
MICROWARE®

OS-9 OPERATING SYSTEM

USER'S MANUAL

Maowar Systems CorPOldllon
5835 Grdrd Ave'lue
De<; MOIne'), Iowa 50 12
Telephone 515 219-8844
Telex 910-520 2531)

OS-9 OPERATING SYSTEM

USER'S MANUAL

OS-9 Operating System User's Manual

Revision G

For Use with OS-9 Level One and OS-9 Level Two

Copyright 1980 Microware Systems Corporation, All Rights Reserved.
This manual, the OS-9 Program, and any information contained herein
is the the property of Microware Systems Corporation. Reproduction
of this manual in part or whole, bv any means, electrical or
otherwise, is prohibited, except by written permission from
Microware Systems Corporation.

The information contained herein is believed to be accurate as of
the date of publication, however, Microware will not be liable for
any damages, including indirect or consequential, from use of the
OS-9 operatinq system or reliance on the accuracy of this
documentation. The information contained herein is subject to
change without notice and should not be construed as a commitment by
Microware Systems Corporation.

OS-9 Level One Copyriqht 1980 Microware Systems Corp. and Motorola, Inc.
OS-9 Level Two Copyright 1981 Microware Systems Corp.

Publication date: January 1, 1983

Microware Systems Corporation
5835 Grand Avenue
Des Moines, Iowa 50312 U.S.A
Telephone 515-279-8844
Software Support 515-279-8898
Telex 910-520-2535

OS-9 OPERATING SYSTEM USERS MANUAL
Table of Contents

CHAPTER 1 - INTRODUCTION AND INSTALLATION

Introduction • • • • • • • • • • • • • • • • •
An Overview of the OS-9 Software Family · . .
1.0

1.1

How to Install OS-9 •••••••••••••
1.0.1 Preparation and Setup of the Hardware
1.0.2 Starting the System •••• · . . .
1.0.3 Initial Explorations ••••••••••
Making a Backup of the System Disk • • • • • •
1.1.1 Formatting Blank Disks •••••••••
1.1.2 A Simple Backup Procedure •••••••
1.1.3 A More Complex Backup Procedure ••••

CHAPTER 2 - INTRODUCTION TO THE SHELL

2.0 Introduction to the Shell . . • • · • • • •
2.0.1 Sending Output to the Printer • · •

2.1 Shell Command Line Parameters · · · · · • · 2.3 Some Common Command Formats . · · • · · · • •
2.4 Terminal Control Key Functions • · · • · · · ·
2.5 Logging On and Off Timesharing Systems • · · ·

CRAPTER 3 - THE OS-9 FILE SYSTEM

3.0 Introduct~on to the Unified Input/Output System
3.1 Rules for Constructing Pa thlists • • • • • • •
3.2 rio Device Names ~ ••••••••••••
3.3 Multifile Devices and Directory File? ••••
3.4 Creating and Using Directories ••••••
3.5 Deleting Directory Files •••••••••••
3.6 Additional Information About Directories.
3.7 Using and Changing Working Directories ••••

3.7.1 Automatic Selection of Directories.
3.7.2 Changing Current Working Directories ••
3.7.3 Anonymous Directory Names •••••••

3.B The File Security System •••••••••••
3.B.l Examining and'Changing File Attributes.

3.9 Reading and writing Files • • •• • •••
3.9.1 File Usage in OS-9 •••••••••••
3.9.2 Text Files. • • • • ••••••••
3.9.3 Random Access Data Files ••••••••
3.9.4 Executable Program Module Files ••••
3.9.5 Directory Files ••••••••••••
3.9.6 Miscellaneous File Usages •••••••
3.9.7 Record Lockout •••••••••••••

3.10 Physical File Organization ••••••••••
3.11 Physical Sector I/O •••••••••••••

1-1
1-2

1-3
1-3
1-4
1-5
1-6
1-6
1-7
l-B

2-1
2-2
2-3
2-4
2-5
2-6

3-1
3-2
3-3
3-4
3-6
3-B
3-B
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-24

Copyright 19B1 Microware Systems Corporation
0-1

OS-9 OPERATING SYSTEM USERS MANUAL
Table of Contents

CHAPTER 4 - ADVANC.ED FEATURES OF THE SHF.LL

4.0 Advanced Features of the Shell · • · · · · · • 4-1
4.1 A More Detailed Description of Command Lines 4-2
4.2 Execut~on Modifiers · · · · · • · • · · • • · 4-3

4.2.1 Alternate Memory Size r10dif ier 4-3
4.2.2 I/O Redirect~on Modifier · • · · • • · · 4-4

4.3 Command Separators · · · · · · · · · · · · · 4-5
4.3.1 Sequential Execution · · · • · · • · 4-5
4.3.2 Concurrent Execution · · · · · 4-6
4.3.3 Pipes and Filters · · · · · • • · • • • 4-7

4.4 Command Grouping · · · · · · · • · • • · · • 4-8
4.5 Built-In Shell Commands and Options · • · • · 4-9
4.6 Shell Procedure Files · · · · · · · · • · · 4-10
4.7 Error Reporting · · • · • · • · · "" • • • · • 4-11
4.8 Running Intermediate Code Programs · · · · · · 4-12
4.9 Setting Up Timesharing System Procedure Files 4-13

CHAPTER 5 - MULTIPROGRAMMING AND MEMORY MANAGEMENT

5.0 Multiprogramming and Memory Management. • • • 5-1
5.1 Processor Time Allocation and Timeslicing 5-2
5.2 Process States. • • • • • • • • • • • • • • • 5-3
5.3 Creation of New Processes ••••••••• . 5-4
5.4 Basic Memory Management Functions· • • • • • • 5-6

5.4.1 Loading Program Modules Into Memory 5-7
5.4.2 Loading Mul tiple Programs •• • • • 5-9
5.4.3 Memory Fragmentation. • • • . • • •• 5-10

CHAPTER 6 - USE OF THE SYSTEM DISK

6.0 Use of the System Disk · · · · 6-1
6.1 The Bootstrap File · • · • · · · • · · 6-1
6.2 The SYS Directory · · · · · · · · · · · • 6-2
6.3 The Startup File · · · · · · · • · · • · · 6-2
6.4 The CMDS Directory · · · · · • · · · · 6-2
6.5 The DEFS Directory · · · · • · • · · · • • 6-2
6.6 Changing System Disks · · · · · · · · · • 6-3

CHAPTER 7 - COMMAND DESCRIPTIONS

7.0
7.1

System
Formal
ATTR
BACKUP
BINEX
BUILD
CHD
CHX
CMP

Command Descriptions •••
Syntax Notation • • • • • •

Change File Attributes
Make Disk Backup
Convert Binary to S-Record
Build Text File
Change Working Data Directory
Change Working Execution Directory
File Comparison utility

7-1
7-1
7-2
7-3
7-5
7-6
7-7
7-7
7-8

Copyright 1981 Microware Systems Corporation
0-2

COBBLER
COpy
DATE
DCHECK
DEL
DELDI'R
DIR
DISPLAY
DSAVE
DUMP
ECHO
EX
EXBIN
FORMAT
FREE
IDENT
KILL
LINK
LIST
LOAD
LOGIN
MAKDIR
MDIR
MERGE
MFREE
OS9GEN
PRINTERR
PROCS
PWD
RENAME
SAVE
SETIME
SETPR
ST.EE'P
SHELL
TEE
TMODE
TSMON
UNLINK
VERIFY

05-9 OPERATING SYSTEM USERS MANUAL
Table of Contents

Make Bootstrap File
Copy Data
Display System Date and Time
Check Disk File Structure
Delete a File
Delete All Files in a Directory
Display File Names in a Directory
Display Converted Characters
Make Procedure File to Copy Files
Formatted File Dump
Echo Text to Output Path
Execute Program as Overlay
Convert S-Record To Binary
Initialize Disk Media
Display Free Space on Device
Print 05-9 module identification
Abort a Process
Link Module Into Memory
List Contents of Disk File
Load Module(s) Into Memory
Timesharing System Log-In
Create Directory File
Display Module Directory
Copy and Combine Files
Display Free System RAM Memory
Build and Link a Bootstrap File
Print Full Text Error Messages
Display Processes
Print Working Directory
Change File Name
Save Memory Module(s) on a File
Activate and Set System Clock
Set Process Priority
Suspend Process for Period of Time
05-9 Command Interpreter
Copy Input to Multiple Output Paths
Change Terminal Operating Mode
Timesharing Monitor
Unlink Memory Module
Verify or Update Module Header/CRC

APPENDIX A - COMMAND SUMMARY

APPENDIX B - OS-9 ERROR CODES

7-9
7-10
7-11
7-12
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-5
7-24
7-26
7-27
7-29
7-30
7-31
7-32
7-33
7-35
7-36
7-37
7-38
7-39
7-41
7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-51
7-52
7-55
7-56
7-57

A-I

B-1

Copyright 1981 Microware Systems Corporation
0-3

OS-9 OPERATING SYSTEM USERS MANUAL
Introduction

INTRODUCTION TO THE OS-9 USERS MANUAL

Welcome to the world of OS-91

This book is designed to help you learn to use a sophisticated
and powerful operating system that will enhance the performance and
versatility of your 6809 computer system. Whatever you use your
computer for, you will find that OS-9 will help you get the job done
quickly and elegantly. And you will discover that OS-9's logical
and consistent design makes it easy to learn and use.

You can use this manual as a learning guide and also as a
reference guide for daily use. Programmers who use OS-9 for
advanced applications should also consult the companion manual, the
"OS-9 System programmer's Manual" for more information on assembly
language programming.

If you don't have experience with OS-9 or Unix, it may take some
time to for you to familiarize yourself with all of OS-9's features.
This manual was desiqned to introduce the basics in Chapters 1 and 2
so you can -start using the system almost immediately. Therefore,
we recommend that beginners read these chapters carefully and scan
the individual command descriptions in Chapter 7. As soon as
possible you should study the remainder of the book. You will find
cross-references throughout the manual to help you understand ~he
relationship between different parts of the system.

This is the fourth major revision of the basic user documentation
for OS-9 since it was first released in 1980. New material relating
to OS-9 Level Two and features of OS-9 Level One Version 1.2 have
been added. Many of the changes in this edition reflect comments
and suggestions received by Microware from hundreds of OS-9 users
allover the world. We extend our thanks to the many individuals
who sent thoughtful letters suggesting improvements in the OS-9
software and documentation.

Copyright 1981 Microware Systems Corporation
Page 1-1

OS-9 OPERATING SYSTEM USERS MANUAL
Introduction

AN OVERVIEW OF THE OS-9 SOFTWARE FAMILY

OS-9 can be used with almost any 6809-based computer, from
single-board control systems up to fully-equipped timesharing
systems. This versatility is one of OS-9 I s major advantages and
distinguishes it from many other operating systems. In particular,
OS-9 software is nportable n upward or downward, so you can develop
software for a smaller target system on a larger development system.

OS-9 is available in two versions:

* 05-9 Level One is used on small- to medium-sized systems that have
up to 56K bytes of memory.

* OS-9 Level Two is used on larger multiuser systems equipped with
memory management hardware and up to two megabytes of memory.

From the userls point of view, both versions work almost ident­
ically, and the information in this manual applies to both versions
except where otherwise noted.

Some of the features of OS-9 are:

*
*
*
*
*

User-friendly Unix-like environment
Multiuser/Multitasking Real-Time Oper~ting System
Extensive support for structured, modular programming
Device-independent interrupt-driven input/output system
Multi-level directory system

System software for 05-9 available from Microware includes:

*
*
*
*
*
*
*
*
*
*

Basic09 - Extended Structured Basic
Pascal - ISO Standard Pascal Compiler
CIS Cobol - ANSI 1974 Standard Cobol Compiler
Forms 2 - Interactive Program Generator for CTS COBOL
C - Standard C Compiler (Unix V6 compatible)
Macro Text Editor
Assembler
Interactive Debugger
Additional OS-9 Device Drivers
05-9 User Source Code Package (Partial Source Code for OS-9)

Copyright 1981 Microware Systems Corporation
Page 1-2

OS-9 npERATING SYSTEM USERS MANUAL
Installation Procedures

1.0 HOW TO INSTALL OS-9

Because there are many different versions of OS-9 customized for
6~09 computers produced by many manufacturers, this section des­
cribes the typical installation and startup procedure. If your
computer was shipped from the factory with OS-9 already installed,
your system should be ready to run. Otherwise, specific instruc­
tions for your version of OS-9 accompany the software package.

1.0.1 PREPARATION AND SETUP OF THE HARDWARE

Almost every circuit board in your system has a number of
switches, jumpers, and sockets that define the way the hardware
functions. How these are set up is critical - if even one switch is
in the wrong position OS-9 may not work at all, even if the same
computer previously had run some other software properly.

--> EXPERIENCE HAS SHOWN THAT MOST PROBLEMS BRINGING UP OS-9 OCCUR
WHEN THE USER INCORRECTLY ASSUMES THAT THE HARDWARE IS ALREADY
SET UP PROPERLY.

Set all switches and jumpers per the installation sheets supplied
with the OS-9 package. Also, two (sometimes three) ROM chips must
be installed on the system's CPU board. Here is a checklist for
system setup:

PROCESSOR (CPU) BOARD:
* ROMs and ROM socket configuration jumpers
* memory management (DAT) system confiquration
* on-card device addressing and interrupt (IRQ) enabling jumpers

DISK CONTROLLER BOARD:
* device address switches
* interrupt enable and DMA mode control (if applicable)
* default disk size and unit selection

MEMORY BOARD(S) :
* Addressing switches - all system RAM should be addressed

contiquously from address zero upward. OS-9 Level One usually
requires a minimum of 12k RAM; Level Two requires 48K RAM.

INPUT/OUTPUT INTERFACE BOARD(S):
* device address jumper(s) or switch(s) set to correct address
* interrupt (IRQ) enable jumper(s) or switch(s) ON
* baud rate selection jumper(~) or switch(s) to match terminal

Copyright 1981 Microware Systems Corporation
Page 1-3

OS-9 0PERATING SYSTEM USERS MANUAL
Installation Procedures

1.0.2 STARTING THE SYSTEM

To start the system insert the OS-9 System Disk in drive zero
(usually the drive on the left side) and close the door, then
depress the RESET switch. On Level One systems, the disk should
select within several seconds. LEVEL TWO SYSTEMS HAVE A MINUTE OR
TWO DELAY before the disk is selected. OS-9 will then begin its
"bootstrap" loading process, which can take up to 30 seconds. When
the system startup has finished, a message will be di~played on the
terminal.

If the system does not start up, depress the computer's reset
switch to retry the bootstrap sequence. If this is not successful
after several attempts, turn the computer off and recheck the
hardware setup instructions given in Section 1.0.1.

*

*

*

*

TROUBLESHOOTING HINTS

If the disk drive nev~r selects, the problem may be:

ROMs incorrectly installed
Jumpers on CPU, memory, or disk controller
Defective memory

If the disk drive selects for one or two seconds only:

-- System disk defective (contact supplier)
-- Defective or incorrectly confiqured memory

If the disk drive selects for ten to twenty seconds, then
deselects:

Wrong type of System Disk
-- Improper terminal cable. terminal interface board setup
-- Terminal/Interface baud rate mismatch

If the disk drive select and stays on continuously:

System Disk defective
Disk Controller not confiqured properly
Defective or insufficient amount of memory

Copyriqht 1981 Microware Systems Corporation
Page 1-4

OS-9 OPEP~TING SYSTEM USERS MANUAL
Installation Procedures

1.0.3 INITIAL EXPLORATIONS

When OS-9 first comes up, it will first display a welcoming
message, and then a prompt like this:

OS9:

This indicates that the system is in an idle state and awaiting a
command. The first command you should use is "setime ll (some systems
run "setime" automatically during startup). This is a prerequisite
for multitasking and also allows OS-9 to keep track of the date and
time of creation of new files and disks. To do so type:

setime

And then hit the "return" key. Enter the current date and time in
the format requested. You may now wish to examine the files on the
System Disk using the "dir" (for "diJ.:ectory") command. To do so,
type:

dir

followed by a "return". OS-9 should respond with a listing of file
names which should look something like this:

OS9Boot startup CMDS SYS DEFS

"OS9Boot" contains the OS-9 code which is loaded into
system startup. The file "startup" is a "command file"

automatically run when the system starts up, and has the
that printed the welcoming message. You may replace this

file with your own customized version after becoming
with OS-9.

The file
memory at
which is
commands
startup
familiar

The last three files are "directory files". They are files that
contain other file names instead of programs or data. The "dir"
command has opt~ons which can give you more detailed information
about each file (see 3.4 and 3.8.1). The file "CMDS" is a directory
that consists of all the system commands such as "dir", "list",
"format", etc. To see the files contained in this directory, enter:

dir cmds

which tells "dir" to
directory file "SYS"
which contains text
"password", which is
systems. The directory
definitions useful when

show files on the directory file "CMDS". The
contains two files: a file called lIerrmsg"
for descriptions of error messages, and
an example password file for timesharing
"DEFS" has several files containing symbolic
writing assembly-language programs.

Copyright 1981 Microware Systems Corporation
Page 1-5

OS-9 OPERATING SYSTEM USERS MANUAL
Installation Procedures

1.1 MAKING A BACKUP OF THE SYSTEM DISK

Before experimenting further with OS-9, it is wise to make one or
more exact copies of your System Disk in case some misfortune
befalls your one and only master System Disk. The two basic ways to
make a backup copy of the System Disk are shown in the following
sections.

1.1.1 FORMATTING BLANK DISKS

Before the actual backup procedure is initiated (or any fresh
diskette is used by OS-9 for any purpose), the blank disk which is
to become the backup disk must be initialized by OS-9's "format"
command. The same command is used to format all types of diskettes
including flexible disks and rigid disks such as Winchesters.

--) WARNING: MANY HARD DISKS ARE DELIVERED BY THE MANUFACTURER PRE­
FORMATTED FOR OS-9 AND MAY CONTAIN'IMPORTANT DATA. CHECK THE MANU­
FACTURER'S INSTRUCTIONS BEFORE ATTEMPTING TO FORMAT A HARD DISK.

To format a fresh disk, place the blank disk in drive one and the
System Disk in drive zero, then type:

format /dl

This command initiates the "format" utility and indicated that the
disk in drive one (drive one's logical name is "/dl"). The "format"
program will then print a I1Table of Format Variables". This table
indicates the format OS-9 assumes will be used. In the line labelled
"Density", single density is called as "FM", and double density is
called "MFM". Other than density and number of sides, most other
table variables are not of concern at this point- After the table
is displayed, the program will then ask the question:

Formatting on drive /Dl
y (yes), n (no), or q (quit)
Ready'?

IF THE DEVICE NAME (/Dl) IS NOT DISPLAYED: enter "q" to "quit" RIGHT
NOW and start over, OR YOU MAY ERASE your only System Disk.

IF YOU ARE GOING TO PERFORM THE COMPLEX BACKUP PROCEDURE AND THE
FORMAT TABT.E Ie:: r.ORRF.C'T' FOR YOUR HARDWARE: answer "y" for "yes lf
which will initiate the format process using the table values.

IF YOU ARE GOING TO PERFORM THE SIMPLE BACKUP PROCEDURE: answer Ifn"
for "nolf. This indicates that you wish to override the assumptions
listed in the Table of Format Variables. Consequently, you will be
asked a series of questions regarding the desired format. Answer the
questions as appropriate to make a single-sided, single-density disk

Copyright 1981 Microware Systems Corporation
Page 1-6

08-9 OPERATING SYSTEM USERS MANUAL
Installation Procedures

EVEN IF YOUR SYSTEM CAN USE DOUBLE SIDED AND/OR DOUBLE DENSITY
DISKS. This is because OS-9 distribution System Disks are almost
always shipped on single-sided, single density disks, and the
"backup" command which will be used next REQUIRES that the old and
new disks have the exact same format. When requested, enter US" for
single density, "1" for the number of surfaces, and the number of
tracks that were given for nnumber of cylinderS" in the nTable of
Format Variables" initially displayed by the format command. After
you have answered all three questions, a new table will be displayed
and the nyes/no/quit" choice requested. If everything looks OK,
answer "yn for yes. If you are confused, refer to the "format n
command description in this book.

It usually takes several minutes for the format program to run.
Durinq the later phase of the process the hexadecimal number of each
track will be displayed as each track is verified (checked for bad
sectors). If any bad sectors are found, an error message will be
displayed along with the number of the offending sector(s).

--) WHEN MAKING BACKUP DISKS, NEVER BACKUP TO A DISK THAT HAS ANY
BAD SECTORS.

1.1.2 A SIMPLE BACKUP PROCEDURE

This method uses OS-9's "backupn command and is easiest to do.
However, is has the disadvantage of making an exact copy AND FORMAT
OF the OS-9 distribution System Disk, which may be of a format which
has less' storage capacity than the system's disk drives true
capability. Despite this limitation, it is the least complicated
way to make your first backup disk.

First format a blank disk following the procedure in 1.1.1. To
initiate the backup process, type:

backup

The nbackup" command will respond with:

Ready to BACKUP from /DO to /Dl ?

Now enter nyn for yes. It will then ask:

X is being scratched
OK ?:

Answer ny" for yes again, and the backup process should begin. If
you get an error message at this point, it usually means the disk
Y9u formatted in the previous step was not formatted the same way at
the master System Disk. The "backup" command h~s two phases: the
first phase copies everything from drive zero to drive one checking
for errors while reading from the master but not for "write" errors.

Copyright 1981 Microware Systems Corporation
Page 1-7

OS-9 OPERATING SYSTEM USERS MANUAL
Installation Procedures

The second pass is the "verifyll pass which makes sure everything was
copied onto the new disk correctly. Backing up in two passes is
actually faster than doing everything in one pass. If any errors
are reported during the first (copy) pass, there is a problem with
the master disk or its drive. If errors occur during the second
(verify) pass, there is a problem with the new disk and the IIbackup"
should be attempted until an error-free backup has been performed.
If backup repeatedly fails on the second pass, reformat the disk and
try to backup again •. If backup fails again, the disk is physically
defective.

1.1.3 A MORE COMPLEX DISK BACKUP PROCEDURE

This procedure allows you to make a working copy of ,the System
Disk using the maximum-performance format possible on your system.
This method uses a command called "dsave", which automatically
creates a file of OS-9 commands which will COPy all the files, one
by one usina the OS-9 "copy" command, from the System Disk to the
new disk. The "copy" command can be used to copy from a disk to an­
other having a different format.

First format a blank disk as outlined in 1.1.1 using the desired
format. Leave the master System Disk in drive zero, and the newly
formatted disk in drive one, then type:

dsave -b /dO /dl >/dO/tempfile

This results is the creation of a "procedure file" called "tempfile"
which will include all the commands needed to copy all files and
directories from drive zero to drive one. Then enter the command:

/dO/tempfile

The command "/dO/tempfile" executes the copy sequence. You will see
all the copy commands generated by "dsave" displayed as they are
performed. When the system finished copying all files, delete the
procedure file ,"tempfile" by entering:

del tempfile

Once you have made the new System Disk, it you can use the "backup"
command to make additional copies on disks having the same format.

Copyright 1981 Microware Systems Corporation
Page 1-8

OS-9 OPERATING SYSTEM USERS GUIDE
Introduction to the Shell

2.0 INTRODUCTION TO THE SHELL

The "shell" is a command interpreter program that gives t'he user
convenient and versatile access to OS-9's powerful capabilities. It
provides an easy-to-use interface between the user and the internal
functions of the operating system. The shell is entered following
the system start-up, or after logging on to a timesharing terminal.
You will know when the shell is waiting for input because it
displays the prompt:

OS9:

This prompt indicates that the shell is active and awaiting a
command from your keyboard. You can now respond by typing a
"command line" followed by a carriage return (which should always be
the last character on a line). It usually makes no difference
whether you use upper-case le~ters, lower-case letters, or a
combination of both as OS-9 matches letters of either case.

The command line always begins with a name of a program (which
may already be present in memory) OR a pathlist (file name) which
can be:

*
*

*

The name of a machine language program
The name of an executable program compiled by a high-level
language such as Basic09, Pascal, Cobol, etc. (See 4.8)
The name of a procedure file (See 4.6)

When processing the command line •. the shell searches for a
program having the name specified in the following sequence:

1 - If the program named is already in memory, it is run.

2 - The user's "execution directory" (usually "CMOS") is
searched. If a file having the name given is found, it is
loaded and run (See 5.4.1).

3 - The user's "data directory" is searched. If a file having
the name given is found, it is processed as a "procedure
file" which means that the file is assumed to contain one
or more command lines which are processed by the shell in
same manner as if they had manually typed one by one.

Mention is made above of the "data directory" and the "execution
directory". At all times each user is associated with two file dir­
ectories. A more detailed explanation of directories is presented
in section 3.3. The execution directory includes files which are
executable programs. In most systems all users share a directory
called "CMOS" which contains command programs such as "dir", "list",

Copyright 1981. Microware Systems Corporation
Page 2-1

OS-9 OPERATING SYSTEM USERS GUIDE
Introduction to the Shell

etc. This leads to a subtle but very important point: the shell
itself does not execute commands such as "dir". Rather, most of the
system commands are individual programs which are stored on files
and are called by the shell when you type their names.

The name may be optionally followed by one or more "parameters"
which are passed to th'e program called by the shell. A command line
may also include one or more "modifiers" which are specifications
used by the shell to alter the program's standard input/output files
or memory assignments (See 4.2).

2.0.1 SENDING OUTPUT TO THE PRINTER

By default, most commands and programs display output on the
terminal display. The output of these programs can alternatively be
printed by specifying output redirection on the command line. This
is done by including the following at the end of any command line:

>/p

The ">" character
the printer, which
For example, to
printer, enter:

dir >/p

tells the shell to redirect output (See 4.3.2) to
is a device named "/P" on most systems (See 3.2).
redirect the output of the "dir" command to the

Copyright 1981 Microware Systems Corporation
Page 2-2

OS-9 OPERATING SYSTEM OSERS GUIDE
Introduction to the Shell

2.1 SHELL COMMAND LINE PARAMETERS

Parameters are generally used to either specify file name(s) or
to select options to be used by the program specified in the command
line given to the shell. Parameters are separated from the command
name and from each other by space characters (hence parameters and
options cannot themselves include spaces). Each command program
supplied with OS-9 has an individual description in the last section
of this manual which describe the correct usage of the parameters of
each command.

For example, the "list" program is used to display the contents
of a text file on your terminal. It is necessary to indicate to the
"list n program which file it is to be displayed, therefore. the name
of the desired file is given as a parameter in the command line.
For example, to list the file called "startupn (the system initial­
ization procedure file), you enter the command line:

list startup

Some commands have two parameters. For example, the "COpy" command
is used to make an exact copy of a file. It requires two parameters:
The name of the file to be copied and the name of the file which is
to be the copy, for example:

copy startup newstartup

Other commands have parameters which select options. For example:

dir

shows the names of the files in the user's data directory. Normally
it simply lists the file names only, but if the "e" (for ~ntire)
option is given, it will also give complete statistics for each file
such as the date and time created, size, security codes, etc. To do
so enter:

dir e

The "dir" command also can accept a file name as a parameter which
specifies a directory file other than the (default) data directory.
For example, to list file names in the directory "sys", type:

dir sys

It is also possible to specify both a directory name parameter and
the "e" option, such as:

dir Sys e

giving file names and complete statistics (See example in 3.8.1).

Copyright 1981 Microware Systems Corporation
page 2-3

OS-9 OPERATING SYSTEM USERS GUIDE
Introduction to the Shell

2.3 SOME COMMON COMMAND FORMATS

This section is a summary of some commands commonly used by new
or casual OS-9 users, and some common formats. Refer to the
individual command descriptions in Section 8 for more detailed
information and additional examples. Parameters or options shown in
brackets are optional. Whenever a command references a directory
file name, the file ~ be a directory file.

CHD filename chd DATA.DIR

Changes the current ~ working directory to the directory file
specified.

COpy filenamel filename2 copy oldfile newfile

Creates "filename2" as a new file, then copies all data from
"filenamel" to it. "filenamel" is not affected.

DEL filename del oldstuff

Deletes (destroys) the file specified.

DIR [filename] [e] [x] dir myfiles e

List names of files contained in a directory. If the "xn option is
used the files in the current execution directory are listed,
otherwise, if no directory name is given, the current ~ dir­
ectory will be listed~ The "en option selects the long format
which shows detailed information about each file.

FREE devicename free /dl

Shows how much free space remains on the disk whose name is given.

LIST filename list script

Displays the (text) contents of the file on the terminal.

MAKDIR filename makdir NEWFILES

Creates a new directory file using the name given. Often follow·ed
by a nchdn command to make it the new working data directory.

RENAME filenamel filename2 rename zip zap

Changes the name of filenamel to filename2.

Copyright 1981 Microware Systems Corporation
Page 2-4

OS-9 OPERATING SYSTEM USERS GUIDE
Introduction to the Shell

2.4 TERMINAL CONTROL KEY FUNCTIONS

There are a number of useful control functions that can be
generated from terminal keyboards when the shell and most other OS-9
programs are running. Most of these fUnctions use "control keys"
which are generated by simultaneously depressing the key marked
"control" and a regular character key. For example, if you make a
mistake while entering a line, you can use the "backspace" key
(CONTROL-H on most keyboards), or you can delete the entire line
usinq the "line delete" key (usually rONTROL-X). There are several
other control keys that operate as listed below. Note: it is
possible to redefine which keys correspond to these functions: see
the TMODE command description.

Terminal Control Keys

CONTROL A - Repeat previous input line. The last line entered will
be redisplayed but llQt processed, with the cursor positioned at the
end of the line. You may hit return to enter the line, or edit the
line by backspacing, typing over characters to correct them, and
entering control A again to redisplay the edited line.

CONTROL C - Program Interrupt - sends an "interrupt" signal (signal
code 3) to the program presently ru~ning.

CONTROL D - Redisplay present input line

CONTR~L H - Backspace

CONTROL Q - Quit Program - This key can be used to abort execution
of command programs (which returns you to the shell). Sends a
"program abort" signal (signal code 2) the the program presently
running.

CONTROL W - display wait - This control key will temporarily halt
data output to the terminal so the screen can be read before the
data scrolls off. Output is resumed when any other key is hit.

CONTROL X - line delete

ESCAPE (CONTROL [) - End-of-File - This key is used to send an end­
of-file to programs that read input from the terminal in place of a
disk or tape file. It must be the first character on the line in
order for it to be recognized.

Copyright 1981 Microware Systems Corporation
Page 2-5

OS-9 OPERATING SYSTEM USERS GUIDE
Introduction to the Shell

2.5 LOGGING ON AND OFF TIMESHARING SYSTEMS

If you are using a terminal on a timesharing system other than
the system's master terminal. you will probably have to "log-on"
which involves enterinq a correct user number and password before
you will be permitted access to the system.

When you log in, you must use the user name and password that was
assigned to you by the person responsible for managing the system.
The system manager usually is the only person who may change
passwords and user names.

When a terminal is idle (i.e., between sessions), it will respond
to any key by beeping, except for -the "return" key which will
initiate the login sequence. You can shorten the login procedure by
typing your user name and password on the same line. An example of
the log-in procedure is shown below:

OS-9 Level 2 Version 1.0 Timesharing System

User name?: peter
Password: ace

Process #6_ logged 11/16/81 12:34:20

Shell

059:

11/16/81 14:32:12

If you don't enter a valid user name or password, an appropriate
message will be displayed and you will be asked to reenter the user
name or password. If you cannot login after three attempts the
login sequence will terminate which may result in disconnection of a
dial-up telephone line.

To log off, return to the shell (if you are running another
program), and hit the escape "ESC" key (end-of-file). This will
return the terminal to the idle state.

\

Copyright 1981 Microware Systems Corporation
Page 2-6

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.0 INTRODUCTION TO THE UNIFIED INPUT/OUTPUT SYSTEM

OS~9 has a unified input/output system in which data transfers to
ALL I/O devices are performed in almost exactly the same manner,
regardless of the specific hardware devices involved. It may seem
that varying operational characteristics make this difficult. After
all, line printers and disk drives behave much differently. How­
ever. these differences can mostly be overcome by defining a set of
standardized logical functions for all devices and by making all I/O
devices conform to these conventions, using software routines to
eliminate hardware dependencies wherever possible. This produces a
much simpler and more versatile input/output system.

OS-9's unified I/O system is based upon logical entities called
"I/O paths". Paths are analogous to "software I/O channels" which
can be routed from a program (process) to a mass-storage file or any
other I/O device. All input/output operations require use of paths.

The behavior of paths (as seen by programs) are generally uni­
form, data transferred through paths may be processed by OS-9 to
conform to the hardware requirements of the specific I/O device
involved. Data transfers can be either bidirectional (read/write)
or unidirectional (read only or write only), depending on the device
and/or how the oath was established.

Data transferred through a path is considered to be a stream of
8-bit binary bytes that have no specific type or value: what the
data actually represents usually depends on how it is used by each
program.

Some of the advantages of the unified I/O system are:

Programs will operate correctly regardless of the particular I/O
devices selected and used when the program is actually executed.

Programs are highly portable from one computer to another, even
when the computers have different kinds of I/O devices.

I/O can be redirected to alternate files or devices when the
program is run, without having to alter the program.

New or special device driver routines can easily be created and
installed by the user.

Copyright 1981 Microware Systems Corporation
Page 3-1

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.1 RULES FOR CONSTRUCTING PATHLISTS

Whenever a path is established (or "opened"), OS-9 must be given
a description of the "routing" of the path. This description is
given in the form of a character string called a "pathlist". It
specifies a particular mass-storage file, directory file, or any
other I/O device. OS-9 "pathlists" are similar to "filenames" used
by other operating systems.

The name "pathlist" is used instead of "pathname" or "filename"
because in many cases it is a list consisting of more than one name
to specify a particular I/O device or file. In order to convey all
the information required, a pathlist may include a device name, one
or more directory file names and a data file name- Each name within
a pathlist is separated by slash "/" characters.

Names are used to describe three kinds of things:

* Names of Physical I/O Devices
* Names of Regular Files
* Names of Directory Files

Names can have one to 29 characters, all of which are used for
matching. They must begin with an' upper- or lower-case letter
followed by any combination of the following characters:

uppercase letters: A - Z
lowercase letters: a - z
decimal digits: 0 - 9
underscore:
period: •

Here are e~amples of legal names:

raw.data.2
reconciliation. report
RJJones .

Here are examples of ~l~eS£l names:

project_review.backup
X042953
search. bin

22November (does not start with a letter)
max*min (* is not a leqal character)
.data (does not start with a letter)
open orders (cannot contain .a space)
this.name.obviously.has.more.than.29.characters (too long)

Copyright 1981 Microware Systems Corporation
Page 3-2

OS-9 OPERATING SYSTEM OSERS MANUAL
The OS-9 File System

3.2 I/O DEVICE NAMES

Each physical input/output device supported by the system must
have a unique name. The actual names used are defined when the
system is set up and cannot be changed while the system is running.
Although the specific device names used on a particular system are
somewhat arbitrary. it has become customary to use the names
Microware assiqns to standard devices in OS-9 packages. They are:

TERM
Tl, T2, etc.
P
PI
DO
Dl
D2, D3, etc.

- Primary system terminal
- Other serial terminals
- Parallel Printer
- Serial Printer
- Disk drive unit zero
- Disk drive unit one
- Other disk drives

Device names may only be used as the first name of a pathlist,
and must be preceded by a slash "I" character to indicate that the
name is that of an I/O device. If the device is not a mass-storage
multifile device the device name is the only name allowed. This is
true for devices such as terminals, printers, etc. Some examples of
of pathlists that refer to I/O devices are:

/TERM
/p
/modem3

I/O device names are actually the names of the "device descriptor
modules" kept by OS-9 in an internal data structure called the
"module directory" (See the OS-9 System Programmer's manual for more
information about device driver and descriptor modules). This
directory is automatically set up during OS-9's system start up
sequence, and updated as modules are added or deleted while the
system is running.

Copyriqht 1981 Microware Systems Corporation
Page 3-3

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.3 MULTIFILE DEVICES AND DIRECTORY FILES

Multifile devices are mass storage devices (usually disk systems)
that store data organized into separate logical entities called
"files". Each file has a name which is entered in a directory file.
Every multifile device has a master directory (called the "root
directory") that includes the names of the files and sub-directories
stored on the device. The root directory is created automatically
when the disk is initialized by the "format" command (see 1.1.1).

Pathlists that refer to multifile devices may have more than one
name. For example, to r~fer to the file "mouse" whose name appears
in the root directory of device "Dl" (disk drive one) the following
pathlist is used:

/dl/mouse

When OS-9 is requested to establish an I/O path, it uses the
names in the pathlist sequentially from left to right to search
various directories to obtain the necessary routing information.
These directories are organized as a tree-structured hierarchy. The
highest-level directory is called the "device directory", which
contains names and linkages to all the I/O devices on a given
system. If any of the devices are of a multifile type they each
have a root directory, which is the next-highest level.

The diagram below is a simplified file system tree similar to
typical OS-9 systems. Note that device and directory names are cap­
italized and ordinary file names are not. This is a customary (but
not mandatory) practice which allows you to easily identify dir­
ectory files using the short form of the "dir" command.

System Device Directory
+--------+------------+----------------+--------------+
P DO TERt-1 Dl Tl

DO Root Directory Dl Root Directory

+-----------+----------+ +----------+-----------+
DEFS

OS9Defs

startup CMDS
!

filel

+-----+----+-----+-----+
CoPY list dirdel backup

!
file2 file3

Copyright 1981 Microware Systems Corporation
Page 3-4

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

The device names in this example system are nTERM", "Tl", "P",
nOQ" and nOl". The root directory of device nOO" includes two
directory files, OEFS and CMDS, and one ordinary file "startupn.
Notice that device "01" has in its root directory three ordinary
files. In order to access the file "file2" on device "dl", a path­
list having two names must be used:

list /dl/file2

To construct a pathlist to access the file "dirn on device "dO"
it is necessary to include in the pathlist the name of the
intermediate directory file "CMDS". For example, to copy this file
requires a pathlist having three names to describe the "from" file:

coPY /dO/cmds/dir temp

Copyright 1981 Microware Systems Corporation
Page 3-5

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.4 CREATING AND USING DIRECTORIES

It is possible to create a virtually unlimited number of levels
of directories on a mass storage device using the "makdir" command.
Directories are a special type of file (see 3.8.1). They can be
processed by the same I/O functions used to access regular files
which makes directory-related processing fairly simple.

To . demonstrate how directories work, assume that the disk in
drive one ("dl") has been freshly formatted so that it has a root
directory only. The build command can be used to create a text file
on "dl". The build command will print out "?" as a prompt to
indicate that it is waiting for a text line to be entered. It will
place each line into the text file until an empty line with only a
carriage return is entered, as shown below:

OS9: build /dl/filel
? This is the first file that

.? we created.
? [RETURN]

The "dir" command will now indicate the existence of the new file:

OS9: dir /dl

Directory of /dl
filel

15:45:29

The "list" command can be used to display the text stored in the
file:

OS9: list /dl/filel

This is the first file
that we created.

The "build" command again is again used to create two more text
files:

OS9: build /dl/file2
? This is the second file
? that we created.
? [RE'1'URN]

OS9: build /dl/file3
? This is another file.
? [RETURN]

The dir command will now show three file names:

OS9: dir /dl

Copyriqht 1981 Microware Systems Corporation
Page 3-6

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

Directory of /dl 15:52:29
filel file2 file3

To make a new directory in this directory, the nmakdir n command is
used. The new directory will be called "NEWDIRn. Notice that
throughout this manual directory names are always capitalized. This
is ~ a requirement of OS-9 (see 3.1). Rather, it is a practice
popular with many OS-9 users because it allows easy identification
of directory files at all times (assuming all other" file names use
lower-case letters).

OS9: makdir /dl/NEWDIR

The directory file II NEWDIR II is now a file listed in dl's root
directory:

OS9: dir /dl

Directory of /dl 16:04:31
filel file2 file3 NEWDIR

Now we will create a new file and put in the new directory. using
the cnpy command to duplicate "filel n:

OS9: COpy /dl/filel /dl/NEWDIR/filel.copy

Observe that the second pathlist now has three names: the name of
the root directory (nDl"), the name of the next lower directory
(nNEWDIR"), then the actual file name (llfilel. copy n). Here's what
the directories look like now:

Dl Root Directory
+---------+--------+--------+

NEWDIR

filel.copy

1
filel

1
file2

!
file3

The dir command can now show the files in the new directory:

OS9: dir /dl/NEWDIR

Directory of /dl/NEWDIR
filel.copy

It is possible to use "makdir" to create additional new director­
ies in "NEWDIRn, and so on, limited only by available disk space.

Copyright 1981 Microware Systems Corporation
Page 3-7

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.5 DELETING DIRECTORY FItES

The ndel" command cannot be used to directly delete a directory
file. If a directory file that still contained file names were to
be deleted, OS-9 would have no way to access the files or to return
their storage to the unallocated storage pool. Therefore, the
following sequence must be performed to delete a directory file:

1 - All file names in the directory must be deleted.

2 - The nattrn command is used to turn off the files directory attr­
ribute (-d option), making it an ordinary file (see 3.8).

3 - The file may now be deleted using the ndel n command.

3.6 ADDITIONAL INFORMATION ABOUT DIRECTORIES

The OS-9 directory system is very useful becaUse it allows each
user to privately organize files as desired (by project, function,
etc.), without affecting other files or other user's files. Another
advantage of the hierarchical directory system is that files with
identical names can be kept on the same device as long as the name$
are in different directories. For example, you can have a set of
~est files to check out a program using the same file names as the
program's actual working files. You can then run the program with
test data or actual data simply by switching directories.

Here are some important characteristics relating to use of directory
files:

Directories have the same ownership and security attributes
and rules as regular files. See Section 3.6.

The name of a given file appears in exactly one directory.

Files can only be added to directories when they are created.

A file and the directory in which its name is kept must reside on
the same device.

Copyright 1981 Microware Systems Corporation
Page 3-8

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.7 USING AND CHANGING WORKING DIRECTORIES

Each program (process) has two "working directories" associated
with it at all times: a "data directory" and an "execution
directory". The working directory mechanism allows the name search­
ing involved in pathlist processing to start at any level (subtree)
of the file system hierarchy. Any directory that the user has
permission to access (see 3.8) can be made a working directory.

The rules used to determine whether pathlists refer to the
current working directory or not are simple:

---> When the first character of a pathlist IS. a "/", pro­
cessinq of the pathlist starts at the device directory,
e.g., the first name MUST be a device name.

---> When the first character of a pathlist IS NOT a "/", pro­
cessing of the pathlist starts at the current working
directory. .

Notice that pathlists starting with a "/n ~ be complete, in
other words, they m~st have all names required to trace the pathlist
from the device directory down through all intermediate directories
(if any). For example:

/d2/JOE/WORKINGFILES/testresults

On the other hand, use of the current working directory allows
all names in the file hierarchy tree to be implied instead of
explicitly given. This not only makes pathlists shorter, but allows
OS-9 to locate files faster because (typically) fewer directories
need be searched. For example, if the current working directory is
"/dl/PETE/GAMES" and a pathlist is given such as:

baseball

the actual pathlist implied is:

/dl/PETE/GAMES/baseball

Pathlists using working
lower-level directories.
pathlist:

ACTION/racing

directories
Referrinq

implies the complete pathlist:

/Dl/PETE/GAMES/ACTION/racing

can also specify additional
to the example above, the

Copyright 1981 Microware Systems Corporation
Page 3-9

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File system

3.7.1 Automatic Selection of Working Directories

RecalJ that two working directories are referred to as the
"current execution directory" and the "current data directory". The
reason two working directories are maintained is so that files
containing prQgrams can be organized in different directories than
files containing~. OS-9 automatically selects either working
directory, depending on the usage of the pathlist:

---> OS-9 will search the execution directory when it attempts to
load files into memory assumed to be executable programs. This
means that programs to be run as commands or loaded into
memory must be in the current execution directory (See 5.4.1).

---> The data directory is used for all other file references (such
as text files, etc.)

Immediately after startup, OS-9 will set the data directory to be
(the root directory of) the system disk drive (usually "dO"), and
the working directory to be a directory called "cmds" on the same
drive ("/dO/cmds lt). On timesharing systems, the "loginlt command
selects the initial execution and data directories to the file names
specified in each user's information record stored in the system
password file.

Here is an example of a shell command statement using the default
working directory notation, and its equivalent expansion:

copy filel file2

If the current execution directory is "/dO/CMDS" and the current
data directory is "/dO/JONES", the same command, fully expanded to
show complete pathlists implied is:

OS9: /dO/CMDS/copy /dO/JONES/filel /dO/JONES/file2

Notice that the first pathlist "copy" expands to the current working
directory pathlist because it is assumed to be an executable program
but the two other file names expand using the data directory because
they are not assumed to be executable.

Copyriqht 1981 Microware Systems Corporation
Page 3-10

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.7.2 Changing Current working Directories

The built-in shell commands nchd n and nchxn can be used to
independently change the current working data and execution
directories, respectively. These command names must be followed by
a pathlist that describes the new directory file. You must have
permission to access the directory according to normal file security
rules (See 3.8). Here are some examples:

OS9: chd /dl/MY.DATAFILES

OS9: chx /dO/TESTPROGRAMS

When using the CED or CHX commands, pathlists work the same as they
do for regular files, except for the last name in the pathlist must
be a directory name. If the pathlist begins with a n/n , OS-9 will
begin searching in the device directory for the new working
directory, otherwise searching will begin with the present directory
(See 3.6). For example, the fo~lowing sequence of commands set the
working directory to the same file:

OS9: CHD /dl/SARAH
OS9: CED PROJECTI

OS9: CHD /dl/SARAH/PROJECTI (same effect as above)

Copyright 1981 Microware Systems Corporation
Page 3-11

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.7.3 Anonymous Directory Names

Sometimes is useful to be able to refer to the current directory
or the next higher-level directory, but its name (full pathlist) may
not be known. Because of this, special "name substitutes n are
available. They are:

• refers to the present working directory

•• refers to the directory that contains the name of the present
directory (e.g., the next highest level directory)

These can
pathlist.

be used in place of pathlists and/or the first name in a
Here are some examples:

OS9: dir • lists file names in the working data directory

OS9: dir '.

OS9: DEL •• /temp

lists names in the working data directory's
parent directory.

deletes the file ntemp" from the
working data directory's parent directory.

The substitute names refer to either the execution or data
directories, depending on the context in which they are used (See
3.7.1). For example, if " •• " is used in a pathlist of a file which
will be loaded and/or executed, it will represent the parent
directory of the execution directory. Likewise, if n." is used in a
pathli-st describing a program's input file. it will represent the
current data directory.

Copyright 1981 Microware Systems Corporation
Page 3-12

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.8 THE FILE SECURITY SYSTEM

Associated with each file (including directory files) are
properties called ~ership and AttributeQ which who may access the
file and how it many be used.

OS-9 automatically stores with each file the user number
associated with the process that created it. This user is considered
to be the "owner" of the file.

Usage and security functions are based on "attributes", which
define how and by whom the file can be accessed. There are a total
of seven attributes, each of which can be turned "off" or "on"
independently. The "d" attribute is used to indicate (when on) that
the file isa directory file. The other six attributes control
whether the file can be read, written to, or executed, by either the
owner or by the "public" (all other users). Specifically, these six
attributes are:

WRITE PERMISSION FOR OWNER: If on, the owner may write to the file
or delete it. This permission can be used to protect important
files from accidental deletion or modification.

READ PERMISSION FOR OWNER: If on, the owner is allowed to read
from the file. This can be used to prevent "binary" files from
being used as "text" files (See 3.9)

EXECUTE PERMISSION FOR OWNER: If on, the owner can load the file
into memory and execute it. Note that the file ~ contain one or
more valid OS-9 format memory modules in order to actually load (See
3.9.4 and 5.4.1).

The following "public permissions" work the same way as the "owner
permissions" above but are applied to processes having DTFFERENT
user numbers than the file's owner.

WRITE PERMISSION FOR PUBLIC - If on, any other user may write to or
delete the file.

READ PERMISSION FOR PUBLIC - If on, any other user may read (and
possibly copy) the file.

EXECUTE PERMISSION FOR PUBLIC - If on, any other user may ~xecute
the file.

For example, if a particular file had all permissions on except
"write permit to public" and "read permit to public", the owner
would have unrestricted access to the file. but other users could
execute it, but not read, copy, delete; or alter it.

Copyright 1981 Microware Systems Corporation
Page 3-13

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.8.1 Examining and Changing File Attributes

The "DIR" command may be used to examine the security permissions
of the files in any particular directory when the "e" option is
used. An example using the "dir e" command to show the detailed
attributes of the files in the current working directory is:

Directory of . 10:20:44

Owner Last Modified Attributes Sector Bytecount Name
----- ------------- ---------- ------ ---------

1 81/05/29 1402 --e--e-r 47 42 filel
a 81/10/12 0215 ---wr-wr 48 43 file2
3 81/04/29 2335 -s----wr 51 22 file3
1 82/01/06 1619 d--wr-wr 6D 800 NEWDIR

This display is fairly self-explanatory. The I'attributes" column
shows which attributes are currently on by the presence or absence
of associated characters in the following format:

dsewrewr

The character positions correspond to from left to right: directory;
sharable: public execute; public write; public read; owner execute;
owner write; owner read. The "attr" command is used to examine or
change a file's attributes. Typing "attr" followed by a file name
will result in the present attributes to be displayed, for example:

OS9: attr file2
-s-wr-ewr

If the command is used with a list of one or more attribute abbrev­
iations, the file's attributes will be changed accordingly (if
legal). For example, the command:

OS9: attr file2 pw pr -e -pe

enables public write and public read permissions and removes execute
permission for both the owner and the public.

The "directory" attribute behaves somewhat differently than the
read, write, and execute permissions. This is because it would be
quite dangerous to be able to change directory files to normal files
(See 3.5), and creation of a directory requires special initializat­
ion (See 3.4). Therefore, the "attr" command cannot be used to turn
the directory (d) attribute on (only "makdir" can), and can be used
to turn it off ~ if the directory is empty.

The "sharable" attribute, when on, indicates a file cannot be
accessed by two or more tasks simultaneously (see 3.9.7).

Copyriqht 1981 Microware Systems Corporation
Page 3-14

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.9 READING AND WRITING FROM FILES

A single file type and format is used for all mass storage files.
Files store an ordered sequence of a-bit bytes. OS-9 is not usually
sensitive to the contents of files for most functions. A given file
may store a machine language program, characters of text, or almost
anything else. Data is written to and read from files exactly as
given. The file can be any size from zero up to the maximum
capacity of the storage device. and can be expanded or shortened as
desired.

When a file is created or opened a "file pointer" is established
for it. Bytes within the file are addressed like memory, and the
file pointer holds the "address" of the next byte in the file to be
written to or read from. The OS-9 "read" and "write" service
functions always update the pointer as data transfers are performed.
Therefore, successive read or write operations will perform sequen­
tial data transfers.

Any part of a file can also be read or written in non-sequential
order by using a function called "seek" to 'reposition the file
pOinter to any byte address in the file. This is used when random
access of the data is desired.

'TO expand a file. you can simply write past the previous end of
the file. Reading up to the last byte of a file will cause the next
"read" request to return an end-of-file status.

3.9.1 File Usage in OS-9

Even though there is physically only one type of file. the log­
ical usage of files in OS-9 covers a broad spectrum. Because all
OS-9 files have the same physical type. commands such as "copy",
"del",. etc., can be used with any file regardless of its logical
usage. Similarly, a particular file can be treated as having a dif­
ferent logical usage at different times by different programs. The
main usage of files covered in this section are:

TEXT
RANDOM ACCESS DATA
EXECUTABLE PROGRAM MODULES
DIRECTORIES
MISCELLANEOUS

Copyright 1981 Microware Systems Corporation
Page 3-15

3.9.2 Text Files

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

These files contain variable-length sequences (nlines n) of ASCII
characters. Each line is terminated by a carriage return character.
Text files are used for program source code, procedure files,
messages, documentation, etc. The OS-9 Macro Text Editor operates
on this file format.

Text files are usually read sequentially, and are supported by
almost all high-level languages (such as BASIC09 READ and WRITE
statements) • Even though is is Dossible to randomly access data at
any location within a text file, it is rarely done in practice
because each line is variable length and it is hard to locate the
beginnina of each line without actually reading the data to locate
carriage return characters.

The content of text files may be examined using the nlist n
command.

Copyright 1981 Microware Systems Corporation
Page 3-16

OS-9 OPERATING SYSTEM USERS MANUAL
The 05-9 File System

3.9.3 Random Access Data Files

Random-access data files
within high-level' languages
In Basic09 and Pascal. "GET",
random-access files.

are created and used primarily from
such as Basic09, Pascal, C, and Cobol.
"PUT", and "SEEK" fUnctions operate on

The file is organized as an ordered sequence of "records". Each
record has exactly the same length, so given a record's numerical
index, the record's beginning address within the file can be
computed bymultiplyina the record number by the number of bytes
used for each record. Thus, records can be directly accessed in any
order.

In most cases, the high-level language allows each record to be
subdivided into "fields". Each field generally has a fixed length
and usage for all records within the file. For example, the first
field of a record may be defined as being 25 text characters, the
next field may be two bytes long and used to hold l6-bit binary
numbers, etc.

It is important to understand that 05-9 itself does not 'directly
process or deal with records other than providing the basic file
fUnctions required by all high-level languaqes to create and use
random-access files.

Copyriqht 1981 Microware Systems Corporation
Page 3-17

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.9.4 Executable Program Module Files

These files are used to hold program modules generated by the
assembler or compileg by high-level languages. Each file may
contain ~ QL ~ program modules.

OS-9 program modules resident in memory have a standard module
format that, besides the object code, includes a "module and a CRC
check value. Program module(s) stored in files contain exact binary
copies of the programs as they will exist in memory, and not one
byte more (See 5.4.1). OS-9 does not require a "load record" system
commonly used by other operating systems because OS-9 programs are
position-independent code and therefore do not have to be loaded
into specific memory addresses.

In order for OS-9 to load the program module(s) from a file. the
file itself must have execute permission (See 3.8) and each module
must have a valid module header and CRC check value. If a program
module has been altered in any way, either as a file or in memory,
its CRC check value will be incorrect And OS-9 wilf refuse to load
the module. The "verify" command can be used to check the correct­
ness of the check values, and update them to corrected values if"
necessary.

On Level One systems, if a file has two or more modules, they are
treated as independent entities after loading and reside at differ­
ent memory regions. On Level Two systems, two or more modules
loaded from a the same file comprise a "group", are always assigned
contiquous memory locations, and are treated somewhat collectively.
(See 5.4.2)

Like other files that contain "binary" data, attempts t6 "list"
program files will result in the display of random characters on the
terminal giving strange effects. The "dump" command can be used to
safely examine the contents of this kind of file in hexadecimal and
cdntrolled ASCII format.

Copyright 1981 Microware Systems Corporation
Page 3-18

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.9.5 Directory Files

Directory files play a key role in the OS-9 file system. Sec­
tions 3.3 through 3.7 of this chapter describe how they are used by
various OS-9 features.

Directory files can only be created by the nmakdir n command, and
can be identified by the nd n attribute being set (see 3.8.1). The
file is organized into 32-byte records. Each record can be a
directory entry. The first 29 bytes of the record is a string of
characters which is the file name. The last character of the name
has its sign bit (most significant bit) set. If the record is not
in use the first character position will have the value zero. The
last three bytes of the record is a 24-bit binary number which is
the logical sector number where the file header record (see 3.10) is
located.

The
to be
entries
numbers
3.7.3}.

nmakdir" command initializes all records in a new directory
unused entries except for the first two entries. These

have the names ".n and n •• n along with the logical sector
of the directory and its parent directory, respectively (see

Directories
used instead.
3.5) •

cannot be copied or listed - the ndirn command is
Directories also cannot be deleted directly (see

Copyright 1981 Microware Systems Corporation
Page 3-19

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.9.6 Miscellaneous File Usages

OS-9's basic file functions are so versatile it is possible to
devise an almost unlimited number of special-purpose file formats
for particular applications, which do not fit into any of the three
previously discussed categories.

Examples of this category are COBOL Indexed Sequential (ISAM)
files and some special word processor file formats which allow
random access of text lines (See 3.9.2). As discussed in Sec.
3.9.1, most 05-9 utility commands work with any file format includ­
ing these special types. In general. the "dump" command is the pre­
ferred method for examinina the contents of unusually formatted
files.

Copyright 1981 Microware Systems Corporation
Page 3-20

OS-9 OPERATING SYSTEM USERS MANUAL
The OS-9 File System

3.9.7 Record Lockout (Level Two Only)

When a file is accessed by two or more processes simultaneously,
the possibility exists that they may attempt to update the same
record of the file at the same time. with unpredictable results. To
avoid this potential problem, OS-9 Level Two automatically "locks"
sections of all files opened in "update" mode. The lock covers any
disk sectors containina the bytes last read bv each process
accessing the file. If another process attempts to access a locked
portion of a file, the process is put to sleep until the area is no
longer locked.

Copyright 1981 Microware Systems Corporation
Page 3-21

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.0 ADVANCED FEATURES OF THE SHELL

The basic shell fUnctions were introduced in Section 2 in order
to provide an understandina of how basic OS-9 commands work. In
this section the more advanced capabilities of the shell are
discussed. In addition to basic command line processing, the shell
has fUnctions that facilitate:

I/O redirection (including filters)
Memory Allocation
Multitasking (concurrent execution)
Procedure File Execution (background processing)
Execution Control (built-in commands)

There is a virtually unlimited combination of ways these
capabilities can be used, and it is impossible to give more than a
representative set of examples in this manual. You are therefore
encouraged to study the basic rules, use your imagination, and
explore the possibilities on your own.

Copyright 1981 Microware Systems Corporation
Page 4-1

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.1 A MORE DETAILED DESCRIPTION COMMAND LINE PROCESSING

The shell is a program that reads and processes command lines on~
at a time from its input path (usually your keyboard). Each line is
first scanned (or "parsed") in order to identify and process any of
the following parts which may be present:

A program, procedure file. or built-in command name ("verbs")
Parameters to be passed to the program
Execution modifiers to be processed by the shell

Note that only the verb (the program or command name) need be
present, the other parts are optional After the verb has been
identified, the shell processes modifiers (if any). Any other text
not yet processed is assumed to be parameters and passed to the pro­
gram called.

Unless the verb is a "built-in command", the shell will run the
program named as a new process (task). It then deactivates itself
until the program called eventually terminates, at which time it
gets another input line, then the process is repeated. This happens
over and over until an end-of-file condition is detected on the
shell's input path which causes the shell to terminate its own
execution.

Here is a sample shell line which calls the assembler:

asm sourcefile 1 -0 >/p #12k

In this example:

asm

sourcefile 1 -0

>/p

#12K

is the verb

are parameters passed to "asm"

is a modifier which redirects the output
(listing) "to the system's printer

is a modifier which requests that the
process be assigned 12K bytes of memory
instead of its (smaller) default amount.

The verb must be the first name in the command line. After it
has been scanned, the shell first checks if it is a "built-in" com­
mand. If it is, it is immediately executed. Otherwise, the shell
assumes it is a program name and attempts to locate and execute it
as described in Sections 5.3 and 5.4.1.

Copyright 1981 Microware Systems Corporation
Page 4-2

OS-9 OPERATING SYSTEM OSERS MANUAL
Advanced Features of the Shell

4.2 EXECUTION MODIFIERS

Execution modifiers are processed by the shell before the program
is run. If an error is detected in,any of the modifiers, the run
will be aborted and the error reported. Characters which comprise
modifiers are stripped from the part(s) of the command line passed
to the program as parameters, therefore, the characters reserved for
use as modifiers (# ; ! < > &) cannot be used inside parameters,
but can be used before or after the parameters.

4.2.1 Alternate Memory Size Modifier

When command programs are invoked by the shell, they are
allocated the minimum amount of working RAM memory specified in the
program's module header. A module header is part of all executable
programs and holds the program's name, size, memory requirements,
etc. (See 5.4). Sometimes it is desirable to increase this default
memory size. Memory can be assigned in 256~byte pages using the
modifier "inn where n is the decimal number of pages, orin 1024
byte increments usina the modifier "inK". The two examples below
behave identically:

OS9: copy #8 filel file2
OS9: copy #2K filel file?

(gives 8*256 = 2048 bytes)
(gives 2*1024 = 2048 bytes)

4.2.2 I/O Redirection Modifiers

The second kind of modifier is used to redirect the program's
"standard I/O paths" to alternate files or devices. Well-written
OS-9 programs use these paths for routine I/O. Because the programs
do not use specific file or device names, it is fairly simple to
"redirect" the I/O to any file or device without altering the
program itself. Programs which normally receive input from a
terminal or send output to a terminal use one or more of the
standard I/O paths as defined below:

STANDARD INPUT: This path normally passes data from the
terminal's keyboard to the program.

STANDARD OUTPUT PATH: This path is normally used to output
data from the program to the terminal's display.

STANDARD ERROR OUTPUT PATH: This path is used to output
routine status messages such as prompts and errors to the
terminal's display (defaults to the same device as the
standard output oath). NOTE: The name "error output" is
sometimes misleading since many other kinds of messages besides
e.rrors are sent on this oath.

Copyright 1981 Microware Systems Corporation
Page 4-3

OS-9 OPERATING SYSTEM OSERS MANUAL
Advanced Features of the Shell

When new processes are created, they inherit their parent pro­
cess' standard I/O paths (See 5.3). Therefore, when the shell
creates new processes, they usually inherit its standard I/O paths.
when you log-on the shell's standard input is the terminal keyboard;
the standard output and error output is the terminal's display.
When a redirection modifier is used on a shell command line, the
shell will open the corresponding paths and pass them to the new
process as its standard I/O paths. There are three redirection
modifiers as given below:

< Redirect the standard input path

> Redirect the standard output path

» Redirect the standard error output path

When redirection modifiers are used on a command line. they must
be immediately followed by a pathlist describing the file or device
the" I/O is to be redirected to or from. For example. the standard

. output of "list" can be redirected to write to the system printer
instead of the terminal:

OS9: LIST correspondence >/p

Files referenced by I/O redirection modifiers are automatically
opened or created, and closed (as appropriate) by the shell. Here is
another example, the output of the DIR command is redirected to the
file "/Dl/savelisting":

089: DrR >/Dl/savelisting

If the LIST command is used on the file "/Dl/savelisting", output
from the DIR command will be displayed as shown below:

059: LIST /Dl/savelisting

Directory of. 10:15:00
my tile savelisting filel

Redirection modifiers can be used before and/or after the pro­
gram's parameters, but each modifier can only be used once·

Copyright 1981 Microware Systems Corporation
Page 4-4

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.3 COMMAND SEPARATORS

A single shell input line can request execution of more than one
program. These programs may be executed sequentially or
concurrently. Sequential execution means that one program must
complete its function and terminate before the next program is
allowed to begin execution. Concurrent execution means that several
programs are allowed to begin execution and run simultaneously.

4.3.1 Sequential Execution

Programs are executed sequentially when each is entered on a
separate line. More than one program can be specified on a single
shell command line by separating each <program name> <parameters>
from the next one with a ";" character. For .example:

OS9: COpy myfile /Dl/newfile; DIR >/p

This command line will first execute the cnpy command and then the
DIR command.

If an error is returned by any program, subsequent commands on
the same line are not executed (regardless of the state of the "x"
option) I otherwise, "in and "return" are identical separators.

Here are some more examples:

OS9: copy oldfile newfile; del oldfile; list newfile

OS9: dir >/dl/myfile ; list temp >/p; del temp

All programs executed sequentially are in fact separate, child
processes of the shell (See 5.3). After initiatinq execution of a
program to be executed sequentially, the shell enters the "wait"
state (See 5.2) until execution of the called program terminates.

Copyright 1981 Microware Systems Corporation
Page 4-5

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.3.2 Concurrent Execution

The second kind of separator is the "&" which implies concurrent
execution, meaninq that the program is run (as a separate, child
process, see 5.3), but the shell does not wait for it to complete
before processing the next command.

The concurrent execution separator is therefore the means by
which multiprogramming (runninq two or more programs simultaneously)
is accomplished. The number of programs that can run at the same
time is not fixed: it depends upon the amount of free memory in the
system versus the memory requirements of the specific programs.
Here is an example:

OS9: DIR >/P&
&007

OS9:

This command line will cause shell to start the DIR command
executing, print the process ID number (&007), and then immediately
display the "OS9:" prompt and wait for another command to be
entered. Meanwhile the DIR command will be busy sending a directory
listing to the printer. You can display a "status summary" of all
processes you have created by using the PROCS command. Below is
another example:

OS9: DIR >/P& LIST filel& COpy filel file2 ; DEL temp

Because they
COPY programs
run until the
execution (";")

were followed by "&" separators, the DIR, LIST, and
will run concurrently, but the DEL program will not

cnpy program has terminated because sequential
was specified.

Copyright 1981 Microware Systems Corporation
Page 4-6

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.3.3 Pipes and Filters

The third kind of separator is the "I" character which is used to
construct "pipelines". Pipelines consist of two or more concurrent
programs whose standard input and/or output paths connect to each
other using "pipes".

Pipes are the primary means by which data is transferred from
process to process (interprocess communications). Pipes are first­
in, first-out buffers that behave like mass-storage files.

I/O transfers using pipes are automatically buffered and
synchronized. A single pipe may have several "readers" and several
"writers". Multiple writers send, and multiple readers accept, data
to/from the pipe on a first-corne. first-serve basis. An end-of-file
will occur if an attempt is made to read from a pipe but there are
no writers available to send data. Conversely, a write error will
occur if an attempt is made to write to a pipe having no readers.

Pipelines are created by the shell when an input line having one
or more " I " separators is processed. For each "1", the stand!ard
output of the program named to the left of the "!" is redirected ~ia
a pipe to the standard input of the program named to the rightiof
the "I". Individual pipes are created for each "!" present. ~or
example:

OS9: update <master_file! sort write report >/p

In the example above, the program "update" has its input redirected
from a path called "master_file". Its standard output becomes the
standard input for the program "sort". Its output, in turn, becomes
the standard input for the program "writa report", which has its
standard output redirected to the printer.

All programs in a pipeline are executed concurrently. The pipes
automatically synchronize the programs so the output of one never
"gets ahead" of the input request of the next program in the
pipeline. This implies that data cannot flow through a pipeline any
faster than the slowest program can process it. Some of the most
useful applications of pipelines are jobs like character set
conversion, print file formatting, data compression/decompression,
etc. Programs which are designed to process data as components ~f a
pipeline are often called "filters". The "tee" command, which uses
pipes to allow data to be simultaneously "broadcast" from a single
input path to several output paths, is a useful filter.

Copyright 1981 Microware Systems Corporation
page 4-7

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.4 COMMAND GROUPING

Sections of shell input lines can be enclosed in parentheses
which permits modifiers and separators to be applied to an entire
set of programs. The shell processes them by calling itself
recursively (as a new process) to execute the enclosed program list.
For example:

OS9: (dir /dO; dir /dl) >/p

gives the same result as:

OS9: dir /dO >/p; dir /dl >/p

except for the subtle difference that the printer is nkept n
continuously in the first example; in the second case another user
could nsteal n the printer in between the ndir" commands.

Command grouping can be used to cause a group of programs to be
executed sequentlally, but also concurrently with respect to the
shell that initiated them, such as:

OS9: (del filel; del file2i del file3)&

A useful extension of this form is to construct pipelines consisting
of sequential and/or concurrent programs. For example:

OS9: (dir CMDSi dir SYS) ! makeuppercase ! transmit

Copyright 1981 Microware Systems Corporation
Page 4-8

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.5 BUILT-IN SHELL COMMANDS AND OPTIONS

When processing input lines, the shell looks for several special
names of commands or option switches that are built-in the shell.
These commands are executed without loading a program and creating a
new process, and qenerally affect how the shell operates. They can
be used at the beginnina of a line, or following any program
separator (11;", "&", or "!"). Two or more adjacent built-in
commands can be separated by spaces or commas.

The built-in commands and their functions are:

chd <pathlist>

chx <pathlist>

ex name

w

* text

kill <proc ID>

change the working data directory to the directory
specified by the pathlist (see 3.6).

change the workinq execution directory to the
directory specified by the pathlist (see 3.6).

directly execute the module named. This
transforms the shell process so it ceases
to exist and a new module begins execution in
its place.

wait for any process to terminate.

comment: "textl1 is not processed.

abort the process specified.

setpr <proc ID> <priority> changes process I priority (see 5.1). ~~

x
-x

p
-p

t
-t

causes shell to abort on any error (default)
causes shell not to abort on error (See 4.7)

turns shell prompt and messages on (default)
inhibits shell prompt and messages

makes shell copy all input lines to output
does not copy input lines to output (default)

The change directory commands switch the shell1s working directory
and, by inheritance. any subsequently created child process. The
l1exl1 command is used where the shell is needed to initiate execution
of a program without the overhead of a suspended I1shell l1 process.
The name used is processed according to standard shell operation,
and modifiers can be used.

Copyright 1981 Microware Systems Corporation
Page 4-9

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.6 SHELL PROCEDURE FILES

is a reentrant program that can be simultaneously
more than one process at a time. As is the case with

The shell
executed by
most other
input and
lines from
data to the

OS-9 programs, it uses standard I/O paths for routine
output (see 4.2.3). Specifically, it requests command
the standard input path and writes its prompts and other
standard error path.

The shell can start up another process also running the shell by
means of the "shell" command. If the standard input path is
redirected to a mass storage file. the new "incarnation" of the
shell can accept and execute command lines from the file instead of
a terminal keyboard. The text file (see 3.9.2) to be processed is
called a "procedure file". It contains one or more command lines
that are identical to command lines that are manually entered from
the keyboard. This technique is sometimes called "batch" or
"background" processing.

If the <program name> specified on a shell command line can not be
found in memory or in the execution directory, shell will search the
data directory for a file with the desired name- If one is found,
shell will automatically execute it as a procedure file (see 2.0).

Execution of procedure files have a number of valuable
applications. It can eliminate repetitive manual entry of commonly­
used sequences of commands. It can allow the computer to execute a
lengthy series of programs "in the background" while the computer is
unattended or while the user is running other programs "in the
foreground".

In addition to redirecting the shell's standard input to a
procedure file, the standard output and standard error output can be
redirected to another file which can record output for later review
or printing. This can also eliminate the sometimes-annoying output
of shell messages to your terminal at random times.

Here are two simpl p ways to use the shell to create another
shell:

OS9: shell <procfile

OS9: procfile

Both do exactly the same thing: execute the commands of the file
"procfile". To run the procedure file in a "background" mode you
simply add the ampersand operator:

OS9: procfile&

OS-9 does not have any constraints on the number of jobs that can be

Copyright 1981 Microware Systems Corporation
Page 4-10

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

simultaneously executed as long as there is memory available (see
5.4). Also, the procedure files can themselves cause sequential or
concurrent execution of additional procedure files Here's a more
complex example of initiating two processing streams with
redirection of each shell's output to files:

OS9: procl T »statl& proc2 T »stat2& .

Note that the built-in command "T" (copy input lines to error
output) was used above. They make the output file contain a record
of all lines executed, but without useless "OS9" prompts intermixed.
The "-x" built-in command can be used if you do .n.Q.t. want processing
to stoo if an error occurs. Note that the built-in com~ands only
affect the shell that executes them, and not any others that may
exist •.

4.7 ERROR REPORTING

Many programs (including the shell) use OS-9 I s standard~ error
reporting function, which displays an error number on the error
output path. The standard error codes are listed in the Appendix of
this manual. If desired, the "orinterr" command can be executed,
which replaces the smaller, built-in error display routine with a
larger (and slower) routine that looks up descriptive error messages
from a text file called "jdOjsysjerrmsg". Once the "printerr"
command has been run it cannot be turned off~ Also, its effect is
system-wide.

Programs called by the shell can return an error code in the MPU
"B" register (otherwise B should be cleared) upon termination. This
type of error, as well as errors detected by the shell itself, will
cause an error message to be displayed and processing of the command
line or procedure file to be terminated unless the "-x" built-in
command has been previously executed (See 4.5).

Copyright 1981 Microware Systems Corporation
Page 4-11

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.8 RUNNING COMPILED INTERMEDIATE CODE PROGRAMS

Before the shell executes a program, it checks the program
module's language type. If its type is not 6809 machine language,
shell will call the appropriate run-time system for that module.
Versions of the shell supplied for various systems are capable of
calling di~ferent run-time systems. Most versions of shell call
Basic09 when appropriate, and Level Two versions of shell can also
call the Pascal P-code interpreter (PascalN), or the CIS Cobol
runtime system (Rune).

For example, if you wanted to run a BASIC09 I-code module called
"adventure", you could type the command given below:

OS9: BASIC09 adventure

Or you could accomplish the same thing by typing the following:

OS9: adventure

Copyright 1981 Microware Systems Corporation
Page 4-12

OS-9 OPERATING SYSTEM USERS MANUAL
Advanced Features of the Shell

4.9 SETTING UP TIMESHARING SYSTEM PROCEDURE FILES

OS-9 systems used for timesharing us~ally have a procedure file
that brings the system up by means of one simple command or by using
the system "startup" file. A procedure file which initiates the
timesharing monitor for each terminal is executed to start up the
system. The procedure file first starts the system clock, then
initiates concurrent execution of a number of processes that have
their I/O redirected to each timesharing terminal.

Copyriqht 1981 Microware Systems Corporation
Page 4-13

05-9 OPERATING SYSTEM USERS MANUAL
Multiprogramming and Memory Management

5.0 MULTIPROGRAMMING AND MEMORY MANAGEMENT

This section discusses OS-9's multiprogramming (sometimes called
"multitasking") functions. An integral part of this discussion is
the more general topic of resource management.

In order to allow several programs to run simultaneously and
without interference, 05-9 must perform many coordination and
resource allocation fUnctions. The major system resources managed
by 05-9 are:

CPU Time
Memory
The input/output system

In order for the computer to have reasonable performance, these
resources must be managed in the most efficient manner possible.
Therefore, 05-9 uses many techniques and strategies to optimize
system throughput and capacity in order to derive the best perform­
ance possible.

Copyright .1981 Microware Systems Corporation
Page 5-1

OS-9 OPERATING SYSTEM USERS MANUAL
Multiprogramming and Memory Management

!

5.1 PROCESSOR TIME ALLOCATION AND TIMESLICING

CPU time is a finite resource that must be allocated wisely to
maXlmlze the computer's throughput. It is characteristic of many
programs to spend much unproductive time waiting for various events,
such as an input/output operation. A good example is an interactive
program which communicates with a person at a terminal on a line-by
line basis. Every time the program has to wait for a line of
characters to be typed or displayed, it (typically) cannot do any
useful processing and would waste CPU time. An efficient multi­
programmina operating system such as OS-9 automatically assigns CPU
time to only those programs that can effectively use the time.

OS-9 uses a technique called timeslicing which allows processes
to share CPU time with all other active processes. Time-slicing is
implemented using both hardware and software fUnctions. The
system's CPU is interrupted by a real time clock many (typically 10
to 100) times each second. This basic time interval is called a
"tick", hence, the interval between ticks is a time slice. This
technique is called time£licing because each second of CPU time is
sliced up to be shared among several processes. This happens so
rapidly that to a human observer all processes appear to execute
continuously, unless the computer becomes overloaded with process­
ing. If this happens, a noticeable delay in response to terminal
input may occur, or "batch" programs may take much longer to run
than they ordinarily do. At any occurrence of a tick, OS-9 can sus­
pend execution of one program and begin execution of another. The
starting and stopping of programs is done in a manner that does not
affect the program's execution. How frequently a process is given
time slices depends upon its assigned priority relative to the
assigned priority of other active processes.

The percentage of CPU time assigned to any particular process
cannot be exactly computed because there are dynamic variables such
as time the process spends waiting for I/O devices. It can be
roughly approximated by dividing the process's priority by the sum
of the priority numbers of all processes:

Process CPU Share =
Process priority

Sum of All Active
Process' Priorities

Copyright 1981 Microware Systems Corporation
Page 5-2

OS-9 OPERATING SYSTEM USERS MANUAL
Multiprogramming and Memory Management

5.2 PROCESS STATES

The CPU time allocation system automatically assigns programs one
of three "states" that describe their current status. Process
states are also important for coordinating process execution. A
process may be in one and only one state at any instant, although
state changes may be frequent. The states are:

ACTIVE: processes which can currently perform useful processing.
These are the only processes assigned CPU time.

WAITING: processes which have been suspended until another process
terminates. This state is used to coordinate execution of
sequential programs. The shell, for example, will be in the waiting
state during the time a command program it has initiated is running.

SLEEPING: processes
interval or until
messages used to
typical state of
operations.

suspended by self-request for a specified time
receipt of a "signal". Signals are interpal

coordinate concurrent processes. This is ~he
programs which are waiting for input/output

Sleeping and waiting processes are not given CPU time until they
change to the active state.

Copyright 1981 Microware Systems Corporation
Page 5-3

OS-9 OPERATING SYSTEM USERS MANUAL
Multiprogramming and Memory Management

5.3 CREATION OF NEW PROCESSES

The sequence of operations required to create a new process and
initially allocate its resources (especially memory) are
automatically performed by OS-9's "fork" fUnction. If for any
reason any part of the sequence cannot be performed the fork is
aborted and the prospective parent is passed an appropriate error
code. The most frequent reason for failure is unavailablity of
required resources (especially memory) or when the program specified
to be run cannot be found. A process can create many new processes,
subject only to the limitation of the amount of unassigned memory
available.

When a process creates a new process, the creator is called the
"parent process", and the newly created process is called the "child
process". The new child can itself become a parent by creating yet
another process. If a parent process creates more than one child
process, the children are called "siblings" with respect to each
other. If the parent/child relationship of all processes in the
system is examined, a hierarchical lineage becomes evident. In
fact, this hierarchy is a tree structure that resembles a family
tree. The "family" concept makes it easy to describe relationships
between processes, and so it is used extensively in descriptions of
OS-9's multiprogramming operations.

When the parent issues a fork request to OS-9, it must specify
the following required information:

A PRIMARY MODULE, which is the name of the program to be
executed by the new process. The program can already be present
in memory, or OS-9 may load it from a mass storage file having
the same name (see 5.4.1).

PARAMETERS, which is data specified by the parent to be
passed to and used by the new process. This data is copied to
part of the child process' memory area. Parameters are
frequently used to pass file names, initialization values, etc.
The shell passes command line parameters this way (see 4.1).

The new process also "inherits" copies of certain of its parent's
properties. These are:

A USER NUMBER which is used by the file security system and
is used to identify all processes belonging to a specific user
(this is not the same as the "process ID", which identifies a
specific process). This number is usually obtained from the
system password file when a user logs on. The system manager

copyright 1981 Microware Systems Corporation
page 5-4

OS-9 OPERATING SYSTEM USERS l1ANUAL
Multiprogramming and Memory Management

always is user number zero (see 3.8).

STANDARD INPUT AND OUTPUT PATHS: the three paths (input,
output, and error/status) used for routine input and output.
Note that most paths (files) may be shared simultaneously by
two or more processes (see 4.2.2). The two current working
directories are also inherited.

PROCESS PRIORITY which determines what proportion of CPU
time the process receives with respect to others (see 5.1).

As part of the fork operation, OS-9 automatically assigns:

A PROCESS ID: a number from 1 to 255, which is used to
identify specific processes. Each process has a unique process
ID number (see 4.3.2).

MEMORY: enough memory required for the new process to run.
Level Two systems give each process a unique "address space".
In Level One systems, all processes share the single address
space. A "data area", used for the program's parameters,
variables, and stack is allocated for the process' exclusive
use. A second memory area may also be required to load the
program (primary module) if it is not resident in memory (see
5.4) •

To summarize, the following items are given to or associated with
new processes:

Primary Module (program module to be run)
parameter(s) passed from parent to child
User Number
Standard I/O paths and working directories
Process priority
Process ID
Memory

Copyright 1981 Microware Systems Corporation
Page 5-5

OS-9 OPERATING SYSTEM OSERS MANUAL
Multiprogramming and Memory Management

5.4 BASIC MEMORY MANAGEMENT FUNCTIONS

An important OS-9 function is memory management. OS-9 automatic­
ally allocates all system memory to itself and to processes, and
also keeps track of the logical contents of memory (meaning which
program modules are resident in memory at any given time).

In OS-9 Level One systems, the operating system and all processes
share a single address space having up to 64K of RAM and ROM. Most
Level One systems have up to 56K or 60K of RAM memory. Memory
management is performed entirely by OS-9 software routines. RAM
memory is assigned in 256-byte pages.

In OS-9 Level Two systems, the operating system and each process
have individual address spaces. Each address space has the
potential to contain up to 64K of RAM and ROM memory. Using memory
management unit (MMU) hardware, OS-9 moves memory into and out of
each address space from time to time, as required for various
purposes. Each process is subject to a 64K maximum program size,
however, a user can run several processes simultaneously and
therefore util~ze more than 64K overall. The maximum number of
address spaces IS NOT related to the number of MMU registers, but
(up to a point) more registers may improve OS-9's process switching
speed. RAM memory is logically assigned in 256-byte pages, but is
physically assigned in the MMU hardware's block size (usually 2K or
4K bytes). Each physical memory block ~as an extended address which
~s called a block number. For example the 4K physical block resid­
ing at addresses $3COOO - $3CFFF is called block number $3C.

Within an address space, memory is assigned from higher addresses
downward for program modules, and from lower addresses upward for
data areas, as shown below:

+---------------------------+ highest address

program modules
(RAM or ROM)

unused space
(RAM or empty)

data areas
(RAM)

+---------------------------+ lowest address (0)

Copyright 1981 Microware Systems Corporation
Page 5-6

05-9 OPERATING SYSTEM USERS MANUAL
Multiprogramming and Memory Management

5.4.1 LOADING PROGRAM MODULES INTO MEMORY

When performing a fork operation, OS-9's first step is to attempt
to locate the requested program module by searching the "module
directory", which has the address of every module present in memory.
The 6809 instruction set supports a type of program called
"reentrant code" which means the exact same "copy" of a program can
be shared by two or more different processes simultaneously without
affectinq each other, provided that each "incarnation" of the
program has an independent memory area for its variables.

Almost all 05-9 family software is reentrant and can make most
efficient use of memory. For example, Basic09 requires 22K bytes of
memory to load into. If a request to run Basic09 is made, but
another user (process) had previously caused it to be loaded into
memory, both processes will share the same copy, instead of causing
another copy to be loaded (which would use an additional 22K of
memory). 05-9 automatically keeps track of how many processes are
using each program module and deletes the module (freeing its memory
for other uses) when all processes using the module have terminated.
05-9 Level Two will automatically switch the same copy of a module
into multiple address spaces if the program is called by more than
one process.

If the requested program module is not already in memory, the
name is used as a pathlist (file name) and an attempt is made to
load the program from mass storage (see 3.9.4).

Every program module has a "module header" that describes the
program and its memory requirements. 05-9 uses this to determine
how much memory for variable storage should be allocated to the
process (it can be given more memory by specifying an optional
parameter on the shell command line). The module header also
includes other important descriptive information about the program,
and is an essential part of 05-9 operation at the machine language
level. A detailed description of memory modules and module headers
can be found in the "05-9 System Programmer's Manual".

Programs can also be explicitly loaded into memory using the
"load" command. As with fork, the program will actually be loaded
only if it is not already in memory. If the module is not in
memory, 05-9 will copy a candidate memory module from the file into
memory, verify the CRC, and then, if the module is not already in
the module directory, add the module to the directory. This process
is repeated until all the modules in the file are loaded, the 64K
memory limit is exceeded, or until a module with an invalid format
is encountered. 05-9 always links to the first module read from the
file.

Copyright 1981 Microware Systems Corporation
Page 5-7

OS-9 OPERATING SYSTEM USERS MANOAL
Multiprogramming and Memory Management

Level One systems load modules on 256-byte page boundaries.
Level Two systems load modules contiguously on memory block
boundaries. The block size is usually 2K per block for systems
equipped with MC6829 MMU's, or 4K bytes for most SS-50 buss systems.
Free memory to be used for ~ data ~ need not be contiguous
because the MMU can map scattered free blocks to be logically
contiguous. Since OS-9 will request the largest physically
contiguous memory block available (up to 56K) to load program
modules, load operations can fail even if sufficient total free
memory exists. Any of this memory not used by the load operation is
returned to the system.

If the program module is already in memory, the load will proceed
as described above, loadinq the module from the specified file,
verifying the CRC, and when attempting to add the valid module to
the module directory, noticing that the module is already known, the
load merely increments the known module's link count (the number of
processes using "the module.) The load command can be used to "lock"
a program into memory. This can be useful if the same program is to
be used frequently because the program will be kept in memory
continuously, instead of being loaded repeatedly.

The opposite of "load" is the "unlink" command, which decreases a
program -module's link count by one. Recall that when this count be­
comes zero (indicating the module in no longer used by any process),
the module is deleted, e.g., its memory is deallocated and its name
is removed from the module directory. The "unlink" command is
generally used in conjunction with the "load" command (programs
loaded by fork are automatically unlinked when the" program
terminates) •

On Level Two systems, multiple modules loaded from a single file
are logicallv associated by the memory management logic. All
modules in the group will occupy contiguous physical memory blocks.
The group's memory can only be deallocated when all modules which
are members of the group have zero link counts. Similarly, linking
to one module within a group causes all other modules in the group
to be mapped into the process's address space. (see 3.9.4).

Here is an example of th~ use of "load" and "unlink" to lock a
program in memory. Suppose the "copy" command will be used five
times. Normally, the copy command would be loaded each time the
"copy" command is called. If the "load" command is used first,
"copy" will be locked into memory first, for example:

059: load copy
059: copy file1 filela
OS9: copy file2 file2a
OS9: copy file3 file3a
OS9: unlink copy

Copyright 1981 Microware Systems Corporation
Page 5-8

OS-9 OPERATING SYSTEM USERS MANUAL
Multiprogramming and Memory Management

It is important to use the "unlink" command after the program is no
longer needed, or the program will continue to occupy memory which
otherwise could be used for other purposes. Be very careful nQt to"
completely unlink modules in use by any process! This will cause the
memory used by the module to be deallocated and its contents
destroyed. This will certainly cause all programs usinq the
unlinked module to crash.

Copyright 1981 Microware Systems Corporation
Page 5-9

OS-9 OPERATING SYSTEf1 USERS MANUAL
Multiprogramming and Memory Management

5.4.2 LOADING MULTIPLE PROGRAMS

Another important aspect of program loading is the ability to
have two or more programs resident in memory at the same time. This
is possible because all OS-9 program modules are "position-indepen­
dent code", or "PIC". PIC programs do not have to be loaded into
specific, predetermined memory addresses to work correctly, and can
therefore be loaded at different memory addresses at different
times. PIC programs require special types of machine language in­
structions which few computers have. The ability of the 6809
microprocessor to use this type of program is one of its most
powerful features.

The "loa"d" command can therefore be used two or more times (or a
single file may contain several memory modules, see 3.9.4), and each
program module will be automatically loaded at different, non­
overlapping addresses (most other operating systems write over the
previous program's memory whenever a new program is loaded). This
technique also relieves the user from having to be directly con­
cerned with absolute memory addresses. Any number of program mod­
ules can be loaded until available system memory is full.

Copyright 1981 Microware Systems Corporation
Page 5-10

OS-9 OPERATING SYSTEM USERS MANUAL
Multiprogramming and Memory Management

5.4.3 MEMORY FRAGMENTATION

Even though PIC programs can be init~ally loaded at any address
where free memory is available, program modules cannot be relocated
dynamically afterwards, e.g., once a program is loaded it must
remain at the address at which it was originally loaded (however
Level Two systems can "load" (map) memory resident programs at
different addresses in each process' address space). This char­
acteristic can lead to a sometimes .troublesome phenomenon called
"memory fragmentation". When programs are loaded, they are assigned
the first sufficiently large block of memory at the highest address
possible in the address space. If a number of program modules are
loaded, and subsequently one or more modules which are located in
between other modules are "unlinked", several fragments of free
memory space will exist. The sum of the sizes of the free memory
space may be quite large, but because they are scattered, not enough
space will exist in a single block to load a program module larger
than the largest free space. This problem tends to be more severe
on OS-9 Level One systems because all processes must share a single
address space. Fragmentation is fairly infrequent in Level Two
systems because each process has its own address space.

The "mfree" command shows the- location and size of each unused
memory area and the "mdir elf . command shows the address, size, and
link (use) count of each module in the address space. These
commands can be used to detect fragmentation. Memory can usually be
de-fragmented by unlinkin~ scattered modules and reloading them.
~ certain none are in use before doing so.

copyright 1981 Microware Systems Corporation
Page 5-11

OS-9 OPERATING SYSTEM USERS MANUAL
Use of the System Disk

6.0 USE OF .THE SYSTEM DISK

Disk-based OS-9 systems use a system disk to load many parts of
the operating system during the system startup and to provide files
frequently used during normal system operations. Therefore, the
system disk is generally kept in the master disk drive ("/dO") when
the system is running.

Two files used during the system startup operation, "OS9Boot" and
"startup" m.JJ..S..t. reside in the system disk's root directory. Other
files are organized into three directories: CMDS (commands), DEFS
(system-wide definitions), and SYS (other system files).

Other files and directories created by the system manager and/or
users may also reside on the system disk. These frequently include
each user's initial data directory.

6.1 The Bootstrap File

The file called 110S9Boot" loaded into RAM memory by the "boot­
strap" routine located in the OS-9 firmware. It includes file
managers, device drivers and descriptors, and any other modules
which are permanently resident in memory. A typical Microware OS-9
distribution disk's 110S9Boot l1 file contains the following modules:

OS9p2
INIT
lOMAN
RBF
SCF
Pipeman
Piper
Pipe
ACIA
PIA
DISK
DO, Dl, etc.
TERM
Tl, ~2, etc.
P
PI
CLOCK
SYSGO

OS-9 Level Two Kernel (Level Two only)
System Initialization Table (Level Two only)
OS-9 Input/Output Manager
Random Block (disk) File Manager
Sequential Character (terminal) File Manager
Pipeline File Manager
Pipeline Driver
Pipeline Device Descriptor
Terminal Device Driver (MC6850)
Printer Device Driver (MC682l)
Disk Driver
Disk Device Descriptor
Terminal Device Descriptor
Other Terminal Device Descriptors
printer (parallel) Device Descriptor
Printer (serial) Device Descriptor
Real-Time Clock Module
System Startup Process

Users may create new bootstrap files which may include additional
modules (see "OS9Gen command). Any module loaded as part of the
bootstrap cannot be unlinked and is stored in memory with a minimum
of fragmentation. In Level One, it is advantageous to include in

Copyright 1981 Microware Systems Corporation
Page 6-1

OS-9 OPERATING SYSTEM USERS MANUAL
Use of the System Disk

the OS9Boot file any module used constantly during normal system
operation. In Level Two, however, since files placed in the OS9boot
file will be loaded into the same memory block, when the system
switches the boot block into its own address space, the non-system
files decrease the amount of memory addressable in system mode.
Alternatively, opt~onal modules should be placed in a separate file
that is the loaded as part of the system startup procedure.

6.2 The SYS Directory

The directory "/dO/SYS" contains three important files:

password - the system password file (see "login" command)
motd - message of the day file, displayed during login
errmsg - the error message file (see 4.7)

These files (and the SYS directory itself) are not absolutely
required to boot OS-9, they are needed if "login", "tsmon", or
"printerr" will be used. Users may add other system-wide files of
similar nature if desired.

6.3 The Startup File

The file "/dO/startup" is a shell procedure file (see 4.6) which
is automatically processed immediately after system startup. The
user may include in "startup" any legal shell command line. Often
this will include "setime" to start the system clock. If this file
is not found during startup, the system will still start up, running
the shell on the console terminal.

6.4 The CMDS Directory

The directory "/dO/CMDS" is the system-wide command object code
directory, which is normally shared by all users as their working
execution directory (see .3.7). If "shell" is not part of the
"OS9Boot" file, it must be present in this directory. The system
startup process "sysgo" sets CMDS to be the init~al execut~on dir­
ectory.

6.5 The DEFS Directory

The directory "/dO/DEFS" is a directory that contains assembly
language source code files which contain common system-wide symbolic
definitions, and are normally included in assembly language programs
by means of the OS-9 Assembler "use" directive. The presence and
use of this directory is optional, but highly recommended for any

Copyright 1981 Microware Systems Corporation
Page 6-2

OS-9 OPERATING SYSTEM USERS MANUAL
Use of the System Disk

system used for assembly language software development.

The files commonly contained in this directory are:

OS9Defs.e'd - main system-wide definition file
OS9SysDefs - OS-9 internal system definition file
OS9IODefs I/O Manager definition file
OS9RbfDefs.ed - RBF file manager definition. file
OS9ScfDefs.ed - SCF file manager definition file
Sysdefs.ed System configuration definition file
Systype System types definition file
Ii. equates Equates for old Level One (Vl.l) names

The extension ".ed" is a qualifier for various editions
of the definition files.

Copyright 1981 Microware Systems Corporation
Page 6-3

OS-9 OPERATING SYSTEM USERS ~1ANUAL
Use of the System Disk

6.6 Changing System Disks

The system disk is not usually removed while the system is run­
ning, especially on multiuser systems. If it is, the "chx" and
"chd" (if the working data directory was on the system disk)
commands should be executed to reset the working directory pointers
because the directories may be at different addresses on the new
disk, for example:

chx /dO/cmds
chd /dO

In general, it is unwise to remove a disk and replace it with
another if any paths are open to files resident on the disk. It is
dangerous to exchange say disk if any files on it are open in WRITE
or UPDATE modes.

6.7 Making New System Disks

To make a system disk, the following steps must be performed:

1. The new disk must be formatted.

2. The "OS9Boot" file must be created and linked by the "OS9Gen" or
"Cobbler" (Level 1 only) commands.

3. The "startup" file must be created or copied.

4. The CMDS and SYS directories and the files they contain must be
copied.

steps 2 through 4 may be performed manually, or automatically by any
of the following methods:

1. By a.shell procedure file created by the user.

2. By a shell procedure file generated by the "dsave" command (see
1.1.3) •

3. By the "backup" command, if the new disk has the same physical
size and format as the original (see 1.1.2).

Copyright 1981 Microware Systems Corporation
Page 6-4

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

7.0 SYSTEM COMMAND DESCRIPTIONS

This section contains descriptions for each of the command
programs that are supplied with OS-9. These programs are usually
called using the shell, but can be called from most other OS-9
family programs such as BASIC09, Interactive Debugger, Macro Text
Editor, etc. Unless otherw~se noted, these programs are designed to
run as individual processes.

WARNING - ALTHOUGH MANY OS-9 COMMANDS MAY WORK ON LEVEL ONE OR LEVEL
TWO SYSTEMS, THERE ARE DTFFERENCES. TAKE CARE NOT TO MTX COMMAND
FILES FROM LEVEL ONE SYSTEMS ON LEVEL TWO, OR THE REVERSE.

7.1 FORMAL SYNTAX NOTATION

Each command description includes a syntax definition which
describes how the command sentence can be constructed. These are
symbolic descript10ns that use the following notation:

= Brackets indicate that the enclosed item(s) are
optional.

{ } = Braces indicate that the enclosed item(s) can be
either.omitted or repeated multiple times.

<path> = Represents any legal pathlist~

<devname> = Represents any legal device name.

<modname> = Represents any legal memory module name.

<procID> = Represents a process number.

<opts> = One or more options defined in the command
description.

<arglist> = a list of arguments (parameters).

<text> = a character string terminated by end-of-line.

NOTE: The syntax of the commands given does not include the shell's
built in options such as alternate memory size, I/O redirection,
etc. This is because the shell will filter its options out of the
command line before it is passed to the program being called.

Copyright 1981 Microware Systems Corporation
Page 7-1

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

ATTR

Change file security attributes

Syntax: ATTR <path> [{ <permission abbreviations> } J

This command is used to examine or change the security permissions
of a file. To enter the command, type "ATTR" followed by the
pathlist for the file who's security permissions are to be changed,
followed by a list of permissions which are to be turned on or off.
A permission is turned on by giving its abbreviation, or turned off
by preceding its abbreviation with a minus sign. Permissions not
explicitly named are not affected. If no permissions are given the
current tile attributes will be printed. You can not change the
attributes of a file which you do not own (except for user zero, who
can change the attributes of any file in the system).

The file permission abbreviations are:

d = Directory file
s = Sharable file
r = Read permit to owner
w = Write permit to owner
e = Execute permit to owner

pr = Read permit to public
pw = Write permit to public
pe = Execute permit to public

The ATTR command may be used to change a directory file to a non­
directory file if all entries have been deleted from it. Since the
DEL command will only delete non-directory files, this is the only
way a directory may be deleted. You cannot change a non-directory
file to a directory file with this command (see MAKDIR) .

For more information see: 3.8, 3.8.1

Examples:

attr myfile -pr -pw

attr myfile r w e pr rw pe

attr datalog
-s-wr-wr

Copyright 1981 Microware Systems Corporation
Page 7-2

OS-9 OPERATING SYSTEl1 USER'S MANUAL
Command Descriptions

BACKUP

Make a backup copy of a disk

Syntax: BACKUP [e] [s] [-v] [<devnam> [<devname>]]

This command is used to physically copy all data from one device to
another. A physical copy is performed sector by sector without
regard to file structures. In almost all cases the devices
specified ~ have the exact same format (size, density, etc.) and
must not have defective sectors.

If both device name are omitted the names A/don and "/dl" are
assumed. If the second device name is omitted, a single unit backup
will be performed on the drive specified.

The options are:

E
S

-v
inK

=
=
=
=

Exit if any read error occura.
print single drive prompt message.
Do not verify.
more memory makes backup run faster

Examples:

backup /D2 /D3

backup -v

OS9: backup

Ready to BACKUP from /DO to /Dl ?: Y
MYDISK is being scratched
OK ?: Y
Number of sectors copied: $04DO
Verify pass
Number of sectors verified: $04DO
OS9:

Copyright 1981 Microware Systems Corporation
Page 7-3

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

BACKUP (continued)

Below is an example of a single drive backup. BACKUP will read a
portion of the source disk into memory, you remove the source disk
and place the destination disk into the drive, BACKUP writes on the
destination disk, you remove the destination disk and place the
source disk into the drive. This continues until the entire disk
has been copied. Giving BACKUP as much memory as possible will cause
fewe'r disk exchanges to be required.

For more information see: 1.1.2

OS9:backup /00 #lOk

Ready to BACKUP from /00 to /00 ?: Y
Ready DESTINATION, hit a key:
l>1YDISK is being scratched
OK ?: Y
Ready SOURCE, hit a key:
Ready DESTINATION, hit a key:
Ready SOURCE, hit a key:
Ready DESTINATION, hit a key:

(several repetitions)

Ready DESTINATION, hit a key:
Number of sectors copied: $400
verify pass
Number of sectors verified: $400

Copyright 1981 Microware Systems Corporation
Page 7-4 .

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

BINEX
EXBIN

Convert Binary To S-Record File
Convert S-Record To Binary File

Syntax: BINEX <pathl> <path2>
EXBIN <path2> <pathl>

S-Record files are a type of text file that contains records that
represent binary data in hexadecimal character form. This Motorola­
standard format is often directly accepted by commercial PROM
programmers, emulators, logic analyzers and similar devices that are
interfaced RS-232 interfaces. It can also be useful for
transmitting files over data links that can only handle character­
type data; or to convert OS-9 assembler or compiler-generated
programs to load on non-OS-9 systems.

BINEX converts "pathlll, an OS-9 binary format file, to a new file
named "path2" in S-Record format. If invoked on a non-binary load
module tile, a warning message is printed and the user is asked if
BINEX should proceed anyway. A lIyll response means yes; any other
answer will terminate the program. S-Records have a header record
to store the program name for informational purposes and each data
record has an absolute memory address which is not meaningful to OS-
9 since it uses position-independent-code. However, the S-Record
format requires them so BINEX will prompt the user for a program
name and starting load address. For example:

binex /dO/cmds/scanner scanner.Sl
Enter starting address for file: ~
Enter name for header record: scanner

To ~ownload the program to a device such as a PROM programmer
(for example using serial port Tl) type:

list scanner.Sl >/Tl

EXBIN is the inverse operation; "pathlll is assumed to be ~ S­
Record format text file which EXBIN converts to pure binary form on
a new file called "path2". The load addresses of each data record
must describe continguous data in ascending order.

EXBIN does not generate or check for the proper OS-9 module
headers or CRC check value required to actually load the binary
file. The IDENT or VERIFY commands can be used to check the
validity of the modules if they are to be loaded or run. Example:

exbin program.Sl cmds/program

Copyright 1981 Microware Systems Corporation
Page 7-5

OS-9 OPERATING SYSTEM USER' S ~1ANUAL
Command Descriptions

BUILD

Build a text file from standard input

Syntax: BUILD <oath>

This command is used to build short text files by copying the
standard input oath into the file specified by <path>. BUILD cre­
ates a file according to the pathlist parameter, them displays a"?"
prompt to request an input line. Each line entered is written to
the output path (file). Entering a line consisting of a carriage
return only causes BUILD to terminate.

Example:

build small_file
build /p (copies keyboard to printer)

The standard input path may also be redirected to a file. Below is
an example:

build <my text /T2 (copies file "my text" to terminal T2)

OS9: build newfile

? The powers of the OS-9
? operating system are truly
? fantastic.
? [RETURN]

OS9: list newfile

The powers of the OS-9
operating system are truly
fantastic.

Copyright 1981 Microware Systems Corporation
Page 7-6

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

CHD
Change working data directory

CHX
Change working execution directory

Syntax: chd <pathlist>
chx <pathlist>

These are shell "built in" commands used to
data directory or working execution directory.
9 work with user data such as text files,
commands assume that a file is located
directory. Other OS-9 commands will assume
workinq execution directory.

change OS-9's working
Many commands in OS­

programs, etc. These
in the working data
that a file is in the

NOTE: These commands do not appear in the CMDS directory as they
are built-in to the SHF.LL.

For more information see: 3.7, 3.7.2

Examples:

chd /dl/PROGRAMS

chx .•

chx binary_files/test_programs

chx /DO/CMDS; chd /Dl

Copyright 1981 Microware Systems Corporation
Page 7-7

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

CMP

File Comparison utility

Syntax: CMP <filel> <file2>

Opens two files
the corresponding
encountered, the
from each file are

and performs a comparison
data bytes of the files.

file offset (address) and
displayed in hexadecimal.

of the binary values of
If any differences are

the values of the bytes

The comparison ends when end-of-file is encountered on either
file. A summary of the number of bytes compared and the number of
differences found is then displayed.

Example:

OS9: cmp red bl~e

Differences

byte #1 #2
---------------- -- --
00000013 00 01
00000022 BO Bl
0000002A 9B AB
0000002B 3B 36
0000002C 6D 65

Bytes compared:
Bytes different:

OS9: cmp red red

Differences

None •••

0000002D
00000005

Bytes compared: 0000002D
Bytes different: 00000000

Copyright 1981 Microware Systems Corporation
Page 7-8

OS-9 OPERATING SYSTEM USER IS t1ANUAL
Command Descriptions

COBBLER

Make a bootstrap file
(Level One only)

Syntax: COBBLER <device name>

COBBLER is used to create the "OS9Boot" file required on any disk
from which OS-9 is to be bootstrapped. The boot file will consist
of the same modules which were loaded into memory during the most
recent bootstrap. To add modules to the bootstrap file use the
"OS9Genll command. Level Two systems lIl.lJ.ll use "OS9Gen" to create
bootstrap files.

NOTE: The boot file must fit into one contiguous block on the mass­
storage device. For this reason COBBT.ER is normally used on a
freshly formatted disk. If COBBLER is used on a disk and there is
not a contiguous block of storage large enough to hold the boot
file, the old boot ~ile may have been destroyed and OS-9 will not be
able to boot from that disk until it is reformatted.

NOTE: COBBLER cannot be used with Exordisk controllers at other
than 1 Mhz.

For more information see: 1.1.2, 6.1

Examples:

OS9: cobbler /Dl

Copyright 1981 Microware Systems Corporation
Page 7-9

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

COpy

Copy data from one path to another

Syntax: COpy <path> <path> [-sJ

This command copies data from the first file or device specified to
the second. The first file or device must already exist, the
second file is automatically created if the second path is a file on
a mass storage device. Data may be of any type and is NOT modified
in any way as it is copied.

Data is transferred using large block reads and writes until end-of­
file occurs on the input path. Because block transfers are used,
normal output processing of data does not occur on character­
oriented device's such as terminals, printers, etc. Therefore, the
LIST command is preferred over COpy when a file consisting of text
is to be sent to a terminal or printer~

The "-s" option causes COpy to perform a single drive copy
operation. 'The second pathlist must be a full pathlist if "-s"
appears. COpy will read a portion of the source disk into memory,
you remove the source disk and place the destination disk into the
drive, enter a "C" whereupon COpy writes on the destination disk,
this process continues until the entire file is copied.

Using the shell's alternate memory size modifier to give a large
memory space will increase speed and reduce the number of media
exchanges required for single drive copies.

Examples:

copy filel file2 #lSk (copies filel to file2)

copy /Dl/joe/news /DO/peter/messages

copy /TERM /p (copies console to printer)

copy'/dO/cat /dO/animals/cat -s #32k
Ready DESTINATION, hit C to continue: c
Ready SOURCE, hit C to continue: c
Ready DESTINATION, hit C to continue:c

Copyright 1981 Microware Systems Corporation
Page 7-10

Syntax: DATE [t]

OS-9 OPERATING SYSTEM USER'S r-1ANUAL
Command Descriptions

DATE

Display system date and time

This command will display the current system date, and if the "t"
option is given, the current system time.

Examples:

date t

date t >/p

OS9:setime

YY/MM/DD HH:MM:SS
TIME? 81/04/15 14:19:00

OS9:date

April 15, 1981

OS9:date t

April 15, 1981 14:20:20

(Output is redirected to printer)

Copyright 1981 Microware Systems Corporation
Page 7-11

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DCHECK

Check Disk File Structure

Syntax: DCHECK [-opts] <devnam>

It is possible for sectors on a disk to be marked as being allocated
but. in fact are not actually associated with a file or the disk's
free space. This can happen if a disk is removed from a drive while
files are still open, or if a directory which still contains files
is deleted (see 3.5). DCHECK is a diagnostic that can be used to
detect this condition, as well as the general integrity of the dir­
ectory/file linkages.

DCHECK is given as a parameter the name of the disk device to be
checked. After verifyinq and printing some vital file structure
parameters, DCHECK follows pointers down the disk's file system tree
to all directories and files on the disk. As it does so, it
verifies the integrity of the file descriptor sectors, reports any
discrepancies in the directory/file linkages, and builds a sector
allocation map from the segment list associated with each file. If
any file descriptor sectors (FDs) describe a segment with a cluster
not within the file structure of the disk, a message is reported
like:

*** Bad FD segment ($xxxxxx-$yyyyyy) for file: <pathlist>

This indicates that a segment starting at sector xxxxxx and ending
at sector yyyyyy cannot really be on this disk. Because there is a
good chance the entire FD is bad if any of it's segment descriptors
are bad, the allocation map is llQt updated for corrupt FDs.

While building the allocation map, DCHECK also makes sure that each
disk cluster appears only once and only once in the file structure.
If this condition is detected, DCHECK will display a message like:

Cluster $xxxxxx was previously allocated

This message indicates that cluster xxxxxx has been found at least
once before in the file structure. The message may be printed more
than once if a cluster appears in a segment in more than one file.

Copyright 1981 Microware Systems Corporation
Page 7-12

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DCHECK (continued)

The newly created allocation map is then compared to the allocation
map stored on the disk, and any differences are reported in messages
like:

Cluster $xxxxxx in allocation map but not in file structure
Cluster $xxxxxx in file structure but not in allocation map

The first message indicates sector number xxxxxx (hexadecimal) was
found not to be part of the file system, but was marked as allocated
in the disk's allocation map. In addition to the causes mentioned
in the first paragraph, some sectors may have been excluded from the
allocation map by the FORMAT program because they were defective or
they may be the last few sectors of the disk, the sum of which was
two small to comprise a cluster.

The second message indicates that the cluster starting at sector
xxxxxx is part of the file structure but is ~ marked as allocated
in the disk's allocation map. It is possible that this cluster may
be allocated to another file later, overwriting the contents of the
cluster with data from the newly allocated file. Any clusters that
have been reported as "previously allocated" by DCHECK as described
above surely have this problem.

Available DCHECK optlons are:

-w=<path>
-p
-m
-b
-s
-0

pathlist to directory for work files
print pathlists for questionable clusters
save allocation map work files
suppress listing of unused clusters
display count of files and directories only
print DCHECK's valid options

The "-SO option causes DCHECK to display a count of files and dir­
ectories only; only FDs are checked for validity. The "-b" option
suppresses listing of clusters allocated but not in file structure.
The "_pH option causes DCHECK to make a second pass through the file
structure printing the pathlists for any clusters that DCHECK finds
as "alreadv allocated" or "in file structure but not in allocation
map". The "-w=" option tells DCHECK where to locate it's allocation
map work file(s). The pathlist specified must be a FULL pathlist to
a directory. The directory "/DO" is used is used if "-w=" is not
specified. It is recommended that this pathlist NOT be located on
the disk being DCHECKed if the disk's file structure integrity is in
doubt.

DCHECK (continued)

copyright 1981 Microware Systems Corporation
Page 7-13

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DCHECK builds its disk allocation map in a file called
<pathlist>/DCBECKppO, where <pathlist> is as specified by the
"-we" option and pp is the process number in hexadecimal. Each bit
in this bitmap file corresponds to a cluster of sectors on the disk.
If the "_pH option appears on the command line, DCBECK creates a
second bitmap file «pathlist>/DCHECKppl) that ,has a bit set for
each cluster DCHECK finds as "previously allocated" or "in file
structure but not in allocation map" while building the allocation
map. DCHECK then makes another pass through the directory structure
to determine the pathlists for these questionable clusters. These
bitmap work files may be saved by specifying the "-m" option on the
command line.

Restrictions:

For best results, DCBECK should have exclusive access to the disk
being checked. Otherwise DCBECK may be fooled if the disk alloca­
tion map changes while it, is building its bitmap file from the
changing file structure~ DCHECK cannot process disks with a dir­
ectory depth greater than 39 levels.

For more information see: 3.10, 3.5, FORMAT
6.1 of OS-9 Systems Programmer's Manual

Examples:

OS9: dcheck /d2 (workfile is on /DO)

Volume - 'My system disk' on device /d2
$009A bytes in allocation map
1 sector per cluster
$0004DO total sectors on media
Sector $000002 is start of root directory FD
$0010 sectors used for id, allocation map and root directory
Building allocation map work file •••
Checking allocation map file •••

'My system disk' file structure is intact
1 directory
2 files

Copyright 1981 Microware Systems Corporation
Page 7-14

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DCHECK (continued)

OS9: dcheck -mpw=/d2 IdO
Volume - 'System disk' on device jdO
$0046 bytes in allocation map
1 sector per cluster
$00022A total sectors on media
Sector $000002 is start of root directory FD
$0010 sectors used for id, allocation map and root directory
Building allocation map work file .•.
Cluster $00040 was previously allocated
*** Bad FD segment ($111111-$23A6FO) for file: jdOjtestjjunky.file
Checking allocation map file •••
Cluster $000038 in file structure but not in allocation map
Cluster $00003B in file structure but not in allocation map
Cluster $0001B9 in allocation map but not in file structure
Cluster $OOOIBB in allocation map but not in file structure

Pathlists for questionable clusters:
Cluster $000038 in oath: jdOlOS9boot
Cluster $00003B in path: jdOjOS9boot
Cluster $000040 in path: jdOjOS9boot
Cluster $000040 in path: jdOjtestjdouble.file

1 previously allocated clusters found
2 clusters in file structure but not in allocation map
2 clusters in allocation map 'but not in file structure
1 bad file descriptor sector

'System disk' file structure is not intact
5 directories
25 files

Copyright 1981 Microware Systems Corporation
Page 7-15

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DEL

Delete a file

Syntax: DEL (-x] (path> {(path>} [-x]

This command is used to delete the file(s) specified by the
pathlist(s). The user must have write permission for the file(s).
Directory files cannot be deleted unless their type is changed to
non-directory: see the "ATTR" command description.

If the -x option appears, the current execution directory is
assumed.

For more information see: 3.5, 3.8.1

Examples:

del test_program o1d_test_program

del /D1/number_five

OS9:dir /01

Directory of /01 14:29:46
myfile newfile

OS9:del /D1/newfile
OS9:dir /D1

Directory of /D1 14:30:37
myfi1e

OS9:de1 myprog -x
OS9:del -x CMDS.SUBOIR/fi1e

Copyright 1981 Microware Systems Corporation
Page 7-16

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DELDIR

Delete All Files In a Directory System

Syntax: DELDIR <directory name>

This command is a convenient alternative to manually deleting
directories and files they contain. It is only used when all files
in the directory system are to be deleted.

When DELDIR is run, it prints a prompt message like this:

OS9: deldir OLDFIT·ES
Deleting directory file.
List directory, delete directory, or quit? (l/d/q)

An "111 response will cause a ndir en command to be run so you can
have an opportunity to see the files in the directory before they
are delete¢l.

A nd n response will initiate the process of deleting files.

A "q" response will abort the command before action is taken.

The directory to be deleted may include directory files, which
may themselves include directory files, etc. In this case, DELDIR
operates recursively (e.g., it calls itself) so all lower-level
directories are deleted as well. In this case the lower-level
directories are processed first.

You must
directories
encountering
permission.

have correct access permission to delete all files and
encountered. If not, DELDIR will abort upon
the first file for which you do not have- write

The
commands,
directory.

DELDIR command
so they both

automatically
must reside

calls
in the

the DIR
current

Copyright 1981 Microware Systems Corporation
Page 7-17

and ATTR
execution

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DIR

Display the names of files contained in a directory

Syntax: DIR [e] (x] [<path>]

Displays
standard
directory
execution
given, it

a formatted list of files names in a directory file on the
output path. If no parameters are given, the current ~
is shown. If the "x" option is 9iven, the current
directory is shown. If a pathlist of a directory file is

is shown.

If the "e" option is included, each file's entire description is
displayed: size, address, owner, permissions, date and time of last
modification.

For more information see: 1.0.3, 3.4, and 3.8.1

Examples:

dir (display data directory)

dir x (display execution directory)

dir x e (display entire description of execution dir)

dir . . (display parent of-working data directory)

dir newstuff (display newstuff directory)

dir e test-programs (display entire description of "test_programs)

Copyright 1981 Microware Systems Corporation
Page 7-18

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DISPLAY

Display Converted Characters

Syntax: DISPLAY <hex> {<hex>}

Display reads one or more hexadecimal numbers given as parameters,
converts them to ASCII characters, and writes them to the standard
output. It is commonly used to send special characters (such as
cursor and screen control codes) to terminals and other I/O devices.

Examples:

display OC IF 02 7F

display 15 >/p (sends "form feed" to printer)

OS9: display 41 42 43 44 45 46
ABCDEF

Copyright 1981 Microware Systems Corporation
. Page 7-19

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DSAVE - Generate procedure file to copy files

Syntax: dsave [-opts] [<devname>] [<path>]

Dsave is used to backup or copy all files in one or more
directories. It is unlike most other commands in that it does NOT
directly affect the sy~tem, rather, it generates a procedure file
which is executed later to actually do the work.

When DSAVE is executed, it writes copy commands to standard output
t'o copy files from the current.da.t..Q directory on <devname> (the
default is /DO) to the directory specified by <path>. If <path>
does not appear, the copy is performed to the current data directory
a~ ~ ~ ~ DSAY~ procedure ~ iA executed. If DSAVE
encounters a directory file, it will automatically include "makdir"
and "chd" commands in the output before generating copy commands for
files in the subdirectory. Since DSAVE is recursive in operation,
the procedure file ~ill exactly replicate all levels of the file
system from the current data directory downward (such a section of
the file system is called a "subtree").

If the current working directory happens to be the root directory of
the disk, DSAVE will create a procedure file that will backup the
entire disk file by file. This is useful when it is necessary to
copy many files from different format disks, or from floppy disk to
a hard disk.

Available DSAVE options are:

-b make output disk a system disk by using source disk's
"OS9Boot" file, if present.

-b=<path> make output disk a system disk using <path> as source
for the "OS9Boot" file.

-i indent for directory levels
-L do not process directories below the current level
-m do not include "makdir" commands in procedure file
-s<integer> set copy size parameter to <integer> K

For more information see: 1.1.3

Example which copies all files on "d2" to "dl":

chd /d2
dsave /d2 >/dO/makecopy
chd /dl
/dO/makcopy

chd /dO/MYFILES/STUFF

(select "from" directory)
(make procedure file "makecopy")
(select "to" directory)
(run procedure file)

dsave -is32 /dO /dl/BACKUP/STUFF >saver
/dO/MYFILES/STUFF/saver

Copyright 1981 Microware Systems Corporation
Page 7-20

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

DUr4P

Formatted File Data Dump in Hexadecimal and ASCII

Syntax: DUMP [<path>]

This command produces a formatted display of the physical data
contents of the path specified which may be a mass storage file or
any other I/O device. If a pathlist is omitted, the standard input
path is used. The output is written to standard output. This com­
mand is commonly used to examine the contents of non-text files.

The data is displayed 16 bytes per line in both hexadecimal and
ASCII character format. Data bytes that have non-displayable values
are represented by periods in the character area.

The addresses displayed on the dump are relative to the beginning of
the file. Because memory modules are position-independent and stored
on files exactly as they exist in memory, the addresses shown on ~he
dump correspond to the relative load addresses of memory-module
files.

Examples:

DUMP
DUMP myfile >/p
DUMP shortfile

(display keyboard input in hex)
(dump myfile to printer)

Sample Output:

Addr

0000
0010
0020
0030

starting
address

0 1

87CD
0418
0117
C641

2 3 4 5 6 7 8 9 A B C D

0038 002A F18l 2800 2EOO 3103
0000 0100 0101 0001 1808 l80D
0311 0807 1500 002A 5445 52CD
4349 C10E 529E

data bytes in hexadecimal
format

E F

FFEO
lB04
5343

0 2 4 6 8 ACE

.M.8.*q.(.•• 1 ••

,

.
••••...•• *TERMSC
FACIA.R.

data bytes in
ASCII format

Copyright 1981 Microware Systems Corporation
Page 7-21

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

ECHO

Echo text to output path

Syntax: ECHO <text>

This command echoes its argument to the standard output path. It is
typically used to generate messages in shell procedure files or to
send an lnitialization character sequence to a terminal. The text
should not include any of the punctuation characters used by the
shell.

Examples:

echo >/T2 Hello John how's it going & (echo to T2)

echo >/term ** warning ** disk about to be scratched!

echo >/p Listing of Transaction File; list trans >/p

OS9: echo Here is an important message!
Here is an important message!

Copyright 1981 Microware Systems Corporation
Page 7-22

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

EX

Execute program as overlay

Syntax: EX <module name> [<modifiers>] [<parameters>]

This a shell built-in command that causes the process executing the
shell to start execution of another program. It permits a transition
from the shell to another program without creating another process,
thus conserving system memory.

This command is often used when the shell is called from another
program to execute a specific program, after which the snell is not
needed. For instance, applications which only use BASIC09 need not
waste memory space on SHF.LL.

The "ex" command should always be the last command on a shell input
line because any command line following will never be processed.

NOTE: Since this is a built-in SHELL command, it does not appear in
the CMDS directory.

For more information see: 4.5, 4.6, 4.9

Examples:

ex BASIC09

tsmon /tl&; tsmon /t2&; ex tsmon /term

Copyright 1981 Microware Systems Corporation
Page 7-23

OS~9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

FORMAT

Initialize disk ~edia

Syntax: FORMAT <devname> [<option list>]

This command is used to physically initialize, verify, and establish
an initial file structure on a disk.. All disks must be formatted
before they can be used on an OS-9 system.

This command can be used format almost any type of disk including
hard disks. A descript~on of the disk is automatically read from the
device descriptor module. The <option list> may be used to override
these default values if necessary. Format will ask for any required
options not given in the command line.

NOTE: If the
"cobbler" must
been formatted.

diskette is to be used as a system disk, "OS9gen" or
be run to create the bootstrap after the disk has

When format is used with floppy disks, these options are used:

S = single density (default)
D = double density
1 = single sided (default)
2 = double sided

When used with floppy ~ hard disks, these options are used:

R = inhibit ready prompt
'number' = number of tracks (in decimal)
:number: = number of sector interleave value (decimal)
"name" = disk name (32 character maximum)

The formatting process works as follows:

1. The ~isk surface is physically init~alized .and sectored.

2. Each sector is read back and verified. If the sector fails to
verify after several attempts, the offending sector .is excluded from
the initial free space on the disk. As the verification is
performed, track numbers are displayed on the standard output
device.

3. The disk allocation map, root directory, and identification sec­
tor are written to the first few sectors of track zero. These
sectors cannot be defective.

For more information see: 1.1.1, 3.10

Copyright 1981 Microware Systems Corporation
Page 7-24

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

FORMAT (continued)

Examples:

format /Dl 2 D "database" '77'

format /Dl S 1

OS9: format /Dl

FORMAT 1.1

TABLE OF FORMAT VARIABLES

Recording Format:
Track density in TPI:

Number of Cylinders:
Number of Surfaces:

Sector Interleave Offset:

Disk type:
Sectors/Track on TRK 0, Side 0:

sectors/Track:

Formatting on drive /Dl
y (yes), n (no), or q (quit)
Ready: Y
Disk Name: Jim's Disk

(track numbers displayed here)

GOOD SECTOR COUNT = $0860

MFM <- density: FM=sgl MFM=dbl
48 <- some 5" disks use 96 TPI
77 <- 77 for 8", 35/40/80 for 5"

] <- 1 or 2 sides
3 <- set by manufacturer

8 <- 5, 8, or HARD
16 <- set by manufacturer
28 <- set by m~nufacturer

<- answer: y to format, n to
change table, or q to stop

<- enter up to 32 characters

The values in the top sect10n can be changed by command line para­
meters or by answering "n" to the prompt. The values in the bottom
section can only be changed by altering the device descriptor module
of the specific unit.

Copyright 1981 Microware Systems Corporation
Page 7-25

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

FREE

Display free space remaining on mass-storage device

Syntax: FREE <devname>

This command displays the number of unused 256-byte sectors on a
device which are available for new files or forexpandinq existing
files. The device name given must be that of a mass-storage
multifile device. "Free" also displays the disk's name, creation
date, and cluster size.

Data sectors are allocated in groups called "clusters". The number
of sectors per cluster depends on the storage capacity and physical
characterist1cs of the specific device. This means that small
amounts of free space may not be divisible into as many files. For
example, if a given disk system uses 8 sectors per cluster, ,and a
"free" command shows 32 sectors free, a maximum of four new files
could be created even if each has only one cluster.

For more information see: 3.10

Examples:

OS9:free
BACKUP DATA DISK created on: 80/06/12
Capacity: 1,232 sectors (I-sector clusters)
1,020 free sectors, largest block 935 sectors

OS9: free /Dl
OS-9 Documentation Disk created on: 81/04/13
Capacity: 1,232 sectors (I-sector clusters)
568 Free sectors, largest block 440 sectors

Copyright 1981 Microware Systems Corporation
Page 7-26

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

IDENT

Print OS-9 module identification

Syntax: IDENT [-opts] <path> [-opts]

This command is used to display header information from OS-9 memory
modules. IDENT displays the module size, CRC bytes (with verifi­
cation), and for program and device driver modules, the execution
offset and the permanent storage requirement bytes. IDENT will
print and interpret the type/language and attribute/revision bytes.
In addition, IDENT displays the byte immediately following the
module name since most Microware-supplied modules set this byte to
indicate the module edition.

IDENT will display all modules contained in a disk file. If the
"-m" option appears, <oath> is assumed to be a module in memory.

If the "-v" option is specified, the module CRC is not verified.

The "-x" option implies the pathlist begins in the execution
directory.

The "-s" option causes IDENT to display the following module
information on a single line:

Edition byte (first byte after module name)
Type/Language byte
Module CRe
A "." if the CRe verifies correctly, "?" if incorrect.

(IDENT will leave this field blank if the "-v" option appears.)
Module name

Examples:

OS9: ident -m ident
Header for: Ident
Module size: $06A5 #1701
Module eRC: $lCE78A (Good)
Hdr parity: $8B
Exec. off: $0222
Data size: $OCAl
Edition: $05
Ty/La At/Rv: $11 $81

#546
#3233
#5

Prog mod, 6809 obj, re-en

<Module name>
<Module size>
<Good or Bad>
<Header parity>
<Execution offset>
<Permanent storage requirement>
<First byte after module name>
<Type/Language Attribute/Revision>
<Module type, Language, Attribute>

Copyright 1981 Microware Systems Corporation
Page 7-27

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

OS9: ident /dO/os9boot -s
1 $CO $A366DC • OS9p2

83 $CQ $7FC336 • Init
1 $11 $39BA94 • SysGo
1 $Cl $402~73 • lOMan
3 $01 $EE937A • RBF

82 $Fl $526268 • DO
82 $Fl $065245 • 01
82 $Fl $E32FFE • 02

1 $01 $F94407 • SCF
2 $El $F9FE37 • ACIA

83 $Fl $765270 • TERM
83 $Fl $B4396C . Tl
83 $Fl $63B73B • T2
83 $Fl $OF9B78 • T3
83 $Fl $F83EB9 • T4
83 $Fl $06009A • T5

3 $El $3EE015 • PIA
83 $Fl $12A43B • P

IDENT (continued)

2 $01 $BBCIEE • PipeMan
2 $El $5B2B56 • Piper

80 $Fl $CC06AF • Pipe
2 $Cl $248B2C • Clock
A A A A

I I I I
I I I Module name
I I CRC check" " if -v, "." if OK, "?" if bad
I CRC value
I Type/Language byte
Edition byte (first byte after name)

Copyright 1981 Microware Systems Corporation
Page 7-28-

OS-9 OPERATING SYSTEM USER'S l-lAt·.JUAL
Command Descriptions

KILL

Abort a process

Syntax: KILL <procID)

This shell "built in" command sends an "abort" siqnal to the
process havina the process ID number specified. The process to be
aborted must have the same user ID as the user that executed the
command. The "procs" command can be used to obtain the process ID
numbers.

NOTE: If a process is waiting for I/O, it may not die until it
completes the current I/O operation. Therfore, if you KILL a
process and the PROCS command shows it still exists, it is probably
waiting for receive a line of data from a terminal before it can
die.

Since this is a built-in SHELL command, it does not· appear in the
CMDS directory.

For more information see: 4.5, 5.2, PROCS

Examples:

kill 5

kill 22

OS9: procs

Usr if Id

20 2
20 I
20 3

OS9: kill
OS9 : procs

Usr # Id

20 2
20 I

OS9:

pty state Mem Primary module
-------- --------------

0 active 2 Shell <TERM
0 waiting 1 Sysgo <TERM
0 sleeping 20 Copy <TERM

3

pty state Mem Primary module
-------- --------------

0 active 2 Shell <TERM
0 waiting 1 Sysgo <TERM

Copyright 1981 Microware Systems Corporation
Page 7-29

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

LINK

Link module into memory

E 'ntax: LINK <memory module name>

'I lis command is used to "lock" a previously loaded module into
IT !mory. On Level Two systems, "link" causes a module resident in
E 'stem memory to be mapped into the user's address space. The link
c >unt of the module specified is incremented by one each time it is
" .inked". The "unlink" command is used to "unlock" the module when
i : is no longer needed.

F)r more information see: 5.4, 5.4.1, 5.4.2, 5.4.3

E :amples:

C ;9: LINK edit

C ,9: LINK myprogram

Copyright 1981 Microware Systems Corporation
Page 7-30

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

LIST

List the contents of a text file

Syntax: LIST <path> {<path>}

This command copies text lines from the path(s) given as parameters
to the stand~rd output path. The program terminates upon reaching
the end-of-file of the last input path. If more than one path is
specified, the first path will be copied to standard output, the
second path will be copied next, etc.

This command is most commonly used to examine or print text files.

For more information see: 2.3, 3.9.2

Examples:

list /dO/startup >/p & (output is redirected to printer)

list /Dl/userS/document /dO/myfile /dO/Bob/text

list /TERM >/p

OS9: build animals
? cat
? cow
? dog
? elephant
? bird
? fish
? [RETURN]

OS9: list animals
cat
cow
dog
elephant
bird
fish

(copy keyboard to printer - use
"escape" key to terminate input)

Copyright 1981 Microware Systems Corporation
Page 7-31

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

LOAD

Load module(s) from file into memory

Syntax: LOAD <path>

The path specified is opened and one or more modules is read from it
and loaded into memory. The names of the modules are added to the
module directory. If a module is loaded that has the same name and
type as a module already in memory, the module having the highest
revision level is kept.

For more information see: 3.9.4, 5.4.1, 5.4.2

Example:

load new_program

OS9:mdir

Module
DCB4
OS9P2
SCl1'
T3
Sysgo
Mdir

OS9:10ad
OS9:mdir

Module
DCB4
OS9P2
SCl1'
T3
Sysgo
Mdir

Directory at 13:36:47
DO Dl D2 D3
INIT OS9 lOMAN RBF
ACIA TERM Tl T2
P PIA CDS HI
Clock Shell Tsmon Copy

edit

Directory at 13:37:14
DO Dl D2 D3
INIT OS9 lOMAN RBF
ACIA TERM Tl T2
P PIA CDS HI
Clock Shell Tsmon Copy
EDIT

Copyright 1981 Microware Systems Corporation
Page 7-32

Syntax: LOGIN

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

LOGIN

Timesharing System Log-In

Login is used in timesharing systems to provide log-in security. It
is automatically called by the timesharing monitor "tsmon", or can
be used after initial log-in to change a terminal's user.

Login requests a user name and password, which is checked against a
validation file. If the information is correct, the user's system
priority, user ID, and working directories are set up according to
information stored in the file, and the initial program specified in
the password file is executed (usually SHELL). If the user cannot
supply a correct user name and password after three attempts, the
process is aborted. The validation file is called "PASSWORD" and
must be present in the directory "/dO/SYS". The file contains one or
more variable-length text records, one for each user name. Each
record has the following fields, which are delimited by commas:

1. User name (up to 32 characters, may include spaces). If this
field is empty, any name will match.

2. Password (up to 32 characters, may include spaces) If this field
is omitted, no password is required by the specific use.

3 User index (ID) number (from 0 to 65535, 0 is superuser).
This number is used by the file security system and as the system~
wide user ID to identify all processes initiated by the user. The
system manager should assign a unique ID to each potential user.
(See 3.8)

4. Initial process (CPU time) priority: I - 255 (see 5.2)

5. Pathlist of initial execution directory (usually /dO/CMDS)

6. Pathlist of initial data directory (specific user's directory)

7. Name of initLal program to execute (usually "shell").
NOTE: This is not a shell command line.

Here's a sample validation file:

superuser,secret,O,255,.,.,shell
steve,open sesame,3,128,.,/dl/STEVE,shell
sally,qwerty,lO,lOO,/dO/BUSINESS,/dl/LETTERS,wordprocessor
bob,,4,128,.,/dl/BOB,Basic09

Copyright 1981 Microware Systems Corporation
Page 7-33

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

LOGIN (continued)

T9 use the login command, enter:

login

This will cause prompts for the user's name and (optionally)
password to be displayed, and if answered correctly, the user is
logged into the system. Login initializes the user number, working
execution directory, working data directory, and executes the
initlal program specified by the password file. The date, time and
process number (which is nQt the same as the user ID, see 5.3) are
also displayed.

Note: if the shell from which "login" was called will not be needed
again, it may be discarded by using the EX command to start the
LOGIN command. For example:

ex login

Logging Off the System

To log off the system, the initial program specified in the password
file must be terminated. For most programs (including shell) this
may be done by typing an end of file character (escape) as the first
character on a line.

Displaying a "Message-of-the-Day"

If desired, a f{le named "motd" appearing in the SYS directory will
cause LOGIN to display it's contents on the user's terminal after
successful login. This file is not required for LOGIN to operate.

For more information see: tsmon. 2.5, 3.8, 5.3

Example: .

OS9: login

OS-9 Levei 1 Timesharing System Version 1.2 82/12/04 13:02:22

User name?: superuser
Password: secret

Process #07 logged
Welcome!

81/12/04 13:03:00

Copyright 1981 Microware Systems Corporation
Page 7-34

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

MAKDIR

Create directory file

Syntax: MAKDIR <path>

Creates a new directory file according to the pathlist given. The
pathlist must refer to a parent directory for which the user has
write permission.

The new directory is initialized and initially does not contain
files except for the "." and " •• " pointers to its parent directory
and itself, respectively (see 3.7.3). All access permissions are
enabled (except sharable).

It is customary (but not mandatory) to capitalize directory names.

For more information see: 3.3, 3.4, 3.5, 3.7.3, 3.9.5

Examples:

makdir /dl/STEVE/PROJECT

makdir DATAFIr.ES

makdir .' ./SAVEFILES

Copyright 1981 Microware Systems Corporation
Page 7-35

OS-9 OPERA.TING SYSTEM USER'S MANUAL
Command Descriptions

MDIR

Display Module Directory

Syntax: HDIR [e]

Displays the present module names in the system module directory,
i.e., all modules currently resident in memory.

If the "en option is given, a full listing of the physical address,
size, type, revision level, and user count of each module is
displayed. All numbers shown are in hexadecimal.

On Level Two systems, the extended physical address (block number
and offset within the block) are given.

1;vARNING: not all modules listed by ~mIR are executable as processes:
always check the module type code before executing a module if you
are not familiar with it to make sure it is executable.

For more information see: 5.4.1

Example:

089: mdir

Module
DCB4
OS9P2
SCP
T3
Sysgo

Directory at
DO
INIT
ACIA
P

. Clock

14:44:35
Dl
OS9
TERM
PIA
Shell

D2
IOMAN
Tl
CDS
Tsmon

D3
RBF
T2
HI"
Hdir

Copyright 1981 Microware Systems Corporaiion
Page 7-36

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

MERGE

Copy and Combine Files to Standard Output

Syntax: MERGE <path> { <path> }

This command copies multiple input files specified by the pathlists
given as parameters to the standard output path. It is commonly
used to combine several files into a single output file. Data is
copied in the order the pathlists are given. MERGE does no output
line editing (such as automatic line feed). The standard output is
generally r~directed to a file or device.

Examples:

OS9: merge file1 file2 file3 file4 >combined.file

OS9: merge compile.list asm.list >/printer

Copyright 1981 Microware Systems Corporation
Page 7-37

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

MFREE

Display Free System RAM

Syntax: MFREE

Displays a list of which areas of memory are not presently in use
and available for assignment. The address and size of each free
memory block are displayed.

In Level One systems, mfree shows the address and size of each con­
tiguous area of unassigned RAM. The size is given as the number of
256-byte pages. This information is useful to detect and correct
memory fragmentation (see 5.4.3).

In Level Two systems, mfree shows the block number, physical
(extended) beginninq and endinq addresses, and size of each
contiguous area of unassigned RAM. The size is given in number of
blocks and in K bytes. The block size is usually 2K per block for
systems equipped with MC6829 MMUs, or 4K bytes for most SS-50 buss
systems. Free memory to be used for ~ ~ ~ need not be
contiguous because the MMU can map scattered free blocks to be
logically contiguous. Since OS-9 requires 56K of physically
contiguous memory to load program modules, load operations can fail
even if sufficient total free memory exists.

For more information see: 5.4, 5.4.3

Example (Level One MFREE):

OS9: mfree

Address pages

700- 7FF 1
BOO-AEFF 164

BlOO-BlFF 1

Total pages free = 166

Example (Level Two MFREE):

Blk Begin

10 10000
18 18000
20 20000

End Blks Size
----- ------
10FFF 1 4K
IDFFF 6 24k
3FFFF 32 128k

---------- ------
Total: 39 156k

Copyright 1981 Microware Systems Corporation
Page 7-38

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

OS9Gen

Build and Link a Bootstrap File

Syntax: OS9GEN <device name>

OS9Gen is used to create and link the "OS9Boot" file required on any
disk from which OS-9 is to be bootstrapped. OS9Gen can be used to
make a copy of an existing boot file, to add modules to an existing
boot file, or to create an entirely new boot file (such as for a
different system).

On OS-9 Level One systems, the "cobbler" command is usually a con­
venient way to make an exact copy of the existing boot file. On
Level Two systems, OS9Gen is the only way a boot file can be made.

The name of the device on which the "OS9Boot" file is to be instal­
led is passed to OS9Gen as a command line parameter. OS9Gen then
creates a working file called "TempBoot" on the device specified.
Next it reads file names (pathlists) from its standard input, one
pathlist per line. Every file named is opened and copied to
"TempBoot". This is repeated until end-of-file or a blank line is
reached on OS9Gen's standard input. All boot files must contain the
08-9 component mOdules listed in section 6.1.

After all input files have been copied to "TempBoot" , the old
"OS9Boot" file, if present, is deleted. "TempBoot" is then renamed
to "OS9Boot", and its starting address and size is linked in the
disk's Identification Sector (LSN 0) for use by the 08-9 bootstrap
firmware.

WARNING: Any "OS9Boot" file must be stored in physically contiguous
sectors. Therefore, OS9Gen is normally used on a freshly formatted
disk. If the "089Boot" file is fragmented, 089Gen will print a
warning message indicated the disk cannot be used to bootstrap OS-9.

The list of file names given to OS9Gen can be entered from a key­
board, or OS9Gen's standard input may be redirected to a text file
containing a list of file names (pathlists). If names are entered
manually, no prompts are given, and the end-of-file key (usually
ESCAPE) or a blank line is entered after the line containing the
last pathlist.

For more information see: 6.0, 6.1, 6.6

Examples are given on the following page.

Copyright 1981 Microware Systems Corporation
Page 7-39

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

OS9Gen - Continued

Examples:

To manually install a boot file on device "dl" which is an exact
copy of the "OS9Boot" file on device "dO":

OS9: os9gen /dl
/dO/os9boot
(ESCAPE]

(run OS9Gen)
(enter file to be installed)
(enter end-of-file)

To manually install a boot file on device "dl" which is a copy of
the "OS9Boot" file on device "dO" with the addition of modules stor­
ed in the files "/dO/tape.driver" and "/d2/video.driver":

OS9: os9gen /dl
/dO/os9boot
/dO/tape.driver
/d2/video.driver
[ESCAPE]

(run OS9Gen)
(enter main boot file name)
(enter name of first file to be added)
(enter name of second file to be added)
(enter end-of-file)

As above, but automatically by redire~ting OS9Gen standard input:

OS9: build /dO/bootlist (use "build" to create file "bootlist")
? /dO/os9boot (enter first file name)
? /dO/tape.driver (enter second file name)
? /d2/video.driver (enter third file name)
? [RETURN] (terminate "build")
OS9: os9gen /dl </dO/bootlist (run OS9gen with redirected input)

Copyright 1981 Microware Systems Corporation
Page 7-40

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

PRINTERR

print Full Text Error Messages

Syntax: PRINTERR

This command replaces the basic OS-9 error printing routine (F$PERR
service request) which only prints error code numbers, with a
routine the reads and displays textual error messages from the file
n/dO/SYS/errmsg n • Printerr's effect is system-wide.

A standard error message file is supplied with OS-9. This file can
be edited or replaced by the system manager. The file is a normal
text file with variable length line. Each error message line begins
with the error number code (in ASCII characte~s), a delimiter, and
the error message text. The error messages need not be in any
particular order. Delimiters are spaces or any character numer­
ically lower then $20. Any line having a delimiter as its first
character is considered a continuation of the previous line(s) wh:j.ch
permits multi-line error messages. "

WARNING: Once the printerr command has been used, it can not be un­
done. Once installed, the PRINTERR module should not be unlinked.
PRINTERR uses the current user's stack for an I/O buffer, so users
are encouraged to reserve reasonably large stacks.

For more information see: 4.7, 6.2

Example:

059: printerr

Copyr~ght 1981 Microware Systems Corporation
Page 7-41

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

PROCS

Display ~rocesses

Syntax: PROeS [eJ

Displays a list of processes running on the system. Normally only
processes having the user's ID are listed, but if the "en option is
given, processes of all users are listed. The display is a
"snapshot" taken at the instant the command is executed: processes
can switch states rapidly, usually many times per second.

On Level One systems, PROCS shows the user and process ID numbers,
priority, state (process status), memory size (in 256 byte pages),
primary program module, and standard input path.

On . Level Two Systems, the process ID number, the parent process ID
number User Index (ID), process priority, memory size (in 256 byte
pages), current stack pointer address, and primary module (name of
program being executed) are listed.

For more information see: 5.1, 5.2, 5.3

Level One Example:

Usr * Id pty state Mem Primary module
----- --.------ --------------

0 2 0 active 2 Shell <TERM
0 1 0 waiting 1 SysGo <TERM
1 3 1 waiting 2 Tsmon </TI
1 4 1 waiting 4 Shell <It 1
1 5 1 active 64 Basic09 <It 1

Level Two Example:

Parnt User Mem Stack
ID ID

2 1
3 2
4 3
5 4
6 5
7 2

Index pty Siz Ptr Primary Hodule
----- ----- ----------------

0 255 1 $98E2 SysGo
0 255 2 $96E2 Shell
0 255 96 $94E2 Basic09
0 255 2 $92E2 Shell
0 255 4 $03F3 Procs
0 128 48 $AOFO Cobol

Copyright 1981 Microware Systems Corporation
Page 7-42

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

PWD
PXD

Print Working Directory
print Execution Directory

Syntax: PVJD
PXD

PWD displays a pathlist that shows the path from the root
directory to the user1s current data directory. It can be used by
programs to discover the actual physical location of files, or by
humans who get lost in the file system. PXD displays the pathlist
from the root to the current execution directory.

Example:

059: chd /Dl/STEVE/TEXTFILES/MANUALS
OS9: pwd
/Dl/STEVE/TEXTFILES/MANUALS
OS9: chd ••
OS9: pwd .
/Dl/STEVE/TEXTFILES
OS9: chd .'.
089: pwd
/Dl/8TEVE
089: pxd
/DO/CMDS

Copyright 1981 lHcroware Systems Corporation
Page 7-43

08-9 OPERATING SYSTEM OSER'S MANUAL
Command Descriptions

RENAME

Change file name

Syntax: RENAME <path> <neVI name>

Gives the mass storage file specified in the pathlist a new name.
The user must have write permission for the file to change its name.
It is not possible to change the names of devices, ".", or" "

Examples:

rename blue purple

rename /D3/user9/test temp

089: air

Directory of. 16:22:53
myfile animals

OS9:rename animals cars
OS9:dir

Directory of. 16:23:22
myfile cars

Copyright 1981 Microware Systems Corporation
Page 7-44

OS-9 OPERATING SYSTEl-1 USER'S MANUAL
Command Descriptions

SAVE

Save memory module(s) on a file

Syntax: SAVE <path> <modname> {<modname>}

Creates a new file and writes a copy of the memory module(s)
specified on to the file. The module name(s) must exist in the
module directory when saved. The new file is given access
permissions for all modes except public write.

Note: SAVE's default directory is the current data directory.
Executable modules should generally be saved in the default
execution directory.

Examples:

save wordcount wcount

save /dl/math-pack add sub mul div

Copyright 1981 Microware Systems Corporation
Page 7-45

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

SETIME

Activate and set system clock

Syntax: SETIME [y,m,d,h,m,s]

This command sets the system date and time, then activates the real
time clock. The date and time can be entered as parameters, or if no
parameters are given, SETIME will issue a prompt. Numbers are one
or two decimal digits using space, colon, semicolon or slash
delimiters. OS-9 system time uses the 24 hour clock, i.e., 1520 is
3:20 PM.

IMPORTANT NOTE: This command must be executed before OS-9 can
perform multitasking operations. If the system does not have a real
time clock this command should still be used to set the date for the
file system •.

SYSTEMS WITH BATTERY BACKED UP CLOCKS: Setime should still be run to
start time-slicing, but only the ~ need be given, the date and
time will be read from the clock.

Examples:

OS9: setime 82,12,22,1545 (Set to: Dec. 12, 1981, 3:45 PM)

059: setime 821222 154500 (Same as above)

OS9: setime 82 (For system with battery-backup clock)

Copyright 1981 Microware Systems Corporation
Page 7-46

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

SETPR

Set Process Priority

Syntax: SETPR <procID> <number>

This command changes the CPU priority of a process. It may only be
used with a process having the user's ID. The process number is a
decimal number in the range of 1 (lowest) to 255. The nprocs" com­
mand can be used to obtain process ID numbers and present oriority.

NOTE: This command does not appear in the CMDS directory as it is
built-in to the SHELL.

For more information see: 5.1, PROCS

Examples:

setpr 8 250 (change process .8 priority to 250)

OS9: procs

Usr t Id

0 3
0 2
0 1

OS9: setpr
OS9: procs

Usr t Id

0 3
0 2
0 1

pty state Mem Primary module
-------- --------------

0 waiting 2 Shell <TERM
0 waiting 2 Shell <TERM
0 wait~ng 1 Sysgo <TERM

3 128

pty state Mem Primary module
-------- --------------

128 active 2 Shell <TERM
0 waiting 2 Shell <TERM
0 waiting 1 Sysgo <TERM

Copyright 1981 Microware Systems Corporation
Page 7-47

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

SLEEP

Suspend process for period of time

Syntax: StEEP <tick count>

This command puts the user's process to "sleep" for a number of
clock ticks. It is generally used to generate time delays or to
"break Up" CPU-intensive jobs. The duration of a tick is system­
dependent but is typically 100 milliseconds on Level One systems and
10 milliseconds on Level Two systems.

A tick count of 1 causes the process to "give up" its current time
slice. A tick count of zero causes the process to sleep
ind~finitely (usually awakened by a signal).

Example:

OS9: sleep 25

Copyright 1981 Microware Systems Corporation
Page 7-48

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

SHELL - OS-9 Command Interpreter

Syntax: SHELL <arglist>

The Shell is OS-9's command interpreter program. It reads data from
its standard input path (the keyboard or a file), and interprets the
data as a sequence of commands. The basic function of the shell is
to initiate and control execution of other OS~9 programs.

The shell reads and interprets one text line at a time from the
standard input path. After interpretation of each line it reads
another until an end-of-file condition occurs, at which time it
terminates itself. A special case is when the shell is called from
another program, in which case it will take the parameter area (rest
of the command line) as its first line of input. If this command
line consists of "built in" commands only, more lines will be read
and processed; otherwise control will return to the calling program
after the single command line is processed.

The rest of this description is a technical specification of the
shell syntax. Use of the Shell is described fully in Chapters 2
and 4 of this manual.

Shell Input Line Formal Syntax:

<pgm line> := <pgm> {<pgm>}
<pgm> ::;:: [<params>] [<name> [<modif>] [<pgm params>] [<modif>]]
{<sep>]

Program Specifications

<name> := <module name>
:= <pathlist>
:= (<pgm list>)

Parameters

<params>::;:: <param) { <delim> <param> }
<delim> := space or comma characters
<param> ::;:: ex <name> [<modif] chain to program specified

:= chd <pathlist> change working directory
:= kill <procID> send abort signal to process
:= setpr<procID> <pty> change process priority
:= chx <pathlist> change execution directory
:= w wait for any process to die
:= p turn "OS9:" prompting on
:= -p turn prompting off
:= t echo input lines to std output
:= -t don't echo input lines

Copyright 1981 Microware Systems Corporation
Page 7-49

<sep>

:= -x . -.- x

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

SHELL (continued)

don't abort on error
abort on error

:= * <text> comment line: not processed

:= i sequential execution separator
:= & concurrent execution separator
:= pipeline separator
:= <cr> end-of-line (sequential execution separator)

Modifiers

<modif>
<mod>

:= <mod> f <delim>
:= < <pathlist>
:= > <pathlist>
:= » <pathlist>
:= # <in~eger>
:= # <integer> K

<mod> }
redirect standard input
redirect standard output
redirect standard error output
set process memory size in pages
set program memory size
in lK increments

copyright 1981 Microware Systems Corporation
Page 7-50

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

TEE

Copy standard input to multiple output paths

Syntax: Tee {<path>}

This command is a filter (see 4.3.3) that copies all text lines from
its standard input path to the standard output path ~ any number
of additiorial output paths whose pathlists are given as parameters.

The example below uses a pipeline and TEE to simultaneously send the
output listing of the IIdirll comrnandto the terminal, printer, and a
disk file:

dir e ! tee Iprinter /dO/dir.listing

The followinq example sends the output of an assembler listing to a
disk file and the printer:

asm pgm.src 1 ! tee pgm.list >/printer

The example below nbroadcasts ll a message to four terminals:

echo WARNING System down in 10 minutes ! tee /tl /t2 It3 /t4

Copyright 1981 Microware Systems Corporation
Page 7-51

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

TMODE

Change terminal operating mode

Syntax: TMODE [.<pathnum>] [<arglist>]

This command is used to display or change the operating parameters
of the user's terminal.

If no arguments are given, the present values for each parameter are
displayed, otherwise, the parameter(s) given in the argument list
are processed. Any number of parameters can be given, and are
separated by spaces or commas. A period and a number can be used to
optlonally specify the path number to be affected. If none is given,
the standard input path is affected.

NOTE: If this command is used in a shell procedure file, the
option ".<path num>" must be used to specify one of the standard
output paths (0, I or 2) to change the terminal's operating charac­
teristics. The change will remain in effect until the path is
clOsed. To effect a permanent change to -a device characteristic,
the device descriptor must be changed.

This command can work only if a path to the file/device has already
been opened. You may alter the device-descriptor to set a device's
initial operating parameter (see the System Programmer's Manual).

upc Upper case only Lower case characters are automatically
converted to upper case.

-upc Upper case and lower case characters permitted (default).

bsb Erase on backspace: backspace characters echoed as a
backspace-space-backspace sequence-(default).

-bsb no erase on backspace: echoes single backspace only

bsl Backspace over line: lines are "deleted" by sending
backspace-space-backspace sequences to erase the same
line (for video terminals) (default).

-bsl No backspace over line: lines are "deleted" by printing
a "new line" sequence (for hard-copy terminals).

echo Input characters "echoed" back to terminal (default)
-echo No echo

If Auto line feed on: line feeds automatically echoed to
terminal or. input and output carriage returns (default).

-If Auto line feed off.

Copyright 1981 Microware Systems Corporation
Page 7-52

OS-9 OPERATING SYSTEi-1 USER IS r-1ANUAL
Command Descriptions

TMODE (Continued)

pause Screen pause on: output suspended upon full screen. See
"pag" parameter for definition ot screen size. Output
can be resumed by typing any key.

-pause Screen pause mode off.

null=n Set null count: number of null ($00) characters
transmitted after carriage returns for return delay.
The number is decimal. default = O.

pag=n Set video display page length to n (decimal) lines.
Used for "pause" mode, see above.

bsp=h Set input backspace character. Numeric value of
character in hexadecimal. Default = 08.

bse=h Set output backspace character. Numeric value of
character in hexadecimal. Default = 08.

del=h Set input delete line character. Numeric value of
character in hexadecimal. Default = 18.

bell=h Set bell (alert) output character. Numeric value of
character in hexadecimal. Default = 07

eor=h Set end-of-record (carriage return) input character.
Numeric value of character in hexadecimal. Default = OD

eof=h Set end-of-file input character. Numeric v?lue of
character in hexadecimal. Default = lB.

type=h ACIA initialization value: sets parity, word size, etc.
Value. in hexadecimal. Default = 1.'1

reprint=h Reprint line character. Numeric value of character
in hexadecimal.

dup=h Duplicate last input line character. Numeric value of
character in hexadecimal.

psc=h Pause character. Numeric value of character in
hexadecimal.

abort=h Abort character (normally control C). Numeric value
of character in hexadecimal.

quit=h Quit character (normally control Q). Numeric value
of character in hexadecimal.

Copyright 1981 Microware Systems Corporation
~ Page 7-53

OS-9 OPERATING SYSTEr1 USER'S MANUAL
Command Descriptions

xon=h DCl resume output character (normally control Q). Numeric
value of character in hexadecimal.

xoff=h DC2 suspend output character (normally control S). Numeric
value of character in hexadecimal.

Examples:

tmode -upc If null=4 bse=lF pause

tmode pag=24 pause bsl -echo bsp=8 bsl=C

tmode xon xoff quit=5

NOTE: If you use TMODE in a procedure file. it will be necessary to
specify one of the standard output paths (.1 or .2) since the
shell's standard input path will have been redirected to the disk
file (TMODE can be used on an SCFMAN-type devices only).

Example:

tmode .1 pag=24 (set lines/page on standard output)

Copyright 1981 Microware Systems Corporation
Page 7-54

OS-9 OPERATING SYSTEM USER1S MANUAL
Command Descriptions

TSMON

Timesharing monitor

Syntax: TSMON [<pathlist>]

This command is used to supervise idle terminals and init~ate the
login sequence in timesharing applications. If a pathlist is given,
standard I/O paths are opened for the device. When a carriage return
is typed, TSMON will automatically call the "LOGIN" command. If the
login fails because the user could not supply a valid user name or
password, it will return to T~MON.

N9te: The LOGIN command and its password file must be present for
TSMON to work correctly (see the LOGIN command description).

Logging Off the System

Most programs will terminate when an end of file character (escape)
is entered as the first character on a command line. This will log
you off of the system and return control to TSMON.

For more information see: 2.5, LOGIN

Examples:

OS9:tsmon /tl&
&Oa5

Copyright 1981 Microware Systems Corporation
Page 7-55

OS-9 OPERATING SYSTEM USER'S MANUAL
comma3d Descriptions

UNLINK

Unlink memory module

Syntax: UNLINK <modname> { <modname>}

Tells OS-9 that the memory module(s) named are no longer needed by
the user. The module(s) mayor may not be destroyed and their
memory reassiqned, depending on if in use by other processes or
user, whether resident in ROr-1. or RAM, etc.

It is good practice to unload modules whenever possible to make most
efficient use of available memory resources.

Warning: never unlink a module you did not load or link to.

For more information see: 5.4, 5.4.1, 5.4.2

Example:

unlink pgml pgmS pgm99

OS9: mdir

Module Directory at 11:26:22
DCB4 DO Dl D2 D3
OS9P2 INIT OS9 lOMAN RBF
SCF ACIA TERM Tl T2
T3 P PIA Sysgo Clock
Shell Tsmon Edit

OS9: unlink edit
OS9: mdir

Module Directory at 11:26:22
DCB4 DO Dl D2 D3
OS9P2 INIT OS9 lOMAN RBF
SCF ACIA TERM Tl T2
T3 P PIA Sysgo Clock
Shell Tsmon

Copyright 1981 Microware Systems Corporation
Page 7-56

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

VERIFY

Verify or update module header and CRC

syntax: VERIFY [UJ .

This command is used to verify that module header parity and CRC
value of one or more modules on a file (standard input) are correct.
Module(s) are read from standard input, and messages will be sent to
the standard error path.

If the U (update) option is specified, the module(s) will be copied
to the standard output path with the module's header parity and CRC
values replaced with the computed values. A message will be
displayed to indicate whether or not the module's values matched
those computed by VERIFY.

If the option is NOT specified, the module will not be copied to
standard output. VERIFY' will only display a message to indicate
whether or not the module's header parity and CRC matched those
which were computed.

Examples:

OS9: verify <EDIT >NEWEDIT

Module's header parity is correct.
Calculated CRC matches module's.

OS9: verify <myprograml >myprogram2

Module's header parity is correct.
CRC does not match.

OS9: verify <myprogram2

Module's header parity is correct.
Calculated CRC matches module's.

Og9: verify u <module >temp

Copyright 1981 Microware Systems Corporation
Page 7-57

OS-9 OPERATING SYSTEM USER'S MANUAL
Command Descriptions

This page is intentionally blank

Copyright 1981 Microware Systems Corporation
Page 7-58

ATTR
BACKUP
BINEX
BUILD
CHD
CHX
CMP
COBBLER
COpy
DATE
DCHECK
DEL
DELDIR
DIR
DISPLAY
DSAVE
DUMP
ECHO
EX
EXBIN
FORMAT
FREE
IDENT
KILL
LINK
LIST
LOAD
LOGTN
MAKDIR
MDIR
MERGE
MFREE
OS9GEN
PRINTERR
PROCS
PWD
RENAME
SAVE
SETIME
SETPR
SLEEP
SHELL
TEE
Tl-10DE
TSMON
UNLINK
VERIFY

OS-9 OPERATING SYSTEM USERS MANUAL
Command Summary

Change File Attributes
Make Disk Backup
Convert Binary to S-Record
Build Text File
Change Working Data Directory
Change Working Execution Directory
File Comparison Utility
Make Bootstrap File
Copy Data
Display System Date and Time
Check Disk File Structure
Delete a File
Delete All Files in a Directory System
Display File Names in a Directory
Display Converted Characters
Generate Procedure File to Copy Files
Formatted File Dump
Echo Text to Output Path
Execute Program as Overlay
Convert S-Record To Binary
Initlalize Disk ~edia
Display Free Space on Device
Print OS-9 module identification
Abort a Process
Link Module Into Memory
List Contents of Disk File
Load Module(s) Into Memory
Timesharing System Log-In
Create Directory File
Display Module Directory
Copy and Combine Files
Display Free System RAM Memory
Build and Link a Bootstrap File
print Full Text Error Messages
Display Processes
Print Working Directory
Change File Name
Save Memory Module(s) on a File
Activate and Set System Clock
Set Process Priority
Suspend Process for Period of Time
OS-9 Command Interpreter
Copy Standard Input to Multiple Output Paths
Change Terminal Operating Mode
Timesharing Monitor
Unlink Memory Module
Verify or Update Module Header and CRC

Copyright 1981 Microware Systems Corporation
Page A-I

7-2
7-3
7-5
7-6
7-7
7-7
7-8
7-9
7-10
7-11
7-12
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-5
7-24
7-26
7-27
7-29
7-30
7-31
7-32
7-33
7-35
7-36
7-37
7-38
7-39
7-41
7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-51
7-52
7-55
7-56
7-57

OS-9 OPERATING SYSTEM USERS ~1ANUAL
Command Summary

This page is intentionally blank

Copyright 1981 Microware Systems Corporation
Page A-2

The error
decimal
generated

HEX DEC

$C8 200

$C9 201

$CA 202

$CB 203

$CC 204

$CD 205

$CE 206

$CF 207

$DO 208

$Dl 209

$D2 210

$D3 211

$D4 212

$D5 213

$D6 214

OS-9 OPERATING SYSTEM USERS MANUAL
Error Codes

OS-9 ERROR CODES

codes are shown in both hexadecimal (first column) and
(second column). Error codes other than those listed are
by programming languages or user programs.

PATH TABLE FULL - The file cannot be opened because
the system path table is currently full.

ILLEGAL PATH NUMBER - Number too large or for
non-existent path.

INTERRUPT POLLING TABLE FULL

ILLEGAL MODE: attempt to pe~form I/O function of which the
device or file is incapable.

DEVICE TABLE FULL - Can't add another device.

ILLEGAL MODULE HEADER - module not loaded because its
sync code, header parity, or CRC is incorrect.

MODULE DIRECTORY FULL - Can't add another module

MEMORY FULL - Level One: not enough contiguous RAM free.
Level Two: process address space full

ILLEGAL SERVICE REQUEST - System call had an
illegal code number.

MODULE BUSY - non-sharable module is in use by
another process.

BOUNDARY ERROR - Memory allocation or deal location
request not on page boundary.

END OF FILE - End of file encountered on read.

RETURNING NON-ALLOCATED MEMORY - attempted to deallocate
memory not previously assigned.

NON-EXISTING SEGMENT - device has damaged file
structure.

NO PERMISSION - file or device attributes do not permit
access requested.

Copyright 1981 Microware Systems Corporation
Page B-1

OS-9 OPERATING SYSTEM USERS MANUAL
Error Codes

$D7 215 BAD PATH NAME - syntax error in pathlist (illegal char­
acter, etc.).

$D8 216

$D9 217

$DA 218

$DB 219

$DD 221

$DF 223

$EO 224

$E2 226

$E3 227

$E4 228

$E5 229

$E6 230

$E7 231

$Ea 232

$E9 233

PATH NAME NOT FOUND - can't find pathlist specified.

SEGMENT LIST FULL - file is too fragmented to
be expanded further.

FILE ALREADY EXISTS - file name already appears
in current directory.

ILLEGAL BLOCK ADDRESS - device's file structure
has been damaged.

MODULE NOT FOUND - request for link to module
not found in directory.

SUICIDE ATTEMPT - request to return memory
where your stack is located.

ILLEGAL PROCESS NUMBER - no such process exists.

NO CHILDREN - can't wait because process has no children.

ILLEGAL SWI CODE - must be 1 to 3.

PROCESS ABORTED - process aborted by signal code 2.

PROCESS TABLE FULL - can't fork now.

ILLEGAL PARAMETER AREA - high and low bounds
passed in fork call are incorrect.

KNOWN MODULE - for internal use only

INCORRECT MODULE CRC - module has bad CRC value

SIGNAL ERROR - receiving process has previous
unprocessed siqnal pending.

$EA 234 NON-EXISTENT MODULE - unable to locate module

$EB 235 BAD NAME - illegal name syntax

$ED 237 RAM FULL - no free system RAM available at this time

$EE 238 UNKNOWN PROCESS ID - incorrect process ID number

$EF 239 NO TASK NUMBER AVAILABLE - all task numbers in use

Copyright 1981 Microware Systems Corporation
Page B-2

OS-9 OPERATING SYSTEM USERS MANUAL
Error Codes

DEVICE DRIVER ERRORS

The followina error codes are generated by I/O device drivers, and
are somewhat hardware dependent. Consult manufacturer's hardware
manual for more details.

$FO 240 UNIT ERROR - device unit does not exist.

$Fl 241 SECTOR ERROR - sector number is out of range.

$F2 242 WRITE PROTECT - device is write protected.

$F3 243 CRC ERROR - CRC error on read or write verify.

$F4 244 READ ERROR - Data transfer error during disk read operat­
ion, or SCF (terminal) input buffer overrun.

$F5 245 WRITE ERROR - hardware error during disk
write operation.

$F6 246 NOT READY - device has "not r~ady" status.

$F7 247 SEEK ERROR - physical seek to non-existent sector.

$F8 248 MEDIA FULL - insufficient free space on media.

$F9 249 WRONG TYPE - attempt to read incompatible media (i.e.
attempt to read double-side disk on single-side drive)

$FA 250 DEVICE BUSY - non-sharable device is in use.

$FB 251 DISK ID CHANGE - Media was changed with files open.

$FC 252 RECORD IS LOCKED-OUT - Another process is accessing the
requested record.

$FD 253 NON-SHARABLE FILE BUSY - Another process is accessing
the requested file.

Copyright 1981 Microware Systems Corporation
Page B-3

OS-9 OPERATING SYSTEM USERS MANUAL
Error Codes

This page is intentionally blank

Copyright 1981 Microware Systems Corporation
Page B-4

MICROWARE®

Microware Systems Corporation

5835 Grand Avenue, 80x 4865, Des Moines, Iowa 50304

5 I 5-279-8844

LIMITED WARRANTY

Microware Systems Corporation ("Microware") warrants its software product(s)
to be free from media or operational defects for a period of ninety (90) days
from the date of shipment. Microware may correct any such defects by
furnishing replacements or corrections, at its option, without cost to the
purchaser.

Microware makes no other warranties, express or implied, of any kind includin'g,
but not limited to, merchantability or fitness of the product(s) for any
particular purpose. It is the responsibility of the purchaser to determine
the suitability and usefulness of the products for any particular application.
Microware shall not be responsible for any damages, direct, indirect, or
consequential, in connection with the use of its product(s). In any event,
Microware's liability shall be limited to the purchase 'price of the product(s).

This warranty specifically excludes product(s) modified by the purchaser, or
if used with equipment not specified by Microware as being suitable for use
with the product(s).

SOFTWARE LICENSE AGREEMENT

Microware,hereby grants a Limited Software License to the purchaser for use
of the software product(s) on a single computer system. Reproduction of the
product(s) in any manner, except for a reasonable number of backup copies,
is expressly prohibited. Distribution of the products, in part or whole, to
any other party constitutes misappropriation of valuable trade secrets and
processes which are property of Microware and/or other parties, and causes
damages far in excess of the value of the copies involved. This license shall
remain in effect until all copies of the product(s) are destroyed by purchaser,
or returned to Microware for disposal.

Acceptance or use of the, product(s) shall be deemed implied consent to the terms
of the license agreement. If the terms of this agreement are not acceptable
to the purchaser, the product(s) can be returned for a full refund within ten
days of the date of shipment, providing that the products are returned in good
condition with all seals intact.

If you have questions concerning this agreement or warranty, or have a problem
with a product, contact Microware by mail at P.O. Box 4865, Des Moines, IA 50304;
by phone at (515) 279-8898; or TWX/Telex at 910-520-2535.

