memory. The exact amount depends on the
sizes of system tables that are specified in the configuration
module.

All other RAM memory is pooled into a "free memoryll space.­
Memory space is dynamically taken from and returned to this pool
as it is allocated or deallocated for various purposes. The basic
unit of memory allocation is the 256-byte "page II • Memory is
always allocated in whole numbers of pages.

The data structure used to keep track of memory allocation is a
32-byte bit-map located at addresses $0100 - $OllF. Each bit in
this table is associated with a specific page of memory_ Bits are
cleared to indicate that the page is free and available for
assignment, or set to indicate that the page is in use or that no
RAM memory is present at that address.

Automatic memory allocation occurs when:

1. Program modules are loaded into RAM.
2. Processes are created.
3. Processes request additional RAM.
4. OS-9 needs I/O buffers, larger tables, etc.

All of the above usually have inverse functions thatcause
previously allocated memory to be deallocated and returned to the
free,memQry pool.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-3

05-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
The· Kernel

In general, memory is allocated for program modules and buffers
from high addresses downward, and for process data areas from
lower addresses upward.

TYPICAL MEMORY MAP

+----------------------~+ <- $FFFF

OS-9 ROMS (4K)

+-----------------------+ <- $FOOO , ,
, I/O DEVICE ADDRESSES , , ,
+-----------------------+ <- $EOOO , ,
, SPACE FOR MORE ,
, OPTIONAL ROMS , , ,
+-----------------------+ <- END OF RAM MEMORY , ,
I FILE MANAGERS, ,
, DEVICE DRIVERS, ETC. I
I (APPROXIMATELY 6K) I
I I
+---------~------~----+ , . : .,'
., SHELL (lK) ., . , ,
~----~-------~-------+ ,
I OS-9 DATA STRUCTURES
, (APPROXIMATELY 1K)
I
+----------~------------+

FREE MEMORY FOR·
GENERAL USE

+-----------------------+ <- $0400
I
I OS-9 DATA STRUCTURES
I AND DIRECT PAGE
I
+-----------------------+ <- $0000 BEGINNlNG OF RAM MEMORY

The map above is for a "typical" system. Actual memory sizes and
addresses may vary depending on the exact system configuration.

(C) 1980,1981; 1982 Microware'sYstems Corporation
PAGE 3-4

05-9 LEVEL ONE SYSTEM· PROGRAMMER 15 MANUAL
The Kernel

3.4 OVERVIEW OF MULTIPROGRAMMING ...

05-9 is a multiprogramming operating system, which allows
several independent programs-'.' called nprocesses" can be executed
simultaneously. Each process can have access to any system
resource by issuing appropriate service requests to 05-9.
Multiprogramming functions use a hardware real-time clock that
generates interrupts at a regular rate of about 10 times per
second. MPU time is therefore divided into periods typically 100
milliseconds in duration. This basic time unit is called a "tickn.
Processes that are nactive" (meaning not waiting for some event)
are run for a specific system-assigned period called a "time
slicen• The duration of the time slice depends on a process's
priority value relative to the priority of all other active
processes. Many 05-9 service requests are available to create,
terminate, and control processes.

3.5 PROCESS CREATION

New processes are created when an existing process executes S,
"fork n service request. Its main argument is the name of the":
program module (called the nprimary modulen) that the new process.
is to initially execute. 05-9 first attempts to find the module in
the nmodule directoryn, which includes the names of all program
modules already present in memory. If the module cannot be found
there, 05-9 usually attempts to load into memory a mass-storage
file using the requested module name as a file name.

Once the module has been located, a data structure called a
"process descriptor n is assigned to the new process. T~e process
descriptor is a 64-byte package that contains information about
the process, its state, memory allocations, priority, queue
pointers, etc. The process descriptor is automatically
initialized and maintained by 05-9. The process itself has no
need, and is not permitted to access the descriptor.

The next step in the creation of a new process is allocation of
data storage (RAM) memory for the process. The primary module's
header contains a storage size value that is used unless the
nfork n system call requested an optionally larger size. 05-9 then
attempts to allocate a CONTIGUOUS memory area of this size from
the free memory space.

If any of the previous steps cannot be performed, creation of
the new process is aborted, and the process that originated the
nfork n is informed of the error. Otherwise, the new process is
added to the active process queue for execution scheduling.

The new,. pz:ocess is also aS9igneq a unique number called a
nprocess In" which is usec::i as its iden.tifier. Other processes' .can

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-5

OS-9 LEVEL ONE SYSTEM PROGRAMMER' S MANUAL
The Kernel

communciate with it by referring-to' its ID in various system
calls. The process also has associated with it a "user ID n which
is used to identify all processes and files belonging to a
particular user. The userID is inherited from the parent
process.

Processes terminate when they execute an nEXIT" system service
request, or when they receive fatal signals. J.·he process
termination closes any open paths, deal locates its memory, and
unlinks its primary module.

3.6 PROCESS STATES

At any instant, a process can be in one of three states:

ACTIVE - The process is active and ready for execution.

WAITING - The process is suspended until a child process term­
inates or a signal is received.

SLEEPING - The process is suspended for a specific period of
time or until a signal is received.

There is a queue for each process state~ The queue is a linked
list of the "process descriptors" of processes in the corres­
ponding state. State changes are petformed by moving a process
descriptor to another queue.

3.6.0 The Active State

This state includes all nrunnable" processes, which are given
time slices for execution according to their relative priority
with respect to all other active processes. The scheduler uses a
pseudo-round-robin scheme that gives all active processes some CPU
time, even if they have a very low relative priority.

3.6.1 The wait State

This state is entered when a process executes a WAIT system
service request. The process remains suspended until the death of
any of its descendant processes, or, until it receives a signal.

3.6.2 The Sleeping State

This state is entered when a process executes a SLEEP service
request, which specifies a time interval (a specific number of
ticks) for which the process is to remain suspended. The process
remains asleep until the specified time has elapsed, or until a
signal is received.

(C) 1980, 1981, 1982 Microware Syst.ems Corporation
PAGE 3-6

08-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.7 EXECUTION SCHEDULING

The kernel contains a scheduler that is responsible for
allocation of CPU time to active processes. OS-9 uses a
scheduling algorithm that ensures all processes get some execution
time.

All active processes are members of the nactive process queue n,
which is kept sorted by process nagen. Age is a count of how many
process switches have occurred since the process' last time slice.
When a process is moved to the active process queue from another
queue. its "agen is initialized by setting it to the process'
assigned priority, i.e., processes having relatively higher
priority are placed in the queue with an artificially higher age.
Also, whenever a new process is activated, the ages of all other
processes are incremented.

Upon conclusion of the- currently executing process' time slice,
the scheduler selects the process having the highest age to be
executed next. Because the queue is kept sorted by age, this
process will be at the head of the queue. At this time the ages
of all other active processes are incremented (ages are never
incremented beyond 255).

An exception is newly-active processes that were previously
deactivated while they were in the system state. These processes
are noted and given higher priority than others because they are
usually executing critical routines that affect shared system
resources and therefore could be blocking other unrelated
processes.

When there are no active processes. the kernel will set itself
up to handle the next interrupt and then execute a CWAI
instruction, which decreases interrupt latency time.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-7

3.8 SIGNALS

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
The Kernel

"Signals" are an asynchronous control mechanism used for inter­
process communication and control. A signal behaves like a
software interrupt in that it·can.~cause a process to suspend a
program, execute a specific routine, and afterward return to the
interrupted program. Signals can be sent from one process to
another process (by means of the SEND service request), or they
can be sent from OS-9 system routines to a process.

Status information can be conveyed by the signal in the form of
a one-byte numeric value. Some of the signal "codes" (values)
have predefined meanings, but all the rest are user-defined. The
defined signal codes are:

o = KILL (non-interceptable process abort)
1 = WAKEUP - wake up sleeping process
2 = KEYBOARD ABORT
3 = KEYBOARD INTERRUPT
4 - 255 USER DEFINED

When a signal is sent to a process, the signal is noted and
saved in the process descriptor. If the process is in the
sleeping or waiting state, it is changed to the active state. It
then becomes eligible for execution according to the usual MPU
scheduler criteria. When it gets its next time slice, the Signal
is processed.

What happens next depends on whether or: not the process had
previously set up a "signal trap" (signal service routine) by
executing an INTERCEPT service request. If it had not, the
process is immediately aborted. It is also aborted if the signal
code is zero. The abort will be deferred if the process is in
system mode: the process dies upon its return to user state.

If a signal intercept trap has been set up, the process resumes
execution at the address given in the INTERCEPT service request.
The signal code is passed to this routlne, which should terminate
with an RTI instruction to resume normal execution of the process.

NOTE: "Wakeup" signals activate a sleeping process: they DO NOT
vector through the intercept routine.

If a process has a signal pending (usually because it has not
been assigned a time slice since the Signal was received), and
some other process attempts to send it another signal, the new
signal is aborted and the "send" service request will return an
error status. The sender should then execute a "sleep" service
request for a few ticks before .attempting to resend the signal, so
the destination process has an opportunity to process the
previously pending signal.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-8

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.9 INTERRUPT PROCESSING

Interrupt processing is another important function of the
kernel. All hardware interrupts are vectored to specific
processing routines. IRQ interrupts are handled by a prioritized
polling system (actually part of lOMAN) which automatically
identifies the source of the interrupt and dispatches to the
associated user or system defined service routine. The real~time
clock will generate IRQ interrupts. SWI, SWI2, and SWI3
interrupts are vectored to user-definable addresses which are
"local n to each procedure, except that SWI2 is normally used for
OS-9 service requests calls. The NMI and FIRQ interrupts are not
normally used and are vectored through a RAM address to an RTI
instruction.

3.9.0 PHYSICAL INTERRUPT PROCESSING

The OS-9 kernel ROMS contain the hardware vectors required by
the 6809 MPU at addresses $FFFO through $FFFF. These vectors each
point to jump-extended-indirect instruction which vector the MPO
to the actual interrupt service routine. A RAM vector table in.
page zero of memory contains the target addresses of the jump
instructions as follows:

INTERRUPT ADDRESS

SWI3 $002C
SWI2 $002E
FIRQ $0030
IRQ $0032
SWI $0034
NMI $0036

OS-9 initializes each of these locations after reset to point to a
specific service routine in the kernel. The SWI, SWI2, and SWI3
vectors point to specific routines which in turn read the
corresponding pseudo vector from the process' process descriptor
and dispatch to it. This is why the F$SSWI service request to be
local to a process since it only changes a pseudo vector in the
process descriptor. The IRQ routine points directly to the IRQ
polling system, or to it indirectly via the real-time clock device
service routine. The FIRQ and-NMI vectors are not normally used
-by OS-9 and point to RTI instructions.

A secol'ldaryvector table located.at~.$FFEO contains the addresses
of the routines. that the RAM vectors are initialized to. They may

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-9

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

be used when it is necessary to restore the original service
routines after altering the RAM vectors. On the next page are the
definitions of both the actual hardware interrupt vector table,
and the secondary vector table:

VECTOR ADDRESS

Secondary Vector Table

TICK
SWI3
SWI2
FIRQ
IRQ
SWI
NMI
WARM

$FFEO
$FFE2
$FFE4
$FFE6
$FFE8
$FFEA
$FFEC
$FFEE

Hardware Vector Table

SWI3
SWI2
FIRQ
IRQ
SWI
NMI
RESTART

$FFF2
$FFF4
$FFF6
$FFF8
$FFFA
$FFFC
$FFFE

Clock Tick Service Routine

Reserved for warm-start

If it is necessary to alter the RAM vectors use the secondary
vector table to exit the SUbstitute routine. The technique of
altering the IRQ pointer is usually used by the clock service
routines to reduce latency time of this frequent interrupt source.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-10

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.9.1 LOGICAL INTERRUPT POLLING SYSTEM

In OS-9 systems, most I/O devices use IRQ-type interrupts, so
OS-9 includes a sophisticated polling system that automatically
identifies the source of the interrupt and dispatches to its
associated user-defined service routine. The information required
for IRQ polling is maintained in a data structure called the "IRQ
pollinq table". The table has a 9-byte entry for each possible
IRQ-generating device. The table size is static and defined by an
initialization constant in, the System Configuration Module.

The polling system is prioritized so devices ,having a
relatively greater importance (i.ee, interrupt frequency) are
polled before those of lesser priority. This is accomplished by
keeping the entries sorted by priority, which is a number between
o (lowest) and 255 (highest). Each entry in the table has 6
variables:

1. POLLING ADDRESS: The address of the device's status register,
which must have a bit or bits that indicate it is the source of an
interrupt.

2. MASK BYTE: This - byte selects one or more bits within the
device status register that are interrupt reguest flag(s). A set
bit ident~fies the active bites).

3. FLIP BYTE: This byte selects whether the bits in the device
status register are true when set or true when cleared. Cleared
bits indicate active when set.

4. SERVICE ROUTINE ADDRESS: The user-supplied address of the
device's interrupt service routine.

5. STATIC STORAGE ADDRESS: a user-supplied pointer to the
permanent storage required by the device service routine.

6. PRIORITY: The device priority number: 0 to 255. This value
determines the order in which the devices in the polling table
will be polled. Note: this is not the same as a process priority

, which is used by the execution scheduler to decide which process
gets the next time slice for MPU execution.

When an IRQ interrupt occurs, the polling system is entered via
the corresponding RAM interrupt vector. It starts polling the
devices, using the entries in the polling table in priority order.
For each entry, the status register address is loaded into
accumulator A usinq the device address from the table. An
exclusive-or operation using the "flip-byte" is executed, followed
by a logical-and operation usingth~>ma~k byte. If the resulct is
non-zero, the device is assumed to be the cause of thee interruPt:'

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-11

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

The device's static storage address and service routine address is
read from the table and executed.

--> NOTE: The interrupt service routine should terminate with an
an RTS, nQt an RTI instruction.

Entries can be made to the IRQ polling table by use of a
special OS-9 service request called nF$IRQn. This is a
priviledged service request that can be executed only when OS-9 is
in System Mode (which is the case when device drivers are
executed).

--> NOTE: The actual code for the interrupt polling system is
located in the IOMAN module. The kernel PI and P2 modules
contain the physical interrupt processing routines.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-12

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

4.0 MEMORY MODULES

Any object to be loaded into the memory of an OS-9 system must
use the memory module format and conventions. The memory module
concept allows OS-9 to manage the logical contents as well as the
physical contents of memory. The basic idea is that all programs
are individual, named objects.

The operating system keeps track of modules which are in memory
at all times by use of a nmodule directory". It contains the
addresses and a count of how many processes are using each module.
When modules are loaded into memory, they are added to the
directory. When they are no longer needed, their memory is
deallocated and their name removed from the directory (except
ROMs, which are discussed later). In many respects, modules and
memory in general, are managed just like a disk. In fact, the disk
and memory management sections of OS-9 share many subroutines.

Each module has three parts; a module header, module body and a
cyclic-redundancy-check (eRC) value. The header contains
information that describes the module and its use. This
information includes: the modules size, its type (machine
language, BASIC09 compiled code, etc); attributes (executable,
reentrant, etc), data storage memory requirements, execution
starting address, etc. The CRC value is used to-verify the
integrity of a module.

There are several different kinds of modules, each type having
a different usage and function. Modules do not have to be complete
programs, or even 6809 machine language. They may contain BASIC09
nI-code n, constants, single subroutines, subroutine packages, etc.
The main requirements are that modules do not modify themselves
and that they be position-independent so 05-9 can load or relocate
them wherever memory space is available. In this respect. the
module format is the 05-9 equivalent of nload records n used in
older-style operating systems.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-1

OS-9 LEVEL ONE SYSTEM PR~~ER'S MANUAL
Memory Modules

4.1 MEMORY MODULE STRUCTURE

At the beginnlng (lowest address) of the module is the module
header, which can have several forms depending on the module's
usage. OS-9 family software such as BASIC09, Pascal, C, the
assembler, and many utility programs automatically generate
modules and headers. Following the header is the program/constant
section which is usually pure code. The module name string is
included somewhere in this area. The last three bytes of the
module are a three-byte Cyclic Redundancy Check (CRC) value used
to verify the integrity of the module.

MODOLE FORMAT

+--------------------+
MODULE HEADER

+--------------------+
I I
I PROGRAM I
I OR CONSTANTS I
I I
+--------------------+
I CRC I
+--------------------+

The 24-bit CRC is performed over the entire module from the
first byte of the module header to the byte just before the CRC
itself. The CRC polynomial used is $800FE3.

Because most OS-9 family software (such as the assembler)
automatically generate the module header and CRC values, the
programmer usually does not have to be concerned with writing
routines to generate them. .

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-2

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

4.2 MODULE HEADER DEFINITIONS

The first nine bytes of all module headers are identical:

MODULE DESCRIPTION
OFFSET

$0,$1 = Sync Bytes ($87,$CD). These two constant
bytes are used to locate modules.

$2,$3 = Module Size. The overall size of the module
in bytes (includes.CRC).

$4,$5 = Offset to Module Name. The address of the
module name string relative to the start
(first sync byte) of the module. The name
string can be located anywhere in the module
and consists of a string of ASCII characters
having the sign bit set on the last character.

$6 = Module Type/Langauge Type. See text.

$7 = Attributes/Revision Level. See text.

$8 = Header Check. The one's compliment of the vertical
parity (exclusive OR) of the previous eight bytes.

4.2.0 Type/Language Byte

The module type is coded into the four most significant bits of
byte 6 of the module header. Eight types are pre-defined by
convention, some of which are for OS-9's internal use only. The
type codes are:

$1
$2
$3
$4

$5-$B
$C
$D
$E
$F

Program module
Subroutine module
Multi-module (for future use)
Data module
User-definable
OS-9 System module

·OS-9 File Manager module
05-9 Device Driver module
05-9 Device Descriptor module

NOTE: 0 is not a legal type code

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-3

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

The four least significant bits of byte 6 describe the language
type as listed below:

o Data (non-executable)
1 6809 object code
2 BASIC09 I-code
3 PASCAL P-code
4 COBOL I-code

5-15 Reserved for future use

The purpose of the language type is so high-level language run­
time systems can verify that a module is of the correct type
before execution is attempted. BASIC09, for example may run
either I-code or 6809 machine language procedures arbitrarily by
checking the language type code.

4.2.1 Attribute/Revision Byte

The upper four bits of this byte are reserved for module
attributes. Currently, only bit 7 is defined, and when set
indicates the module is reentrant and therefore "sharable".

The lower four bits are a revision level from zero (lowest) to
fifteen. If more than one module has the same name, type,
language, etc., OS-9 only keeps in the module directory the module
having the highest revision level. This is how ROMed modules can
be replaced or patched: you load a new, equivalent module having a
higher revision level. Because all modules locate each other by
using the LINK -system call which searches the module directory by
name, it always returns the latest revision of the module,
wherever it may be.

NOTE: A previously linked module can not be replaced until all
processes which linked to it have unlinked it (after its link
count goes to zero).

4.3 TYPED MODULE HEADERS

As mentioned before, the first nine bytes of the module header
are defined identically for all module types. There is usually
more header information immediately following, the layout and
meaning varies depending on the specific module type. Module types
$C - $F are used exclusively by OS-9. Their format is given
elsewhere in this manual.

The module type illustrated below is the general-purpose "user"
format that is commonly used for OS-9 programs that are called
using the FORK or CHAIN system calls. These modules are the

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-4 ~

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

"user-defined" types having type codes of 0 through 9. They have
six more bytes in their headers defined as follows: !

MODULE
OFFSET

DESCRIPTION

$9,$A = Execution Offset. The program or subroutine's
starting address, relative to the first byte of
the sync code. Modules having multiple entry
points (cold start, warm start, etc.) may have
a branch table starting at this address.

$B,$C = Permanent storage Requirement. This is the
minimum number of bytes of data storage
required to run. This is the number used by
FORK and CHAIN to allocate a process' data
area.

If the module will not be directly executed by a
CHAIN or FORK service request (for instance a
subroutine package), this entry is not used by OS-9.
It is commonly used to specify the maximum stack size
required by reentrant subroutine modules. The
calling program can check this value to determine
if the subroutine has enough s~ack space.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-5

Relatlve
Address

SOO

SOl

S02

S03

S04

S05

S06

S07

S08

S09

SOA

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

EXECUTABLE MEMORY MODULE FORMAT

Usage Check Range

+-~---------~-------------+ ---+--------+---
+-- Sync Bytes (S87CD) --+
1 1

+-------~--~-----------------+ 1

+-- Module Size (bytes)
1

1
--+

!

+--------------~--------------+ 1

+-- Module Name Offset --+
1 1

+-----~------~--------------+
Type ! Language

1 Attributes 'I Revision

!
heade·r
parity

1
!

+----- .. --------------------------+ ,---+--
Header Parity Check

+------------------------------+
+-- ' Execution Offset
!

--+

+---------~~---~--------------+

1
1

1
1
1

module
CRC

SOB ! !
+-- Permanent Storage Size --+

SOC 1 1
+-~~--------~-----------------+

SOD (Add'l optional header
extensions located here)

• • • • • • • • •

Module Body
object code, constants, etc.

+------------------------------+
!
+--
+-­
!

CRC Check Value
--+

!
--+

1

+--------------------------~---+

1
1
!

!

1
!
1
!
1

------------+---

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-6

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

4.4 ROMEO MEMORY MODULES

When OS-9 starts after a .system reset, it searches the entire
memory space for ROMed modules. It detects them by looking for
the module header sync code ($87,$CD) which are unused 6809
opcodes. When this byte pattern is detected, the header check is
performed to verify a correct header. If this test succeeds, the
module size is obtained from the header and a 24-bit CRC is
pertormed over the entire module. If the CRC matches correctly,
the module is considered valid and it is entered into the module
directory. The chances of detecting a "false module" are
virtually nil.

In this manner all ROMed modules present in the system at
startup are automatically included in the system module directory.
Some of the modules found initially are various parts of OS-9:
file managers, device driver, the configuration module, etc.

After the module search OS-9 links to whichever of its
component modules that it found. This is the secret of OS-9's
extraordinary adaptablity to almost any 6809 computer; it
automatically locates its required and optional component modules,
wherever they are, and rebuilds the system each time that it is
started.

ROMs containing non-system modules are also searched so any
user-supplied software is located during the start-up process and
entered into the module directory.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-7

05-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Memory Modules

This page is intentionally blank

(C) 1980, 1981, 1982. Microware Systems Corporation
PAGE 4-8

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
The Unified I/O System

5.0 THE OS-9 UNIFIED INPUT/OUTPUT SYSTEM

OS-9 has a unified I/O system that provides system-wide hard­
ware-independent I/O services for user programs and OS-9 itself.
All I/O service requests (system call) are received by the kernel
and passed to the Input/Output Manager (lOMAN) module for
processing. lOMAN performs some processing (such as allocating
data structures for the I/O path) and calls the file managers and
device drivers to do much of the actual work. File manager, dev­
ice driver, and device descriptor modules are standard memory mod­
ules that can be loaded into memory from files and used while the
system is running.

The stuctural organizat10n of I/O-related modules in an OS-9
system is hierarchical, as illustrated below:

+----~-------~---~~-+
1 1
! Input/Output Manager 1
1 (lOMAN) 1
1
+----------------~---~-+

!
1

~---- -------------+
1 Disk File Manager !
1 (RBFMAN) 1
1

~----~~-----------+

1
+---_ _---+
1 1
! Disk !
1 Driver 1
1 !
+---------+

1
1 !

1
1

~-----+
1 1
1 Disk !
1 Driver !
1
+--------+

+---+ +--+ +---+ +---+
100 ! 101 1 102 1 103 !
+--+ +--+ +--+ +---+
RBF·Device pescriptors

+----~~-------------+ I , . .
1 Char. File Manager 1 More
1 (SCFMAN) ! -) opt.
1

+---~---~~-~--------+
1
!

+-----+
1

! ACIA 1
! Driver 1

!
+-------+

1 !
!

+---+ +---+
ITI ! 1 T2 1
+---+ +---+

SCF Device

1
+------+
1
1 PIA 1 More
1 Driver 1 -) opt.
! !
+--------+

1 1
1

+---+ +---+
!P1 1 !P2 1-) More
+---+ +---+ opt.
Descriptors

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-1

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/O System

5.1 THE INPUT/OUTPUT MANAGER (lOMAN)

The Input/Output Manager (lOMAN) module provides the first
level of service for I/O system calls by routing data on I/O paths
from processes to/from the appropriate file managers and device
drivers. It maintains two important internal OS-9 data
structures: the device table and the path table. This module is
used in all OS-9 Level One systems and should never be modified.

When a path is opened, lOMAN attempts to link to a memory mod­
ule havinq the device name given (or implied) in the pathlist.
This module is the device's descriptor, which contains the names
of the device driver and file manager for the device. This infor­
mation is saved by lOMAN so subsequent system call can be routed
to these modules.

5.2 FILE MANAGERS

OS-9 systems can have any number of File Manager modules. The
function of a file manager is to process the raw data stream to or
from device drivers for a similar class'od devices to conform to
the OS-9 standard I/O and file structure, removing as many unique
device operational characteristics as possible from I/O
operations. They are also responsibl~ for mass storage allocation
and directory processing if applicable to the class of devices
they service.

File managers usually buffer the data stream and issue requests
to the kernel for dynamic allocation of buffer memory. They may
also monitor and process the data stream, for example, adding line
feed characters after carriage return characters.

The file managers are reentrant and one file manager may be
used for an entire class of devices having similar operational
characteristics. The two standard 05-9 file managers are:

RBFMAN: The Random Block File Manager which operates
random-access, block-structured devices such
as disk systems, bubble memories, etc.

SCFMAN: sequential Character File Manager which is used
with single-character-oriented devices such as
CRT or hardcopy terminals, printers, modems, etc.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
The Unified I/O System

5.2 DEVICE DRIVER MODULES

The device driver modules are subroutine packages that perform
basic, low-level I/O transfers to or from a specific type of I/O
device hardware controller. These modules are reentrant so one
copy of the module can simultaneously run several different
devices whicn. use identical I/O controllers. For example the
device driver for 6850 serial interfaces is called "ACIA" and can
communicate to any number of serial terminals.

Device driver modules use a standard module header and are
given a module type of "device driver" (code $E). The execution
offset address in the module header points to a branch table that
has a minimum of six (three-byte) entries. Each entry is typically
a LBRA to the corresponding subroutine. The File Managers call
specific routines in the device driver through this table, passing
a pointer.to a "path decriptor" and the hardware control register
address in the MPU registers. The branch table looks like:

+0 = Device Initialization Routine
+3 = Read From Device
+6 = Write to Device
+9 = Get Device Status

+$C = Set Device status
+$F = Device Termination Routine

For a complete description of the parameters passed to thes~i
subroutines see the file manager descriptions. Also See the
appendicies on writing device drivers.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-3

OS-9 LEVEL ONE SYSTEM . PROGRAMMER I S MANUAL
The Unified I/O System

5.4 DEVICE DESCRIPTOR MODULES

Device descriptor modules are small, non-executable modules
that provide information that associates a specific I/O device
with its logical name, hardware controller addressees), device
driver name, file manager name, and initialization paramaters.

Recall that device drivers and file managers both operate on
general classes of devices, not specific I/O ports. The device
descriptor modules tailor their functions to a specific I/O
device~ One device descriptor module must exist for each I/O
device in the system.

The name of· the module is the name the device is known by to
the system and user (i.e. it is the device name given in
pathlists). Its format consists of a standard module header that
has a type ndevice descriptor n (code $F). The rest of the device
descriptor header 'consists of:

$9,$A = File manager name string relative address.

$B,$C = Device driver name string relative address.

$D = Mode/Capabilities (D S PE ?W PR E W R)

$E,$F,$lO = Device controller absolute physical (24-bit) address

$11 = Number of bytes (nnn bytes in intialization table)

$12,$12+n = Initialization table

The initializatlon table is copied into the noption sectionn of
the path descriptor when a path to the device is opened. The
values in this table may be used to define the operating
parameters that are changeable by the OS9 I$GSTT and I$SSTT
service requests. For example, a terminal's initialization
parameters define which control characters are used for backspace,
delete, etc. The maximum size of initialization table which may
be used is 32 bytes. If the table is less than 32 bytes long, the
remaining values in the path descriptor will be set to zero.

You may wish to add additional devices to your system. If a
similar device controller already exists, all you need to do is
add the new hardware and load another device descriptor. Device
descriptors can be in ROM or loaded into RAM from mass-storage
files while the system is running.

The diagram on the next page illustrates the device descriptor
module format.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-4

MODULE
OFFSET

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/O System

DEVICE DESCRIPTOR MODULE FORMAT

+-----------------------------+ ---+--------+--
$0

$1

$2

$3

$4

$5

$6

+-- Sync Bytes ($87CD) --+

+-----------------------------+
+-- Module Size -:--+

!
+-----------------------------+

!
+-- Offset to Module Name --+

+-----------------------------+
1 $F (TYPE) ! $1 (LANG)

!

header
parity

!

+-----------------------------+ !
$7 ! Atributes Revision !

+-----------------------------+ ---+--
$8 Header parity Check

$9

$A

+-----------------------------+
+-- Offset to File Manager --+
! Name string !
+-----------------------------+

$B 1 !
+-- Offset to Device Driver --+

$C Name str'ing
~~------------------------+

$D Mode Byte
+-----------------------------+

$E !
+-- Device Controller --+

$F ! Absolute Physical Address
+-- (24 bit) --+

$10
+---------------------~-------+

$11 Initialization Table Size
+-----------------------------+

$12,$12+N 1
(Initialization Table)

+-----------------------------+
!
!

(Name Strings etc)
!

+--------~--------------------+
CRC Check Value !

!
!

!
!

module
CRC

!

+---,--------------------------+ ------------+--

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-5

OS-9 LEVEL ONE SYSTEM PROGRAMMER 1 S MANUAL
The Unified I/O System

5.5 PATH DESCRIPTORS

Every open path is represented by a data structure called a
path descriptor ("PO"). It contains the information required by
the file managers and device drivers to perform I/O functions.
Path descriptors are exactly 64 bytes long and are dynamically
allocated and deallocated by IOMAN as paths are opened and closed.

POs are INTERNAL data structures that are not normally
referenced from user or applications programs. In fact, it is
almost impossible to locate a path's PO when OS-9 is in user mode.
The description of POs is mostly of interest to, and presented
here for those programmers who need to write custom file managers,
device drivers, or other extensions to OS-9.

POs have three sections: the first 10-byte section is defined
universally for all file managers and device drivers, as shown
below.

Universal Path Descriptor Definitions

Name Addr Size Description
----~--
PO.PO
PO. MOD
PO.CNT
PO.DEV
PO. CPR
PO.RGS
POcBUF
PD.FST
PO.OPT

$00 1
$01 1
$02 1
$03 2
$05 1
$06 2
$08 2
$OA 22
$20 32

Path number
Access mode: l=read 2=write 3=update
Number of paths using this PD
Address of associated device table entry
Requester's process ID
Caller's MPU register stack address
Address of 256-byte data buffer (if used)
Defined by file manager
Reserved for GETSTAT/SETSTAT options

The 22-byte section called "PD.FST" is reserved for and defined
by each type of file manager for file pointers, permanent var­
iables, etc.

The 32-byte section called "PO.OPT" is used as an "option" area
for dynamically-alterable operating parameters for the file or
device. These variables are initialized at the time the path is
opened by copying the initialization table contained in the device
descriptor module, and can be altered later by user programs by
means of the GETSTAT and SETSTAT system calls.

These two sections are defined each file manager's in the
assembly language equate file (SCFDefs for SCFMAN and RBFDefs for
RBFMAN) •

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-6

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.0 RANDOM BLOCK FILE MANAGER

The Random Block File Manager (RBFMAN) is a file manager module
that supports random-access, block-oriented mass storage devices
such as disk systems, bubble memory systems, and high-performance
tape systems. RBFMAN can handle any number or type of such systems
simultaneously. It is a reentrant subroutine package called by
TOMAN for I/O service requests to random-access devices. It is
responsible for maintaining the logical and physical file
structures.

In the course of normal operation, RBFMAN requests allocation
and deallocation of 256-byte data buffers; usually one is required
for each open file. When physical I/O functions are necessary.
RBFMAN directly calls the subroutines in the associated device
drivers. All data transfers are performed using 256-byte data
blocks. RBFMAN does not directly deal with physical addresses such
as tracks, cylinders, etc. Instead, it passes to device driver
modules address parameters using a standard address called a
"logical sector number", or "LSN". LSNs are integers in the range
of 0 to n-l, where n is the maximum number of sectors on the
media. The driver is responsible for translating the logical sec­
tor number to actual cylinder/track/sector values.

Because RBFMAN is designed to support a wide range of devices
having different performance and storage capacity, it is highly
parameter-driven. The physical parameters it uses are stored on
the media itself. On disk systems, this information is written on
the first few sectors of track number zero. The device drivers
also use this information, particularly the physical parameters
stored on sector O. These parameters are written by the "format"
program that initializes and tests the media.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-1

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL·
Random Block File Manager

6.1 LOGICAL AND PHYSICAL DISK ORGANIZATION

All mass storage volumes (disk ~edia) used by OS-9 utilize the
first few sectors of the volume to store basic identification.
file structure, and storage allocation information.

Logical sector zero (LSN 0) is called the Identification ~~
which contains description of the physical and logical format of
the volume.

Logical sector one (LSN 1) contains an allocation map which
indicated which disk sectors are free and available for use in new
or expanded files.

The VOlume's root directory usually starts at logical sector
two.

6.1.0 Identification Sector

Logical sector number zero contains a description of the
physical and logical characteristics of the volume. These are
established by the "format" command program when the media is
initialized. the tab1p. below gives the OS-9 mnemomic name, byte
address, size, and description of each value stored in this
sector.

name addr size description
------~-----~----------~-------.~-------------~--------~~------

DO.TOT $00
DO.TKS $03
DD.MAP $04
DD.BIT $06
DD • .oIR $08
DD.OWN SOB
DD.ATT $00
DD.DSf($OE
DD.FMT $10
DD.SPT $11
DD.RES $13
DD.BT $15
DO.BSZ $18
DO.OAT $1A
DD.NAM $lF

3
1
2
2
3
2
1
2
1
2
2
3
2
5

32

Total number of sectors on media
Number of sectors per track
Number of bytes in allocation map
Number of sectors per cluster
Starting sector of root directory
OWner's user number
Disk attributes
Disk identification (for internal use)
Disk format: density, number of sides
Number of sectors per track.
Reserved for future use
Starting sector of bootstrap file
Size of bootstrap file (in bytes)
Time of creation: Y:M:D:H:M
Volume name: last. char has sign bit set

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.1.1 Disk Allocation Map Sector

One sector (usually LSN 1) of the disk is used for the "disk
allocation map" that specifies which clusters on the disk are

. available for allocation of file storage space. The address of
this sector is always assigned logical sector 1 by the format
program. DD.MAP specifies the number of bytes in this sector
which are actually used in the map.

Each bit in the map corresponds to a cluster of sectors on the
disk. The number of sectors per cluster is sP~cified bv the
"DD.BTT·' variable in the identification sector, and is always an
integral power of two, i.e., I. 2. 4, 8, 16, etc. There are a
maximum of 4096 bits in the map, so media such as double-density
double-sided floppy disks and hard disks will use a cluster size
of two or more sectors. Each bit is cleared if the corresponding
cluster is available for allocation, or set if the sector is
already allocated, non-existant, or physically defective. The
bitmap is initially created by the "format" utility program.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-3

05-9 LEVEL ONE SYSTEM PROGRM1MER' S MANUAL
Random Block File Manager

6.1.2 File Descriptor Sectors

The tirst sector of every file is called a "file descriptor",
which contains the logical and physical description of the file.
The table below describes the contents of the descriptor.

name addr size description
--
FD.ATT $0
FO.OWN $1
FD.nAT $3
FD.LNK $8
FO.SIZ $9
FD.DCR $D
FO.SEG $10

1
2
5
1
4
3

240

File Attributes: 0 S PE PW PR E W R
OWner's User ID
Date Last Modified: Y M 0 H M
Link Count
File Size (number of bytes)
Date Created: Y M 0
Segment List: see below

The attribute byte contains the file permission bits. Bit 7 is
set to indicate a directory file, bit 6 indicates a "sharable"
file. bit 5 is public execute, bit 4 is public write, etc.

The segment list consists of up to 48 five-byte entries that
have the size and address of each block of storage that comprise
the file in logical order. Each entry has a three-byte logical
sector number of the block, and a two-byte block size (in
sectors). The entry following the last segment will be zero.

When a file is created, it initially has no data segments
allocated to it Write operations past the current end-of-file
(the first write is always past the end-of-file) cause additional
sectors to be allocated to the file. If the file has no segments,
it is given an initial segment having the number of sectors
specified bv the minimum allocation entry in the device
descriptor, or the number of sectors requested if greater than the
minimum. Subsequent expansions of the file are also generally made
in minimum allocation increments. An attempt is made to expand
the last segment wherever possible rather than adding a new
segment. When the file is closed, unused sectors in the last
segment are truncated.

A note about disk allocation: OS-9 attempts to minimize the
number of storage segments used in a file. In fact, many files
will only have one segment in which case no extra read operations
are needed to randomlvaccess any byte on the file. Files can
have multiple segments if the free space of the disk becomes very
fragmented, or if a file is repeatedly closed, then opened and
expanded at some later time. This can be avoided by writing a
byte at the highest address to be used on a file before writing
any other data.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-4

OS-9 LEVEL ONE SYSTEM PROGRAMMER I SMANUAL
Random Block File Manager

6.1.~ Directory Files

Disk directories are files that have the nOn attribute set.
Directory files contain an integral number of directory entires,
each of which can hold the name and LSN of a single regular or
directory file.

Each directory entry is 32 bytes long, consisting of 29 bytes
for the file name followed by a three byte logical sector number
of the file's descriptor sector. The file name is left-justified
in the field with the sign bit of the last character set Unused
entries have a zero byte in the first file name character
position.

Every mass-storage
the nroot directory".
directory is stored
described.

media must have a master directory called
The beginning logical sector number of this
in the identificat10n sector, as previously

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-5

05-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Random Block File Manager

6.2 RBFMANDefinitions of the Path Descriptor

The table below describes the usage of the file-manager­
reserved section of path descriptors used by RBFMAN.

Name Addr Size Description
--~--------~---------~~~----------~-------------------------~--Universal Section (same for all file managers)

PO.PO $00
PO.MOD $01
PO.CNT $02
PO.DEV $03
PO.CPR $05
PO.RGS $06
PO.BUF $08

1
1
1
2
1
2
2

Path number
Mode (read/write/update)
Number of open images
Address of device table entry
Current process ID
Address of callers register stack
Buffer address

RB~MAN Path Descriptor Definitions

PO.SMF $OA
PO.CP $OB
PO.SIZ $OF
PO.SBL $13
PO.SBP $16
PD.SSZ $19
PO.DSK $lB
PO.DTB $lD

1
4
4
3
3
2
2
2

State flags (see next page)
Current logical file position (byte addr)
File size
Segment beginning logical sector number
Segment beginning physical sector number
Segment size '
Disk ID (for internal use only)
Address of drive table

RBFMAN Option Section Definitions (Copied from dev. descriptor)

$20
PO.DRV $21
PO.~TP $22
PO.TYP $23
PO.DNS $24
PO.CYL $25
PD.SID $27
PO.VFY $28
PO.SCT $29
PO.TOS $2B
PO.ILV $2D
PO.SAS $2E

1
1
1
1
1
2
1
1
2
2
1
1

Device class 0= SCF l=RBF 2=PIPE 3=SBF
Drive number (O .• N)
Step rate
Device type
Density capability
Number of cylinders (tracks)
Number of sides (surfaces)
o = verify disk writes
Default number of sectors/track
Default number of sectors/track (track 0)
Sector intreleave factor
Segment allocation size

(the following values are NOT copied from the device descriptor)

PO~ATT $33
PO.FD $34
PO.DFD $37
PO.DCP $3A
PO.DVT $3E

1
3
3
4
2

File attributes (D S PE PW PR E W R)
File descriptor PSN (physical sector #)
Directory file descriptor PSN
File's directory entry pointer
Address of device table entry

(C) 1980,. 1981, 1982 Microware Systems Corporation
PAGE 6-6

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

State Flag (PD.SMF): the bits of this byte are defined as:

bit 0 = set if current buffer has been altered
bit 1 = set if current sector is in buffer
bit 2 = set if descriptor sector in buffer

The first section of the path descriptoris universal for all
file managers, the second and third sections are defined by RBFMAN
and RBFMAN-type device drivers. The option section of the path
descriptor contains many device operating parameters which may be
read and/or written by the OS9 I$GSTT and I$SSTT service requests.
This section is initialized by IOMAN which copies the
initialization table of the device descriptor into the option
section of the path descriptor when a path to a device is opened.
Any values not determined by this table will default to zero.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-7

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Random Block File Manager

6.3 RBF DEVICE DESCRIPTOR MODULES

This section describes the
initialization table contained
RBF-type devices.

definitions and use of the
in device descriptor modules for

MODULE
OFFSET

0-$11
$12 IT.DTP
$13 IT.DRV
$14 IT.STP
$lS IT.TYP
$16 IT.DNS
$17 IT.CYL
$19 IT.SID
$1A IT.VFY
$lB IT.SCT
$10 IT.TOS
$lF IT.ILV
$20 IT.SAS

RMB 1
RMB 1
RMB 1
RMB 1
RMBI
RMB 2
RMB 1
RMB 1
RMB 2
RMB 2
RMB 1
RMB 1

Standard Device Descriptor Module Header
DEVICE TYPE (O=SCF l=RBF 2=PIPE 3=SBF)
DRIVE NUMBER
STEP RATE
DEVICE TYPE (See RBFMAN path descriptor)
MEDIA DENSITY (0 = SINGLE, l=DOUBLE)
NUMBER OF CYLINDERS (TRACKS)
NUMBER OF SURFACES (~InES)
o = VERIFY DISK WRITES
Default Sectors/Track
Default Sectors/Track (Track 0)
SECTOR TNTERLEAVE FACTOR
SEGMENT ALLOCATION SIZE

IT.DRV - This location is used to associate a one byte integer
with each drive that a controller will handle. The drives for
each controller should be numbered 0 to n-l, where n is the max­
imum number of drives the controller can handle.

IT.STP - (Floppy disks) This location sets the head stepping rate,
that will be used with a drive. The step rate should be set to
the fastest value that the drive is capable of to reduce access
time. The actual values stored depended on the specific disk con­
troller and disk driver module used. Below are the values which
are used by the popular Western Digital floppy disk controller IC:

+=====================+========================+
! FD177l ! FD179X Family

STEP +=====================+========================+
CODE 5 11 8" 5" 8"

+----------+----------+-----------+------------+
o 4 Oms 20ms 3 Oms ISms

+----------+----------+-----------+------------+
1 2 Oms lOms ! 2 Oms 1 Oms

+----------+----------+-----------+------------+
2 l2ms 6ms l2ms 6ms

+----------+----------+-----------+------------+
3 l2ms .6ms 6ms 3ms

+----------+----------+-----------+------------+

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-8

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

IT.TYP - Device type (All types)

bit 0 -- 0 = 5" floppy disk
1 = 8" floppy disk

bit 6 -- 0 = Standard OS-9 format
1 = Non-standard format

bit 7 -- 0 = Floppy disk
1 = Hard disk

IT.DNS - Density capabilities (Floppy disk only)

bit 0 o = Single bit density (FM)
1 = Double bit density (MFM)

bit 1 -- 0 = Single track density (5",.48 TPI)
1 = Double track density (5". 96 TPI)

IT.~AS - This value specifies the minimum number of sectors to be:
allocated at anyone time.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-9

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.4 RBF-TYPE DEVICE DRIVERS

An RBF type device driver module contains a package of
subroutines that perform sector oriented I/O to or from a specific
hardware controller. These modules are usually reentrant so that
one copy of the module can simultaneously run several different
devices that use identical I/O controllers. lOMAN will allocate a
static storage area for each device (which may control several
drives). The size of the storage area is given in the device
driver module header. Some of this storage area will be used by
lOMAN and RBFMAN, the device driver is free to use the remainder
in any manner. This static storage is used as follows:

Static Storage Definitions

OFFSET

o
I
3
4
5

6

7

V.PAGE
V.PORT
V.LPRC
v BUSY
V.WAKE
V.USER

V.NDRV
DRVBEG
TABLES
FREE

ORG 0

RMB 1
RMB 2
RMB 1
RMB 1
RMB 1
EQU.

PORT EXTENDED ADDRESS (A20 - A16)
DEVlr.E BASE ADDRESS
LAST ACTIVE PROCESS 10
ACTIVE PROCESS ID (0 = NOT BUSY)
PROCESS ID TO REAWAKEN
END OF OS9 DEFTNITIONS

RMB 1 NUMBER OF DRIVES
EQU. BEGTNNING OF DRIVE TABLES
RMB DRVMEM*N RESERVE N DRIVE TABLES
EQU. FREE FOR DRIVER TO USE

NOTE: V.PAGE through V.USER are predefined in the OS9DEFS file.
V.NDRV, DRVBEG, DRVMEM are predefined in the RBFDEFS file.

V.PAGE. V.PORT These three bytes are defined by lOMAN as the 24-
bit device address.

V.LPRC This locat~on contains the process ID of the last process
to use the device. Not used by RBF-type device drivers.

V.BUSY This location contains the process ID of the process
currently using the device. Defined by RBFMAN.

V.WAKE This locat~on contains the process-ID of any process that
is waiting for .the device to complete I/O (0 = NO PROCESS
WAITING). Defined by device driver.

V.NDRV This location contains the number of drives that the
controller can use. Defined by the device driver as the maximum
number of drives that the controller can work with. RBFMAN will

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-10

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

assume that there is a drive table for each drive4 Also see the
driver INIT routine in this section.

TABLES This are.a contains one table for each drive that the
controller will handle (RBFMAN will assume that there are as many
tables ~s indicated by V.NDRV). Some time after the driver INIT
routine has been called, RBFMAN will issue a request for the
driver to read the identification sector (logical sector zero)
from a drive. At this time, the driver will initialize the
corresponding drive table by copying the first part of the
identification sector (up to DD.SIZ) into it. Also see the
"Identificat~on Sector" section of this manual. The format of
each drive table is as given below:

OFFSET

$00 DD.TOT
$03 DD.TKS
$04 DD.MAP
$06 DD.BIT
$08 DD.DIR
SOB DD.C"lWN
SOD DD.ATT
$OE DD.DSV
$10 DD.FMT
$11 DD.SPT
$15 DD.RES

DD.SIZ

$15 V.TRAK
$17 V.BMB
$18 DRVMEM

ORG 0

RMB 3
RMB 1
RMB 2
RMB 2
RMB 3
RMB 2
RMB 1
RMB 2
RMB 1
RMB2
RMB 2
EQU •

RMB 2
RMBI
EQO •

TOTAL NUMBER OF.SECTORS
TRACK SIZE (TN SECTORS)
#: BYTES IN ALLOCATION BIT MAP
NUMBER OF SECTORS PER BIT (CLUSTER SIZE)
ADDRESS OF ROOT DIRECTORY
C"lWNER'S USER NUMBER
DISK ATTRIBUTES
DISK ID"
MEDIA FORMAT
SECTORS/TRACK
RESERVED FOR FUTURE USE

CURRENT TRACK NUMBER
BIT-MAP USE FLAG
SI7.E OF EACH DRIVE TABLE

DD.TOT This location contains the total number of sectors
contained on the disk.

DD.TKS This locat~on contains the track size (in sectors).

DD.MAP This location contains the number of bytes in the disk
allocat~on bit map.

DD.BIT This locat~on contains the number of sectors that each bit
represents in the disk allocation bit map.

DD.DIR This locat~on contains the logical sector number of the
disk root directory.

DD.OWN This locat~on contains the disk owner's user number.

DD.ATT This location contains the disk access permission

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-11

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

attributes as defined below:

BIT 7 = D
BIT 6 = S

. BIT 5 = PX
BIT 4 = PW
BIT 3 = PR
BIT 2 = X
BIT 1 = W
BIT a =R

(DIRECTORY IF SET)
(SHARABLE IF SET)
(PUBLIC EXECUTE IF SET)
(PUBLIC WRITE IF SET)
(PUBLIC READ IF SET)
(EXECUTE IF SET)
(WRITE IF SET)
(READ IF SET)

DD.DSK This location contains a pseudo random number whicb is
used to identifv a disk so that OS-9 may detect when a disk is
removed from the drive and another inserted in its place.

DD.~MT DISK FORMAT:

.BIT BO - SIDE
a = SINGLE SIDED
1 = DOUBLE SIDED

BIT Bl - DEN~ITY
a = SINGLE DENSITY
1 = DOUBLE DENSITY

BIT B2 - TRACK DENSITY
a = SINGLE (48 TPI)
1 = DOUBLE (96 TPI)

DD.SPT Number of sectors per track (track zero may use
a different value- specified by IT.TOS in the device descriptor).

DD.RES RESERVRD FOR FUTURE USE

V.TRAK This locatl.on contains.the current track which the head is
on and is updated by the driver.

V.SMB This location is used by RBFMAN to indicate whether or not
the disk allocation bit map is currently in use (0 = not in use).
The disk driver routines must not alter this location.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-12

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.5 RBFW-N DEVICE DRIVERS

As with all device drivers. RBFMAN-type device drivers use a
standard executable memory module format with a module type of
"device driver" (CODE $E). The execution offset address in the
module header points to a branch table that has six three byte
entries. Each entry is typically a LBRA to the corresponding
subroutine. The branch table is defined as follows:

ENTRY LBRA
LBRA
LBRA
LBRA
LBRA
LBRA

INIT
REAn
WRITE
GETSTA
SETSTA
TERM

INITIALIZE DRIVE
READ SECTOR
WRITE SECTOR
GET STATUS
SET STATUS
TERMTNATE DEVICE

Each subroutine should exit with the condition code register C bit
cleared if no error occured. Otherwise the C bit should be set
and an appropriate error code returned in the B register. Below
is a description of each subroutine, its input parameters, and its
output parameters.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-13

OS-9 LEVEL ONE SYSTEM PROGRAMMER f S MANUAL
Random Block File Manager

MAME: INIT

INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE
(Y) = ADDRESS OF THE DEVICE DESCRIPTOR MODULE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FUNCTION: INITIALIZE DEVICE AND ITS STATIC STORAGE AREA

1. If disk writes are verified, use the F$SRQM service request to
allocate a 256 byte buffer area where a sector may be read back
and verified after a write.

2. Initialize the device permanent storage. For floppy disk
controller typically this,consists of initializing V.NDRV to the
number of drives that the controller will work with. initializing
DD.TOT in the drive table to a non-zero value so that sector zero
may be read or written to, and initializing V.TRAK to $FF so that
the first seek will find track zero.

3. Place the IRQ service routine on the IRQ polling list by using
the OS9 F$IRQ service request.

4. Initialize the device control registers (enable interrupts if
necessary).

NOTE: Prior to being called, the device permanent storage will be
cleared (set to zero) except for V.PAGE and V.PORT which will
contain the 24 bit device address. The driver should initialize
each drive table appropriately for the type of disk the driver
expects to be used on the corresponding drive a

(C) 1980, 1981, 1982 Microware systems Corporation
PAGE 6-14

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

NAME: READ

INPUT: (U) = ADDRESS OF THE DEVICE STATIC STORAGE
(Y) = ADDRESS OF ~HE PATH DESCRIPTOR
(B) = MSB OF DISK LOGICAL SECTOR NUMBER
(X) = LSB's OF DISK LOGICAL SF.CTOR NUMBER

OUTPUT: SECTOR IS RETURNED IN THE SECTOR BUFFER

ERROR OUTPUT: (CC) = C BIT SET
(B) = APPROPRIATE ERROR CODE

FUNCTION: READ A 256 BYTE SECTOR

Read a sector from the disk and place it in the sector buffer (256
byte). Below are the thinqs that the disk driver must do:

1. Get the sector buffer address from PO.BUF in the path
descriptor.

2. Get the drive number from PO.DRV in the path descriptor.

3. Compute the phYSical disk address from the logical sector
number.

4. Initiate the read operation.

5. Copy V.BUSY to V.WAKE- then go to sleep and wait for the I/O
to complete (the IRQ service routine is responsible for send ina a
wake up siqnal). After awakening, test V.WAKE to see if it is
clear, if not, go back to sleep.

If the disk controller can not be interrupt driven it will be
necessary to perform programmed I/O.

NOTE 1: Whenever logical sector zero is read, the first part of
this sector must be copied into the proper drive table (get the
drive number from PO.DRV in the path descriptor). The number of
bytes to copy is DD.SIZ.

NOTE 2: The drive number (PO.DRV) should be used to compute the
offset to the corresPonding drive table as follows:

LDA PD.DRV, Y
LDB #DRVMEM
MUL

Get drive number
Get size of a drive table

LEAX DRVBEG,U Get address of first table
LEAX D,X Compute address of table N

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-15

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

NAME: WRITE
I

INPUT: (U) = ADDRESS OF '!'HE DEVICE STATIC STORAGE AREA
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(B) = MSB OF '!'HE DISK LOGICAL SECTOR NUMBER
(X) = LSB's OF THE DISK LOGICAL SECTOR NUMBER

OUTPUT: THE SECTOR BUFFER IS WRITTEN OUT TO DISK

ERROR OUTPUT: (CC) = C- BIT SET
(B) = APPROPRIATE ERROR CODE

FUNCTION: WRITE A SECTOR

Write the sector buffer (256 bytes) to the disk. Below are the
thinqs that a disk driver must do:

1. Get the sector buffer address from PO.BUF in the path des­
criptor.

2. Get the. drive number from PO.DRV in the path descriptor.

3.. Compute the' physical disk address from the logical sector
number.

4. Initiate the write operation.

5. Copy V.BUSY to V.WAKE. then go to sleep and wait for the I/O
to complete (the IRQ service routine is responsible for sending
the wakeup siqnal). After awakening, test V.WAKE to see if it is
clear, if it is not, then go back to sleep. If the disk controller
can not be interrupt-driven. it will be necessary to perform a
programmed I/O transfer.

6. If PO.VFY in the path descriptor is equal to zero, read the
sector back in and verify that it was written correctly. This
usually does not involve a compare of the data.

NOTE 1: If disk writes are to be verified, the INIT routine must
request the buffer where the sector may be placed when it is read
back in. Do not copy sector zero into the drive table when it is
read back to be verified.

NOTE 2: Use the drive number (PO.DRV) to compute the offset to
the corresponding drive table as shown for the READ routine.

-(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-16

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

NAME: GETSTA
PUTSTA

INPUT: (U) = ADDRESS OF TEE DEVICE STATIC STORAGE AREA
(Y) = ADDRESS OF TEE PATE DESCRIPTOR
(A) = STATUS CODE

nUTPUT: (DF-PENDS UPON ~E FUNCTION CODE)

ERROR OUTPUT: (CC) = C BIT SET
(B) = APPROPRIATE ERROR CODE

FUNCTION: GET/SET DEVICE STATUS

These routines are wild card calls used to get (set) the device's
operating parameters as specified for the OS9 I$GSTT and I$SSTT
service requests.

It may be necessary to examine or change the register stack which
contains the values of MPU registers at the time of the I$GSTT or
I$SSTT service request. The address of the register stack may be
found in PD.RGS, which is located in the path descriptor. The
following offsets may be used to access any particular value in
the register stack:

OFFSET

$0
$1
$1
$2
$3
$4
$6
$8
$A

NMEMONIC MPU REGISTER

R$CC RMB 1 CONDITION conE REGISTER
R$D EQU. D REGISTER
R$A RMB 1 A REGISTER
R$B RMB 1 B REGISTER
R$DP RMB 1 DP REGISTER
R$X RMB 2 X REGISTER
R$V RMB 2 Y REGISTER
R$U RMB 2 U REGISTER
R$PC RMB 2 PROGRAM C.OUNTER

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-17

NAME: . TERM

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Random Block File Manager

INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE AREA

OUTPUT: NONE

ERROR OUTPUT: (CC) = C BIT SET
(B) = APPRnPRIATE ERROR CODE

FUNCTION: TERMINATE DEVICE

This routine is called when a device is no longer in use in the
system, which is defined to be when the link count of its device
descriptor module becomes zero). The TERM routine must:

1 Wait until any pending I/O has completed.

2. Disable the device interrupts.

3. Remove the device from the IRQ polling'list.

4. If the INIT routine reserved a 256 byte buffer for verifying
disk writes, return the memory with the F$MEM service request.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-18

NAME:

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

IRQ SERVICE ROUTINE

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device driver module
branch table and is not called directly by RBFMAN, it is an key
routine in interrupt-driven device drivers. Its function is to:

1. Service device interrupts.

2. When the I/O is complete, the IRQ service routine should send
a wake up Signal to the process whose process ID is in V.WAKE

Also clear V.WAKE as a flag to the mainline program that the IRQ
has indeed occurred.

NOTE: When the IRQ service routine finishes servlclng an
interrupt it must clear the carrv and exit with an RTS
instruction.

ec) 1980, 1981, 1982 Microware Sys~ems Corporation
PAGE 6-19

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

NAME: BOOT (Bootstrap Module)

INPUT: None.

OUTPUT: (D) = SIZE OF THE BOOT FILE (in bytes)
(X) = ADDRESS OF WHERE THE BOOT FILE WAS r.OADF.D IN MEMORY

ERROR OUTPUT: (ee) = e BIT SET
(B) = APPRnPRIATE ERROR CODE

FUNCTION: LOAD THE BOOT FILE INTO MEMORY FROM MASS-STORAGE

NOTE: The BOOT module is nQt part of the disk driver. It is a
separate module which is normally co-resident with the "0S9P2 11

module in the system firmware.

The bootstrap module contains one subroutine that loads the
bootstrap file and some related information into memory. It uses
the standard executable module format with a module type of
"system" (code $C). The execution offset in the module header
contains the offset to the entry point of this subroutine.

It obtains the starting sector number and size of the "OS9Boot"
file from the identificat~on sector (LSN 0). OS-9 is called to
allocate a memory area large enough for the boot file, and then it
loads the boot file into this memory area.

1. Read the identification sector (sector zero) from the disk.
BOOT must pick its own buffer area. The identification sector
contains the values for DD.BT (the 24 bit logical sector number of
the bootstrap file), and DD.BSZ (the size of the bootstrap file in
bytes). For a full description of the identification sector, see
6.1.1.

2. After reading the identificat~on sector into the buffer, get
the 24 bit logical sector number of the bootstrap file from DD.BT.

3. Get the size (in bytes) of the bootstrap file from DD.BSZ. The
boot is contained in one logically contiguous block beginninq at
the logical sector specified in DD.BT and extending for
(DD.BSZ/256+1) sectors.

4. Use the OS9 F$SRQM service request to request the memory area
where the boot file will be loaded into.

5. Read the boot file into this memory area.

6. Return the size of the boot file and its location.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-20

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.0 SEQUENTIAL CHARACTER FILE MANAGER

The Sequential Character File Manager (SCFMAN) is the OS-9 file
manager module that supports devices that operate on a character­
by-character basis, such as terminals, printers, modems, etc.
SCFMAN can handle any number or type of such devices. It is a
reentrant subroutine package called by lOMAN for I/O service
requests to sequential character oriented devices. It includes the
extensive input and output editing functions typical of line­
oriented operation such as: backspace, line delete, repeat line,
auto line feed, screen pause, return delay padding, etc.

Standard OS-9 systems are supplied with SCFMAN and two SCF-type
device driver modules: ACIA, which run 6850 serial interfaces, and
PIA, which drives a 6821-type parallel interface for printers.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-1

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.1 SCFMAN LINE EDITING FUNCTIONS

I$READ and I $WRITE service requests (which correspond to
Basic09 GET and PUT statements) to SCFMAN-type devices pass data
to/from the device without any modification, except that keyboard
interrupt, keyboard abort, and pause character are filtered out of
the input (editing is disabled if the corresponding character in
the path descriptor contains a zero). In particular, carriage
returns are not automatically followed by line feeds or nulls, and
the high order bits ar·e passed as sent(received.

I$RDLN and I$WRLN service requests (which correspond to Basic09
INPUT, PRINT, READ and WRITE statements) to SCFMAN-type devices
pertorm full line editing of all functions enabled for the
particular device. These functions are initialized when the
device is first used by copying the option table from the device
descriptor table associated with the specific device. They may be
altered anytime afterwards from assembly language programs using
the I$SSTT and I$GSST service requests, or from the keyboard using
the TMODE command. Also, all bytes transfered in this mode will
have the high order bit cleared.

The following path descriptor values control the line editing
functions:

If PD.UPC <> a bytes input or output in the range "a •• z" are made
"A •• Z"

If PD.EKO <> 0, input bytes are echoed, except that undefined
control characters in the range $O •• $lF print as "."

If PD.ALF <> 0, carriage returns are automatically followed by
line feeds.

If PD.NUL <> 0, After each CR/LF a PD.NUL "nulls" (always $00) are
sent.

If PD.PAU <> 0, Auto page pause' will occur after every PD.PAU
lines since the last input-

If PD.BSP <> 0, SCF will recognize PD.BSP as the "input" backspace
character, and will echo PD.BSE (the backspace echo character) if
PD.BSO = 0, or PD.BSE, space. PD.BSE if PD.BSO <> O.

If PD.DEL <> O. SCF will recognize PD.DEL the delete line
character (on input), and echo the backspace sequence over the
entire line if PD.DLO = 0, or echo CR/LF if PD.DLO <> 0

PD.EOR defines the end of record character. This is the last
character on each line entered (I$RDLN), and terminates the output

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MA}WAL
Sequential Character File Manager

(I$WRLN) when this character is sent. Normally PO.EOR will be set
to $OD. If it is set to zero, SCF's READLN will NEVER terminate,
unless an EOF occurs.

If PO.EOF <> 0, it defines the end of file character. SCFMAN will
return an end-of-file error on I$READ or I$RDLN if this is the
first (and only) character input. It can be disabled by setting
its value to zero.

If PO.RPR <> 0, SCF (I$RDLN) will, upon receipt of this character,
echo a carriage return [optional line feed], and then reprint the
current line.

If PO.DUP <> 0, SCF (I$RDLN) will duplicate whatever is in the
input buffer through the first "PO.EORn character.

If PD.PSC <> 0, output is suspended before the next "PD.EOR"
character when this. character is input. This will also delete any
"type ahead" input for I$RDLN.

If PD.INT <> 0, and is received on input, a keyboard interrupt
signal is sent to the last user of this path. Also it wil~
terminate th~ current I/O request (if any) with an error identical
to the keyboard interrupt signal code. This location normally is
set to a control-C character.

If PD.QUT <> 0, and is received on input, a keyboard abort signal
is sent to the last user of this path. Also it will terminate the
current I/O request (if any) with an error code identical to the
keyboard interrrupt signal code. This location is normally set to
a control-Q character.

If PO.OVF <> 0, It is echoed when I$RDLN has satisfied its input
byte count without finding a "PO.EORn character.

NOTE: It is possible to disable most of these special editing
functions by setting the corresponding control character in the
path descriptor to zero by using the I$SSTT service request, or by
running the TMODE utility. A more permanent solution may be had
by setting the corresponding control character value in the device
descriptor module to zero.

Device descriptors may be inspected to determine the default
settings for these values for specific devices.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-3

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.2 SCFMAN Definitions of The Path Descriptor

The table below describes the path descriptors used by SCFMAN
and SCFMAN-type device drivers.

Name Offset Size Description

Universal Section (Same for all file managers)

PO.PD $0.0.
PO.MOD $0.1
PO.eNT $0.2
PO.DEV. $0.3
PO.CPR $0.5
PO.RGS $0.6
PO.BUF $08

1
1
1
2
1
2
2

Path number
Mode (read/write/update)
Number of open images
Address of device table entry
Current process ID
Address of callers MPU register stack
Buffer address

SCFMAN Path Descriptor Definitions

PO.DV2 $aA
PO.RAW SOC
PO.MAX $aD
PO.MIN $aF
PD.STS $10.
PO.STM $12

2
1
2
1
2
2

Device table addr of 2nd (echo) device
Edit flag: a=raw mode, l=edit mode
Readline maximum character count
Devices are "mine" if cleared
Status routine module address
Reserved for status routine

SCFMAN Option Section Definition

$20 1
PO.UPe $21 1
PD.BSO $22 1
PO.DLO $23 1
PO.EKO $24 1
PO.ALF $25 1
PO.NUL $26 1
PO.PAU $27 1
PO.PAG $28 1
PO.BSP $29 1
PO.DEL $2A 1
PO.EOR $2B 1
PO.EOF $2C 1
PD.RPR $2D 1
PO.DUP $2E 1
PO.PSC $2F 1
PO.INT $30. 1
PD.QUT $31 1
PO.BSE $32 1
PD.OVF $33 1
(Continued on next page)

Device class a=SCF l=RBF 2=PIPE 3=SBF
Case (a=BOTH, l=UPPER ONLY)
Backsp (a=BSE, l=BSE SP BSE)
Delete Co. = BSE over line, l=CR LF)
Echo (a=no echo)
Auto LF (a=no auto LF)
End of line null count
Pause (0.= no end of page pause)
Lines per page
Backspace character
Delete line character
End of record character (read only)
End of file character (read only)
Reprint line character
Duplicate last line character
Pause character
Keyboard interrupt character (CTL C)
Keyboard abort character (CTL Q)
Backspace echo character (BSE)
Line overflow character (bell)

ec) 1980., 1981, 1982 Microware Systems Corporation
PAGE 7-4

PD.PAR $34
PD.BAU $35
PD.D2P $36
PD.STN $38
PD.ERR $3A

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

1
1
2
2
1

Device initialization value (parity)
software settable baud rate
Offset to 2nd device name string
Offset of status routine name
Most recent I/O error status

The first section is universal for all file managers, the second
and third section are specific for SCFMAN and SCFMAN-type device
drivers. The option section of the path descriptor contains many
device operating parameters which may be read or written by the
059 I$GSTT or I$5STT service requests. IOMAN initializes this
section when a path is opened to a device by copying the
corresponding device descriptor initialization table. Any values
not determined by this table will default to zero.

Special editing functions may be disabled by setting the
corresponding control character value to zero.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-5

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.3 SCF DEVICE DESCRIPTOR MODULES

Device descriptor modules for SCF-type devices contain the
device address and an initialization table which defines inital
values for the I/O editing features, as listed below.

MODULE
OFFSET

$12
$13
$14
$15
$16
$17
$18
$19
$lA
$lB
$lC
$10
$1E
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$28
$2A
$2C

NOTES:

TABLE
IT.DVC
IT.UPe
IT.BSC
IT.DLO
IT.EKO
IT.ALF
IT. NUL
IT.PAU
IT.PAG
IT.BSP
IT.DEL
IT.EOR
IT.EOF
IT.RPR
IT.DUP
IT.PSC
IT.INT
IT.QUT
IT.BSE
IT.OVF
IT. PAR
IT.BAU
IT.D2P
IT.STN
IT. ERR

ORG $12

£OU •
RMB 1
RMB 1
RMB1
RMB 1
RMB1
RMB 1
RMB1
RMB 1
RMB1
RMB 1
RMB 1
RMB 1
RMB1
RMB 1
RMB 1
RMB 1
RMB1
RMB 1
RMB1
RMB 1
RMB1
RMB 1
RMB2
RMB 2
RMBl

BEGINING OF OPTION TABLE
DEVICE CLASS (O=SCF l=RBF 2=PIPE 3=SBF)
CASE (O=BOTH, l=UPPER ONLY)
BACK SPACE (O=BSE, l=BSE,SP,BSE)
DELETE (O=BSE OVER LINE, l=CR)
ECHO (O=NO ECHO)
AUTO LINE FEED (0= NO AUTO LF)
END OF LINE NOLL COUNT
PAUSE (0= NO END OF PAGE PAUSE)
LINES PER PAGE .
BACKSPACE CHARACTER
DELETE LINE CHARACTER
END OF RECORD CHARACTER
END OF FILE CHARACTER
REPRINT LINE CHARACTER
DUP LAST LINE CHARACTER
PAUSE CHARACTER
INTERRUPr CHARACTER
QUIT CHARACTER
BACKSPACE ECBO CHARACTER
LINE OVERFLOW CHARACTER (BELL)
INITIALIZATION VALUE (PARITY)
BAUD RATE
ATTACHED DEVICE NAME STING OFFSET
OFFSET TO STATUS ROUTINE
INITIAL ERROR STATUS

SCF editing functions will be nturned offn if the corresponding
special character is a zero. For example, if IT.EOF was a zero,
there would be no end of file character.

IT.PAR is typically used to intitialize the device's control
register when a path is opened to it.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-6

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.4 SCF DEVICE DRIVER STORAGE DEFINITIONS

An SCFMAN-type device driver module contains a package of
subroutines that perform raw I/O tran$fers to or from a specific
hardware controller. These modules are usually reentrant so that
one copy of the module can simultaneously run several different
devices that use identical I/O controllers. For each
"incarnation" of the driver, lOMAN will allocate a static storage
area for that device. The size of the storage area is given in
the device driver module header. Some of this storage area will
be used by lOMAN and SCFMAN, the device driver is free to use the
remainder in any way (typically as variables and buffers). This
static storage is defined as:

OFFSET ORG 0

$0 V.PAGE RMB 1 PORT EXTENDED ADDRESS
$1 V.PORT RMB 2 DEVICE BASE ADDRESS
$3 V.LPRC RMB 1 LAST ACTIVE PROCESS ID
$4 V.BUSY RMB 1 ACTIVE PROCESS ID (0 = NOT BUSY)
$5 V.WAKE RMB 1 PROCESS ID TO REAWAKEN

V.USER EQU • END OF OS9 DEFINITIONS

$6 V.TYPE RMB 1 DEVICE TYPE OR PARITY
$7 V.LINE RMBl LINES LEFT TILL END OF PAGE
$8 V.PAUS RMBl PAUSE REQUEST (0 = NO PAUSE)
$9 V.DEV2 RMB2 ATTACHED DEVICE STATIC STORAGE
$B V.INTR RMB 1 INTERRUPT CHARACTER
$C V.QUIT RMBl QUIT CHARACTER
$D V.PCBR RMB 1 PAUSE CHARACTER
$E V.ERR RMBl ERROR ACCUMULATOR
$F V.SCF EQU • END OF SCFMAN DEFINITIONS

FREE EQU • FREE FOR DEVICE DRIVER TO USE

V.PAGE, V.PORT These three bytes are defined by lOMAN to be the
24 bit device address.

V.LPRC This location contains the process-ID of the last process
to use the device. The IRQ service routine is responsible for
sending this process the proper signal in case a "QUIT" character
or an "INTERRUPT" character is recieved. Defined by SCFMAN.

V.BUSY This location contains the process ID of the process
currently using the device (zero if it is not being used). This is
used by SCFMAN to prevent more.than one process from using the
device at the same moment. Defined by SCFMAN.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-7

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

V.WAKE This location contains the process ID of any process that
is waiting for the device to complete I/O (or zero if there is
none waiting). The interrupt service routine should check this
location to see if a process is waiting and if so, send it a wake
up signal. Defined by the device driver.

V.TYPE This location contains any special characteristics of a
device. It is typically used as a value to initialize the device
control register, for parity etc. It is defined by SCFMAN which
copies its value from PO.PAR in the path descriptor.

V.LINE This location contains the number of lines left till end
of page. Paging is handled by SCFMAN and not by the device
driver.

V.PAUS This location is a flag used by SCFMAN to indicate that a
pause character has been recieved. Setting its value to anything
other than zero will cause SCFMAN to stop transmitting characters
at the end of the next line. Device driver input routines must
set V.PAUS in the ECHO device's static storage area. SCFMAN will
check this value in the ECHO device's static storage when output
is sent.

V.OEV2 This locat~on contains the address of the ECHO (attached)
device's static storage area. Typicallv the device and the
attached device are one and the same. However they may be
different as in the case of a keyboard and a memory mapped video
display. Defined by SCFMAN.

V.INTR Keyboard interrupt character. It is defined by SCFMAN,
which copies its value from PO.INT in the path descriptor.

V.QUIT Keyboard abort character. It is defined by SCFMAN which
copies its value from PO.QUT in the path descriptor.

V.PCHR Pause character. It is defined by SCFMAN which copies its
value from PO.PSC in the path descriptor.

V.ERR This location is used to accumulate I/O errors. Typically
it is used by the IRQ service routine to record errors so that
they may be reported later when SCFMAN calls one of the device
driver routines.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-8

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.5 SCFMAN DEVICE DRIVER SUBROUTINES

As with all device drivers. SCFMAN device drivers use a
standard executable memory module format with a module type of
"device driver" (CODE $E). The execution offset address in the
module header points to a branch table that has six three byte
entries. Each entry is typically a LBRA to the corresponding
subroutine. The branch table is as follows:

ENTRY LaRA INIT
LBRA READ
LBRA WRITE
LBRA GETSTA
LaRA SETSTA
LaRA TERM

INITIALIZE DEVICE
READ CHARACTER
WRITE CHARACTER
GET DEVICE STATUS
SET DEVICE STATUS
TERMINATE DEVICE

Each subroutine should exit with the condition code register C bit
cleared if no error occured. Otherwise the C bit should be set
and an appropriate error code returned in the B register. Below
is a description of each subroutine, its input parameters and its
output parameters.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-9

NAME: INIT

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE
(Y) = ADDRESS OF DEVICE DESCRIPTOR MODULE

OUTPUT: NONE

ERROR OUTPUT:

FUNCTION:

(CC) = C BIT SET
(B) = ERROR CODE

INITIALIZE DEVICE AND ITS STATIC STORAGE

1. Initialize the device static storage.

2. Place the IRQ service routine on the IRQ polling list by using
the OS9 F$IRQ service request.

3. Initialize the device control regist;ers (enable interrupts if
necessary) •

NOTE: Prior to being called, the device static storage will be
cleared (set to zero) except for V.PAGE and V.PORT which will
contain the 24 bit device address. There is no need to initialize
the portion of static storage used by lOMAN and SCFMAN.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-10

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: READ!

INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE
(Y) = ADDRESS OF PATH DESCRIPTOR

OUTPUT: (A) = CHARACTER READ

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FUNCTION: GET NEXT CHARACTER

This routine should get the next character from the input buffer.
If there is no data ready, this routine should copy its process ID
from V.BUSY into V.WAKE and then use the F$SLEP service request to
put itself to sleep.

Later when data is recieved, the IRQ service routine will leave
the data in a buffer, then check V.WAKE to see if any process is
waiting for the device to complete I/O. If so, the IRQ service
routine should send a wakeup signal to it.

NOTE: Data buffers are NOT automatically allocated. If any are
used, they should be defined.in the device's static storage area.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-11

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: WRITE

INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(A) = CHAR TO WRITE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FUNCTION: OUTPUT A CHARACTER

This routine places a data byte into an output buffer and enables
the device output interrupts. If the data buffer is already
full, this rout;ine should copy its process ID from V.BUSY into
V.WAKE and then put itself to sleep.

Later when the IRQ service routine transmits a character and makes
room for more data in the buffer, it will check V.WAKE to see if
there is a process waiting for the device to complete I/O. If
there is, it will send a wake up Signal to that process.

Note: This routine must ensure that the, IRQ service routine will
start up when data is placed into the buffer. After an interrupt
is generated the IRQ service routine will continue to transmit
data until the data buffer is empty, and then it will disable the
device's "ready to transmit" interrupts.

Note: Data buffers are NOT automatically allocated. If any are
used, they should be defined in the device's static storage.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-12

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: GETSTA
SETSTA

INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE
(Y) = ADDRESS OF PATH DESCRIPTOR
(A) = STATUS CODE

OUTPUT: DF-PENDS UPON FUNCTION CODE

FUNCTION: GET/SET DEVICE STATUS

This routine is a wild card callused to get (set) the device
parameters specified in the I$GSTT and I$SSTT service requests.
Currently all of the function codes defined by Microware for SCF­
tyPe devices are handled by lOMAN or SCFMAN. Any codes not
defined by Microware will be passed to the device driver.

It may be necessary to examine or change the register packet which
contains the values of the 6809 registers at the time the OS9
service request was issued. The address of the register packet
may be found in PD.RGS, which is located in the path descriptor.
The following offsets may be used to access any particular value
in the register packet:

OFFSET NMEMONIC MPU REGISTER

$0 R$CC RMB 1 CONDITIONS CODE REGISTER
$1 R$D EQU • o REGISTER
$1 R$A RMB 1 A REGISTER
$2 R$B RMB 1 B REGISTER
$3 R$DP RMB 1 DP REGISTER
$4 R$X RMB 2 X REGISTER
$6 R$Y RMB 2 Y REGISTER
$8 R$U RMB 2 U REGISTER
$A R$PC RMB 2 PROGRAM COUNTER

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-13

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: TERM

INPUT: (U) = PTR TO DEVICE STATIC STORAGE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set
(B) = Appropriate error code

FUNCTION: TERMINATE DEVICE

This routine is called when a device is no longer in use, defined
as when its device descriptor module's link count becomes zero).
It must perform the following:

1. Wait until the output buffer has been emptied (by the IRQ
service routine).

2. Disable device interrupts.

3. Remove device from the IRQ polling list.

NOTE: Static storage used by device drivers is never returned to
the free memory pool. Therefore, it is desirable to NEVER
terminate any device that might be used again. Modules contained
in the BOOT file will NEVER be terminated.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 7-14

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Sequential Character File Manager

NAME: IRQ SERVICE ROUTINE

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device drivers branch
table and not called directly from SCFMAN, it is an important
routine in device drivers. The main things that it does are:

1. Service the device interrupts (recieve data from device or send
data to it). This routine should put its data into and get its
data from buffers which are defined in the'device static storage.

2. Wake up any process waiting for I/O to complete by checking to
see if there is a process ID in V.WAKE (non-zero) and if so send
a wakeup signal to that process.

3. If the device is ready to send more data and the output buffer
is empty, disable the device's "ready to transmit" interrupts.

4. If a pause character is recieved, set V.PAUS in the attached
device static storage to a non-zero value. The address of the
attached device static storage is in V.DEV2.

When the IRQ service routine finishes servlclng an interrupt, it
must clear the carry and exit with an RTS instruction.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-15

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-16

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Techniques

8.0 ASSEMBLY LANGUAGE PROGRAMMING TECHNIQUES

There are four key rules for programmers writing OS-9 assembly
language programs:

1. All programs MUST use position-independent-code (PIC). OS-9
selects load addresses based on available memory at run-time.
There is no way to force a program to be loaded at a specific
address.

2. All programs must use the standard OS-9 memory module
format, or they cannot be loaded and run. Programs must not use
self-modifying code. Programs must not change anything in a
memory module or use any part of it for variables.

3. Storage for all variables and data structures must be within
a data area which is assigned by OS-9 at run-time, and is
separate from the program memory module.

4. All input and output operations should be made using OS...,91

service request calls.

Fortunately, the 6809's versatile addressing modes make the
rules above easy to follow. The OS-9 Assembler also helps because
it has special capabilities to assist the programmer in creating
programs and memory modules for the OS-9 execution environment.

8.1 HOW TO WRITE POSITION-INDEPENDENT CODE

The 6809 instruction set was optimized to allow efficient use
of Position Independent Code (PIC). The basic technique is to
always use PC-relative addressing: for example BRA, LBRA, BSR and
LBSR. Get addresses of constants and tables using LEA
instructions instead of load immediate instructions. If you use
dispatch tables, use tables of RELATIVE, not absolute, addresses.

INCORRECT

LOX iCONSTANT

JSR SOaR

JMP LABEL

CORRECT

LEAX CONSTANT,PCR

BSR SOBR or LBSR SOBR

BRA LABEL or LBRA LABEL

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-1

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language programming Techniques

8.2 ADDRESSING v.ARIABLES AND DATA STRUCTURES

Programs executed as processes (by FORK and CHAIN system calls
or by the Shell) are assigned a RAM memory area for variables,
stacks, and data structures at execution-time. The addresses
cannot be determined or specified ahead of time. However, a
minimum size for this area is specified in the program's module
header. Again, thanks to the 6809's full compliment of addressing
modes this presents no problem to the OS-9 programmer. .

When the program is first entered, the Y register will have the
address of the top of the process' data memory area. If the
creating process passed a parameter area, it will be located from
the value of the SP to the top of memory (Y), and the.D register
will contain the parameter area size in bytes. If the new process
was called by the shell, the parameter area will contain the part
of the shell command line that includes the argument (parameter)
text. The U register will have the lower bound of the da,ta memory
area, and the DP register will contain its page number.

The most important rule is to NOT USE EXTENDED ADDRESSINGl
Indexed and direct page addressing should be used exclusively to
access data area values and structures. Do not use program-counter
relative addressing to find addresses in the data area(but do use
it to refer to addresses within the program area.

The most efficient way to handle tables, buffers, stacks, etc.,
is to have the program's initialization routine compute their
absolute addresses using the data area bounds passed by OS-9 in
the registers. These addresses can then be saved in the direct
page where they can be loaded into registers quickly, using short
instructions. This technique has advantages: it is faster than
extended addressing, and the·program is inherently reentrant.

8.3 STACK REQUIREMENTS

Because OS-9 uses interrupts extensively, and also because many
reentrant 6809 programs use the MPU stack for local variable
storage, a generous stack should be maintained at all times. The
recommended minimum is approximately 200 bytes.

8.4 INTERRUPT MASKS

User programs should keep the condition codes register F (FIRQ
mask) and I (IRQ mask) bits off. They can be set during critical
program sequences to avoid task-switching or interrupts, but this
time should be kept to a mimimum. If they are set for longer than
a tick period, system timekeeping accur~cy may be affected. Also,
some Level Two systems will abort programs having a set IRQ mask.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Techniques

8.5 USING STANDARD I/O PATHS

Programs should be written to use standard I/O paths wherever
practical. Usually, this involves I/O calls that are intended to
communicate to the user's terminal, or any other case where the
OS-9 redirected I/O capability is desirable.

All three standard I/O paths will already be open when the
program is entered (they are inherited from the parent process).
Programs should DQt close these paths except under very special
circumstances.

Standard I/O paths are always assigned path numbers zero, one,
and two, as shown" below:

Path 0 - Standard Input. Analogous to the keyboard or other main
data input source.

Path 1 - Standard Output. Analogous to the terminal display or
other main data output destination.

Path 2 - Standard Error/Status. This path is provided so output .
messages which are not part of the actual program output'
can be kept separate. Many times paths 1 and 2 will be
directed to the same device.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-3

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language programming Techniques

8.6 WRITING INTERRUPT-DRIVEN DEVICE DRIVERS

OS-9 programs do not use interrupts directly. Any interrupt­
driven function should be implemented as a device driver module
which should handle all interrupt-related functions. When it is
necessary for a program to be synchronized to an interrupt-causing
event, a driver can send a semaphore to a program (or the reverse)
using OS-9's signal facilities.

It is important to understand that interrupt service routines
are asynchronous and somewhat nebulous in that they are not
distinct processes. They are in effect subroutines called by OS-9
when an interrupt occurs.

Therefore, all interrupt-driven device drivers have two basic
parts: the Rmainline R subroutines that execute as part of the
calling process, and a separate interrupt service routine.

THE TWO ROUTINES ARE ASYNCHRONOUS AND THEREFORE MUST USE SIGNALS
FOR COMMUNICATIONS AND COORDINATION.

The INIT initialization subroutine within the driver
should allocate static storage for the service routine,
service routine address, and execute the F$IRQ system call
it to the IRQ polling table.

package
get the
to add

When a device driver routine does something that will result in
an interrupt, it should immediately execute a F$SLEP service
request. This results in the process' deactivation. When the
interrupt in question occurs, its service routine is executed
after some random interval. It should then do the minimal amount
of processing required, and send a "wakeup" Signal to its
associated process using the F$SEND service request. It may also
put some data in its static storage (I/O data and status) which is
shared with its associated "sleeping" process.

Some time later, the device driver "mainline" routine is
awakened by the siqnal. and can process the data or status
returned by the interrupt service routine.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-4

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
ASsembly Language Programming Techniques

8.7 A SAMPLE PROGRAM

The OS-9 nlist" util~ty command program is shown on this and
the next page as an example of assembly language programming.

Microware OS-9 Assembler 2.1 01/04/82 23:39:37
LIST - File List utility

Page 001

***** * LIST UTILITY COMMAND
* Syntax: list <pathname)
* COPIES INPUT FROM SPECIFIED FILE TO STANDARD OUTPUT

0000 87CD004E mod LSTEND",LSTNAM,PRGRM+OBJCT,
REENT+l,LSTENT,LSTMEM

0000 4C6973F4 LSTNAM fcs "Listn

* STATIC STORAGE OFFSETS
* 00C8

0000
0000
0001
0003
OOCS
0193
025B

0011 9FOI
0013 8601
0015 103F84
0018 252E
OOlA 9700
OOIC 9FOI

OOlE 9600
0020 3043
0022 108EOOC8
0026 103F8B
0029 2509
002B 8601
0020 103F8C
0030 24EC
0032 2014

BUFSIZ

IPA'l'H
PRMPTR
BUFFER

LSTMEM

LSTENT

LIST20

(Continued on next page)

equ
ORG
rmb
rmb
rmb
rmb
rmb
EQU

stx
Ida
os9
bcs
sta
stx

Ida
leax
ldy
os9
bcs
lda
os9
bcc
bra

200
0
1
2
BUFSIZ
200
200
•

PRMPTR
#READ.
I$OPEN
LISTS 0
I PATH
PRMPTR

I PATH
BOFFER,U
#BUFSIZ
I$RDLN
LIST30
#1
I$WRLN
LIST20
LISTS 0

size of input buffer

input path number
parameter pOinter
allocate line buffer
allocate stack
room for parameter list

save parameter ptr
select read access mode
open input file
exit if error
save input path number
save updated param ptr

load input path number
load buffer pointer
maximum bytes to read
read line of input
exit if error
load std. out. path #
output line
Repeat if no error
exit if error

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-5

08-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
ASsembly Language programming Techniques

Microware OS-9 Assembler 2.1 01/04/82 23:39:37
LIST - File List utility

Page 002

0034 ClD3 LIST30 cmpb #E$EOF at end of file?
0036 2610 bne LIST50 branch if not
0038 9600 Ida I PATH load input path number
003A 103F8F os9 I$CLOS close input path
003D 2509 bcs LIST50 •• exit if error
003F 9EOl Idx PRMPTR restore parameter ptr
0041 A684 Ida O,X
0043 810D cmpa #$OD End of parameter line?
004526CA bne LSTENT •• no; list next file
0047 SF clrb
0048 103F06 LISTS 0 os9 F$EXIT ••• teminate

004B 95BB58 emod Module CRC

004E LSTEND EQU *

(C) 1980, 1981, 1982 Microware Systems CorpOration
PAGE 8-6

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting OS-9 to a New System

9.0 ADAPTING OS-9 TO A NEW SYSTEM

Thanks to 0~-9's modular structure, it is easily portable to
almost any 6809-based computer, and in fact it has been installed
on an incredible variety of hardware. Usually only device
driver and device descriptor modules need by rewritten or modified
for the target system's specific hardware devices. The larger and
more complex kernel and file manager modules almost never need
adaptation.

One essential point is that you will need a functional OS-9
development system to use during installation of OS-9 on a new
target system. Although it is possible to use a non-oS-9 system,
or if you are truly masochistic, the target system itself, lack
of facil1ties to generate and test memory modules and create
system disks can make an otherwise straightforward job a time­
consuming headache that ~s seldom less costly than a commercial
OS-9-equipped computer. OVer a dozen manufacturers offer 05-9
base~ development systems in all price ranges with an excellent
selection of time-saving options such as hard disks, . line
printers, PROM programmers, etc.

Microware sells source eode for standard I/O drivers, and a
"User Source Code package" (on OS-9· format disk only) which
contains source code to the Kernel, Shell, INIT, SYSGQ, device
driver and descriptor modules, and a selection of utility commands
which can be useful when moving OS-9 to a new target system.

WARNING: Standard OS-9 software packages are licensed for use on
a single system. OS-9 cannot be resold or otherwise distributed
(even if modified) without a license. Contact Microware for
information regarding software licenses.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-1

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting OS-9 to a New System

9.1 ADAPTING OS-9 TO DISK-BASED SYSTEMS

Usually, most of the work in moving OS-9 to a disk-based target
system is writing a device driver module for the target system's
disk controller. Part of this task involves producing a subset of
the driver (mostly disk read functions) for use as a bootstrap
module. .

If terminal and/or parallel I/O for terminals, printers, etc.,
will use ACIA and/or PIA-type devices, the standard ACIA and PIA
device driver modules may be used, or device drivers of your own
design may be used in place of or in addition to these standard
modules. Device descriptor modules may also require adaptation to
match device addresses and initialization required by the target
system.

A CLOCK module may be adapted from a standard version, or a new
one may be created. All other component modules, such as lOMAN,
RBFMAN, SCFMAN, SHELL, and utilities seldom require modification.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MA!IDAL
Adapting OS-9 to a New System

9.2 USING OS-9 IN ROM-BASED SYSTEMS

One of OS-9's major features is its ability to reside in ROM
memory and work effectively with ROMed applications programs
written in assembler or high-level languages such as Basic09,
Pascal, and C.

All the component modules of OS-9 (including all commands and
utilities) are directly ROMable without modification. In some
cases, particularly when the target system is to automatically
execute an application program upon system start-up, it may be
necessary to reassemble the two modules used during system
startup, INIT and SYSGO.

The first step in designing a ROM-based system is to select
which OS-9 modules to include in ROM. The following checklist is
designed to help you do so:

a. Include OS9Pl, OS9P2, SYSGO, and INIT. These modules are
required in any OS-9 system.

b. If the target system is perform any I/O or interrupt functions
include lOMAN.

c. If the target system is to perform I/O to character-oriented
I/O devices using ACIAs, PIAs, etc., include SCFMAN, required
device drivers (such as ACIA and PIA, and/or your own), and
device descriptors as needed (such as TERM, Tl, P, and/or your
own). If device addresses and/or initialization functions
need to be changed, the device descriptor modules must be
modified before being ROMed.

d. If the target system is to perform disk I/O, include RFBMAN,
and approp'riate disk driver and device descriptor modules.
As in (c) above. change device addresses and initialization
if needed. If RBFMAN ~ nQt be included, the INIT and SYSGO
modules ~ be altered to remove references to disk files.

e. If the target system requires multiprogramming, time-of~ay,
or other time-related functions, include a CLOCK module for
the target system's real-time clock. Also consider how the
clock is to be started. You may want to ROM the nSetime"
command, or have SYSGO start the clock.

,
f. If the target system will receive commands manually, or if any

application program uses Shell functions, include the SHELL
and SYSGO modules, otherwlse include a modified SYSGO module
which calls your application program instead of Shell.

(C) 1980, 1981, 1982 Microware Systems Cor?Oration
PAGE 9-3

OS-9 :'EVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting 05-9 to a New System

9.3 ADAPTING TEl INITIALIZATION MODULE

INIT is a modt Le that contains system startup parameters. It
lllWi.t be in ROM: .1 any OS-9 system (it usually resides in the same
ROM as the kernel). It is a non-executable module named nINIT" and
has type nsystem' (code $C). It is scanned once during the system
startup. It begj1s with the standard header followed by:

MODULE OFFSET

$9,$A,$B ~his location contains an upper limit RAM memory
,jdress used to override OS-9's automatic end-of­
I\M search so that memory may be reserved for I/O
(;vice addresses or other special purposes.

$C tJlllber of entries to create in the IRQ polling
t~ble. One entry is required for each interrupt­
~;nerating device control register.

$0 l'.nnber of entries to create in the system device
t~le. One entry is required for each device in
t he system.

$E,$F (ffset to a string which is the name of the first
rJdule to be executed after startup, usually
, SYSGOn.There must always be a startup module.

$10,$11 OJ fset to the default directory name string
~ormally /00). This device is assumed when

(;vice names are ommited from pathlists. If the
! ystem will not use disks (e.g., RBFMAN will nO.t
} ; used) this offset m~ be zero.

$12,$13 (ffset to the initial standard path string
typically /TERM). This path is opened as the

! tandard paths for the initial startup module.
rhis offset muat contain zero if there is none.

$14,$15 (ffset to bootstrap module name string. If OS-9
(oes not find lOMAN in ROM during the start-up
I odu1e search, it will execute the bootstrap
I odule named to load additional modules from a
: ile on a mass-storage device. ,

$16 to N j.ll name strings referred to above go here. Each
1 ust have the sign bit (bit 7) of the last
I haracter set.

(C) 1980 1981, 1982 Microware Systems Corporation
PAGE 9-4

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Adapt1ng OS-9 to a New System

9.4 ADAPTING THE SYSGO MODULE

SYSGO is a program which is the first process started after the
system start-up sequence. Its function is threefold:

*

*
*

It does additional high-level system initialization, for exam­
ple, disk system SYSGO call the shell to process the "Startup"
shell procedure file.

It starts the first "user" process.

It thereafter remains in a "wait" state as insurance against
all user processes terminating, thus leaving the system halt­
ed. If this happens, SYSGO can restart the first user program.

The standard SYSGOmodule for disk systems cannot be used on
non-disk based systems unless it is modified to:

1. Remove initialization of the working execution directory.

2. Remove processing of the "Startup" procedure file.

3. possibly change the name of the first user program from "Shell
to the name of a applications program. Here are some example
name strings:

fcs /userpgm/

fcs /RunB userpgm/

fcs /Basic09 userpgml

(object code module "userpgm")

(compiled Basic09 program using
RunB run-time-only system)

(compiled Basic09 program using
Basic09)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-5

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Adapting 05-9 to a New System

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-6

OS-9 LEVEL ONE SYSTEM 'PROGRAMMER'S MANUAL
Service Request Descriptions

10.0 OS-9 SERVIC-E REQtlEST DESCRIPTIONS

System calls are used to communicate between the OS-9 operating
system and assembly-l anguage-l evel programs. There are three
general categories:

1. User mode function requests
2. System mode function, requests
3. I/O requests

System mode function requests are privileged and may be
executed only while OS-9 is in the system state (when it is
processing another service request, executing a file manager,
device drivers, etc.). They are included in this manual primarily
for the benefit of those programmers who will be writing device
drivers and other system-level applications.

The system calls are performed by loading the MPU registers
with'the appropriate parameters (if any), and executinq a SWI2
instruction immediately followed by a constant byte which is the
request code. Parameters (if any) will be returned in the MPU
registers after OS-9 has processed the service request. A
standard convention for reporting errors is used in all system
calls; if an error occured, the ~C bit" of the condition code
register will be set and accumulator B will contain the
appropriate error code. This permits a BCS or BCC instruction
tmmediately following the system call to branch on error/no error.

Here is an example system call for the "CLOSE" service request:

LDA PATHNUM
SWI2
FCB $8B
BCS ERROR

Using the assembler's "0$9" directive simplifies the call:

LOA PATHNUM
OS9 I$CLOS
BCS ERROR

The I/O service requests are simpler to use than in many other
operating systems because the calling program does not have to
allocate and set up "file control blocks tt , "sector buffers", etc.
Instead OS-9 will return a one byte path number when a path to a
file/device is opened or created; then this path number may be
used in subsequent I/O requests to idelltify the file/device until.;
the path is closed. OS-9 internally. allocates and mairttains its

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-1

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions

own data structures and users never have to deal with them: in
fact attempts to do so are memory violations.

All system calls have a mnemonic name that starts with np$" for
system functions, or nI$" for I/O related requests. These are
defined in the assembler-input 'equate file called "0S9DEPS n •

In the service request descriptions which follow, registers not
explicitly specified as input or output parameters are not
altered. Strings passed as parameters are normally terminated by
having bit seven of the last character set, a space character, or
an end of line character.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

ABIT

ASSEMBT.ER CALL:

MACHINE CODE:

Set bits in an allocation bit map

OS9 F$ABIT

103F 13

INPUT: (X) = Base address of allocation bit map_
(D) = Bit number of first bit to set.
(Y) = Bit count (number of bits to set).

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$ABIT

This system mode service request sets bits in the allocation bit
map specified by the X register.

Bit numbers range from O •• N-l, where N is the number of bits in
the allocation bit map_

(C) 1980. 1981. 1982 Microware Systems Corporation
PAGE 10-3

CHAIN

05-9 LEVEL ONE SYSTEM PROGRAMMER' S MANUAL
Service Request Descriptions - User Mode

Load and execute a new primary module.

AS5EMBI.ER CALL: 059 F$CHAN

MACHINE CODE: 103F 05

INPUT: (X) = Address of module name or file name.
(Y) = Parameter area size (256 byte pages).
(U) = Beginning address of parameter area.
(A) = Language / type code
(B) = Optional data area size (256 byte pages).

ERROR OUPTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$CHAN

This system call is similar to FORK, but it does not create a new
process. It effectively "resets" the calling process' program and
data memory areas and begins execution of a new primary module.
Open paths are not closed or otherwise affected.

This system call is used when it is necessary to execute an
entirely new program, but without the overhead of creating a new
process. It is functionally similar to a FORK followed by an EXIT,
but with less processing overhead.

The sequence of operations taken by CHAIN is as follows:

1. The system parses the name string of the new process' "primary
module" the program that will initially be executed. Then the
system module directory is searched to see if a module with the
same name and type / language is already in memory. If so it is
linked to. If not, the name string is used as the pathlist of a
file which is to be loaded into memory. Then the first module in
this file is linked to (several modules may have been loaded from
a single file).

2. The process' old primary module is UNLINKED.

3. The data memory area is reconfigured to the size specified
in the new primary module's header.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-4

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

CRAIN (continued)

The diagram below shows how CHAIN sets up the data memory area and
registers for the new module.

+-~--------------+ <-- y
!

!

Parameter
Area

!

+-----------------+ <-- X, SP
!
1 1
! Data Area
!
!
+-----------------+

Direct Page
+--------------+ < - U, DP

D = parameter area size
PC = module entry point abs~ address
CC = F=O, I=O, others undefined

(highest address)

(lowest address)

y (top of memory pointer) and 0 (bottom of memory pointer) will
always have a values at 256-byte page boundaries. If the parent
does not specify a parameter area, Y, X, and SP will be the same.
and 0 will equal zero. The minimum overall data area size is one
paqe (256 bytes).

WARNING: The hardware stack pointer (SP) should be located
somewhere in the direct page before the F$CHAN service request is
executed to prevent a "suicide attempt" error or an acutal suicide
(system crash). This will prevent a suicide from occuring in case
the new module requires a smaller data area than what is currently
being used. You should allow approximately 200 bytes of stack
space for. execution of. the F$CHAN service request and other system
"overhead".

For more information, please see the F$FORK service request
description.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-5

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

COMPARE NAMES Compare two names.

ASSEMBLER CALL: .OS9 F$CNAM

MACHINE CODE: 103F 11

INPUT:

OUTPUT:

(X) = Address of first name.
(B) = Length of first name.
(Y) = Address of second name.

(CC) = C bit clear if the strings match.

F$CNAM

Given the address and length of a string, and the address of a
second string, compares them and indicates whether they match.
Typically used in conjunction with "parsename".

The second name must have the siqn bit (bit 7) of the last
character set.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-6

CRC

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - User Mode

compute CRC

ASSEMBLER CALL: OS9 F $CRC

MACHINE CODE: 103F 17

INPUT:

()UTPUT:

(X) = Starting byte address.
(Y) = Byte count.
(U) = Address of 3 byte CRC accumulator.

CRC accumulator is updated.

ERROR OUTPUT: None.

F$CRC

This service request calculates the CRC (cyclic redundancy count)
for use by compilers, assemblers, or other module generators. The
CRC is calculated starting at the source address over "byte count"
bytes. It is not necessary to cover an entire module in one call,
since the CRC may be "accumulated" over several calls. The CRC
accumulator can be any three byte memory location and must be
initialized to $FFFFFF before the first F$CRC call.

The last three bytes in the module (where the three' CRC bytes will
be stored) are not included in the CRC generation.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-7

OBIT

OS-9 LEVEL ONE SYSTEM 'PROGRAMMER I S MANUAL
Service Request Descriptions - User Mode

Deallocate in a bit map

ASSEMBLER CALL: OS9 F$DBIT

MACHINE CODE: l03F 14

INPUT: (X) = Base address of an allocation bit map.
(D) = Bit number of first bit to clear.
(Y) = Bit count (number of bits to clear).

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$DBIT

This system mode service request is used to clear bits in the
allocation bit map pointed to by X.

Bit numbers range from O •• N-I, where N is the number of bits in
the allocation bit map.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-8

EXIT

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

Terminate the calling process •.

ASSEMBT.ER CALL: 059 F$EXIT

MACHINE CODE: 103F 06

F$EXIT

INPUT: (B) = Status code to be returned to the parent process.

OUTPUT: Process is terminated.

This call kills the calling process and is the only means by which
a process can terminate itself. Its data memory area is
deallocated, and its primary module is UNLINKed. All open paths
are automatically closed.

The death of the process can be detected by the parent executing a
WAIT call, which returns to the parent the status byte passed by
the child in its EXIT call. The status byte can be an 05-9 error
code the terminating process wishes to pass back to its parent
process (the shell assumes this), or can be used to pass a user­
defined status value. Processes to .be called directly by the
shell should only return an 05-9 error code or zero if no error
occurred.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-9

FORK

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - User Mode

create a new process.

ASSEMRT.ER CALL: OS9 F$FORK

MACHINE CODE: 103F 03

INPUT:

OUTPUT:

(X) = Address of module name or file name.
(Y) = Parameter area size-
(U) = Beginning address of the parameter area.
(A) = Language / Type code.
(B) = Optional data area size (pages).

(X) = Updated path the name string.
(A) = New process ID number.

ERROR ° OUTPUT: (ec) = C bit set.
(B) = Appropriate error code.

.

F$FORK

This system call creates a new process which becomes a "child" of
the caller, and sets up the new process' memory and MPU registers.

The system parses the name string of the new process' "primary
module" the program that will initially be executed. Then the
system module directory is searched to see if the program is
already in memory. ° If so, the module is linked to and executed.
If not, the name string is used as the pathlist of the file which
is to be loaded into memory. Then the first module in this file
is linked to and executed (several modules may have been loaded
from a single file).

The proimary module's module header is used to determine the
process' initial data area size. OS-9 then attempts to allocate a
contiguous RAM area equal to the required data storage size,
(includes the parameter passing area, which is copied from the
parent process' data area). The new process' registers are set up
as shown in the diagram on the next page. The execution offset
given in the module header is used to set the PC to the module's
entry point.

When the shell processes a cormnand line it passes a string in the
parameter area which is a copy of the parameter part (if any) of
the cormnand line. It also inserts an .end-of-line character at the
end of the parameter string to simplify string-oriented
processing. The X regist~r will point to the beginning of the
parameter string. If the command line included the optional memory
size specification (in or inK), the shell will pass that size as
the requested memory size when executing the FORK.

If any of the above operations are unsucessful,the FORK is

(e) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-10

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

aborted and the caller is returned an error.

The diagram below shows how FORK sets up the data memory area and
registers for a newly-created process.

+-----------------+ <-- Y (highest

parameter
area

+-----------------+ <-- X, SP
I
I

data area I
I
I'

+-----------------+
direct page

~----------------+ <- U, DP (lowest

D = parameter area size
PC = module entry point abs. address
CC = F=O, I=O, others undefined

address)

address) ::t

Y (top of memory pointer) and U (bottom of memory pointer) will
always have a values at 256-byte page boundaries. If the parent
does not specify a parameter area, Y, X, and SP will be the same.
and D will equal zero. The minimum overall data area size is one
page (256 bytes). Shell will always pass at least an end of line
character in the parameter area.

NOTE: Both the child and parent process will execute
concurrently. If the parent executes a F$WAIT call immediately
after the fork, it will wait until the child dies before it
resumes execution. caution should be exercised when recursively
calling a program that uses the F$FORK service request since
another child may be created with each "incarnation". This will
continue until the process table becomes full.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-11

INTERCEPT

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

Set up a Signal intercept trap.

ASSEMBLER CALL: OS9 F$ICPT

MACHINE CODE: 103F 09

INPUT: (X) = Address of the intercept routine.

F$ICPT

(U) = Address of the intercept routine local storage.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This system call tells OS-9 to set a signal intercept trap, where
X contains the adddress of the signal handler routine, and U
contains the base address of the routine's storage area. After a
signal trap has been set, whenever the process receives a signal,
its intercept routine will be executed. A signal will abort any
process which has not used the F$ICPT service request to set a
signal trap, and its termination status (B register) will be the
signal code. Many interactive programs will set up an intercept
routine to handle keyboard abort (control Q), and keyboard
interrupt (control C).

The intercept routine is entered asynchronously because a signal
may be sent at any time (it is like an interrupt) and is passed
the following:

U = Address of intercept routine local storage.
B = Signal code.

NOTE: The value of DP may not be the same as it was when the
F$ICPT call was made.

Whenever a signal is received, OS-9 will pass the signal code and
the base address of its data area (which was defined bv a F$ICPT
service request) to the signal intercept routine. The base
address of the data area is selected by the user and is typically
a pointer to the process' data area.

The intercept routine is activated when a signal is received, then
it takes some action based upon the value of the signal code such
as setting a flag in the process' data area. After the Signal has
been processed, the handler routine should terminate with an RTI
instruction.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-12

GET ID

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

Get process ID / user ID

ASSEMBT,ER CALL: OS9 F$ID

MACHINE CODE: 103F QC

INPUT: None

OUTPUT: (A) = Process ID.
(Y) = User ID.

ERROR OUTPUT: (CC) = C Bit set.
(B) = Appropriate error code.

F$ID

Returns the caller's process ID number, which is a byte value in
the range of 1 to 255, and the user ID which is a integer in the
range 0 to 65535. The process ID is assigned by 05-9 and is unique
to the process. The user ID is defined in the system password
file. and is used by the file security system and a few other
functions. Several processes can have the same user ID.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-13

LINK:

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

Link to memory module.

ASSEMBLER CALL: OS9 F$LINK

MACHINE CODE: 103F 00

INPUT:

OUTPUT:

(X) = Address of the module name string.
(A) = Module type / language byte.

(X) = Advanced past the module name.
(Y) = Module entry point absolute address.
(U) = Module header absolute address.
(A) = Module type / language.
(B) = Module attributes / revision level.

ERROR OUTPUT: (CC) = C bit set.
(B)· = Appropritate error code.

F$LINK

This system call causes OS-9 to search the module directory for a
module having a name, language and type as given in the
parameters. If found, the address of the module'S header is
returned in.D, and the absolute address of the module's execution
entry point is returned in Y (as a convenience: this and other
information can be obtained from the module header). The module's
"link count" is incremented whenever a LINK references its name,
thus keeping track of how many processes are using the module. If
the module requested has an attribute byte indicating it is not'
sharable (meaning it is not reentrant) only one process may link
to it at a time.

Possible errors:

(A) Module not found.
(B) Module busy (not sharable and in use).
(C) Incorrect or defective module header.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-14

LOAD

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - User Mode

Load module(s) from a file.

ASSEMBt.ER CALL:

MACHINE CODE:

OS9 F$T.OAD

103F 01

INPUT: (X) = Address of pathlist (file name)
(A) = Language / type (0 = any language / type)

OUTPUT: (X) = Advanced past pathlist
(Y) = Primary module entry point address
(U) = Address of module header
(A) = Language / type
(B) = Attributes / revision level

ERROR OUTPUT: (CC) = C Bit set
(B) = Appropriate error code

F$LOAD

Opens a file specified by the pathlist, reads one or more memory
modules from the file into memory, then closes the file. All
modules loaded are added to the system module directory. and the
first module read is LINKed. The parameters returned are the same
as the LINK call and apply only to the first module loaded.

In order to be loaded, the file must have the "execute" permission
and contain a module or modules that have a proper module header&
The file will be loaded from the workina execution directory
unless a complete pathlist is given.

possible errors: module directory full; memory full; plus errors
that occur on OPEN, READ, CLOSE and LINK system calls.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-15

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

MEM

ASSEMBLER CALL:

MACHINE CODE:

Resize data memory area.

OS9 F$MEM

103F 07

INPUT: (D) = Desired new memory area size in bytes.

OUTPUT: (Y) = Address of new memory area upper bound.
(D) = Actual new memory area size in bytes.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$MEM

Used to expand or contract the process' data memory area. The new
size requested is rounded up to the next 256-byte page boundary.
Additional memory is allocated contiguously upward (towards higher
addresses), or deallocated downward from the old highest address.
If 0 = 0, then the current upper bound and size will be returned.

This request can never return all of a process' memory, or the
page in which its SP register points to.

In Level One systems, the request may return an error upon an
expansion request even though adequate free memory exists. This is
because the data area is always made contiguous, and memory
requests by other processes may fragment free memory into smaller,
scattered blocks that are not adjacent to the caller's present
data area Level Two systems do not have this restriction because
of the availability of hardware for memory relocation. and because
each process has its own "address space".

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-16

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

PRERR

ASSEMSLER CALL:

MACHINE CODE:

print error message.

OS9 F$PERR

103F OF

INPUT: (A) = Output path number.
(B) = Error code.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$PERR

This is the system's error reporting utility. It writes an error
message to the output path specified. Most OS-9 systems will
display:

ERROR #<decimal number>

by default. The error reporting routine is vectored and can be
replaced with a more elaborate reporting module. To replace this
routine use the F$SSVC service request.'

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-17

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

PARSENAME

ASSEMBLER CALL:

MACHINE CODE:

Parse a path name.

OS9 F$PNAM

103F 10

INPUT: (X) = Address of the pathlist.

OUTPUT: (X) = Updated past the optional "/"

F$PNAM

(Y) = Address of the last character of the name + 1.
(B) = Length of the name.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.
(X) = Updated past space characters.

Parses the input text string for a legal OS-9 name. The name is
terminated by any character that is not a legal component
character. This system call is useful for processing pathlist
arguments passed to new processes. Also if X was at the end of a
pathlist, a bad name error will be returned and X will be moved
past any space characters so that the next pathlist in a command
line may be parsed.

Note that this system call processes only one name. so several
calls may be needed to process a pathlist that has more than one
name.

BEFORE F$PNAM CALL:

+---+---+---+---+---+---+---+---+---+---+---+---+---
! / ! D ! 0 ! / ! F ! I ! L ! E! !
+---+---+---+---+---+---+---+---+---+---+---+---+---

t .

X

AFTER THE F$PNAM CALL:

+---+---+---+---+---+---+---+---+---+---+---+---+---
!/!D!O!/!FII!L!E! !!
+---+---+---+---+---+---+---+---+---+---+---+---+---

t t

X Y (B) = 2

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-18

SBMAP

OS-9 EVEL ONE SYSTEM PROGRAMMER'S MANUAL
Serv ce Request Descriptions - User Mode

~ :arch bit map for a free area

ASSEMBLER CALL: OS9 F$SBIT

103F 12 MACHINE CODE:

INPUT: (X) = Be~ .nning address of a bit map.
(D) = Be~ .nning bit number.
(Y) = Bit count (free bit block size).
(U) = Ene of bit map address.

OUTPUT: (D) = Be~ Lnning bit number.
(Y) = Bit count.

F$SBIT

This system mode 3ervice request searches the specified allocation
bit map starting it the "beginning bit number II for a free block
(cleared bits) 0: the required length.

If no block 0: the specified size exists, it returns with the.
carry set, begin! ing bit number and size of the largest block.

(C) 198(. 1981, 1982 Microware Systems Corporation
PAGE 10-19

OS-9 LEVEL ONE SYSTEM PRQGRAMMER'SMANUAL
Service Request Descriptions - User Mode

SEND

ASSEMBLER CALL:

MACHINE CODE:

Send a signal to another process.

OS9 F$SEND

l03F 08

INPUT: (A) = Reciever's process ID number.
(B) = Signal code.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$SEND
======

This system call sends a nsignal n to the process specified. The
signal code is a single byte value of 1 - 255.

If the signal's destination process is sleeping or waiting, it
will be activated so that it may process the signal. The signal
processing routine (intercept) will be executed if a signal trap
was set up (see F$ICPT), .otherwise the signal will abort the
des~ination process, and the signal code becomes the exit status
(see WAIT). An exception is the WAKEUP Signal, which activates a
sleeping process but does not cause the signal intercept routine
to be executed.

Some of the signal codes have meanings defined by convention:

o = System Abort (cannot be intercepted)
1 = Wake Up Process
2 = Keyboard Abort
3 = Keyboard Interrupt

4-255 = user defined

If an attempt is made to send a siqnal to a process that has an
unprocessed, previous signal pending, the current nsend n req~est
will be cancelled and an error will be returned. An attempt can
be made to resend the signal later. It is good practice to issue
a nsleepn call for a few ticks before a retry to avoid wasting MPU
time

For related information see the F$ICPT, F$WAIT, and F$SLEP service
request descriptions.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-20

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SLEEP

ASSEMBLER CALL:

MACHINE CODE:

Put calling process to sleep.

OS9 F$SLEP

103F OA

INPUT: (X) = Sleep time in ticks (0 = indefinitely)

OUTPUT: (X) = Decremented by the number of ticks that the
process was asleep.

ERROR OUTPUT: (CC) = C bit set
(B) = Appropriate error code.

F$SLEP

This call deactivates the calling process for a specified time, or
indefinitely if X = O. If X = 1. the effect is to have the caller
give up its current time slice. The process will be activated
before the full time interval if a siqnal is received, therefore
sleeping indefinitely is a good waY to' wait for a signal or
interrupt without wasting CPU time.

The duration of a "tick" is system dependent but is most commonly
100 milliseconds •

. Due to the fact that it is not known when the F$SLEP request was
made durring the current tick, F$SLEP can not be used for precise
timing_ A sleep of one tick is effectively a "give up remaining
time slice" request; the process is immediately inserted into the
active process queue and will resume execution when it reaches the
front of the queue. A sleep of two or more ticks causes· the
process to be inserted into the active process queue after N-l
ticks occur and will resume execution when it reaches the front of
the queue.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-21

05-9 LEVEL ONE SYSTEM PROGRAMMER' S MANUAL
Service Request Oescr.iptions - User Mode

SETPR

ASSEMBLER CALL:

MACHINE CODE:

Set process priority.

OS9 F$SPRI

103F 00

INPUT: (A) = Process ID number.
(B) = Priority:

OUTPUT: ~one.

ERROR OUTPUT:

o = lowest
255 = highest

(CC) = C bit set.
(B) = Appropriate error code.

F$Sl?RI

Changes the process's priority to the new value given. $FF is the
highest possible priority, $00 is the lowest. A process can change
another process' priority only if it has the same user ID.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-22

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SSVC

ASSEMBLER CALL:

ASSEMBLER CODE:

Install function request

OS9 F$SSVC

103F 32

F$SSVC

INPUT: (Y) = Address of service request initialization table.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This system mode service request is used to add a new function
request to OS-9's user and privileged system service request
tables, or to replace an old one. The Y register passes the
address of a table which contains the function codes and offsets
to the corresponding service request handler routines. This table
has the following format~

OFFSET

+----------------------+
$00 Function Code ! <--- First entry

+-~---------~---------+
$01 ! Offset From Byte 3

+-- --+
$02 1 To Function Handler !

~-~-~~------------~-+
$03 Function Code <--- Second entry

+---~---------------+
$04 1 Offset From Byte 6

+-- --+
$05 ! To Function Handler

+----------------------+
! <--- Third entry etc.

MORE ENTRIES

!
+---~------------------+
! $80 <--- End of table mark
~---------------------+

NOTE: If the siqn bit of the function code is
system table will be updated. Otherwise both the
tables will be updated. Privileged system service
called only while executing a system routine.

(continued)

set, only the
system and user
requests may be

(C) 1980, 1981, 1982 Microware Systems Corporation
• PAGE 10-23

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SSVC (continued)

The service request handler routine should process the service
request and return from subroutine with an RTS instruction. They
may alter all MPU registers (except for SP). The U register will
pass the address of the register stack to the service request
handler as shown in the following diagram:

OFFSET OS9DEFS
NMEMONIC

+------+
U ---> CC $0 R$CC

+------+ $1 R$D
A $1 R$A

+-----+
B $2 R$B

+------+
DP $3 R$DP

+-----+------+
X ! $4 R$X

+------------+
y $6 R$Y

+-------------+
U $8 R$U

+-------------+
PC $A R$PC

+-------------+

Function request codes are broken into the two categories as shown
below:

$00 $27 User mode service request codes.

$29 - $34 Privileged system mode service request codes.
When installing these service request, the
sign bit should be set if it is to be placed
into the system table only.

NOTE: These categories are defined by convention and not enforced
by OS9.

Codes $25 •• $27, and $70 •• $7F will not be used by MICROWARE and are
free for user definition.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-24

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SETSWI

ASSEMBLER CALL:

MACHINE CODE:

Set SWI vector.

OS9 F$SSWI

103F OE

INPUT: (A) = SWI type code.
(X) = Address of user SWI service routine.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(8) = Appropriate error code.

F$SSWI

Sets up the interrupt vectors for SWI, SWI2 and SWI3 instructions.
Each process has its own local vectors. Each SETWSI call sets up
one type of vector according to the code number passed in A.

1 = SWI
2 = SWI2
3 = SWI3

When a process is created, all three vectors are initialized with
the address of the OS-9 service call processor.

WARNING: Microware-supplied software uses SWI2 to call OS-9. If
you reset this vector these programs will not work. If you change
all three vectors, you will not be able to call OS-9 at all.

(C) 1980, 1981, 1982 Microware Systems Corporation
'P2\.~F. In-?.I:\

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SETIME Set system dat.e and time.

ASSEMBLER CALL: 059 F$STIM

MACHINE CODE: 103F 16

INPUT: (X) = Address of time packet (see below)

OUTPUT: Time/date is set.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$STIM

This service request is used to set the current system date/time
and start the system real-time clock. The date and time are
passed in a time packet as follows:

OFFSET VALUE
-~~----+-~-~---

0 ! year
1 ! month
2 ! day
3 ! hours
4 ! minutes
5 ! seconds

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-26

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MA}WAL
Service Request Descriptions - User Mode

TIME

ASSEMBLER CALL:

MACHINE CODE:

Get system date and time.

OS9 F$TIME

103F 15

INPUT: (X) = Address of place to store the time packet.

OUTPUT: Time packet (see below).

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$TIME

This returns the current system date and time in the form of a six
byte packet (in binary). The packet is copied to the address
passed in X. The packet looks like:

OFFSET VALUE
------+-------

o year
1 month
2 day
3 hours
4 minutes
5 seconds

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-27

os-9 LEVEL ONE SYSTEM PROGRAMMER f S MANUAL
Service Request Descriptions - User Mode

UNLINK

ASSEMBLER CALL:

MACHINE CODE:

Unlink a module.

OS9 F$UNLK

103F 02

INPUT: (U) = Address of the module header.

OUTPUT: None

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$UNLK

Tells OS-9 that the module is no longer needed by the calling
process. The modulefs link count is decremented, and the module
is destroyed and its memory deallocated when the link count equals
zero. The module will not be destroyed if in use bv any other
process (es) bec~use its link count will be non-zero. In Level Two
systems, the module is usually switched out of the process f
address space.

Device driver modules in use or certain system modules cannot be
unlinked. ROMed modules can be unlinked but cannot be deleted
from the module directory.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-28

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - Oser Mode

WAIT Wait for child process to die.

ASSEMBLER CALL: OS9 F$WAIT

103F 04 MACHINE CODE:

INPUT: None

OUTPUT: (A) = Deceased child process' process ID.
(B) = Child process' exit status code.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$WAIT

The calling process is deactivated until a child process
terminates by executing an EXIT system call, or by receivinq a
Signal. The child's ID number and exit status is returned to the
parent. If the child died due to a signal, the exit status byte
(B register) is the signal code.

If the caller has several children, the caller is activated when
the first one dies, so one WAIT system call is required to det~ct
termination of each child.

If a child died before the WAIT call, the caller is reactivated
almost immediately WAIT will return an error if the caller has
no children.

See the EXIT description for more related information.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-29

A64

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - System Mode

Allocate a 64 byte memory block

ASSEMBLER CALL:

F$A64

MACHINE CODE:

OS9 F$A64

103F 30

INPUT: (X) = Base address of page table (zero if the page table
has not yet been allocated).

OUTPUT: (A) = Block number.
(X) = Base address of page table.
(Y) = Address of block.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This system mode service request is used to dynamically allocate
64 byte blocks of memory by splitting whole pages (256 byte) into
four sections. The first 64 bytes of the base page are used as a
"page table", which contains the MSB of all pages in the memory
structure. Passing a value of zero in the X register will cause
the F$A64 service request to allocate a new base page and the
first 64 byte memory block. Whenever a new page is needed, an
F$SRQM service request will automatically be executed. The first
byte of each block contains the block number; routines using this
service request should not alter it. Below is a diagram to show
how 7 blocks might be allocated:

ANY 256 BYTE
MEMORY PAGE

BASE PAGE ---> +--------------+
PAGE TABLE
(64 bytes)

!

+--------------+
!X !
! BLOCK 1 !

(64 bytes)
+--------------+
!X

BLOCK 2
(64 byte)

+--------------+
!X

BLOCK 3
(64 byte)

+--------------+

ANY 256 BYTE
MEMORY PAGE

+--------------+
!X I

BLOCK 4
(64 bytes)

+-~------------+
IX

BLOCK 5
(64 bytes)

+--------------+
!X

BLOCK 6
(64 byte)

+--~-----------+
!X

BLOCK 7
(64 byte)

+--------------+

NOTE: THTS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-30

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

APRC

ASSEMBLER CALL:

MACHINE CODE:

Insert process in active process queue

OS9 F$APRC

103F 2C

INPUT: (X) = Address of process descriptor.

OUTPUT: None.

ERROR OUTPUT: (CC)
(B)

= C bit set.
= Appropriate error code.

F$APRC

This system mode service request inserts a process into the active
process queue so that it may be scheduled for execution.

All processes already in the active process queue are aged, and
the age of the specified process is set to its priority. If the
process is in system state, it is inserted after any other
processes also in system state, but before any process in user
state. If the process is in user state, it is inserted according
to its age.

NOTE:TEIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-31

OS-9 LEVEL ONE SYSTEM ~ROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

FIND-64

ASSEMBLER CALL:

MACHINE CODE:

Find a 64 byte memory block

OS9 F$F64

103F 2F

INPUT: (X) = Address of base page.
(A) = Block number.

OUTPUT: (Y) = Address of block.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$F64

This system mode service request will return the address of a 64
byte memory block as described in the F$A64 service request. OS-9
used this service request to find process descriptiors and path
descriptors when given their number.

Block numbers range from 1 •• N

NOTE: THIS IS A PRIVlLEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-32

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

IODEL

ASSEMBLER CALL:

MACHINE CODE:

Delete I/O device from system

OS9 F$IODL

103F 33

INPUT: (X) = Address of an I/O module. (see description)

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$IODL

This system mode service request is used to determine whether or
not an I/O module is being used. The X register passes the
address of a device descriptor module. device driver module, or
file manager module. The address is used to search the device
table. and if found the use count is checked to see if it is zero.
If it is not zero, an error condition is returned.

This service request is used primarily by lOMAN and may be of
limited or no use for other applications.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-33

OS";9 LEWL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - System Mode

rOQUEUE

ASSEMBLER CALL:

MACHINE CODE:

Enter I/O queue

OS9 F$IOQU

103F 2B

INPUT: (A) = Process Number.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$IOQU

This system mode service request links the calling process into
the I/O queue of the specified process and performs an untimed
sleep. It is assumed that routines associated with the specified
process will send a wakeup signal to the calling process.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-34

SETIRQ

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

Add or remove device from IRQ table. F$IRQ

ASSEMBLER CALL: OS9 F$IRQ

MACHINE CODE: 103F 2A

INPUT:

OUTPUT:

(X) = Zero to remove device from table. or the address
of a packet as defined below to add a device to
the IRQ polling table:

[x] = flip byte
[X+l] = mask byte
[X+2] = priority

(U) = Address of service routine's static storage area.
(Y) = Device IRQ service routine address.
(D) = Address of the device status register.

None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This service requ~st is used to add a device to or remove a device
from the IRQ polling table. To remove a device from the table the
input should be (X)=O, (U)= Addr of service routine's static
storage. This service request is primarily used by device driver
routines. See the text of this manual for a complete discussion
of the interrupt polling system.

PACKET DEFINITIONS:

Flip Byte

Mask Byte

priority

This byte selects whether the bits in
status register are active when set or
cleared. A set bites) identifies
bites).

the device
active when
the active

This byte selects one or more bits within the dev­
ice status register that are interrupt request
flag(s). A set bit identifies an active bites).

The device priority number:
o = lowest

255 = highest

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-35

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

NXTPRCS

ASSEMBLER CALL:

MACHINE CODE:

INPUT: None.

Start next process

OS9 F$NPRC

103F 2D

OUTPUT: Control does not return to caller.

F$NPRC

This system mode service request takes the next process out of the
Active Process Queue and initiaites its execution. If there is no
process in the queue, OS-9 waits for an interrupt, and then checks
the active process queue again.

NOTE: THIS rs A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-36

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - System Mode

R64 Deallocate a 64 byte memory block

AS$EMBLER CALL: OS9 F$R64

MACHINE CODE: 103F 31

INPUT: (X) = Address of the base page.
(A) = Block number.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$R64

This system mode service request deal locates a 64 byte block of
memory as described in the F$A64 service request.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-37

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

SRQMEM

. ASSEMBLER CALL:

MACHINE CODE:

System memory request

OS9 F$SRQM

103F 28

INPUT: (D) = Byte count.

OUTPUT: (U) = Beginning address of memory area.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$SRQM

This system mode service request allocates a block of memory from
the top of available- RAM of the specified size. The size
requested is rounded to the next 256 byte page boundary.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REOUEST

(C) 1980,1981, 1982 Microware Systems Corporation
PAGE 10-38

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - System Mode

SRTMEM

ASSEMBT.ER CALL:

MACHINE CODE:

Return System Memory

OS9 F$SRTM

103F 29

INPUT: (U) = Beginning address of memory to return.
(D) = Number of bytes to return.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$SRTM

This system mode service request is used to deallocate a block of
contiauous 256 byte pages. The U register must point to an even
page boundary.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-39

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

VMOD

ASSEMBLER CALL:

MACHINE CODE:

Verify module

OS9 F$VMOD

103F 2E

INPUT: (X) = Address of module to verify.

OUTPUT: (U) = Address of module directory entry.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$VMOD

This system mode service request checks the moule header parity
and CRe bytes of an OS-9 module. If these values are valid, then
the module directory is searched for a module with the same name.
If a module with the same name exists, the one with the highest
revision level is retained in the module directory. Ties are
broken in favor of the established module.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-40

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

ATTACH

ASSEMBLER CALL:

MACHINE CODE:

Attach a new device to the system.

OS9 I$ATCH

103F 80

INPUT: (X) = Address of device name string.
(A) = Access mode.

OUTPUT: (U) = Address of device table entry.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I~TCH

This service request is used to attach a new device to the system,
or verify that it is already attached. The device's name string
is used to search the system module directory to. see if a device
descriptor module with the same name is in memory (this is the
name the device will be known by). The descriptor module will
contain the name of the device's file manager, device driver and
other related information. If it is found and the device is not
already attached, OS-9 will link to its file manager and device
driver, and then place their address' in a new device table entry.
Any permanent storage needed by the device driver is allocated,
and the driver's initialization routine is called (which usually
initializes the hardware).

If the device has already been attached, it will not be
reinitialized.

An ATTACH system call is not required to perform routine I/O. It
does NOT "reserve" the device in question - it just prepares it
for subsequent use by any process. Most devices are automatically
installed, so it is used mostly when devices are dynamically
installed or to verify the existance of a device.

The access mode parameter specifies which subsequent read and/or
write operations will be permitted as follows:

o = Use device capabilities.
1 = Read only.
2 = Write only.
3 = Both read and write.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-41

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

CHOIR

ASSEMBLER CALL:

MACHINE CODE:

Change working directory.

OS9 I$CDIR

103F 86

INPUT: (X) = Address of the pathlist.
(A) = Access mode.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I$CDIR

Changes a process' working directory to another directory file
specified by the pathlist. Depending on the access mode given, the
current execution or the current data directory may be changed
(but only one may be changed per call). The file specified must
be a directory file. and the caller must have read permission for
it (public read if not owned by the calling process).

ACCESS MODES:

1 = Read
2 = Write
3 = Update (read or write)
4 = Execute

If the access mode is read, write, or update the current "data
directory is changed. If the access mode is execute, the current
execution directory is changed.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-42

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

CLOSE

ASSEMBLER CALL:

MACHINE CODE:

Close a path to a file/device.

OS9 I$CLOS

103F 8F

INPUT: (A) = Path number.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I$CLOS

Terminates the I/O path specified by the path number. I/O can no
longer be performed to the file/device, unless another OPEN or
CREATE call is used.- Devices that are non-sharable become
available to other requesting processes. All OS-9 internally
managed buffers and descriptors are deallocated.

Note: Because the OS9 F$EXIT service request automatically closes
all open paths (except the standard I/O paths), it may not be
necessary to close them individually with the OS9 I$CLOS service
request.

Standard I/O paths are not typically closed except when it is
desired to change the files/devices they correspond to.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-43

CREATE

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

Create a path to a new file.

ASSEMBLER CALL:

MACHINE CODE:

OS9 I$CREA·

l03F 83

INPUT: (X) = Address of the pathlist.
(A) = Access mode.
(B) = File attributes.

I$CREA

OUTPUT: (X) = Updated past the pathlist (trailing blanks skipped)
(A) = Path number.

ERROR OUTPUT: (ce) = C bit set.
(B) = Appropriate error code.

Used to create a new file on a multifile mass storage device. The
pathlist is parsed, and the new file name is entered in the
specified (or default working) directory- The file is given the
attributes passed in the B register, which has individual bits
defined as follows:

bit 0 = read permit
bit 1 = write permit
bit 2 = execute permit
bit 3 = public read permit
bit 4 = public write permit
bit 5 = public execute permit
bit 6 = sharable file

The access mode parameter passed in register A must be either
"WRITE" or "UPDATE". This onlv affects the file until it is
closed; it can be reopened later in any access mode allowed by the
file attributes (see OPEN). Files open for "WRITE" mav allow
faster data transfer than "UPDATE", which sometimes needs to pre­
read sectors. These access codes are defined as given below:

2 = Write only.
3 = Update (read and write).

NOTE: If the execute bit (bit 2) is set, the file will be created
in the working execution directory instead of the working data
directory.

The path number returned by OS-9 is used to indentify the file in
subsequent I/O service requests until the file is closed.

(Continued)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-44

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

CREATE (Continued)

No data storage is initially allocated for the file at the time it
is created: this is done automatically by WRITE or explicitly by
the PUTSTAT call.

An error will occur if the file name already exists in the
directory. CREATE calls that specify non-multiple file devices
(such as printers, terminals, etc.) work correctly: the CREATE
behaves the same as OPEN. Create cannot be used to make directory
files (see MAKDIR).

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-45

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - I/O Operations

DELETE

ASSEMBLER CALL:

MACHINE CODE:

Delete a file.

OS9 I$DLET

l03F 87

INPUT: (X) = Address of pathlist.

I$DLET

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This service request deletes the file specified by the pathlist.
The file must have write permission attributes (public write if
not" the owner), and reside on a multifile mass storage device.
Attempts to delete devices will result in an error.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-46

DELETE

OS-9 SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

Delete a file

ASSEMBLER CALL: OS9 I$Deletx

MACHINE CODE: 103F 90

INPUT: (X) = Address of pathlist.
(A) = Access mode.

I$DeletX

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This service request deletes the file specified by the pathlist.
The tile must have write permission attributes (public write if
not the owner), and reside on a multi-file mass storage device.
Attempts to delete devices will result in error.

The access mode is used to specify the current working directory
or the current execution directory (but not both) in the absence
of a full pathlist. If the access mode is read, write, or update,
the current data directory is assumed. If the access mode is
execute, the current execution directory is assumed. Note that if
a full path1ist (a pathlist beginning with a n/n) appears, the
access mode is ignored.

ACCESS MODES:

1 = Read
2 = Write
3 = Update (read or write)
4 = Execute

Copyright 1980 Microware Systems Corporation
PAGE 10-46A

OS-9 SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

This page is intentionally blank~

copyright 1980 Microware Systems Corporation
PAGE 10-47A

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Servic~ Request Descriptions - I/O Operations

DETACH

ASSEMBLER CALL:

MACHINE CODE:

Remove a device from the system.

OS9 I$DTCH

103F 81

INPUT: (U) = Address of the device table entry.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I$DTCH

Removes a device from the system device table if not in use by any
other process. The device driver's termination routine is called,
then any permanent storage assiqned to the driver is deallocated.
The device driver and file manager modules associated with the
device are unlinked (and may be destroyed if not in use by another
process.

The I$DTCH service request must be used to un-attach devices that
were attached with the I$ATCH service request. Both of these are
used mainly by IOMAN and are of limited (or no use) to the typical
user. SCFMAN also uses ATTACH/DETACH to setup its second (echo)
device.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-47

OS-9 LEVEL ONE SYSTEM PROGRAMMER' S MANUAL
Service Request Descriptions - I/O Operations

DUP

ASSEMBLER CALL:

MACHINE CODE:

Duplicate a path.

OS9 I$DUP

103F 82

INPUT: (A) = Path number of path.to duplicate.

OUTPUT: (B) = New path number.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I$DUP

Given the number of an existing path, returns another synonymous
path number for the same file or device. SHELL uses this service
request when it redirects I/O.. Service requests using either the
old or new path numbers operate on the same file or device.

NOTE: This only increments the "use count" of a path descriptor
and returns the synonymous path number. The path descriptor is
not copied.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-48

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

GETSTAT

ASSEMBLER CALL:

MACHINE CODE:

Get file/device status.

OS9 I$GSTT

103F 80

INPUT: (A) = Path number.
(B) = Status code.
(Othe~ registers depend upon status code)

OUTPUT: (depends upon status code)

ERROR OUTPUT: (CC) = C bit set.
(6) = Appropriate error code.

I$GSTT
======

This system call is. a Rwild card" call used to handle individual
device parameters that:

a) are not uniform on all devices
b) are highly hardware dependent
c) need to be user-changable

The exact operation of this call depends on the device driver and
file manager associated with the path. A typical use is to
determine a terminal's paramaters for backspace character, delete
character, echo on/off, null padding, paging, etc. It is commonly
used in conjunction with the SETSTAT service request which is used
to set the device operating parameters. Below are the presently
defined function codes for GETSTAT:

NMEMONIC CODE FUNCTION
------- -----~~------------~-------~-------------

SS.OPT 0 Read the 32 byte option section of the
path descriptor.

SS.RDY 1 Test for data ready on SCFMAN-type device.

SS.SIZ 2 Return current file size (on RBFMAN-type
devices).

SS.POS 5 Get current file position.

SS.EOF 6 Test for end of file.

(continued)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-49

05-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - I/O Operations

CODES 7-127 Reserved for future use.

CODES 128-255 These getstat codes and their parameter passing
conventions are user definable (see the sections of this manual on
writing device drivers). The function code and register stack are
passed to the device driver.

Parameter Passing Conventions

The parameter passing conventions for each of these function codes
are given below:

sS.OPT (code 0): Read option section of the path descriptor.

INPUT: (A) = Path number
(B) = Function code 0
(X) = Address of place to put a 32 byte status packet.

OUTPUT: status packet.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This gets tat function reads the option section of the path
descriptor and copies it into the 32 byte area pointed to by the X
register. It is typically used to determine the current settings
for echo, auto line feed, etc. For a complete description or the
status packet, please see the section of this manual on path
descriptors.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-50

05-9 LEVEL ONE SYSTEM PR~1MER'S MANUAL
Service Request Descriptions - I/O Operations

GETSTAT (continued)

SS.RDY (code 1): Test for data available on SCF~1AN supported
devices.

INPUT: (A) = Path number.
(B) = Function code 1

OUTPUT: +===+
Ready Not Ready Error

+=============+==============+==============+
(CC) 1 C bit clear' C bit set C bit set

+-------------+--------------+--------------+
(B) zero ! $F6 (E$NRDY) ! ERROR Code

+-------------+--------------+--------------+

SS.SIZ (code 2): Get current file size (RBFMAN supported
devices only)

INPUT: (A) = Path number.
(B) = Function code 2

OUTPUT: (X) = M.S. 16 bits of current file size.
(U) = L.S. 16 bits of current file size.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

SS.POS (code 5): Get current file position (RBFMAN supported
devices only).

INPUT: (A) = Path number
(B) = FUnction code 5

OUTPUT: (X) = M.S. 16 bits of current file position.
(U) = L.S. 16 bits of current file position.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-51

OS-9 LEVEL ONe SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

GETSTAT (continued)

SS.EOF (code 6): Test for end of file.

INPUT: (A) = Path number.
(B) = Function code 6

OUTPUT: +===+
! Not EOF 1 EOF ! ERROR
+===+

(CC) , C bit Clear' I C bit set C bit set !

+-~~---~--~--+-------------+----~-------+
(B) ! Zero I $D3 (E$EOF) ! Error Code !

+--------------+-------------+------------+

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-52

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

MAKnIR

ASSEMBLER CALL:

MACHINE CODE:

Make a new directory.

059 I$MDIR

103F 85

INPUT: (X) = Address of pathlist.
(B) = Directory attributes.

I$MDIR

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

MnKDTR is the only way a new directory file can be created. It
will create and initialize a new directory as specified by the
pathlist. The new directory file contains no entries, except for
an entry for itself (".") and its parent directory (" •• ")

The caller is made the owner of the directory. MAKDIR does not
return a path number because directory files are not "opened" by
this request (use nPEN to do so). The new directory will
automatically have its "directory" bit set in the access
permission attributes. The remaining attributes are specified by
the byte passed in the B register, which has individual bits
defined as follows:

bit 0 = read permit
bit 1 = write permit
bit 2 = execute permit
bit 3 = public read permit
bit 4 = public write permit
bit 5 = public execute permit
bit 6 = sharable directory
bit 7 = (don't care)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-53

OPEN

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - I/O Operations

Open a path to a file or device.

ASSEMBLER CALL: .OS9 I$OPEN

103F 84 MACHINE CODE:

INPUT: (X) = Address of pathlist.
(A) = Access mode (D S PE PW PR E W R)

I$OPEN

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).
(A) = Path number.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Opens a path to an existing file or device as specified by the
pathlist. A path number is returned which is used in subsequent
service requests to identify the file.

The access mode parameter specifies which subsequent read and/or
write operations are permitted as follows:

1 = read mode
2 = write mode
3 = update mode (both read and write)

Update mode can be slightly slower because pre-reading of sectors
may be required for random access of bytes within sectors. The
access mode must conform to the access permision attributes
associated with the file or device (see CREATE). Only the owner
mav access a file unless the appropriate "public permit" bits are
set.

Files can be opened by several processes (users) simultaneously.
Devices have an attribute that specifies whether or not they are
sharable on an individual basis.

NOTES:

If· the execution bit is set in the access mode, OS-9 will begin
searching for the file in the working execution directory (unless
the pathlist begins with a slash).

The sharable bit (bit 6) in the access mode can not lock other
users out of a file in OS-9 Level I. It is present only for
upward compatability with OS-9 Level II.

Directory files may be read or written if the D bit (bit 7) is set
in the access mode.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-54

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

Read data from a file or device.

ASSEMBLER CALL: OS9 I$READ

103F 89 MACHINE CODE:

INPUT; (X) = Address to store data.
(Y) = Number of bytes to read.
(A) = Path number.

OUTPUT: (Y) = Number of bytes actually read.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I$READ

Reads a specified number of bytes from the path number given. The
path must previously have been opened in READ or UPDATE mode. The
data is returned exactly as read from the file/device without,
additional processing or editing such as backspace. line delete/f,1
end-of-file, etc •.

After all data in a file has been read, the next I$READ service
request will return and end of file error.

NOTES:

The keyboard abort. keyboard interrupt, and end-of-file characters
may be filtered out of the input data on SCFMAN-type devices
unless the corresponding entries in the path descriptor have been
set to zero. It may be des;irable to modify the device descriptor
so that these values in the path descriptor are initialized to
zero when the path is opened.

The number of bytes requested will be read unles.s:

A. An end-of-file occurs
B. An end-of-record occurs (SCFMAN only)
C. An error condition occurs.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE la-55

READLN

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

Read a text line with editing.

ASSEMRLER CALL: OS9 I$RDLN

103F 8B MACHINE CODE:

INPUT: (X) = Address to store data.
(Y) = Maximum number of bytes to read.
(A) = Path number.

OUTPUT: (Y) = Actual number of bytes read.

ERROR OUTPUT: (CC).= C bit set.
(B) = Appropriate error code.

I$RDLN

This system call is the same as "READ" except it reads data from
the input file or device until a carriage return character is
encountered or until the maximum byte count specified is reached,
and' that line editing will occur on SCFMAN-type devices. Line
editing refers to backspace, line delete, echo, automatic line
feed, etc.

SCFMAN requires that the last byte entered be an end-of-record
character (normally carriage return). If more data is entered
that the maximum specified, it will not be accepted and a PD.OVF
character (normally bell) will be echoed.

After all data in a file has been read, the next I$RDLN service
request will return an end of file error.

NOTE: For more information on line editing, see 7.1.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-56

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

SEEK

ASSEMBLER CALL:

MACHINE CODE:

Reposition the logical file pointer.

OS9 I$SEEK

103F 88

INPUT: (A) = Path number.
(X) = M.S. 16 bits of desired file position.
(U) = L.S. 16 bits of desired file position.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I$SEEK

This system call repositions the path's "file pointer"; which is
the 32-bit address of the the next byte in the file to be read
from or written to.

A seek may be performed to any value even if the file is not large
enough. Subsequent WRITEs will automatically expand the file to
the required size (if possible), but READs will return an end-of­
file condition. Note that a SEEK to address zero is the same as a
"rewind" operation.

Seeks to non-random access devices are usually ignored and return
without error.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE la-57

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

SETSTAT

ASSEMBLER CALL:

MACHINE CODE:

Set file/device status.

OS9 I$SSTT

103F 8E

INPUT: (A) = Path number.
(B) = Function code.
(Other registers depend upon the function code).

OUTPUT: (Depends upon the function code).

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I$SSTT

This system call is a "wild card" call used to handle individual
device parameters that:

a) are not uniform on all devices
b) are highly hardware dependant
c) need to be user-chagable

The exact operation of this call depends on the device driver and
file manager associated with the path. A typical use is to set a
terminal's parameters for backspace character, delete character,
echo on/off, null padding, paging etc. It is commonly used in
conjuction with the GETSTAT service request which is used to read
the device's operating parameters etc. Below are the presently
defined function codes:

MNEMONIC CODE FTlNCTION

SS.()PT

SS.SIZ
SS.RST
SS.WRT
SS.FEE
SS.FRZ
SS.SPT
SS.SQD
SS.DCM

$0

$2
$3
$4
$9
$A
$B
$C
$D

Write the 32 byte option section of the
path descriptor
Set the file size (RBF)
Restore head to track zero (RBF)
Write (format) track (RBF)
Issue Form Feed (SCF)
Freeze DO. Information (RBF)
Set Sectors per track (RBF)
Sequence down disk drive (RBF)
Direct command to hard disk controller (RBF)

Codes 128 through 255 their parameter passing conventions are
user definable (see the sections of this manual on writing device
drivers). The function code and register stack are passed to the
device driver.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-58

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S ~~AL
Service Request Descriptions - I/O Operations

SETSTAT (Continued)

SS.OPT (code 0): Write-option section of path descriptor.

INPUT: (A) = Path number
(B) = Function code 0
(X) = Address of a 32 byte status packet

OUTPUT: None.
FUNCTION: This setstat function writes the option section of the
path descriptor from the 32 byte status packet pointed to by the X
register. It is typically used to set the device operating
parameters, such as echo, auto line feed, etc.

SS.SIZ (code 2): Set file size (RBFMAN-type devices)

INPUT: (A) = Path number
(B) = Function code 2
(X) = M.S. 16 bits of desired file size.
(U) = L.S. 16 bits of desired file size.

OUTPUT: None.
FUNCTION: ~his setstat function is used to change the file's size.

-SS.RST (code 3): Restore head to track zero.

INPUT: (A) = Path number
(B) = Function code 3

OUTPUT: NOne
FUNCTION: Home disk head to track zero. Used for formatting and
for error recovery.

SS.WTK (code 4): Write track.

INPUT: (A) = Path number
(B) = Function code 4
(X) = Address of track buffer.
(U) = Track number (L.S.. 8 bits)
(Y) = Side/density

OUTPUT: NOne

Bit BO = SIDE (0 = side zero. 1 = side one)
Bit B1 = DENSITY (0 = single, 1 = double)

FUNCTION: This code causes a format track (most floppy disks)
operation to occur. For hard disks or floppy disks with a "format
entire disk" conunand, this command should format the entire media
only when the trac~ number equals zero.

(C) 1980, 1981. 1982 Microware Systems Corporation
.PAGE 10-59

· OS-9 . EVEL ONE SYSTEM PROGRAMMER f S MANUAL
Service Request Descriptions - I/O Operations

SETSTAT (Continued)

SS.FRZ (code $A): Freeze DO. Information

Input: none
Output: none
Function: Inhibit
DO. xxx variables
may be read.

the reading of identification sector (LSN 0) to
that define disk formats) so non-standard disks

SS.SPT (Code $B): Set Sectors Per Track

Input: X = new s ctors per track
Output: none
Function: Sets a :ifferent number of sectors per track so non­
standard disks rna . be read.

SS.SQD (Code $C): Sequence Down Disk

Input: none
Output: none
Function: Initiat!s power-down sequence' for Winchester or other
hard disks whicr. have sequence-down requirements prior to removal
of power.

SS.DCM (Code $D): Direct Command to Disk Controller

Input: varies
OUtput: varies
Function: Transn .ts a command directly to an intelligent disk
controller for s1 ~cial functions. Parameters and commands are
hardware depender : for specific systems.

(e) 1980 1981, 1982 Microware Systems Corporation
PAGE 10-60

OS-9 LEVEL ONE SYSTEM PROGRAMMER I S MANUAL
Service Request Descriptions - I/O Operations

WRIT'e

ASSEMBLER CALL:

MACHINE CODE:

Write data to a file or device.

OS9 I $WRIT

103F 8A

INPUT: (X) = Address of data to write.
(Y) = Number of bytes to write.
(A) = Path number.

OUTPUT: (Y) = Number of bytes actually written.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I $WRIT

WRITE outputs one or more bytes to a file or device associated
with the path number specified. The path must have been OPENed or
CREAT~ed in the WRITE or UPDATE acc~ss modes.

Data is written to the file or device without processing or.
editing. If data is written past the present end-of-file. the file
is automatically expanded.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-61

WRITELN

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

write a line of text with editing.

ASSEMBLER 'CALL:

MACHINE CODE:

OS9 I$WRLN

103F 8C

INPUT: (X) = Address of data to write.
(Y) = Maximum number of bytes to write.
(A) = Path number.

OUTPUT: (Y) = Actual number of bytes written.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

I~N

This system call is similar to WRITE except it writes data until a
carriage return character is encountered. Line editing is also
activated for' character-oriented devices such as terminals,
printers, etc. The line editing refers to auto line feed, null
padding at end-of-line, etc.

For more information about line editing, see section 7.1.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-62

MODULE
OFFSET

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$OA

SOB

SOC

$00

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix A - Memory Module Diagrams

EXECUTABLE MEMORY MODULE FORMAT

+------------------------------+ ---+--------+---
+-- Sync Bytes ($87CD) --+
I I
+------------------------------+
I I
+-- Module Size (bytes) --+
I I
+------------------------------+
I I
+-- Module Name Offset --+
I I
+---~--------------------------+

Type Language
+------------------------------+

Attributes Revision
+---------~-------------------+

Header parity Check
+------------------------------+
I
+-­
I

Execution Offset
I

--+
I

+------------------------------+
I I +-- Permanent Storage Size --+
I I
+------------------------------+
I
I (Add'l optional header
I extensions located here'
I
I
I
I

• • • •

I Module Body

• •

I object code, constants, etc.
I
I
+------------------------------+
I I
+-- --+

+-­
I

CRC Check ValUe I
--+

I

I
I
I
I
I
I
I
I
I

header
parity

I
I
I
I

---+--

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

module
CRC

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+------------------------------+ ------------+---

(C) 1980, 1981, 1982 Microware Systems Corporation
'Ol!r.p l.'1_1

MODUT.E
OFFSET

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$A

$B

$C

$D

$E

$F

$10

$11

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix A - Memory Module Diagrams

DEVICE DESCRIPTOR MODULE FORMAT

+--~---------~---------------+ ---+--------+--~

+-- Sync Bytes ($87CD) --+
I I
+-----------------------------+
I +-- Module Size (bytes)
I
+-----------------------------+
I +-- Offset to Module Name --+
I I
+-----------------------------+
I $F (TYPE) $1 (LANG)
+--~--------------------------+
I Atributes I Revision I
+-----------------------------+
I Header Parity Check
+-----------------------------+

.1 1
+-- Offset to File Manager --+
1 Name String 1
+-----------------------------+
1 I +-- Offset to Device Driver --+
I Name Str ing I
+-----------------------------+
I Mode Byte
+------,-----------------------+
1 +-- Device Controller --+
I Absolute Physical Address I
+-- (24 bit) --+
1 I

+-----------------------------+
1 Option Table Size I

+-----------------------------+

I
I
1

I
I
I
1

I
1

header
parity

I
I
I
I

---+--

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

module
CRC

I
I
I
I
I
I
I
I
I
I
I
I
I
I

$12,$12+N I (Option Table' 1 I
I I

·1 • • • • • • • • • • • • • • I
I

(Name Strings etc) I
+-----------------------------+
+-- --+
I CRC Check Value I
+--
1

--+
I

I
I
I
I
I
I
I
I
I
I

+-----------------------------+ ------------+---

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE A-2

MODUT.E
OFFSET

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$OA

SOB

SOC

SOD

$E

$010'

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix A - Memory Module Diagrams

CONFIGURATION MODULE FORMAT

+------------------------------+
+-- Sync Bytes ($87CD) --+
I I
+------------------------------+

I
+-- Module Size (bytes) --+
I I
+------------------------------+
+-- Module Name Offset --+
I I
+--- ------------------------+
I $C (TYPE' 0 (LANG) I
~----~~----~--~-~----------+

Attributes Revision I
~--------.--------------------+ Header parity Check I
+-~----------------------~---+

I
+-- Forced Limit of Top --+
I of Free RAM I
+-- --+
I I
+----------~----~-~---------+ I # IRQ Polling Table Entries
+-~---------------------------+

Device Table Entries
+-------------~-~-~---------+
I
+--
I

Offset to Startup
Module Name String

--+
I

~---------------------------+

---+--------+---
I
I
I
I
I
I
I
I
I

header
parity

I
I
I
I

---+--

I
I
I

module
CRC

I
I
I
I
I
I
I
I
I
I
I
I
I

$10 I I
+-- Offset to Default Mass- --+

$11 I Storage Device Name String I
+-~---------------------------+ $12 I

$13

$14-n

+-- OffSet to Bootstrap
I Module Name String

--+
I

+------------------------------+
Name Strings < I

+------------------------------+
+-­
I
+--

CRC Check Value
--+

I
--+

I
~~----~---~---~----~~-~--~-+ ------------+-~-

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE A-3

OS-9 LEVEL ONE SYSTEM ~ROGRAMMER'S MANUAL
Appendix A - Memory Module Diagrams

This Page Intentionally Left Blank

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE A-4

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix B - Standard Floppy Disk Formats

SINGLE DENSITY FLOPPY DISK FORMAT

SIZE 5" 8"
DENSITY SINGLE SINGLE
TRACKS 35 77
SECTORS/TRACK 10 16
BYTES/TRACK 3125 5208
(UNFORMATTED)

FORMAT FIELD # BYTES VALUE #BYTES VALUE
(DEC) (HEX) (DEC) (HEX)

HEADER 30 FF 30 FF
(ONrE PER TRACK) 6 00 6 00

1 FC 1 FC
12 FF 12 FF

SECTOR 6 00 6 00
(RF.PEATED N TIMES)

1 FE 1 FE
1 (TRK #) 1 (TRK #)
1 (SIDE #) 1 (SIDE #)
1 (SECT #) 1 (SECT #)
1 (BYTCNT) 1 (BYTCNT)
2 (CRC) 2 (CRC)

10 FF 10 FF
6 00 6 00
1 FB 1 FB

256 (DATA) 256 (DATA)
2 (CRC) 2 (CRC)

10 FF 10 FF

TRAILER 96 FF 391 FF
(ONrEPER TRACK)

BYTES/SECTOR 256 256
(FORMA'rl'ED)

BYTES/TRACK 2560 4096
(FORMATTED)

BYTES/DISK 89,600 315,392
(FORMATTED'

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE B-1

SIZE
DENSITY
#TRACKS

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix B - Standard Floppy Disk Formats

DOUBLE DENSITY FLOPPY DISK FORMAT

5"
DOUBLE
35
16

8"
DOUBLE
77
28 # SECTORS/TRACK

BYTES/TRACK
(UNFORMATTED)

6250 10,416

FORMAT BYTES VALUE BYTES VALUE
(DEC) (HEX) (DEC) (HEX)

HEADER 80 4E 80 4E
(ONCE PER TRACK) 12 00 12 00

3 F5 (AI) 3 F5
1 FC 1 FC

32 4E 32 .4E

SECTOR 12 00 12 00
(REPEATED N TIMES) 3 F5 3 F5

1 FE 1 FE
1 (TRK #) 1 (TRK #)
1 (SIDE #) 1 (F;IDE #)
1 (SECT #) 1 (SECT #)
1 (BYTCNT) 1 (BYTCNT)
2 (CRC) 2 (CRC)

22 4E 22 4E
12 00 12 00

3 F5 (AJ) 3 F5 (AI)
1 FB 1 FB

256 (DATA) 256 (DATA)
2 (CRC) 2 (CRe)

22 4E 22 4E

TRAILER 682 4E 768 4E
(ONCE PER TRACK)

BYTES/SECTOR 256 256
(FORMATTED)

BYTES/TRACK 4096 7168
(FORMATTED)

BYTES/DISK 141.824 548,864
(FORMATTED)

(e) 1980, 1981. 1982 Microware Systems Corporation
PAGE B-2

User Mode

Code

OS-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

Service Request Summary

Service Requests

Mnemonic Function Page
--
103F 00
103F 01
103F 02
103F 03
103F 04
103F 05
103F 06
103F 07
103F 08
103F 09
103F OA
103F OB
103F OC
103F OD
103F OE
103F OF
103F 10
103F 11
103F 12
103F 13
103F 14
103F 15
103F 16
103F 17
103F 18
103F 19
103F lA
103F lB
103F lC
103F lD

F$Link Link to memory module · • • •
F$Load Load module from mass-storage
F$UnLink Unlink module • • • • · • • •
F$Fork Start new process • · • • • · F$Wait Wait for signal • • • • • • •
F$Chain Chain process to new module •
F$Exit Terminate Process • • • • • •
F$Mem Set memory size • • • • • • •
F$Send Send signal to process • • • •
F$Icpt Set signal intercept trap · · F$Sleep Suspend process • • • • • • · F$SSpd Not implemented
F$ID Return process ID · • · · • · F$SPrior Set process priority • • • • •
F$SSWI Set software interrupt vector
F$PErr Print error message • • • • •
F$PrsNam Parse pathlist name • • • • •
F$CmpNam Compare two names • • · .. · •
F$SchBit Search a bit map • • • • • • •
F$AllBit Allocate in a bit map · • • · F$DelBit Deallocate in a bit map • · •
F$Time Return current time • · · • •
F$STime Set current time • • · • • • •
F$CRC Generate CRC • • • • • • • • · F$GPrDsc Get Process Descriptor Copy •
F$GBlkMap Get System Block Map Copy · · F$GModDr Get Module Directory Copy · •
F$CpyMem Copy External Memory • • • • •
F$SUser Set User ID number · • • • • · F$UnLoad Unlink module by name · • · ·

Copyright 1980 Microware Systems Corporation
PAGE C-l

• · • 10-14
• • • 10-15
• • • 10-28
• • • 10-10
• • • 10-29
• • • 10-4
• • • 10-9
• • • 10-16
• • • 10-20
• • • 10-12
• • • 10-21

• • • 10-13
• • · 10-22
• • • 10-25
• • • 10-17
• • • 10-18
• e • 10-6
e • • 10-19
• • • 10-3
• • • 10-8
• · • 10-27
• • • 10-26
• • • 10-7

· • • E-19
• • • E-17
• • • E-18
• • • E-7
• • • E-34
• • • E-35

OS-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

System.Mode Privileqed Service Requests

Code Mnemonic Function Paqe
--~-~--~----~---~---~--------------~----------~-------------------103F 28
103F 29
103F 2A
103F 2B
103F 2C
103F 2D
103F-2E
103F 2F
103F 30
103F 31
103F 32
103F 33
103F 34
103F 35
103F 36
103F 37
103F 38
103F 39
103F 3A
103F 3B
103F 3C
103F 3D
103F 3E
103F 3F
103F 40
103F 41
103F 42
103F 43
103F 44
103F 45
103F 46
103F 47
103F 48
103F 49
103F 4A
103F 4B
103F 4C
103F 4D
103F 4E

F$SRqMem
F$SRtMem
F$IRQ
F$IOQu
F$AProc
F$NProc
F$VModu1 _
F$Find64
F$Al164
F$Ret64
F$SSVC*
F$IODe1
F$SLink
F$Boot
F$BtMem
F-$GProcP
F$Move
F$Al1RAM
F$AI1Imq
F$De1Img
F$Setlmg
F$FreeLB
F$FreeHB
F$AI1Tsk
F$DelTsk
F$SetTsk
F$ResTsk
F$Re1Tsk
F$DATLoq
F$DATTmp
F$LDAXY
F$LDAXYP
F$LDDDXY
F$LDABX
F$STABX
F$AI1Prc
F$DelPrc
F$ELink
F$FModul

System memory request • • • • • • • 10-38
System memory return • • • • • • • • 10-39
Enter IRQ polling table • • • • • • 10-35
Enter I/O queue • • • • • • • • • • 10-34
Enter active process queue • • • • • 10-31
Start next process • • • • • • • • • 10-36
Validate module • • • • • • • • • • 10-40
Find 64 byte memory block • • • • • 10-32
Allocate a 64 byte memory block •• 10-30
Return a 64 byte memory block • • • 10-37
Install a function request • • • • • 10-23
Delete I/O module • • • • • • • • • 10-33
System Link •••••••••••• E-30
Bocitstrap System • • • • • • • • • • E-5
Bootstrap Memory Request • • • • • • E-6
Get Process ptr •••••••••• E-20
Move data to different address space E-25

- Allocate RAM blocks -. • • • • • • • E-3
Allocate Image RAM blocks • • • • • E-1
Deallocate Image RAM blocks • • • • E-IO
Set Process OAT image • • • • • • • E-28
Get Free Low Block • • • • • • • • • E-16
Get Free High Block •••••• • • E-15
Allocate Process Task number • • • • E-4
Deallocate Process Task number • • • E-12
Set Process Task DAT registers • • • E-29
Reserve Task number •••••••• E-27
Release Task number • • • • • • • • E-26
Convert OAT Blk/Off to Logical Addr E-8
Make temporary OAT image • • • • • • E-9
Load A [X, [Y]] • • • • • • • • • • • E-22
Load A [X+,[Y]] •••• ~ ••••• E-23
Load 0 [D+X,[y]] •••••••••• E-24
Load A from O,X in task B ••••• E-21
Store A at O,X in task B •••••• E-33
Allocate Process Descriptor •••• E-2
Deallocate Process Descriptor • • • E-ll
Link using Module Directory Entry • E-13
Find Module Directory Entry • • • • E-14

*NOTE: F$SSVC is a user mode function, although its code > $27

Copyright 1980 Microware Systems Corporation
PAGE C-2

INPUT/OUTPUT

CODE

OS-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

SERVICE REQUESTS

MNEMONIC FUNCTION PAGE
--
103F 80 I$Attach
103F 81 I$Detach
103F 82 I$Dup
103F 83 I$Create
103F 84 I$Open
103F 85 I$MakDir
103F 86 I$ChgDir
103F 87 I$Delete
103F 88 I$Seek
103F 89 I$Read
103F 8A I$Write
103F 8B I$ReadLn
103F 8C I$WritLn
103F 8D I$GetStt
103F 8E I$SetStt
103F 8F I$Close
103F 90 I$Deletx

STANDARD I/O PATHS
----------~-------

o = Standard Input
1 = Standard Output

Attach I/O device • • · • • • •
Detach I/O device • • • • • • •
Duplicate path • • • • • • • • •
Create a new file • • • • • • •
Open a path to an existing file
Make a directory file • • • • •
Change working directory · • · •
Delete a file • • • • • • • • •
Reposition file pointer • • • •
Read data • • • • • • • • • • •
Write data • • • • • • • • • • •
Read line • • • • • • • • • • •
Write line • • • • • • • • • • •
Get device status • • • • • • •
Set device status • • · • • • •
Close a path • • • • • • • • • •
Delete a file • • • • • • • • •

FILE ACCESS CODES

READ = $01
WRITE = $02

2 = Standard Error output UPDATE = READ + WRITE

MODULE TYPES

$1 = Program
$2 = Subroutine Module
$3 = Multi-Module
$4 = Data
$C = System Module
$D = File Manager
$E = Device Driver
$F = Device Descriptor

EXEC = $04
PREAD = $08
PWRIT = $10
PEXEC = $20
SHARE = $40
DIR = $80

MODULE LANGUAGES

$0 = Data
$1 = 6809 Object code
$2 =BASIC09 I-Code
$3 = pascal P-Code
$4 = Cobol I-code

MODULE ATTRIBUTES

$8 = Reentrant

Copyright 1980 Microware Systems Corporation
PAGE C-3

• • 10-41
• • 10-47
• • 10-48
• • 10-44
• • 10-54
• • 10-53

· • 10-42
• • 10-46
• • 10-57
• • 10-55
• • 10-61
• • 10-56
• • 10-62 · .. 10-49
• • la-58
• • 10~43
• • 1 (}-46A

OS-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

This page is intentionally blank.

Copyright 1980 Microware Systems Corporation
PAGE C-4

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix 0 - Error Codes

-OS-9 ERROR CODES

The error codes are shown in both hexadecimal (first column) and
decimal (second column). Error codes other than those listed are
generated by programming languages or user programs.

HEX DEC

$CS 200

$C9 -201

$CA 202

$CB 203

$CC 204

$CO 205

$CE 206

$CF 207

$00 2ns

$01 209

$D2 210

$03 211

$04 212

$05 213

$D6 214

PATH TABLE FULL - The file cannot be opened because
the system path table is currently full.

ILLEGAL PATH NUMBER - Number too large or for
non-existant path.

INTERRUPT POLLING TABLE FULL

ILLEGAL MODE: attempt to perform I/O function of which the
device or file is incapable.

DEVlrE TABLE FULL - Can't add another device.

ILLEGAL MODULE HEADER - module not loaded because
sync code, header parity, or CRC is incorrect.

MODULE DIRECTORY FULL - Can't add another module

MEMORY FULL - Level One: not enough contiguous RAM
Level Two: process address space full

ILLEGAL SERVICE REQTTEST - System call had an
illegal code number.

MODULE BUSY - non-sharable module is in use by
another process.

BOUNDARY ERROR - Memory allocation or deallocation
request not on page boundary.

END OF FILE - End of file encountered on read.

NOT YOUR MEMORY - attempted to deallocate memory
not previously assiqned.

NON-EXT STING SEGMENT - device has damaged file
structure.

FILE NOT ACCESSABLE: file attributes do not permit
requested.

(C) 19S0. 19S1. 1982 Microware Systems Corporation
Page 0-1

its

free.

access

OS-9 LEVEL ONE SYSTEM PROGRAMr-1ER' S MANUAL
Appendix D - Error Codes

$D7 215 BAD PATH NAME - syntax error in pathlist (illegal char­
acter, etc.).

$08 216 FILE NOT FOUND - can find pathlist specified.

$D9 217 SEGMENT LIST FULL - file is too fragmented to
be expanded further.

$DA 218 FIT.E ALREADY EXTSTS - file name already appears
in current directory.

$DB 219 ILLEGAL BIl')CK ADDRESS - device's file structure
has been damaged.

$DC 220 ILLEGAL BLOCK SIZE - device's file structure
has been damaged.

$DD 221 MODULE NOT FOUND - request for link to module
not found in directory.

$DE 222 SECTOR OUT OF RANGE - device file structure
damaged or incorrectly formatted.

$DF 223 SUICIDE ATTEMPT - request to return memory
where your stack is located.

$EO 224 ILLEGAL PROCESS ID NUMBER - no such process exists.

$E2 226 NO CHILDREN - can't wait because process
has no children.

$E3 227 ILLEGAL SWI CODE - must be 1 to 3.

$E4 ~28 KEYBOARD ABORT - process aborted by
signal code 2.

$ES 229 PROCESS TABLE FULL - can't fork now.

$E6 230 ILLEGAL PARAMETER AREA - high and low bounds
passed in fork call are incorrect.

$E7 231 KNOWN MODULE - for internal use only

$E8 232 INCORRECT CRC - module has bad CRC value

$E9 233 SIGNAL ERROR - receiving process has previous
unprocessed siqnal pending.

$EA 234 NON-EXT STaNT MODULE - unable to locate module

(C) 1980, 1981. 1982 Microware Systems Corporation
Page D-2

$EB 235

$EC 236

$ED 237

$EE 238

$EF 239

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix D - Error Codes

BAD NAME - illegal name syntax

BAD HEADER - module header parity incorrect

RAM FULL - no free system RAM available at this

BAD PROCESS ID - incorrect process ID number

NO TASK NUMBER AVAILABLE - all task numbers in

DEVICE DRIVER/HARDWARE ERRORS

time

use

The following erro~ codes are generated by I/O device drivers, and
are somewhat hardware dependent. Consult manufacturer's hardware
manual for more details.

$FO 240

$Fl 241

$F2 242

$F3 243

$F4 244

$F5 ?45

$F6 246

$F7 247

$F8 248

$F9 249

$FA 250

UNIT ERROR -device unit does not exist.

SF.CTOR ERROR - sector number is out of range.

WRITE PROTECT - device is write protected.

CRC ERROR - CRC error on read or write verify.

READ ERROR - Data transfer error during disk read operat­
ion, or SCF (terminal) input buffer overrun.

WRITE ERROR - hardware error during disk
write operation.

NOT READY - device has "not ready" status.

SEEK ERROR - physical seek tonon-existant sector.

MEDIA FULL - insufficient free space on media.

WRONG TYPE - attempt to read incompatible media (i.e.
attempt to read double-side disk on single-side drive)

DEVICE BUSY - non-sharable device is in use

(C) 1980. 1981· 1982 Microware Systems Corporation
Paqe D-3

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix .. D -_Error Codes

This.Page Intentionally Left Blank

(C) 1980, 1981, 1982 Microware Systems Corporation
page D-4

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$3A* F$AllImg Allocate Image RAM blocks

ASSEMBLER CALL: OS9 F$AllImg

MACHINE CODE: l03F 3A

INPUT: (A) = Beginning block number
(B) = Number of blocks
(X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$Alllmg

Allocates RAM blocks for process OAT image. The blocks do not
need to be contiguous.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-l

08-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$4B* F$AllPrc Allocate Process Descriptor

ASSEMBLER CALL: OS9 F$AllPrc

MACHINE CODE: l03F 4B

INPUT: none

OUTPUT: (U) = Process Descriptor pointer

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Allocates and initializes a S12-byte process descriptor.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-2

F$AllPrc

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$39* F$AllRAM Allocate RAM blocks

ASSEMBLER CALL: OS9 F$AllRAM

MACHINE CODE: l03F 39

INPUT: (B) = Desired block count

OUTPUT: (D) = Beginning RAM block number

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$AllRAM

Searches the Memory Block map for the desired number of contiguous
free RAM blocks.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-3

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$3F* F$AllTsk Allocate Process Task number

ASSEMBLER CALL: OS9 F$AllTsk

MACHINE CODE: l03F 3F

INPUT: (X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. ,
(B) = Appropriate error code.

Allocates a Task number for the given process.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-4

F$AllTsk

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$35* F$Boot Bootstrap System

ASSEMBLER CALL: OS9 F$Boot

MACHINE CODE: l03F 35

INPUT: none

OUTPUT: none

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate.error code.

F$Boot

Links to the module named nBoot n or as specified in the INIT module7
calls linked module7 and expects the return of a pointer and size of
an area which is then searched for new modules.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-5

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$36* F$BtMem Bootstrap Memory Request

ASSEMBLER CALL: OS9 F$BtMem

MACHINE CODE: l03F 36

INPUT: (D) = Byte count requested.

OUTPUT: (D) = Byte count granted.
(U) = pointer to memory allocated.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$BtMen

Allocates requested memory (rounded up to nearest block) as
contiquous memory in -the system's address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-6

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$lB F$CpyMem Copy External Memory

ASSEMBLER CALL: l03F lB F$CpyMem

MACHINE CODE: l03F lB

INPUT: (D)=Starting Memory Block number
(X)=Offset in block to begin copy
(Y)=Byte count
(U)=Caller's destination buffer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$CpyMem

Reads external memory into the user's buffer for inspection. Any
memory in the .system may be viewed in this way.

Copyright 1982 Microware Systems Corporation
Page E-7

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Reques·ts

$44* F$DATLog Convert DAT Block/Offset to Logical Addr

ASSEMBLER CALL: OS9 F$DATLog

MACHINE CODE: l03F 44

INPUT: (B) = OAT image offset
(X) = Block offset

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$DATLog

Converts a OAT. image block number and block offset to its
equivalent logical address.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-8

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$45* F$DATTmp Make temporary DAT image

ASSEMBLER CALL: OS9 F$DATTmp

MACHINE CODE: l03F 45

INPUT: (D) = Block number

OUTPUT: (Y) = DAT image pointer

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$DATTmp

Builds a temporary DAT image to access the given memory b19ck.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-9

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$3B* F$DelImg Deallocate Image RAM blocks

ASSEMBLER CALL: OS9 F$DelImg

MACHINE CODE: l03F 3B

INPUT: (A) = Beginning block number
(B) = Block count
(X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Deallocates memory from the process' address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-10

F$DelImg

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$4C* F$DelPrc Deallocate Process Descriptor

ASSEMBLER CALL: OS9 F$DelPrc

MACHINE CODE: l03F 4C

INPUT: CA) = Process ID.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$DelPrc

Returns process descriptor memory to system free memory pool.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-ll

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$40* F$DelTsk Deallocate Process Task number

ASSEMBLER CALL: OS9 F$DelTsk

MACHINE CODE: 103F 40

INPUT: (X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Releases the Task number in use by the process.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-12

F$DelTsk

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$4D* F$ELink Link using Module Directory Entry

ASSEMBLER CALL: OS9 F$ELink

MACHINE CODE: l03F 4D

INPUT: (B) = Module type.
(X) = Pointer to module directory entry.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$ELink

Performs a "Link" given a pointer to a module directory entry. Note
that this call differs from F$Link in that a pointer to the module
directory entry is supplied rather than a pointer to a module name.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-13

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$4E* F$FModul Find Module Directory Entry

ASSEMBLER CALL: OS9 F$FModul

MACHINE CODE: l03F 4E

INPUT: (A) = Module type.
(X) = Pointer to name string.
(Y) = OAT image pOinter (for name).

OUTPUT: (A) = Module type.
(B) = Module revision.
(X) = Updated past name string.
(U) = Module directory entry pointer.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$FMOdul

This call returns a pointer to the module directory entry given the
module name.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-14

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$3E* F$FreeHB Get Free High Block

ASSEMBLER CALL: OS9 F$FreeHB

MACHINE CODE: l03F 3E

INPUT: (B) = Block count
(Y) = DAT image pointer

OUTPUT: (A) = High block number

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$FreeHB

Searches the DAT image for the highest free block of given size.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

copyright 1982 Microware Systems Corporation
Page E-1S

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Reque&ts

$30* F$FreeLB Get Free Low Block

ASSEMBLER CALL: OS9 F$FreeLB

MACHINE CODE: l03F 3D

INPUT: (B) = Block count
(Y) = OAT image pointer

OUTPUT: (A) = Low block number

ERROR OUTPUT: (ce) = C bit set.
(B) = Appropriate error code.

F$FreeLB

Searches the OAT image for the lowest free block of given size.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-16

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$19 F$GBlkMp get System Block Map copy

ASSEMBLER CALL: OS9 F$GBlkMp

MACHINE CODE: 103F 19

INPUT: (X) = 1024 byte buffer pointer.

F$GBlkMp

OUTPUT: (D) = Number of bytes per block (MMU block size dependent).
(Y) = Size of system's memory block map.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Copies the system's memory block map into the user's buffer for
inspection.

Copyright 1982 Microware Systems Corporation
Page E-17

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level TwO System Service Requests

$lA F$GModDr get Module~irectory copy

ASSEMBLER CALL: 089 F$GModDr

MACHINE CODE: 103F lA

INPUT: (X) =2048 byte buffer pointer

ERROR OUTPUT: (ec) = C bit set.
(B) = Appropriate error code.

F$GModDr

Copies the system's module directory into the user's buffer for
inspection.

Copyright 1982 Microware Systems Corporation
Page E-18

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$18 F$GPrDsc get Process Descriptor Copy

ASSEMBLER CALL: OS9 F$GPrDsc

MACHINE CODE: l03F 18

INPUT: (A) = Requested process ID.
(X) = 512 byte buffer pointer.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$GPrDsc

Copies a process descriptor into the calling process' buffer for
inspection. There is no way to change data in a process-descriptor.

Copyright 1982 Microware Systems Corporation
Page E-19

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level TWo System Service Requests

$37* F$GProcP Get Process pointer

ASSEMBLER CALL: 059 F$GProcP

MACHINE CODE: 103F 37

INPUT: (A) = Process ID
OUTPUT: (Y) = Pointer to Process Descriptor

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$GProcP

Translates a process ID number to the address of its process
descriptor in the system address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-20

OS~~.LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appena~x E - Level Two System Service Requests

$49* F$LDABX Load A from O,X in task B

ASSEMBLER CALL: OS9 F$LDABX

MACHINE CODE: l03F 49

INPUT: (B) = Task number
(X) = Data pointer

OUTPUT: (A) = Data byte at O,X in task's address space

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F.$LDABX

One byte is
given task's
byte from
routine.

returned from the logical address in (X) in the
address space. This is typically used to get one

the current process's memory in a system state

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

copyright 1982 Microware systems Corporation
Page E-21

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$46* F$LDAXY Load A [X, [Yl]

ASSEMBLER CALL: OS9 F$LDAXY

MACHINE CODE: l03F 46

INPUT: (X) = Block offset
(Y) = DAT image pOinter

OUTPUT: (A) = data byte at (X) offset of (Y)

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$LDAXY

Returns one data byte in the memory block specified by the DAT
image in (Y), offset by (X).

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-22

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$47* F$LDAXYP Load A [X+, [Y11

ASSEMBLER CALL: OS9 F$LDAXYP

MACHINE CODE:- l03F 47

INPUT: (X) = Block offset
(Y) = DAT image pointer

OUTPUT: (A) = Data byte at (X) offset of (Y)
(X) = incremented by one

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$LDAXYP

Similar to the assembly
refers to an offset in

instruction
the memory

nLDA ,X+n, except that (X)
block descr~bed by the DAT

image at (Y).

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

copyright 1982 Microware Systems Corporation
Page E-23

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$48* F$LDDDXY Load D [D+X, [YJ J

. ASSEMBLER CALL: OS9 F$LDDDXY

MACHINE CODE: l03F 48

INPUT: (D) = Offset to offset
(X) = Offset
(Y) = DAT image pointer

OUTPUT: (D) = bytes addressed by [D+X,YJ

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$LDDDXY

Loads two bytes from the memory block described by the DAT image
pOinted to by (Y). The bytes loaded are at the offset (D+X) in
the memory block.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-24

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$38* F$Move Move Data (low bound first)

ASSEMBLER CALL: OS9 F$Move

MACHINE CODE: l03F 38

INPUT: (A) = Source 'l'ask number
(B) = Destination Task number
(X) = Source pointer
(Y) = Byte count
(U) = Destination pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$Move

Moves data bytes from one address space to another, usually from
System's to User's, or vice-versa.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

copyright 1982 Microware Systems Corporation
Page E-25

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$43* F$RelTsk Release Task number
I

ASSEMBLER CALL: OS9 F$RelTsk

MACHINE CODE: l03F 43

INPUT: (B) = Task number

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Releases the specified DAT Task number.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-26

F$RelTsk

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$42* F$ResTsk Reserve Task number

ASSEMBLER CALL: OS9 F$ResTsk

MACHINE CODE: 103F 42

INPUT: none

OUTPUT: (B) = Task number

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Finds a free OAT task number.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems. Corporation
Page E-27

F$ResTsk

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$3C* F$SetImg Set Process DAT Image

ASSEMBLER CALL: OS9 F$SetImg

MACHINE

INPUT:

OUTPUT:

CODE:

(A) =
(B) =
(X) =
(U) =
None.

l03F 3C

Beginning image block number
Block count
Process Descriptor pointer
New image pOinter

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Copies a DAT image into the process descriptor.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-28

F$SetImg

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$41* F$SetTsk Set Process Task DAT registers

ASSEMBLER CALL: OS9 F$SetTsk

MACHINE CODE: 103F 41

INPUT: (X) = Process Descriptor pointer '

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Sets the process Task DAT registers.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-29

F$SetTsk

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$34* F$SLink System Link

ASSEMBLER CALL: OS9 F$SLink

MACHINE CODE: l03F 34

INPUT: (A) = Module Type.
(X) = Module Name string pointer.
(Y) = Name string DAT image pointer.

OUTPUT: (A) = Module Type.
(B) = Module Revision.
(X) = Updated Name string pointer.
(Y) = Module Entry point.
(U) = Module pointer.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$SLink

Links a module whose name is outside the current (system) process'
address space into the Address space that contains its name.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE -SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-30

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$28* F$SRqMem System Memory Request

ASSEMBLER CALL: OS9 F$SRqMem

MACHINE CODE: 103F 28

INPUT: (D) = byte count of requested memory

OUTPUT: (D) = byte count of memory granted
(U) = pointer to memory block allocated

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$SRqMem

Allocates the requested memory (rounded up to the nearest page) in
the system's address space. Useful for allocating I/O buffers and
other semi-permanent system memory.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE" REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-31

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$29* F$SRtMem System Memory Return

ASSEMBLER CALL: OS9 F$SRtMem

MACHINE CODE: l03F 29

INPUT: (D) = Byte count of memory being returned
(U) = Address of memory block being returned

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$SRtMem

Returns system memory (e.g., memory in the system address space)
after it is no longer needed.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-32

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$4A* F$STABX Store A at O,X in task B

ASSEMBLER CALL: OS9 F$STABX

MACHINE CODE: l03F 4A

INPUT: (A) = Data byte to store in Task's address space
(B) = Task number

F$STABX

(X) = Logical address in task's address space to store

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This is similar to the assembly instruction nSTA o,Xn, except
that (X) refers to an address in the given task's address space
rather than the curren~ address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-33

05-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$lC F$SUser Set User ID number

ASSEMBLER CALL: OS9 F$User

MACHINE CODE: l03F lC

INPUT: (Y) = desired User ID number

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$SUser

Alters the current user ID to that specified, without error
checking.

Copyright 1982 Microware Systems Corporation
Page E-34

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$ID F$UnLoad Unlink Module by name

ASSEMBLER CALL: OS9 F$UnLoad

MACHINE CODE: I03F ID

INPUT: (A) = Module Type
(X) = Module Name pointer

OUTPUT: None

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

F$UnLoad

Locates the module in the module directory, decrements its link
count, and removes it from the directory if the count reaches zero.
Note that this call differs from F$UnLink in that the a pointer to
the module name is supplied rather than the address of the module
header.

Copyright 1982 Microware Systems Corporation
Page E-35

DELETE

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

Delete a file

ASSEMBLER CALL: OS9 I$Deletx

MACHINE CODE: 103F 90

INPUT: (X) = Address of pathlist.
CA) = Access mode.

I$DeletX

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This service request deletes the file specified by the pathlist.
The tile must have write permission attributes (public write if
not the owner), and reside on a multi-file mass storage device.
Attempts to delete devices will result in error.

The access mode is used to specify the current working directory
or the current execution directory (but not both) in the absence
of a full pathlist. If the access mode is read, write, or update,
the current data directory is assumed. If the access mode is
execute, the current execution directory is assumed. Note that if
a full pathlist (a pathlist beginning with a "/") appears, the
access mode is ignored. .

ACCESS MODES:

1 = Read
2 = Write
3 = Update (read or write)
4 = Execute

Copyright 1982 Microware Systems Corporation
Page E-36

