
::-:0==0

March 31, 1972

Apple

Reference Manual

by Fred Krull

Michael Marcotty

Mary Pickett

James Thomas

Ronald Zeilinger

Computer Science" Department

IBM I" Research Laboratories
- General Motors Corporation

APPLE REFERENCE MANUAL

31 MARCH 1972

PREFACE . .. • 9

CHAPTER 1 : PROGRA"t ELEMENTS · • 10
INTRODUC'1"ION 10
LANGUAGE CHARlCT ER SET 10

Collating Sequence 12
Length of Tdentifiers 12
Keywords 12
stat.ement "Identifiers · • • 13
Attribute Keywords • • .. 13
Built-in Function Names .. • • 13
Option Keywords · • • .. 13
Conditions • 13

DELIMITERS • 14
Ar i t.hmet ic Operators • • 14
Relational Operators • .. • • 15
Bit-string Operators 15
string operator · • .. • 15
Parentheses . .. 15
Separators and Other Delimiters . 16

CCMMENTS • • 16
'T'he Use of Blanks and Comments 16

EIEMF.NTAFY PROGRAM STRUCTURE .. • .. 17
Simple Sta tements . • 17
Compound Statements . .. 17
Prefixes • .. 17

CHAPTER 2: PROGRAM STRUCTURE .. 19
INTFOf)UCTION 19
STATIC PROGRAM S1'RUCTURE • .. 19

Groups 19
Block Structure · .. • 20
Use of the END Sta temen t .. 22

DYNAMIC PROGRAM STRUCTURE · .. 22
Procedure References .. 23
Subroutine References .. • 24
Function References . .. '. .. • . 24
Act ivation and Termination of Blocks .. 24
The Environment of a Block • • 26

1

APPLE REFERENCE MANUAL

31 MARCH 1972

ARGtJAENT PASSING • • 27
Parameters 28
Corres pon dence of Arquments and Parameters .. • 29
Use of Dummy Arguments 30
Entry References as Arguments · • • • • 31
Use of the ENTRY Attribute • • 32

CHAPTER 1: DiI\TA ELEMENTS • • • 33
INTRODUCTION • 33
DATA TYPES .. • • 33
PROBLEM DATA • • • • 33

Arithmetic Data .. 34
Scale .. • • 34
Precision 34
AI' i thmet ic Constants • • 36
Strinq Data . • • • • 36
Character-string Data • • • 37
Character-string Constants 37
Bit-String Data · • • • 38
Bi t-st rinq Constants • 38

PROG RAM-CONTROL DATA · 38
Label Data • 38
Statement-Label Constants .. • • 38
Statement-Label Variables · 39
Locator Data • 39
Locator Quallf icat ion . • 40
Interrupt Data 41
File Variable . 41
Entry Data • 42

ORGANIZATION .. • • 43
Scalar Items · 43
Scalar: Variables 43
Data 1\ggregates • • • • 43
Arrays • 43
Structures • 44
Arrays of structures • • 45
Attributes of Structures • 46

NAMIN(; • 46
Simple Names 46
Subscripted Names . • • 46
Oualifieii Names and Ambiguous References · 47
Subscripted Qualified Names . • • 50

CHAPTER 4: DATA PIA NIPULATION • • • • • • 52
INTRODUCTION • • • 52

2

APPLE REFERENCE "ANOAL

31 MARCH 1972

EXPRESSIONS • 52
Arithmetic operations. • • • • ••••• 54
Descriptor Arithmetic • • • • • • • • • • • • • • • • 55
Relational Operations • • • • • ••••••••• 56
Bit-string Operations • • • • 57
String Operations • • • • • • • • • • • ••• 58

EVAL"~TION OF EXPRESSIONS • • • • • • • • • 59
Priority of Operators. • • • • • • • 59
Use of Parenthes~s • • • • • • • • ••••• 60
Exam~le of Expression Evaluation • • • • 60

ARRAY EXPRESSIONS. • • • • • ••••• 63
Operations between Arrays and Scalars • • • • 63
Operations between Arrays •••••• 64

DAT~ CONVERSION • • • • • • • • • • • • • • 65
ARI~HMETIC CONVERSION • • • • • • • •• 65

Results of Arithmetic Operations • • • • • • 66
TYPE CONVERSION • • • • • • • • • • • • • • • • • • 67

1. Arithmetic Conversion •• • • • • • • • • • • 68
2. Character-string to Arithmetic • • • • 68
3. Conversions to Character-string • • • • ••• 69
4. Bit-string to Arithmetic. • • • ••••• 69
5. Arithmetic to Rit-string ••••••••••••• 69
6. Offset to Pointer •••••••••••••••• 69
7. Pointer to Offset •••• • • • • • ••••• 70
8. Descriptor to Pointer •• • ••••••••• 70
9. Pointer to Descriptor • • • • • • • • • • • • 70
10. Offset to Descriptor •• • • • • • • • • • • 70
11. Descriptor to Offset •••••••••• 70
12. Arithmetic to Locator. • • • • • • ••••• 71
13. Character-string to Entry Value. • ••••• 71

CHAPT~R ~ -- DATA DESCRIPTION • • • • • • • • • • • • 72
INTFODUCTION • • • • • • • • • • • 72
DECLARATIONS ••••• • • • • • • • • • • • • 72
EXPLICIT DECLARATIONS • • • • • • • • • • • "73

Label Prefixes ••••••• • • • • • • • • • • 74
Parameters • • • • • • • • • • • • • • • • • 74

CONTEXTUAL DECLARATIONS • • • • • •• • • • 74
SCOPE OF DECLAFATIONS • • • • • • • • • • • • • • • 75
DEFAULT ATTRIBUTES • • • • • • • • ••• • 79
LIST OP ATTRIBUTES •• • • • • • • • • • • • • • • 80

AUTOMATIC, STATIC, REGISTER, and BASED ••• • • • • 81
BINARY and DECIMAL ••• • • • •••••• • 88
BIT and CHARACTER • • • • • • • • • • • • • • • • 89
BUIL~IN • • • • • • • • • • • • 90

3

APPLE BEF!REICE "AIUAL

CHARACTER
CONSTANT
CONOITION
DECIr1At •
DESCRIPTOR
Dimension
ENTITY
'ENTRY •
F.VBNT •

•
• •
and

•
•
• •
• •

• •
• • •
EVENT
• •
•
• •

•
• • ..
• •

•
•
• •

•
•

•
•
•
•

EXTERNAL and INTERNAL •
FtLP.
FILE_SET

• • • •
• •

FIXED and fLOAT •
• • •
• • •

• • •

•

• •
•

• •

• •
•

• • •
• •

• • •
• • •

• •
•

• •
• •
• •

•
•

• • · ..
•

INITIAL
LABEL •
tIKE
OFfSET,
REFER
RETURNS

POINTER, and DESCRIPTOR
• •• • •

•
SET
VARIABLE
VARYING

• • • •• •
• • • •• •

• • • •

CHAPTER 6: FILE HANDLING
tN'TRODUCTION • •
FILES ••• ••

Sequential Files
structured Files
File Variables

•

•

•
•

•
SROUENTIAL FILE HANDLING

• •

•
• •

• • • •
• •

• • •
• •

• • •
nse of GET and PUT statements
Data specification
Data Lists
Format Lists ••
Data Format-Items
Control Format-Items

•

•
•

STRUCTURED FILE HANDLING

•

•
storaqe Manaqement •
Rntities •• • • •

•
•
•
•
•

Sets • • •••

•

•

•

•
•
•
•
•

•
•
•
•

•
•
•
•
•

•
•

•
•
•

•

•

•
•

•

•
•
•

Creating and Deletinq Associations
Searching a Set •• •• •

• •
•
•
• •
•
• •
•

•
•
• •
• •
• •
• •
•

•
•
• •
• •

•

• •
• •

•
•

• •

•
•

•
• •
• •
• •

•
•

• •
•

Associative Data Built-In Punctions •

CHAPTER 1 - INTERRUPT HANDLING • • • •

4

31 fUSCH 1912

• • • • •
• .. •

• • • •
• • • •

• •
• • •
• • • • • •
• • • • • •
• •

• • • •
• • • •
• • •

• • • •
• • ..

• • •
• • • • •
• • •

• • •

• • • •
• •
• • • •

• •
•• • •

•
• • •

• •

...
.. . .
• • ••

• • • •
• • • •
• ••

• •
• ••••
• ••• •

•• •
• ••

• • • • • • •

• • • • • •

• q1
• 91
• 92
• 92

92
• 93

94
• 95

96
91

• 91
• 98
• 9q
• 99
.102
.103
.104
.105
.106
.101
.108
.108

.109

.109

.109

.110
• 111
.11 1
.113
.. 113
.114
.115
.116
.118
.125
.127
.127
.128
.129
.131
.132
.133

.134

APPLE REFER!WCE KAWUAL

31 KARCH 1912

INTRODUCTION e .. • • • • • •• 134
CONDITIONS •• • • • .. • .. • • • • • • • .134

System Conditions. • • • • • • ••••••• 134
Programmer-Defined Conditions 135

EVENTS .. • • • • • • • .. • • • • ••••• 135
Event Declarations ••••• .. • • • • • • .135
Bvent states .. • • • • • • • • ••••• 136
Completion State • • • • • • • • •• 136
Delay state ~ • • • • • • • ••• 137
Use of the ONPTR Built-in Function ••••••• 137

USE O~ INTERRUPT-HANtLING STATEMENTS • • • • • • .138
Use of the ON statement. • • • • • • •• 138
Use of the REVERT statement. • • .. • • .141
Use of the SIGNAL statement 142
Use of the WAIT statement. • • • • • • .. •• 142
Use of the LOCK and UNLOCK statements ••• .143

CHAPTER 8: STATEMENTS
INTRODUCTION • • • • • • • • .. •
CLASSIFICATION OF STATEMENTS • • • .. • • ••

The ALLOCATE Statement • • • • • • ••
The Assignment statement • • • • ..
The BEGIN statement • • • • • • ••••••••
The CALL statement ••••••••••••••
The CRRATE sta tement

• •• 144
.144
.144

• •• 145
• • .150

.154
• •• 154

The DECLARE statement
.156
.156

The DELETE statement • 159
The DO statement •• • • • • .. • • • • • •
The END statement • • • .. • • • • • • •
The F:NTRY statement.. • • • • • ••
The EXIT statement • •
The FIND Statement • .. • • • • • • • • • •
The FOR EACH statement .. • • • • • • • ••
The FREE statement • • • • • • •
The GET statement • • • • • • • • • • ..
The GO TO statement ••
The IF statement • • • • .. • .. ••
The INSERT statement • • • • • ••
The LET statement • .. • • • • • • • .. • • •
The LOCK stat.ement • .. • • • .. • • • •
The null statement • • • • • • • • ••
The ON statement .. • • • • • • • • • •
The PROCEDURE statement. • • • • • ...
The PUT statement • • • • • • • • • • •
The RBMOVE sta tement • • • • • • • • • • •

• 159
• •• 164

.164
• •• 165

.166

.169
• • • 171

.173
• •• 173

.175

.117

.178
• •• 179

.180

.180
• •• 182
• •• 183
• ... 183

5

APPLE REFERENCE KANUAL

The
The
The
'rhe
The

RE'rURN statement
REVERT sta tellent
SIGNAL sta tellent
UNLOCK statement
WAIT statement

•
•

•
• ..

• •
•

• •
•

APPENDIX 1 - BUILT-IN fUNCTIONS,
..

.. .. •
•

PSEUDO-VARIABLES
INTRODUCTION
ARITHMETIC FUNCTIONS

ABS (x) • • • •
CEIL (x) • .. • ..
fLOOR (x) •
MOD (x, d) ••

ARRAY FUNCTIONS
DIK (a, d)
HBOUWD(a,
t.BOUWD (a,

d)
..

•

•

..

.. ..
• •
..

•
•

..
.. ..
• • • ..

ASSOCIATIVE
d)
DATA FUNCTIONS

ALL ..
..
..

e)
d)
1)

APLESET (s)
APLEVAR (s)
APLINDX(e, s, e)
APLNUMB (s, e) •
APLOWNI (e, s,
APLOWRS(e, e,
APLSNAM(e, i,
A PLTYP'E (e)

•
•

•
CONVERSION FUNCTIONS

BY'rE (x[, i])
CHAR (v(, 11) •

• •

•

RNTRY (el
FIXF.D(x(, p) •
FLO~T (x[, p])
HEX (f[, i[, 1]])
OFFSET (p, f)
POINTER(o, f) ...

•
•

• • •
• ..
• • ..
• • ..

•
•

• •
•
.. • ..

..

•

•

• ..
..

•

•
•
•
•

•

•

INTERRUPT HANDLING FUNCTIONS

6

COftPLRTION(e) ..

..
DELAY (e)
ONFILE
ONLOC .. • •
OtJPTR (e) •

• ..
•

•

•
•

MATHRMATICAL FUNCTIONS
ATAN (x) • •

.. •

• •
•

• •
•

•

•

•

•

• ..
•

•
•

•

•

•

• • •
•
• • • • • .. • • •
.. • • • •

PROCEDURES,
.. • •
• • • •
• • ••• •
• • • • •
• • • •

• ••• •
• .. • •

• • • • ..
• • • • • • ..
• • • • • • • · ... •

• • • • •
• • • • • • .. · .. •

• • • • •
• • • • • •

• • .. •• • • .. . •
•

• •
• · •

• • ..
• •••

• • •
• • • ..

• •
• • • • • • · ...

•• •• •
•• • •

• • • •
•

• •• •
• ·

• •• •

31 KARCH 1972

• • •
•
• .. •
• • ..

AND
•

•

· ..
•
• •

•
• • ..

•
•

•
• • •

• .. .
.. . • · .. •

•

.. .
• • ..
• · ..

• • .. • ..
•

•
• •
• •

..

•
•

•
•
•
• ..
•
•
•
•
•
•
•
•
•
•
•

•

..
•

•

•

•

•

•

•
•
•

•

•

•

•

•

•
•

.185

.185

.186

.187

.188

.190

.190

.192

.192

.192

.192

.192

.192

.192

.192

.193

.193

.193

.193

.193

.194

.194

.194

.194

.195

.195

.195

.195

.196

.196

.197

.197

.197

.198

.198

.198

.198

.198
.198
.199
.199
.199
.199

APPLE REFERENCE "ANUAL

31 "ARCH 1912

COS (x) ••• • 199
LOG (x) ••••• • • • • • • • .199
SIN (x) ••• .. • • • • • • .199
SQRT(x) • • • • • • • • ••••••• 200
TAN (x) ••• • • • • • • • • • • • .200

STORAG~ MANAGEM~NT FUNCTIONS ••• • • • .200
ADDR(v) • • • • • • • • • • • • • • • • .200
DESCR(l, a). • • • • • • • • • .200
FILE(g) • • • • •• • • • • ••••• 200
NqLL • • • • • • • • • • • ••••••••••• 200

STRING HANDLING FUNCTIONS. • • • • • .201
INDEX{s, p). • • • • • • • • •••• 201
LENGTH(s} • • • • • .201
RAL (h) ••• • • • • • • • • • • •• 201
SUBSTR (s, if, :i J) • • • • • • • • • • • .201

riISC:F:LLANFOUS FUNCTIONS • • • • • • • ••••••• 202
DATE •• 0 • • • • • • • • • • • •• 202
INLIN~(f, r, s, t.}, INLINE(f, g, x, a, y, h, z, c) .202
~IME • • • • • • • • • • • • • • • .204

APPENDIX 2 - CONJ'lITION5 •• • • • • • • • • • • .205
INTRODqCTION • • • • • • • • • •••• 205
CONVERSION Conil.i tion ••• • • • • • • • • • • • .205
ENDFILB Condition. • • • • • • • • • • • • • • • .206
ERROR Condition • • • ••••••••••••••• 206
FIND Condition • • • • • • • • • • • .206
:FINT SH Condition .. • .. • • • • • • • • • .207
OVERFLOW Condition • • • • • • • • • • • • • • •• 207
Programmer-defined Condition ••••••••••• 207
STORAGE Condition. • • • • • • • ••••••••• 20A
UNDP.FINlI:DFILE Condition 208
UNDER'LOW Condition •••••••••••••••••• 208
ZEROOIVIDE Condition • • • • • • ••••••• 209

APPENDIX 1 - KEYWORDS, ABBREVIATIONS AND SYNONYMS •••• 210
KEYWORD ABBREVIATIONS. • ••••••••• 210
KRYWORD SYNONYMS •• a • • • • • • • ••••••• 213

APPENDIX 4 - DATA CHARACTER SET . . . · .
APPENDIX 5 - COMPILE-TIM!. CONTROLS . . . · . . • • • •

APPENDIX' 6 - NOTATION •• . . .- ·
APPENDIX 1 - STRUCTU!E "APPING
APPRNDII 8 -- LITERALLY ••••• ·

.214

.217

.219

.221

.223

7

APPLE REFERENCE MANUAL

31 MARCH 1972

8

APPLE REFERENCE MANUAL

31 MARCH 1972

~~EFAC]

This mannal serves as a reference to the Apple Programming
Lanquage as implemented for the STAR computer system. The
Apple Language itself is a dialect of PL/I; that is, Apple
is a superset of a subset of PL/I.

In drafting the specifications for Apple, the rules of PL/I
have been closely followed. The deviations from PL/I have
been in the main to disallow certain operations, statements,
data types, etc. The rules of precision have been changed
to take into account the architecture of the STAR computer.
Thus, as long as a program was written within the defined
subset of PLII, it should compile correctly.

The supersetting of the language has been to provide snpport
for systems programming and to integrate the APL (Associa­
tive Programming Language) statements directly into the
language. Programmers may declare and reference the new
storage class REGISTER and cause any STAR machine instruc­
tion to be emitted through use of the INLINE built-in
procedure. The associative data manipulation statements
FINn, POR EACH, INSERT, FEMOVE, and LET have been added to
the language (CREATE and DELETF are synonymous with ALLOCATE
and FREE). These statements may be used to manipulate two
new data constructs, ENTITY and SET.

The programmer who is preparing to use Apple should give
careful attention to the specifications contained in this
manual. Particular attention should be given to Chapters 3,
4, and 5, where the rules differ considerably from PL/I.

Preface q

APPLE REFERENCE MANUAL

31 'URCH 1972

I!IEQ:g!!£IIQ!!
An Apple program can be regarded simply as a string of
characters. Chapter 1 defines the elements of the language
in terms of character elements and describes special signi­
ficance that has been assigned to particular characters or
combinations of characters.

The Apple language is based on a 60-character set. The
character set is composed of alphabetic characters, digits,
and special characters. There are 2q alphabetic characters,
the letters A through Z and three additional characters that
are defined as and treated as alphabetic characters. These
characters and the graphics by which they are represented
are:

, "' I I
!A~ I Graphi£ I

• .,
I I

Number symbol I t 1
I I

At symbol , ~ 1
I I

Dollar symbol , $ t
I I
.... .J

There are ten digits. Decimal digits are the digits 0
throuqh q. A binary digit (bit) is either a 0 or a 1. The
hexadecimal digits include the ten decimal digits and the
alphabetic characters A through F. An alphameric character
is either an alphabetic character or a decimal digit. There
are 21 special characters. These characters and the gra-

10 Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

~1 MARCH 1912

phics by which they are represented in this manual are:

,.- ~- ,
I I I , !~!!g J Gr~.2hi£ ,
f-- , ---t
1 J I
I Blank I ,6 I , I J , Equal or Assignment symbol I = I
I J ,
J Plus I + J
J , I
I Minus I I , I 1
I Asterisk or Multiply symbol I * J
t I , , Slash or Divide symbol I / I , I ,
I Left Parenthesis , (I
J I I
I Right Parenthesis I , , I ,
I Comma I , ,
I I I , Decimal Point or Period I ,
I I ,
1 Single quotation mark I J
1 f I
t Douhle quotation mark I " I
f I I
I semicolon , · , , , t ,
I Colon I · , · t I ,
J Not symbol , I
I I I , Or symbol I I
I , 1
I And symbol , & I
1 , I
I Greater-than symbol , > I
J t ,
I Less-than symhol I < J
J I ,
1 Break character , , , I J , Percent symbol I % I
I J I
L--_ I .J

Chapter 1 -- Program Elements 11

APPLE REFERENCE "ANUAL

::11 "ARCH 1912

Some keywords may be written in an abbreviated form; these
are listed in Appendix 3.

A statement identifier is a sequence of one or more keywords
used to define the function of a statement (see "Simple
5ta tements" below).

Examples:

GO TO
OECLARE
ALLOCATE

Attribute keywords are used for the specification of some
attributes.

Examples:

FLOAT
CHARACTER

A built-in function name is a keyword that is the name of an
algorithm provided by the language and accessible to the
programmer (see "Function References" in Chapter 2).

Examples:

LENGTH
DATE

q2tiQ!!~j!Q.{g2

An option keyword is used to influence the execution of a
statement.

Examples:

SET
REMOTE

A condition is a keyword used in the ON, SIGNAL, and REVERT
statements. The programmer may specify special action on

Chapter 1 -- Program Elements 13

APPLE REFFRENCE MANUAL

occurence of a condition (see Chapter 7).

Examples:

OVERFLOW
ZEBODIVIDE

31 MARCH 1972

Certain single characters and certain combinations of chara­
cters are used as delimiters and fall into six classes:

arithmetic operators

relational operators

bit-string operators

string operators

parentheses

separators and other delimiters

The arithmetic operators are:

+ denoting addition or prefix plus

denoting subtraction or prefix minus

* denoting multiplication

/ denoting division

** denoting exponentiation

14 Chapter 1 -- Proqram Elements

APPLE REFERENCE "ANUAL

31 "ARCH 1972

The relational operators are:

> denoting greater than

-.> denotinq not qreater than

>= denoting greater than or equal to

:: denoting equal to

.... = denoting not equal to

<= denoting less than or equal to

< denoting less than

..... < denoting not less than

The bit-string operators are:

..... denoting not

& denoting and

denoting or

The strinq-operator is:

!! denoting concatenation

~renth~!!

Parentheses are used in expressions. for enclosing lists.
and for specifying information associated with various
keywords.

(left parenthesis

) right parenthesis

Chapter 1 -- program Elements 15

APPLE FEFEBENCE MANUAL

nu
comma

semicolon

assignment

colon

blank

period

arrow

percent

COMMENTS

General format:

!ll:aRh!s

,

· •

=

· ·

•

->

31 lURCH 1972

!!.§!

separates elements of a list

terminates statements

used in assignment, DO, FIND,
LET, and FOR EACH statements

used in label prefixes and in
bound specifications

used as a separator

separates items in qualified
names

qualifies a reference to
based variable

a

designates compiler control
statements (see Appendix 5 for
description)

comment ::= 1* comment-string *1

where "comment-strinq" contains any of the characters of the
language character set except the combination "./".

Comments are use~ for documentation only and do not parti­
cipate in the execution of a program.

Identifiers, constants (except character-string constants),
and composite operators (e.g., ! 1) may not contain blanks.
Identifiers, constants, and keywords may not be immediately
adiacent. They must be separated by an operator, assignment
symbol, arrow, parenthesis, colon, semicolon, COlima, period,
blank, or comment. Additional intervening blanks or com­
ments are always permitted. Blanks are optional between
keywords of the statement identifiers GO TO and FOR EACH.

16 Chapter 1 -- Proqram Elements

APPLE REFERENCE MANUAL

31 KA"RCR 1972

An Apple program is constructed from basic program elements
called stat~~l~. There are two types of statements,
simple and £2!e0Yn~. Statements are grouped into larger
program elements, the gIQYE and the bl2£!. These are
discussed in Chapter 2.

General format:

simple-statement ::=([statement-identifier] statement-body];

The "statement-identifier", if it appears as a keyword,
charact€rizes the kind of statement. If it does not appear,
and the "statement-body" appears, then the statement is an
!§§!gn!~_-21!~n1. If only the semicolon appears, the
statement is a BYll st~t~~n!.

A compound statement is a statement
program elements. There are two
statements:

The IF compound statement

The ON compound statement

that contains other
types of compound

The final statement contained in a compound sta~ement is a
simple statement and thus has a terminal semicolon. Hence
the compound statement will automatically be terminated by
this semicolon.

Each Apple statement is described in the alphabetic list of
statements in Chapter 8.

statements may be labeled to permit reference to them
through the use of laQ~1-~efi~.

General format:

label-prefix ::= identifier:

Label-prefix identifiers are called labels and may be used
to refer to the statement that they prefix. Labels appear­
ing before PROCEDURE and ENTRY statements are special cases

Chapter 1 -- Program Elements 17

APPLE REFERENCE MANUAL

31 MARCH 1972

and are known as !!ntrL!!A~'§ (see "Procedure References" in
Chapter 2). All other labels are called ~!!~ent labels.
A name appearing before a statement is said to be explicitly
declared with the attribute of a label constant by virtue of
its appearance as a label prefix. Only one label prefix may
precede a single statement, and the label prefix may not be
subscripted.

1A Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

31 MARcn 1972

A E~Qg£~~ is composed of one or more separately compiled
procedures. At execute time, those procedures that are
required to solve a particular problem are dynamically
(i.e., at first reference) linked together. Thus, the
collection of procedures used to solve any problem may be
data dependent and may vary from one execution to the next.

This chapter describes the following:

1. The ~lic_2trY£1~~ of a program as specified at
compile time.

2. The gy~~!~c_stry£!~~ of a program that is estab­
lished at execute time.

3. The rules by which data may be passed between
procedures at execute time.

A procedure is made up of basic elements called statements.
A statement may be either a simple statement 9r a compound
statement. statements may be collected together at compile
time into larger units, called groYE2 and bloc~2.

A group is a collection of one or more statements that may
he considered as a single statement for the purposes of
control.

General format:

qroup ::=

(label:] group-statement (statement] ••• END [label];

qroup-statement ::= do-statement I for-each-statement

The label following the END is the label of the group­
statement (see "Use of the END statement" in this chapter).

Chapter 2 -- Program structure 1q

APPLE REFERENCE MANUAL

31 MARCH 1912

The group-statement may specify iteration or selection (see
"The DO statement" and "The FOR EACH statement" in Chapter
A) •

Each "statement" in the body of the group may be a
simple-statement, compound-statement, group, or begin-block.

~!.Qck Struc1ur!!

A block is a collection of statements that defines the
program region (or 2£Q£~) throughout which an identifier is
established as a name with an associated set of attributes.
I block is also used for control purposes.

There are two kinds of blocks, begin bl2£!§ and ~.Q~QYI~
!2.lock§.

General format:

begin-block ::=

[label:] begin-statement [statement) ••• END (label];

procedure-block ::=

label: procedure-statement [statement] ••• END [label];

Each "statement" in the body of a begin-block or procedure­
block may be a simple-statement, compound-statement, group,
begin-block, or procedure-block.

The label following END is the label of the corresponding
BEGIN statement or PROCEDURE statement. While the label of
the BEGIN statement is optional, the PROCEDURE statement
must have a label. The label required for the PROCEDURE
statement serves as the Erocedure_D~~. The procedure name
gives a means of activating the procedure at its ~~\mary
g~1~I_E.Qin1. ~~£Q~garI en1~oin1§ can also be defined for
a procedure by the use of the ENTRY statement.

Although the begin block and the procedure have a physical
resemblance and play the same role in delimiting scope of
names (see "Scope of Declarations" in Chapter 5) and
defining allocation and freeing of storage (see "Activation
and Termination of Blocks" in this chapter), they differ in
an important functional respect. A begin block, like a
single statement, is activated by normal sequential flow
(except when used as an on-unit), and it can appear wherever
a single statement can appear. A procedure can only be
activated remotely by CALL statements or by function

20 Chapter 2 -- Program Structure

APPLE REFERENCE ~ANUAL

31 MARCH 1972

references. When a program containing a procedure is
executed, control passes around the procedure, from the
statement before the PROCEDURE statement to the statement
after the END statement of the procedure.

As the above definition of block implies, any block A can
include another block B, but partial overlap is not poss­
ible. Bloct B must be completely included in block A. Such
nesting may be specified to any depth. A procedure that is
not included in any other block is called an ~i~!
proced.!U:~. A procedure included .in some other block is
called an ini~~n~EIQced~~. Every begin block must be
included in some other block. Hence, the only external
blocks are external procedures. All of the text of a begin
block except the label of the BRGIN statement of the block
is said to be £2niaing1-!n the block. All of the text of a
procedure except the entry names of the procedure is said to
be £Qn!ai~~!n the procedure. That part of the text of a
block B that is contained in block B, but not contained in
any other block contained in B, is said to be !n!~~1--!2
block B. The entry names of an external procedure are not
internal to any procedure and are called g~te£n~!-!amg§.

Example:

A:
PROCEDU R E:

statement-1
B:
BEGIN;

statement-2
statement-3

END B;
statement-4
C:
PROCEDURE:

statement-5
X:
ENTRY;

D:
BEGIN;

statement-6
statement-7

END 0;
statement-8

END C;
statement-9

END A;

1

I
I

-----, I
I I
, J

, ___ ,J ,

I
f ,

J I
, I
J J
I I

---.." I J
, 1 ,
f J I

, I
I I ___ .J ,

I

Chapter 2 -- Program Structure 21

APPLE REFERENCE MANUAL

31 MARCH 1912

In this example, statements 1 through 9 are labeled or
unlabeled simple or compound statements or groups. As the
brackets on the right indicate, block A contains blocks B
and C, and block C contains block ~.' Block A is an external
procedure. The procedure name is A, which is an external
name and is the only entry name for the procedure. X is an
entry name corresponding to a secondary entry point for
procedure C. Blocks Band D are begin blocks. Block C is
an internal procedureo

The END statement may contain an optional label. If the
optional label following END is not used, the END statement
terminates that unterminated group or block headed by the
DO, FOR EACH, BEGIN, or PROCEDURE statement that physically
precedes, and appears closest to, the END statement. If a
label is used following an END statement, the action is
exactly the same except that a check is made that the
statement at the head of the block or group being terminated
is labeled with the same label as is specified with the END
statement.. If a match is not found, an e.rror message is
generated.

A begin block is said to be A£t!!~!~g when control passes
through the BEGIN statement for the block. A procedure
hlock is said to be ~£t!!at~d when the procedure is invoked
at anyone of its entry points. A block may be ~!iY~
during certain time intervals of the execution of a prograa.
A block is active if it has been activated and is not yet
terminated. A ~rocedure-block may be either an internal
procedure or an external procedure. Internal procedure
references are resolved at compile time, while external
procedure references are resolved at execute time. If an
internal procedure is referenced, it must be internal to a
block that is active at the time of invocation.

Each procedure invocation implies the activation of a new
block that is a descendent of a previous block. However,
the order or sequence of invocation is a function of the
problem and may dynamically change from one execution to the
next. At the invocation of a new block, generations of data
items may be created. These data items may be referenced in
descendent blocks subject to the rules of scope as described
in Chapter 5. Data items declared with the STATIC attribute
will be allocated and initialized once at the time the first
block in which they are declared is-iCtivated.

22 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

At any point in a program where an entry point of a given
procedure is known, either directly through its name or
indirectly through the use of an entry variable, and the
procedure is internal to an active block, the procedure may
be i!l!..QkeQ. A reference to a procedure has the .form:

entry-expression [(argument (, argument] •••) 1

where "entry-expression" may be:

1. an entry constant
2. an entry variable

'P,ach entry constant or variable must be declared, either
through its appearance as a label prefix in a PROCEDURE or
ENTRY statement or through the use of the ENTRY attribute in
a DECLAR'P. statement (see "ENTRY" in Chapter 5). Either
declaration indicates the number (possibly zero) and data
types of the parameters for the procedure. The number and
data types of the arguments in the procedure reference must
match the number and data types of the parameters indicated
in the declaration. The matching is checked at compile
time. When a procedure reference invokes a procedure, each
argument specified in the reference is associated with its
corresponding parameter in the list for the denoted entry
point, and control is passed to the procedure at the
referenced entry point.

There are two distinct uses of procedures, determined by one
of two contexts in which a procedure reference may appear:

1. A procedure reference may appear following the
keyword CALL in a CALL statement. In this case,
the procedure is invoked as a 2YQ~Qytine-E£Q~=
QQ~~, or simply a SuhI2Qli~~.

2. A procedure reference may appear as an operand in
an expression. In this case, the reference is
said to be a !yngtign £~I~~~~, and the procedure
is invoked as a fun£1ion.

Any procedure may be invoked as either a function or a
subroutine. However, the RETURN statement in a procedure
invoked as a function must specify a return value. If a
procedure is invoked as a subroutine, any value given in a
RETURN statement is ignored. (See "The RETURN Statement" in
Chapter 8.)

Chapter 2 -- Program structure 23

APPLE REFERENCE KANUAL

31 MARCH 1972

~.!:!.2~l!!:iruL!!.!feun!~

A subroutine reference transfers control to an entry point
of a procedure and activates the procedure. Activation of
the subroutine may be terminated by execution of a RETURN
statement or by the END statement of the block.

A value is not returned by a subroutine, but values obtained
in a SUbroUtIne may be made known in the invoking procedure
either by assigning a value to a variable known in the
invoking procedure or by assigning a value to a parameter
which has not been passed as a dummy argument.

When a function reference appears in an expressio.n, the
procedure is invoked. The result of the execution of the
procedure is the value of the function, which is passed
(with the return of control) back to the point of invoca­
tion. This returned value is then used to evaluate the
expression.

The procedure invoked by a function reference normally will
t.erminate execution with a statement of the form:

RETURN (expression);

It is the value of this expression that will be returned as
the function value.

Besides function references to procedures written by the
programmer, a function reference may invoke one of a set of
built-in functions. The set of built-in functions is an
intrinsic part Of-ipple. It includes commonly used arith­
metic functions, functions for manipulating strings and
arrays, and other functions related to special facilities
provided in the language. The identifiers corresponding to
the built-in function names are not reserved; any such
identifier can be used by the programmer for other purposes
sub;ect to the rules of scope (see Chapter 5). The complete
list of these functions and their descriptions can be found
in Appendix 1.

Activation and Termination of Blocks ------------------
Blocks can be activated in a variety of ways. A begin block
is activated by normal sequential flow of control. In all
cases, a begin block must be contained within an ~£!iv~
procedure block at the time of activation.

24 Chapter 2 -- Program structure

APPLE REFERENCE "ANUAL

31 MARCH 1972

Procedure blocks, on the other hand, can 2~lY be activated
hy CALL statements or by function references. When a
procedure containing internal procedures is executen, con­
trol will pass around each internal procedure from the
PROCEDURE statement to the corresponding END statement.

There are a number of ways in which a block may be
terminated. A begin block is terminated when control passes
through the END statement for the block. A procedure block
is terminated on execution of a RETURN statement or an END
statement for the block. (In this case the END statement
implies a RETURN statement.) A block is terminated on
execution of a GO TO statement contained in the block that
transfers control to a point not contained in the block.
Any intervening blocks are also terminated.

If a block 8 is activated and control stays at points
internal to B until B is terminated, no other blocks can
have been activated while B was active. However, another
block, B1, may be activated from a point internal to block B
while B still remains active. This is possible only in the
followinq cases:

1. B1 is a procedure block immediately contained in B
(i. e., the label of B1 is in ternal to B) and
reached through a procedure reference.

2. B1 is a begin block internal to B and reached
through normal flow of control.

3. Fl1 is a procedure block not contained in B and
reached through a procedure reference. (B 1, in
this case, may be identical to B, i. e. , a recur-
sive call. However, it is to be regarded as a
dynamically different block).

4. B1 is a begin block or a statement specified by an
ON statement (see "The ON statement" in Chapter 8)
and reached because of an interrupt. (For present
purposes, even if B1 is a statement, it can be
regarded as a block; this case is dynamically
similar to case 1 or case 3 above.)

In any of the above cases, while B1 is active, it is said to
be an i1!!1!~diat~-.£i.!nam!£_de§~ndan! of B. Block B1 may
itself have an immediate dynamic descendant B2, etc., so
that a chain of blocks (8, B1, B2, •••) is created, where,
by definition, all of the blocks are active. In this chain,
each of the blocks B1, B2, etc., is said to be a 4!qam~£
d~s£~nda~i-of_~. When a block B is terminated, all of the

Chapter 2 -- Program structure 25

APPLE REFERENCE "ANUAL

31 MARCH 1972

dynamic descendants of B are also terminated. storage for
all automatic variables declared in these blocks viII be
released at the time of termination. If a block a1 is a
dynamic descendant of a block a, then block B dlnami£ally
en~~§.2~ block B 1.

On activating a block, certain initial actions are per­
formed, e.g., allocation of storage for automatic variables.
These initial actions constitute the 2£Qlogu~. After the
prologue has executed, the following are available for
computation:

1. ~stablished generations of automatic and register
variables declared outside the block and known
within it.

2. static variables known within the block, and
register and automatic variables declared in the
block.

3. Arguments passed to the block.

When several activations of B are in existence, as in
recursion, it is essential to know the activation of B that
holds the storage of data declared in B and known to
descendant blocks. If a block B1 is statically nested
within D containing blocks, the particular activation of
each of the 11 blocks that. hold the generations of data known
to B1 form the ~!rQn~nt of the activation of B1.

When an entry name is assiqned to an entry variable, the
environment to be used in subsequent invocations is deter­
mined and forms ~art of the entry value. This environment
is the activation of the block that contains the procedure
whose entry name is assigned. The environment of an on-unit
is provided by the the block containing the ON statement
establishing the on-unit.

A label constant designates a point within the text of a
block, B. During execution, there may be several activa­
tions of B; it is essential to know the particular activa­
tion of B which is referred to by a label reference. A
reference to a label constant L, made in some activation of
a block Q1, is to L in the current environment of B1. When
a label constant is assigned to a label variable, this
environmental information is assigned as well. Subsequent
GO TO statements naming the label variable will re-establish
the environment assigned to the variable, and hence may

26 Chapter 2 -- Proqram Structure

APPLE REFERENCE MANUAL

cause blocks to be terminated. When a label variable is
assigned to another label variable, the environmental infor­
mation is assigned as well.

A g~~~atiQ~, or allocation, of a variable is created
whenever storage is allocated for the variable. A genera­
tion consists of the storage for the generation together
with the evaluated set of attributes for the generation.
Associated with the generation is a pointer to the storage
allocation; this serves as a unique identification of the
generation. The evaluated set of attributes is established
when the generation is allocated and enables the contents of
the storage to be interpreted. In some cases, the attri­
butes may have to be re-evaluated upon each reference.

In the case of static and automatic generations, the pointer
to the generation can only be obtained by invoking the
huilt-in function ADDR using the variable as the argument.
For based variables, a locator variable is specified in the
ALLOCATE statement used to create the based variable, and a
value is assigned to it so that it can be used to access the
generation that is created.

The storage for a generation contains the values of the
various fields in the variable. The evaluated set of
attributes of a generation comprises the structuring of the
variable, the data types of its components, and the bounds
of arrays and lengths of strings as evaluated at the time of
allocation. Offset variables may be used to identify the
position of a generation within a file. If the offset and
file reference are supplied as arguments of the POINTER
huilt-in function, the result is a pointer identifying the
generation. Similarly, if the pointer and file reference
are supplied as arguments of the OFFSET built-in function,
the result is the offset of the generation from the
beginning of the file.

A]§UMENT PASS!NQ

When a procedure is invoked, a relationship is established
between the arguments of the invoking statement and the
parameters of the invoked entry point. A procedure may pass
one of its parameters as an argument to another procedure
(or even to itself in a recursive call).

The ENTRY attribute must be used to specify the
of all arguments of an external procedure. The
dence of parameters in a parameter list with the
in an argument list is from left to right,

attributes
correspon­

arguments
with the

Chapter 2 -- Program structure 27

APPLE REFERENCE MANUAL

31 MARCH 1912

left-most param,eter corresponding with the left-most argu­
ment. The number of arguments and parameters must be the
same. In addition, the attributes of each argument in a
procedure reference must match the attributes of the corres­
ponding parameter at the invoked entry point. When an
argument is a subscripted variable, the subscripts are
evaluated before invocation. The specified element is then
passed as the argument. Subsequent changes in the subscript
or the locator identifying the generation of the argument
during the execution of the invoked procedure have no effect
upon the corresponding parameter.

The PROCEDURE and ENTRY statements may specify a !!st-2!
~~~ter2. Parameter lists for different entries to a 
procedure need not be the same. A parameter may be a 
scalar, array, or maior structure name that is unqualified 
and unsubscripted. A reference within the procedure to a 
parameter produces an undefined result if the entry point at 
which the procedure is invoked does not include that 
paramet-er in its parameter list. Parameters are explicitly 
declared by their appearance in a PROCEDURE or ENTRY 
statement. Additional attributes must be supplied in a 
DECLARE statement internal to the procedure. 

Parameters cannot be declared with the storage class attri­
butes STATIC, AUTOMATIC~ or BASED, or with the BUILTIN or 
INITI~L attributes. However, parameters may be declared 
with the storage class attribute REGISTER. Scope attributes 
cannot be declared for parameters; a parameter has internal 
scope. Any bounds or lengths must be specified either by 
asterisks or decimal integer constants which may be signed. 
If a parameter is a structure, it must be a major structure. 

Example: 

SBPRIM: PROCEDURE(X, Y, Z); 
DECLARE (X,Y,.A,B) FIXED, 

Z FLOAT; 
A=X-1; 
B = Y + 1; 
GO TO COMMON; 

SBSEC: ENTRY(X, Z); 
A = X - 2; 
B = X - 3; 

COMMON: Z = A**2 + A*B + B**2; 
END SBPRIM; 

28 Chapter 2 -- Program Structure 



APPLE REFERENCE ~ANUAL 

31 MARCH 1972 

In the above example, the procedure SBPRIM may be entered at 
its primary entry point SBPRIM, where the parameter list is 
(X, Y, Z), or at its secondary ~ntry point SBSEC, where the 
parameter list is (X, Z). 

The number and data types of the arguments in a procedure 
reference must be the same as the number and data types of 
the parameters in the correspondinq parameter list (where 
the parameter list is given in the PROCEDURE or ENTRY 
statement for internal procedures and in the ENTRY declara­
tion for external procedures). This is true even if a dummy 
argument is constructed. The only exception to this rule is 
that the REGISTER attribute may be specified for an argument 
without beinq specified for the corresponding parameter, or 
it may be specified for a parameter without being specified 
for the corresponding argument. In the following example, 
dumm, arquments will be constructed for the last two 
arguments because the corresponding parameters have the 
REGISTER attribute. (See "Use of Dummy Arguments" for 
imFlications.) 

P1: PROCEDURE; 
DECL!RE (A, 

(C, 
P2 

. . . 

B) FIXED REGISTER, 
D) PIXED AUTO~ATIC, 

ENTRY (PIXED, 
PIXED, 
FIXED REGIST~R, 
PIXED REGISTRR); 

CALL P2(C, A, B, D); . . . 
END P1; 

If a parameter of an invoked entry is a scalar, the argument 
must be a scalar expression. The data attributes of the 
argument or dummy argument must agree with the corresponding 
attributes of the parameter. No data type conversion will 
be performed. Ho¥ever, arithmetic conversions may be per­
formed in the invoking procedure if the scale and precision 
of an expression do not match the attributes declared for 
the referenced entry. If the bounds or lengths of parame­
ters are explicitly declared, then they must match those of 
the correspondinq arguments; however, if they are declared 
with asterisks (see "Dimensionu and "BIT and CHARACTER" in 
Chapter S), then they will automatically match. If the 
argument has the VARYING attribute, then the parameter must 
also be declared with this attribute. 

Chapter 2 -- Program structure 29 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

If a parameter of an invoked entry is an array, the argument 
in general must be an array expression with identical bounds 
and dimensionality. If constants are used to specify the 
bounds of the parameter in the invoked procedure, the values 
of the bounds of the array argument must agree with the 
values of these constants. 

If a parameter is a structure, the argument must be a 
structure or substructure. The data attributes of the 
elements of the argument structure must match those of the 
associated parameter as specified in the invoked procedure. 
The relative structuring of the argument and the parameter 
must be the same, althougb the level numbers need not be 
identical. Contained strings and arrays with lengths and 
hounds specified by constants must agree. The REFER attri­
hute must not be used in a parameter declaration. 

If a parameter is a scalar label variable, the argument must 
be a scalar label expression. If a parameter is an array 
label variable, the argument must be an array label expres­
sion. A dummy argument is always constructed when the 
arqument is a label constant. ~his dummy argument will also 
contain identification of the current invocation of the 
block containing the label. Any reference to the parameter 
is a reference to the statement label in that environment. 

If a parameter is an entry parameter, the corresponding 
argument must be an un parenthesized entry expression. The 
names of built-in functions or procedures may not be passed 
as entry constants. 

A constructed dummy arqument containing the argument value 
is passed to a procedure if the argument is one of the 
following: 

an expression involving operators 
an expression in parentheses 
a label constant 
an entry constant 
a function reference 
a scalar which requires arithmetic conversion 

A dummy argument is also constructed if the corresponding 
parameter has the REGISTER attribute. 

Tn all other cases the argument as it appears is passed. 
The parameter becomes identical with the passed arqument, so 
that chanqes to the parameter are also changes to the passed 

30 Chapter 2 -- Program Structure 



APPLE REFERENCE MANUAL 

11 MARCH 10 12 

argument. However, if a durnmv is created, changes to the 
parameter are not reflected back in the original argument. 

Note that no dummy argument is created for an arithmetic or 
string constant. rf an attempt is made to modify such an 
argument, an execution-time er~or will occur. 

When an entry reference is specified as an argument to a 
procedure, one of the following applies: 

1. If the name of the entry referred to in the 
argument is M, then, if the reference specifies an 
argument list of its own, it is recognized as a 
function reference; M is invoked and the value 
returned by M effectively replaces M and its 
argument list in the containing argument list. If 
the attributes of the returned value do not match 
the declared attributes of the arqument, the 
program is in ~rrorc 

2. If the entry er~nce 

list, but within an 
within parentheses, 
function ra ce w 

appears without an argument 
operational expression or 

then it is taken to be a 
11 no arquments. 

3. If the entry reference argument appears without an 
argument st and not within an operational expre­
ssion or parentheses, the entry reference itself 
is DasBed to the function or subroutine being 
invoked. fn stilch casl"'S, the entry reference is 
not en to b~ a function reference, even if it 
is the name of a function that does not require 
arguments. In this circumstance, the entry 
reference must not appear in parentheses, or it 
will be treated as case 2 above. 

Example: 

PROCEDURE; 
DECLARE B ENTRY RETURNS (FLOAT) , 

C E},TTRY (FLOAT) ; 
.. .. .. 
CAlL e(CB)}; 

END A; 

Chapter 2 -- Program structure 31 



APPLE REFERENCE "ANUAL 

In the CALL statement in this example, 
invoked and the value returnen by B is passed 
argument. 

~~_Qi_th~_EN!E1-!ttribut~ 

31 MARCH 1972 

the entry B is 
to C as an 

If an ENTRY attribute without a parameter attribute list is 
specified for an identifier, it indicates that the named 
entry noes not require any arguments. In this case, it is 
an error to supply arguments in a reference to the entry_ 
Tf an ENTRY attribute specification with a parameter attri­
bute list is supplied for an identifier, each reference to 
the identifier that implies an invocation of the associated 
procedur~ must supply an argument list whose elements are 
identical in data type to those specified for the corres­
ponding parameter. If there is disagreement, a compile time 
error message will be given. The asterisk notation may be 
used in the ENTRY attribute to specify that the bounds of 
arrays or strings are to be taken from the argument 
attributes. 

While ~Q data type conversions will be performed as a result 
of a procedure CALL or function reference, arithmetic 
conversions will be performed when required. If the scale 
or precision of an argument expression does not match the 
attributes for the referenced entry, an arithmetic conver­
sion may take place. No conversions will be performed for 
data aggregates. 

32 Chapter 2 -- Proqram structure 



11 MARCH 1912 

Information that is operated on during 
Apple ob;ect program is called 19!~. 
definite type and representation. The 
elements presents: 

APPLE REFERENCE MANUAL 

the execution of an 
Each data item has a 
discussion on data 

1. the typ:s of data available in Apple, 
2. the var10US organizations of data, and 
]. the methods by which data can be referenced. 

The types of data allowed by Apple can be categorized as 
H.Qb12-1at~ and ~.I.Qgil!t:.£.Qnt~l d~lg. Each category com­
prises both constants and variables. 

A £Qll§~n! is a data item that denotes a value that cannot 
change durinq the execution of a proqram. The attributes of 
a constant are implied by the representation of the constant 
itself. A siqned constant is an arithmetic constant pre­
ceded by one of the prefix operators + or -. Wherever the 
word "constant" appears alone, and refers to an arithmetic 
constant, it is to be assumed to refer to an unsigned 
constant. 

A ~AI!g~!~ is a name given to a single data 
a scalar variable) or a collection of data 
an array variable or a structure variable). 
of a variable are: 

1. explicitly declared, 

element (called 
elements (called 

The attributes 

2. declared by the context in which the variable 
appears, or 

3. assumed by default. 

PROBLEl1..1!Al! 

Problem data is any data that can be classified as type 
arithmetic or type string. 

Chapter 3 -- Data Elements 33 



APPLE REFERENCE MANUAt 

31 .MARCH 1972 

An arithmetic data item is defined to have a numeric value 
with attributes of scale and prec1s10n. Arithmetic data 
items are real values and are represented internally in a 
bieary format. Arithmetic constants may be expressed in 
decimal or hexadecimal but are internally represented as 
binary values. The attributes of an arithmetic data item 
are given by specifying §£Al~ (fixed or float) and E~isio~ 
(expressing the minimum number of binary or decimal digits 
to be maintained). These attributes determine the form of 
t.he internal representation of the data. 

Arithmetic data may be specified as having either fixed­
point or floating-point scale. Fixed-point data items are 
restricted to integers and have no associated scale factor. 
Floating-point data items are rational numbers consisting of 
a fractional part and an exponent part. The exponent part 
specifies the decimal or binary point location. 

The precision of arithmetic data items is either short (23 
bits of precision) or long {47 bits of precision)e The 
precision of arithmetic variables is specified throuqh the 
use of the precision (BINARY and DECINAL) attributes in the 
DECLARE statement. The general rules for the declared 
precision versus the internal precision are as follows: 

r- ----y- -, 
I Declared Precision t Resulting Precision I 
t-- , of 
f BINARY (1 to 23) J short t 
I BINARY (24 to 47) , long I 
I DECIMAL (1 to 6) I short , 
I DECHIAL (7 to 14) i long , 
L_ ~ I J 

34 Chapter 3 -- Data Elements 



31 "ARCH 1972 

Example: 

DECLARE A FIXED BTNARY(15), 
B FTXRO DECIMAL (5), 
C FIXED BINARY(31), 
o FLOAT DF.CI"AL (7), 

APPLE REFERENCE "ANUAL 

Resulting Precision 

short 
short 
lonq 
long 

Note that the number of binary or decimal digits must he 
greater than zero. If the number of diqits specified 
exceeds the limit of precision stated above, the maximum is 
assumen and a diagnostic message is produced. 

The range of values that can be represented by arithmetic 
data depends on the scale and precision of the data items: 

FIXED short 

FIXED long 

FLOAT short 

FLOAT long 

± 8,388,607 

t 140,731,488,355,321 

t 10 .. 630 

Chapter 3 -- Data Elements 35 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

~~!!hm!~ic C2D2~~nts 

The general form of arithmetic constants is as follows: 

arithmetic-constant ::= decimal-number I 
hexadecimal-number 

decimal-number ::= [sign] integer. (integer](exponentJI 
(sign][integer]. integer [exponent]1 
[sign] integer[exponent] 

integer ::= decimal-digit ••• 
exponent ::= E [sign] inteqer 
hexadecimal-number ::= "hexadecimal-digit 

Examples: 
123 
+45 

"ABC" 
123.4R+02 

.31 
-42E+3 

" ... 

The scale and preC1S1on of hexadecimal constants are implied 
by the number of hexadecimal digits represented: 

1 to 6 
7 to 8 
q to 12 

13 to 16 

FIXED 
FLOAT 
FIXED 
FLOAT 

short 
short 
long 
long 

A string is a contiguous sequence of characters or binary 
digits that can be treated as a single data item. string 
data can be classifie~ as ch~~~=2t~!!g or h!1~!!i~. 
All strings have an associated !!ftg!h attribute which is 
declared for string variables and implied for string con­
stants. The maximum length allowed for string data in the 
Apple implementation is 65,535 bits or characters. 

36 Chapter 3 -- Data Elements 



APPLE REFERENCE ftANOAL 

31 MARCH 1972 

Character-string data consists of a string of zero or more 
characters in the data character set. The string may be 
fixed or varying in length. The actual number of characters 
must be specified if it is of fixed length, and the maximu~ 
length must be specified if it is of varying length. 

Note: Until a varying-length character-string is assigned a 
value, its length is undefined. 

A comment will not be recognized within a character string, 
but will be considered to be part of the character string 
data including the comment delimiters (/* and *1). 

A simple character-string constant is zero or more charac­
ters in the data character set enclosed in single quotation 
marks. tf it is desired to represent a quotation mark, it 
must be represented as two immediately adjacent single 
quotation marks, although it is only counted as a single 
character. 

Examples: 
1$123.45' 
'JOHN JONRS' 
'ITt'S' 
I , 

The last example, which is two single quotation marks with 
no intervening blank, specifies the null character string. 
In the Apple implementation, character-string data is main­
tained internally in ASCII character format, in which each 
character occupies one byte of storage. (See Appendix 4 for 
the Apple character set.) A simple character-string con­
stant may optionally be preceded by an unsigned decimal 
integer constant in parentheses to specify repetition. If 
the constant specifying repetition is zero, the result is 
the null character string. 

F,xample: 

Chapter 3 -- Data Elements 37 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

Bit-string data consists of a string of zero or more binary 
diqits (0 and 1). The bit-strinq must be fixed in length. 

A bit-string constant contains zero or more binary digits 
enclosed in single quotation marks, followed by the letter 
B. A bit-string constant may also be written as a string 
composed of hexadecimal digits enclosed in single quotation 
marks ana folloved by the letter H. In this latter case, 
each diqit represents 4 bits. The repetition factor as 
described for character-string constants may also precede 
bit-string constants. 

Examples'! 

'11101'B 
fi • B 

• 015 BD? t H 
is exactly equivalent to 
'000000010101101111010111'B 

Program-control data is any data that can be classified as 
label, locator, interrupt, file, or entry_ 

Statement label data is used only in connection with 
statement labels. Statement label data may be constants or 
variables, and the variables may be elements of structures 
or arrays. 

A statement label constant is an nonsuDscripted identifier 
that precedes the statement with a colon separating the 
statement and the statement label. It permits references to 
be made to statements. 

39 Chapter 3 -- Data Elements 



3' MARCH 1972 

Example: ... 
ROUTINE': IF I > 5 THEN 

GO TO DONE; ... 
GO TO ROUTINE'; . . . 

DONE: RETURN; 

APPLE REFERFNCE "ANUAL 

ROUTINE' and DONE are statement-label constants. 

~!A1~ment-Label_!Ariabl~§ 

A statement-label variable is a variable that has as values 
statement-label constants. These variables can be qrouped 
into arrays, or they may be elements of structures. 

Example: 

DECLARE X LABEL VARIABLE: 
X = POSROUTINE; · .. 

POSROUTINE: ••• 
· . . 

x = NEGROUTINE; 
GO TO I; 

• • • 
N~GBOU'!'INE: ••• · . . 

The label variable X may have the value of either POSROUTINE 
or NEGFOUTINE. In the above example, GO TO I; transfers 
control to NEG ROUTINE. 

1Q.£lli~_P!!!~ 

A locator value identifies a specific generation of a based 
variable. since several generations of a based variable can 
exist simultaneously, a reference to a based variable must 
include, either explicitly or implicitly, a locator variable 
whose value defines the actual generation being referenced. 
Locator data consists of pointer variables, offset variables 
and descriptor variables. 

A .2oin!!ll: llri<?-bl~ 
variable within a 
program is active. 

iden tifies a 
proqram and 

qeneration of a based 
is only valid while the 

Chapter 3 -- Data Elements 30 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

An ~ff~~i yqr~~ble identifies a generation of a based 
variable relative to the orl.gl.n of a file and thus preserves 
its validity independent of the program. 

Neither pointer nor offset variables contain any information 
concerning the attributes of the based variable being 
referenced other than location. ~~£!:ll!.Q!: .!li\~1l1!!§, in 
addition to containing a pointer value, also contain the 
length of the based variable identified. If the based 
variable is a character or bit string, then the length is in 
terms of characters or bits respectively. If the based 
variable is a vector of arithmetic elements, then the length 
is the number of elements in the vector. 

Locator variables may have values set by the ALLOCATE, FIND, 
and LET statements or by assignment from other locator 
variables or from the ADDR, NULL r POINTER, APLEVAR, OFFSET, 
and DESCR built-in functions. In addition, descriptor 
variables may be used in arithmetic expressions. Pointer 
and offset variables may not be used as operands in any 
expression other than = and ,= comparison. 

Note: Descriptor variables have been added to the Apple 
lanquage to support systems programming and provide a 
high-level language facility for utilizing the data­
streaming capabilities of the STAR computer. 

Locator qualification is used to associate one or more 
descriptor, pointer or offset values so as to identify a 
particular generation of data. If a based variable is 
referred to without a locator qualifier r the reference is 
the same as a reference qualified by the locator variable 
declared with the based variable in the BASED attribute 
specif ica t ion. 

General format: 

locator qualifier ::= scalar-locator-expression-> 

(based-Iocator-variable->] ••• based-variable 

where "scalar-locator-expression" is an descriptor-variable, 
a pointer-variable, an offset-variable, or a function 
reference that returns a descriptor, pointer, or offset 
value. 

40 Chapter 3 -- Data Elements 



APPLE REFERENCE ~ANUAL 

31 MARCH 1c}'72 

General rules: 

1. Locator qualification is used to 
generation of a based variable 
associated reference applies. 

identify 
to which 

the 
the 

2. If an offset expression or an offset variable is 
used as a locator qualifier, its value is impli­
citly converted to a pointer value. 

3. If more than one qualifier is used, they are 
evaluated from left to riqht. 

Examples: 
A = P -> B; 
A = P -> Q -> B; 
1\ = ADD R (X) - > B; 

The first example causes assiqnment to A of the value of B 
in the qeneration pointed to by P. The second example 

·specifies that the value of P is to be used to locate the 
generation of 0 which locates the specific generaticn of B 
to be assiqned to A. In th~ third example, the generation 
of B is derived from the location of the variable x. 

Iqterr.!!£L.!211!! 

An interrupt is an action which can discontinue normal 
execution of a program. There are two types of interrupts, 
conditions and events. A £Q~di!lQ~ is raised by the 
occurrence of an error as a result of an instruction 
p.xecution and may be thouqht of as internal to a ~rogram, 
while an event is an external action that can occur on a 
peripheral device. The execution of the SIGNAL statement 
will also cause an interrupt. When an interrupt occurs, the 
associated condition is raised or the event is completed. 
~ee CONDITIONS and EVENTS in Chapter '7. 

!:il~!!Iiab!~ 

A file is a collection of data that occupies memory and, 
through the use of a MCTS file management function, may be 
stored on a peripheral storage ~evice. After a file has 
been opened it may be referenced through a file-variable. A 
file-variable may be used in the GET/PUT or ALLOCATE/FREE 
statements in order to reference a particular file. See 
Chapter 6 for a description of file handling. 

Chapter 3 -- Data Elements 41 



APPLE REFERENCE MANUAL 

31 KARCH 1972 

lntry Dat! 

Entry data has values that permit references to be made to 
entry points of a program. Entry data may be constants or 
variables. An entry constant is an identifier that appears 
in a program as an entry name. It permits references to be 
made at a fixed entry point of a procedure. An entry 
variable has entry constants as values. See "The ENTRY 
Attribute" in Chapter 5. 

42 Chapter 3 -- Data Elements 



APPLE REFERENCE MANUAL 

31 HARCH 1972 

Data may be organized as scalar items (i.e., single nata 
items) or aqgregates of data items (i.e., arrays and 
structures). 

A scalar item may be either a constant or the value of a 
scalar variable. Constants and scalar variables are called 
scalar data items. 

~la~_!~i~h~ 

A scalar variable is a single data item. Unlike a constant, 
however, a variable may take on more than one value during 
the execution of a program. The set of values that a 
variable may take on is the ~~ng~ of the variable. The 
range of a variable is always restricted to one data type 
and, if the type is arithmetic, to one scale and precision 
-- see "Arithmetic Data" in this chapter. 

Reference is made to a scalar variable by a name, which may 
be a simple name, a subscripted name, a qualified name, or a 
subscripted qualified name (see "Naming" in this chapter). 

Data Agg~g~tes 

tn Apple, all classes of variable data items except ENTRY 
and ENTITY may be grouped into arrays or structures. Rules 
for this grouping are qiven below. For the method of 
referring to an array or structure or a particular item of 
an array or structure, see "Naming" in this chapter. 

An array is an multi-dimensional, ordered collection of 
elements, all of which have identical data attributes. (If 
arithmetic, all of the elements of the array must have the 
same scale and prec1s10n. If character-string or bit­
string, all of the elements must have the same fixed length 
or the same maximum length.) The number of dimensions of an 
array, and the upper and lover bounds of each dimension, are 
specified by the use of the dimension attribute. (See "The 
Dimension Attribute" in Chapter 5.) The elements of an 
array may be structures (see "Arrays of Structures" in this 

Chapter 1 -- Data llements 43 



APPtE REFERENCE ftANUAt 

31 ftARCH 1972 

chapter). 

structuI§§ 

A structure is a hierarchical collection of scalar 
variables, arrays and structures. These need not be of the 
same data type nor have the same attributes. 

~he outermost structure is a major structure, and all 
contained structures are minor structures. 

A structure is specified by declaring the major structure 
name and following it with the names of all contained minor 
structures and base elements. Each name is preceded by a 
level number, which is an unsigned non-~ero decimal integer 
constant. A major structure is always at level one and all 
minor structures and base elements contained in a structure 
(at level ~) have a level number that is numerically greater 
than n, but they need not necessarily be at level B!1, Dor 
need they all have the same level number. 

A minor structure at level D contains all following items 
declared with level numbers greater than n up to but not 
includinq the next item with a level number less than or 
equal to D. A major structure description is terminated by 
the declaration of another item at level one, by the 
declaration of an item having no level number, or by the end 
of a DECLARE statement. 

44 Chapter 3 -- Data Elements 



APPLE REFERENCE MANUIL 

31 MARCH 1972 

Example: 

nECLARE 1 PAYROLL, 
2 NAME CHAR(8), 
? HOURS, 

4 REGULAR FIXED, 
3 OVERT!ME FIXED, 

2 JOBS, 
J NUMBER(2) FIXED, 
3 DESCRIPTION(2) FIXED, 

2 RATE FIXED; 

In the above example PAYROLL is defined as the majoE 
structure containing the scalar variables NAME and RATE 
and the structures HOURS and JOBS. The structure HOURS 
contains the scalar variables REGULAR and OVERTIME. 
Note that REGULAR and OVERTIME are at the same level 
although their level numbers differ. The structure 
JOBS contains NUMBER and DESCRIPTION which are both 
one-dimensional arrays with two scalar variables. 

!~ays_Qf ~tr~cty~~ 

An array of structures is specified by g1v1ng the dimension 
attribute to a structure, thus forminq replications of that 
structure. Each element of the array is one instance of the 
declared structure. The elements within an array of struc­
tures must be referred to by subscripted names (see NAMING 
in this Chapter). 

Example: 

D~CLARE 1 CARDIN(3), 
2 NAME CHAR(8), 
2 WAGES, 

3 NORMAL FIXED, 
3 OVERTIME fIXED; 

The name CARDIN represents an array structures of with 
bounds 1:3. Note that each of the three structures 
formed by CARDIN (3) has an element called NAME, WAGES. 
NORMAL, and WAGES.OVERTIME. Each of these elements 
must have a subscript with the name to indicate which 
structure is desired. 

Chapter 3 -- Data Elements 45 



APPLE REFERENCE !ANUAL 

31 KARCH 1972 

structures and arrays of structures are not given data 
attributes. These can be given only to scalar variables or 
arrays forming the elements of major or minor structures. 

Kajor structure names may be declared with scope and storage 
attributes. Items ~Qntai~ed -ip structures may not be 
declared with these attributes. When the same ma10r struc­
ture name is declared with the EXTERNAL attribute in more 
than one block, the !!~I~but~! of the structure members must 
be the same in each case, although the !A!§§ of the 
structure members need not be the sa.e. A reference to a 
member in one such block is effectively a reference to that 
member in all blocks in which the external name is known, 
regardless of the names of the members. 

Since only the major structure may be given a storage-class 
attribute, all items in the same structure are of the same 
storage class. The storage class of the major structure 
applies to all elements of the structure. If a structure 
has the BASED attribute, only the major structure, !21-!1! 
~lemen!§, may be allocated and freed. 

This section describes the rules for referring to a particu­
lar data item, groups of items, arrays, and structures. The 
permitted types of data names are: simple, qualified, 
subscripted, and subscripted qualified. 

A simple name is an identifier (see "Identifiers" in Chapter 
1) that refers to a scalar, an array, or a structure. 

A subscripted name is used to refer to an element of an 
array. It is a simple name that has been declared to be the 
name of an array followed by a list of subscripts. The 
subscripts are separated by commas and are enclosed in 
parentheses. A subscript is an scalar arithmetic expression 
converted to an integer before its use. The number of 
subscripts must be equal to the number of dimensions of the 

46 Chapter 3 -- Data Elements 



APPLE REFERENCE KANUAL 

31 KARCH 1912 

array, and the value of a specified subscript must fall 
within the bounds declared for that dimension of the array. 

General formats: 

subscripted-name ::= 

identifier (subscript[, subscript] ••• ) 

subscript ::= scalar-expression 

F.xamples: 

A (3) 
FIELD (B, C) 
PRODUCT(SCOPE*UNIT*VALUE, PERIOD) 
ALPHA(1, 2, 3, 4) 

QU a Ii fie d 1!ID!~.-an d AY!gl!.Q.l1L!!~~e~n£g.§ 

A simple name usually refers uniquely to a scalar variable, 
an array, or a structure. However, it is possible for a 
name to refer to more than one variable, array, or structure 
if the identically named items are themselves parts of 
different structures. In order to avoid any ambiquity in 
referring to these similarlY named items, it is necessary to 
create a unique name; this is done by forming a gyalifieg 
name. This means that the name common to more than one item 
is preceded by the name of the structure in which it is 
contained. This, in turn, can be preceded by the name of 
its containinq structure, and so on, until the qualified 
name refers uniquely to the required item. 

Thus, the qualified name is a sequence of names, separa~ed 
by periods, specified left to riqht in order of increas1ng 
level numbers. The sequence of names need not include all 
of the containing structures, but it must include sufficient 
names to resolve any ambiguity. Any of the names may be 
subscripted. 

If the sequence of names includes the names of al! the 
structures containing the member with the rightmost name, 
then that name is said to be £2mple1!!I~Y!!ified. 

If the sequence of names includes only §2!~ of the names of 
the structures containinq the member with the rightmost 
name, then that name is said to be p!~11I-g9al!!i~. 

Chapter 3 -- Data Elements 41 



APPLE BEFEBBWCE !ANUAL 

31 !ARCH 1972 

A completely or partly qualified name must have the same 
hierarchy of the structure names as the structure to vhich 
it is to reference. The qualified name, once composed, is 
itself a name. Subsequently, in this publication, vhen the 
terms scalar variable name, array name, or structure name 
are used they should also be taken to include qualified 
names. 

General format: 

qualified-name .. -.. - identifier[.identifier] ••• 

There are several rules that should be followed when using 
qualified names. (In the following examples the attributes 
have been eliminated for clarity.) These are as follows: 

1 •. The qualified name viII resolve to the innermost block 
containing the declaration vhich has the same hierarchy 
of the identifiers as the qualified name. That is, if 
the name cannot be resolved in the block of its usage, 
then the next outer block viII be checked, etc. A 
diagnostic message results if the qualified name cannot 
be resolved. 

!xample: 

DECLARE 1 A, 

BEGIN; 

2 e, 
2 D, 

3 E; 

DECLARE 1 A, 
2 B, 

3 e, 
3 E; 

A.e refers to C in the inner block. 
D.E refers to E in the outer block. 
A.B.D is in error. 

2. If there is more than one structure declaration in the 
same block which contains the same qualified name then 
on11 one of these declarations may contain the com­
pletely qualified name. 

48 Chapter 3 -- Data Elements 



31 KARCH 1972 

Example: 

DECLARE 

DECLARE 

1 A, 
2 B, 

3 C; 
1 A, 

2 D, 
3 B; 

APPLE REFERENCE ~ANUAL 

A.B refers to the first declaration 
A.D.B refers to the second declaration 

3. A reference to a structure member by means of an 
unqualified name is ambiquous and therefore in error if 
any other structure member name internal to the same 
block has the same identifier. 

The case where more than one declaration contains the 
same qualified name is illustrated in the following: 

Exam-ple: 

DECLARE 

DECLARE 

1 A, 
2 B, 

3 C; 
1 A, 

2 D, 
3 C; 

A.C is ambiguous because neither C is completely 
qualified by this reference. 

The case where a single declaration contains multiple 
occurences of the same qualified name is illustrated in 
the followinq: 

Chapter 3 -- Data Elements 49 



APPLE BEFERENCE MANUAt 

Example: 

DECLARE 1 Y, 
2 X, 

3 Z, 
3 A, 

2 I, 
3 Z, 
3 A; 

Y.z is ambiguous and in error. 
Y.Y.Z refers to the second Z. 
Y.X.Z refers to the first z. 

31 lURCH 1972 

U. If a level-1 name and a structure member name internal 
to the same block have the same identifier, then the 
unqualified use of that identifier is taken to refer to 
the level-1 name. Reference to the structure member 
can, in this case, be achieved only by means of a 
suitably qualified name. 

Example: 

DECLARE 1 A, 
2 A, 

3 Ai 

A refers to the first A. 
A.A refers to the second A. 
A.A.A refers to the third A. 

~he elements of an array contained in a structure and 
requiring name qualification for identification are referred 
to by sub§£~iE1!4 gua!i!ie~_names. A subscripted qualified 
name is a sequence of names and subscripted names separated 
by periods. The order of names is as given for any 
qualified name. The subscript list following each name 
refers to the dimensions associated vit.h the name if the 
name is declared to be the name of an array in the structure 
description. 

As lonq as the order of the subscripts remains unchanged, 
subscripts may be moved to the right or left (called 
migration of subscripts) and attached to names at a lower or 
higher level. The number of subscripts must match the 
number of dimensions of the array. 

50 Chapter 3 -- Data Elements 



APPLE REFERENCE "ANUAL 

31 MARCH 1972 

General format: 

subscripted-qualified-name ... -.... -
identifier( (subscript[, subscript] .... )] 

[ • identifier[ (subscript[, subscript 1 ••• ) ]] .... 

If any subscripts are given in a reference to a qualified 
name, all those subscripts which apply to dimensions of 
containing structures must be given. 

Example: 

A is an array of structures with the following description: 

DECLARl:': 1 A (10,12), 
2 B (5), 

3 C (7), 
3 D; 

The following subscripted qualified names illustrate the 
migration of subscripts referring to the same element, which 
is the seventh element of C contained in the fifth element 
of B contained in the tenth row and twelfth column of A: 

C1} A (10,12) .. B (5) • C (7) 
(2) A (10) .. B <12,5) .. C (7) 
(3) A (10) • B (12) .. C (5,7) 
(4) A • B <10,12,5) .. C (7) 
(5) A .. B (10,12) .. C (5,7) 
(6) A .. B (10) .. C (12,5,7) 
(7) A • B .. C (10,12,5,7) 
(8) A (10,12) .. B .. C (5,7) 
( 9 ) A ( 1 0) .. B .. C ( 1 2 , 5 , 7) 

(10) A (10,12,5,7) .. B .. C 

If structure B, but not structure A, is necessary for unique 
identification of this use of C, any of forms (4), (5), (6), 
or (1) may be used without including the A. 

If structure A, but not B, is necessary for identification 
of C, forlDs (1) , (8), (9), or (10) may be used without 
incl udinq the B. 

Chapter 3 -- Data ElelDents 51 



APPLE BEFERENCE MANUAL 

This chapter describes the two main 
manipulation: 

1. expression evaluation 
2. data conversion 

31 MARCH 1972 

areas of data 

The first section describes the logical classes of expre­
ssions and the operations available in each class. The 
second section specifies the data conversion rules to be 
used for data type conversion and arithmetic conversion. 

An expression is a representation of a value or an algorithm 
used for computing a value. Expressions are generally 
classified according to the type and form of the data values 
they represent. If an expression represents a single scalar 
value.. it is called a 2£Ala~~essi.2!l. An arll~EJ;es= 
siQB represents an array of values. 

Problem data values are represented by arith~ti~xEr~= 
§.~iQ!!..§ and ~t:r~l!g~!CQ~~§~iQI!§. Arithmetic expressions whose 
value is fixed point are known as i~~~~-!!E~~!2!s. 
Expressions representing program-control data values are 
similarly defined. Thus, a pointer ~~~essiQn is an expres­
sion that represents a pointer value, whereas a !2g~!2~ 
!!U~§.iQ'!! may represent either a pointer, descriptor, or 
offset value. 

In the syntactic descriptions used in this manual, the 
unqualified term "expression" refers to an expression of any 
type. Where the kind of expression is limited, the type of 
restriction is explicitly noted; for example, "scalar expre­
ssion" indicates that only an expression that represents a 
scalar value is permitted in the particular context. 

52 Chapter 4 -- Data Manipulation 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

F,xpressions may also be classified by the operators that 
they contain. An expression containing operators (either 
prefix or infix operators or both) is referred to as an 
o~e~iQBal_~!£res~ion. The class of an operational expres­
sion is determined by the class of operators it contains. 
The four classes of operational expressions are: 

, t 1 1 
, CLASS , , DATA TYPES I 
, of operational , OPERATORS I permitted J 
, expressions J I as operands I 
.. I f .f 
I I **, prefix + and -, , FIXED I 
I ARI THMETIC I * and /, J FLOAT , 
I I infix + and - I I 
I • I ., 
f DESCRIPTOR I J J 
I ARI'IHMETIC I infix + and - I DESCRIPTOR 1 
I I I I 
,.-------+1 • _. ---.f 
I I , FIXED, FLOAT f 
I I <, ... <,<=,=, ... -::,>=,>, ... > I CHARACTER , 
I I J DESCRIPTOR I 
I RELATION~L ~ --+t--- .f 
, I only J BIT, LABEL J 
, J = and ... = J POINTER, OFFSET , 
J I t FILE, ENTRY I 
I t I ----.f 
I J .... I BIT f 
I BIT STRIN~ I & ,Relational- I 
1 , ! I expressions I 
, I --+ t 
I J I I 
I STRING, !! , CHARACTER, BIT 1 
I I t J 
L _, --1-- , 

An expression may be: 

1. a constant 
2. a reference to a variable 
3. a function reference 
4. an expression enclosed in parentheses 
5. an expression preceded by a prefix operator 
6. two expressions connected by an infix operator 

There is no limit to the number of operators and level of 
parentheses that may be combined in a single expression. 
Generally, all of the operands contained in a single 

Chapter 4 -- Data Manipulation 53 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

expression must be of the same type (FIXED and FLOAT are 
considered to be the same type for this purpose) and all of 
the operators within the expression must be of the same 
class. No imElied_~a!~-1I£e con~~I~D can occur during the 
evaluation of an expression$ If the operands are not of 
matching data type, the necessary conversion may be expli­
citly specified by using the built-in functions for conver­
sion, for example, FIXED, FLOAT, CHAR, etc. These are 
defined in Appendix 1. 

An elementary arithmetic operation has the following general 
format: 

{ + I - 1 operand 

operand (+ I - I * I / I "'''' } operand 

The general format specifies the prefix operations of plus 
and minus and the infix operations of addition, subtraction, 
multiplication, division, and exponentiation. 

Any result of the prefix operations has the same scale and 
precision as the operand. If both operands of an infix 
operation (+, -, or '" ) are FIXED, the scale of the result 
is also fixed-point; otherwise, the operation is performed 
in floating-point and the result is FLOAT. The precision of 
all infix operations is the greater of the precisions of the 
two operands. Any necessary conversion of FIXED to FLOAT or 
short to long precision is performed before the infix 
operation is carried out. The details of arithmetic data 
conversion are described later in this chapter. 

An exception to the scale conversion 
of exponentiation. If the scale 
float and the exponent operand is a 
conversion is necessary_ The result 

54 Chapter 4 -- Data Manipulation 

rule occurs in the case 
of the first operand is 
fixed expression, no 

will hz floating-point. 



APPLE REFERENCE MANUAL 

31 MARCH 1q72 

An arithmetic expression of any complexity is composed of a 
combination of elementary arithmetic operations defined 
above. The evaluation of compound arithmetic expressions is 
performed in the following order of decreasinq operator 
precedence (unless the order is modified by parentheses): 

1. ** and prefix ± operators are performed xigh1-!o_lef! 

2. * and I operations are performed from left_!Q_righl£ 

3. Infix + and - operations are performed Ie!! tOL~igh!~ 

Thus, 
A + B ** - C I D - E 

is performed as 

(A + «B ** ( -c » I D )) - E 

Tbe infix operators, + and *, are commutative, but not 
necessarily associative, as low-order rounding errors will 
depend on the order of evaluation of an expression. Thus, 
A + B + C is not necessarily equal to A + (8 + C). 

Prefix operators can precede and be associated vith either 
of the operands of an infix operation. For example, in the 
expression A * - B, the minus sign preceding the variable B 
indicates that the value of A is to be multiplied by the 
negative value of B. 

More than one prefix operator can precede and be associated 
with a single variable. More than one positive prefix 
operator will have no cumulative effect, but two consecutive 
negative prefix operators vill have the same result as a 
single positive prefix operator. 

Descriptor expressions have the fo.llowinq form: 

descriptor-variable fixed-poiot-expreSSion] 

The result of the expression viII be a descriptor whose 
lenqth value is taken from the descriptor variable and whose 
pointer value is the fixed-point result of the specified 

Chapte-r 4 -- Data l1anipulation 55 



APPLE REFERENCE "ANUAL 

31 MARCH 1972 

operation between the descriptor used as a fixed value and 
the fixed-paint-expression. 

Reluional_Q2~fations 

Elementary relational operations have the general form: 

< 
.... < 
<= 
.::: 

operand ..,= operand 
>= 
> 
.... ) 

There are five kinds of relational comparison: 

1. !~ithmeli£ involves the comparison of signed num­
eric values, possibly obtained by the evaluation 
of expressions. If the operands differ in scale 
or precision, they are converted before the com­
parison is made (see "Arithmetic Conversion" later 
in this chapter) • 

2. Q~scriE1Q! comparisons are made by comparing the 
pointer values as fixed-point data. The length 
values are ignored. Thus, two descriptors that 
identify the same based variable but have dif­
ferent length values will compare equal. Descrip­
tors can be compared with fixed-point, descriptor, 
or pointer expressions. 

3. £~ar.sct~! involves left-to-right, character-by­
character comparisons of characters according to 
the collating sequence defined in Appendix 4. If 
the operands are of different lengths, the shorter 
string is extended to the right with blanks. Tva 
null character strings compare equal. 

4. ]it involves the left-to-right comparison of 
binary digits. If the strings are of different 
lengths, the shorter string is extended on the 
right with zeros. Only equal and not-equal com­
parisons can be made between bit-string operands. 
Two null bit strings compare equal. 

S6 Chapter 4 -- Data Manipulation 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

5. ££Qg£am=.£2nl£Ql __ Qatg involves the comparison of 
two ~ata values from one of the following data 
types: 

a. statement label 
b. pointer 
c. offset 
d. file 
e. entry 

Only the operators = and ~= may be used in this 
context and both operands must be of the same type 
as defined above. The comparison of two offset 
values is performed independently of their asso­
ciated files. For two statement labels to compare 
equal, they must refer to the same statement 
within the same environment (see "The Environment 
of a Block" in Chapter 2). 

The result of a relational operation is a true or false 
value, commonly used in the IF statement to select a 
conditional branch path. If necessary, the result of a 
relational comparison will he converted to a bit-string of 
length one; the value is '1'B if the relationship is true, 
or '0'0 if the relationship is false. 

£Q!EQ~~~ __ ~lati~~1-_~~E£g§sion§ are formed by combining 
elementary relational expressions as operands with the 
bit-strinq operators ~, & and !. See the "Example of 
Expression Evaluation" later in this chapter. 

Bit-strinq operations have the following general forms: 

~ operandi 
operand & operand 
operand ! operand 

The "not" operator can be used as a prefix operator only. 
The "and" and the "or" operators can be used as infix 
operators only. (These operators have the same function as 
in boolean algebra). 

Operands of a bit-string operation must be bit strings or 
relational expressions that have been evaluated before the 
operation is performed. If the operands of an infix 
operation are of unequal length, the shorter is extended on 
the right with zeros to the length of the longer. The 
result of a bit-string operation is a bit string equal in 

Chapter 4 -- Data Manipulation 57 



APPLE FEFERENCE MANUAL 

31 MARCH 1972 

length to the length of the operands. The operations are 
performed from left to right on a bit-by-bit basis starting 
with the left-most bit of each string. As a result of the 
operations, each bit position has the value defined in the 
following table: 

,. f i , t 

I A B I -.A I -.B 1 A & B 1 A ! B I 

• I I +_. I • , 1 1 I 0 I 0 I 1 , 1 1 
I 1 0 1 0 , 1 I 0 1 1 I 
1 0 1 , 1 I 0 • 0 t 1 I 
I 0 0 I 1 I 1 , 0 I 0 I 
L_ a L __ L 

J 

More than one bit-string operation can be combined in a 
sinqle expression that yields a bit-string value. There are 
no varyinq-Iength bit strings. 

~!rin~QB~rat!Ons 

string operations have the following general form: 

operand I! operand 

The concatenation operator can be used as an infix operator 
between two character string operands or between two bit­
string operands. It signifies that the operands are to be 
;oined in such a way that the last character or bit of the 
first operand will immediately precede the first character 
or bit of the second operand. The length of the result is 
always the sum of the lengths of the operands. If either of 
the operands of the concatenation operator is a character 
string with the VARYING attribute, the result will also be a 
varying string. When varying strings are concatenated, the 
intermediate string created has a length equal to the sum of 
the maximum lengths. If the maximum lengths are known at 
compile time and their sum exceeds 65535, then a truncated 
intermediate string of length 65535 will be created and a 
compile-time diagnostic message produced. If the maximum 
lenqth of either operand is not known at compile time and 
their sum exceeds 65535, a truncated intermediate string of 
length 05535 will be created but there will be no diagnostic 
message. 

58 Chapter 4 -- Data Manipulation 



APPLE REFERENCE ~ANUAL 

31 MARCH 1972 

An operational expression may contain arbitrarily many 
different combinations of operands and operators provided 
that no implicit data type conversions are required of any 
operands or intermediate results. Generally, all of the 
operands will be of the same data type and the operators 
will belong to the same class of operators (this classifica­
tion is shown in the table in the section "Expressions", 
earlier in this chapter). There are two exceptions to this 
rule: 

1. Bit-string concatenation may be used with the 
logical bit-string operations, e.g. 

BITA !! BITB & BITC 

2. Compound relational expressions may contain rela­
tions that compare different data types, e.g. 

IF (FIXED = ~) & (CH~R4 = 'THIS') THEN ••• 

Each operation within the expression is evaluated according 
to the rules for that kind of operation. However, the order 
in which the sub-expressions are evaluated depends upon the 
priority of the operators specified in the expression. 

The following table lists the seven levels of priority of 
operators in descendinq order. Each line lists the opera­
tors of the same priority level. 

Priority J Operators I Order of evaluation 
level I I within this level 

. -f t 
I f 

Highest 7 , ,,**,prefix+,prefix- I Right-to-left 
I +--

6 J *,/ , 
'5 f infix+,infix- I 
q I ! ! I Left-to-right 
3 , <,-.<, <=,-.=, =, >=,-.>,> J 
2 I 6- I 

Lowest 1 I , , I 

Chapter q -- Data Manipulation 59 



APPLE BEFERENCE MANUAL 

31 MARCB 1972 

Operations within an expression are performed in the order 
of decreasing priori-ty. For example, in the expression 
A+B**I, the exponentiation is performed before addition. 

!l~-2!~!.!~~ 

The order of evaluation of the sub-expressions of an 
expression can be changed by the use of parentheses. If a 
sub-expression is enclosed in parentheses, it indicates that 
the sub-expression is to be treated as a single value in 
relation to its adjoining operators. For example, in the 
expression: 

(A + B**3) I (C * (0 - E)) 

A will be ad~ed to B**3, E is subtracted from D before 
multiplyinq by C, and then the first of these results will 
be divided by the second result. Thus, parentheses modify 
the normal rules of priority. 

The Apple implementation may evaluate subscripts, function 
references, and locator qualifiers in any order subject to 
the constraint that an operand viII be fully evaluated 
before its value is used in an operation. 

~mple of Expre~§ion Eval~ation 

The following example of a compound relational expression 
illustrates how many operators and data types may appear in 
a single expression: 

L1: IF A ** -B > C + D / COS (E) 

! ~(BIT4 !1 BITX) = (BITX & "PH) 

LABEL_VARBL ,= L1 

& CHARI = CHAR3!! SUBSTR(CHAR5, 1+2, L/3) 

THEN DO; ••• 

The expression contains four elementary relational expre­
ssions (shown on separate lines for clarity) whose operands 
are themselves expressions. The first relational operation 
compares two arithmetic expressions, the second one compares 
two bit-strings, the next one tests a label variable and a 
label constant for inequality, and the final one compares a 

60 Chapter 4 -- Data Manipulation 



APPLE REFERENCE "ANOAL 

31 "ARCH 1972 

character string with a character string expression. The 
function references are evaluated before their values can be 
used as an operand. The elementary relations within a 
compound relational expression may be evaluated in any 
order. The following list of steps describes one possible 
order of evaluation for this expression: 

1. In the expression A ** -B, the minus sign is a 
prefix operator and thus has the same precedence 
as **, therefore the operations are evaluated in 
right-to-left order. The result follows the norm­
al algebraic convention of raising A to the power 
-B. 

2. The second operand of the first relation, 
C + D / COS (E) 

is evaluated by computing the value of the cosine 
of E, dividing 0 by this value and then adding the 
result to C. 

3. The result of step 1 is then compared to the 
result of step 2. If the first value is arithmet­
ically greater than the second one, the relation 
is true and control will transfer to the DO 
statement of the THEN clause since the entire 
compound relational expression is true. Other­
wise, if the value of the first relational opera­
tion is false, evaluation continues with the next 
step. 

4. The value of ~ (BIT4 !! EITX) is formed by 
concatenating the bit-strings BIT4 and BITX and 
then complementing the result. 

5. The expression (BITI & "PH) is evaluated by 
performing the & operation between the bit string 
BITX and the constant quantity "PH, with the 
shorter string extended on the right with zeros. 
Note that the parentheses are needed here since 
the relational = operator has a higher priority 
than the S operator. 

6. The = comparison of the two bit-string results is 
made after extending the shorter string with 
zeros. If the relation is true, control will be 
transferred to the THEN clause for the same reason 
as in step 3. If this relational operation gives 
the value false, evaluation continues. 

7. The third relational operation compares the value 

Chapter 4 -- Data ftanipulation 61 



31 MARCH 1912 

of the label variable LAB~L VARDL with the label 
constant L1. This comparison-involves checks of 
whether the tvo label values refer to the same 
statement and whether the environment indicator in 
the label variable refers to the current environ­
ment. If both these comp~risons are true then the 
~= relation is false and control will branch 
aro~nd the THEN clause since the entire compound 
relation is then false. Otherwise, the two label 
values are unequal and \he relation holds true and 
evaluation continues. 

8. Expressions within an argument list are evaluated 
before the corresponding function reference can be 
made; therefore, in the function reference 

SOBSTR(CHAR5, 1+2, t/3) 
1+2 and L/3 are computed before performing the 
substring function. 

9. The substring extracted from ~HAR5 by the SUBSTR 
function is concatenated to the right-hand end of 
the character-string, CRARl. 

10. The resultinq character-string is compared for 
equality with the character-string GHIRX after the 
shorter string has been extended with blanks. If 
the relation is true, the THEN clause is executed. 
Otherwise, control is transferred around the do­
group of the THEN clause. 

As the exa.p~e was written above, the THEN clause will 
be executed if any of the three conditions are 
satisfied: 

1. the first relation is true. 
2. the first relation is false but the second 

relation is true. 
3. both the first 4nd second relations are false 

but both the third and fourth relations are 
true. 

62 Chapter 4 -- Data Manipulation 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

I sinqle array variable or an expression that includes at 
least one array operand is called an !£~y eXErg§sion. 
Array expressions may also include operators (both prefix 
and infix), scalar variables and constants. 

Evaluation of an array expression yields an array result. 
All operations performed on arrays are performed on an 
element-by-element basis, in row-major ord~r. Therefore, 
all arrays referred to in an array expr~ssion must be of 
identical bounds. Since the operations are performed on a 
strict element-by-element basis e array operations do not 
always produce the same result as the same operation in 
conventional matrix algebra. 

Array expressions can be used only on the right-hand side of 
an assignment statement or as arguments. An array expres­
sion cannot appear in the relation of an IF statement. In 
this context, only an element expression can be valid since 
the IF statement tests a single true or false result. 

~he result of an infix 0 ion between an array and a 
scalar element is an array w tb bounds identical to the 
oriqinal array, each elemeLt of which is the result of the 
operation beinq performed upon the corresponding element of 
the original array and the single element. For example: 

If A is the array 1-
10 ~] f S 

~12 11 

then A*3 is the array PS 30 2:] 36 33 

The element of an operation. between an element and an,array 
can be an element of the same array_ In this case, the 
value used for the element throughout the operation is the 
value of the element before the start of the operation. For 
example, the expression A*A (1, 3)1 would give the same result 
in the case of the above array A, since the original value 
of 1(1, 3) vas 3. 

Chapter 4 -- Data Manipulation 63 



APPLE REFERENCE ~ANUAL 

31 MARCH 1912 

Qeerati9,ns bet,!ee.n-!ll:!!I§ 

If two arrays are connected by an infix operator, the two 
arrays must have identical bounds. The result is an array 
with bounds identical to those of the original arrays; the 
operation is performed upon the corresponding elements of 
the two arrays. 

Note that the arrays must have identic!!l-Rounds~ They must 
have the same number of dimensions; corresponding dimensions 
must have identical lower and upper bounds. For example, 
the bounds of an array declared X(10, 6) are not identical 
to the bounds of an array declared t(2:11, 3:8), although 
the extents are the same for corresponding dimensions and 
the number of elements is the same. 

Example of an array infix expression: 

If A is the array 2 4 3 
6 1 7 .. 8 2 

and if B is the array 5 
3 
3 

then A*8 is the array fr~ 20 21 
3 28 

24 24 2 

64 Chapter 4 -- Data Manipulation 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

DATA.CCNVE~SIO!! 

This section is concerned primarily with the concepts of 
data conversions, when they occur, and their results. 
Implicit data conversion can occur under the following 
circumstances: 

1. Type conversion from one data type to another data 
type may only occur across the assignment 
operator. 

2. Arithmetic conversions of precision or scale of 
arithmetic values may occur within an expression 
or across the assignment operator. 

Data conversion can also occur when explicitly requested 
through the use of a conversion built-in function. 

The targe* of a conversion is the 
converted value is assigned. In the 
assignment, such as A = B;, in which 
place, the variable to the left of the 
(in this case, A) is the target. 

field to 
case of 

conversion 
assignment 

which the 
a direct 
must take 
operator 

A conversion always involves a source data item and a target 
data item, that is, the original representation of the value 
and the converted representation of the value. All of the 
attributes of both the source data item and the target data 
item are known, or assumed, at compile time. 

ARITHK!lli_CONVmlill! 

Arithmetic conversion consists of a change of scale or 
precision and may occur under two conditions: 

1. across an assignment operator 

2. automatically in an arithmetic or 
expression. 

relational 

Across the assignment operator, all arithmetic data conver­
sions are possible, that is, the scale may change between 
FIXED and FLOAT or vice versa and the precision may change 
between long and short or vice versa. When the result of a 
conversion from FLOAT to FIXED exceeds the range of values 
that can be represented by FIXED data, the result is 
undefined. 

Chapter 4 -- Data Manipulation 65 



APPLE REFERENCE !ANUAL 

When the conversion takes 
expression, the conversion is 
to FLOAT and short to long. 
shown in the following table: 

31 ARCH 1972 

place in the evaluation of an 
in one direction, i.e.. FIXED 

The results of conversion are 

SOURCE 

" 1 , f -, 
tTARGET,FIXED SHORTI FIXED LONG IFLOAT SHORTIFLOAT LONG, 
t-- t I , t f 
1 t I truncation • truncation J truncation, 
,FIXED I no I on , on I on I 
,SHORTt change i most t least J least , 
I J ,significant I significantlsignificantt 
1--- I , ii' 
'I I t truncation , truncationl 
,FIXED I DO loss of I no J on I on , 
I LONG J significancel change I least I least I 
'I , , significantJsignificantl 
f-- ··f . f t , , 
I I I truncation , I truncation, 
,FLOAT I no loss of , on I no • on I 
,SHORTlsignificancel least I change 'least I 
t, I significantl ,significantl 
I-- f , I i- , 
,FLOAT I no loss of I no loss of I no loss of t no I 
I tONG Isignificancelsignificance,significancel change I 
I $ 

The following rules define the attributes of the results of 
the arithmetic operations: 

1. Scal~: Prefix operations yield the same scale as 
the operand. Infix +. -, and * operators produce a 
fIXED result if both operands are FIXED. The scale 
of all other infix operations is FLOAT. 

2. Pr~~is\on: The resulting precision of any arith­
metic operation is the largest precision of the 
operands. 

66 Chapter 4 -- Data Manipulation 



APPLE REFERENCE "ANUAL 

31 MARCH 1972 

Some special cases of the exponentiation operation are 
defined as follows for the expression A**B: 

1 • If A = 0 and 
2. If A = 0 and 
3. if A = 0 and 
4. If A < 0 and 

tioD results. 

TY£~~Q!!ER~ION 

B 
B 
B 
B 

> 0, the result is o. 
< 0, the ERROR condition is raised. 
= 0, the result is 1. 
is not fixed-point, the ERROR condi-

Tvpe conversion is the process of changing the attributes of 
a data item (e.q., character string to bit string, ENTRY to 
CHARACTER) from one data type to another. This process is 
accomplished through the use of the assignment operation and 
the built-in functions. The operand on the left-side of the 
assignment operation is considered to be the target and the 
expression of the right-side as the source. The attributes 
of the target are determined from the declaration of the 
target variable. 

Chapter 4 -- Data Manipulation 67 



APPLE REFERENCE MANUAL 

31 "ARCH 1972 

The following table defines all the permitted type conver­
sions in Apple. Where a conversion is permitted r a number 
is shown referring to one of the notes following this table. 
The "=" symbol indicates that the source and target data 
types are equivalent and no type conversion is necessary. 

SOURCE DATA TYPE 

r- t I I I I -""T f , 

)TARGET IArith-ICharac-1 Bit ILabellLocatorfPilelEntry) 
I DATA I metic, ter I I , I I 1 
,TYPE, Istring ,stringl 1 • I I 
.. , I I I I I I ., 
1 Arith- I I I I , I' I 
Imetic t 1 , 2 I 4 I I J J 1 
I .. I I , I --+ ·f of 
,Charac-I I , I J I I I 
, ter 1 3 1 = I 3 I I I 3 I 3 I 
I str ing 1 It' I I I I 
.. f If' f I I of 
1 Bit I I I , I lIt 
Istring I 5 I I = It' J I 
.. - I - '--+---1 • I 'f - of 
I La belli I I = f I J I 
J-- I I -f- I , I. .. 
1 Loca tor J 12 I I I I 6 - 111 t I 
~ • I I t I -+ • -f 
,File J I I I t I = t f 
I- • I I I I I I .. 
I Entry, ,13, I I I J = I 

I. 
.... L ___ J 

See the previous section in this chapter. 

The conversion from character-string data items to arithmet­
ic data items is accomplished by means of the built-in 
functions PIXED and FLOAT (See Appendix 1) or through the 
use of the GET statement with the STRING option. This 
conversion is not permitted across the assignment operato.r. 

68 Chapter 4 -- Data Manipulation 



APPLE REFERENCE AANUAL 

31 MARCH 1972 

The conversion of arithmetic, bit-string, file, or entry 
data items to a character string value may be accomplished 
by the CHAR built-in function. This conversion is not 
permitted across the assignment operator. The conversion of 
bit strings produces the character 0 for every 0 bit and the 
character 1 for every 1 hit to form a character string of 
the same length as the source bit string. Arithmetic values 
are converted to decimal arithmetic constants with possible 
leading minus signs. File variables are converted to the 
names of the corresponding files. Entry variables are 
converted to the names of the corresponding entry points. 

This conversion may occur across the assignment operator or 
when explicitly specified by the FIXED or FLOAT built-in 
functions. If the source bit-string is less than 48 bits 
long, it is interpreted as an unsigned binary integer with a 
precision equal to the length of the bit-string; the result 
of this conversion is a positive fixed value that may 
undergo further arithmetic conversion if required by the 
target data type. If the length of the source bit-string is 
longer than 47 bits, a diagnostic message is printed 
indicating an illegal conversion. The results of bit-string 
to arithmetic conversion are undefined if the length of the 
hit-string is unknown at compile time (e.g., if the length 
has been specified by the REFER option or as BIT(*) for a 
parameter). 

This conversion may occur across the assignment operator. 
The arithmetic data item is converted, if necessary, to 
PIXED scale long prec1s1on as defined under Arithmetic 
Conversions. This is treated as a bit-string of length 64 
and assigned to the target bit-string in accordance with the 
normal rules for bit-string assignment. 

An offset variable is converted to a pointer value across 
the assignment operator or by the use of the POINTER 

Chapter 4 -- Data Manipulation 69 



APPLE REFERENCE MANUAL 

built-in function. The relative offset 
with the associated file origin to 
pointer value. 

31 MARCH 1972 

value is combined 
produce an absolute 

A pointer value is converted to an offset value across the 
assignment operator or by the use o.f the OFFSET built-in 
function. The resulting offset value represents the rela­
tive difference between the actual pointer value and the 
associated file origin. The result is undefined if the 
pointer does not identify a generation of data in the file 
specified in the declaration of the offset. 

This conversion occurs across the assignment operator. The 
pointer value is extracted from the descriptor data itea. 
The length value of the descriptor is ignored. 

When conversion occurs across the assiqnment operator, the 
source pointer value is interpreted as a descriptor value 
that indicates a length of zero. A length value may be 
included by using the DESCR built-in function (see Appendix 
1) • 

An offset variable is converted to a descriptor value across 
the assignment operator. The relative offset value is 
combined with the associated file origin to form a descrip­
tor value that indicates a length of zero. 

A descriptor variable is converted to an offset value across 
the assignment operator. The resulting offset value is the 
relative difference between the pointer value in the descri-

70 Chapter 4 -- Data Manipulation 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

ptor an~ the associated file or1g1n. The result is unde­
fined if the descriptor does not identify a generation of 
data in the file specified in the declaration of the offset. 

Any attempt to assiqn or convert an arithmetic value to a 
pointer or offset variable results in a diagnostic message 
indicatinq illegal conversion. However, the descriptor 
variable has dual attributes (both arithmetic and locator 
data typeR) an~ can be assigned arithmetic values with no 
conversion required with the exception of arithmetic conver­
sion to long precision. 

Conversion of a character string value to an entry value is 
accomplished through the ENTRY built-in function (see Appen­
dix 1). The source character-string value must be a 
legitimate name of an external procedure that is known to 
the execution environment. If the procedure can be located, 
the address of its entry point is returned by the ENTRY 
function as the entry value. 

Chapter 4 -- Data Manipulation 71 



APPLE REFERENCE MANUAL 

31 !ARCH 1972 

INTBODYCTIO! 

An identifier appearing in an Apple program may refer to ODe 
of many classes of objects. For, example, it may represent 
a variable referring to a floating-point number; it may 
refer to a file; it may be a variable referring to a pointer 
or offset: etc. 

The recognition of an identifier as a particular name is 
established through the declaration of the name. The 
declaration provides a means for associating properties with 
a name. These properties and the scope of the name itself 
together make up the ~ata attripyts§ of an identifier. 

When an identifier is used in a given context in a program, 
attributes must be known in order to assign a unique meaning 
to the occurrence of the identifier. For example, if an 
identifier is used to represent an arithmetic variable, the 
scale, precision, and storage class must be known. Examples 
of attributes are: 

CRARACTER(50) -- Association of this attribute with an 
identifier defines the identifier as representinq 
a variable referring to a string of 50 characters. 

FLOAT -- Association of this attribute with an identi­
fier defines the identifier as representing a 
variable referring to arithmetic data. 

EXTERNAL -- Association of this attribute with an 
identifier defines the identifier as a name with a 
global scope. 

DECLARAT!Q~ 

A qiven identifier is established as a name which holds 
throughout a certain scope in the program (see "Scope of 
Declarations" in this chapter) and a set of attributes may 
be associated with the name by means of a g§£i!£!ti2!. 

If a declaration is made in a block, then the name is said 
to be internal to that block and contained blocks unless 
redeclared. However, a given identifier may be established 

72 Chapter 5 -- Data Description 



APPLE REFERFNCE MANUAL 

in different parts of a program as referring to separate 
objects. For example, an identifier may represent an 
arithmetic variable in one part of a program and a entry 
constant in another part. These two parts cannot overlap. 
Each separate use of the identifier is established by means 
of a se~arate DECLARE statement. The rules of scope 
distinguish between references to different uses of the 
identifier. 

Explicit neclarations are made through the use of the 
DECLARE statement (see Chapter 8), label prefixes and 
specification in a parameter list. By this means, an 
identifier can be established as a name and can be given a 
certain set of attributes. 

Only one DECLARE statement can be used to establish an 
internal name. However, in the case of a parameter, a 
complementary explicit declaration is required. The 
appearance of the identifier in the parameter list specifies 
that the identifier has the parameter attribute. This must 
be combined with an explicit declaration in a DECLARE 
statement to provide other data attributes. These multiple 
declarations of the same name must be internal to the same 
block. This is known as a £omp!~~~nta£I __ ~! of 
declarations. 

Two or more declarations of the same identifier, internal to 
the same block, constitute a mu!!iE!g __ de£!~atioQ of that 
identifier only if they have identical qualification 
(including the case of two or more declarations of an 
identifier at level 1, i.e., scalars or major structures). 
Multiple declarations are in error. 

Example: 

DECLARE 1 A, 
2 B, 
2 s, 
2 C, 

3 D, 
2 D; 

B has a multiple declaration. 

Chapter 5 -- Data Description 73 



APPLE ~EFERENCE "ANUAL 

31 !ARCH 1972 

l~b~l_~refixe§ 

The use of an identifier as a label prefix to a PROCEDURE or 
ENTRY statement causes an explicit declaration of that 
identifier as a name with the following attributes: 

ENTRY with no returns attributes 

RXTEBHAL if the entry point belongs to an external 
procedure 

INTERNAL if the entry point belongs to an internal 
procedure 

If the PROCEDURE or ENTRY statement applies to the entry 
point of an internal procedure, the declaration of the 
identifier occurs in the block that immediately contains the 
internal procedure. If the entry point belongs to an 
~xternal procedure, the declaration occurs in an imaginary 
block of which the sole contents are the external procedure 
concerned and the set of declarations generated for its 
entry points. 

A label acting as a prefix to any other statement is an 
explicit declaration of the identifier as a statement label 
constant. The declaration occurs within the block contain­
ing the prefix. 

Paramet~ 

An identifier that appears in a parameter list of 
or PROCEDURE statement is explicitly declared as a 
the attribute "parameter". Further attributes 
supplied by the programmer in a DECLARE statement. 

an ENTRY 
name with 

must be 

The syntax of Apple allows the contextual declaration of 
built-in functions. such contextual declarations will not, 
however, override any explicit declaration of the same 
identifier whose scope includes the block containing a 
statement that might otherwise cause contextual declaration. 

74 Chapter 5 -- Data Description 



APPLE REFERENCE "!NUlL 

31 "ARCH 1972 

An undeclared identifier is contextuallY declared with the 
attribute BUILTIN if it appears in either of the contexts: 

a. It appears anywhere that it is legal 
function or pseudo-variable to appear 
followed by an argument list. 

for 
and 

b. It follows the keyword CALL in a CALL statement. 

a 
is 

A contextual declaration is treated as if it had been made 
in the external procedure, even if the reference is made in 
an internal block. The scope of a contextually declared 
name is the entire external procedure, except for any 
internal blocks in which the same identifier is explicitly 
declared. Explicit declarations haye priority over contex­
tual declarations. 

When a declaration of an identifier is made in a block, 
there is a certain veIl-defined region of the program (see 
"Block structure" in Chapter 2) oyer which the declaration 
is applicable. This region is called the §£2P!! .. -21 th! 
declar~tio!!. 

The scope of a declaration of an identifier is defined as 
that block B to which the declaration is internal, but 
excluding from the block B all contained blocks to wbich 
another declaration of the same identifier is internal. 
Block B may be the imaginary block that is considered to 
contain the declaration of external entry constants, as 
discussed under "Label Prefixes" in this chapter. 

A name is said to be ~~ only within its scope. This 
definition suggests a basic rule on the use of names: 

Al!_~22~~rances Of-An_ig~ntifier_!~~~e i!!ende~ 
!2-I~~I~~!!!-~ven Q~me in ~ __ R;Qqljm mu~t li~ 
x!!hin-!h~ sco~Q!_tha! name~ 

The above rule has many implications. One of the most 
important is the limitation of transfer of control by the 
statement GO TO A; where A is a statement label constant. 

The statement GO TO A;, internal to a block B, can cause a 
transfer of control to another statement internal to block B 
or to a statement in a block containing B, and to no other 
statement. In particular, it cannot transfer control to any 
point within a block contained in B. 

Chapter 5 -- Data Description 75 



APPLE REFEREBCE !ANUAL 

31 !ARCH 1972 

In general, distinct declarations of the same identifier 
imply distinct names with distinct non-overlapping scopes. 
It is possible, however, to establish the same name for 
distinct declarations of the same identifier by means of the 
EXTERBAL attribute. The EXTERNAL attribute is defined as 
follows: 

A declaration of an identifier that specifies the 
identifier as EXTERNAL is called an ~!erna! 
declaration for the identifier. All external 
deciaratlons-~t~a;e-identIfier in a program 
will be linked and considered as establishing the 
same name. The scope of this name will be the 
union of the scopes of all the external declara­
tions for this identifier. 

In all of the external declarations for the same identifier, 
the attributes declared must agree since all the declara­
tions involve a single name and refer to the same object. 

The EXTERNAL attribute can be used to communicate between 
different external procedures or to obtain non-continuous 
scopes for a name within an external procedure. 

An ~~!~1- na~~ is a name that has the scope attribute 
EXTERNAL. If a name is not external, it is said to be an 
int~!-!~~ and has the scope attribute INTERNAL. 

The following examples illustrate scope of declarations. 
The numbers on the left are for reference only and are not 
part of the procedure. 

76 Chapter 5 -- Data Description 



APPLE REPERENCE "ANUAL 

31 MARCH 1972 

Example 1. 

1. A: PROCEDURE; 
2. DECLARE (X, Z) FLOAT; ... 
3. B: PROCEDTJRE(Y) ; 
4. DECLARE Y BIT (6) ; 
s. C: BEGIN; 
6. DECLARE (A, X) "'FIXED; ... 
7. Y: RETURN; 

END C; 
BND B; 

8. D: PROCEDURE; 
9. DECLARE X CHARACTER (20) 

EXTERNAL; 

END D* • 

END A; 

Since entry names of external procedures have the attribute 
EXTERNAL, the scope of the entry name A and of the 
character string X declared in line 9 above may include 
parts of other external procedures of the program. The 
following table gives an explanation of the scope and use 
of each name: 

,- , , , , 
I , J , , 
ILineJNamef Uses I Scope (by block name) I 
I-- I , f -.f 
J 1 , A I external entry name I all of A except C I 
I 2 , X I floa ti ng-point variable I all of A except C & D , 
I 2 I z I floating-point variable! all of A J 
I 3 I B I internal entry name J all of A I 
t 4 I y I bit string 1 all of B except C I 
I s I C I statement label J all of B I 
J 6 I A I fixed-point variable I all of C I 
I 6 I X f fixed-point variable I all of C , 
J 7 I y I statement label I all of C I 
1 8 I D , internal entry name I all of A I 
I 9 I X I character string I all of 0 I 

L --1.- • .I 

Chapter 5 -- Data Description 77 



APPLE REFERENCE "ANUAL 

Example 2. 

31 "ARCH 1912 

A: PROCEDURE; 
1. DECLARE X EXTERNAL FLOAT; 

• • • 
B: PROCEDURE; 

2. DECLARE I fIXED; 
••• 

c: BEGIN; 
3. DECLARE X EXTERNAL FLOAT; 

• • • 
END C; 

END B; 
END A; 

D: PROCEDURE; 
4. DECLARE X FIlED; 

••• 
E: PROCEDURE; 

S. DECLARE I EXTERNAL FLOAT; 
••• 

END E; 
END D; 

In example 2, there are five separate declarations 
for the id~ntifier x. Declaration 2 declares X as 
a fixed-point variable name; its scope is all of 
block B except block C. Declaration 4 declares I 
as another fixed-point variable name, distinct 
from that of declaration 2; its scope is all of 
block D except block E. 

Declarations 1, 3, and 5 all establish X as a 
single external proqram. Declarations 2 and 4 
establish X as a FIXED scalar in blocks Band D. 

78 Chapter 5 -- Data Description 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

Some attributes are given to identifiers by explicit and 
contextual declarations. Generally these do not constitute 
the full set of attributes and the remaining attributes are 
deduced according to the following set of default rules: 

1. In the absence of contradictory specificiation, 
the followinq attrihutes may be deduced from those 
already specified: 

r- , -----------------, 
I J I 
I Specified I Defaults I 
I I I 
~~---------------+----------------------- ,-------~ 
I AUTOMATIC ,INTERNAL I 
lBIT IVARIABLE I 
,BUILTIN ICONSTANT, INTERNAt I 
IBASED IINTERNAL I 
I CHARACTER Ifixed-length , 
,CONDITION ICONSTANT, INTERNAL I 
I CONSTANT ISTATIC, INTERN~L I 
,DESCRIPTOR IVARIABLE I 
,ENTITY IINTERNAL I 
,ENTRY IEXTERNAL. CONSTANT I 
IEVENT IINTERNAL, CONSTANT I 
IEXTERNAL ,STATIC, VARIABLR I 
,FILE IINTERNAL I 
tFILE SET IINTERNAL I 
IFIXED IBINARY(47}g VAR!~8LE , 
I FLOAT IDECIMAL(1U), VAF.IABLF. , 
IINITIAL ,VARIABLE I 
(INTEFNAL lADTOMATtc I 
,LABEL IVARIABLE I 
I OFFSET IVARIABLE f 
I POINTER IVARIABLE I 
ISET IINT~RNAL I 
,REGISTER IINTERNAL I 
I STATIC ,INTERNAL I 
IVARIABLE IINTERNAL I IL _________________ 'L-. ___________________________________________ ~ 

Chapter 5 -- Data Description 79 



APPLE REPERENCE !'NUAL 

31 lURCH 1972 

2. Por all identifiers that are scalars, elements of 
a structure, or arrays of non-structured elements, 
one of the following attributes must be specified 
in a DECLARE statement: 

BIT (lenqth-specification) 
BUILTIN 
CHARACTER (length-specification) 
CONDITION 
DESCRIPTOR 
ENTITY 
ENTRY 
-eVENT 
FILE 
FILE_SET 
FIXED 
FLOAT 
LABEL 
OFFSET 
POINTER 
SET 

Followinq is a detailed description of the attributes that 
can appear in a DECLARE statement. Alternative attributes 
are discussed together. 

80 Chapter 5 -- Data Description 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

The storage class attributes are used to specify the type of 
storage allocation to be used for level one data variables. 

AUTOMATIC specifies that storage is to be allocated upon 
each entry to the block to which the storage declaration is 
internal. The storage is released upon exit from the block. 
A data value may be represented by an automatic variable 
only as long as the block to which that variable is internal 
remains active. The value is lost upon exit from the block. 

STATIC specifies that storage is to be allocated when the 
procedure containing the declaration is first invoked and is 
not released until program execution has been completed. 

REGISTER specifies that storage is to be allocated within 
the STAR hardware registers whenever the declaring block is 
activated in the same manner that automatic variables are 
allocated. The storage is released and the values are lost 
upon exit from the block. This storage class is the most 
efficient from the point of view of access; however, it has 
the most restrictions. 

BASED specifies that full control of allocation will be 
maintained by the programmer through the use of the ALLOCATE 
and FREE statements. A variable with the BASED attribute is 
allocated storage only upon the execution of an ALLOCATE 
statement specifying that variable. This allocation remains 
even after termination of the block in which it was 
allocated. The storage will remain allocated for that 
variable until the execution of a FREE statement which 
specifies that variable. All current allocations of based 
variables are available at any time. Unique reference to a 
particular allocation is provided by a locator value quali­
fying the based reference. A based variable can also be 
used to reference data of any storage class by associating 
the based variable name with a locator qualifier that 
identifies that data. Based storage is the most powerful of 
the Apple storage classes, but it must be used carefully. 
Many of the safeguards against error that are provided for 
other storage classes cannot be provided for based. 

Chapter 5 -- Data Description 81 



APPLE REFERENCE !ANUAL 

31 MARCH 1972 

General format: 

storage-class-at~ribute .. -.. -

General rules: 

STATIC I AUTOMATIC 
REGISTER ( (register-specification) ] 
BASED [ (locator-variable) ] 

1. Automatic, register and based variables can have 
internal scope only. Static variables may have 
either internal or external scope. 

2. Storage class attributes cannot be specified for 
conditions, entities, entries, built-in functions, 
events, or members of structures. 

3. The storage class attributes STATIC, AUTOMATIC and 
BASED cannot be specified for parameters. 

4. Variables declared with adjustable array bounds or 
string lengths may only have the BASED storage 
class attribute. 

5. For a structure variable, a storage class attri­
bute can be given only for the major structure 
name. The attribute then applies to all elements 
of the structure or to the entire array of 
structures. Storage is always allocated for a 
complete maior structure. The contained items may 
not be independently allocated or freed. 

6. If, during the evaluation of an expression, a 
based variable is allocated or freed, the result 
of the expression is undefined if the variable is 
used elsewhere in the statement. 

7. The following rules govern the use of based 
variables: 

a. The locator variable named in the BASED 
attribute must be an unsubscripted sca­
lar locator variable. This restriction 
does not apply to explicit locator qua­
lifiers, which lIa, be general locator 
ex pressions. 

82 Chapter 5 -- Data Description 



31 MARCH 1972 

APPLE REFERENCE MANUAL 

b. If no locator variable is named in the 
BASED attribute, any reference to the 
based variable must have an explicit 
qualifier. This does not apply to a 
based variable that is the object of a 
REFER option or that is to be allocated 
through the use of an ALLOCATE 
statement. 

c. A reference to a based variable without 
an explicit locator qualifier is impli­
citly qualified by the locator variable 
named in the BASED attribute specifica­
tion in the DECLARE statement for the 
based variable. Identifiers in this 
implicit qualification are those known 
in the declaring block. 

Example: 

In the 
ment B 

where 
block, 
block. 

DECLARE P POIN~ER, 
B BASED(P); 

BEGIN; 
DECLARE P POINTER; ... 

L: B:: I; 

statement labelled L, the assign­
= X; has the same effect as: 

P->B = X; 
P is the name known in the outer 
not the one declared in the begin 

For the results of a reference to be 
defined: 

i. The attributes of the based 
variable must be the same as 
those of the data identified 
by the locator qualifier. 

ii. The declared maximum length of 
a string with the attributes 
BASED VARYING must be equal to 
the maximum length of the str­
ing identified by the locator 
qualifier used in the 
reference. 

Chapter 5 -- Data Description 83 



APPLE .REF!RENCE MANUAL 

31 MARCH 1972 

iii. The length of a fixed length 
string with the attribute 
BASED should be equal to the 
length of the string identi­
fied by the locator qualifier 
used in the reference. 

iv. The aggregate type and data 
type of all elements of the 
structure must agree up to and 
including all of the level-2 
items that contain the 
referenced sub-item. A level-
2 item is an immediately con­
tained member of structure, 
i.e., is not contained in any 
other member. 

d. When a reference is made to a based 
variable, the data attributes assumed 
are those of the based variable, while 
the associated locator variable identi­
fies the generation of data. If the 
reference is to a component of a based 
structure, a second temporary locator 
variable is created to determine the 
location of the component in relation to 
the beginning of the structure. 

e. Array bounds and string lengths of iden­
tifiers declared with the BASED attri­
bute are evaluated dynamically with each 
reference to the based variable. There­
fore, the asterisk notation for dimen­
sions and lengths is not permitted. A 
reference to a component of a based 
structure causes evaluation of suffi­
cient elements of the structure to 
determine the position of the component. 

Example: 

DECLARE P POINTER, 
M FIXED, 
N FIXED, 
A(2*", 2*(K+N» FLOAT 

BAS ED (P) ; 

At eve.ry reference to an element of 
A, variables M and N must contain 

84 Chapter 5 -- Data Description 



31 "ARCR 1972 

APPLE REFERENCE "AMUAL 

values that correspond to the 
dimensions of the generation of A 
beinq accessed. 

f. When a based variable is allocated using 
the ALLOCATE statement, expressions for 
bounds and lengths are evaluated at the 
time of allocation in the environment of 
the declaration. 

g. The REPER option can be used to create 
structures that define their own adjust­
able bounds and lengths, i.e., self­
defining data. The REPER option may be 
used in a DECLARE statement to define a 
bound of an array or the length of a 
string. 

General format: 

refer-option ::= 

expression REFER (scalar-name) 

where "scalar-name" is a reference, pos­
sibly qualified, but not subscripted or 
locator qualified. The reference must 
be to a scalar item preceding the BEPER 
option in the structure. 

The REPER option can not be used in the 
declaration of a structure which is 
named in the LIKE attribute for another 
identifier. (See "LIKE" later in this 
chapter for details.) 

Chapter 5 -- Data Description 85 



APPLE REFERENCE MANUAL 

31 PiARCR 1972 

Example: 
DECLARE P POINTER, 

PI FIXED, 

PI == ~; 

N .FIXED, 
1 A BASED (P) , 

2 N1 FIXED, 
2 N2 FIXED, 
2 N3 FIXED, 
2 B(PI+3 REFER(N1), 

M*N REFER (N2») FLOAT, 
2 C CHAR (2*PI*N REFER (R3») , 
2 D FIXED; 

N == 10; 
ALLOCATE A; 

This will cause space to be allocated 
for A with the bounds of B, 8 and 50, 
and the length of C, 100. N1, N2 and N3 
will be set to 8, 50 and 100 respective­
ly. A reference to D will cause expre­
ssions involving N1, N2 and N3 to be 
evaluat.ed. 

h. The INITIAL attribute may be specified 
for d based variable. The values are 
used only upon explicit allocation of 
the based variable with an ALLOCATE 
statement. 

i. Whenever a based variable containing 
arrays or strings is passed as an argu­
ment, the bounds and lengths are deter­
mined at the time the argument is passed 
and remain fixed throughout execution of 
the invoked block. 

8. The following rules govern the use of register 
variables: 

a. If a scalar arithmetic variable with the 
REGISTER attribute is passed as an argu­
ment, its contents are passed by value 
rather than by reference as is done for 
all other storage classes (see "Corres­
pondence o.f Argument and Parameters" in 
Chapter 2). 

b. Although a variable with the REGISTER 
attribute may be used as the argument to 

86 Chapter 5 -- Data Description 



31 MAReR 1972 

APPLE REFERENCE "ANUAL 

the AnDR built-in function, the pointer 
value returned by the function is unde­
fined outside the block in which it was 
evaluated. 

c. The "register-specification" must be an 
unsigned integer constant in the range 0 

2~5. If a register specification is 
qiven and the use of the register con­
flicts with the standard use of that 
numbered register, the results of the 
procedure are undefined. REGISTER 
variables declared with a register­
specification will ~! have their values 
preserved across calls. 

d. If no register specification is qiven, a 
register number will be assigned by the 
compiler. These values viII be pre­
served across calls. 

Chapter 5 -- Data Description 87 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

The precision attribute is used to specify the m101mum 
number of significant digits to be maintained for the 
storage of arithmetic data variables. The precision attri­
bute can be specified in terms of either binary or decimal 
digits as indicated by the BINARY or DECIMAL qualifier. 

General format: 

precision-attribute •• = I BINARY I ((number-of-dig its [,0]) ] 
•• DECIMAL 

The "number-of-digits" is an unsigned non-zero decimal 
integer constant. 

General rules: 

1. The "number-of-digits" specifies the m1n1mum numb­
er of digits to be maintained for data items 
assigned to the variable. The number of digits is 
specified for both fixed-point and floating-point 
variables. 

2. An optional scale factor of ~ero may be specified 
for fixed-point variables only. 

3. The maximum precision that is supported is: 

BINARY --- 41 bits 
DECIKAL --- 14 decimal digits 

If the "number-of-digits" specified exceeds these 
limits the maximum value will be used. 

4. The actual precision, p, that will be used is 
determined from the "number-of-digits", d, as 
follows: 

If the precision-attribute is BINARY then 
if 1 ~ d ~ 23 then p = 23. 
if 24 ~ d ~ 41 then p = 47. 

If the precision-attribute is DECIMAL then 
if 1 ~ d S 6 then p = 6. 
if 7 S d ~ 14 then p = 14. 

5. If the "number-of-digits" is omitted, the maximum 
precision is assumed. 

88 Chapter 5 -- Data Description 



APPLE REFERENCE "AIUAL 

31 MARCH 1912 

The BIT and CHARACTER attributes are used to specify string 
variables. The length of the string is defined in terms of 
the number of elements to be maintained, where an element is 
either a bit or character. 

General format: 

string-attribute ::= 

( length-specification) IBIT I 
CHARACTER (VARYING) 

General rules: 

1. The VARYING attribute specifies that the ~~Ii.u~ 
lenqth of the string has been specified b, the 
length-specification. The current length at any 
time is the length of the current value of the 
string. VARYING may only be applied to character 
strings. 

2. The declared attributes (including length 
VARYING) of a string with the attribute BASED 
match the attributes of the string identified 
locator variable in a reference. 

and 
must 
by a 

3. The length-specification must immediately follow 
the CHARACTER or BIT attribute at the same factor­
ing level. 

4. In the case of a parameter, the length may 
specified by an asterisk. This indicates that 
length of the string is determined from 
corresponding argument string being passed. 

be 
the 
the 

5. The length-specification of strings declared with 
the AUTOMATIC or STATIC attributes must be an 
unsigned integer constant. 

6. The lenqth-specification of a BASED variable str­
ing may be declared using the REFER option (see 
the ALLOCATE statement). 

1. The current lenqth of an uninitialized varying­
length string is undefined before assignment. 

Chapter 5 -- Data Description 89 



APPLE REFERENCE !ANU1L 

31 MARCH 1972 

The BUILTIN attribute specifies that any reference to the 
associated name within the scope of the declaration is to be 
interpreted as a reference to the built-in function or 
pseudo-variable of the same name. The built-in functions 
and pseudo-variables of Apple are listed in Appendix 1. 

General format: 

built-in-attribute .. -.. - BUILTIN 

General rules: 

1. BUILTIN is used to refer to a built-in function or 
pseudo-variable in a block within a containinq 
block in which the same identifer bas been 
declared to have another meaning. 

2. 

Example: 

A: 
PROCEDURE; 

END; 

DECLARE SQRT ENTRY (FL01T) 
RETURNS(PLOAT); . . . 

x = SQRT(!); I*This calls the external 
procedure SQRT *1 

BEGIN; 

END; 

DECLARE SQRT BUILTIN; 
X = SQRT(!); 1* This calls the 

built-in function SQRT *1 

If the BUILTIN attribute is 
constant, there can be 
declared attributes for the 
INTERNAL. 

declared for an entry 
no other explicitly 

entry constant except 

3. The BUILTIN attribute cannot be declared for 
parameters. 

4. The BUILTIN attribute must be specified 
parameterless built-in functions or 
variables that are referenced by the 
(e.g., NULL, TI"E, ONPILE ). 

90 Chapter 5 -- Data Description 

for any 
pseudo­
prograll 



APPLE REFERENCE "ANUAL 

31 "ARCH 1972 

£ll!~lll 

See BIT and CHARACTER 

CQNST~!1 

The CONSTANT attribute specifies that the associated identi­
fier is the name of a constant (a value which cannot change 
during program execution). 

General format: 

constant-attribute ::= CO~STANT(value-list) 

where the specification of "value-list" is given in the 
section on the INITIAL attribute in this chapter. 

General rules: 

1. ~he CONSTANT attribute may only be specified for 
level-1 identifiers with arithmetic~ strinq, loca­
tor, or LABEL attributes. It can not be specified 
for parameters, structures, or any variables. 

2. Only one constant value may be specified for a 
scalar identifier. A list of values can be 
specifieo for a constant array; however~ the 
number of values must match the number of elements 
in the array. 

J. The same rules apply to the "value-list" as apply 
to the initial-value-list described in the section 
on the INITIAL attribute with the execption that 
the asterisk notation (used to skip or ignore 
elements) is not permitted. 

4. The only storaqe class attribute that may be 
specified for an identifier with the CONSTANT 
attribute is STATIC. 

5. The only scope attribute that may be specified for 
an identifier with the CONSTANT attribute is 
INTERNAL. 

6. The values of lABEL constants must be label 
prefixes within the block of the declaration. 

Chapter 5 -- Data Description 91 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

The EVENT or CONDITION attribute specifies that the identi­
fier refers to an interr t* 

General format: 

interrupt-attribute 

General rules: 

: ::: , .. EVENT I 
.. CONDITION 

1. No attributes other than scope (INTERNAL or 
EXTERNAL) can be specified for interrupt identi­
fiers. These identifiers can Dot be declared as 
arrays or members of structures. 

2. nnly user defined tions can be declared. 
System defi conditions (see Appendix 2) are 
treated as keywords in the ON, REVERT, and SIGNAL 
sta te men t s. 

See BINARY and DECIMAL 

See OFFSET, POINTER, and DESCRIPTOR. 

92 Chapter 5 -- Data Descri iOD 



APPLE REFERENCE "ANUAt 

31 'URCH 1972 

The dimension attribute specifies the number of dimensions 
of an array and the bounds of each dimension. The dimension 
attribute specifies the bounds (only the upper bound or both 
the upper and lower bounds) or indicates, by the use of an 
asterisk, that the actual bounds for the array are to be 
taken from the passed parameter. 

General format: 

dimension-attribute ::= (bound [, bound] ••• ) 

bound ::= { ( lover-bound : 1 upper-bound) I * 
where "upper-bound" and "lower-bound" are fixed scalar 
expressions. 

General rules: 

1. The number of "bounds" specified indicates the 
number of dimensions in the array unless the 
variable being declared is contained in an array 
of structures. In this case, additional dimen­
sions are also inherited from the containing 
structure. 

2. The bound specification indicates the bounds as 
follows: 

a. If only the upper bound is given, the 
lower bound is assumed to be 1. 

b. The value of the fixed scalar expression 
is evaluated on allocation of storage 
and on reference; the value of the lower 
bound must be less than or equal to the 
value of the upper bound. 

c. An asterisk used as a bound specifica­
tion indicates that the actual bounds of 
an array parameter are to be the bounds 
of its associated array argument. 

3. Bounds that are expressions are known as adjust= 
ab!~ _20und~ and are evaluated when storage is 
allocated for the array and when the array is 
referenced. For parameters, bounds can be only 
asterisks or optionally signed integer constants. 

Chapter 5 -- Data Description 93 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

4. The bounds of arrays declared with the attributes 
AUTOMATIC, REGISTER, or STATIC must be optionally 
signed integer constants. 

5. The dimension attribute must be the first attri­
bute to follow the array name (or parenthesized 
list of names if the dimension attribute is being 
factored) in the declaration. Intervening blanks 
are optional. 

6. The REFER option can be used to specify tbe bounds 
of a BASED variable (see the ALLOCATE statement). 

7. The total number of elements in an array may not 
exceed 65535. 

The ENTITY attribute specifies a 
manipulated by the INSERT, REMOVE, 
statements. 

variable that may be 
FIND, and FOR EACH 

General format: 

entity-attribute ::: ENTITY r (locator-variable)] 

General rules: 

1. specification of the ENTITY attribute implies that 
the named identifier is a structured based vari­
able. A system function will be provided to 
record in a file the structure declaration for 
each entity. At compile time this structure 
declaration will replace the entity declaration. 
It is intended that standard entity declarations 
for a project will all be recorded in the same 
file. 

2. The ENTITY attribute may only be 
1eve1-1 identifier which may 
declared attributesQ 

applied 
have no 

to a 
other 

3. The lengtb of an identifier given the ENTITY 
attribute can not exceed 8 characters. 

94 Chapter 5 -- Data Description 



APPLE REFERENCE "ANUAL 

31 MARCH 1912 

The ENTRY attribute specifies that the identifier is being 
declared as an entry constant or entry variable. It is also 
used to describe the attributes of the parameters of the 
entry point. 

General format: 

entry-attribute ::= ENTRY [(parameter-attribute-list 
[, parameter-attribute-list] ••• ) 1 
fRETORNS{attribute-list) ] 

BuIes for "parameter-attribute-lists": 

1. A parameter-attribute-list describes the attri­
butes of a single parameter; the parameter name is 
not given. 

2~ The parameter-attribute-lists must appear in the 
same order as the parameters they describe. 

1. 

4. 

The attributes describing a scalar parameter may 
appear in any order within the parameter­
attribute-list. The attributes within a list must 
be separated by blanks; lists must be separated by 
commas. For an array parameter, the dimension 
attribute must be the first specified. 

Array bounds 
specified by 
asterisks .. 

and string lengths may only be 
decimal integer. constants or by 

5. Parameter-at tribute-lists may not contain the 
attributes STATIC, BASED, LIKE, AUTOMATIC, BUIL­
TIN, EXTERNAL, INTERNAL, CONSTANT, or INITIAL. 

General rules: 

1. The ENTRY attribute may not be specified: 

a. for an array or within a structure, 
b. within a RETURNS attribute, or 
c. with the BUILTIN attribute. 

2. The factoring of attributes is not permitted 
within the set of parameter-at tribute-lists of an 
ENTRY attribute specification. 

Chapter 5 -- Data Description 95 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

3. An external entry constant must be qiven the 
attribute ENTRY, otherwise it is contextually 
declared with the BUILTIN attribute and is treated 
as the name of a built-in function. 

4. All entry names which are invoked as functions in 
the procedure must be declared with a RETURNS 
attribute. 

5. The appearance of an identifier as a label prefix 
of either a PROCEDURE statement or an ENTRY 
statement constitutp.s an explicit declaration of 
that identifier as an entry constant, thus the 
same identifier may not be declared in a DECLARE 
statement in th~ same block. 

6. The attribute INITIAL may not be specified for 
entry variables. 

7. The attribute INTERNAL may not be specified for 
entry constants. 

8. An identifier declared with the ENTRY attribute is 
assumed to be an entry constant, unless the 
vARIABLE attribute is also specified. 

See CONDITION and EVENT 

96 Chapter 5 -- Data Description 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

The EXTERNAL and INTERNAL attributes specify the scope of a 
name. INTERNAL specifies that the name can be known only in 
the declarinq block and its contained blocks. EXTERNAL 
specifies that the name may be known in other blocks 
containing an external declaration of the same name. 

General format: 

scope-a t t.ribu te 

General rules: 

.. -.. - EXTERNAL I 
INTERNAL 

1. The lengths of identifiers given the EXTERNAL 
attribute cannot exceed 8 characters. 

2. The lengths of identifiers given the INTERNAL 
attribute cannot exceed 31 characters. 

3. The scope attributes can only be applied to 
level-1 identifiers~ 

The FILE attribute specifies that the identifier being 
declared is a file variable. 

General forma.t: 

file-attribute ::= PILE VARIABLE 

General rules: 

1. Only the following attributes may be specified 
with the flle-attribute: 

Scope attributes: 

Storage class attributes: 

Dimension attribute 

INTERNAL 
EXTERNAL 

AUTOMATIC 
STATIC 
REGISTER 
BASED 

Chapter 5 -- Data Description 97 



APPLE REFERENCE MANUAL 

31 lURCH 1972 

2. The RETURNS attribute in an entry declaration or 
the RETURNS option in a PROCEDURE or ENTRY state­
ment may specify the FILE attribute if the corres­
ponding procedure returns a file value. 

3. File variables may be used in the following 
contexts: 

a. as arguments to functions and procedures, 
b. as arguments to an IIO condition name in 

SIGNAL, REVRRT, or ON statements, 
c. as arguments to a FILE option in a GET or 

PUT statemen t, 
d. in the assignment of one file variable to 

another file variable, 
e. as operands of the = and ,= comparison 

operators (two file-variables compare equ­
al only if they represent the same file 
value), 

f. in the declaration of an OFFSET variable, 
q. in the INSERT, REMOVE, FIND, FOR EACH, and 

LET statements. 

4. On-units can be established for files whose iden­
tity is represented by a file-variable. 

Example: 
DECLARE F FILE VARIABLE, 

G FILE VARIABLE; 
1* Request that MCTS File System open a 

and set the file variable F 
G = F; 

L1: ON ENDFILE(G); 
L2: ON ENDFILE(F); 
1* Statements labeled L1 and L2 

have identical effect. */ 

See SET attribute 

98 Chapter 5 -- Data Description 

file 
*/ 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

The FIXED and FLOAT attributes specify the scale of the 
arithmetic variable being declared. FIXED specifies that 
the variable is to represent fixed-point data items. FLOAT 
specifes that the variable is to represent floating-point 
data items. 

General format: 

scale-attribute 

General rule: 

... -.. - FIXED 

FLOAT 

1. Fixed-point data items only represent integer 
values. No fractional digits can be represented 
by a fixed-point variable. 

Assumptions: 

1. If only the scale attribute PIXED is specified, 
the precision attribute BINARY (47) is assumed. 

2. If only the scale attribute FLOAT is specified, 
the precision attribute DECIMAL(14) is assumed. 

The INITIAL attribute specifies an initial constant value to 
be assigned to a data item whenever storage is allocated for 
the variable. 

Chapter 5 -- Data Description 99 



APPLE RE?ERENCE "ANUAL 

General format: 

initial-attribute ::= INITIAL{value-list) 

value-list ::= ttemr, item1 ••• 

item .. -.. - I constant I 
i:eration-specification 

iteration-specification .. -.. -

31 "ARCH 1972 

I (iteration-factor) constant 
(iteration-factor) * 
(iteration-factor) (item{, item] 

General rules: 

1. The INITIAL attribute may only be assigned to 
level-1 variables with arithmetic, string, loca­
tor, or label attributes; it cannot be given for 
parameters, structures, entry variables, or file 
variables. 

2. In the following rules, the term "constant" 
denotes one of the follovinq: 

arithmetic-constant 
character-strinq-constant 
bit-string-constant 
statement-label constant 
the value of the NULL built-in function 

3. Only one constant value can be specified for a 
scalar variable; a list of values can be specified 
for an array variable. 

4. Constant values specified for 
assiqned to successive elements of 
row-major order (final subscript 
rapidly) • 

an array are 
the array in 

varying most 

5. If too many constant values are specified for an 
array, excess values are ignored; if not enough 
are specified, the remainder of the array is not 
initialized. 

6. Each item in the list can be a constant, an 
asterisk denotinq no initialization for a particu­
lar element, or an interation specification. 

100 Chapter 5 -- Data Description 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

7. The "iteration-factor" specifies the number of 
times the constant, item list, or asterisk is to 
be repeated in the initialization of elements of 
an array_ If a constant follows the "iteration­
factor", then the specified number of elements are 
to be initialized with that value. If a list of 
items follows the "iteration-factor", then the 
list is to be repeated the specified number of 
times, with each item initializing an element of 
the array_ If an asterisk follows the "iteration­
factor", the specified number of elements are to 
be skipped in the initialization operation. 

8. The "iteration-factor" must be an unsigned decimal 
integer constant. 

9. A based array with adiustable bounds or a based 
string variable with an adjustable length cannot 
be initiali zed~ 

10. For the initialization of a string array, both an 
"iteration-factor" and a "strinq-repetition­
factor" may be used. If only one parenthesized 
integer preceeds the string constant, it is 
assumed to be the "string-repetition-factor" of 
the initial value for a singlg element of the 
array. Consequently, to cause initialization of 
more than one element of a string array, both the 
iteration factor and the string repetition factor, 
in that order, must stated explicitly, ~~n_!! 
thg_string_£g£~til1Qn~factor is Jll. 

Exam pIe: 

«2)OA~) is equivalent to ('AA') 
single element) 

(for a 

«2) (1) '11.1) is equivalent to ('A', 'A') 
(for two elements) 

11. Label constants given as initial values for label 
variables must be contained within the block in 
which the label variable declarations occur. The 
INITIAL attribute may only be specified for label 
variables of the AUTOMATIC storage class. 

12. The only initial value that can be specified for a 
locator variable is the value of the NULL built-in 
function. This is the only function reference 
that may appear in an initialization list. 

Chapter 5 -- Data Description 101 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

l.lBEL 

The LABEL attribute specifies that the identifer being 
declared can have statement labels as values. 

General format: 

label-attribute ::= LABEL 

General rules: 

1. If the label variable is a parameter, its value 
can be any statement label variable or constant 
passed as an arqument by the caller. 

2. An entry name cannot be a value of a label 
variable. 

3. The INITIAL attribute cannot be 
label variables with the STATIC, 
BASED storage class. 

specified for 
REGISTER, or 

4. The CONSTANT attribute may be declared for identi­
fiers with the LABEL attribute. 

102 Chapter 5 -- Data Description 



APPLE REFERENCE "ANUAL 

31 KARCH 1972 

The LIKE attribute specifies that the name being declared is 
a structure variable with the same structuring as that for 
the name following the attribute keyword LIKE. Substructure 
names, element names, and attributes for substructure names 
and element names are to be identical. 

General format: 

like-attribute ::= LIKE identifier 

General rules: 

1. The "identifier" must be the unsubscripted name of 
a level-1 variable. 

2. The "identifier" must be known in the block 
containing the LIKE attribute specification. 
Neither the "identifier" nor any of its substruc­
tures may be declared with the LIKE attribute or 
the REFER attribute. (Appendix 8 shows a method 
for declaring similar structures with the REFER 
option. ) 

3. Attributes of the level-l identifier itself do not 
carryover to the created structure. For example, 
storage class attributes do not carryover. If 
the "identifier" following the keyword lIKE repre­
sents an array of structures, its dimension attri­
bute is not carried over. The attributes of 
substructure names and element names, however, are 
carried over; if the attributes that are carried 
over contain names, these names are interpreted in 
the block containing the LIKE attribute. 

4. If a direct application of the description to the 
structure declared with the LIKE attribute would 
cause an incorrect continuation of level numbers 
(for example, if a minor structure at level 3 were 
declared LIKE a major structure at level 1) the 
level numbers are modified by the addition of a 
constant before application. 

5. Any level number following the "identifier" must 
be less than or equal to the level number of the 
variable being declared with the LIKE attribute; 
thus, no additional substructures or elements may 
be added to the created structure. 

Chapter 5 -- Data Description 103 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

The OFFSET, POINTER, and DESCRIPTOR attributes specify 
locator variables. A locator varia e can be used in a 
based variable reference to identify a particular qeneration 
of the based variable. Offset variables identify a location 
relative to the origin of a fi ; pointer variables identify 
any location; descriptor variables identify both the loca­
tion and the length. Offset values retain tbeir validity 
between 1obs; this is not case with pointer and 
descriptor variables. 

General format: 

locator-attribute 

General rules: 

... -. ~- 1 
POINTER I 
OPFSET ( file-variable ) 
DESCRIPTOR . 

1. The pointer or descriptor value of a locator 
variable or functioD uniqoely identifies a genera­
tion of a based variable. This generation may be 
accessed by using t variable or function as the 
locator qualifier the reference to a based 
variable whose eva 1 attributes match those of 
the generation. A value of pointer type may be 
obtained from the bu t-in functions ADDR, NULL, 
and POINTER* A cresc ~tor value may be obtained 
from the built-in function DESCR. 

2. The value of a descriptor variable is used to 
describe the locat and length of a based string 
variable or the location and dimension of a based 
vector variable.. (A vector variable is defined to 
be a one-dimensi array of arithmetic, locator, 
or file variables.) When a descriptor variable is 
used as a locato~ quali! to reference a based 
strinq or vector, e th the string or the 
extent of the vector is s iiied by the descrip­
tor value; all other attributes are specified by 
the based variab 

3. The value of an offset variable or function 
identifies the posit of a generation of a based 
variable within a relative to the origin of 
the file. Tbis value _ be converted to a 
pointer to t generat of the based variable by 
supplying the file a offset value as argu-
ments to the POINTER ilt-in function. A value 

104 Chapter 5 -- Data Deseri 



APPLE REFERENCE !ANUAt 

31 MARCH 1q72 

!lEPE,!! 

of offset type may be obtained from the built-in 
fu nction O'PPSET. 

q. The value of a locator variable can be set in any 
of the following ways: 

a. By assigning the value of the NULL 
built-in function. 

b. By the ALLOCATE, LET, FIND, and FOR EACH 
statements. 

c. By assignment of the value of a locator 
variable or function. 

5. The value of a descriptor variable can also be set 
in the same manner as an arithmetic variable. 

6. Pointer and offset variables cannot be operands of 
any operators other than the comparison operators 
= and ,=. Descriptor variables may appear in 
relations involving any comparison operator and 
may also be used in arithmetic expressions as 
operands to the infix + and - operators. 

7. Locator data, ~xcept for descriptors, cannot be 
converted to any other data type, but pointer can 
be converted to offset, ~nd vice versa. 

8. A pointer or offset variable can be assigned only 
t.o a locator variable. When an offset value is 
assigned to an offset variable, the file variables 
named in the OFFSET attributes are ignored. 

See AUTOMATIC, STATIC, REGISTER, and BASED. 

Chapter 5 -- nata Description 105 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

The RETURNS attribute specifies the attributes of the value 
returned by an external entry or an entry variable when 
invoked as a function. 

General format: 

returns-attribute ::= RETURNS (attribute ••• ) 

General rules: 

1. The attributes in the parenthesized list following 
the keyword RETURNS must be separated by blanks 
(except for attributes such as precision or length 
that are e.nclosed in parentheses). 

2. Only scalar arithmetic, string, locator, or file 
attributes can be specified. 

3. All lengths specified in the attributes must be 
constants. 

4. The RETURNS attribute must be specified in the 
declaration of all entry variables and external 
entry names invoked as functions. The attributes 
given in the invoking procedure must agree with 
the attributes specified in the PROCEDURE or ENTBY 
statement of the invoked function. 

106 Chapter 5 -- Data Description 



APPLE REFERENCE "'NUAL 

The SET attribute defines the name of a data aggregate that 
represents an ordered set of entity variables. Sets are 
identified by the file or entity that contains the set and 
the name of the set. A uniquely named set that is contained 
by the file in vhich it resides is referred to as a 
~ILE_SF,T. 

General Format: 

set-attribute 

General Rules: 

.. -.. -

1. A named set may be referenced by the INSERT, 
REMOVE, FIND, FOB EACH, and LET statements. 

2. The insertion of an entity into a set will cause 
the set to be created if it previously did not 
exist. Similarily, if all members of a set are 
removed, the set vill be automatically deleted. 

3. Multiple generations of a named set may be 
created, one for each containing entity. However, 
since a FILE_SET has no containing entity, only 
one generation of a FILE_SET may be created in a 
particular file. 

4. The lenqth of a set identifier can not exceed 8 
c~aracters. 

5. No other attributes may be specified with the SET 
or FILE_SET attribute. 

Chapter 5 -- Data Description 101 



APPLE REPERENCE "AHUAL 

31 "ARCH 1972 

The VARIABLE attribute is used with the EHTRY attribute to 
establish a name as an entry-variable or, if used with the 
FILE attribute, to establish a name as a file-variable. 

General format: 

variable-attribute .. -.. - VARIABLE 

General rules: 

1. The VARIABLE attribute can only appear in a 
declaration with the ENTRY or FILE attribute. 

2. The attribute VARIABLE is supplied by default if 
the ENTRY attribute is declared with anyone or 
more of the following attributes: 

!ARYI!2 

AUTO"ATIC 
BASED 
STATIC 
REGIST'ER 
Parameter 

See BIT and CHARACTER. 

108 Chapter 5 -- Data Description 



APPLE REFERENCE "ANUAL 

31 MARCH 1972 

This chapter contains a discussion of the Apple language 
facilities that are available for processing data files. 
The chapter is divided into three loqical areas: 

1. File organizat and access to files. 

2. Format-directed da.t.a transmission to or from 
sequential leE. 

3. Issoc tive data star management within struc-
tured 

The discussion concentra:tes on describing how various fi1e­
handling statements are used. syntax rules for each 
statement are Chapter a.) 

Any collection 
for the programmer 
storage dev 
known by a sym 
direct-access (1 
printed 1 tinq. 
loginq of £i 
Management System a 
reader- is re 

The transmiss 
al storage (iev 
output (I/O) .. 
tion of Ap 
performed 
processes: 

1 • 

2. 

The user 
virtual 
results 

(l!,ctu. 
and the 

at can transmitted automatically 
the internal memory and external 
~(~;t is cal a fil~.. A file is 

an ay sto on magnetic tape, 
a d~ck of punched cards, or a 

storing, retrieving, and cata­
and performed by the File 

is scrib in this manual. (The 
Management Manual.) 

internal memory and extern­
lly been called input and 
ure supporting the execu­

these I/O operations to be 
ly by dividing them into two-stage 

ram re all of its input data from 
memory and stores all of its output 

virtual memory .. 

between virtual memory 
storaqe devices is performed by 

6 -- File Handling 109 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

File Management System facilities which may be 
called from an Apple program or invoked by the 
system command language. 

The virtual memory mechanism provides a large enough storage 
space that a user can reference all of his data without ever 
having to do any explicit I/O operations. Since the actual 
data transmission is transparent to the user, the rema1D1Dq 
user-control~ed portion of the process is called vi~!A! 
ILQ, which consists of internal memory-to-memory data mani­
pulation and data conversion. 

Files may be used for storinq many diverse categories of 
information, ranqing from simple collections of card-images 
to complicated data structures including libraries of 
executable programs. But regardless of file contents, all 
files are handled in the same way by the File Management 
System. Any file must be QE~n~~ or mapped into virtual 
memory before any information within the file can be 
referenced. ~ing a file causes a standard File Management 
procedure to store the file. ~losing a file releases the 
virtual memory space for other usage. 

From a programming viewpoint, there are two basic types of 
files in Apple, ~~~tia!_fil~§ and §!Iuctu~ed f!!~§, each 
involvinq an entirely different mode of operation and using 
separate sets of Apple statsments. Sequential files can be 
considered to be a continuous strinq of characters such as 
an output listing or an input deck of· punched cards. The 
programmed processing of seguential files implies an exten­
sive amount of data conversion and use of text-editing 
facilities normally used for generating reports. Structured 
files, on the other hand, can be considered as a "carbon­
copy" of a portion of the program's virtual memory which can 
be saved and restored. There is no implied data conversion 
in the handling of structured files. 

~~gue~!ial_~il22 

Sequential files 
constraints: 

have following properties and 

1. The proqrammer can not directly reference the data 
within a sequential file. Input data can only be 
read via the GET statement, and output data can 
only be written via the PUT statement. 

2. There is no random access to data within a 
sequential file. ~he data can only be read or 
written in a sequential forward direction. Once 

110 Chapter 6 -- File Handlinq 



APPLE REPERENCE MANUAL 

31 MARCH 1972 

input data has been read, there is no way to back 
up and re-read the data except to close and 
re-open the file and start over at the beginning 
of the file. 

3. All data in a sequential file is assumed to be in 
character form and may contain control characters. 
(Appendix 4 contains a list of the allowed graphic 
and control characters.) 

structured files contain an organi~ed collection of data 
along with the stored hierarchical relationships between 
data entities. The creation, manipulation, and structural­
ordering of data within a structured file are under the 
direct control of the programmer. 

structured files have the following properties: 

1. All data elements within a structured file must be 
based variables or entities. 

2. The data elements can be referenced in a random 
order. In addition, the FIND and FOR EACH state­
ments provide searching capabilities for entities. 

3. Although the associative data handling capabili­
ties are normally used to reference the data 
within structured files, standard locator qualifi­
cation of based variables may alternatively be 
used provided that the proper structure declara­
tions have been made. 

4. The ALLOCATE and FREE statements must be used to 
allocate and free data elements within structured 
files. 

5. The deletion of a data entity having 
relationships includes the automatic 
those entities that are dependent upon 
entity. 

File V!Ii~bl~! 

associative 
removal of 
the deleted 

The Apple file-handling statements refer to a particular 
file by means of a file variable. The file variable is an 
identifier which has been declared with the FILE VARIABLE 
attribute. 

Chapter 6 -- File Handling 111 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

Example: 

DECLARE INPUT1 FILE VARIABLE, 
ITEM CHARACTER(20): 

GET PILE(INPUT1) EDIT(ITEM) (1(20); 

Apple requires that a file ~ be ~!Rlic!t! -2~De~ before 
any references can be made to the data within the file. 
There is ~ imRlic!! __ oeen!ng of a file when the first 
file-handling statement is executed. The open facility 
associates a file variable with a particular file. If a 
file variable has not been associated with a file before a 
file-handling statement uses the variable, the UNDEFINRDFILE 
condition is raised. 

When the processing of a file is complete, the file should 
be closed, releasing the facilities established during the 
opening of the file. A file will be closed automatically on 
termination of the program that opened it, if it has not 
been explicity closed before termination. Since the asso­
ciation between the file variable and the actual file is 
established dynamically at execution time, a file variable 
can be associated with different files at different times 
during the execution of a program. 

See the Pile Kanagement Kanual for a complete description of 
the open, close, and save facilities. 

112 Chapter 6 -- pile Handling 



APPLE REFERENCE "ANUAL 

The format-directed data transmission facilities available 
1 files are provided by the GET and 

statements provide conversions and 
HeeD the internal form of program 

character form of the external file data. 

for handling S~ n 
PUT statements" 
data transmission 
variables ana 

The format-dir~cted mode of data transmission to sequential 
files uses au one input statement, GET, and one output 
statement. P9T. statements may use either of two 
options to source or target of the data. The 
FILE opt specifies the name of the file variable asso-
ciated with o~eDed sequential file on which the opera-
tion is to ta T~e STR!NG option specifies the name 
of the va= ble wbich is the source or 
target of GET statement gets the next s~ries of 
data items from source, and a PUT statement puts a 
specified set to the target. The variables 
to which i goed, and the variables or 
express results are transmitted, are 
specified GET or PUT statement. On 
input, the t-items which specify 
the nn cters to be assigned to each input 
variab characteristics of the input data. 
On output. t d the format that the 
outout data the No type conversion is 
perfOrllted PUT s ts .. 

C 6 -- File Handling 113 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

~!L~l!ill!icllion 

A oata specification is used in GET and PUT statements to 
specify a list of variables and expressions that are to be 
converted according to a specified format and are to be 
transmitted to or from a designated file or string variable. 

General format: 

data-specification 

Genera 1 rules: 

.. -.. - EDIT (data-list) (format-list) 

1. The general rules for data lists and format lists 
are given later in this chapter under "Data Lists" 
and "Format Lists". 

2. On output, the data items to be transmitted are 
defined by the data list of the PUT statement. 
The value of each data item in the data list is 
converted to the format specified by the asso­
ciated format-item in the format list. 

3. Input data is considered to be a continuous string 
of characters not separated into individual data 
items. The number of characters for each data 
item is specified by an associated format-item in 
the format list. The conversion is performed 
according to the specified format-item. The 
resulting value is then assigned to the corres­
ponding variable in the data list of the GET 
statement. 

4. For either input or output, tbe first data format­
item is associated with the first item in the data 
list, the second data format-item with the second 
item in the data list, and so forth. If the 
number of data format-items is less than the 
number of items in the data list, the format list 
is reused starting at the beginning. 

5. The specified transmission is complete when the 
last item in the data list has been processed 
using its corresponding format-item. Subsequent 
format-items, including control format-items, are 
ignored. 

114 Chapter 6 -- Pile Handling 



31 MARCH 1912 

~he data specification of a GET or PUT statement requires a 
data list to specify the variables to which input values are 
assigned or the variables or expressions from which output 
results are transmitted. 

General format: 

data-list ::= element [, element) ••• 

Syntax rules: 

The nature of the elements depends upon whether the data 
list is used for input by a GET statement or for output by a 
PUT statement. The rules are as follows: 

1. Each data-list element of an in~! data specifica­
tion must be a scalar variable. 

2. For an 2!!~~ data list, each element must be a 
scalar expression. 

3. The elements of a data list must be of arithmetic 
or string data type. 

4. A data list 
paren theses. 

must always be enclosed in 

Chapter 6 -- File Handling 115 



APPLE BEFEBEBCE BABOAL 

31 rURCH 1912 

l!Uu.LLisJ:§ 

The data specification of a GET or PDT sta-teaent requires a 
format list to specify the external fo~.at for every item in 
the data list. 

General format: 

format-list ::: 

foraat-list·item (, for.at-list~ite.l ••• 

I format-item I 
format-list·item ::= n format-item 

n (fo"mat-list) 

Syntax rules: 

1. The letter ~ represents an iteratio~ factor, which 
specifies that the assoeiate~ format-item is to be 
used n successive times. The associated format­
item is that item or format list of items to the 
right of the iteration factor. The iteration 
factor must be an unsigned decimal integer 
constant. 

2. There are two categories of format-items: data 
format-items and control foreat-items. Each 
format-item of a format list m~st be an allowable 
type for either category as listed in the tabl~ OD 
the next page. 

116 Chapter 6 -- Pile Handling 



31 MARCH 1972 

Data Format-Items: 
Fixed-point 
Floating- point 
Character string 
Bit string 

Control Format-Items: 
Spacinq control 
Column positioning 
Line skipping 
Line positioning 
Top of nev page 

APPLE REFERENCE KANUAl 

General p:orm.A! 

p (v [, d [, P ]] ) 
E (If , d [,s] ) 
A [ (v) ] 
B ( (v) ] 

x (n) 
COLUK" (n) 
SKIP [(n) ) 
LINE (n) 
PAGE 

The fo110ving notation is used in the definition of 
format-items: 

The letter! represents 
in the field (including 
decimal point, blanks, 
exponent) • 

the total number of characters 
a possible sign character, 
and the letter E denoting an 

The letter d represents the number of fractional digits 
to the right of a decimal point; it may be omitted for 
integers. 

The letter 
positive or 
forma t-i tem. 

R specifies a scaling factor, which may be 
negative, to be used with the F 

The letter § is optionally used in the E format-item to 
specify the number of significant digits in the coeffi­
cient of a floating-point number. 

The letter ~ represents an integer value used by the 
control format-items to specify number of characters or 
number of lines. 

Each of the quantities~, ~, R, §, and ! must be 
specified by a decimal integer constant; X, g, §, and A 
must be unsigned. 

Chapter 6 -- File Handling 117 



APPLE REFERENCE MANUAL 

31 MARCH 1912 

A data format-item describes the character representation of 
a single data item in the sequential data file or character 
string specified by a GET or PUT statement. In the format 
list of a GET statement, each data format-item specifies the 
number of characters being used to represent an input data 
item and describes the way those characters are to be 
interpreted. If the characters in the input string cannot 
be interpreted in the manner specified, the CONVERSION 
condition is raised. During execution of a PUT statement, 
the value of each associated element in the data list is 
converted to the character representation specified by the 
data format-item and is inserted into the output character 
string. 

The conversion is defined to occur between the character 
representation specified by the data format-item and the 
internal representation of the associated variable or expre­
ssion. No data type conversion is performed. 

Blanks are not automatically inserted into the target to 
separate the output data items. Arithmetic data is right­
adjusted in the format-specified output field. Leading 
blanks will be inserted in the converted output string if 
the specified field-width ~ allows for them. If truncation 
of significant digits due to inadequate field-width specifi­
cation occurs during the output of arith.etic data items, 
the ERROR condition will be raised. 

string data is left-iustified in the specified output field 
with truncation or pad~ing with blanks occurring on the 
right. 

118 Chapter 6 -- Pile Handling 



31 PlARCH 1972 

Fi!~d-£Qin1 for~!=it~~§ describe decimal arithmetic data. 

General format: 

fixed-point-format-item ::= Ftv r, d [, p]] ) 

The options referred to in the folloving rules are: 

F (v) 

F (w, d) 

p (v, d, p) 

General rules: 

· · 
· .. 
.. · 

option 1 

option 2 

option 3 

1. On input, the data item in the source is the 
character representation of an optionally signed 
decimal arithmetic number anywhere in a field of 
width~. Leading and trailing blanks are ignored, 
but if the data consists only of blanks, zero is 
assumed. 

option 1 is treated like F(~, 0). 

In option 2, if no decimal point appears in the 
number, it is assumed to appear immediately before 
the last g digits (trailing blanks are ignored). 
If a decimal point does appear, it overrides the Q 
specification. 

In option 3, the scaling factor effectively multi­
plies the value of the item in the source by 10 
raised to the value of £. If £ is positive, the 
number is treated as though the decimal point 
appeared £ places to the right of its given 
position. If e is negative, the data is treated 
as though the decimal point appeared e places to 
the left of its given position. The given posi­
tion of the decimal point is that indicated either 
by an actual point, if it is given, or by g, in 
the absence of an actual point. 

If the number in the source exceeds the allowed 
range, the ERROR condition is raised. 

2. On output, the result is right-adjusted in a field 

Chapter 6 -- File Handling 119 



APPLE BE1BRENC! "ANUIL 

31 KARCH 1972 

of width v. 
contain all 
truncated. 

If the value of d is too small to 
the low-order digits, the result is 

In option 1, only the integer portion of the 
number is written; no decimal point appears. 

In option 2, both the integer and fractional parts 
of the number are written. If g is greater than 
0, a decimal point is inserted before the right­
most d digits, and the value is appropriately 
positioned." Tcailinq zeros are supplied if the 
number of fractional digits is less than ~ (vhere 
d must be less than v). If the absolute value is 
less than " a zero precedes the point; if ~ is 
not large enough to include the zero, the ERROR 
condition viII be raised. 

In option 
plies the 
pover of 
character 

3, the scaling factor effectively multi­
internal data value by ten raised to the 
~ before it is edited into its external 

representation. 

For all options, if the value of the data item is 
less than zero, a minus sign viII be prefixed to 
the character representation in the data stream; 
if it is greater than or equal to zero, no sign 
viII appear. Therefore, for negative values, ~ 
must encompass both sign and decimal point. If 
the length of the data item is greater than ~, the 
ERROR condition is raised. 

3. The variable or expression associated vith a 
fixed-point format-item must be arithmetic. 

120 Chapter 6 -- File Handling 



31 "ARCH 1972 

Floati~~Q!nt _f.o~!=!!~ describe the external represen­
tation of decimal arithmetic data in floating-point format 
(coefficient and exponent). 

General format: 

floating-point-format-item ::= ! (v, d [, s1 ) 

General rules: 

1. When used in a GET statement, the input data item 
is the character representation of an optionally 
signed decimal floating-point number located any­
where within the specified field of width ~. 
Leading and trailing blanks are ignored. If the 
entire field is blank, it is treated as zero. 

The external input form of a floating-point number 
is: 

[t] coefficient [E [±J exponent] 

The "coefficient" must be an unsigned decimal 
arithmetic constant. If no decimal point appears 
in the coefficient field, the decimal point is 
assumed to be before the rightmost g digits. If a 
decimal point does appear in the input number, it 
overrides the decimal point placement specified by 
g. 

The "exponent" must be an unsigned decimal integer 
constant. If the exponent and prefix letter E are 
omitted, a zero exponent is assumed. 

The width of the input field, expressed by ~, 
includes the character positions for the exponent 
field, the optional signs, the letter E, a poss­
ible decimal point in the coefficient, and any 
leading or trailing blanks. 

2. When used in a PUT statement, the output data is 
inserted in the specified field after being con­
verted to the following general format: 

[-] (s-d diqits). (d digits) E {±} exponent 

The exponent is a decimal integer 
may range from -8630 to +8630. 
automatically adjusted so that the 

const ant t ha t 
The exponent is 
leading digit 

Chapter 6 -- Pile Handling 121 



APPLE REFERENCE MANUAL 

31 PlARCR 1912 

of the coefficient is non-zero. At least one 
non-fractional digit will always appear; if g = ~, 
a single zero appears to the left of the decimal 
point. When the value is zero, one zero digit 
appears to the left of the point and g zero digits 
to the right of the decimal point and the exponent 
appears as E+O. 

The output field-width 11 must be larqe enough to 
contain s significant- digits plus the decimal 
point, the letter E, an exponent and its sign, and 
a possible leading minus sign if the data item 1S 
negative. Thus, ~ ~ ~ + 8 for negative values and 
~ ~ § + 7 for non-negative values of the data 
item. However, if no fractional digits are speci­
fied (~=O), the decimal point is not used and the 
above requirements for field-width are reduced by 
1. If any significant digits or the sign is lost 
because ~ is too small, the ERROR condition is 
raised. 

If the number of significant digits § is omitted, 
it is assumed to be ~ + 1. 

3. The number of significant digits § specified in 
the E format-item E{w,d,s) must be less than 16 
digits. If § is omitted and the E(v,d) form is 
used, ~ must be less than 15. 

4. The variable or expression associated with a 
floating-point format-item must be arithmetic. 

122 Chapter 6 -- Pile Handling 



31 MARCH 1972 

The bi!=2!ting_fQ£~at-ite~ describes the character represen­
tation of a bit stringe 

General format: 

bit-string-format-item ::= B [(w) ] 

General rules: 

1. The field-width, ~, is an integer constant which 
specifies the number of character positions in the 
data stream that contain (or will contain) the 
character representation of a bit string. Each 
bit is represented by the character 0 or 1. The 
field-width is always required on input; if ! = 0, 
a null string is assumed. If the ~ option is 
omitted on output, ~ is taken to be the length of 
the associated bit string: the resulting data item 
completely fills the output field. 

2. When executing a GET statement, the input data 
item may occur anywhere within the specified field 
of width ~e Leading and trailing blanks are 
ignored. If the entire field is blank, the 
CONVERSION cOD~ition ~aised. If v differs from 
the declared length the variable; the input is 
extended h zeros or truncated on the right. 
Any character other ~hen 0 or 1 in the input data 
string~ including embedded blanks, enclosing quo­
tation marks, or the letter B , vill raise the 
CONVERSION condition. 

3. During execution of a PUT statement, the value of 
the associa expression from the output data 
list is left-justified in the specified output 

4. 

field. necessary, truncation or extension with 
blanks performed on the right. No enclosing 
quotation marks are inserted, nor is the i~entify­
ing letter B .. 

The variable or 
bit-stri f 

expression associated with 
tem must be a bit string. 

a 

Chapter 6 -- Pile Handling 123 



APPLE REFERENCE KANUAL 

31 KARCH 1912 

7he chara~~~I=s~~ing _fo~~~ describes the external 
representation of a string of characters. 

General format: 

character-string-format-item ::= A ( (w) 1 

General rules: 

1. The character string is contained in ! character 
positions of the external data stream. The field­
width v is always required on input, but it is 
optional for output. 

2. During an input operation, ! characters are 
obtained from the input data stream. If ~ = 0, a 
null strinq is assumed. If quotation marks appear 
in the input data, they are treated as ordinary 
characters in the string. The input characters 
are extended with blanks or truncated on the 
right. 

3. During the execution of a PUT statement, the 
associated value from the output data list is 
truncated or extended with blanks on the right to 
the specified field-width! before being placed 
into the output field. Enclosing quotation marks 
are not inserted. If the field-width w is not 
specified, it is assumed to be equal to the 
character-string length of the associated data 
item. 

4. The variable or expression associated with a 
character-string format-item must be a character 
string. 

124 Chapter 6 -- File Handling 



31 MARCH 1 0 72 

The control format-items specify the layout of data within a 
file or string and are commonly used for generating printed 
reports. Control format-items take effect whenever they are 
encountered in the format list. Any format-item that 
appears after the data list is exhausted will have no 
effect. There are three types of control format-items: the 
spacing format-item X, the positioning format-items SKIP and 
COLUMN, and the printing format-items PAGE and LINE. 

The §£acins=format-it~~ 
spacing. 

General format: 

specifies 

spacing-format-item ::= Xen) 

General rules: 

relative horizontal 

1. On input, the format-item specifies that the next 
n characters of the source are to be skipped over 
and ignored. 

2. On output, the format-item specifies that B blank 
characters are to be inserted into the target. 

The ~~!!i2!i~ format-i!~~§ specify positioning to a new 
line or to a new column within a line. 

General format: 

positioning-format-item ::={SKIP (en) J} 
COLUMN (n) 

General rules: 

1. The SKIP format-item specifies that the next data 
item is to be transmitted to or from the start of 
the nth line beyond the current line. On input, B 
lines (including the rest of the current line) 
will be skipped over and ignored; on ontput, n~1 
blank lines will be inserted. On input, n > o. 
On ontput, if n = 0, the effect is that of a 
carriage return without line spacing. Characters 
previously written may be overprinted. If D is 
not specified, then SKIP(1) is assumed. 

Chapter 6 -- Pile Handling 125 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

2. The COLUMN format-item specifies that the file is 
to be positioned to the nth colnmn of the current 
line. If the file is an output file, blank 
characters are inserted into the stream until the 
nth column of the line is reached. If the file is 
an input file, characters are ignored until the 
nth column is reached. If the file is already 
positioned beyond the nth column of the current 
line, the file is positioned to the nth column of 
the next line. If n is less than 1 or greater 
than the line size of the file, ! is assumed to be 
1. 

A ~in1inq-~~at-i~! specifies that the next data item 
transmitted is to appear on a new page or on a particular 
line on a page. 

General format: 

printing-format-item ::={LINE (n)} 
PAGE 

General rules: 

1. Printinq-format-items may only be 
sequential output files. 

used with 

2. The tINE format-item specifies that the next data 
item is to be printed on the nth line on a page of 
an output file. Blank lines will be inserted so 
that the next line will be the nth line of the 
current page (or the next page, if the current 
line number is greater than or equal to n). 

3. The PAGE format-item specifies that a new page is 
to be established in the print output file. The 
establishment of a new paqe implies that the next 
printing is to be on line one. 

Note that X and COLUMN specify, respectively, relative 
horizontal spacing and absolute horizontal spacing. Simi­
larly, SKIP and LINE specify relative vertical positioning 
and absclute vertical positioning. 

126 Chapter 6 -- File Handling 



31 MARCH 1912 

STRUCTURED FILE HANDLING 

A structured file is one that is made up of data elements 
that are related by defined associations. The elements 
themselves may be referenced in random order (as compared to 
sequential) and a formal organization is preserved in order 
to represent the relationships between elements. 

All data elements within a structured file must be ENTITY or 
BASED variables. That is, storage space within the file is 
created through use of the ALLOCATE statement and deleted 
through use of the PREE statement. Locator qualification 
must be used to refer to a particular generation of ENTITY 
or BASED variable within a file. If the variable is to be 
used to form an association (i.e. relationship) between 
data elements, it is referred to as an ENTITY. The 
allocation of a variable does n2i imply the establishment of 
associations. The INSERT and REMOVE statements must be used 
to establish associations between groups of entities (called 
SETS) based upon some common relationship. The FIND and FOR 
EACH statements may be used to search a set for an entity 
with particular characteristics. 

The allocation and freeing of storage space within a 
structured f vi be controlled by the ALLOCATE and FREE 
statements. A file is activated and saved on external 
storage devices multi 4096 bytes (1 page). The 
ALLOCATE statement 11 al~ays try to assign the request for 
space to the address that will accomodate the 
request. If all current ve pages of the structured file 
will ngl accomodate the request, a new page will automatic­
ally be activated up to a user defined limit. When storage 
space is released via the FREE statement, adjacent unused 
space will be combined, and unused pages will automatically 
be deactivated. A deactivated page will not be saved on 
permanent storage. In general. recovery of unused storage 
space within a struct Ie viII not be required because 
of the dynamic activation and deactivation of pages. 

By default, the allocation and freeing of BASED variahles 
will be done in a scratch file. Optionally, the programmer 
may specify a particular file through use of the IN clause 
in both the ALLOCATE and FREE statements. In addition, the 

Chapter 6 -- File Handling 127 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

proqrammer may exert some control over the location of the 
allocation. The ALLOCATE statement provides an optional 
means for specifying that a BASED variable shall be NEAR to 
or REMOTE from another based variable or AT a particular 
location. NEAR implies that the allocation shall be made in 
the same page as the referenced variable. If this cannot be 
done, the normal space allocation rules vill apply. The 
REMOTE option implies that the allocation shall be made in a 
new page. 

Examples: 

DECLARE F1 FILE VARIABLE, 
(A, B, C) POINT'€R, 
S (5) PIXED BASED (A) , 
T(8) FLOAT BASED(A), . . . 

ALLOCATE S IN(F1); 
· . . 
ALLOCATE T IN (P1) NEAR (A); 
• • • 
ALLOCATE T SET (C); · .. 
FREE T IN ('1); 
• •• 
FREE C -> T; 

A BAS~D structure variable that can be used in the establi­
shment of relations or associations is known as an ENTITY 
variable. An entity identifier is a maximum of 8 alphanum­
eric characters or break symbols, and must begin with an 
alphabetic character. An example of an entity declaration 
is: 

DECLARE POINT ENTITY (P); 

A system function will be provided to store the structure 
declaration for the POINT variable in a file. At compile 
time this declaration will replace the entity declaration. 
Thus, the entity POINT miqht be replaced by the declaration: 

128 Chapter 6 -- File Handling 



31 MARCR 1972 

DECLARE 1 POINT BASED(P), 
2 H OFFSET (1") , 
2 M OFFSET (F) , 
2 x: FLOAT, 
2 Y FLOAT, 
2 Z FLOAT; 

Presumably, standard declarations will be established for 
projects, thus assuring a continuity of data item declara­
tions across procedures. The variables F and P must have 
been declared by the programmer. 

Since an entity is a pre-defined type of structured based 
variable, normal pointer qualification may be used to refer 
to different generations of an entity. 

Example: 

DECLARE (P1,P2) POINTER, 
POINT ENTITY (P1); 

IF POINT.! < 8.5 THEN 
P2 -) POINT.Y : 5; 

By definition, a set is an ordered collection of en-tities. 
Each entity is referred to as a member of the set. sets 
have a unique identification that may be expressed in terms 
of the file or entity that contains the set and the name of 
the set. The set name is a maximum of 8 alphanumeric 
characters or break symbols and must begin with an alpbabet­
ic character. An example of a set declaration is: 

DECLARE BNDRt SET; 

Generations of the named set may be referenced as follows: 

locator-variable 
locator-variable -) set-name 
locator-variable -) (character-string-expression) 

If only a locator-variable is used to reference a set, the 
locator must have been assigned a value through execution of 
a LET statement. If a locator-variable is used in conjunc­
tion with a set-name or character-string-expression whose 

Chapter 6 -- File B4adlinq 129 



APPLE REFERENCE MANUAL 

31 KIRCH 1912 

value is a set-name, the locator-variable must reference an 
entity that contains the named set. 

A set that is contained by the file in which it resides is 
referred to as a FILE_SET. An example of a FILE_SET 
declaration is: 

DECtARE TERM FILE_SET; 

and may be referenced as follows: 

locator-variable 
set-name [OF (file-variable)] 
character-string-expression (OF(file-variable)] 

If only a locator-variable is used to reference the set, the 
locator must have been assigned a value through execution of 
a LET statement. Alternatively, a FILE_SET may be 
referenced by its name or by a character-string-expression. 
If the optional OF (file-variable) clause is present, the 
FILE_SET in the specified file will be referenced. If no 
file is specified, a "current" file will be interrogated for 
the referenced set. The "current" file may be specified by 
the programmer by setting the STATIC EXTERNAL variable 
SYSFItE.CURRENT equal to a particular file-variable. 

DECLARE 1 SYSFILE STATIC EXTERNAL 
2 SCRATCH FILE VARIABLE, 
2 CURRENT FILE VARIABLE, 
2 STATIC FILE VARIABLE; 

An entity that is an element of a set is said to be a mellb!!r 
of the set. An entity may be the member of one or more sets 
having the same name or different names. Since sets are 
ordered, the programmer can reference the first, second, or 
last member (entity) of a set. Also, since a set mayor may 
not be homogenous, it makes sense to talk about the first or 
second member of a set of a particular type. Entities may 
also contain of one or more sets, provided each set has a 
different name. In the case of a named set owned by an 
entity-variable, many generations of the set can exist in 
the same file. However, only one generation of a named 
FILE_SET may exist in a file. 

A set cannot be allocated or freed. When the INSERT 
statement is first used to make an entity a member of a set, 
the set will automatically be created. Similarly, if all 
.embers of a set are removed, the set will be deleted. 

130 Chapter 6 -- File Handling 



31 rURCH 1912 

The INSERT statement is used to include a generation of an 
entity as a member of a particular set. Any entity may be 
inserted as a member of any set. Hence, a set may contain 
many generations of the same entity or many different 
entities. An entity can also be inserted onto more than one 
set. The first entity inserted into a set will be the fiLst 
member. 

Because sets are ordered, it also is possible to specify a 
position that an entity is to assume as a member of a set. 
The BEFORE, AFTER, FIRST, and LA~T clauses of the INSERT 
statement allow the proqrammer to specify a relative posi­
tion at which to make the insertion. If the membeLs of a 
set are numbered (1,2,3) and a new entity is inserted after 
entity 2, it will become member 3 and the previous member 3 
will become number 4. 

Example: 

nECtARE (P1,P2) POINTER, 
POINT ENTITY (P1), 
CURV E FILE-S RT; 

INSERT POINT OR CURVE; 

INSERT P2 -> POINT ON CURVE; 

The REMOVP. statement is used to remove a member entity from 
one or more sets. If. the ALL option is used, the member 
entity will be removed from ~11 sets of which it is a 
member. If an entity is freed, it will automatically be 
Lemoved from all sets of which it is a member. If a deleted 
entity contains one or more sets, all members of these sets 
will be deleted provided they are members of no other sets. 
This recursive process is continued until no more entities 
can be deleted. Member entities will be deleted regardless 
of their membership in other sets if the INCLUSIVE option is 
applied to the FREE statement. 

Chapter 6 -- File Handling 131 



APPLE BEFERENCE ftANUAL 

Example: 

DECLARE (A, B) POINTER, 
ALL BUILTIN, 
LINE ENTITY (B), 
SETNAK CHAR (8) ; ... 

REMOVE LINE PROK ALL; . . . 
SETN!M = 'LINE_SET'; 
REMOVE A -> LINE PROM SETNAM; 

31 MARCH 1972 

Sets may be searched using either the FIND or FOR EACH 
statements. The FIND statement is used to locate a particu­
lar member of a set or entity that contains a set. If the 
search is successful, the FIND statement will set a locator­
variable to reference a generation of an entity-variable. 
Since sets are ordered, the FIND statement provides a means 
for specification of the n-th member. The user may option­
ally search for an entity of a particular type. The absence 
of the CONTAINING option assumes the search viII be made for 
a member entity. If the CONTAINING option is used, the 
search will be made for an entity that contains the 
referenced set. Searches that are unsuccessful viII either 
raise the PIND condition or cause control to pass to an 
optional ELSE statement. 

Conditions may be placed on the extent of the search 
performed by the FIND statement. The optional WITH clause 
allows a relational-expression to be evaluated for every 
entity included in the search of a set. The relational­
expression may involve attributes of the current entity. If 
the relation is true, the entity will be counted in the 
search. If the relation is false, the entity will ng! be 
counted in the search and the search will continue. If the 
optional UNTIL clause is used, the search will be terminated 
if the UNTIL relational-eKpression is true. 

132 Chapter 6 -- File Handling 



31 MARCH 1972 

Example: 

DECLARR (P1,P2) POINTER, 
DATA ENTITY (P1); ... 

FIND DATA = (I) ENTITY IN 'SETAl; . . . 
FIND P2 = (1) ENTITY CONTAINING P1 ON P2 -> 51; 

If a group of statements is to be executed for all or part 
of the members or containers of a set, the FOR EACH 
statement may be used to delimit the start of the group. 
The forms of the FOR EACH statement have a one to one 
correspondence with the forms of the PIND statement. In 
practice, the function of a POR EACH statement may be 
replaced by the corresponding FIND statement within a DO 
WHILE qroup. In all cases, the failure to find the next 
member or container of the set is sufficient cause to 
terminate the qroup. 

Examples: 

DECLARE (A ,B) POINTER, 
ORDER ENTITY (A); . . . 

POR EACH B -> ORDER=ENTITY ON T5ET; 
I = I + 1; 
N(I) = B -> ORDER. NAME; 

END; 

The Apple language includes a collection of 8 built-in 
functions to aid in the manipulation of entities and sets. 
The operation of each function is described in Appendix 1 of 
this manual. 

Chapter 6 -- File Handling 133 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

CHAPTER 7 - INTERRUPT HANDLING --- . --_. ------ ... -

During the course of program execution, the program may be 
interrupted by the occurrence of an error or an action which 
is generated from an external source. There are two types 
of occurrences which can cause an interrupt: 

1. the raising of a Q2ndit~g!, and 
2. the completion of an ~!!. 

The circumstances which may cause a condition to be raised 
are related to instruction execution; thus the program knows 
"when" and "where" to expect a potential condition to be 
raised. An event is associated with one or more external 
actions that can occur on a peripheral device. Therefore~ 
the Apple program does .!!2! know "when" or "where" to expect 
an event to become complete. 

There are two types of conditions: SIS!~!_£2DditiQD~ and 
~ogr!m~=g~ine~ congi!i2D~. Conditions may be specified 
in the ON~ REV~RT~ and SIGNAL statements. The ON and REVERT 
statements alloy the programmer control over the action to 
be taken when a condition is raised. A complete list of the 
conditions, the circumstances under which they may be 
raised, and the standard system action taken in the absence 
of programmer-specified action, appears in Appendix 2. 

~I§!Y_£Q!l.d~tiol!§ 

Each system condition is identified with a unique identifier 
suggestive of that condition (e.g.~ ZERODIVIDE specifies the 
condition raised whenever an attempt is made to divide by 
zero). This collection of identifiers is an intrinsic part 
of the Apple language, but the identifiers are not reserved. 

134 Chapter 7 -- Interrupt Randlinq 



APPLE REFERENCE "ANUAL 

31 "ARCH 1972 

These identifiers are keywords when used in the ON, REVERT, 
and SIGNAL statements. 

When a system condition is raised, and no programmer­
specified action exists, the standard system action for that 
condition is taken. The ON statement can be used to specify 
some other action, the REVERT statement can be used to 
delimit the scope of an ON statement, and the SIGNAL 
statement can be used to simUlate the raising of a system 
condition. The use of these statements appears later in 
this chapter (also see Chapter 8 - Statements). 

Programmer-defined conditions may be used in testing and 
debugging programmer-specified action. A programmer-defined 
condition is declared with the CONDITION attribute. The 
execution of a SIGNAL CONDITION statement is the only way to 
raise a programmer-defined condition. 

An external action may be referenced in a procedure through 
use of an event. The method of associating an event with 
one or more external actions is defined in the Reactive 
Terminal User's "anual. An example of an external action is 
a user pushing a function key on a graphic terminal, the 
selection of a graphic entity with the light pen, etc. 
Events may be specified in the ON, REVERT, SIGNAL, and WAIT 
statements. The LOCK and UNLOCK statements are used to 
protect portions of program execution from event interrupts. 

~n event identifier may 
declared event may then be 
external actions. 

be declared with any scope. 
associated with one or 

The 
more 

Chapter 7 -- Interrupt Handling 135 



APPLE REFERENCE MANUAL 

31 MARCH 1912 

Example: 

A: PROC; 
DECLARE EV1 EVENT, 

1.V2 EVENT EXTERNAL; ... 
a CALL associating EV1 with external action C1 
a CALL associating EV2 with external action C2 ... 
CALL B; 

END A; 

B: PROC; 
DECLARE EV2 EVENT EXTERNAL; ... 
a CALL associating ~V2 with external action C3 

.. . . 
END B; 

Event EV1, by the rules of default, has internal scope. 
Thus, EV1 is known only within procedure A. Event EV2 bas 
been declared to have external scope. Thus, EV2 is cOllllon 
to both procedures, A and B. Note that the salle event lIay 
be associated with different actions by different 
procedures. 

Event §tat~2 

Every event has two states associated with it: the £Q,pl~= 

tiQn ~ta~ and the g~l.!!Y_~~. Thus, an event can be 
complete or incomplete and delayed or nondelayed. Upon 
declaration an event is initiali~ed to be incomplete, and 
delayed. Each state has a value of '1'8 or loeB. 

An event becomes complete when an external action associated 
with the event occurs. Once an event becomes complete it 
remains complete until the program references the event in 
the ONPTR built-in function which is described later in this 
chapter. The COMPLETION built-in function can be used to 
test whether an event is complete or incomplete (see 
Appendix 1). The SIGNAL statement can be used to set an 
event complete. There is no COMPLETION pseudo-variable. 

136 Chapter 1 -- Interrupt Handling 



31 fURCH 1972 

The delay state of an event determines when a program is 
ready to react after an associated external action becomes 
complete. If the event is delayed, the program reacts to 
event completion synchronously: if the event is nondelayed, 
the program reacts asynchronously. An event is initialized 
to be delayed. When a delayed event becomes complete, the 
completion is enqueued so that the program may react to this 
completion at some future time. When a nondelayed event 
becomes complete, the on-unit associated with the event is 
executed. If no on-unit is found, the ERROR condition is 
raised. 

The delay state can be changed by using the DELAY pseudo­
variable (see Appendix 1). This is the only way to change 
the delay state of an event. 

Example: 

DELAY (EV1) :: 'O'B; 

The above example will set the event EV1 to nondelayed. The 
DELAY built-in function can be used to test whether an event 
is delayed or nondelayed. 

When an event becomes complete, a block of information 
(Event Completion Block) about that completion is saved (see 
the Reactive Terminal User's Manual for details about this 
information). The ONPTR built-in function provides a means 
of accessing the saved information (see Appendix 1 
Built-in Functions). The value returned by the ONPTB 
built-in function specifying an event is a pointer to the 
Event Completion Block saved when that event became com­
plete. The reference to the event in the ONPTR built-in 
function also resets the event to incomplete. Since event 
occurrences may be queued, another ONPTR reference to the 
same event may return a pointer to another information 
block. If another occurrence has not been queued, a null 
pointer is returned. 

Chapter 7 -- Interrupt Handling 137 



APPlE REFERENC! ~ANUAL 

31 MARCH 1972 

The interrupt-handling statements are the ON, REVERT, SIGN­
AL, WAIT, LOCK, and UNLOCK statements. The ON, SIGNAL, and 
REVERT statements are used with both conditions and events, 
while the WAIT, LOCK, and UNLOCK statements are used only 
with events. 

A system action exists for every condition or event. The ON 
statement is used to specify alternative action that is to 
be taken when a specified condition is raised or event 
becomes complete. 

When an ON statement that is internal to a given block is 
executed, the specified action remains in effect until 
overridden or until termination of the block containing the 
ON statement. An established action passes from the defin­
ing block to all dynamically descendent blocks, and the 
action remains in force until overridden by execution of 
another ON statement for the same condition or event. If 
overridden, the new action remains in force only until that 
block is terminated. When control returns to the activating 
block, all established actions that existed at that point. 
are re-established. This makes it imRg~§!bl~ for a subrou­
tine to alter the interrupt action for a block that invoked 
the subroutine. 

If more than one ON statement for the same condition or 
event appears in the same block, each execution of an ON 
statement overrides the action established by previous 
execution of other ON statements. No ~e-establishment is 
possible, except through execution of another ON statement 
with an identical action specification. 

Control passes to the on-unit in an ON statement only when 
the specified condition is raised or the specified event 
becomes complete. Any variables which appear in the on-onit 
have the attributes and the environment of the block 
dynamically encompassing the ON statement unless they are 
declared in the on-onit. If the on-unit is a null state­
ment, no action is taken when the condition or event occurs. 
In some situations, the programmer may want to specify his 

138 Chapter 7 -- Interrupt Handling 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

own action for a given c ition or event, to have it hold 
for part of the execution of the program, and then to have 
this specification nullified and allow the standard system 
action. In this case he may use the keyword SYSTEM as the 
action specifica~ioD. 

Example: 

X: PROCEDURE; 
DECLARE (A ill 3) PIXED; . . . 
ON OVERFLOW 

BEGI N; 
PUT FT.!.!(F1) EDTT(A, B) (F(2), F(6»; 

END; 
.. . .. 
Y: SEGHl; 

D1':CL AE:g fA, PLOAT; 

END Y; 

END X; 

lostrates t effect of establishment of the 
va bies at the time an ON statement is 

"VERFLOV condition should arise, the 

This example 
generation of 
executed. If t 
values transmitte 
be the values 
the outer bi 
condition s 
blocK Y If where 

PUT statement in the on-unit will 
A and B that are declared in 
true evan if the OVERFLOW 

execution of the begin 
have been redeclared. 

Example: 

A: PROCEDURE; 
., .. .. 
ON OVERFLOW 

BEGIN; 
DECLIRE NOMBO' PIlED STATIC INITIAL (0,; 
NOBBOV = IOMBO' + 1; 
IP ROMBO' = 100 THEN GO TO OVERR; 

END; ... " 
ON OVERFLOW; . .. .. 

OVERR: ON OVERFLOW SYSTEM; ..... 
END I; 

Chapter 7 -- Interrupt Handling 139 



lPPL REFERENCE ~A.UAL 

31 PlARCH 1972 

In the above example, assume that e program cons 
of procedure A; that the three ON statements are the 

s only 
only ON 
yare 
til r 
R F'T.O W 

statements 10vo19 OV RFLOW con~ 

int~rnal to an that t 

h 

tl.flq- t. 
ON OVERFLOW 

,_ iii h 

he first 
ed in 

d if 

stat~ is Tb 

'" . 
()tl 

n 

(lctio h h 

null st~te~ent; a y s 
b 0 until cent 

~ tamen, ~hich r9-esta 1 

n~ SI~NAL statement 

r1 i tionl9 
stat.ement 

(~S t.'1A :'i.Gtion to 
exeeu t~-" • 

to est hI h an asy 
en an vent 

~hR eVRnt spAci statn nt must be non 
for contr 1 to pass to the -unit VhPH an errupt occurs .. 
If the eVAnt , executi n 1 cont ue the 
interru w not. to on-unit:. 

1«0 '1 -- Intern:! ng 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

Example: 

A: PROCEDURE; 

END A; 

DECLARE IYZ EVENT; ... 
a CALL associating function key 3 with XYZ 

ON EVENT (XYZ) 
BEGIN; ... 
END: 

DELAY (IYZ) = 'O'B; 

The event XYZ is initialized to be delayed. If the function 
key is depressed before the statement associating XYZ with 
function key 3 is executed, the interrupt is ignored. If 
the interrupt occurs before the DELAY (XYZ) = 'O'B; state­
ment is executed, execution will continue normally; control 
will not pass to the on-unit. If the interrupt occurs after 
the DELAY (XYZ) ; 'O'B statement is executed, control will 
pass to the on-unit of the ON statement. The execution of a 
DELAY (XYZ) = '1'B; statement will re-establish synchronous 
action when the interrupt occurs. The delay value at the 
time the external action occurs determines whether control 
passes to the on-unit. 

The REVERT statement may be used, following an ON statement, 
to reinstate an action specification that existed in the 
nearest dynamically encompassing block at the time the 
descendant block was invoked. The REVERT statement does not 
re-establish the completion or delay values of an event, 
only the specified on-unit. Since there may only be ~ 
active on-unit in a block for the same interrupt, the REVERT 
statement cannot revert back to a previously active on-unit 
in the same block, only to the active on-unit in the nearest 
dynamically encompassing block. 

Chapter 7 -- Interrupt Handling 141 



APPLE ~EFERENCE MANUAL 

Example: 

A: P~OCEDURE; 

END A; 

ON ZERODIVIDE 
GO TO AERR; 

• • • 
CALL B; 
• • • 

B: PROCEDURE; 

END B; 

ON ZERODIVIDE 
GO TO BE~R; 

• • • 
REVERT ZERO DIVIDE; 

31 MARCH 1972 

In the above example, if a ZERODIVIDE condition occurs in 
procedurp. e after execution of the ON statement, an inter­
rupt will take place with the resulting action GO TO BERR. 
After execution of the REVERT statement, the action as 
specifiE~ by the ON statement in procedure A is reinstated. 
Program control remains in procedure S, but any subsequent 
ZERODIVIDF. condition that occurs in procedure B will cause 
an interrupt with the action GO TO AERR and result in the 
termination of block B. 

The SIGNAL statement simulates the occurrence of the speci­
fied condition or event. It can be used to test and debug 
the action specification of an ON statement. The SIGNAL 
statement is the only way to pass control to the on-unit of 
an ON statement specifying a programmer-defined condition. 

The WAIT statement is used to relinquish control and to 
synchronize the processing of delayed event completions. 
The WAIT statement cannot be used with conditions or 
non delayed events. 

142 Chapter 7 -- Interrupt Handling 



31 AARCH 1972 

Example: 

A: PROCEDURE; 
DECLARE EC_1 EVENT, 

EC_2 EV~NT: · .. 

APPLE REFERENCE AANUAL 

a CALL associating funG~ion key 1 with EC_' 
a CALL associating function key 1 with !C_2 · .. 
WA IT (ANY); · .. 

END A; 

Tn the above exam~le, the proar~~ will go into a wait state 
until one of EC_ "I and. F.C_2 becomes -complete, a4: which time 
processinq continues. 

The LOCK and UNLOCK statements are used to place a program 
or part of program execntio~ into locked status. When a 
program is in locked status, all asynchronous events will be 
queued. No on-units specified in ON EVENT statements will 
be invoked during locked status. On-units for conditions 
are not affected by the LOCK and UNLOCK statements. 

Example: 

A: PROCEDURE; 
DECLARE 11 EVENT; 
a CALL associating external action with 11 ... 
ON EVENT(X1) ABC = ABC+ 1; 
DELAY(X1) = 'O'B; 
LOCK; 
• • • 
UNLOCK; 
• •• 

END A: 

In the above example, if the event X1 becomes complete 
between the LOCK and UNLOCK statement, that completion will 
be queued until the UNLOCK statement bas been executed, at 
which time the on-unit; ABC = ~BC + 1, will be executed. 

Chapter 7 -- Interrupt Handling 143 



~PPLE REFERENCE ftANUAL 

31 MARCH 1972 

This chapter includes a description of each statement in the 
Apple language. These descriptions are presented in alpha­
betic order. 

statements may be classified into the following logical 
groups according to the function that they perform: assign­
ment, control, flle-handling, declaration, interrupt handl­
ing, program structure, storage allocation, and the null 
statement. 

!§sigR~en1-§!at~A! 
The assiqnment statement is used to evaluate expressions and 
to assign values to scalars, arrays, and structures. 

~2n1I2!_§!AtemeDt§ 
The control statements affect the normal sequential flow of 
control through a program. The control statements are CALL, 
DO, END, EXIT, FOR BACH, GO TO, IF, PROCEDURE, RETURN, 
SIGNAL, and WAIT. 

!il~~~~li!~~tat~~D!§ 
The GRT and PUT statements cause values to be transmitted 
between sequential files or character strings and specified 
variables in the program. Associative data structures are 
built from entities and sets contained in structured data 
files. The FIND, FOR EACH, INSERT, REKOVE, and LET state­
ments are used to reference and manipulate associative data 
structures. 

Declaration statement 
The-declaritlon-stitement, DECLARE, specifies the attributes 
to be associated with identifiers. 

I!t~rrY21-hand!inS-§!4temeD!§ 
There are two kinds of interrupts; internal interrupts or 

144 Chapter 8 -- statements 



APPLE REFERENCE MANUAL 

conditions, and external interrupts or events. The ON, 
REVERT, and SIGNAL statements are used with both kinds of 
interrupts while the LOCK, UNLOCK, and WAIT statements apply 
only to the external interrupts. 

PIogram~£~~~~!~~n!~ 
The program structure statements 
END, DO, FOR EACH, and ENTRY. 
delimit the scope of declarations 
and FOR EACH statements delimit 
control or repetitive execution. 
vides a secondary entry point for 

~torage al1Q£!!ioA-~tem~n!§ 

are: PROCEDURE, BEGIN, 
The first three statements 
within a program. The DO 
qroups for the purposes of 
The ENTRY statement pro­
a procedure. 

The storage allocation statements are ALLOCATE, CREATE, 
DELETE, and FREE. These statements obtain and release 
storaqe for based variables. 

Function: 

The ALLOCATE statement causes storaqe to be allocated for 
specified based variables. 

General format: 

allocate-statement .. -.. -
ALLOC'TE allocation (, allocation] ••• ; 

allocation ::: 

identifier [IN(scalar-file-variable)] 
[ALIGN (integer-expression) ] 
[SET (scalar-locator-variable) ] 

[{!!:~TB} (SCalar-locator-yariable~ 
General rules: 

Chapter 8 -- Statements 145 



APPLE REFERENCE ~ANUAL 

31 MARCH 1972 

1. The "identifier" roust be the name of a le~el-1 
scalar, array, or major structure yariable with 
the storage-class attribute BASED. 

2. The amount of storage to be allocated is deter­
mined by evaluating all bounds of arrays and 
lengths of strings. Although the extents and 
initial values of the variable are evaluated at 
the time of execution of the ALLOCATE statement, 
the names in these expressions are interpreted in 
the environment of the OECtAR! statement. These 
expressions may not contain references to the 
variable being allocated except in the REFER 
option. 

3. The allocation of a based variable has no effect 
on other generations of the variable. A given 
generation of a based variable may be accessed by 
a suitable based reference regardless of alloca­
tions of the same based variable made subsequent­
ly. The allocation of a based variable proceeds 
as follows: 

a. Bounds and string lengths of all the fields 
are evaluated in an unspecified order. 
Expressions preceding the keyword REFER are 
used as the values of the bounds and string 
lengths specified by the REFER options. 

b. Sufficient storaqe for a generation of the 
based variable with these evaluated bounds 
and string lengths is allocated. Should 
there bR insufficient space for the alloca­
tion in the file, the STORAGE condition will 
be raised. 

c. Within the newly allocated generation, those 
variables that are obiects of REFER options 
are initialized to the values evaluated in 
the REFER ontions. This initialization is 
performed in an undefined order. 

d. The locator variable specified in the SET 
option or, in its absence, the locator vari­
able specified in the BASED attribute of the 
based variable declaration is assigned a 
pointer value that identifies the generation 
just allocated .. 

146 Chapter 8 -- Statements 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

e. Initial values specified in the declaration 
of the based variable are assigned to the new 
generation. 

4. The allocation of a based variable involves the 
based variable to be allocated, a locator variable 
to identify the new generation, and a file vari­
able if the generation is to be allocated in other 
than scratch storage. If no SET option is speci­
fied, a SET option is assumed to specify the 
locator variable qiven in the BASED attribute of 
the based variable declaration. It is an error if 
the BASED attribute does not specify a locator 
variable. If the SET option specifies an offset 
variable and there is not an IN option, then an IN 
option that specifies the file variable given in 
the declaration of the OFFSET attributes is 
assumed~ If no file variable is specified, the 
program is in error. 

5. If the SET option specifies an offset variable, 
the pointer value identifying the new generation 
is assigned to the offset variable. The IN 
option, either in the statement or assumed, must 
refer to the same file as that specified in the 
OFFSET attribute of the offset variable 
declaration. 

6. If no IN option is present and none is assumed, 
the new generation is allocated in a scratch file. 
In the case of entity variables, the default file 
is determined from the value of SYSFILE.CORRENT. 

DECLARE 1 SYSFILE STATIC EXTERNAL, 
2 SCRATCH PILE VARIABLE, 
2 CURRENT FILE VARIABLE, 
2 STATIC FILE VARIABLE; 

7. If an IN option is present, or is assumed, an 
attempt is made to allocate the new generation in 
the designated structured file. If insufficient 
storage exists, the STORAGE condition is raised. 

8. If the NEAR option is present, an attempt will be 
made to allocate the based variable in the same 
page as referenced by the locator variable. If 
the attempt fails, the NEAR option will be 
ignored. 

Chapter 8 -- statements 147 



APPLE REFERENCE ~ANUAL 

9. If the 
be made 
page. 
will be 

31 MARCH 1972 

REP10TE option is present, an attempt will 
to allocate the based variable in a new 
If the attempt fails, the REMOTE option 
ignored. 

10. If the AT option is present, an attempt will be 
made to allocate the based variable at the address 
specified by the locator variable. If the attempt 
fails, the STORAGE condition is raised. 

11. If the ALIGN option is present, the integer­
expression will be evaluated to give a value ~. 
An attempt will be made to allocate the based 
variable at a location whose address is an integer 
multiple of FLOOR(~/64}*64. If the attempt fails, 
the STORAGE condition will be raised. 

12. On normal return from a STORAGE on-unit, all the 
options are re-evaluated and the allocation is 
attempted again. 

Examples: 

DECLARE A(N, M) BASED(P), 
(P,Q) POINTER; 

N, M = 100; 
ALLOCATE A; · . . 
N = 50; 
ALLOCATE A SET (Q) ; 

· . . 
This example creates two generations of A, the first is 100 
x 100 and the second 50 x 100. 

DECLARE NAME CHARACTER(200) BASED, 
(P, Q) POINTER; 

· . . 
ALLOCATE NAME SET(P); 
ALLOCATE NAME SET(Q) ; 

P -> NAME = 'ABC'; 
Q -> NAME = 'XYZ'; 

In this example, two generations of NAME are created, each 
having a length of 200 characters. The pointer P identifies 
the first generation and the pointer Q identifies the 
second. 

148 Chapter 8 -- statements 



APPLE BEFERENCE MANUAL 

31 MARCH 1972 

DECLARE NAME CHARACTER(N) BASED, 
(P, Q) POINTER; 

N = 100; 
ALLOCATE NAME SET(P): . . . 
N :: 200; 
ALLOCATE NAME SE~(Q); 

This example differs from the previous one in that the 
length of NAME is specified by the expression N, thus 
allowing the length of each generation to be unique. 
However, because the extents of based variables are eva­
luated at each reference, the programmer must ensure that N 
has the proper value when each generation of NAME is 
referenced. 

N :: 100; 
p -> NAME = , ABC' ; 
N = 200; 
Q -> NAME = 'Xyzt; 

1* P -> NAME ::: Q -> NAME; *1 

The assignment shown as a comment is illegal because N 
cannot have the value 100 and 200 at the same time. To 
relieve the programmer from the burden of maintaining the 
proper extents when referencing based variables, the REFER 
option can be used. 

DECLARE 1 S BASED, 

... 
M = 3; 

2 N FIXED BINARY(23), 
2 NAME CHARACTER(M REFER(S.N», 

fP,Q) POINTER, 
M FIXED BINARY (23) ; 

ALLOCATE S SET(P): 
M :: 4; 
ALLOCATE S SET(Q); 
P -> NAME::: 'ABC'; 
Q -> NAME = P -> NAME !! 'D'; 

Each allocation causes the length expression M to be 
evaluated and its value used to create storage for the 
generation of S being allocated. The value of M is then 
assigned to the newly allocated generation of S.N. Subse­
quent references to NAME always use the generation of S.N 
identified by the pointer used to reference NAME. 

Chapter A -- Statements 149 



APPLE REFERENCE ~ANUAL 

31 MARCH 1972 

Q -) NAME uses Q -> S.N 
P -> NAME uses P -> S.N 

The value of Q -) NAME after the last statement is 'ABCD'. 

Function: 

The assignment statement is 
and to assign its value 
The target variables may be 
The target variables 
pseudo-variables. 

General format: 

assignment-statement ::= 

used to evaluate an expression 
to one or more target variables. 
scalars, arrays, or structures. 
may also be indicated by 

{
scalar-assignment } 
array-assignment 
structure-assignment 

. 
• 

_. : __ {SCalar- variable [, scalar-var iable 1 ••• } 
sr,alar-assignment 

pseudo-variable [# pseudo-variable] 

= scalar-expression; 

array-assignment ::= array-variable [,array-variable] ••• 

structure-assignment 

syntax rule: 

= {array-eXpression } 

scalar-expression 

::= structure-variable 
(,structure-variable] ••• 

= structure-variable i 

In the scalar-assignment, the target variables must be 
scalars. In the array-assignment, the target variables must 
be arrays. Assignment of structures can only be made 
between structures that have the same number of elements, D, 

150 Chapter 8 -- Statements 



APPLE REFERENCE ~ANUAt 

31 "ARCH 1972 

such that for 1 ~ i ~ n, the !th element of each structure 
has identical data and aggregate attributes. 

General rules: 

1. A scalar assignment consists of the following 
operations carried out in undefined order: 

2. 

a. Subscripts and qualification of the targets 
are evaluated. 

b. The expression on the right-hand side is 
evaluated. 

c. Por each target variable the value of the 
expreSS10n is converted to the characteris­
tics of the target variable according to the 
rules stated in "Expressions" in Chapter U 
Data Manipulation. The converted value is 
then assigned to the target variable. 

The following rules apply to 
assignment: 

str.ing scalar 

a. If the target is a fixed length string, the 
expression value is truncated on the right if 
it is too long or padded on the right (with 
blanks for character strings, zeros for bit 
strings) if the value is too short. The 
resulting value is assigned to the target. 

b. If the target is a string with the VARYING 
attribute and the value of the expression is 
longer than the maximum length declared for 
the variable, the value is truncated on the 
right. The target string acquires a current 
length equal to its maximum length. 

c. If the target is a character string with the 
VARYING attribute and the value of the expre­
ssion is not greater than the maximum length 
declared for the variable, the value is 
assigned and the current length of the target 
string becomes equal to length of the value. 

d. If the target is the SUBSTR pseudo-variable 
of a character string with the VARYING attri­
bute, the length of the target character 
string will not be changed by the assignment. 

Chapter 8 -- statements 151 



APPLE REFERENCE MANUAL 

31 MARCH 1912 

e. If either the source or target string is 
qualified by a descriptor variable, the 
length field of the descriptor will override 
the declared length of the string. 

1. The following rules apply to assignments other 
than string: 

a. If the target is a locator variable, the 
expression must yield a locator value. 

b. If the target is a label variable, the 
expreBsion must be a label constant or label 
variable. In both cases, the environment of 
the label will be included in the assignment. 
The environment of a label constant is 
created by the activation of the block in 
which the constant appears. References to a 
label constant contained in an inactive block 
produces undefined results. 

c. If the target is a file variable, the expres­
sion can only be a file variable or a 
function that returns a file variable value. 

d. If the target is an entry variable, the 
expression must be an entry constant or entry 
variable. The environment of the entry will 
be included in the assignment. The environ­
ment of an entry constant is created by the 
activation of the block in which the constant 
appears. References to an entry constant 
(with internal scope) contained in an inac­
tive block produces undefined results. 

4. The following rules apply to array assignment: 

a. All target variables must have the same 
number of dimensions and identical constant 
bounds. If the expression is an array vari­
abler it must have the same number of dimen­
sions as the target variables and the bounds 
must be identical. 

b. If the expression is a scalar-expression, it 
is evaluated and the value is assigned to all 
elements of the target variables. 

152 Chapter 8 -- statements 



APPLE REFERENCE MANUAL 

31 PIJARCH 1972 

c. If either the source or target array is 
qualified by a descriptor variable, the 
length field of the descriptor will override 
the declared length of the array_ 

5. The following rules apply to structure assignment: 

Examples: 

a. Target and source variables must be left to 
right equivalent. 

b. The bounds and lengths of 
elements must be constant and 
time of the assignment. 

all contained 
match at the 

c. If either the source or target structure is 
qualified by a descriptor variable, the 
length field of the descriptor will override 
the declared length of the structure. 

The following example illustrates array assignment: 

GiYen the arrays A = 

[~ ~] 
and B = 

The value of A after the execution of the assignment 
statement: 

A = (A + B) * * 2 - A (1 , 1) ; 

is 

[9~ 14 
98 

79~ 194 
119 
119 

Chapter 8 -- Statements 153 



APPLE REF!RENCE MANUAL 

31 MARCH 1972 

The followinq example ill ustrates string assignment: 

DECLARE A CHAR ACT1'.:R (5) INITIAL ('XZ/BQ') , 
B CHARACTER(8) VARYING INITIALC'MAPY'}, 
C CHARACTER (3) , 
D CHAR ACTEH (5) VARYING; 

c = A; 1* c is 'XZ/' *1 
C = t X' ; 1* C is • Xbb' *1 
T> -= B; /* D is 'PU FY' */ 
D -= SURSTR (A,2,3) ! ! SUBS'T'R(A,2,3) ;1* n is • Z/BZ/' *1 
SUBSTR (1,2,4) -= B; 1* 1 is ' XfUFY' *1 
SUB~TR(B,2,2) = 'R'; 1* B is • MHbY' *1 
SfJBSTR (B ,2) = • H' ; 1* B is ' MRbb' *1 

Function: 

The BEGIN statement is the beading statement of a begin 
hlock (see Chapter 2 for a discussion of blocks). 

General format: 

begin-statement ::-= BEGIN; 

~eneral rules: 

1. The BEGIN statement is used in conjunction with an 
END statement. 

2. A begin block may not directly contain an ENTRY 
statement or a RETURN statement. 

Function: 

The CALL statement invokes a procedure and causes control to 
be transferred to a specified entry point of a procedure. 

~eneral format: 

154 Chapter 8 -- statements 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

call-statement ::= 

CALL entry-expression [ (argument (, argument ••• ]) ): 

Syntax rules: 

1. The entry-expression specifies the entry point of 
the invoked procedure. 

2. An argument is an expression. 

General rules: 

1. The entry-expression can either be an entry con­
stant or an entry variable that has bad an entry 
value assigned. 

2. Any argument expressions are evaluated when the 
CALL statement is executed. This includes the 
execution of anyon-units entered as the result of 
conditions raised during the evaluation. 

3. The called procedure is invoked in the environment 
of the entry value. If the containing block is 
inactive, the results are undefined. This value 
is established after the evaluation of the argu­
ment expressions and thus reflects any modifica­
tions made to the calling block's environment 
during the evaluation of the argument expressions. 

4. The attributes of argument expressions must match 
the attributes of corresponding parameters. For 
details of the correspondence between arguments 
see "Correspondence of Arguments and Parameters" 
in Chapter 2. 

Chapter 8 -- Statements 155 



APPLE REFERENCE MANUAL 

EXample! 

A: PROCEDURE; 
DECLARE X FIXED; 

B: PROCEDURE (Il RETURNS (FIXED) ; 
DECLARE I FIXED; 
X = 2; 
RET URN (I + 1) ; 

END B; 
X = 1; 

L: CALL C{B(5»; 

C: PROCEDURE (J) ; 
DECLARE J FIXED; 

31 MARCH 1912 

When procedure C is invoked at statement L, J will take on a 
value of 6. X will have the value 2. This occurs because 
the argument list of the CALL of C causes an invocation of B 
as a function. The function B sets the variable X declared 
in A to the value 2 and returns a value one greater than I, 
namely 6. 

(see the ALLOCATE statement) 

Function: 

The DF,CLARE statement is a non-executable statement used in 
the specification of attrihutes of simple names. Attributes 
common to several names can be factored to eliminate 
repeated specification of the same attribute for many 
identifiers. This factoring is achieved by enclosing the 
same declarations in parentheses and following this by the 
set of attributes to be applied. Level numbers, for 
structure declarations, may also be factored, but in such 
cases, the level number precedes the parenthesized list of 
names. 

156 Chapter 8 -- statements 



31 PlARCK 1972 

General format: 

• declare-statement .. -.. -
DECLARE declaration-list; 

declaration-list ::= 

APPLE REFERENCE MANUAL 

declaration [, declaration 1 ••• 

declaration ::= 

I integer (simple-declaration-list) 
jCdeclaration-list) } 

~integerl identifier 
attribute-list 

simple-declaration-list ::= 

simple-declaration [, simple-~eclaration 1 ••• 

simple-declaration ::= 

$identifier } 

t (simple-declarat ion-list) 

attribute-list ::= 

at tribute-list 

r (dimension-attribute) ) [ attribute ••• ) 

Syntax rules: 

1. Any number of identifiers may be declared as names 
in one DECLARE statement. 

2. Attributes must follow the names to which they 
refer. 

3. The "integer" indicates the level in a structure 
declaration and must be an unsigned decimal integ­
er greater than zero. If it is not specified, 
level 1 is assumed. All structure declarations 
must be preceded by a level number. 

4. A DECLARE statement may have 
transfer of control to such 
treated as if it were on a 
execution continues with 
statement. 

a label prefix. On 
a label, the label is 
null statement and 

the next executable 

Chapter 8 --. Statements 157 



APPLE R!F!RENCE MANUAL 

31 MARCR t912 

General rules: 

1. A data type attribute must be specified 
scalars, arrays of scalars, and 
elements. 

for all 
structure 

2. All of the attributes given explicitly for a 
particular name must be declared together in one 
DECLARE statement. 

3. No attribute may be specified more than once for 
the same name. 

4. Attributes of EXTERNAL names, declared in separate 
blOCKS, must not conflict or supply explicit 
information that vas not explicit or implicit in 
other declarations. 

Declaration of structures: 

The outermost structure is a maior structure and all 
contained structures are minor structures. A structure is 
specified by declaring the major structure name and follow­
ing it with the names of all contained elements. F.ach name 
is preceded by a level number as defined in the syntax 
rules. A major structure is always at level one and all 
elements contained in a structure (at level ») have a level 
number that is numerically qreater than », but they need not 
necessarily be a level n+1, nor need they all have the same 
level number. 

A minor structure at level» contains all following items 
declared with level numbers greater than n up to but not 
includinq the next item with a level number less than or 
equal to~. A major structure description is terminated by 
the declaration of another item at level one, by the 
declaration of an item having no level number, or by the end 
of the DECLARE statement. 

158 Chapter B -- statements 



APPLE REFERENCE MANUAL 

31 "ARCH 1972 

Examples: 

DECLARE «A FIXED, 
B FLOAT) STATIC, 
C ENTRY) EXTERNAL; 

This declaration is equivalent to the following: 

DECLARE A FIXED STATIC EXTERNAL, 
B FLOAT STATIC EXTERNAL, 
C ENTRY EXTERNAL; 

DECLARE 1 S AUTOMATIC, 
2 (T FIXED, 

U FLOAT, 
V CHARACTER(10»; 

This declaration is equivalent to the followiag: 

DECLARE 1 S AUTOPIATIC, 
2 T FIXED, 
2 U FLOAT, 
2 V CHARACTER(10); 

(see the PREE statement) 

Function: 

The DO statement delimits the start of a do-group and may 
specify repetitive or selective execution of the statements 
within the group_ 

General format: 

do-statement ::= 

[
WHILE (relational-expression) ] 

DO CASE (scalar-integer-expression 
variable = specification 

Chapter 8 -- statements 159 



APPLE REFEREWCE MANUAL 

specification ::= 

[
TO expr2 

expr1 
BY expr3 

Syntax rules: 

{ BY 

[TO 

31 MARCH 1972 

expr3 ]~ 
[WHIL~(relational-expression) ] 

expr21 

1. The "variable" is a scalar arithmetic variable of 
any storage class. 

2. Each "expr" in the specification is a scalar 
expressi on. 

3. If the BY clause is omitted from the specification 
and the TO clause appears, the value of expr3 is 
assumed to be 1. 

4. If the TO clause is omitted from the specification 
and the BY clause appears, the iteration is 
performed until termination by the WHILE clause, 
if present, or by some other statement within the 
qroup. 

5. If both the TO and BY clauses are omitted, this 
form of the specification implies a single execu­
tion of the do-qroup with the control variable 
having the value of expr1 or it implies no 
execution if the WHItE statement is false. 

General rules: 

1. In a simple DO statement without any iterative, 
relational, or selective specification, the state­
ment serves to delimit the start of a do-group. 

2. If only 
statement 
specifies 
following: 

a WHItP. clause is specified, the DO 
delimits the start of a do-group and 
repetitive execution defined by the 

160 Chapter 8 -- Statements 



APPLE DEFERENCE 8ANUIL 

31 KARCH 1972 

LABEL: DO WHILE ( relational-expression ); 
statement-1 ... 
statellent-n 

END; 
BEXT: statement 

The above is exactly equivalent to the following 
expansion: 

LABEL: IF ~(relational-expression) THEN 
GO TO NEIT; 
statement-1 
••• 
statellent-n 
GO TO LABEL 

NEIT: statement 

3. If a CASE clause is specified, the DO statement 
delimits the start of a do-group and specifies 
that a particular statement of the group is to be 
executed. Following execution of the selected 
statement, control passes to the statement follow­
ing the qroup unless the executed statement causes 
a transfer of control. A statement in this 
context may be a single statement, a do-group, or 
a BEGIN block. The execution of the DO CASE group 
is defined as follows: 

DO CASE (scalar-integer-expression); 
statellent-O 
••• 
statement-n 

END; 
NEXT: statement 

The above is exactly equivalent to the following 
expansion: 

DECLARE L(O:n)L1BBt CONSTANT(tO,L1, ••• Ln); 
GO TO L(sca1ar-inteqer-expression); 

LO: statement-O 
GO TO NEXT; 

L1: statement-1 
GO TO N!llT; 
••• 

Ln: stateaent-n 
NEXT: statement 

Chapter 8 -- statements 161 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

If the value of the scalar-integer-expression is 
outside the range 0 to n then the program is in 
error and the results are undefined. 

4. If the no statement defines a variable and a 
specification, the statement delimits the start of 
a do-group and specifies controlled repetitive 
execution defined by the following: 

DO variable(a1, ••• ,am} = expr1 TO expr2 
BY expr3 WHILE(expr4); 
statement-l . . . 
statement-n 

LABELl: END; 
NEXT: statement 

This is exactly equivalent to the 
expansion: 

temp1 = a1; 
••• 
tempm = am; 
e1 = expr1; 
e2 = expr2; 
e3 = expr3; 
v = e1; 

following 

LAB'EL2: IF (e 3>=0) & (v>e2) ! (e.3(O) & (y(e2) THEN 
GO TO NEXT: 
IF (expr4) THEN; 
ELSE GO TO NEXT; 
statellen t-1 ... 
statement-n 

LABELl: v = v + e3; 
GO TO LABEL2; 

NEXT: statem~nt 

In the above expansion* a1, ••• *an are expressions 
that may appear as subscripts of the control 
variable* and temp1,... tempo are compiler­
created integer variables to which the expression 
values are assiqned; v is equivalent to "variable" 
with the associated "tellp" subscripts; "e1", "e2", 
and "e3" are compiler-created yariables having the 
attributes of "expr1", "expr2", and "expr3" respe­
ctively. In the simplest cases, there are no 
subscripts (i.e. II = 0) and the first statement 
in the expansion is therefore: e1 = expr1;. 
Additional rules for the above expansion follow: 

162 Chapter 8 -- Statements 



APPLE REFERENCE "ANUAL 

31 !ARCH 1972 

a. If the WHILE clause is omitted, the IF 
statement immediately preceding statement-1 
in the expansion is omitted. 

b. If nTO expr2" is omitted, the statement "e2 = 
expr2;" and the IF statement identified by 
LABEL2 are omitted. 

c. If both 
omitted, 
as well 
oMitted. 

"TO expr2" and nBY expr3" are 
all statements involving e2 and e3 
as the statement GO TO tABEL2, are 

d. Although the above expansions show a specific 
order in which the BY and TO clauses are 
evaluated, this order is undefined. 

5. The WHILE clause specifies that before each asso­
ciated execution of the do-qroup , the relational­
expression is evaluated and, if the result is 
false, the iterations associated with the current 
iteration are terminated. 

6. In the specification, expr1 represents the start­
ing value of the control variable. Expr3 repre­
sents the increment to be added after each itera­
tion to the control variable. Expr2 represents 
the terminating value of the control variable. 
Iteration terminates as soon as the value of the 
control variable passes its terminating value. 
When the last specification is completed, control 
passes to the statement following the do-group. 

7. Control may, under any circumstances, be trans­
ferred into a do-group from outside the do-group 
provided that no iteration or selection is speci­
fied on the DO statement that delimits the group. 
If the do-group is selective or iterative, a GO TO 
statement can transfer control to a statement 
inside the group if the GO TO specifies an 
out-of-block transfer from a block that has been 
activated from within the do-group. 

8. The effect of allocating or freeing the control 
variable is undefined. 

Chapter 8 -- statements 163 



A~PLE REFERENCE MANUAL 

Examples: 

DO INDEX = Z WHIL!(A < B); 
DO I = 1 TO 9; 
DO CASE (3*I+5) ; 
DO; 
DO WHtLE(TAX - DP,DCT > ESTTAX * 4) ; 

Function: 

The END statement terminates blocks and groups. 

General format: 

end-statement ::= END [identifier] ; 

General rules: 

31 MARCH 1972 

1. The END statement terminates that group or block 
headed by the nearest preceding DO, BEGIN, PROCE­
DURE, or FOR EACH statement for which there is no 
other corresponding END statement. 

2. If an identifier follows the END, the block or 
group closed by the END statement must be preceded 
by the same label. 

3. If control reaches an END statement terminating a 
procedure it is treated as a RETURN statement. 

4. If control reaches an END statement terminating a 
begin block that is an on-unit, control is 
returned to the point specified for that particu­
lar interrupt. This is a "normal return" from the 
on-unit. 

Function: 

The ENTRY statement specifies a secondary entry point to a 
procedure. 

164 Chapter 8 -- statements 



31 "ARCH 1972 

General format: 

en try-statement .. -.. -

APPLE REFERENCE "ANUAL 

entry-name: ENTRY[ (paralleter [, parameter] ••• ) ] 
[ "RETURNS (data-at tributes) ]; 

General rules: 

1. Each "paralleter" identifies a variable that is to 
be received at the specified entry point. When 
the entry is invoked, a relationship is estab­
lisbed between the arguments of the invocation and 
the parameters of the invoked entry point. 

2. If the entry is invoked as a function reference, 
the RETURNS option must be specified. The data­
attributes of the RETURNS option specify the 
attributes of the value returned by the entry. 
The attributes that may be specified are the 
arithmetic, string, locator, and file attributes. 

3. An ENTRY statement cannot be internal to a begin 
block, nor can it be internal to a group that 
specifies iteration or selection. 

Function: 

The EXIT statement causes immediate termination of the 
program that contains the statement. 

General forllat: 

exit-statement ::= EXIT; 

General rule: 

If an EXIT statement is executed, the FINISH condition 
is raised. On normal return from the FINISH on-unit, 
the program is terminated. 

Chapter 8 -- Statements 165 



APPLE REFERENC! MANUAL 

31 MARCH 1972 

Th~ND statem~ 

Function: 

The FIND statement is used to locate a specified entity that 
is a member of a set or container of a set. 

General format: 

find-statement ::= 

FIND find-specification {[,] ELSE statement J ; 

find-specification ::= 

entity-specification-1 f=( (integer-expression) ]] 
find-definition 

find-definition ::= 

{
ENTITY contain-clause } 

entity-identifier contain-clause exception-clause 

contain-clause ::= 

IN set-definition [ FROM entity-specification-2 )1 
CONTAINING entity-specification-2 
IN entity-specification-1 -) set-name 

exception-clause ::= 

((,T WITH relational-expression-1 ] 
([,1 UNTIL relational-expression-2 ] 

entity-specification ::= 

!locator-variable! 
entity-variable 

set-definition ::= 

locator-variable 
set-name [ OF (file-variable) ] 
character-strinq-expression r OF (file-variable) 1 
locator-variable -> set-name 
locator-variable -> (character-string-expression) 

166 Chapter 8 -- statements 



APPLE REFERENCE MANUAL 

31 lURCH 1912 

General rules: 

1. In the following rules, the value of the scalar­
integer-expression will be referred to as "~". If 
the integer is not specified, a constant integer 
value of one is assumed. 

2. The FIND statement searches the set referenced in 
the set-definition for the ~-th entity that satis­
fies the conditions defined in the "exception­
clause" part of the PIND statement. The locator 
or entity variable named in "entity-specification-
1" is set to reference this entity. 

3. If n is positive, the direction of search of the 
set is from the first entity to the last entity. 
If n is negative, the search is in the opposite 
direction. The Q-th member of a set is the entity 
that contains the set. 

4. If the FROM option is 
from the entity 
specification-2" and 
defined in rule 3. 

specified, the search starts 
referenced in "entity­

proceeds in the direction 

5. If the FROM option is omitted, the search starts 
at the first entity and proceeds in the direction 
defined in rule 3. 

6. The search is terminated wben either the required 
entity has been found, a successful search, or 
when the entity containing the set is encountered 
in the course of the search before ~BS (n) 
entities that satisfy the specified conditions 
have been found, an unsuccessful search. 

1. If the search is unsuccessful, "entity-
specification-1" will be set to reference the 
entity that contains the set unless the "set­
definition" references a file-set, in which case 
entity-specification-1 will be set to the value of 
the NULL built-in function. If the optional ELSE 
clause has been specified, the statement following 
the keyword ELSE will be executed. If no ELSE 
clause is specified, the FIND condition will be 
raised. . 

Chapter 8 -- statements 161 



APPLE REFERENCE MANUAL 

31 MARCH 1q72 

8. If the keyword ENTITY is specified, all entities, 
regardless of name, are examined. 

9. If the keyword ENTITY is not specified, only 
entities that are generations of the entity speci­
fied by "entity-identifier" are examined. 

10. If the optional WITH clause is specified, the 
relational expression is evaluated for each entity 
examined, and the entity is only counted in the 
search if the relational expression yields the 
value true. 

11. If the optional UNTIL clause is specified, the 
relational expression is evaluated for each entity 
examined and the search is terminated if the 
relational expression yields the value true. In 
this case, entity-specification-1 will be set to 
reference the entity on which the search 
terminated. 

12. If a locator variable is used as the set­
definition, its value must have been set by the 
LET statement. The character-string-ex~ression 
specified in the set-definition must be the name 
of a defined set. If the character-string­
expression is itself a qualified based variable, 
it must be enclosed in parentheses. 

13. The keyword IN is synonymous with the keyword ON 
in the FIND statement. 

14. If the CONT~INING clause is specified, a search 
will be made for the ~-th entity that contains the 
set and member entity referenced by entity­
specification-2. The order of search (for posi­
tive values of nl corresponds to the order in 
which the reference entity was inserted onto 
different sets. Entity-Specification-1 must 
appear twice in the PIND statement; first as the 
unknown and second as the identifier of the class 
of sets to be searched. 

15. If the search for a containing entity is unsucces­
sful, the optional ELSE clause will be executed 
with entity-specification-1 set equal to entity­
specification-2. If the ELSF. clause is not pre­
sent, the FIND condition is raised. 

168 Chapter 8 -- statements 



APPLE REPERENCE ~AIUAL 

31 KARCH 1972 

16. The FROK clause cannot be used with the CONTAINING 
option. If the locator variable within a FROft 
clause has the value NULL, the search vill begin 
with the first member of the set. 

17. If a set-name or character-string-expression is 
used by itself in the set-definition, a FILE SET 
in the specified file (or the default "current" 
file) will be referenced. 

F.xaaples: 

FIND P1 = (1) ENTITY IN P2 -> SETA FROft P3 ; 

FIND PTR = (J) LINE ON BNDRY ELSE GO TO ERR ; 

FIND POINT = (1) ENTITY 
CONTAINIIG P -> POINT IN POINT -> PS!T : 

Function: 

The FOR BACH statement delimits the start of a group and 
defines the repetitive execution of the statements within 
the group_ 

General format: 

for-each-stateaent ::= FOR EACH find-specification; 

Syntax rule: 

The syntax of the "find-specification" is defined in "The 
FIND statement" in this chapter. 

General rules: 

1. The POR EACH statement is a means for the applica­
tion of an algorithm to all or selected members of 
a set or entities that contain a set. The scope 
of the POR EACH statement is teraiaated by the END 
statemeDt and all the rules applicable to an 
iterative do-group are also applicable to a for­
each group. 

Chapter 8 -- Statements 169 



~PPLE REFERENCE ftANUAL 

31 PlARCH 1972 

2. The effect of a fOR EACH statement is defined by 
the following: 

Examples: 

fOR EACH find-specification ; 
statement-1 ... 
statement-n 

END; 
NEXT: statement 

The above fOR EACH group is exactly equivalent to 
the following: 

ptemp = fromp; 
DO WRILE('1'B); 

END; 

FIND find-specification FROM ptemp ELSE 
GO TO NEXT; 
statement-1 ... 
statement-n 
ptemp = pfind; 

NEXT: statement 

where ptemp is a compiler nefined pointer vari­
able, fromp is the value of the entity­
specification-2 in the FROM clause or, if the PROM 
clause is omitted, is the value of the NULL 
built-in function, pfind is the locator-variable 
or entity-variable specified in 
entity-specification-1. 

rOR EACH P1 = ENTITY ON 51; 
A = A + P1 -> B ; 

END 

is equivalent to: 

P = NULL ; 
DO WHItE ( • 1 • B) ; 

END; 
DOMP. : 

FIND P1 = ENTITY ON 51 FROM P 
ELSE GO TO DONE ; 

A = A + P1 -> B ; 
P = P1 ; 

170 Chapter 8 -- Statements 



APPLE REFERENCE "ANUAL 

31 "ARCH 1972 

FOR EACH P1 = (2) LINE IN 'SETA' FROM P2 
WITH P1 -> LINE.X < 0 ; 

P1 -> LINE.! : 0 ; 
END: 

is equivalent to: 

P = P2 ; 
DO WHILE('1'B); 

FIND P1 = (2) LINE IN 'SETA' FROM P 
WITH P1 -> LINEX.X < 0 

ELSE GO TO DONE; 
P1 -> LINE.! = 0 ; 
P = P1 ; 

!Nn: 
DONE : 

Function: 

The FREE statement causes the storage allocated for speci­
fied based variables to be freed. 

General format: 

free-statement ::= 

FREE free-specification [,free-specification ••• J ; 

free-specification ::: 

[locator-variable ->] based-variable 
( INCLUSIVE] ( TN(scalar-file-variable) 1 

Syntax rule: 

The "based-variable" must be an unsubscripted level-1 based 
variable. 

General rules: 

1. A based variable can be used to free storage only 
if that storage has been allocated for a based 
variable having identical data attributes, includ­
ing values of bounds and lengths. 

Chapter 8 -- Statements 171 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

2. An IN option must be specified if the qeneration 
to be freed was allocated in a file. It may not 
be specified if the generation to be freed was 
allocated in scratch storage. The IN option must 
specify the file in which the generation was 
allocated. 

3. The effect of the FREE statement is to make the 
specified storaqe available for subsequent alloca­
tion by an ALLOCATE statement. 

4. If the reference to the variable to be freed is 
pointer-qualified by the POINTER built-in function 
(either explicitly, or implicitly by the 
appearance of an offset as the locator qualifier), 
and the IN option is absent, the statement is 
executed as if it contains the IN option naming 
the file that is the second argument of the 
POINTER built-in function. 

5. If the storage to be freed has been allocated in 
scratch storage, as opposed to a particular file , 
the FREE statement cannot include an IN option nor 
can an IN op-tioD be implied by the use of an 
offset as a locator qualifier. 

6. The PREE statement may be used to free the storage 
space for ENTITY variables. An entity that is 
freed will be removed from ~1! sets of which it is 
a member. Then the entity is freed. If the 
entity contains other sets, the member entities of 
these sets will be freed provided they are members 
of nQ other sets. If the INCLUSIVE option is 
used, all member entities will be freed regardless 
of their membership in other sets. This process 
continues recursively until no more entities can 
be freed. 

'Example: 

DECLARE P FILE, 
Q OPFSET (F) , 
V B1\ S ED (Q) ; 

FREE V; 

The FREE statement is equivalent to the statement: 

PREE POINTER(Q, P) -) V IN(F): 

112 Chapter 8 -- Statements 



APPLE REF!R!NC~ "ANUAL 

31 "ARCH 1972 

The_2l1 statement 

Function: 

The GET statement causes values, either from a sequential 
file or from a string variable, to be assigned to variables 
specified in a data list. 

General format: 

qet-statement ::= GET get-list; 

qet-list ::= 

{
FILECfile-variable) } 

data-specification 
STRING (character-string-variable)-

General rules: 

1. The file-variable .ust refer to a sequential file 
that has been opened. 

2. The "character-string-variable" refers to the 
fixed length character string that is to provide 
the data to be assigned to the data list. Each 
GET operation using this option alvays begins at 
the beginning of the specified string. If the 
number of characters in this string is less than 
the total number of characters implied by the data 
specification, the ERROR condition is raised. 

3. The rules concerning the "data-specification" are 
defined in "Data Lists" in Chapter 6. 

Function: 

The GO TO statement causes control to be transferred to a 
statement identified by a label prefix. 

General format: 

Chapter 8 -- statements 173 



APPLE REFERENCE KANUAL 

qo-to-statement ::= 

General rules: 

{
GO TO} 

GOTO 

31 fURCS 1972 

,label-constant } • 

lscalar-label-variable • 

1. If a label variable is specified~ the GC TO 
statement has the effect of a multi-way switch. 
The value of the label variable is the label of 
the statement to which control is transferred. 
Since the label variable may have different values 
at each execution of the GO TO statement, control 
may not alvays pass to the same statement. 

2. A GO TO statement cannot pass control to an 
inactive block. 

J. A GO TO statement cannot transfer control from 
outside a group to a statement inside the group if 
the group specifies iteration or selection except 
in the case vhere the qO TO specifies an abnormal 
return from a block that has been invoked from 
within the group. 

4. A GO TO statement that transfers control from one 
block~ D~ to a dynamically encompassing block~ A 
has the effect of terminating block D~ as veIl as 
all other hlocks that are dynamically ijescendant 
from block A. On-units are reestablished and 
automatic variables are freed in the same way as 
if the blocks were terminated normally. When a GO 
TO statement transfers control out of a procedure 
invoked as a function, the evaluation of the 
expression that contained the corresponding func­
tion reference is discontinued. The value 
returned by the procedure being terminated is 
undefined, and control is transferred to the 
specified statement. 

5. A GO TO cannot terminate any block activated 
durinq the execution of an ALLOCATE statement. 

Examples: 

GO TO A2345; ... 
A2345: . . . 

The following example illustrates a GO TO statement that 
acts as a multi-way switch~ 

174 Chapter 8 -~ Statements 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

DECLARE L LABEL INITIAL (L2) ; 
GO TO MEET; 

L1: X = Y - 1; 
L = L2; 
GO TO MEET; 

L2: Y = X - 1; 
L = L1; 

MEET: CALL FUDGE(X,Y,Z); 
IF Z = LIMIT THEN 
GO TO L; · . . 

The following procedure illustrates the use of the GO TO 
statement with a subscripted label variable to effect a 
multi-vaf switch: 

CALC1 : 

CALC2: 

CALC3: 

Function: 

DECLARE (N1, N2) FIXED, 
SWITCH(3) LABEL; 

SiTTCR{1) = CALC1; 
SWITCH(2) = CALC2; 
SWTTCH(3) = CALC3; 
GO TO SWITCH(MOD(N1 + N2, 3) + 1); 

· . . · . . .... · .. 
••• 
• • • 

The IF statement specifies evaluation of a relational 
expression and a consequent flow of control dependent upon 
the truth value of the expression. 

General format: 

if-statement ::= IF scalar-relational-expression 
THEN then-clause 

[ELSE else-clause] 

Synt.ax rules: 

Chapter 8 -- statements 175 



APPLE REFERENCE MANUAL 

31 MARCH t972 

1. Each then-clause and else-clause is a group, a 
begin-block, or any statement other than DECLARE, 
END, ENTRY, or PROCEDURE. The unit may have its 
own labels. 

2. The IF statement is not itself terminated by a 
semicolon. 

General rules: 

, . The scalar-relational-expression is 
then: 

evaluated, 

a. If the value of the expression is true, the 
then-clause is executed and control is passed 
to the statement following the IP statement. 

b. T.f the value of the expression is false and 
an else-clause is specified, then the else­
clause is executed and control is passed to 
the statement following the IF statement. 

c. If the value of the expression is false and 
an else-clause is not specified, control is 
passed to the statement followinq the IF 
statement. 

2. Either the then-clause or the else-clause may 
contain GO TO statements that transfer control to 
statements outside the IF statement. If such a 
GO TO statement is executed, control will not be 
passed to the statement following th~ IF 
statement. 

1. IF statements may be nested, that is, either the 
then-clause or the else-clause, or both, may 
themselves be IF statements. Each ELS~ clause is 
always associated with the innermost unmatched IF 
in the same block or do-qroup. As a consequence, 
an ELSE or a THEN with a unit consisting of a null 
statem~nt may be required to specify a desired 
sequence of control. 

176 Chapter 8 -- Statements 



APPLE REFERENCE RANUAL 

31 ttARCR 1972 

Examples: 

IF A + B = Z THEN CALL X(O); 
ELSE CALL X(A); 

IF X < Y THEN 
I'P Z = W THEN 

L: Y = 1; 
ELSE; 

ELSE 
Y = A; 

IP A THEN 
GO TO PI; 

GO TO N; 

Function: 

The INSERT statement causes a referenced entity to be 
inserted on a specified set. 

General format: 

insert-statement .. -.. -
INSERT entity-specification-1 IN set-definition 

ri~i~:B en~i~y-speCifica~ion-21; 
lAPTER entity-specification-2 

entity-specification ::= 

!locator-variablel 
entity-variable 

set-definition ::= 

locator-variable 
set-name [ oP(file-variable) 1 
character-strinq-expression [ OF (file-variable) J 
locator-variable -> set-name 
locator-variable -> (character-strinq-expression) 

Chapter e -- Statements 177 



APPLE REFERENCE MANUAL 

31 KARCH 1972 

General rules: 

1. The INSERT statement makes the entity referenced 
by entity-specification-1 a member of the speci­
fied set. If the optional FIRST, LAST, BEFORE, or 
AFTER clause is omitted, LAST viII be assumed. 

2. If the B~FORE or AFTER clauses are used, the 
entity referred to bV entitv-specification-2 must 
be a member of the specified set at the time the 
INSERT statement is executed. If this entity 
cannot be located, the FIND condition will be 
raised. 

3. The character-string-expression specified by the 
set viII be truncated to 8 characters if neces­
sary. If the expression itself is a qualified 
based character string, it must be enclosed in 
parentheses. 

4. If a locator variable is used as the set defini­
tion, the locator must reference an existing set. 
The LET statement can be used to set a locator­
variable to reference a set. 

5. The keyvord IN is synonymous with ON within the 
INSERT statement. 

6. The member ENTITY and SET in which it is to be 
inserted, must be contained in the same file. 

7. If a set-name or character-string-expression is 
used by itself in the set-definition, a PILE_SET 
in the specified file (or the default "current" 
file) will be referenced. 

Function: 

The LET statement sets a locator variable to reference a 
specified set. 

178 Chapter 8 -- Statements 



APPLE REPERENCE MANUAL 

31 MARCH 1972 

General format: 

let-statement ::= LET locator-variable = set-definition; 

set-definition ::= 

locator-variable 
set-name r OP(file-variable} J 
character-strinq-expression [ OP(file-variable) ] 
locator-variable -> set-name 
locator-variable -> (character.-string-expression) 

General rules: 

1. The character-string-expression specified by the 
set definition will be truncated to 8 characters 
if necessary. If the expression itself is a 
qualified based character string, it must be 
enclosed in parentheses. 

2. If a set-name or character-string-expression is 
used by itself in the set-definition, a FILE_SET 
in the specified file (or the default "current" 
file) will be referenced. 

Function: 

The execution of the LOCK statement puts the program into 
locked status. 

General format: 

lock-statement:: = LOCK ; 

General rules: 

1. When a p.rogram is in locked status, all asynch­
ronous events will be queued. No on-units speci­
fied in ON EVENT statements will be invoked while 
a program is in locked status. 

2. On-units established for system conditions or 
programmer defined conditions are not affected by 
the locked or unlocked status of program. 

Chapter 8 -- Statements 179 



APPLE REFERENCE !ANUAL 

31 MARCH 1912 

3. The execution of a LOCK statement while in the 
locked status is equivalent to a null statement. 

4. A program will remain in locked status uDtil 
explicitly unlocked or until control reverts to a 
dynamically encompassing block in which the status 
is unlocked. 

Function: 

The null statement is a no-operation. 

General format: 

null-statement ::= ; 

Example: 

. . . 
ON OVERFLOW; 
• • • 

The overflow on-unit is a null statement. 

The ON st,f!temet.!! 

'Function: 

The ON statement specifies the action to be taken when an 
interrupt occurs for the named condition or Don-delayed 
event. For a discussion of conditions and events, see the 
description of "Interrupt HandlinqU, Chapter 1. 

General format: 

on-statement ::= 

ON [ EVENT 1 identifier (, identifier l ••• 

180 Chapter 8 -- Statements 

{
On-unit} 

SYSTEM 
. • 



APPLB RBFBRBNC! "ANUAL 

31 "ARCH 1972 

syntax roles: 

1. If the keyword EVENT is omitted, the "identifier" 
must be the name of one of the conditions 
described in Appendix 2. 

2. The "on-unit" is an action specification, and it 
is either an unlabeled siugle simple statement 
(other than BEGIN, DO, END, RETURN, ENTRI, PROCE­
DURE, FOR EACH, or DECLARE) or an unlabeled begin 
block. Since the on-unit itself requires a semi­
colon, none appears in the format. 

3. The "on-unit" may not be a RETURN statement, nor 
may a RETURN statement be internal to the begin 
block. 

4. If the keyword EVENT is present, the ON statement 
must be within the scope of a declaration of the 
identifier as an EVENT. 

5. The specification of more than one identifier is 
equivalent to the specification of identical 
actions for each named interrupt. 

General rules: 

1. An ON statement must be executed before its effect 
can be established. 

2. The standard action to be taken for all interrupts 
is defined in Appendix 2. When an interrupt takes 
place before an ON statement for that interrupt 
has been executed, standard s1stem action is 
taken. The ON statement with the SYSTEM option 
specifies that standard action is to be taken when 
the named interrupt occurs. 

3. The ON statement is a means for the programmer to 
specify action (other than standard s1stem action) 
that is to take place when the named interrupt 
occurs. The on-unit is treated as a block that is 
internal to the block in which it appears. 

4. Control can reach an on-unit on11 when the named 
interrupt occurs, or when a SIGNAL statement for 
the interrupt is executed. 

5. If an action specification is established by 
execution of an ON statement, it remains in effect 

Chapter 8 -- Statements 181 



APPLE REFEFENCE MANUAL 

31 MARCH 1972 

until it is overridden by another ON statement or 
REVERT statement specifying the same interrupt, or 
until termination of the block in which the ON 
statement is executed. 

The PROCEDURE statement -------_ .. - . -----

Function: 

The PROCEDURE statement has the following functions: 

1 • Identifies 
procedure. 

a portion of proqram text as a 

2. Defines the primary entry point to a procedure. 

3. Specifies the parameters for the primary entry 
point. 

4. Specifies the attributes of the value that is 
returned if the procedure is invoked as a function 
at the primary entry point. 

(jeneral format: 

procedure-statement ::= entry-name: PROCBDURE 

General rules: 

( (parameter [, parameter] ••• ) ] 
(RETURNS(data-attributes») ; 

1. Bach "parameter" is a name that specifies the 
parameters of the entry point. When the procedure 
is invoke1, a relationship is established between 
the arguments of the invocation and the parameters 
of the invoked entry point (see "Correspondence of 
Arguments and Parameters" in Chapter 2.) 

2. If the entry is invoked as a function reference, 
the RETURNS option must be specified. The data­
attributes of the RETURNS option specify the 
attributes of the value returned by the entry. 
The attributes that may be specified are the 
arithmetic, string, locator, and file attrihutes. 

182 Chapter 8 -- Statements 



APPLE REPERENCE "ANUAt 

Function: 

The PUT statement causes the values of expressions to be 
converted to a character string representation accordinq to 
specified formats and to be transmitted to a designated 
sequential file or string variable. 

General format: 

put-statement ::= PUT put-list; 

put-list ::= 

{
PILE(file-Variablel J 

data-specification 
STRIMG(character-strinq-variable) 

General rules: 

1. The "character-string-variable" refers to the 
character string variable that is to receive the 
transmission. After appropriate conversion, the 
data specified in the data-specification is 
assigned to the string starting at the leftmost 
character. Any subsequent PUT statement naming 
the same string will start assigninq at the 
leftmost character. If the string is not long 
enough to accommodate the data, the ERROR condi­
tion will be raised. 

2. The "file-variable" must refer to a sequential 
file that has been opened. 

3. The rules concerning the "data-specification" are 
contained in "Data Lists" in Chapter 6. 

The R~~9VE ~tatemeA! 

Punction: 

The REKOV! statement is used to remove an entity from a set. 

Chapter 8 -- Statements 183 



APPLE REFFR~NCE MANOAL 

General format: 

remove-statement • a_ .. -

31 MARCH 1972 

REMOVE entity-specification FROM{set-definitiOn}; 
all-value 

entity-specification ::= 

{ lOcator-variable} 
entity-variable 

set-definition ::= 

locator-variable 
set-name ( OF (file-variable) ] 
character-strinq-expression ( OF (file-variable) 1 
locator-variable -> set-name 
locator-variable -> (character-string-expression) 

General rules: 

1. The character expression 
evaluated and truncated 
sary. If the expression 
based character string, 
parentheses. 

in the set-definition is 
to 8 characters if neces­
itself is a qualified 
it must be enclosed in 

2. If the referenced entity is not a member of the 
specified set the REMOVE statement has the effect 
of a null statement. 

1. The "all-value" is the value returned by the ALL 
built-in function which, if used, must be declared 
with the BUILTIN attribute. The entity will then 
be removed from all sets that contain it. 

4. If a locator variable is used to specify a set, 
the locator variable must reference an existing 
set. The LET statement must be used to set a 
locator variable to reference a set. 

5. If a set-name or character-strinq-expression is 
used by itself in the set-definition, a FILE-SET 
in the specified file (or the default "current" 
file) will be referenced. 

184 Chapter 8 -- Statements 



APPLE REFERENCE !ANUAL 

31 !ARCH 1912 

The RETURN stat~n! 

Function: 

The RETURN statement terminates execution of the 
that contains the RETURN statement and returns 
the invoking procedure. The RETURN statement 
return a value. 

General format: 

return-statement ::= RETURN [(scalar-expression)]; 

General rules: 

procedure 
control to 

may also 

1. If the procedure is not invoked as a function 
procedure, i.e., it has been invoked by a CALL 
statement, the RETURN statement may specify a 
scalar expression, but the value viII be ignored 
by the invoking procedure. 

2. If the procedure is invoked as a function proce­
dure, the RETURN statement used to terminate tbe 
procedure must specify a value that is to be 
returned to the invoking procedure by specifying a 
scalar expression. There is no type conversion 
implied by the RETURNS attribute on the PROCEDURE 
or ENTRY statement. 

3. If control reaches an END statement corresponding 
to the end of a procedure, this END statement is 
treated as a RETURN statement that does not 
specify a value to be returned. 

Q. A RETURN statement may not be internal to a 
begin-block. 

Function: 

A REVERT statement specifying a given condition or event is 
used to cancel the effect of one or more previously executed 
ON statements. 

Chapter 8 -- Statements 185 



APPLE REFERENCE MANUAL 

General format: 

revert-statement .. -o 0-

31 MARCH 1912 

REVERT {EVENT] identifier (, identifier] ••• ; 

Syntax rules: 

1. If the keyword EVENT is omitted, the "identifier" 
must be the name of one of the conditions 
described in Appendix 2, or the name of a user 
defined condition appearing in a DECLARE 
statement. 

2. If the keyword EVENT is present, the REVERT 
statement must be contained within the scope of a 
declaration of the identifier as an EVENT. 

General rule: 

The execution of a RRVERT statement has the effect described 
above only if (1) an ON statement, specifying the same 
conditions or events and internal to the same block, was 
executed after the block was activated and (2) the execution 
of no similar REVERT statement has intervened. If either of 
the two conditions is not met, the REVERT statement is 
treated as a null statement. 

Function: 

The SIGNAL statement simulates the occurrence of the named 
interrupts. 

General format: 

signal-statement • e­
o .-

signal cond-or-event(, cond-or-event] ••• ; 

cond-or-event ::: 

{ identifier } 
EVENT event-name ( (locator-expression) ) 

186 Chanter 8 -- Statements 



APPLE REPERENCE KANUAL 

31 rnRCH 1972 

Syntax rules: 

1. If the keyword EVENT is omitted, the "identifier" 
must be the name of one of the conditions 
described in Appendix 2. 

2. If the keyword EVENT is present, the SIGNAL 
statement must be contained within the scope of 
the declaration of the identifier as an EVENT. 

General rules: 

1. The SIGNAL statement with the EVENT option can be 
used to simulate the occurrence of the external 
interrupt associated with the event-name. The 
event viII be set complete and if it is in the 
delayed state, the occurrence will be added to the 
event queue. If the event is non-delayed, the 
associated on-unit will be entered, (see "Inter­
rupt Handling" in Chapter 7) • 

2. The optional locator-expression associated with an 
event-name may be used to supply the block of 
status information associated with the event and 
will be made available to the program handling the 
interrupt through the use of the ONPTR built-in 
function. If the locator-expression is omitted, 
the value of the corresponding invocation of the 
ONPTR built-in function will be the value of the 
NULL built-in function. 

Punction: 

The execution of the UNLOCK statement puts the program into 
unlocked status. 

General format: 

unlock-statement ::= UNLOCK; 

General rules: 

Chapter 8 -- statements 181 



APPLE REFERENCE MANUAL 

1. When a program 
ronous events 
the processing 
rupt Handling" 

31 MARCH 1972 

is in the unlocked status, asynch­
may be processed. For details on 

of asynchronous events see "Inter­
in Chapter 7. 

2. The execution of an UNLOCK statement while the 
program is in the unlocked status has the same 
effect as the execution of a null statement. 

3. 

Function: 

A program will remain in unlocked status until 
explicitly locked, or until control reverts to a 
dynamically encompassing block in which the status 
is locked. 

The WAIT statement is used to synchronize the processing of 
delayed event completions. The terms "delayed" and "comple­
tion" are defined in Chapter 7 -- "Interrupt Handling" • 

General format: 

wait-statement ::= 

WAIT{<event [,event] ••• ) [SET (fixed-scalar-variable) ) } ; 

ANY) 

General rules: 

1. The items specified in the list may be any delayed 
events. If any of the events are non-delayed, the 
ERROR condition will be raised. 

2. The ANY option specifies the set of all delayed 
events. If the set is empty, the ERROR condition 
will be raised. 

3. The WAIT statement is satisfied and execution 
proceeds to the statement following the WAIT 
statement when at least one of the specified 
events becomes complete. If the SET option is 
used, a fixed-scalar-variable will be set equal to 
the index of the event that became complete. If 
none of the specified events is complete, execu-

188 Chapter 8 -- Statements 



APPLE REFERENCE !IIUlt 

31 MARCH 1912 

tion is suspended until one of the specified 
events becomes complete. 

4. If a non-delayed event becomes complete while in a 
wait state, the on-unit for that event viII be 
entered. Upon normal return from the oD-unit, the 
wait state viII be resumed. 

5. If a delayed event that is not specified in the 
event list for the WAIT statement becomes complete 
while in the wait state, no action is taken. 

Chapter 8 -- Statements 189 



APPLE REFERENCE ftANUAL 

31 !ARCH 1972 

INTFOOUCTION 
----~ 

All of the built-in functions, built-in procedures, and 
pseudo-variables that may be invoked by the Apple programmer 
are listed in this appendix. Each function or pseudo­
variable that has an argument list may be used without 
declaration, unless an identifier has been declared with the 
same name. In this case, the function or pseudo-variable 
must be redeclared usinq the BUILTIN attribute. Each 
built-in function or pseudo-variable that has no argument 
must be declared with the BUILTIN attribute. 

The built-in functions, procedures, and pseudo-variables are 
separated into the following classes: arithmetic, array, 
associative data handling, conversion, interrupt handling, 
mathematical, storage management, string handling, and 
miscellaneous. 

Appeadlx 1 -- Built-in ¥uDctions, Proceaures, 

190 .ad Pseudo-.ariables 



APPLE REFER!WCE "ANUAL 

31 MARCH 1972 

llITH"ETI£ 

ABS 
CEIL 
FLOOR 
"00 

01" 
HBOUND 
LBOUND 

~~g!!llLI!!I!.J!A NDLJ]!~ 

APLESET 
APLF.VA~. 
APLINDX 
APLNU"B 
APL\QWNI 
APLOWRS 
APLSNA" 
APLTYPE 

** ALL 

£Q1!VEMIO! 

* BYTE 
CHAF 
ENTRY 
FIXED 
FLOAT 
HEX 
OFFS!T 
POINTER 

* - Also pseudo-variables 

!NTERR9~T HANDLI~9 

CO"PLETION 
* DELAY 

** ONFILE 
** ONLOC 

ONPTR 

t1ATHJMAll£AL 
ATAN 
COS 
LOG 
SIN 
SORT 
TAN 

ADDR 
DESCR 

** NULL 

~TRING H!1!DLING 

INDEX 
LENGTH 

*** RAL * SUBSTR 

** DATE 
INLINE 

** TIME 

** - Must be declared with the BUILTIN attribute 
*** - Ma, only be used as a pseudo-variable 

Appendlx 1 -- Built-in ?unctioas, Procedur •• , 

.ad Pseudo-variable. 191 



APPLE REFERENCE 81NUAt 

31 lURCH 1972 

AIITHKE1tC PUNCTI0!2 

The ABS function returns the absolute value of~. The 
argument ~ must be a scalar arithmetic quantity. The value 
returned by ABS has the same scale and precision as 1_ 

The CEIL function returns 
greater than or equal to A. 
arithmetic quantity. The 
same scale and precision as 

the smallest integer that is 
The argument ! must be a scalar 
value returned by CEIL has the 

the argument .I. 

'the 'FLOOR 
does not 
ari thlletic 
saBle scale 

function returns the largest integer value that 
exceed~. The argument ! must be a scalar 
quantity. The value returned by PLOOR has the 
and precision as 1_ 

The MOD function returns the remainder froll the division of 
A by g. The arguments 1 and g must be scalar arithmetic 
quantities. The result has the same sign, scale, and 
precision as 1. 

m~Y FUN£TIQ!!~ 

Dl"l~ ..... .ru. 
The DIM function returns the current extent of the gth 
dimension of a. The argument g must be a unsigned fixed 
point constant. The argument ~ must be a reference to an 
array that has at least g dimensions. The value returned is 
an integer. 

!!DOI1NDJa, d) 

The aBOUND function returns the current upper bound of the 
gth dimension of~. The argument § must be a unsigned fixed 
point constant. The argument ~ must be a reference to an 
array that bas at least g dimensions. The value returned is 
an integer. 

Appeadix 1 -- Built-in ¥uDctions, Proce4ures, 

192 .a4 Ps.udo-.. rl.~l •• 



APPLE REFERENCE MANUAL 

31 MARCR 1912 

The LBOUND function returns th~ current lower bound of the 
dth dimension of~. The argument 1 must be a unsigned fixe~ 
point constant. The argument ~ must be a reference to an 
ar.ray that has at least d dimensions. The value returned is 
an integer. -

~Q£!!TI!]_~!lA-!Q!£!lQ!~ 

AL1 

The function returns a value that has meaning in the 
following contexts: 

a. Remove the referenced entity from all sets of 
which it is a member when ALL is used in the 
REMOVE statement. 

b. Search all members of the referenced set when ALL 
is used as an argument to the APLINDT built-in 
function. 

c. Count all members of the referenced set when ~LL 
is used as an argument to the APLNUMB built-in 
function. 

d. Count all entities that contain the referenced set 
when ALL is used as an argument to the APLOWR5 
built-in function. 

If this function is used, it must be within the scope of 
declaration of the identifier ALL with the attribute 
BUILTIN. 

The function returns a value of '1'B or 'O'B dependent on 
whether or not the file-set s has ever been created in the 
file determined by the value of SYSPILE.CORRENT. The 
set-reference, 2' must be a character-string-expression. 

The function returns a pointer variable that identifies the 
entity that contains the set 2. tf the referenced set is a 
file-set, the value returned is the value of the NOLL 
built-in function. The set reference must be a locator 
variable set by the LRT statement. 

Appendix 1 -- Built-in ?unctions, ~rocedures, 

and Pseudo-variables 193 



APPLE REFEREICE !AIOAL 

31 !ARCH 1972 

The function returns an integer whose value is the ordinal 
of the entity ~ in the set §o The entity reference .ust be 
a locator variable. The set reference must be a locator 
value that has been set by the LET statement. If ~ is a 
character-string-expression it must contain the name of 
those entities to be included in the search. If ~ is a 
reference to the built-in function ALL, then all members of 
the set will be included in the search. If the search is 
unsuccessful, the value returned is zero. 

The APLNU~B function returns an integer whose value is a 
count of the number of entities that are members of the set 
s. The set reference, s, must be a locator value that has 
been set by the LET statement. If £ is a character-strinq­
expression, it must contain the name of those entities to be 
included in the count. If c is a reference to the built-in 
function ALL, every member of the set viII be included. 

!!tOWN1(e, s&_cl 

The APLOWNI function returns an integer whose value is the 
index of the set! from amongst all the sets having the name 
£ of which ~ is a member. The entity reference, ~, must be 
a locator variable. The set reference, s, must be a locator 
value that has been set by the LET statement. The value of 
the character-string-expression, ~, must be the name of the 
set §, else the ERROR condition will be raised. If the 
entity ~ is not a member of the set §, the value zero is 
returned. 

The APLOWRS function returns an integer whose value is the 
number of entities named d that contain a set named c of 
which ~ is a member. - The entity reference ~ must-be a 
locator variable. The set reference c must be a character­
string-expression whose value is the name of a set. If S is 
a character-string-expression, it contains the name of those 
entities to be included in the count. If d is a reference 
to the built-in function ALL, every entity .111 be included. 

1911 

Appeadix 1 -- Built-in 'unetioD., Proceder •• , 

and ' •• udo-Yariabl •• 



APPL! REFERENCE KANUAL 

31 KARCH 1972 

The APLSNA" function returns a character-strin~ of length B. 
If the value of j is 1, the return value is the name of the 
!th set of which the entity ~ is a member. If the value of 
j is 0, the value returned is the name of the !th set 
contained by the entity~. The entity reference ~ must be a 
locator variable. Both! and j are fixed binary values of 
precision(23, 0). If j has a value other than 0 or 1, the 
~RROR condition is raised. If the search is unsuccessful, 
the value returned is (B)' I. 

APLTYPE~l 

The function returns a character string of length A. The 
value of the string is the name of the entity~. The entity 
reference ~ must be a locator variable. 

£ONVER§IQ!_FU!£tIO~ 

~YTE(xrL-iJl 

The BYTE function interprets the first operand, ~, as a 
vector of bit strings of length 8, aligned on an B-bit 
boundary and with a lover bound of 1. The second argument, 
i, is interpreted as a subscript specifying which element of 
the array is to be referenced. (If ! is omitted, 1 is 
assumed.) The 8-bit bit-string is converted to a positive 
PIXED BINARY(47) (see Chapter 4, Type Conversion, 4. Bit­
string to Arithmetic) value which is returned by the BYTE 
function. The BYTE pseudo-variable can be used to assign a 
fixed-point value to an unsigned 8-bit integer which is the 
!th element of the array defined on~. The range of i is 
limited to ~245. 

Appendix 1 -- Built-in Functions, Procedures, 

aad Pseudo-variables 195 



APPLB REFERENCE M1NUAL 

31 MARCH 1912 

The CHAR function returns the scalar arithlletic, entry or 
file value, ~, converted to a character string according to 
the followinq rules: 

a. If y is a fixed point value of decimal precision 
g, the value is converted according to the EDIT 
format 'F(~+1). 

b. If! is a floating point value of decimal preci­
sion ~, the value is converted according to the 
EDIT format E(g+8, ~-1). 

c. If! is an entry value, the result is a character 
string containing the entry Dame left aligned. If 
! is not an external entry point, the ERROB 
condition will be raised. 

d. If Y is a file value, the result is a character 
string containing the name of the external data 
set. If the file value is not an opened file, the 
UNDEFIN!DPILE condition will be raised. 

The optional argument, 1, if supplied, must be a positive 
integer constant. If 1 is specified, the value of CHAR is 
the character strinq formed by taking the Iiqhtm2!! 1 
characters of the string formed by the above rules. Other­
wise, the result of CHAR is the fixed length character 
string formed according to the above rules. 

The ENTRY function returns the entry value corresponding to 
the external entry point whose name is the value of the 
character-string-expression £. If there is no external 
entry point of name £, the ERROR ccondition vill be raised. 

App .. 41x 1 -- Built-in 'uBet10RS, ?rocea.re., 
196 •• 4 ... .ao-.&rl.~l .. 



APPLE REFERENCE "ANUAL 

31 "ARCH 1912 

The FrXED function returns the value of the string or 
arithmetic expression, ~, converted to fixed point. The 
optional argument, R, which must be an unsigned decimal 
integer constant, specifies the decimal precision of the 
result. If E is not specified, 15 is assumed. The rules 
for the conversion of ! to a fixed point value are: 

a. If ~ is of arithmetic type, the process is as 
described in "Arithmetic Conversion" in Chapter 4. 

b. If! is a character string then the conversion is 
according to F format conversion as described in 
Chapter 6, Fixed-point Format Items. 

c. If! is a bit-string, the conversion takes place 
according to the rules in "Type Conversion -- 4. 
Bit-string to Arithmetic" in Chapter 4. 

The FLOAT function returns the value of the character string 
or arithmetic expression, ~, converted to floating point. 
The optional argument, E, which must be an unsigned decimal 
integer constant, specifies the decimal precision of the 
result. If E is not specified, 15 is assumed. The rules 
for the conversion of Z to a fixed point value are: 

a. If! is of arithmetic type, the process is as 
described in "Arithmetic Conversion" in Chapter 4. 

b. If! is a character string, then the conversion is 
according to E format conversion as described in 
"Floating-point Format Items" in Chapter 6. 

The HEX function returns a character string containing the 
hexadecimal equivalent of the argument 1. If the optional 
arguments are omitted, the resulting character string viII 
represent the full extent of !, however, if the extent of 1 
is greater than 32,767 bytes, only the first 32,767 bytes 
will be represented in the result. The optional arguments! 
and ! are used in the same way as the second and third 
arguments of the built-in function SUBSTR (q.v.) to select 
a sub-string of the result. Thus, BEX(f, i, 1) is exactly 
equivalent to SUBSTR(HRI{f), i, 1). Any misuse of the BEl 
built-in function will bring dovn a curse on the program. 

Appendix 1 -- Built-in ~unctions, Procedures, 

a.d Pseudo-variables 197 



APPLE REPERENCE NANUAL 

31 lURCH 1972 

The OFFSET function returns the offset value that identifies 
the same generation in the file ! as is identified by the 
locator expression R. The argument ! must be a file 
variable. the result of OFFSET is undefined if R does not 
identify a generation in !. 

The POINTER function returns the pointer value that identi­
fies the same generation in the file ! as is identified by 
the offset expression 2- The argument t must be a file 
variable. The result of POINTER is undefined if 2 does not 
identify a generation in t. 

I~1ERRUPT, ~ANDL!NG 19N~%IO!~ 

£Q~ill.TIONj~l 

The COMPLETION function returns a bit value of 'O'B or '1'B 
dependant upon whether the event ! is incomplete or 
cOlllplete. 

The DELAY function returns a bit 
dependant upon whether the event 
delayed state. (DEtAY lIIay 
pseudo-variable). 

value of 'O'B or "'B 
! is in the non-delayed or 

also be used as a 

The ONFILE function returns a varying length character 
string givinq the name of the file for which an ENDPILE, 
CONVERSION, OR ERROR condition has been raised. If the 
condition is not associated with a file, a null string is 
returned. If this function is used, it must be within the 
scope of a declaration of the identifier ONPILE with the 
attribute BUILTIN. 

Appendix 1 

198 

Built-i. PUBctioa., 'r0ce4ure8, 

aa4 ' ..... 0-.. ar1aI»1 .. 



APPLE REFERENCE "ANUAL 

31 HARCH 1972 

QNJ,OC 

Whenever a condition is raised or non-delayed event is 
completed, reference to the ONLoe function will yield a 
varying length character string giving the name of the entry 
point to the procedure that was interrupted. The names of 
internal procedures are qualified by the names of the 
statically encompassing procedures. If the OHLoe function 
is used out of context, a null string is returned. If this 
function is used, it must be within the scope of a 
declaration of the identifier OHLOC with the attribute 
BUIL'rIN. 

The ONPTR function returns a pointer value that identifies 
the Event Completion Block that vas associated with the 
event ~ when it became complete. Reference to ~ in this way 
also sets the event ~ to incomplete. Reference to ONPTR(~) 
when ~ is incomplete yields the null pointer value. 

The function AT AN returns the principle value of the inverse 
tangent of the arithmetic expression ~ expressed in radians. 
The precision of the result is the precision of ~. 

'rhe function COS returns the value of the cosine of the 
arithmetic expression ~ expressed in radians. The precision 
of the result is the precision of ~. 

The function LOG returns the natural logarithm of the value 
of the arithmetic expression~. If the value of J is SO, 
the ERROR condition is raised. The precision of the result 
is the precision of ~. 

'rhe function SIN returns the sine of the 
arithmetic expression ~ expressed in radians. 
of the result is the precision of ~. 

value of the 
The precision 

Appendix 1 -- Built-in ¥unctions, Procedures, 

and Pseudo-variables 199 



APPLE REFERENCE MANUAL 

31 MARCH 1912 

SQRT(xl 

The function SQRT returns the positive square root of the 
value of the arithmetic expression 1_ If ! is < 0, the 
ERROR condition will be raised. The precision of the result 
is the precision of 1_ 

The function TAN returns the tangent of the value of the 
arithmetic expression! expressed in radians. The precision 
of the result is the precision of 1_ 

§TORAG1~!!!2EMEN~_fYH~llQ!§ 

ADDIUyl 

The ADDR function returns a pointer value that identifies 
the generation of the variable ~. 

The DESCR returns a descriptor value consisting of the value 
of the arithmetic expression! as the length and the value 
of the locator or arithmetic expression ~ as the pointer 
part. 

IILE(gl 

The FILE function returns a file value corresponding to the 
file in which the generation of the based variable 
referenced by g is allocated. 

The NULL function returns the null pointer value. The null 
pointer value compares unequal with all pointer values that 
identify generations. Any use of this function must be 
within the scope of a declaration of the identifier NULL 
with the BUILTIN attribute. 

200 

Appendix 1 -- Built-in Punetions, ProceaBres, 

and Pseudo-variable. 



APPLE REFERENCE MANUAL 

31 MARCH 1912 

The INDEX function searches the string 2 for the string 
pattern E. If the configuration is found, INDEX returns an 
integer giving the starting location of E in 2. If more 
than one instance of E exists in 2, the location of the 
first onp. found in a left-to-right search will be returned. 
If E does not exist in ~ or the length of either of the 
arguments is zero, the value 0 will be returned. Both 2 and 
E must be character string variables or expressions. 

LENGTH{~l 

The LENGTH function returns the length of the string 2. 

~he RAL pseudo-variable is used for assigning strings with 
right-hand alignment instead of the normal left-hand align­
ment. If the source string is shorter than the target 
string h, the source string will be extended on the left 
with blanks or zeros according to whether £ is a character 
string or bit string. If the source string is longer than 
the target, it will be truncated on the left. The string ~ 
must be a fixed length string. 

The SUBSTR extracts a substring of user-defined length from 
the string 2 and returns it. The value of i specifies the 
starting point of the substring an1 j, if specified, 
represents the length of the substring. Both! and j must 
be arithmetic expressions and are converted to integers. 
Assuming that the length of s is ~, then ! and j must 
sat.isfy the following conditions: 

a. ~ must be ~ o. 
b. ! must be ~ 1. 
c. The value of i+j-1 must be ~ k. 

Thus, the substring as specified by ! and j must lie within 
s for the value of SUBSTR to be defined. If j is not 
specified, it is assumed to be equal to the value of k-i+1 
i.e., it is assumed to be the remainder of the string 
starting at the !th position. If j is zero, the result is 
the null string. 

Appendix 1 -- Built-in Functions, Procedures, 

and Pseudo-variables 201 



APPLE REFERENCE MANUAL 

~~EL1!N!Q]~UNCTIO!~ 

ill] 

31 MARCH 1972 

The DATF. function returns the current date as a character 
string of length 7, ~!~!Wgg where: 

~~ is the current year. 
m~m is the first three letters of the month. 
gg is the current day. 

Any use of the DATE function must be within the scope of a 
declaration of the identifier DATE with the BUILTIN 
attribute. 

The INLINE procedure is used to insert arbitrary STAR 
machine-instructions inline at compile time. Each parameter 
specifies a byte of the instruction in left to right order. 
The first operand, !, specifies the function code of the 
STAR instruction. The 32-bit instructions require four 
operands and the 64-bit instructions require eight operands. 
The operands ~, §, and ! specify the numbers of the STAR 
registers; g specifies the S-bit sub-function designator; ~, 
~, and £ specify string or vector descriptor registers; !, 
y, and ~ specify index or offset registers. The! and 3 
operands must be numeric constants; the rest of the operands 
may be numeric constants, variables, or arithmetic 
expressions. 

If a variable of REGISTER storage-class is used as an 
operand, the number of the register allocated to that 
variable is inserted in the instruction; otherwise, for 
variables not stored in a register, the number of the 
register containing a descriptor of the variable is inserted 
in the instruction~ 

Example: 

DECLARE SOURCE CHAR(SO), 
TARGET CHAR(100); 

CALL INLINE(ftFS", 5, 0, SOURCE, 0, "20", 0, TARGET); 

In this example the registers containing the descriptors of 
SOURCE and TARGET are used by the "move characters" instruc­
tion to move the SO-character source strinq into the tarqet 
string and fill the remaining 20 characters with blanks. 

Appendix 1 -- Built-in PUDctions, !rocedares, 

202 and Pseudo-variables 



APPLE REFERENCE MANUAL 

31 MARCH 1912 

When an arithmetic expression is used as an operand, the 
expression is first evaluated so all of the instructions 
necessary to evaluate the expression will precede the 
instruction being produced by INLINE. The number of the 
register containing the arithmetic result is then inserted 
into the instruction produced by INLINE. 

~xample: 

DECLARE J 
COUNTER 
KEYWORD 
TABLE (SOO) 
MASK(S) 

COUNTER = 0; 

FIXED BINARY (47) , 
FIXED REGISTER, 
FLOAT REGISTER, 
PLOAT DECIKAL(14) AUTO, 
FLOAT DECIMAL (14) 
CONSTANT ("FFFPOOOOOOOOFFFF", 

"FFPFOOOOOOFFFFFF", 
"FFPFOOOOFFFFFPFF", 
"FPFFOOPFFFFPFFFP", 
"PFFF'FFPFFFFFFPP") ; 

CALL INLINE("PF", 0, COUNTER, DESCR( 100, TABLE), 
0, DESCR( 1, KEYWORD), 

J+2, MASK); 

This example will cause the compiler to generate code for 
constructing the descriptors of TABLE and KEYWORD and 
evaluating the expression J + 2 before it generates the 
"search for masked key word" instruction. The reqisters 
containing the results of the DESCR function are used in the 
"FF" instruction which searches the first 100 elements of 
TABLE for a match with the contents of KEYWORD masked by 
MASK(J+2). 

If INLINE is used as a function, its value is the contents 
of the right-most register ! or £. Thus one can write: 

DCL R FIXED 
COUNT (10) FIXED 
PATTERN BIT(100); 

REGISTER, 
AUTOMATIC, 

COUNT(S) = INLINE("1P", PATTERN, 0, R); 

which would cause the compiler to emit an instruction to 
count the number of one bits in the PITTER. followed by an 
instruction to store the result in COUNT(S). 

Appendix 1 -- Built-ift PUDctioBS, Procedures, 

and Pseudo-variables 203 



APPLE REFERENCE "ANUAL 

31 KARCH 1972 

The 'TIME func~ion re~urns the current tiae of day as a 
character string of length 11, hh:BB:§!.ag where: 

hh is the current hour of the day 
EE is the current minute within the hour 
§§ is the current second within the minute 
~g is the decimal fraction of the current second. 

Any use of the TIME function must be within the scope of a 
declaration of the identifier TIME with the attribute 
BUILTIN. 

204 

Appendix 1 -- Built-in ~unctioRSw Procedure., 

and Pseudo-yarlabl •• 



APPLE REFERENCE MANUAL 

31 MARCH 1912 

For each condition, the description in this appendix 
includes the circumstances under which the condition is 
raised, the standard sfstem action that would be taken in 
the absence of programmer-specified action, and, where 
applicable, the result. 

Conditions may be specified in the ON, REVERT, and SIGNAL 
statements (see Chapter B Statements and Chapter 1 
Interrupt Handling). 

If no ON statement is currently in effect when a condition 
is raised, the standard system action for that condition is 
taken. 

£ONV]B~ICN_CONQIT!Q! 

The CONVERSION condition can be raised whenever an illegal 
conversion is attempted within the conversion built-in 
functions: FIXED, FLOAT, CHAR, BIT, and ENTRY, or execution 
of a GET statement. Conversion across the equal sign in an 
assignment statement (see Chapter 4 Data Manipulation), 
and implicit fixed to float and float to fixed conversions 
will not raise the CONVERSION condition. 

R~§u~t~ The result is undefined. On normal return from the 
on-unit, the ERROR condition is raised. 

§t.an ds!:fL2.Y.§teL-~.Q!!~ 
condition. 

Comment and raise the ERROR 

Appendix 2 -- Conditions 205 



APPLE REPERENCE MANUAL 

31 MARCH 1972 

~!pFILE CON~ITION 

The condition of the form: ENDFILE (file-variable) may be 
raised during any GET operation on the Apple file referred 
to by the file-variable. It is caused by an attempt to read 
past the file delimiter. If the file is not closed after 
the ENDFILE condition is raised, any subsequent GET opera­
tions on the same file viII raise the condition again. The 
execution of a SIGNAL ENDFILE (file-variable) statement will 
also raise the ENDFILE condition. 

Re~ylt~ On normal return from the on-unit, execution con­
tinues with the statement immediately following the 
statement which raised the ENDPILE condition. 

~t~nqard system actionl 
condition. 

~RROR CONQIT~ON 

Comment and raise the ERROR 

The ERROR condition is raised by: (1) the standard system 
action taken when another condition is raised which includes 
the ra1s1nq of the ERROR condition, (2) the result of an 
error, for which there is no condition, occurring during 
program execution, and (3) the execution of a SIGNAL ERROR 
statement. 

~esQltl On normal return from the on-unit, the FINISH 
condition is raised. 

~!Anq~~~l~t~m ~c!ion; 
condition. 

Comment and raise the FINISH 

The FIND condition is raised whenever (1) the FIND statement 
with no ELSE clause is executed, and the specified entity 
cannot be found, and (2) the INSERT statement with the 
BEFORE or AFTER option is executed and the specified entity 
cannot be found. 

~~qd~~~ __ ~Istem _agtiqpl 
condition. 

206 Appendix 2 -- Conditions 

Comment and raise the ERROR 



APPLE REPERENCE MANUAL 

31 MA~CH 1972 

!!!l~_£Q!QITION 

The FINISH condition is raised by: (1) the standard system 
action taken for the ERROR condition, (2) the action taken 
on normal return from the on-unit for the ERROR condition, 
(3) the execution of a statement that would cause termina­
tion of an Apple program (an EXIT statement), and (4) the 
execution of a SIGNAL FINISH statement. 

Re~lt~ On normal return from the on-unit, the program is 
terminated. 

The OVERFLOW condition is raised when the exponent of a 
floating-point number exceeds the permitted maximum. This 
maximum is a630 for long float, and 33 for short float • 

.!Ht§ul.t~ On normal return from the on-unit, program execu­
tion continues near the point of overflow. The 
value of the floating-point number is set to an 
undef ined val ue. 

~landa!1--~§.t~_ac.ti~l 
condition. 

~~Q?]A~MF.R-]]!!~~~.CON]1!lQ] 

Comment and raise the ERROR 

The condition of the form: CONDITION (identifier) allows a 
programmer to establish an on-unit that will be executed 
whenever a SIGNAL statement is executed specifying CONDITION 
and the identifier. Proqrammer-defined conditions must be 
declared with the CONDITION attribute. The programmer­
defined condition can only be raised by a SIGNAL statement 
specifyinq that condition. 

Standard 2I~l~~ti£nl 
condition. 

comment and raise the ERROR 

Appendix 2 -- Conditions 207 



APPL! BEPERENCE MANUAL 

31 ~ARCH 1972 

~1Q!!g]~DITIO! 

The STORAGE condition is raised by: (1) an attempt to 
allocate a based variable in an Apple file that contains 
insufficient free storaqe for the allocation to be made, or 
(2) the execution of a SIGNAL STORAGE statement. 

!!sult~ If the condition is raised due to insufficient free 
storage being available for an allocation to be 
made, on normal return from the on-unit, the 
options in the ALLOCATE statement are reevaluated 
and the allocation is attempted again. If the 
condition vas raised by a SIGNAL statement , on 
normal return from the on-unit, the statement 
following the SIGNAL statement is executed. 

~1~a~~~~~I§tem aC11Q!: 
condition. 

Comment and raise the ERROR 

This condition is raised by the PUT, GET, ALLOCATE, FOR 
EACH, INSERT, REMOVE, FIND, LET, and FREE statements, and 
the use of the CHAR built-in function to convert from a file 
value to a character string, if the file referenced in these 
statements has not been opened. 

!2~~ On normal return from an on-unit, execution con­
tinues with the next statement. 

Standa~~-!~1~~_ acti2U: 
condition. 

Comment and raise the ERROR 

The UNDERFLOW condition is raised when the exponent of a 
floating-point number becomes smaller than the permitted 
minimum. This minimum is -8630 for float long, and -33 for 
float short. 

208 Appendix 2 -- Conditions 



APPLE REFERENCE MANUAL 

31 MARCH 1972 

Re§u!t~ On normal return from the on-unit, program execu­
tion continues near the point of underflow. The 
value of the floating-point number is set to zero. 

standard SY2tem~tion~ Comment and continue. 

~~~Q]l!IDE £ONDITION 

The ZERODIVIDE condition is raised when an attempt is made
to divide by zero. This occurs if the divisor is zero.

Resul!: On normal return from the on-unit, execution con­
tinues near the point of zero-divide. The quotient
is set to indefinite.

~tandard sIste~cti~:
condition.

Comment and raise the ERROR

Appendix 2 -- Conditions 209

APPLE REFERENCE KANUAL

31 KARCH 1972

KEYWORD ABBREV~A!IQ!~

Abbreviations are provided for certain keywords. The abbre­
viations themselves are keywords and vill be recognized as
synonymous in every respect vith the unabbreviated keywords.

{SEYWQ!!J2

A
AFTER
ALIGN
ALLOCATE
ANY
AUTOMATIC
B
BASED
BEFORE
BEGIN
BINARY
BIT
BUILTIN
BY
CALL
CASE
CHARACTER
COLUMN
CONDITION
CONSTANT
CONTAINING
CONVERSION
DECIMAL
DECLARE
DO
E
EACR
EDIT
END
ERDFILE
ENTITY
ENTRY
ERROR

!D~.uVIATI2!

AUTO

BIN

CHAR
COL
COND

DEC
DCL

EOF

210 Appendix 3 -- Keywords, Abbreviations and Synonyas

31 MARCH 1972

EVENT
EXIT
EXTERNAL
F
FILE
FIND
FINISH
FIRST
FIXED
FLOAT
FOR
FREE
FROM
GET
GO
GOTO
IF
IN
INCLUSIVE
INITIAL
INSERT
INTERNAL
LABEL
LAST
LET
LIKE
LINE
LOCK
NEAR
OF
OFFSET
ON
OVERFLOW
PAGE
POINTER
PROCEDURE
PUT
REGISTER
REMOVE
REMOTE
RETURN
RETURNS
REVERT
SET
SIGNAL
SKIP
STATIC
STRING
STORAGE
THEN

EXT

INIT

INT

OFL

PTR
PRoe

REG

APPLE REFERENCE MANUAL

Appendix J -- Keywords, Abbreviations and Synonyms 211

APPLE REFERENCE !ARUAL

31 KARCH 1912

TO
UNDEFINEDPILE UNOP
UNDERFLOW UFL
UNLOCK
UNTIL
VARIABLE VAR
VARYING
WAIT
WHILE
WITH
X
ZERODIVJ.DE ZDIV

212 Appendix 3 -- Keywords, Abbreviations and Synonyas

APPLE REFERENCE MANUAL

31 "Al~CH 1972

KEYWORD SYNONYMS ------ -

The followinq list of synonyms is provided for those
programmers who have written PL/I proqrams using the APL
statements. Each synonym will be recognized by the Apple
compiler as the indicated language keyword.

E..!NONYf!

CREATE

CALLED

DELETE

ENTITY_VARIABLE

E_VAR

ENTITY_S YSTEJI! }

E_SYS

ENTITY_SET

E_SET

SET_VARIABLE

IN

}

ALLOCATE

SET

FREE

POIN'J'ER

PTR

ENTITY

POINTER

PTR

ON

Appendix 3 -- Keywords, Abbreviations and Synonyms 213

APPLE BEPERENC! MANUAL

31 !URCH 1972

The Apple data
defined in TABLE
subset and TABLE
A-Z,a-z,and 0-9.

character set is the ASCII character set
1. TABLE 2 describes the control character
3 the graphic character subset, excluding

b8 0 0 0 0 0 0 0 0
b7 0 0 0 0 1 1 1 ,
b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1

Q21 0 1 2 3 q 5 6 7
b4 b3 b2 b1 !tQ.!

0 0 0 0 0 NUL DLE SP 0 ij} p \, p
0 0 0 1 1 SOH DCl 1 A Q a q
0 0 1 0 2 STX DC2 " 2 B R b r
0 0 1 1 3 ETX DC3 t 3 C S c s
0 1 0 0 4 EOT DC4 S 4 D T d t
0 1 0 1 5 ENQ NAK % 5 E U e u
0 1 1 0 6 ACK SYN & 6 P V f v
0 1 1 1 7 BEL ETB 7 G W q v
1 0 0 0 8 BS CAN (8 R X h x
1 0 0 1 9 HT EM) 9 I Y i y
1 0 1 0 A LF SUS * . J Z 1 z ..
1 0 1 1 B VT ESC + " K [k (t

1 1 0 0 C PF FS , < L "- L I
1 1 0 1 D CR GS = M] m }
1 1 1 0 E SO as • > N n
1 1 1 1 F SI US / ? 0 0 DEL

TABkL1-=-~fPLE DATA_~l!!.E!£TER SET

The remaining internal codes (bS=1) are undefined.

214 Appendix 4 -- Data Character set

~1 MARCH 1q72

NUL Null

SOH start of Heading (CC)

STX Start of Text (CC)

ETX Bnd of Text (CC)

EOT End of Transmission
(CC)

ENQ Enquiry CCC)

ACK Acknowledge (CC)

BEL Rell (audible or
attention signal)

BS Backspace (FE)

HT Horizontal Tabulation
(punched card skip)
(FE)

l.P Line Peed (PD)

VT Verical Tabulation

PF Form Feed (FE)

CR Carriage Return (FE)

50 Shift Out

5I Shift In

APPLE REFERENCE MANUAL

DLE Data Link Escape (CC)

DC1 Device Control 1

DC2 Device Control 2

DC3 Device Control 3

DC4 Device Conrol 4

NAK Negative Acknowledge
(CC)

SIN Synchronous Idle (CC)

ETB End Transmission
Block (CC)

CAN Cancel

E" End of Medium

SUB Substitute

ESC Escape

FS File Spearator (IS)

GS Group Separator (IS)

RS Record Separator (IS)

US Unit Separator (IS)

DEL Delete

Note: fCC) Communication Control
(FE) Format Effector
(IS) Information Separator

Appendix 4 -- Data Character Set 215

APPLE REFERENCE !ANUAL

31 !ARCH 1972

£OLUtlNLF9! 51"1301 mJ

2/0 BLANK
2/1 ! OR SYMBOL
2/2 " DOllBLE QUOTATION MARK
2/3 • NUMBF:R SIGN
2/4 $ DOLLAR SIGN
2/5 " PERCENT SIGN
2/6 & AND SYMBOL
2/7 t SINGLE QUOTATION MARK
2/8 (LEFT PARENTHESIS
2/9) RIGHT PARENTHESIS
2/A * ASTERISK OR MULTIPLY SY~BOL
2/B + PLUS
2/C , COMMA
2/D MINUS
2/E • PERIOD OR DECIMAL POINT
2/P / SLASH OR DIVIDE SYMBOL
3/A · COLON · 3/B · SEMICOLON ,
3/C < L1':SS THAN
3/T) :: EQUAL OR ASSIGNMENT SYMBOL
3/E > GREATER TRAN
3/F ? QUESTION MARK
4/0 i AT SYMBOL
5/B [LEF1.' BRACKET
5/C , REVERSE SLASH
S/D] RIGHT BRACKET
SIB .., NOT SYPIBOL
S/F - BREAK CHARACTER
6/0 " GRAYE ACCENT
7/B { LEFT BRACE
7/C J VERTICAL LINE
7/D } RIGHT BRACE
7/E TILDE

216 Appendix 4 -- Data Character Set

APPLE REFERENCE MANUAL

31 MARCH 1972

General Format:

control-statement ::= ~ commandr (parameter-list)];

General Rules:

1. A control statement may appear anywhere that a
statement may appear in an Apple source program.

2. The commands which control the printed listing,
such as ~ PAGE; % SKIP (3); or % LIST (CODE); are
performed at the point where thay occur in the
printed listing. Other commands merely request
that some information be printed at the end of the
printed listing such as ~ LIST(OBJECT) ;.

3. The commands which set a switch for a continuing
action, (such as ~ LIST (CO DE); wh icn causes the
emitted object code to be listed) may be turned
off by a counter-command that is formed by prefix­
ing the letters "NO" to the command, such as
t(NOLIST (CODE);.

Appendix 5 -- Compile-time Controls 217

APPLE REFERENCE !ANOAL

31 lURCH 1972

The following table lists the currently defined commands and
their function.

CO,t!!JAlfD

I(SKIP (n)

" PAGE;

"l!NCTION

Skip n lines on the printed listing.
The parameter n must be an unsigned
integer greater than zero.

Eject to the top of a new page on the
listing.

"LIST(o~tion, •••) Insert into the printed listing addi­
tional information designated by the
options.
where the options may be:

CODE List the emitted instructions
MACRO List the expansions made during the

literally expansions (see Appendix 8).
WARNINGS List the warning messages generated dur­

ing compilation
OBJECT Dump the object module in hexadecimal
CONTROLS List the compile-time page controls

(I PAGE and • SKIP) where they occur
inthe source text.

" INCLUDE file-name{ (entity)]
Replace this command with the source
text contained in the named file, or
entity in the named file.

~ DECLARE See Appendix 8.

218 Appendix 5 -- Compile-time Controls

APPLE REFERENCE MANUAL

31 MARCH 1972

The entire manual uses a uniform system of notation that is
nQ! a part of the lanquage. This notation describes the
syntax or construction of the language. The following rules
describe the use of this notation:

1. A ~Q!~!!~variable consists of lower-case letters
and hyphens, must begin with a letter, and may be
enclosed in braces.

F,xamples:

a.

b.

diqit

do-statement

this denotes the occur­
rence of a digit 0
through 9 inclusive.

this denotes the occur­
rence of a Do-statement.

2. A llQtation_~~~! appears in upper-case and
denotes the literal occurrence of the indicated
characters. The constant may be enclosed in
braces and is defined by the syntax of the
lanquage.

Example:

DBCLABF. this denotes
occurence of the
DECLARE.

the
keyword

3. The term "syntactic unit" is used in the following
as:

4.

a. a single variable or constant

b. a collection of notation variables,
notation constants, and symbols enclosed
in braces or brackets

Braces with the vertical stroke
stacking of syntactic units
choice is to be made.

(I) or
indicates

vertical
that a

Appendix 6 - Notation 219

APPLE ~E?ERENCE MANUAL

31 MARCH 1972

Examples:

identifier { FIXED}

FLOAT

identifier {FIXEDIFLOAT}

5. Anything enclosed in square brackets may appear
once or not at all. Vertical stacking with square
brackets indicates that no more than one of the
stacked units can appear.

Example:

f VARYING J

6. The ellipsis (•••) denotes the occurrence of the
preceding unit one or more times.

Example:

digit •••

7. Most notation variables are defined in terms of a
general format. A general format is a sequence of
the name being defined, followed by the definition
symbol (::=), followed by the definition. The
definition symbol says that the named item "can be
represented byU the indicated definition. The
definition may involve notation constants or other
named notation variables.

Example:

scope-attribute ::= EXTERNALIINTERNAL

8. Blanks appearing in formats do ng! represent the
character blank of the language character set.
Blanks are used as delimiters of the syntax and to
improve the readability of the definitions. Any
two notation variables or constants are separated
by blanks. Any explicit use of the character
blank of the language character set will be
denoted by a b.

220 Appendix 0 - Notation

APPLE REFERENCE MANUAL

31 MARCH 1972

The problem of mapping a data structure concerns the
assignment of addresses to the elements of a structure and
at the same time ensuring that the addresses meet the
hardware requirements for access. In Apple, all data will
be stored so that it may be accessed as rapidly as possible,
even at the expense of some wasted space. To do this, the
hardware requires that bit addresses be some multiple of an
al~gqm~n1-!~Q£ that is defined for each data type. The
alignment factors are as follows:

r ,
I I
I ~~~ I
I I
I-- .
t I
1 BIT (n) I
I I
ICHARACT~R(n) I
I VARYINGI
, I
,ENTRY I
, I
IEVENT f
, I
IFILE I
t 1
1PIXED or I
I PLOAT BINARY(p) 1
'1~p~23 I
'24~pS42 I
I ,
,LABEL I
J I
IOFFSET I
I I
I POINTER I
I I
I DESCRIPTOR I
I ,

,
J I

Alignmeqt-1!£!~ I ~ength I
I t , ~

, I
1 I n I

I J
8 I an I
8 I 8(n+1) I

, I
64 ,192 I

I I
64 I 64 I

I I
64 I 64 I

t I
1 I
J I

32 I 32 ,
64 I 64 I

I I
64 1128 I

I I
32 I 32 1

I I
64 I 64 I

I f
64 I 64 I

I I
----------~------------------~.----------~

Appendix 7 -- structure Mapping 221

APPLE REFERENCE MANUAL

31 MARCH 1972

The layout of a structure in storage has the following form:

w (1) f (2) v (2) f (3)
, i , i i

I illlll'l I1I1111I
I I111111I I111111I
litem(1l tlllllllitem(2) JIIIIIII
, 1IIIIIIt I11111II
I JIIIIIII I11I111I

L. ..

< <
> >

< <
> >

< <

f (n) w (n)
, • f ,

1111I11I I
I1111I1I I
1IIIIIIIitem(n) J
I111I11I I
1IIIIIIf I

..L .J

<--- -----_._--------------- -------------------->

where the length of the i-th item is w(i) and its
alignment ~actor is a(i). The fields of length f(2),f(
3), ••• ,f (n) are padding introduced so that item(2) I ••• I

item(n) will have the correct alignment. The total
length of the mapped structure is v -= w(1) + f(2) +
w(2) + ••• + fen) + w{n) and the alignment factor is a
= MAX (a (1) I ••• ,a (n)). The following algorithm defines
the method by which the lengths of the padding are
calculated. The algorithm assumes that it is mapping a
set of elements whose alignment and length are deter­
mined. If these elements are substructures they must
have been mapped using the same algorithm.

a = MAX(a(1), ••• ,a(n));

w -= w(1);

DO k = 2 TO n;

f (It) = a (k) * FLOOR ((w+a (It) -1) la (It») - w;

v -= " + f (It) + w ("It) ;

END;

222 Appendix 7 -- Structure Mapping

"

APPLE REFERENCE MANUAL

31 MARCH 1972

The LITERALLY compile-time specification allows the pro­
grammer to 1esignate that certain identifiers will be
replaced by specified character strings throughout the
external procedure before compilation~

Genera I format:

literally-specification .. -.. -
% DECLARE substitution-specification ;

substitution-specifica~ion ::=

identifier [LITERALLY] [(parameter-list)]
character-string-constant

parameter-list ::= parameter [, parameter] •••

General rules:

1. The scope of the literally-specification is the
whole of the external procedure and all its
contained blocks.

2. The specification states that the compiler should
replace each appearance of the identifier within
the scope of the specification by a character
string before compilation. The replacing string
is then to be scanned for further replacements.

3. If nO.parameter list follows the keyword LITERAL­
LY, then the identifier is to be replaced by the
"character-string-constant".

4. If the keyword LITERALLY is followed by a paramet­
er list, then each subsequent occurrence of the
identifier must be followed by an argument list
with the same number of arguments as there are

Appendix 8 -- Literally 223

APPLE REFERENCE MANUAL

31 KARCH 1972

parameters. The character string that is used to
replace the identifier is then constructed by
replacing in the "character-string-constant", each
occurrence of the characters that form the para­
meter identifiers by the characters in the corres­
ponding argument position.

5. The replacing character string must not be used to
form a part of a syntactic unit except for
strings.

6. A literally-specification may not be given for any
keyword listed in Appendix 3.

7. The literally-specification must occur before the
first appearance of the identifier.

An argument must not contain unbalanced
parentheses.

9. An argument must not contain the character .,.
unless it is contained within parentheses, possib­
ly with other characters. The parentheses will
then form part of the replacing cbaracter string.

Examples:

1. Literally specification without parameters:

I DECLARE SYTYPE LITERALLY 'SYT(12)';

All appearances of the identifier SYTYPF. within
the scope of the above specification will be
replaced by SYT(12), thus the statement:

IF SYTYPE = 235 THEN •••

will be compiled as thouqh

224 Appendix 8 -- Literally

APPLE REFERENCE ~ANOAt

31 MARCH 1972

IF SYT(12) = 235 THEN •••

had been written.

2. Literally specification with parameters:

, DECLARE BITS LITERALLY(A1, A2) 'A1 * A2 * 64';

Within the scope of this specification, the
statement

I = BITS(J, 8);

will be compiled as

I = J * 8 * 64;

and, assuming the specification in Example 1
above,

I = BITS(SYTYPE, A(I, J»;

will be compiled as:

1= SYT(12) * A(I, J) * 64;

3. ~ DECLARE STROCT (NA ME)
'1 NAKE BASED,

2 N FIXED,
2 X(2*I REFER (NAME.N» FLOAT';

DECLARE STRUCT(A),
STRUCT (B) ;

The above declarations are equivalent
following:

DECLARE 1 A BASED,
2 N FIXED,
2 X(2*! REFER (A. N)) PLOAT,

1 B BASED,
2 N FIXED,
2 X(2*I REFER (B. N)) FLOAT;

to the

Appendix 8 -- Literally 225

APPLE REFERENCE PiA NUlL

31 MARCH 1912

226

