March 31, 1972

=o0o

Apple

Reference Manual

by Fred Krull
Michael Marcotty

Mary Pickett

James vThomas

Ronald Zeilinger

Computer Science Department

GM 'Research Laboratories
==} General Motors Corporation

APPLE REFERENCE MANUAL

31 MARCH 1972

-3

ABLE_OF _CONTENTS

PREFACE - - L}] - - . - . - ° . L . - . - . - L] L] - L3 - . 9

CHAPTER 1: PROGRAM ELBMENTS . 2 2 o o 2 o « « « o « =« « o 10
INTRODUCTION . ¢ o o 2 o 2 2 s o »a o « = » » =« = » « « 10
LANGUAGE CHARACTER SET &« o o o 2 2 = o« o 2 o« =« » o o« =« 10

Collating S@qUENCEe .+ o + » « s o 2 a s = = 2 s o = « 12
Length of Tdentifiers . v« ¢« 2 ¢« o o o o o « o o o = « 12
ReYWOTAS o o« o o« o o o 2 o s 2 o o o s s o s o « =« = 12
Statement Tdentifiers . « +« ¢ 2« o« o o 2 o o 2 & o o o 13
Attribute Keywords . « o o o« o o 2 o o o = s o o o » 13
Built-in Function NamesS . « « o « = o o o = » « « « » 13
Option KeywordsS ¢« o o « = 2 s o o o = o « = o o =« o « 13
ConditionNsS . o 4 o o o o 2 o 2 s o 2 s o = s o « o » 13
DELIMITERS 2 2 o + o 2 o o s o s s s s« s s s s s =« o « 14
Arithmetic OPEratorS . o« ¢ o o = o o o = » o o = « » 14
Relational OperatoOrS . « 2 2 o o o s s o o o o o o « 15
Bit-sString OperatorsS . « o2 « 2 2 2 = o = o« o o o« « « 15
String NOperator « « o« « « o o« o o o o o o o s o o o « 15
Parentheses . . . « &« « o
Separators and Other Delimiters . « « = « « « « » » .« 16
CCMMENTS & & o o o o o s s s 2 o o o s o« a o« o« o » = « 18
The Use of Blanks and Comments . « 2« o« « = « o » « o 16
FIEMENTARY PROGRAM STRUCTURE . o o o = 2 s o o o o o o 17
Simple Statements . « ¢« o « ¢ « o o 2 s s o o 2 o = o 17
Compound Statements . o « o o o o o o o = o = o = « « 17
PrefiXes .« o o o o o o o o o o o o o o o o« o o o o « 17

CHAPTER 2: PROGRAM STRIUCTURE . v o « o o o o o o « « » « 19

INTRODUCTION e o o o s o o o e o o s s s 2 s s = « = 219
STATIC PROGRAM STRUCTURE 4« o o o o o o« o« « =« o« =« » » » 19
GLOUDS o + o 2 o o o o o s o s a s a o o o« o o » « « 19
Block SLtTUCEULe . o o « o o« o s o o 2 s s = o o « o = 20
Use of the END Statement . ¢« o o o« o o o o o o o o o« 22
DYNAMIC PROGRAM STRUCTURE ©v o o o o o s o o s s s o » « 22
Procedure RefereNCesS .« o « o « s s 2 o a o s o o« » o 23
Subroutine REferencesS « « « o« « o 2 = o « = = = » = « 24

Function References ¢« « « « o o = =
Activation and Termination of Blocks . . « o « « . - 24
The Environment of a Block . o« o o o o « o« = o « « o 26

APPLE REFERENCE MANUAL

ARGUHMENT PASSING . o o o =
Paraneters . o« o o o o o =

Correspondence of Arquments and

Use of Dummy Arguments . .

Entry References as Arguments

Use of the ENTRY Attribute

CHAPTER 3: DATA ELEMENRTS . . .
INTRODUCTION .« o o o o = o =
DATA TYPES .« o o o o o

PROBLEM DATA .+ o o « o o o =
Arithmetic Data « « o« « = o
SCR1e 2 o c o o o o © o o
Precision . ¢ o o o o o = =
Arithmetic Constants . . .

String NData « o o o o » o
Character-String Data . . .
Character-String Constants
Bit-String Data « « « « « =
Bit~String Constants . . o
PROGRAM-CONTROL DATA
Label Data <« o o « = = = o«
Statement-Label Constants .
Statement-Label Variables .
Locator Data .« o <« « o =
Locator Qualification . . .
Tnterrupt Data o
FPile variable . .
Entry Data . . o
ORGANTIZATION . . o
Scalar Ttems . . o
Scalar Variables .
Data Aggregates . .
ATLAYS o « o o o o
Structures . . . o
Arrays of Structures . .
Attributes of Structures
NAMTIHG . & o o o © o o o o =
Simple NamesS . ¢ o o« = o @
Subscripted Names . . < o .

] - ® -

® e ° -

[] [) ®]

L] L] L] L] L]

Qualified Names and Ambiguous
Subscripted Qualified Names .

CHAPTER 4: DATA MANIPULATION .
INTRODUCTION . o ¢ ¢ o o o &

o

L] L] ° L] ° [

References

Paraneters

o © o o & &

L]

e o e 6 ¢ @

® 6 & ¢ ¢ & O o o o

¢ © o & & e ©6 © o6 e o &

3

[] 1] L[] [] [. .] [} L[] L] (] [] [L] L[] L] L[]

. . . [} L] L[] [] . [L[]

¢ 8 & o 8 ¢ 8 & @

s & o & e

e & & 0 b L]

31

o L[] . L[] ° . L[] L] . L] L] L[]

e o & & ¥

® o ¢ 0

MARCH 1972
e o o o 27
e o o o 28
- L d - L 29
- - » « 30
e .« o o N
e o o o 32
e « = « 33
e « o « 33
e o o o 33
® L d £l * 33
e o = o 34
« o o o« 34
e o o o 34
e o o o 36
e o » o 36
e s o o 37
e o - « 37
e o « » 38
- = « = 38
e o » o 38
e o o o 38
« o o o 38
e o« o <« 39
e « « « 39
e o o o U0
e e o« . W1
e o o o U1
e o o o U2
e o o o 43
e o o o 43
e = - o U3
e o o o U3
e o o o 43
e o o« o 484
e o o o U45
e o - o U6
e o o o U6
e o o o U6
e o o o U6
e o - o W7
«+ o = o« 50
e o o o 52
e s s o 52

APPLE REFERENCE MANUAL

31 MARCH 1972

EXPRESSTONS ¢ o o « o = = o » o s o o o s o s s o o« o & 52
Arithmetic operations .« « ¢ ¢ v ¢ o o o « = o o o « » 54
Descriptor ATithmetic ¢ . & ¢ o o o « o « =« o o« =« « « 55
Relational OperatioNS o « < o« « o o « o = o o« o o« « = 56
Bit-string Operations . . ¢ &« ¢ a4 &« & o o 2 « « « o« « 57
String Operations .« o o« ¢ o o o o s s = 2 o = o« = » « 58

EVALNATION OF FXPRESSIONS . 2 2 ¢ 2 o = s o = o = = s« = 59
Priority Of OperatorS ¢ « = « « « « « « o a o = o o« « 59
Use of ParentheSeS . « ¢ o o 2 2 2 = o o« 2 o« = =« » « 60
Examrle of Fxpression Evalunaticn . . ¢ o o o « « « « 60

ARRAY EXPRESSIONS ¢ & 4o o o o o o s o e o o s s o« « o B3
Operations between Arrays and Scalars e« o o s » o a 2 B3
Operations bhetween ATCAYS « + o o o o o o « o« o = o« » bU

DATA CONVERSION ¢ 2 2 o o o = o 2 s 2 s a s o » s o a o« b5

ARITHMETTC CONVERSION . 2 ¢ o o 5 o s s s o » o s = o« » 65
Results of Arithmetic Operations . . « ¢« « « « « « o« 66

TYPE CONVERSION ¢ v o o o = = 2 2 o o o a s s s » s o o« 67
1. Arithmetic Conversion . « o ¢ o o « « « =« = « o » 68
2. Character-string to Arithmetic . . « . . « 68
3., Conversions to Character-string . « « ¢« « « « » o 69
4, Bit-string to Arithmetic . . ¢« 2 o« o« 2 o o « « « » H9
5. Arithmetic to Bit-String . . . « ¢ o o =« = « « o « 69
6. Offset to POointer o« . o o o o o o o = = o o o o« o 69
7. Pointer to Offset . o 4 ¢ o o o o o 2 » s o« o o o 10
8. Descriptor to POInter . « « o o = 2 2 = o o « « « 10
9. Pointer to NescCriptor . . « ¢ « 2« o o o » » = = » 10
10. Offset t0 DesSCLiIptOr .+ ¢ « o« « o = = o = o =« « o 10
11. Descriptor to O0ffset . . . ¢ ¢ ¢ ¢ o e o o o « = 10
12. Arithmetic to Locator . e e e s = 2 s e s « e o 11
13. Character-string to Fntry Value+ « o« o« « o 711

CHAPTRER & —— DATA DESCRIPTION . . ¢« o o o s o o« = s o« o« « 12
INTRODUCTION & o o o o o = o o s o o o s s s s = o = « 12
DECLARATYONS e o s 3 e o s s s = e s e s s e s e a o o« 12
EXPLICIT DECLARATTIONS o o e o o = o o » s o =« o« s o« o« o 13

Label PrefixXesS .. o ¢ o s o« o s s s s s o o s o o o » 14
Parameters .« ¢ o« « » = s » s =«
CONTEXTUAL DECLARATIONS o 2 o « @
SCOPE OF DECLARATIONS . o o o s
DEFAULT ATTRIBUTES . o o o » = =
LIST OF ATTRIBUTES . & o o = o 2 s » o« = « s = s « o« = 80
AUTOMATIC, STATIC, REGISTER, and BASED . . . « . . . 81
BINARY and DECIMAL . o o o o « o o s o s =« o« » o o« « 88

- - L] - . o - - -] 7u

- - - . L3 - - - » ° 7“

75

o & & 0
(]
L]
[}
L]
L]
L}
.
.
L]
.

BIT and CHARACTER ® e ° - . . - - . - - - - o . £ - 89
BUIL‘?IN - -] . ® ° - L] - - - - - - - £ » - o - - . 90

APPLE REFERENCE MANUAL

31 MARCH 1972

CHARACTER . . s o = o 91

CONSTANT & & o o o o o o a © a » = o a s o s s a » » 91
CONDITION and EVENT ¢ o ¢ o « @ o = =2 o s s » » » o o 92
DECIMAL v o o o o o = o o o s s s o s s o s = s o » o 92
DESCRIPTOR ¢ ¢ o « o o = = o = o s s »a » s » = « » o 92
DimenNSioN « o « = o o« 2 o o s 2 o » s o o« s » » =« » « 93
ENTITY . o o » o o s » o = o s s s s s s« » = o » » « 94
FNTRY - L] - - * - o ® * - * - ® ® £] *® -] L] - L d - » ® 95
pvaT ® -] E] k-] - L] L] - - * - * L] * -» - E d - L] - 96
EXTERNAL and INTERN%L e e s e s s 8 s 8 s s e = o =« « 97
FILE -2 L] L] L] - - - - L] L] - L] *® - - - L] L] - - » - - £) 97
FILE_SET o o o o o o = o o s o a s o = s s« o o « « » 98
FIXED ANd FLOAT &+ o « o o o e s » =« s s s s s = o « « 99
INITIAL L o » [] *® o - - * L] L] L] E J - - L] - - - L * L] ® q9
LABEL 2 o o o o © 2 o s o s o o 2 o« =« » o « s s o 2102
LIKE &« o 2 o c o o @ e o o o o e s o o s = o = o <103
OFFSET, POINTER, and DESCRIPTOR e s s o o a s = o = <104
REFER - L] ® £] - - - - L] - - - ® L] - - - L] - * - L] - .105
RETURNS @ v v o « o o = o o o « = 2 « o « o « o o =« <106
SET v v o o o = o s s o a s =« » » s s s » » o » « = <107
VARIABLE E] L] 9 - £] L] L d L] » - * - - - - - L] - - - £ 4 .108
VARYING o o « o o o = o @ s s =« o o« s o s o« s =« = « <108
CHAPTER 6: FILE HANDLING .+ « o o © o o = « o« = « o « = o109
TNTRODUCTION o o « o o » o % o = o o o s s o » s = » =109
FILES 2 «o o o © o s o s s s s » » s« s = = a s s o =» o 2109
Sequential Files . . 2 o o 2 « o o = s =2 = = 2 o « =110
Structured PileS . v o « o o o = o s 5 s s o = = = =111
Pile VariablesS . o o ¢ o o o o © s s s o = o « = » o111
SEQUENTIAL FILE HANDLING . e s o 2 s o s o s s« = = =113
NNse of GET and POT Statements e o s s a s s s 2 = « 2113
Data Specification . o o 2 ¢ o o o = s « =« = o » « o114
Data LISES o 2 o o« o 2 o = 2 = « o « s « o » o =« » <115
Format LIStS o o o o o = s o o o o s s o o s = o s o116
Data FOrpat=TtemsS . » o « o = 2 « 2 o 2 « s « »« « o =118
Control Format=JItemS . v o s 2 © o o s o o » o s = 125
STRUCTURED FILE HANDLING =« o o o o o o = o « » s = s 127
Storage Managefent . . ¢ o o o o o o 2 o s & o = o 2127
FRtitieS o o o ¢ o o o o s o = s o o s s » o = « « =128
SEES & o o 6 e o e o2 o 4 + 8 s e o s o s = s s = o o129
Creating and Deleting Associations . . . « « « - . 131
Searching a Set o o o & o o o o o o o o« o« s « s o o« 2132
Associative Data Built-In Functions . « + « « « « « o133

CHAPTER 7 - INTERRUPT HANDLING . . ¢ + & o « o o o = « o134

31 MARCH 1972

INTRODUCTION

CONDITIONS
System Conditions . . . & ¢ o & o o« o &
Programner-Defined Conditions

EVENTS

APPLE

- - . - - - L - L3 - . L] - .

- - - . ° - L - . . - ® - L]

. . . - - - L] - - - - - . -

Event DeclarationNS . o« « o o s o s o
Fvent States . & ¢ ¢ ¢ o o o o o o o =
Completion State . . o ¢« o ¢ o o o o @
Delay State2 . . o o o« 2 o o o » s o o
Use of the ONPTR Built-in Function . .
USE OF INTERRUPT~-HANTCLING STATEMENTS . .

Use
OUse
Use
Use
Use

CHAPTER

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

of
of
of
of
of

8

the
the
the
the
the

ON Statement . . . <« « ¢ « &
REVERT Statement
SIGNAL Statement . . . « . &
WATIT Statement « o « « o «
LOCX and UNLOCK Statements .

STATEMENTS o o« ¢ o o o o o = o =
INTRODUCTION
CLASSIFICATION OF STATEMENTS .« o o o« o
ALLOCATE Statement . + « ¢ o o o o
Assignment Statement
BEGIN statement . &« o o o o o o o
CALL statement . . o ¢ ¢ o ¢ o o
CRFATE statement . « o o ¢ o o o o
DECLARE statement . . ¢ o o« o o o =«
DELETE statement . « o o o « o o o
DO statement . <« o ¢ ¢ ¢ o 2 o o o
END statement . o« ¢ « ¢ o ¢ o o o o
FNTRY statement . ¢« ¢ o o o o o = o«
FXTIT statement . o« o« o o o o o o @
FIND Statement . ¢ o 2« 2 o o = o =
FOR EACH statement e e o o s o o o
FREE statement . o o 4 o o o o = =«
GET Statement . . o« o ¢ = o o o = =
GO TO statement &« ¢ o« o 2 o o o = =«
IP statement . ¢ o ¢ o o o o = o o
INSERT statement . .« « o o o « o o
LET statement « ¢« o« o o o o o » « =
LOCK statement . . ¢ o o o ¢ o o @
nuall statement . ¢ ¢ o e o o @ = o
ON statement . . 2 o « o o o » o =
PROCEDURE statement . . o « « « « o«
PUOT statement <« ¢« ¢ o o o ¢ = o o o
REMOVE statement . o« o« o « o o o »

- - . . . L] - - . - ° - - -

REFERENCE

MANUAL

- <134
. <134
- 134
. 135
. <135
. <135
.« <1386
. 136
. <137
- 137
. <138
. -138
. <11
. <142
. <142
« «143

® 01““
. 1404
. <44
« <145
« 150
- <154
- .1Su
« <156
* .156
* .159
. »159
. <164
. <164
. <165
. +166
- 169
. < 1M
« <173
- 173
.« 175
. <177
- 178
. <179
. »180
. 180
. 182
. 183
. 183

APPLE REFERENCE MANUAL

31 MARCH 1972

The RETURN statement . 185

The REVERT statement . « « o o o o o o o « e« o « 2185
The SIGNAL statement . o o « o o o « o = o o = « = 186
The UNLOCK statement . ¢« « +« o o s o o = o « = » « 187
The WAIT statement . . « =« o o « = s » = » « » s » =188
APPENDIX 1 - BUILT-IN FUNCTIONS, PROCEDURES, AND

PSEGDO"VARI ABLES o ° - o ® » - ° » - o » ™ . - ®» @ . . .190
INTRODUCTION ¢ o o o o = s o« o = o o = o s« o s o o = 2190
ARITHMETTIC PUNCTIONS o ¢ o o o o 2 o o s« s o« o = o » =192
BBS(X) o o o o o o o o o o o o« s o o o s o s = s » 2192
CEIL(X) <« o o s 2 2 s & s 2 o 2 s s o s o o » @« =« = =192
FLOOR(X) = « o o o o = o o o o o o « o o o = o » « 2192
MOD (X, Q) ¢ o o o o o = o o = o o o o o o o o o « « 2192
ARRAY FUNCTIONS e ¢ o o 5 o = o o o » o o« o« » » o s o =192
DIM(3,) ¢ « o o o s o o« s s s o 2 s » s s s =« « = »192
HBOUND (a.' d) *» ° e ® ® e 3 = o e ® ® e 9 3 ° o & .192
1|BOUND (a, a) o o s & o = @ * o e e s o * e = e e s 193
ASSOCIATIVE DATA FUNCTIONS &+ o o o o s o o 2 o o « « 2193
ALL - [] * - * - » L d - - L] L] - . - * - - L] - - - L] * .193
APLESET (s) e o o s o o s s 8 s s @ ® s s o e« s s = o193
APLEVAR (s) e ° o s o ® @ e s s s = @ s s e s = s = 193
APLINDX (e, s, C) e ® s o ®» ® @ @ s s = s o s s = = <198
APLNUMB(Sy C) « o o « 2 o 2 o o o o o s o = « « =« = 194
APLOWNI (e, s, C) e © s s o s e = o s = = s s = e = 2194
APLOWRS (€, C;, Q) o o o o o o o 2 o o« o a2 s s s o « 194
APLSNAM({e, i, §) o o o o o o o « 2 o « o« a = =« « « «195
APLTYPEL{2) =« 2 o o o o o s o = o s s o o » o =« =« « =185
CONVERSTION FUNCTIONS . 2 o o 2 o e s e s o = « o « =« o195
BYTF(X[s, 11) o o o o o o 2 o 2 o « o« o« o« = « = o« « 2195
CHAR (VI F 13) ® o©o ® ®» o5 e » = » - s ° ® ® ®» o 3 @ © -196
ENTRY (C) - . s o e ® = = o . ° * @ . e e . o * e .196
FIXEDA(X[) P]) ¢ o o o o o 2 o o o o o o o« o« o s s o 2197
FLOAT (X[, P]) o o © o o = o =« o o o« o = o = o « « =197
HEX ([, [, 170) =« o o o « = o o o o s o o =« = o « 197
OFFSET(Py £) « o o o ¢ o s o s o o o« o = o » = =« =« =198
POINTER(O, £) o o o e o 2 o o o o s o a o« = » = » « 2198
INTERRUPT HAWDLING FPUNCTIONS &« o 2 o « s » = o« o =« o« =198
COMPLETION () « o o o s s = = = s = o« = o o« « « « « <198
DELAY (e} a © © 8 o » s s s ®w e e 3 s s = o e s = » =198
ONFILE &2 « 2 o 2 o 2 s o s s = = o« s s s s a o« o « =198
ONLOC 4 o o o o 2 s o o o o » = o« o s o s o« = = o « 199
ONPTR {e) e o = o e o ® o s o e » s o s s s s s e s =199
MATHEMATICAL PONCTIONS . & ¢ o « o s o« o » o« = o = « 2199
ATAN(X) <o ¢ o o = 2 o s s s o o » » o s s » s » » » 199

APPLE REFERENCE MANUAL

31 MARCH 1972

COS (x) .199

LOG (x) e © © o © = s 3 s @ = s s e s s s a s e e « 190
SIN{X) e « o o o o o= a » s » s a o« o o« o« s o « « » 199
SORT(X) o o o o » 2 o o © @ s o« a s s s s » s« « = « 2200
TAN (x) e« o o o o 8 v a s s s s s s s o s s s s s = #2200
STNRAGE MANAGEMENT FUNCTIONS . 2 o o o o o s o = o o 2200
ADDR(V) 2 o o o o 2 2 = s s 2 2 » » = s s o « « « « 200
DESCR(L, @) o 2 o o a s s o o &« a s a o o = o o« =« « 2200
PILE(G) o o o o o a o a o =« a s« o o s o« « =« o s « o« 200
NOULL & o o o o s o 2 a o o o » s o« s« » « s » » « = 2200
STRING HANDLING FUNCTIONS o o o o 2 o o« o o o » =« o« » 201
INDEX{Sy P} o o o 2 o o o s o s s s a « » s » = » » «201
LENGTH({S) « s o o a a o © = 2 s 2 a s s« « = s s 2 « 2201
RAL(D) = &« o o o o o o = 2 s o 2 o o 2 o« o o o « = 2201
SUBSTR(S, L[,) o « ¢ o 2 s o« o o o o « 2 o 2 = « 2201

MISCRLLANFOUS FUNCTTIONS o o o o « s o o ¢ s o o » o o 202
DATE & o o o © 2 o » » s s © = » s » s o« o« o« » o« o 2202
INLIN®(f, £, 5, tY, INLINE(f, g, X, @3, VY, b, 2, ©) .202
TIME & o o o o a 2 s o s a s s s« o s o o« « o = o = 2204

APPENDIX 2 - CONDITIONS . . .205

INTRODIHCTION . o o o o s » o » o = o = « o = o« o o« o 205
CONVERSION Condition o o o o o o s = s s s« = o » o« « 205
ENDFILE Condition o« o o o s o o s o = o s o o o o « » 2206
ERROR Condition o o o o o e« o 5 o« o o o s s o« =« » s o« <206
FIND Condition o o s o = s « o o a o s o o« s o a o « 2206
FINTSH Condition o o o 2 2 = a s ® » = s » o » o « = 2207
OVERFLOW Condition . 2 o o o o o o o o« o o = o « o o 207
Programmer-defined Condition . . ¢ o o o « 2 « & o = 2207
STORAGE Condition o ¢ o o o = © o © = s o o e . . .208

.208
208
.208%

UNDEFINEDFILE Condition o o o © o o o s o o =
UNDERPLOW Condition . o o o o o o o o o o o =
ZEFODIV]:DE COﬂdi tiﬂ“ ® ® - - o @ - ® ® L ° -

¢« o6 & &
L I]
s o

e o & o

APPENDIX 3 - KEYWORDS, ABBREVIATIONS AND SYNONYMS . . .210
KEYWORD ABBREVIATIONS ¢ o o o o o o » o o o o o =« =« » 2210
KRYWORD SYNONYMS . . 4 o o o o« = o o = o = o = « o = 2213

APPENDIX 4 ~ DATA CHARACTER SET o 2 o o o o « o o o o » 2214
APPENDIX 5 -~ COMPILE~TIMF CONTROLS =« o o o o o o s o « <217
APPENDIX 6 - NOTATION © o o« o o o = o = s » » o o o =« » 219

APPENDIX 7 = STRUCTURE HAPPING . < o = o = o o o o o =« 221

APPENDIX 8 == LITERBLLY ¢ o o = » o = = o » o 2 2 o =« o «223

APPLE REFERENCE MANUAL

31 MARCH 1972

APPLE REFERENCE MANUAL

31 MARCH 1972

PREFACE

This manual serves as a reference to the Apple Programming
Lancuage as implemented for the STAR computer system. The
Apple Lanquage itself is a dialect of PL/I; that 1is, Apple
is a superset of a subset of PL/I.

In drafting the specifications for Apple, the rules of PL/I
have been closely followed. The deviations from PL/I have
been in the main to disallow certain operations, statements,
data types, etc. The rules of precision have been changed
to take into account the architecture of the STAR computer.
Thus, as 1long as a program was written within the defined
subset of PL/I, it should compile correctly.

The supersetting of the language has been to provide support
for systems programming and to integrate the APL (Associa-
tive Programming Language) statements directly into the
lanquage. Programmers may declare and reference the new
storage class REGISTER and cause any STAR machine instruc-
tion to be emitted through use of the INLINE built-in
procedure. The associative data manipulation statements
FIND, FOR EACH, INSERT, REMOVE, and LET have been added to
the language (CREATE and DELETF are synonymous with ALLOCATE
and FREE). These statements may be used to manipulate two
new data constructs, ENTITY and SET.

The programmer who is preparing to use Apple should give
careful attention to the specifications contained in this
manual. Particular attention should bhe given to Chapters 3,
4, and 5, where the rules differ considerably from PL/I.

Preface 9

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 1: PROGRAM ELEMENTS

INTRODUCTION

An Apple program can be regarded simply as a string of
characters. Chapter 1 defines the elements of the language
in terms of character elements and describes special signi-
ficance that has been assigned to particular characters or
combinations of characters.

LANGUAGE CHARACTER _SET

The Apple language is based on a 60-character set. The
character set is composed of alphabetic characters, digits,
and special characters. There are 29 alphabetic characters,
the letters A through Z and three additional characters that
are defined as and treated as alphabetic characters. These
characters and the graphics by which they are represented
are:

[o v K
; Nape l, Graphic E
] i 3
] Number symbol | ¥]
: At symbol ; @ ;
i Dollar symbol i $ i
L N '

There are ten digits. Decimal digits are the digits 0
through 9. A binary digit (bit) is either a 0 or a 1. The
hexadecimal digits include the ten decimal digits and the
alphabetic characters A through F. An alphameric character
is either an alphabetic character or a decimal digit. There
are 21 special characters. These characters and the gra-

10 Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

phics by which they are represented in this manual are:

Name

Blank

Equal or Assignment symbol
Plus

Minus

Asterisk or Multiply symbol
Slash or Divide symbol

Left Parenthesis

Right Parenthesis

Comma

Decimal Point or Period
Single guotation mark

"

Double gquotation mark

Semicolon

Colon

Not symbol

.

Or symbol

And symbol
Greater-than symbol
Less-than symbol
Break character

Percent symbol

[]
v icume ik - A o S —— W GNP . G e W — o s ——" - i — —— —— — — G —— W - — — —— s W v D — o o}

|
]
|
|
I
|
|
]
!
|
|
]
{
!
I
|
|
|
|
|
1
|
|
!
!
|
|
|
!
|
|
|
!
|
|
]
|
|
1
|
|
|
|
|
1

PO s e T i o h nay h AR i D Dty i — s il oty D) D dd S D vy O T — o V_— - o smad W —

Chapter 1 -- Programr Elements 11

APPLE REFERENCE MANUAL

31 MARCH 1972

Some keywords may be written in an abbreviated form; these
are listed in Appendix 3.

Statement Tdentifiers

A statement identifier is a sequence of one or more keywords
used to define the function of a statement (see "Simple
Statements" below).

Examples:
GO TO
DECLARE
ALLOCATE

Attribute Keyvwords

Attribute keywords are used for the specification of some
attributes.

Examples:

FLOAT
CHARACTER

Built-in Function Names

A built-in function name is a keyword that is the name of an

algorithm provided by the 1language and accessible to the

programnmer (see "Function References"™ in Chapter 2).
Examples:

LENGTH
DATE

Option_ Keywords

An option keyvword is used to influence the execution of a
statement.

Examples:

SET
REMOTE

Conditions

A condition is a keyword used in the ON, SIGNAL, and REVERT
statements. The programmer may specify special action on

Chapter 1 -- Program Elements 13

APPLE REFERENCE MANUAL

31 MARCH 1972

occurence of a condition (see Chapter 7).

Examples:
OVERFLOW
ZERODIVIDE
DELIMITERS

Certain single characters and certain combinations of chara-
cters are used as delimiters and fall into six classes:

arithmetic operators

relational operators

bit-string operators

string operators

parentheses

separators and other delimiters

Arithmetic_Operators

The arithmetic operators are:

+ denoting addition or prefix plus

- denoting subtraction or prefix minus
* denoting multiplication

/ denoting division

*% denoting exponentiation

14 Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Relational Operator

The relational operators are:
> denoting greater than
-> denoting not greater than

>= denoting greater than or equal to

denoting equal to

-= denoting not equal to
<= denoting less than or equal to
< denoting less than

=< denoting not less than

Bit-string_Operators

The bit-string operators are:

- denoting not
& denoting and
! denoting or

String Operator

The string-operator is:

L denoting concatenation
Parentheses
Parentheses are used in expressions, for enclosing lists,
and for specifying information associated with various
keywords.

{ left parenthesis

) right parenthesis

Chapter 1 -- Program Elements 15

APPLE REFERENCE MANUAL

31 MARCH 1972

Separators_and Other Delimiters

Nape Graphic Use

comma 0 separates elements of a list
semicolon : terminates statements
assignment = used in assignment, DO, FIND,

LET, and FOR EACH statements

colon : used in label prefixes and in
bound specifications
blank used as a separator
period . separates items in qualified
names
arrow -> gualifies a reference to a
based variable
percent % designates compiler control
statements (see Appendix 5 for
description)
COMMENTS
General format:
comment :3= /% comment-string %/

where Ycomment-string” contains any of the characters of the
language character set except the combination ®"¥/*,

Comments are used for documentation only and do not parti-
cipate in the execution of a program.

The_Use of Blanks and_Comments

Identifiers, constants (except character-string constants),
and composite operators (e.g., !!) may not contain blanks.
Identifiers, constants, and keywords may not be immediately
adjacent. They must be separated by an operator, assignment
symbol, arrow, parenthesis, colon, semicolon, comma, period,
blank, or comment. Additional intervening blanks or com-
ments are always permitted. Blanks are optional between
keywords of the statement identifiers GO TO and FOR EACH.

16 Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

ELEMENTARY PROGRAM STRUCTURE

An Apple program is constructed from basic program elements
called statements. There are two types of statements,
simple and compound. Statements are grouped into larger
program elements, the gqroup and the block. These are
discussed in Chapter 2.

Simple Statements

General format:
simple-statement ::=[[statement-identifier] statement-body];

The "statement-identifier®, if it appears as a keyword,
characterizes the kind of statement. If it does not appear,
and the "statement-body" appears, then the statement 1is an
assignment__statement. If only the semicolon appears, the
statement is a null statement.

Compound Statements

A compound statement is a statement that contains other
progranm elements. There are two types of compound
statements:

The IF compound statement

The ON compound statement
The final statement contained in a compound statement is a
simple statement and thus has a terminal semicolon. Hence
the compound statement will automatically be +terminated by

this semicolon.

Each Apple statement is described in the alphabetic list of
statements in Chapter 8.

Prefixes

Statements may be labeled to permit reference to then
through the use of label prefixes.

General format:
label-prefix ::= identifier :
Label-prefix identifiers are called labels and may be used

to refer to the statement that they prefix. Labels appear-
ing before PROCEDURE and ENTRY statements are special cases

Chapter 1 -- Program Elements 17

APPLE REFERENCE MANUAL

31 MARCH 1972

and are known as entry names (see "Procedure References" in
Chapter 2). A1l other labels are called statement_ labels.
A name appearing before a statement is said to be explicitly
declared with the attribute of a label constant by virtue of
its appearance as a label prefix. Only one label prefix may
precede a single statement, and the label prefix may not be

subscripted.

18 Chapter 1 -- Program Flements

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 2: PROGRAM STRUCTURE

INTRODUCTION

A program 1is composed of one or more separately compiled
procedures. At execute time, those procedures that are
required to solve a particular problem are dynamically
{i.e., at first reference) linked together. Thus, the
collection of procedures used to solve any problem may be
data dependent and may vary from one execution to the next.

This chapter describes the following:
1. The static_structure of a program as specified at

2. The dynamic_structure of a program that is estab-
lished at execute tinme.

3. The rules by which data may be passed between
procedures at execute time.

STATIC_PROGRAM STRUCTURE

A procedure is made up of basic elements called statements.
A statement may be either a simple statement or a compound
statement. Statements may be collected together at compile
time into larger units, called groups and blocks.
Groups
A group 1is a collection of one or more statements that may
be considered as a single statement for the purposes of
control.
General format:
group 3::=

[label:] group-statement [statement]... END [label];
group-statement ::= do-statement | for-each-statement
The 1label following the END is the label of the group-
statement (see "Use of the END statement™ in this chapter).

Chapter 2 -- Program Structure 19

APPLE REFERENCE MANUAL

31 MARCH 1972

The group-statement may specify iteration or selection (see
"The DO statement™ and "The FOR EACH statement™ in Chapter
8) .

Fach "statement" in the body of the group may be a
simple-statement, compound-statement, group, or begin-block.

Block Structure

A block is a <collection of statements that defines the
program region (or scope) throughout which an identifier is
established as a name with an associated set of attributes.
A block is also used for control purposes.

There are two kinds of blocks, begin blocks and procedure
blocks.

General formats:
begin-block ::=

[label:] begin-statement [statement]}... END [label];
procedure-block ::=

label: procedure-statement [statement]... END [labell];

Fach "statement" in the body of a begin-block or procedure-
block may be a simple-statement, compound-statement, group,
begin-block, or procedure-block.

The label following FND is the label of the corresponding
BEGIN statement or PROCEDURE statement. While the label of
the BEGIN statement is optional, the PROCEDURE statement
must have a label. The label required for the PROCEDURE
statement serves as the procedure_name. The procedure name
gives a means of activating the procedure at its primary
entry_point. Secondary entry points can also be defined for
a procedure by the use of the ENTRY statenment.

Although the begin block and the procedure have a physical
resemblance and play the same role in delimiting scope of
names (see "Scope of Declarations®™ in Chapter 5) and
defining allocation and freeing of storage {see "Activation
and Termination of Blocks" in this chapter), they differ in
an important functional respect. A begin block, like a
single statement, is activated by normal sequential flow
(except when used as an on-unit), and it can appear wherever
a single statement can appear. A procedure can only be
activated remotely by CALL statements or by function

20 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

references. When a program containing a procedure is
executed, control passes around the procedure, from the
statement before the PROCEDURE statement to the statement
after the END statement of the procedure.

As the above definition of block implies, any block A can
include another block B, but partial overlap is not poss-
ible. Block B must be completely included in block A. Such
nesting may be specified to any depth. A procedure that is
not included 1in any other block 1is called an external
procedure. 1A procedure included 1in some other block is
called an internal procedure. Every begin block must bhe
included in some other block. Hence, the only external
blocks are external procedures. All of the text of a begin
block except the label of the BEGIN statement of the block
is said to be contained_in the block. All of the text of a
procedure except the entry names of the procedure is said to
be contained in the procedure. That part of the text of a
block B that is contained in block B, but not contained in
any other block contained in B, is said to be internal to
block B. The entry names of an external procedure are not
internal to any procedure and are called external nanmes.

Example:

As
PROCEDURE:
statement~1

B:

BEGIN; —————
statement-2 |
statement-3 |

END Bg ——eed

statement-4

Cs

PROCFEDURE: —_—
statement~5

X2

ENTRY;
D:
BEGIN; —

statement-6
statement-7
END Dg —
statement-8
END C; -
statement-9
END A

b e e e il —— - —— . Soonh
Bl o i A G D aune W S AN W D M D A} W —— v o

Chapter 2 -- Program Structure 21

APPLE REFERENCE HMANUAL

31 MARCH 1972

In this example, statements 1 through 9 are 1labeled or
unlabeled simple or compound statements or groups. As the
brackets on the right indicate, block A contains blocks B
and €, and block C contains block D. Block A is an external
procedure, The procedure name is A, which is an external
name and is the only entry name for the procedure. X is an
entry name corresponding to a secondary entry point for
procedure C. Blocks B and D are begin blocks. Block C is
an internal procedure.

Use of the END Statement

The END statement may contain an optional label. Tf the
optional label following END is not used, the END statement
terminates that unterminated dgroup or block headed by the
DO, FOR EACH, BEGIN, or PROCEDURE statement that physically
precedes, and appears closest to, the END statement. If a
label is used following an END statement, the action is
exactly the same except that a check 1is made that the
statement at the head of the block or group being terminated
is labeled with the same label as is specified with the END
statement. If a wmatch is not found, an error message is
generated.

DYNAMIC PROGRAM STRUCTURE

A begin block is said to be activated when control passes
through the BEGIN statement for the block. A procedure
block is said to be activated when the procedure is invoked
at any one of its entry points. A& block may be active
during certain time intervals of the execution of a program.
A block is active if it has beemn activated and 1is not yet
terminated, A procedure-block may be either ar internal
procedure or an external procedure. Internal procedure
references are resolved at compile time, wvhile external
procedure references are resolved at execute time. If an
internal procedure is referenced, it must be intermnal to a
block that is active at the time of isvocation.

Fach procedure invocation implies the activation of a new
block that is a descendent of a previous block. However,
the order or sequence of invocation is a function of the
problem and may dynamically change from one execution to the
next. At the invocation of a new block, gemerations of data
items may be created. These data items may be referenced in
descendent blocks subject to the rules of scope as described
in Chapter 5. Data items declared with the STATIC attribute
will be allocated and initialized once at the time the first
block in which they are declared is activated.

22 Chapter 2 -~ Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

Procedure References

At any point 1in a program where an entry point of a given
procedure is known, either directly through its name or
indirectly through the use of an entry variable, and the
procedure is internal to an active block, the procedure may
be invoked. A reference to a procedure has the form:

entry-expression [(argument [, arqumentl...)]
vhere "entry-expression" may be:

1. an entry coanstant
2. an entry variable

Fach entry constant or variable must he declared, either
through its appearance as a label prefix in a PROCEDURE or
ENTRY statement or through the use of the ENTRY attribute in
a DECLARE statement (see "ENTRY" in Chapter 5). Either
declaration indicates the number (possibly =zero) and data
types of the parameters for the procedure. The number and
data types of the arquments in the procedure reference must
match the number and data types of the parameters indicated
in the declaration. The matching is checked at compile
time. When a procedure reference invokes a procedure, each
arqument specified in the reference is associated with its
corresponding parameter 1in the list for the denoted entry
point, and control 1is passed to the ©procedure at the
referenced entry point.

There are two distinct uses of procedures, determined by one
of two contexts in which a procedure reference may appear:

1. A procedure reference may appear following the
keyword CALL in a CALL statement. In this case,
the procedure 1is invoked as a subroutine_ proce-
dure, or simply a subroutine.

2. A procedure reference may appear as an operand in
an expression. In this case, the reference is
said to be a function reference, and the procedure
is invoked as a function.

Any procedure may be invoked as either a function or a
subroutine. However, the RETURN statement in a procedure
invoked as a function must specify a return value. If a
procedure is invoked as a subroutine, any value given in a
RETURN statement is ignored. (See "The RETURN Statement™ in
Chapter 8.)

Chapter 2 -- Program Structure 23

APPLE REFERENCE HANUAL

317 MARCH 1972

Subroutine References

A subroutine reference transfers control to an entry point
of a procedure and activates the procedure. Activation of
the subroutine may be terminated by execution of a RETURN
statement or by the END statement of the block.

A value is not returrned by a subroutine, but values obtained
in a subroutine may be made known in the invoking procedure
either by assigning a value to a variable known in the
invoking procedure or by assigning a value to a parameter
which has not hbeen passed as a dummy argument.

Function References

When a function reference appears in an expression, the
procedure is 1invoked. The result of the execution of the
procedure is the value of the function, which 1is passed
(with the return of control) back to the point of invoca-
tion. This returned value is then used to evaluate the
expression.

The procedure invoked by a function reference normally will
terminate execution with a statement of the form:

RETURN (expression);

It is the value of this expression that will be returned as
the function value.

Resides function references to procedures written by the
programmer, a function reference may invoke one of a set of
built-in functions. The set of built-in functions is an
intrinsic part of Apple. It includes commonly used arith-
metic functions, functions for manipulating strings and
arrays, and other functions related to special facilities
provided in the language. The identifiers corresponding to
the built-in function names are not reserved; any such
identifier can be used by the programmer for other purposes
subject to the rules of scope (see Chapter 5). The complete
list of these functions and their descrlptlans can be found
in Appendix 1.

Activation_and Termination of Blocks

Blocks can be activated in a variety of ways. A begin block
is activated by normal sequential flow of control. 1In all
cases, a begin block must be contained within an active
procedure block at the time of activation.

24 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

Procedure blocks, on the other hand, can only be activated
by CALL statements or by function references. When a
procedure containing internal procedures is executed, con-
trol will pass around each 1internal procedure from the
PROCEDURE statement to the corresponding END statement.

There are a number of ways in which a block may be
terminated. A begin block is terminated when control passes
through the END statement for the block. A procedure block
is terminated on execution of a RETURN statement or an END
statement for the block. (In this case the FEND statement
implies a RETURN statement.) A block 1is terminated on
execution of a GO TO statement contained in the block that
transfers control to a point not contained in the block.
Any intervening blocks are also terminated.

If a block B is activated and control stays at points
internal to B until B is terminated, no other blocks can
have been activated while B was active. However, another
block, B1, may be activated from a point internal to block B
while B still remains active. This is possible only in the
following cases:

1. B1 is a procedure block immediately contained in B
{i.e., the label of B1 1is internal to B) and
reached through a procedure reference.

2. B1 1is a begin block internal to B and reached
through normal flow of control.

3. B1 is a procedure block not contained in B and
reached through a procedure reference. {81, in
this case, may be identical to B, i.e., a recur-
sive call. However, it 1is to be regarded as a
dynamically different block).

u, B1 is a begin block or a statement specified by an
ON statement (see "The ON Statement" in Chapter 8)
and reached because of an interrunpt. (For present
purposes, even if B1 is a statement, it <can be
regarded as a block; this case is dynamically
similar to case 1 or case 3 above.)

In any of the above cases, while B1 is active, it is said to
be an immediate_dynamic_ descendant of B. Block B1 may
itself have an immediate dynamic descendant B2, etc., sO
that a chain of blocks (B, B1, B2, ...) 1is created, vwhere,
by definition, all of the blocks are active. 1In this chain,
each of the blocks B1, B2, etc., is said to be a dynamic
descendant of B. When a block B is terminated, all of the

Chapter 2 -- Program Structure 25

APPLE REFERENCE MANUAL

31 MARCH 1972

dynamic descendants of B are also terminated. Storage for
all automatic variables declared in +these blocks will be
released at the time of termination. TIf a block B1 is a
dynamic descendant of a block B, then block B dynamically
encompasses block B1i.

The Environment of a_ Block

On activating a block, certain initial actions are per-
formed, e.g., allocation of storage for automatic variables.
These initial actions constitute the prologue. After the
prologue has executed, the following are available for
computations

1. Established generations of automatic and register
variables declared outside the block and known
within it.

2. Static variables known within the block, and
register and automatic variables declared in the
block.

3. Arguments passed to the block.

When several activations of B are in existence, as in
recursion, it is essential to know the activation of B that
helds the storage of data declared in B and known to
descendant blocks. If a block B1 is statically nested
within p containing blocks, +the particular activation of
each of the n blocks that hold the generations of data known
to B1 form the environment of the activation of B1.

When an entry name is assigned to an entry variable, the
environment to be used in subsequent invocations is deter-
mined and forms part of the entry value. This environment
is the activation of the block that contains <the procedure
vhose entry name is assigned. The environment of an on-unit
is provided by the the block containing the ON statement
establishing the on~unit.

A label constant designates a point within the text of a
block, B. During execution, there may be several activa-
tions of B; it is essential to know the particular activa-
tion of B which 1is referred to by a label reference. A
reference to a label constant L, made in some activation of
a block 81, is to L in the current environment of B1. When
a label constant is assigned to a 1label variable, this
environmental information is assigned as well. Subsequent
GO TO statements namring the label variable will re-establish
the environment assigned to the variable, and hence nmay

26 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

cause blocks to be terminated. When a label variable is
assigned to another label variable, the environmental infor-
mation is assigned as well.

A generation, or allocation, of a variable 1is created
whenever storage 1is allocated for the variable. 1A genera-
tion consists of the storage for the generation together
with the evaluated set of attributes for the generation.
Associated with the generation is a pointer to the storage
allocation; this serves as a unique identification of the
generation. The evaluated set of attributes is established
when the generation is allocated and enables the contents of
the storage to be interpreted. 1In some cases, the attri-
butes may have to be re-evaluated upon each reference.

In the case of static and automatic generations, the pointer
to the generation can only be obtained by invoking the
built-in function ADDR using the variable as the argument.
For based variables, a locator variable is specified in the
ALLOCATFE statement used to create the based variable, and a
value is assigned to it so that it can be used to access the
generation that is created.

The storage for a generation contains the values of the
various fields in the variable, The evaluated set of
attributes of a generation comprises the structuring of the
variable, the data types of its components, and the bounds
of arrays and lengths of strings as evaluated at the time of
allocation., Offset variables may be used to identify the
position of a generation within a file. If the offset and
file reference are suoplied as arguments of the POINTER
built-in function, the result is a pointer identifying the
generation. Similarly, if the pointer and file reference
are supplied as arquments of the OFFSET built-in function,
the result 1is the offset of the generation from the
beginning of the file.

ABGUMENT PASSING

When a procedure is invoked, a relationship is established
between the arguments of the invoking statement and the
parameters of the invoked entry point. A procedure may pass
one of 1its parameters as an arqument to another procedure
(or even to itself in a recursive call).

The ENTRY attribute must be used to specify the attributes
of all arqguments of an external procedure. The correspon-
dence of parameters in a parameter list with the arguments
in an argument 1list is from 1left to right, with the

Chapter 2 -- Program Structure 27

APPLE REFERENCE MANUAL

31 MARCH 1972

left-most parameter corresponding with the left-most argu-
ment. The number of arguments and parameters nust be the
same. In addition, the attributes of each argument in a
procedure reference must match the attributes of the corres-
ponding parameter at +the invoked entry point. ¥hen an
argument is a subscripted variable, the subscripts are
evaluated before invocation. The specified element is then
passed as the arqument. Subsequent changes in the subscript
or the locator identifying the generation of the arqument
during the execution of the invoked procedure have no effect
upon the corresponding parameter.

Parameters

The PROCEDURE and ENTRY statements may specify a list_of
parapeters. Parameter lists for different entries to a

procedure need not be the same. A parameter may be a
scalar, array, or major structure name that 1is unqualified
and unsubscripted. A reference within the procedure to a

parameter produces an undefined result if the entry point at
which the procedure 1is 1invoked does not include that
parameter in its parameter list. Parameters are explicitly
declared by their appearance in a PROCEDURE or ENTRY
statement. Additional attributes must be supplied in a
DECLARE statement intermal to the procedure.

Parameters cannot be declared with the storage class attri-
butes STATIC, AUTOMATIC, or BASED, or with the BUILTIN or
INITIAL attributes. However, parameters may be declared
with the storage class attribute REGISTER. Scope attributes
cannot be declared for parameters; a parameter has internal
scope. Any bounds or lengths must be specified either by
asterisks or decimal integer constants which may be signed.
If a parameter is a structure, it must be a major structure.

Example:

SBPRIM: PROCEDURE(X, Y, Z):
DECLARE {(X,Y,A,B) FIXED,

% FLOAT:
A=X - 1:
B=Y + 1;

GO TO COMMON;
SBSEC: ENTRY(X, 2):

A =X - 2
B=X - 3;
COMMON: Z = A%%2 4+ A%B + B*x%x2;

END SBPRINM:

28 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

In the above example, the procedure SBPRIM may be entered at
its primary entry point SBPRIM, where the parameter list is
(x, Y, Z), or at its secondary entry point SBSEC, where the
parameter list is (X, 2).

Correspondence of Arquments _and Parameters

The number and data types of the arguments in a procedure
reference must be the same as the number and data types of
the parameters in the corresponding parameter 1list (where
the parameter 1list is given in the PROCEDURE or ENTRY
statement for internal procedures and in the FENTRY declara-
tion for external procedures). This is true even if a dummy
argument is constructed. The only exception to this rule is
that the REGISTER attribute may bhe specified for an arqument
without being specified for the corresponding parameter, or
it may be specified for a parameter without being specified
for the corresponding argument. In the following exanmple,
dummy arquments will be constructed for the last two
argquments because the corresponding parameters have the
REGISTER attribute. {See "Use of Dummy Arguments" for
implications.)

P1: PRNCEDURE:
DECLARE (A, B) FIXED REGISTER,
{C, D) FIYED AUTOMATIC,
P2 ENTRY (FIXED,
PIXED,
FIXED REGISTER,
FIXED REGISTFR):
CALL P2(C, A, B, D)3

e o e

END P13

If a parameter of an invoked entry is a scalar, the argument
must be a scalar expression. The data attributes of the
argument or dummy argument must agree with the corresponding
attributes of the parameter. No data type conversion will
be performed. However, arithmetic conversions may be per-
formed in the invoking procedure if the scale and precision
of an expression do not match the attributes declared for
the referenced entry. If the bounds or lengths of parame-
ters are explicitly declared, then they must match those of
the corresponding arguments; however, if they are declared
with asterisks (see "Dimension” and "BIT and CHARACTER"™ in
Chapter 5), then they will automatically match. If the
argument has the VARYING attribute, then the parameter must
also be declared with this attribute.

Chapter 2 -- Program Structure 29

APPLE REFERENCE MANUAL

31 MARCH 1972

If a parameter of an invoked entry is an array, the argument
in general must be an array expression with identical bounds
and dimensionality. If constants are used to specify the
bounds of the parameter in the invoked procedure, the values
of the bounds of the array argument must agree with the
values of these constants.

If a parameter is a structure, the argument must be a
structure or substructure. The data attributes of the
elements of the arqument structure must match those of the
associated parameter as specified in the invoked procedure.
The relative structuring of the argument and the parameter
must be the same, although the level numbers need not be
identical. Contained strings and arrays ith 1lengths and
bounds specified by constants must agree. The REFER attri-
bute must not be used in a parameter declaration.

If a parameter is a scalar label variable, the argument must
be a scalar label expression. If a parameter 1is an array
label variable, the arqument must be an array label expres-
sion. A dummy argument 1is always constructed vwhen the
arqument is a label constant. This dummy arqument will also
contain 1identification of the <current invocation of the
block containing the label. Any reference to the parameter
is a reference to the statement label in that environment.

Tf a parameter 1is an entry parameter, the corresponding
argument must be an unparenthesized entry expression. The
names of built-in functions or procedures may not be passed
as entry constants.

Jse of Dummy Arguments

A constructed dummy argument containing the argument value
is passed to a procedure if the arqument is one of the
followings:

an expression involving operators

an expression in parentheses

a label constant

an entry constant

a function reference

a scalar which requires arithmetic conversion

A dummy argument is also constructed if the corresponding
parameter has the REGISTER attribute.

Tn all other cases the arqument as it appears is passed.

The parameter becomes identical with the passed argument, so
that changes to the parameter are also changes to the passed

30 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

21 MARCH 1972

argument. However, if a dummy is created, changes to the
parameter are not reflected back in the original arqument.

Note that no dummy argument is created for an arithmetic or
string constant. Tf an attempt is made to modify such an
arqgqument, an execution-~time error will cccur.

Entrv References as Arquments

When an entry reference
11

£ is specified as an arqument to a
procedure, one of the fo i

owing applies:

1. If the name of the entry referred to in the
argument is M, then, if the reference specifies an
arqument list of 1its own, it is recognized as a
function reference:; M is invoked and the value
returned by M effectively replaces M and its
argument list in the containing argument list, If
the attributes of the returned value do not match
the declared attributes of the arqument, the
program is in error.

2. If the entry reference appears without an argument
list, but within an operational expression or
within parentheses, then it 1is taken to be a
function reference with no arguments.

3. Tf the entry reference argument appears without an
arqgument 1ist and not within an operational expre-
ssion or parentheses, the entry reference itself
is passed ¢to +the function or subroutine heing
invoked. Tn such cases, the entry reference 1is
not +taken to be a function reference, even if it
is the name of a function that does not require
arquments, In this circumstance, the entry
reference must not appear in parentheses, or it
will be treated as case 2 above.

Example:

A
PROCEDURE;
DECLARFY. B ENTRY RETURNS (FLOAT),
C ENTRY (FLOAT);
CALL C((B)}:

s @ e

END A;

Chapter 2 -- Program Structure 31

APPLE REFERENCE MANUAL

31 MARCH 1972

In the CALL statement in this example, the entry B is
invoked and the value returned by B is passed to C as an
arqument.

Mse of the ENTRY Attribute

If an ENTRY attribute without a parameter attribute list is
specified for an identifier, it 1indicates that the naned
entry does not require any argquments. 1In this case, it is
an error to supply arquments in a reference to the entry.
Tf an ENTRY attribute specification with a parameter attri-
bute list is supplied for an identifier, each reference to
the identifier that implies an invocation of the associated
procedure mpust supply an argument list whose elements are
identical 1in data type to those specified for the corres-
ponding parameter. If there is disagreement, a compile time
error message will be given. The asterisk notation may be
used in the TENTRY attribute to specify that the bounds of
arrays or strings are to be taken from the argument
attributes.

While no data type conversions will be performed as a result
of a procedure CALL or function reference, arithmetic
conversions will be performed when required. If the scale
or precision of an argument expression does not match the
attributes for the referenced entry, an arithmetic conver-
sion may take place. No conversions will be performed for
data aggregates.

32 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 3: _DATA_ ELEMENTS

INTRODUCTION

Information that is operated on during the execution of an
Apple object program is called data. TEach data item has a
definite type and representation., The discussion on data
elements presents:

1. the types of data availabhle in Apple,

2. the various organizations of data, and
3. the methods by which data can be referenced.

DATA TYPES

The types of data allowed by Apple can be categorized as
problem data and program-control data. Each category com-
prises both constants and variables.

A constant 1is a data item that denotes a value that cannot
change during the execution of a program. The attributes of
a constant are implied by the representation of the constant
itself. A signed constant is an arithmetic constant pre-
ceded by one of the prefix operators + or -. Wherever the
word "constant" appears alone, and refers to an arithmetic
constant, it is to be assumed to refer to an unsigned
constant.

A yvariable is a name given to a single data element (called
a scalar variable) or a collection of data elements (called
an array variable or a structure variable). The attributes

of a variable are:

1. explicitly declared,

2. declared by the context in which the variable
appears, or

3. assumed by default.

PROBLEM DATA

Problem data is any data that can be classified as type
arithmetic or type string.

Chapter 3 -- Data Elements 33

APPLE REFERENCE MANUAL

31 MARCH 1972

Arithmetic Data

An arithmetic data item is defined to have a numeric value
with attributes of scale and precision. Arithmetic data
items are real values and are represented internally in a
birary format. Arithmetic constants may be expressed in
decimal or hexadecimal but are internally represented as
binary values. The attributes of an arithmetic data item
are given by specifying scale (fixed or float) and precision
(expressing the minimum number of binary or decimal digits
to be maintained). These attributes determine the form of
the internal representation of the data.

Scale

Arithmetic data may be specified as having either fixed-
point or floating-point scale. Fixed-point data 1items are
restricted to integers and have no associated scale factor.
Floating-point data items are rational numbers consisting of
a fractional part and an exponent part. The exponent part
specifies the decimal or binary point location.

Precision

The precision of arithmetic data items is either short (23
bits of precision) or long (47 bits of precision). The
precision of arithmetic variables is specified through the
use of the precision (BINARY and DECIMAL) attributes in the
DECLARE statement. The general rules for the declared
precision versus the internal precision are as follows:

Declared Precision Resulting Precision

BINARY (1 to 23) short
BINARY (24 to 47) long
DECIMAL ({1 to §) short
DECIMAL (7 to 1&) long

o 0 s s iy o e
by i e wom s sdhe s i
e .-

34 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:
Resulting Precision
DECLARE A FIXED BINARY(15), short
B FIXED DECIMAL (5), short
C FIXED BINARY (31), long
D FLOAT DRCIMAL (7), long

Note that the number of binary or decimal digits must be
greater than zero. If the number of digits specified
exceeds the limit of precision stated above, the maximum is
assumed and a diagnostic message is produced.

The range of values that can be represented by arithmetic
data depends on the scale and precision of the data items:

Scale and Precision Range_of Values
FIXED short + 8,388,607
FIXED long + 140,737,488,355,327
FLOAT short + 10233
FLOAT long + 108630

Chapter 3 -- Data Elements 35

APPLE REFERENCE MANUAL

31 MARCH 1972

Arithmetic Constants

The general form of arithmetic constants is as follows:

arithmetic-constant ::= decimal-number |
hexadecimal-number

decimal-number ::= [sign] integer. [integer }J[exponent]]
{sign] integer]. integer [exponent]|
[sign] integer{ exponent]

integer ::= decimal-digit...
exponent ::= E [sign] integer
hexadecimal-number ::= "hexadecimal-digit ... "

Examples:
123
+45
"ABCN
123.4F+02
- 31
-42%+3

The scale and precision of hexadecimal constants are implied
by the number of hexadecimal digits represented:

No. of hex.digits Scale _and Precision

1 to 6 FIXYED short
7 to 8 , FLOAT short
9 to 12 FIXED 1long
13 to 16 FLOAT 1long

String Data

A string is a contigquous sequence of characters or binary
digits that <can be treated as a single data item. String
data can be classified as character-string or bit-string.
All strings have an associated length attribute which is
declared for string variables and implied for string con-
stants. The maximum length allowed for string data in the
Apple implementation is 65,535 bits or characters.

36 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Character-String Data

Character-string data consists of a string of zero or more
characters in the data character set. The string may be
fixed or varying in length. The actual number of characters
must be specified if it is of fixed length, and the maximum
length must be specified if it is of varying length.

Note: Until a varving-length character-string is assigned a
value, its length is undefined.

A comment will not be recognized within a character string,

but will be considered to be part of the character string
data including the comment delimiters (/* and */).

Character-String Constants

A simple character-string constant is zero or more charac-
ters in the data character set enclosed in single quotation
marks. If it is desired to represent a quotation mark, it
must be represented as two immediately adjacent single
quotation marks, although it is only counted as a single
character.

Fxamples:
1$123.45¢"
'"JOHN JONES?
ITPYIG
LN]

The last example, which is two single quotation marks with
no intervening blank, specifies the null character string.
In the Apple implementation, character-string data is main-
tained internally 1in ASCII character format, in which each
character occupies one byte of storage. (See Appendix 4 for
the Apple character set.) A simple character-string con-
stant may optionally be preceded by an unsigned decimal
integer constant in parentheses to specify repetition. If
the constant specifying repetition is zero, the result is
the null character string.

Example:

(3)'TOM_"' is exactly equivalent to *TONM_TOM_TOM_ '

Chapter 3 -- Data Elements 37

APPLE FEFERENCE MANUAL

31 MARCH 1972

Bit-String Data

Bit-string data consists of a string of zero or more binary
diqits (0 and 1). The bit-string must be fixed in length.

Bit-String Constants

A Dbit-string constant contains zero or more binary digits
enclosed in single quotation marks, followed by the letter
B. A bit-string constant may also be written as a string
composed of hexadecimal digits enclosed in single gquotation
marks and followed by the letter H. In this latter case,
each digit represents 4 bits. The repetition factor as
described for character-string constants may also precede
bit-string constants.

Fxampless

*11101°B
IR
*015BD7tH
is exactly equivalent to
*00000001010%101111010111° B

PROGRAM-CONTROL_ DATA

Program-control data is any data that can be classified as
label, locator, interrupt, file, or entry.

Label Data

Statement label data 1is used only in connection with
statement labels. Statement label data may be constants or
variables, and the variables may be elements of structures
or arrays.

Statement-lLabel Constants

A statement label constant is an nonsubscripted identifier
that precedes the statement with a colon separating the
statement and the statement label. It permits references to
be made tc statements.

38 Chapter 3 -- Data Elements

APPLE REFPERENCE MANUAL

31 MARCH 1972

Example:
ROUTINE1: IF X > 5 THEN
GO TO DONE;
GO TO ROUTINE1;

DONE: RETURN;

ROUTINE1 and DONE are statement-label constants.

Statement-Label Variables

A statement-label variable is a variable that has as values
statement-label constants. These variables can be grouped
into arrays, or they may be elements of structures.

Fxample:

DECLARE X LABEL VARIABLE;

X = POSROUTINE;
POSROUTINE: ...

X = NEGROUTINE;

GO TO X;

NEGEOUTINE: ...

* =

The label variable X may have the value of either POSROUTINE
or NEGROUTINE. In the above example, GO TO X; transfers
control to NEGROUTINE.,

Locator Data

A locator value identifies a specific generation of a based
variable. Since several generations of a based variable can
exist simultaneously, a reference to a based variable must
include, either explicitly or implicitly, a locator variable
whose value defines the actual generation being referenced.
lLocator data consists of pointer variables, offset variables
and descriptor variables.

A pointer yvariable identifies a generation of a based

variable within a program and is only valid while the
program is active.

Chapter 3 -- Data Elements 39

APPLE REFERENCE MANUAL

31 MARCH 1972

An offset variable identifies a gemeration of a based
variable relative to the origin of a file and thus preserves
its validity independent of the progranm.

Neither pointer nor offset variables contain any information
concerning the attributes of the based variable being
referenced other than location. Descriptor variables, in
addition to containing a pointer value, also contain the
length of the based variable identified. If the based
variable is a character or bit string, then the length is in
terms of characters or bits respectively. If the based
variable is a vector of arithmetic elements, then the length
is the number of elements in the vector.

Locator variables may have values set by the ALLOCATE, FIND,
and LET statements or by assignment £rom other locator
variables or from the ADDR, NULL, POINTER, APLEVAR, OFFSET,
and DESCR built-in functions. In addition, descriptor
variables may be used in arithmetic expressions. Pointer
and offset variables may not be used as operands in any
expression other than = and -= comparison.

Note: Descriptor variables have been added to the Apple
langquage to support systems programming and provide a
high-level language facility for utilizing the data-
streaming capabilities of the STAR computer.

Locator_Qualification

Locator qualification is used to associate one or mnmore
descriptor, pointer or offset values so as to identify a
particular generation of data. If a based variable is
referred to without a locator qualifier, the reference is
the same as a reference gualified by the 1locator variable
declared with the based variable in the BASED attribute
specification.

General format:
locator qualifier ::= scalar-locator-expression->
[based-locator-variable->]... based-variable
vhere "scalar-locator-expression” is an descriptor-variable,
a pointer-variable, an offset-variable, or a function

reference that returns a descriptor, pointer, or offset
value.

40 Chapter 3 -- Data FElements

APPLE REFERENCE MANUAL

31 MARCH 1972

General rules:

1. Locator qualification 1is used to identify the
generation of a based variable to which the
associated reference applies.

2. If an offset expression or an offset variable is
used as a locator qualifier, its value is impli-
citly converted to a pvointer value.

3. If more than one qualifier is used, they are
evaluated from left to right.

EFxamples:
P -> B:
P -> 0 -> B;

A
A
A = ADDR(X) ~-> B;

W

The first example causes assignment to A of the value of B
in the generation pointed to by P. The second example
‘specifies that the value of P is to be used to locate the
generation of 0 which locates the specific generaticn of B
to be assigned to A. In the third example, the generation
of B is derived from the location of the variable X.

Interrupt Data

An interrupt is an action which can discontinue normal
execution of a program. There are two types of interrupts,
conditions and events. A condition 1is raised by the
occurrence of an error as a result of an instruction
execution and may be thought of as internal to a ©progranm,
while an event 1is an external action that can occur on a
peripheral device. The execution of the SIGNAL statement
will also cause an interrupt. When an interrupt occurs, the
associated condition is raised or the event is completed.
See CONDITIONS and EVENTS in Chapter 7.

File Variable

A file is a collection of data that occupies memory and,
through the use of a MCTS file management function, may be
stored on a peripheral storage device. After a file has
been opened it may be referenced through a file-variable. A
file-variable may be wused in the GET/PUT or ALLOCATE/FREE
statements in order to reference a particular file. See
Chapter 6 for a description of file hamndling.

Chapter 3 -- Data Elements 41

APPLE REFERENCE MANUAL

Entry Data

Entry data
entry points
variables.
in a program
made at a
variable has

31 MARCH 1972

has values that permit references to be made to
of a program. FEntry data may be constants or
An entry constant is an identifier that appears
as an entry name. It permits references to be
fixed entry point of a procedure. An entry
entry constants as values. See "The ENTRY

Attribute" in Chapter 5.

42 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

ORGANTZATION

Data may be organized as scalar items (i.e., single data
items) or aggregates of data items (i.e., arrays and
structures).

Scalar Items
A scalar item may be either a constant or the value of a

scalar variable. Coanstants and scalar variables are called
scalar data itenms.

Scalar Variables

A scalar variable is a single data item. Unlike a constant,
however, a variable may take on more than one value during
the execution of a progranm. The set of values that a
variable may take on 1is the range of the variatle. The
range of a variable is always restricted to one data type
and, if the type is arithmetic, to one scale and precision
-- see "Arithmetic Data" in this chapter.

Reference is made to a scalar variable by a name, which may

be a simple name, a subscripted name, a qualified name, or a
subscripted qualified name (see "Naming" in this chapter).

Data_ Aggqregates

In Apple, all classes of variable data items except ENTRY
and ENTITY may be grouped into arrays or structures. Rules
for this grouping are given below. For the method of
referring to an array or structure or a particular item of
an array or structure, see "Naming" in this chapter.

Arrays

An array is an multi-dimensional, ordered collection of
elements, all of which have identical data attributes. (If
arithmetic, all of the elements of the array must have the
same scale and precision. If character-string or bit-
string, all of the elements must have the same fixed length
or the same maximum length.) The number of dimensions of an
array, and the upper and lower bounds of each dimension, are
specified by the use of the dimension attribute. (See "The
Dimension Attribute” in Chapter 5.) The elements of an
array may be structures (see "Arrays of Structures" in this

Chapter 3 -- Data Elements 43

APPLE REFERENCE MANUAL

31 MARCH 1972

chapter).

Structures

A structure is a hierarchical <collection of scalar
variables, arrays and structures. These need not be of the
same data type nor have the same attributes.

The outermost structure is a major structure, and all
contained structures are minor structures.

A structure is specified by declaring the major structure
name and following it with the names of all contained minor
structures and base elements. F¥ach name is preceded by a
level number, which is an unsigned non-zero decimal integer
constant. 1A major structure is always at level one and all
minor structures and base elements contained in a structure
(at level n) have a level number that is numerically greater
than n, but they need not necessarily be at level 1+1, nor
need they all have the same level number.

A minor structure at level n contains all following items
declared with level numbers greater than n up to but not
including the next item with a level number less than or
equal to n. A major structure description is terminated by
the declaration of another item at level one, by the
declaration of an item having no level number, or by the end
of a DECLARE statement.

44 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

DECLARE 1 PAYROLL,
2 NAME CHAR(8),
2 HOURS,
4 REGULAR FIXED,
3 OVERTIME FIXED,
2 JoBS,
3 NUMBER(2) FIXED,
3 DESCRIPTION(2) FIXED,
2 RATE FIXED;

In the above example PAYROLL is defined as the major
structure containing the scalar variables NAME and RATE
and the structures HCURS and JOBS. The structure HOURS
contains the scalar variables REGULAR and OVERTIME.
Note that REGULAR and OVERTIME are at the same level
although their 1level numbers differ. The structure
JOBS contains NOUMBER and DESCRIPTION which are both
one-dimensional arrays with two scalar variables.

Arrays_of Structures

An array of structures is specified by giving the dimension
attribute to a structure, thus forming replications of that
structure. Fach element of the array is one instance of the
declared structure. The elements within an array of struc-
tures must be referred to by subscripted names (see NAMING
in this Chapter).

Example:

DECLARE 1 CARDIN(3),
2 NAME CHAR(8),
2 WAGES,
3 NORMAL FIXED,
3 OVERTIME FIXED;

The name CARDIN represents an array structures of with
bounds 1:3. Note that each of the three structures
formed by CARDIN(3) has an element called NAME, WAGES.
NORMAL, and WAGES.OVERTIME. Each of these elenents
must have a subscript with the name to indicate which
structure is desired.

Chapter 3 -- Data Elements 45

APPLE REFERENCE MANUAL

31 MARCH 1972

Attributes_of Structures

Structures and arrays of structures are not given data
attributes. These can be given only to scalar variables or
arrays forming the elements of major or minor structures.

Major structure names may be declared with scope and storage
attributes. Items contained in structures may not be
declared with these attributes. When the same major struc-
ture name is declared with the EXTERNAL attribute in more
than one block, the attributes of the structure members must
be the same in each case, although the names of the
structure members need not be the same. A reference to a
member in one such block is effectively a reference to that
member in all blocks in which the external name is known,
regardless of the names of the members.

Since only the major structure may be given a storage-class
attribute, all items in the same structure are of the same
storage class. The storage class of the major structure
applies to all elements of the structure. If a structure
has the BASED attribute, only the major structure, not its
elements, may be allocated and freed.

=

MING
This section describes the rules for referring to a particu-
lar data item, groups of items, arrays, and structures. The
permitted types of data names are: simple, qualified,
subscripted, and subscripted qualified.

Simple Names

A simple name is an identifier (see "Identifiers" in Chapter
1) that refers to a scalar, an array, or a structure.

Subscripted Names

A subscripted name 1is used to refer to an element of an
array. It is a simple name that has been declared to be the
name of an array followed by a 1list of subscripts. The
subscripts are separated by commas and are enclosed in
parentheses. A subscript is an scalar arithmetic expression
converted to an integer before its use. The number of
subscripts must be equal to the number of dimensions of the

46 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

array, and the value of a specified subscript must fall
within the bounds declared for that dimension of the array.

General formats:
subscripted-name ::=
identifier (subscript{, subscript]...)
subscript ::= scalar-expression
Fxamples:
A(3)
FIELD (B, C)

PRODUCT (SCOPE*UNIT*VALUE, PERIOD)
ALPHA (1, 2, 3, 4)

Qualified Names_and Ambiquous_References

A simple name usually refers uniquely to a scalar variable,
an array, or a structure. HYowever, it is possible for a
name to refer to more than one variable, array, or structure
if the identically named 4items are themselves parts of
different structures. In order to avoid any ambiguity in
referring to these similarly named items, it is necessary to
create a unique name; this is done by forming a gualified
pame. This means that the name common to more than one item
is preceded by the name of the structure in which it is
contained. This, in turn, can be preceded by the name of
its containing structure, and so on, until the qualified
name tefers uniquely to the required itenm.

Thus, the qualified name is a sequence of names, separated
by periods, specified left to rigqht in order of increasing
level numbers. The sequence of names need not include all
of the containing structures, but it must include sufficient
names to resolve any ambiguity. Any of the names may be
subscripted.

If the sequence of names includes the names of all the
structures containing the member with the rightmost nane,
then that name is said to be completely qualified.

If the sequence of names includes only some of the names of

the structures containing the member with the rightmost
name, then that name is said to be partly gqualified.

Chapter 3 -- Data Elements 47

APPLE REFERENCE MANUAL

31 MARCH 1972

A completely or partly qualified name wmust have the same
hierarchy of the structure names as the stracture to which
it is to reference. The qualified name, once composed, is
itself a name. Subsequently, in this publication, when the
terms scalar variable name, array name, or structure name
are used they should also be taken to include qualified
names.

General format:
qualified-name ::= identifier[.identifier]...

There are several rules that should be followed when using
qualified names. (In the following examples the attributes
have been eliminated for clarity.) These are as follows:

1. The qualified name will resolve to the innermost block
containing the declaration vhich has the same hierarchy
of the identifiers as the qualified name. That is, if
the name cannot be resolved in the block of its usage,
then the next outer block will be checked, etc. 1A
diagnostic message results if the qualified name cannot
be resolved.

Exanmple:
DECLARE 1 A,
2 C,
2D,
3 E;
BEGIN;
DECLARE 1 14,
2 B,
3 c,
3 B;

A.C refers to C in the inner block.
D.E refers to B in the outer block.
A.B.D is in error.

2. If there is more than one structure declaration in the
same block which contains the same qualified name then
only one of these declarations may contain the com-
pletely qualified nanme.

48 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

3.

Example:

DECLARE 114,
2 B,
3 ¢C;
DECLARE 11,
2D,
3 B3

A.B refers to the first declaration

A.D.B refers to the second declaration

A reference to a structure member by means of an
unqualified name is ambiguous and therefore in error if
any other structure member name internal to the same
block has the same identifier.

The case where more than one declaration contains the
same gqualified name is illustrated in the following:

Example:

DECLARE 114,
3 Cs
DECLARE 114,
2D,
3 C;

A.C 1is ambiguous bhecause neither C 1is completely
qualified by this reference.

The case where a single declaration contains multiple

occurences of the same qualified name is illustrated in
the following:

Chapter 3 -- Data Elements 49

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

DECLARE 1%,
2 X,
31z,
2y,
3 a;

Y.Z is ambiguous and in error.
Y.Y¥.Z refers to the second Z.
Y.X.Z refers to the first Z.

4, If a level-1 name and a structure member name internal
to the same block have the same identifier, then the
unqualified use of that identifier is taken to refer to
the level-1 name. Reference to the structure member
can, in this case, be achieved only by means of a
suitably qualified name.

Example:
DECLARE 14,
3 A;
A refers to the first A.

A.A refers to the second A.
A.A.A refers to the third A.

Subscripted Qualified Names

The elements of an array contained in a structure and
requiring name qualification for identification are referred
to by subscripted qualified pames. A subscripted qualified
name is a sequence of names and subscripted names separated
by periods. The order of names 1is as given for any
gqualified name. The subscript 1list following each name
refers to the dimensions associated with the name if the
name is declared to be the name of an array in the structure
description.

As long as the order of the subscripts remains unchanged,
subscripts may be mnoved to the right or left (called
migration of subscripts) and attached to names at a lower or
higher level. The number of subscripts must match the
number of dimensions of the array.

50 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:
subscripted-qualified-name ::=
identifier((subscript[, subscriptl...)]

{.identifier((subscript{, subscriptl...)]J)...
If any subscripts are given in a reference to a qualified
name, all those subscripts which apply to dimensions of
containing structures must be given.
Example:

A is an array of structures with the following description:

DECLARFE 1

The following subscripted qualified names illustrate the
migration of subscripts referring to the same element, which
is the seventh element of C contained in the fifth element
of B contained in the tenth row and twelfth column of A:

@) (10,12) . B (5) . C (7)
(2) A (10) . B (12,5) . C (7)
(3) (10) . B (12) . C (5,7)
(4) A . B (10,12,5) . C (7)
(5 A . B (10,12) . C (5,7)

(6)
(7)

. B (10) . C (12,5,7)
. B.C (10,12,5,7)
(8) A (10,12) . B . C (5,7)
(9) (10) . B . C (12,5,7)
(10) A (10,12,5,7) . B . C

X e 3w o2e DY D 20

If structure B, but not structure A, is necessary for unique
identification of this use of C, any of forms (4), (5), (6).,
or (7) may be used without including the A.

If structure A, but not B, is necessary for identification
of ¢, forms (7), (8), (9), or (10) may be used without
including the B.

Chapter 3 -- Data Elements 51

APPLE REFERENCE MANUAL

31 MARCH 1972

INTRODUCTION

This chapter describes the two main areas of data
manipulation:

1. expression evaluation
2. data conversion

The first section describes the logical classes of expre-
ssions and the operations available in each <class. The
second section specifies the data conversion rules to be
used for data type conversion and arithmetic conversion.

EXPRESSIONS

An expression is a representation of a value or an algorithme
used for computing a value. Expressions are generally
classified according to the type and form of the data values
they represent. If an expression represents a single scalar
value, it is called a scalar expression. An array expres-
sion represents an array of values.

Problem data values are represented by arithmetic expre-
ssions and string expressions. Arithmetic expressions whose
value 1is fixed point are known as integer expressions.
Expressions representing program-control data values are
similarly defined. Thus, a pointer expression is an expres-
sion that represents a pointer value, vhereas a locator
expression may represent either a pointer, descriptor, or

- e

offset value.

In the syntactic descriptions used in this manual, the
unqualified term "expression" refers to an expression of any
type. Where the kind of expression is limited, the type of
restriction is explicitly noted; for example, "scalar expre-
ssion" 1indicates that only an expression that represents a
scalar value is permitted in the particular context.

52 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

Expressions may also be classified by the operators that
they contain. An expression containing operators (either
prefix or infix operators or both) is referred to as an
operational expression. The class of an operational expres-
sion 1is determined by the class of operators it contains.
The four classes of operational expressions are:

Ll k] R h J
| CLASS | | DATA TYPES]
| of operational | OPERATORS | permitted i
1 expressions | | as operands 1
¢ + } 4
] | *x, prefix + and -, | FIXED]
| ARITHMETIC | * and /,] FLOAT l
! | infix + and - | I
i L i k]
¥ T ¥ k]
| DESCRIPTOR] 1 |
| ARITHMETIC i infix + and - 1 DESCRIPTOR i
| l | |
L] 1 ¥ |
L i k] 3
] }] FIXED, FLOAT]
] | Kgo&KyK=,=,0=,>=,>,~> | CHARACTER {
1 H i DESCRIPTOR |
] RELATIONAL S + 1
| i only 1 BIT, LABEL i
| } = and -=] POINTER, OFFSET |
| | i FILE, ENTRY]
i i 1 ¥ |
1 1 k] k]
|] -~ | BIT l
| BIT STRING ! g | Relational- |
1 i H { expressions]
F + + i
| | |)
| STRING ! 1 | CHARACTER, BIT |
| | |]
i 1 L J

An expression may be:

1. a constant

2. a reference to a variable

3. a function reference

4. an expression enclosed in parentheses

5. an expression preceded by a prefix operator

6. two expressions connected by an infix operator

There is no limit to the number of operators and level of
parentheses that may be combined in a single expression.
Generally, all of the operands contained in a single

Chapter 4 -- Data Manipulation 53

APPLE REFERENCE MANUAL

31 MARCH 1972

expression must be of the same type (FIXED and FLOAT are
considered to be the same type for this purpose) and all of
the operators within the expression must be of the same
class. No_implied data type conversion can occur during the
evaluation of an expression. If the operands are not of
matching data type, the necessary conversion may be expli-
citly specified by using the built-in functions for conver-
sion, for example, FIXED, FLOAT, CHAR, etc. These are
defined in Appendix 1.

Arithmetic operations

An elementary arithmetic operation has the following general
format:

{+ 1] -1 operand
operand {+ 1 - 1 % 1 /| %%} operand

The general format specifies the prefix operations of plas
and minus and the infix operations of addition, subtraction,
multiplication, division, and exponentiation.

Any result of the prefix operations has the same scale and
precision as the operand. If both operands of an infix
operation (¢+, -, or *) are FIXED, the scale of the result
is also fixed-point; otherwise, the operation 1is perfornmed
in floating-point and the result is FLOAT. The precision of
all infix operations is the greater of the precisions of the
two operands. Any necessary conversion of FIXED to FLOAT or
short to 1long precision 1is performed before the infix
operation is carried out. The details of arithmetic data
conversion are described later in this chapter.

An exception to the scale conversion rule occurs in the case
of exponentiation. If the scale of the first operand is
float and the exponent operand is a fixed expression, no
conversion is necessary. The result will bz floating-peint.

54 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

An arithmetic expression of any complexity is composed of a
combination of elementary arithmetic operations defined
above. The evaluation of compound arithmetic expressions is
performed 1in the following order of decreasing operator
precedence (unless the order is modified by parentheses):

1. ** and prefix + operators are performed right to left
2. * and / operations are performed from left to right,

3. Infix + and - operations are performed left to_right.

Thus,
A+ B %k - C /D~ E

is performed as
(A + ((B ** (-C)) /D)) - E

The infix operators, + and *, are commutative, but not
necessarily associative, as low-order rounding errors will
depend on the order of evaluation of an expression. Thus,
A+ B + C is not necessarily equal to A + (B + C).

Prefix operators can precede and be associated with either
of the operands of an infix operation. For example, in the
expression A * - B, the minus sign preceding the variable B
indicates that the value of A is to be multiplied by the
negative value of B.

More than one prefix operator can precede and be associated
with a single variable. More than one positive prefix
operator will have no cumulative effect, but two consecutive
negative prefix operators will have the same result as a
single positive prefix operator.

Descriptor_ Arithmetic

Descriptor expressions have the following form:

+
descriptor-variable { } fixed-point-expression
*

The result of the expression will be a descriptor whose

length value is taken from the descriptor variable and whose
pointer value is the fixed-point result of the specified

Chapter 4 -- Data Manipulation 55

APPLE REFERENCE MANUAL

31 MARCH 1972

operation between the descriptor used as a fixed value and
the fixed-point-expression.

Relational Operations

Elementary relational operations have the general form:

A
N

operand operand

Won

vviyiuAalg

There are five kinds of relational comparison:

1.

Arithmetic involves the comparison of signed num-
eric values, possibly obtained by the evaluation
of expressions. If the operands differ in scale
or precision, they are converted before the com-
parison is made (see "Arithmetic Conversion" later
in this chapter).

Descriptor comparisons are made by comparing the
pointer values as fixed-point data. The length
values are ignored. Thus, two descriptors that
identify the same based variable but have dif-
ferent length values will compare equal., Descrip-
tors can be compared with fixed-point, descriptor,
or pointer expressions.

Character 1involves 1left-to-right, character-by-
character comparisons of characters according to
the collating sequence defined in Appendix 4. If
the operands are of different lengths, the shorter
string 1is extended to the right with blanks. Two

null character strings compare equal.

Bit involves the left-to-right comparison of
binary digits. If the strings are of different
lengths, the shorter string is extended on the
right with zeros. Only egqual and not-equal com-
parisons can be made between bit-string operands.
Two null bit strings compare equal.

56 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

37 MARCH 1972

5. Program-control data involves the comparison of
two Adata values from one of the following data
tyres:

a. statement label
b. pointer

c. offset

d. file

e. entry

Only the operators = and -= may be used in this
context and both operands must be of the same type
as defined above. The comparison of two offset
values is performed independently of their asso-
ciated files. Por two statement labels to compare
equal, they must refer to the same statement
within the same environment (see "The Environment
of a Block" in Chapter 2).

The result of a relational operation 1is a true or false
value, commonly used 1in the IF statement to select a
conditional branch path. If necessary, the result of a
relational comparison will be converted to a bit-string of
length one; the value is '1'B if the relationship 1is true,
or '0'B if the relationship is false.

Compound_ _relational _expressicns are formed by combining
elementary relational expressions as operands with the
bit-string operators -, & and !. See the "Example of
Expression Evaluation™ later in this chapter.

Bit-string Operations

Rit-string operations have the following general forms:

- operand
operand & operand
operand ! operand

The "not" operator can be used as a prefix operator only.
The "and" and the Yor" operators can be used as infix
operators only. (These operators have the same function as
in boolean algebra).

Operands of a bit-string operation must be bit strings or
relational expressions that have been evaluated before the
operation is performed. If the operands of an infix
operation are of unequal length, the shorter is extended on
the right with =zeros to the 1length of the longer. The
result of a bit-string operation is a bit string equal in

Chapter 4 -- Data Manipulation 57

APPLE REFERENCE MARNUAL

31 MARCH 1972

length to the 1length of the operands. The operations are
performed from left to right on a bit-by-bit basis starting
with the 1left-most bit of each string. As a result of the
operations, each bit position has the value defined in the
following table:

r v T T T 2]
} A B} A §-~B | AEB}] A! B
i " 1 3 n 1
g T + 1 T 1
{1 11 0 0 | 1 { 1 |
1T 0 0 1 1 0 ! 1 l
rPo 1ty 1 | 0 1 0 | 1 |
1o o1 1 1 1 0] 0 |
L L " L 1 s

More than one bit-string operation can be combined in a
single expression that yields a bit-string value. There are
no varying-length bit strings.

String Operatioas
String operations have the following general form:
operand !! operand

The concatenation operator can be used as an infix operator
between two character string operands or between two bit-
string operands. It signifies that the operands are to be
joined in such a way that the last character or bit of the
first operand will immediately precede the first character
or bit of the second coperand. The length of the result |is
always the sum of the lengths of the operands. TIf either of
the operands of the concatenation operator is a character
string with the VARYING attribute, the result will also be a
varvying string. When varying strings are concatenated, the
intermediate string created has a length equal to the sum of
the maximum lengths, If the maximum lengths are known at
compile time and their sum exceeds 65535, then a truncated
intermediate string of 1length 65535 will be created and a
compile-time diagnostic message produced. If the maximum
length of either operand is not known at compile time and
their sum exceeds 65535, a truncated intermediate string of
length 65535 will be created but there will be no diagnostic
message.

58 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

EVAIUATION OF EXPRESSIONS

An operational expression may contain arbitrarily many
different combinations of operands and operators provided
that no implicit data type conversions are required of any
operands or intermediate resnlts, Generally, all of the
operands will be of the same data type and the operators
will belong to the same class of operators (this classifica-
tion 1is shown in the table in the section "Expressions",
earlier in this chapter). There are two exceptions to this
rule:

1. Bit-string concatenation may be used with the
logical bit-string operations, e.qg.

BITA !! BITB & BITC

2. Compound relational expressions may contain rela-
tions that compare different data types, e.q.

IF (FIXED = 5) & (CHAR4 = 'THIS') THEN...
Each operation within the expression is evaluated according
to the rules for that kind of operation. Hovever, the order

in which the sub-expressions are evaluated depends upon the
priority of the operators specified in the expression.

Priority of Operators

The following table 1lists the seven levels of priority of
operators in descending order. REach line lists the opera-
tors of the same priority level.

Priority | Operators | order of evaluation
level | { within this level
+ +
| |
Highest 7 | -~,%**,prefix+,prefix- | Right-to-left
+ +
6 1 *,/ |
5 | infix+,infix-]
4 11 | Left-to-right
3] <<, K=yn=, =, >=,0,>)
2 & i
Lowest 1 1 ! |
l |

Chapter 4 —-- Data Manipulation 59

APPLE REFERENCE MANUAL

31 MARCH 1972

Operations within an expression are performed in the order
of decreasing priority. For example, in the expression
A+B**X, the exponentiation is performed before addition.

Use_of Parentheses

The order of evaluation of the sub-expressions of an
expression can be changed by the use of parentheses. If a
sub-expression is enclosed in parentheses, it indicates that
the sub-expression is to be treated as a single value in
relation to its adjoining operators. For example, in the
expression:

(A + B¥*3) / (C * (D - E))

A will be added to B*%*3, E is subtracted from D before
multiplying by C, and then the first of these results will
be divided by the second result. Thus, parentheses modify
the normal rules of priority.

The Apple implementation may evaluate subscripts, function
references, and 1locator qualifiers in any order subject to
the constraint that an operand will be fully evaluated
before its value is used in an operation.

Example_of Expression_Evaluation

The following example of a compound relational expression
illustrates hov many operators and data types may appear in
a single expression:

L1: IF A ** -B > C + D / COS(E)

-~ {(BIT4 1! BITX) = (BITX & "FW)
! LABEL_VARBL -~= L1

& CHARX = CHAR3 !! SUBSTR(CHARS, I+2, L/3)

THEN DO; ...
The expression contains four elementary relational expre-
ssions (shown on separate lines for clarity) whose operands
are themselves expressions. The first relational operation
compares two arithmetic expressions, the second one compares

two bit-strings, the next one tests a label variable and a
label constant for inequality, and the final one compares a

60 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

character string with a character string expression. The
function references are evaluated before their values can be
used as an operand. The elementary relations within a
compound relational expression may be evaluated in amny
order. The following list of steps describes one possible
order of evaluation for this expression:

1. In the expression A ** -B, the minus sign is a
prefix operator and thus has the same precedence
as **, therefore the operations are evaluated in
right-to-left order. The result follows the nore-
al algebraic convention of raising A to the power
-B.

2. The second operand of the first relation,
C + D / COS(E)
is evaluated by computing the value of the cosine
of E, dividing D by this value and then adding the
result to C.

3. The result of step 1 1is then compared to the
result of step 2. If the first value is arithmet-
ically greater than the second one, the relation
is true and control will transfer to the DO
statement of the THEN clause since the entire
compound relational expression is true. Other-
wise, if the value of the first relational opera-
tion is false, evaluation continues with the next
step.

4, The value of -~ (BIT4 1! BITX) is formed by
concatenating the bit-strings BIT4 and BITX and
then complementing the result.

5. The expression (BITX & "F") is evaluated by
performing the & operation between the bit string
BITX and the constant gquantity #"FP®, with the
shorter string extended on the right with zeros.
Note that the parentheses are needed here since
the relational = operator has a higher priority
than the § operator.

6. The = comparison of the two bit-string results is
made after extending the shorter string with
zeros. If the relation is true, control will be
transferred to the THEN clause for the same reason
as 1in step 3. If this relational operation gives
the value false, evaluation continues.

7. The third relational operation compares the value

Chapter 4 -- Data Manipulation 61

31 MARCH 1972

of the 1label variable LABEL_VARBL with the 1label
constant L1. This comparison involves <checks of
whether the ¢two label values refer to the sanme
statement and vhether the environment indicator in
the label variable refers to the current environ-
ment. If both these comparisons are true then the
-~= relation is false and control will branch
around the THEN clause since the entire compound
relation is then false, Otherwise, the two label
values are unequal and the relation holds true and
evaluation continues.

8. Expressions within an argument list are evaluated
before the corresponding function reference can be
made; therefore, in the function reference

SUBSTR (CHARS, I+2, L/3)
I+2 and L/3 are computed before performing the
substring function.

9. The substring extracted from CHARS by the SUBSTR
function 1is concatenated to the right-hand end of
the character-string, CHAR3,

10. The resulting character-string is compared for
equality with the character-string CHARX after the
shorter string has been extended with tlanks. If
the relation is true, the THEN clause is executed.
Othervise, control is transferred around the do-
group of the THEN clause.

As the example vwas written above, the THEN clause will
be executed if any of the three conditions are
satisfied:

1. the first relation is true.

2. the first relation is false but the second
relation is true.

3. both the first and second relations are false
but both the third and fourth relations are
true.

62 Chapter 4 -- Data Manipulation

APPLE REFEREWCE MANUAL

31 MARCH 1972

ARRAY EXPRESSIONS

A single array variable or an expression that includes at
least one array operand is called an array_expression.
Array expressions may also include operators (both prefix
and infix), scalar variables and constants.

Fvaluation of an array expression yields an array result.
All operations performed on arrays are performed on an
element-by-element basis, ian row-major order. Therefore,
all arrays referred to in an array expressiorn must be of
identical bounds. Since the operations are performed on a
strict element-by-element basis, array operations do not
always produce the same result as the same operation in
conventional matrix algebra.

Array expressions can be used only on the right-hand side of
an assignment statement or as arguments. An array expres-
sion cannot appear in the relation of an IF statement. 1In
this context, only an element expression can be valid since
the IF statement tests a single true or false result.

Operations between Arrays ané Scalars

The result of an infix operation between an array and a
scalar element is an array with bounds identical to the
original array, each element of which is the result of the
operation being performed upon the corresponding element of
the original array and the single element. For example:

If A is the array rs 10 3

E}Z 11 8

then A*3 is the array 15 30 9
36 33 24

The element of an operation. hetween an element and an,array
can be an element of the same array. In this case, the
value used for the element throughout the operation is the
value of the element before the start of the operation. For
example, the expression A*A (1, 3)) would give the same result
in the case of the above array A, since the original value
of A(1, 3) was 3.

Chapter 4 =-- Data Manipulation 63

APPLE REFERENCE MANUAL

31 MARCH 1972

Operations between_ Arrays

If two arrays are connected by an infix operator, the two
arrays must have identical bounds. The result is an array
with bounds identical to those of the original arrays; the
operation is performed upon the corresponding elements of
the two arrays.

Note that the arrays must have identical bounds. They must
have the same number of dimensions; corresponding dimensions
must have identical lower and upper bounds. For example,
the bounds of an array declared X(10, 6) are not identical
to the bounds of an array declared Y(2:11, 3:8), although
the extents are the same for corresponding dimensions and
the number of elements is the same.

Example of an array infix expression:

- -
If A is the array 2 4 3
6 1 7

4 8 2

& =

and if B is the array - 1 5 7
8 3 4

f 3 L

then A*B is the array 2 20 21
48 3 28

24 24 2

64 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

DATA CCNVERSION

This section is concerned primarily with the concepts of
data conversions, when they occur, and their results.
Implicit data conversion can occur under the following
circumstances:

1. Type conversion from one data type to another data
type may only occur across the assignment
operator.

2. Arithmetic conversions of precision or scale of
arithmetic values may occur within an expression
or across the assignment operator.

Data conversion can also occur when explicitly requested
through the use of a conversion built-in function.

The target of a conversion 1is the field to which the
converted value is assigned. In the case of a direct
assignment, such as A = B:, in which conversion must take
place, the variable to the left of the assignment operator
(in this case, A1) is the target.

A conversion always involves a source data item and a target
data item, that is, the original representation of the value
and the converted representation of the value. All of the
attributes of both the source data item and the target data
item are known, or assumed, at compile time.

ARITHMETIC CONVERSION

Arithmetic conversion consists of a change of scale or
precision and may occur under two conditions:

1. across an assignment operator

2. autowatically in an arithmetic or relational
expression.

Across the assignment operator, all arithmetic data conver-
sions are possible, that is, the scale may change between
FIXED and FLOAT or vice versa and the precision may change
between long and short or vice versa. When the result of a
conversion from PLOAT to FIXED exceeds the range of values
that can be represented by FIXED data, the result |is
undefined. '

Chapter 4 -- Data Manipulation 65

APPLE REFERENCE MANUAL

31 MARCH 1972

When the conversion takes place 1in the evaluation of an
expression, the conversion is in one direction, i.e., FIXED
to FLOAT and short to long. The results of conversion are
shown in the following table:

SOURCE

B ¥ ¥ q kR
TARGET|FIXED SHORT§ FIXFED LONG {FLOAT SHORT|FLOAT LONG
1 L

= 3

1 R]

truncation | truncationj
on i on 1
least] least i
significant|significant|
| 3

truncation
on
most
significant

FIXED
SHORT

no
change

-‘-_“-ﬂr-q
i — — — -)
'ﬁ-““h—dp

i]

i

|

i

]

{ $ §

i truncation | truncation]
{FIXED | no loss of | no] on i on i

]

§

\

|

|

|

§ LONG |significancej change least i least |
1 | | significant})significantj
t + + } {
] | { truncation] truncationj
JFLOAT | no loss of | on no i on |
| SHORT|significancej least change] least }
| | i significantj {significant]
1 i L L] i}
 J k] LI L] ¥

{FLOAT | no loss of | no loss of | no loss of { no

1

i

R

LONG |significancelsignificance{significance] change
i i A A

Results_of Arithmetic Operations

The following rules define the attributes of the results of
the arithmetic operations:

1. Scale: Prefix operations yield the same scale as
the operand. Infix +, -, and * operators produce a
PIXED result if both operands are FIXED. The scale
of all other infix operations is FLOAT.

2. Precision: The resulting precision of any arith-

metic operation is the largest precision of the
operands.

66 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

Some special cases of the exponentiation operation are
defined as follows for the expression A*%B:

1. If A =0 and B >» 0, the result is 0.

2. If A =0 and B € 0, the ERROR condition is raised.
3. TIf A =0 and B = (0, the result is 1.

4L, TYf A <€ 0 and B is not fixed-point, the ERROR condi-

tion results.

TYPE _CONVERSION

Type conversion is the process of changing the attributes of
a data item (e.g., character string to bit string, ENTRY to
CHARACTER) from one data type to another. This process is
accomplished through the use of the assignment operation and
the built-in functions. The operand on the left-side of the
assignment operation is considered to be the target and the
expression of the right-side as the source. The attributes
of the target are determined from the declaration of the
target variable.

Chapter 4 =-- Data Manipulation 67

APPLE REFERENCE MANUAL

31 MARCH 1972

The following table defines all the permitted type conver-
sions in Apple. Where a conversion is permitted, a number
is shown referring to one of the notes following this table.
The "=" symbol indicates that the source and target data
types are equivalent and no type conversion is necessary.

SOURCE DATA TYPE

— T . Y T T 1 . v 1
] TARGET {Arith-jCharac-§y Bit |LabeljLocatori{File|Entry}
| DATA |[metic | ter | i i i i |
] TYPE | |string istring] 1 i | }
1 3 i N i i i kR i F |
g X T T T T 2] | L R |
{Arith- | | | [| | | I
Imetic { 1 1 2] U4 | i] [I
i + + + + + $ + : |
1Charac~-| | | i | | i l
{ ter | 3 = I3 | | 1 31 3 |
Istring | i i | | | { |
[g + + } + + + } §
1 Bi? | | { | | | [J
]string | 5 |] = i |] i 1
t $ $ $ + + { + |
| Label |] } I = 9 i I |
¢ + } ' } 4 t + . |
|Locator}] 12 | {] I 6 - 11} 1 i
g } + + % ' + + 4
| FPile | | i | I =1 i
F + } t + + + t 4
| Entry | | 13 14 | | i =
1 A E R i ' R i i] ¥]

1. _Arithmetic Conversion

See the previous section in this chapter.

2.__Character-string to Arithmetic

The conversion from character-string data items to arithmet-
ic data items is accomplished by means of the built-in
functions FIXED and FLOAT (See Appendix 1) or through the
use of the GET statement with the STRING option. This
conversion is not permitted across the assignment operator.

68 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

3. _Conversions_to_Character-string

The conversion of arithmetic, bit-string, file, or entry
data items to a character string value may be accomplished
hy the CHAR built-in <function. This conversion is not
permitted across the assignment operator. The conversion of
bit strings produces the character 0 for every 0 bit and the
character 1 for every 1 bit to form a character string of
the same length as the source bit string. Arithmetic values
are converted to decimal arithmetic constants with possible
leading minus signs. File variables are converted to the
names of the corresponding files. Entry variables are
converted to the names of the corresponding entry points.

4., Bit-string to Arithmetic

This conversion may occur across the assignment operator or
when explicitly specified by the FIXED or FLOAT built-in
functions. If the source bit-string is less tham 48 bits
long, it is interpreted as an unsigned binary integer with a
precision equal to the length of the bit-string; the result
of this conversion is a positive fixed value that may
undergo further arithmetic conversion if required by the
target data type. If the length of the source bit-string is
longer than 47 bits, a diagnostic message is printed
indicating an illegal conversion. The results of bit-string
to arithmetic conversion are undefined if the length of the
hit-string is unknown at compile time (e.g., if the 1length
has been specified by the REFER option or as BIT (*) for a
parameter).

S.__Arithmetic to Bit-string

This conversion may occcur across the assignment operator.
The arithmetic data item 1is converted, if necessary, to
FIXED scale long precision as defined under Arithmetic
Conversions. This 1is treated as a bit-string of length 64
and assigned to the target bit-string in accordance with the
normal rules for bit-string assignment.

6. Offset to Pointer

An offset variable is converted to a pointer value across
the assignment operator or by the use of the POINTER

Chapter 4 -- Data Manipulation 69

APPLE REFERENCE HANUAL

31 MARCH 1972

built-in function. The relative offset value 1is combined
with the associated file origin to produce an absolute
pointer value.

7. _Pointer_to Offset

A pointer value is converted to an offset value across the
assignment operator or by the use of the OFFSET built-in
function. The resulting offset value represents the rela-
tive difference between the actual pointer value and the
associated file origin. The result is undefined if the
pointer does not identify a generation of data in the file
specified in the declaration of the offset.

8. _Descriptor to Pointer

This conversion occurs across the assignment operator. The
pointer value is extracted from the descriptor data itenm.
The length value of the descriptor is ignored.

9. _Pointer to Descriptor

When conversion occurs across the assignment operator, the
source pointer value 1is interpreted as a descriptor value
that indicates a length of zero. A length value may be
included by using the DESCR built-in function (see Appendix
.

10. Offset to Descriptor

An offset variable is converted to a descriptor value across
the assignment operator. The relative offset value is
combined with the associated file origin to form a descrip-
tor value that indicates a length of zero.

11. Descriptor_to Offset

A descriptor variable is converted to an offset value across
the assignment operator. The resulting offset value is the
relative difference between the pointer value in the descri-

70 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

ptor and the associated file origin. The result is unde-
fined if the descriptor does not identify a generation of
data in the file specified in the declaration of the offset.

12, Arithmetic to Locator

Any attempt to assign or convert an arithmetic value to a
pointer or offset variable results in a diagnostic message
indicating 1illegal conversion. However, the descriptor
variable has dual attributes (both arithmetic and 1locator
data types) and <can be assigned arithmetic values with no
conversion required with the exception of arithmetic conver-
sion to long precision.

13. __Character-string to Entry Value

Conversion of a character string value to an entry value is
accomplished through the ENTRY built-in function (see Appen-
dix 1). The source character-string value must be a
legitimate name of an external procedure that 1is known to
the execution environment. If the procedure can be located,
the address of its entry point is returned by the ENTRY
function as the entry value.

Chapter 4 -- Data Manipulation 71

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 5 -~ DATA_ DESCRIPTION

INTRODUCTION

An identifier appearing in an Apple program may refer to one
of many classes of objects. For, example, it may represent
a variable referring to a floating-point number; it may
refer to a file; it may be a variable referring to a pointer
or offset; etc.

The recognition of an identifier as a particular name is
established through the declaration of the name. The
declaration provides a means for associating properties with
a name. These properties and the scope of the name itself
together make up the data_attributes of an identifier.

When an identifier is used in a given context in a progranm,
attributes must be known in order to assign a unique meaning
to the occurrence of the identifier. Por example, if an
identifier 1is used to represent an arithmetic variable, the
scale, precision, and storage class must be known. Exanmples
of attributes are:

CHARACTER{50) -~ Association of this attribute with an
identifier defines the identifier as representing
a variable referring to a string of 50 characters.

FLOAT -- Association of this attribute with an identi-
fier defines the 1identifier as representing a
variable referring to arithmetic data.

EXTERNAL -- Association of this attribute with an

identifier defines the identifier as a name with a
global scope.

DECLARATIONS

A given 1identifier is established as a name which holds
throughout a certain scope in the program (see "Scope of
Declarations®™ in this chapter) and a set of attributes may

If a declaration is made in a block, then the name 1is said
to be internal +to that block and contained blocks unless
redeclared. However, a given identifier may be established

72 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

in different parts of a program as referring to separate
objects. For example, an identifier may represent an
arithmetic variable in one part of a program and a entry
constant in another part. These two parts cannot overlap.
Fach separate use of the identifier is established by means
of a separate DECLARE statement, The rules of scope
distinguish between references to different uses of the
identifier.

EXPLICIT DECLARATIONS

EFxplicit declarations are made through the use of the
DECLARE statement (see Chapter 8), 1label prefixes and
specification in a parameter list. By this means, an
identifier can be established as a name and can be given a
certain set of attributes.

Only one DECLARE statement can be used to establish an
internal nanme. However, 1in the <case of a parameter, a
complementary explicit declaration is required. The
appearance of the identifier in the parameter list specifies
that the identifier has the parameter attribute. This must
be combined with an explicit declaration in a DECLARE
statement to provide other data attributes. These multiple
declarations of the same name must be internal to the sanme
bl ock. This is known as a complementary _set of
declarations.

Two or more declarations of the same identifier, internal to
the same block, constitute a multiple _declaration of that
identifier only if they have identical gqualification
(including the case of two or more declarations of an
identifier at level 1, i.e., scalars or major structures).
Multiple declarations are in error.

Example:

DECLARE 1 A,
2
2
2 C,
2

B has a multiple declaration.

Chapter 5 -- Data Description 73

APPLE KHEFERENCE MANUAL

31 MARCH 1972

label Prefixes

The use of an identifier as a label prefix to a PROCEDURE or
ENTRY statement causes an explicit declaration of that
identifier as a name with the following attributes:

ENTRY with no returns attributes

EXTERNAL if the entry point belongs to an external
procedure

INTERNAL if the entry point belongs to an internal
procedure

If the PROCEDURE or ENTRY statement applies to the entry
point of an internal procedure, the declaration of the
identifier occurs in the block that immediately contains the
internal procedure. If the entry point belongs to an
external procedure, the declaration occurs in an 1imaginary
block of which the sole contents are the external procedure
concerned and the set of declarations generated for its
entry points.

A label acting as a prefix to any other statement is an
explicit declaration of the identifier as a statement 1label
constant. The declaration occurs within the block contain-
ing the prefix.

Parameters
An identifier that appears in a parameter 1list of an ENTRY
or PROCEDURE statement is explicitly declared as a name with

the attribute "parameter®, Further attributes must be
supplied by the programmer in a DECLARE statement.

CONTEXTUAL_ DECLARATIONS

The syntax of Apple allows the contextual declaration of
built-in functions. Such contextual declarations will not,
however, override any explicit declaration of the sanme
identifier whose scope includes the block containing a
statement that might otherwise cause contextual declaration.

74 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

An undeclared identifier is contextually declared with the
attribute BUILTIN if it appears in either of the contexts:

a. It appears anyvhere that it is 1leqgqal for a
function or pseudo-variable to appear and is
followed by an argument list.

b. It follows the keyword CALL in a CALL statement.

A contextual declaration is treated as if it had been made
in the external procedure, even if the reference is made in
an internal block. The scope of a contextually declared
name is the entire external procedure, except for any
internal blocks in which the same identifier is explicitly
declared. Explicit declarations have priority over contex-
tual declarations.

SCOPE_OF DECLARATIONS

When a declaration of an identifier is made in a block,
there is a certain well-defined region of the program (see
"Block Structure” in Chapter 2) over which the declaration
is applicable. This region is called the scope_ _of _the
declaration.

The scope of a declaration of an identifier is defined as
that block B to which the declaration 1is internal, but
excluding from the block B all contained blocks to which
another declaration of the same identifier 1is internal.
Block B may be the imaginary block that is considered to
contain the declaration of external entry constants, as
discussed under "Label Prefixes"” in this chapter.

A name 1is said to be known only within its scope. This
definition suggests a basic rule on the use of names:

All appearances of an identifier that are_intended
to_represent _a given name_in_a_ _program _must 1lie
within the scope of that_name.

The above rule has many implicatioms. One of the most
important is the limitation of transfer of control by the
statement GO TO A; where A is a statement label constant.

The statement GO TO A;, internal to a block B, can cause a
transfer of control to another statement internal to block B
or to a statement in a block containing B, and to no other
statement. In particular, it cannot transfer control to any
point within a block contained in B.

Chapter 5 -- Data Description 75

APPLE REFERENCE MANUAL

31 MARCH 1972

In general, distinct declarations of the same identifier
imply distinct names with distinct non-overlapping scopes.
It is possible, however, to establish the same name for
distinct declarations of the same identifier by means of the
EXTERNAL attribute. The EXTERNAL attribute is defined as
follovws:

A declaration of an identifier that specifies the
jdentifier as EXTERNAL is called an external
declaration _for _the _identifier. All external
declarations for the same identifier in a program
will be linked and considered as establishing the
same name. The scope of this name will be the
union of the scopes of all the extermal declara-
tions for this identifier.

In all of the external declarations for the same identifier,
the attributes declared must agree since all the declara-
tions involve a single name and refer to the same object.

The EXTERNAL attribute can be used to communicate between
different external procedures or to obtain non-continuous
scopes for a name within an external procedure.

An external name 1is a name that has the scope attribute
FXTERNAL. If a name is not external, it is said to be an
internal name and has the scope attribute INTERNAL.

The following examples illustrate scope of declarations.
The numbers on the left are for reference only and are not
part of the procedure.

76 Chapter S -- Data Description

APPLE REFERENCF MANUAL

31 MARCH 1972

Example 1.

1. A: PROCEDURE;
2. DECLARE (X, Z) FLOAT;:
3. B: PROCEDURE(Y);
4. DECLARE Y BIT(6);
5. C: BEGIN;
6. DECLARE (A, X) FIXED;
7. Y: RETURN;
END C;
FND B;
8. D: PROCEDURE;
a, DECLARE X CHARACTER (20)
EXTERNAL;
END D:

END A:

Since entry names of external procedures have the attribute
EXTERNAL, the scope of the entry name A and of the
character string X declared in line 9 above may include
parts of other external procedures of the program. The
following table gives an explanation of the scope and use
of each nanme:

T 1 R 1 ;
| | | !

jLine|Name| Ises I|Scope (by block name) !
1. i K} 3]
L L A k] 1
] 11 A | external entry name] all of A except C H
! 21 X) floating-point variable] all of A except C & D |
1 21 2) floating-point variable] all of A]
] 3% B] internal entry nane] all of A }
] 41 Y | bit string 1 all of B except C]
! 51 C { statement label i all of B |
] 6} A) fixed-point variable | all of C }
] 61 X | fixed-point variable ! all of C |
! 71 Y } statement label | all of C i
1] 81 D} interral entry name | all of A |
}] 9 1 X | character string] all of D i
4 L i 1]

Chapter 5 -- Data Description 77

APPLE REFERENCE MANUAL

31 MARCH 1972

Example 2.
As PROCEDURE;
1. DECLARE X EXTERNAL FLOAT;
B: PROCEDURE;
2. DECLARE X FIXED;
C: BEGIN;
3. DECLARE X EXTERNAL FLCAT;
END C;
END B;
END Aj
D: PROCEDURE;
4, DECLARE X FIXED;
E: PROCEDURE;
5. DECLARE X EXTERNAL FLOAT;
END E;
END D3

In examrple 2, there are five separate declarations
for the identifier X. Declaration 2 declares X as
a fixed-point variable name; its scope is all of
block B except block C. Declaration 4 declares X
as another fixed-point variable name, distinct
from that of declaration 2; its scope is all of
block D except block E.

Declarations 1, 3, and 5 all establish X as a

single external progranm. Declarations 2 and &
establish X as a FIXED scalar in blocks B and D.

78 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

DEFAULT_ATTRIBUTES

Some attributes are given to identifiers by explicit and
contextual declarations. Generally these do not constitute
the full set of attributes and *he rewmaining attritutes are

deduced according to the following set of default rules:

1. In the absence of contradictory specificiation,
the following attributes nmay be deduced from those
already specified:

] 1 |
] Specified | Defaults |
| !]
F u . |
] AUTOMATIC JINTERNAYL i
{BIT JVARIABLE]
JBUILTIN JCONSTANT, INTERWAL i
] BASED {ITNTERNAL |
jCHARACTER jfized-length |
{CONDITION {CONSTANT, INTERNAL I
| CONSTANT |STATIC, INTERWAL i
{ DESCRIPTOR JYARIABLE i
JENTITY |INTERNAL 1
{ ENTRY JEXTERNAL, COWSTANT }
|EVENT JINTERNAL, CONSTANT i
JEXTERNAL JSTATIC, VARIARL®E i
{FILE JINTERNAL i
{FILE_SET {INTERNAL |
| FIXED IBINARY {473, VARTIABLE !
| FLOAT |DECINAL{T14) , VARIABLE i
JINITIAL {VARIABLE |
JINTERNAL {ATITOMATIC H
| LABEL {VARTAEBLE l
| OFFSET JVARTABLE !
{ POINTER JYARIABLE I
] SET JINTERNAL i
| REGISTER JINTERNAL {
| STATIC JINTERNAL |
J VARIABLE JINTERNAL i
i 2 3

Chapter 5 -- Data Descriptiom 79

APELE REFERENCE MANUAL

31 MARCH 1972

2. For all identifiers that are scalars, elements of
a structure, or arrays of non-structured elements,
one of the following attributes must be specified
in a DECLARE statement:

BIT (length-specification)
BUILTIN

CHARACTER (length-specification)
CONDITION

DESCRIPTOR

ENTITY

ENTRY

EVENT

FILE

FILE_SET

FIXED

FLOAT

LABEL

OFFSET

POINTER

SET

LIST OF _ATTRIBUTES

Following 1is a detailed description of the attributes that
can appear in a DECLARE statement. Alternative attributes
are discussed together.

80 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

AUTOMATIC, STATIC, REGISTER, and BASED

The storage class attributes are used to specify the type of
storage allocation to be used for level one data variables.

AUTOMATIC specifies that storage is to be allocated upon
each entry to the block to which the storage declaration is
internal. The storage is released upon exit from the block.
A data value may be represented by an automatic variable
only as long as the block to which that variable is internal
remains active. The value is lost upon exit from the block.

STATIC specifies that storage is to be allocated when the
procedure containing the declaration is first invoked and is
not released until program execution has been completed.

REGISTER specifies that storage is to be allocated within
the STAR hardware registers whenever the declaring block is
activated in the same manner that automatic variables are
allocated. The storage is released and the values are lost
upon exit from the block. This storage class 1is the most
efficient from the point of view of access; however, it has
the most restricticns.

BASED specifies that full control of allocation will be
maintained by the programmer through the use of the ALLOCATE
and FREE statements. A variable with the BASED attribute is
allocated storage only upon the execution of an ALLOCATE
statement specifying that variable. This allocation remains
even after termination of the block in which it was
allocated. The storage will remain allocated for that
variable until the execution of a FREE statement which
specifies that variable. All current allocations of based
variables are available at any time. Unique reference to a
particular allocation is provided by a locator value quali-
fying the based reference. A based variable can also be
used to reference data of any storage class by associating
the based variable name with a locator qualifier that
identifies that data. Based storage is the most powerful of
the Apple storage classes, but it must be used carefully.
Many of the safequards against error that are provided for
other storage classes cannot be provided for based.

Chapter 5 -- Data Description 81

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:
storage-class-attribute ::=

STATIC

AUTOMATIC

REGISTER [(register~-specification))
BASED [(locator-variable)]

General rules:

1. Automatic, register and based variables can have
internal scope only. Static variables may have
either internal or external scope.

2. Storage class attributes cannot be specified for
conditions, entities, entries, built-in functions,
events, or members of structures.

3. The storage class attributes STATIC, AUTOMATIC and
BASED cannot be specified for parameters.

4. Variables declared with adjustable array bounds or
string lengths may only have the BASED storage
class attribute.

5. For a structure variable, a storage class attri-
bute can be given only for the major structure
name. The attribute then applies to all elements
of the structure or to the entire array of
structures. Storage is always allocated for a
complete major structure. The contained items may
not be independently allocated or freed.

6. If, during the evaluation of an expression, a
based variable is allocated or freed, the result
of the expression is undefined if the variable is
used elsewhere in the statement.

7. The following rules govern the use of based
variables:

a. The locator variable named in the BASED
attribute must be an unsubscripted sca-
lar locator variable. This restriction
does not apply to explicit locator qua-
lifiers, which may be general 1locator
expressions.

82 Chapter 5 -- Data Description

31 MARCH 1972

C.

APPLE REFERENCE MANUAL

If no locator variable is named in the
BASED attribute, any reference to the
based variable must have an explicit
qualifier. This does not apply to a
based variable that is the object of a
REFER option or that is to be allocated
through the use of an ALLOCATE
statement.

A reference to a based variable without
an explicit locator qualifier is impli-
citly qualified by the locator variable
named in the BASED attribute specifica-
tion in the DECLARE statement for the
based variable. Identifiers in this
implicit gqualification are those known
in the declaring block.

Example:

DECLARE P POINTER,
B BASED (P);
BEGIN;
DECLARE P POINTER;

L: B X3
In the statement labelled L, the assign-
ment B = X; has the same effect as:

P->B = X3
where P is the name known in the outer
block, not the one declared in the begin
block.

For the results of a reference to be
defined:

i. The attributes of the based
variable must be the same as
those of the data identified
by the locator qualifier.

ii. The declared mpaximum length of
a string with the attributes
BASED VARYING must be equal to
the maximum length of the str-
ing identified by the locator
qualifier used in the
reference.

Chapter 5 -- Data Description 83

APPLE REFERENCE MANUAL

31 MARCH 1972

iii. The 1length of a fixed length
string with the attribute
BASED should be equal to the
length of the string identi-
fied by the locator qualifier
used in the reference.

iv. The aggregate type and data
type of all elements of the
structure must agree up to and
inciuding all of the level-2
items that contain the
referenced sub-item. A level-
2 item is an immediately con-
tained member of structure,
i.e., is not contained in any
other member,

Fhen a reference is made to a based
variable, the data attributes assunmed
are those of the based variable, while
the associated locator variable identi-
fies the generation of data. If the
reference is to a component of a based
structure, a second temporary locator
variable is created to determine the
location of the component in relation to
the beginning of the structure.

Array bounds and string lengths of iden-
tifiers declared with the BASED attri-
bute are evaluated dynamically with each
reference to the based variable. There-
fore, the asterisk notation for dimen-
sions and 1lengths is not permitted. A
reference to a component of a based
structure causes evaluation of suffi-
cient elements of the structure to
determine the position of the component.

Exanmple:

DECLARE P POINTER,
M FIXED,
N FIXED,
A(2%M, 2% (M+N)) FLOAT
BASED (P) 3

At every reference to an element of
A, variables M and N must contain

84 Chapter 5 -- Data Description

37 MARCH 1972

APPLE REFERENCE MANUAL

values that correspond to the
dimensions of the generation of A
being accessed.

When a based variable is allocated using
the ALLOCATE statement, expressions for
bounds and lengths are evaluated at the
time of allocation in the environment of
the declaration.

The REFER option can be used to create
structures that define their own adjust-
able bounds and lengths, i.e., self-
defining data. The REFER option may be
used in a DECLARE statement to define a
bound of an array or the 1length of a
string.

General format:
refer-option ::=
expression REFER (scalar-name)

where "scalar-name" is a reference, pos-
sibly qualified, but not subscripted or
locator qualified. The reference must
be to a scalar item preceding the EREFER
option in the structure.

The REFER option can not be used in the
declaration of a structure which is
named in the LIKE attribute for another
identifier. (See MLIKE" later in this
chapter for details.)

Chapter 5 -- Data Description 85

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

DECLARE P POINTER,
FIXED,
FIXED,

A BASED(P),

2 N1 FIXED,

2 N2 FIXED,

2 N3 FIXED,

2 B(M+3 REFER(N1),
2

2

- 2R

M*N REFER (N2)) FLOAT,
C CHAR (2*M*N REFER (N3)),
D FIXED;
M 53
N 103
ALLOCATE A;

W

This will cause space to be allocated
for A with the bounds of B, 8 and 50,
and the length of C, 100. N1, N2 and N3
will be set to 8, 50 and 100 respective-
ly. A reference to D will cause expre-
ssions involving N1, N2 and N3 to bhe
evaluated.

h. The INITIAL attribute may be specified
for a based variable. The values are
used only upon explicit allocation of
the based variable with an ALLOCATE
statement.

i. Whenever a based variable containing
arrays or strings is passed as an arqu-
ment, the bounds and lengths are deter-
mined at the time the argument is passed
and remain fixed throughout execution of
the invoked block.

8. The following rules govern the use of register
variables:

a. If a scalar arithmetic variable with the
REGISTER attribute is passed as an argu-
ment, its contents are passed by value
rather than by reference as is done for
all other storage classes (see "Corres-
pondence of Argqument and Parameters™ in
Chapter 2).

b. Although a variable with the REGISTER
attribute may be used as the argument to

86 Chapter 5 -~ Data Description

31 MARCH 1972

APPLE REFERENCE MANUAL

the ADDR built-in function, the pointer
value returned by the function is unde-
fined outside the block in which it was
evaluated.

The "register-specification" must be an
unsigned integer constant in the range 0
- 255, If a register specification is
given and the use of the register con-
flicts with the standard use of that
numbered register, the results of the
procedure are undefined. REGISTER
variables declared with a register-
specification will not have their values
preserved across calls.

If no register specification is given, a
register number will be assigned by the
compiler. These values will be pre-
served across calls.

Chapter 5 =-- Data Description 87

APPLE REFERENCE MANUAL

31 MARCH 1972

BINARY and DECIMAL

The precision attribute is used to specify the minimum
number of significant digits to be maintained for the
storage of arithmetic data variables. The precision attri-
bute can be specified in terms of either binary or decimal
digits as indicated by the BINARY or DECIMAL gualifier.

General format:
BINARY

precision-attribute ::= [(number-of-digits [,0]))]
DECIMAL

The "number-of-digits™ is an unsigned non-zero decimal
integer constant.

General rules:

1. The "number-of-digits™ specifies the minimum numb-
er of digits to be maintained for data iteams
assigned to the variable. The number of digits is
specified for both fixed-point and floating-point
variables.

2. An optional scale factor of zero may be specified
for fixed-point variables only.

3. The maximum precision that is supported is:

BINARY --- 47 bits
DECIMAL --- 14 decimal digits

If the "number-of-digits" specified exceeds these
limits the maximum value will be used.

4, The actual precision, p, that will be used is
determined from the "number-of-digits®, d4d, as
follows:

If the precision-attribute is BINARY then
if 1 < 4 £ 23 then p = 23.
if 24 € 4 € 47 then p = 47,

If the precision-attribute is DECIMAL then

if 1€ d £ 6 then p = 6.

if 7 € d € 14 then p = 14,

5. If the "number-of-digits" is omitted, the maximunm
precision is assumed.

88 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

BIT and_CHARACTER

The BIT and CHARACTER attributes are used to specify string
variables. The length of the string is defined in terms of
the number of elements to be maintained, where an element is
either a bit or character.

General format:

string-attribute ::=

General

1.

BIT
(length-specification)
CHARACTER [VARYING]

rules:

The VARYING attribute specifies that the maximunm
lenagth of the string has been specified by the
length-specification. The current length at any
time is the length of the current value of the
string. VARYING may only be applied to character
strings.

The declared attributes (including 1length and
VARYING) of a string with the attribute BASED must
match the attributes of the string identified by a
locator variable in a reference.

The length-specification must immediately follow
the CHARACTER or BIT attribute at the same factor-
ing level.

In the case of a parameter, the 1length may be
specified by an asterisk. This indicates that the
length of the string 1is determined from the
corresponding argument string being passed.

The length-specification of strings declared with
the AUTOMATIC or STATIC attributes must be an
unsigned integer constant.

The length-specification of a BASED variable str-
ing may be declared using the REFER option (see
the ALLOCATE statement).

The current length of an uninitialized varying-
length string is undefined before assignment.

Chapter 5 -~ Data Description 89

APPLE REFERENCE MANUAL

31 KARCH 1972

BUILTIN

The BUILTIN attribute specifies that any reference to the
associated name within the scope of the declaration is to be
interpreted as a reference to the built-in function or
pseudo-variable of +the same name. The built-in functions
and pseudo-variables of Apple are listed in Appendix 1.

General format:
built-in-attribute :2:= BUILTIN
General rules:
1. BUILTIN is used to refer to a built-in functiom or
pseudo-variable in a block within a containing

block in which the same identifer has been
declared to have another meaning.

Example:
As:
PROCEDURE;
DECLARE SQRT ENTRY (FLOATY
RETURNS (FLOAT) ;
X = SQRT(Y¥); /*This calls the external
procedure SQRT */
BEGIN:
DECLARE SORT BUILTIN;
¥ = SQRT(Y): /* This calls the
built-in function SQRT %/
END:
ENDg

2. If the BUILTIN attribute is declared for an entry
constant, there can be no other explicitly
declared attributes for the entry comstant except
INTERNAL,

3. The BUILTIN attribute cannot be declared for
paraneters.

4, The BUILTIN attribute must be specified for any
parameterless built-in functions or pseudo-
variables that are referenced by the progranm
{e.g., HNULL, TIME, ORFILE j.

90 Chapter 5 -- Data Description

APPLFE REFERENCE MANUAL

31 MARCH 1972

e < s >

See BIT and CHARACTER

CONSTANT

The CONSTANT attribute specifies that the associated identi-
fier is the name of a constant (a value which cannot change
during program execution).

General format:
constant-attribute ::= CONSTANT (value-list)

where the specification of "value-list" is given 1in the
section on the INITIAL attribute in this chapter.

General rules:

1. The CONSTANT attribute may only be specified for
level~-1 identifiers with arithmetic, string, loca-
tor, or LABEL attributes. It can not be specified
for parameters, structures, or any variables.

2. Only one constant value may be specified for a
scalar identifier. A 1list of values can be
specified for a constant array; however, the
number of values must match the number of elements
in the array.

3. The same rules apply to the "value-list" as apply
to the initial-value-list described in the section
on the INITIAL attribute with the execption that
the asterisk notation (used to skip or ignore
elements) is not permitted.

4, The only storage class attribute that may be
specified for an identifier with the CONSTANT
attribute is STATIC.

5. The only scope attribute that may be specified for
an identifier with the CONSTANT attribute is
INTERNAL.

6. The values of LABEL constants must be label
prefixes within the block of the declaration.

Chapter 5 -- Data Description 91

APPLE REFERENCE HMANUAL

CONDITION

31 MARCH 1972

and EVENT

The EVENT

or CONDITION attribute specifies that the identi-

fier refers to an interrupt.

General format:

| EYENT

interrupt-attribute ::=

{ CONDITION

General rules:

1.

See BINARY

DESCRIPETOR

See OFFSET

No attributes other than scope (INTERNAL or
EXTERNAL) can be specified for interrupt identi-
fiers. These identifiers can not be declared as
arrays or members of structures.

Only user defined <conditions can be declared.
System defined conditions (see Appendix 2) are

treated as keywords in the ON, REVERT, and SIGNAL
statements.

and DECTIMARL

s POINTER, and DESCRIPTOR.

92 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

Dimension

The dimension attribute specifies the number of dimensions
of an array and the bounds of each dimension. The dimension
attribute specifies the bounds (only the upper bound or both
the upper and lower bounds) or indicates, by the use of an
asterisk, that the actual bounds for the array are to be
taken from the passed parameter.

General format:
dimension-attribute ::= (bound [, bound] ...)
bound ::= { [lower-bound :] upper-bound } | *

where ‘"upper-bound" and "lower-bound" are fixed scalar
expressions.

General rules:

1. The number of "bounds" specified indicates the
number of dimensions in the array unless the
variable being declared is contained in an array
of structures. 1In this case, additional dimen-
sions are also inherited from the containing
structure.

2. The bound specification indicates the bounds as
follovws:

a. If only the nupper bound is given, the
lower bound is assumed to be 1,

b. The value of the fixed scalar expression
is evaluated on allocation of storage
and on reference; the value of the lower
bound must be less than or equal to the
value of the upper bound.

c. An asterisk used as a bound specifica-
tion indicates that the actual bounds of
an array parameter are to be the bounds
of its associated array argument.

3. Bounds that are expressions are known as adjust-
able bounds and are evaluated when storage is
allocated for the array and when the array is
referenced. For parameters, bounds can be only
asterisks or optionally signed integer constants.

Chapter 5 -- Data Description 93

APPLE REFERENCE MANUARL

31 MARCH 1972

4. The bounds of arrays Adeclared with the attributes
AUTOMATIC, REGISTER, or STATIC must be optionally
signed integer constants.

5. The dimension attribute must be the first attri-
bute to follow the array name (or parenthesized
list of names if the dimension attribute is being
factored) in the declaration. Intervening blanks
are optional.

6. The REFER option can be used to specify the bounds
of a BASED variable (see the ALLOCATE statement).

7. The total number of elements in an array ®say not
exceed 65535,

ENTITY

The ENTITY attribute specifies a variable that may be
manipulated by the INSERT, REMOVE, PFIND, and FOR EACH
statements.

General format:
entity-attribute :2:= ENTITY { (locator-variablej)
General rules:

1. Specification of the ENTITY attribute implies that
the named identifier is a structured based vari-
able. A system function will be provided to
record in a file the structure declaration for
each entity. At compile time this structure
declaration will replace the entity declaration.
It is intended that standard entity declaratioms
for a project will all be recorded in the same
file.

2. The ENTITY attribute may only be applied to a
level-1 identifier which may have no other
declared attributes.

3. The length of an identifier given the ENTITY
attribute can not erxceed 8 characters.

94 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

ENTRY

The ENTRY attribute specifies that the identifier is being
declared as an entry constant or entry variable. It is also
used to describe the attributes of the parameters of the
entry point.

General format:

entry-attribute ::= ENTRY [(parameter-attribute-list
{, parameter-attribute-list]...)]
T RETURNS(attribute-list)]

Rules for "parameter-attribute-lists®:

1. A parameter-attribute-list describes the attri-
butes of a single parameter; the parameter name is
not given.

2. The parameter-attribute-lists must appear 1in the
same order as the parameters they describe.

3. The attributes describing a scalar parameter may
appear in any order within the parameter-
attribute-list. The attributes within a list must
be separated by blanks; lists must be separated by
commas. For an array parameter, the dimension
attribute must be the first specified.

4, Array bounds and string 1lengths may only be
specified by decimal integer <constants or by
asterisks.

5. Parameter-attribute-lists may not «contain the
attributes STATIC, BASED, LIKE, AUTOMATIC, BUIL-
TIN, EXTERNAL, INTERNAL, CONSTANT, or INITTIAL.

General rules:
1. The ENTRY attribute may not be specified:
a. for an array or within a structure,
b. within a RETURNS attribute, or
c. with the BUILTIN attribute.
2. The factoring of attributes 1is not permitted

vithin the set of parameter-attribute-lists of an
ENTRY attribute specification.

Chapter 5 -- Data Description 95

APPLE REFERENCE MANUAL

EVENT

31 MARCH 1972

An external entry constant nust be given the
attribute ENTRY, otherwvise it is contextually
declared with the BUILTIN attribute and is treated
as the name of a built-in function.

All entry names which are invoked as functions in
the procedure must be declared with a RETURNS
attribute.

The appearance of an identifier as a label prefix
of either a PROCEDURE statement or an ENTRY
statement constitutes an explicit declaration of
that identifier as an entry constant, thus the
same identifier may not be declared in a DECLARE
statement in the same block.

The attribute TINITIAL may not be specified for
entry variables.

The attribute INTERNAL may not be specified for
entry constants.

An identifier declared with the ENTRY attribute is
assumed to be an entry constant, unless the
VARIABLE attribute is also specified.

See CONDITION and EVENT

96 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

EXTERNAL and INTERNAL

The EXTERNAL and INTERNAL attributes specify the scope of a
name. INTERNAL specifies that the name can be known only in
the declaring block and 1its contained blocks. EXTERNAL
specifies that the name may be known 1in other blocks
containing an external declaration of the same name.

General format:
EXTERNAL
scope-attribute ::=
INTERNAL
General rules:

1. The 1lengths of identifiers given the EXTERNAL
attribute cannot exceed 8 characters.

2. The lengths of identifiers given the TINTERNAL
attribute cannot exceed 31 characters.

3. The scope attributes can only be applied to
level-1 identifiers.

The FILE attribote specifies that the identifier being
declared is a file variable.

General format:
file-attribute ::= FILE VARIABLE
General rules:
1. Only the following attributes may be specified
with the file-attribute:
Scope attributes: INTERNAL
EXTERNAL
Storage class attributes: AUTOMATIC
STATIC
REGISTER

BASED
Dimension attribute

Chapter 5 -- Data Description 97

APPLE REFERENCE MANUAL

31 MARCH 1972

2. The RETURNS attribute in an entry declaration or
the RETURNS option in a PROCEDURE or ENTRY state-
ment may specify the FILE attribute if the corres-
ponding procedure returns a file value.

3. File variables may be used in the following
contexts:
a. as arguments to functions and procedures,
b. as arguments to an I/0 condition name in

SIGNAL, REVFRT, or ON statements,
c. as arguments to a FILE option in a GET or
PUT statement,

d. in the assignment of one file variable to
another file variable,
e. as operands of the = and += comparison

operators (two file-variables compare equ-
al only if they represent the same file
value),
£. in the declaration of an OFFSET variable,
o I8 in the INSERT, REMOVE, FIND, FOR EACH, and
LET statements.

4, On-units can be established for files whose iden-
tity is represented by a file-variable.

Example:
DECLARE F FILE VARIABLE,

G FILE VARIABLE:
/* Request that HCTS File System open a file

and set the file variable F */
G = F;
L1: ON ENDFILE(G) ;
L2: ON ENDFILE(F):
/* Statements labeled L1 and L2
have identical effect. */

98 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

FIXED and FLOAT

The FIXED and PLOAT attributes specify the scale of the
arithmetic variable being declared. FIXED specifies that
the variable is to represent fixed-point data items. FLOAT
specifes that the variable is to represent floating-point
data itenms.

General format:

scale-attribute ::=

General rule:
1. Fixed-point data items only represent integer
values., No fractional digits can be Trepresented
by a fixed-point variable.

Assumptions:

1. If only the scale attribute PIXED is specified,
the precision attribute BINARY (47} is assumed.

2. If only the scale attribute FLOAT is specified,
the precision attribute DECIMAL (14) is assumed.

INITIAL

The INITIAL attribute specifies an initial constant value to
be assigned to a data item whenever storage is allocated for
the variable.

Chapter 5 =-- Data Description 99

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:

initial-attribute ::= INITIAL (value-list)

value-list ::= itenm[, item] ...

iten

constant
s *

iteration-specification

iteration-specification ::=

General

1.

(iteration-factor) constant
{(iteration-factor) *
(iteration-factor) (item{, item] ...)

rules:

The INITIAL attribute may only be assigned to
level-1 variables with arithmetic, string, loca-
tor, or label attributes; it cannot be given for
parameters, structures, entry variables, or file
variables.

In the following rules, the term "constant®
denotes one of the following:

arithmetic-constant
character-string-constant
bit-string-constant

statement-label constant

the value of the NULL built-in function

Only one constant value can be specified for a
scalar variable; a list of values can be specified
for an array variable.

Constant values specified for an array are
assigned to successive elements of the array in
row-major order (final subscript varying nmost
rapidly).

If too many constant values are specified for an
array, excess values are igmored; if not enough
are specified, the remainder of the array is not
initialized.

Bach 1item in the 1list can be a constant, an
asterisk denoting no initialization for a particu-
lar element, or an interation specification.

100 Chapter 5 -~ Data Description

31 MARCH

10.

1.

12.

APPLE REFERENCE MANUAL

1972

The "iteration-factor® specifies the number of
times the constant, item list, or asterisk is to
be repeated in the initialization of elements of
an array. If a constant follows the "iteration-
factor”™, then the specified number of elements are
to be initialized with that value., If a 1list of
items follows the ™iteration-factor”, then the
list is to be repeated the specified number of
times, with each item initializing an element of
the array. If an asterisk follows the "iteration-
factor"”, the specified number of elements are to
be skipped in the initialization operation.

The "iteration-factor"™ must be an unsigned decimal
integer constant.

A based array with adjustable bounds or a based
string variable with an adjustable length cannot
be initialized.

For the initialization of a string array, both an
"jteration-factor® and a "string-repetition-
factor™ may be wused. TIf only one parenthesized
integer preceeds the string constant, it is
assumed to be the "string-repetition-factor" of
the initial value for a single element of the
array. Consequently, to cause initialization of
more than one element of a string array, both the
iteration factor and the string repetition factor,
in that order, must be stated explicitly, even_if
the string repetition factor is (1).

Example:

{(2)tA?) is equivalent to ('AA") (for a
single =lement)

{(2) (1) *'A?) 1is equivalent to ('A', 'A?Y)
(for two elements)

Label constants given as initial values for 1label
variables must be contained within the block in
which the label variable declarations occur. The
INITIAL attribute may only be specified for label
variables of the AUTOMATIC storage class.

The only initial value that can be specified for a
locator variable is the value of the NULL built-in
function. This is the only function reference
that may appear in an iritialization list.

Chapter 5 -=- Data Description 101

APPLE REFERENCE MANUAL

317 MARCH 1972

LABEL

The LABEL attribute specifies that the identifer being
declared can have statement labels as values.

General format:
label-attribute 2:= LABEL
General rules:
1. If the label variable is a parameter, its value
can be any statement label variable or constant

passed as an arqument by the caller.

2. An entry name cannot be a value of a label
variable.

3. The INITIAL attribute cannot be specified for
label variables with the STATIC, REGISTER, or
BASED storage class.

4. The CONSTANT attribute may be declared for identi-
fiers with the LABEL attribute.

102 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

LIKE

The LIKE attribute specifies that the name being declared is
a structure variable with the same structuring as that for
the name following the attribute keyword LIKE. Substructure
names, element names, and attributes for substructure names
and element names are to be identical.

General format:
like-attribute ::= LIKE identifier
General rules:

1. The "identifier" must be the unsubscripted name of
a level-1 variable.

2. The "identifier™ must be known in the block
containing the LIKE attribute specification.
Neither the "identifier™ nor any of its substruc-
tures may be declared with the LIKE attribute or
the REFER attribute. (Appendix B shows a method
for declaring similar structures with the REFER
option.)

3. Attributes of the level-1 identifier itself do not
carry over to the created structure. For example,
storage class attributes do not carry over. If
the "identifier” following the keyword LIKE repre-
sents an array of structures, its dimension attri-
bute is not <carried over. The attributes of
substructure names and element names, however, are
carried over; if the attributes that are carried
over contain names, these names are interpreted in
the block containing the LIKE attribute.

4. If a direct application of the description to the
structure declared with the LIKE attribute would
cause an incorrect continuation of 1level numbers
(for example, if a minor structure at level 3 were
declared LIKE a major structure at level 1) the
level numbers are modified by the addition of a
constant before application.

5. Any level number following the "identifier"™ must
be less than or equal to the level number of the
variable being declared with the LIKE attribute;
thus, no additional substructures or elements may
be added to the created structure.

Chapter 5 -- Data Description 103

APPLE REFERENCE HMANUAL

31 MARCH 1972

OFFSET, POINTER, and DESCRIPTOR

The OFFSET, POINTER, and DESCRIPTOR attributes specify
locator variables. A locator variable c¢an be wused in a
based variable reference to identify a particular generation
of the based variable. Offset variables identify a location
relative to the origin of a file; pointer variables identify
any 1location; descriptor variables identify both the loca-
tion and the length. Offset values retain their validity
between Jjobs; this is not the <case with pointer and
descriptor variables.

General format:

| POINTER
locator-attribute ::= QPFSET { file-variable)
DESCRIPTOR :
General rules:
1. The pointer or descriptor value of a locator

variable or function uniguely identifies a genera-
tion of a based variable. This generation may be
accessed by using the variable or function as the
locator qualifier in the reference to a based
variable whose evaluated attributes match those of
the generation. A value of pointer type may be
obtained from the built-in functioms ADDR, NULL,
and POINTER. A descriptor value may be obtained
from the built-in function DESCR.

2. The value of a descriptor variable is used to
describe the location and length of a based string
variable or the lccation and dimension of a based
vector variable. {4 vector variable is defined to
be a one~dimensional arrav of arithmetic, locator,
or file variables.) #hen a descriptor variable is
used as a locator qualifier to reference a based
string or vector, the length of the string or the
extent of the vector is specified by the descrip-
tor value; all other attributes are specified by
the based variable.

3. The value of an offset variable or function
identifies the position of a generation of a based
variable within a file relative to the origin of
the file. This value may be converted to a
pointer to the generation of the based variable by
supplying the file and the offset value as argu-
ments to the POINTER built-in function. A value

104 Chapter 5 -- Data Description

31 MARCH

REPER

APPLE REFERENCE MANUAL

1972

of offset type may be obtained from the built-in
function OFFSET.

The value of a locator variable can be set in any
of the following wvays:

a. By assigning the value of the NULL
built-in function.

b. By the ALLOCATE, LET, FIND, and FOR EACH
statements.

C. By assignment of the value of a locator
variable or function.

The value of a descriptor variable can also be set
in the same manner as an arithmetic variable.

Pointer and offset variables cannot be operands of
any operators other than the comparison operators
= and 4=. Descriptor variables may appear in
relations involving any comparison operator and
may also be used in arithmetic expressions as
operands to the infix + and - operators.

Locator data, except for descriptors, cannot be
converted to any other data type, but pointer can
be converted to offset, and vice versa.

A pointer or offset variable can be assigned only
to a locator variable. When an offset value is
assigned to an offset variable, the file variables
named in the OFFSET attributes are ignored.

See AUTOMATIC, STATIC, REGISTER, and BASED.

Chapter 5 -- lata Description 105

APPLE REFERENCE MANUAL

31 MARCH 1972

RETURNS

The RETURNS attribute specifies the attributes of the value
returned by an external entry or an entry variable when
invoked as a function.

General format:
returns-attribute 2= RETURNS (attribute ...)
General rules:

1. The attributes in the parenthesized list following
the keyword RETURNS must be separated by blanks
(except for attributes such as precision or length
that are enclosed in parentheses).

2. Only scalar arithmetic, string, locator, or file
attributes can be specified.

3. All lengths specified in the attributes must be
constants.

4. The RETURNS attribute must be specified in the
declaration of all entry variables and external
entry names invoked as functions. The attributes
given in the invoking procedure must agree with
the attributes specified in the PROCEDURE or ENTRY
statement of the invoked function.

106 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

SET

The SET attribute defines the name of a data aggregate that
represents an ordered set of entity variables. Sets are
identified by the file or entity that contains the set and
the name of the set. 1A uniquely named set that is contained
by the file in which it resides 1is referred to as a
FILF_SET.

General Format:
SET
set-attribute ::=
FILE_SET

General Rules:

1. A named set may be referenced by the INSERT,
REMOVE, FIND, FOR EACH, and LET statements.

2. The insertion of an entity into a set will cause
the set to be created if it previously did not
exist. Similarily, if all members of a set are
removed, the set will be automatically deleted.

3. Multiple generations of a named set may be
created, one for each containing entity. Howvever,
since a FILE_SET has no containing entity, only
one generation of a FILE_SET may be created in a
particular file.

4. The length of a set identifier can not exceed 8
characters.

5. No other attributes may be specified with the SET
or FILE_SET attribute.

Chapter 5 -- Data Description 107

APPLE REPERENCE MANUAL

31 MARCH 1972

VARIABLE

The VARIABLE attribute is used with the ENTRY attribute to
establish a name as an entry-variable or, if used with the
FILE attribute, to establish a name as a file-variable.

General format:
variahle-attribute ::= VARIABLE
General rules:

1. The VARIABLE attribute can only appear in a
declaration with the ENTRY or FILE attribute.

2. The attribute VARIABLE is supplied by default if
the ENTRY attribute is declared with any one or
more of the following attributes:

AUTOMATIC
BASED
STATIC
REGISTER
Parameter

See BIT and CHARACTER.

108 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 6: FILE HANDLING

INTRODUCTION

This chapter contains a discussion of the Apple language
facilities that are avasilable for processing data files.
The chapter is Aivided into three logical areas:

1. File organization and access to files.

2. Format-directed data +ransmission to or fron
seguential files.

3. Associative datz storage management within struc-
tured files,

The Aiscussion concentrates on describing how various file-
handling statements are used, {The syntax rules for each
statement are defimed ipn Chapter 8.)

FILES

Any collection of data that can be transmitted automatically
for the programmer between *the internal memory and external
storage devices of the couputer is called a file. A file is
known by a symbelic nawme and may be stored on magnetic tape,
direct-access disk or drom, a deck of punched cards, or a
printed 1listing. The actual storing, retrieving, and cata-
locging of files is controlled and performed by the File
Management System and iz not described in this manual. {The
reader is refarred to the File Management Manual.)

The transmission of data bhetwsen internal memory and extern-
al storage devices has traditionally been called input and
output (I/0). The system architecture supporting the execu-
tion of Apple programs allows these I/0 operations to be
performed more effectively by dividing them into two-stage
processes:

1. The user program reads all of its input data fron
virtual memory and stores all of its output
results in virtual memorye.

2. The actual transfer of data between virtual memory
and the physical storage devices is performed by

Chapter 6 =-- File Handling 109

APPLE REFERENCE MANUAL

31 MARCH 1972

File Management System facilities vwhich may be
called from an Appie program or invoked by the
system conmand language.

The virtual memory mechanise provides a large enough storage
space that a user can reference all of his data without ever
having to do any explicit I/0 operations. Since the actual
data transmission is transparent to the user, the remaining
user-controlled portion of the process is called virtual
I/0, which consists of internal memory~to-memory data mani-
pulation and data conversion.

Files may be used for storing many diverse categories of
information, ranging from sinple collections of card-images
to complicated data structures including libraries of
executable programs. But regardless of file contents, all
files are handled in the same vay by the File Mamagement
System. Any file must be g¢gpened or mapped into virtual
memory hefore any information within the file can be
referenced. Saving a file causes a standard File Management
procedure to store the file. Closing a file releases the
virtual memory space for other usage.

From a programmeing viewpoint, there are two basic types of
files in Apple, seguential files and structured files, each
involving an entirely different mode of operation and using
separate sets of Apple statements. Sequential files can be
considered to be a continuocus string of characters such as
an output listing or anm input deck of punched cards. The
programmed processing of sequential files implies an exten-
sive amount of data conversion and use of text-editing
facilities normally used for generating reports. Structured
files, on the other hand, can be considered as a "“carbon-
copy® of a portion of the program's virtual memory which can
be saved and restored. There is no implied data conversion
in the handling of structured files.

Sequential Piles

Sequential files have the following properties and
constraints:

1. The programmer can pot directly reference the data
within a seguential file. TInput data can only be
read via the GET statement, and output data can
only be written via the PUT statement.

2. There is no random access to data within a

sequential file, The data can only be read or
written in a sequential forward direction. Once

110 Chapter €6 -~ File Handling

APPLE REFERENCE MANUAL

31 MARCH 1972

input data has been read, there is no way to back
np and re-read the data except to close and
re-open the file and start over at the beginning
of the file.

3. All data in a sequential file is assumed to be 1in
character form and may contain control characters.
{Appendix 4 contains a list of the allowed graphic
and control characters.)

Structured Files

Structured files contain an organized collection of data
along with the stored hierarchical relationships between
data entities. The creation, manipulation, and structural-
ordering of data within a structured file are under the
direct control of the programmer.

Structured files have the following properties:

1. All data elements within a structured file must be
based variables or entities.

2. The data elements can be referenced in a random
order. In addition, the FIND and FOR EACH state-
ments provide searching capabilities for entities.

3. Although the associative data handling capabili-
ties are normally used to reference the data
within structured files, standard locator qualifi-
cation of based variables may alternatively be
used provided that the proper structure declara-
tions have been made.

4, The ALLOCATE and FREE statements must be used to
allocate and free data elements within structured
files.

5. The deletion of a data entity having associative
relationships includes the automatic removal of
those entities that are dependent upon the deleted
entity.

File_Variables
The Apple file-handling statements refer to a particular
file by means of a file variable. The file variable is an

identifier which has been declared with the FILE VARIABLE
attribute.

Chapter 6 -- Pile Handling 111

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

DECLARE INPOT1 FILE VARIABLE,
ITEM CHARACTER (20) 3
GET FILE (INPUT1) EDIT(ITEM) (A(20));

Apple requires that a file must be explicity opened before
any references can be made to the data within the file.
There is no implicit opening of a file when the first
file-handling statement is executed. The open facility
associates a file variable with a particular file. If a
file variable has not been associated with a file before a
file-handling statement uses the variable, the UNDEFINEDFILE
condition is raised.

When the processing of a file is complete, the file should
be closed, releasing the facilities established during the
opening of the file. A file will be closed automatically on
termination of the program that opened it, if it has not
been explicity closed before termination. Since the asso-
ciation hetween the file variable and the actual file 1is
established dynamically at execution time, a file variable
can be associated with different files at different times
during the execution of a program.

See the File Management Manual for a complete description of
the open, close, and save facilities.

112 Chapter 6 -- File Handling

APPLE REFERENCE MANDAL

31 MARCH 1972

SEQUENTIAYL FILT HANDLING

The format-directad data transmission facilities available
for handling sequential files are provided by the GET and
PUT statements. These statements provide conversions and
data transmissiocn beltwesn th2 internal form of progranm
variables and the character form of the external file data.

Use of GET and P47 Statements

The format-directed nmode of data transmission to sequential
files uses only one input statement, GET, and one output
statement, PUT. The statements may use either of two
options to specify the source or target of the data. The
FILE option specifies the name of the file variable asso-
ciated with the cvened sequential file on which the opera-
tion is to tale wlsoe, The STRING option specifies the name
of the characteyr sirviny variable which 1is the source or
target of the data. A GET statesent gets the next series of
data items from the source, and a PUT statement puts a
specified set of data items into the target. The variables
ta

expressions from which output results are transmitted, are
specified in & iizt with each GET or PUT statement. On
input, the “ rontains format-items which specify
the nunmber haracters %o be assigned to each input
variable and describe the characteristics of the input data.
On outpuet, the Format list defines the format that the
output data is o have in the target., No type conversion is
performed by the GRY aznd PUT statements.

Chapter 6 -=- File Handling 113

APPLE REFERENCE MANUAL

31 MARCH 1972

s i s e o e ———— ———

A Aata specification 1is used in GET and PUT statements to
specify a list of variables and expressions that are to be
converted according to a specified format and are to be
transmitted to or from a designated file or string variable.

General format:
data-specification ::= EDIT (data-list) (format-list)
General rules:

1. The general rules for data lists and format 1lists
are given later in this chapter under "Data Lists"
and "Format Lists".

2. On output, the data items to be transmitted are
defined by the data list of the PUT statement.
The value of each data item in the data list is
converted to the format specified by the asso-
ciated format-item in the format list.

3. Input data is considered to be a continuous string
of characters not separated into individual data
items. The number of characters for each data
item is specified by an associated format-item in
the format 1list. The conversion 1is performed
according to the specified format-itenm. The
resulting value is then assigned to the corres-
ponding variable in the data 1list of the GET
statement,

L. For either input or output, the first data format-
item is associated with the first item in the data
list, the second data format-item with the second
item in the data 1list, and so forth. If the
number of data format-items 1is 1less than the
number of items in the data list, the format list
is reused starting at the beginning.

5. The specified transmission is complete when the
last item in the data 1list has been processed
using its corresponding format-itenm. Subsequent
format-items, including control format-items, are
ignored.

114 Chapter 6 -- Pile Handling

31 MARCH 1972

Data_Lists

The data specification of a GET or PUT statement requires a
data list to specify the variables to which input values are
assigned or the variables or expressions from which output
results are transmitted.
General format:

data-list ::= element [, element] ...
Syntax rules:
The nature of the elements depends upon whether the data
list is used for input by a GET statement or for output by a
PUT statement. The rules are as follows:

1. Fach data-list element of an input data specifica-
tion must be a scalar variable.

2. For an output data list, each element must be a
scalar expression.

3. The elements of a data list must be of arithmetic
or string data type.

4, A data list nust always be enclosed 1in
parentheses.

Chapter 6 -- File Handling 115

APPLE REFERENCE MANUAL

31 MARCH 1972

Format Lists

The data specification of a GET or PUT statement regquires a
format list to specify the external format for every item in
the data list.

General format:
format-list ::=
foraat-list-item {, format-list-item],..

format-itenm
format-list-item ::={n format-itenm
n{format-list)

Syntax rules:

1. The letter n represents an iteration factor, which
specifies that the associated format-item is to be
used n successive times. The associated format-
itenr is that item or format list of items to the
right of the iteration factor. The iteration
factor muyst be an unsigned decimal integer
constant.

2. There are two categories of format-items: data
format-items and control format-itesns. Each
format-item of a format list must be an allowable
type for either category as listed in the table on
the next page.

116 Chapter 6 -- Pile Handling

APPLE REFERENCE MANUAL

31 MARCH 1972

Type of Format-Iten General Format

Data Format-Itenms:

Fixed-point P (vw(,d¢{,pP]1))
Floating-point E(w , d[,s])
Character string A [({w)]
Bit string B [(w)]
Control Format-Items:
Spacing control X (n)
Column positioning COLUMN ({(n)
Line skipping SKIP [(n)]
Line positioning LINE (m)
Top of new page PAGE

The following notation is used in the definition of
format-itenms:

The letter w represents the total number of characters
in the field (including a possible sign character,
decimal point, blanks, and the letter E denoting an
exponent).

The letter d represents the number of fractional digits
to the right of a decimal point; it may be omitted for
integers. -

The letter p specifies a scaling factor, which may be
positive or negative, to be used with the F
format-itemn.

The letter s is optionally used in the E format-itenm to
specify the number of significant digits in the coeffi-
cient of a floating-point number.

The letter 1n represents an integer value used by the
control format-items to specify number of characters or
number of 1lines.

Each of the gquantities w, 4, p, s, and n must be

specified by a decimal integer constant; w, d, s, and n
must be unsigned.

Chapter 6 -- File Handling 117

APPLE REFERENCE MANUAL

31 MARCH 1972

Data_ Format-Itenms

A data format-item describes the character representation of
a single data item in the sequential data file or character
string specified by a GET or PUT statement. In the format
list of a GET statement, each data format-item specifies the
number of characters being used to represent an input data
item and describes the way those <characters are to be
interpreted. If the characters in the input string cannot
be interpreted 1in the manner specified, the CONVERSION
condition is raised. During execution of a PUT statement,
the value of each associated element in the data 1list is
converted to the character representation specified by the
data format-item and is inserted into the output character
string.

The conversion 1is defined to occur between the character
representation specified by the data format-item and the
internal representation of the associated variable or expre-
ssion. No data type conversion is performed.

Blanks are not automatically inserted into the target to
separate the output data items. Arithmetic data is right-
adjusted in the format-specified output field. Leading
blanks will be inserted in the converted output string if
the specified field-width w allows for them. If truncation
of significant digits due to inadequate field-width specifi-
cation occurs during the ocutput of arithpetic data itesms,
the ERROR condition will be raised.

String data is left-justified in the specified output field

with truncation or padding with blanks occurring on the
right.

118 Chapter 6 -- File Handling

31 MARCH 1972

Fixed-point format-items describe decimal arithmetic data.

General format:

fixed-point-format-item 2::= F(w [, d [, P]))

The options referred to in the following rules are:

F (w) s+ option 1

F(w, 4d)

option 2

P(w, 4, p) + option 3

General rules:

1.

2.

On input, the data item 1in the source is the
character representation of an optionally signed
decimal arithmetic number anywhere in a field of
width w. Leading and trailing blanks are ignored,
but if the data consists only of blanks, =zero is
assumed.

Option 1 is treated like F(w, 0).

In option 2, if no decimal point appears in the
number, it is assumed to appear immediately before
the last 4 digits {(trailing blanks are ignored).
If a decimal point does appear, it overrides the 4
specification.

In option 3, the scaling factor effectively multi-
plies the value of the item in the source by 10
raised to the value of p. If p is positive, the
number is treated as though the decimal point
appeared p places to the right of its given
position. If p is negative, the data is treated
as though the decimal point appeared p places to
the left of its given position. The given posi-
tion of the decimal point is that indicated either
by an actval point, if it is given, or by 4, in
the absence of an actual point.

If the number in the source exceeds the allowed
range, the ERROR condition is raised.

On output, the result is right-adjusted in a field

Chapter 6 -- File Handling 119

APPLE REFERENCE MANURAL

31 MARCH 1972

of width w. TIf the value of 4 is too swmall to
contain all the 1low-order digits, the result is
truncated.

In option 1, only the integer portion of the
number is written; no decimal point appears.

In option 2, both the integer and fractional parts
of the number are written. TIf d is greater than
0, a decimal point is inserted before the right-
most d digits, and the value is appropriately
positioned. Trailing zeros are supplied if the
number of fractional digits is less than d (where
4 must be less than w). If the absolute value is
less than 1, a zero precedes the point; if ¥ is
not large enocugh to include the zero, the ERROR
condition will be raised.

In option 3, the scaling factor effectively multi-
plies the internal data value by ten raised to the
power of p before it is edited into its external
character representation.

For all options, if the value of the data item is
less than zero, a minus sign will be prefixed to
the character representation in the data stream;
if it 1is greater than or equal to zero, no sign
will appear. Therefore, for negative values, ¥
must encompass both sign and decimal point., If
the length of the data item is greater than ¥, the
ERROR condition is raised.

The variable or expression associated with a
fixed-point format-item must be arithmetic.

120 Chapter 6 -- File Handling

31 MARCH 1972

Floating-point format-items describe the external represen-
tation of decimal arithmetic data in floating-point format
(coefficient and exponent).

General format:

floating-point-format-item ::= B (v, d [, s])

General rules:

1.

When used in a GET statement, the input data itenm
is the character representation of an optionally
signed decimal floating-point number located any-
where within the specified field of width yw.
Leading and trailing blanks are ignored. If the
entire field is blank, it is treated as zero.

The external input form of a floating-point number
is:

{t] coefficient [E [+] exponent]

The "coefficient™ must be an unsigned deciral
arithmetic constant. If no decimal point appears
in the coefficient field, the decimal point is
assumed to be before the rightmost 4 digits. If a
decimal point does appear in the input number, it
overrides the decimal point placement specified by
d.

The "exponent" must be an unsigned decimal integer
constant. If the exponent and prefix letter E are
omitted, a zero exponent is assumed.

The width of the input field, expressed by ¥,
includes the character positions for the exponent
field, the optional signs, the letter E, a poss-
ible decimal point in the coefficient, and any
leading or trailing blanks.

When used in a PUT statement, the output data is
inserted in the specified field after being con-
verted to the following general format:

[-] {s-d digits} . {4 digits} E {t} exponent
The exponent is a decimal integer constant that

may range from =-8630 to +8630. The exponent is
automatically adjusted so that the 1leading digit

Chapter 6 -- File Handling 121

APPLE REFERENCE MANUAL

31 MARCH 1972

of the coefficient 1is non-zero. At least one
non-fractional digit will alwvays appear; if 4 = s,
a single zero appears to the left of the decimal
point. When the value 1is zero, one zero digit
appears to the left of the point and 4 zero digits
to the right of the decimal point and the exponent
appears as E+0.

The output field-width ¥ must be large enough to
contain s significant digits plus the decimal
point, the letter E, an exponent and its sign, and
a possible leading minus sign if the data item is
negative. Thus, ¥ > s + 8 for negative values and
¥ 2 s + 7 for non-negative values of the data
item. However, if no fractional digits are speci-
fied (4 =0), the decimal point is not used and the
above requirements for field-width are reduced by
1. If any significant digits or the sign is lost
because w is too small, the ERROR condition is
raised.

If the number of significant digits s is omitted,
it is assumed to be d + 1.

The number of significant digits s specified in
the E format-item E(w,d,s) must be less than 16
digits. If s is omitted and the E({w,d) form |is
used, 4 must be less than 15.

The variable or expression associated with a
floating-point format-item must be arithmetic.

122 Chapter 6 -- File Handling

31 MARCH 1972

The bit-string format-item describes the character represen-

tation of a bit string.

General format:

bit-string-format-item ::

B [(w)]

General rules:

1.

The field-width, w, is an integer constant which
specifies the number of character positions in the
data stream that conatain (or will contain) the
character representation of a bit string. Each
bit is represented by the character 0 or 1. The
field-width is always required on input; if w = 0,
a null string is assumed. If the w option is
omitted on output, w is taken to be the length of
the associated bit string; the resulting data itenm
completely £ills the output field.

When executing a GET statement, the input data
item may occur anyvhere within the specified field
of width =€. Leading and trailing blanks are
ignored. If the entire field 1is ©blank, the
CONVERSION condition is raised. If w differs from
the declared length of the wvariable, the input is
extended with zeros or truncated on the right.
Any character other *hen 0 or 1 in the input data
string, including embedded blanks, enclosing quo-
tation marks, or the 1letter B , will raise the
CONVERSION condition.

During execution of a PUT statement, the value of
the associated expression from the output data
list is left-<dustified 1in the specified output
field. If necessary, truncation or extension with
blanks is performed on the right. No enclosing
quotation marks are inserted, nor is the identify-
ing letter B.

The variable or expression associated with a
bit-string format-item must be a bit string.

Chapter 6 -- File Handling 123

APPLE REFERENCE HMANUAL

The

31 MARCH 1972

character-string format-item describes the external

representation of a string of characters.

General format:

character-string-format-item ::= A [(w)]

General rules:

124

1.

The character string is contained in w character
positions of the external data stream. The field-
width ¥ is alwvays required on input, but it is
optional for output.

During an input operation, ~ characters are
obtained from the input data stream. If w = 0, a
null string is assumed. If quotation marks appear
in the input data, they are treated as ordinary
characters 1in the string. The input characters
are extended with blanks or truncated on the
right.

During the execution of a PUT statement, the
associated value from the output data 1list is
truncated or extended with blanks on the right to
the specified field-width w before being placed
into the output field. Enclosing quotation marks
are not inserted. If the field-width ¥ 1is not
specified, it is assumed to be egqual to the
character-string length of the associated data
item.

The variable or expression associated with a
character~string format-item must be a character
string.

Chapter 6 -- File Handling

31 MARCH 19072

Control Format-Items

The control format-items specify the layout of data within a
file or string and are commonly used for gemerating printed
reports. Control format-items take effect whenever they are
encountered in the format 1list. Any format-item that
appears after the data 1list 1is exhausted will have no
effect. There are three types of control format-items: the
spacing format-item X, the positioning format-items SKIP and
COLUMN, and the printing format-items PAGE and LINE.

The spacing-format-itenm specifies relative horizontal
spacing.

General format:
spacing-format-item ::= X {(n)
General rules:
1. On input, the format-item specifies that the next
n characters of the source are to be skipped over

and ignored.

2. On output, the format-item specifies that n blank
characters are to be inserted into the target.

The positioning format-items specify positioning to a new
line or to a nevw column within a line.

General format:

positioning-format-iten ::={SKIP [(n)]}
COLUMN (n)
General rules:

1. The SKIP format-item specifies that the next data
item is to be transmitted to or from the start of
the nth line beyond the current line. On input, n
lines (including the rest of the current line)
will be skipped over and ignored; on output, n-1
blank 1lines will be inserted. On input, n > 0.
On output, if n = 0, the effect is that of a
carriage return without line spacing. Characters
previously written may be overprinted. If n is
not specified, then SKIP(1) is assumed.

Chapter 6 -- FPile Handling 125

APPLE REFERENCE MANUAL

31 MARCH 1972

2. The COLUMN format-item specifies that the file is
to be positioned to the nth column of the current
line. If the file is an output file, blank
characters are inserted into the stream until the
nth column of the line is reached. If the file is
an input file, characters are ignored until the
nth column is reached. Tf the file is already
positioned beyond the nth column of the current
line, the file is positioned to the nth column of
the next 1line. If n is less than 1 or greater
than the line size of the file, n is assumed to be
10

A printing-format-item specifies that the rext data iten
transmitted is to appear on a new page or on a particular
line on a page.

General format:

printing-format-item ::=fLINE (n)
PAGE
General rules:

1. Printing-format-items may only be used with
sequential output files.

2. The LINE format-item specifies that the next data
item is to be printed on the nth line on a page of
an output file. Blank lines will be inserted so
that the next 1line will be the nth line of the
current page (or the next page, 1if the current
line number is greater than or equal to n).

3. The PAGE format-item specifies that a new page is
to be established in the print output file. The
establishment of a new page implies that the next
printing is to be on line one.

Note that X and COLUMN specify, respectively, relative
horizontal spacing and absolute horizontal spacing. Simi-
larly, SKIP and LINE specify relative vertical ©positioning
and absclute vertical positioning.

126 Chapter 6 -- File Handling

31 MARCH 1972

STRUCTURED FILE HANDLING

A structured file is one that is made up of data elements
that are related by defined associations. The elements
themselves may be referenced in random order (as compared to
sequential) and a formal organization is preserved in order
to represent the relationships between elements.

All data elements within a structured file must be ENTITY or
BASED variables. That is, storage space within the file is
created through use of the ALLOCATE statement and deleted
through use of the FREE statement. Locator qualification
must be used to refer to a particular generation of ENTITY
or BASED variable within a file. TIf the variable is to be
used to form an association (i.e. relationship) bhetween
data elements, it is referred to as an ENTITY. The
allocation of a variable does pot imply the establishment of
associations. The INSERT and REMOVE statements must be used
to establish associations hetween groups of entities (called
SETS) based upon some common relationship. The FIND and FOR
FACH statements may be used to search a set for an entity
with particular characteristics.

Storage Management

The allocation and freeing of storage space within a
structured <€iile will be controlled by the ALLOCATE and FREE
statements. A file is activated and saved on external
storage devices in multiples of 4096 bytes (1 page). The
ALLOCATE statement will always try to assign the request for
space to the lowest address that will accomodate the
request., If all current active pages of the structured file
will not accomodate the request, a new page will automatic-
ally be activated up to a user defined limit. When storage
space 1is released via the FREE statement, adjacent unused
space will be combined, and unused pages will automatically
be deactivated. R deactivated page will not be saved on
permanent storage. In general, recovery of unused storage
space within a structured file will not be required because
of the dynamic activation and deactivation of pages.

Ry default, the allocation and freeing of BASED variables
will be done in a scratch file. Optionally, the programmer
may specify a particular file through use of the 1IN clause
in both the ALLOCATE and FREFE statements. In addition, the

Chapter 6 -- File Handling 127

APPLE REFERENCE MANUAL

31 MARCH 1972

programmer may exert some control over the location of the
allocation. The ALLOCATE statement provides an optional
means for specifying that a BASED variable shall be NEAR to
or REMOTE from another based variable or AT a particular
location. NEAR implies that the allocation shall be made in
the same page as the referenced variable. TIf this cannot be
done, the normal space allocation rules will apply. The
REMOTE option implies that the allocation shall be made in a
nev page.

Examples:

DECLARF F1 FILE VARIABLE,
(A, B, C) POINTER,
S (5) FIXED BASED(A),
T(8) PLOAT BASED(A),
ALLOCATE S IN(F1);
ALLOCATE T IN (F1) NEAR (A):
ALLOCATE T SET (C);
FREE T IN (F1);

FREE C -> T;

Entities

e o e . o

A BASFTD structure variable that can be used in the establi-
shment of relations or associations is known as an ENTITY

variable. An entity identifier is a maximum of 8 alphanum-
eric characters or break symbols, and must begin with an
alphabetic character. An example of an entity declaration
is:

DECLARE POINT ENTITY (P);

A system function will be provided to store the structure
declaration for the POINT variable in a file. At compile
time this declaration will replace the entity declaration.
Thus, the entity POINT might be replaced by the declaration:

128 Chapter 6 -- File Handling

31 MARCH 1972

DECLARE 1 POINT BASED(P),
H OFFSET(F),
M OFFSET(F),
X FLOAT,
Y FLOAT,
Z FLOAT;

NN

Presumably, standard declarations will be established for
projects, thus assuring a continuity of data item declara-
tions across procedures. The variables F and P must have
been declared by the programmer.

Since an entity is a pre-defined type of structured based
variable, normal pointer qualification may be used to refer
to different generations of an entity.

Example:

DECLARE (P1,P2) POINTER,
POINT ENTITY (P1);

IFP POINT.X < 8.5 THEN
P2 -> POINT.Y = 5;

Sets

By definition, a set is an ordered collection of entities.
Bach entity is referred +to as a member of the set. Sets
have a unigque identification that may be expressed in terms
of the file or entity that contains the set and the name of
the set. The set name is a maximum of 8 alphanumeric
characters or break symbols and must begin with an alphabet-
ic character. An example of a set declaration is:

DECLARE BNDRY SET;
Generations of the named set may be referenced as follows:
locator-variable
locator-variable -> set-name
locator-variable -> (character-string—-expression)
If only a locator-variable is used to reference a set, the
locator must have been assigned a value through execution of

a LET statement. If a locator-variable is used in comjunc-
tion with a set-name or character-string-expression whose

Chapter 6 -- File Hamdling 129

APPLE REFERENCE MANUAL

31 MARCH 1972

value is a set-name, the locator-variable must reference an
entity that contains the named set.

A set that is contained by the file in which it resides is
referred to as a PILE_SET. An example of a FILE_SET
declaration is:

DECLARE TERM FILE_SET;
and may be referenced as follows:

locator-variable
set-name [OF (file-variable)]
character-string-expression [OF{file-variable)]

If only a locator-variable is used to reference the set, the
locator must have been assigned a value through execution of
a LET statement, Alternatively, a FILE_SET may be
referenced by its name or by a character-string-expression.
If the optional OF (file-variable) clause is present, the
FILE_SET in the specified file will be referenced. If no
file is specified, a "current"™ file will be interrogated for
the referenced set. The "current" file may be specified by
the programmer by setting the STATIC EXTERNAL variable
SYSFILE.CURRENT equal to a particular file-variable.

DECLARE 1 SYSFILE STATIC EXTERNAL
2 SCRATCH PILE VARIABLE,
2 CURRENT FILE VARIABLE,
2 STATIC FILF VARIABLE;

An entity that is an element of a set is said to be a member
of the set. An entity may be the member of one or more sets
having the same name or different names. Since sets are
ordered, the programmer can reference the first, second, or
last member (entity) of a set. Also, since a set may or may
not be homogenous, it makes sense to talk about the first or
second member of a set of a particular type. Entities may
also contain of one or more sets, provided each set has a
different nanme. In the case of a named set owned by an
entity-variable, many generations of the set can exist in
the same file, However, only one generation of a named
FILE_SET may exist in a file.

A set cannot be allocated or freed. ¥When the INSERT
statement is first used to make an entity a member of a set,
the set will automatically be created. Similarly, if all
members of a set are removed, the set will be deleted.

130 Chapter 6 -- FPile Handling

31 MARCH 1972

Creating and Deleting Associations

The INSERT statement is used to include a generation of an
entity as a member of a particular set. Any entity may be
inserted as a member of any set. Hence, a set may contain
many generations of the same entity or many different
entities., An entity can also be inserted onto more than one
set. The first entity inserted into a set will be the first
member.,

Because sets are ordered, it also is possible to specify a
position that an entity is to assume as a member of a set.
The BEFQRE, AFTER, FIRST, and LAST clauses of +the INSERT
statement allow the programmer to specify a relative posi-
tion at which to make the insertion. 7If the members of a
set are numbered {%,2,3) and a new entity is inserted after
entity 2, it will become member 3 and the previous member 3
will become number 4,

Example:

DECLARE (P1,P2) POINTER,
POINT ENTITY (P1),
CORVE FILE-SFT;

INSERT POINT ON CURVE:

TINSERT P2 -> POINT ON CURVE;

The REMOVE statement is used to remove a member entity from
one or more sets., If the ALL option 1is wused, the menmber
entity will be removed from all sets of which it is a
member. Tf an entity is freed, it will automatically be
removed from all sets of which it is a member. If a deleted
entity contains one or more sets, all members of these sets
will be deleted provided they are members of no other sets.
This recursive process is continued until no more entities
can be deleted. Member entities will be deleted regardless
of their membership in other sets if the INCLUSIVE option is
applied to the FREE statement.

Chapter 6 =-- File Handling 131

APPLE REFERFENCE MANUAL

31 MARCH 1972

Fxanmple:

DECLARE (A, B) POINTER,
ALL BUILTIN,
LINE ENTITY (B),
SETNAM CHAR(8) ;

REMOVE LINE FROM ALL;

SETNAM = 'LINE_SET';

REMOVE A -> LINE FROM SETNAM;

Searching a Set

Sets may be searched using either the FIND or FOR EACH
statements. The FIND statement is used to locate a particu-
lar member of a set or entity that contains a set. If the
search is successful, the FIND statement will set a locator-
variable to reference a generation of an entity-variable.
Since sets are ordered, the FIND statement provides a means
for specification of the n-th member. The user may option-
ally search for an entity of a particular type. The absence
of the CONTAINING option assumes the search will be made for
a member entity. TIf the CONTAINING option is used, the
search will be made for an entity that contains the
referenced set. Searches that are unsuccessful will either
raise the PIND condition or cause control to pass to an
optional ELSE statement.

Conditions may be placed on the extent of the search
performed by the FIND statement. The optional WITH clause
allows a relational-expression to be evalunated for every
entity included in the search of a set. The relational-
expression may involve attributes of the current entity. If
the relation is true, the entity will be counted in the
search. If the relation is false, the entity will not be
counted in the search and the search will continue. If the
optional INTIL clause is used, the search will be terminated
if the UNTIL relational-expression is true.

132 Chapter 6 -- File Handling

31 MARCH 1972

Example:

DECLARE (P1,P2) POINTER,
DATA ENTITY (P1);
FIND DATA = (I) ENTITY IN 'SETA';

o »

FIND P2 = (1) ENTITY CONTAINING P1 ON P2 -> S1;

If a group of statements is to be executed for all or part
of the members or containers of a set, the FOR EACH
statement may be used to delimit the start of the group.
The forms of the FOR EACH statement have a one to one
correspondence with the forms of the FIND statement. 1In
practice, the function of a PFOR EACH statement may be
replaced by the corresponding FIND statement within a DO
WHILE group. In all cases, the failure to find the next
member or container of the set is sufficient cause to
terminate the group.

Examples:

DECLARE (A,B) POINTER,
ORDER ENTITY (A);
FOR EACH B -> ORDER=ENTITY ON TSET;
I =1+ 1;
N(I) = B -> ORDER.NAME;
END;

Associative Data_ Built-In Functions

The Apple language includes a collection of 8 built-in
functions to aid in the manipulation of entities and sets.
The operation of each function is described in Appendix 1 of
this manual.

Chapter 6 -- File Handling 133

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 7_=~ INTERRUPT_ HANDLING

NTRODUCTION

- s

During the course of program execution, the program may be
interrupted by the occurrence of an error or an action which
is generated from an external source. There are two types
of occurrences which can cause an interrupt:

1. the raising of a condition, and
2. the completion of an event.

The circumstances which may cause a condition to be raised
are related to instruction execution; thus the program knows
"yhen® and "where" to expect a potential condition to be
raised. An event is associated with one or more external
actions that can occur on a peripheral device. Therefore,
the Apple program does not know "when" or "where" to expect
an event to become complete.

CONDITIONS

There are two types of conditions: gsystem conditions and
programmer-defined conditions. Conditions may be specified
in the ON, REVRRT, and SIGNAL statements. The ON and REVERT
statements allow the programmer control over the action to
be taken when a condition is raised. 1A complete list of the
conditions, the circumstances under vhich they may be
raised, and the standard system action taken in the absence
of programmer-specified action, appears in Appendix 2.

System_Conditioms

Each system condition is identified with a unique identifier
suggestive of that condition (e.g., ZERODIVIDE specifies the
condition raised whenever an attempt is made to divide by
zero) . This collection of identifiers is an intrinsic part
of the Apple language, but the identifiers are not reserved.

134 Chapter 7 -- Interrupt Handling

APPLE REFERENCE MANUAL

31 MARCH 1972

These identifiers are keywvords vhen used in the ON, REVERT,
and SIGNAL statements.

When a system condition is raised, and no programmer-
specified action exists, the standard system action for that
condition is taken. The ON statement can be used to specify
some other action, the REVERT statement can be used to
delimit the scope of an ON statement, and the SIGNAL
statement can be used to simulate the raising of a systen
condition. The use of these statements appears later in
this chapter (also see Chapter 8 - Statements).

Prograrmer-Defined Conditions

Programmer-defined conditions may be used in testing and
debugging programmer-specified action. A programmer-defined
condition 1is declared with the CONDITION attribute. The
execution of a SIGNAL CONDITION statement is the only way to
raise a programmer-defined condition.

|t

VENTS

An external action may be referenced in a procedure through
use of an event. The method of associating an event with
one or more external actions 1is defined in the Reactive
Terminal User's Manual. An example of an external action is
a user pushing a function key on a graphic terminal, the
selection of a graphic entity with the 1light pen, etc.
Events may be specified in the ON, REVERT, SIGNAL, and WAIT
statements. The LOCK and UNLOCK statements are used to
protect portions of program execution from event interrupts.

Event Declarations

An event identifier may be declared with any scope. The
declared event may then be associated with one or mwmore
external actions.

Chapter 7 -- Interrupt Handling 135

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

A: PROC;
DECLARE EV1 EVENT,
FV2 EVENT EXTERNAL;:
a CALL associating EV1 with external action C1
a CALL associating EV2 with external action C2
CALL B;

o e o

END A3

B: EROC; g
DECLARE EV2 EVENT EXTERNAL;
a CALL associating EV2 with external action C3

® 0 e

END B3

Event EV1, by the rules of default, has internal scope.
Thus, EV1 is known only within procedure A. Event EV2 has
been declared to have external scope. Thus, EV2 is common
to both procedures, A and B. Note that the same event may
be associated with different actions by different
procedures,

Event States

Every event has two states associated with it: the comple-
tion state and the delay state. Thus, an event can be
complete or incomplete and delayed or nondelayed. Upon
declaration an event is initialized to be incomplete, and
delayed. Each state has a value of '"1'B or "0'B.

Completion_State

An event becomes complete when an external action associated
with the event occurs. Once an event becomes complete it
remains complete until the program references the event in
the ONPTR built-in function which is described later in this
chapter. The COMPLETION built-in function can be used to
test whether an event 1is complete or incomplete (see
Appendix 1). The SIGNAL statement can be used to set an
event ccmplete. There is no COMPLETION pseudo-variable.

136 Chapter 7 -- Interrupt Handling

31 MARCH 1972

Delay_State

The delay state of an event determines when a program is
ready to react after an associated external action beconmes
complete. If the event is delayed, the program reacts to
event completion synchronously; if the event is nondelayed,
the program reacts asynchronously. An event is initialized
to be delayed. When a delayed event becomes complete, the
completion is enqueued so that the program may react to this
completion at some future time. When a nondelayed event
becomes complete, the on-unit associated with the event is
executed. If no on-unit is found, the ERROR condition is
raised.

The delay state can be changed by using the DELAY pseudo-
variable (see Appendix 1). This is the only way to change
the delay state of an event.
Example:

DELAY (EVY1) = *0'B;
The above example will set the event EV1 to nondelayed. The

DELAY built-in function can be used to test whether an event
is delayed or nondelayed.

Use_of the ONPTR Built-in Function

When an event becomes complete, a block of information
(Event Completion Block) about that completion is saved (see
the Reactive Terminal User's Manual for details about this
information). The ONPTR built-in function provides a means
of accessing the saved information (see Appendix 1 -
Built-in Functions). The value returned by the CNPTR
built-in function specifying an event is a pointer to the
Fvent Completion Block saved when that event became com-
plete. The reference to the event in the ONPTR built-in
function also resets the event to inconmplete. Since event
occurrences may bhe queued, another ONPTR reference to the
same event may return a pointer to another information
block. If another occurrence has not been queued, a null
pointer is returned.

Chapter 7 -- Interrupt Handling 137

APPLE REFERENCE MANUAL

31 MARCH 1972

USE OF INTERRUPT-HANDLING STATEMENTS

The interrupt-handling statements are the ON, REVERT, SIGN-
AL, WAIT, LOCK, and UNLOCK statements. The ON, SIGNAL, and
REVERT statements are used with both conditions and events,
while the WAIT, LOCK, and UNLOCK statements are used only
with events.

Use of the ON Statement

A system action exists for every condition or event. The ON
statement is used to specify alternative action that 1is to
be taken when a specified condition 1is raised or event
becomes coaplete.

When an ON statement that is internal to a given block is
executed, the specified action remains in effect until
overridden or until termination of the block containing the
ON statement. An established action passes from the defin-
ing block to all dynamically descendent blocks, and the
action remains in force until overridden by execution of
another ON statement for the same condition or event. 1f
overridden, the pew action remains in force only until that
block is terminated. #hen control returns to the activating
block, all established actions that existed at that point
are re-established. This makes it impossible for a subrou-
tine to alter the interrupt action for a block that invoked
the subroutine.

If more than one ON statement for the same condition or
event appears in the same block, each execution of an ON
statement overrides the action established by previous
execution of other ON statements. No re-establishment is
possible, except through execution of another ON statement
with an identical action specification.

Control passes to the on-unit in an ON statement only when
the specified condition is raised or the specified event
becomes complete. Any variables which appear in the on-unit
have the attributes and the environment of the block
dynamically encompassing the ON statement unless they are
declared in the on-unit. If the on-unit is a null state-
ment, no action is taken when the condition or event occurs.
In some situations, the programmer may want to specify his

138 Chapter 7 -- Interrupt Handling

APPLE REFERENCE MANUAL

31 MARCH 1972

own action for a givan condition or event, to have it hold
for part of the execution of the program, and then to have
this specification nullified and allow the standard systen
action. In this case he may use the keyword SYSTEM as the
action specificarion.

Example:

X: PROCEDVRE:
DECLARY (i, B} FIXED;
ON OVERPLOW
BREGIWN:
PIT FILE(F1) EDIT(A, B) (F{(2), F{(6));
EHNDg
Y: BEGIN:
DERECLARE (&, B} FLOAT:
BED Y3

END X

This example illustrates the effect of establishment of the
generation of wariables at the time an ON statement is
executed. If the DNVYERFLOY condition should arise, the
values transmitted by the PUT statement in the on-unit will
be the values of the variables A and B that are declared in
the outer block. This is true even if the OVERFLOW
condition shounid arise duoring the execution of the begin
block Y, where A aud B have peen redeclared.

Example:

A: PROCEDURE;
ON OVERFLOW
BEGINS
DECLARE NOMBOV FIXED STATIC INITIAL (0);
NUHBOV = NUMBOV + 1;
IF NUMBOV = 100 THEN GO TO OVERR;
END;
ON OVERFLONW;
OVERR: ON OVERFLOW SYSTEM;

® T 9

END A:

Chapter 7 -- Interrupt Handling 139

APPLF REFEREWNCE EANUAL

31 MARCH 1972

In the above exanmple, assume that the program coasists only
of procedure R; that the thres ON statements are the only ON
statements involving the OVIRFLOW condition, that they are
internal to procedurs A, and that they are executed In their
physical order. ¥hen prourdas =xecution begins, the OGVRRVLOW

conittion is emawiwd by the =systew; any floating-point
ovaytilow condition vhat oconrs before tpe first ON OVERFLOW

akay ement s sverwied will resuwit irn an isterropt, with
stacgar? system acryaon, Howaver, the *i@t“*ieﬁ of the first

ON OUWRYILOE staterent estob ishes the action specified in
she SEGTO hiook, (The nuwnb-er of QV?ff¢ﬁwo is countsd and Lf
trisn Awweey hay ack Taached 100, the action iz tinished.)
3 ISR @ wl' . Teceive This acvion until the

statenent 1s executed, The action

ill stutement; any subsequent OVERFLOW
stively be ignorad until contrel reaches
LOE =tatoment, whichk re-establishes the

Tha K svavemnent ray specifyv a progravmer-defined condition.
Conynol passes =0 the on-unet only when a SIGNAL statement
specifying the sase copdivion is executed.

4 e A RS Wankk A LW ILIRE A
P vxfﬂ»‘*i f“} Lol
S R Y

DEILALN

%
¥
YORA0 CONDITIONG:
® @ %

ON COUTTTTON {ABCS

e Eao e
50OTO L

SYANAL COWDITION ¢ARC):

The eyeration of tha N statement establishes the action to
ber taken when the SIGNRL starement is later executsd,

Tha ON EVENT sta-oment is used to estatlishk an asvachronous
action which takes plac vhen an avent becores complete.
The eveut specifind in the JN sratement aust be nondelayed
for contrul to pass fo the on-umit whern an interrupt occucrs.
If the event 1is delaved, execution will continuve when the
interrupt occurs; coantrol will not pass to any oa-unit.

140 Chapter 7 -- Interctupt Handling

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

A: PROCEDURE;
DECLARE XYZ EVENT;
a CALL associating function key 3 with XYZ
ON EVENT (XYZ)
BEGIN:
END;
DELAY (XYZ) = '0'B;

® o e

END A

The event XYZ is initialized to be delayed. If the function
key is depressed before the statement associating XYZ with
function key 3 1is execunted, the interrupt is ignored. If
the interrupt occurs before the DELAY (XY2) = 1'0'B; state-
ment 1is executed, execution will continue normally; control
vill not pass to the on-unit. TIf the interrupt occurs after
the DELAY (XYZ) = ?*Q0'B statement is executed, control will
pass to the on-unit of the ON statement. The execution of a
DELAY (XYZ) = '1'B; statement will re-establish synchronous
action when the interrupt occcurs. The delay value at the
time the external action occurs determines whether control
passes to the on-unit.

Use of the REVERT Statement

The REVERT statement may be used, following an ON statement,
to reinstate an action specification that existed 1in the
nearest dynamically encompassing block at the time the
descendant block was invoked. The REVERT statement does not
re-establish the completion or delay values of an event,
only the specified on-unit. Since there may only be one
active on-unit in a block for the same interrupt, the REVERT
statement cannot revert back to a previously active on-unit
in the same block, only to the active on-unit in the nearest
dynamically encompassing block.

Chapter 7 -- Interrupt Handling 141

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

A: PROCEDURE;
ON ZERODIVIDE
GO TO AERR:
CALL B3
END A
B: PROCEDIURE:
ON ZERODIVIDE
GO TGO BERR:;
REVERT ZERODIVIDE;

END B:

In the above example, if a ZERODIVIDE condition occurs in
procedure B after execution of the ON statement, an inter-
rupt will take place with the resulting action GO TO BERR.
After execution of the REVERT statement, the action as
specified by the ON statement in procedure A is reinstated.
Program control remains in procedure B, but any subsequent
ZERODIVIDE condition that occurs in procedure B will cause
an interrupt with the action GC TO AERR and result in the
termination of block B.

Use_of the SIGNAL Statement

The SIGNAL statement simulates the occurrence of the speci-
fied condition or event. It can be used to test and debug
the action specification of an ON statement. The SIGNAL
statement is the only way to pass control to the on-unit of
an ON statement specifying a programmer-defined condition.

Use of the WAIT Statement

The WAIT statement is used to relinquish control and to
synchronize the processing of delayed event completions.
The WAIT statement cannot be used with conditions or
nondelayed events.

142 Chapter 7 —-- Interrupt Handling

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

A: PROCEDURE;
DECLARE EC_1 EVENT,
BC_2 EVENT:
a CALL associating function key 1 with EC_1
a CALL asscciatine fupction key ¥ with EC_2
WATT (ANY):

END A

In the above example, the prouram %ill go into a wait state
until one of BEC_?* and ®BC_? hecomes complete, at which time
processing continues.

Use of the LOCK and UNLOCK Siztenents

The LOCK and UWLOCK statements are used to place a progran
or part of program execntion into locked status. When a
program is in locked status, 211 asvnchronous events will be
queued. No on-units specified in ON EVENT statements will
be invoked during locked status. On-units for conditions
are not affectad by the LOCK and UNLOCK statements.

Example:

As PROCEDURE:;
DECLARE X1 RVENT:
a CALL associating external action with X1
ON EVENT({X1) ABC
DELAY (X1} = *0'B;
LOCK

ABC+ 1:

H

UNLOCK

® e e

END A

In the above example, if the event I1 becomnes conplete
between the LOCK and UNLOCK statement, that completion will
be queued until the UNLOCK statement has been executed, at
vhich time the on-umit: ABC = ABC + 1, will be executed.

Chapter 7 -=- Interrupt Handling 1743

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 8: _STATEMENTS

INTEODUOCTION

This chapter includes a description of each statement in the
Apple language. These descriptions are presented in alpha-
betic order.

CLASSIFICATION OF STATEMENTS

Statements may be <classified into the following 1logical
groups according to the function that they perform: assign-
ment, control, file-handling, declaration, interrupt handl-
ing, program structure, storage allocation, and the null
statement.

Assignment statement
The assignment statement is used to evaluate expressions and
to assign values to scalars, arrays, and structures.

Control statements

The control statements affect the normal sequential flow of
control through a program. The control statements are CALL,
Do, EWND, EXIT, FOR EACH, GO TO, 1IF, PROCEDURE, RETURN,
SIGNAL, and WAIT. ‘

File-handling statements

The GFET and PUT statements cause values to be transmitted
betveen sequential files or character strings and specified
variables in the program. Associative data structures are
built from entities and sets contained in structured data
files. The FIND, POR EACH, INSERT, REMOVE, and LET state-
ments are used to reference and manipulate associative data
structures.

Declaration_statement
The declaration statement, DECLARE, specifies the attributes
to be associated with identifiers.

ol

Interrupt handling statements
There are ¢two kinds of interrupts; internal interrupts or

144 Chapter B8 -- Statepments

APPLE REFERENCE MANUAL

31 MARCH 1972

conditions, and external interrupts or events. The ON,
REVERT, and SIGNAL statements are used with both kinds of
interrupts while the LOCK, UNLOCK, and WAIT statements apply
only to the external interrupts.

Program_structure statements

The program structure statements are: PROCEDURE, BEGIN,
END, DO, FOR EACH, and ENTRY. The first three statements
delimit the scope of declarations within a program. The DO
and TFOR EACH statements delimit groups for the purposes of
control or repetitive execution. The ENTRY statement pro-
vides a secondary entry point for a procedure,

Storaqe_allocation_ statements

The storage allocation statements are ALLOCATE, CREATE,
DELETE, and FREE. These statements obtain and release
storage for based variables.

The ALLOCATE Statement

FPunction:

The ALLOCATE statement causes storage to be allocated for
specified based variables.

General format:
allocate-statement ::=
ALLOCATE allocation [, allocation] oc.. 3

allocation ::=

identifier [IN (scalar-file-variable)]
[ALIGN (integer-expression)]
[SET (scalar-locator-variable)]

NEAR
REMOTE (scalar~locator-variable)
AT

General rules:

Chapter 8 -- Statements 145

APPLE REFERENCE HMANUAL

31 MARCH 1972

The "identifier” wmust be the name of a level-1
scalar, array, or maijor structure variable with
the storage-class attribute BASED.

The amount of storage to be allocated 1is deter-
mined by evaiuating all bounds of arrays and
lengths of strings. Although the extents and
initial wvalues of the variable are evaluated at
the time of execution of the ALLOCATE statement,
the names in these expressions are interpreted in
the environment of the DECLARF statement. These
expressions may not contain references to the
variable 1being allocated except in the REFER
option.

The allocation of a based variable has no effect
on other generations of the variable. A given
generation of a based variable may be accessed by
a suitable based reference regardless of alloca-
tions of the same based variable made subsequent-
ly. The ailocation of a based variable proceeds
as follows:

A. Bounds and string lengths of all the fields
are evaluated in an unspecified order.
Expressions preceding the keyword REFER are
used as the values of the bounds and string
lengths specified by the REFER options.

b. Sufficient storage for a generation of the
pased variabie with these evaluated bounds
and sitring lengths 1is allocated. Should

there be insuificient space for the alloca-
tion 1in the file, the STORAGE condition will
be raised.

C. Within the newly allocated generation, those
variables that are objects of REFER options
are initialized to the values evaluated in
the REFER opntions. This initialization is
performed in an undefined order.

d. The locator variable specified in the SET
option or, in its absence, the locator vari-
able specified in the BASED attribute of the
based variable declaration is assigned a
pointer value that identifies the generation
Just allocated.

146 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

e. Initial values specified in the declaration
of the based variable are assigned to the new
generation.

The allocation of a based variable involves the
based variable to be allocated, a locator variable
to identify the new generation, and a file vari-
able if the generation is to be allocated in other
than scratch storage. If no SET option is speci-
fied, a SET option is assumed to specify the
locator variable given in the BASED attribute of
the based variable declaration. It is an error if
the BASED attribute does not specify a locator
variable., If the SET option specifies an offset
variable and there is not an IN option, then an IN
option that specifies the file variable given in
the declaration of the OFFSET attributes is
assumed. If no file variable is specified, the
program is in error.

If the SET option specifies an offset variable,
the pointer value identifying the new generation
is assigned to the offset variable. The 1IN
option, either 1in the statement or assumed, must
refer to the same file as that specified in the
OFFSET attribute of the offset variable
declaration.

If no IN option is present and none 1is assumed,
the new generation is allocated in a scratch file.
In the case of entity variables, the default file
is determined from the value of SYSFILE.CURRENT.

DECLARE 1 SYSFILE STATIC EXTERNAL,
2 SCRATCH FILE VARIABLE,
2 CURRENT FILE VARIABLE,
2 STATIC FILE VARIABLE;

If an IN option is present, or 1is assumed, an
attempt 1is made to allocate the new generation in
the designated structured file. If insufficient
storage exists, the STORAGE condition is raised.

If the NEAR option is present, an attempt will be
made to allocate the based variable in the sare
page as referenced by the locator variable. If
the attempt fails, the NEAR option will be
ignored.

Chapter 8 -- Statements 147

APPLE REFERENCE MANUAL

31 MARCH 1972

9. If the REMOTE option is present, an attempt will
be made to allocate the based variable im a new
page, If the attempt fails, the REMOTE option
will be ignored.

10. 1If the AT option is present, an attempt will be
made to allocate the based variable at the address
specified by the locator variable. If the attempt
fails, the STORAGE condition is raised.

11. If the ALIGN option is present, the integer-
expression will be evaluated to give a value Y.
An attempt will be made to allocate the based
variable at a location whose address is an integer
multiple of FLOOR(v/6U4) *64. If the attempt fails,
the STORAGE condition will be raised.

12. On normal return from a STORAGE on-unit, all the
options are re-evaluated and the allocation is
attempted again.

Fxamples:

DECLARE A (N, M) BASED(P),
(P,Q0) POINTER;

N, M = 100;:

ALLOCATE Ag

N = 50;

ALLOCATE A SET(Q) ;

This example creates tvwo generations of A, the first is 100
x 100 and the second 50 x 100.

DECLARE NAME CHARACTER(200) BASED,
(P,0) POINTER;

ALLOCATE NAME SET(P);

ALLOCATE NAME SET(Q) ;

P -> NAME

Q -> NAME

*ABC';
TXYZ';

1]

In this example, two generations of NAME are created, each
having a length of 200 characters. The pointer P identifies
the first generation and the pointer Q@ identifies the
second.

148 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

DECLARE NAME CHARACTER({N) BASED,
(P,Q0) POINTER;

N = 100;

ALLOCATE NAME SET(P):

N = 200;

ALLGCCATE NAME SET({Q):

This example differs from the previous one in that the
length of NAME 1is specified by the expression N, thus
alloving the 1length of each generation to be unique.
However, because the extents of based variables are eva-
luoated at each reference, the programmer must ensure that N
has the proper value when each generation of NAME is
referenced.

N = 100;
P -> NAME = *ABC';
N = 200;
Q -> NAME = *XYZ';
Vo P =-> NAME = Q =-> NAME; */

The assignment shown as a comment is illegal because N
cannot have the value 100 and 200 at the same tinme. To
relieve the programmer from the burden of maintaining the
proper extents when referencing based variables, the REFER
option can be used.

DECLARE 1 S BASED,
2 N FIXED BINARY (23),
2 NAME CHARACTER(M REFER(S.N)),
(P,Q) POINTER,
M FIXED BINARY (23);

M= 3

ALLOCATE S SET(P):

M= U4;

ALLOCATE S SET({Q):

P -> NAME = 'ABC';

Q => NAME = P -> NAME !! 'D?';

Each allocation causes the 1length expression M to be
evaluated and its value used to create storage for the
generation of S being allocated. The value of M is then
assigned to the newly allocated generation of S.N. Subse-
quent references to NAME always use the generation of S.N
identified by the pointer used to reference NAME.

Chapter 8 -- Statements 149

APPLE REFERENCE MANUAL

31 MARCH 1972

Q -> NAME uses Q -> S.N
P -> NAME uses P -> S.WN

The value of Q -> NAME after the last statement is 'ABCD'.

The Assignment Statement

Punction:

The assignment statement is used to evaluate an expression
and to assign its value to one or more target variables.
The target variables may be scalars, arrays, or structures.
The target variables may also be indicated by
pseudo-variables. .

General format:

scalar-assignment
assignment-statement ::= array-assignment
structure-assignment

scalar-variable [, scalar-variable]
scalar-assignment ::= o
pseudo-variable [, pseudo-variable]
= scalar-expression;
array-assignment ::= array-variable [,array-variable] ...
{array-expression }

scalar-expression

structure-assignment ::= structure-variable
[,structure-variable] ...

= structure-variable ;
Syntax rule:
In the scalar-assignment, the target variables must be
scalars. 1In the array-assignment, the target variables must

be arrays. Assignment of structures can only be made
between structures that have the same number of elements, n,

150 Chapter 8 -- Statements

31 MARCH 1972

APPLE REFERENCE MANUAL

such that for 1 < 1 < n, the ith element of each structure
has identical data and aggregate attributes.

General rules:

1.

2.

A

scalar assignment consists of the following

operations carried out in undefined order:

a.

b.

The

Subscripts and qualification of the targets
are evaluated.

The expression on the right-hand side is
evaluated.

For each target variable the value of the
expression 1is <converted to the characteris-
tics of the target variable according to the
rules stated in YExpressions™ in Chapter U4 --
Data Manipulation. The converted value is
then assigned to the target variable.

following rules apply to string scalar

assignment:

d.

C.

If the target is a fixed length striang, the
expression value is truncated on the right if
it is too long or padded on the right (with
blanks for character strings, zeros for bit
strings) if the value is too short. The
resulting value is assigned to the target.

If the target 1is a string with the VARYING
attribute and the value of the expression is
longer than the maximum length declared for
the variable, the value is truncated on the
right. The target string acguires a current
length equal to its maximum length.

If the target is a character string with the
VARYING attribute and the value of the expre-
ssion 1is not greater than the maximum length
declared for the variable, the value is
assigned and the current length of the target
string becomes equal to length of the value.

If the target is the SUBSTR pseudo-variable
of a character string with the VARYING attri-
bute, the length of the target character
string will not be changed by the assignment.

Chapter 8 -- Statements 151

APPLE REFERENC

3. The
than

152 Chapter 8

E MANUAL

317 MARCH 1972

If either the source or target string is
qualified by a descriptor variable, the
length field of the descriptor will override
the declared length of the string.

following rules apply to assignments other
string:

If the target 1is a 1locator variable, the
expression must yield a locator value,

If the target 1is a 1label wvariable, the
expression must be a label constant or label
variable. In both cases, the environment of
the label will be included in the assignment.
The environment of a label constant is
created by the activation of the block in
which the constant appears. References to a
label constant contained in an inactive block
produces undefined results.

If the target is a file variable, the expres-
sion can only be a file variable or a
function that returns a file variable value,

If the target 1is an entry variable, the
expression must be an entry constant or entry
variable. The environment of the entry will
be 1included in the assignment. The environ-
ment of an entry constant is created by the
activation of the block in which the constant
appears. References to an entry constant
(with internal scope) contained in an inac-
tive block produces undefined results.

following rules apply to array assignment:

All target <variables must have the same
number of dimensions and identical constant
bounds. If the expression is an array vari-
able, it must have the same number of dimen-
sions as the target variables and the bounds
must be identical.

If the expression is a scalar-expression, it

is evaluated and the value is assigned to all
elements of the target variables.

-- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

c. If either the source or target array is
qualified by a descriptor variable, the
length field of the descriptor will override
the declared length of the array.

5. The following rules apply to structure assignment:

a. Target and source variables must be left to
right equivalent.

b. The bounds and lengths of all contained
elements must be constant and match at the
time of the assignment.

c. If either the source or target structure is
qualified by a descriptor variable, the
length field of the descriptor will override
the declared length of the structure.

Exanmples:
The following example illustrates array assignment:

Given the arrays A = and B =

£ oW N
OV W~
[FSIF ~JEe N, }

4
6
7
8

The value of A after the execution of the assignment
statement:

A = (A + By**%x2 - A({1,1);

is 7 79
98 194
14 119
98 119

Chapter 8 -- Statements 153

APPLE REFERENCE MANUAL

31 MARCH 1972

The following example illustrates string assignment:

DECLARE A CHARACTER(5) INITIAL('XZ/BQ'),

B CHARACTER(8) VARYING INITIAL ("MAFY®'),

C CHARACTER(3),

D CHARACTER(S) VARYING;
C = A; /* C is YXZ/* */
C = 'X%; /¥ C is 'Xbb? */
D = B; /% D is "MAFY? %/
D = SOUBSTR(A,2,3) !! SUBSTR(A,2,3);/* D is 'Z/BZ/! */
SUBSTR (A,2,4) = B; /% A is VXMAFY' */
SOUBSTR(B,2,2) = 'RY; /% B is 'MRbY! */
SUBSTR (B,2) = °‘R'; /¥ B is 'MRbb?® */

The BEGIN statement

Function:

The BEGIN statement 1is the heading statement of a begin
block {(see Chapter 2 for a discussion of blocks).

General format:
begin-statement ::= BEGIN;
General rules:

1. The BEGIN statement is used in conjunction with an
END statement.

2. A begin block may not directly contain an ENTRY
statement or a RETURN statement.

The CALL statement

Function:

The CALL statement invokes a procedure and causes contrcl to
be transferred to a specified entry point of a procedure.

General format:

154 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

call-statement ::=
CALL entry-expression [(argument [, argument...]) J:
Syntax rules:

1. The entry-expression specifies the entry point of
the invoked rprocedure.

2. An arqument is an expression.
General rules:

1. The entry-expression can either be an entry con-
stant or an entry variable that has had an entry
value assigned.

2. Any argqument expressions are evaluated when the
CALL statement 1is executed. This includes the
execution of any on-units entered as the result of
conditions raised during the evaluation.

3. The called procedure is invoked in the enviroament
of the entry value. If the containing block is
inactive, the results are undefined. This value
is established after the evaluation of the arqgu-
ment expressions and thus reflects any modifica-
tions made to the <calling block's environment
during the evaluation of the argument expressions.

4, The attributes of argument expressions must match
the attributes of corresponding parameters. For
details of the correspondence between arguments
see "Correspondence of Arguments and Parameters"
in Chapter 2.

Chapter 8 -- Statements 155

APPLE REFERENCE MANUAL

31 MARCH 1972

Exanple:

A: PROCEDURE;
DECLARE X FIXED;
B: PROCEDURE(I) RETURNS (FIXED);
DECLARE T FIXED;

X = 23
RETURN (I+1);
END B;
X = 13

L: CALL C(B(5));
C: PROCEDURE (J) ;
DECLARF J FIXED;

e s 8

When procedure C is invoked at statement L, J will take on a
value of 6. X will have the value 2. This occurs because
the argument list of the CALL of C causes an invocation of B
as a function. The function B sets the variable X declared
in A to the value 2 and returns a value one greater than I,
nanely 6.

The CREATE statement

e e s s

{see the ALLOCATE statement)

The DECLARE statement

Fuanction:

The DECLARE statement is a non-executable statement used in
the specification of attributes of simple names. Attributes
common to several names can be factored to eliminate
repeated specification of the same attribute for many
identifiers. This factoring 1is achieved by enclosing the
same declarations in parentheses and following this by the
set of attributes to be applied. Level numbers, for
structure declarations, may also be factored, but in such
cases, the 1level number precedes the parenthesized list of
names.

156 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:
declare-statement ::=
DECLARE declaration-list;
declaration-list ::=
declaration [, declaration 1} ...
declaration ::=
integer(simple~declaration-list)
(declaration-1list)
attribute-list
[integer] identifier
simple-declaration-list ::=
simple-declaration [, simple-declaration] ...
simple-declaration ::=
identifier
attribute-list
(simple-declaration-list)
attribute-list ::=
[(dimension-attribute)][attribute ...]

Syntax rules:

1. Any number of identifiers may be declared as names
in one DECLARE statement.

2. Attributes must follow the names to which they
refer.

3. The "integer™ indicates the level in a structure
declaration and must be an unsigned decimal integ-
er greater than zero. If it is not specified,
level 1 is assumed. All structure declaratioms
must be preceded by a level number.

4, A DECLARE statement may have a label prefix. on
transfer of control to such a label, the 1label is
treated as if it were on a null statement and
execution continues with +the next executable
statement.

Chapter 8 =-- Statements 157

APPLE REFERENCE MANUAL

31 MARCH 1972

General rules:

1. A data type attribute must be specified for all
scalars, arrays of scalars, and structure
elements.

2. All of the attributes given explicitly for a
particular name must be declared together in one
DECLARE statement.

3. No attribute may be specified more than c¢nce for
the same name.

4. Attributes of FXTERNAL names, declared in separate
blocks, must not conflict or supply explicit
information that was not explicit or implicit in
other declarations.

Declaration of structures:

The outermost structure is a major structure and all
contained structures are minor structures. A structure is
specified by declaring the major structure name and follow-
ing it with the names of all contained elements. Fach name
is preceded by a level number as defined in the syntax
rules. A major structure is always at level one and all
elements contained in a structure (at level n) have a level
number that is numerically greater than n, but they need not
necessarily be a level nt+1, nor need they all have the same
level number.

A minor structure at level n contains all following items
declared with level numbers greater than n up to but not
including the next item with a level number less than or
equal to n. A major structure description is terminated by
the declaration of another item at level one, by the
declaration of an item having no level number, or by the end
of the DECLARE statement.

158 Chapter 8 -- Statements

APPLE REFERENCE

31 MARCH 1972

Examples:

DECLARE ((A FIXED,
B FLOAT) STATIC,
C ENTRY) EXTERNAL;

This declaration is equivalent to the following:

DECLARE A FIXED STATIC EXTERNAL,
B FLOAT STATIC EXTERNAL,
C ENTRY EXTERNAL;

DECLARE 1 S AUTOMATIC,
2 (T FIXED,
U FLOAT,
V CHARACTER (10));

This declaration is equivalent to the following:
DECLARE 1 S AUTOMATIC,
2 T FIXED,
2 U PLOAT,
2 V CHARACTER(10);

The DELETE statement

(see the FREE statement)

The DO_statement

FPunction:

MANUAL

The DO statement delimits the start of a do-group and may
specify repetitive or selective execution of the statements

within the group.
General format:
do-statement ::=
WHILE (relational-expression)

DO CASE(scalar-integer-expression
variable = specification

Chapter 8 -- Statements 159

APPLE

REFERENCE MANUAL

31 MARCH 1972

specification ::=

exp

r1

TO expr2 {BY expr3]

[WHILE {(relational-expression)]

BY expr3 [TO expr2]

Syntax rules:

1.

2.

General

1.

The "variable" is a scalar arithmetic variable of
any storage class.

Fach "“expr" in the specification 1is a scalar
expression.

If the BY clause is omitted from the specification
and the TO clause appears, the value of expr3 is
assumed to be 1.

If the TO clause is omitted from the specification
and the BY clause appears, the iteration is
performed until termination by the WHILE clause,
if present, or by some other statement within the
group.

If both the TO and BY clauses are omitted, this
form of the specification implies a single execu-
tion of the do~-group with the <control variable
having the value of expr1 or it 1implies no
execution if the WHILE statement is false.

rules:

In a simple DO statement without any iterative,
relational, or selective specification, the state-
ment serves to delimit the start of a do-group.

If only a WHILF clause 1is specified, the DO
statement delimits the start of a do-group and
specifies repetitive execution defined by the
following:

160 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

LABEL: DO WHILE (relational-expression);
statement-1
statement-n
END;
NEXT: statement

The above is exactly equivalent to the following
expansion:

LABEL: IF -~(relational-expression) THEN
GO TO NEXT:
statement-1
statement-n
GO TO LABEL
NEXT: statement

3. If a CASE clause is specified, the DO statenment
delimits the start of a do-group and specifies
that a particular statement of the group is to be
executed. Following execution of the selected
statement, control passes to the statement follow-
ing the group unless the executed statement causes
a transfer of control. A statement in this
context may be a single statement, a do-group, or
a BEGIN block. The execution of the DO CASE group
is defined as follows:

DO CASE (scalar-integer-expression) ;
statement-0
statement-n
END:
NEXT: statement

The above is exactly equivalent to the following
expansion:

DECLARE L(0O:n) LABEL CONSTANT(LO,L1,...Lln);
GO TO L(scalar-integer-expression);
LO0: statement-0
GO TO NEXT:
L1: statement-1
GO TO NEXT;
Ln: statement-n
NEXT: statement

Chapter 8 -- Statements 161

APPLE REFERENCE MANUAL

31 MARCH 1972

If the value of the scalar-integer-expression is
outside the range 0 to n then the program is in
error and the results are undefined.

If the DO statement defines a variable and a
specification, the statement delimits the start of
a do-group and specifies controlled repetitive
execution defined by the following:

DO variable(al,...,am) = exprl1 TO expr2
BY expr3 WHILE (expri)g
statement-1

LR N

statement-n

LABEL1: END;

NEXT: statement

This 1is exactly equivalent to the following
expansion:

1}

temp1 al;

tempm = am;
el = exprl;
e2 = expr2;
e3 = expr3;
v = el;

LABEL2: IF(e3>=0) & (vde2) ! (e3<0) & (v<e2) THEN

GO TO NEXT;
IF (exprid) THEN;
ELSE GO TO NEXT;
statement-1

statement-n

LABEL1: v = v + e3;

G0 TO LABEL2;

NEXT: statement

In the above expansion, al,...,an are expressions
that may appear as subscripts of the control
variable, and tenpl,... tempn are compiler-
created integer variables to which the expression
values are assigned; v is equivalent to "variable®
with the associated "temp" subscripts; "eliw, We2n,
and "e3" are compiler-created variables having the
attributes of "expr1", "expr2", and "expr3" respe-

ctively. In the simplest cases, there are no
subscripts (i.e. m = 0) and the first statement
in the expansion 1is therefore: el = expri;.

Additional rules for the above expansion follow:

162 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

a. If the WHILE clause 1is omitted, the 1IF
statement immediately preceding statement-1
in the expansion is omitted.

b. If "TO expr2" is omitted, the statement "e2 =
expr2;" and the IF statement identified by
LABEL2 are omitted.

c. If both "TO expr2™ and "“BY expr3®" are
omitted, all statements involving e2 and e3
as well as the statement GO TO LABEL2, are
omitted.

d. Although the above expansions shovw a specific
order in which the BY and TO clauses are
evaluated, this order is undefined.

The WHILE clause specifies that before each asso-
ciated execution of the do-group , the relational-
expression is evaluated and, if the result is
false, the iterations associated with the current
iteration are terminated.

In the specification, expr1 represents the start-
ing value of the control variable. Expr3 repre-
sents the increment to be added after each 1itera-
tion to the control variable. Expr2 represents
the terminating value of the control variable.
Tteration terminates as soon as the value of the
control variable passes its terminating value.
When the last specification is completed, control
passes to the statement following the do-group.

Control may, under any circumstances, be trans-
ferred 1ianto a do-group from outside the do-group
provided that no iteration or selection is speci-
fied on the DO statement that delimits the group.
If the do-group is selective or iterative, a GO TO
statement can transfer control to a statement
inside the group if the GO TO specifies an
out-of-block transfer from a block that has been
activated from within the do-group.

The effect of allocating or freeing the control
variable is undefined.

Chapter 8 -- Statements 163

APPLE REFERENCE MANUAL

Examples:

DO IND
DO I =
DO CAS
DO

DO WHTI

The END st

31 MARCH 1972

EX = Z WHILE(A < B):
1 TO 93
E(3%I45) 3

LE(TAX - D®DCT > ESTTAX * 4);

atement

Function:

The END st
General fo
end-staten
General ru

1.

The ENTRY

atement terminates blocks and groups.

rmat:

ent ::= END [identifier] ;

les:

The END statement terminates that group or block
headed by the nearest preceding DO, BEGIN, PROCE-
DURE, or FOR EACH statement for which there is no
other corresponding END statement.

If an identifier follows the END, the block or
group closed by the END statement must be preceded
by the same label.

If control reaches an END statement terminating a
procedure it is treated as a RETURN statement.

" If control reaches an END statement terminating a

begin block that is an on-unit, control is
returned to the point specified for that particu-
lar interrupt. This is a "normal return" from the
on-unit.

statement

Function:

The ENTRY
procedure.

statement specifies a secondary entry point to a

164 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:

entry-statement ::=

entry-name: ENTRY[(parameter [, parameter)l...)]
[RETURNS (data-attributes)]);

General rules:

1.

EFach "parameter"” identifies a variable that is to
be received at the specified entry point. When
the entry is invoked, a relationship is estab-
lished between the arquments of the invocation and
the parameters of the invoked entry point.

If the entry is invoked as a function reference,
the RETURNS option must be specified. The data-
attributes of the RETURNS option specify the
attributes of the value returned by the entry.
The attributes that may be specified are the
arithmetic, string, locator, and file attributes.

An ENTRY statement cannot be internal to a begin
block, nor can it be internal to a group that
specifies iteration or selection.

he IT statement

Function:

The EXIT

statement causes immediate termination of the

program that contains the statement.

General format:

exit-statement ::= EXIT:

General rule:

If

an BEXIT statement is executed, the FINISH condition

is raised. On normal return from the FINISH on-unit,
the program is terminated.

Chapter 8 -- Statements 165

APPLE REFERENCE MANUAL

31 MARCH 1972

The FIND Statement

Function:

The FIND statement is used to locate a specified entity that
is a member of a set or container of a set.

General format:
find-statement ::=

FIND find-specification [[,] ELSE statement] ;
find-specification ::=

entity-specification-1 [=[(integer-expression) 1]]
find-definition

find-definition ::=

ENTITY contain-clause

{entity-identifier contain-clause exception-clause}
contain-clause :1:=

IN set-definition [FROM entity-specification-2]

CONTAINING entity-specification-2
IN entity-specification-1 -> set-name

exception-clause ::=

{{,] WITH relational-expression-1]
T{,] UNTIL relational-expression-2]

entity-specification ::=

locator-variable
entity-variable

set-definition ::=

locator-variable

set-name [OF (file-variable)]
character-string-expression [OF(file-variable)]
locator-variable -> set-nane

locator-variable -> (character-string-expression)

166 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

General

1.

rules:

In the following rules, the value of the scalar-
integer-expression will be referred to as "n". If
the integer is not specified, a constant integer
value of one is assumed.

The FIND statement searches the set referenced in
the set-definition for the n-th entity that satis-
fies the conditions defined in the "exception-
clause™ part of the FIND statement. The locator
or entity variable named in "entity-specification-
1" is set to reference this entity.

If n is positive, the direction of search of the
set 1is from the first entity to the last entity.
If n is negative, the search is in the opposite
direction. The QO-th member of a set is the entity
that contains the set.

If the PROM option is specified, the search starts
from the entity referenced in "entity-
specification-2" and vproceeds in the direction
defined in rule 3.

If the FROM option is omitted, the search starts
at the first entity and proceeds in the direction
defined in rule 3.

The search is terminated when either the required
entity has been found, a successful search, or
when the entity containing the set is encountered
in the course of the search before ABS (n)
entities that satisfy the specified conditions
have been found, am unsuccessful search.

If the search is unsuccessful, "entity-
specification-1" will be set to reference the
entity that contains the set unless the "set-
definition" references a file-set, in which case
entity-specification-1 will be set to the value of
the NULL built-in function. TIYf the optional ELSE
clause has been specified, the statement following
the keyword ELSE will be executed. If no ELSE
clause is specified, the FIND condition will be
raised.

Chapter 8 -- Statements 167

RAPPLE REFERENCE MANUAL

10.

11.

12.

13.

14,

15.

31 MARCH 1972

If the keyword ENTITY is specified, all entities,
regardless of name, are examined.

If the Xeyword ENTITY is not specified, only
entities that are generations of the entity speci-
fied by "entity-identifier" are examined.

If the optional WITH clause 1is specified, the
relational expression is evaluated for each entity
examined, and the entity is only counted in the
search if the relational expression yields the
value true.

If the optional UNTIL clause 1is specified, the
relational expression is evaluated for each entity
examined and the search 1s terminated if the
relational expression vields the value true. In
this case, entity-specification-1 will be set to
reference the entity on which the search
terminated.

If a locator variable 1is used as the set-
definition, its value must have been set by the
LET statement. The character-string-expression
specified in the set-definition must bhe the nanme
of a defined set. If the character-string-
expression is itself a qualified based variable,
it must be enclosed in parentheses.

The keyword 1IN is synonymous with the keyword ON
in the FIND statement.

If the CONTAINING clause is specified, a search
will be made for the n-th entity that contains the
set and member entity referenced by entity-
specification-2. The order of search (for posi-
tive values of 1n) corresponds to the order in
which the reference entity was inserted onto
different sets. Entity-Specification-1 must
appear twice in the FIND statement; first as the
unknown and second as the identifier of the class
of sets to he searched.

If the search for a containing entity is unsucces-
sful, the optional FELSE clause will be executed
with entity-specification-1 set equal to entity-
specification-2. If the ELSF clause is not pre-
sent, the FIND condition is raised.

168 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

16. The FROM clause cannot be used with the CONTAINING
option. If the 1locator variable within a FPROM
clause has the value NULL, the search will begin
with the first member of the set.

17. If a set-name or character-string-expression is
used by itself in the set-definition, a FILE_SET
in the specified file (or the default "current™
file) will be referenced.

Fxamples:
PIND P1 = (1) ENTITY IN P2 -> SETA FROM P3 ;
FIND PTR = (J) LINE ON BNDRY ELSE GO TO ERR ;

FIND POINT = (1) ENTITY
CONTAINING P -> POINT IN POINT -> PSET ;

The FOR_FEACH statement

Function:

The FOR EACH statement delimits the start of a group and
defines the repetitive execution of the statements within
the group.

General format:
for-each-statement ::= FOR EACH find-specification ;
Syntax rule:

The syntax of the "find-specification" is defined 1in "The
FIND statement™ in this chapter.

General rules:

1. The FOR EACH statement is a means for the applica-
tion of an algorithm to all or selected members of
a set or entities that contain a set. The scope
of the FOR EACH statement is terminated by the END
statement and all the rules applicable to an
iterative do-group are also applicable to a for-
each group.

Chapter 8 -- Statements 169

APPLE REFE

2.
N
N
Exanples:
F
E

is equival

p
D

170 Chapt

RENCE MANUAL

31 MARCH 1972

The effect of a FOR EACH statement is defined by
the following:

FOR EACH find-specification ;
statement-1
statement-n
END:
EXT: statement

The above FOR EACH group is exactly equivalent to
the following:

ptemnp = fromp;

DO WHILE('1'B);
FIND find-specification FROM ptemp ELSE
GO TO NEXT:
statement-1
statement-n
ptemp = pfind;

END;

EXT: statement

where ptemp is a compiler defined pointer vari-
able, fromp is the value of the entity-
specification-2 in the FROM clause or, if the PROM
clause is omitted, is the value of the NULL
built-in function, pfind is the locator-variable
or entity-variable specified in
entity-specification-1.

OR EACH P1 = ENTITY ON S1;
A=A+ P11 ->B;
ND ;

ant to:

= NULL ;3
O WHILE('1'B)
FIND P1 = ENTITY ON S1 FROM P
BELSE GO TO DONE
A+ P1 ~-> DR ;
P1 3

fa~]
Hon

ar 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

FOR EACH P1 = (2) LINE IN 'SETA' FROM P2
WITH P1 -> LINE.X < 0
P1 -> LINE.X = 0 ;
END;

is equivalent to:

P = P2
DO WHILE('1'B);
FIND P1 = (2) LINE IN 'SETA' FROM P
WITH P1 -> LINEX.X € 0
ELS® GO TO DONE:
P1 -> LINE.X = 0 ;
P = PV ;

The_ FREE statement

Function:

The FREE statement causes the storage allocated for speci-
fied based variables to be freed.

General format:
free-statement ::=

FREE free-specification [,free-specification...]
free-specification ::=

[locator-variable ->] based-variable
[INCLUSIVE] [IN(scalar-file-variable)]

Syntax rule:

The "based-variable" must be an unsubscripted level-1 based
variable.

General rules:
1. A based variable can be used to free storage only
if that storage has been allocated for a based

variable having identical data attributes, includ-
ing values of bounds and lengths.

Chapter 8 -- Statements 171

APPLE REFERENCE MANUAL

Fxample:

31 MARCH 1972

An IN option must be specified if the generation
to be freed was allocated in a file. It may not
be specified if the generation to be freed was
allocated in scratch storage. The IN option must
specify the file 1in which the generation was
allocated.

The effect of the FREE statement is to make the
specified storage available for subsequent alloca-
tion by an ALLOCATE statement.

If the reference to the variable to be freed is
pointer-qualified by the POINTER built-in function
{either explicitly, or implicitly by the
appearance of an offset as the locator qualifier),
and the 1IN option 1is absent, the statement is
executed as if it contains the 1IN option naming
the file that 1is the second argument of the
POINTER built-in function.

If the storage to be freed has been allocated in
scratch storage, as opposed to a particular file ,
the FREE statement cannot include an IN option nor
can an IN option be 1implied by the use of an
offset as a locator qualifier.

The FREE statement may be used to free the storage
space for ENTITY variables. An entity that is
freed will be removed from all sets of which it is
a member, Then the entity 1is freed. TIf the
entity contains other sets, the member entities of
these sets will be freed provided they are members
of no other sets. If the TINCLUSIVE option is
used, all member entities will be freed regardless
of their membership in other sets. This process
continues recursively until no more entities can
be freed.

DECLARE F FILE,

Q OFFSET(F),
V BASED(Q);

FREE V;
The FREE statement is equivalent to the statement:

FREE POINTER(Q, F) =-> V IN(F):

172 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

T GET Statement

Function:

The GET

statement causes values, either from a sequential

file or from a string variable, to be assigned to variables

specified

in a data list.

General format:

get-statement ::= GET get-list ;

get-list ::=

{FILE(file-variable)

STRING (character-string-variable)

} data-specification

General rules:

1.

2.

The_GO_TO

The file-variable must refer to a sequential file
that has been opened.

The *character-string-variable"® refers to the
fixed 1length character string that is to provide
the data to be assigned to the data 1list. Each
GET operation using this option always begins at
the beginning of the specified string. If the
number of characters in this string is less than
the total number of characters implied by the data
specification, the ERROR condition is raised.

The rules concerning the "data-specification" are
defined in "Data Lists"™ in Chapter 6.

statement

Function:

The GO TO statement caunses control to be transferred to a

statement

identified by a label prefix.

General format:

Chapter 8 -- Statements 173

APPLE REFERENCE MANUAL

go-to-statement ::= {

31 MARCH 1972
GO TO} {1abel-constant }

GOTO scalar-label-variable

General rules:

1.

5.

Examples:

If a label variable is specified, the GC TO
statement has the effect of a multi-way switch.
The value of the label variable is the 1label of
the statement to which control is transferred.
Since the label variable may have different values
at each execution of the GO TO statement, control
may not always pass to the same statement.

A GO TO statement cannot pass control to an
inactive block.

A GO TO statement cannot transfer control €fronm
outside a group to a statement inside the group if
the group specifies iteration or selection except
in the case where the 50 TO specifies an abnormal
return from a block that has been invoked from
within the group.

A GO TO statement that transfers control from one
block, D, to a dynamically encompassing block, A
has the effect of terminating block D, as well as
all other blocks that are dynamically descendant
from block A. On-units are reestablished and
automatic variables are freed in the same way as
if the blocks were terminated normally. When a GO
TO statement transfers control out of a procedure
invoked as a function, the evaluation of the
expression that contained the corresponding func-
tion reference is discontinued. The value
returned by the procedure being terminated is
undefined, and control 1is transferred ¢to the
specified statement.

A GO TO cannot terminate any block activated
during the execution of an ALLOCATE statement.

GO TO A2345;

A23u5: 2 ® o

The following example illustrates a GO TO statement that
acts as a multi-way switch:

174 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

DECLARE L LABFL INITTIAL(L2);
GO TO MEET;

L1: X =Y - 1;:
L = L2
GO TO MEET;

L2: Y =X - 1;
L = L1;

MEET: CALL FUDGE(X,Y,2):
IF Z = LIMIT THEN
GO TO L;

The followving procedure illustrates the use of the GO TO
statement with a subscripted 1label variable to effect a
multi-wvay switch:

DECLARE (N1, N2) FIXED,
SWITCH(3) LABEL;

SWITCH(1) = CALC1;
SWITCH(2) = CALC2;
SWITCH(3) = CALC3;

GO TO SWITCH{(MOD(N1 + N2, 3) + 1))
CALC1: - e
CALC2: ...

CALC3: ...

The_ IF_statement

Function:
The IFP statement specifies evaluation of a relational
expression and a consequent flow of control dependent upon
the truth value of the expression.
General format:
if-statement ::= IP scalar-relational-expression

THEN then-clause

[ELSE else-clause]

Syntax rules:

Chapter 8 -- Statements 175

APPLE REFERENCE MANUAL

™
.

31 MARCH 1972

Fach then-clause and else-clause 1is a group, a
begin-block, or any statement other than DECLARE,
END, ENTRY, or PROCFEDURE. The unit may have its
own labels,

The 1IF statement 1is not itself terminated by a
semicolon.

General rules:

176

1.

The scalar-relational-expression is evaluated,
then:

a. If the value of the expression is true, the
then-clause is executed and control is passed
to the statement following the IF statement.

b. Tf the value of the expression is false and
an else-clause is specified, then the else-
clause is executed and control is passed to
the statement following the IP statement.

C. If the value of the expression is false and
an else-clause 1is not specified, control is
passed to the statement following the IF
statement.

Either the then-clause or the else-clause may
contain GO TO statements that transfer coatrol to
statements outside +the IF statement. If such a
GO TO statement is executed, control will not be
passed to the statement following the IF
statement.

IF statements may be nested, that is, either the
then-clause or the else-clause, or both, nmay
themselves be IF statements. Pach ELSE clause is
always associated with the innermost unmatched IF
in the same block or do-group. As a consequence,
an FLSE or a THEN with a unit consisting of a null
statement may be required to specify a desired
sequence of control.

Chapter 8 -- Statements

31 MARCH 1972

Exanmples:

IF A + B =

IF X < Y THEWN
IF Z =
L: Y =13

ELSE;
ELSE

Y = A;

IF A THEN

GO TO M3

GO TO W;

The INSERT statement

Function:

The INSERT statement causes
inserted on a specified set.

General format:

insert-statement ::=

APPLE REFERENCE MANDAL

%z THEN CALL X (0):
ELSE CALL X (A);

referenced entity to

INSERT entity-specification-1 IN set-definition

FIRST
LAST

BEFORE entity-specification-2|;
AFTER entity-specification-2

entity-specification ::=

locator-variable
entity-variable

set-definition ::=

locator-variable

set-name [OF (file-variable))
character-string-expression [OF(file-variable)]
locator-variable -> set-name

locator-variable -> {character-string-expression)

Chapter 8 -~ Statements

be

177

APPLE REFERENCE MANUAL

31 MARCH 1972

General rules:

1.

The INSERT statement makes the entity referenced
by entity-specification-1 a member of the speci-
fied set. If the optional FIRST, LAST, BEFORE, or
AFTER clause is omitted, LAST will be assumed.

If the BRPORE or APTER clauses are used, the
entity referred to by entity-specification-2 must
be a member of the specified set at the time the
INSERT statement 1is executed. If this entity
cannot be 1located, the FIND condition will be
raised.

The character-string-expression specified by the
set will be truncated to 8 characters if neces-
sary. If the expression itself is a qualified
based character string, it must be enclosed in
parentheses.

If a locator variable is used as the set defini-
tion, the locator must reference an existing set.
The LET statement can be used to set a locator-
variable to reference a set.

The keyword 1IN 1is synonymous with ON within the
INSERT statement.

The member ENTITY and SET in which it 1is to be
inserted, must be contained in the same file.

If a set-name or character-string-expression is
used by itself in the set-definition, a FILE_SET
in the specified file (or the default “current®
file) will be referenced.

The LET_statement

Function:

The LET statement sets a locator variable to reference a
specified set.

178 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:
let-statement ::= LET locator-variable = set-definition ;
set-definition ::=

locator-variable

set-name [OF (file-variable)]
character-string-expression [OF(file-variable)]
locator-variable -> set-nane

locator-variable -> (character-string-expression)

General rules:

1. The character-string-expression specified by the
set definition will be truncated to 8 characters
if necessary. If the expression itself is a
gualified based character string, it mnmust be
enclosed in parentheses.

2. If a set-name or character-string-expression is
used by itself in the set-definition, a FILE_SET
in the specified file (or the default "current®
file) will be referenced.

The LOCK statement

Function:

The execution of the LOCK statement puts the program into
locked status.

General format:

lock-statement :: LOCK :

General rules:

1. ¥hen a program is in locked status, all asynch-
ronous events will be queued. No on-units speci-
fied in ON EVENT statements will be invoked while
a program is in locked status.

2. On-units established for system conditions or

programmer defined conditions are not affected by
the locked or unlocked status of progranm.

Chapter 8 -- Statements 179

APPLE REFERENCE MANDAL

31 MARCH 1972

3. The execution of a LOCK statement while in the
locked status is equivalent to a null statement.

4. A program will remain in 1locked status until
explicitly unlocked or until control reverts to a
dynamically encompassing block in which the status
is unlocked.

The null statement

Function:
The null statement is a no-operation.
General format:

null-statement 3::=

<o

Example:

ON OVERFLOW;

EIE N

The overflow on-unit is a null statenment.

The ON_statement

Function:

The ON statement specifies the action to be taken when an
interrupt occurs for the named condition or non-delayed
event, ¥Yor a discussion of conditions and events, see the
description of "Interrupt Handling", Chapter 7.

General format:

on-statement ::=

on-unit
ON [EVENT] identifier [, identifier J... H
SYSTEM

180 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

Syntax rules:

1.

If the keyword EVENT is omitted, the "identifier"
must be the name of one of the conditions
described in Appendix 2.

The "on-unit" is an action specification, and it
is either an unlabeled single simple statement
(other than BEGIN, DO, END, RETURN, ENTRY, PROCE-
DURE, FOR EACH, or DECLARE) or an unlabeled begin
block. Since the on-unit itself requires a semi-
colon, none appears in the format.

The "on-unit" may not be a RETURN statement, nor
may a RETURN statement be internal to the begin
block.

If the keyword EVENT is present, the ON statement
must be within the scope of a declaration of the
identifier as an EVENT.

The specification of more than one identifier is
equivalent to the specification of identical
actions for each named interrupt.

General rules:

1.

2.

4.

An ON statement must be executed before its effect
can be established.

The standard action to he taken for all interrupts
is defined in Appendix 2. When an interrupt takes
place before an ON statement for that interrupt
has been executed, standard system action is
taken. The ON statement with the SYSTEM option
specifies that standard action is to be taken when
the named interrupt occurs.

The ON statement is a means for the programmer to
specify action (other than standard system action)
that 1is to take ©place when the named interrupt
occurs. The on-unit is treated as a block that is
internal to the block in which it appears.

Control can reach an on-unit only when the named
interrupt occurs, or when a SIGNAL statement for
the interrupt is executed.

If an action specification 1is established by
execution of an ON statement, it remains in effect

Chapter 8 -- Statements 181

APPLE RFFERENCE MANUAL

31 MARCH 1972

until it is overridden by another ON statement or
REVERT statement specifying the same interrupt, or
until termination of the block in which the ON
statement is executed.

The PROCFDUORE statement

Function:
The PROCEDURE statement has the following functions:

1. Identifies a portion of program text as a

procedure,

2. Defines the primary entry point to a procedure.

3. Specifies the parameters for the primary entry
point.

4, Specifies the attributes of the value that is
returned if the procedure is invoked as a function
at the primary entry point.

General format:

procedure-statement ::= entry-name: PROCEDURE
[(parameter [, parameter] ...)]
[RETURNS (data-attributes)] ;

General rules:

1. Each "parameter" is a name that specifies the
parameters of the entry point. When the procedure
is invoked, a relationship is established between
the arquments of the invocation and the parameters
of the invoked entry point (see "Correspondence of
Arquments and Parameters"™ in Chapter 2.)

2. If the entry is invoked as a function reference,
the RETURNS option must be specified. The data-
attributes of the RETURNS option specify the
attributes of the value returned by the entry.
The attributes that may be specified are the
arithmetic, string, locator, and file attributes.

182 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

The PUT_statement

Function:

The PUT statement causes the values of expressions to be

converted
specified

to a character string representation according to
formats and to be transmitted to a designated

sequential file or string variable.

General format:

put-statement ::= PUT put-list ;

put-list ::=

{FILE(Eile-variable)

STRING (character-string-variable)

} data-specification

General rules:

1.

The "character-string-variable” refers to the
character string variable that is to receive the
transmission. After appropriate conversion, the
data specified 1in the data-specification is
assigned to the string starting at the leftmost
character. Any subsequent PUT statement naming
the same string will start assigning at the
leftmost character. If the string 1is not 1long
enough to accommodate the data, the ERROR condi-
tion will be raised.

The "file-variable" must refer to a sequential
file that has been opened.

The rules concerning the "data-specification" are
contained in "Data Lists" in Chapter 6.

The REMOVE statement

Function:

The REMOVE statement is used to remove an entity from a set.

Chapter 8 -- Statements 183

APPLE REFFRENCE HMANUAL

31 MARCH 1972

General format:

remove-statement ::=

all-value

REMOVE entity-specification FROM{set~definition}:

entity-specification ::=

{

1ocator-variab1e}
entity~-variable

set-definition z2:=

locator-variable

set-name [OF (file-variable)]
character-string-expression [OF (file-variable)]
locator-variahle -> set-name

locator-variable -> (character-string-expression)

General rules:

184

1.

The character expression in the set-definition is
evaluated and truncated to 8 characters if neces-
sary. If the expression itself 1is a qualified
based character string, it must be enclosed in
parentheses,

If the referenced entity is not a member of the
specified set the REMOVE statement has the effect
of a null statement.

The "all-value" is the value returned by the ALL
built-in function which, if used, must be declared
with the BUTILTIN attribute. The entity will then
be removed from all sets that contain it.

If a locator variable is used to specify a set,
the locator variable must reference an existing
set, The LET statement must be used to set a
locator variable to reference a set.

Tf a set-name or character-string-expression is
used by itself in the set-definition, a FILE-SET
in the specified file (or the default "current"
file) will be referenced.

Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

The RETURN statement

Function:

The RETURN statement terminates execution of the procedure
that contains the RETURN statement and returns control to
the invoking procedure. The RETURN statement may also
return a value.

General format:
return-statement ::= RETURN [(scalar-expression)];
General rules:

1. If the prccedure is not invoked as a function
procedure, i.e., it has been 1invoked by a CALL
statement, the RETURN statement may specify a
scalar expression, but the value will be ignored
by the invoking procedure.

2. If the procedure is invoked as a function proce-
dure, the RETURN statement used to terminate the
procedure nust specify a value that 1is to be
returned to the invoking procedure by specifying a
scalar expression. There is no type conversion
implied by the RETURNS attribute on the PROCEDURE
or ENTRY statement.

3. If control reaches an END statement corresponding
to the end of a procedure, this END statement is
treated as a RETURN statement that does not
specify a value to be returned.

4. A RETURN statement may not be internal to a
begin-block.

he REVERT statement

Punction:
A REVERT statement specifying a given condition or event is

used to cancel the effect of one or more previously executed
ON statements.

Chapter 8 -- Statements 185

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:

revert-statement ::=

REVERT [EVENT] identifier [, identifier] ... ;
Syntax rules:

1. If the keyword EVENT is omitted, the "identifier"
must be the name of one of the conditions
described in Appendix 2, or the name of a user
defined condition appearing in a DECLARE
statenmnent.

2. If the keyword EVENT 1is present, the REVERT
statement must be contained within the scope of a
declaration of the identifier as an EVENT.

General rule:

The execution of a REVERT statement has the effect described
above only if (1) an ON statement, specifying the same
conditions or events and internal to the same block, was
executed after the block was activated and (2) the execution
of no similar REVERT statement has intervened. If either of
the two conditions is not met, the REVERT statement is
treated as a null statement.

The_ SIGNAL statement

Function:

The SIGNAL statement simulates the occurrence of the named
interrupts.

General format:
signal-statement ::=

signal cond-or-event[, cond-or-event] ... ;
cond-or-event ::=

{identifier
EVENT event-name [(1ocator-expression)]}

186 Chapnter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

Syntax rules:

1.

General

1.

If the keyword EVENT is omitted, the "identifier"®
must be the name of one of the conditions
described in Appendix 2.

If the keyword EVENT is present, the SIGNAL
statement must be contained within the scope of
the declaration of the identifier as an EVENT.

rules:

The SIGNAL statement with the EVENT option can be
used to simulate the occurrence of the external
interrupt associated with the event-name. The
event will be set complete and if it is in the
delayed state, the occurrence will be added to the
event queune, If the event is non-delayed, the
associated on-unit will be entered, (see "Inter-
rupt Handling" in Chapter 7).

The optional locator-expression associated with an
event-name may be used to supply the block of
status information associated with the event and
will be made available to the program handling the
interrupt through the use of the ONPTR built-in
function. TIf the locator-expression is omitted,
the value of the corresponding invocation of the
ONPTR built-in function will be the value of the
NULL built-in function.

The UNLOCK statement

-

Function:

The execution of the UNLOCK statement puts the program into
unlocked status.

General format:

unlock-statement ::= UNLOCK;

General rules:

Chapter 8 -- Statements 187

APPLE REFE

RENCE MANUAL

31 MARCH 1972

When a program is in the unlocked status, asynch-
ronous events may be processed. For details on
the processing of asynchronous events see "Inter-
rupt Handling" in Chapter 7.

The execution of an UNLOCK statement while the
program is in the unlocked status has the sane
effect as the execution of a null statement.

A program will remain in uniocked status until
explicitly locked, or until control reverts to a
dynamically encompassing block in which the status
is locked.

tatement

The WAIT_ s

Function:
The RAIT
delayed ev
tion" are
General fo

wait-state

{(
WA
A

statement is used to synchronize the processing of
ent completions. The terms "delayed" and "conmple-
defined in Chapter 7 -- "Interrupt Handling®™ .
rmat:

ment ::=

;

event [,event]...)[SET(fixed~sca1ar~variable)]}

NY)

General rules:

1.

The items specified in the list may be any delayed
events., If any of the events are non-delayed, the
ERROR condition will be raised.

The ANY option specifies the set of all delayed
events. If the set is empty, the ERROR condition
will be raised.

The WAIT statement is satisfied and execution
proceeds to the statement following the WAIT
statement when at 1least one of the specified
events Dbecomes conplete. If the SET option is
used, a fixed-scalar-variable will be set equal to
the index of the event that became complete. If
none of the specified events is complete, execu-

188 Chapter 8 -- Statements

APPLE REFERENCE MANUAL

31 MARCH 1972

tion is suspended until one of the specified
events becomes complete.

If a non-delayed event becomes complete while in a
wait state, the on-unit for that event will be
entered. Upon normal return from the on-unit, the
wait state will be resumed.

If a delayed event that is not specified imn the

event list for the WAIT statement becomes complete
vhile in the wait state, no action is taken.

Chapter 8 -- Statements 189

APPLE REFERENCE MANUAL

37 MARCH 1972

APPENDIX 1 - BUILT-IN FUNCTIONS, PROCEDURES, AND

s o i e

PSEUDO-VARIABLES

INTEODUCTION

All of the built-in functions, built-in procedures, and
pseudo-variables that may be invoked by the Apple programmer
are listed in this appendix. Bach function or pseudo-
variable that has an argument 1list may be used without
declaration, unless an identifier has been declared with the
same name. In this case, the function or pseudo-variable
must be redeclared using the BUILTIN attribute. Each
built-in function or pseundo-variable that has no argument
must be declared with the BUILTIN attribute.

The built-in functions, procedures, and pseudo-variables are
separated into the following classes: arithmetic, array,
associative data handling, conversion, interrupt handling,
mathematical, storage mwmanagement, string handling, and
miscellaneous.

Appendix 1 -~ Built-in Functions, Procedures,

190 and Pseudo~-variables

31 MARCH 1972

ARITHMETIC
ABS
CEIL
FLOOR
MOD

ARRAY
DINM

HBOUND
LBOUND

ASSOCIATIVE DATA HANDLING

APLESET
APLEVAR
APLINDX
APLNUMB
APLQWNI
APLOWRS
APLSNAM
APLTYPE

** ALL

CONVERSION

* BYTE
CHAPR
ENTRY
FIXED
FLOAT
HEX
OFFSET
POINTER

* - Also pseudo-variables

APPLE REFERENCE MANUAL

INTERRUPT HANDLING

COMPLETION
* DELAY
** ONFILE
*% ONLOC
ONPTR

MATHEMATICAL
ATAN
cos
LOG
SIN
SORT
TAN

S —"— o ——" it S i o v

ADDR
DESCR
** NULL

STRING HANDLING

2
e

INDEX
LENGTH
*%% RAL
* SUBSTR

MISCELLANEQUS

*% DATE
INLINE

*% TIME

*% - Must be declared with the BUILTIN attribute
x%x* - May only be used as a pseudo-variable

Appendix 1 -~ Built-in Punctioas, pProcedures,

and Pseudo-variables

191

APPLE REFERENCE MANUAL

31 MARCH 1972

ARITHMETIC FUNCTIONS

ABS (x)

The ABS function returns the absolute value of x. The
argument X must be a scalar arithmetic quantity. The value
returned by ABS has the same scale and precision as x.

CEIL (x)

The CEIL function returns the smallest integer that |is
greater than or equal to x. The arqument x must be a scalar
arithmetic quantity. The value returned by CEIL has the
same scale and precision as the argument Xx.

FLOOR (X)

The FLOOR function returns the largest integer value that
does not exceed Xx. The arqgqument x must be a scalar
arithmetic quantity. The value returned by PLOOR has the
same scale and precision as x.

MOD(x, 4)

The MOD function returns the remainder from the division of
X by d. The arqguments x and 4 must be scalar arithmetic
quantities. The result has the same sign, scale, and
precision as Xx.

ARRAY FUNCTIONS

DIM(a, d)

The DIM function returns the current extent of the dth
dimension of a. The argument d must be a unsigned fixed
point constant. The arqument a must be a reference to an
array that has at least d4 dimensions. The value returned is
an integer.

HBOUND (a, d)

The HBOUND function returns the current upper bound of the
dth dimension of a. The argument s must be a unsigned fixed
point constant. The argument a must be a reference to an
array that has at least 4 dimensions. The value returned is
an integer.

Appendix 1 -- Built-in Punctions, Procedures,

192 and Pseudo-variables

APPLE REFERENCE MANUAL

31 MARCH 1972

LBOUND (a, 4d)

The LBOUND function returns the current lower bound of the
dth dimension of a. The argument 4 must be a unsigned fixed
point constant. The arqument a must bhe a reference to an
array that has at least 4 dimensions. The value returned is
an integer.

ASSOCIATIVE_DATA_ FUNCTIONS

ALL

The function returns a value that has meaning in the
following contexts:

a. Remove the referenced entity from all sets of
which it is a member when ALL is used in the
REMOVE statement.

b. Search all members of the referenced set when ALL
is used Aas an arqument to the APLINDY built-in
function.

Ca Count all members of the referenced set when ALL
is used as an argument to the APLNUMB built-in
function.

d. Count all entities that contain the referenced set

when ALL is used as an argument to the APLOWRS
built-in function.

Tf this function is used, it must be within the scope of
declaration of the identifier ALL with the attribute
RUILTIN.

APLESET (s)

The function returns a value of '1'B or '0'B dependent on
whether or not the file-set s has ever been created in the
file determined by the value of SYSFILE.CURRENT. The
set-reference, s, must be a character-string-expression.

APLEVAR (s)

The function returns a pointer variable that identifies the
entity that contains the set s. Tf the referenced set is a
file-set, the value returned 1is the value of the NULL
built-in function. The set reference mnust be a locator
variable set by the LET statement.

Appendix 1 -- Built-in Punctions, Procedures,

and Pseudo-variables 193

APPLE REFERENCE MANUAL

31 MARCH 1972

APLINDX (e, S, C)

The function returns an integer whose value is the ordinal
of the entity e in the set s. The entity reference must be
a locator variable. The set reference must be a 1locator
value that has been set by the LET statement. If ¢ is a
character-string-expression it must contain the name of
those entities to be included in the search. If ¢ is a
reference to the built-in function ALL, then all members of
the set will be included in the search. If the search is
unsuccessful, the value returned is =zero.

APLNUMB (s, <)

The APLNUMB function returns an integer whose value 1is a
count of the number of entities that are members of the set
sS. The set reference, s, must be a locator value that has
been set by the LET statement. If ¢ is a character-string-
expression, it must contain the name of those entities to be
included in the count. If ¢ is a reference to the built-in
function ALL, every member of the set will be included.

AELOWNI (e, s, C)

The AFLOWNI function returns an integer whose value is the
index of the set s from amongst all the sets having the nanre
c of which e is a member. The entity reference, e, must be
a locator variable. The set reference, s, must be a locator
value that has been set by the LET statement. The value of
the character-string-expression, ¢, must be the name of the
set s, else the ERROR condition will be raised. If the
entity e is not a member of the set s, the value zero 1is
returned.

APLOWRS (e, c, d)

The APLOWRS function returns an integer whose value is the
number of entities named d that contain a set named ¢ of
which e is a member. The entity reference e must be a
locator variable. The set reference ¢ must be a character-
string-expression whose value is the name of a set. If d is
a character-string-expression, it contains the name of those
entities to be included in the count. If 4 is a reference
to the built-in function ALL, every entity will be included.

Appendix 1 -- Built-in Functions, Procedures,

194 and Pseudo-variables

APPLE REFERENCE MANUAL

31 MARCH 1972

APLSNAM (e, i, 1)

The APLSNAM function returns a character-string of length 8.
If the value of j is 1, the return value is the name of the
ith set of which the entity e is a member. 1If the value of
j is 0, the value returned is the name of the ith set
contained by the entity e. The entity reference e must be a
locator variable. Both i and j are fixed binary values of
precision(23, 0). If j has a value other than 0 or 1, the
ERROR condition is raised. If the search is unsuccessful,
the value returned is (8)' '.

APLTYPE (e)

The function returns a character string of 1length 8. The
value of the string is the name of the entity e. The entity
reference e must he a locator variable.

CONVERSION FUNCTIONS

BYTE(x[, i)

The BYTE function interprets the first operand, x, as a
vector of bit strings of 1length 8, aligned on an 8-bit
boundary and with a lower bound of 1. The second arqument,
i, is 1nterpreted as a subscript spec1fy1ng which element of
the array is to be referenced. (If 1 1is omitted, 1 is
assuned.) The 8-bit bit-string is converted to a positlve
FIXED BINARY{47) (see Chapter 4, Type Conversion, 4. Bit-
string to Arithmetic) value which is returned by the BYTE
function. The BYTE pseundo-variabhle can be used to assign a
fixed-point value to an unsigned 8-bit integer which is the
ith element of the array defined on x. The range of i is
limited to 1245,

Appendix 1 -- Built-in Functions, Procedures,

and Pseudo-variables 195

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAR(v[, 1])

The CHAR function returns the scalar arithmetic, entry or
file value, v, converted to a character string according to
the following rules:

a. If y 1is a fixed point value of decimal precision
d, the value is converted according to the EDIT
format P (d+1).

b. If v 1is a floating point value of decimal preci-
sion 4, the value is converted according to the
EDIT format E(d+8, d4-1).

C. If v is an entry value, the result is a character
string containing the entry name left aligned. If
¥ is not an external entry point, the ERROR
condition will be raised.

d. If v is a file value, the result is a character
string containing the name of the external data
set. TIf the file value is not an opened file, the
UNDEFINEDFILE condition will be raised.

The optional argument, 1, if supplied, must be a positive
integer constant. If 1 is specified, the value of CHAR |is
the character string formed by taking the rightmost 1
characters of the string formed by the above rules. Other-
wise, the result of CHAR is the fixed length character
string formed according to the above rules.

ENTIRY(c)

The ENTRY function returns the entry value corresponding to
the external entry point whose name is the value of the
character-string-expression c. If there 1is no external
entry point of name ¢, the ERROR ccondition will be raised.

Appendix 1 -- Built-in Punctions, Procedures,

196 #nd Pseudo-variables

APPLE REFERENCE MANUAL

31 MARCH 1972

FIXED(x[, p1)

The FIXED function returns the value of the string or
arithmetic expression, x, converted to fixed point. The
optional argument, p, which must be an unsigned decimal
integer constant, specifies the decimal precision of the
result. If p is not specified, 15 is assumed. The rules
for the conversion of x to a fixed point value are:

a. If x 1is of arithmetic type, the process is as
described in "Arithmetic Conversion” in Chapter 4.

b. If x is a character string then the conversion |is
according to F format conversion as described in
Chapter 6, Fixed-point Format Ttenms.

c. If x is a bit-string, the conversion takes place
according to the rules in "Type Conversion -- 4.
Bit-string to Arithmetic" in Chapter 4.

FLOAT (x{, pl)

The FLOAT function returns the value of the character string
or arithmetic expression, x, converted to floating point.
The optional arqument, p, which must be an unsigned decimal
integer constant, specifies the decimal precision of the
result. If p 1is not specified, 15 is assumed. The rules
for the conversion of x to a fixed point value are:

a. If x is of arithmetic type, the process 1is as
described in "Arithmetic Conversion" in Chapter 4.

b. If x is a character string, then the conversion is
according to ©E format conversion as described in
"Floating~-point Format Items"™ in Chapter 6.

HEX(f[, il, 110)

The HEX function returns a character string containing the
hexadecimal egquivalent of the argument f£. If the optional
arguments are omitted, the resulting character string will
represent the full extent of f, however, if the extent of £
is greater than 32,767 bytes, only the first 32,767 bytes
will be represented in the result. The optional arquments i
and 1 are used in the same way as the second and third
arquments of the built-in function SUBSTR (q.v.) to select
a sub-string of the result. Thus, HEX(f, i, 1) is exactly
equivalent to SUBSTR(HEX(f), i, 1). Any misuse of the HEX
built-in function will bring down a curse on the progranm.

Appendix 1 =~ Built-in Punctions, Procedures,

and Pseudo-variables 197

APPLE REFERENCE MANUAL

31 MARCH 1972

OFESET(p, £)

The OFFSET function returns the offset value that identifies
the same generation in the file f as is identified by the
locator expression p. The argument £ must be a file
variable. the result of OFFSET is undefined if p does not
identify a generation in f.

POINTER {0, £}

The POINTER function returns the pointer value that identi-
fies the same generation in the file £ as is identified by
the offset expression 9. The arqument £ must be a file
variable. The result of POINTER is undefined if o does not
identify a generation in f.

INTERRUPT HANDLING FUNCTIONS

COMPLETION {e}

The COMPLETION function returns a bit value of 0B or *'1'B
dependant upon whether the event e is 1incomplete or
complete.

DELAY (e)

The DELAY function returns a bit value of *'0'B or '1'B
dependant upon whether the event e is in the non-delayed or
delayed state. (DELAY may also be used as a
pseudo~-variable).

ONFILE

The ONFILE function returns a varying length character
string giving the name of the file for which an ENDFILE,
CONVERSION, OR FRROR condition has been raised. If the
condition is not associated with a file, a null string \1is
returned. If +this function is used, it must be within the
scope of a declaration of the identifier ONFILE with the
attribute BUILTIN.

Appendix 1 -- Built-in Punctions, Procedures,
198 and Pseudo~variables

APPLE REFERENCE MANUAL

31 MARCH 1972

ONLOC

Whenever a condition 1is raised or non-delayed event is
completed, reference to the ONLOC function will vyield a
varying length character string giving the name of the entry
point +to the procedure that was interrupted. The names of
internal procedures are qualified by the names of the
statically encompassing procedures. If the ONLOC function
is used out of context, a null string is returned. TIf this
function 1is used, it mwmust be within the scope of a
declaration of the 1identifier ONLOC with the attribute
BUOILTIN.

ONPTR (e)

The ONPTR function returns a pointer value that identifies
the Event Completion Block that was associated with the
event e when it bhecame complete. Reference to e in this way
also sets the event e to incomplete. Reference to ONPTR (e)
when e is incomplete yields the null pointer value.

MATHEMATICAL FOUNCTIONS

ATAN (x)

The function ATAN returns the principle value of the inverse
tangent of the arithmetic expression x expressed in radians.
The precision of the result is the precision of x.

COS(x)

The function COS returns the value of the cosine of the
arithmetic expression x expressed in radians. The precision
of the result is the precision of Xx.

10G(x)

The function LOG returns the natural logarithm of the value
of the arithmetic expression x. If the value of x is <0,
the PERROR condition is raised. The precision of the result
is the precision of x.

SIN(xX)

The function SIN returns the sine of the value of the
arithmetic expression x expressed in radians. The precision
of the result is the precision of x.

Appendix 1 -- Built-in Punctions, Procedures,

and Pseudo-variables 199

APPLE REFERENCE MANUAL

31 MARCH 1972

SORT (x)

The function SQRT returns the positive square root of the
value of the arithmetic expression x. If x is < 0, the
ERROR condition will be raised. The precision of the result
is the precision of x.

TAN(x)

The function TAN returns the tangent of the value of the
arithmetic expression x expressed in radians. The precision
ofthe result is the precision of x.

STORAGE MANAGEMENT FUNCTIONS

ADDR(v)

The ADDR function returns a pointer value that identifies
the generation of the variable y¥.

DESCR(1, a)

The DESCR returns a descriptor value consisting of the value
of the arithmetic expression 1 as the length and the value
of the locator or arithmetic expression a as the pointer
part.

FILE{q)

The FILE function returns a file value corresponding to the
file 1in which the generation of the based variable
referenced by g is allocated.

NULL

The NULL function returns the null pointer value. The null
pointer value compares unegual with all pointer values that
identify generations. Any use of this function must be
within the scope of a declaration of the identifier NULL
with the BUILTIN attribute.

Appendix 1 -~ Built-in Functions, Procedures,

200 and Pseudo—-variables

APPLE REFERENCE MANUAL

31 MARCH 1972

STRING_HANDLING FUNCTIONS

INDEX {s, p)

The INDEX function searches the string s for the string
pattern p. If the configuration is found, INDEX returns an
integer giving the starting 1location of p in s. If more
than one instance of p exists in s, the 1location of the
first one found in a left-to-right search will be returned.
If p does not exist in s or the 1length of either of the
arguments is zero, the value 0 will be returned. Both s and
p must be character string variables or expressions.

LENGTH (s)

The LENGTH function returns the length of the string s.

RAL (b)

The RAL pseudo-variable is used for assigning strings with
right-hand alignment instead of the normal left-hand align-
ment. If the source string is shorter than the target
string b, the source string will be extended on the left
with blanks or zeros according to whether b is a character
string or bit string. If the source string is 1longer than
the target, it will be truncated on the left. The string b
must be a fixed length string.

SUBSTR(s, i[, il)

The SUBSTR extracts a substring of user-defined length fron
the string s and returns it. The value of i specifies the
starting point of the substring and j, if specified,
represents the length of the substring. Both i and j must
be arithmetic expressions and are converted to integers.
Assuming that the 1length of s is k, then i and j must
satisfy the following conditions:

a. j must be 2 0.
b. i must be 2 1.
c. The value of i+j-1 must be < k.

Thus, the substring as specified by i and j must lie within
s for the value of SUBSTR to be defined. If j is not
specified, it is assumed to be equal to the value of k-i#1
i.e., it is assumed to be the remainder of the string
starting at the ith position. If j is zero, the result |is

the null string.

Appendix 1 -- Built-in Functions, Procedures,

and Pseudo-variables 201

APPLE REFFRENCE MANUAL

31 MARCH 1972

MISCELLANEQUS FUNCTIONS

DATE

The DATE function returns the current date as a character
string of length 7, yymmmdd where:

Yy is the current year.
mpm is the first three letters of the month.
dd is the current day.

Any use of the DATE function must be within the scope of a
declaration of the identifier DATE with the BUILTIN
attribute,.

INLINE(f, £, S, t), INLINE(f, g, X, a8, Y, b, 2, €}

The INLINE procedure 1is used to insert arbitrary STAR
machine-instructions inline at compile time. EFEach parameter
specifies a byte of the instruction in left to right order.
The first operand, £, specifies the function code of the
STAR instruction. The 32-bit instructions require four
operands and the 64-bit instructions require eight operands.
The operands £, s, and t specify the numbers of the STAR
registers; g specifies the 8-bit sub-function designator; a,
b, and ¢ specify string or vector descriptor registers; x,
Yy, and z specify index or offset registers. The £ and g
operands must be numeric constants; the rest of the operands
may be nureric constants, variables, or arithmetic
expressions.

If a variable of REGISTER storage-class 1is used as an
operand, the number of the register allocated to that
variable is inserted in the instruction; otherwise, for
variables not stored in a register, the number of the
register containing a descriptor of the variable is inserted
in the instruction.

Fxample:

DECLARE SOURCE CHAR(80),
TARGET CHAR(100);

CALL INLINE(“F8", 5, 0, SOORCE, O, "20%, 0, TARGET) ;

In this example the registers containing the descriptors of
SOURCE and TARGET are used by the "move characters" instruc-
tion to move the 80-character source string into the target
string and fill the remaining 20 characters with blanks.

Appendix 1 -~ Built-in Punctions, Procedures,

202 and Pseudo-variables

APPLE REFERENCE MANUAL

31 MARCH 1972

When an arithmetic expression is used as an operand, the
expression 1is first evaluated so all of the instructions
necessary to evaluate the expression will precede the
instruction being produced by INLINE. The number of the
register containing the arithmetic result is then inserted
into the instruction produced by INLINE.

Fxample:
DECLARE J FIXED BINARY(47),
COUNTER FIXED BREGISTER,
KEYWORD FLOAT REGISTER,
TABLE (500) PLOAT DECIMAL(14) AUTO,
MASK(5) FLOAT DECIMAL{14)

CONSTANT ("FFFFO00000000FFFF",
"FFFFOO0OOOOFFFFFF",
"FFFFOOOOFFFFFFFF",
"FFFFOOFFFFFFFFFF",
"FFFFFFFFPFFFPFFF") ;

COUNTER = 03

CALL INLINE("FF", 0, COUNTER, DESCR(100, TABLE),
0, DESCR(1, KEYWORD),
J+2, MASK):

This example will cause the compiler to generate code for
constructing the descriptors of TABLE and KEYWORD and
evaluating the expression J + 2 before it generates the
"search for masked key word" instruction. The registers
containing the results of the DESCR function are used in the
wpFn instruction which searches the first 100 elements of
TABLE for a match with the contents of KEYWORD masked by
MASK (J+2).

If INLINE 1is used as a function, its value is the contents
of the right-most register t or c. Thus one can write:

DCL R FIXED REGISTER,
COUNT (10) FIXED AUTOMATIC,
PATTERN BIT (100);

COUNT(5) = INLINE("1F", PATTERN, 0, R);
which would cause the compiler to emit an instruction to

count the number of one bhits in the PATTERN followed by an
instruction to store the result in COUONT(5).

Appendix 1t -- Built-in Punctions, Procedures,

and Pseudo-variables 203

APPLE REFERENCE MANUAL

31 MARCH 1972

IINE
The TIME function returns the current time of day as a
character string of length 11, hh:am:ss.dd where:

hh is the current hour of the day

nm is the current minute within the hour

s8s is the current second within the minute

dd is the decimal fraction of the current second.

Any use of the TIME function must be within the scope of a
declaration of the identifier TIME with the attribute
BUILTIN.

Appendix 1 -~ Built-in Punctions, Procedures,

204 and Pseudo-variables

APPLE REFERENCE MANUAL

31 MARCH 1972

APPENDIX 2 - CONDITIONS

INTRODUCTION

For each condition, the description in this appendix
includes the circumstances under which the <condition 1is
raised, the standard system action that would be taken in
the absence of programmer-specified action, and, where
applicable, the result.

Conditions may be specified in the ON, REVERT, and SIGNAL
statements (see Chapter 8 - Statements and Chapter 7 -
Interrupt Handling).

If no ON statement is currently in effect when a condition

is raised, the standard system action for that condition is
taken,

CONVERSICN CONDITION

The CONVERSION condition can be raised whenever an illegal
conversion is attempted within the conversion built-in
functions: FIXED, FLOAT, CHAR, BIT, and ENTRY, or execution
of a GET statement. Conversion across the equal sign in an
assignment statement (see Chapter 4 =~ Data Manipulation),
and implicit fixed to float and float to fixed conversions
will not raise the CONVERSION condition.

Result: The result is undefined. On normal return from the
on-unit, the ERROR condition is raised.

Standard system_ _action: Comment and raise the ERROR
condition.

Appendix 2 -- Conditions 205

APPLE REFERENCE MANUAL

31 MARCH 1972

ENDFILE_CONDITION

The condition of the form: ENDFILE (file-variable) may be
raised during any GET operation on the Apple file referred
to by the file-variable. It is caused by an attempt to read
past the file delimiter. If the file is not closed after
the ENDFILFE condition is raised, any subsequent GET opera-
tions on the same file will raise the condition again. The
execution of a SIGNAL ENDFILE (file-variable) statement will
also raise the ENDFILE condition.

sult: On normal return from the on-unit, execution con-
tinues with the statement immediately following the
statement which raised the ENDFILE condition.

Standard system _action: Comment and raise the ERROR
condition.

ERROR_CONDITION

The ERROR condition is raised by: (1) the standard systen
action taken when another condition is raised which includes
the raising of the ERROR condition, (2) the result of an
error, for which there is no <condition, occurring during
program execution, and (3) the execution of a SIGNAL ERROR
statement.

Result: On normal return from the on-unit, the PFINISH
condition is raised.

Standard _system _actiong Comment and raise the FINISH
condition.

FIND_CONDITION

s

The FPIND condition is raised whenever (1) the FIND statement
with no ELSE clause is executed, and the specified entity
cannot be found, and (2) the INSERT statement with the
BEFORE or AFTER opt1on is executed and the specified entity
cannot be found.

Standard system _action: Comment and raise the ERROR
condition.

206 Appendix 2 -- Conditions

APPLE REFERENCE MANUAL

31 MARCH 1972

FINISH CONDITION

The PINISH condition is raised by: (1) the standard systen
action taken for the ERROR condition, (2) the action taken
on normal return from the on-unit for the ERROR <condition,
(3) the execution of a statement that would cause termina-
tion of an Apple program (an EXIT statement), and (4) the
execution of a SIGNAL FINISH statement.

Result: On normal return from the on-unit, the program is
terminated.

Standard system action: The program is terminated.

OVERFLOW_CONDITION

The OVERFLOW condition is raised when the exponent of a
floating—-point number exceeds the permitted maximum. This
maximum is 8630 for long float, and 33 for short float.

Result: On normal return from the on-unit, program execu-
tion continues near the point of overflow. The
value of the floating-point number 1is set to an
undefined value.

Standard system__action: Comment and raise the ERROR
conditiocn,

PROGRAMMER-DEFINED CONDITION

The condition of the form: CONDITION (identifier) allows a
programmer to establish an on-unit that will be executed
vhenever a SIGNAL statement is executed specifying CONDITION
and the identifier. Programmer-defined conditions must be
declared with the CONDITION attribute. The programmer-
defined condition can only be raised by a SIGNAL statement
specifying that condition.

Standard _system _action: Comment and raise the ERROR
condition.

Appendix 2 =-- Conditions 207

APPLE REFERENCE MANUAL

31 MARCH 1972

STORAGE_CONDITION

The STORAGE condition is raised by: (1) an attempt to
allocate a based variable in an Apple file that contains
insufficient free storage for the allocation to be made, or
(2) the execution of a SIGNAL STORAGE statement.

Result: Tf the condition is raised due to insufficient free
storage being available for an allocation to be
made, on normal Teturn from the on-unit, the
options in the ALLOCATE statement are reevaluated
and the allocation is attempted again. If the
condition was raised by a SIGNAL statement , on
normal return from the on-unit, the statement
following the SIGNAL statement is executed.

Standard __system_ _action: Comment and raise the ERROR
condition.

UNDEFINEDFILE CONDITION

This condition is raised by the PUT, GET, ALLOCATE, FOR
EACH, INSERT, REMOVE, PFIND, LET, and FREE statements, and
the use of the CHAR built-in function to convert from a file
value to a character string, if the file referenced in these
statements has not been opened.

Result: On normal return from an on-unit, execution con-
tinues with the next statement.

Standard system__action: Comment and raise the ERROR
condition.

UNDERFLOW_CONDITION

The UNDERFLOW condition is raised vhen the exponent of a
floating-point number becomes smaller than the permitted
minimum. This minimum is -8630 for float long, and -33 for
float short.

208 Appendix 2 -- Conditions

APPLE REFERENCE MANUAL

31 MARCH 1972

Result: ©On normal return from the on-unit, program execu-
tion continues near the point of wunderflow. The
value of the floating-point number is set to zero.

Standard System_action: Comment and continue.

ZERODIVIDE CONDITION

The ZERODIVIDE condition is raised when an attempt 1is made
to divide by zero. This occurs if the divisor is zero.

Result: On normal return from the on-unit, execution con-
tinues near the point of zero-divide. The guotient
is set to indefinite.

Standard system _action: Comment and raise the ERROR
condition.

Appendix 2 -- Conditions 209

APPLE REFERENCE MANUAL

31 MARCH 1972

APPENDIX 3 - KEYWORDS, ABBREVIATIONS AND SYNONYMS

KEYWORD ABBREVIATIONS

Abbreviations are provided for certain keywords. The abbre-
viations themselves are keywords and will be recognized as
synonymous in every respect with the unabbreviated keywvords.

KEYWORD ABBREVIATION

A

AFTER

ALIGN

ALLOCATE

ANY

AUTOMATIC AUTO
B

BASED

BEFORE

BEGIN

BINARY BIN
BIT

BUILTIN

BY

CALL

CASE

CHARACTER CHAR
COLUMN COL
CONDITION COND
CONSTANT

CONTAINING

CONVERSION

DECIMAL DEC
DECLARE DCL
Do

E

EACH

EDIT

END

ENDFILE EOF
ENTITY

ENTRY

ERROR

210 Appendix 3 -- Keywords, Abbreviations and Synonyms

APPLE REFERENCE MANUAL

31 MARCH 1972

EVENT

EXIT

EXTERNAL EXT
F

FILE

FIND

FINISH

FIRST

FIXED

FLOAT

FOR

FREE

FROM

GET

GO

GOTO

IF

IN

INCLUSIVE

INITTAL INIT
INSERT

INTERNAL INT
LABEL

LAST

LET

LIKE

LINE

LOCK

NEAR

OF

OFFSET

ovN

OVERFLOW OFL
PAGE

POINTER PTR
PROCEDURE PROC
POT

REGISTER REG
REMOVE

REMOTE

RETURN

RETURNS

REVERT

SET

SIGNAL

SKIP

STATIC

STRING

STORAGE

THEN

Appendix 3 -- Keywords, Abbreviations and Synonyamas 211

APPLE REFERENCE MANUAL

212

TO
UNDEFINEDFILE
UNDERFLOW
UNLOCK
ONTIL
VARIABLE
VARYING
WAIT

WHILE

WITH

X
ZERODIVIDE

UNDP
UFL

. VAR

ZDIV

31 MARCH 1972

Appendix 3 -- Keywords, Abbreviations and Synonyms

APPLE REFERENCE MANUAL

31 MARCH 1972

KEYWORD _SYNONYMS

The following 1list of synonyms 1is provided for those
programmers who have written PL/I programs using the APL
statements. Fach synonym will be recognized by the Apple
compiler as the indicated language keyword.

SYNONYM APPLE_KEYWORD
CREATE ALLOCATE
CALLED SET
DELETE FREZ
ENTITY_VARIABLE POINTER
E_VAR PTR
ENTITY_SYSTEM

ENTITY
E_SYS
ENTITY_SET

FILE_SET
F_SET
SET_VARIABLE POINTER
S_VAR PTR
IN OoN

Appendix 3 -- Keywords, Abbreviations and Synonyms 213

APPLE REFERENCE MANUAL

31 MARCH 1972

APPENDIX 4 - DATA_CHARACTER SET

The Apple data character set 1is the ASCITI character set
defined in TABLE 1. TABLE 2 describes the control character
subset and TABLE 3 the graphic character subset, excluding
A-Z,a-z,and 0-9.

b8 0 0 0 0 0 0 0 0
b7 0 0 0 0 1 1 1 1

b6 0 0 1 1 0 0 1 1

bS 0 1 0 1 0 1 0 1

COL 0 1 2 3 4 5 6 7

b4t b3 b2 b1 ROW

0 0 0 0 O NUL DLE SP 0) P . p
o 0 0 1 1 SOH DC1 ! 1 A 0 a q
0 0 1 0 2 STX DC2 " 2 B R b r
0 0 1 1 3 ETX DC3 # 3 C s c s
01 0 0 & EOT DCH $ M D T d t
01 0 1 5 ENQ NAK % 5 E U e u
0 1 1 0 6 ACK SYN & 6 F v £ v
0o 1 1 1 7 BEL ETB ¢ 7 6 W g9 W
1 0 0 0 8 BS CAN (8 H X h X
10 0 1 9 HT EM y 9 1 Y i y
1 0 1 0 A LF SUB * : J A 5 z
1 0 1 1 B VT ESC + ; K [k {
110 0 C FF FS , < L N L |
1 1 0 1 D CR GS - = M] m }
11 1 0 E SO RS . > N A n ~
1 1 1 1 F ST US / ?) o DEL

TABLE 1 _-_APPLE DATA CHARACTER SET

The remaining internal codes (b8=1) are undefined.

214 Appendix 4 -- Data Character Set

31 MARC

NOL
SOH
STX
ETX

EOT

ENQ
ACK

BEL

BS

HT

LF
VT
FF
CR
SO

SI

Note:

H 1972

Null

Start of Heading (CC)
Start of Text (CC)
¥nd of Text (CC)

End of Transmission
(CC)

Enquiry (CC)
Acknowledge (CCQC)

Bell (audible or
attention signal)

Backspace (FE)
Horizontal Tabulation
{punched card skip)
{FE)
Line Feed (FD)
Verical Tabulation

Form Feed (FE)

Carriage Return (FE)

DLE
DC1
DC2
DC3
DC4

NAK

SYN

ETB

APPLE REFERENCE MANUAL

Data Link Escape (CC)
Device Control 1
Device Control 2
Device Control 3
Device Conrol 4

Negative Acknowledge
(CC)

Synchronous Idle (CC)

End Transmission
Block (CC)

CAN Cancel

EM End of Mediunm

SUB

ESC

Substitute

Escape

PS File Spearator (IS)

GS Group Separator (1IS)

RS Record Separator (IS)

JS Unit Separator (IS)

Shift Out
Shift In DEL
(CC) Communication Control

(FE) Format Effector

(IS) Information Separator

Delete

TABLE 2 -- CONTROL CHARACTERS

Appendix 4 -~ Data Character Set 215

APPLE REFFRENCE MANUAL

COLUMN/FOW

2/0
2/1
2/2
2/3
2/4
2/5
2/6
277
2/8
2/9
2/A
2/8B
2/C
2/D
2/F
2/F
3/A
3/8
3/C
3/D
3/E
3/F
4/0
5/8B
5/C
5/D
5/F
5/F
6/0
7/B
7/¢
7/D
7/E

* BT e M RS e D

Ju/H@.gv|jAcnoc\o ()

PRl Y |

31 MARCH 1972

=z
Do
e
I

|

BLANK

OR SYMBOL

DOUBLE DUOTATION MARK
NUMBFR SIGN

DOLLAR SIGN

PERCENT SIGN

AND SYMBOL

SINGLE QUOTATION MARK
LEFT PARENTHESIS

RIGHT PARENTHESIS
ASTERISK OR MULTIPLY SYMBOL
PLUS

COMMA

MINUS

PERICD OR DECIMAL POINT
SLASH OR DIVIDE SYMBOL
COLON

SEMICOLON

LFSS THAN

EQUAL OR ASSIGNMENT SYMBOL
GREATER THAN

QUESTION MARK

AT SYMBOL

LEFT BRACKET

REVERSE SLASH

RIGHT BRACKET

NOT SYMBOL

BREAK CHARACTER

GRAVE ACCENT

LEFT BRACE

VERTICAL LINE

RIGHT BRACE

TILDE

TABLE 3 - GRAPHIC CHARACTERS

216 Appendix 4 -- Data Character Set

APPLE REFERENCE MANUAL

31 MARCH 1972

APPENDIX 5 — COMPILE-TIME_ CONTROLS

General Format:

control-statement ::= % command{ { parameter-list)];

General Rules:

1.

2.

A control statement may appear anyvhere that a
statement may appear in an Apple source progranm.

The commands which control the printed 1listing,
such as % PAGE; % SKIP (3); or % LIST (CODE); are
performed at the point where thay occur in the
printed 1listing. Other commands merely request
that some information be printed at the end of the
printed listing such as % LIST(OBJECT) ;.

The commands which set a switch for a continuing
action, (such as % LIST (CODE); which causes the
emitted object code to be listed) may be turned
off by a counter-command that is formed by prefix-
ing the letters ™NO"™ to the command, such as
¥ NOLIST (CODE):.

Appendix 5 -- Compile-time Controls 217

APPLE REFERENCE MANUAL

31 MARCH 1972

The following table lists the currently defined commands and

their function.

COMMAND FUNCTION
% SKIP (n) Skip n lines on the

printed 1listing.

The parameter n must be an unsigned
integer greater than zero.

% PAGE; Eject to the top of a new page on the

listing.

% LIST(option,...) Insert into the printed listing addi-

tional information

designated by the

options.
vhere the options may be:
CODE List the emitted instructions
MACRO List the expansions made during the
literally expansions (see Appendix 8).
WARNINGS List the warning messages generated dur-
ing compilation
OBJECT Dump the object module in hexadecimal
CONTROLS List the <compile-time page controls

(¥ PAGE and 9% SKIP)

inthe source text.

% INCLUDE file-namef (entity)]

Replace this command

text contained in

where they occur

with the source
the named file, or

entity in the named file.

% DECLARE See Appendix 8.

218 Appendix S5 -- Compile~time Controls

APPLE REFERENCE MANUAL

31 MARCH 1972

APPENDIX 6 — NOTATION

The entire manual uses a uniform system of notation that is

not a

part of the language. This notation describes the

syntax or construction of the language. The following rules
describe the use of this notation:

1.

A notation variable consists of lower-case letters
and hyphens, must begin with a letter, and may be
enclosed in braces.

Fxamples:

a. digit this denotes the occur-
rence of a digit 0
through 9 inclusive.

b. do-statement this denotes the occur-

rence of a DO-statement.

A notation__constant appears in upper-case and
denotes the literal occurrence of the indicated
characters. The constant may be enclosed in
braces and is defined by the syntax of the
language.

Example:
DRECLARE this denotes the
occurence of the keyword
DECLARE.

The term "syntactic unit" is used in the following
as:

a. a single variable or constant
b. a collection of notation variables,
notation constants, and symbols enclosed
in braces or brackets
Braces with the vertical stroke (J]) or vertical

stacking of syntactic units indicates that a
choice is to be made.

Appendix 6 - Notation 219

APPLE REFERENCE MANUAL

220

31 MARCH 1972
Examples:

FIXED
identifier
FLOAT

identifier ({FIXED|FLOAT}

Anything enclosed in square brackets may appear
once or not at all. Vertical stacking with square
brackets indicates that no more than one of the
stacked units can appear.

Exanmple:
[VARYING)

The ellipsis (...) denotes the occurrence of the
preceding unit one or more times.

Example:
digit ...

Most notation variables are defined in terms of a
general format. A general format is a sequence of
the name being defined, followed by the definition
symbol (2:=), followed by the definition. The
definition symbol says that the named item "can be
represented by" the 1indicated definition. The
definition may involve notation comnstants or other
named notation variables,

Example:
scope~-attribute ::= EXTERNAL]INTERNAL

Blanks appearing in formats do not represent the
character blank of the 1lanquage character set.
Blanks are used as delimiters of the syntax and to
improve the readability of the dJdefinitions. Any
two notation variables or constants are separated
by blanks. Any explicit use of the character
blank of the 1language character set will be
denoted by a b.

Appendix 6 - Notation

APPLE REFERENCE MANUAL

31 MARCH 1972

APPENDIX 7 - STRUCTURE MAPPING

The problem of mapping a data structure concerns the
assignment of addresses to the elements of a structure and
at the same time ensuring that the addresses meet the
hardware requirements for access. In Apple, all data will
be stored so that it may be accessed as rapidly as possible,
even at the expense of some wasted space. To do this, the
hardware reguires that bit addresses be some multiple of an
alignment factor that is defined for each data type. The
alignment factors are as follows:

L

¥ L R] 1
| i 1 |
| Data_type | Alignment Pactor | Length |
i i 1 J
1 | 1 |
1 BIT (n) | 1 1 n |
I 1 | |
JCHARACTER (n) i 8 i 8n |
] YARYING| 8 | 8{n+1) |
1 1 | |
| ENTRY | 64 1 192]
! |] |
JEVENT { X 1 64 |
1 1 ! i
| FILE | 64 | 64 |
1 1 1 |
{FIXED or i 1 |
| FLOAT BINARY(p)1] |
| 1<p<23 i 32) 32)
| 24<p<42 1 64 | 64 |
i 1 i {
) LABEL | 64 } 128]
| | | |
| OFFSET ! 32 1, 32
| 1 | |
JPOINTER i 64 i 64 |
1 i 1 1
| DESCRIPTOR ! 6U 1 64 |

1) | 1

Appendix 7 -- Structure Mapping 221

APPLE REFERENCE MANUAL

31 MARCH 1972

The layout of a structure in storage has the following form:

w(1) f(2) v (2) £(3) f (n) w(n)
1 V7777771 V27770 < < NIl |
I V777777 17777771 > > A |
Vitem(1) 1 //77/71iten(2) 17777770 < < \///7771iten(n) |
P 11777771 \/7/777] > > 70 |
| 17777771 17777770 < < s i
< W >

where the 1length of the i-th 1item is w(i) and its
alignment factor is a(i). The fields of length £(2),f(
3) .. ,f(n) are padding introduced so that item(2) ,e..,
item(n) will have the <correct alignment. The total
length of the nmapped structure is w = w(1) + £(2) +
w(2) +#+ ... + f(n) + w(n) and the alignment factor is a
= MAX(a(1) ...,a{n)). The following algorithm defines
the method by which the 1lengths of the padding are
calculated. The algorithm assumes that it is mapping a
set of elements whose alignment and length are deter-
mined. If these elements are substructures they must
have been mapped using the same algorithn.

a MAX(a(1) yeeepa(n));

W wi(l);

DOk = 2 TO n;
f (k) = a(k) * FLOOR((w+a(k)-1)/a(k)) - w;
w=uw + £(k) + w(k);

END;

222 Appendix 7 -- Structure Mapping

APPLE REFERENCE MANUAL

31 MARCH 1972

APPENDIX 8 —- LITERALLY

The LITERALLY compile-time specification allows the pro-
grammer to designate that certain identifiers will be
replaced by specified character strings throughout the
external procedure before compilation.

General format:
literally-specification ::=

% DECLARE substitution-specification ;
substitution-specification ::=

identifier [LITERALLY] [(parameter-list)]
character-string-constant

parameter-list ::= parameter [, parameter] ...

General rules:

-

1. The scope of the literally-specification is the
whole of the external procedure and all its
contained blocks.

2. The specification states that the compiler should
replace each appearance of the identifier within
the scope of the specification by a character
string before compilation. The replacing string
is then to be scanned for further replacements.

3. If no .parameter list follows the keyword LITERAL-
LY, then the identifier is to be replaced by the
"character-string-constant®,

4. If the keyword LITERALLY is followed by a paramet-
er 1list, then each subsequent occurrence of the
identifier must be followed by an argument 1list
with the same number of arguments as there are

Appendix 8 -- Literally 223

APPLE REFERENCE MANUAL

Examples:

224

6.

1.

31 MARCH 1972

parameters. The character string that is used to
replace the identifier is then constructed by
replacing in the "character-string-constant®, each
occurrence of the characters that form the para-
meter identifiers by the characters in the corres-
ponding argument position.

The replacing character string must not be used to
form a part of a syntactic unit except for
strings.

A literally-specification may not be given for any
keyword listed in Appendix 3.

The literally-specification must occur before the
first appearance of the identifier.

An argument nust not contain unbalanced
parentheses.

An argument must not contain the character ,°!
unless it is contained within parentheses, possib-
ly with other <characters. The parentheses will
then form part of the replacing character string.

Literally specification without parameters:

% DECLARE SYTYPE LITERALLY 'SYT(12)';

A1l appearances of the identifier SYTYPF within
the scope of the above specification will be
replaced by SYT (12), thus the statement:

IF SYTYPE = 235 THEN ...

will be compiled as though

Appendix 8 -- Literally

APPLE REFERENCE MANUAL

31 MARCH 1972

IF SYT(12) = 235 THEN ...

had been written.

2. Literally specification with parameters:

¥ DECLARE BITS LITERALLY (A1, A2) 'A1 * A2 * 647;

Within the scope of this specification,
statement

I = BITS(J, 8);
will be compiled as

T =J % 8 % pili;

and, assuming the specification 1in Example

above,

I = BITS(SYTYPE, A(I, J));
will be compiled as:

T = SYP(12) * A(I, J) * 643

3. % DECLARE STRUCT (NAME)
'1 NAME BASED,
2 N FIXED,
2 X(2*I REFER (NAME.N)) FLOAT';
DECLARE STRUCT (R),
STRUCT (B) 3

The above declarations are eguivalent to

following:
DECLARE 1 BASED,

N FIXED,

X(2*I REFER (A.N)) FLOAT,

BASED,

N PIXED,

X{2*I REFER (B.N)) FLOAT;

NN NN D

Appendix 8 -- Literally

the

1

the

225

APPLE REFERENCE MANUAL

317 MARCH 1972

226

