==

nternational Technical Support Centers

PenPoint Operating System
Overview and Application Development

Document Number G(G24-3978-00

February 1993

International Technical Support Center
Boca Raton

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (February 1993)
This edition applies to PenPoint IBM version, Release Number 1.0 of for use with the IBM 2521 ThinkPad.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSC Technical Bulletin Evaluation Form for readers’ feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Center
Dept. 91J, Building 235-2 Internal Zip 4423

901 NW 51st Street

Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes the architecture of the PenPoint IBM version, operating
system providing sample code for application developers. The PenPoint IBM
version executes on IBM ThinkPad 700T and special bid machine IBM ThinkPad
2521. This document provides an overview of the functional capabilities of the
operating system and the process of application development.

This document is intended for system engineering personnel and application
developers who need to know how to implement pen-based systems. A
knowledge of C programming and object oriented programming techniques is
assumed.

PS (122 pages)

© Copyright IBM Corp. 1993 iii

iv PenPoint OS

Contents

Abstract e e iii
Special Notices e Xiii
Preface e b %
How This Document Is Organized XV
Related Publications XVi
International Technical Support Center Publications oL xvi
Acknowledgments e Xvi
Chapter 1. Introduction 1
1.1 The Pen-Based Environment 1
1.2 Pen Operating Systems e 1
1.2.1 Notebook Metaphor 2
1.2.2 Application Framework 2
1.2.3 Document Model 3
1.2.4 Live Application Embedding 3
1.2.5 Hyperlinks e 3
1.3 PenPoint Applications 3
1.4 Connectivity e e e 4
Chapter 2. PenPointUserlInterface 7
21 Userlinterface e 7
2.2 Notebook Metaphor 9
2.3 Bookshelf e e e 9
Chapter 3. PenPointKernel 11
3.1 Multitasking L e e 1"
3.1.1 TaskManagement 11
3.1.2 Memory Management 12
3.1.3 Multitasking e 12
3.1.4 Operating System Reliability 13
3.1.5 Date and Time Services 13
3.1.6 General Kernel Services 13
3.1.7 Class Manager i e e 13
3.1.8 Machine Interface Layer (MIL), 14
Chapter 4. Application Framework 15
4.1 Function of the Application Framework 15
4.1.1 ApplicationElements o 17
4.1.2 Standard Behavior and Inheritance 18
4.1.3 Application LifeCycle 22
Chapter 5. ApplicationEmbedding 25
5.1 Application Embedding Concepts 25
5.1.1 Basic Concepts of Document Embedding 25
5.1.2 Document Embedding -Example 28
Chapter 6. ImagePoint 31
6.1 Graphics and Imaging System 31
6.2 System Drawing Context 32

© Copyright iBM Corp. 1993 v

vi

PenPoint OS

6.2.1 Creating a System Drawing Context 32

8.2.2 Bindinga SysDCtoaWindow 32
6.2.3 Drawing and Storing withaSysDC 33
6.2.4 Clipping and Repainting Windows 33
6.25 Graphics Primitives 34
6.26 Text Primitives 34
6.27 Copying Pixels 35
6.3 Color Graphics Interface 35
6.4 PrestoredImages 35
6.5 Fonts e 35
6.6 Drawing Text e 36
Chapter 7. FileSystem, 37
7.1.1 File System Activities 37
7.1.2 Application Installation 00, 38
7.1.3 Interaction with other File Systems 38
7.1.4 Filelmport and Export P 38
Chapter 8. Input and Handwriting Recognition 41
8.1 Peninput Terminology 42
8.1.1 Stroke e 42
8.1.2 Scribbles e 42
8.1.3 Dribbling 42
814 Input Focus e e 42
8.2 Optimizing Peninput 42
8.3 Handwriting Translation-Concepts 43
8.3.1 Characteristics of an HWX Subsystem 43
8.3.2 Input Processing Concepts 44
8.3.3 Application - HWX Dialog 45
Chapter 9. The Windowing System 47
9.1 Working with Windows 47
9.1.1 Displaying Windows e 49
Chapter 10. Service Manager 51
10.1 Standard Service Managers 51
10.2 Installing and Using Services 52
10.3 Connecting and Disconnecting Services 52
Chapter 11. Connectivity 55
11.1 Remote File System 55
11.2 Transport Layer e 56
11.3 Link Layer e e 56
114 Send Userlinterface 56
115 InfOut Boxes e e 57
11.6 PenCentral - PenTOPS e 57
11.6.1 PenCentral Files 57
11.6.2 Installation and Configuration 58
1163 PenTOPS R 60
Chapter 12. Software Installation 63
12.1 PenPoint Installation 63
12.2 Automatic Software installation 63
12.3 Manual Software Installation, 65
12.3.1 Settings Notebook Lo 65

12.3.2 Connections Notebook 66

Chapter 13. Application Development o, . 69
13.1 Object-Oriented Terminology and Techniques 69
13.1.1 Application Classes 70
13.1.2 Installation Classes 70
13.1.3 Windows and Ul Toolkit Control Classes 70
13.1.4 Remote Interfaces and File System Classes 70
13.1.5 Text and HandwritingClasses 70
13.1.6 Miscellaneous Classes, 71
13.2 Class Manager 71
13.2.1 Unique Identifiers L 71
13.2.2 Class Manager - Programming Tasks 73
13.2.3 Observer Objects e 75
13.3 Resources and Resource Mapnagement 75
13.3.1 Resource Types e 75
13.3.2 Resource Location 76
13.3.3 Resource FileFormats, 77
13.4 Software Developer's KitSDK 77
13.5 Userinterface Toolkit Ul 78
13.5.1 Userlinterface Controls 78
Chapter 14. Sample PenPoint Application 79
141 Userinterface 79
14.2 Application Design Flow 83
- 14.3 Directory Structure Distribution Diskette 85
A.1 Make File for COMMAPP CRoutines 87
A2 COMMMHC Header 87
A3 COMMAPPHCHeadero... 88
A4 CSource for METHOD.TBL 90
A5 CSource for COMM.C e 91
A6 C Source for COMMAPP.C 92
A7 CSource for COMMFILE.C 98
A8 CSource for COMMSET.C 100
A9 CSource for COMMSEND.C 105
A.10 Make File for REC_PEN CRoutines 110
A11 REC_PENHCHeader oc.... 110
A12 CSource for REC_PEN.C 11
Glossary e 117
List of Abbreviations 119
Index e 121

Contents Vii

v

PenPoint OS

Figures

CNOGR LN~

PO OOXNDIORWLWN=O®

© Copyright 1BM Corp. 1993

Schematic of PentPoint Architecture 5
PenPoint’s Notebook User Interface 7
PenPoint’'s WritingPads 8
Example of Multiple Live Applications 16
Schematic of a PenPoint Application Life Cycle 23
Example of Embedded Applications L. 27
Notebook Displaying Embedded Applications 28
Driver-Slave Traverse Model 30
The Input Processing Pipeline 45
A PenPointWindow 48
Schematic of PenPoint Service Managers 53
Sven Layer OS| Model e e 56
The Connections Notebook 61
The Settings Notebook L. 64
The Installable Applications Software Sheet 65
The Installed Applications Notebook 66
The Connections Notebook 67
Data Entry Panel 80
Options Pull-DownMenu 80
Communications Setup Options Sheet 81
Communication Option Menu 81
File Option Menu e 82
Application Design Flow 83
Directory Structure 85

ix

X PenPoint OS

Tables

© Copyright IBM Corp. 1993

1.
2.

Default SysDCElements

Font Attributes

xi

xii PenPoint OS

Special Notices

This publication is intended to assist system engineering personnel and
application developers in understanding and developing applications for using
the PenPoint operating system and the IBM ThinkPad. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by PenPoint and the associated Software Development Toolkit.
See the PUBLICATIONS section of the IBM Programming Announcement for
PenPoint IBM version for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM’s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577,

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
{VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following terms, which are denoted by an asterisk (*} in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

iBM

Operating System/2
0S/2

Personal System/2
PS/2

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

HAYES is a registered trademark of Hayes Microcomputer Products, Inc.
GO is a trademark of GO Corporation

© Copyright IBM Corp. 1993 - xiii

xiv

PenPoint OS

GO logo is a trademark of GO Corporation
PenPoint is a trademark of GO Corporation
PenPoint logo is a trademark of GO Corporation
ImagePoint is a trademark of GO Corporation
EDA is a trademark of GO Corporation

GOWrite is a trademark of GO Corporation
MiniText is a trademark of GO Corporation
MiniNote is a trademark of GO Corporation
PenTOPS is a trademark of Sitka Corporation
PenCentral is a trademark of Sitka Corporation

Preface

This document is intended to provide the reader with information about the
architecture of the PenPoint operating system and provide the application
developer with guidelines and sample code to assist in writing applications to
this operating system. It contains a description of the operating system
architecture and functions as well as sample code.

This document is intended for persons requiring an understanding of the
operating system and the programming techniques involved in developing
applications for PenPoint.

How This Document Is Organized
The document is organized as follows:

© Copyright IBM Corp. 1993

Chapter 1, “Introduction” provides an overview of the general concepts and
capabilities of the PenPoint operating system.

Chapter 2, “PenPoint User Interface” examines the Notebook User Interface.

Chapter 3, “PenPoint Kernel” describes the operating system kernel and
associated services.

Chapter 4, “Application Framework” describes the function of the Application
Framework which permits the interaction between the operating system and
installed applications, supporting common application behavior,

Chapter 5, “Application Embedding” describes the process of embedding, or
nesting documents inside one another, discussing the correspondence
between applications and their associated documents.

Chapter 6, “ImagePoint” examines ImagePoint and the use of drawing
contexts, clipping and graphics primitives.

Chapter 7, “File System” describes the hierarchical file system and the role
of the file system within the application framework.

Chapter 8, “Input and Handwriting Recognition” describes the process of
handwriting recognition and translation.

Chapter 9, “The Windowing System” examines the windowing system,
describing the concepts empioyed in using windows.

Chapter 10, “Service Manager” examines the operating system component
that coordinates the operations of applications that facilitate communication
with hardware devices.

Chapter 11, “Connectivity” examines the connectivity features available with
PenPoint and describes the transport and link layers.

Chapter 12, “Software Installation” discusses the software installation
process.

Chapter 13, “Application Development” provides an overview of the Software
Developer’s Toolkit.

Chapter 14, “Sample PenPoint Application” provides a brief overview of the
sample PenPoint application. The source code for this sample is included in
Appendix A.

XV

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

e ThinkPad Getting Started with PenPoint, S41G-3122-00

» ThinkPad Using PenPoint, S41G-3111-00

e PenPoint Architectural Reference Vol 1, ISBN 0-201-60859-6
* PenPoint Architectural Reference Vol 2, ISBN 0-201-60860-X
e PenPoint User Interface Design Ref, ISBN 0-201-60858-8

e PenPoint Application Writing Guide, ISBN 0-201-60857-X

* PenPoint Development Tools, ISBN 0-201-60861-8

e PenPoint APl Reference Vol 1, ISBN 0-201-60862-6

* PenPoint AP! Reference Vol 2, ISBN 0-201-60863-4

e The Power of PenPoint, ISBN 0-201-57763-1

* PenPoint Programming, 1SBN 0-201-60833-2

o WATCOM C Library Ref for PenPoint, ISBN 1-55094-035-X

* WATCOM C Language Ref, ISBN 1-55094-033-3

* WATCOM C/386 Optimizing Compiler and Tools, ISBN 1-55094-0 ISBN
1-55094-034-1

International Technical Support Center Publications

A complete list of International Technical Support Center publications, with a
brief description of each, may be found in:

e Bibliography of International Technical Support Centers Technical Bulletins,
GG24-3070.

Acknowledgments

xvi

PenPoint OS

The advisor for this project was:

Alex Gregor
International Technical Support Center, Boca Raton

The authors of this document are:

Dwight Ronquest
ISM South Africa

Gert Ehing
IBM Germany

This publication is the result of a residency conducted at the International
Technical Support Center, Boca Raton.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Maura Oehler
Experimental Development Software IBM Boca Raton

Rick Abbott
Pen Planning IBM Boca Raton

Shirley Tomasi
Pen Planning IBM Boca Raton

Thomas Loeffler
International Technical Support Center Boca Raton

Frank Cook
Software Development Relations IBM Boca Raton

David Lybrand
Experimental Development Software IBM Boca Raton

Preface

xvii

xvili Penpoint OS

Chapter 1. Introduction

This chapter provides an overview of the general concepts and capabilities of
pen-based systems concentrating on the PenPoint IBM version operating system.

1.1 The Pen-Based Environment

Pen-based computing with the associated tablet systems hardware introduces a
significant shift from existing computing paradigms. The pen-based paradigm
satisfies a number of key user requirements:

1. The user interface must provide support for the use of a pen, not as a
pointing device, but as an input device.

2. The applications developed for pen-based systems must sup'port both
handwriting translation and pen gestures.

3. Detachable networking and deferred data transfer whereby the user may
make or break networking connections at will, without impacting the
performance of the operating system.

4. Both operating system and applications must be developed to run on
lightweight mobile computers.
Key hardware design elements for a tablet system to support the pen-based
operating environment include:
e Portable and battery powered
* A 32-bit processor complex
* Upgradeable DRAM memory packages

* Upgradeable SSF (Solid State Files) - A SSF card is a lightweight removable
storage device with a 10MB capacity

¢ Integrated digitizing subsystem to support handwriting input
* System 1/O support for:

— Diskette drive ports

— Parallel port

— Serial port

— Data/facsimile modem support

1.2 Pen Operating Systems

Pen-based operating system design has followed two distinct routes: either as
an extension to existing operating systems such as DOS, or employing a new
architecture based on 386 processor complex instruction sets, using object
oriented programming techniques.

Extensions to existing operating system environments essentially replace the
standard pointing device, the mouse, with a pen. The standard Microsoft
Windows** Graphical User Interface {GUI) is used and many many existing
Windows applications can be modified to run in this new environment.

© Copyright IBM Corp. 1993 1

Handwriting is not the primary input mode and tends to be restricted to specified
edit environments.

PenPoint is a 32-bit, object-oriented, multitasking operating system, specifically
designed for pen-based computing. The change in the nature of the input
device, from traditional keyboard to pen, requires that an enhanced GUI be
presented to the user.

The Notebook User Interface (NUI) adopts the same concepts used in traditional
GUls in terms of pull-down menus and icons plus a number of new elements to
support a pen as the primary input source, such as:

* Notebook metaphor
¢ Gestures

. Handwriting recognition and translation

1.2.1 Notebook Metaphor

Information is organized and presented as a collection of pages and sections.
Individual objects, sections and pages may be readily selected.

The bottom of the display is reserved for the Bookshelf which contains
systemwide objects and resources:

* Notebook

¢ Online Help

* Stationery

* Accessories

» Keyboard

* In/Out box

* Connection services

e Settings

¢ Shutdown

1.2.2 Application Framework

2

PenPoint OS

PenPoint’s NUI provides a standard set of pen gestures that work consistently
across all applications. Pattern recognition is performed by the operating
system, while the application controls the translation process.

Applications written for PenPoint must adhere to PenPoint’s Application
Framework, which is a set of protocols that define application structure and
common behavior:

» Gesture recoghnition and response

¢ Copy and move data transfers

¢ Live embedding of other applications
* View-data model

 Installation and configuration

* Creation of application instances

* Online Help

* Document properties

¢ Spell checking

+ Search and replace

* Printing

* [mport/export file formats

A Service Manager supports background server applications such as databases
and networking connections. Applications interrogate PenPoint as to the
presence of service, establishing message-passing connections to these
services. Applications, not the user, save their internal state in a directory in the
file system.

The Application Framework implements an Embedded Document Architecture
(EDA) that enhances the NUI, making many of the traditional operating system
tasks transparent to the user. Key elements of this architecture are:

¢ Document model
* Live application embedding

¢ Hyperlinks

1.2.3 Document Model

The user is relieved of the task of launching applications and loading/saving
application data. The user simply moves from page to page, viewing the data in
the state it was left, as if the application was still running. With the exception of
data transfer, the user does not work with separate files and applications.

1.2.4 Live Application Embedding
EDA provides the facility to embed a live instance of one application inside
another application. All PenPoint applications provide compound document
capability without special programming. The receiving application simply
embeds an instance of an application that is capable of editing and displaying
the particular piece of data. The user may mix and match applications
seamlessly.

1.2.5 Hyperlinks
PenPoint gestures will create hyperlinks that turn pages and scroll documents to
the location selected when the hyperlink was created. Hyperlink buttons may be
placed anywhere inside the Notebook, documents and in the Bookshelf area.

1.3 PenPoint Applications
PenPoint provides a single built-in application, the MiniText editor that is a
pen-aware formatted text editor.

The standard for PenPoint application distribution is 1.44MB, 3.5-inch DOS
diskettes.

PenPoint senses the application distribution diskette in the diskette drive and will
display an application installation dialog. Upon confirmation, the application
code and resources will be installed.

Chapter 1. Introduction 3

1.4 Connectivity

PenPoint supports multiple auto-configuring network protocol stacks that may be
dynamically installed without rebooting the system. Networking connections may
be established and broken at will.

Connections to physical devices are detected automatically. Once the
connection is complete operations will be initiated; for example, when connected
to a network, PenPoint sends a message to all services that utilize network
connections. Documents waiting to be printed to a network printer will begin
transmission. The Out Box facility permits the initiation of file transfers and print
requests. It is a central, extensible queueing service for all connection
dependent transfer operations. Destination addressing is managed via
PenPoint’s address book APIs.

The In Box facility supports download of mail and facsimile.
PenPoint’s Connections Notebook provides the NUI for connection management,
supporting the following functions:
* Disk management - interrogate drives and manage files
¢ Eject or dismount disks
* Format disks
* Browse networks and enable network resources
» Create and edit instances of printers
* |nitiate document import/export to create:
— PenPoint documents from non-PenPoint files on disk
— Non-PenPoint format files of PenPoint documents
PenPoint’s file system provides support for reading and writing DOS formatted

disks. All PenPoint specific information is stored as a DOS file, in a DOS
directory. This approach will be used when mapping to other file systems.

4 PenPoint OS

PenPoint Architecture

Notebook User Interface

Applications Services
I 1

Appls. Framework | Service Framework

PenPoint Class Substrate
Class Manager
Kernel

Machine Interface Layer
|
Hardware

Figure 1. Schematic of PentPoint Architecture

Chapter 1. Introduction 5

6 PenPoint OS

Chapter 2. PenPoint User Interface

This chapter explores PenPoint’s Notebook Metaphor and the organizational
principles employed in delivering the Notebook User Interface (NUI).

2.1 User Interface

The NUI follows many of the principles used in traditional Graphical User
Interfaces (GUI).

PenPoint applications run inside a window and can share the screen with other
applications. The windows are referred to as Document Frames and may be
resized and repositioned; Notebook pages are an exception to this principie.

Notebook: Contents 1>
Document Edit Options View Create
Name Page
9 Remd MEFIRStot o e 2
B BAMPIES ... 3
] Package Design Letber TP PP TP PO TP PP PO PP P PP P UPUPPPPPPPPPRPPPPR 5
Ih &
ALY MIRNGHE .. . e 6 g
AZY WiniNote QUG SIBI o T z
E MINTERE oo e e B Fi
ALY MiniTest Quick Stert g g
7
]
;
w
g
b-2
fﬂﬁ
V4
? v & & -G
Help Settings Gonnections Stationery Accessores Keyboard Ihbor Outbox Nedebook
Figure 2. PenPoint’s Notebook User Interface
in addition to pull-down menus, Option Sheets are used to specify global type
options:
» QOrientation
* Paper size
* Margins
* Fonts - style and size
Options are applied whereas commands are executed within pull-down menus.
PenPoint introduces two additional items, the Tab and the Writing Pad.
7

© Copyright IBM Corp. 1993

PenPoint OS

The Tab is used as a navigational tool within an application. The user selects a
tab to switch between screens or sheets. »

Writing Pads are used to capture and translate handwriting and to perform
simple editing. System preference settings provide a choice of either boxed, or
ruled styles of pad. Boxes require separation of characters and consequently
yield higher recognition rates. Ruled lines permit the user to write characters
closer together which may pose recognition problems where characters are not
clearly written.

Two forms of writing pads are available, Embedded and Pop-Up.

The Embedded Pad is used for large amounts of text. The application provides
space around the pad so that preceding and succeeding context is visible to the
user while writing on the pad.

Pop-Up Pads are optimized for small amounts of text and typically float at or
near the location where the pad was requested. The application does not shift its
display as with the Embedded Pad.

MiniText <8

Document Edit Options View Insert Case

An example of the flexibility of PenPoint ’s text entry capebility.
Writing pads are used to capture handwriting, translate itinto ASCII textand allow simgle editing.
The larger writing pad is an embedded writing pad, while the smaller one is a pop-up edit pad

i sodwre gl 4sitd sy Peay | sjuauon |

2 vi & O 9B % LKL L 7

% H R
Help Settings Gonnections Stationety Accessories Keyboard Inboe Quttox Notebook

Figure 3. PenPoint's Writing Pads

All writing pads are the same object, merely appearing with various default sizes
in response to user commands. Pressing the OK button causes the entered text
to be translated; the user may also edit the text, making corrections and
insertions. A second depression of the OK button causes the text to be placed in
the underlying application.

2.2 Notebook Metaphor

The metaphor is based on an organizing principle of a table of contents,
sections, pages and tabs in a notebook. User data exists as pages.

Pages are numbered in the top-right corner. The page is turned in either
direction by tapping the direction indicators with the pen. Notebook tabs are
located on the right-hand side of the notebook and may be attached to any page
or section, selection of the tab results in the specific section/page being
displayed.

There are no file load or file save commands. From the user perspective, the
concept of programs and data existing as separate entities does not apply. Each
page of the notebook is a Document and is viewed as a “running” application at
the point where it was left by the user. At a processing level, the Application
Framework associates data files with application code and operating system
processes. At this level documents are synonymous with application instances.

The act of turning a page in the Notebook, causes the following operating system
instructions to be executed:

1. Clear the screen.

2. Create a process and application object for the destination page.

3. Send a message to the destination application object to restore its saved
state from the file system.

4. Send a message to the destination application to display itself.

The original application files its data and this process is terminated to reduce
memory consumption.

2.3 Bookshelf

The Bookshelf is situated at the bottom of the screen and contains systemwide
objects and resources that are displayed as icons. The standard PenPoint
Bookshelf contains the following:

Note

The default PenPoint operating system has been enhanced to include IBM
specific facilities including hardware diagnostics. Different release/version
levels of the product may include extra or changed resources.

This document is based on PenPoint IBM Version 1.0a, HWX revision 32 Mil
51.05

* Online Help

e System settings

» Accessories

¢ Stationery notebook
* Connections

e Software keyboard

Chapter 2. PenPoint User Interface 9

10

PenPoint OS

* In/Out box
* Selected notebook
e Shutdown
The stationery, online help and in/out boxes use floating instances of notebooks
as a user interface.
System settings provide a number of configuration options:
e Writing style
* Pen alignment
* Fonts and layout
* Float and zoom
e Date and time
¢ Sound

¢ Power conservation parameters
Each of the options selected must be applied before they take effect.

Accessories provides a pop-up window with a number of icons:
* Thinkpad Diagnostics
* System Log
» Corrective Service Facility
« Clock
e Keyboard

» Connections
The Stationery Notebook contains copies of templates for installed applications.

The Connections resource provides various views on connected disks, directly
attached or networked, and printers.

The software keyboard is a pop-up image of the keyboard that may be tapped
with the pen tip to insert characters.

Chapter 3. PenPoint Kernel

This chapter describes PenPoint’s multitasking kernel, resource ownership and
allocation.

3.1 Multitasking

PenPoint is a 32-bit, preemptive multitasking operating system similar in function
to 0S/2*. The basic role of the kernel is management of resource aliocation and
ownership. The kernel arbitrates over two general types of resources:

* Time resources - CPU execution time

* Space resources - Memory and I/O ports.

The kernel’s interface consists exclusively of functions and is the least
object-oriented component of the operating system. However the kernel has a
Class Manager which provides the object oriented interface of classes and
messaging. Together these two components provide the Application
Programming Interface (API) structure for the operating system.

3.1.1 Task Management

A task in PenPoint is defined as any executing thread of control. Software tasks
are subdivided into processes and subtasks that are scheduled and run by a
software scheduler based on a priority scheme. The only hardware tasks
available to PenPoint are interrupts. A process is the first task that runs when
an application is instantiated and requests local memory. Processes own all the
resources used by the application, including memory, subtasks and the
semaphores used in locking and interrupt management. When the process
terminates, all its resources are returned to the system.

A subtask is a thread of execution started by a process and is owned by the
process. Subtasks have the following characteristics:

* Shares local memory with the parent process

¢« Owns no resources

* Has separate registers and stack

* Subtasks can lock semaphores and send/receive messages.
The software task scheduler manages the initiation and execution of the
processes and subtasks. To start a process the kernel creates a new execution

context consisting of local memory, a local instance pointer to the executable
code and a new stack; the data values are then initialized.

A process may be started by another process or subtask and there is no
hierarchical relationship between processes; that is, a process that creates
another process does not own the created process:

* The created process will not terminate when the “creator” process is
terminated.

* The created process can be associated with other processes at any time.

© Copyright IBM Corp. 1993 1

3.1.2 Memory Management

The key distinction between PenPoint and operating systems such as DOS and
0S/2 is that all the components of the operating system, all applications and all
the application data are kept in RAM.

The kernel uses privilege settings to determine which of the various tasks and
processes has access to which memory and other space-related resources.

Memory may be private to a process, or may be global. Global memory is
shared by all processes and any task can allocate memory in the global area of
memory. The Memory Manager manages global memory usage through
identifiers and counters that track the number of instances of which application
processes are sharing a given piece of global memory. PenPoint exploits the
80386 processor complex linear memory using a flat memory model in which
heaps may be created and memory may be allocated within the heaps.

3.1.3 Multitasking

12

PenPoint OS

PenPoint employs a preemptive multitasking approach. Preemptive multitasking
is transparent to the application. The kernel switches CPU time among a number
of processes and can regain control of the CPU even if the application crashes.

—— Approaches to Multitasking

There are two approaches to multitasking:
* Yield-based

¢ Preemptive

In yield-based multitasking the applications must follow a defined set of
processing rules that requires the application to periodically yield control
back to the kernel. However if the application crashes while in control of the
CPU, the operating system and all other applications will also crash because
the kernel cannot regain control of the CPU. This is the approach adopted by
Microsoft Windows 3.0.

In a preemptive multitasking environment the operating system is able to
preempt the execution of a task and regain control of the CPU.

PenPoint always gives a higher priority to on-screen applications compared with
off-screen pages and applications. Tasks of the same priority share the
processor, (time-slicing).

Most PenPoint applications are a single process. The applications do not
typically contain separate subtasks and do not use the operating system’s task
management scheme. PenPoint single-threads all of the applications with the
operating system, input and other executing applications. There is no true
concurrency between two live applications.

Where applications do require separate subtasks, the application must use the
kernel’s task management and intertask communication routines to avoid
deadlock. PenPoint supplies the semaphore architecture to support this
requirement.

3.1.4 Operating System Reliability

The reliability of the operating system revolves around the following elements:
¢ Protection of the kernel ‘
* Enabling the operating system to survive an application crash

* Enabling the operating system to recover from a crash

PenPoint’s protection scheme concentrates on inadvertent misbehavior, rather
than on malevolent software {viruses). Hardware-level protection schemes are
employed to protect the operating system core objects from accidental
alteration. ’

The preemptive multitasking approach allows the operating system to regain
control of the processor thereby permitting an orderly shut down of the crashed
application while maintaining overall system integrity.

If the operating system itself crashes a warm-boot is required to recover the
system. All running processes are shut down, and resources, including dynamic
memory are cleared.

in PenPoint, executable code exists only in the system’s memory. This single
copy of code is shared by all instances of an application. Each of the documents
owns a pointer to the executable code and keeps track of where in the execution
process it last stopped. All instances of the application are preserved by the
operating system.

3.1.5 Date and Time Services

The kernel includes an alarm subsystem that maintains a queue of alarm dates
and times that will be active even if the hardware is switched off, as long as the
batteries are charged and instalied.

3.1.6 General Kernel Services
The following general functions are included in the kernel:

* Addition and subtraction
* Multiplication and division
* Trigonometric and logarithmic functions

* Conversion between floating-point and fixed numbers

3.1.7 Class Manager

PenPoint is an object-oriented operating system, using a class manager to
support object-oriented programming. The class manager is used to create
classes and class hierarchies, to create and destroy objects or class instances,
to inherit functions from other objects and to define and send messages between
objects. The APIs are based on class manager messages and objects.

PenPoint however does not use an object-oriented programming language.

Applications are typically developed under C and are therefore portable between
C compilers.

Chapter 3. PenPoint Kernel 13

3.1.8 Machine Interface Layer (MIL)

14

PenPoint OS

The Machine Interface Layer provides PenPoint with hardware platform
independence. It is that portion of the operating system that is specific to a
particular hardware platform.

The MIL roughly corresponds to BIOS in a traditional personal computer.
Whereas BIOS supports a fixed number of a known collection of device types, for
example ports, or disk drives, the MIL can support an unlimited number of
devices and extensions to the MIL can be supported in either RAM (Random
Access Memory), or ROM (Read Only Memory).

Each MIL implementation supports a number of devices, with a minimum set
required by PenPoint. All devices support a set of common functions and a
number of device-specific functions via which PenPoint and the MIL
communicate.

Each type of device is assigned a constant, the Device ID. There can be more
than one device for a given device ID. During initialization, all devices are
enumerated and assigned a Logical ID. This ID is arbitrary and will vary between
machines and between machine configurations and each device can support one
or more units.

Requests from PenPoint to the MIL are sent by the kernel, or the MIL Services.
MIL requests which are implemented as device functions, fall into two
categories, those requests that complete, for example, reading a block of data
from a disk, and continuous requests, such as reading keystrokes from the
keyboard.

Continuous requests are associated with asynchronous input events. The result
of this event is returned to an event handler or call-back function with PenPoint.

A request to the MIL progresses through one or more stages. Upon completion
of each stage, the MIL returns the request to PenPoint, indicating when to return
1o the MIL for further processing. The processing stages are determined by the
particular implementation of the MIL. All continuous functions are multi-staged
processes.

Muiti-stage requests are driven to completion by the foliowing events:
s Specific interrupts

* Time delay
e Compiletion of an 80386 real mode (virtual 8086) task.

3.1.8.1 PenPoint - MIL Communication

At power on, PenPoint via queries to the MIL builds data structures which are
used for communication with MIL devices. These data structures include
Function Transfer Tables (FTT) that contain:

¢ An array of function descriptors, one for each function that the device
supports

¢ Device blocks containing the public and private variables for each device

* A common data structure that holds pointers to the device block and FTT of a
particular logical device

* Common data used by both the MIL and PenPoint

Chapter 4. Application Framework

This chapter describes PenPoint’s Application Framework layer that provides a
set of classes defining the protocols that make up an application.

4.1 Function of the Application Framework

The Application Framework defines the protocols to implement common
application behavior:

Installation of the application

Creation of application instances
Activation of an instance of an application
Saving and restoring application data
Deleting application instances

Removal of applications

Applications running under PenPoint may be viewed from the following separate
but related elements:

© Copyright IBM Corp. 1993

Application display
Application file directory
Application process

Application object

15

16

PenPoint OS

Motebook: Contents

Document Edit Options View Create

?

At-Hand

Graph

_
.

Title: Sample

Y Axis Title

Caption: Classified Sample Data

H
’

Spu3uUOD |

H
H
i

 sajdures] jsilg oy pesy

--- Empty Bookshelf ---

Vi § B

Framework

= 7

Help Settings Siaﬁo;-er-/ Accescories Keyboard Notebook

Figure 4. Example of Multiple Live Applications

Figure 4 shows a number of live applications:

The Notebook uses the file system to organize its documents so that they
parallel the structure of the Notebook Table of Contents. Each section and
document has its own directory in the file system. If a document is contained in

Notebook

Notebook Contents

A text-editing application

A graphics application

Bookshelf

a section, the document’s file entry is a subdirectory of the section directory. If a
document has an embedded document, the embedded document’s directory is a
subdirectory of the enclosing document’s directory. The Bookshelf is similar to a

section, acting as a repository for all of the top-level subdirectories and

documents in the Notebook.

A process is associated with each running application. The Application

Framework manages the processes in accordance with the application life cycle.
The Application Framework creates the process and sets up the application
object to receive messages. When the user launches another application or
closes the application, the Application Framework destroys the process and
saves the data.

4.1.1 Application Elements

All Penpoint applications contain a number of standard elements:
* Application code
* Document directory
¢« Document process
* Application object
* Resource files

¢ Main window

41.1.1 Application Code

Application code does not share memory with the PenPoint file system where
instances of applications and related data are stored. The operating system and
applications share a special area of RAM that is protected against accidental
erasure. Application instance data is linked to the application by a global unique
identifier (UID).

Note

Disk-based operating systems require two copies of code:

* The unrelocated executable file on disk

¢ At execution time - a relocated copy of the executable code in memory.
PenPoint installs the application in memory; there is no requirement for a

disk-based copy. All application code is reentrant; therefore a single copy of
code supports a number of application instances.

4.1.1.2 Document Directory

Documents are instances of the applications that created them. Each document
has a corresponding directory. When a document is selected, PenPoint
determines from the directory information which application created the
document. An instance of the application is then created and activated.

4.1.1.3 Document Process
The Application Framework manages the application processes for each active
application. Each process has a number of attributes:

* A message queue that stores messages for the application instance, until
they can be forwarded to the appropriate object within the process

e Entry point defining the means by which process startup takes place

¢ A main routine, which is the event loop within which the program starts the
application life cycle, waiting for a user event to which it should respond

* The method table that maps message names to method handlers, that is
where the names of messages to which the application responds locally are
related to the names of the procedures that contain the responses

Chapter 4. Application Framework 17

4.1.1.4 Application Object

The application object responds to messages sent to it via processes associated
with the object. The application’s function is contained in the object’s structure
and processing.

All application instances are cbjects and because of their inheritance, ali
application instances receive and process messages from the Application
Framework.

4.1.1.5 Resource Files

A resource file is a general purpose storage mechanism, the format and content
of which are application dependent. Ail application instances have at least one
associated resource file that is the repository for all objecis created by the
application. The Resource Manager manages the location of objects on request,
taking into consideration both space allocation and compaction.

4.1.1.6 Application Window

All visible applications must have at least one window, the main window that
displays the data relevant to the application and provides the user with an input
environment.

4.1.2 Standard Behavior and Inheritance

The Application Framework ensures user interface consistency across all
applications. This consistency is a direct spin-off from the object-oriented
approach and inheritance. The following elements are common to all Penpoint
applications:

* Installation behavior

» Creation of new application instances
¢ Online help

¢ Document properties

¢ Move/copy

* Gesture recoghnition

¢ Hyperlinks

» Standard application menu support
* File import/export

¢ Printing support

¢ Spell checking

* Search/replace

e Application stationery

Gesture recognition is discussed in chapter Chapter 8, “Input and Handwriting
Recognition” on page 41.

18 PenPoint 0OS

4.1.2.1 Application Installation

PenPoint provides a set of installation routines that are consistent for all
applications. Penpoint detects installable software in attached diskette drives.
The installation options are selected from the Settings Notebook. Applications
may be installed, deinstalled, or deactivated.

Deactivation is used in a constrained disk environment, and the application is
temporarily deinstalled. The application will be automatically reinstalled when
the user selects an instance of the application, assuming that an external
diskette drive containing the application is attached.

4.1.2.2 Creation of New Application Instances

PenPoint creates a new instance of the application when the user launches the
application. The Application Framework sends the application a message to
create an instance of itself. The application creates a subdirectory entry at the
appropriate place in the file system. If the new instance is created in the
Notebook Table of Contents, it will not run automatically upon creation. However
if the instance is created within another document, the application will launch
immediately.

4.1.2.3 Online Help
PenPoint provides two approaches in providing online help:

* Quick Help (context sensitive help) for individual objects
* Additions to PenPoint’s Help Notebook (reference help).
Quick Help is provided by defining resources for each type of object for which

assistance is required. Protocols interpret the user’s help gesture within the
menu, decode the object and display the appropriate heip resource.

Reference help is added to the Help Notebook in the form of text files that are
managed by the application, or in the form of help applications that are
embedded in the Help Notebook.

Text files are generally in Rich Text Format (RTF), placed in the appropriate
subdirectories in the application distribution diskette. The default help
application is used to display the online help and manages user interaction
within the help files.

Help applications are placed in the appropriate subdirectories in the application
distribution diskette and are detected and installed by the installation manager.

4.1.2.4 Document Properties
All documents have associated properties:

* Title
* Author
 Comments
* Date created
e Fonts used
The user selects an Option Sheet describing the current document and may

change selective atiributes. Option Sheets are defined for an application using
messages; this option is included in the PenPoint User Interface Toolkit.

Chapter 4. Application Framework 19

20

PenPoint OS

4.1.2.5 Move/Copy

Users may initiate a move/copy process between embedded windows by
selecting information to be moved or copied and then issuing the move or copy
command via menu or gesture. Once initiated, a move/copy icon, (an elastic
box), will surround the source; the user then indicates the destination location.
There are now two locations for the object. The source object sends a message
to the destination object instructing it to move or copy the selected data. The
destination determines the type of data and if the data type is understood, the
source is requested to send the data. The source now knows the type of the
destination object and determines whether the data is be copied or moved into
an instance of that type of application or not. (A graphics application might
reject the movement of its data into a word processing application.) The source
determines the location of the destination object in the file system.

4.1.2.6 Hyperlinks
Goto buttons or hyperlinks may be defined within documents and are used to
create cross references to other documents, or sections of the same document.

4.1.2.7 Standard Application Menu Support

Standard menus, menu commands and Option Sheets are provided by PenPoint
as a default. These are collectively referred to as PenPoint Standard Application
Menus (SAMS). The User Interface Desigh Guidelines require that all
applications provide SAMS related commands. The Application Framework
implements SAMS.

When an application is launched, it creates a user interface including the menu
bar. SAMS will either merge application unique menus, or menu commands, or
the application performs the merging. There are default responses for all SAMS
commands. The following menus are fully implemented to display standard
dialogs and Option Sheets:

* Document menu
e Print
¢ Print Setup
¢ About
If a selection option is not available within a menu, it is automatically grayed out.

For example, in the Edit menu the Delete command will not be active until a
deletion area has been selected.

4.1.2.8 File Import and Export

Data import from operating systems such as DOS requires that the user identify
the application that will deal with the imporied data. PenPoint creates an
instance of that application and sends a message instructing the application to
transiate the imported data into its own file format.

When exporting files, the user selects an export file format that can be
understood by the receiving application under a different operating system.

4.1.2.9 Printing

Printer support is furnished at a system level, rather than at an application level.
In PenPoint, printing is a process of drawing a document’s image on a hardcopy
device. There is a single APl which renders output to both the screen and
printers. Printed pages are a collection of windows and the application merely
displays itself to a different image device; the printer image device is provided
by the operating system.

PenPoint provides two commonly used printer drivers, a Printer Control
Language (PCL) driver for laser printers and a standard dot matrix driver. The
printer objects must be created using the Connections Notebook. This notebook
lists the printer description, including printer type, model and port. Multiple
printer objects for the same printer may be created to exploit any special print
features.

The Document menu for every application contains standard Print and Print
Setup commands, that bring up Option Sheets. The Option Sheet controls which
printers to use, page size, number of copies, fonts etc.

Print commands may be issued at any time, even if there is no printer attached.
The print command will copy the document into the Out Box.

When the targeted printer is available:

1. PenPoint creates an image device for the specified printer.

2. The document in the Out Box receives a message with parameters set to
indicate that the application is being opened for printing.

3. The printer image device root window is laid out with optional headers and
footers, and with the applications first page of data.

4. If a dot matrix printer has been selected, the fully rendered page image is
sent to the printer in bands.

5. If a PCL printer has been selected, ImagePoint** downloads outline fonts to
the printer.

6. The page layout and print process repeats for as many pages as the
application has data to print.

7. Upon completion of the print job, the Out Box deletes its copy of the
document.

The Application Framework prints a document exactly as it appears on screen by
default. When a document is selected for printing, all embedded documents are
printed as well. Only the visible portion of the embedded document is printed.
Applications may provide print-specific formatting and layout.

4.1.210 Spell Checking

Spell checking is part of PenPoint’'s SAMS. New dictionaries may be defined.
Spell checking is part of the handwriting component of the operating system.

Chapter 4. Application Framework 21

4.1.2.11 Search and Replace

The operating system provides support for this function. The process however
may be complicated through embedding of documents. The user is given the
option of excluding embedded documents when setting up the search.

4.1.212 Application Stationery

The Stationery Notebook contains the stationery provided by the installed
applications. This supports the creation of blank application instances along with
default templates.

Users may define new templates and file them as stationery documents. Upon
selection of the document, PenPoint will create an instance of the associated
application.

4.1.3 Application Life Cycle
All PenPoint applications follow the same life cycle each time an instance is
created. The application manages the transitions between the various states in
the life cycle in response to the Application Framework messages it receives.
The messages are caused by user actions but may also be programmaticaily
generated.
The application life cycle consists of the following states:
1. Non-existent
2. Created
3. Activated
4. Opened and interactive
5

. Dormant

22 PenPoint OS

PenPoint Application Life Cycle

NonExistent //\1
7

2

Activated /ﬁ

Opened (Interactive)

Figure 5. Schematic of a PenPoint Application Life Cycle

4.1.3.1 Instance Creation

The user creates a new instance by selecting the application, or by copying a
blank stationery template associated with the application to the Notebook Table
of Contents. PenPoint sends a message which is defined to the application class.

4.1.3.2 Application Activation

Selecting the page containing an instance of the application indicates to the
operating system that the instance should be activated. Once activated, the
document is opened.

4.1.3.3 Application Termination

PenPocint may terminate the application instances when they are closed, except
where the application has been defined as a Hot Mode application and off-screen
processing will continue, for example, file transfer.

When a document is deieted, PenPoint will remove the application instance
associated with the document.

Chapter 4. Application Framework 23

24 penpoint OS

Chapter 5. Application Embedding

This chapter describes the Application Framework’s support for application
embedding and the concepts employed in embedding documents.

5.1 Application Embedding Concepts

Every document has a unique identifier that indicates to the operating system
which application to launch when the document is selected. This embedding
capability is recursive; the user may embed an application within an application
the only limiting factor being memory.

Document embedding takes place dynamically while the application in which
another application is about to be embedded continues to run. The embedding
process is transparent to the user. '

Embedded applications execute inside one another, and the embedded
document’s application continues to run, that is any application can host another
application. This approach is in contrast with traditional Windows,
multi-application processing, where compound document support is delivered via
clipboard metaphors.

In PenPoint, the user can combine documents from two or more applications in
either of two ways:

* Create the documents on separate Notebook pages, then copy or move them
to a destination document, with no loss of content or formatting.

* Embed the applications, creating new documents within existing documents
as required to build the compound document.

In both approaches, the applications appear in embedded windows that can be
inline, overlapping, or take up the entire application frame.

Each embedded document is stored in a separate directory. Embedded
documents are therefore stored in a subdirectory of the parent’s document file
system subdirectory. PenPoint treats every embedded application as a cohesive
whole containing all its embedded windows, regardless of the application
responsible for the content of the windows.

5.1.1 Basic Concepts of Document Embedding
Document embedding involves three basic dimensions:

* File system

e Process space

e Window hierarchy
The file system provides a hierarchy of document directories, with one document
directory for every embedded application, regardless of whether it is running or

opened. It is the only dimension that captures the entire hierarchy of embedding
at all times.

© Copyright IBM Corp. 1993 : 25

26

PenPoint OS

Process-space consists of processes corresponding to running application
instances. This set of running processes is driven by the embedding hierarchy,
in which every running, embedded application has its own process.

Terminated applications do not have a process associated with them. Processes
do not have an hierarchical relationship with other processes. Processes are
created in response to transversals of the hierarchy in the file system.

The window hierarchy captures the hierarchical visual relationship of the
“embedding” and “embedded” applications.

5.1.1.1 File System Hierarchy

The file system contains a document directory for every embedded application;
each document directory contains the files belonging directly to the application
instance - data and resource files. The attributes record the ciass of the
application, associated with the directory, the Unique Identifier of the application
(UID), if it is running, the state of the application and the Universal Unique
Identifier (UUID) of the document itself that allows other objects to point uniquely
to this document.

5.1.1.2 Process Space

Every running application must have a process. The windows within each
process are owned by the process. Off-screen processes are shut down by the
operating system to free up memory and processor time.

5.1.1.3 Embedded Windows

Windows are the objects that support the cooperative sharing of the display
space. The embedding window communicates with the embedded window via
messages to determine the location and size of the embedded window and will
intercept, approve, or modify messages to the embedded window.

Notebook: Contents 1>

Document Edit Options Yiew Create

Nam// At-Hend Prge

/ WM%//MW%//%%%W///W%/ E g
. I i
- [>

Z/// ,,,,,,,,,, LI W g

| T 2

| §§ ,,,,,,,,,, b “

//%/////////%///%

s, fodododod)
?f, ;% % i weor, <5

G MiniText AtHand

2 vi B B £ 7

Help Seﬂir;'gs Statiorery Accessories Keyia&rd Hotebook

Figure 6. Example of Embedded Applications

In Figure 6, a graphics application is embedded within a text editing application.
The graphics application is closed and is represented by an icon. When the user
selects the Graph icon application, the text editing application intercepts the
message and cooperates with the graphics application in terms of sharing
resources. Processes define the class of application - embedding or embedded,
and the behavior of the application. Default behavior is to run all embedded
applications whenever the embedding application is run, that is, when the user
turns to a page, not only is the document on that page run, but the
corresponding processes for all embedded documents are also opened.

Note

Embedded applications are costly in terms of memory and processor cycles
because each embedded application requires a separate process and
document directory.

PenPoint components however, (Goto buttons and Signature Pads), execute
within the host application’s process space; filing data in the host
application’s data file does not consume as much resource.

PenPoint keeps track of embedded documents using embedded window marks
that contain:

e The UUID of the document containing the mark
* The UUID of the component within the document

* A component-specific token that specifies a location within the component

Chapter 5. Application Embedding 27

¢ A label of the mark

5.1.2 Document Embedding - Example

The Notebook application is embedded in the Bookshelf, and acts as the
organizing vehicle for all PenPoint applications.

MiniText 7B

Document Edit Options View Insent Case

This is an example of embedded applicaticns in PenPoint 7 /araph

‘/%/"" Graph %%

1 S pesy! susjuog]

{sajdue g

Caption: Classifiecd Sample Dats.

2 vi o ® & B» L Lo 7O

*
Help Settings Gonneclions Stafionery Accessories Keyboard Inboe Outbox Notebook At-Hand

Figure 7. Notebook Displaying Embedded Applications
Figure 7 represents a number of applications visible on the screen, making up a
compound document:

* Bookshelf

* Notebook

* Notebook Contents

» Text Editing

e Graphics
The compound document may also be viewed from a file directory structure. The
Bookshelf is the root directory. The Notebook application is a subdirectory within
Bookshelf, and Notebook Contents is in turn a subdirectory of Notebook. Each

document within each directory has at least two associated files, one is the
contents of the file, the other records the display state of the file.

28 PenPoint OS

5.1.21 Window Placement
The placement of embedded windows {(documents) may be performed in one of
two ways:

1. Unconstrained placement

2. Constrained placement

The default approach is unconstrained placement. The new window floats atop
its main, or parent document window.

When using constrained placement, the application determines where to place
the embedded window, based on the kind of display item it represents.

5.1.2.2 Traversal

The parent application must be aware of the contents of the windows created
and embedded by other applications, as the contents of the windows determine
the behavior of that window in response to document operations. In PenPoint
this process is known as traversal. The most common operations are:

e Search and replace

* Spell check

e Print
Traversal determines whether embedded windows will be scanned for data or
not. PenPoint uses a driver-slave model to implement traversal. The object,
(application) requesting traversal is termed the driver and interacts with
embedded documents, the slave, to scan all data within a specified range. The
driver-stave model keeps the traversal process in synchronization through a
mechanism called the traversal context. This context is a protocol between the

driver and all the slaves it encounters within the scope of the traversal, the
direction and the current location within the scope of the traversal.

The user determines the scope or method of traversal by choices or commands.
The driver sends messages to each slave it encounters, the slaves respond to
the messages, in accordance with the traverse style defined in the traverse
context.

The following types of behavior can be defined by an application for its
instances:

* Embedded windows are not scanned.

* Open embedded windows are scanned.

* All embedded windows are scanned.

* Invoke a call-back routine.

Chapter 5. Application Embedding 29

Driver-Slave Traversal Model

DRIVER SLAVE

Encounters child“J
embedded windo |
> Instructs slave
to find data

|
|
|
|
|
|
|
v
;
|
|
: Is end of of

el

Terminate
Notify driver

NO

|
!
1
l
|
|
!
l

Tells slave what tﬂ
do with found datai

Find data & notify driver

|
|
| Carry out operation
Traversal ends| | Notify driver
|
{
|

A

Figure 8. Driver-Slave Traverse Mode/

30 PenPoint 0S

Chapter 6. ImagePoint

This chapter describes the implementation of graphics and imaging in the
operating system. PenPoint is based on a graphical user interface tuned for pen
input.

In PenPoint, text is unified with graphics and all images can be scaled, rotated,
translated and used for both display and printing.

6.1 Graphics and Imaging System

All drawing takes place in a window. Drawing messages are sent to a special
object, the Drawing context. The Drawing context renders the drawing in the
window to which it is connected. Clipping is enforced to ensure that the drawing
affects only the target window.
A drawing context defines the characteristics of a graphic environment:

¢ Units of measurement - pixels, points, millimeters

e Matrix to define scaling and rotation

¢ Type and extent of clipping. The default is to clip to the window boundaries

e Plane Mask - does the window draw on the acetate layer where the pen ink
gets dribbled

* Line characteristics - joining of lines and line thickness
» Radius value for round-cornered rectangles
* Foreground/background colors
* Fill patterns
* Line patterns
* Fonts
PenPoint supports the drawing of a number of specified shapes. Both closed

and open shapes are supported and the closed shapes may be fiiled with a solid
color or shape.

A closed shape is any shape that starts and ends at the same point, enclosing
an area. The following closed shapes are supported:

* Rectangles, including rounded corners

e Ellipses and circles

¢ Polygons with an arbitrary number of sides

¢ Sectors

* Chords

An open shape is essentially a line; the following shapes are supported:
* Multi-segment lines
* Bezier curves

s Arcs

© Copyright IBM Corp. 1993 31

Drawing becomes visible to the user when the application responds to a
PenPoint message to paint in a specified window. Applications make no
distinction between painting and repainting a window. The application must
however store the contents of the windows and keep track of what is displayed.

6.2 System Drawing Context

All drawing in PenPoint is performed by sending messages to the System
Drawing Context (SysDC). The SysDC is bound to one window at a time. If the
SysDC is bound to another window, the drawing in the first window is not
cleared, it is simply not updated.

6.2.1 Creating a System Drawing Context

The SysDC is created in the same manner as any other objects in PenPoint by
sending messages to the class. The SysDC may be considered as the set of
values that describe the state of the environment of the window to which the
SysDC is attached. The operating system provides a number of defaults for the
state of the window, and messages are available to change each of the values.

Table 1. Default SysDC Elements

Element

Default Value

Units

Unit= point (1/72 of an inch)

Drawing mode

Keep narrow lines visible

Plane mask Do not draw into acetate layer where ink is dribbled
Line cap Square off ends of lines
Line join Use miters for line joins
Line thickness One point
Foreground color Black ink
Background color White
Fill pattern White
Line pattern Black
Font scale One unit
Default font None

6.2.2 Binding a SysDC to a Window

32

PenPoint OS

The SysDC is sent a message containing the 1D of the window to which it should
be bound. PenPoint will also return the ID of the window, if any, with which the

- S8ysDC was formerly associated.

The SysDC must first be bound to a window before most of its associated
messages will have a meaning.

A single window may be bound to multiple SysDCs if a complex picture is to be
created.

6.2.3 Drawing and Storing with a SysDC
The application process follows two steps to draw in a window:

1. Confirms that the graphics state of the window is correct, that is, the SysDC
has the values required to perform the drawing.

2. Sends the SysDC the drawing messages to create the shapes.
The window must be repainted for the drawing to become visible to the user.

When the window is filed, only the information required to re-create the window
is stored. Three approaches are available to store the window display contexts:

* Capture a bitmap of the window. This is a memory intensive and device
dependent approach.

¢ Store the application data structures from which the display can be
regenerated.

¢ Store the images as a sequence of SysDC drawing instructions.

PenPoint’s preferred method of storing drawings is as a sequence of SysDC
drawing instructions. A special object, PicSeg (Picture Segment) records all the
drawing commands issued and stores them in a compressed format - a Grafic.

Each grafic in a PicSeg contains the information to reproduce a single drawing
action.

PicSeg is a subclass of a SysDC and is created and bound to a window in the
same manner in which the SysDC is setup.

6.2.4 Clipping and Repainting Windows

The SysDC only draws inside a window; any instructions to draw outside the
window boundaries are automatically clipped. The PicSeg captures all drawings;
even the clipped portion which is not displayed is captured.

Where there are overlapping windows, clipping will ensure that a drawing does
not disrupt the contents of the overlapping windows.

The clipping region may be altered to allow a number of embedded windows to
share a common drawing area, or a subset of the window’s total area may be
defined as a drawing area and all drawings will be clipped to the defined area.

In summary, all drawing takes place through the SysDC and appears within a
clip region that can be:

¢ An entire window

+ A defined family of windows that cooperate to create a common drawing
area

* A portion of a window

PenPoint notifies an application when a window requires repainting. This usually
occurs when windows are moved and overlap the drawing area. The operating
system sends a message to the application to repaint the window and the
application initiates the repaint process. Thereafter, only the affected (dirty) area
of the window is repainted, until the application issues an “end repaint”
message.

Chapter 6. ImagePoint 33

This approach of confining repaints to specific target areas is the most efficient
in a multiple overlapped windows environment and reduces screen flicker to a
minimum. Windows may be repainted at any time during the application process,
via routines in the application without having to wait for the operating system to
issue the instruction.

6.2.5 Graphics Primitives

PenPoint defines:
* Open and closed graphics primitives
s Displaying text

e Copying rectangles of bits.

Open shape Polylines are drawn by sending a message that takes as an
argument, a pointer to an array containing the points through which the line is
drawn and a number defining the number of points in the array.

Bezier curves are drawn by passing a pointer to an array of four points that act
as the control points for the curve. :

PenPoint treats an arc as a portion of an ellipse, defined by a rectangle
enclosing the ellipse of which the curve is a part and the two points that define
the end points of the arc.

Six basic PenPoint graphics are defined that produce closed shapes. All closed
shapes are filied; a transparent color fill is supported to generate “hollow”
shapes. By setting the line width to zero, only the filled area, not the border, will
be drawn.

Rectangles are drawn by pointing to a data structure that specifies the origin and
size of the rectangle. A value other than zero for the radius produces rectangles
with rounded corners.

Ellipses and circles are drawn by passing an argument in which the ellipse is
drawn within a rectangle. If the rectangle is a square, a circle is produced.

6.2.6 Text Primitives

34

PenPoint OS

All text is drawn using a font and the process of drawing text consists of the
following:

1. Load the required font.
2. Scale the font.

3. Initialize the structure that defines the parameters to draw a single text
string. The structure defines:

» Alignment
* Underlining
* The pointer to the text
¢ Length of the text »
* The coordinates to place the text string (x and y axes)
* Justification metrics - width of a normal space
4. Drawing the text

6.2.7 Copying Pixels

ImagePoint** supports two forms of pixel copy operations. Rectangular pixel
images may be moved between image devices and within a window.

Image devices are in-memory windows into which the drawing operation is
rendered. This image may then be copied to the screen.

A portion of the on-screen image may be relocated to another screen position.
This technique is employed when the application window has been relocated on
the screen, or the contents of the window scrolied.

6.3 Color Graphics Interface

PenPoint supports the use of color on appropriate hardware. The PenPoint color
metaphor uses the concepts of foreground and background. Drawing takes place
in the foreground, as the pen draws lines, using a color that contrasts with the
background color and therefore produces visible output. A single drawing
operation can use both the foreground and background colors at the same time.

Color values may be set and described in the following manner:
1. Use a palettie of colors and index the selected colors into it. colors

2. Use red, green and blue (RGB) color combinations. This is probably the most
effective approach:

* Ensures printer compatibility. If the first method is used, a printer may
not recognize the palette.

* PenPoint automatically manages color translation from RGB color values
to the appropriate colors on a minimum color hardware configuration.

¢ Ensures device independence for both printers and displays.

6.4 Prestored Images

PenPoint includes high level support for managing and displaying prestored
images, for example facsimile (FAX), in the form of a Sampled Image Operator
(S10). The SIO handles simulated analog image processing, by mapping the
source pixels into destination pixels. The SIO also supports run length
compressed sources, permitting easy scaling and rotation of pixel-based images.

Note

Pixel based images are generally not editable

6.5 Fonts

PenPoint stores fonts as outlines which is far more memory efficient than using
bitmapped images of the font characters and are scalable to any point size.

When the font is specified in the SySDC, PenPoint searches for the closest match
using font metrics. If the application has a bitmapped font with the same name
and/or 1D, the operating system will use that font.

Chapter 6. ImagePoint 35

All fonts have standard registered 16-bit IDs that are valid across PenPoint
configured systems; therefore, moving applications between systems should not
result in font display issues. The font attributes must defined before the font can
be used. The font is then selected based on the ID. If the font ID is not available,
the the font group will be used to find the “best fit".

Table 2. Font Attributes

Attribute Description
Typeface Name of the font family
Character weight Bold, normal, light
Aspect . Condensed, normal, or extended
Italic Yes/No

6.6 Drawing Text

36

PenPoint OS

All text drawn in a window is drawn using the current foreground color and
cannot be color filled without setting the foreground color. Text is treated as
graphics content in the window and therefore the text unites with the rest of the
images in the window and will scale and rotate along with the rest. All
characters appear on the screen as bitmapped images, but are stored in outline
form.

When a character is displayed in a particular font, PenPoint will look up the
character in an internal bitmap character cache. If the character is not present,
PenPoint will render the character into the bitmap character cache. If the
installed font is an outline font, the requested character is rendered as a bitmap
at the requested point size. Characters are rendered into cache with all
associated attributes and rotation.

Chapter 7. File System

This chapter describes the file system of PenPoint. The file system has been
designed for compatibility with DOS and includes full support for reading and
writing DOS formatted disks.
The following features are included in the file system:

* Hierarchical directories

s 32-character file names

* Memory mapped files

e OOPs APis
Both the process of remote file transfer, automatic installation and the interface

to device drivers is based on the architecture of a hierarchical system of
directories and files.

PenPoint’s file system is based of the concept of a volume; three types of
volume are supported:

+« Memory resident

¢ Local disks

* Remote disks and servers

Memory resident volumes are naturally stored in RAM; RAM is always available
to the application because it cannot be disconnected by the user.

Local and remote disks are available to PenPoint when an external diskette
drive is attached to the pen-based hardware, or when attached to a network or
communications link.

All volumes have root directories. The operating system and applications make
extensive use of the subdirectory tree structure of the hierarchical file system to
store and retrieve specific files.

7.1.1 File System Activities

The following file activities are shared with other operating systems:

¢ Creating, opening and deleting files on a volume

* Copying and/or renaming files and directories

* Moving files and or directories

* Moving the read pointer to a new location with a seek operation

* Modifying file and directory attributes.
PenPoint however also supports a number of unique file activities. Every file and
directory can have application defined attributes. Pen-based hardware is
designed to be highly portable; therefore the operating system must manage

random disconnection and reconnection to externai volumes. Activities requiring
access to external volumes are stored until connection is established.

® Copyright IBM Corp. 1993 37

PenPoint automatically performs file compression and decompression. The user
may select the type of compression to be performed and even elect not to
perform file compression.

7.1.2 Application Installation
The standard for application distribution is a 3.5-inch DOS formatted diskette.
Applications usually include an installation routine which automatically installs
the application within the desired file structure for the user.

Drag and drop routines are also supported whereby the user may drag
application objects over an installer.

7.1.3 Interaction with other File Systems
The file system contains information that is incompatible with the DOS File
Allocation Table (FAT) system and this superset information must be managed
by PenPoint to maintain cross file system compatibility. The following information
is not supported by the DOS FAT system:

¢ Long file names
e PenPoint specific attributes
e Application defined attributes
If the files to be stored are to be retrieved and reused by PenPoint, the superset

information must be retained; this data is therefore stored in an extra file in each
directory for which superset information exists in the PenPoint system.

PenPoint will detect and recognize this information when the external volume is
mounted.

PenPoint files are only stored on external volumes without the superset
information, if those files are to be subsequently manipulated by DOS
applications.

— Note

Compound documents (multiple documents composed in and managed by
two or more applications), are managed via the file system. PenPoint stores
embedded documents in subdirectories of the “containing” documents. The
compound document is therefore stored and maintained as a single
directory, which permits copying and moving of documents without having to
be aware of the contents of the document.

7.1.4 File Import and Export

Applications generally include a set of filters (routines to process and convert
‘data from one format to another format), to facilitate file import or export.
PenPoint supports data compatibility in the following manner:

* Use of shareable filters for data so that applications do not need to provide
unique filters

e Use of a standard user interface for controlling file formats and interactions.

38 Penpoint OS

7.1.41 File Import

Files imported into PenPoint must be associated with an application. When a file
is selected and copied/moved from a Disk Viewer window to the Notebook Table
of Contents, PenPoint will query every application running on the system
whether the particular file format being imported can be supported. The user is
presented with a selection list of the appropriate applications.

The_ application checks the file import type, which is passed as a parameter,
against a list of known file types; a positive response places the application on
the selection list presented to the user. If the application is selected, the import
process is initiated and a new document is created.

7.1.4.2 File Export

When the user selects Export, PenPoint queries the document to determine the
file formats it can write. A selection list is then presented to the user. The user
selects a file format and destination, then initiates the export process.

Each application is aware of the file formats supported for export and presents a
list of formats supported together with control information that will be used
during the translation process. The application will also provide a suggested file
name for the user, which may be overridden.

The selected exporting application receives, along with the instruction to export,
information about the source file, destination file and translator to be used.

Chapter 7. File System 39

40 Penpoint OS

Chapter 8. Input and Handwriting Recognition

Note

IBM has replaced the standard handwriting recognition module supplied with
PenPoint. the following IBM DLLs have been included in the IBM version of
PenPoint:

* XLATE.DLL
PLI.DLL
IBMSHAPE.DLL
SPELL.DLL

US Dictionary

The corresponding text and handwriting classes have also been been
replaced.

The general concepts and techniques employed in handwriting recognition
are described in this chapter.

The primary input and pointing device in PenPoint is the pen, or stylus. Unlike a
keyboard and mouse, that are one-way communication devices, the pen requires
a continuous two-way communication process through which handwriting is first
recognized, interpreted and acted upon by the operating system, then fed back
to the user. The user interface will, whenever possible, provide the context to
guide the gesture and handwriting recognition module through the appropriate
recognition process.

Applications do not pass text or numbers as input to the input subsystem. Input
operations, called scribbles are passed to the application’s user interface code
that determines whether and how to translate the scribble, including the context
within which the scribble shouid be translated. The location of a gesture
determines its intended meaning; for example, depending on where a circular
gesture is made, it will be interpreted differently:

¢ In text input the gesture "O” represents the alphabetic character “O”
* A circle drawn over text issues the command to edit the selected text

* Acircle drawn in a graphics document represents a circle.

An operation is triggered by a pen action and subsequent processes are
determined by the window context in which the pen gesture was made. The
scribble is passed to the user interface owning the window that controls the
translation. The application controls the translation by passing the scribble and
control parameters (window context) to the handwriting recognition (HWX)
moduie of the input subsystem. The input subsystem passes the recognition
results back to the user interface, where the user may view the resulits of the
operation.

While the pen must be able to dribble ink anywhere on the tablet, the system
must not only support recognition, but also rapidly repaint the tablet.

© Copyright IBM Corp. 1993 41

8.1 Pen Input Terminology

8.1.1 Stroke

8.1.2 Scribbles

8.1.3 Dribbling

The terminology used in pen-based computing is unique to this environment and
some description is necessary:

A stroke is both a pen action that leads to the appearance of ink on the tablet,
and a data structure containing information about the action. Collections of
related strokes are called scribbles; scribbles are also data structures that can
be stored and manipulated.

Scribbles that have a meaning in a particular context may be gestures,
characters, or shapes. Scribbles are interpreted by the application, consistent
with the PenPoint User Interface Style Guide recommendations.

Dribbling is the appearance of “ink” on the tablet as the user moves the pen
across the screen.

8.1.4 Input Focus

Input focus refers to where input from the keyboard will be directed. Keyboard
strokes are always sent to the current window selection. Gestures on the other
hand always apply to the data directly beneath where they are made.

8.2 Optimizing Pen Input

42

PenPoint OS

Direct input via pen strokes presents a number of challenges in terms of
optimizing the performance of this form of input:

+ Eliminating flicker and slow response when processing pen input
¢ Managing dribbles and windows in the user interface

* Providing a level of flexibility in handwriting recognition

The pen is an input mechanism; when dragged across the display, this
movement must be “echoed” by the ink that traces the pen’s path. As soon as
the pen leaves the screen, the ink must be passed to the user interface and
erased from the screen. If the echoed “ink” was displayed on the screen directly,
screen flicker would result from the screen repaint process.

PenPoint’s window system maintains a global, screen wide display plane, called
an Acetate layer, where the ink is dribbled and strokes are collected into
scribbles. The operating system ignores intermediate movements of the pen
between the time a scribble is started and the time it ends. The data points are
collected into a scribble data structure. The ink on the acetate layer can be
erased without analyzing the effect of such an erasure, or refreshing the
underlying display.

ink must be confined by the windowing system to the window in which it
originates. While the windowing system contains/clips display activities within a
window’s boundaries, the ink must be allowed to flow wherever the pen moves,

to permit writing input a little larger than the size of the input field and gestures
that might overlap boundaries.

Pen scribbles are processed to the owning window as an initial step. While the
acetate layer displays the dribbles, the internal stroke and scribble data objects
are generated from sampling points. The system passes the scribble data to the
application when the acetate layer is erased. Strokes drawn outside the window
boundaries are echoed back to the user; they are not incorporated in the
sampling points.

PenPoint’s handwriting recognition subsystem is totally replaceable to permit the
inclusion of new technologies and to accommodate the Cyrillic and Kanji
alphabets.

8.3 Handwriting Translation - Concepts

The input subsystem must generate input messages for all pen activity on the
screen. This input is grouped together into scribbles, the scribbles are passed to
a Handwriting Recognition subsystem (HWX) for translation into either text
characters, or command gestures.

8.3.1 Characteristics of an HWX Subsystem

Each implemented HWX subsystem should include the following elements:

* Recognize both upper and lowercase characters, numerals, symbols and
punctuation.

« Support both “boxed” (one character per box), and “lined” (characters written
next to each other on the same line) handwriting.

¢ Operate in real time based on the clock speed of the processor complex in
the hardware.

* The HWX subsystem plus a dictionary executes directly from memory and
must be both efficient and compact to avoid excessive memory consumption.

* The HWX subsystem must achieve a high level of translation accuracy,
supporting multiple users with minimum “training”.

¢ Tolerate handwriting inconsistencies by the same user.

* Support non-unique character forms, that is, context sensitive character
recognition, distinguishing between the character “O” and a numeric "0”.

¢ Access context sensitive translation aids provided by applications.

* Run in background mode.
In essence strokes are received and examined by the HWX subsystem, character
recognition is performed by comparing character shapes with a set of character
prototypes. New prototypes are added by “teaching” the HWX subsystem to

recognize unique styles in shaping the characters, through the handwriting
training sessions provided with the subsystem.

Chapter 8. Input and Handwriting Recognition 43

8.3.2 Input Processing Concepts
Pen input is generally processed in the following sequence:

44

PenPoint OS

1.

The input subsystem notifies the application of a pen event (the stylus tip has
touched the screen, or some form of stroke has been made).

. The input subsystem will analyze the application’s window data structure,

determining an appropriate response, such as echoing the ink on the acetate
layer or not.

. Once the event has completed, which is determined by a combination of time

and distance thresholds, the input subsystem passes the resulting scribble to
the application.

. The application determines what to do with the scribble; it may be stored or

translated.

. If translation is required, the application packages the scribble with control

parameters that describe the context in which the scribble is to be translated
and requests translation.

. The translation process resuits in a ranked list of translations that are

passed back to the application. The application determines from the list what
should be displayed to the user.

Input & Handwriting Recognition

INPUT EVENT GENERATION
(Ink echo'ed on Acetate Plane)

v

INPUT EVENT ROUTING & FILTERING
(recording)

Y

SCRIBBLES
(Collect events & display)

v
TRANSLATE

Y

RESULTS

(Delete scribble & clear display)

Figure 9. The Input Processing Pipeline

8.3.3 Application - HWX Dialog

PenPoint applications, not the operating system, control raw input. The
application may process the input directly, or via APls pass the input to the HWX
subsystem. These APIs are a feature of PenPoint and its Context Management
Subsystem, therefore the same dialog will be supported even if a new HWX
subsystem is integrated into the operating system.

Applications can provide the following information to the HWX subsystem to aid
in the recognition process:

* Choice of input, the application user interface (Ul) may be boxed input or tine
input. Using only one, instead of both of these input approaches within a
document facilitates translation.

e Choice of context rules which aid the translation process:
— Spelling dictionary
— List of acceptable characters

~— List of acceptable words

Chapter 8. Input and Handwriting Recognition 45

46

PenPoint OS

— Templates
— Punctuation rules

* Level of influence that context aids and rules should have in the recognition
process:

~ Enable
— Propose
— Veto
— Coerce
* Choice of post-processing aids:
— S8pelling correction
— Case correction
— Space correction
e List of acceptable gestures to aid in gesture recognition
* Choice of where to send strokes, the gesture recognition subsystem, or the
handwriting translation subsystem
PenPoint applications can also manipulate strokes independently of the
handwriting recognition system. The application can:
* Filter the strokes before sending them to the recognition subsystem
* Analyze and/or recognize strokes
¢ Perform post-processing on the output from the recognition subsystem
These functions may be performed in any combination; it is these functions in a

graphics application that determine whether a circle should represent either a
gesture, the character “O”, or a circular drawing.

The HWX subsystem can also provide the application with information to assist
the application in its interpretation of input:

¢ List of possible characters for single character input

e List of possible words for word input

* Size, boundary information and hot points for gestures

Chapter 9. The Windowing System

Windows are the most visible component of PenPoint. In user terms, a window is
a document frame, the rectangular border, document title, scrollbars and menu
surrounding a document. In application development terms, a window is a
rectangular region of the screen with a capability for customized display and
input behaviors. The document frame uses one or more windows.
Every window has a defined relationship with all other windows in terms of:

* Position

e Overiap border

* Transparency
Most pen activity, and all text display, occurs in a window and windows can
execute the following types of operations:

* Input and detection

* Painting and repainting

¢ Obscuring that is, overlapping windows

* Clipping

9.1 Working with Windows

Windows include multiple coordinate systems, clipping and protection, and are
integrated with the input system. All pen input events are automatically directed
to the appropriate window.

Windows can contain embedded windows that may belong to other applications.
PenPoint structures windows into a tree hierarchy, described as a parent-child
relationship, beginning at the root window that corresponds to the physical
screen. A child window is always clipped to the parent window and is never
visible unless the parent window is visible.

A document frame consists of many components, each of which is at least one

window. Within an application, there may be several windows, each of which
uses different elements of a typical window.

© Copyright IBM Corp. 1993 | 47

48

PenPoint OS

PenPoint Window & Components
Close Corner

Title Line
~ {
7 Application Title v
<1 >
. _v
Document |:§!| Insert e
Page Scroll
T Undo
Menu Bar Select All Scrollbar —»
Options
Move
Copy
Body of Document \
Pull-Down Menu
Cork Margin Resize Handles
ras ye ~—

Figure 10. A PenPoint Window

Windows are normally thought of in relation to a display; however PenPoint
window trees can be rooted to any image device and can be used to create
virtual, in-memory displays. This means that window trees can be rooted on
printing devices. The printed image is constructed in memory as a window tree
with graphics in each window. The entire page image is then sent to the printer.

New windows are created by providing the operating system with the following
information:

* The new window’s parent or device

¢ The size and location relative to the parent window

¢ Flag settings that determine the layout, clipping and repainting
characteristics of the window, together with what kind of input may be
received

9.1.1 Displaying Windows
A child window is always clipped to the parent window and is never visible
unless the parent window is visible. This is done in accordance with the
following principles:

* Child windows are always placed on top of parent windows.

* Drawing in a child window is always clipped by the parent.

PenPoint requires this consistent window hierarchy to provide effective window
management; for example, if a window is inserted into a hierarchy and then
removed (closed by a user), an underlying window may be uncovered. This now
unobscured window must be repainted. In order to avoid the time delays
inherent in repainting windows, each time a window is inserted into the
hierarchy, it creates a copy of the physical screen region beneath the screen
area where it will be displayed. When the window is closed, PenPoint simply
copies the stored bit image to the screen.

This concept in PenPoint means that the application specifies the contents of a
window and the appearance of the window. PenPoint manages the positioning of
all child windows.

Parent window design can adopt one of three approaches in positioning child
windows:

1. Permissive. The parent window is set up so that child windows can display
themselves anywhere, even completely covering the parent window.

2. Strict. The parent window intercepts and can veto all messages to its child
windows that could affect layout.

3. Flexible. The parent window will attempt to accommodate child window
layout requests, but will override them to avoid layout conflicts that the
parent window has been designed to prevent.

When the user turns a page in the Notebook, or closes a floating window, the
parent window files the state and contents of the child windows.

At any given time, an application’s display state reflects the results of recent
user commands and actions; therefore when an application is closed it files the
current window hierarchy.
PenPoint keeps track of each application’s window environment:

* Orientation

¢ Pixel size

* Default system font
When the application is subsequently re-started this window hierarchy is

retrieved and the application uses the window environmental information to
restore the window hierarchy to its previous display state.

Chapter 9. The Windowing System 49

50 PenPoint OS

Chapter 10. Service Manager

A service may be defined as a program that enables applications to
communicate with a hardware device, or to access a software function.
{Software functions do not require user intervention and typically run as a
background task.)

PenPoint unifies each of these services under a Service Manager that
generalizes common application operations such as finding, observing, binding
to and opening services. These operations work in an environment in which
services may be dynamically installed and deinstalled and in which the
underlying hardware connections can be made and broken at wiil. Examples of
services include:

* Device drivers
¢ In/Out Box
* Network protocol stacks

* Databases

The Service Manager provides a common architecture and implementation to
allow a variety of services to be accessed by applications and adopts a layered
approach. The result is a class of services that do not represent hardware
devices; for example, the most basic services are those that communicate with a
hardware device, such as a serial port. PenPoint’s Service Manager generalizes
such operations by providing a software service that accesses the hardware
service (target service), adding function and abstraction on top of the targeted
service. This provides the layered approach.

Services may target other services to any depth and the targeting relationships
are viewed as pipelining. Pipelining is the vehicle used to implement the layered
approach. For example, an application might open a service designed to interact
with a bulletin board and via pipelining, the serial port is accessed.

The Service Manager consists of two classes:

1. The class that defines the service

2. The class that provides access to the service
Services in turn may belong to one or more service managers. Internally these
services are implemented as non-application dynamic link libraries (DLLs). A

single Service Manager can manage a group of services, for example, a number
of serial ports.

10.1 Standard Service Managers
A number of predefined service managers are provided by PenPoint:
e Apple-Talk™ devices
* Serial devices
* Printer devices
* Printers

e Send services - facsimiles and electronic mail

© Copyright IBM Corp. 1993 51

* Transport handlers - component of the networking API

¢ Link handlers - component of the networking API

The following basic functions are provided by these service managers:
* Locating a particular service {specified printer, or serial port)

+ Binding 1o the service - allowihg the client to receive notification messages
from the service

* Establishing exclusive ownership of the service
* Opening the service for data transfer

¢ Closing the service

10.2 Installing and Using Services

Services are dynamically installable and deinstallable, by a user, application, or
another service. Only one copy of the service is instalied. The operating system
maintains a record of the number of clients requesting installation of a service,
the service is only deinstalied when the last client is deinstalled.

The application must be bound to the service before it can be used, this is
performed by the application sending a message to the appropriate Service
Manager. Once the connection has been established, the service adds the
application to the list of objects to be notified upon a change in status. The
application therefore is constantly aware of the availability of the service.

The Service Manager supports multiple clients sharing the same service. Shared
access is supported where the service can support it and is arbitrated where
services cannot be simultaneously accessed.

In the case of exclusive ownership, the client must gain the ownership rights to
the service before it can be used, for example, a physical serial port. The
Service Manager provides protocols for clients to transfer ownership
cooperatively.

As with all installable PenPoint objects, services can be deactivated, or
deinstalled whenever they are not in use. This destroys all the service’s objects
and removes all of the code.

10.3 Connecting and Disconnecting Services

52

PenPoint OS

The connection status (presence or absence of a physical hardware connection),
is managed by the Service Manager. Non-hardware services automatically
change their connection status when the target service status changes.
Therefore the connection status propagates upwards from the hardware to all
the services that are bound to that hardware.

Service Managers

File System Svc Mngr

DOS FAT

Printers Svc Mngr
HP Laserjet Epson

Network Tpt Svc Mngr

Prt Devices Svc Mngr

N/Ptr

Lpti

Comi

Machine Interface Layer

Hardware

Figure 11. Schematic of PenPoint Service Managers

Chapter 10. Service Manager 53

54 PenPoint OS

Chapter 11.

Connectivity

The operating system is designed for mobile connectivity. Conneclivity is
provided via three layers:

* Remote file systems
¢ Transport interfaces
e Link interfaces

Deferred connectivity is supported via the in/Out Box interfaces, which provide
mobility.

Connectivity is accomplished via direct serial connection, or via serial
connection between modems.

11.1 Remote File System

All documents in the Notebook are stored in the file system. Movement and
access of documents are performed through the file system and these
operations may extend to remote environments. PenPoint file systems may
reside on the pen-based systems, locally attached disks and on remote devices,
linked via a network.

The remote file system is accessed via APls running under PenPoint using
networking transport interfaces to communicate with the remote file system. The
remote file system behaves in the same manner as the local file system and is
transparent to the user because a single Notebook Table of Contents is used to
access documents regardless of their location.

Remote printing employs a similar concept to that of remote file systems. The
remote printing interface removes the need for clients to know the exact location
of the printer.

Program-to-program communication used to establish a live connection, is
supported via remote procedure calls; for example, a PenPoint system may send
SQL queries to another system and receive data back.

The principles involved in connectivity inciude:

* Local and remote file systems and volume connectivity, enabling users to
access documents on local and remote systems

* The facilities offered by the Service Manager enabling users to connect and
disconnect to devices and remote systems on the fly

* The general purpose document import/export architecture, inciuding file
format conversion

* In/Out Box support permitting deferred 1/0

© Copyright |BM Corp. 1993 55

11.2 Transport Layer

The transport AP! provides access to layers three and four in the standard Open
Systems Interface (OSI) network model.

11.3 Link Layer

Link protocols are the software‘ layer closest to the physical networking
hardware, residing at Layer 2 of the OSI| model.

OSI Network Model

Application Layer

7 | - Application Program
- APIs

6 | Presentation Layer

5 | Session Layer

4 | Transport Layer

3 | Network Layer

2 | Data Link Layer

1 | Physical Layer

Figure 12. Sven Layer OS! Mode/

11.4 Send User Interface

Standard application windows provide a Send command on every document’s
Document menu. The command invokes the Send User Interface, placing the
documents in the Out Box. This is the standard user interface for addressing
documents, regardiess of which transfer protocol is used.

56 PenPoint OS

The interface is built around a Send List that in effect, is a database, containing
address information and installed transmission services.

11.5 In/Out Boxes

The In/Out Boxes provide support for deferred data transfer and work with all
data in PenPoint.

The In/Out Boxes are specialized floating notebooks that act as queues for
incoming and outgoing documents. They do not perform any transfer operation,
but do provide a common user interface and architecture in which application
specific transfer services are grouped.

The user interface component is a section in the In/Out Boxes Notebook, termed
a service section. Service sections equate to transfer services, for example,
printing, electronic mail and facsimile applications. Service sections queue
documents awaiting a transfer operation. The transfer application is not aware
that document queuing is occurring; this happens at a file system level using a
copy of the document.

The user need not be aware of whether a service is available or not, the Send or
Print commands will cause a copy of the document to be placed in the
appropriate Out Box service section. As soon as the connection is available the
transfer agent (application), is notified of the connection and the documents are
processed.

11.6 PenCentral

- PenTOPS

PenCentral ** is communications software, installed on a PS/2* that
communicates with with PenTOPS** installed on a PenPoint system.

PenCentral is a DOS application requiring at least 512KB memory and a
minimum of one parallel, or serial port. Serial connection is via a null modem
serial cable. Parailel connection is via a parallel cable. if a 9-pin mini-parallel
port is not available, a converter pigtail is used to convert a 25-pin port.

PenCentral supports Hayes** compatible dumb modems

PenCentral is compatible with IBM 0S/2 LAN Server 2.0 (Entry and Advanced)
and Novell Netware™*.

Several PenPoint systems may be attached to a single PS/2, but only one
pen-based system may access the PS/2 at a time.

11.6.1 PenCentral Files

PenCentral is corﬁprised of the following files:
* PENTALK.EXE - AppleTalk drivers
* PENSERV.EXE - Server code
* PENMENU.EXE - User interface code

The following files that store directory information are created when PenCentral
is used:

Chapter 11. Connectivity 57

e PL.DID - Created in the root directory
e DRIVEA.DID - Created in the PenCentral directory

PenCentral creates a temporary file PENMENU.PS$ at startup, in the PenCentral
directory. The file is deleted upon exiting the application.

When a document is printed through PenCentral spool files are created in the
spool subdirectory of PenCentral.

Excluding spool files PenCentral requires a minimum 700KB of disk.

11.6.2 Installation and Configuration

58

PenPoint OS

Default installation stores the PenCentral files in C:XPCENTRAL. All of the
PenCentral files must be located in a single directory as the application will not
search a path for required files.

The PenCentral Server Configuration is displayed upon completion of successful
instaliation. The user may select serial, parallel and/or modem links to the
PenPoint system. Shared (networked) printers may also be configured.

On invocation, PenCentral displays an Activity Status Line indicating the PS/2
port with the link that is being served.

Users may query the PenCentral print queue, pause an active printer and delete
print jobs.

PS/2 drives that are available to PenCentral are termed Volumes. Volumes
include:

* Actual physical drives

* RAM disks

* Drives available via an installed network redirector

e Drive created through the SUBST command
The PenCentral configuration file, PENINFO.DAT, determines what information is

presented in the configuration dialogs and is created during installation. The
configuration file is divided into the following sections:

* PenCentral server information:
— Number of configurable serial and pérallel ports
— Last configurable disk drive
— PenCentral system directory
— Inactivity timeout value -
— Diskette drive polling frequency
* Modem configuration information
¢ Volumes configuration:
— Type of drive {exclude, network, diskette, or hard disk)
— Network name of published drive
— Password for drive

— Directories in root to exclude

— Read/write access for drive
* Serial {COM) port configuration: ‘
— Type of port {disabled, cable connect, printer, or modem)
— Interrupt number
— /O base address
— Printer name
— Printer type (network or local)
— Printer baud rate
— Printer parity
— Printer data bits
— Printer stop bits
* Paraliel (LPT) port configuration:
— Type of port
— Interrupt number
— 1/O base address
— Printer name

— Printer type (networked or local)

The configuration file may be modified using any text editor.

—— PenCentral under 0OS/2

PenCentral may be installed in multipie Virtual DOS Machines (VDMs) under
08/2 2.0. CONFIG.SYS requires modification and the following statements
must be removed/commented out:

* DEVICE=C:\OS2\COM.SYS

* DEVICE=C:\0OS2\MDOS\VCOM.SYS

*» BASEDEV=C:\OS2\PRINT02.8YS
The standard OS/2 driver VLPT.SYS is replaced by the PenCentral driver. The
net result of these changes is that native OS/2 applications can no longer

access the parallel and/or serial ports, which are now dedicated to
PenCentral, a separate port per PenCentral VDM.

The following services are available from PenCentral:
* Reconfigure PenCentral
* Manage print jobs:
- View print jobs
— Start printing
— Pause printing

— Delete print jobs

The PenCentral user cannot:

Chapter 11. Connectivity 59

* Copy or move files to/from the PenPoint system
* Access or use files on the PenPoint system

* Use devices locally attached to the PenPoint system

11.6.3 PenTOPS

PenTOPS is the client component running under PenPoint, permitting access to
remote resources. Once a connection has been made, the PenPoint user can:

* Access and use all volumes available to the attached PS/2:

— Access both the local PS/2 disks and network disks.

— Access data files.

— Use notebooks and documents.
* Transfer files to/from the attached PS/2:

— Back up/Restore copies of PenPoint documents.

— Store both the PenPoint applications and documents.

— Export DOS format files for further processing by DOS applications.
* Print documents on printers available to the attached PS/2.

¢ Access diskette drives available to the attached PS/2.

PenTOPS is preinstalled on the IBM ThinkPad*; to confirm installation:
1. Select the Settings Notebook on the Bookshelf.
2. Select Services in the Installed Software section.
3. The PenTOPS listing is displayed.
The Connections notebook is used to set up and modify network connections,

disks and printers. This notebook is divided into two sections, Disks and Printers.
Both sections contain a Network View and a Connected Page.

The Connected pages are used to perform PenPoint tasks for disk or printer,
either networked, or directly attached.
The Network View pages display:

* Network disks available

¢ Contents of network disks

* Connection to network disks

* Available networked printers

* Connection to networked printers

~—— Note
* The Connections notebook does not open at a contents page.
¢ There are no page numbers.

* There are no contents pages for each section.

60 PenPoint OS

Notebook: Contents IRE

Document Edit Options View Create

Page
Connections 2
..................... 3
Disks
QConneded QNetwork View
Printers g
QConnected QNetwork View Z

L SBuug! s3siq
{saidues] saud 3y peay

?2 i & f§ B £ I o B

g Rz Smsad Suaaed

Help Sedtings Gonneclions Stafionery Acoessories Keyboard Inbor Outbon Notebook

Figure 13. The Connections Notebook

Chapter 11. Connectivity 61

62 PenPoint OS

Chapter 12. Software Installation

PenPoint is pre-installed on the IBM 2521 ThinkPad, but may be re-installed or
refreshed at any stage. The operating system and applications are installed from
an attached diskette drive, hard disk, or network disk connected to the IBM 2521
ThinkPad. Applications include fonts, handwriting recognition modules and
services. Services include device drivers for printers, plotters and modems,
together with software for electronic mail and information services.

PenPoint applications should automatically display the Installable Software
Sheet, when connected to a disk. If the Installable Software Sheet is not
displayed, either the Settings, or Connections Notebook may be used to install
software. .

12.1 PenPoint Installation
Note

Prior to installing the operating system, the IBM 2521 ThinkPad must be
reset. (Refer to the reference manual provided with the hardware.)

Check whether similar procedures apply if installing on OEM hardware.

The following procedure should be used to install the operating system:

1. Attach an external 3.5-inch diskette drive, minimum density 1.44MB to the
pen-based system’s hardware.

2. Insert the PenPoint boot diskette and power on the hardware.
3. If installing on an IBM 2521 ThinkPad, reset the hardware.

4. Select Begin Hard Disk Installation. You will be prompted to format the hard
disk.

5. Once instaliation is complete, select Start PenPoint to start using the system.

12.2 Automatic Software installation
Note

All software installed on a PenPoint system is listed in the Settings Notebook.

© Copyright IBM Corp. 1993 63

Notebook: Contents 1>
Document Edit Options View Create
Page
: Settings B 3
%) Mew Product Ideas ... 4
] Package Design Letter | Preferences Sl 5
A2 WiniNete .| Qwiting QDate 1
~2) MiniNote Quick Stert | OPen QTime £ 7
“) MiniTest. ..., OFonts&Llayout QSound A I 8.
AL} MiniText Quick Stert ... OFflost &Zoom QPower % . -
Installed Software o
QApplications QDictionaries é
QOServices QFonts %
DHandwriting QUser Profiles ?
QGestures) 3
(%]
Status :
Q Storage Summary QPenPoint
Q Storage Details

2 £ = - 2
2 < & i jic = L L8 7
Help Settin eyboard Inbce: Outbor Notebook

S

«©
w
(2]
@
=3
=
g
g
=3
"
@
g
)
Ei=
@
K
»
g
w
8
3.
@
w
=

Y saidueg! siig Sly peay | spuspuon]

Figure 14. The Settings Notebook

Most PenPoint software installs automatically when the application’s installation
diskette is inserted in the diskette drive. The Installable Software Sheet is
displayed, providing a number of selectable options.

Upon completion of the installation, the application is available for use. The
application is placed in the Notebook Table of Contents and a hew document
may be created using this application.

Use the following procedure for automatic software installation:

1. Connect the PenPoint system to disk drive that contains the application to be
installed

2. The Installable Software Sheet is displayed
3. Select the items to be installed.

64 PenPoint OS

MNotebook: Contents

Document Edit Options Yiew Create

E1 ResdMeFirst 2 &
D Samples 7 Installed P Applications Z.....l 3 %
- Edit Options Install... .8 L
Installable Applications §
&’g ,%
o ®
W=l =l w a
&* DISK G DISK D SLATE §’
W {Disk Edit Options SLATE H
S; B AtHand Build 38 |
P2 B AtHend Graph Blild 9 o
S op
%

G MiniText AtHand

--- Empty Bookshelf ---

" ,“
2 4 & B £ 7

Help Settings Stationery Accesscries Keyboard Nedebook

Figure 15. The Installable Applications Software Sheet

12.3 Manual Software Installation
If an automatic application installer is not provided, software may be installed via

the Settings, or Connections Notebooks.

The Settings Notebook is used when:
« Software preference settings are required.
* Software is deinstalled.

¢ Changes to software settings have been made.

The Connections Notebook is used when:
* Diskettes are to be formatted.
e Printers are to be set up.
* Files are to be transferred.

¢ Network resources are required.

12.3.1 Settings Notebook
The Settings Notebook lists all the installed software within a number of
categories:

¢ Applications

* Fonts

Chapter 12. Software Installation 65

* Services
e Handwriting

* Software preference settings

Notebook: Contents <13
Document Edit Options View Create
Name Page
&1 Pesd MeFirst 2 9
[} samplesc........ instolled ¥ Applications B 3 g
] MiniTent v i Edit Options Install... Ce. B Z
oo = g
¥ AtHand 226475 3 .
& AtHand Graph 562 575 3 ks
¥ Olock 40887 g g
B MiniNote 2595 B 7
& PenDiSApp 7A08 ¥
% sGnet 10673 £
B systernteg 25404 o
) RS g
o
al 4
5 Text At-Hand
(,; i
&: --- Empty Bookshelf ---

?2 < O B % U

elp Sedlin,gs Stationery Accessories Keyhoand Notebook

x

Figure 16. The Installed Applications Notebook

Use the following procedure to install software via the Settings Notebook:
1. Attach an external diskette drive to the PenPoint system.
2. Insert the software diskette.
3. Select the Settings Notebook from the Bookshelf.
4. Select the Applications page.
5

. Select Install.

—— Note

Fonts, services, personal dictionaries and preferences are installed in the
same manner by selecting the appropriate notebook tab.

12.3.2 Connections Notebook

66

PenPoint OS

The Connections Notebook displays the disks connected to the PenPoint system.

Use the following procedure to install software via the Connections Notebook:
1. Select the Connections Notebook.

2. Select the Disks Connected page.

3. Select the appropriate disk icon.
4. Select the View menu.

5. Select the appropriate software category.

Notebook: Contents 24
Document Edit Options View Create
Page
Connections TR 2
..................... 3
Disks
QO Connected QO Network View
§
Printers %
QOConnected QNetwork View 5 %
g i
ol 4
o)
g
3’3 2
“i 3

2 v ¢ & B £ L 8 B

v A S - o - -1

i A0
Help Settings Conneclions Stalionery Accessories Keyboard Inboe Outbon Notebook

Figure 17. The Connections Notebook

Chapter 12. Software Installation 67

68 PenPoint OS

Chapter 13. Application Development

This chapter describes the process and tools available to develop a PenPoint
application. The following topics are covered:

* Overview of object-oriented terminology
* PenPoint Class Manager
* Resources

* PenPoint Software Developer’s Kit (SDK)

13.1 Object-Oriented Terminology and Techniques

A PenPoint program employs functional units called objects. Objects
communicate with each other by sending and receiving messages. The way in
which the object responds to a message is determined by the class to which the
object belongs.

Classes are the mechanism by which objects are created and it is the class that
contains the code that determines the response of an object to a message. The
code that an object executes in response to the message is called a message
handler.

When an object is created by a class, that object is an instance of the class.
Classes moreover may inherit behavior from other classes and subclasses
inherit the behavior from all of their ancestors.

When an object receives a message, the class that created the object handles
the message; the class may pass the message all the way up the ancestral
inheritance hierarchy to determine the appropriate object behavior.

PenPoint provides a wide range of built-in classes that generate the instances an
application requires:

* Windows

» Scrollbars

* Lists

* Data views

* Text objects

These functions, macros and support classes used to implement the PenPoint
object model, are collectively known as the Class Manager.

PenPoint’s class hierarchy consists of approximately 180 classes, divided into 6
functional entities:

e Application classes

* Installation classes

* Windows and User Interface (Ul) Toolkit Control classes

* Remote Interfaces and File System classes

e Text and Handwriting classes

© Copyright IBM Corp. 1993 69

* Miscellaneous classes

13.1.1 Application Classes

PenPoint’s Application Framework (refer Chapter 4, “Application Framework” on
page 15), provides a methodology for building applications that ensures that all
applications work in a similar manner. The Application Framework implements
an application class hierarchy that includes the superclass of all application
classes, clsApp and the Class Manager cisClass itself.

13.1.2 Installation Classes

The installation classes are used to implement behavior for managing the
installation of system resources:

* Fonts

e Handwriting
* Applications
* Services

* User preferences

13.1.3 Windows and Ul Toolkit Control Classes

The largest of the PenPoint class hierarchies are dedicated to the
implementation and control of the Notebook User Interface (NUI). The windows
class, cIsWin is included, which is the superclass to all displayable items in the
NUI.

13.1.4 Remote Interfaces and File System Classes

This class hierarchy provides support for network-based computing, file
management, hardcopy printing and fax/modem support.

13.1.5 Text and Handwriting Classes

This class hierarchy provides support for managing input to applications,
including support for gestures, scribbles, keys and spelling.

— Note

The following classes have been replaced in the PenPoint IBM version:
* clsXGesture
* clsXTeach
. cIsXText
— clsXTract
* clsPDict
e cisProof

* clsSpellManager

70 PenPoint OS

13.1.6 Miscellaneous Classes

This hierarchy of classes provides support for entities such as the baitery
monitor, timer and string manager.

13.2 Class Manager

Note

PenPoint does not support current object-oriented programming languages,
but implements a set of function calls and macros for managing objects in
the PenPoint environment based on ANSI-C.

Current object-oriented languages tend to have been designed to support a
single application on a disk-based, procedural operating system.

PenPoint’s Class Manager is a collection of functions, macros and support

classes used to implement the PenPoint object model. The Class Manager is an
integral part of the kernel which means that many of the functional elements of
an application are extensions of the facilities provided by the operating system.

The Class Manager provides the object functionality to:
e Create classes and class hierarchies.
* Create or destroy objects or class instances.
* Inherit functionality from other objects.

* Define and send messages between objects.

PenPoint has two root classes in its class hierarchy. Objects descend from
clsObject. Classes descend from clsClass. clsClass is a meta-class, and for each
class in the system there is a corresponding object that stores information about
the class, including the code that implements its methods and implements class
level operations. Objects encapsulate data and behavior, the code {behavior) is
not duplicated with every object instance, because cisClass supports classes as
a type of object that provides for shared behavior and information for a type, or
class of objects.

All PenPoint application programming interfaces (APIs) are based on Class
Manager messages and objects. The implications of adopting this approach are
that system code may be reused and modified at many levels, applications are
generally compact and provide a consistent user interface.

13.2.1 Unique Identifiers

A fundamental process of any program is to reference some entity. These
entities include references to memory locations, using pointers, and files, using
names. The entities are either dynamic or static.

Dynamic references are either created, then passed into application code, or
received from other code; these references are generally pointers to memory
addresses.

Static references are placed into the code at compile time. If the reference is a
memory address, the code will not be portable. If the reference is expressed as
a string, uniqueness cannot be guaranteed and conflicts may occur.

Chapter 13. Application Development 71

72

PenPoint OS

PenPoint unifies dynamic and static references into a single naming convention -

~Unique Identifiers {UIDs).

The UID is a unique 32-bit identifier, used to identify and keep track of all classes
and objects. The UIDs are not data pointers; they contain encoded information
indicating whether the object referenced is well known or dynamic and include
an administered value from GO&astersik. &astersik. Corporation.

13.21.1 Well Known UIDs _

Well known UIDs identify classes and are permanently defined at compile time.
The assigned UID must be unique to avoid conflicts when applications are
embedded by other applications. There are a number of types of well known
UIDs in addition to the ones used for objects. These UIDs include:

* Management of unique values for status information
¢ Message identifiers

e Tags

Tags are 32-bit values used to identify well known constants within an
application including:

* Option sheets
* Option cards

* Quick Help strings

Well known UIDs contain flags that specify the scope of the UID. Global UIDs are
known to all tasks in PenPoint. All processes in the system are allowed to
access the same object using the same identifier.

A process-global well-known UID allows each process to reference different
objects with a single identifier. This is useful for objects that exist in each
process, but the object must have the same identifier. For example, WorkingDir
is a process-global well-known UID identifying the process “working directory”.
A process that refers to this UID will reference its own working directory object.
Other processes that refer to this UID reference other working directory objects.

A private well-known UID is used by the application developer; a component
used only by that application is identified as a private well-known identifier.

13.2.1.2 Dynamic UIDs

Dynamic UIDs identify instances created by the application and are created by
the Class Manager at run time. All dynamic UIDs have global scope. After the
object referenced by the dynamic UID is released, that UID may refer to a
different dynamic object at a later time.

UIDs within filed data are also supported, these UIDs are persistent, that is,
unique across all time and space. This is accomplished through the use of
Universal UIDs (UUIDs). UUIDs include a unique machine ID from the hardware
on which PenPoint is running. UUIDs may be used to point to PenPoint objects
even when filed to external media and then loaded back into PenPoint.

13.2.2 Class Manager - Programming Tasks

During application development, the following programming tasks typically
invoive the Class Manager: '

e Setting up message arguments

* Sending messages

* Creating instances

e Controlling object access and capabilities
¢ Creating new classes

» Setting up observer objects

13.2.21 Message Arguments

Sending messages to objects is the primary mechanism for control and data flow
in PenPoint. Messages are sent to instruct instances to perform some form of
operation, for example, instruct a table to send back data from a specified
row/column address.

All processing in PenPoint takes places as a result of one object sending
another object a message and responding to the message. The Class Manager
provides a set of C functions and macros that send messages to objects. These
functions take arguments that describe the target object, the message being sent
and a pointer to a structure that may contain additional argument data.

Like objects, messages are identified by 32-bit constants. Message identifiers
share the administered portion of the UID of the class that defines the message.
Each message requires a specific argument structure, and the message
description in the header files specifies the argument structure for each
message.

Objects respond to messages in one of two ways:

1. Return a status token indicating the success or failure of the operation
requested by the message.

2. Return data in the argument structure supplied by the message sender.

13.2.2.2 Sending Messages

Messages are sent to objects to elicit some form of behavior from the receiving
object. The behavior is either part of the object’s class definition, or contained in
a parent class. The application need not know where the behavior is defined,
merely that the receiving object is able to respond to a specific message.

PenPoint is a multi-tasking operating system and therefore supports a number of
different tasks, each task getting a share of CPU cycles. Every active document
is a separate task. Embedded tasks run in separate tasks from their parent
documents. The Class Manager provides separate functions for synchronous
processing or asynchronous processing.

In synchronous processing, objects can only send messages to objects that
reside in the same application instance; all processing stops until the receiving
obj;ct responds.

In asynchronous {multitasking) processing, the caller and responder execute
concurrently because the processes have separate memory address spaces and

Chapter 13. Application Development 73

74

PenPoint OS

the Class Manager will copy the argument data structures from the caller’s task
space into the address space of the called task.

13.2.2.3 Creating New Instances
Object creation (an instance of a class) is a two-step process involving the
initialization of a default data structure and then the creation of the object.

Each class in PenPoint defines the structure that contains the information
necessary to initialize a new object. The process may be summarized as follows:

1. Send the class to be instantiated msgNewDefaults, passing a pointer to an
appropriate argument structure.

2. The class initializes the argument structure appropriate for the specified
class.

3. Default fields may be overridden.

4. Send msgNew to the class; instantiation of the object occurs in this step.

13.2.2.4 Object Access and Capability

A major challenge in an object-oriented operating system is to protect objects
from unintentional alteration. PenPoint implements this protection through the
use of keys and locks. All objects can have an associated key that limits access
to specific operations, to the applications that have the key. Messages that
request object operations such as freeing, or removing the object require the
use of a key, unless that object has specific capability flags set to permit the
operation without a key.

Capability flags include:
* A sending object may change the class of the receiving object.
* Free or remove an object.
e Designate the object as the ancestor for a new class.
» Classify an object as observable and control the messages this object may

respond to.

Capability flags can be changed dynamically with the appropriate key.

13.2.2.5 Class Creation

New classes are created when an application requires a behavior not available
within an existing PenPoint class. Each PenPoint application must have its own
subclass within the Application Class, in order to run.

The following steps are used to create a new class:

* Provide a set of functions that defines the behavior for the new class. This
behavior must distinguish the new class from other classes.

* Provide a translation mechanism, called a Method Table that translates a
message into a UID that is used to bind the behavior request (message) with
the implementer.

* Provide the function to send a message to the Class Manager to add the new
ciass. Consumers of this class use this function to register the class with the
Class Manager when the class is used.

¢ Provide an interface file containing message definitions required by
consumers of the class.

13.2.3 Observer

Note

The Class Manager maintains a method table for each class, in which
message UIDs index into the table containing the memory addresses of the
associated C routine.

During application development, the table is created that associates each
message’s UID with a C function call. The table is compiled using the Method
Table Compiler provided with the PenPoint SDK. At run time the Class
Manager binds the class to its method table.

Objects

A unique capability of all PenPoint objects is the ability of an object to register
itself as an observer of another object that is capable of being observed.

An observer is notified of any change in the state of an observed object.
The Observer Notification Architecture is the foundation of automatic notifications
and updates in PenPoint, for example, automatically notifying applications that a

new service has been installed.

Note

There are two ways of establishing whether an event has occurred in a
system, polling and notification.

Polling requires that the program or user must periodically inquire whether
an event has occurred, such as querying whether a diskette has been
inserted in a diskette drive.

13.3 Resources and Resource Management

13.3.1 Resource

A PenPoint resource is defined as a collection of data identified with a UID.
Programs use resources to maintain information such as string tables, persistent
objects, and component descriptions for option sheets.

Resources are special files managed by a Resource Manager that is used to
create, find, access and modify resource files.

Types
PenPoint has two types of resources, objects and data. A resource file may

contain both objects and data resources. Different messages are used to read
and write the two types of resources.

An object resource contains information needed to create or restore a PenPoint
object. The objects and all its ancestor classes must be able to unite and read
the object’s instance data to and from a resource file.

Every class created must be abie to read and write its object instance data in
response to Class Manager messages. The Application Framework maintains an
instance data resource file for each application instance or document.

Chapter 13. Application Development 75

Each resource file has a unique 64-bit resource ID that is used by the application
to locate the resource.

Data resources contain information saved as a stream of bytes and are generally
used for default Option Sheet settings and default prompt strings. These objects
are then portable and facilitate internationalization of the code.

All resources are read and written through resource agents. PenPoint includes
a number of resource agents designed to manage specific objects and data
structures, unpack and interpret the formats of the data.

Resources may be created at program compile-time, or at run time. Static
resources, created at compile time, change infrequently and can be fully defined
during application development. This resource is part of the application and not
part of the document and defines the non-code part of the application such as
the user interface elements and icons. Static resources are identified with a
pre-defined ID and declared at compile-time. The application resources reside in
a file called App.Res.

Dynamic resources are only created at run time. these resources are stored in
resource files created through the Resource Manager. Dynamic resources are
identified with resource IDs allocated at run time.

The Application Framework provides a default file for dynamically created
resources called DocState.Res, that contains all the objects belonging to a
particular document {application instance).

13.3.2 Resource Location

76

PenPoint OS

The Resource Manager uses Resource Lists to locate a resource within a given
file. This procedure insulates the application from having to know the file in
which the resource is located and the location of the resource within the file.

Entries in a Resource File List can be resource file handies, or other Resource
File Lists. When a message is sent to a list object, the message is sent to each
object in the list until the message returns a value indicating that the instruction
has been carried out.

Every document class has a default Resource File List that contains the following
elements:

* The PenPoint system resource file - PenPoint.Res.

* The application resource file - App.Res. This file is common to all
application instances.

* The document resource file - Doc.Res. This file is unique to one instance of
the application.

PenPoint applications have flexibility in providing and sharing resources in that
an application can use system resources such as standard fonts and error
messages, without having to provide these resources in the application resource
file. The application may override system resources, or create application wide
resources, placing such resources in the application resource file. Applications
can even allow the user to attach specific versions of resources to individual
documents.

13.3.3 Resource File Formats

The Resource Manager supports the notion of maintaining many resources in a
single file, laid out as a single data stream. The operating system keeps track of
where each resource begins and the length of the record, preventing accidental
overwrites.

The Resource Manager permits non-linear retrieval of resources. Querying the
location of a resource resulis in a message being returned indicating the file
name and the location of the specified resource in that file; this information is
then used to retrieve the resource.

13.4 Software Developer’s Kit SDK

The SDK contains the documentation and software required to build PenPoint
applications and consists of:

¢ Application developer’s guides

» Architectural reference describing all classes and messages in the PenPoint
class library

* The APl reference that is a reproduction of all header files, formal messages
and parameter definitions and data structures

* The header and include files

* An object-aware, source code debugger

* A database-driven class browser

¢ PenPoint User Interface Style Guide

¢ A selection of prototyping tools

e An application development environment version of PenPoint that runs under
DOS on a PC

PenPoint development requires an ANS| C compiler. The Class Manager
provides the object functionality and because the Class Manager is a
subsysytem of the operating system rather than a language extension, this
functionality is available via standard C syntax.

The debugging tools allow the programmer to set and monitor debug flags in a
separate window in the PC-based development environment. The source level
symbolic debugger permits:

* cisMgr objects and messages to be examined
* Break points to be set in the source code
* Multiple thread management
The application development platform for PenPoint is an 80386 processor

complex, DOS-based PC with a VGA display and a digitizing tablet with stylus to
simulate pen activity.

The original source code is created and tested on the PC. The tested application
is downloaded to the PenPoint system either via diskette, or via
PenCentral/PenTOPS. If a communications link has been established between
the PenPoint system and the development PC, the debugger will function in a

Chapter 13. Application Development 77

remote debugging mode; the the debugger user interface and symbol table
reside on the PC, while the application on the PenPoint system is debugged.

13.5 User Interface Toolkit Ul

The Ul Toolkit is the largest APl in the SDK and provides the ability to manage
the user interface through layout windows via behavior supplied in
cisTableLayout and clsCustomlLayout. Twelve types of controls are provided,
each of which is represented by a class with related behaviors.

The classes that layout the windows form the user interface elements such as
buttons, tabs, handwriting fields, labels, icons, menus, frames and option sheets.
Elements are called Ul components; Ul components send messages among
themselves and to their clients when the user interacts with the Ul components.

The Ul Toolkit implements the middie layer of the appearance and functionality
of the user interface architecture in PenPoint. The Ul Toolkit calls on the
Windows and Graphics subsystem to draw the windows. The Application
Framework and the internal classes implementing the NUI use Ul Toolkit objects.

The basic principle invovied in the PenPoint user interface is that all of the
elements that appear in a window are themselves windows. Therefore all the Ul
Toolkit based design elements placed into a client window of the application are
child windows to that window.

Laying out a window involves arranging the windows in such a way that when
the window is displayed, all its child windows appear and are usable. The
application developer only provides the high-level directives that arrange the
windows and instruct the parent window to lay itseif out; the system then
manages the hierarchical window layout automatically {child windows first laying
out their child windows).

13.5.1 User Interface Controls

78

PenPoint OS

All controis in PenPoint respond to gestures by the user, by sending themselves
messages. Behavior is implemented for the messages that describes how the
application should respond when a control is activated.
Controls are created by storing descriptive information in two data structures:

1. CONTROL_METRICS

2. CONTROL_STYLE
CONTROL_METRICS defines the object that will receive all notifications from the

control when user input, such as a gesture, causes the object to provide such
notification.

CONTROL_STYLE defines the appearance and behavior of the control.

Each control can have only one client to which it reports user interaction taking
place within its borders.

Chapter 14. Sample PenPoint Application

This chapter describes a sample PenPoint application.

The sample application was designed to provide:
¢ A PenPoint Data Entry document

» Data transmission via serial port to an 0S/2 2.0 system, using a null modem
cable

* Update an existing OS/2 2.0 database with the transmitted data
This application will form the basis of further applications to be developed for
other pen-based systems, including data transmission via modem.

Application design included the following elements:

1. Provide a PenPoint Data Entry application (PenDISApp) using standard
PenPoint SDK objects and classes.

2. Manually create an 0S/2 2.0 database and Database table, through 0S/2 2.0
Query Manager.

3. Access the serial port of an iBM 2521 ThinkPad and IBM PS/2.
4. Transmit the data from the PenPoint system to an 08/2 2.0 system.

5. Update the database with the data transmitted from the PenPoint system via
the OS/2 2.0 SQL API.

14.1 User interface

The following sequence of PenPoint panels graphically represents the input
procedure the user would follow to:

* Create a document (Input data in PenDISApp).
» Confirm and/or update communications setup.
* Transmit data to the 0S/2 2.0 system.

» File data on PenPoint system if required.

® Copyright IBM Corp. 1993 79

B PanDiSApp <7
Document Edit Options File Communicetion
cn

S

7
. .
_ ‘ié%%m/ i i M%/ .

. .
//// Street
%///%//////////A 7% UL Z Nl

Delray Beach

2%
| (407)276-2421
7{Phone /

7 « & #F @ 5 L L 7
Help Sellings o i R Kevborrd inbor Outbox Nolebook

Figure 18. Data Entry Panel

Figure 18 shows the PenDISApp Data Entry document with the pop-up text entry
window. The user would typically tap (gesture) with the pen on an input field.
The pop-up writing pad would be displayed, where the data would be entered.

Document Edit 286444 File Commuricetion
7

PenDiSApp 2

|l Commanioston sewo. .. WL

Cortros.. ,/)

.

_
//”LGEN Comments... / /%

] 3 7
_John GE
e . A

First Name inidls | %
T , 7 ﬁz
__ 400 S Ocean Bldv -

_
74 Strest /
/ A, A NN 7 Y , v
_Delmy Beach

City
) %

777
o 1, /2
Florida 33483
_

Cruréry /
LA 7

D N,
vi & ¥ B # L L 7
Help Sellings G < ek v R thes Keybowrd indox Outboy Nolebook

Figure 19. Options Puli-Down Menu

Figure 19 shows the Options pull-down menu. This menu reflects one
application specific option, Communications Setup and three PenPoint default
options:

* Controls
* Access

e Comments

80 PenPoint OS

Selecting Communications Setup causes the application specific
Communications Option Sheet to be displayed; refer to figure Figure 20 on
page 81.

PenDiSApp L7

s i
,, i

.
T ///////’

Pont: y OOM2
Baudrate: » 9600
Databits: 7

v iB

Stopbits: v |1

7
/,/’// 0, e

/;ﬁFlorida Status:

_

_ACourlry
// T

%(407)276-2421

e 8 B os Lo @

Hlb Selings Gonnech ’ Kevbowrd ine Gubox Mobebock

Figure 20. Communications Setup Options Sheet

This Option Sheet provides the user with the ability to set/reset communications
options.

FenDiShpp BT
Document Edit Options File ZHpiisedsy
R e oo v

" i Gend File Data
| [Citizen|

. e '
. 7 % 7 2 7 7 % 0,

.
| John
First Hame

. g
. v S g
//// T /1

/ . 3

. - z

2
2]
n

/:’5;2400 S Ocean Bldv

C
i e i
]

2?; Court

/' 7 /W T
(407)276—2421

i

72
T i

vi & B 9B £ 5 8 7
Help Sellings o Shlioner Kewbowad Mk Quitox Molebock

Figure 21. Communication Option Menu

Figure 21 displays the communications options available to the user; both
screen data, and file data may be transmitted.

Chapter 14. Sample PenPoint Application 81

PenDiSApp ah
%, Commuricetion

Document Edit Cpfions

Aestre

i iy A

7 2
QOcean Bldv

L

/f/ ,
2421

% AL
 (407)276-

. ” ,
? vi & 0§ B o L4 7
Help Seltings G 2 L7 tes Keybord inbex Quibox Nolebook

Figure 22. File Option Menu

Figure 22 displays the options available for filing documents. The user has the
choice of filing a completed data entry document, or retrieving a completed
document.

82 PenPoint OS

14.2 Application Design Flow

Figure 23 is a graphic representation of the application design flow

Application Design Flow

ClsApp
1. Init App Create Application Class
- clsCommApp

clsCommApp - Create New Object

clsTextField to create input fields

clsLabel - Create Descriptionof Input Fields
2. Create Child Window cstmLayoutOb;.
- Position/Size Input Fields & Description

clsList - Names of available serial ports

3. Create Menu Bar

cilsMenuButton - Creates Pulldown Options

: clsLabel - Comm Status
4. Insert Option Card

cisChoice - Other Settings _ ¢lsPopupChoice - Port Speed

clsMenu - Creates Menu Bar

clsOptionTable - Creates Option Card

Service Mgr. for Serial Comms 5. Send Data via Serial Port

Figure 23. Application Design Flow

Stage 1: (Application initialization)
+ |nitialize application by creating a new application class, clsCommApp, using
clsApp.

* Generate an object from clsCommApp.

Stage 2: (Child windows)
¢ Using ciIsTextField, create the input fields for the Data Entry document.
e cisLabel is used 1o create the input field descriptions.
e cstmLayoutObj is used to position and size both the input fields and
descriptions.

Chapter 14. Sample PenPoint Application 83

84

PenPoint OS

* cisList is used to hold the names of the available serial ports.

Stage 3: (Document pull-down menus)
* clsMenu is used to create the document Menu Bar.

s ciIsMenuButton is used to create the pull-down menus.

Stage 4: (The Communications Option Sheet)
» clsOptionTable is used to create the Option Sheet.

* PopupChoice is used to create the optional settings for the port and baud
rate.

» cIsChoice is used to create the optional settings for data bits, stop bits and
parity.

e cislLabel is used to create the communications status.
Stage 5: (Data Transmission)

The PenPoint Service Manager is used to access the serial port.

14.3 Directory Structure Distribution Diskette

Az\
——PENPOINT

_

——REC_PEN

LPENPOINT.DIR
AP

PENPOINT.DIR

PP

COMMAPP . MPE
PENPOINT.DIR
PENDISAP

REC_PEN.0BJ
REC_PEN.C
REC_PEN. EXE
M. CHD
REC_PEN.MAP
REC_PEN.H
REC_PEN.SQC

——COMM

COMM.C
COMMAPP.C
COMMFILE.C
COMMSET.C
COMMSEND.C
COMM.H
COMMAPP.H
METHOD.H
COMM.0BJ
COMMAPP.0BJ
COMMFILE.OBJ
COMMSEND. 0BJ
COMMSET. 0BJ
METHOD.0BJ
METHOD.TBL
MAKEFILE

Directory structure created from PenPoint
Directory file for PenPoint

Directory file for PenPoint

File created from the Linker
Directory file for PenPoint
Application program

Source directory for 0S/2 2.0 program
Object file

Generated C source file (from SQLPREP)
Executable 0S/2 2.8 program

CMD file for compilation

Hap file

C header file

C source file with SQL

Source directory for PenPoint program
C source file

C source file

C source file

C source file

C source file

C header file

C header file

Generated C header file (from MT)
Object file

Object file

Object file

Object file

Object file

Object file

Method table

Makefile for compiling

Figure 24. Directory Structure

Chapter 14. Sample PenPoint Application

85

86 PenpPoint OS

A.1 Make File for COMMAPP C Routines

Compiler control file used when compiling and linking COMMAPP.EXE. The
source for this program is listed in section A.6, “C Source for COMMAPP.C” on
page 92.

wMake Makefile for CounterApp
Copyright 1996, 1981,1992 60 Corperation. All Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code and that this notice {inciuding the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE

IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL 60 CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT QF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

#

#

$Revision: 1.6 ¢

$Author: gharg §

$Date: 21-Jan-92 ¢

#

TR oW R R T R W % e W ow

PENPOINT_PATH = \penpoint

The DOS name of your project directory.
PROJ = commapp

Standard defines for sample code (needs the PROJ) definition
&excl.INCLUDE $(PENPOINT_PATH)\sdk\sample\sdefines.mif

The PenPoint name of your application
EXE_NAME = PenDISApp

The linker name for your executable : compeny-name-V<major>(<minor>)
EXE_LNAME = 18M-commapp-V1 (8)

Object files needed to build your app
EXE_O0BJS = method.obj comm.obj commapp.obj commfile.obj commset.obj commsend.obj

Libs needed to build your app
EXE_LIBS = penpoint app

Targets

all: $(APP_DIR)\$(PROJ).exe .SYMBOLIC

The clean rule must be :: because it is also defined in srules
clean :: .SYMBOLIC

-del method.h

-del method.tc

Dependencies

commsend.obj: commsend.c method.h commapp.h comm.h
commset.obj: commset.c method.h commapp.h comm.h
comnfile.obj: commfile.c method.h commapp.h comm.h
commapp.obj: commapp.c method.h commapp.h comm.h

comm.obj: comm.c method.h comm.h

Standard rules for sample code
&excl.INCLUDE ${PENPOINT_PATH)\sdk\sample\srules.mif

A.2 COMM.H C Header

/
File: comm.h

Copyright 1996, 1991, 1992 60 Corporation. A1l Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code end that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE

1S PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TQ YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE COCE.

87

$Revision: 1.8 §
$Author: gbarg §
$Date: 21-Jan-92 §

This file contains the API definition for clsComm.

#ifndef COMM_INCLUDED
#define COMM_INCLUDED

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endi f

#define clsComm MakeWKN(1, 1, wknPrivate)

STATUS GLOBAL ClsCommInit (void);

/
msgCommChanged (void), returns STATUS

Sent to observer when the comm value changes.

#define msgCommChanged MakeMsg(ctsComm, 5)

#endif // COMM_INCLUDED

A.3 COMMAPP.H C Header

File: commapp.h
Copyright 1988, 1991, 1992 60 Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE

IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 §
$Author: gbarg §
$Date: 21-Jan-92 §

This file contains definitions for clsCommapp.

#ifndef COMMAPP_INCLUDED
#define COMMAPP_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#define OBJECT_COUNT 8

typedef struct
{

int length;
int X3
int 'H
int width;
TAG uTag;
char *labelText;
TAG ulabel;
} FIELD_INFO, *P_FIELD_INFO;
typedef struct
{
char DefaultPort [nameBufLength];
int BaudRate;
int DataBits;
int StopBits;
int Parity;
} COMM_SETUP, * P_COMM_SETUP;

typedef struct
{

0BJECT Objects[0BJECT_COUNT];
0BJECT Labels[0BJECT_COUNT];
COMM_SETUP CommSetupData;
BOOLEAN SerInstancelk;
BOOLEAN CommSer{onnected;
U6 SerPortIndex;
0BJECT SerialNamelist;
0BUECT commSI0Service;
OBJECT commSI0Randle;
0BJECT commOptWing

} COMMAPP_INST, *P_COMMAPP_INST;

/* Define length of the input fields */
#define LASTNAME_LENGTH 28

88 PenPoint OS

#define FIRSTNAME_LENGTH 28

#define INITS_LENGTH 2

#define STREET_LENGTH 26

#define CITY_LENGTH 20

#define COUNTRY_LENGTH 15

#define ZIP_LENGTH 5

#define PHONE_LENGTH 15

typedef struct

{
char LastName [LASTNAME_LENGTH + 1];
char FirstName [FIRSTNAME_LENGTH + 1];
char Inits[INITS_LENGTH + 1]3
char Street[STREET_LENGTH + 1];
char City[CITY_LENGTH + 113
char Country [COUNTRY_LENGTH + 1];
char ZIP[ZIP_LENGTH + 1];
char Phone [PHONE_LENGTH + 1];

} COMM_DATA, *P_COMM_DATA;

#define SAVE_FILE "\\\\BOOT\\COMMAPP.DAT"
#define COMM_DATA_FILE “\\\\BOOT\\COMMAPP.PRO"

#define COMM_PORT_COM1 1
#define COMM_PORT_COM2 2

#define COMM_SETBAUD_300
#define COMM_SETBAUD_606

#define COMM_SETBAUD_1200
#define COMM_SETBAUD_2468
#define COMM_SETBAUD_4886
#define COMM_SETBAUD_9686
#define COMM_SETBAUD_19260

o wm e W -

#define COMM_SETDATABITS_7
#define COMM_SETDATABITS_8

#define COMM_SETSTOPBITS_1P@ 1
#define COMM_SETSTOPBITS_1PS 2
#define COMM_SETSTOPBITS_2P@ 3

#define COMM_SETPARITY_NONE 1
#define COMM_SETPARITY_0DD 2
#define COMM_SETPARITY_EVEN 3

// Define & well known UID for the app
#define c)sCommApp MakeWKN(1624, 1, wknGlobal)

#define msgCommSave MakeMsg{c1sCommApp, 1)
#define msglommRestore MakeMsg(clsCommApp, 2)
#define ms dScreen MakeMsg(cl pp, 3)
#define msgCommSendFile MakeMsg(c1sCommApp, 4)
#define msgCommOpenSerial MakeMsg (c1sCommApp, 5)
#define msgCommCloseSerial MakeMsg(cl1sConmApp, 6)
#define msgCommSetSeriaiMetrics MakeMsg(clsCommApp, 7)
#define msgCommSendSerial MakeMsg(clsCommApp, 8)

#define msgCommSetConnectStatusld MakeMsg(clsCommApp, 8)

/* define tags for inputfields */

#define LastNameTag MakeTag(clsCommApp, 1)
#define LastNameLabel MakeTag{c)sCommApp, 2)
#define FirstNameTag MakeTag(clsCommApp, 3)
#define FirstNamelabel MakeTag(clsCommApp, 4)

#define InitsTeg MakeTag(clsCommApp, 5)
#define Initslabel MakeTag(clsCommApp, 6)
#define StreetTag MakeTag(cl sCommApp, 7)
#define StreetlLabel MakeTag(clsCommApp, 8)
#define CityTag MakeTag{c1sCommApp, 9)
#define Citylabel MekeTag(clsCommApp, 18)
#define CountryTag MakeTag(c1sCommApp, 11)
#define Countrylabel MakeTag(cl sCommApp, 12)
#define ZIPTag MakeTag(clsCommApp, 13)
#define ZIPLabel MekeTag(clsCommApp, 14)
#define PhoneTag MakeTag(c!sCommApp, 15)
#define Phonelabel MakeTag(c) sCommApp, 16)

#define tagCommMenu MakeTag(clsCommApp, 17)

#define tagSetupCard MakeTag(clsCommApp, 18)
#define tagPort MakeTag(cl sCommApp, 19)
#define tagBaudrate MakeTag(clsCommApp, 26)
#define tagDatabits MakeTag(clsCommApp, 21)
#define tagStopbits MakeTag(clsCommApp, 22)
#define tagParity MakeTag(clsCommApp, 23)
#define tagConnected MakeTag(clsCommApp, 24)

/ﬁ*txﬂklﬂﬂlxktki*ﬁwk«wﬂ Fuﬂcti on defi "i t-’l ons **t**Rt*ﬁkkxtttu**t%kk*nkxl
STATUS LOCAL CreateInputWin(0BJECT clientObj,

P_COMMAPP_INST InstData,

P_FIELD_INFO Fields);

STATUS LOCAL AlignChildren{0BJECT cstmlayoutObj, P_COMMAPP_INST inst,
P_FIELD_INFO Fields);
void RestoreDataFromFile(P_COMMAPP_INST inst);
void GetCommDataFromFile (P_COMMAPP_INST inst);
void GetTextData(P_COMM_DATA CommData, P_COMMAPP_INST pData);
void CommSendField(0BJECT self, P_CHAR Field, BOOLEAN flag);

#endif // COMMAPP_INCLUDED

A.4 C Source for METHOD.TBL

This is the message table that defines the behavior for the classes used.

File: method.thl
Copyright 1896, 1991, 1082 G0 Corporation. All Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE

IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NCT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE 10 YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.6 §
$Author: gharg §
$Date: 21-Jan-92 ¢

This file contains the method tables for the classes in CommApp.

#ifndef CLSMGR_INCLUDED
#include <cismgr.h>
#endif

#ifndef APP_INCLUDED
#include <app.h>
#endif

#i fndef COMM_INCLUDED
#include <comm. h>
#endi f

#i fndef COMMAPP_INCLUDED
#include <commapp.h>
#endif

#ifndef BUTTON_INCLUDED
#include <button.h>
#endif

#ifndef OPTION_INCLUDED
#include <option.h>
#endif

#ifndef SERVMGR_INCLUDED
#include <servmgr.h>
#endif

#ifndef SIO_INCLUDED
#include <sio.h>
#endif

MSG_INFO clsCommAppMethods[] = {

msgAppInit, "CommAppAppInit", objCallAncestorBefore,
msgAppOpen, "CommAppOpen”, objCallAncestorAfter,
msgAppClose, "CommAppClose”, objCallAncestorBefore,
nmsgSave, "CommSave", objCallAncestorBefore,
msgRestore, “CommRestore", objCallAncestorBefore,
msgOptionAddCards, "CommOptionAddCards", objCallAncestorAfter,
msgOptionProvideCardWin, “Comm0OptionProvideCard", objCallAncestorafter,
msgOpt i onApplyCard, “CommOptionApplyCard", objCallAncestorAfter,
msgCommSave, “CommSaveButton”, 0,

msgCommRestore, “CommRestoreButton", 6,

ms iScreen, ommSendScreenButton”, 8,
msgCommSendFile, “CommSendFileButton”, 8,
msgCommOpenSerial, “CommOpenSerial", e,

msgCommCioseSerial , “CommCloseSerial", B,

msgCommSet SerialMetrics, “CommSetSerialMetrics", 6,
msgCommSendSerial, "CommSendSerial", 8,

msgCommSet ConnectStatusId, “CommSet{onnectStatusld”, 8,

msgSMConnect edCh d "t tedChanged", 6,
msgSioEventHappened, "CommSioEventHappened", @,

]

}:

CLASS_INFO classInfo[] = {
"¢lsCommAppTable”, clsCommAppMethods, 6,
[]

};

90 PenPoint OS

A.5 C Source for COMM.C

This module saves the instance data when it goes to dormant state and restores

the data when the program is reactivated.

/ *n *
File: comm.c
Copyright 1996, 1991, 1392 G0 Corporation. All Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE

IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE T0 YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 §
$Author: gbarg §
$0ate: 21-Jan-92 §

This file contains the class definition and methods for clsComm.

#ifndef DEBUG_INGLUDED
#inciude <debug.h>
#endi f

#ifndef FS_INCLUDED
#include <fs.h>
#endi f

#ifndef FRAME_INCLUDED
#include <frame.h>
#endi

#itndef APP_INCLUDED
#include <app.h>
#endi f

#ifndef COMM_INCLUDED
#include <comm.h>
#endi f

#ifndef COMMAPP_INCLUDED
#include <commapp.h>
#endi f

#include <method.h>

JERE KK K KRR R XK KRR AR KRR KK KKK KR T KRR KKK KKK

* Defines, Types, Globals, Etc

TR KRR K K K K KK KKK KK KKK KKK KKK KK KKK K KKK KK

JER KKK KK K K K KKK KK KKK KR KK KKK KR KKK KRR kKK

* Local Functions
EH X KRR KR K KR AR KR KK XA RN X R AR R K KRR KK KRR

JEK KKK R K K K KKK KK KKK KKK A KKK KKK KKK KKK KKK

* Message Handlers
* K kK K K K R K Kk kK KKK KKK KKK KK KR K KKK KRR K KKK

*/

*/

*/

/
CommSave

Respond to msgSave.

MSG_HANDLER CommSave(const MESSAGE msg,
const OBJECT self,
const P_0BJ_SAVE pArgs,
const CONTEXT ctx,
const P_COMMAPP_INST pData)

STREAM_READ_WRITE fsWrite;
STATUS EH

Debugf{"Comm:CommSave") ;

/* Write instance data to the file. */
fsWrite.numBytes= Size0f(COMMAPP_INST);
fsWrite.pBuf= pData;

0bjCallRet (msgStreamirite, pArgs->file, &fsWrite, s)3

return sts0K;
MsgHandlerParametersNowarning;

}

91

/* CommRestore */
A */
/* Respond to msgRestore. *f
/* 1%
/ * * * /

MSG_HANDLER CommRestore(const MESSAGE msg,
const OBJECT self,
const P_0BJ_RESTORE pArgs,
const CONTEXT ctx,
const P_COMMAPP_INST plata)

COMMAPP_INST inst;
STREAM_READ_WRITE fsRead;
APP_METRICS am;
DBJECT frmHing
STATUS s
int is

static const TAG Tags[} =

{

LastNameTag,
FirstNameTag,
InitsTag,
StreetTag,
CityTag,
CountryTag,
11PTag,
PhoneTag,

Y

Debugf ("Comm: CommRestore") ;

/* Read instance data from the file. */
fsRead.numBytes= Size0f (COMMAPP_INST);

fsRead.pBuf= &inst;

ObjCallRet (msgStreamRead, pArgs->file, &fsRead, s);

/* Get the proper UIDs of the input fields */
0ObjCallwarn(msgAppGetMetrics, self, &am);
ObjCallJmp{msgFrameGetC)ientWin, sm.mainWin, &frmWin, s, Error);
for (i = 8; i < (sizeof(Tags) / sizeof(TAG)); i++)

{

inst.0bjects[i] = (WIN)ObjectCall(msgWinFindTag, fruWin,
(P_ARGS)Tags[i]);
}

/* Update instance data. */
Objecthrite(self, ctx, &inst);

return sts0K;

Error:
return(s);

MsgHandlerParamet ersNoWarning;

JER KRR K KK R KKK KR KKK KKK R AR K RK KRR KKK KK KKK KK

* Installation
1‘*1‘*iXti***'K*i'lx*tk*k*k*n*n*tﬁ*ﬂ*k*ktwl

A.6 C Source for COMMAPP.C

This module creates the new message class clsCommApp and the child window
with the input fields and labels. It also polls available communication ports and
holds the information in a list.

File: commapp.c
Copyright 1998, 1991, 1992 G0 Corporation. Al) Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE

IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT

LIMITED T0 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.6 ¢

$Author: gbarg §
fDate: 21-Jan-92 $

92 PenPoint OS

This file contains the implementation of the application class.

#i fndef APP_INCLUDED
#include <app.h>
#endi f

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#i fndef SERVMGR_INCLUDED
#include <servmgr.h>
#endif

#ifndef STROBJ_INCLUDED
#include <strobj.h>
#endif

#ifndef RESFILE_INCLUDED
#include <resfile.h>
#endi f

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#i fndef TKTABLE_INCLUDED
#include <tktable.h>
#endif

#ifndef TKFIELD_INCLUDED
#include <tkfield.h>
#endif

#ifndef MENU_INCLUDED
#include <menu.h>
#endif

#ifndef COMM_INCLUDED
#include <comm.h>
#endif

#ifndef COMMAPP_INCLUDED
#include <commapp.h>
#endif

#ifndef CLAYOUT_INCLUDED
#include <clayout.h>
#endif

#ifndef BUTTON_INCLUDED
#include <button.h>
#endi f

#include <method.h>

#include <string.h>
#include <stdio.h>

JEE KRR KA KK KK KKK KK KK KK KA KRR KK KKK KKK

* Defines, Types, Giohals, Etc
Kk Kk Kk Kk kK Kk ok Kk kKK KA KKK KR KK KK KKK KKK KK

AR EEEREEREREEEEEREEEEEIEIEIIERERS

* Local Functions
kKK K KKK KKK kKKK KKK KK KKK KKK K KRR K kR x/
/ /
/* CreatelnputWin */
/* */
/* Create the input fields in the child window. */
/™ */
/
STATUS LOCAL CreateInputWin(0BJECT clientObj,

P_COMMAPP_INST InstData,

P_FIELD_INFO Fields)
{

TEXT_FIELD_NEW tfn;
LABEL_NEW 1n;
STATUS s3

int is

for (i = 8; i < OBJECT_COUNT; i++)
{
/* Create the input field */
ObjCal 1Narn(msgNewDefaults, clsTextField, &tfn);

tfn.win.tag = Fields[i].uTag;
tfn.control.client = clientObjs
tfn.label.style.numCols = 1sNumAbsolute;

94 PenPoint OS

tfn.field.maxlen = tfn.label.cols = Fields[i].length;
tfn.border.style.edge = bsEdgeAll;

tfn.field.style.editType = fstPopUp; /* input only through popup window */

tfn.label.style.xAlignment = 1sAlignteft;
tfn.label.style.scaletnits = bsUnitsFitWindowProper;
0bjCaliRet (msgNew, cisTextfield, &tfn, s);

InstOata->Cbjectsi] = tfn.object.uid;

/* Create the label for the field description */
ObjCallRet (msgNewDefaults, clsLabel, &in, s);
In.win.tag = Fields[i).utabel;
In.label.style.scaleunits = bsUnitsFitWindowProper;
In.label.styie.xAlignment = 1sAlignleft;
In.border.style.edge = bsEdgeAll;

In,label.pString = Fields[i].labelText;

ObjCallRet (msgNew, clsLabel, &lIn, s);

InstData->Labeis[i] = In.object.uid;
}

return(sts0K) ;

/ /
/* AlignChildren */
’* */
/* Position/size the input fields and labels */
1* */

/ /
STATUS LOCAL AlignChildren(0BJECT cstmiayoutObj, P_COMMAPP_INST plnst,

P_FIELD_INFO Fields)

{
CSTM_LAYOUT_CHILD_SPEC clcs;
STATUS s3
int i

for (i = 8; i < OBJECT_COUNT; i++)

/* Set the size and position for the input fields */
CstmiayoutSpecInit(&clcs.metrics);
cles.metrics.h.constraint = c1PctOf;

cles.metrics.h.value =9; /* Height of the input
cles.metrics.w,constraint = c1Pctof;
clcs.metrics.x.constraint
cles.metrics.y.constraint

wonow

cles.child = pInst->Objects{i];
clcs.metrics.w.value = Fields[i].width;
cles.metrics.x.value = Fields[i.x;
clcs.metrics.y.value = Fields[i].y;

ObjCallRet (msgCstmlayoutSetChildSpec, cstmlayoutObj, &clcs,

/* Set the size and position for the input fields */

clcs.child = pInst->labels[i];
cles.metrics.h.value = 5; /* Height of the label
clcs.metrics.w.value = Fields{i].widths
cles.metrics.x.value = Fields[i).x;
clcs.metrics.y.value = Fields[il.y - 5;

0bjCal 1Ret (msgCstmLayoutSetChi1dSpec, cstmLayoutObj, &clcs,
}

return(stsok) ;

JEE X R AR TR R AR A KRR R R R KRR KK R X R R RN X R AR

ad Message Handlers
/Rk*'*ﬂk'ﬂﬁ'kﬁkkk'kﬂkﬂtﬂk'k**k'l

field */

Cl1Align(cIMinEdge, c1Pct0f, clMaxEdge)s:
ClAlign(cIMinEdge, ciPctOf, clMaxEdge);

s);

*

s);

LB R R R R

*/

LR R R AT

/ ¥ /
/* CommAppAppInit */
1* */
/* Respond to msgAppInit. */
” */
/ /
MSG_HANDLER CommAppAppInit(const MESSAGE msg,
const 0BJECT self,
const P_ARGS pArgs,
const CONTEXT ctx,
const P_IDATA pData)}
{
APP_METRICS am;
STATUS s3
int is

COMMAPP_INST inst;
CSTM_LAYOUT_NEW cing
WIN_METRICS wm;
MENU_NEW mm;

/* Description of the input fields and the labels */
static const FIELD_INFO Fields[OBJECT_COUNT] =
{

/* Length, X. Y, Width, Tag, Labeltext, Tag */
LASTNAME_LENGTH, 5, 88, 88, LastNameTag, “Last Name", LastNamelabel,
FIRSTNAME_LENGTH, 5, 72, 88, FirstNameTag, “First Name", FirstNamelabel,
INITS_LENGTH, 88, 72, 18, InitsTag, “Initials®, Initslabel,
STREET_LENGTH, 5, 56, 86, StreetTag, "“Street", Streetlabel,
CITY_LENGTH, 5, 49, 86, CityTag, “City", Citylabel,

COUNTRY_LENGTH, 5, 24, 68, CountryTag, "Country”, Countrylabel,
ZIP_LENGTH, 70, 24, 21, 11PTag, “ZIp", IIPLabel,
PHONE_LENGTH, 5, 8, 68, PhoneTag, “Phone", PhonelLabel,

/* Description of the menus in the menu bar */
static TK_TABLE_ENTRY CommAppMenuBar[] =

{“fFile", 6, 6, 6, tkMenuPullDown, clsMenuButten},
{"Save", msgCommSave},
{"Restore", msgCommRestore},
{phull},

{"Communication”, 6, 8, 8, tkMenuPullDown, clsMenuButton},
{"Send Screen Data“, msgCommSendScreen},
{"Send File Data", msgCommSendFile},
{pNu11},

{pNull}

5

Debugf (" CommApp: CommAppAppInit -- received msgAppInit”);

/* Initialize instance date */
memset ((P_CHAR)&inst, '\8', sizeof (COMMAPP_INST));

/* Create Child Windows */
CreateInputiin(self, &inst, Fields);

ObjCallwarn(msgNewDefaults, clsCustomieyout, &cin);

cin.border.style.backgroundInk = bsInkGray33;
ObjCalIWarn(msgNew, clsCustomtayout, &lin);

/* Create the menubar */

ObjCallRet (msgNewDefaults, clsMenu, &m, s);
mn.tkTable.client = self;
m.tkTable.pEntries = CommAppMenuBar;
m.menu.style.type = msTypeMenuBar;
0bjCallRet (msgNew, clsMenu, &m, s);

/* Insert the menubar */

ObjCallRet (msgAppCreateMenuBar, self, &mn.object.uid, s);
0bjCallRet (msgAppGetMetrics, self, &am, s);

ObjCallRet (msgF rameSetMenuBer, am.mainWin, m.object.uid, s);

wm.parent = cin.object.uid;
wm.options = wsPosTop;

/* Insert the input windows and labels */
for (i = 8; i < OBJECT_COUNT; i++)

{
ObjCallRet (msghinInsert, inst.Objects[i], &wm, s);
ObjCallRet (msgWinInsert, inst.Labels[i), &wm, s);
}

/* Set the size and position of the input fields and lebels */
AlignChildren(cin.object.uid, &inst, Fields);

/* Read the saved file and put the contents into the input fields */
RestoreDataFromFile{&inst);

/* Read the setting of the serial communication */
GetCommDataFromFile(&inst);

/* Update instence data */
Objectwrite(sel f, ctx, &inst);

0bjCallwarn(msgAppGetMetrics, self, &eam);
ObjCalldmp(msgFrameSetClientwWin, am.mainWin, cin.object.uid, s, Error);

return(sts0K);

Error:

return{s);

MsgHand] erParametersNoWarning;

/* CommAppOpen
/* Respond to msgAppOpen.
/* It's important that the ancestor be called AFTER all the frame

/* menipulations in this routine because the ancestor takes care of any
/* layout that is necessary.

/
MSG_HANDLER CommAppOpen(const MESSAGE msg,
const 0BJECT self,
const P_ARGS pArgs,
const CONTEXT ctx,
const P_COMMAPP_INST plata)

STATUS s3
COMMAPP_INST inst;
LIST_NEW In;
LIST_ENTRY le;

16 n;
0BJECT serlist;
CHAR buffer[nameBufLength];

95

M_GET_SET_NAME gn;
STROBJ_NEW sn;
BOOLEAN haveName;

Debugf ("CommApp:CommAppOpen -- received msgAppOpen”);

/* Copy the instance date to local memory */
memcpy { (P_CHAR)&inst, (P_CHAR)pData, sizeof (COMMAPP_INST));

/* Create a list to hold the name of the serial port drivers. */
ObjCallJmp(msgNewwithDefaults, cislist, &In, s, Error);

/* Get the serial port driver list, copy names */
0bjCalldmp(msgIMbet List, theSerialDevices, &serlist, s, Error2);

/* How many entries are in the list? */
ObjcallJmp(msgtistNumItems, serlist, &n, s, Error2);

if (n == 9)

/* there aren't any service instences! Bug out */

/* Get the list of available service instances from theSerialDevices. */
/* Walk down the list, get the name of each instance and store it in my */
/* own list. Check if & service instance should be default (if none has */
/* been stored as default yet), or compare it with & previously stored */
/* service name. *f
inst.SerInstance0k = true;
haveName = false;
while (ThaveName)

{

for (le.position = 8; le.position < n; le.position++)

ObjtallJmp(msglistGetItem, serlist, &le, s, Error2);
if (le.item 7= pNull)
{
gn.handle = (0BJECT)le.item;
gn.pName = buffer;
ObjCalldmp(msgIMGetName, theSerialDevices, &gn, s, Error2);

/* Copy name */

ObjCaliWarn(msgNewDefaults, clsString, &sn);
sh.strobj.pString = buffer;
ObjCalldmp(msgNew, clsString, &sn, s, Error2);

/* Add it to the end of the list */
ObjCallJmp (msglistAddItem, In.object.uid, sn.object.uid, s, Error2);

/* Check if this is this one is selected or that I */

/* should make a default. */

if (inst.CommSetupData.DefaultPort{8] == '\8' & le.position == @)
{

Debugf("Setting default SerialServ to %s", buffer);
strepy (inst.CommSetupData.DefaultPort, buffer);
haveName = true;
}
else
{
if ((strcmp(inst.CommSetupData.DefaultPort, buffer)) == @)
{

Debugf("Setting default SerialServ to %s“, buffer);
inst.SerPortIndex = le.position;
haveName = true:
}
}
}

if (YhaveName)

{
if (inst.CommSetupData.DefaultPort[8] 1= *\8')
inst.CommSetupData.DefaultPort{6] = '\0's
else
break;

}

}
/* Keep list uid */
inst.SerialNametist = In.object.uid;

/* Update instance data */
Objectwrite(self, ctx, &inst);

/* Open serial port */
0bjCalldmp(msgCommOpenSerial, self, (P_ARGS)pNull, s, Error);

}
/* Destroy the service instance 1ist */
0bjCallWarn(msglestroy, serlist, pNull);

return stsOK;

Error2:

/* Destroy the service instance list */
ObjCalWarn(msgDestroy, serlist, pNull};
Error:

return(s);

96 PenPoint OS

MsgHand]erParemetersNoWarning;

}

/ * /
/* CommAppClose *f
I* */
/* Respond to msgAppClose. */
™ *f
/* It's important that the ancestor be called AFTER all the frame */
/* manipulations in this routine because the ancestor takes care of any */
/* layout that is necessary. */
A */
/ /

MSG_HANDLER CommAppClose(const MESSAGE msg,
const OBJECT self,
const P_ARGS pArgs,
const CONTEXT ctx,
const P_COMMAPP_INST pData)

LIST_FREE 1f3
0bjCallWarn(msgCommCloseSerial, self, (P_ARGS}pNull);
1f.key = objWKNKeys
1f.mode = listFreeltemsAsObjects;
ObjCal1Warn(msgListFree, pData->SerialNamelist, &1F);
/* Destroy option sheet */
if (pData->commOptNin)
ObjCalinarn{msglestroy, plata->commOptiin, Nil(P_ARGS));

return sts0K;

MsgHend) erParamet ersNoWarning;

JEEAE R R KR KA KK KK KRR KR AR KT KRR KRR T RRN R KKK AR K]

A Installation

JEE KRR AR K KR KK KA AR KT KA KRRE KRR ARK R KRR K KRR A KR

*/
*

/ /
/* ClsCommApplnit */
/k */
/* Install the epplication. */
Al *f
/ /
STATUS GLOBAL C1sCommAppInit (void)
{

APP_MGR_NEW new;

STATUS s:
/* Create the new message class cisCommApp */
0bjCaltomp (msgNewDefaults, clsAppMgr, &new, s, Error);
new.object.uid = clsCommApp;
new.cls.pMsg = clsCommAppTable;
new.cls.ancestor = clsApp;
new.cls.size = $ize0f (COMMAPP_INST);
new.cls.newArgsSize = Size0f(APP_NEW);
strepy (new. appMgr.company, “IBM Corporation”);
strepy {new, appMgr.defaul tDocName, “PenDISApp“);
ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);
return{stsoK);
Error: /* 1 don't like goto's in € */
return(s};
/ /
/* main */
™ */
/* Main application entry point. */
’* */
/ /

void CDECL main{int argc,
char *argv{],
U16 processCount)
{
if (processCount ==)

StsWarn(C1sCommappInit());
AppMonitorMain(clsCommApp, objNull);

else
{
AppMain();
}

Unused(argc); /* Supress compiler's “unused paremeter" warnings */
Unused (argv);

}

97

A.7 C Source for COMMFILE.C

This module contains the routines to save and restore the data entered in the
input fields onto the hard disk or solid state file (SSF).

File: commapp.c
Copyright 1998, 1991, 1992 GO Corporation. All Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code and that this notice (including the above
copyright notice) is reproduced on &ll copies. THIS SAMPLE CODE

IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 $
$Author: gbarg $
$Date: 21-Jan-92 §

This file contains saving to & file and restoring from there.

#ifndef APP_INCLUDED
#include <app.h>
#endi f

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endi f

#ifndef RESFILE_INCLUDED
#include <resfile.h>
#endi f

#ifndef FRAME_INCLUDED
#include <frame.h>
#endi f

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef TKTABLE_INCLUDED
#include <tktable.h>
#endi f

#ifndef TKFIELD_INCLUDED
#include <tkfield.h>
#endif

#i fndef MENU_INCLUDED
#include <menu.h>
#endi f

#ifndef TXTDATA_INCLUDED
#include <txtdata.h>
#endi f

#i fndef COMM_INCLUDED
#inciude <comm.h>
#endi f

#i fndef COMMAPP_INCLUDED
#include <commapp.h>
#endi f

#i fndef CLAYOUT_INCLUDED
#include <clayout.h>
#endi f

#ifndef BUTTON_INCLUDED
#include <button.h>
#endi f

#include <method.h>

#include <string.h>
#include <stdio.h>

JEER R RK KA KRR R KR KRKA KRR KA KK AR N R R RN KA R ® RN K]

Vid Defines, Types, Globals, Etc */

JERRAERERARR AT R R A XK A KRR AR AR AR KX R K KRR KR RS

static const int Fieldlength(] =
{
LASTNAME_LENGTH,

FIRSTNAME_LENGTH,
INITS_LENGTH,

98 PenPoint OS

STREET_LENGTH,
CITY_LENGTH,
COUNTRY_LENGTH,
ZIP_LENGTH,
PHONE_LENGTH,
}:

static CHAR save_file[] = SAVE_FILE;
/Rk'ﬁkkﬁtﬂﬂﬁlﬂkuﬂtﬂﬂtklﬁﬂtﬂ**l*ﬂﬂ'kﬂﬁk

* Local Functions
/ﬂ*ﬂxktknRkﬂnkﬂw'ﬁ*tﬂtxtxn*a*kk!*ﬂkwkt

*
*f
*/

Jrrnn

/* Read saved data from COMMAPP.DAT and put the data intc the input
/* fields.

!
*
*/

/
void RestoreDataFromFile(P_COMMAPP_INST inst)
{
FILE *stream;
int is
COMM_DATA CommData;
P_CHAR pString;

memset ((P_CHAR)&CommData, '\@', sizeof(COMM DATA));

/* Read deta from file COMMAPP,DAT */
if ((stream = fopen(save_file, “rb*)) t= NULL)
{
Debugf(“File Open (Read) Ok.");
i = fread((P_CHAR)&CommData, sizeof (COMM_DATA), 1, stream);
if (i == 1)
{
Debugf ("Read 0k.");

pString = (P_CHAR)&CommData;

/* Put data to the input fields */
for (i = 8; i < OBJECT_COUNT; i++)
{
ObjCallwarn(msglabelSetString, inst->Dbjects{i], pString);
pString = &pString[Fieldlength{i] + 1];
}

fclose(stream);

/

/
/* Get Data from fields and stor it in structure.

/

{

void GetTextData(P_COMM_DATA CommData, P_COMMAPP_INST pbata)

CONTROL_STRING cs;
int i3

menset ((P_CHAR)CommData, '\8', sizeof{COMM_DATA));
cs.pString = (P_CHAR)CommData;
for (i = 8; i < OBJECT_COUNT; i++)

cs.len = Fieldiength[i]) + 1;

0bjCalWarn{msglabel GetString, pData->Objects[il, &cs):

cs.pString = &cs.pString(Fieldiength(i] + 1);
}

}

JEEER A KK KRR E R KRR KR AR AE KRR KKK KRR KK KRR KR K

* Message Handlers
KX KR AR R KKK KRR KN R KR ARA KK KA RR KK R R R AR RN

*

*f

Jrnw
/* CommSaveButton

/Yc

* d to msgl Button

"

/
*/
*/
*/
*

Jrnn *
MSG_HANDLER CommSaveButton{const MESSAGE msg,
const OBJECT self,
const P_ARGS pArgs,
const CONTEXT ctx,
const P_COMMAPP_INST pData)

COMM_DATA CommData;
int is
FILE *stream;

/* Get data from input fields */
GetTextData(&CommbData, pData);

/* Save data in file COMMAPP.DAT */
if ((stream = fopen(save_file, “wb*)) 1= NULL)

Debugf("File Open (Write) Ok.");
i = furite((P_CHAR)&CommData, sizeof(COMM_DATA), 1, stresm);
if (i ==1)

/

Debugf (“Write 0k.")s
}

felose(stream);

return(stsoK);

MsgHandl erParametersNoWarning;

/ /
/* CommRestoreButton */
™ */
/* Respond to msgCommRestoreButton */
I* */
/ /

MSG_HANDLER CommRestoreButton(const MESSAGE msg,
const 0BJECT self,
const P_ARGS pArgs,
const CONTEXT ctx,
const P_COMMAPP_INST pData)
{
Debugf ("Message msgCommRestoreButton");

/* Get data from file and store it in the input fields */
RestoreDataFromFile(pData);

return(stsoK);
MsgHandlerParametersNoWarning;

JEAARKTE AR KA KRR KRR AR KA KRR AR KR KK KA KKK KRR kK

* Installation
tﬂtﬂtt*Rﬁtxtﬁk*utﬂﬁkkkkﬂR*ﬁ**ﬂﬂtkk*kﬂﬁ/

A.8 C Source for COMMSET.C

This module contains the routines to insert and handle the option card for setting
the serial port.

/ KKARK

File: commset.c
(C) Copyright 1992 by 60 Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE

IS PROVIDED “AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TQ USE THIS SAMPLE CODE.

$Revision: 1.5 ¢
$Author: kcatlin 8
$Date: 65 Feb 1992 09:67:10 $

This file contains the clsOptionTable demoing code of the tkdemo application.
/

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endi f

#ifndef SEL_INCLUDED
#include <sel.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endi f

#i fndef TLAYOUT_INCLUDED
#include <tiayout.h>
#endif

#ifndef TKTABLE_INCLUDED
#include <tktable.h>
#endi f

#ifndef SWIN_INCLUDED

#include <swin.h>
#endi f

100 PenPoint OS

#ifndef APP_INCLUDED
#include <app.h>
#endi f

#ifndef APPTAG_INCLUDED
#include <apptag.h>
#endif

#ifndef CHOICE_INCLUDED
#include <choice.h>
#endi f

#ifndef POPUPCH_INCLUDED
#include <popupch.h>
#endif

#ifndef STROBJ_INCLUDED
#include <strobj.h>
#endif

#ifndef OPTTABLE_INCLUDED
#include <opttable.h>
#endif

#ifndef OPTION_INCLUDED
#include <option.h>
#endif

#ifndef PREFS_INCLUDED
#include <prefs.h>
#endi

#ifndef BUSY_INCLUDED
#include <busy.h>
#endif

#ifndef COMM_INCLUDED
#include <comm.h>
#endif

#ifndef COMMAPP_INCLUDED
#include <commapp.h>
#endi f

#include <method.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const CHAR comm_data_file[] = COMM_DATA FILE;

/ KARKK /
/* Read the communication setup file */
/ /
void GetCommDataF romFile (P_COMMAPP_INST inst)
{
FILE *stream;
int ReadOk = 8;

static const COMM_SETUP CommSetupDefaults =
{
COMM_SETBAUD_9688,
COMM_SETDATABITS_8,
COMM_SETSTOPBITS_1PE,
COMM_SETPARITY_NONE
Y

/* Read data from file COMMAPP.PRO */

if ((stream = fopen(comm data_file, "rb")) != NULL)
{
Debugf (“Comm File Open {Read) Ok.");

Read0k = freed((P_CHAR)&inst->CommSetupData, sizeof(COMM_SETUP), 1, stream);

felose(stream);

}

if (Readlk 1= 1) .
memcpy ((P_CHAR) &inst->CommSetupData, (P_CHAR)&CommSetupDefaults,
sizeof (COMM_SETUP)) 3

[rex

/* CommOpt i onAddCards
/* Handles msgOptionAddCards.

/* Note on error handling: Once a card has been added to the sheet,
/* destroying the sheet will destroy the card.

*/
*f
*/
*/
*/
*/

/
MsgHand] erWi thTypes {CommOpt i onAddCards, P_OPTION_TAG, P_COMMAPP_INST)
{

OPTION_CARD card;
STATUS s;

/
/* Determine which sheet is requesting the cards. Cnly create
/* the cards if it is the Document option sheet. This test is
/* only needed by application subclasses. Other subclasses (such

*f

*

101

/* as Tic-Tac-Toe's view class) don't need to perform such a test. */
/ /

Debugf ("commOptionsAddCard, pl=%68.81X, p2=%88.81X",
pArgs->tag, (U32)tagAppDocOptSheet);

if (pArgs->tag == tagAppDocOptSheet)
{
Debugf (“pData->SerInstanceOk = %d*, (U16)pData->SerInstance0k);
if (pData->SerInstance0k)

/* Create the card. */

card.tag = tagSetupCard;

card.win = objNull;

card.pName = "Communication Setup";

card.client = self;

0bjCallJmp(msgOptionAddLestCard, pArgs->option, &card, s, Error);
}

}

return stsOK;
MsgHand] erParametersNoarning;

Error:
return s;
} /* End CommDptionAddCards */

/
/* CommOpt i onProvideCard

/k

/* Handles msgOptionProvideCardWin

/
MsgHand] erii thTypes (CommOpt i onProvideCard, P_OPTION_CARD, P_COMMAPP_INST)
{

STATUS 83
LIST_ENTRY le;
OPTION_TABLE_NEW new;
BUTTON_NEW bn;
NIN_METRICS wm;
P_CHAR sername;

WIN control;
WIN choice;
u1e n;

COMMAPP_INST inst;

/* Description of the option card */
static const TK_TABLE_ENTRY SetupCardEntries{] =
{

{"Port:"},
{8, 8, 8, tagPort, tkNoClient, clsPopupChoice},
{pNull},

{"Baudrate:"},

{0, 0, 0, tagBaudrate, tkNoClient, clsPopupChoice},

{"300", 0, 0, 1},

{"600", @, 8, 2},

{"12e0", @, 8, 3},

{v248e", @, ®, 4},

{"4886", 9, @, 5},

{“960¢", 9, o, 6},

{"192¢0", 0, 8, 7},

{pNull},

{"Databits:"},

{e, 8, 0, tagbatabits, tkNollient, clsChoice},

{"7", 8, 8 1},

{"8", 6, 8, 2},

{pNull},

{"Stopbits:"},

{0, 8, 8, tagStopbits, tkNoClient, clsChoice},

{"1", 8, 6, 1},

{"1 172%, 8, 8, 2},

{"2", 0, 8, 3},

{pNul1},

{"Parity:"},

{e, ©, ©, tagParity, tkNoClient, clsChoice},

{"None*, 8, 0, 1},

{"odd", 6, 8, 2},

{"Even", 6, 8, 3},

{pNul1},

{"Status:"},

{8, 6, 6, tagConnected, tklabelStringid | tkNoClient |
tkInputDisable | tkBorderMarginNone,
clslabel},

{pNu1 1}
Y

PArgs->win = objNull;
if (pArgs->tag == tagSetuplard)

/* Create the option card */
memcpy ((P_CHAR)&inst, (P_CHAR)pDate, sizeof(COMMAPP_INST));

ObjCallRet (msgNewDefaults, clsOptionTable, &new, s);
new.tkTable.pEntries = SetupCardEntries;
new.win.tag = tagSetupCard;

0bjCallRet (msgNew, clsOptionTable, &new, s);
inst.commOptWin = pArgs->win = new.object.uid;

102 PenPoint OS

/* Copy data back to protected memory */
Objectwrite(self, ctx, &inst);

/* Check the items in the card */
control = (WIN)ObjectCall(msgWinfindTag, pArgs->win,
(P_ARGS)tagPort);

/* Get the choice of the popup choice to insert buttons in, */
/* representing the various serial port devices available. */

0bjCal1Ret (msgPopupChoiceGetChoice, control, &choice, s);

/* How many items in 1ist? */
ObjCallRet (msglistNumltems, pData->SerialNamelist, (P_ARGS)&n, s);

Debugf(“Creating %1d choice items”, n);
for {le.position = 8; le.position < n; le.positions+)

/* Get item at this position in the list */
ObjCallRet (msglistGetItem, pData->SerialNamelist, &le, s);

/* Get string for this object */
ObjCallRet (msgStrobjGetStr, le.item, &sername, s);

/* Create a button for the popup menu */
0bjCallNarn (msgNewDefaults, clsButton, &bn);

/* Get defaults for this tk type */
ObjCallwarn(msgTkTableChiidDefaults, choice, &bn);

/* Make it look like standard popup item */
bn.label.style.decoration = tsDecorationPopup;
bn.label.pString = sername;

/* Give it the index in the list as tag so I can */
/% 1ink it easily to the string list */
bn.win.tag = le.position;

ObjCallRet (msgNew, clsButton, &bn, s);

/* Insert it in the choice */

Debugf ("Inserting %s", sername);

wm.parent = choice;

wm.options = wsPosTop;

ObjCal1Ret (msgHinInsert, bn.object.uid, &wm, s);

/* Set communication port */
ObjCal IWarn(msgControl SetValue, control,
(P_ARGS)pData->SerPortIndex) ;

/* Set baudrate */
control = (WIN)ObjectCall (msgWinfindTag, pArgs->win,
{P_ARGS)tagBaudrate) ;
ObjCallwarn(msgControlSetValue, control,
(P_ARGS)pData->CommSetupData.BaudRate) ;

/* Set 7 oder B databits */
control = (WIN)ObjectCal) (msgWinFindTag, pArgs->win,
(P_ARGS)tagDatabits);
ObjCall¥Warn(msgControlSetValue, control,
(P_ARGS)pData->CommSetupData.DataBits);

/* Set 1, 1 1/2 or 2 stopbits */ .
control = (WIN)ObjectCall (msgWinFindTag, pArgs->win,
(P_ARGS)tagStopbits);
ObjCallwWarn(msgControlSetValue, control,
(P_ARGS)pData->CommSetupData. StopBits);

/% Set parity (odd, even or none) */

control = (WIN)ObjectCall(msgWinFindTag, pArgs->win, {P_ARGS)tagParity);

ObjCallWarn(msgControiSetValue, control,
(P_ARGS) pData->CommSetupData.Parity) ;

/* Set the correct resource id for the status label; *,
/* connected or not. */

ObjCallWarn(msgCommSetConnectStatusld, self,
(pData->CommSerConnected) ? (P_ARGS)"Connected" :
(P_ARGS) "Not connected");

/* Mark card as clean */
0bjCallRet {msgControlSetDirty, pArgs->win, (P_ARGS)false, s);
}

return{sts0K);
MsgHandlerParametersNowarning;
} /* End CommOptionProvideCard */

/ EN /
/* CommOptionApplyCard *f
™ */
/* Handles msgOptionApplyCard */

/

/
MsgHand] erWi thTypes (CommOptionApplyCard, P_OPTION_CARD, P_COMMAPP_INST)
{

WIN control;

103

TAG Tag;

STATUS s;
COMMAPP_INST inst;
FILE *stream;
int i;

u32 value;
LIST_ENTRY le;
P_CHAR sername;

if (pArgs->tag == tagSetupCard)
{
Debugf ("msgOptionApplyCard”);
memepy ((P_CHAR)&inst, (P_CHAR)pData, sizeof(COMMAPP_INST));

/* Get the data */
control = (WIN)ObjectCall (msgiinFindTag, pArgs->win, (P_ARGS)tagPort);
0ObjCallRet (msgControl GetValue, control, (P_ARGS)&value, s);
inst.SerPortIndex = le.position = value;
ObjCallRet (msglistGetItem, pData->SerialNamelist, &le, s);
0bjCallRet (msgStrObjGetStr, le.item, &sername, s);
strncpy (inst.CommSetupData.DefaultPort, sername,
nameBufLength * SizeOf (CHAR));

control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, (P_ARGS)tagBaudrate);
ObjCallRet (msgControl GetValue, control, (P_ARGS)&Teg, s);
inst.CommSetupData.BaudRate = (int)Tag;

control = (WIN)ObjectCall (msgHinFindTag, pArgs->win, (P_ARGS)tagDatabits);
ObjCallRet (msgControlGetvalue, control, (P_ARGS)&Tag, s);
inst.CommSetupData.DataBits = (int)Tag;

control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, (P_ARGS)tagStopbits);
0bjCallRet (msgControlGetValue, control, (P_ARGS)&Tag, s);
inst.CommSetupData.StopBits = (int)Tag;

control = (WIN)ObjectCall (msgWinfindTag, pArgs->win, (P_ARGS)tagParity);
ObjCal1Ret (msgControlGetvalue, control, (P_ARGS)&Tag, s);
inst.CommSetupData.Parity = (int)Tag:

/* Check, if data changed */
if (memcmp ({P_CHAR)&inst.CommSetupData, (P_CHAR)&pData->CommSetupData,
sizeof (COMM_SETUP)))

/* Copy data back to protected memory */
ObjectWrite{self, ctx, &inst);

/* Close and reopen port */
ObjcaltWarn (msgCommC1oseSerial, self, pNull);
Objcal)Ret (msgCommOpenSerial, self, pNull, s);

/* Initialize again */
objCal 1Warn(msgCommSetSerialMetrics, self, (P_ARGS)pNull);

/* Write data to file »/
if ((stream = fopen(comm_data_file, "wb")) 1= NULL)

{
Debugf("Comm File Open (Write) 0k."):
i = fwrite{(P_CHAR)&inst.CommSetupData, sizeof(COMM_SETUP},
1, stream);
if (3 == 1)
{
Debugf("Write 0k.");
}
fclose(stream);
}
}

return(sts0K) ;

MsgHand) erParametersNoWarning;

}

/ * /
/* R to ConnectStatusld. */
/R */
/* Set new resource Id for connection status label. *
J* A custom handler is provided for this (instead of just calling */
/* msglebelSetStringid) because the toolkit accidently sets the */
/* infoType to zero. *

/ il /
MsgHand) erkithTypes (CommSet ConnectStatusId, P_ARGS, P_COMMAPP_INST)
{

0BJECT labels
Debugf(“msgCommSet ConnectStatusld");

/* Only update label if card has been created */
if (pbata->commOptWin)
{

if {label = (WIN)ObjectCall(msgWinFindTag, pData->commOptWin,
(P_ARGS) tagConnected))

{
ObjCel INarn(msgLabelSetString, label, pArgs);
}

}

return stsoK;

104 Penpoint OS

MsgHandlerParamet ersNoWarning;
} /* sxsetConnectStatusld */

A.9 C Source for COMMSEND.C

This module contains the code for sending the data via the serial port to an 08/2
2.0 system.

File: commsend.c

Copyright 1990, 1991, 1992 60 Corporation. All Rights Reserved.

You may use this Sample Code any way you please provided you

do not resell the code end that this notice (including the above

copyright notice) is reproduced on all copies.

THIS SAMPLE

CODE

IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 §
$Author: gbarg
$Date: 21-Jan

$
-92 §

This file contains the class definition and methods for clsComm.

#ifndef DEBUG_INCLUDED
#include <debug.h>

#endif

#ifndef FS_INCLUDED
#include <fs.h>

#endif

#ifndef SIO_INCLUDED
#include <sio.h>

#endi

#ifndef SERVMGR_INCLUDED
#include <servmgr.h>

#endi f

#ifndef FRAME_INCLUDED
#include <frame.h>

#endi f

#ifndef APP_INCLUDED
#include <app.h>

#endi f

#ifndef NOTE_INCLUDED
#include <note.h>

#endif

#ifndef COMM_INCLUDED
#include <comm.h>

#endif

#ifndef COMMAPP_INCLUDED
#include <commapp.h>

#endif

#include <method.h>

#include <stdlib.h>
#include <stdio.h>

AR R R REREEEEEEREEEEEEEEAEEREEE]

Defines, Types, Globals, Etc

TR KK KKK KK KR KKK KA KRN KR K KKK KK KR KR

*

/* Identification sent before the data */
static const char

Id[) = "

\x@1Start\x62";

JEXRRE AR KR K KRR K KKK KRR R KKK KKK KKK

*

Local Functions

EHKK KK R KRR KK KRR KR E R KR KR KKK R XK R K

JRERRRERRKRRRRRRIRR

/* Convert a field and send it to the serial port

JrEH

{

void

CHAR
P_CHAR

CommSendfield(0BJECT self, P_CHAR Field,

Temp(68];
81, s2;

BOOLEAN

flag)

105

106

PenPoint OS

A */
/* Field points to one data field. The data is put into */
/* quotation marks. Possible quotation marks within the text */
/* are doubled. If flag is true, & komma will be sent after */
/% the field. *
/* *f
/* Example: */
Il */
/* Field contents ===> [ata sent */
~ */
/* Peter > “Peter” */
/* Robert "Bob" Miller ===> “Robert ""Bob"" Miller" */
/* */
s2 = Temp;
*s2 = 0y
$2++;
for (sl = Field; *sl; sl++, §2++)
{
if (*sl == '")
{
s2[0] = '3
s2[1] = "'y
S2++;
}
else
*s2 = *sl3
}
"2 = g
2443
/* Append komma if flag=true */
if (flag)
{
*s2 = '3
S2++;
)
*s2 = '\&';
/* Send the date to the serial port */

ObjCallWarn(msgCommSendSerial, self, (P_ARGS)Temp);

7%
*
*

L N R R R R RN R R

Message Handlers
kKA K KRR K KK kK KKK KKK KK A KA K KR KA KKK KK KR

»

*

CommSendScreenButton

Respond to msgCommSendScreenButton

/
*/
*/
*/

{

MsgHand] er¥i thTypes (CommSendScreenButton, P_ARGS, P_COMMAPP_INST)

COMM_DATA Data;

static const CHAR CrLf[] = "\x6D\xBA";

Debugf("Message msgCommSendButton");

GetTextData(&Data, pData);

7%
7%
if

Send the data, if Lastname is given, any serial port is available */
and connection established */
(Data.LastName[6] & pData->SerInstanceOk && pData->CommSerConnected)

{

/* First send the Id */

ObjCel 1Harn (msgCommSendSerial, self, (P_ARGS)Id);
/* Send the fields */

CommSendfield(se!f, Data.LastName, true);
CommSendfield(self, Data.FirstName, true);
CommSendfield(sel f, Data.Inits, true);
CommSendField(sel f, Data.Street, true);
CommSendField(sel f, Data.City, true);
CommSendField(sel f, Data.Country, true);
CommSendfield(sel f, Data.ZIP, true);
CommSendField(self, Data.Phone, false);

/* Send CR/LF */

0bjCallWarn{msgCommSendSerial, self, (P_ARGS)CrLf);
}

return(sts0K);

MsgHand] erParametersNoWarning;

}

/¥
Vi
/*
Vad

CommSendFi)eButton

Respond to msgCommSendFileButton

*
*/
*

4

Msghand] erii thTypes (ConmSendFi 1eButton, P_ARGS, P_COMMAPP_INST)

COMM_DATA Data;
FILE *stream;

static const CHAR Crlf[] = "\x8D\xBA";

Debugf ("Message msgCommSendButton®);
memset ((P_CHAR)&Data, '\8', sizeof(COMM_DATA));

/* Read data from file COMMAPP.DAT */
if ((stream = fopen(SAVE_FILE, “rb")) != NULL)

Debugf("Fite Open (Read) Ok.");
fread((P_CHAR)&Data, sizeof(COMM_DATA), 1, stream);
fclose(stream);

}

/* Send the data, if Lastname is given, any serial port is available */
/* and connection established =/
if (Data.LastName[8] && pData->SerInstanceOk && pData->CommSerConnected)

{

/* First send the Id */
ObjCallWarn(msgCommSendSerial, self, (P_ARGS)Id);
/* Send the fields */

CommSendField(self, Data.LastName, true);
CommSendField(self, Data.FirstName, true);
CommSendField(self, Data.Inits, true);
CommSendfield(self, Data.Street, true);
CommSendField(self, Data.City, true)s;
CommSendfield(self, Data.Country, true);
CommSendField(self, Data.ZIP, true);
CommSendField(self, Data.Phone, false);

/* Send CR/LF */

Objca) IWarn{msgCommSendSerial, self, (P_ARGS)Crif);
}

return(ststK);

MsgHand] erParametersNoWarning;

/ /
/* CommOpenSerial */
/ﬁ k/
/* Respond to msgCommOpenSerial */
/ /

MsgHand] eriithTypes (CommOpenSerial, P_UNKNOWN, P_COMMAPP_INST)

SM_ACCESS saccess;
STATUS [

DBJECT sio;
SIO_INIT sinit;
SIO_EVENT_SET ses;
COMMAPP_INST inst;
SM_GET_STATE servstate;

Debugf ("Message msgCommOpenSerial");
memcpy ((P_CHAR)&inst, (P_CHAR)pData, sizeof{COMMAPP_INST));

/* Since 1 grab the port and won't let go, I can use SMAccess etc.. */
/* If you don't need exclusive access to the serial port, bind the */
/* server and only open it if you need it. <servmgr.h> shows how to do */
/* that. *f

saccess.pServiceName = inst.CommSetupData.DefaultPort;
saccess.caller = self;

ObjCaliwarn{msgSMAccessDefaults, theSerialDevices, &saccess);
0bjCallRet {msgSMACcess, theSerialDevices, &saccess, s);

sio = saccess.service;

/* Initialize to default state, use small buffers */
sinit.inputSize = 512;

sinit.outputSize = 512;

ObjCeallWarn(msgSiolnit, sio, &sinit);

/* I'monly interested in transmission errors (well not really, */
/* but just to show how). */
ses.eventMask = sioEventRxError;

ses.client = self;

ObjCalIWarn{msgSioEventSet, sio, &ses);

/ /
/* The Service Manager will keep me updated about the connection */
/* status, however I want to find out the inital status. */
/ /

servstate.handle = (OBJECT) saccess.handle;
servstate.connected = false;
ObjCalIWarn(msgSMGetState, theSerialDevices, &servstate);

/* Update instance data */
inst.CommSerConnected = servstate.connected;
inst.commSI0Service = saccess.service;
inst.conmSI0Handle = saccess.handle;

/* Copy data back to protected memory */
Objectwrite(self, ctx, &inst);

107

108

PenPoint OS

/* Initialize port */
ObjCal lvarn{msgCommSetSerialMetrics, self, (P_ARGS)pNull);

return(stsok);

MsgHand! erParametersNoWarning;

/
/* CommC]oseSerial

/R

/* Respond to msgCommCloseSerial

*/
*/
*f

/ *
MsgHand] erWi thTypes (CommC1oseSerial, P_UNKNOWN, P_COMMAPP_INST)

COMMAPP_INST inst;
SM_RELEASE srelease;
SI0_CONTROL_OUT_SET sco;
STATUS 1

Debugf ("Message msgCommCloseSerial");
memcpy ((P_CHAR)&inst, (P_CHAR)pData, sizeof(COMMAPP_INST));

/* pull dtr and rts low to physically disconnect */

sco.dtr = false;

sco.rts = false;

sco.outl = false;

sco.out2 = false;

ObjCallwarn(msgSioControl QutSet, inst.commSIOService, &sco);

/* release the serial port */

srelease.caller = self;

srelease.service = inst.commSI0Service;

srelease.handle = inst.commSIOHandle;

ObjCallRet (msgSMRelease, theSerialDevices, &srelease, s);

/* Update instance deta */
inst.commSI0Service = objNull;
inst.commSIOHandle = objNull;

/* Copy data back to protected memory */
ObjectWrite(sel f, ctx, &inst);

return(stsok) ;

MsgHand] erParamet ersNoWarning;

/

/* CommSetSerialMetrics

/1(

/* Respond to msgCommSetSerialMetrics

*
*
*/

/ * * * whAR
MsgHand] erii thTypes (CommSetSerialMetrics, P_ARGS, P_COMMAPP_INST)
SIO_METRICS smetrics;

static const U32 ?audRateTab[] =

3080,
660,
1280,
2489,
4806,
9668,
192
}:

static const SIO_PARITY ParityTab[] =
{
sioNoParity,
sio0ddParity,
sioEvenParity,

1

static const SI0_DATA_BITS DataBitsTab[] =
{
sioSevenBits,
sioEightBits,
h

static const SI0_STOP BITS StopBitsTab[]
{

sio0neStopBit,
sioDneAndAHal fStopBits,
sioTwoStopBits,

};

Debugf("Message msgCommSetSerialMetrics”);

/* Initialize serial port to preferences */
ObjCallWarn(msgSioGetMetrics, pData->commS10Service, &smetrics)s
smetrics.baud = BaudRateTab[pData->CommSetupData.BaudRate - 1]3
smetrics.)ine.dataBits = DataBitsTab[pDeta->CommSetupData.DataBits - 1];
smetrics.line.stopBits = StopBitsTab([pData->CommSetupData.StopBits - 113

smetrics.line.parity = ParityTab{pData->CommSetupData.Parity - 1)
smetrics.flowType.flowControl = sioXonXoffflowControl;
ObjCal1Warn(msgSioSetMetrics, pbata->commSI0Service, &smetrics);
return(sts0K);

MsgHandlerParametersNoWarning;

/ /
/* CommSendSerial */
™ *f
/* Respond to msgCommSendSerial */
/ * /

MsgHandleriithTypes(CommSendSerial, P_CHAR, P_COMMAPP_INST)

STREAM_READ_WRITE_TIMEOUT srw;
STATUS S5

Debugf{"Message msgCommSendSerial®);

/* Do nothing if I'm not connected (or open for that matter) */
if (pData->CommSerConnected)

{

/* Support unicode... */

srw.numBytes = strien{pArgs) * SizeCf(CHAR);

/* Do nothing if there were no characters entered in the IP */
if (srw.numBytes > 6)

srw.pBuf = pArgs;
srw.timelut = 756;

ObjCal 1Ret (msgStreamWriteTimeOut, plata->commSI0Service, &srw, s);

/* Flush stream */
ObjCallRet (msgStreamFlush, pDate->commSI0Service, pNull, s);

}
else
Debugf(“Not Open/Connected");

return(stsoK);

MsgHand] erParametersNoWarning;

/ * i)
/* Respond to msgSMConnectedChanged. */
I~ *f
/* Send by service manager when & change in the connection status has */
/* occured. Update the serial card Status label to reflect current */
/* connection status. */
/ /

MsgHandl eriithTypes (CommSMConnectedChanged, P_SM_CONNECTED_NOTIFY,
P_COMMAPP_INST)
{

static const CHAR Connected{] = “Connected";

static const CHAR NotConnected[] = “Not connected";
COMMAPP_INST inst;

Debugf ("msgSMConnectedChanged") ;

Debugf ("Connected %1d", pArgs->connected);

memcpy { (P_CHAR)&inst, (P_CHAR)pData, sizeof{COMMAPP_INST));

inst.CommSerConnected = pArgs->connected;

/* Copy data back to protected memory */
ObjectWrite(self, ctx, &inst);

0ObjCal 1Warn({msgCommSetConnectStatusld, self,
pData->CommSerConnected ? (P_ARGS)Connected:
(P_ARGS)NotConnected) ;

return stsOK;

MsgHand] erParamet ersNoWarning;
} /* CommSMConnectedChanged */

JRERERRRRRR /
/* Respond to msgSioEventHappened. */
1~ *f
/* Respond to an event, in this case only EventRxError. Note that more events */
/* bits may be set in the mask, even those 1 didn't express interest in, */

/* Don‘t do much about the apparent transmission errcor. Could put up & note */
/* or something. You can also be informed when the serial input buffer is no */
/* longer empty. That is most suited for non-continious serial 1/0, since it */
/* has some overhead. */
/ /

MsgHandleri thTypes (CommSioEventHappened, P_SI0_EVENT_HAPPENED,

109

k2

P_COMMAPP_INST)

NOTE_NEW hn;
MESSAGE m
STATUS EH
/* Tables for transmission error note */
static const TK_TABLE_ENTRY commNoteContent(] =
{

{"A transmission error occured”, @, 8, 8, tklLabelStringld},
{pNul1}
};

const TK_TABLE_ENTRY commNoteButton[] =
{“0x", 6, 6, 6, tkLabelStringld},
{pNul1}
b
Debugf ("msgSioEventHappened");
if (pArgs->eventMask & sioEventRxError)
Debugf("sioEventRxError");
/* Show & simple note */
ObjCallwarn(msgNewDefaults, clsNote, &nn);
nn.note.metrics.flags = nfDefaul tAppFlags | nfAutoDestroy;
nn.note.pContentEntries = commNoteContent;
nn.note.pCmdBarEntries = commNoteButton;
ObjCaliRet (msgNew, clsNote, &nn, s)3
0bjCalinarn(msgNoteShow, nn.object.uid, &m)s
}

return(sts0K);

MsgHend) erParametersNoWarning;
} /* CommSioEventHappened */

AR ERE AR EREREEEEEEEEEEEEEEEEEEEEEEAEER

* Instaliation
ﬁr*tkkktt*x*k*gntnaxnﬂwnt*xnxknwknkakn/

A.10 Make File for REC_PEN C Routines

Compiler control file used when compiling and linking COMMAPP.EXE.

source for this program is listed later.

@echo off

sqlprep rec_pen.sqc pen

if errorievel 1 goto ende

icc /c /W3 /DLINT_ARGS /DES32T016 rec_pen.c
if errorievel 1 goto ende

1ink386 rec_pen,,,sql_dyn;

zende

The

A.11 REC_PEN.H C Header

110

PenPoint OS

/ *x
File: rec_pen.h

" /

/* Define length of the input fields */
#define LASTNAME_LENGTH 26
#define FIRSTNAME_LENGTH 28
#define INITS_LENGTH 2
#define STREET_LENGTH 26
#define CITY_LENGTH 20
#define COUNTRY_LENGTH 15
#define ZIP_LENGTH 5
#define PHONE_LENGTH 15

typedef struct
(.
char LastName [LASTNAME_LENGTH + 1];
char FirstName [FIRSTNAME_LENGTH + 1];
char Inits(INITS_LENGTH + 1];

char Street [STREET_LENGTH + 1];

char City[CITY_LENGTH + 1];

char Country [COUNTRY_LENGTH + 1];
char ZIP[ZIP_LENGTH + 1]

char Phone [PHONE_LENGTH + 113

} COMM_DATA, *P_COMM_DATA;

void InsertData208 (P_COMM_DATA CommData);

A12 C Source for REC_PEN.C

This module receives the data from the serial port and updates or adds a record
in the database PEN.

static unsigned char sqla_program_id[46] =

{111,6s,65,66,65,68,67,67,85,63,69,82,73,68,32,32,82,69,67,95,
80,69,78,32,04,65,52,69,86,76,76,73,48,32,32,32,32,32,32,32};

/* Operating System Control Parameters */

#ifdef £5327016
#include “"sqlica.h"
#include "sqlda.h"
#endi f

#i fndef SQL_API_RC
#define SQL_STRUCTURE
#ifdef £5327016
#define SQL_API_RC sho
#define SQL_API_FN
#define SQL_POINTER _S
#else

#define SQL_API_RC int
#i fndef SOL_API_FN

struct
rt

eglf

#define SQL_API_FN far pascal _loadds

#endif
#define SQL_POINTER
#endi f
#endi f

SOL_API_RC SQL_API_FN

SQL_API_RC SQL_API_FN

SQL_API_RC SQL_API_FN

SQL_API_RC SQL_API_FN

SQL_API_RC SQL_API_FN

SQL_API_RC SQL_API_FN
SQL_API_RC SQL_API_FN

SOL_API_RC SOL_API_FN

#ifdef ES327016

sqlaaloc(unsigned
unsigned
unsigned
void *);
sqlacall (unsigned
unsigned
unsigned
unsigned
void *);
sglad)oc{unsigned
void *);
sglasets{unsigned
unsigned
void *);
sglasety{unsigned
unsigned
unsigned short,
unsigned
void *,
void *,
void *);
sqlastop(void *);
sglastrt(void *,
void *,
struct sglca *);
sqlausda{unsigned short,
struct sglida *,
void *);

#pragma linkage (sqlaaloc, farl6

#pragma linkage (sqlac
#pragma linkage (sgled
#pragma linkage (sqlas
#pragma linkage (sglas
#pragma linkage (sqlas
#pragma linkage (sqlas

all, farl6
loc, farl6
ets, farlé
etv, farl6
top, farlé
trt, farlé

#pragma linkage (sglausda, farlé

#endif

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <string.h>
#include <memory.h>
#include <sql.h>
#include <sglenv.h>

#include “rec_pen.h"

#define INCL_DOSFILEMG
#include <os2.h>

#define RESTART -1
#define BUFSIZE 51

I

R

615
2

EXEC SQL INCLUDE sglica;

*/

/* SQL Communication Area - SQLCA - structures and constants */

pascal)
pascal)
pascal)
pascal)
pascal)
pascal}
pascal)
pascal)

short,
short,
short,

short,
short,
short,
short,
short,

short,
char *

short,
short,

short,

&

111

112

PenPoint OS

#1fndef SQLCODE

/* SQL Communication Area - SQLCA */
SQL_STRUCTURE sqica

{
unsigned char
long
Tong
short
unsigned char
unsigned char
long
unsigned char
unsigned char

IH

sqlcaid(8); /* Eyecatcher = 'SQLLA ' */
sqlcabc; /* SQLCA size in bytes = 136 */
sqlcode; /* SQL return code */

sglerrml; /* Length for SQLERRMC */
sqlerrmc[7€]; /* Error message tokens */
sqlerrp[8]; /* Diagnostic information */
sglerrd[6]; /* Diagnostic information */
sqiwarn[11]}; /* Warning flags */
sqistate[5]; /* SQLSTATE */

/* Size of SQLCA »/

#define SOLCA_SIZE sizeof(struct sqlca)
#define SQLCODE sqlca.sqlcode
#define SQOLWARNG sqlca.sqlwarn[e]
#define SQLWARNL sglca.sqlwarn[1]
#define SOLWARN2 sqlca.sqlwarn([2]
#define SQLWARN3 sqlca.sqlwarn{3]
#define SQLWARN4 sqlca.sqlwarn{a]
#define SQLWARNS sglca.sqlwarn[5]
#define SQLWARNG sglca.sgiwarn(6]
#define SQLWARN7 sqlca.sqlwarn(7]
#define SQLWARNB sqica.sqlwarn{B]
#define SQLWARNS sqlca.sqlwarn[8]
#define SQLWARNA sglca.sqlwarn{16]
#endi f

struct sqica sqica;

/* SQL communications area */

/ /
/* Error handling for SQL statements */
/ /
o/
EXEC SQL

WHENEVER SQLERROR GOTO exit_error;
*/
7%
EXEC SQL

WHENEVER SQLWARNING CONTINUE;
*/
/ﬂ
EXEC SQL

WHENEVER NOT FOUND CONTINUE;
*/
/ bl /
/* SQL declaration section 1%
/ /

I*

EXEC SQL BEGIN DECLARE SECTION;

*/

char
char
char
char
char
char
char
char

char

I*

LastName[21];
FirstName[21];
Inits[3);
Street[21];
City[21];
Country[16]3
2IP[6]3
Phonef16];

DBKey[21];

EXEC SQL END DECLARE SECTION;

*/

void

int
char

int
USHORT
ULONG
HFILE
PEAQP2

main(argc, argv)

argc;
*argv[];

i1, i2, i3;

re;

ulAction, BytesRead;
FileHandle;

peaop? =. (PEADP2)NULL;

CHAR Buffer[208];
PCHAR Ptr, PtrZ;

static CHAR 1d[] = “\xB15tart\x62";
static USHORT LengthTab(] =
{

LASTNAME_LENGTH + 1,
FIRSTNAME_LENGTH + 1,
INITS_LENGTH + 1,
STREET_LENGTH + 1,
CITY_LENGTH + 1,
COUNTRY_LENGTH + 1,
TIP_LENGTH + 1,
PHONE_LENGTH + 1,

static COMM_DATA CommData;
#define TAB_SIZE (sizeof (LengthTab) / sizeof (USHORT))
if (argc < 2)

{

printf{"No Com-Port specified\n");
exit(1);
}

i1 = 03
if (strlen{argv[1]) == 4)

{
if (memicmp(argv{1], "COM", 3) == B)
{

i2 = atoi (Rargv{11(3]):
if ((i2>= 1) 88 (i2 <= 3))
{

it=1;
}
}
}

if (191)

{
printf("Invalid Com-Port \"%s\" specified.\n", argv[1]);
exit(1);

rc = DosOpen(argv(l],
&FileHandle,
&ulAction,
oL,
FILE_NORMAL,
FILE_OPEN,
OPEN_ACCESS_READONLY | OPEN_SHARE_DENYREAD | OPEN_FLAGS_NOINHERIT |
OPEN_FLAGS_SEQUENTIAL,

(PEAOP2)NULL);
if (rc)
{
printf(“Error %u while opening \"%s\"\n", rc, argv{1]);
exit(1);
}
while (1)
{

printf("Waiting for Data from %s, to end progremm press Ctrl-Break...\n", argv[1]);
Ptr = Buffer;

il1=1
iz=¢

while (i1)
{
if ({rc = DosRead(FileHandle, Ptr, 1L, &BytesRead)) == 8)
{
if (i1 == 1)
{

/* Test for 1d */
if (i2 < (sizeof(1d) - 1))
{

if (*Ptr == 1d[i2])
2443
else
iz =6
continue;
}
if (%Ptr 1= 'v1)
{
continue;
}
i1 =23
}
if (*Ptr == '\x6a')
{

i1 = 83

113

114

}

Ptre+;

else

printf(“\nError %d while reading file %s\n", rc, argv(1]);

i1 = 83
}
}

*Ptr = \@';

memset ((PCHAR)&Commbata, '\8', sizeof(COMM_DATA));

Ptr2 = (PCHAR)&CommData;

for (Ptr = Buffer, il = i2 = i3 = 8; *Ptr; Ptrs+)

{
if {(*ptr == ')
{
if (i1 <2)
{
il44;
continue;

else
{
ile=3
Ptr2[i3] = *Ptr;
13443
continue;

}
else
if (*ptr == ',

{
if (i1 == 1)

{
Ptrz[i3] = *ptr;
i344;
}
else
if (i1 ==2)
{

Ptr2 = &Ptr2[LengthTab[i2]];
J244;
il =393 = 8;
if (i2 >= TAB_SIZE)
{
break;
}
}
}
else
{
if (i1 == 1)
{
Ptr2[i3) = *Ptr;
13443
}
}
}
InsertData20B (&CommData) ;
}

DosClose(FileHandle);

exit(e);
}
/ hid /
/* InsertData208 *f
r* */
/* Insert data into the database */
/ /
void InsertData208(P_COMM_DATA CommData)
{
BooL Update;
USHORT re;
struct sqice sqlcas
static char dbase(] = "PEN"3
char msgbuf [BUFSIZE];
sglestrd(dbase, 'S', &sqglca); /* start database */
if (sglca.sqlcode == RESTART) /* if start db func */
{ /* fails, call restart */
sqlerest (dbase, &sqlica); /* restart database =/
if (sqlca.sq)code 1= 8)
{ /* vestart failed, exit */
goto exit_error;
sqlestrd{dbase, 'S', &sglca); /* start database again */

PenPoint OS

}

if (sqlce.sgicode != @)
{ /* good start

goto exit_error; /* exit error
}

strcpy (DBKey, CommData->LastName);
strcpy (LastName, CommData->LastName);
strcpy (FirstName, CommData->FirstName);
strepy (Inits, CommData->Inits);
strcpy(Street, CommData->Street);

strepy (City, CommData->City);
strepy (Country, CommData->Country);
strepy (ZIP, CommData->21P);
strcpy (Phone, CommData->Phone) ;
/t

EXEC SQL

UPDATE PENDATA

SET LASTNAME = :LastName,
FIRSTNAME = :FirstName,
INITS = :tInits,
STREET = :Street,
CITY = :City,
COUNTRY = :Country,
1P = 31IP,
PHONE = :Phone

WHERE LASTNAME = :DBKey;

*f

{
sqlastrt(sqia_program_id,6L,&sqlca);
sqlaaloc(1,9,1,6L);
sqlasetv(1,6,460,21,LastName,6L,8L);
sglasetv(l,1,468,21,FirstName,0L,0L);
sqlasetv(1,2,468,3,Inits,01,6L);
sqlasetv(l,3,460,21,Street,0L,0L);
sqlasetv(1,4,460,21,City,8L,0L);
sqlasetv(l,5,460,16,Country,0L,0L);
sqlesetv(1,6,460,6,21P,8L,6L);
sqlasetv(1,7,468,16,Phone,61,6L);
sqlasetv(l,8,4608,21,08Key,0L,6L);
sqlacall ({unsigned short)24,1,1,6,0L);
if (sqlca.sglcode < 8)

sqlastop(L);
goto exit_error;

}

sqlastop(6L);

if (sqlca.sqlcode ==)
Update = 1;
else
if (sqlca.sqlcode == 168)
{
Update = €3
)
else
goto exit_error;

if {Update)

{
printf("Updating database record for \"%s\" with the following data:\n",

LastName);
}

else

printf("Addind database record for \"%s\" with the following data:\n",

LastName};

printf("\nlast Name: %s\n", CommData->LastName);
printf("First Neame: %s\n", CommData->FirstName);
printf(“Initials: #%s\n", CommData->Inits);
printf("Street: %s\n", CommData->Street);

printf("City: %s\n", CommData->City);
printf("Country: %s\n", CommData->Country);
printf("ZIP: %s\n", CommData->ZIP);
printf("Phone: %s\n\n", CommData->Phone);

if (lupdate)
{

/ﬂ
EXEC SQL
INSERT INTO PENDATA

(LASTNAME, FIRSTNAME, INITS, STREET, CITY, COUNTRY, ZIP, PHONE)
VALUES(:LestName, :FirstName, :Inits, :Street, :City,

/* check database for

*/

*

*/

/* Record not found? */

115

:Country, :IIP, :Phone);
*/

{
sqlastrt (sgla_progrem_id,6L,&sq1ca);
sqlaaloc(1,8,2,8L);
sqlasetv(1,6,466,21,LastName,8L,0L);
sqlasetv(l,1,460,21,FirstName,080,0L);
sqlasetv(1,2,460,3,Inits,80,0L);
sqlasetv(l,3,460,21,5treet,6L,00);
sqlasetv(1,4,460,21,City,6L,0L);
sqlasetv(1,5,460,16,Country,BL,8L);
sqlasetv(1,6,460,6,Z1P,0L,0L);
sqlasetv(l,7,466,16,Phone,8L,6L);
sqlacall ((unsigned short)24,2,1,6,8L);
if (sqlca.sqlcode < 8)

sqlastop(BL);
goto exit_error;

}

sqlastop(0L);

I~
EXEC SQL COMMIT WORK;
*/

{
sqlastrt(sqla_program_id,6L,&sqlca);
sqlacall((unsigned short)21,0,8,0,8L);
if (sqlca.sqlcode < @)

sqlastop(6L);

goto exit_error;
}

sqlastop(ei);
sqlestpd(&sglca)s /* stop database */
return;
/ *1 LiL] /
Vad x/
/* SQL error routine - retrieve the error message associated with the */
/* return code and log error information. */
Al */

/ KAKR KRR * */

exit_errors
printf("\nSQLCODE IS %1d",sqica.sqlcode);
rc = sqlaintp(msgbuf,BUFSIZE,S,&sqlca);
if (rc < 8) /* message retrieve err*/
printf("\nSQLAINTP ERROR. Return code = %d\n",rc)3
if (rc > 8) /* error message return*/

{
printf("\n%s",msgbuf);

/*
EXEC SQU /- reset sqlerror to prevent -/
WHENEVER SQLERROR CONTINUE;
*/
/% endless looping if */
/* rollback fails */
/k
EXEC SOL
ROLLBACK WORK;
*/

}

Glossary

Acetate Layer/Plane. The window system’s global
screen-wide display plane. This is where ink from the
pen is dribbled by the pen tracking software.

Activation. The transition of a document to an active
state, with a running process, an application instance.

Application class. A PenPoint class that contains the
code and initialization data used to create running
applications.

Auxiliary Notebook. A Notebook on the Bookshelf
such as Stationery, or Connections that is used for
specialized tasks.

Behavior. The functionality of an object, the way and
object reacts to messages.

Bitmap. An array of pixels, with an optional mask
and hot spot.

Bookshelf. An area at the bottom of the screen that
contains accessories and auxiliary notebooks. Each
item on the Bookshelf is represented by an icon.

Chord. A straight line joining the ends of an arc.

Class. An object that implements a particular style of
behavior in response to messages. The method table
tells the class which messages sent to objects of that
class to respond to.

Class Hierarchy. A hierarchy of classes in which
each subclass inherits the the properties of all its
ancestors.

Class Manager. Code that supports the
object-oriented, message-passing, class-based
programming used in PenPoint and PenPoint
applications. The Class Manager implements two
classes, clsObject and clsClass.

Component layer. The component layer of PenPoint
consists of general purpose subsystems offering
function that can be shared among applications.

Cork margin. An area at the bottom of the screen on
all documents that stores reference buttons, new
documents, embedded documents, or accessories.

Current directory entry. Each directory entry
maintains a reference to the next directory entry it
will use when the directory is read one entry at a
time.

Data object. An object that maintains, manipulates
and can recursively filled data.

© Copyright IBM Corp. 1993

Deactivate. Removes the application from the
system, the installer however maintains a record of
the application’s UID and its location.

Directory handle. An object that references either a
new, or existing directory node in the file system.

Document. A filed instance of an application. A
document has a directory in the application hierarchy,
but at any given point in time, it may not have a
running process and a live application instance. Most
documents reside in the Notebook; running copies of
floating applications such as the Calculator, are also
documents.

Dribble. The ink from the pen where the user writes
over windows that support gestures and handwriting.

Embed. The PenPoint Framework provides facilities
for applications and components to display and
operate inside other applications without detailed
knowledge of each other.

Embedded document. A document contained within
another document.

Encapsulation. Protection of the instance variables of
an object from access by methods other than the
object’s own methods.

File handle. The object with which a file node and its
data are accessed. The handle is not a file itself.

Floating. A floating window appears above the
Notebook, the user can move and resize a floating
window.

Frame. The border surrounding documents and
Option Sheets which includes a title bar, resize corner
and move box.

Gesture. A shape or figure that the user draws with
the pen on the tablet to invoke an action, or execute a
command.

Global memory. Memory accessible from all tasks.

Grafic. Individual figure drawing operations stored in
a picture segment.

Hot mode. A state in which the PenPoint Application
Framework will not terminate an application.

Inheritance. A mechanism by which a class defines
only the properties it needs in addition to those of its
super-class.

In-line. In-line fields provide full handwriting and

gesture recognition allowing the user to write with the
pen directly in the field.

17

In Box. In and Out Box services allow the user to
defer and batch data transfer operations for later
execution. In/Out Boxes appear as iconic notebooks.

Instance data. Data stored in an object. It is normally
only accessible by the object’s class, which uses
instance data in responding to messages sent to that
object. The class-defines the format of the instance
data. Classes may have instance data include
pointers to instance information stored outside the
object.

Kernel. That portion of the operating system that
interacts directly with the hardware. The core memory
and task management code is the first code loaded
when the system boots. Most system services are
implemented in the kernel.

Local volume. Volumes in hard or floppy disk drives
attached to a PenPoint system through the built-in
SCSI port.

Main window. A window of an application that the
Application Framework inserts on screen in the page
location, or as a floating window. An application’s
main window is usually a frame.

Menu bar. A frame has an optional menu bar below
‘its title bar. The Application Framework defines
standard application menu items (SAMS) for the
application’s main window frame.

Message. A 32-bit value sent to an object requesting
the object to perform some action. Messages are
constants representing an action that an object can
perform. The type of message is a tag that defines
the class defining the message and guarantees
uniqueness. When a message is sent to an object, if
the message is recorded in the class’s message table
the Class Manager calls a message handler routine in
the class’s code which responds to the message.

Message argument. The information needed by a
class to respond to a message. The message
argument parameter may be a pointer to a separate
message argument structure. This is the only way a
class can pass information back to the sender.

Message handler. A function in the class’s code that
implements appropriate behavior for a message. it is
called by the Class Manager in response to the
message associated with it in the class’s method
table.

Method. The behavior of objects is implemented in
their methods. A method may be compared with a
traditional programming routine. A message is sent
to the object containing the name of the method to be
run along with any optional parameters. Methods can
read/update the instance variables of the object. The
method will return an object to the sender upon
completion

118 PenPoint OS

Method table. An array of message-function name
pairs and flags that determines which message
handler function will handle messages sent to the
objects of that class.

Node. A location in the file system, can be a
directory or a file. PenPoint’s file system is organized
as a tree of nodes.

Notebook metaphor. The visual paradigm in PenPoint
of a physical notebook containing pages, documents
and sections with tabs and a page turn effect.

Object. An entity that maintains private data and can
receive messages. Each object is an instance of
some class, created by sending a message to the
class.

Observer. An object that has requested the Class
Manager to notify it when changes occur to another
object. Objects maintain a list of their observers.

Option Sheet. A floating frame that displays
attributes of the selection in one or more card
windows.

PenPoint Framework. Both the protocol supporting
multiple, embeddable, concurrent applications in the
Notebook and the support code that implements most
of an application’s default responses.

Process. An operating system with its own local
memory.

Recognition. Matching a set of user pen strokes with
the most likely prototype during handwriting
translation.

Resource. A uniquely identified collection of data.
Resources allow applications to separate data from
code in a structured manner.

SAMS. Standard Application Menus. The Application
Framework supplies a standard set of SAMS - the
Document and Edit menus, to which applications can
add their own menu items.

Tag. A unique 32-bit number that uses the
administered value of a well known value UID to
ensure uniqueness. An arbitrary 32-bit number that is
associated with any window. A window’s tag can be
checked and searched for.

UID. Unique Identifier. A 32-bit number that is the
handle on an object. Messages are sent to an
object’s UID.

UUID. Universal Unique ldentifier. A 64-bit number
that is guaranteed to be unique across all PenPoint
computers, used to identify resources in resource
files.

Volume. A physical medium or a network entity that
supports the file system.

List of Abbreviations

ANSI

AP!

BloSs
CPU
DLL
Dos
DRAM

EDA

FAT
FAX
FTT
GUI
HWX
o
MIL
NuI
OEM

American National Standards
Institute

Application Programming
Interface

Basic Input QOutput Services
Central Processing Unit
Dynamic Link Library

Disk Operating System

Dynamic Random Access
Memory

Embedded Document
Architecture

File Allocation System
Facsimile

Function Transfer Tables
Graphical User Interface
Handwriting Recognition
Input/Output

Machine Interface Library
Notebook User Interface

Original Equipment
Manufacturer

© Copyright IBM Corp. 1993

OOPs
osi
PAK
PCL
PCMCIA

RAM
RGB
ROM
SAMS

sio
sQL
RTF
SDK
SSF
SysDC
ul

uID
uuID
VDM

Object-Oriented Programming
Opens Systems Interface
PenPoint Adaptation Kit
Printer Control Language

Personal Computer Memory
Card International
Association

Random Access Memory
Red Green Blue
Read Only Memory

PenPoint Standard
Application Menus

Sampled Image Operator
Structured Query Language
Rich Text Format

Software Developer’s Kit
Solid State Files

System Drawing Contexts
User Interface Toolkit
Unique ldentifier

Universal Unique Identifier
Virtual DOS Machine

119

120 - PenPoint 0OS

Index

- Document Process 17
A Document Properties 19
abbreviations 118 Drawing Text 36
acronyms 119 Drawing/Storing with a SysDC 33
Application - HWX Dialog 45 Dribbling 42
Application Activation 23 Dynamic UIDs 72

Application Classes 70
Application Code 17

Application Development 69 E

Application Elements 17 Embedded Document Architecture 3
Application Embedding 25 Embedded Windows 26
Application Framework 2, 15

Application Framework function 15

Application Installation 19, 38 F

Application Life Cycle 22 File Export 39

Application Object 18 File Import and Export 20, 38
Application Stationery 22 File System 37

Application Termination 23 File System Activities 37
Applications 3 File System Hierarchy 26
Automatic Software Installation 63 Fonts 35

B G

Binding a SysDC to a Window 32 glossary 117

Bookshelf 9 Graphics and Imaging System 31

Graphics Primitives 34

C

Characteristics of an HWX Subsystem 43 H

Class Creation 74 : Handwriting Translation 43

Class Manager 13, 71 Hyperlinks 20

Class Manager - Programming Tasks 73

Clipping and Repainting Windows 33 [

Color Graphics Interface 35 .

COMMC 91 ImagePoint 31

COMM.H 87 Input and Handwriting Recognition 41

COMMAPP.C 92 Input Focus 42

COMMAPP.H 88 Input Processing Concepts 44
Installation Classes 70

COMMFILE.C 98 ¢)

COMMSEND.C 105 Installing and Configuring PenCentral 58

COMMSET.C 100 Installing and Using Services 52

Instance Creation 23
Interaction with Other File Systems 38
Introduction 1

Connecting and disconnecting Services 52
Connections Notebook 66

Connectivity 4, 55

Copying Pixels 35

Creating New Instances 74 K
Kernel 11
D Kernel Services 13
Date and Time 13
Displaying Windows 49 L
Document Directory 17 Link Layer 56

Document Embed - Basic Concepts 25
Document Embedding - Example 28

© Copyright IBM Corp. 1993 121

M Search and Replace 22
Send User Interface 56

M.CMD 110 Sending Messages 73

Machine Interface Layer (MIL) 14 Service Manager 51

Main Window 18 Settings Notebook 65

MAKEFILE 87 Software Developer’s Kit 77

Manual Software Installation 65 Software Installation 63

Memory Management 12 Spell Checking 21

Message Arguments 73 Standard Application Menu Support 20
METHOD.TBL 90 Standard Behavior and Inheritance 18
Miscellaneous Classes 71 Standard Service Managers 51
Movg/Copy 20 Stroke 42

Muiltitasking 11, 12 System Drawing Context 32

System Drawing Context Creation 32

New Application Instances 19 T
Notebook Metaphor 2,9 Task Management 11

Text and Handwriting Classes 70
0 Text Primitives 34

Transport Layer 56

Object Access and Capability 74 Traversal 29

Object-Oriented Terminology and Techniques 69
Observer Objects 75

On-Line Help 19 U
Optimizing Pen lnput 42 Unique Identifiers 71
¥ User Interface 7, 79
P User Interface Controls 78

User Interface Toolkit 78

Pen Input Terminology 42 User Interfaces 7

Pen Operating Systems 1
Pen-Based Environment 1

PenCentral - PenTOPS 57 W

PenCentral Files 57 Well Known UIDs 72

PenPoint - MIL Communication 14 Window Placement 29

PenPoint Installation 63 Windowing System 47

PenTOPS 60 Windows and U! Toolkit Control Classes 70
Prestored Images 35 Working with Windows 47

Printing 21

Process Space 26

R

REC_PEN.C 111

REC_PEN.H 110

Reliability 13

Remote File System 55

Remote Interfaces and File System Classes 70
Resource File Formats 77

Resource Files 18

Resource Location 76

Resource Types 75

Resources and Resource Management 75

S

Sample Application 79
Sample Application Directory Structure 85
Scribbles 42

122 PenPoint OS

ITSC Technical Bulletin Evaluation RED000O

GG24-3978-00

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Center
Department 914, Building 235-2

Internal Zip 4423

901 NORTHWEST 51ST STREET

BOCA RATON FL

USA 33431-1328

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

GG24-3978-00

Please do not staple

Fold and Tape

ITSC Technical Bulletin Evaluation REDO000

PenPoint Operating System
Overview and Application Development

Publication No. GG24-3978-00

Your feedback is very important to us to maintain the quality of ITSO redbooks. Please fill out this
questionnaire and return it via one of the following methods:

* Mail it to the address on the back (postage paid in U.S. only)
* Give it to an IBM marketing representative for mailing
e Fax itto: Your International Access Code + 1 914 432 8246

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book Grammar/punctuation/spelling
Accuracy of the information Ease of reading and understanding
Relevance of the information Ease of finding information
Completeness of the information Level of technical detail

[T
[T

Value of illustrations Print Quality
Please answer the following questions:
a) Are you an employee of IBM or its subsidiaries? Yes No
b) Are you working in the USA? Yes No
¢} Was the bulletin published in time for your needs? Yes No
d) Did this bulletin meet your needs? Yes No

If no, please explain:

What other Topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

GG24-3378-84

S

e B T e

D . 0]

