C

0S-9 OPERATING SYSTEM

SYSTEM PROGRAMMER'S MANUAL

0S-9 OPERATING SYSTEM

SYSTEM PROGRAMMER'S MANUAL

Copyright 1980, 1982 Microware Systems Corporation
All Rights Reserved.

This manual, the 0S-9 Program, and any information contained herein
is the copyrighted property of Microware Systems Corporation.
Reproduction of this manual in part or whole by anv means,
electrical or otherwise, is prohibited, except by written permission:
from Microware Systems Corporation.

The information contained herein is believed to be accurate as of
the date of publication, however, Microware will not be liable for
any damages, including indirect or consequential, related to use of
the 0S-9 Operating System or of this documentation. The information
contained herein is subject to change without notice.

Revision F-1, January 1983

0S-9 Level One System Programmers Manual
Errata Summary

PAGE 4-4: Top of page .
The four least significant bits of byte 6 describe the
language type as listed below:

Data (non-executable)
6809 object code
BASIC09 I-code
PASCAL I-code

C I-code

COBOL I-code

FORTRAN I-code

AN WNDHEHO

PAGE 4-5: Top of page
first line should read:

"user-defined" types having type codes of 5 through B. They
have four more bytes in their headers defined as follows:

PAGE 6-3: Second paragraph
third sentence should read:

There are a maximum of 2048 bits in the map, ...

PAGES 6-17 and 7-13: Top of page
INPUT should read:

INPUT: (U)
(Y)
(B)

PAGE 10-7: add following lines to discussion:
The value of the CRC accumulator after calculation must
be complemented before being stored in the module.

Address of the device static storage area
Address of the path descriptor
Status code

When checking a -module CRC, the CRC calculation should be
performed on the entire module (including the module CRC).
The CRC accumulator will contain the CRC constant bytes

if the module CRC is correct.

PAGE 10-24: Insert the following lines after the register diagram:
NOTE: The RSCC and RSB 1locations are set by the 0S-9
service routine dispatcher. The user service routine should
set CC and B to the appropriate values and return with RTS.
The service dispatcher will then set the values in the
user's register stack.

PAGE 10-24: Replace all lines afterl"Function request codes..."

with:

Function request codes are broken into the two catagories
as shown below:

$00 - $27 User mode service request codes.

$29 - $37 Privileged system mode service request codes.
ANY service request code with the sign bit
set will be placed in the system table only.

NOTE: These catagories are defined by convention and are not
enforced by 0S-9., Any service code can be made priv-
ileged by setting the sign bit.

Codes $23-$27 and $36-$37 will not be used by MICROWARE and
are free for user definition.

PAGE 10-48: DUP output should be:

OUTPUT: (A) = New path number.

PAGE 10-49: GETSTAT registers should»be.

INPUT: (A) = Path number
(B) = Function code ‘
(cher registers depend .on function code)

OUTPUT: (depends upon function code)

PAGE 10-46A: The following page describes the new system call

ISDeletX.

LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Table of Contents

CHAPTER 1 - INTRODUCTION

1.0 Introduction 1-1
1.1 History and Design Philosophy 1-1
1.2 System Hardware Requirements 1-3
SFCTION 2 - SYSTEM ORGANIZATION

2.0 Basic System Organization 2-1

SECTION 3 - THE KERNEL

3.0 Basic Functions of the Kernel 3-1
3.1 Kernel Service Request Processing 3-2
3.2 Kernel Memory Management Functions 3-3
3.3 Memory Utilization 3-3
3.4 Overview of Multiprogramming 3-5
3.5 Process Creation 3-5
3.6 Process States 3-6

3.6.0 The Active State 3-6

3.6.1 The Wait State 3-6

2.6.2 The Sleep State 3-6
3.7 Execution Scheduling 3-7
3.8 Signals 3-8
3.9 Interrupt Processing 3-9

3.9.0 Physical Interrupt Processing 3-9

3.9.1 Logical Interrupt Processing 3-11

SECTION 4 - MEMORY MODULES

4.0 Memory Modules

4,1 Memory Module Structure

4.2 Module Header Definitions
4.2.0 Type/Language Byte
4.2.1 Attribute/Revision Byte

.3 Typed Module Headers

.4 ROMed Memory Modules

oh.bsb-?uh.hoh
N R WWN

4
4
SECTTON 5 - UNIFIED INPUT/OUTPIIT SYSTEM

5.0 The Unified I/0 Systems 5-1
5.1 The Input/Output Manager (IOMAN\ 5-2
5.2 File Managers 5-2
5.3 Device Driver Modules 5-3
5.4 Device Descriptor Modules 5-4
5.5 Path Descriptors 5-6

(Continued)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 0-1

LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Table of Contents

SECTION 6 - RANDOM BLOCK FILE MANAGER (RBFMAN)

6.0 Random Block File Manager

6.1 Logical and pPhysical Disk Organlzation
6.1.0 Identification Sector .

6.1.1 Disk Allocation Map Sector

6.1.2 File Descriptor Sectors

6.1.3 Directory Files

RBFMAN Definitions of the Path Descriptor

RBF Device Descriptor Modules

O\O\O\O\ORO\O\O\
CONUTLE=WMNDN

Adapting 0S-9 To A New System 9-1
Adapting 0S-9 to Disk-Based Systems 9-2
Adapting 0S-9 To ROM-Based systems 9-3
9-4
9-5

6.2

6.3

6.4 RBF Device Driver Modules 6-10
6.5 RBFMAN Device Drivers 6-13
SECTION 7 - SEQUENTIAL CHARACTER FILE MANAGER (SCFMAN)
7.0 Sequential Character File Manager 7-1
7.1 SCFMAN Line Editing Functions 7-2
7.2 SCFMAN Definitions of the Path Descriptor 7-4
7.3 SCF Device Descriptor Modules 7-6
7.4 SCFMAN Device Driver Storage Definitions 7-7
7.5 SCFMAN Device Driver Subroutines 7-9
SECTION 8 - ASSEMBLY LANGAUGE PROGRAMMING TECHNIQUES
8.0 Assembly Language Programming Techniques 8-1
8.1 How To Write Position-Independent-Code 8-1
8.2 Addressing Variables and Data Structures 8-2
8.3 Stack Requirements 8-2
8.4 Interrupt Masks . 8=-2
8.5 Using Standard I/O Paths 8-3
8.6 Writing Interrupt Driven Device Drivers 8-4
8.7 A Sample Program 8-5
SEC

9.0

9.1

9.2

9.3 Adapting the Initialization Module
9.4 Adapting the Sysgo Module

SECTION 10 - OS-9 SERVICE REQUEST DESCRIPTIONS

10.0 Service Request Descriptions 10-1
10.1 User Mode Service Requests 10-3
10.2 System Mode Service Requests 10-30
10.3 I/O Service Requests 10-41
APPENDICES

Memory Module Diagrams A-1
Standard Floppy Disk Formats B-1
Service Request Summary C-1
Error Codes D-1

(C) 1980. 1981- 1982 Microware Systems Corporation
PAGE 0-2

0S-9 "LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Introduction to 0S-9

INTRODUCTION

0S-9 Level One 1is a versatile multiprogramming/multitasking
operating system for computers utilizing the Motorola 6809
microprocessor. It is well-suited for a wide range of
applications on 6809 computers of almost any size or complexity.
Its main features are:

* Comprehensive management of all system resources: memory,
input/output and CPU time.

* A powerful user interface that is easy to learn and use.

* True multiprogramming operation.

* PBfficient operation in typical microcomputer configurations.
* Expandable, device-independent unified I/O system.

* Full support for modular ROMed software;

* Upward and downward compatability with 0S-9 Level Two

This manual is intended to provide the information necessary to
install, maintain, expand, or write assembly-language software for
0S-9 systems. It assumes that the reader is familiar with the 6809
architecture, instruction set, and assembly language.

HISTORY AND DESIGN PHILOSOPHY

0S-9 Level One is one of the products of the BASIC09 Advanced
6809 Programming Language development effort undertaken by
Microware and Motorola from 1978 to 1980. During the course of the
project it became evident that a fairly sophisticated operating
system would be required to support BASIC09 and similar high-
performance 6809 software. :

0S-9's design was modeled after Bell Telephone Laboratories'
"UNIX" operating system, which is becoming widely recognized as a
standard for mini and micro multiprogramming operating systems
because of its versatility and relatively simple, yet elegant
structure. Even though a "clone" of UNIX for the 6809 is
relatively easy to implement, there are a number of problems with
this approach. UNIX was designed for fairly 1large-scale
minicomputers (such as large PDP-1lls) that have high CPU
throughput, 1large fast disk storage devices and a static I/0
environment. Also, UNIX is not particulary timé or disk-storage
efficient, especially when used with low-cost disk drives.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 1-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Introduction to 0s-9

For these reasons, 0S-9 was designed to retain the overall
concept and user interface of UNIX, but its implementation is
considerably different. 0S-9's design 1is tailored to typical
microcomputer performance ranges and operational environments. As
an example, 0S-9, unlike UNIX, does not dynamically swap running
programs on and off disk . This is because floppy disks and many
lower-cost Winchester-type hard disks are simply too slow to do
this efficiently. Instead, 0S-9 always keeps running programs in
memory and emphasizes more efficient use of available ROM or RAM.

08-9 also introduces some important new features that are
intended to make the most of the capabilities of third-generation
microprocessors, such as support of reentrant, position-
independant software that can be shared by several users
simultaneously to reduce overall memory requirements.

~ Perhaps the most innovative part of 0S-9 is its "memory module"
management system, which provides extensive support for modular
software, particularly ROMed software. This will play an
increasingly important role in the future as a method of reducing
software costs. The "memory module" and LINK capabilities of 0S-
9 permit modules to be automatically identified, linked together,
shared, updated or repaired. Individual modules in ROM which are
defective may be repaired (without reprogramming the ROM) by
placing a "fixed" module with the same name, but a higher revision
number into memory. Memory modules have many other advantages,
for example, 0S-9 can allow several programs to share a common
math subroutine module. The same module could automatically be
replaced with a module containing drivers for a hardware
arithmetic processor without any change to the programs which call
the module.

Users experienced with UNIX should have 1little difficulty
adapting to 0S-9. Here are some of the main differences between
the two systems:

l. 0S-9 is written in 6809 assembly language, not C. This
improves program size and speed characteristics.

2. 0S-9 was designed for a mixed RAM/ROM microcomputer memory
environment and more effectively supports reentrant,
position-independent code.

3. 0S-9 introduces the "memory module" concept for organizing
object code with built-in dynamic inter-module linkage.

4. 0S-9 supports multiple file managers, which are modules
that interface a class of devices to the file system.

5. "Fork" and "Execute" calls are faster and more memory
efficient than the UNIX equivalents.

(C) 1980, 1981, 1982 Microware Systems Corporation
‘ PAGE 1-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Introduction to 0S-9

SYSTEM HARDWARE REQUIREMENTS

The O0S-9 operating system consists of building blocks called
memory modules, which are automatically 1located and 1linked
together when the system starts up. This makes it extremely easy
to reconfigure the system. For example, reconfiguring the system
to handle additional devices 1is simply a matter of placing the
corresponding modules into memory. Because 0S-9 is so flexible,
the "minimum" hardware requirements are difficult to define. A
bare-bones LEVEL I system requires 4K of ROM and 2K of RAM, which
may be expanded to 56K RAM.

Shown below are the requirements for a typical 0S-9 software
. development system. Actual hardware requirements may vary
depending upon the particular application.

* 6809 MPU

* 24K Bytes RAM Memory for Assembly Language Development
40K Bytes RAM Memory for High Level Languages such as BASICO09
(RAM Must Be Contiguous From Address Zero Upward)

* 4K Bytes of ROM: 2K must be addressed at SF800 - SFFFF, the
other 2K is position-independant and self-locating. Some disk
systems may require three 2K ROMs.

* Console terminal and interface using serial, parallel, or
memory mapped video.

* Optional printer using serial or parallel interface.
* QOptional real-time clock hardware.

I/0 device controller addresses can be located anywhere in the
memory space, however it is good practice to place them as high as
possible to maximize RAM expansion capability. Standard
Microware-supplied O0S-9 packages for computers made by popular
manufacturers usually conform to the system's customary memory
map.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 1-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Basic System Organization

2.0 BASIC SYSTEM ORGANIZATION

0S-9 is composed of a group of modules, each of which provides
specific functions. When 0S-9 is configured for a specific system
various modules are selected to provide a given 1level of
functionality. For example, a small control computer without a
disk does not need the disk-related 0S-9 modules. Most examples
in this manual describe a fully-configured 0S-9 system.

0S-9 COMPONENT MODULE ORGANIZATION

+- + | | + +
I | I I I I
I INIT | = =1 0S-9 KERNEL | = =1 Clock |
I I I (ROM) I I I
+ + | | + +
I
I
I I
| Input/Output Manager |
I (IOMAN) |
I I

I | I I
| Disk File Manager | | Char. File Manager | More
I (RBFMAN) I I (SCFMAN) | => opt.
I I I I

I | I I

I I I I
+ + + + Fmm—————— e +
I [I I [I
| Disk | | Disk | | ACIA | | PIA I More
| Driver | | Driver | | Driver l | Driver | => opt.
I I I I I |

I I
I I

tm—mt fem——t fem——t fm——t
Ipo | ID1 | D2 | ID3 | .
et o+ b dm——t fm——t
Device Descriptors

RBF

Fmmmt fmm—t fm——d e
IT1 | T2 | |P1 | |P2 |-> More
t===t t===t +==—+4 +=——+ Opt.
SCF Device Descriptors

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 2-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Basic System Organization

Notice that the diagram on the previous page indicates a
multilevel organization.

The first level is the KERNEL and the CLOCK MODULE. The kernel
provide basic system services such as multitasking, memory
management, and links all other system modules. The CLOCK module
is a software handler for the specific real-time-clock hardware.
INIT is an initialization table used by the kernel during system
startup. It specifies initial table sizes, initial system device
names, etc,-

The second level is the Input/Output Manager. If provides
common processing all I/O operations. It is required if any OS-
supported I/0-is to be performed.

The third level is the File Manager level. File managers
perform I/O request processing for similar classes of I/0 devices.
The Random Block File Manager (RBFMAN) processes all disk-type
device fuctions, and the Sequential Character File Manager
(SCFMAN) handles all non-mass storage devices that basically
operate a character at a time, such as terminals and printers.
The user can add additional File Managers to handle classes of
devices not covered by SCFMAN -or RBFMAN,

The fourth 1level is the Device Driver Level. Device drivers
handle basic physical I/O functions for specific I/0 controller
hardware. Standard 0S-9 systems are typically supplied with a
disk driver, a ACIA driver for terminals and serial printers, and
a PIA driver for parallel printers. Many users add customized
drivers of their own design or purchased from a hardware vendor.

The fifth level is the Device Descriptor Level. These modules
are small tables that are associate specific I/O ports with their
logical names, and the port's device driver and file manager.
They also contain the physical address of the port and
initialization data. By use of device descriptors, only one copy
of . each driver 1is required for each specific type of I/0
controller regardless of how many controllers the system uses.

One important component not shown is the Shell, which is the
command interpreter. It is technically a program and not part of
the operating system itself, and is described fully in the "0S-9
Users Manual".

Even though all modules can be resident in ROM, generally only
the KERNEL and INIT modules are ROMed in disk-based systems. All
other modules are loaded into RAM during system startup by a disk
bootstrap module (not shown on diagram) which is also resident in
ROM. .

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 2-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The .Kernel

3.0 BASIC FUNCTIONS OF THE KERNEL.

The nucleus of 0S-9 is the "kernel”, which serves as the system
administrator, supervisor, and resource manager. It is about 3K
bytes long and normally resides in two 2K byte ROMs: "P1l" residing
at addresses §$F800 - SFFFF, and "P2", which is position-inde-
pendent. P2 only occupies about half (1K) of the ROM, the other
space in the ROM is reserved for the disk bootstrap module.

The kernel's main fuctions are:

1. System initialization after restart.
2. Service request processing.

3. Memory management.

4. MPU management (multiprogramming).
5. Basic interrupt processing.

Notice that input/output tunctions were not included in the
list above; this is because the kernel does not directly process
them. The kernel passes I/0 service requests dlrectly to another
the Input/Output Manager (IOMAN) module for proce551ng. ‘

After a hardware reset, the kernel will initialize the system
which involves: locating ROMs in memory, determining the amount of
RAM available, loading any required modules not already in ROM
from the bootstrap device, and running the system startup task
("SYSGO"). The INIT module is a table used during startup to
specify initial table sizes and -system device names.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-1

0S-9 LEVEL ONE-SYSTEMHPRQGRAMMER[S MANUAL .
The Kernel

3.1 KERNEL SERVICE REQUEST PROCESSING™ =~ ~~ = "7 7~

Service requests (system calls) are used to communicate between
0S-9 and assembly-language-level programs -for such things as
allocating memory, creating new processes, etc. System calls use
the SWI2 instruction followed by a constant byte representing the
code. Parameters for system c¢alls are wusually passed in MPU
registers. _In addition to I/0 and memory management functions,
there are other service request functions including interprocess
control and timekeeping.

A system—wide assembly language equate file called "OS9Defs"
defines symbolic names for all service requests. This file is
included when assembling hand-written or compiler-generated code.
The 0S-9 Assembler has a built-in macro to generate system calls,
for example:

0S9 1ISREAD
is recongnized and assembled as the equivalent to:

SWI2
FCB ISREAD

. dee

Service requests are divided into two categories:

I/0 REQUESTS perform various input/output. functions... Requests of
this type are passed by the kernel. ot IOMAN for processing. The
symbolic names for this category have a "I$" prefix, for example,
the "read" service request is called "ISREAD".

FUNCTION REQUESTS perform memory managemeﬁt, multiprogramming, and
miscellaneous functions. Most are processed by the kernel. The
symbolic names for this category begins with "Fs$".

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.2 KERNEL MEMORY MANAGEMENT FUNCTIONS

Memory management is an important operating system function.
0S-9 manages both the physical assignment of memory to programs
and the logical contents of memory, by using entities called
"memory modules". All programs are loaded in memory module format,
allowing 0S-9 to maintain a directory which contains the name,
address, and other related information about each module in
memory. These structures are the foundation of 0S-9%'s modular
software environment. Some of its advantages are: automatic run-
time "linking" of programs to 1libraries of utility modules;
automatic "sharing"™ of reentrant programs; replacement of small
sections of large programs for update or correction (even when in
ROM) ; etc.

3.3 MEMORY UTILIZATION

All usable RAM memory must be contiquous from address 0 upward.
During the 0S-9 start-up sequence the upper bound of RAM is
detemined by an automatic search, or from the configuration
module. Some RAM is reserved by 0S-9 for its own data structures
at the top and bottom of memory. The exact amount depends on the
sizes of system tables that are specified in the configuration
module. S

All other RAM memory is pooled into a "free memory" space.
Memory space is dynamically taken from and returned to this pool
as it is allocated or deallocated for various purposes. The basic
unit of memory allocation is the 256-byte "page". Memory is
always allocated in whole numbers of pages.

The data structure used to keep track of memory allocation is a
32-byte bit-map located at addresses $0100 - $011F. Each bit in
this table is associated with a specific page of memory. Bits are
cleared to indicate that the page 1is free and available for
assignment, or set to indicate that the page is in use or that no
RAM memory is present at that address.

Automatic memory allocation occurs when:

1. Program modules are loaded into RAM.

2. Processes are created.

3. Processes request additional RAM.

4., 0S-9 needs I/O buffers, larger tables, etc.

All of the above usually have inverse functions that cause
previously allocated memory to be deallocated and returned to the
free memory pool.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Rernel

In general, memory is allocated for program modules and buffers
from high addresses downward, and for process data areas from
lower addresses upward. '

TYPICAL MEMORY MAP

<~ SFFFF
0S-9 ROMS (4K)
<- $F000
I/0 DEVICE ADDRESSES
<- $EO000

SPACE FOR MORE
OPTIONAL ROMS

<- END OF RAM MEMORY

FILE MANAGERS,
DEVICE DRIVERS, ETC.
(APPROXIMATELY 6K)

SHELL (1K)

0S-9 DATA STRUCTURES
(APPROXIMATELY 1K)

FREE MEMORY FOR -
GENERAL USE

<- §0400

0S-9 DATA STRUCTURES
AND DIRECT PAGE

f———— e —— e ———— e e — e e —— —— —— — +
———————— ———— e e ——— e —— — p —— — ——— ¢

<- $0000 BEGINNING OF RAM MEMORY

The map above is for a "typical" system. Actual memofy sizes and
addresses may vary depending on the exact system configuration.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-4

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.4 OVERVIEW OF MULTIPROGRAMMING

0S-9 is a multiprogramming operating system, which allows
several independent programs -called "processes" can be executed
simultaneously. Each process can have access to any system
resource by issuing appropriate service requests to 0S-9.
Multiprogramming functions use a hardware real-time clock that
generates interrupts at a regular rate of about 10 times per
second. MPU time is therefore divided into periods typically 100
milliseconds in duration. This basic time unit is called a "tick".
Processes that are "active" (meaning not waiting for some event)
are run for a specific system—assigned period called a "time
slice". The duration of the time slice depends on a process's
priority value relative to the priority of all other active
processes. Many 0S-9 service requests are available to create,
terminate, and control processes.

3.5 PROCESS CREATION

New processes are created when an existing process executes a
"fork" service request. Its main argument is the name of the
program module (called the "primary module") that the new process
is to initially execute., 0S-9 first attempts to find the module in
the "module directory", which includes the names of all program
modules already present in memory. If the module cannot be found
there, 0S-9 usually attempts to load into memory a mass—-storage
file using the requested module name as a file name.

Once the module has been located, a data structure called a
"process descriptor" is assigned to the new process. The process
descriptor is a 64-byte package that contains information about
the process, its state, memory allocations, priority, queue
pointers, etc. The process descriptor is automatically
initialized and maintained by 0S-9. The process itself has no
need, and is not permitted to access the descriptor.

The next step in the creation of a new process is allocation of
data storage (RAM) memory for the process. The primary module's
header contains a storage size value that is used unless the
"fork" system call requested an optionally larger size. 0S-9 then
attempts to allocate a CONTIGUOUS memory area of this size from
the free memory space.

If any of the previous steps cannot be performed, c¢reation of
the new process is aborted, and the process that originated the
"fork"™ is informed of the error. Otherwise, the new process is
added to the active process queue for execution scheduling.

The new process is also assigned a unique number called a
"process ID" which is used as its identifier. Other processes can

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

communciate with it by referring- to ~ its ID in various system
calls. The process also has associated with it a "user 1ID" which
is used to identify all processes and files belonging to a
particular user, The user 'ID is inherited from the parent
process.

Processes terminate when they execute an "EXIT" system service
request, or when they receive fatal signals. the process
termination closes any open paths, deallocates its memory, and
unlinks its primary module.

3.6 PROCESS STATES
At any instant, a process can be in one of three states:
ACTIVE - The process is active and ready for execution.

WAITING - The process is suspended until a child process term—
inates or a signal is received.

SLEEPING - The process is suspended for a specific period of
time or until a signal is received.

There is a queue for each process state. The queue is a linked
list of the "process descriptors" of processes in the corres-
ponding state. State changes are performed by moving a process
descriptor to another queue.

3.6.0 The Active State

This state includes all "runnable" processes, which are given
time slices for execution according to their relative priority
with respect to all other active processes. The scheduler uses a
pseudo-round-robin scheme that gives all active processes some CPU
time, even if they have a very low relative priority.

3.6.1 The Wait State

This state is entered when a process executes a WAIT system
service request. The process remains suspended until the death of
any of its descendant processes, or, until it receives a signal.

3.6.2 The Sleeping State

This state 1is entered when a process executes a SLEEP service
request, which specifies a time interval (a specific number of
ticks) for which the process is to remain suspended. The process
remains asleep until the specified time has elapsed, or until a
signal is received.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-6

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MAMUAL
The Kernel

3.7 EXECUTION SCHEDULING

The Kkernel contains a scheduler that is responsible for
allocation of CPU time to active processes. 0S-9 uses a
scheduling algorithm that ensures all processes get some execution
time.

All active processes are members of the "active process queue",
which is kept sorted by process "age". Age is a count of how many
process switches have occurred since the process' last time slice.
When a process is moved to the active process queue from another
queue, its "age" 1is initialized by setting it to the process'
assigned priority, i.e., processes having relatively Thigher
priority are placed in the queue with an artificially higher age.
Also, whenever a new process is activated, the ages of alil other
processes are incremented.

Upon conclusion of the currently executing process' time slice,
the scheduler selects the process having the highest age to be
executed next. Because the queue is kept sorted by age, this
process will be at the head of the queue. At this time the ages
of all other active processes are incremented (ages are never
incremented beyond 255).

An exception is newly-active processes that were previously
deactivated while they were in the system state. These processes
are noted and given higher priority than others because they are
usually executing critical routines that affect shared system
resources and therefore could be blocking other unrelated
processes.

When there are no active ptocesses, the kernel will set itself
up to handle the next interrupt and then execute a CWAI
instruction, which decreases interrupt latency time.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-7

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.8 SIGNALS

"Signals" are an asynchronous control mechanism used for inter-
process communication and control. A signal behaves 1like a
software interrupt in that it.can..cause a process to suspend a
program, execute a specific routine, and afterward return to the
interrupted program. Signals can be sent from one process to
another process (by means of the SEND service request), or they
can be sent from 0S-9 system routines to a process.

Status information can be conveyed by the signal in the form of
a one-byte numeric value. Some of the signal "codes" (values)
have predefined meanings, but all the rest are user-defined. The
defined signal codes are:

KILL (non-interceptable process abort)
WAKEUP - wake up sleeping process
KEYBOARD ABORT

KEYBOARD INTERRUPT

255 USER DEFINED

> whH+-HOo
L uwna

When a signal 1is sent to a process, the signal is noted and
saved in the process descriptor. If the process is in the
sleeping or waiting state, it is changed to the active state. It
then becomes eligible for execution according to the usual MPU
scheduler criteria. When it gets its next time slice, the signal
is processed.

What happens next depends on whether or: not the process had
previously set up a "signal trap" (signal service routine) by
executing an INTERCEPT service request. If it had not, the
process 1is immediately aborted. It is also aborted if the signal
code is zero. The abort will be deferred if the process is in
system mode: the process dies upon its return to user state.

If a signal intercept trap has been set up, the process resumes
execution at the address given in the INTERCEPT service request.
The signal code is passed to this routine, which should terminate
with an RTI instruction to resume normal execution of the process.

NOTE: "Wakeup" signals activate a sleeping process: they DO NOT
vector through the intercept routine.

If a process has a signal pending (usually because it has not
been assigned a time slice since the signal was received), and
some other process attempts to send it another signal, the new
signal is aborted and the "send" service request will return an
error status. The sender should then execute a "sleep" service
request for a few ticks before attempting to resend the signal, so
the destination process has an opportunity to process the
previously pending signal.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-8

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
' The Kernel

3.9 INTERRUPT PROCESSING

Interrupt processing is another important function of the
kernel., All hardware interrupts are vectored to specific
processing routines. IRQ interrupts are handled by a prioritized
polling system (actually part of IOMAN) which automatically
identifies the source of the interrupt and dispatches to the
associated user or system defined service routine. The real-time
clock will generate IRQ interrupts. SWI, SwI2, and SWI3
interrupts are vectored to user-definable addresses which are
"local" to each procedure, except that SWI2 is normally used for
0S-9 service requests calls. The NMI and FIRQ interrupts are not
normally used and are vectored through a RAM address to an RTI
instruction.

3.9.0 PHYSICAL INTERRUPT PROCESSING

The 0S-9 kernel ROMS contain the hardware vectors required by
the 6809 MPU at addresses SFFF0 through $FFFF. These vectors each
point to Jjump-extended-indirect instruction which vector the MPU
to the actual interrupt service routine. A RAM vector table in
page zero of memery contains the target addresses of the jump
instructions as follows:

INTERRUPT ADDRESS
SWI3 $002C
SWI2 S002E
FIRQ $0030
IRQ : $0032
SWI $0034
NMI $0036

0S-9 initializes each of these locations after reset to point to a
specific service routine in the kernel. The SWI, SWI2, and SWI3
vectors point to specific routines which in turn read the
corresponding pseudo vector from the process' process descriptor
and dispatch to it. This is why the F$SSWI service request to be
local to a process since it only changes a pseudo vector in the
process descriptor. The IRQ routine points directly to the IRQ
polling system, or to it indirectly via the real-time clock device
service routine. The FIRQ and NMI vectors are not normally used
by 0S-9 and point to RTI instructions.

A secondary vector table located at S$FFE0 contains the addresses
of the routines that the RAM vectors are initialized to. They may

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-9

0S~-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

be used when it is necessary to restore the original service
routines after altering the RAM vectors. On the next page are the
definitions of both the actual hardware interrupt vector table,
and the secondary vector table:

VECTOR ADDRESS
Secondary Vector Table

TICK SFFEOQ Clock Tick Service Routine

SWI3 SFFE2

SWI2 SFFE4

FIRQ SFFE6

IRQ SFFES

SWI SFFEA

NMI SFFEC :
WARM SFFEE Reserved for warm—start

Hardware Vector Table

SWI3 SFFF2
SWI2 SFFF4
FIRQ SFFF6
IRQ SFFF8
SWI SFFFA
NMI SFFFC

RESTART SFFFE

If it is necessary to alter the RAM vectors use the secondary
vector table to exit the substitute routine. The technique of
altering the IRQ pointer is usually used by the clock service
routines to reduce latency time of this frequent interrupt source.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-10

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

3.9.1 LOGICAL INTERRUPT POLLING SYSTEM

In 0S-9 systems, most I/O devices use IRQ-type interrupts, so
0S-9 includes a sophisticated polling system that automatically
identifies the source of the interrupt and dispatches to its
associated user-defined service routine. The information required
for IRQ polling is maintained in a data structure called the "IRQ
polling table". The table has a 9-byte entry for each possible
IRQ-generating device. The table size is static and defined by an
initialization constant in the System Configuration Module.

The ©polling system is prioritized so devices having a
relatively greater importance (i.e., interrupt frequency) are
polled before those of lesser priority. This is accomplished by
keeping the entries sorted by priority, which is a number between
0 (lowest) and 255 (highest). ©Each entry in the table has 6
variables:

1. POLLING ADDRESS: The address of the device's status register,
which must have a bit or bits that indicate it is the source of an
interrupt.

2. MASK BYTE: This . byte selects one or more bits within the
device status register that are interrupt reguest flag(s). A set
bit identifies the active bit(s). .

3. FLIP BYTE: This byte selects whether the bits in the device
status register are true when set or true when cleared. Cleared
bits indicate active when set.

4. SERVICE ROUTINE ADDRESS: The user-supplied address of the
device's interrupt service routine.

5. STATIC STORAGE ADDRESS: a user-supplied pointer to the
permanent storage required by the device service routine.

6. PRIORITY: The device priority number: 0 to 255. This value
determines the order in which the devices in the polling table
will be polled. Note: this is not the same as a process priority
-which is used by the execution scheduler to decide which process
gets the next time slice for MPU execution.

When an IRQ interrupt occurs, the polling system is entered via
the corresponding RAM interrupt vector. It starts polling the
devices, using the entries in the polling table in priority order.
For each entry, the status register address is 1loaded into
accumulator A using the device address from the table. An
exclusive-or operation using the "flip-byte" is executed, followed
by a logical-and operation using the mask byte. If the result is
non-zero, the device is assumed to be the cause of the interrupt.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-11

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Kernel

The device's static storage address and service routine address is
read from the table and executed.

--> NOTE: The interrupt service routine should terminate with an
an RTS, not an RTI instruction.

Entries can be made to the IRQ polling table by use of a
special 0S-9 service request called "FSIRQ". This is a
priviledged service request that can be executed only when 0S-9 is
in System Mode (which is the case when device drivers are
executed).

--> NOTE: The actual code for the interrupt polling system is
located in the IOMAN module. The kernel Pl and P2 modules
contain the physical interrupt processing routines.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 3-12

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

4.0 MEMORY MODULES

Any object to be loaded into the memory of an 0S-9 system must
use the memory module format and conventions. The memory module
concept allows 0S-9 to manage the logical contents as well as the
physical contents of memory. The basic idea is that all programs
are individual, named objects.

The operating system keeps track of modules which are in memory
at all times by use of a "module directory”. It contains the
addresses and a count of how many processes are using each module.
When modules are loaded into memory, they are added to the
directory. When they are no 1longer needed, their memory is
deallocated and their name removed from the directory (except
ROMs, which are discussed later). In many respects, modules and
memory in general, are managed just like a disk. In fact, the disk
and memory management sections of 0S-9 share many subroutines.

Each module has three parts; a module header, module body and a

cyclic-redundancy-check (CRC) value. The header contains
information that describes the module and its use. This
information includes: the modules size, its type (machine

language, BASIC09 compiled code, etc); attributes (executable,
reentrant, etc), data storage memory requirements, execution
starting address, etc. The CRC value 1is used to-.verify the
integrity of a module.

There are several different kinds of modules, each type having
a different usage and function. Modules do not have to be complete
programs, or even 6809 machine language. They may contain BASIC09
"I-code", constants, single subroutines, subroutine packages, etc.
The main requirements are that modules do not modify themselves
and that they be position-independent so 0S-9 can load or relocate
them wherever memory space is available. In this respect. the
module format is the O0S-9 equivalent of "load records” used in
older-style operating systems.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

4.1 MEMORY MODULE STRUCTURE

At the beginning (lowest address) of the module is the module
header, which can have several forms depending on the module's
usage. 0s-9 family software such as BASIC09, Pascal, C, the
assembler, and many utility programs automatically generate
modules and headers. Following the header is the program/constant
section which is usually pure code. The module name string is
included -somewhere in this area. The last three bytes of the
module are a three-byte Cyclic Redundancy Check (CRC) value used
to verify the integrity of the module.

MODULE FORMAT

MODULE HEADER

PROGRAM .
OR CONSTANTS

CRC

ot ——— ——— ¢

t—ft————1———1

The 24-bit CRC 1is performed over the entire module from the
first byte of the module header to the byte just before the CRC
itself. The CRC polynomial used is $800FE3.

Because most O0S-9 family software (such as the assembler)
automatically generate the module header and CRC values, the
programmer usually does not have to be concerned with writing
routines to generate them.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

4.2 MODULE HEADER DEFINITIONS

The first nine bytes of all module headers are identical:

MODULE DESCRIPTION
CFFSET
$0,81 = Sync Bytes ($87,$CD). These two constant

bytes are used to locate modules.

$2,$3 = Module Size. The overall size of the module
in bytes (includes. CRC).
$4,85 = Offset to Module Name. The address of the
module name string relative to the start
(first sync byte) of the module. The name
string can be located anywhere in the module
and consists of a string of ASCII characters
having the sign bit set on the last character.
$6 = Module Type/Langauge Type. See text.
$§7 = Attributes/Revision Level. See text.
$§8 = Header Check. The one's compliment of the vertical

parity (exclusive OR) of the previous eight bytes.

4.2.0 Type/Language Byte

The module type is coded into the four most significant bits of
byte 6 of the module header. Eight types are pre-defined by
convention, some of which are for 0S-9's internal use only. The
type codes are:

$1 Program module
$2 Subroutine module
$3 Multi-module (for future use)
$4 Data module
$5-$B User—-definable
$C 0S8-9 System module
$D '0S-9 File Manager module
SE 0S-9 Device Driver module
'SF 0S-9 Device Descriptor module

NOTE: 0 is not a legal type code

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

The four least significant bits of byte 6 describe the 1language
type as listed below: :

0 Data (non-executable)

1 6809 object code

2 BASIC0S I-code

3 PASCAL P-code

4 COBOL I-code
5-15 Reserved for future use

The purpose of the language type is so high-level language run-
time systems can verify that a module is of the correct type
before execution is attempted. BASIC09, for example may run
either I-code or 6809 machine language procedures arbitrarily by
checking the language type code.

4.2.1 Attribute/Revision Byte

The upper four bits of this byte are reserved for module
attributes. Currently, only bit 7 is defined, and when set
indicates the module is reentrant and therefore "sharable".

The lower four bits are a revision level from zero (lowest) to
fifteen. If more than one module has the same name, type.,
language, etc., 0S-9 only keeps in the module directory the module
having the highest revision level. This is how ROMed modules can
be replaced or patched: you load a new, equivalent module having a
higher revision level. Because all modules locate each other by
using the LINK system call which searches the module directory by
name, it always returns the latest revision of the module,
wherever it may be.

NOTE: A previously 1linked module can not be replaced until all
processes which linked to it have unlinked it (after its 1link
count goes to zero).

4.3 TYPED MODULE HEADERS

: As mentioned before, the first nine bytes of the module header
are defined identically for all module types. There is usually
more header information immediately following, the layout and
meaning varies depending on the specific module type. Module types
$C =~ SF are used exclusively by 0S-9. Their format is given
elsewhere in this manual.

The module type illustrated below is the general-purpose "user"
format that is commonly used for 0S-9 programs that are called
using the FORK or CHAIN system calls. These modules are the

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-4 .

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

"user-defined" types having type codes of 0 through 9. They have
six more bytes in their headers defined as follows: :

MODULE
OFFSET

$9,%A

B,sC

DESCRIPTION

Execution Offset. The program or subroutine's
starting address, relative to the first byte of
the sync code. Modules having multiple entry
points (cold start, warm start, etc.) may have
a branch table starting at this address.

Permanent Storage Requirement. This is the
minimum number of bytes of data storage
required to run. This is the number used by
FORK and CHAIN to allocate a process' data
area.

If the module will not be directly executed by a
CHAIN or FORK service request (for instance a
subroutine package), this entry is not used by 0s-9.
It is commonly used to specify the maximum stack size
required by reentrant subroutine modules. The
calling program can check this value to determine

if the subroutine has enough stack space.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

EXECUTABLE MEMORY MODULE FORMAT

Relative Usage Check Range
Address
$00 ! ['
= Sync Bytes ($87CD) -t ! !
$01 ! ! ! !
+ + ! !
$02 ! ! ! !
+=- Module Size (bytes) - ! !
$03 ! \ ! ! !
N + 1 !
$04 ! ! ! !
+-- Module Name Offset -—+ header !
$05 ! ! parity !
+ + ! !
$06 ! Type ! Language ! ! !
+ ~ + ! !
$07 ! Attributes ! Revision ! ! !
+ + + module
$08 ! Header Parity Check ! CRC
+ + !
$09 ! 1 !
e Execution Offset - !
$0A ! ! !
- + !
S0B ! ! !
+-- Permanent Storage Size --+ 5
$ocC 1 ! !
+ + !
SO0D ! (Add'l optional header ! !
! extensions located here) ! !
! ! !
! ® . * ® ® L L] L] L ! !
! ! !
! ! !
! Module Body ! !
! object code, constants, etc. ! !
! ! !
! ! !
+ + !
1 ! !
o s !
! CRC Check Value ! !
f—— -t 1
[S ! !

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-6 ‘

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

4.4 ROMED MEMORY MODULES

When 0S-9 starts after a system reset, it searches the entire
memory space for ROMed modules. It detects them by looking for
the module header sync code ($87,$CD) which are unused 6809
opcodes. When this byte pattern is detected, the header check is
performed to verify a correct header. If this test succeeds, the
module size is obtained from the header and a 24-bit CRC is
pertormed over the entire module. If the CRC matches correctly,
the module is considered valid and it is entered into the module
directory. The chances of detecting a "false module" are
virtually nil.

In this manner all ROMed modules present in the system at
startup are automatically included in the system module directory.
Some of the modules found initially are various parts of 0S-9:
file managers, device driver, the configuration module, etc.

After the module search 0S-9 1links to whichever of its
component modules that it found. This is the secret of 0S-9's
extraordinary adaptablity to almost any 6809 computer; it
automatically locates its required and optional component modules,
wherever they are, and rebuilds the system each time that it is
started.

ROMs containing non-system modules are also searched so any
user-supplied software is located during the start-up process and
entered into the module directory.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-7

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Memory Modules

This page is intentionally blank

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 4-8

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/0 System

5.0 THE 0S-9 UNIFIED INPUT/OUTPUT SYSTEM

0S-9 has a unified I/O system that provides system-wide hard-
ware-independent I/0 services for user programs and 0S-9 itself.
All I/0 service requests (system call) are received by the kernel
and passed to the Input/Output Manager (IOMAN) module for
processing. IOMAN performs some processing (such as allocating
data structures for the I/0 path) and calls the file managers and
device drivers to do much of the actual work. File manager, dev-
ice driver, and device descriptor modules are standard memory mod-
ules that can be loaded into memory from files and used while the
system is running.

The stuctural organization of I/O-related modules in an 0S-9
system is hierarchical, as illustrated below:

Input/Output Manager

R N S T

B e e

(IOMAN)
! !
! 1
! ! ' !
! Disk File Manager ! ! Char. File Manager ! More
! (RBFMAN) ! ! (SCFMAN) I => opt.
1 | 1 !
o ! !) ! ! N
! ! ! !
! Lo ! ' Lot !
! pisk ! ! Disk ! ! ACIA ! ! PIA ! More
! Driver ! ! Driver ! ! Driver ! ! Driver ! -> opt.
! [| ! ! [| ‘ !
T—! lj . ! ! | ! ! l ! !
! ! ! ! ! ! ! !
te——t + + 4 + ===+ + s b=t
IDO ! ID1 ! D2 ! ID3 ! ITL ! 1T2 ! (Pl ! P2 !=> More
tm——st 4 + + b o———t et 4 + 4 + +==--+ oOpt.
RBF Device Descriptors SCF Device Descriptors

© 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/O System

5.1 THE INPUT/OUTPUT MANAGER (IOMAN)

The Input/Output Manager (IOMAN) module provides the first
level of service for I/O system calls by routing data on I/O paths
from processes to/from the appropriate file managers and device
drivers. It maintains two important internal 0S-9 data
structures: the device table and the path table. This module is
used in all 0S-9 Level One systems and should never be modified.

When a path is opened, IOMAN attempts to link to a memory mod-
ule having the device name given (or implied) in the pathlist.
This module is the device's descriptor, which contains the names
of the device driver and file manager for the device. This infor-
mation is saved by IOMAN so subsequent system call can be routed
to these modules.

5.2 FILE MANAGERS

0S-9 systems can have any number of File Manager modules. The
function of a file manager is to process the raw data stream to or
from device drivers for a similar class od devices to conform to
the 0S-9 standard 1I/0 and file structure, removing as many unique
device operational characteristics as possible from I/O
operations. They are also responsible for mass storage allocation
and directory processing if applicable to the class of devices
they service.

File managers usually buffer the data stream and issue requests
to the kernel for dynamic allocation of buffer memory. They may
also monitor and process the data stream, for example, adding line
feed characters after carriage return characters.

The file managers are reentrant and one file manager may be
used for an entire class of devices having similar operational
characteristics. The two standard 0S-9 file managers are:

RBFMAN: The Random Block File Manager which operates
random-access, blocck-structured devices such
as disk systems, bubble memories, etc.

SCFMAN: Sequential Character File Manager which is used
with single-character-oriented devices such as
CRT or hardcopy terminals, printers, modems, etc.

(C) 1980, 1981, 1982 Microware Systems Corporation
4 PAGE 5-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/0 System

5.2 DEVICE DRIVER MODULES

The device driver modules are subroutine packages that perform
basic, low-level 1I/0 transfers to or from a specific type of I/O
device hardware controller. These modules are reentrant so one
copy of the module can simultaneously run several different
devices which use identical I/O controllers. For example the
device driver for 6850 serial interfaces is called "ACIA" and can
communicate to any number of serial terminals.

Device driver modules use a standard module header and are
given a module type of "device driver" (code $E). The execution
offset address in the module header points to a branch table that
has a minimum of six (three-byte) entries. Each entry is typically
a LBRA to the corresponding subroutine. The File Managers call
specific routines in the device driver through this table, passing
a pointer.to a "path decriptor" and the hardware control register
address in the MPU registers. The branch table looks like:

+0 = Device Initialization Routine
+3 = Read From Device

+6 = Write to Device

+9 = Get Device Status

+$SC = Set Device Status

+$F = Device Termination Routine

For a complete description of the parameters passed to these
subroutines see the file manager descriptions. Also see the
appendicies on writing device drivers.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-3

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/0 System

5.4 DEVICE DESCRIPTOR MODULES

Device descriptor modules are small, non-executable modules
that provide information that associates a specific I/0 device
with its logical name, hardware controller address(es), device
driver name, file manager name, and initialization paramaters.

Recall that device drivers and file managers both operate on
general classes of devices, not specific I/O ports. The device
descriptor modules tailor their functions to a specific I/0
device. One device descriptor module must exist £for each I/0
device in the system.

The name of the module is the name the device is known by to
the system and user (i.e. it 1is the device name given in
pathlists). Its format consists of a standard module header that
has a type "device descriptor" (code $F). The rest of the device
descriptor header ‘consists of:

$9,3A = File manager name string relative address.
B,SSC = Device driver name string relative address. ’
$D = Mode/Capabilities (D S PE PW PR E W R)
$E,$F,$10 = Device controller absolute physical (24-bit) address
$11 = Number of bytes ("n" bytes in intialization table)
$12,812+n = Initialization table

The initialization table is copied into the "option section™ of
the path descriptor when a path to the device 1is opened. The
values in this table may be used to define the operating
parameters that are changeable by the 0S9 ISGSTT and ISSSTT
service requests. For example, a terminal's initialization
parameters define which control characters are used for backspace,
delete, etc. The maximum size of initialization table which may
be used is 32 bytes. If the table is less than 32 bytes long, the
remaining values in the path descriptor will be set to zero.

You may wish to add additional devices to your system. If a
similar device controller already exists, all you need to do is
add the new hardware and load another device descriptor. Device
descriptors can be in ROM or loaded into RAM from mass-storage
files while the system is running.

The diagram on the next page illustrates the device descriptor
module format.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-4

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/O System

MODULE DEVICE DESCRIPTOR MODULE FORMAT
OFFSET
$0 ! N !
+=-- Sync Bytes ($87CD) -—+t ! !
$1 ! ! ! !
+ + ! !
$2 ! ! ! !
Module Size —-—t ! !
$3 ! ! ! !
+ + ! !
$4 ! ! ! !
+=-= Offset to Module Name --+ header !
$5 ! - ! parity !
+ + ! !
$6 ! SF (TYPE) ! $S1 (LANG) ! ! !
, % + ! !
$7 ! Atributes ! Revision ! ! !
+ + + !
$8 ! Header Parity Check ! !
+ + !
$9 ! ! !
+=-= Offset to File Manager -—+ !
$A ! Name String ! module
r + CRC
$B ! ! !
+—- Offset to Device Driver ——+ !
$C ! Name String ! !
- + !
$D ! Mode Byte ! !
+ + !
SE ! ! !
E Device Controller -t !
$F ! Absolute Physical Address ! !
= (24 bit) -t !
$10 ! ! !
+ - + 1
$11 ! Initialization Table Size ! !
} + !
$12,812+N ! ! 1
! (Initialization Table) ! !
! ! !
+ + !
! ! !
! (Name Strings etc) ! !
! ! !
} - + !
! CRC Check Value ! !

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
The Unified I/O System

5.5 PATH DESCRIPTORS

Every open path is represented by a data structure called a
path descriptor ("PD")., It contains the information required by
the file managers and device drivers to perform I/O functions.
Path descriptors are exactly 64 bytes long and are dynamically
allocated and deallocated by IOMAN as paths are opened and closed.

PDs are INTERNAL data structures that are not normally
referenced from user or applications programs. In fdct, it is
almost impossible to locate a path's PD when 0S-9 is in user mode.
The description of PDs is mostly of interest to, and presented
here for those programmers who need to write custom file managers,
device drivers, or other extensions to 0S-9.

PDs have three sections: the first 1l0-byte section is defined
universally for all file managers and device drivers, as shown
below.

Universal Path Descriptor Definitions

Name Addr sSize Description

PD.PD $00 1 Path number ,

PD.MOD $01 1 Access mode: l=read 2=write 3=update
PD.CNT $02 1 Number of paths using this PD

'PD.DEV $03 2 Address of associated device table entry
PD.CPR $05 1 Requester's process ID

PD.RGS $06 2 Caller's MPU register stack address
PD.BUF $08 2 Address of 256-byte data buffer (if used)
PD.FST $0A 22 Defined by file manager

PD.OPT $20 32 Reserved for GETSTAT/SETSTAT options

The 22-byte section called "PD.FST" is reserved for and defined
by each type of file manager for file pointers, permanent var-
iables, etc.

The 32-byte section called "PD.OPT" is used as an "option" area
for dynamically-alterable operating parameters for the file or
device. These variables are initialized at the time the path is
opened by copying the initialization table contained in the device
descriptor module, and can be altered later by user programs by
means of the GETSTAT and SETSTAT system calls.

These two sections are defined each file manager's in the
assembly language equate file (SCFDefs for SCFMAN and RBFDefs for
RBFMAN) .

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 5-6

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.0 RANDOM BLOCK FILE MANAGER

The Random Block File Manager (RBFMAN) is a file manager module
that supports random-access, block-oriented mass storage devices
such as disk systems, bubble memory systems, and high-performance
tape systems. RBFMAN can handle any number or type of such systems
simultaneously. It 1is a reentrant subroutine package called by
TOMAN for I/O service requests to random-access devices. It is
responsible for maintaining the 1logical and physical file
structures,

In the course of normal operation, RBFMAN requests allocation
and deallocation of 256-byte data buffers; usually one is required
for each open file. When physical I/0O functions are necessary.
RBFMAN directly calls the subroutines in the associated device
drivers. All data transfers are performed using 256-byte data
blocks. RBFMAN does not directly deal with physical addresses such
as tracks, cylinders, etc. Instead, it passes to device driver
modules address parameters using a standard address called a
"logical sector number”, or "LSN". LSNs are integers in the range
of 0 to n-1, where n is the maximum number of sectors on the
media. The driver is responsible for translating the logical sec-
tor number to actual cylinder/track/sector values.

Because RBFMAN is designed to support a wide range of devices
having different performance and storage capacity, it 1is highly
parameter-driven. The physical parameters it uses are stored on
the media itself. On disk systems, this information is written on
the first few sectors of track number zero. The device drivers
also use this information, particularly the physical parameters
stored on sector 0. These parameters are written by the "format"
program that initializes and tests the media.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL -
Random Block File Manager

6.1 LOGICAL AND PHYSICAL DISK ORGANIZATION

All mass storage volumes (disk media) used by 0S-9 utilize the
first few sectors of the volume to store basic identification.
file structure, and storage allocation information.

Logical sector zero (LSN 0) is called the Identification Sector
which contains description of the physical and logical format of
the volume.

Logical sector one (LSN 1) contains an allocation map which
indicated which disk sectors are free and available for use in new
or expanded files.

The wvolume's root directory usually starts at logical sector
two.

6.1.0 Identification Sector

Logical sector number zero contains a description of the
physical and logical characteristics of the volume. These are
established by the "format" command program when the media is
initialized. the table below gives the 0S-9 mnemomic name, byte
address, size, and description of each value stored in this
sector.

name addr size description

DD.TOT $00 3 Total number of sectors on media
DD.TKS $03 1 Number of sectors per track

DD.MAP $04 2 Number of bytes in allocation map
DD-BIT $06 2 Number of sectors per cluster

DD.DIR $08 3 Startlng sector of root dlrectory
DD.OWN $OB 2 Owner's user number

DD.ATT $0D 1 Disk attributes

DD.DSK S$OE 2 Disk identification (for internal use)
DD.FMT $10 1 Disk format: density, number of sides
DD.SPT $11 2 Number of sectors per track.

DD.RES $13 2 Reserved for future use

DD.BT $15 3 Starting sector of bootstrap file
DD.BSZ $18 2 Size of bootstrap file (in bytes)
DD.DAT S$1A 5 Time of creation: Y:M:D:H:M

DD.NAM S$1F 32

Volume name: last.char has sign bit set

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-2

0OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.1.1 Disk Allocation Map Sector

One sector (usually LSN 1) of the disk is used for the "disk
allocation map" that specifies which clusters on the disk are
.available for allocation of file storage space. The address of
this sector is always assigned 1logical sector 1 by the format
program. DD.MAP specifies the number of bytes in this sector
which are actually used in the map.

Each bit in the map corresponds to a cluster of sectors on the
disk. The number of sectors per cluster is specified bv the
"DD.BTT" variable in the identification sector, and is always an
integral power of two, i.e., 1, 2, 4, 8, 16, etc. There are a
maximum of 4096 bits in the map, so media such as double-density
double-sided floppy disks and hard disks will use a cluster size
of two or more sectors. Each bit is cleared if the corresponding
cluster is available for allocation, or set if the sector is
already allocated, non-existant, or physically defective. The
bitmap is initially created by the "format" utility program.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.1.2 File Descriptor Sectors

The tirst sector of every file is called a "file descriptor",
which contains the logical and physical description of the file.
The table below describes the contents of the descriptor.

name addr size description

FD.ATT $0 1 File Attributes: D S PE PW PR E W R
FD.OWN $1 2 Owner's User ID

FD.DAT $3 5 Date Last Modified: YM D H M
FD.LNK $8 1 Link Count

FD.SIZ §9 4 File Size (number of bytes)

FD.DCR $D 3 Date Created: Y M D

FD.SEG §10 240 Segment List: see below

The attribute byte contains the file permission bits. Bit 7 is
set to indicate a directory file, bit 6 indicates a "sharable"
file. bit 5 is public execute, bit 4 is public write, etc.

The segment 1list consists of up to 48 five-byte entries that
have the size and address of each block of storage that comprise
the file in 1logical order. Each entry has a three-byte logical
sector number of the block, and a two-byte block size (in
sectors). The entry following the last segment will be zero.

When a file 1is created, it initially has no data segments
allocated to it Write operations past the current end-of-file
(the first write is always past the end-of-file) cause additional
sectors to be allocated to the file. If the file has no segments,
it is given an initial segment having the number of sectors
specified bv the minimum allocation entry in the device
descriptor, or the number of sectors requested if greater than the
minimum. Subsequent expansions of the file are also generally made
in minimum allocation increments. An attempt is made to expand
the last segment wherever possible rather than adding a new
segment. When the file 1is <c¢losed, unused sectors in the last
segment are truncated. '

A note about disk allocation: 0S-9 attempts to minimize the
number of storage segments used in a file. 1In fact, many files
will only have one segment in which case no extra read operations
are needed to randomlv "access any byte on the file. Files can
have multiple segments if the free space of the disk becomes very
fragmented, or if a file is repeatedly closed, then opened and
expanded at some later time- This can be avoided by writing a
byte at the highest address to be used on a file before writing
any other data.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-4

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.1.3 Directory Files

Disk directories are files that have the "D" attribute set.
Directory files contain an integral number of directory entires,
each of which can hold the name and LSN of a single regular or
directory file.

Each directory entry is 32 bytes long, consisting of 29 bytes
for the file name followed by a three byte logical sector number
of the file's descriptor sector. The file name is left-justified
in the field with the sign bit of the last character set Unused
entries have a 2zero byte in the first file name character
position.

Every mass—-storage media must have a master directory called
the "root directory". The beginning logical sector number of this
directory 1is stored 1in the identification sector, as previously
described.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager
6.2 RBFMAN Definitions of the Path Descriptor

The table below describes the usage of the file-manager-
reserved section of path descriptors used by RBFMAN.

Name Addr Size Description

Universal Section (same for all file managers)

PD.PD $00 1 Path number

PD.MOD $01 1 Mode (read/write/update)

PD.CNT $02 1 Number of open images

PD.DEV $03 2 Address of device table entry
PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of callers register stack
PD.BUF $08 2 Buffer address

RBFMAN Path Descriptor Definitions

PD.SMF S$0A 1 State flags (see next page)

PD.CP $OB 4 Current logical file position (byte addr)
PD.SIZ S$OF 4 File size

PD.SBL $13 3 Segment beginning logical sector number
PD.SBP S$16 3 Segment beginning physical sector number
PD.SSZ $19 2 Segment size ‘

PD.DSK §1B 2 Disk ID (for internal use only)

PD.DTB $1D 2 Address of drive table

RBFMAN Option Section Definitions (Copied from dev. descriptor)

$20 1 Device class 0= SCF 1=RBF 2=PIPE 3=SBF
PD.DRV $21 1 Drive number (0..N)
PD.STP $22 1 Step rate
PD.TYP $23 1 Device type
PD.DNS $24 1 Density capability
PD.CYL §$25 2 Number of cylinders (tracks)
PD.SID $27 1 Number of sides (surfaces)
PD.VFY $28 1 0 = verify disk writes
PD.SCT $29 2 Default number of sectors/track
PD.TO0S $2B 2 Default number of sectors/track (track 0)
PD.ILV $2D 1 Sector intreleave factor
PD.SAS S$2E 1 Segment allocation size

(the following values are NOT copied from the device desériptor)

PD.ATT $33 1 File attributes (D S PE PW PR E W R)
PD.FD $34 3 File descriptor PSN (physical sector #)
PD.DFD $37 3 Directory file descriptor PSN

PD.DCP $3A 4 File's directory entry pointer

PD.DVT S$3E 2 Address of device table entry

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-6

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

State Flag (PD.SMF): the bits of this byte are defined as:

bit 0 = set if current buffer has been altered
bit 1 = set if current sector is in buffer
bit 2 = set if descriptor sector in buffer

The first section of the path descriptoris universal for all
file managers, the second and third sections are defined by RBFMAN
and RBFMAN-type device drivers. The option section of the path
descriptor contains many device operating parameters which may be
read and/or written by the 0S9 ISGSTT and ISSSTT service requests.
This section is initialized by IOMAN which copies the
initialization table of the device descriptor into the option
section of the path descriptor when a path to a device is opened.
Any values not determined by this table will default to zero.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-7

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.3 RBF DEVICE DESCRIPTOR MODULES

This section describes the definitions and use of the
initialization table contained in device descriptor modules for
RBF~-type devices.

MODULE

OFFSET

0-s11 Standard Device Descriptor Module Header
$12 IT.DTP RMB 1 DEVICE TYPE (0=SCF 1=RBF 2=PIPE 3=SBF)
$13 IT.DRV RMB 1 DRIVE NUMBER

$14 IT.STP RMB 1 STEP RATE

$15 IT.TYP RMB 1 DEVICE TYPE (See RBFMAN path descriptor)
s$lé IT.DNS RMB 1 MEDIA DENSITY (0 = SINGLE, 1=DOUBLE)

$17 IT.CYL RMB 2 NUMBER OF CYLINDERS (TRACKS)

$19 IT.SID RMB 1 NUMBER OF SURFACES (SINES)

S1A IT.VFY RMB 1 0 = VERIFY DISK WRITES

$1B IT.SCT RMB 2 Default Sectors/Track

$1D IT.TOS RMB 2 Default Sectors/Track (Track 0)

S1F IT.ITV RMB 1 SECTOR TNTERLEAVE FACTOR

$20 IT.SAS RMB 1 SEGMENT ALLOCATION SIZE

IT.DRV - This 1location is used to associate a one byte integer -

with each drive that a controller will handle. The drives for
each controller should be numbered 0 to n-1, where n is the max-
imum number of drives the controller can handle.

IT.STP - (Floppy disks) This location sets the head stepping rate
that will be used with a drive. The step rate should be set to
the fastest value that the drive is capable of to reduce access
time. The actual values stored depended on the specific disk con-
troller and disk driver module used. Below are the values which
are used by the popular Western Digital floppy disk controller IC:

Pt e G e e R S e

! FD1771 ! FD179X PFamily !

STEP +==s====s=====ss==s====ss==J{=s=s=s=====s=s=s=s=ss==========1
CODE ! 5" ! 8" ! 5" ! 8" !
0 ! 40ms ! 20ms ! 30ms ! 15ms !

! 20ms ! 10ms ! 20ms ! 10ms !

2 ! 12ms ! éms ! 12ms ! éms !

3 ! 12ms ! éms ! éms ! 3ms !

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 6-8

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

IT.TYP - Device type (All types)

bit 0 -- 0 = 5" floppy disk
1 = 8" floppy disk
bit 6 -- 0 = Standard 0S-9 format
1 = Non-standard format
bit 7 -- 0 = Floppy disk
1 = Hard disk

IT.DNS - Density capabilities (Floppy disk only)

bit 0 -—— 0 = Single bit density (FM)

1 = Double bit density (MFM)
bit 1 -- 0 = Single track density (5", 48 TPI)
. 1l = Double track density (5". 96 TPI)

IT.SAS - This value specifies the minimum number of sectors to be
allocated at any one time.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-9

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

6.4 RBF-TYPE DEVICE DRIVERS

An RBF type device driver module contains a package of
subroutines that perform sector oriented I/O to or from a specific
hardware controller. These modules are usually reentrant so that
one copy of the module can simultaneously run several different
devices that use identical I/O controllers. IOMAN will allocate a
static storage area for each device (which may control several
drives). The size of the storage area is given in the device
driver module header. Some of this storage area will be used by
IOMAN and RBFMAN, the device driver is free to use the remainder
in any manner. This static storage is used as follows:

Static Storage Definitions

OFFSET ORG 0
0 V.PAGE RMB 1 PORT EXTENDED ADDRESS (A20 - AlS6)
1 V.PORT RMB 2 DEVICE BASE ADDRESS
3 V.LPRC RMB 1 LAST ACTIVE PROCESS ID
4 V BUSY RMB 1 ACTIVE PROCESS ID (0 = NOT BUSY)
5 V.WAKE RMB 1 PRCCESS ID TO REAWAKEN
V.USER EQU . END OF 0OS9 DEFTNITIONS
6 V.NDRV RMB 1 NUMBER OF DRIVES
DRVBEG EQU . BEGTNNING OF DRIVE TABLES
7 TABLES RMB DRVMEM*N RESERVE N DRIVE TABLES
FREE EQU . FREE FOR DRIVER TO USE

NOTE: V.PAGE through V.USER are predefined in the OSI9DEFS file.
V.NDRV, DRVBEG, DRVMEM are predefined in the RBFDEFS file.

V.PAGE, V.PORT These three bytes are defined by IOMAN as the 24-
bit device address.

V.LPRC This location contains the process ID of the last process
to use the device- Not used by RBF-type device drivers.

V.BUSY This 1location contains the process 1ID of the process
currently using the device. Defined by RBFMAN.

V.WAKE This location contains the process-ID of any process that
is waiting for the device to complete I/O (0 = NO PROCESS
WAITING) . Defined by device driver.

V.NDRV This location contains the number of drives that the
controller can use. Defined by the device driver as the maximum
number of drives that the controller can work with. RBFMAN will

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-10 ‘

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

assume that there 1is a drive table for each drive- Also see the
driver INIT routine in this section.

TABLES This area contains one table for each drive that the
controller will handle (RBFMAN will assume that there are as many
tables as indicated by V.NDRV). Some time after the driver INIT
routine has been called, RBFMAN will issue a request for the
driver to read the identification sector (logical sector 2zero)
from a drive, At this time, the driver will initialize the
corresponding drive table by copying the first part of the
identification sector (up to DD.SIZ) into it. Also see the
"Identification Sector™ section of this manual. The format of
each drive table is as given below:

OFFSET ORG 0
$00 DD.TOT RMB 3 TOTAL NUMBER OF SECTORS
$03 DD.TKS RMB 1 TRACK SIZE (TN SECTORS)
$04 DD.MAP RMB 2 # BYTES IN ALLOCATION BIT MAP
$06 DD.BIT RMB 2 NUMBER OF SECTORS PER BIT (CLUSTER SIZE)
$08 DD.DIR RMB 3 ADDRESS OF ROOT DIRECTORY
SOB DD.OWN RMB 2 OWNER'S USER NUMBER
$OD DD.ATT RMB 1 DISK ATTRIBUTES
SOE DD.DS¥ RMB 2 DISK ID
$10 DD.FMT RMB 1 MEDIA FORMAT
$11 DD.SPT RMB 2 SECTORS/TRACK
$15 DD.RES RMB 2 RESERVED FOR FUTURE USE
DD.SIZ EQU .

CURRENT TRACK NUMBER
BIT-MAP USE FLAG
SIZE OF EACH DRIVE TABLE

$15 V.TRAK RMB
$17 V.BMB RMB
$18 DRVMEM EQU

o N

DD, TOT This location contains the total number of sectors
contained on the disk. :

DD.TRS This location contains the track size (in sectors).

DD.MAP This location contains the number of bytes in the disk
allocation bit map.

DD.BIT This location contains the number of sectors that each bit
represents in the disk allocation bit map.

DD.DIR This location contains the logical sector number of the
disk root directory.

DD.OWN This location contains the disk owner's user number.
DD.ATT This location contains the disk access permission

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-11

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

attributes as defined below:

BIT7 =D (DIRECTORY IF SET)

BIT 6 = S (SHARABLE IF SET)

"BIT 5 = PX (PUBLIC EXECUTE IF SET)
BIT 4 = PW (PUBLIC WRITE IF SET)
BIT 3 = PR (PUBLIC READ IF SET)
BIT 2 = X (EXECUTE IF SET)

BIT1 =W (WRITE IF SET)

BIT 0 =R (READ IF SET)

DD.DSK This location contains a pseudo random number which is
used to identifv a disk so that 0S-9 may detect when a disk is
removed from the drive and another inserted in its place.

DD.FMT DISK FORMAT:
BIT BO - SIDE

0
1

SINGLE SIDED
DOUBLE SIDED

BIT Bl - DENSITY
0 = SINGLE DENSITY
1 = DOUBLE DENSITY

BIT B2 - TRACK DENSITY
0 = SINGLE (48 TPI)
1 = DOUBLE (96 TPI)

DD.SPT Number of sectors per track (track zero may use
a different value- specified by IT.TOS in the device descriptor).

DD.RES RESERVFD FOR FUTURE USE

V.TRAK This location contains the current track which the head is
on and is updated by the driver,

V.BMB This location is used by RBFMAN to indicate whether or not
the disk allocation bit map is currently in use (0 = not in wuse).
The disk driver routines must not alter this location.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-12

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

-

6.5 RBFMAN DEVICE DRIVERS

As with all device drivers, RBFMAN-type device drivers use a
standard executable memory module format with a module type of
"device driver" (CODE SE). The execution offset address in the
module header points to a branch table that has six three byte
entries. Each entry is typically a LBRA to the corresponding
subroutine. The branch table is defined as follows:

ENTRY LBRA INIT INITIALIZE DRIVE
LBRA READ READ SECTOR
LBRA WRITE WRITE SECTOR
LBRA GETSTA GET STATUS
LBRA SETSTA SET STATUS
LBRA TERM TERMTNATE DEVICE

Each subroutine should exit with the condition code register C bit
cleared if no error occured. Otherwise the C bit should be set
and an appropriate error code returned in the B register. Below
is a description of each subroutine, its input parameters, and its
output parameters.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-13

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager
NAME: INIT

INPUT: (U)
(Y)

ADDRESS OF DEVICE STATIC STORAGE
ADDRESS OF THE DEVICE DESCRIPTOR MODULE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FUNCTION: INITIALIZE DEVICE AND ITS STATIC STORAGE AREA

1. 1If disk writes are verified, use the F$SRQM service request to
allocate a 256 byte buffer area where a sector may be read back
and verified after a write.

2. Initialize the device permanent storage. For floppy disk
controller typically this consists of initializing V.NDRV to the
number of drives that the controller will work with. initializing
DD.TOT in the drive table to a non-zero value so that sector =zero
- may be read or written to, and initializing V.TRAK to S$FF so that
the first seek will find track zero.

3. Place the IRQ service routine on the IRQ polling list by using
the 0S9 FSIRQ service request.

4. 1Initialize the device control registers (enable interrupts if
necessary).

NOTE: Prior to being called, the device permanent storage will be
cleared (set to =zero) except for V.PAGE and V.PORT which will
contain the 24 bit device address. The driver should initialize
each drive table appropriately for the type of disk the driver
expects to be used on the corresponding drive-

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-14

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

NAME: READ

INPUT: (U) = ADDRESS OF THE DEVICE STATIC STORAGE
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(B) = MSB OF DISK LOGICAL SECTOR NUMBER
(X) = LSB's OF DISK LOGICAL SFCTOR NUMBER

OUTPUT: SECTOR IS RETURNED IN THE SECTOR BUFFER

ERROR OUTPUT: (CC)
(B)

FUNCTION: READ A 256 BYTE SECTOR

C BIT SET
APPROPRIATE ERROR CCDE

Read a sector from the disk and place it in the sector buffer (256
byte). Below are the things that the disk driver must do:

1. Get the sector buffer address from PD.BUF in the path
descriptor,

2. Get the drive number from PD.DRV in the path descriptor.

3. Compute the physical disk address from the 1logical sector
number. ' '

4, Initiate the read operation.

5. Copy V.BUSY to V.WARE. then go to sleep and wait for the I/O
to complete (the IRQ service routine is responsible for sendina a
wake up signal). After awakening, test V.WAKE to see if it is
clear, if not, go back to sleep.

If the disk controller can not be interrupt driven it will be
necessary to perform programmed I/O.

NOTE 1l: Whenever logical sector zero is read, the first part of
this sector must be copied into the proper drive table (get the
drive number from PD.DRV in the path descriptor). The number of
bytes to copy is DD,SIZ.

NOTE 2: The drive number (PD.DRV) should be used to compute the
offset to the corresponding drive table as follows:

LDA PD.DRV,Y Get drive number
LDB #DRVMEM Get size of a drive table

MUL
LEAX DRVBEG,U Get address of first table
LEAX D,X Compute address of table N

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-15

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

NAME: WRITE

INPUT: (U) = ADDRESS OF THE DEVICE STATIC STORAGE AREA
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(B) = MSB OF THE DISK LOGICAL SECTOR NUMBER
(X) = LSB's OF THE DISK LOGICAL SECTOR NUMBER

OUTPUT: THE SECTOR BUFFER IS WRITTEN OUT TO DISK

ERROR QUTPUT: (CC)
(B)

FUNCTION: WRITE A SECTOR

C-BIT SET
APPROPRIATE ERROR CODE

Write the sector buffer (256 bytes) to the disk. Below are the
things that a disk driver must do:

1. Get the sector buffer address from PD.BUF in the path des-
criptor.

2. Get the drive number from PD.DRV in the path descriptor.

3. Compute the physical disk address from the logical sector
number. '

4, Initiate the write operation.

5. Copy V.BUSY to V.WAKE. then go to sleep and wait for the I/O
to complete (the IRQ service routine is responsible for sending
the wakeup signal). After awakening, test V.WAKE to see if it is
clear, if it is not, then go back to sleep. If the disk controller
can not be interrupt-driven., it will be necessary to perform a
programmed I/O transfer.

6. If PD.VFY in the path descriptor is equal to zero, read the
sector back in and verify that it was written correctly. This
usually does not involve a compare of the data.

NOTE 1l: If disk writes are to be verified, the INIT routine must
request the buffer where the sector may be placed when it is read
back in. Do not copy sector zero into the drive table when it is
read back to be verified.

NOTE 2: Use the drive number (PD.DRV) to compute the offset to
the corresponding drive table as shown for the READ routine.

-(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-16

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager

NAME: GETSTA
PUTSTA

INPUT: (U)
(Y)
(A)

OUTPUT: (DFPENDS UPON THRE FUNCTION CODE)

ADDRESS OF THE DEVICE STATIC STORAGE AREA
ADDRESS OF THE PATH DESCRIPTOR
STATUS CODE

ERROR QUTPUT: (CC) = C BIT SET
(B) = APPROPRIATE ERROR CODE

FUNCTION: GET/SET DEVICE STATUS

These routines are wild card calls used to get (set) the device's
operating parameters as specified for the 0S9 ISGSTT and ISSSTT
service requests.

It may be necessary to examine or change the register stack which
contains the values of MPU registers at the time of the ISGSTT or
ISSSTT service request. The address of the register stack may be
found in PD.RGS, which is located in the path descriptor. The
following offsets may be used to access any particular value in
the register stack:

OFFSET NMEMONIC MPU REGISTER

S0 RSCC RMB 1 CONDITION CONE REGISTER
sl RSD EQU . D REGISTER

$1 RSA RMB 1 A REGISTER

$2 RSB RMB 1 B REGISTER

$3 RSDP RMB 1 DP REGISTER

$4 RSX RMB 2 X REGISTER

$6 RSV ~ RMB 2 Y REGISTER

$8 RSU RMB 2 U REGISTER

SA RSPC RMB 2 PROGRAM COUNTER

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-17

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager
NAME: - TERM
INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE AREA
OUTPUT: NONE

ERRCOR OUTPUT: (CC) = C BIT SET ‘
(B) = APPRNPRIATE ERROR CODE

FUNCTION: TERMINATE DEVICE

This routine 1is called when a device is no longer in use in the
system, which is defined to be when the link count of its device
descriptor module becomes zero). The TERM routine must:

1 Wwait until any pending I/O has completed.

2. Disable the device interrupts.

3. Remove the device from the IRQ polling list.

4. If the INIT routine reserved a 256 byte buffer for verifying
disk writes, return the memory with the FSMEM service request.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-18

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager
NAME: IRQ SERVICE ROUTINE
FUNCTION: SERVICE DEVICE INTERRUPTS
Although this routine is not included in the device driver module
branch table and is not called directly by RBFMAN, it is an key
routine in interrupt-driven device drivers. Its function is to:

1. Service device interrupts.

2. When the I/O is complete, the IRQ service routine should send
a wake up signal to the process whose process ID is in V.WAKE

Also clear V.WAKE as a flag to the mainline program that the IRQ
has indeed occurred.

NOTE: When the IRQ service routine finishes servicing an
interrupt it must clear the <carrv and exit with an RTS
instruction.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-19

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Random Block File Manager
NAME: BOOT (Bootstrap Module)
INPUT: None.

SIZE OF THE BOOT FILE (in bytes)
ADDRESS OF WHERE THE BOOT FIT.E WAS T.OADFD IN MEMORY

OUTPUT: (D)
(X)

ERROR OUTPUT: (CC) = C BIT SET
(B) = APPRNPRIATE ERROR CODE

FUNCTION: LOAD THE BOOT FILE INTO MEMORY FROM MASS-STORAGE

NOTE: The BOOT module is not part of the disk driver. It is a
separate module which is normally co-resident with the "0OS9P2"
module in the system firmware.

The bootstrap module contains one subroutine that 1loads the
bootstrap file and some related information into memory. It uses
the standard executable module format with a module type of
"system" (code $C). The execution offset in the module header
contains the offset to the entry point of this subroutine.

It obtains the starting sector number and size of the "OS9Boot"
file from the identification sector (LSN 0). 0S-9 is called to
allocate a memory area large enough for the boot file, and then it
loads the boot file into this memory area.

1. Read the identification sector (sector zero) from the disk.
BOOT must pick its own buffer area. The identification sector
- contains the values for DD.BT (the 24 bit logical sector number of
the bootstrap file), and DD.BSZ (the size of the bootstrap file in
bytes). For a full description of the identification sector, see
6.1.1.

2. After reading the identification sector into the buffer, get
the 24 bit logical sector number of the bootstrap file from DD.BT.

3. Get the size (in bytes) of the bootstrap file from DD.BSZ. The
boot is contained in one logically contiguous block beginning at
the logical sector specified in DD.BT and extending for
(DD.BSZ/256+1) sectors.

4, Use the 0S9 FSSROM service request to request the memory area
where the boot file will be loaded into.

5. Read the boot file into this memory area.

6. Return the size of the boot file and its location.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 6-20

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.0 SEQUENTIAL CHARACTER FILE MANAGER

The Sequential Character File Manager (SCFMAN) is the 0S-9 file
manager module that supports devices that operate on a character-
by-character basis, such as terminals, printers, modems, etc.
SCFMAN can handle any number or type of such devices. It is a
reentrant subroutine package called by IOMAN for I/0 service
requests to sequential character oriented devices. It includes the
extensive input and output editing functions typical of line-
oriented operation such as: backspace, line delete, repeat line,
auto line feed, screen pause, return delay padding, etc.

Standard 0S-9 systems are supplied with SCFMAN and two SCF-type
device driver modules: ACIA, which run 6850 serial interfaces, and
PIA, which drives a 6821-type parallel interface for printers.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.1 SCFMAN LINE EDITING FUNCTIONS

ISREAD and ISWRITE service requests (which correspond to
Basic09 GET and PUT statements) to SCFMAN-type devices pass data
to/from the device without any modification, except that keyboard
interrupt, keyboard abort, and pause character are filtered out of
the input (editing is disabled if the corresponding character in
the path descriptor contains a zero). In particular, carriage
returns are not automatically followed by line feeds or nulls, and
the high order bits are passed as sent/received.

ISRDLN and ISWRLN service requests (which correspond to Basic09
INPUT, PRINT, READ and WRITE statements) to SCFMAN-type devices
pertorm full 1line editing of all functions enabled for the
particular device. These functions are initialized when the
device 1is first used by copying the option table from the device
descriptor table associated with the specific device. They may be
altered anytime afterwards from assembly language programs using
the ISSSTT and ISGSST service requests, or from the keyboard using
the TMODE command. Also, all bytes transfered in this mode will
have the high order bit cleared.

The following path descriptor values control the line editing
functions:

If PD.UPC <> 0 bytes input or output in the range "a..z" are made
"A. o Z"

If PD.ERKO <> 0, input bytes are echoed, except that undefined
control characters in the range $0..$1F print as "."

If PD.ALF <> 0, carriage returns are automatically followed by
line feeds,

If PD.NUL <> 0, After each CR/LF a PD.NUL "nulls" (always $00) are
sent,

If PD.PAU <> 0, Auto page pause will occur after every PD.PAU
lines since the last input.-

If PD.BSP <> 0, SCF will recognize PD.BSP as the "input" backspace
character, and will echo PD.BSE (the backspace echo character) if
PD.BSO = 0, or PD.BSE, space. PD.BSE if PD.BSO <> 0.

If PD.DEL <> 0., SCF will recognize PD.DEL the delete line
character (on input), and echo the backspace sequence over the
entire line if PD.DLO = 0, or echo CR/LF if PD.DLO <> 0

PD.EOR defines the end of record character. This is the last
character on each line entered (ISRDLN), and terminates the output

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

(ISWRLN) when this character is sent. Normally PD.EOR will be set
to $0D. 1If it is set to zero, SCF's READLN will NEVER terminate,
unless an EOF occurs.

If PD.EOF <> 0, it defines the end of file character. SCFMAN will
return an end-of-file error on ISREAD or ISRDLN if this is the
first (and only) character input. It can be disabled by setting
its value to zero.

If PD.RPR <> 0, SCF (ISRDLN) will, upon receipt of this character,
echo a carriage return [optional line feed], and then reprint the
current line.

If PD.DUP <> 0, SCF (ISRDLN) will duplicate whatever 1is in the
input buffer through the first "PD.EOR" character.

If PD.PSC <> 0, output is suspended before the next "PD.EOR"
character when this. character is input. This will also delete any
"type ahead" input for ISRDLN.

If PD.INT <> 0, and is received on input, a keyboard interrupt
signal is sent to the last user of this path. Also it will
terminate the current I/O request (if any) with an error identical
to the keyboard interrupt signal code. This location normally is
set to a control-C character.

If PD.QUT <> 0, and is received on input, a keyboard abort signal
is sent to the last user of this path. Also it will terminate the
current I/O request (if any) with an error code identical to the
keyboard interrrupt signal code. This location is normally set to
a control-Q character.

If PD.OVF <> 0, It is echoed when ISRDLN has satisfied its input
byte count without finding a "PD.EOR" character.

NOTE: It 1is possible to disable most of these special editing
functions by setting the corresponding control character in the
path descriptor to zero by using the I$SSTT service request, or by
running the TMODE utility. A more permanent solution may be had
by setting the corresponding control character value in the device
descriptor module to zero.

Device descriptors may be inspected to determine the default
settings for these values for specific devices.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager
7.2 SCFMAN Definitions of The Path Descriptor

The table below describes the path descriptors used by SCFMAN
and SCFMAN-type device drivers.

Name Offset Size Description

Universal Section (Same for all file managers)

PD.PD $00 1 Path number

PD.MOD $01 1 Mode (read/write/update)

PD.CNT $02 1 Number of open images

PD.DEV $03 2 Address of device table entry
PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of callers MPU register stac
PD.BUF $08 2 Buffer address ’

SCFMAN Path Descriptor Definitions

PD.DV2 $0A 2 Device table addr of 2nd (echo) device
PD.RAW $O0C 1 Edit flag: O=raw mode, l=edit mode
PD.MAX S$OD 2 Readline maximum character count
PD.MIN SOF 1 Devices are "mine" if cleared

PD.STS $10 2 Status routine module address

PD.STM $12 2 Reserved for status routine

SCFMAN Option Section Definition

$20 1 Device class 0=SCF 1=RBF 2=PIPE 3=SBF
PD.UPC $21 1 Case (0=BOTH, 1=UPPER ONLY)
PD.BSO $22 1 Backsp (0=BSE, 1=BSE SP BSE)
PD.DLO $23 1 Delete (0 = BSE over line, 1=CR LF)
PD.ERO $24 1 Echo (0=no echo)
PD.ALF $25 1 Auto LF (0O=no auto LF)
PD.NUL $26 1 End of line null count
PD.PAU $27 1 Pause (0= no end of page pause)
PD.PAG $28 1 Lines per page
PD.BSP $29 1 Backspace character
PD.DEL $2A 1 Delete line character
PD.EOR $2B 1 End of record character (read only)
PD.EOF $2C 1 End of file character (read only)
PD.RPR $2D 1 Reprint line character
PD.DUP S$2E 1 Duplicate last line character
PD.PSC $2F 1 Pause character
PD.INT $30 1 Keyboard interrupt character (CTL C)
PD.QUT $31 1 Reyboard abort character (CTL Q)
PD.BSE $32 1 Backspace echo character (BSE)
PD.OVF $33 1 Line overflow character (bell)

(Continued on next page)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-4

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

PD.PAR $34 1 Device initialization value (parity)
PD.BAU S35 1 Software settable baud rate

PD.D2P $36 2 Offset to 2nd device name string
PD.STN $38 2 Offset of status routine name
PD.ERR $3A 1 Most recent I/O error status

The first section is universal for all file managers, the second
and third section are specific for SCFMAN and SCFMAN-type device
drivers. The option section of the path descriptor contains many
device operating parameters which may be read or written by the
0S9 1ISGSTT or ISSSTT service requests. IOMAN initializes this
section when a path is opened to a device by copying the
corresponding device descriptor initialization table. Any values
not determined by this table will default to zero.

Special editing functions may be disabled by setting the
corresponding control character value to zero.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.3 SCF DEVICE DESCRIPTOR MODULES

Device descriptor modules for SCF-type devices contain the
device address and an initialization table which defines inital
values for the I/O editing features, as listed below.

MODULE
OFFSET ORG $12
TABLE EQU . BEGINING OF OPTION TABLE

$12 IT.DVC RMB 1 DEVICE CLASS (0=SCF 1=RBF 2=PIPE 3=SBF)

$13 IT.UPC RMB 1 CASE (0=BOTH, 1=UPPER ONLY)

$14 IT.BSO RMB 1 BRACK SPACE (0=BSE, 1=BSE,SP,BSE)

$15 IT.DLO RMB 1 DELETE (0=BSE OVER LINE, 1=CR)

$16 IT.EKO RMB 1 ECHO (0=NO ECHO)

$17 IT.,ALF RMB 1 AUTO LINE FEED (0= NO AUTO LF)

$18 IT.NUL RMB 1 END OF LINE NULL COUNT

$19 IT.PAU RMB 1 PAUSE (0= NO END OF PAGE PAUSE)

$1A IT.PAG RMB 1 LINES PER PAGE

$1B IT.BSP RMB 1 BACRSPACE CHARACTER

$1C IT.DEL. RMB 1 DELETE LINE CHARACTER

$1D IT.EOR RMB 1 END OF RECORD CHARACTER

S1E IT.EOF RMB 1 END OF FILE CHARACTER

S1F IT.RPR RMB 1 REPRINT LINE CHARACTER

$20 IT.DUP RMB 1 DUP LAST LINE CHARACTER

$21 IT.PSC RMB 1 PAUSE CHARACTER

$22 IT.INT RMB 1 INTERRUPT CHARACTER

$23 IT.QUT RMB 1 QUIT CHARACTER

$24 IT.BSE RMB 1 BACKSPACE ECHO CHARACTER

$25 IT.OVF RMB 1 LINE OVERFLOW CHARACTER (BELL)

$26 IT.PAR RMB 1 INITIALIZATION VALUE (PARITY)

$27 IT.BAU RMB 1 BAUD RATE

$28 IT.D2P RMB 2 ATTACHED DEVICE NAME STING OFFSET
. $2A IT.STN RMB 2 OFFSET TO STATUS ROUTINE

$2C IT.ERR RMB 1 INITIAL ERROR STATUS

NOTES:

SCF editing functions will be "turned off"™ if the corresponding
special character is a zero. For example, if IT.EOF was a zero,
there would be no end of file character.

IT.PAR is typically used to intitialize the device's control
register when a path is opened to it.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-6

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.4 SCF DEVICE DRIVER STORAGE DEFINITIONS

An SCFMAN-type device driver module contains a package of
subroutines that perform raw I/0 transfers to or from a specific
hardware controller. These modules are usually reentrant so that
one copy of the module can simultaneously run several different
devices that use identical I/0 controllers. For each
"incarnation" of the driver, IOMAN will allocate a static storage
area for that device. The size of the storage area is given in
the device driver module header. Some of this storage area will
be used by IOMAN and SCFMAN, the device driver is free to use the
remainder in any way (typically as variables and buffers). This
static storage is defined as:

OFFSET ORG 0
$0 V.PAGE RMB 1 PORT EXTENDED ADDRESS
$1 V.PORT RMB 2 DEVICE BASE ADDRESS
$3 V.LPRC RMB 1 LAST ACTIVE PROCESS ID
$4 V.BUSY RMB 1 ACTIVE PROCESS ID (0 = NOT BUSY)
$5 V.WARKE RMB 1 PROCESS ID TO REAWAKEN
V.USER EQU . END OF 0S9 DEFINITIONS
$6 V.TYPE RMB 1 DEVICE TYPE OR PARITY
$7 V.LINE RMB 1 LINES LEFT TILL END OF PAGE
S8 V.PAUS RMB'1l PAUSE REQUEST (0 = NO PAUSE)
$9 V.DEV2 RMB 2 ATTACHED DEVICE STATIC STORAGE
SB V.INTR RMB 1 INTERRUPT CHARACTER
$C V.QUIT RMB 1 QUIT CHARACTER
$D V.PCHR RMB 1 PAUSE CHARACTER
SE V.ERR RMB 1 ERROR ACCUMULATOR
SF V.SCF EQU . END OF SCFMAN DEFINITIONS

FREE EQU . FREE FOR DEVICE DRIVER TO USE

V.PAGE, V.PORT These three bytes are defined by IOMAN to be the
24 bit device address.

V.LPRC This location contains the process-ID of the last process
to use the device. The IRQ service routine is responsible for
sending this process the proper signal in case a "QUIT" character
or an "INTERRUPT" character is recieved. Defined by SCFMAN,

V.BUSY This location contains the process ID of the process
currently using the device (zero if it is not being used). This is
used by SCFMAN to prevent more than one process from using the
device at the same moment. Defined by SCFMAN.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-7

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

V.WAKE This location contains the process ID of any process that
is waiting for the device to complete I/O (or 2zero if there is
none waiting). The interrupt service routine should check this
location to see if a process is waiting and if so, send it a wake
up signal. Defined by the device driver.

V.TYPE This location contains any special characteristics of a
device. It is typically used as a value to initialize the device
control register, for parity etc. It is defined by SCFMAN which
copies its value from PD.PAR in the path descriptor.

V.LINE This location contains the number of lines left till end
of page. Paging is handled by SCFMAN and not by the device
driver.

V.PAUS This location is a flag used by SCFMAN to indicate that a
pause character has been recieved. Setting its wvalue to anything
other than 2zero will cause SCFMAN to stop transmitting characters
at the end of the next line. Device driver input routines must
set V.PAUS in the ECHO device's static storage area. SCFMAN will
check this wvalue in the ECHO device's static storage when output
is sent. : '

V.DEV2 This location contains the address of the ECHO (attached)
device's static storage area. Typically the device and the
attached device are one and the same. However they may be
different as 1in the case of a keyboard and a memory mapped video
display. Defined by SCFMAN.

V.INTR Keyboard interrupt character. It is defined by SCFMAN,
which copies its value from PD.INT in the path descriptor.

V.QUIT [Keyboard abort character. It is defined by SCFMAN which
copies its value from PD.QUT in the path descriptor.

V.PCHR Pause character. It is defined by SCFMAN which copies its
value from PD.PSC in the path descriptor.

V.ERR This location is used to accumulate I/O errors. Typically
it is used by the IRQ service routine to record errors so that
they may be reported 1later when SCFMAN calls one of the device
driver routines.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-8

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

7.5 SCFMAN DEVICE DRIVER SUBROUTINES

As with all device drivers. SCFMAN device drivers use a
standard executable memory module format with a module type of
"device driver" (CODE SE). The execution offset address in the
module header points to a branch table that has six three byte
entries. Each entry is typically a LBRA to the corresponding
subroutine. The branch table is as follows:

ENTRY LBRA INIT INITIALIZE DEVICE
LBRA READ READ CHARACTER
LBRA WRITE WRITE CHARACTER

LBRA GETSTA GET DEVICE STATUS
LBRA SETSTA SET DEVICE STATUS
LBRA TERM TERMINATE DEVICE

Each subroutine should exit with the condition code register C bit
cleared if no error occured. Otherwise the C bit should be set
and an appropriate error code returned in the B register. Below
is a description of each subroutine, its input parameters and its
output parameters.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-9

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: INIT

INPUT: (U)
(Y)

OUTPUT: NONE

ADDRESS OF DEVICE STATIC STORAGE
ADDRESS OF DEVICE DESCRIPTOR MODULE

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FUNCTION: INITIALIZE DEVICE AND ITS STATIC STORAGE

1. 1Initialize the device static storage.

2. Place the IRQ service routine on the IRQ polling list by using
the 0S9 FSIRQ service request.

3. Initialize the device control registers (enable interrupts if
necessary).

NOTE: Prior to being called, the device static storage will be
cleared (set to zero) except for V.PAGE and V,PORT which will
contain the 24 bit device address. There is no need to initialize
the portion of static storage used by IOMAN and SCFMAN.,

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-10

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: READ .
INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE

(Y) = ADDRESS OF PATH DESCRIPTOR
OUTPUT: (A) = CHARACTER READ

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FUNCTION: GET NEXT CHARACTER

This routine should get the next character from the input buffer.
If there is no data ready, this routine should copy its process ID
from V.BUSY into V.WAKE and then use the FSSLEP service request to
put itself to sleep.

Later when data 1is recieved, the IRQ service routine will leave
the data in a buffer, then check V.WAKE to see if any process is
waiting for the device to complete I/0. If so, the IRQ service
routine should send a wakeup signal to it.

NOTE: Data buffers are NOT automatically allocated. If any are
used, they should be defined in the device's static storage area.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-11

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME : WRITE

INPUT: (U) = ADDRESS OF DEVICE STATIC STORAGE
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(A) = CHAR TO WRITE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FUNCTION: OUTPUT A CHARACTER

This routine places a data byte into an output buffer and enables
the device output interrupts. If the data buffer is already
full, this routine should copy its process ID from V.BUSY into
V.WAKE and then put itself to sleep.

Later when the IRQ service routine transmits a character and makes
room for more data in the buffer, it will check V.WAKE to sée if
there is a process waiting for the device to complete I/O. If
there is, it will send a wake up signal to that process.

Note: This routine must ensure that the IRQ service routine will
start up when data is placed into the buffer, After an interrupt
is generated the IRQ service routine will continue to transmit
data until the data buffer is empty, and then it will disable the
device's "ready to transmit" interrupts.

Note: Data buffers are NOT automatically allocated. If any are
used, they should be defined in the device's static storage.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-12

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: GETSTA
- SETSTA

INPUT: (U)
(Y)
(A)

ADDRESS OF DEVICE STATIC STORAGE
ADDRESS OF PATH DESCRIPTOR
STATUS CODE

OUTPUT: DFPENDS UPON FUNCTION CODE

FUNCTION: GET/SET DEVICE STATUS

This routine is a wild card call ‘used to get (set) the device
parameters specified in the ISGSTT and ISSSTT service requests.
Currently all of the function codes defined by Microware for SCF-
type devices are handled by IOMAN or SCFMAN. Any codes not
defined by Microware will be passed to the device driver.

It may be necessary to examine or change the register packet which
contains the values of the 6809 registers at the time the 0S9
service request was issued. The address of the register packet
may be found in PD.RGS, which is located in the path descriptor.
The following offsets may be used to access any particular value
in the register packet: ,

OFFSET NMEMONIC MPU REGISTER

$0 RS$CC RMB 1 CONDITIONS CODE REGISTER
$1 RSD EQU . D REGISTER

$1 RSA RMB 1 A REGISTER

$2 RSB RMB 1 B REGISTER

$3 RSDP RMB 1 DP REGISTER

$4 R$X RMB 2 X REGISTER

$6 RSY RMB 2 Y REGISTER

$8 RSU RMB 2 U REGISTER

2 PROGRAM COUNTER

$A RSPC RMB

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 7-13

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: TERM
INPUT: (U) = PTR TO DEVICE STATIC STORAGE
OUTPUT: NONE

ERROR OUTPUT: (CC)
(B)

FUNCTION: TERMINATE DEVICE

C bit set
Appropriate error code

This routine is called when a device is no longer in use, defined
as when its device descriptor module's link count becomes zero).
It must perform the following:

1. Wait until the output buffer has been emptied (by the IRQ
service routine).

2. Disable device interrupts.

3. Remove device from the IRQ polling list.

NOTE: Static storage used by device drivers is never returned to
the free memory pool. Therefore, it is desirable to NEVER

terminate any device that might be used again. Modules contained
in the BOOT file will NEVER be terminated.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 7-14

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: IRQ SERVICE ROUTINE

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device drivers branch
table and not called directly from SCFMAN, it is an important
routine in device drivers. The main things that it does are:

1. Service the device interrupts (recieve data from device or send
data to it). This routine should put its data into and get its
data from buffers which are defined in the device static storage.

2. Wake up any process waiting for I/0 to complete by checking to
see if there is a process ID in V.WAKE (non-zero) and if so send
a wakeup signal to that process.

3. If the device is ready to send more data and the output buffer
is empty, disable the device's "ready to transmit" interrupts.

4. If a pause character is recieved, set V.PAUS in the attached
device static storage to a non-zero value. The address of the
attached device static storage is in V.DEV2.

When the IRQ service routine finishes servicing an interrupt, it
must clear the carry and exit with an RTS instruction.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-15

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 7-16 '

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Techniques

8.0 ASSEMBLY LANGUAGE PROGRAMMING TECHNIQUES

There are four key rules for programmers writing OS-9 assembly
language programs:

1. All programs MUST use position-independent-code (PIC). 0S-9
selects load addresses based on available memory at run-time.
There is no way to force a program to be loaded at a specific
address.

2. All programs must use the standard O0S-9 memory module
format, or they cannot be loaded and run. Programs must not use
self-modifying code. Programs must not change anything in a
memory module or use any part of it for variables.

3. Storage for all variables and data structures must be within
a data area which is assigned by 0S-9 at run-time, and is
separate from the program memory module.

4, All input and output operations should be made using 0S-9
service request calls.

Fortunately, the 6809's versatile addressing modes make the
rules above easy to follow. The 0S-9 Assembler also helps because
it has special capabilities to assist the programmer in creating
programs and memory modules for the 0S-9 execution environment.

8.1 HOW TO WRITE POSITION-INDEPENDENT CODE

The 6809 instruction set was optimized to allow efficient use
of Position Independent Code (PIC). The basic technique is to
always use PC-relative addressing; for example BRA, LBRA, BSR and
LBSR. Get addresses of constants and tables using LEA
_instructions instead of load immediate instructions. 1If you use
dispatch tables, use tables of RELATIVE, not absolute, addresses.

INCORRECT CORRECT

LDX #CONSTANT LEAX CONSTANT,PCR

JSR SUBR BSR SUBR or LBSR SUBR
JMP LABEL BRA LABEL or LBRA LABEL

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Techniques

8.2 ADDRESSING VARIABLES AND DATA STRUCTURES

Programs executed as processes (by FORK and CHAIN system calls
or by the Shell) are assigned a RAM memory area for variables,
stacks, and data structures at execution-time. The addresses
cannot be determined or specified ahead of time. However, a
minimum size for this area is specified in the program's module
header. Again, thanks to the 6809's full compliment of addressing
modes this presents no problem to the 0S-9 programmer.)

When the program is first entered, the Y register will have the
address of the top of the process' data memory area. If the
creating process passed a parameter area, it will be located from
the wvalue of the SP to the top of memory (Y), and the D register
will contain the parameter area size in bytes. If the new process
was called by the shell, the parameter area will contain the part
of the shell command line that includes the argument (parameter)
text. The U register will have the lower bound of the data memory
area, and the DP register will contain its page number.

The most important rule is to NOT USE EXTENDED ADDRESSING!
Indexed and direct page addressing should be used exclusively to
access data area values and structures. Do not use program-counter
relative addressing to find addresses in the data area, but do use
it to refer to addresses within the program area.

The most efficient way to handle tables, buffers, stacks, etc.,
is to have the program's initialization routine compute their
absolute addresses using the data area bounds passed by 0S-9 in
the registers. These addresses can then be saved in the direct
page where they can be loaded into registers quickly, using short
instructions. This technique has advantages: it is faster than
extended addressing, and the program is inherently reentrant.

8.3 STACK REQUIREMENTS

Because 0S-9 uses interrupts extensively, and also because many
reentrant 6809 programs use the MPU stack for 1local variable
storage, a generous stack should be maintained at all times. The
recommended minimum is approximately 200 bytes.

8.4 INTERRUPT MASKS

User programs should keep the condition codes register F (FIRQ
mask) and I (IRQ mask) bits off. They can be set during critical
program sequences to avoid task-switching or interrupts, but this
time should be kept to a mimimum. If they are set for longer than
a tick period, system timekeeping accuracy may be affected. Also,
some Level Two systems will abort programs having a set IRQ mask.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Techniques

—

8.5 USING STANDARD I/O PATHS

Programs should be written to use standard I/O paths wherever
practical. Usually, this involves I/O calls that are intended to
communicate to the user's terminal, or any other case where the
0S-9 redirected I/O capability is desirable,

All three standard I/0 paths will already be open when the
program is entered (they are inherited from the parent process).
Programs should pnot close these paths except under very special
circumstances.

Standard I/0 paths are always assigned path numbers zero, one,
and two, as shown below:

Path 0 - Standard Input. Analogous to the keyboard or other main
data input source.

Path 1 - Standard Output. Analogous to the terminal display or
other main data output destination.

Path 2 - Standard Error/Status. This path is provided so output
messages which are not part of the actual program output
can be kept separate. Many times paths 1 and 2 will be
directed to the same device.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Techniques

8.6 WRITING INTERRUPT-DRIVEN DEVICE DRIVERS

0S-9 programs do not use interrupts directly. Any interrupt-
driven function should be implemented as a device driver module
which should handle all interrupt-related functions. When it is
necessary for a program to be synchronized to an interrupt-causing
event, a driver can send a semaphore to a program (or the reverse)
using 0S-9's signal facilities.

It is important to understand that interrupt service routines
are asynchronous and somewhat nebulous in that they are not
distinct processes. They are in effect subroutines called by 0S-9
when an interrupt occurs.

Therefore, all interrupt-driven device drivers have two basic
parts: the "mainline" subroutines that execute as part of the
calling process, and a separate interrupt service routine.

THE TWO ROUTINES ARE ASYNCHRONOUS AND THEREFORE MUST USE SIGNALS
FOR COMMUNICATIONS AND COORDINATION.

The INIT initialization subroutine within the driver package
should allocate static storage for the service routine, get the
service routine address, and execute the FSIRQ system call to add
it to the IRQ polling table.

When a device driver routine does something that will result in
an interrupt, it should immediately execute a FS$SLEP service
request. This results in the process' deactivation. When the
interrupt in question occurs, its service routine is executed
after some random interval. It should then do the minimal amount
of processing required, and send a "wakeup" signal to its
associated process using the FSSEND service request. It may also
put some data in its static storage (I/0 data and status) which is
shared with its associated "sleeping" process.

Some time 1later, the device driver "mainline" routine is
awakened by the signal. and can process the data or status
returned by the interrupt service routine.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-4

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Technigques

8.7 A SAMPLE PROGRAM

The 0S-9 "list" utility command program is shown on this and
the next page as an example of assembly language programming.

Microware 0S-9 Assembler 2.1 01/04/82 23:39:37 Page 001
LIST - File List Utility

dded k%

* LIST UTILITY COMMAND
* Syntax: list <pathname>
* COPIES INPUT FROM SPECIFIED FILE TO STANDARD OUTPUT

0000 87CDOO4E mod LSTEND,LSTNAM,PRGRM+OBJCT,
REENT+1,LSTENT, LSTMEM
000D 4C6973F4 LSTNAM fcs "List"

* STATIC STORAGE OFFSETS
*

00C8 BUFSIZ equ 200 size of input buffer
0000 ORG O ‘

0000 IPATH rmb 1 ' input path number

0001 PRMPTR rmb 2 parameter pointer

0003 BUFFER rmb BUFSIZ allocate line buffer
00CB rmb 200 allocate stack

0193 rmb 200 room for parameter list
025B LSTMEM EQU .

0011 9F01 LSTENT stx PRMPTR save parameter ptr
0013 8601 lda #READ, select read access mode
0015 103F84 0s9 ISOPEN open input file

0018 252E becs LISTSO0 exit if error

001A 9700 ' sta IPATH save input path number
001C 9r01 stx PRMPTR save updated param ptr
001lE 9600 LIST20 1lda IPATH load input path number
0020 3043 leax BUFFER,U 1load buffer pointer
0022 108E00C8 l1dy #BUFSIZ maximum bytes to read
0026 103F8B os9 ISRDLN read line of input
0029 2509 becs LIST30 exit if error

002B 8601 lda - #1 load std. out. path #
002D 103F8C 0s9 ISWRLN output line

0030 24EC bcc LIST20 Repeat if no error
0032 2014 bra LIST50 exit if error

(Continued on next page)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Assembly Language Programming Techniques

Microware 0S-9 Assembler 2.1

LIST - File List Utility

0034
0036
0038
003Aa
003D
003F
0041
0043
0045
0047
0048

004B
004E

ClD3
2610
9600
103F8F
2509
9EO1
A684
810D
26CA
5F
103F06

95BBS58

LIST30

LISTSO

LSTEND

cmpb
bne
1lda
os9
bcs
ldx
lda
cmpa
bne
clrb
0s9

emod

EQU

01/04/82 23:39:37 Page 002
#ESECOF at end of file?

LISTS0 branch if not

IPATH load input path number
ISCLOS close input path
LISTSO ..exit if error
PRMPTR restore parameter ptr
0,X

#sS0D End of parameter line?
LSTENT ..no; list next file
FSEXIT ... teminate

Module CRC

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 8-6

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting 0S-9 to a New System

9.0 ADAPTING OS-9 TO A NEW SYSTEM

Thanks to 0S-9's modular structure, it is easily portable to
almost any 6809-based computer, and in fact it has been installed
on an incredible variety of hardware. Usually only device
driver and device descriptor modules need by rewritten or modified
for the target system's specific hardware devices. The larger and
more complex kernel and file manager modules almost never need
adaptation.

One essential point is that you will need a functional 0S-9
development system to use during installation of 0S-9 on a new
target system. Although it is possible to use a non-0S-9 system,
or if you are truly masochistic, the target system itself, lack
of facilities to generate and test memory modules and create
system disks can make an otherwise straightforward 3job a time-
consuming headache that is seldom less costly than a commercial
0Ss-9-equipped computer. Over a dozen manufacturers offer 0S-9
based development systems in all price ranges with an excellent
selection of time-saving options such as hard disks, . line
printers, PROM programmers, etc.

Microware sells source code for standard I/0 drivers, and a
"User Source Code Package" (on 0S-9 format disk only) which
contains source code to the Kernel, Shell, INIT, SYSGO, device
driver and descriptor modules, and a selection of utility commands
which can be useful when moving 0S-9 to a new target system.

WARNING: Standard 0S-9 software packages are licensed for use on
a single system. O0S-9 cannot be resold or otherwise distributed
(even if modified) without a license. Contact Microware for
information regarding software licenses.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting 0S-9 to a New System

9.1 ADAPTING 0S-9 TO DISK-BASED SYSTEMS

Usually, most of the work in moving 0S-9 to a disk-based target
system is writing a device driver module for the target system's
disk controller. Part of this task involves producing a subset of
thg driver (mostly disk read functions) for use as a bootstrap
module. ‘

If terminal and/or parallel I/0 for terminals, printers, etc.,
will use ACIA and/or PIA-type devices, the standard ACIA and PIA
device driver modules may be used, or device drivers of your own
design may be used in place of or in addition to these standard
modules. Device descriptor modules may also require adaptation to
match device addresses and initialization required by the target
system.

A CLOCK module may be adapted from a standard version, or a new
one may be created. All other component modules, such as IOMAN,
RBFMAN, SCFMAN, SHELL, and utilities seldom require modification.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-2

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting 0S-9 to a New System

9.2 USING 0OS-9 IN ROM-BASED SYSTEMS

One of 0S-9's major features is its ability to reside in ROM
memory and work effectively with ROMed applications programs
written in assembler or high-level languages such as Basic09,
Pascal, and C.

All the component modules of 0S-9 (including all commands and
utilities) are directly ROMable without modification. In some
cases, particularly when the target system is to automatically
execute an application program upon system start-up, it may be
necessary to reassemble the two modules used during system
startup, INIT and SYSGO.

The first step in designing a ROM-based system is to select
which 0S-9 modules to include in ROM. The following checklist is
designed to help you do so: ‘

a. Include 0S9P1l, 0S9P2, SYSGO, and INIT. These modules are
required in any 0S-9 system.

b. If the target system is perform any I/O or interrupt functions
include IOMAN,

c. If the target system is to perform I/0 to character-oriented
I/0 devices using ACIAs, PIAs, etc., include SCFMAN, required
device drivers (such as ACIA and PIA, and/or your own), and
device descriptors as needed (such as TERM, Tl1l, P, and/or your
own). If device addresses and/or initialization functions
need to be changed, the device descriptor modules must be
modified before being ROMed.

d. If the target system is to perform disk I/O, include RFBMAN,
and appropriate disk driver and device descriptor modules.
As in (c) above., change device addresses and initialization
if needed., 1If RBFMAN will not be included, the INIT and SYSGO
modules must be altered to remove references to disk files.

e. If the target system requires multiprogramming, time-of-day,
or other time-related functions, include a CLOCK module for
the target system's real-time clock. Also consider how the
clock is to be started. You may want to ROM the "Setime"
command, or have SYSGO start the clock.

f. If the target system will receive commands manually, or if any
application program uses Shell functions, include the SHELL
and SYSGO modules, otherwise include a modified SYSGO module
which calls your application program instead of Shell.

(C) 1980, 1981) 1982 Microware Systems Corporation
PAGE 9-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting 0S-9 to a New System

9.3 ADAPTING TH! INITIALIZATION MODULE

INIT is a modi le that contains system startup parameters. It
must be in ROM : 1 any 0S-9 system (it usually resides in the same
ROM as the kernel). It is a non-executable module named "INIT" and
has type "system' (code $C). It is scanned once during the system
startup. It begias with the standard header followed by:

MODULE OFFSET

$9,%A,SB Tais location contains an upper limit RAM memory
¢ ddress used to override 0S-9's automatic end-of-
IAM search so that memory may be reserved for I/0
¢ 2vice addresses or other special purposes.

$C ! amber of entries to create in the IRQ polling'
table, One entry is required for each interrupt-
« 2nerating device control register.

$D ! mber of entries to create in the system device
- table. One entry is required for each device in
t he system.,

SE, SF (ffset to a string which is the name of the first
: radule to be executed after startup, usually
' SYSGO". There must always be a startup module.

$10,9$11 Oi Eset to the default directory name string
normally /DO). This device is assumed when
avice names are ommited from pathlists. If the
ystem will not use disks (e.g., RBFMAN will not
2 used) this offset mugt be zero.

~

-

—

$12,813

—~

ffset to the initial standard path string
typically /TERM). This path is opened as the
tandard paths for the initial startup module.
"his offset must contain zero if there is none.

$14,$15 (ffset to bootstrap module name string. If 0S-9

(oes not £find IOMAN in ROM during the start-up
1odule search, it will execute the bootstrap
10odule named to load additional modules from a

. ile on a mass-storage device.

$16 to N » 11 name strings referred to above go here. Each
iust have the sign bit (bit 7) of the last

« haracter set.

(C) 1980 1981, 1982 Microware Systems Corporation
PAGE 9-4

0S-9 LEVEL QNE SYSTEM PROGRAMMER'S MANUAL
Adapting OS-9 to a New System

9.4 ADAPTING TEE SYSGO MODULE

SYSGO is a program which is the first process started after the
system start-up sequence, Its function is threefold:

* It does additional high-level system initialization, for exam-
ple, disk system SYSGO call the shell to process the "Startup”
shell procedure file.

* It starts the first "user" process.

* It thereafter remains in a "wait" state as insurance against
all user processes terminating, thus leaving the system halt-
ed. If this happens, SYSGO can restart the first user program.

The standard SYSGO module for disk systems cannot be used on
non-disk based systems unless it is modified to:

1. Remove initialization of the working execution directory.

2. Remove processing of the "Startup" procedure file.

3. Possibly change the name of the first user program from "Shell
to the name of a applications program. Here are some example
name strings: :

fcs /userpgm/ (object code module "userpgm")

fcs /RunB userpgm/ (compiled Basic09 program using
RunB run-time-only system)

fcs /Basic09 userpgm/ (compiled Basic09 program using
Basic09)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Adapting 0S-9 to a New System

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 9-6

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions

10.0 0S-9 SERVICE REQUEST DESCRIPTIONS

System calls are used to communicate between the 0S-9 operating
system and assembly-language-level programs. There are three
general categories:

1. User mode function requests
2. System mode function requests
3. I/0 requests

System mode function requests are privileged and may be
executed only while 0S-9 is in the system state (when it is
processing another service request, executing a file manager,
device drivers, etc.). They are included in this manual primarily
for the benefit of those programmers who will be writing device
drivers and other system—-level applications.

The system calls are performed by loading the MPU registers
with the appropriate parameters (if any), and executing a SWI2
instruction immediately followed by a constant byte which is the
request code. Parameters (if any) will be returned in the MPU
registers after O0S-9 has processed the service request. A
standard convention for reporting errors is used in all system
calls; if an error occured, the "C bit" of the condition code
register will be set and accumulator B will contain the
appropriate error code. This permits a BCS or BCC instruction
immediately following the system call to branch on error/no error.

Here is an example system call for the "CLOSE" service request:

LDA PATHNUM
SWI2

FCB $8B

BCS ERROR

Using the assembler's "0S9" directive simplifies the call:

LPA PATHNUM
0S9 ISCLOS
BCS ERROR

The I/0 service requests are simpler to use than in many other
operating systems because the calling program does not have to
allocate and set up "file control blocks", "sector buffers", etc.
Instead 0S-9 will return a one byte path number when a path to a
file/device is opened or created; then this path number may be
used in subsequent I/0 requests to identify the file/device until
the path is closed. 0S-9 internally allocates and maintains its

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions

own data structures and users never have to deal with them: in
fact attempts to do so are memory violations.

All system calls have a mnemonic name that starts with "F$" for
system functions, or "I$" for I/O related requests. These are
defined in the assembler-input equate file called "OS9DEFS".

In the service request descriptions which follow, registers not
explicitly specified as input or output parameters are not
altered. Strings passed as parameters are normally terminated by
having bit seven of the last character set, a space character, or
an end of line character.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-2 /

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

ABIT Set bits in an allocation bit map FSABIT

ASSEMBT.ER CALL: 0s9 FS$ABIT

MACHINE CODE: 103F 13

INPUT: (X) = Base address of allocation bit map.
(D) = Bit number of first bit to set.
(Y) = Bit count (number of bits to set).

OUTPUT: None.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system mode service request sets bits in the allocation bit
map specified by the X register.

Bit numbers range from 0..N-1l, where N is the number of Lits in
the allocation bit map.

(C) 1980. 1981. 1982 Microware Systems Corporation
PAGE 10-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

CHAIN Load and execute a new primary module. FSCHAN

ASSEMBLER CALL: O0S9 FSCHAN
MACHINE CODE: 103F 05

INPUT: (X) = Address of module name or file name.
(Y) = Parameter area size (256 byte pages).
(U) = Beginning address of parameter area.
(A) = Language / type code
(B) = Optional data area size (256 byte pages).

ERROR OUPTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This system call is similar to FORK, but it does not create a new
process. It effectively "resets" the calling process' program and
data memory areas and begins execution of a new primary module.
Open paths are not closed or otherwise affected.

This system call is used when it is necessary to execute an
entirely new program, but without the overhead of creating a new
process. It is functionally similar to a FORK followed by an EXIT,
but with less processing overhead.

The sequence of operations taken by CHAIN is as follows:

1. The system parses the name string of the new process' "primary
module" - the program that will initially be executed. Then the
system module directory is searched to see if a module with the
same name and type / language is already in memory. If so it is
linked to. If not, the name string is used as the pathlist of a
file which is to be loaded into memory. Then the first module in
this file is linked to (several modules may have been loaded from
a single file).

2. The process' old primary module is UNLINKED.

3. The data memory area is reconfigured to the size specified
in the new primary module's header.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-4

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

CHAIN (continued)

The diagram below shows how CHAIN sets up the data memory area and
registers for the new module.

(== Y (highest address)

! !

! Parameter !

! Area !

! !

: <+ == Xy SP

! !

! !

! Data Area !

f 1

! !

! Direct Page !

+ + <=-- U, DP (lowest address)
D = parameter area size
PC = module entry point abs. address
CC = F=0, I=0, others undefined

Y (top of memory pointer) and U (bottom of memory pointer) will
always have a values at 256-byte page boundaries. If the parent
does not specify a parameter area, Y, X, and SP will be the same.
and D will equal zero. The minimum overall data area size is one
page (256 bytes).

WARNING: The hardware stack pointer (SP) should be located
somewhere in the direct page before the FSCHAN service request is
executed to prevent a "suicide attempt" error or an acutal suicide
(system crash). This will prevent a suicide from occuring in case
the new module requires a smaller data area than what is currently
being used. You should allow approximately 200 bytes of stack
space for execution of the FSCHAN service request and other system
"overhead".

For more information, please see the FSFORK service request
description. .

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-5

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

COMPARE NAMES Compare two names. FSCNAM

ASSEMBLER CALL: 0S9 FSCNAM
MACHINE CODE: 103F 11
INPUT: (X)

(B)
(Y)

Address of first name.
Length of first name.
Address of second name.

OUTPUT: (CC) = C bit clear if the strings match.

Given the address and length of a string, and the address of a
second string, compares them and indicates whether they match.
Typically used in conjunction with "parsename”.

The second name must have the sign bit (bit 7) of the last
character set,

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-6

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

CRC Compute CRC N FSCRC

ASSEMBT.ER CALL: 0S9 FSCRC
MACHINE CODE: 103F 17
INPUT: (X)

(Y)
(U)

Starting byte address.
Byte count.
Address of 3 byte CRC accumulator.

OUTPUT: CRC accumulator is updated.

ERROR OUTPUT: None.

This service request calculates the CRC (cyclic redundancy count)
for use by compilers, assemblers, or other module generators. The
CRC is calculated starting at the source address over "byte count”
bytes. It is not necessary to cover an entire module in one call,
since the CRC may be "accumulated" over several calls. The CRC
accumulator can be any three byte memory location and must be
initialized to $FFFFFF before the first F$CRC call.

The last three bytes in the module (where the three CRC bytes will
be stored) are not included in the CRC generation.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-7

0S-9 LEVEL CNE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

DBIT Deallocate in a bit map : FSDBIT

ASSEMBLER CALL: 0sS9 FSDBIT
MACHINE CODE: 103F 14
Base address of an allocation bit map.

Bit number of first bit to clear.
Bit count (number of bits to clear).

INPUT: (X)
(D)
(Y)

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

This system mode service request is used to clear bits in the
allocation bit map pointed to by X.

Bit numbers range from 0..N-1, where N is the number of bits in
the allocation bit map.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-8

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

EXIT Terminate the calling process. . FSEXIT

ASSEMBT.ER CALL: O0S9 FSEXIT
MACHINE CODE: 103F 06
INPUT: (B) = Status code to be returned to the parent process.

OUTPUT: Process is terminated.

This call kills the calling process and is the only means by which
a process can terminate itself. Its data memory area is
deallocated, and its primary module is UNLINKed. All open paths
are automatically closed.

The death of the process can be detected by the parent executing a
WAIT call, which returns to the parent the status byte passed by
the child 1in its EXIT call. The status byte can be an 0S-9 error
code the terminating process wishes to pass back to its parent
process (the shell assumes this), or can be used to pass a user-
defined status value. Processes to be called directly by the
shell should only return an 0S-9 error code or zero if no error
occurred.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-9

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

FORK Create a new process. FSFORK

ASSEMRT.ER CALL: O0S9 FSFORK
MACHINE CODE: 103F 03

INPUT: (X) Address of module name or file name.

(Y) = Parameter area size-
(U) = Beginning address of the parameter area.
(A) = Language / Type code.

(B)

OUTPUT: (X)
(A)

Optional data area size (pages).

Updated path the name string.
New process ID number.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This system call creates a new process which becomes a "child" of
the caller, and sets up the new process' memory and MPU registers.

The system parses the name string of the new process' "primary
module"” - the program that will initially be executed. Then the
system module directory is searched to see if the program is
already in memory. If so, the module is linked to and executed.
If not, the name string is used as the pathlist of the file which
is to be loaded into memory- Then the first module in this file
is linked to and executed (several modules may have been loaded
from a single file).

The primary module's module header is used to determine the
process' initial data area size. O0S-9 then attempts to allocate a
contiguous RAM area equal to the required data storage size,
(includes the parameter passing area, which is copied from the
parent process' data area). The new process' registers are set up
as shown in the diagram on the next page. The execution offset
given in the module header is used to set the PC to the module's
entry point.

When the shell processes a command line it passes a string in the
parameter area which is a copy of the parameter part (if any) of
the command line. It also inserts an end-of-line character at the
end of the ©parameter string to simplify string-oriented
processing. The X register will point to the beginning of the
parameter string. If the command line included the optional memory
size specification (#n or #nK), the shell will pass that size as
the requested memory size when executing the FORK.

If any of the above operations are unsucessful, the FORK is

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-10

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode
aborted and the caller is returned an error.

The diagram below shows how FORK sets up the data memory area and
registers for a newly-created process.

direct page

T + <--Y (highest address)
|

| parameter I

| area i

| |

+ + <-- X, SP

| |

| |

| data area |

| |

[l

| |

{=-- U, DP (lowest address)

parameter area size
module entry point abs. address
F=0, I=0, others undefined

Qg
e Xel™
wun

Y (top of memory pointer) and U (bottom of memory pointer) will
always have a values at 256-byte page boundaries. If the parent
does not specify a parameter area, Y, X, and SP will be the same-
and D will equal zero. The minimum overall data area size is one
page (256 bytes). Shell will always pass at least an end of 1line
character in the parameter area.

NOTE: Both the <child and parent process will execute
concurrently. If the parent executes a FS$WAIT call immediately
after the fork, it will wait wuntil the child dies before it
resumes execution. Caution should be exercised when recursively
calling a program that uses the FSFORK service request since
another child may be created with each "incarnation". This will
continue until the process table becomes full.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-11

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

INTERCEPT ; Set up a signal intercept trap. FSICPT

ASSEMBLER CALL: O0S9 FSICPT
MACHINE CODE: 103F 09

INPUT: (X)
(U)

OUTPUT: None.

Address of the intercept routine.
Address of the intercept routine local storage.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system call tells 0S-9 to set a signal intercept trap, where
X contains the adddress of the signal handler routine, and U
contains the base address of the routine's storage area. After a
signal trap has been set, whenever the process receives a signal,
its intercept routine will be executed. A signal will abort any
process which has not used the FSICPT service request to set a
signal trap, and its termination status (B register) will be the
signal code. Many interactive programs will set up an intercept
routine to handle keyboard abort (control Q), and keyboard
interrupt (control C). -

The intercept routine is entered asynchronously because a signal
may be sent at any time (it is like an interrupt) and is passed
the following:

U = Address of intercept routine local storage.
B = Signal code.

NOTE: The value of DP may not be the same as it was when the
FSICPT call was made.

Whenever a signal is received, 0S-9 will pass the signal code and
the base address of its data area (which was defined bv a FSICPT
service request) to the signal intercept routine. The base
address of the data area is selected by the user and is typically
a pointer to the process' data area.

The intercept routine is activated when a signal is received, then
it takes some action based upon the value of the signal code such
as setting a flag in the process' data area. After the signal has
been processed, the handler routine should terminate with an RTI
instruction,

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-12

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

GET ID Get process ID / user ID FSID

ASSEMBT.ER CALL: O0OS9 FSID
MACHINE CODE: 103F 0OC
INPUT: None

OUTPUT: (A) Process ID.

(Y) User ID.
ERROR QUTPUT: (CC) = C Bit set.
(B) = Appropriate error code.

Returns the caller's process ID number, which is a byte value 1in
the range of 1 to 255, and the user ID which is a integer in the
range 0 to 65535. The process ID is assigned by 0S-9 and is unique
to the process. The user ID is defined in the system password
file., and is used by the file security system and a few other
functions. Several processes can have the same user ID.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-13

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

LINK: Link to memory module. FSLINK

ASSEMBLER CALL: O0S9 FSLINK
MACHINE CODE: 103F 00

INPUT: (X)
(A)

Address of the module name string.
Module type / language byte.

OUTPUT: (X) Advanced past the module name.

(¥Y) = Module entry point absolute address.
(U) = Module header absolute address.
(A) = Module type / language.

(B)

ERROR OUTPUT: (CC)
(B)

Module attributes / revision level.

C bit set.
Appropritate error code.

This system call causes 0S-9 to search the module directory for a
module having a name, language and type as given in the
parameters. If found, the address of the module's header is
returned in U, and the absolute address of the module's execution
entry point is returned in Y (as a convenience: this and other
information can be obtained from the module header). The module's
"link count"™ is incremented whenever a LINK references its name,
thus keeping track of how many processes are using the module. If
the module requested has an attribute byte indicating it is not’
sharable (meaning it is not reentrant) only one process may 1link
to it at a time.

Possible errors:
(A) Module not found.

(B) Module busy (not sharable and in use).
(C) Incorrect or defective module header.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-14 :

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

LoAD Load module(s) from a file. FSLOAD

ASSEMBLER CALL: 0S9 FST.0AD
MACHINE CODE: 103F 01

INPUT: (X)
(a)

Address of pathlist (file name) ‘
Language / type (0 = any language / type)

OUTPUT: (X) Advanced past pathlist

(¥Y) = Primary module entry point address
(U) = Address of module header
(A) = Language / type
(B) = Attributes / revision level
ERROR OUTPUT: (CC) = C Bit set

(B) = Appropriate error code

Opens a file specified by the pathlist, reads one or more memory
modules from the file into memory, then closes the file. All
modules loaded are added to the system module directory. and the
first module read is LINKed. The parameters returned are the same
as the LINK call and apply only to the first module loaded.

In order to be loaded, the file must have the "execute" permission
and contain a module or modules that have a proper module header.
The file will be 1loaded from the workina execution directory
unless a complete pathlist is given.

Possible errors: module directory full; memory full; plus errors
that occur on OPEN, READ, CLOSE and LINK system calls.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-15

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

MEM Resize data memory area. FSMEM

ASSEMBLER CALL: 0S9 FSMEM
MACHINE CODE: 103F 07

INPUT: (D) Desired new memory area size in bytes.

OUTPUT: (Y) = Address of new memory area upper bound.
(D) = Actual new memory area size in bytes.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Used to expand or contract the process' data memory area. The new
size requested is rounded up to the next 256-byte page boundary-.
Additional memory is allocated contiguously upward (towards higher
addresses), or deallocated downward from the old highest address.
If D = 0, then the current upper bound and size will be returned.

This request can never return all of a process' memory, or the
page in which its SP register points to.

In Level One systems, the request may return an error upon an
expansion request even though adequate free memory exists. This is
because the data area 1is always made contiguous, and memory
requests by other processes may fragment free memory into smaller,
scattered blocks that are not adjacent to the caller's present
data area Level Two systems do not have this restriction because
of the availability of hardware for memory relocation., and because
each process has its own "address space".

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-16

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

PRERR Print error message. FSPERR

ASSEMBLER CALL: 0S9 FSPERR
MACHINE CODE: 103F OF

INPUT: (A)
(B)

OUTPUT: None.

Output path number.
Error code.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

This is the system's error reporting utility. It writes an error
message to the output path specified. Most 0S-9 systems will

display:
ERROR #<decimal number>
by default. The error reporting routine is vectored and can be

replaced with a more elaborate reporting module. To replace this
routine use the FS$SSVC service request.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-17

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

PARSENAME Parse a path name. FSPNAM

ASSEMBLER CALL: 0SS FSPNAM

MACHINE CODE: 103F 10

INPUT: (X) Address of the pathlist.
OUTPUT: (X)
(Y)
(B)

Updated past the optional "/"
Address of the 1last character of the name + 1.
Length of the name.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.
(X) = Updated past space characters.

Parses the input text string for a legal 0OS-9 name. The name is
terminated by any character that is not a legal component
character. This system call is useful for processing pathlist
arguments passed to new processes. Also if X was at the end of a
pathlist, a bad name error will be returned and X will be moved
past any space characters so that the next pathlist in a command
line may be parsed.

Note that this system call processes only one name. SO several

calls may be needed to process a pathlist that has more than one
name.

BEFORE F$SPNAM CALL:

i / } D I 0 I / I F I I ; L!E! ! ! ! !
lTT L I.T k] L L v T v B Rl
X
AFTER THE F$PNAM CALL:
L/tD1Ot/IFITILIEL L L L L
v TTT T?l L L] R L 1 L R R
X Y (B) = 2

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-18

0s-9
Serv

SBMAP

m

ASSEMBLER CALL:
MACHINE CODE:

.INPUT: (X)

= Bec

(D) = Bec

(Y) = Bit

(U) = Enc

OUTPUT: (D) = Bec
(¥Y) = Bit

This system mode
bit map starting
(cleared bits) o:

If no block o
carry set, begini

(C) 198(.

EVEL ONE SYSTEM PROGRAMMER'S MANUAL
ce Request Descriptions - User Mode

arch bit map for a free area FSSBIT

0SS FSSBIT
103F 12

.nning address of a bit map.
.nning bit number.

count (free bit block size).
of bit map address.

inning bit number.
count.

service request searches the specified allocation
it the "beginning bit number" for a free block
the required length.

the specified size exists, it returns with the
ing bit number and size of the largest block.

1981, 1982 Microware Systems Corporation
PAGE 10-19

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SEND Send a signal to another process. F$SSEND

==|====

ASSEMBLER CALL: 0S9 FS$SSEND
MACHINE CODE: 103F 08

INPUT: (A) = Reciever's process ID number.
(B) = Signal code.

OUTPUT: None.

ERROR OUTPUT: (cC)
(B)

C bit set.
Appropriate error code.

This system call sends a "signal" to the process specified. The
signal code is a single byte value of 1 - 255,

If the signal's destination process is sleeping or waiting, it
will be activated so that it may process the signal. The signal
processing routine (intercept) will be executed if a signal trap
was set up (see FSICPT), otherwise the signal will abort the
destination process, and the signal code becomes the exit status
(see WAIT). An exception is the WAREUP signal, which activates a
sleeping process but does not cause the signal intercept routine
to be executed.

Some of the signal codes have meanings defined by convention:

0 = System Abort (cannot be intercepted)
1 = Wake Up Process
2 = Keyboard Abort
3 = Keyboard Interrupt
4-255 = user defined

If an attempt is made to send a signal to a process that has an
unprocessed, previous signal pending, the current "send" request
will be cancelled and an error will be returned. An attempt can
be made to resend the signal later. It is good practice to issue
a "sleep" call for a few ticks before a retry to avoid wasting MPU
time

For related information see the FSICPT, FSWAIT, and FSSLEP service
request descriptions.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-20

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SLEEP Put calling process to sleep. F$SLEP

ASSEMBLER CALL: 0S9 FSSLEP

MACHINE CODE: 103F o0A

INPUT: (X)

Sleep time in ticks (0 = indefinitely)

OUTPUT: (X)

Decremented by the number of ticks that the
process was asleep.

C bit set
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

. This call deactivates the calling process for a specified time, or
indefinitely if X = 0. If X = 1. the effect is to have the «caller
give up its current time slice. The process will be activated
before the full time interval if a signal is received, therefore
sleeping indefinitely is a good wav to wait for a signal or
interrupt without wasting CPU time.

The duration of a "tick" is system dependent but is most commonly
100 milliseconds. ,

Due to the fact that it is not known when the FS$SLEP request was
made durring the current tick, FS$SLEP can not be used for precise
timing. A sleep of one tick is effectively a "give up remaining
time slice" request; the process is immediately inserted into the
active process queue and will resume execution when it reaches the
front of the queue. A sleep of two or more ticks causes the
process to be inserted into the active process queue after N-1
ticks occur and will resume execution when it reaches the front of
the queue.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-21

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SETPR Set process priority. F$SPRI

ASSEMBLER CALL: 0S9 F$SPRI
MACHINE CODE: 103F 0D

Process ID number.
Priority:
0 lowest
255 highest

INPUT: (&)
(B)

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Changes the process's priority to the new value given. S$FF is the
highest possible priority, $00 is the lowest. A process can change
another process' priority only if it has the same user ID.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-22

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

sSsvC Install function request F$SSVC

ASSEMBLER CALL: 0S9 F$sSsvC

ASSEMBLER CODE: 103F 32

INPUT: (Y) = Address of service request initialization table.
OUTPUT: None.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system mode service request is used to add a new function
request to 0S-9's user and privileged system service request
tables, or to replace an o0ld one. The Y register passes the
address of a table which contains the function codes and offsets
to the corresponding service request handler routines. This table
has the following format:

OFFSET
$00 E Function Code {--- First entry
$01 i Offset From Byte 3
$02 ?-;o Function Handler-
$03 Function Code {==-=- Second entry
$04 Offset From Byte 6
$05 ;o Function Handler-

<=—- Third entry etc.
MORE ENTRIES

$80 === End of table mark

4-—-{}--—-—-—nu—-|>-o--,-o--|—u—-{-o-’-o—-|}-o--{»-

-1~ e fo bee 0= 4m o=s 4 o= T I R

NOTE: If the sign bit of the function code is set, only the
system table will be updated. Otherwise both the system and user
tables will be updated. Privileged system service reguests may be
called only while executing a system routine.

(continued)

(C) 1980, 1981, 1982 Microware Systems Corporation
. PAGE 10-23

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SSVC (continued)

The service request handler routine should process the service
request and return from subroutine with an RTS instruction. They
may alter all MPU registers (except for SP). The U register will
pass the address of the register stack to the service request
handler as shown in the following diagram:

OFFSET OS9DEFS

NMEMONIC
Fm————t

U=---> 1 CC ! $0 RSCC
o + $1 RSD
1 A ! $1 RS$A
fm————
1 B ! $2 RSB
f————t
! DP ! $3 RSDP
! X ! $4 R$X
! Y ! $6 RSY
! U ! $8 R$U
! PC ! $A RSPC

Function request codes are broken into the two categories as shown
below:

$00 - $27 User mode service request codes.

$29 - $34 Privileged system mode service request codes.
When installing these service request, the
sign bit should be set if it is to be placed
into the system table only.

NOTE: These categories are defined by convention and not enforced
by 089.

Codes $25..827, and $70..S7F will not be used by MICROWARE and are
free for user definition.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-24

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SETSWI Set SWI vector. FSSSWI

ASSEMBLER CALL: 0S9 FSSSWI
MACHINE CODE: 103F OE

INPUT: (A)
(X)

SWI type code.
Address of user SWI service routine.

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (cC)
(B)

Sets up the interrupt vectors for SWI, SWI2 and SWI3 instructions.
Each process has its own local vectors. Each SETWSI call sets up
one type of vector according to the code number passed in A.

l=8wWI
2 = SWI2
3 = SWI3

When a process is created, all three véctors are initialized with
the address of the 0S-9 service call processor.

WARNING: Microware-supplied software uses SWI2 to call 0sS-9. If
you reset this vector these programs will not work. If you change
all three vectors, you will not be able to call 0s-9 at all.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 1N=2%

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

SETIME Set system date and time. F$STIM

ASSEMBLER CALL: O0S9 FS$STIM

MACHINE CODE: 103F 16

INPUT: (X) = Address of time packet (see below)
OUTPUT: Time/date is set.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

This service request is used to set the current system date/time
and start the system real-time clock. The date and time are
passed in a time packet as follows:

OFFSET VALUE

year
month
day
hours
minutes
seconds

N WwWwNHO

S 4o P tmn b= 0= L

(C) 1980, 1981, 1982 MicroWare Systems Corporation
PAGE 10-26

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

TIME Get system date and time. FSTIME

ASSEMBLER CALL: 0s9 FSTIME

MACHINE CODE: 103F 15

INPUT: (X) = Address of place to store the time packet.
OUTPUT: Time packet (see below).

ERROR OUTPUT: (ccC)
(B)

C bit set.
Appropriate error code.

This returns the current system date and time in the form of a six
byte packet (in binary). The packet is copied to the address
passed in X. The packet looks like:

OFFSET VALUE

0 ! year

1 ! month

2 ! day

3 ! hours

4 ! minutes
5 ! seconds

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-27

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

UNLINK Unlink a module. FSUNLK

ASSEMBLER CALL: 0S9 FSUNLK
MACHINE CODE: 103F 02

INPUT: (U)

Address of the module header.
OUTPUT: None

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Tells OS-9 that the module 1is no longer needed by the calling
process. The module's link count is decremented, and the module
is destroyed and its memory deallocated when the link count equals
zero. The module will not be destroyed if in use by any other
process(es) because its link count will be non-zero. 1In Level Two
systems, the module is wusually switched out of the process'
address space.

Device driver modules in use or certain system modules cannot be
unlinked. ROMed modules can be unlinked but cannot be deleted
from the module directory. :

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-28

O0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - User Mode

WAIT Wait for child process to die. FSWAIT

ASSEMBLER CALL: 0S9 FSWAIT
MACHINE CODE: 103F 04
INPUT: None

OUTPﬁT: (a)
()

ERROR OUTPUT: (CC)
(B)

Deceased child process' process ID.
Child process' exit status code.

C bit set.
Appropriate error code.

The calling process is deactivated until a child process
terminates by executing an EXIT system call, or by receiving a
signal- The child's ID number and exit status is returned to the
parent, If the child died due to a signal, the exit status byte
(B register) is the signal code.

-If the caller has several children, the caller is activated when
the first one dies, so one WAIT system call is requlred to detect
termination of each child. p

If a child died before the WAIT call, the caller is reactivated
almost immediately WAIT will return an error if the caller has
no children.

See the EXIT description for more related information.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-29

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

A64 Allocate a 64 byte memory block F$SA64

ASSEMBLER CALL: 0S9 FS$A64
MACHINE CODE: 103F 30
INPUT: (X)

Base address of page table (zero if the page table
has not yet been allocated).

OUTPUT: (A)
(X)
(Y)

Block number.
Base address of page table.
Address of block.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system mode service request is used to dynamically allocate
64 byte blocks of memory by splitting whole pages (256 byte) into
four sections. The first 64 bytes of the base page are used as a
"page table", which contains the MSB of all pages in the memory
structure. Passing a value of zero in the X register will cause
the F$A64 service request to allocate a new base page and the
first 64 byte memory block. Whenever a new page is needed, an
FSSROM service request will automatically be executed. The first
byte of each block contains the block number; routines using this
service request should not alter it. Below is a diagram to show
how 7 blocks might be allocated:

ANY 256 BYTE ANY 256 BYTE
MEMORY PAGE MEMORY PAGE
BASE PAGE > +- + + +
! ! X !
! PAGE TABLE ! ! BLOCK 4 !
! (64 bytes) ! 1 (64 bytes) !
X ' 'y !
! BLOCK 1 ! ! BLOCK 5 !
! (64 bytes) ! ! (64 bytes) !
X ! 1 !
! BLOCK 2 ! ! BLOCK 6 !
! (64 byte) ! ! (64 byte) !
+- + +- +
1X ! IX !
! BLOCK 3 ! ! BLOCK 7 !
! (64 byte) ! I (64 byte) !

NOTE: THTS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-30

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

APRC Insert process in active process queue FSAPRC i

ASSEMRLER CALL: 0SS FS$SAPRC

MACHINE CODE: 103F 2C

INPUT: (X) Address of process descriptor.
OUTPUT: None.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system mode service request inserts a process into the active
process queue so that it may be scheduled for execution.

All processes already in the active process queue are aged, and
the age of the specified process is set to its priority. If the
process is in system state, it 1is inserted after any other
processes also in system state, but before any process in user
state. If the process is in user state, it is inserted according
to its age. ’

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-31

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

FIND-64 Find a 64 byte memory block - FS$F64

ASSEMBLER CALL: 0S9 FSF64
MACHINE CODE: 103F 2F

INPUT: (X) = Address of base page.
(A) = Block number.

OUTPUT: (Y) Address of block.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system mode service request will return the address of a 64
byte memory block as described in the FS$A64 service request. 0S-9
used this service request to find process descriptiors and path
descriptors when given their number.

Block numbers range from 1l..N

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-32

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

IODEL Delete I/0 device from system . FSIODL

ASSEMBLER CALL: 0S9 FS$IODL

MACHINE CODE: 103F 33

INPUT: (X) = Address of an I/0 module. (see description)
OUTPUT: None.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

[}

This system mode service request is used to determine whether or
not an I/O module is being used. The X register passes the
address of a device descriptor module. device driver module, or
file manager module. The address is used to search the device
table, and if found the use count is checked to see if it is zero.
If it is not zero, an error condition is returned.

This service request is used primarily by IOMAN and may be of
limited or no use for other applications.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-33

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

IOQUEUE Enter I/0 queue FSIOQU

ASSEMBLER CALL: 0S9 FSIOQU
MACHINE CODE: 103F 2B
INPUT: (A) = Process Number.
OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

This system mode service request links the calling process into
the I/0 queue of the specified process and performs an untimed
sleep. It is assumed that routines associated with the specified
process will send a wakeup signal to the calling process.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-34

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

SETIRQ Add or remove device from IRQ table. FSIRQ

ASSEMBLER CALL: 0S89 FSIRQ
MACHINE CODE: 103F 2A
Zero to remove device from table. or the address

of a packet as defined below to add a device to
the IRQ polling table:

INPUT: (X)

[x] = flip byte
[X+1] = mask byte
[X+2] = priority

(U)
(¥)
(D)

Address of service routine's static storage area.
Device IRQ service routine address.
Address of the device status register.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

This service request is used to add a device to or remove a device
from the IRQ polling table. To remove a device from the table the
input should be (X)=0, (U)= Addr of service routine's static
storage. This service request is primarily used by device driver
routines. See the text of this manual for a complete discussion
of the interrupt polling system.

PACKET DEFINITIONS:

Flip Byte This byte selects whether the bits in the device
status register are active when set or active when
cleared. A set bit(s) identifies the active
bit(s).

Mask Byte This byte selects one or more bits within the dev-
ice status register that are interrupt request
flag(s). A set bit identifies an active bit(s).

Priority The device priority number:
= lowest
255 = highest

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-35

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

NXTPRCS Start next process F$NPRC

ASSEMBLER CALL: 0S9 FSNPRC

MACHINE CODE: 103F 2D

INPUT: None.

OUTPUT: Control does not return to caller.

This system mode service request takes the next process out of the
Active Process Queue and initiaites its execution. If there is no
process in the queue, 0S-9 waits for an interrupt, and then checks

the active process queue again.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-36

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

R64 Deallocate a 64 byte memory block FSR64

ASSEMBLER CALL: 0S9 FS$R64
MACHINE CODE: 103F 31

Address of the base page.
Block number.

INPUT: (X)
(@)

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

This system mode service request deallocates a 64 byte block of
memory as described in the F$A64 service request.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-37

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

SROMEM System memory request F$SROM

-ASSEMBLER CALL: 0S9 FS$SRQM
MACHINE CODE: 103F 28

INPUT: (D)

Byte count.

OUTPUT: (U) Beginning address of memory area.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

This system mode service request allocates a block of memory from
the top of available: RAM of the specified size. The size
requested is rounded to the next 256 byte page boundary-

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REOUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-38

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

SRTMEM Return System Memory FSSRTM

ASSEMBT.ER CALL: 0S9 FS$SRTM

MACHINE CODE: 103F 29
INPUT: (U) = Beginning address of memory to return.
(D) = Number of bytes to return.

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

This system mode service request is used to deallocate a block of
contiquous 256 byte pages. The U register must point to an even
page boundary.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-39

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - System Mode

VMOD Verify module F$VMOD

ASSEMBLER CALL: 0SS FSVMOD
MACHINE CODE: 103F 2E

INPUT: (X)

Address of module to verify.

OUTPUT: (U)

Address of médule directory entry.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system mode service request checks the moule header parity
and CRC bytes of an 0S-9 module. If these values are valid, then
the module directory is searched for a module with the same name.
If a module with the same name exists, the one with the highest
revision level is retained in the module directory- Ties are
broken in favor of the established module.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-40

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0O Operations

ATTACH Attach a new device to the system. ISATCH

ASSEMBLER CALL: 0S9 ISATCH
MACHINE CODE: 103F 80

INPUT: (X) = Address of device name string.
(A) = Access mode.

OUTPUT: (U)

Address of device table entry-

ERROR OUTPUT: (CC)
(B)

This service request is used to attach a new device to the system,
or verify that it is already attached. The device's name string
is used to search the system module directory to. see if a device
descriptor module with the same name is in memory (this is the
name the device will be known by). The descriptor module will
contain the name of the device's file manager, device driver and
other related information. If it is found and the device is not
already attached, 0S-9 will link to its file manager and device
driver, and then place their address' in a new device table entry.
Any permanent storage needed by the device driver is allocated,
and the driver's initialization routine is called (which usually
initializes the hardware).

C bit set.
Appropriate error code.

If the device has already been attached, it will not be
reinitialized.

An ATTACH system call is not required to perform routine I/0. It
does NOT "reserve" the device in question - it Jjust prepares it
for subsequent use by any process. Most devices are automatically
installed, so it is wused mostly when devices are dynamically
installed or to verify the existance of a device.

The access mode parameter specifies which subsequent read and/or
write operations will be permitted as follows:

Use device capabilities.
Read only.

Write only.

Both read and write.

WO

o

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-41

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0O Operations

CHDIR Change working directory- ISCDIR

ASSEMBLER CALL: 0sS ISCDIR
MACHINE CODE: 103F 86

INPUT: (X)
(A)

Address of the pathlist.
Access mode.

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Changes a process' working directory to another directory f£file
specified by the pathlist. Derending on the access mode given, the
current execution or the current data directory may be changed
(but only one may be changed per call). The file specified must
be a directory file. and the caller must have read permission for
it (public read if not owned by the calling process).

ACCESS MODES:

Read

Write

Update (read or write)
Execute

= wnN -
nwunn

If the access mode is read, write, or update the current -data
directory is changed. If the access mode is execute, the current
execution directory is changed.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-42

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0 Operations

CLOSE Close a path to a file/device. ISCLOS

ASSEMBLER CALL: 0S9 1IS$CLOS
MACHINE CODE: 103F 8F
INPUT: (A) = Path number.
OUTPUT: None.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Terminates the I/0 path specified by the path number. I/O can no
longer be performed to the file/device, unless another OPEN or
CREATE call 1is used. Devices that are non-sharable become
available to other requesting processes. All 0S-9 internally
managed buffers and descriptors are deallocated.

Note: Because the 0S9 FSEXIT service request automatically closes
all open paths (except the standard I/O paths), it may not be
necessary to close them individually with the 0S9 ISCLOS service
request. .

Standard I/0 paths are not typically closed except when it is
desired to change the files/devices they correspond to.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-43

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

CREATE Create a path to a new file. ISCREA

ASSEMBLER CALL: 0S9 ISCREA
MACHINE CODE: 103F 83
INPUT: (X)

(A)
(B)

Address of the pathlist.
Access mode.
File attributes.

OUTPUT: (X)
()

Updated past the pathlist (trailing blanks skipped)
Path number.

nu

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Used to create a new file on a multifile mass storage device. The
pathlist is parsed, and the new file name is entered in the
specified (or default working) directory- The file is given the
attributes passed in the B register, which has individual bits
defined as follows:

bit 0 = read permit

bit 1 = write permit

bit 2 = execute permit

bit 3 = public read permit
bit 4 = public write permit
bit 5 = public execute permit
bit 6 =

sharable file

The access mode parameter passed in register A must be either
"WRITE" or "UPDATE". This onlvy affects the file until it is
closed; it can be reopened later in any access mode allowed by the
file attributes (see OPEN). Files open for "WRITE" mav allow
faster data transfer than "UPDATE", which sometimes needs to pre-
read sectors. These access codes are defined as given below:

2 = Write only.
3 = Update (read and write).

NOTE: If the execute bit (bit 2) is set, the file will be created
in the working execution directory instead of the working data
directory-

The path number returned by 0S-9 is used to indentify the file in
subsequent I/0 service requests until the file is closed.

(Continued)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-44

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

-

CREATE (Continued)

No data storage is initially allocated for the file at the time it
is created; this is done automatically by WRITE or explicitly by
the PUTSTAT call.

An error will occur if the £file name already exists in the
directory. CREATE calls that specify non-multiple file devices
(such as printers, terminals, etc.) work correctly: the CREATE
behaves the same as OPEN. Create cannot be used to make directory
files (see MAKDIR).

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-45

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0 Operations

DELETE Delete a file. ISDLET

ASSEMBLER CALL: OS9 ISDLET
MACHINE CODE: 103F 87

INPUT: (X) = Address of pathlist.

OUTPUT: (X) Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This service request deletes the file specified by the pathlist.
The file must have write permission attributes (public write if
not the owner), and reside on a multifile mass storage device.
Attempts to delete devices will result in an error.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-46

0S-9 SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations
DELETE Delete a file ISDeletX
ASSEMBLER CALL: O0S9 1ISDeletx
MACHINE CODE: 103F 90

INPUT: (X) = Address of pathlist.
(A) = Access mode.

OUTPUT: (X) Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This service request deletes the file specified by the pathlist.
The tile must have write permission attributes (public write if
not the owner), and reside on a multi-file mass storage device.
Attempts to delete devices will result in error.

The access mode is used to specify the current working directory
or the «current execution directory (but not both) in the absence
of a full pathlist. 1If the access mode is read, write, or update,
the current data directory is assumed. If the access mode is
execute, the current execution directory is assumed. Note that if
a full pathlist (a pathlist beginning with a "/") appears, the
access mode is ignored.

ACCESS MODES:

Read

Write

Update (read or write)
Execute

W N -

Copyright 1980 Microware Systems Corporation
PAGE 10-46A

0S-9 SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

This page is intentionally blank.

Copyright 1980 Microware Systems Corporation
PAGE 10-47A

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

DETACH Remove a device from the system. ISDTCH

ASSEMBLER CALL: 0S9 ISDTCH

MACHINE CODE: 103F 81

INPUT: (U) = Address of the device table entry.
OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Removes a device from the system device table if not in use by any .
other process. The device driver's termination routine is called,
then any permanent storage assigned to the driver is deallocated.
The device driver and file manager modules associated with the
device are unlinked (and may be destroyed if not in use by another
process.

The ISDTCH service request must be used to un—-attach devices that
were attached with the ISATCH service request. Both of these are
used mainly by IOMAN and are of limited (or no use) to the typical
user. SCFMAN also uses ATTACH/DETACH to setup its second (echo)
device.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-47

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0 Operations

DUP Duplicate a path. I$DUP

ASSEMBLER CALL: 0SS 1ISDUP

MACHINE CODE: 103F 82
INPUT: (A) = Path number of path to duplicate.
OUTPUT: (B) = New path number.
ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Given the number of an existing path, returns another synonymous
path number for the same file or device. SHELL uses this service
request when it redirects I/0.. Service requests using either the
old or new path numbers operate on the same file or device.

NOTE: This only increments the "use count" of a path descriptor

and returns the synonymous path number. The path descriptor is
not copied.

(C) 1980, 1981, 1982 Microware 8ystéms Corporation
PAGE 10-48

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

GETSTAT Get file/device status. ! ISGSTT

ASSEMBLER CALL: 0S9 ISGSTT
MACHINE CODE: 103F 8D
INPUT: (A) Path number.

(B) Status code.
(Other registers depend upon status code)

OUTPUT: (depends upon status code)

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system call is a "wild card" call used to handle individual
device parameters that:

a) are not uniform on all devices
b) are highly hardware dependent
c) need to be user-changable

The exact operation of this call depends on the device driver and
file manager associated with the path. A typical use is to
determine a terminal's paramaters for backspace character, delete
character, echo on/off, null padding, paging, etc. It is commonly
used in conjunction with the SETSTAT service request which is used
to set the device operating parameters. Below are the presently
defined function codes for GETSTAT:

NMEMONIC CODE FUNCTION

SS.OPT 0 Read the 32 byte option section of the
path descriptor.

SS.RDY 1 Test for data ready on SCFMAN-type device.

SS.S12 2 Return current file size (on RBFMAN-type
devices).

SS.POS 5 Get current file position.

SS.EOF 6 Test for end of file.

(continued)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-49

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0 Operations

CODESs 7-127 Reserved for future use.

CODES 128-255 These getstat codes and their parameter passing
conventions are user definable (see the sections of this manual on
writing device drivers). The function code and register stack are
passed to the device driver.

Parameter Passing Conventions

The parameter passing conventions for each of these function codes

are given below:

SS.OPT (code 0): Read option section of the path descriptor.

INPUT: (A)
(B)
(X)

OUTPUT: Status packet.

Path number
Function code 0
Address of place to put a 32 byte status packet.

ERROR OUTPUT: (CC)
(B)

This getstat function reads the option section of the path
descriptor and copies it into the 32 byte area pointed to by the X
register. It is typically used to determine the current settings
for echo, auto line feed, etc. For a complete description or the
status packet, please see the section of this manual on path
descriptors.

C bit set.
Appropriate error code.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-50

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

GETSTAT (continued)

SS.RDY (code 1): Test for data available on SCFMAN supported
devices.

INPUT: (A) = Path number.
(B) = Function code 1

OUTPUT: ‘=== sssssssssssssssssansssonsnsss

(CC) ! C bit clear C bit set

SF6 (ESNRDY)

R A T -

(B) 1! zero

SS.SIZ (code 2): Get current file size (RBFMAN supported
devices only)

Path number.
Function code 2

INPUT: (A)
(B)

OUTPUT: (X)
(U)

M.S. 16 bits of current file size,
L.S. 16 bits of current file size.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

SS.POS (code 5): Get current file position (RBFMAN supported
devices only).

INPUT: (A) = Path number
(B) = Function code 5
OUTPUT: (X) = M.S. 16 bits of current file position.
(U) = L.S. 16 bits of current file position.
ERROR OUTPUT: (CC) C bit set.

(B) Appropriate error code.

(C) 1980, 1981, 1982 Microware Systems Corporation
. PAGE 10-51

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

GETSTAT (continued)

SS.EOF (code 6): Test for end of file.

INPUT: (A) = Path number.
(B) = Function code 6
! Not EOF ! EOF ! ERROR !
+===+
(CC) ' Cbhit Clear ! C bit set ! C bit set !
(B) ! Zero ! SD3 (ESEOF) ! Error Code !

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-52

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

MAKDIR Make a new directory. ISMDIR
ASSEMBLER CALL: 0S9 ISMDIR
MACHINE CODE: 103F 85

INPUT: (X)
(B)

OUTPUT: (X)

Address of pathlist.
Directory attributes.

Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

MARDIR is the only way a new directory file can be created. It
will create and initialize a new directory as specified by the
pathlist. The new directory file contains no entries, except for
an entry for itself (".") and its parent directory ("..")

The caller is made the owner of the directory. MAKDIR does not
return a path number because directory files are not "opened" by
this request (use OPEN to do so). The new directory will
automatically have its "directory" bit set in the access
permission attributes. The remaining attributes are specified by
the byte passed in the B register, which has individual bits
defined as follows:

bit 0 = read permit

bit 1 = write permit

bit 2 = execute permit

bit 3 = public read permit
bit 4 = public write permit
bit 5 = public execute permit
bit 6 = sharable directory
bit 7 = (don't care)

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-53

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

OPEN Open a path to a file or device. ISOPEN

ASSEMBLER CALL: 0OS9 ISOPEN
MACHINE CODE: 103F 84

INPUT: (X)
(A)

Address of pathlist.
Access mode (D S PE PFW PR E W R)

OUTPUT: (X)
(A)

Updated past pathlist (trailing spaces skipped).
Path number.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Ovens a path to an existing file or device as specified by the
pathlist. A path number is returned which is used in subsequent
service requests to identify the file.

The access mode parameter specifies which subsequent read and/or
write operations are permitted as follows:

1 = read mode
2 = write mode
3 = update mode (both read and wrlte)

Update mode can be slightly slower because pre-reading of sectors
may be required for random access of bytes within sectors. The
access mode must conform to the access permision attributes
associated with the file or device (see CREATE). Only the owner
mav access a file unless the appropriate "public permit" bits are
set.

Files can be opened by several processes (users) simultaneously.
Devices have an attribute that specifies whether or not they are
sharable on an individual basis.

NOTES:

If- the execution bit is set in the access mode. 0S-9 will begin
searching for the file in the working execution directory (unless
the pathlist begins with a slash).

The sharable bit (bit 6) in the access mode can not lock other
users out of a file in 0S-9 Level 1I. It is present only for
upward compatability with 0S-9 Level II.

Directory files may be read or written if the D bit (bit 7) is set
in the access mode.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-54

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0 Operations

READ Read data from a file or device. ISREAD

ASSEMBLER CALL: 0S9 ISREAD
MACHINE CODE: 103F 89
INPUT: (X)

(¥)
(A)

Address to store data.
Number of bytes to read.
Path number.

OUTPUT: (Y)

Number of bytes actually read.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Reads a specified number of bytes from the path number given. The
path must previously have been opened in READ or UPDATE mode. The
data is returned exactly as read from the file/device without
additional processing or editing such as backspace. line delete,
end-of-file, etc.. '

After all data in a file has been read, the next ISREAD service
request will return and end of file error.

NOTES:

The keyboard abort. keyboard interrupt, and end-of-file characters
may be filtered out of the input data on SCFMAN-type devices
unless the corresponding entries in the path descriptor have been
set to zero. It may be desirable to modify the device descriptor
so that these values in the path descriptor are initialized to
zero when the path is opened.

The number of bytes requested will be read unless:
A. An end-of-file occurs

B. An end-of-record occurs (SCFMAN only)
C. An error condition occurs.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-55

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

READLN Read a text line with editing. ISRDLN

ASSEMBRLER CALL: 0S9 ISRDLN

MACHINE CODE: 103F 8B

INPUT: (X) = Address to store data.
(Y) = Maximum number of bytes to read.
(A) = Path number.

OUTPUT: (Y) = Actual number of bytes read.

ERROR OUTPUT: (CC).
(B)

C bit set.
Appropriate error code.

This system call is the same as "READ" except it reads data from
the input file or device until a carriage return character is
encountered or until the maximum byte count specified is reached,
and that line editing will occur on SCFMAN-type devices. Line
editing refers to backspace, 1line delete, echo, automatic line
feed, etc.

SCFMAN requires that the last byte entered be an end-of-record
character (normally carriage return). If more data is entered
that the maximum specified, it will not be accepted and a PD.OVF
character (normally bell) will be echoed.

After all data in a file has been read, the next ISRDLN service
request will return an end of file error.

NOTE: For more information on line editing, see 7.1l.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-56

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0O Operations

SEEK Reposition the logical file pointer. ISSEEK

ASSEMBLER CALL: 0s9 ISSEEK

MACHINE CODE: 103F 88

INPUT: (A)
(X)
(0)

OUTPUT: None.

Path number.
M.S. 16 bits of desired file position.
L.S. 16 bits of desired file position.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This system call repositions the path's "file pointer"; which is
the 32-bit address of the the next byte in the f£ile to be read
from or written to. -

A seek may be performed to any value even if the file is not large
enough. Subsequent WRITEs will automatically expand the file to
the required size (if possible), but READs will return an end-of-
file condition. Note that a SEEK to address zero is the same as a
"rewind" operation.

Seeks to non-random access devices are usually ignored and return
without error.

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE 10-57

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0 Operations

SETSTAT Set file/device status. ISSSTT

ASSEMBLER CALL: 0S9 ISSSTT

MACHINE CODE: 103F 8E
INPUT: (A) = Path number.
(B) = Function code.

(Other registers depend upon the function code).
OUTPUT: (Depends upon the function code).

ERROR OUTPUT: (cC)
(B)

C bit set.
Appropriate error code.

This system call is a "wild card" call used to handle individual
device parameters that:

a) are not uniform on all devices
b) are highly hardware dependant
¢) need to be user-chagable

The exact operation of this call depends on the device driver and
file manager associated with the path. A typical use is to set a
terminal's parameters for backspace character, delete character,
echo on/off, null padding, paging etc. It is commonly used in
conjuction with the GETSTAT service request which is used to read
the device's operating parameters etc. Below are the presently
defined function codes:

MNEMONIC CODE FUNCTION

SS.0PT SO Write the 32 byte option section of the
path descriptor

SS.SIZ $2 Set the file size (RBF)

SS.RST $3 Restore head to track zero (RBF)

SS.WRT $4 Write (format) track (RBF)

SS.FEE $9 Issue Form Feed (SCF)

SS.FRZ SA Freeze DD. Information (RBF)

SS.SPT SB Set Sectors per track (RBF)

SS.SQD $C Sequence down disk drive (RBF)

SS.DCM $D - Direct command to hard disk controller (RBF)

Codes 128 through 255 their parameter passing conventions are
user definable (see the sections of this manual on writing device
drivers). The function code and register stack are passed to the
device driver.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-58

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0O Operations

SETSTAT (Continued)

SS.OPT (code 0): Write- option section of path descriptor.

INPUT: (A)
(B)
(X)

OUTPUT: None.

FUNCTION: This setstat function writes the option section of the

path descriptor from the 32 byte status packet pointed to by the X

register. It is typically used to set the device operating

parameters, such as echo, auto line feed, etc.

Path number
Function code 0
Address of a 32 byte status packet

SS.SIZ (code 2): Set file size (RBFMAN-type devices)

INPUT: (A) = Path number
(B) = Function code 2
(X) = M.S. 16 bits of desired file size.

(U)
OUTPUT: None.
FUNCTION: This setstat function is used to change the file's size.

L.S. 16 bits of desired file size.

-SS.RST (code 3): Restore head to track zero.

INPUT: (A)

(B)
OUTPUT: None
FUNCTION: Home disk head to track zero. Used for formatting and
for error recovery.

Path number
FPunction code 3

SS.WTK (code 4): Write track.

INPUT: (A) = Path number
(B) = Function code 4
(X) = Address of track buffer.
(U) = Track number (L.S. 8 bits)
(Y) = Side/density

Bit B0 = SIDE (0 = side zero. 1 = side one)

Bit Bl = DENSITY (0 = single, 1 = double)
OUTPUT: None :
FUNCTION: This code causes a format track (most floppy disks)
operation to occur. For hard disks or floppy disks with a "format
entire disk" command, this command should format the entire media
only when the track number equals zero.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-59

. 0S~-9 . EVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

SETSTAT (Continued)

SS.FRZ (code SA): Freeze DD. Information

Input: none
Qutput: none
Function: Inhibit the reading of identification sector (LSN 0) to
DD.xxx variables that define disk formats) so non-standard disks
may be read.

SS.SPT (Code $B): Set Sectors Per Track

Input: X = new s ctors per track

Output: none '
Function: Sets a .ifferent number of sectors per track so non-
standard disks ma - be read. :

SS.SQD (Code $C): Sequence Down Disk

Input: none :

Output: none -

Function: Initiat :s power—-down sequence for Winchester or other
hard disks whict have sequence-down requirements prior to removal
of power.

SS.DCM (Code $D): Direct Command to Disk Controller

Input: varies

Output: varies

Function: Transr .ts a command directly to an intelligent disk
controller for sy :cial functions. Parameters and commands are
hardware depender : for specific systems.

(C) 1980 1981, 1982 Microware Systems Corporation
PAGE 10-60

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/0 Operations

WRITE Write data to a file or device. ISWRIT

ASSEMBLER CALL: 0S9 ISWRIT

MACHINE CODE: 103F 8A

Address of daté tb write.
Number of bytes to write.
Path number.

INPUT: (X)

(Y)
(A)

OUTPUT: (Y)

Number of bytes actually written.

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

WRITE outputs one or more bytes to a file or device associated
with the path number specified. The path must have been OPENed or
CREATEed in the WRITE or UPDATE access modes.

Data is written to the file or device without processing or

editing. If data is written past the present end-of-file. the file
is automatically expanded.

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-61

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations

WRITELN Write a line of text with editing. ISWRLN

ASSEMBLER CALL: 0S9 ISWRLN

MACHINE CODE: 103F 8C

INPUT: (X) = Address of data to write.
(Y) = Maximum number of bytes to write.
(A) = Path number.

OUTPUT: (Y) = Actual number of bytes written.

ERROR OUTPUT: (CC)
: (B)

C bit set.
Appropriate error code.

This system call is similar to WRITE except it writes data until a
carriage return character is encountered. Line editing is also
activated for character-oriented devices such as terminals,
printers, etc. The line editing refers to auto 1line feed, null
padding at end-of-line, etc.

For more information about line editing, see section 7.l.

-(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE 10-62

MODULE

OFFSET
$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D

OS-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL

Aprendix A - Memory Module Diagrams

EXECUTABLE MEMORY MODULE FORMAT

i [|
T—- Sync Bytes ($87CD) --I I l
I I
+= + | |
I - I I I
+-- Module Size (bytes) -t | |
| I I I
+ + | |
I | | I
+=-- Module Name Offset --+ header |
| I parlity }
| Type | Language I : I
+ + |
| Attributes | Revision | I I
+- - + + module
| Header Parity Check | CRC
- + '
| I |
e Execution Offset -—+ I
I | I
+ + I
| I I
+-- Permanent Storage Size --+ I
| | |
+= + l
I I [
| (Add'l optional header I I
| extensions located here) I I
| ’ I I
I . ® . ° . . . ° . I I
I I I
I I |
l Module Body I I
| object code, constants, etc. | |
I - |
| | |
+ + [
| I |
- - I
I CRC Check Value | I
- -t I
I | |

(C) 1980, 1981, 1982 Microware Systems Corporation

DACR A=l

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix A - Memory Module Diagrams

DEVICE DESCRIPTOR MODULE FORMAT

MODUT.E
OFFSET .
$0 I I I I
+-=- Sync Bytes ($87CD) -—+ I I
$1 I I I :
+- + I
$2 I I | I
4+== Module Size (bytes) I | |
$3 I I I I
$4 I I I I
+=-- Offset to Module Name --+ header |
$5 I I paTity {
$6 | $F (TYPE) | $1 (LANG) I I l
= + I |
$7 | Atributes I Revision | | I
t + + |
$8 | Header Parity Check I !
$9 y I [
+-- Offset to File Manager --+ I
$A | Name String | module
+ + CRC
$B | I |
+-- Offset to Device Driver --+ [
$C | Name String ! I
+ + I
$D I Mode Byte I I
. +— + I
SE I I I
+=- Device Controller -t I
SF | Absolute Physical Address | I
o (24 bit) -— I
$10 I | I
$11 | Option Table Size I I
S+ + I
$12,812+N | (Option Table) I I
) I | I
I e [3 . ° . .] [L] 3 . ® ° I I
| | I
I (Name Strings etc) I |
+ + |
I I |
- —+ I
I CRC Check Value I |
= -—+ I
I I |

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE A-2

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix A - Memory Module Diagrams

MODUT.E CONFIGURATION MODULE FORMAT
OFFSET
$00 | I | I
- Sync Bytes ($87CD) - I I
$01 I | | |
+= + | |
$02 | I | |
+=-- Module Size (bytes) -——t | I
$03 l I : l
S04 | | I I
+=-= Module Name Offset --+ header |
$05 I I pari"ity I
$06 [$C (TYPE) | 0 (LANG) | | |
} + | |
$07 | Attributes | Revision | | I
: + + module
$08 | Header Parity Check | C?C
$09 I | | I
Forced Limit of Top --+ I
$0A I of Free RAM I I
- -— |
SOB | I I
$0C | # IRQ Polling Table Entries | I
+ + |
$OD | # Device Table Entries I I
+ + |
SE I l |
- Offset to Startup -+t |
$OF | Module Name String | :
$10 | | I
+-- Offset to Default Mass- --+ |
S11 | Storage Device Name String | I
+ + |
$12 I I I
+-- Offset to Bootstrap -—t I
$13 | Module Name String | |
+ + |
$l4-n | Name Strings | |
+ + |
I I |
RN -—+t |
| CRC Check Value | |
o - |
I I I

(C) 1980, 1981, 1982 Microware Systems Corporation
PAGE A-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix A - Memory Module Diagrams

This Page Intentionally Left Blank

(C) 1980, 1981. 1982 Microware Systems Corporation
PAGE A-4

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix B - Standard Floppy Disk Formats

SINGLE DENSITY FLOPPY DISK FORMAT

SIZE 5"
DENSITY SINGLE
#TRACKS 35
#SECTORS/TRACK 10
BYTES/TRACK 3125
(UNFORMATTED)
FORMAT FIELD #BYTES VALUE
(DEC) (HEX)
HEADER 30 FF
(ONCE PER TRACK) 6 00
1l FC
12 FF
SECTOR 6 00
(RFPEATED N TIMES)
1 FE
1 (TRK #)
1 (SIDE #)
1 (SECT #)
1 (BYTCNT)
2 (CRC)
10 FF
6 00
1 FB
256 (DATA)
2 (CRC)
10 FF
TRAILER 96 FF
(ONCE PER TRACK)
BYTES/SECTOR 256
(FORMATTED)
BYTES/TRACK 2560
(FORMATTED)
BYTES/DISK 89,600
(FORMATTED)

8"

SINGLE

77

16
5208

#BYTES VALUE
(DEC) (HEX)

30 FF
6 00
1 FC

12 FF

00

FE
(TRK #)
(SIDE #)
(SECT #)
(BYTCNT)
(CRC)

FF

00

FB
(DATA)
(CRC)

FF

—

[3]
!
ONANHHANO N N

-

391 FF

256

4096

315,392

(C) 1980, 1981. 1982 Microware Systems Corporation

PAGE B-1

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Aprendix B - Standard Floppy Disk Formats

DOUBLE DENSITY FLOPPY DISK FORMAT

SIZE 5"
DENSITY DOUBLE
#TRACKS 35
#SECTORS/TRACK 16
BYTES/TRACK 6250
(UNFORMATTED)
FORMAT BYTES VALUE
(DEC) (HEX)
HEADER 80 4E
(ONCE PER TRACR) 12 00
3 F5 (Al)
1 FC
32 . 4E
SECTOR 12 00
(REPEATED N TIMES) 3 F5
1 FE
1 (TRK #)
1 (SIDE #)
1 (SECT #)
1 (BYTCNT)
2 (CRC)
22 AE
12 00
3 FS (Al)
1 FB
256 (DATA)
2 (CRC)
22 AE
TRAILER 682 AE
(ONCE PER TRACK)
BYTES/SECTOR 256
(FORMATTED)
BYTES/TRACK 4096
(FORMATTED)
BYTES/DISK 141.824
(FORMATTED)

10,4

[N —

HWRNDN I HWN

N
N wn
NN O

768

256

7168

548,864

8"
DOUBLE
77
28
16

VALUE
(HEX)

4E
00
F5
FC
4E

00

F5

FE

(TRK #)
(SIDE #)
(SECT #)
(BYTCNT)
(CRC)

4E

00

F5 (Al)
FB
(DATA)
(CRC)

4E

4E

(C) 1980, 1981. 1982 Microware Systems Corporation

PAGE B-2

0S-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

Service Request Summary

Mode Service Requests

Mnemonic

Function

FSLoad
FSUnLink
FSFork
FSwait
F$SChain
FSExit
FSMem
F$Send
FSIcpt
FS$Sleep
F$Sspd
FSID
FS$SPrior
FSSSWI
FSPErr
F$SPrsNam
F$CmpNam
FSSchBit
FSAllBit
FSDelBit
FSTime
FSSTime
FSCRC
FSGPrDsc
F$SGBlkMap
FSGModDr
F$SCpyMem
F$SUser
FSUnLoad

Copyright 1980 Microware Systems Corporation

Link to memory module
Load module from mass-storage
Unlink module« .
Start new pProcess . . o« o o
wWait for signal
Chain process to new module
Terminate Process
Set memory size
Send signal to process . .
Set signal intercept trap
Suspend Process . . o« o o
Not implemented

Return process ID . . .
Set process priority . .
Set software interrupt ve

pars

e o 6 o © o o o o O o o

Print error message .
Parse pathlist name .
Compare two names . .
Search a bit map . . .
Allocate in a bit map
Deallocate in a bit map
Return current time . .
Set current time
Generate CRC . + « « .«
Get Process Descriptor Copy
Get System Block Map Copy
Get Module Directory Copy
Copy External Memory . . .
Set User ID number
Unlink module by name . .

e o ¢ © o o 9 o o (NN e o
o o e e o o © o ¢ o o s © o o

(] [)] L[] °

PAGE C-1

L] L] L] L] o L] [* L] L] L]

L] L] o L] L] 3 [] . L] L] L] L] L]] L] () L] L]

[} L] [] L] (] L] L] [) L] [] []

L] L] L] L] (] e L] * ° ° L] L) L] L] L] L[] L] L]

0S-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

System Mode Privileged Service Requests

Code Mnemonic
103F 28 FSSRgMem
103F 29 F$SRtMem
103F 2A FSIRQ
103F 2B FSIOQu
103F 2C FSAProc
103F 2D F$SNProc
103F 2E F$SVModul
103F 2F FSFindé64
103F 30 ~ F$Allé64
103F 31 FSRet64
103F 32 FSSSVC*
103F 33 F$SIODel
103F 34 FSSLink
103F 35 FS$Boot
103F 36) FSBtMem
103F 37 FSGProcP
103F 38 F$Move
103F 39 FSA11lRAM
103F 3A FSAllImg
103F 3B F$DellImg
103F 3C F$SetImg
103F 3D F$SFreeLB
103F 3E = FS$FreeHB
103F 3F FSAllTsk
103F 40 FSDelTsk
103F 41 FSSetTsk
103F 42 FSResTsk
103F 43 FSRelTsk
103F 44 FSDATLog
103F 45 FS$SDATTmpP
103F 46 FSLDAXY
103F 47 FSLDAXYP
103F 48 FSLDDDXY
103F 49 . FSLDABX
103F 4A FSSTABX
103F 4B FSAllPrc
103F 4C FSDelPrc
103F 4D FSELink
103F 4E F$SFModul

*NOTE: F$SSVC is a user mode function, although its

Copyright 1980 Microware Systems Corporation

PAGE C-2

Function Page
System memory request o 10-38
System memory return . . . ¢« . . . o 10-39
Enter I/O queue e e o e e e o o o o 10-34
Enter active process queue 10-31
Start next process . . ¢« + ¢ ¢« ¢ o o 10-36
Validate module . . . « o o o o o 10-40
Find 64 byte memory block e o o o o« 10-32
Allocate a 64 byte memory block . . 10-30
Return a 64 byte memory block . . . 10-37
Install a function request 10-23
Delete I/O module . « « « ¢ ¢« o « o 10-33
System Link e o e e e e o e o o o o E-30
BOOtStraP system e o o o o e o o o oo E—s
Bootstrap Memory Request . . . « . . E-6
Get Process ptr . e ¢« o o o« E=20
Move data to dlfferent address space E-25
Allocate RAM blOCkS ® o e o o o e o E-3
Allocate Image RAM blocks E-1
Deallocate Image RAM blocks E-10
Set ProceSS DAT image E-28
Get Free LOW BlOCK e o o e o e e o o E-l6
Get Free High Block . . ¢« ¢ ¢« « « « E=15
Allocate Process Task number E-4
Deallocate Process Task number . . . E-12
Set Process Task DAT registers . . . E-29
Reserve Task number« . . E=27
Release Task number . .« « o E-26
Convert DAT Blk/Off to Loglcal Addr E-8
Make temporary DAT image . « « « « « E=9
Load A [X, [Y]] ® o o o e o o o o e o E"'22
Load A [X+’[Y]] e o o o ¢ o . s o o E-23
LOad D [D+X' [Y]] (] L] . . E-24
LOad A from O,X in taSk B e o o o o E—2l
Store A at 0,X in task B E=33
Allocate Process Descriptor E=2
Deallocate Process Descriptor . . . E-11
Link using Module Directory Entry . E-13
Find Module Directory Entry E-14
code > $27

0S-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

INPUT/OUTPUT SERVICE REQUESTS

CODE MNEMONIC FUNCTION
103F 80 ISAttach Attach I/0 device . . . « « +
103F 81 ISDetach Detach I/0 device . ¢« « o o« o &
103F 82 ISDup Duplicate path « « ¢« ¢« &« ¢« & « &
103F 83 " ISCreate Create a new file . ¢« ¢« ¢ o o &
103F 84 ISOpen Open a path to an existing file
103F 85 ISMakDir Make a directory file . « . . &
103F 86 ISChgDir Change working directory
103F 87 ISDelete Delete a file .+ ¢ o o o o o o @
103F 88 ISSeek Reposition file pointer
103F 89 ISRead Read dat@ =« o o ¢ o o o o ¢ o o«
103F 8A ISWrite Write data « o« ¢ ¢ ¢ o ¢ o o o &
103F 8B I$ReadLn Read 1ine e L] L] L] *® L] L] L] * * ®
103F 8C ISWritLn Write line « o« o o o ¢ o o o o
103F 8D ISGetsStt Get device status .« « « ¢ o o
103F 8E ISSetStt Set device status . . ¢« ¢ ¢ o &
103F 8F ISClose Close apath ¢« « ¢ ¢ ¢« ¢ ¢« « o &
103F 90 ISDeletx Delete a file « « .« .« &
STANDARD I/O PATHS FILE ACCESS CODES
0 = Sstandard Input READ = §01
1 = Standard Output WRITE = $02
2 = Standard Error Output UPDATE = READ + WRITE

EXEC = $04

PREAD = $08

PWRIT = §10

PEXEC = $20

SHARE = $40

DIR = $80
MODULE TYPES MODULE LANGUAGES
$1 = Program $0 = Data
$2 = Subroutine Module $1 = 6809 Object code
$3 = Multi-Module $2 = BASIC09 I-Code
$4 = Data $§3 = Pascal P-Code
$C = System Module $4 = Cobol I-code
$D = File Manager
SE = Device Driver MODULE ATTRIBUTES
SF = Device Descriptor = =———cccccccecea—-

Copyright 1980 Microware Systems Corporation

PAGE C-3

L] L] *® . L] [. L) [} [] (] . L] L] L] L L

L] L[] L] . L] [L] L] ® L] L] [] [] [] L L] L]

0S-9 SYSTEM PROGRAMMER'S MANUAL
Appendix C - Service Request Summary

This page is intentionally blank.

Copyright 1980 Microware Systems Corporation
PAGE C-4

The error

decimal

generated

HEX
$C8
$C9

$CA
$CB

$CC
$CD

SCE
$CF

$DO

$D1

$D2

$D3
$D4

$D5

$D6

DEC

200

201

202
203

204
205

206
207

208

209

210

211
212

213

214

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix D - Error Codes

0S-9 ERROR CODES

codes are shown in both hexadecimal (first column) and
(second column). Error codes other than those listed are
by programming languages or user programs.

PATH TABLE FULL - The file cannot be opened because
the system path table is currently full.

ILLEGAL PATH NUMBER - Number too large or for
non-existant path.

INTERRUPT POLLING TABLE FULL

ILLEGAL MODE: attempt to perform I/O function of which the
device or file is incapable.

DEVICE TABLE FULL - Can't add another device,

ILLEGAL MODULE HEADER - module not loaded because its
sync code, header parity, or CRC is incorrect.

MODULE DIRECTORY FULL - Can't add another module

MEMORY FULL - Level One: not enough contiguous RAM free.
Level Two: process address space full

ILLEGAL SERVICE REQUEST - System call had an
illegal code number.

MODULE BUSY - non-sharable module is in use by
another process.

BOUNDARY ERROR - Memory allocation or deallocation
request not on page boundary.

END OF FILE - End of file encountered on read.

NOT YOUR MEMORY - attempted to deallocate memory
not previously assigned.

NON-EXTSTING SEGMENT - device has damaged file
structure.

FILE NOT ACCESSABLE: file attributes do not permit access
requested.

(C) 1980, 1981. 1982 Microware Systems Corporation
Page D-1

$D7

$D8
$DS

SDA

$DB

$DC

$DD

SDE

SDF

SEO
SE2

$E3
SE4

SES
SE6

SE7
SE8
SE9

SEA

215

216
217

218

219

220

221

222

223

224
226

227
228

229
230

231
232
233

234

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix D - Error Codes

BAD PATH NAME - syntax error in pathlist (illegal char-
acter, etc.).

FILE NOT FOUND - can find pathlist specified.

SEGMENT LIST FULL - file is too fragmented to
be expanded further.

FILE ALREADY EXTSTS - file name already appears
in current directory. '

ILLEGAL BINCK ADDRESS - device's file structure
has been damaged.

ILLEGAL BLOCK SIZE - device's file structure
has been damaged.

MODULE NOT FOUND - request for link to module
not found in directory.

SECTOR OUT OF RANGE - device file structure
damaged or incorrectly formatted.

SUICIDE ATTEMPT - request to return memory
where your stack is located.

ILLEGAL PROCESS ID NUMBER - no such process exists.

NO CHILDREN - can't wait because process
has no children.

ILLEGAL SWI CODE - must be 1 to 3.

KEYBOARD ABORT - process aborted by
signal code 2,

PROCESS TABLE FULL - can't fork now.

ILLEGAL PARAMETER AREA - high and low bounds
passed in fork call are incorrect.

RKNOWN MODULE - for internal use only
INCORRECT CRC - module has bad CRC value

SIGNAL ERROR - receiving process has previous
unprocessed signal peqding.

NON-EXTSTANT MODULE - unable to locate module

(C) 1980, 1981. 1982 Microware Systems Corporation
Page D-2

SEB
SEC
$ED
SEE

SEF

235
236
237
238
239

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix D - Error Codes

BAD NAME - illegal name syntax

BAD HEADER - module header parity incorrect

RAM FULL - no free system RAM available at this time
BAD PROCESS ID - incorrect process ID number

NO TASK NUMBER AVAILABLE - all task numbers in use

DEVICE DRIVER/HARDWARE ERRORS

The following error codes are generated by I/0 device drivers, and
are somewhat hardware dependent. Consult manufacturer's hardware
manual for more details.

SFO
$F1
SF2
$F3
SF4

SF5

SF6
SF7
$F8
SF9

SFA

240
241
242
243
244

245

246
247
248
249

250

UNIT ERROR - device unit does not exist.
SPCTOR ERROR - sector number is out of range.
WRITE PROTECT - device is write protected.
CRC ERROR - CRC error on read or write verify.

READ ERROR - Data transfer error during disk read operat-
ion, or SCF (terminal) input buffer overrun.

WRITE ERROR - hardware error during disk
write operation.

NOT READY - device has "not ready" status.
SEEK ERROR - physical seek to non-existant sector.
MEDIA FULL - insufficient free space on media.

WRONG TYPE - attempt to read incompatible media (i.e.
attempt to read double-side disk on single-side drive)

DEVICE BUSY - non-sharable device is in use

(C) 1980, 1981- 1982 Microware Systems Corporation
Page D-3

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
’ AppendixtD,-mError Codes

This Page Intentionally Left Blank

(C) 1980, 1981, 1982 Microware Systems Corporation
Page D-4 ‘) :

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$3A* FSAllImg Allocate Image RAM blocks FSAllImg

ASSEMBLER CALL: 0S9 FS$AllImg

MACHINE CODE: 103F 3A
INPUT: (A)
(B)
(X)

OUTPUT: None.

Beginning block number
Number of blocks
Process Descriptor pointer

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Allocates RAM blocks for process DAT image. The blocks do not
need to be contiguous.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
: Page E-1

0S~-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL

Appendix E - Level Two System Service Requests

$4B* FSAllPrc Allocate Process Descriptor
ASSEMBLER CALL: 0S9 FS$AllPrc
MACHINE CODE: 103F 4B

INPUT: none

OUTPUT: (U) Process Descriptor pointer

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Allocates and initializes a 512-byte process descriptor.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-2

FSAllPrc

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$39* FSAl11RAM Allocate RAM blocks

ASSEMBLER CALL: 0S9 FS$SAllRAM

MACHINE CODE: 103F 39

INPUT: (B)

OUTPUT: (D)

ERROR OUTPUT: (CC)

Searches the

= Desired block count
= Beginning RAM block number
= C bit set.
(B) = Appropriate error code.

free RAM blocks.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-3

FSA11RAM

Memory Block map for the desired number of contiguous

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

S$3F* FSAllTsk Allocate Process Task number

ASSEMBLER CALL: 0S9 F$AllTsk
MACHINE CODE: 103F 3F

INPUT: (X) = Process Descriptor pointer

OUTPUT: None.

C bit set.

ERROR OUTPUT: (CC) ,
Appropriate error code.

(B)

Allocates a Task number for the given process.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-4

FSAllTsk

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$35* FS$Boot
ASSEMBLER CALL:
MACHINE CODE:
INPUT: none
OUTPUT: none

ERROR OUTPUT:

0s9
103F

(cc)
(B)

Bootstrap System
F$Boot
35

C bit set.
Appropriate error code.

Links to the module named "Boot" or as specified
calls linked module; and expects the return of a pointer and size of
an area which is then searched for new modules.

F$Boot

in the INIT module;

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation

Page E-5

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL

Appendix E - Level Two System Service Requests

$36* F$BtMem Bootstrap Memory Request
ASSEMBLER CALL: 0S9 FS$BtMem
MACHINE CODE: 103F 36

INPUT: (D)

Byte count requested.

OUTPUT: (D)
(U)

Byte count granted.
Pointer to memory allocated.

ERROR OUTPUT: (cec)
(B)

C bit set.
Appropriate error code,

Allocates requested memory (rounded up to nearest
contiquous memory in the system's address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-6

FSBtMen

block)

as

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$1B F$CpyMem Copy External Memory F$CpyMem
ASSEMBLER CALL: 103F 1B F$CpyMem
MACHINE CODE: 103F 1B
INPUT: (D)=Starting Memory Block number
(X)=0ffset in block to begin copy
(Y)=Byte count
(U)=Caller's destination buffer
OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Reads external memory into the user's buffer for inspection. Any
memory in the system may be viewed in this way.

Copyright 1982 Microware Systems Corporation
Page E-7

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$44* FSDATLOg Convert DAT Block/Offset to Logical Addr FS$SDATLoOg
ASSEMBLER CALL: 0OS9 FS$SDATLog
MACHINE CODE: 103F 44

INPUT: (B)
(X)

OUTPUT: None.

DAT image offset
Block offset

C bit set.
Appropriate error code.

ERROR OUTPUT: (cc)
(B)

Converts a DAT image block number and block offset to its
equivalent logical address.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-8

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$45* FSDATTmp Make temporary DAT image FSDATTmp
ASSEMBLER CALL: 0S9 FSDATTmp

MACHINE CODE: 103F 45

INPUT: (D) Block number

DAT image pointer

OUTPUT: (Y)

C bit set.

ERROR OUTPUT: (cec)
Appropriate error code.

(B)

Builds a temporary DAT image to access the given memory block.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-9

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$3B* FS$Dellmg Deallocate Image RAM blocks
ASSEMBLER CALL: 0S9 FS$SDellImg

MACHINE CODE: 103F 3B

INPUT: (A) = Beginning block number
(B) = Block count
(X) = Process Descriptor pointer

OUTPUT: None.

C bit set.

ERROR OUTPUT: (CcC)
Appropriate error code.

(B)

Deallocates memory from the process' address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-10

F$Dellmc

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$4C* F$DelPrc Deallocate Process Descriptor F$DelPrc
ASSEMBLER CALL: 0S9 F$DelPrc
MACHINE CODE: 103F 4C
INPUT: (A) = Process ID.
OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (cc)
(B)

Returns process descriptor memory to system free memory pool.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST,

Copyright 1982 Microware Systems Corporation
Page E-11

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$40* FS$DelTsk Deallocate Process Task number
ASSEMBLER CALL: 0S9 F$DelTsk
MACHINE CODE: 103F 40
INPUT: (X) = Process Descriptor pointer

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (cc)
(B)

Releases the Task number in use by the process.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-12

F$DelTsk

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$4D* FSELink Link using Module Directory Entry FSELink

ASSEMBLER CALL: 0S9 FS$ELink
MACHINE CODE: 103F 4D

INPUT: (B)
(X)

Module type.
Pointer to module directory entry.

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (ce)
(B)

Performs a "Link" given a pointer to a module directory entry. Note
that this call differs from F$Link in that a pointer to the module
directory entry is supplied rather than a pointer to a module name.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-13

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$4E* F$FModul Find Module Directory Entry F$FModul

!

ASSEMBLER CALL: 0SS FS$FModul

.

MACHINE CODE: 103F 4E

INPUT: (A) Module type.

(X) = Pointer to name string.

(Y) = DAT image pointer (for name).
OUTPUT: (A) = Module type.

(B) = Module revision.

(X) = Updated past name string.

(0)

ERROR OUTPUT: (cec)
(B)

Module directory entry pointer.

C bit set.
Appropriate error code.

This call returns a pointer to the module directory entry given the
module name.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-14

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$3E* FSFreeHB Get Free High Block ' F$FreeHB
ASSEMBLER CALL: OS99 FS$SFreeHB

MACHINE CODE: 103F 3E

INPUT: (B) = Block count
(Y) = DAT image pointer
OUTPUT: (A) = High block number

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Searches the DAT image for the highest free block of given size.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-15

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$3D* FS$FreelB Get Free Low Block F$FreeLB
ASSEMBLER CALL: 0S9 FSFreeLB
MACHINE CODE: 103F 3D

INPUT: (B)
(Y)

OUTPUT: (A)

Block count
DAT image pointer

Low block number

ERROR OQUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Searches the DAT image for the lowest free block of given size.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-16

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$19 FS$GBlkMp get System Block Map copy F$GBlkMp
ASSEMBLER CALL: 0OS9 FS$GBlkMp

MACHINE CODE: 103F 19

INPUT: (X) 1024 byte buffer pointer.

Number of bytes per block (MMU block size dependent).
Size of system's memory block map.

OUTPUT: (D)
(Y)

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Copies the system's memory block map into the user's buffer for
inspection.

Copyright 1982 Microware Systems Corporation
Page E-17

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$1A F$GModDr get Module Directory copy
ASSEMBLER CALL: 0OS9 F$GModDr
MACHINE CODE: 103F 1A
INPUT: (X) = 2048 byte buffer pointer

ERROR OUTPUT: (Ce)
(B)

C bit set.
Appropriate error code.

F$GModDr

Copies the system's module directory into the user's buffer for

inspection.

Copyright 1982 Microware Systems Corporation
Page E-18

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$18 FS$GPrDsc get Process Descriptor Copy FSGPrDsc
ASSEMBLER CALL: 0S9 FS$GPrDsc
MACHINE CODE: 103F 18

Requested process ID.
512 byte buffer pointer.

INPUT: (A)
(X)

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (Cc)
(B)

Copies a process descriptor into the calling process' buffer for
inspection. There is no way to change data in a process. descriptor.

Copyright 1982 Microwaré Systems Corporation
Page E-19

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$37* F$GProcP Get Process pointer F$SGProcP
ASSEMBLER CALL: 0S9 FS$GProcP

MACHINE CODE: 103F 37

INPUT: (A) = Process ID
OUTPUT: (Y) = Pointer to Process Descriptor

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

Translates a process ID number to the address of its process
descriptor in the system address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST. -

Copyright 1982 Microware Systems Corporation
Page E-20

- EVEL ONE SYSTEM PROGRAMMER'S MANUAL
Ap%gn 1& - evei Two System Service Requests

$49* FSLDABX Load A from 0,X in task B FSLDABX
ASSEMBLER CALL: 0S9 FSLDABX

MACHINE CODE: 103F 49

Task number
Data pointer

INPUT: (B)
(X)

OUTPUT: (A)

Data byte at 0,X in task's address space

ERROR OUTPUT: (C?)
(B

C bit set.
Appropriate error code.

One byte is returned from the 1logical address in (X) in the
given task's address space. This is typically used to get one

byte from the current process's memory in a system state
routine.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-21

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$46* FSLDAXY Load A [X,[Y]] FSLDAXY
ASSEMBLER CALL: 0S9 FSLDAXY
MACHINE CODE: 103F 46

INPUT: (X)
(Y)

Block offset
DAT image pointer

OUTPUT: (A) data byte at (X) offset of (Y)

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Returns one data byte in the memory block specified by the DAT
image in (YY), offset by (X).

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-22

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$47* FSLDAXYP Load A [X+,[Y]] FSLDAXYP
ASSEMBLER CALL: 0S9 FSLDAXYP
MACHINE CODE: - 103F 47

Block offset
DAT image pointer

INPUT: (X)
(Y)

Data byte at (X) offset of (Y)
incremented by one

OUTPUT: (A)
(X)

ERROR OUTPUT: (CC)
(B)

Similar to the assembly instruction "LDA ,X+", except that (X)
refers to an offset in the memory block described by the DAT

image at (Y).

C bit set.
Appropriate error code.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-23

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$48* FSLDDDXY Load D [D+X,[Y]] FSLDDDXY
- ASSEMBLER CALL: 0S9 FSLDDDXY
MACHINE CODE: 103F 48
INPUT: (D)

(X)
(Y)

Offset to offset
Offset
DAT image pointer

OUTPUT: (D) bytes addressed by [D+X,Y]

C bit set.
Appropriate error code.

ERROR OUTPUT: (CeC)
(B)

Loads two bytes from the memory block described by the DAT image
pointed to by (Y). The bytes loaded are at the offset (D+X) in
the memory block.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-24

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$38* FS$SMove Move Data (low bound first) FSMove
ASSEMBLER CALL: 0S9 FSMove
MACHINE CODE: 103F 38

INPUT: (A) = Source Task number
(B) = Destination Task number
(X) = Source pointer
(Y) = Byte count
(U) = Destination pointer

OUTPUT: None.

C bit set.

ERROR OUTPUT: (CC)
Appropriate error code.

(B)

Moves data bytes from one address space to another, usually from
System's to User's, or vice-versa.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-25

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$43* FSRelTsk Release Task number
ASSEMBLER CALL: 0S9 FSRelTsk

MACHINE CODE: 103F 43

INPUT: (B) = Task number

OUTPUT: None,

C bit set.

ERROR OUTPUT: (CC)
Appropriate error code.

(B)

Releases the specified DAT Task number.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-26

FSRelTsk

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$42* PS$ResTsk Reserve Task number
ASSEMBLER CALL: 0S9 FS$SResTsk
MACHINE CODE: 103F 42
INPUT: none
OUTPUT: (B) = Task number

ERROR OUTPUT: (CC)
(B)

Finds a free DAT task number.

C bit set.
Appropriate error code.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-27

FSResTsk

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$3C* FS$SetImg Set Process DAT Image F$SetImg
ASSEMBLER CALL: 0S9 F$SetImg
MACHINE CODE: 103F 3C
INPUT: (A)
(B)

(X)
(0)

Beginning image block number
Block count ‘
Process Descriptor pointer
New image pointer

OUTPUT: None.

C bit set.
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Copies a DAT image into the process descriptor.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-28

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$41* FS$SetTsk Set Process Task DAT registers
ASSEMBLER CALL: 0S9 FS$SetTsk
MACHINE CODE: 103F 41
INPUT: (X) = Process Descriptor pointer
OUTPUT: None.

C bit set. :
Appropriate error code.

ERROR OUTPUT: (CC)
(B)

Sets the process Task DAT registers.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-29

F$SetTsk

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL

Appendix E - Level Two System Service Requests

$34* FS$SLink System Link F$SLink

ASSEMBLER CALL: 0S9 F$SLink

MACHINE CODE: 103F 34

INPUT: (A)
(X)
(Y)

OUTPUT: (A)
(B)
(X)
(Y)
(U)

ERROR OQUTPUT: (CC)

Module Type.
Module Name string pointer.
Name string DAT image pointer.

Module Type.

Module Revision.

Updated Name string pointer.
Module Entry point.

Module pointer.

C bit set.
Appropriate error code.

(B)

Links a module whose name is outside the current (system) process'
address space into the Address space that contains its name.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE -SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-30

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$28* F$SRgMem System Memory Request F$SRgMem
ASSEMBLER CALL: 0S9 FS$SRgMem

MACHINE CODE: 103F 28

INPUT: (D) byte count of requested memory

OUTPUT: (D)
(U)

ERROR OUTPUT: (CC)
(B)

Allocates the requested memory (rounded up to the nearest page) in
the system's address space. Useful for allocating I/0O buffers and
other semi-permanent system memory.

byte count of memory granted
pointer to memory block allocated

C bit set.
Appropriate error code.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE' REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-31

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$29* F$SRtMem System Memory Return FSSRtMem
ASSEMBLER CALL: 0OS9 F$SRtMem
MACHINE CODE: 103F 29
INPUT: (D)
(0)

ERROR QUTPUT: (CC)
(B)

Returns system memory (e.g., memory in the system address space)
after it is no longer needed.

Byte count of memory being returned
Address of memory block being returned

C bit set.
Appropriate error code.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-32

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

S4A* FSSTABX Store A at 0,X in task B FSSTABX
ASSEMBLER CALL: 0S9 FS$SSTABX

MACHINE CODE: 103F 4A
INPUT: (A)
(B)
(X)

OUTPUT: None.,

Data byte to store in Task's address space
Task number

Logical address in task's address space to store

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This is similar to the assembly instruction "STA 0,X", except
that (X) refers to an address in the given task's address space
rather than the current address space.

NOTE: THIS IS A PRIVILEGED SYSTEM MODE SERVICE REQUEST.

Copyright 1982 Microware Systems Corporation
Page E-33

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests

$1C F$SUser Set User ID number

ASSEMBLER CALL: 0S9 FS$User

MACHINE CODE: 103F 1C

INPUT:
OUTPUT:

ERROR OUTPUT: (CC)

Alters

(Y) = desired User ID number

None.

C bit set.
Appropriate error code.

o

(B)

FSSUser

the current user ID to that specified, without error
checking. .

Copyright 1982 Microware Systems Corporation
Page E-34

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Appendix E - Level Two System Service Requests
$1D F$UnLoad - Unlink Module by name F$UnLoad
ASSEMBLER CALL: 0S9 F$UnLoad
MACHINE CODE: 103F 1D

INPUT: (&)
(X)

OUTPUT: None

Module Type
Module Name pointer

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

Locates the module in the module directory, decrements its link
count, and removes it from the directory if the count reaches zero.
Note that this call differs from FSUnLink in that the a pointer to

the module name is supplied rather than the address of the module
header.

Copyright 1982 Microware Systems Corporation
Page E-35

0S-9 LEVEL ONE SYSTEM PROGRAMMER'S MANUAL
Service Request Descriptions - I/O Operations
DELETE Delete a file ISDeletX
ASSEMBLER CALL: O0S9 1ISDeletx
MACHINE CODE: 103F 90

INPUT: (X)
(A)

Address of pathlist.
Access mode.

OUTPUT: (X) Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC)
(B)

C bit set.
Appropriate error code.

This service request deletes the file specified by the pathlist.
The tile must have write permission attributes (public write if
not the owner), and reside on a multi-file mass storage device.
Attempts to delete devices will result in error.

The access mode is used to specify the current working directory
or the current execution directory (but not both) in the absence
of a full pathlist. If the access mode is read, write, or update,
the current data directory 1is assumed. If the access mode is
execute, the current execution directory is assumed. Note that if
a full pathlist (a pathlist beginning with a "/") appears, the
access mode is ignored. ‘

ACCESS MODES:

1 = Read

2 = Write

3 = Update (read or write)
4 = Execute

Copyright 1982.Microware Systems Corporation
Page E-36

