
PenPoint Operating System
Overview and Application Development

GG24-3978-00

PenPoint Operating System
Overview and Application Development

Document Number GG24-3978-00

February 1993

International Technical Support Center
Boca Raton

Take Note! --~

Before using this information and the product it supports, be sure to read the general information under
"Special Notices" on page xiii.

First Edition (February 1993)

This edition applies to PenPoint IBM version, Release Number 1.0 of for use with the IBM 2521 ThinkPad.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSC Technical Bulletin Evaluation Form for readers' feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Center
Dept. 91J, Building 235-2 Internal Zip 4423
901 NW 51 st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes the architecture of the Pen Point IBM version, operating
system providing sample code for application developers. The Pen Point IBM
version executes on IBM ThinkPad 700T and special bid machine IBM ThinkPad
2521. This document provides an overview of the functional capabilities of the
operating system and the process of application development.

This document is intended for system engineering personnel and application
developers who need to know how to implement pen-based systems. A
knowledge of C programming and object oriented programming techniques is
assumed.

PS (122 pages)

© Copyright IBM Corp. 1993 iii

iv PenPoint OS

Contents

Abstract

Special Notices

Preface
How This Document Is Organized
Related Publications
International Technical Support Center Publications
Acknowledgments

Chapter 1. Introduction
1.1 The Pen-Based Environment
1.2 Pen Operating Systems

1.2.1 Notebook Metaphor ...
1.2.2 Application Framework .
1.2.3 Document Model
1.2.4 Live Application Embedding
1.2.5 Hyperlinks

1.3 Pen Point Applications
1.4 Con nectivity

Chapter 2. PenPoint User Interface
2.1 User Interface ...
2.2 Notebook Metaphor
2.3 Bookshelf

Chapter 3. PenPoint Kernel
3.1 Multitasking

3.1.1 Task Management
3.1.2 Memory Management
3.1.3 Multitasking
3.1.4 Operating System Reliability
3.1.5 Date and Time Services
3.1.6 General Kernel Services ..
3.1.7 Class Manager
3.1.8 Machine Interface Layer (MIL)

Chapter 4. Application Framework ...
4.1 Function of the Application Framework

4.1.1 Application Elements
4.1.2 Standard Behavior and Inheritance
4.1.3 Application Life Cycle

Chapter 5. Application Embedding ..
5.1 Application Embedding Concepts

5.1.1 Basic Concepts of Document Embedding .
5.1.2 Document Embedding - Example

Chapter 6. ImagePoint
6.1 Graphics and Imaging System
6.2 System Drawing Context

© Copyright IBM Corp. 1993

iii

xiii

. xv

. xv
xvi
xvi
xvi

1
1
1
2
2
3
3
3
3
4

7
7
9
9

11
11
11
12
12
13
13
13
13
14

15
15
17
18
22

25
25
25
28

31
31
32

v

vi PenPoint os

6.2.1 Creating a System Drawing Context
6.2.2 Binding a SysDC to a Window
6.2.3 Drawing and Storing with a SysDC
6.2.4 Clipping and Repainting Windows
6.2.5 Graphics Primitives
6.2.6 Text Primitives .. .
6.2.7 Copying Pixels .. .

6.3 Color Graphics Interface
6.4 Prestored Images
6.5 Fonts
6.6 Drawing Text

Chapter 7. File System
7.1.1 File System Activities
7.1.2 Application Installation ..
7.1.3 Interaction with other File Systems
7.1.4 File Import and Export

Chapter 8. Input and Handwriting Recognition
8.1 Pen Input Terminology

8.1.1 Stroke
8.1.2 Scribbles
8.1.3 Dribbling
8.1.4 Input Focus ..

8.2 Optimizing Pen Input .
8.3 Handwriting Translation - Concepts .

8.3.1 Characteristics of an HWX Subsystem .
8.3.2 Input Processing Concepts
8.3.3 Application - HWX Dialog

Chapter 9. The Windowing System
9.1 Working with Windows .

9.1.1 Displaying Windows .

Chapter 10. Service Manager
10.1 Standard Service Managers
10.2 Installing and Using Services
10.3 Connecting and Disconnecting Services

Chapter 11. Connectivity .
11.1 Remote File System
11.2 Transport Layer .. .
11.3 Link Layer
11.4 Send User Interface ..
11.5 In/Out Boxes
11.6 PenCentral - PenTOPS

11.6.1 PenCentral Files
11.6.2 Installation and Configuration
11.6.3 PenTOPS

Chapter 12. Software Installation .
12.1 PenPoint Installation
12.2 Automatic Software installation
12.3 Manual Software Installation

12.3.1 Settings Notebook

32
32
33
33
34
34
35
35
35
35
36

37
37
38
38
38

41
42
42

..... 42
42
42
42
43
43
44
45

47
47
49

..... 51
...... 51

52
52

55
55
56
56
56
57
57
57
58
60

63
63
63
65
65

12.3.2 Connections Notebook

Chapter 13. Application Development
13.1 Object-Oriented Terminology and Techniques .

13.1.1 Application Classes
13.1.2 Installation Classes
13.1.3 Windows and UI Toolkit Control Classes ..
13.1.4 Remote Interfaces and File System Classes
13.1.5 Text and Handwriting Classes
13.1.6 Miscellaneous Classes

13.2 Class Manager
13.2.1 Unique Identifiers
13.2.2 Class Manager - Programming Tasks
13.2.3 Observer Objects

13.3 Resources and Resource Management
13.3.1 Resource Types
13.3.2 Resource Location
13.3.3 Resource File Formats

13.4 Software Developer's Kit SDK
13.5 User Interface Toolkit UI ..

13.5.1 User Interface Controls .

Chapter 14. Sample PenPoint Application
14.1 User Interface
14.2 Application Design Flow
14.3 Directory Structure Distribution Diskette
A.1 Make File for COMMAPP C Routines .
A.2 COMM.H C Header
A.3 COMMAPP.H C Header
A.4 C Source for METHOD.TBL
A.5 C Source for COMM.C
A.6 C Source for COMMAPP.C
A.7 C Source for COMMFILE.C .
A.8 C Source for COMMSET.C
A.9 C Source for COMMSEND.C
A.10 Make File for REC PEN C Routines
A.11 REC_PEN.H C Header
A.12 C Source for REC_PEN.C

Glossary

List of Abbreviations

Index

Contents

66

, 69

69
70
70
70
70
70
71
71
71
73
75
75
75
76
77
77
78
78

79
79
83
85
87
87
88
90
91
92
98

100
105
110
110
111

117

119

121

vii

viii PenPoint os

Figures

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

© Copyright IBM Corp. 1993

Schematic of PentPoint Architecture
Pen Point's Notebook User Interface
PenPoint's Writing Pads
Example of Multiple Live Applications
Schematic of a Pen Point Application Life Cycle
Example of Embedded Applications
Notebook Displaying Embedded Applications
Driver-Slave Traverse Model
The Input Processing Pipeline
A Pen Point Window
Schematic of Pen Point Service Managers
Sven Layer OSI Model
The Connections Notebook
The Settings Notebook
The Installable Applications Software Sheet ..
The Installed Applications Notebook
The Connections Notebook
Data Entry Panel
Options Pull-Down Menu
Communications Setup Options Sheet
Communication Option Menu
File Option Menu
Application Design Flow
Directory Structure

5
7
8

16
23
27
28
30
45
48
53
56
61
64
65
66
67
80
80
81
81
82
83
85

ix

X PenPoint as

Tables

1. Default SysDC Elements
2. Font Attributes

~ Copyright IBM Corp. 1993

32
36

xi

xii PenPoint as

Special Notices

This publication is intended to assist system engineering personnel and
application developers in understanding and developing applications for using
the Pen Point operating system and the IBM ThinkPad. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by Pen Point and the associated Software Development Toolkit.
See the PUBLICATIONS section of the IBM Programming Announcement for
Pen Point IBM version for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

IBM
Operating System/2
OS/2
Personal System/2
PS/2

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

HAYES is a registered trademark of Hayes Microcomputer Products, Inc.
GO is a trademark of GO Corporation

C> Copyright I BM Corp. 1993 xiii

xiv PenPoint os

GO logo is a trademark of GO Corporation
PenPoirit is a trademark of GO Corporation
Pen Point logo is a trademark of GO Corporation
ImagePoint is a trademark of GO Corporation
EDA is a trademark of GO Corporation
GOWrite is a trademark of GO Corporation
MiniText is a trademark of GO Corporation
MiniNote is a trademark of GO Corporation
PenTOPS is a trademark of Sitka Corporation
PenCentral is a trademark of Sitka Corporation

Preface

This document is intended to provide the reader with information about the
architecture of the Pen Point operating system and provide the application
developer with guidelines and sample code to assist in writing applications to
this operating system. It contains a description of the operating system
architecture and functions as well as sample code.

This document is intended for persons requiring an understanding of the
operating system and the programming techniques involved in developing
applications for Pen Point.

How This Document Is Organized
The document is organized as follows:

© Copyright IBM Corp. 1993

• Chapter 1, "Introduction" provides an overview of the general concepts and
capabilities of the Pen Point operating system.

• Chapter 2, "PenPoint User Interface" examines the Notebook User Interface.

• Chapter 3, "Pen Point Kernel" describes the operating system kernel and
associated services.

• Chapter 4, "Application Framework" describes the function of the Application
Framework which permits the interaction between the operating system and
installed applications, supporting common application behavior.

• Chapter 5, "Application Embedding" describes the process of embedding, or
nesting documents inside one another, discussing the correspondence
between applications and their associated documents.

• Chapter 6, "lmagePoint" examines ImagePoint and the use of drawing
contexts, clipping and graphics primitives.

• Chapter 7, "File System" describes the hierarchical file system and the role
of the file system within the application framework.

• Chapter 8, "Input and Handwriting Recognition" describes the process of
handwriting recognition and translation.

• Chapter g, "The Windowing System" examines the windowing system,
describing the concepts employed in using windows.

• Chapter 10, "Service Manager" examines the operating system component
that coordinates the operations of applications that facilitate communication
with hardware devices.

• Chapter 11, "Connectivity" examines the connectivity features available with
Pen Point and describes the transport and link layers.

• Chapter 12, "Software Installation" discusses the software installation
process.

• Chapter 13, "Application Development" provides an overview of the Software
Developer's Toolkit.

• Chapter 14, "Sample PenPoint Application" provides a brief overview of the
sample PenPoint application. The source code for this sample is included in
Appendix A.

xv

Related Publications
The fol/owing publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

• ThinkPad Getting Started with PenPoint, S41G-3122-00

• ThinkPad Using PenPoint, 841 G-3111-00

• PenPoint Architectural Reference Vol 1, ISBN 0-201-60859-6

• PenPoint Architectural Reference Vol 2, ISBN 0-201-60860-X

• PenPoint User Interface Design Ref, ISBN 0-201-60858-8

• PenPoint Application Writing Guide, ISBN 0-201-60857-X

• PenPoint Development Tools, ISBN 0-201-60861-8

• PenPoint API Reference Vol 1, ISBN 0-201-60862-6

• PenPoint API Reference Vol 2, ISBN 0-201-60863-4

• The Power of PenPoint, ISBN 0-201-57763-1

• PenPoint Programming, ISBN 0-201-60833-2

• WATCOM C Library Ref for PenPoint, ISBN 1-55094-035-X

• WATCOM C Language Ref, ISBN 1-55094-033-3

• WATCOM C/386 Optimizing Compiler and Tools, ISBN 1-55094-0 ISBN
1-55094-034-1

International Technical Support Center Publications
A complete list of International Technical Support Center publications, with a
brief description of each, may be found in:

• Bibliography of International Technical Support Centers Technical Bulletins,
GG24-3070.

Acknowledgments

xvi PenPoint os

The advisor for this project was:

Alex Gregor
International Technical Support Center, Boca Raton

The authors of this document are:

Dwight Ronquest
ISM South Africa

Gert Ehing
IBM Germany

This publication is the result of a residency conducted at the International
Technical Support Center, Boca Raton.

Thanks to the fol/owing people for the invaluable advice and guidance provided
in the production of this document:

Maura Oehler
Experimental Development Software IBM Boca Raton

Rick Abbott
Pen Planning IBM Boca Raton

Shirley Tomasi
Pen Planning IBM Boca Raton

Thomas Loeffler
International Technical Support Center Boca Raton

Frank Cook
Software Development Relations IBM Boca Raton

David Lybrand
Experimental Development Software IBM Boca Raton

Preface xvii

xviii PenPoint os

Chapter 1. Introduction

This chapter provides an overview of the general concepts and capabilities of
pen-based systems concentrating on the Pen Point IBM version operating system.

1.1 The Pen-Based Environment
Pen-based computing with the associated tablet systems hardware introduces a
significant shift from existing computing paradigms. The pen-based paradigm
satisfies a number of key user requirements:

1. The user interface must provide support for the use of a pen, not as a
pointing device, but as an input device.

2. The applications developed for pen-based systems must support both
handwriting translation and pen gestures.

3. Detachable networking and deferred data transfer whereby the user may
make or break networking connections at will, without impacting the
performance of the operating system.

4. Both operating system and applications must be developed to run on
lightweight mobile computers.

Key hardware design elements for a tablet system to support the pen-based
operating environment include:

• Portable and battery powered

• A 32-bit processor complex

• Upgradeable DRAM memory packages

• Upgradeable SSF (Solid State Files) - A SSF card is a lightweight removable
storage device with a 10MB capacity

• Integrated digitizing subsystem to support handwriting input

• System I/O support for:

Diskette drive ports

Parallel port

Serial port

Data/facsimile modem support

1.2 Pen Operating Systems
Pen-based operating system design has followed two distinct routes: either as
an extension to existing operating systems such as DOS, or employing a new
architecture based on 386 processor complex instruction sets, using object
oriented programming techniques.

Extensions to existing operating system environments essentially replace the
standard pOinting device, the mouse, with a pen. The standard Microsoft
Windows** Graphical User Interface (GUI) is used and many many existing
Windows applications can be modified to run in this new environment.

@ Copyright IBM Corp. 1993 1

Handwriting is not the primary input mode and tends to be restricted to specified
edit environments.

Pen Point is a 32-bit, object-oriented, multitasking operating system, specifically
designed for pen-based computing. The change in the nature of the input
device, from traditional keyboard to pen, requires that an enhanced GUI be
presented to the user.

The Notebook User Interface (NUl) adopts the same concepts used in traditional
GUls in terms of pull-down menus and icons plus a number of new elements to
support a pen as the primary input source, such as:

• Notebook metaphor

• Gestures

• Handwriting recognition and translation

1.2.1 Notebook Metaphor
Information is organized and presented as a collection of pages and sections.
Individual objects, sections and pages may be readily selected.

The bottom of the display is reserved for the Bookshelf which contains
systemwide objects and resources:

• Notebook

• Online Help

• Stationery

• Accessories

• Keyboard

• In/Out box

• Connection services

• Settings

• Shutdown

1.2.2 Application Framework

2 PenPoint os

PenPoint's NUl provides a standard set of pen gestures that work consistently
across all applications. Pattern recognition is performed by the operating
system, while the application controls the translation process.

Applications written for PenPoint must adhere to Pen Point's Application
Framework, which is a set of protocols that define application structure and
common behavior:

• Gesture recognition and response

• Copy and move data transfers

• Live embedding of other applications

• View-data model

• Installation and configuration

• Creation of application instances

• Online Help

• Document properties

• Spell checking

• Search and replace

• Printing

• Import/export file formats

A Service Manager supports background server applications such as databases
and networking connections. Applications interrogate Pen Point as to the
presence of service, establishing message-passing connections to these
services. Applications, not the user, save their internal state in a directory in the
file system.

The Application Framework implements an Embedded Document Architecture
(EDA) that enhances the NUl, making many of the traditional operating system
tasks transparent to the user. Key elements of this architecture are:

• Document model

• Live application embedding

• Hyperlinks

1.2.3 Document Model
The user is relieved of the task of launching applications and loading/saving
application data. The user simply moves from page to page, viewing the data in
the state it was left, as if the application was still running. With the exception of
data transfer, the user does not work with separate files and applications.

1.2.4 Live Application Embedding

1.2.5 Hyperlinks

EDA provides the facility to embed a live instance of one application inside
another application. All PenPoint applications provide compound document
capability without special programming. The receiving application simply
embeds an instance of an application that is capable of editing and displaying
the particular piece of data. The user may mix and match applications
seamlessly.

Pen Point gestures will create hyperlinks that turn pages and scroll documents to
the location selected when the hyperlink was created. Hyperlink buttons may be
placed anywhere inside the Notebook, documents and in the Bookshelf area.

1.3 PenPoint Applications
PenPoint provides a single built-in application, the MiniText editor that is a
pen-aware formatted text editor.

The standard for PenPoint application distribution is 1.44MB, 3.5-inch DOS
diskettes.

PenPoint senses the application distribution diskette in the diskette drive and will
display an application installation dialog. Upon confirmation, the application
code and resources will be installed.

Chapter 1. Introduction 3

1.4 Connectivity

4 PenPoint os

PenPoint supports multiple auto-configuring network protocol stacks that may be
dynamically installed without rebooting the system. Networking connections may
be established and broken at will.

Connections to physical devices are detected automatically. Once the
connection is complete operations will be initiated; for example, when connected
to a network, Pen Point sends a message to all services that utilize network
connections. Documents waiting to be printed to a network printer will begin
transmission. The Out Box facility permits the initiation of file transfers and print
requests. It is a central, extensible queueing service for all connection
dependent transfer operations. Destination addressing is managed via
Pen Point's address book APls.

The In Box facility supports download of mail and facsimile.

Pen Point's Connections Notebook provides the NUl for connection management,
supporting the following functions:

• Disk management - interrogate drives and manage files

• Eject or dismount disks

• Format disks

• Browse networks and enable network resources

• Create and edit instances of printers

• Initiate document import/export to create:

PenPoint documents from non-PenPoint files on disk

Non-PenPoint format files of Pen Point documents

Pen Point's file system provides support for reading and writing DOS formatted
disks. All Pen Point specific information is stored as a DOS file, in a DOS
directory. This approach will be used when mapping to other file systems.

PenPoint Architecture

I Notebook User Interface 1

Applications Services
I I

Appls. Framework Service Framework

PenPoint Class Substrate
Class Manager

Kernel

Machine Interface Layer

Hardware

Figure 1. Schematic of PentPoint Architecture

Chapter 1. Introduction 5

6 Pen Poi nt as

Chapter 2. PenPoint User Interface

This chapter explores Pen Point's Notebook Metaphor and the organizational
principles employed in delivering the Notebook User Interface (NUl).

2.1 User Interface
The NUl follows many of the principles used in traditional Graphical User
Interfaces (GUI).

PenPoint applications run inside a window and can share the screen with other
applications. The windows are referred to as Document Frames and may be
resized and repositioned; Notebook pages are an exception to this principle.

r .. --..... ---.-................ --.-.... - -.·--.. ·-.. --·.·-.. · - - - - - .. --.. --.. --.-. .-.. -.--.. - - --......... -............. -....... .
! Notebook: Contents < 1 >
rD~~~~~t"""E'd'it' ··6~·ti~~~·····v·i~~······C;~t~·······················

!~ &e

..
,

;,! ~ : .. :::F~~~~ ... !
~ New Pto:Jud Idees 4

i [3 FacXage Design L.etta- 5
l"fj MiniNote.. 6

I ~ MiniNoteQuickS1art.. 7

1 @] MiniT e>ct 8

l.-tl MiniT ext Quick S1art 9

I
i

I
I
j
~
~
j

I
I
i
!
l __ ~~~w~~~_~~~~~ ~~~~~~~~~~~ __ ~ ______ ~~
? ~II <'.;lq ~[1 .ir~ .~i..Q...Q., ~ ~

.. ~.~!t .. ~.~.!.':~~.~?~~!.~:.:~_~~.: ... ~~.~~~.~!r ... ~:~~.?.~.:.~ ~:.~.:!!.~ . ._!!.~~~?~!' .. ~ .. ~ !~~:.~??~ _ ____ ... _ ... _ .. _._ _ _ .. __ ..

Figure 2. PenPoint's Notebook User Interface

In addition to pull-down menus, Option Sheets are used to specify global type
options:

• Orientation

• Paper size

• Margins

• Fonts - style and size

Options are applied whereas commands are executed within pull-down menus.

Pen Point introduces two additional items, the Tab and the Writing Pad.

(C) Copyright IBM Corp. 1993 7

8 Pen Point os

The Tab is used as a navigational tool within an application. The user selects a
tab to switch between screens or sheets.

Writing Pads are used to capture and translate handwriting and to perform
simple editing. System preference settings provide a choice of either boxed, or
ruled styles of pad. Boxes require separation of characters and consequently
yield higher recognition rates. Ruled lines permit the user to write characters
closer together which may pose recognition problems where characters are not
clearly written.

Two forms of writing pads are available, Embedded and Pop-Up.

The Embedded Pad is used for large amounts of text. The application provides
space around the pad so that preceding and succeeding context is visible to the
user while writing on the pad.

Pop-Up Pads are optimized for small amounts of text and typically float at or
near the location where the pad was requested. The application does not shift its
display as with the Embedded Pad.

r·--···---·---·_·_-·-·_··-·········-·_-····-··---··-···--··--·····-··--·-··---·-····--··;~·i·~iT~;,t--·······---·· ... -...... --.... -.--........ -.. --.-..... -----....... ----·-------(8)
i·· .. ··· ················· ,,···· .. · .. ················ .. · " ', ,

l DOOJment Edit Options View Insert Case
l'k::~;~pi~::;rfr~'~'fl~';.ib'i'fi't;::;f'F~;p~~t'~~'::;;rt::;tr;'~;';bilit;:'::::'::,::::,::,::::::::::::::",::::::::,::::::::,::::,::,::,::::::::::::::::::::::::::::'::'::'::::::::::::'::r~

~ Writing~ds a.reused tocap1llre handvvriting, translate itintoASOI text and alloYf simple editing. 111
I The larger writing JYad is an embedded writingJYad, vvhile the smallerooe is a pop-upedit}::Qd ! II

<...;•.... .1.1 1...1. L 1... 1... 1.. 1... 1...1.l L. L L. L. Ll. 1... 1... 1... 1...J
~ i

t l i l l l ;. 1 " .. 1 ;. 1 1" 1 1 1 1 ,1 , ... 1 , .. 1 ;. 1 1 1 1 ;

L. I...l.l. 1... 1... 1...1. J 1...l.1.l. 1...1.1. 1... 1...1..1.1.11. 1...1

........ 1...J11 ; L 1... ;1. 1...1. 1...l.!.L 1... L L. L L. L. 1... 1...1
... -. .. .

I ~~~M= .. = =.i..= = l= = =.L= ... ~#~ II
' __ ////A{dWAIIIW///hWAY///AYA' __ #AfV~ ~ , ____ ~ •

? ¥'ll ¢f> f)\1 .Y~ ~i..Q:...Q., ~
Help Seftir,gs Conrlec1ions stationer), .o.coessories Kej'bor.rd Irlbc:+: OUibOH t~otebook

Figure 3. PenPoint's Writing Pads

All writing pads are the same object, merely appearing with various default sizes
in response to user commands. Pressing the OK button causes the entered text
to be translated; the user may also edit the text, making corrections and
insertions. A second depression of the OK button causes the text to be placed in
the underlying application.

2.2 Notebook Metaphor

2.3 Bookshelf

The metaphor is based on an organizing principle of a table of contents,
sections, pages and tabs in a notebook. User data exists as pages.

Pages are numbered in the top-right corner. The page is turned in either
direction by tapping the direction indicators with the pen. Notebook tabs are
located on the right-hand side of the notebook and may be attached to any page
or section, selection of the tab results in the specific section/page being
displayed.

There are no file load or file save commands. From the user perspective, the
concept of programs and data existing as separate entities does not apply. Each
page of the notebook is a Document and is viewed as a "running" application at
the point where it was left by the user. At a processing level, the Application
Framework associates data files with application code and operating system
processes. At this level documents are synonymous with application instances.

The act of turning a page in the Notebook, causes the following operating system
instructions to be executed:

1. Clear the screen.

2. Create a process and application object for the destination page.

3. Send a message to the destination application object to restore its saved
state from the file system.

4. Send a message to the destination application to display itself.

The original application files its data and this process is terminated to reduce
memory consumption.

The Bookshelf is situated at the bottom of the screen and contains systemwide
objects and resources that are displayed as icons. The standard Pen Point
Bookshelf contains the following:

Note --~

The default Pen Point operating system has been enhanced to include IBM
specific facilities including hardware diagnostics. Different release/version
levels of the product may include extra or changed resources.

This document is based on PenPoint IBM Version 1.0a, HWX revision 32 Mil
51.05

• Online Help

• System settings

• Accessories

• Stationery notebook

• Connections

• Software keyboard

Chapter 2. Pen Point User Interface 9

10 PenPoint os

• In/Out box

• Selected notebook

• Shutdown

The stationery, online help and in/out boxes use floating instances of notebooks
as a user interface.

System settings provide a number of configuration options:

• Writing style

• Pen alignment

• Fonts and layout

• Float and zoom

f) Date and time

• $ound

• Power conservation parameters

Each of the options selected must be applied before they take effect.

Accessories provides a pop-up window with a number of icons:

• Thinkpad Diagnostics

• System Log

• Corrective Service Facility

• Clock

• Keyboard

• Connections

The Stationery Notebook contains copies of templates for installed applications.

The Connections resource provides various views on connected disks, directly
attached or networked, and printers.

The software keyboard is a pop-up image of the keyboard that may be tapped
with the pen tip to insert characters.

Chapter 3. PenPoint Kernel

3.1 Multitasking

This chapter describes PenPoint's multitasking kernel, resource ownership and
allocation.

Pen Point is a 32-bit, preemptive multitasking operating system similar in function
to OS/2*. The basic role of the kernel is management of resource allocation and
ownership. The kernel arbitrates over two general types of resources:

• Time resources - CPU execution time

• Space resources - Memory and I/O ports.

The kernel's interface consists exclusively of functions and is the least
object-oriented component of the operating system. However the kernel has a
Class Manager which provides the object oriented interface of classes and
messaging. Together these two components provide the Application
Programming Interface (API) structure for the operating system.

3.1.1 Task Management
A task in Pen Point is defined as any executing thread of control. Software tasks
are subdivided into processes and subtasks that are scheduled and run by a
software scheduler based on a priority scheme. The only hardware tasks
available to PenPoint are interrupts. A process is the first task that runs when
an application is instantiated and requests local memory. Processes own all the
resources used by the application, including memory, subtasks and the
semaphores used in locking and interrupt management. When the process
terminates, all its resources are returned to the system.

A subtask is a thread of execution started by a process and is owned by the
process. Subtasks have the following characteristics:

• Shares local memory with the parent process

• Owns no resources

• Has separate registers and stack

• Subtasks can lock semaphores and send/receive messages.

The software task scheduler manages the initiation and execution of the
processes and subtasks. To start a process the kernel creates a new execution
context consisting of local memory, a local instance pointer to the executable
code and a new stack; the data values are then initialized.

A process may be started by another process or subtask and there is no
hierarchical relationship between processes; that is, a process that creates
another process does not own the created process:

~ Copyright IBM Corp. 1993

• The created process will not terminate when the "creator" process is
terminated.

• The created process can be associated with other processes at any time.

11

3.1.2 Memory Management
The key distinction between Pen Point and operating systems such as DOS and
OS/2 is that all the components of the operating system, all applications and all
the application data are kept in RAM.

The kernel uses privilege settings to determine which of the various tasks and
processes has access to which memory and other space-related resources.

Memory may be private to a process, or may be global. Global memory is
shared by all processes and any task can allocate memory in the global area of
memory. The Memory Manager manages global memory usage through
identifiers and counters that track the number of instances of which application
processes are sharing a given piece of global memory. Pen Point exploits the
80386 processor complex linear memory using a flat memory model in which
heaps may be created and memory may be allocated within the heaps.

3.1.3 Multitasking

12 PenPoint os

Pen Point employs a preemptive multitasking approach. Preemptive multitasking
is transparent to the application. The kernel switches CPU time among a number
of processes and can regain control of the CPU even if the application crashes.

Approaches to Multitasking ---------------------,

There are two approaches to multitasking:

• Yield-based

• Preemptive

In yield-based multitasking the applications must follow a defined set of
processing rules that requires the application to periodically yield control
back to the kernel. However if the application crashes while in control of the
CPU, the operating system and all other applications will also crash because
the kernel cannot regain control of the CPU. This is the approach adopted by
Microsoft Windows 3.0.

In a preemptive multitasking environment the operating system is able to
preempt the execution of a task and regain control of the CPU.

Pen Point always gives a higher priority to on-screen applications compared with
off-screen pages and applications. Tasks of the same priority share the
processor, (time-slicing).

Most Pen Point applications are a single process. The applications do not
typically contain separate subtasks and do not use the operating system's task
management scheme. Pen Point single-threads all of the applications with the
operating system, input and other executing applications. There is no true
concurrency between two live applications.

Where applications do require separate subtasks, the application must use the
kernel's task management and intertask communication routines to avoid
deadlock. Pen Point supplies the semaphore architecture to support this
requirement.

3.1.4 Operating System Reliability
The reliability of the operating system revolves around the following elements:

• Protection of the kernel

• Enabling the operating system to survive an application crash

• Enabling the operating system to recover from a crash

PenPoint's protection scheme concentrates on inadvertent misbehavior, rather
than on malevolent software (viruses). Hardware-level protection schemes are
employed to protect the operating system core objects from accidental
alteration.

The preemptive multitasking approach allows the operating system to regain
control of the processor thereby permitting an orderly shut down of the crashed
application while maintaining overall system integrity.

If the operating system itself crashes a warm-boot is required to recover the
system. All running processes are shut down, and resources, including dynamic
memory are cleared.

In Pen Point, executable code exists only in the system's memory. This single
copy of code is shared by all instances of an application. Each of the documents
owns a pointer to the executable code and keeps track of where in the execution
process it last stopped. All instances of the application are preserved by the
operating system.

3.1.5 Date and Time Services
The kernel includes an alarm subsystem that maintains a queue of alarm dates
and times that will be active even if the hardware is switched off, as long as the
batteries are charged and installed.

3.1.6 General Kernel Services
The following general functions are included in the kernel:

• Addition and subtraction

• Multiplication and division

• Trigonometric and logarithmic functions

• Conversion between floating-point and fixed numbers

3.1.7 Class Manager
Pen Point is an object-oriented operating system, using a class manager to
support object-oriented programming. The class manager is used to create
classes and class hierarchies, to create and destroy objects or class instances,
to inherit functions from other objects and to define and send messages between
objects. The APls are based on class manager messages and objects.

Pen Point however does not use an object-oriented programming language.
Applications are typically developed under C and are therefore portable between
C compilers.

Chapter 3. PenPoint Kernel 13

3.1.8 Machine Interface Layer (MIL)

14 PenPoint os

The Machine Interface Layer provides PenPoint with hardware platform
independence. It is that portion of the operating system that is specific to a
particular hardware platform.

The MIL roughly corresponds to BIOS in a traditional personal computer.
Whereas BIOS supports a fixed number of a known collection of device types, for
example ports, or disk drives, the MIL can support an unlimited number of
devices and extensions to the MIL can be supported in either RAM (Random
Access Memory), or ROM (Read Only Memory).

Each MIL implementation supports a number of devices, with a minimum set
required by Pen Point. All devices support a set of common functions and a
number of device-specific functions via which PenPoint and the MIL
communicate.

Each type of device is assigned a constant, the Device 10. There can be more
than one device for a given device 10. During initialization, all devices are
enumerated and assigned a Logical 10. This ID is arbitrary and will vary between
machines and between machine configurations and each device can support one
or more units.

Requests from Pen Point to the MIL are sent by the kernel, or the MIL Services.
MIL requests which are implemented as device functions, fall into two
categories, those requests that complete, for example, reading a block of data
from a disk, and continuous requests, such as reading keystrokes from the
keyboard.

Continuous requests are associated with asynchronous input events. The result
of this event is returned to an event handler or call-back function with Pen Point.

A request to the MIL progresses through one or more stages. Upon completion
of each stage, the MIL returns the request to PenPoint, indicating when to return
to the MIL for further processing. The processing stages are determined by the
particular implementation of the MIL. All continuous functions are multi-staged
processes.

Multi-stage requests are driven to completion by the following events:

• Specific interrupts

• Time delay

• Completion of an 80386 real mode (virtual 8086) task.

3.1.8.1 PenPoint - MIL Communication
At power on, Pen Point via queries to the MIL builds data structures which are
used for communication with MIL devices. These data structures include
Function Transfer Tables (FTT) that contain:

• An array of function descriptors, one for each function that the device
supports

• Device blocks containing the public and private variables for each device

• A common data structure that holds pointers to the device block and FTT of a
particular logical device

• Common data used by both the MIL and Pen Point

Chapter 4. Application Framework

This chapter describes Pen Point's Application Framework layer that provides a
set of classes defining the protocols that make up an application.

4.1 Function of the Application Framework
The Application Framework defines the protocols to implement common
application behavior:

• Installation of the application

• Creation of application instances

• Activation of an instance of an application

• Saving and restoring application data

• Deleting application instances

• Removal of applications

Applications running under Pen Point may be viewed from the following separate
but related elements:

• Application display

• Application file directory

• Application process

• Application object

(t) Copyright IBM Corp. 1993 15

16 PenPoint as

Title: Sample

19) .

100
Q.)

100 ~
.fa 9)
x
~ 9)
>-

Ol

iii! .?L MiniTeHt At+land
Caption: Classifieci Sample Ce.ts.

~~~~~~~--~~~------.~ 
~! 

.. ~..! --- Empty Bookshelf ---

'{'-11 tSTI jf.~~j ~ 
Help Se1tir,gs StatiOY,el'1 Accessories Keyboard Notebook 

Framework 

Figure 4. Example of Multiple Live Applications 

Figure 4 shows a number of live applications: 

• Notebook 

• Notebook Contents 

• A text-editing application 

• A graphics application 

• Bookshelf 

The Notebook uses the file system to organize its documents so that they 
parallel the structure of the Notebook Table of Contents. Each section and 
document has its own directory in the file system. If a document is contained in 
a section, the document's file entry is a subdirectory of the section directory. If a 
document has an embedded document, the embedded document's directory is a 
subdirectory of the enclosing document's directory. The Bookshelf is similar to a 
section, acting as a repository for all of the top-level subdirectories and 
documents in the Notebook. 

A process is associated with each running application. The Application 
Framework manages the processes in accordance with the application life cycle. 
The Application Framework creates the process and sets up the application 
object to receive messages. When the user launches another application or 
closes the application, the Application Framework destroys the process and 
saves the data. 



4.1.1 Application Elements 
All Penpoint applications contain a number of standard elements: 

• Application code 

• Document directory 

• Document process 

• Application object 

• Resource files 

• Main window 

4.1.1.1 Application Code 
Application code does not share memory with the PenPoint file system where 
instances of applications and related data are stored. The operating system and 
applications share a special area of RAM that is protected against accidental 
erasure. Application instance data is linked to the application by a global unique 
identifier (UID). 

Note ----------------------------------------------------~ 

Disk-based operating systems require two copies of code: 

• The unrelocated executable file on disk 

• At execution time - a relocated copy of the executable code in memory. 

Pen Point installs the application in memory; there is no requirement for a 
disk-based copy. All application code is reentrant; therefore a single copy of 
code supports a number of application instances. 

4.1.1.2 Document Directory 
Documents are instances of the applications that created them. Each document 
has a corresponding directory. When a document is selected, Pen Point 
determines from the directory information which application created the 
document. An instance of the application is then created and activated. 

4.1.1.3 Document Process 
The Application Framework manages the application processes for each active 
application. Each process has a number of attributes: 

• A message queue that stores messages for the application instance, until 
they can be forwarded to the appropriate object within the process 

• Entry point defining the means by which process startup takes place 

• A main routine, which is the event loop within which the program starts the 
application life cycle, waiting for a user event to which it should respond 

• The method table that maps message names to method handlers, that is 
where the names of messages to which the application responds locally are 
related to the names of the procedures that contain the responses 

Chapter 4. Application Framework 17 



4.1.1.4 Application Object 
The application object responds to messages sent to it via processes associated 
with the object. The application's function is contained in the object's structure 
and processing. 

All application instances are objects and because of their inheritance, all 
application instances receive and process messages from the Application 
Framework. 

4.1.1.5 Resource Files 
A resource file is a general purpose storage mechanism, the form.at and content 
of which are application dependent. All application instances have at least one 
associated resource file that is the repository for all objects created by the 
application. The Resource Manager manages the location of objects on request, 
taking into consideration both space allocation and compaction. 

4.1.1.6 Application Window 
All visible applications must have at least one window, the main window that 
displays the data relevant to the application and provides the user with an input 
environment. 

4.1.2 Standard Behavior and Inheritance 

18 PenPoint os 

The Application Framework ensures user interface consistency across all 
applications. This consistency is a direct spin-off from the object-oriented 
approach and inheritance. The following elements are common to all Pen point 
applications: 

• Installation behavior 

• Creation of new application instances 

• Online help 

• Document properties 

• Move/copy 

• Gesture recognition 

• Hyperlinks 

• Standard application menu support 

• File import/export 

• Printing support 

• Spell checking 

• Search/replace 

• Application stationery 

Gesture recognition is discussed in chapter Chapter 8, "Input and Handwriting 
Recognition" on page 41. 



4.1.2.1 Application Installation 
Pen Point provides a set of installation routines that are consistent for all 
applications. Penpoint detects installable software in attached diskette drives. 
The installation options are selected from the Settings Notebook. Applications 
may be installed, deinstalled, or deactivated. 

Deactivation is used in a constrained disk environment, and the application is 
temporarily deinstalled. The application will be automatically reinstalled when 
the user selects an instance of the application, assuming that an external 
diskette drive containing the application is attached. 

4.1.2.2 Creation of New Application Instances 
Pen Point creates a new instance of the application when the user launches the 
application. The Application Framework sends the application a message to 
create an instance of itself. The application creates a subdirectory entry at the 
appropriate place in the file system. If the new instance is created in the 
Notebook Table of Contents, it will not run automatically upon creation. However 
if the instance is created within another document, the application will launch 
immediately. 

4.1.2.3 Online Help 
Pen Point provides two approaches in providing online help: 

• Quick Help (context sensitive help) for individual objects 

• Additions to PenPoint's Help Notebook (reference help). 

Quick Help is provided by defining resources for each type of object for which 
assistance is required. Protocols interpret the user's help gesture within the 
menu, decode the object and display the appropriate help resource. 

Reference help is added to the Help Notebook in the form of text files that are 
managed by the application, or in the form of help applications that are 
embedded in the Help Notebook. 

Text files are generally in Rich Text Format (RTF), placed in the appropriate 
subdirectories in the application distribution diskette. The default help 
application is used to display the online help and manages user interaction 
within the help files. 

Help applications are placed in the appropriate subdirectories in the application 
distribution diskette and are detected and installed by the installation manager. 

4.1.2.4 Document Properties 
All documents have associated properties: 

• Title 

• Author 

• Comments 

• Date created 

• Fonts used 

The user selects an Option Sheet describing the current document and may 
change selective attributes. Option Sheets are defined for an application using 
messages; this option is included in the Pen Point User Interface Toolkit. 

Chapter 4. Application Framework 19 



20 PenPoint os 

4.1.2.5 Move/Copy 
Users may initiate a move/copy process between embedded windows by 
selecting information to be moved or copied and then issuing the move or copy 
command via menu or gesture. Once initiated, a move/copy icon, (an elastic 
box), will surround the source; the user then indicates the destination location. 
There are now two locations for the object. The source object sends a message 
to the destination object instructing it to move or copy the selected data. The 
destination determines the type of data and if the data type is understood, the 
source is requested to send the data. The source now knows the type of the 
destination object and determines whether the data is be copied or moved into 
an instance of that type of application or not. (A graphics application might 
reject the movement of its data into a word processing application.) The source 
determines the location of the destination object in the file system. 

4.1.2.6 Hyperlinks 
Goto buttons or hyperlinks may be defined within documents and are used to 
create cross references to other documents, or sections of the same document. 

4.1.2.7 Standard Application Menu Support 
Standard menus, menu commands and Option Sheets are provided by Pen Point 
as a default. These are collectively referred to as Pen Point Standard Application 
Menus (SAMS). The User Interface Design Guidelines require that all 
applications provide SAMS related commands. The Application Framework 
implements SAMS. 

When an application is launched, it creates a user interface including the menu 
bar. SAMS will either merge application unique menus, or menu commands, or 
the application performs the merging. There are default responses for all SAMS 
commands. The following menus are fully implemented to display standard 
dialogs and Option Sheets: 

• Document menu 

• Print 

• Print Setup 

• About 

If a selection option is not available within a menu, it is automatically grayed out. 
For example, in the Edit menu the Delete command will not be active until a 
deletion area has been selected. 

4.1.2.8 File Import and Export 
Data import from operating systems such as DOS requires that the user identify 
the application that will deal with the imported data. Pen Point creates an 
instance of that application and sends a message instructing the application to 
translate the imported data into its own file format. 

When exporting files, the user selects an export file format that can be 
understood by the receiving application under a different operating system. 



4.1.2.9 Printing 
Printer support is furnished at a system level, rather than at an application level. 
In Pen Point, printing is a process of drawing a document's image on a hardcopy 
device. There is a single API which renders output to both the screen and 
printers. Printed pages are a collection of windows and the application merely 
displays itself to a different image device; the printer image device is provided 
by the operating system. 

Pen Point provides two commonly used printer drivers, a Printer Control 
language (PCl) driver for laser printers and a standard dot matrix driver. The 
printer objects must be created using the Connections Notebook. This notebook 
lists the printer description, including printer type, model and port. Multiple 
printer objects for the same printer may be created to exploit any special print 
features. 

The Document menu for every application contains standard Print and Print 
Setup commands, that bring up Option Sheets. The Option Sheet controls which 
printers to use, page size, number of copies, fonts etc. 

Print commands may be issued at any time, even if there is no printer attached. 
The print command will copy the document into the Out Box. 

When the targeted printer is available: 

1. Pen Point creates an image device for the specified printer. 

2. The document in the Out Box receives a message with parameters set to 
indicate that the application is being opened for printing. 

3. The printer image device root window is laid out with optional headers and 
footers, and with the applications first page of data. 

4. If a dot matrix printer has been selected, the fully rendered page image is 
sent to the printer in bands. 

5. If a PCl printer has been selected, ImagePoint** downloads outline fonts to 
the printer. 

6. The page layout and print process repeats for as many pages as the 
application has data to print. 

7. Upon completion of the print job, the Out Box deletes its copy of the 
document. 

The Application Framework prints a document exactly as it appears on screen by 
default. When a document is selected for printing, all embedded documents are 
printed as well. Only the visible portion of the embedded document is printed. 
Applications may provide print-specific formatting and layout. 

4.1.2.10 Spell Checking 
Spell checking is part of Pen Point's SAMS. New dictionaries may be defined. 
Spell checking is part of the handwriting component of the operating system. 

Chapter 4. Application Framework 21 



4.1.2.11 Search and Replace 
The operating system provides support for this function. The process however 
may be complicated through embedding of documents. The user is given the 
option of excluding embedded documents when setting up the search. 

4.1.2.12 Application Stationery 
The Stationery Notebook contains the stationery provided by the installed 
applications. This supports the creation of blank application instances along with 
default templates. 

Users may define new templates and file them as stationery documents. Upon 
selection of the document, Pen Point will create an instance of the associated 
application. 

4.1.3 Application Life Cycle 

22 PenPoint os 

All Pen Point applications follow the same life cycle each time an instance is 
created. The application manages the transitions between the various states in 
the life cycle in response to the Application Framework messages it receives. 
The messages are caused by user actions but may also be programmatically 
generated. 

The application life cycle consists of the following states: 

1. Non-existent 

2. Created 

3. Activated 

4. Opened and interactive 

5. Dormant 



PenPoint Application Life Cycle 

NonExistent 
7 

Dormant 6 

5 

Activated 3 

4 

Opened (Interactive) 

Figure' 5. Schematic of a PenPoint Application Life Cycle 

4.1.3.1 Instance Creation 
The user creates a new instance by selecting the application, or by copying a 
blank stationery template associated with the application to the Notebook Table 
of Contents. Pen Point sends a message which is defined to the application class. 

4.1.3.2 Application Activation 
Selecting the page containing an instance of the application indicates to the 
operating system that the instance should be activated. Once activated, the 
document is opened. 

4.1.3.3 Application Termination 
Pen Point may terminate the application instances when they are closed, except 
where the application has been defined as a Hot Mode application and off-screen 
processing will continue, for example, file transfer. 

When a document is deleted, Pen Point will remove the application instance 
associated with the document. 

Chapter 4. Application Framework 23 



24 PenPoint os 



Chapter 5. Application Embedding 

This chapter describes the Application Framework's support for application 
embedding and the concepts employed in embedding documents. 

5.1 Application Embedding Concepts 
Every document has a unique identifier that indicates to the operating system 
which application to launch when the document is selected. This embedding 
capability is recursive; the user may embed an application within an application 
the only limiting factor being memory. 

Document embedding takes place dynamically while the application in which 
another application is about to be embedded continues to run. The embedding 
process is transparent to the user. 

Embedded applications execute inside one another, and the embedded 
document's application continues to run, that is any application can host another 
application. This approach is in contrast with traditional Windows, 
multi-application processing, where compound document support is delivered via 
clipboard metaphors. 

In Pen Point, the user can combine documents from two or more applications in 
either of two ways: 

• Create the documents on separate Notebook pages, then copy or move them 
to a destination document, with no loss of content or formatting. 

• Embed the applications, creating new documents within existing documents 
as required to build the compound document. 

In both approaches, the applications appear in embedded windows that can be 
inline, overlapping, or take up the entire application frame. 

Each embedded document is stored in a separate directory. Embedded 
documents are therefore stored in a subdirectory of the parent's document file 
system subdirectory. Pen Point treats every embedded application as a cohesive 
whole containing all its embedded windows, regardless of the application 
responsible for the content of the windows. 

5.1.1 Basic Concepts of Document Embedding 
Document embedding involves three basic dimensions: 

• File system 

• Process space 

• Window hierarchy 

The file system provides a hierarchy of document directories, with one document 
directory for every embedded application, regardless of whether it is running or 
opened. It is the only dimension that captures the entire hierarchy of embedding 
at all times. 

(C) Copyright IBM Corp. 1993 25 



26 PenPoint os 

Process-space consists of processes corresponding to running application 
instances. This set of running processes is driven by the embedding hierarchy, 
in which every running, embedded application has its own process. 

Terminated applications do not have a process associated with them. Processes 
do not have an hierarchical relationship with other processes. Processes are 
created in response to transversals of the hierarchy in the file system. 

The window hierarchy captures the hierarchical visual relationship of the 
"embedding" and "embedded" applications. 

5.1.1.1 File System Hierarchy 
The file system contains a document directory for every embedded application; 
each document directory contains the files belonging directly to the application 
instance - data and resource files. The attributes record the class of the 
application, associated with the directory, the Unique Identifier of the application 
(UIO), if it is running, the state of the application and the Universal Unique 
Identifier (UUIO) of the document itself that allows other objects to point uniquely 
to this document. 

5.1.1.2 Process Space 
Every running application must have a process. The windows within each 
process are owned by the process. Off-screen processes are shut down by the 
operating system to free up memory and processor time. 

5.1.1.3 Embedded Windows 
Windows are the objects that support the cooperative sharing of the display 
space. The embedding window communicates with the embedded window via 
messages to determine the location and size of the embedded window and will 
intercept, approve, or modify messages to the embedded window. 



: : $ ~ 
, , ......... ;, .......... 1. .......... ;" ..... , ••• ) 

i ! 
i i $ $ I 

", .. ,.1 .. , ...... ,1 .......... 1 ...... , ... 1 ...... , ... ; 

0: 
~: 

----~-----------------.~ ........ ~ .......... ~ .......... ~ .••....•. ~ .......... ; 

.9..) MirtiTeHt At-Hand 

Oi 
~: 
wi 
o i --- Empty Bookshelf ---

? .'11 t5l1 .if~ ~j ~ 
Help Seftirlgs Staiiorler{ Accessories Keyboard Notebook 

Figure 6. Example of Embedded Applications 

In Figure 6, a graphics application is embedded within a text editing application. 
The graphics application is closed and is represented by an icon. When the user 
selects the Graph icon application, the text editing application intercepts the 
message and cooperates with the graphics application in terms of sharing 
resources. Processes define the class of application - embedding or embedded, 
and the behavior of the application. Default behavior is to run all embedded 
applications whenever the embedding application is run, that is, when the user 
turns to a page, not only is the document on that page run, but the 
corresponding processes for a" embedded documents are also opened. 

Note ------------------------------------------------------~ 

Embedded applications are costly in terms of memory and processor cycles 
because each embedded application requires a separate process and 
document directory. 

Pen Point components however, (Goto buttons and Signature Pads), execute 
within the host application's process space; filing data in the host 
application's data file does not consume as much resource. 

Pen Point keeps track of embedded documents using embedded window marks 
that contain: 

• The UUID of the document containing the mark 

• The UUID of the component within the document 

• A component-specific token that specifies a location within the component 

Chapter 5. Application Embedding 21 



• A label of the mark 

5.1.2 Document Embedding - Example 

28 PenPoint as 

The Notebook application is embedded in the Bookshelf, and acts as the 
organizing vehicle for all Pen Point applications. 

l" •••• _ ........ -_._--._--•• _ ...... _ ........... _-_ ......... _ ... _-............ __ ••.... ' ............................................... _-................. - •••• _ ........... - •• --.................. - ••• _ ....... _ ....... ________ _ 

1 MiniText < 6 > 
rD~·;;~~~t·····E·dit·····o~ii~~~····V·i·~;····i·~;~rt·····c;;~················································· ..................................................................................................................................... . 
I'Thi;"i';':";;;;le of ~';~b~'dd;d':';i'i'~:'ti';~;"i;l·P~P~:~··i·~·:;~····'"""',"""',:::: ..... ::::::::::,::::::::::::::::::,::':::::::'::::::::::::'::'::::':::::':::::::::::'::'1:if' 

I I ~ 
I IL01 TRle: Sample l 'i ! 0 I 

Col.C 
7 

I R: 4 
I Caption: CI~li~:~ Sample DalB. Col. B 

.,i ~~----I ~ 1\ 

H>-
'- __ .., _________ ....... iJJ. 

? .'11 ¢f;> Clli .19 .~i.Q,.Q, ~ r 
Help Settir.gs Connections Stationery' ACO?Ssories Ke-yboard Ir.ba-. OUibOH Notebook At+land 

Figure 7. Notebook Displaying Embedded Applications 

Figure 7 represents a number of applications visible on the screen, making up a 
compound document: 

• Bookshelf 

• Notebook 

• Notebook Contents 

• Text Editing 

• Graphics 

The compound document may also be viewed from a file directory structure. The 
Bookshelf is the root directory. The Notebook application is a subdirectory within 
Bookshelf, and Notebook Contents is in turn a subdirectory of Notebook. Each 
document within each directory has at least two associated files, one is the 
contents of the file, the other records the display state of the file. 



5.1.2.1 Window Placement 
The placement of embedded windows (documents) may be performed in one of 
two ways: 

1. Unconstrained placement 

2. Constrained placement 

The default approach is unconstrained placement. The new window floats atop 
its main, or parent document window. 

When using constrained placement, the application determines where to place 
the embedded window, based on the kind of display item it represents. 

5.1.2.2 Traversal 
The parent application must be aware of the contents of the windows created 
and embedded by other applications, as the contents of the windows determine 
the behavior of that window in response to document operations. In PenPoint 
this process is known as traversal. The most common operations are: 

• Search and replace 

• Spell check 

• Print 

Traversal determines whether embedded windows will be scanned for data or 
not. Pen Point uses a driver-slave model to implement traversal. The object, 
(application) requesting traversal is termed the driver and interacts with 
embedded documents, the slave, to scan all data within a specified range. The 
driver-slave model keeps the traversal process in synchronization through a 
mechanism called the traversal context. This context is a protocol between the 
driver and all the slaves it encounters within the scope of the traversal, the 
direction and the current location within the scope of the traversal. 

The user determines the scope or method of traversal by choices or commands. 
The driver sends messages to each slave it encounters, the slaves respond to 
the messages, in accordance with the traverse style defined in the traverse 
context. 

The following types of behavior can be defined by an application for its 
instances: 

• Embedded windows are not scanned. 

• Open embedded windows are scanned. 

• All embedded windows are scanned. 

• Invoke a call-back routine. 

Chapter 5. Application Embedding 29 



30 Pen Poi nt OS 

Driver-Slave Traversal Model 

DRIVER 

Encounters child 

embedded windo 

Instructs slave 

SLAVE 

Is end of of 

to find data I 
I 
I 

scope reached ~YES I , 
I 
I 
I 

Tells slave what to I 
I 

NO 

do with found data,+ Find data & notif 
I 

Terminate 
Notify driver 

I 

r--__ --.:====,--I:----t .... ~il Carry out operatio I 
I 
I 
I 

Figure B. Driver-Slave Traverse Model 

Notify driver 



Chapter 6. ImagePoint 

This chapter describes the implementation of graphics and imaging in the 
operating system. Pen Point is based on a graphical user interface tuned for pen 
input. 

In PenPoint, text is unified with graphics and all images can be scaled, rotated, 
translated and used for both display and printing. 

6.1 Graphics and Imaging System 
All drawing takes place in a window. Drawing messages are sent to a special 
object, the Drawing context. The Drawing context renders the drawing in the 
window to which it is connected. Clipping is enforced to ensure that the drawing 
affects only the target window. 

A drawing context defines the characteristics of a graphic environment: 

• Units of measurement - pixels, points, millimeters 

• Matrix to define scaling and rotation 

• Type and extent of clipping. The default is to clip to the window boundaries 

• Plane Mask - does the window draw on the acetate layer where the pen ink 
gets dribbled 

• Line characteristics - joining of lines and line thickness 

• Radius value for round-cornered rectangles 

• Foreground/background colors 

• Fill patterns 

• Line patterns 

• Fonts 

PenPoint supports the drawing of a number of specified shapes. Both closed 
and open shapes are supported and the closed shapes may be filled with a solid 
color or shape. 

A closed shape is any shape that starts and ends at the same point, enclosing 
an area. The following closed shapes are supported: 

• Rectangles, including rounded corners 

• Ellipses and circles 

• Polygons with an arbitrary number of sides 

• Sectors 

• Chords 

An open shape is essentially a line; the following shapes are supported: 

• Multi-segment lines 

• Bezier curves 

• Arcs 

© Copyright IBM Corp. 1993 31 



Drawing becomes visible to the user when the application responds to a 
Pen Point message to paint in a specified window. Applications make no 
distinction between painting and repainting a window. The application must 
however store the contents of the windows and keep track of what is displayed. 

6.2 System Drawing Context 
A" drawing in Pen Point is performed by sending messages to the System 
Drawing Context (SysDC). The SysOC is bound to one window at a time. If the 
SysDC is bound to another window, the drawing in the first window is not 
cleared, it is simply not updated. 

6.2.1 Creating a System Drawing Context 
The SysOC is created in the same manner as any other objects in Pen Point by 
sending messages to the class. The SysOC may be considered as the set of 
values that describe the state of the environment of the window to which the 
SysDC is attached. The operating system provides a number of defaults for the 
state of the window, and messages are available to change each of the values. 

Table 1. Default SysDC Elements 

Element Default Value 

Units Unit = point (1/72 of an inch) 

Drawing mode Keep narrow lines visible 

Plane mask Do not draw into acetate layer where ink is dribbled 

Line cap Square off ends of lines 

Line join Use miters for line joins 

Line thickness One point 

Foreground color Black ink 

Background color White 

Fill pattern White 

Li ne pattern Black 

Font scale One unit 

Default font None 

6.2.2 Binding a SysDC to a Window 

32 PenPoint os 

The SysDC is sent a message containing the 10 of the window to which it should 
be bound. Pen Point wi" also return the 10 of the window, if any, with which the 
SysDC was formerly associated. 

The SysDC must first be bound to a window before most of its associated 
messages will have a meaning. 

A single window may be bound to multiple SysOCs if a complex picture is to be 
created. 



6.2.3 Drawing and Storing with a SysDC 
The application process follows two steps to draw in a window: 

1. Confirms that the graphics state of the window is correct, that is, the SysDC 
has the values required to perform the drawing. 

2. Sends the SysDC the drawing messages to create the shapes. 

The window must be repainted for the drawing to become visible to the user. 

When the window is filed, only the information required to re-create the window 
is stored. Three approaches are available to store the window display contexts: 

• Capture a bitmap of the window. This is a memory intensive and device 
dependent approach. 

• Store the application data structures from which the display can be 
regenerated. 

• Store the images as a sequence of SysDC drawing instructions. 

Pen Point's preferred method of storing drawings is as a sequence of SysDC 
drawing instructions. A special object, PicSeg (Picture Segment) records all the 
drawing commands issued and stores them in a compressed format - a Grafic. 

Each grafic in a PicSeg contains the information to reproduce a single drawing 
action. 

PicSeg is a subclass of a SysDC and is created and bound to a window in the 
same manner in which the SysDC is setup. 

6.2.4 Clipping and Repainting Windows 
The SysDC only draws inside a window; any instructions to draw outside the 
window boundaries are automatically clipped. The PicSeg captures all drawings; 
even the clipped portion which is not displayed is captured. 

Where there are overlapping windows, clipping will ensure that a drawing does 
not disrupt the contents of the overlapping windows. 

The clipping region may be altered to allow a number of embedded windows to 
share a common drawing area, or a subset of the window's total area may be 
defined as a drawing area and all drawings will be clipped to the defined area. 

In summary, all drawing takes place through the SysDC and appears within a 
clip region that can be: 

• An entire window 

• A defined family of windows that cooperate to create a common drawing 
area 

• A portion of a window 

Pen Point notifies an application when a window requires repainting. This usually 
occurs when windows are moved and overlap the drawing area. The operating 
system sends a message to the application to repaint the window and the 
application initiates the repaint process. Thereafter, only the affected (dirty) area 
of the window is repainted, until the application issues an fIend repaint" 
message. 

Chapter 6. ImagePoint 33 



This approach of confining repaints to specific target areas is the most efficient 
in a multiple overlapped windows environment and reduces screen flicker to a 
minimum. Windows may be repainted at any time during the application process, 
via routines in the application without having to wait for the operating system to 
issue the instruction. 

6.2.5 Graphics Primitives 
PenPoint defines: 

• Open and closed graphics primitives 

• Displaying text 

• Copying rectangles of bits. 

Open shape Polylines are drawn by sending a message that takes as an 
argument, a pointer to an array containing the points through which the line is 
drawn and a number defining the number of points in the array. 

Bezier curves are drawn by passing a pointer to an array of four points that act 
as the control pOints for the curve. 

Pen Point treats an arc as a portion of an ellipse, defined by a rectangle 
enclosing the ellipse of which the curve is a part and the two points that define 
the end points of the arc. 

Six basic Pen Point graphics are defined that produce closed shapes. All closed 
shapes are filled; a transparent color fill is supported to generate "hollow" 
shapes. By setting the line width to zero, only the filled area, not the border, will 
be drawn. 

Rectangles are drawn by pointing to a data structure that specifies the origin and 
size of the rectangle. A value other than zero for the radius produces rectangles 
with rounded corners. 

Ellipses and circles are drawn by passing an argument in which the ellipse is 
drawn within a rectangle. If the rectangle is a square, a circle is produced. 

6.2.6 Text Primitives 

34 Pen Poi nt as 

All text is drawn using a font and the process of drawing text consists of the 
following: 

1. Load the required font. 

2. Scale the font. 

3. Initialize the structure that defines the parameters to draw a single text 
string. The structure defines: 

• Alignment 

• Underlining 

• The pointer to the text 

o Length of the text 

• The coordinates to place the text string (x and y axes) 

• Justification metrics - width of a normal space 

4. Drawing the text 



6.2.7 Copying Pixels 
ImagePoint** supports two forms of pixel copy operations. Rectangular pixel 
images may be moved between image devices and within a window. 

Image devices are in-memory windows into which the drawing operation is 
rendered. This image may then be copied to the screen. 

A portion of the on-screen image may be relocated to another screen position. 
This technique is employed when the application window has been relocated on 
the screen, or the contents of the window scrolled. 

6.3 Color Graphics Interface 
PenPoint supports the use of color on appropriate hardware. The Pen Point color 
metaphor uses the concepts of foreground and background. Drawing takes place 
in the foreground, as the pen draws lines, using a color that contrasts with the 
background color and therefore produces visible output. A single drawing 
operation can use both the foreground and background colors at the same time. 

Color values may be set and described in the following manner: 

1. Use a palette of colors and index the selected colors into it. colors 

2. Use red, green and blue (RGB) color combinations. This is probably the most 
effective approach: 

• Ensures printer compatibility. If the first method is used, a printer may 
not recognize the palette. 

• Pen Point automatically manages color translation from RGB color values 
to the appropriate colors on a minimum color hardware configuration. 

• Ensures device independence for both printers and displays. 

6.4 Prestored Images 

6.5 Fonts 

PenPoint includes high level support for managing and displaying prestored 
images, for example facsimile (FAX), in the form of a Sampled Image Operator 
(SID). The SID handles simulated analog image processing, by mapping the 
source pixels into destination pixe,ls. The SID also supports run length 
compressed sources, permitting easy scaling and rotation of pixel-based images. 

Note ----------------------------------------------------~ 

Pixel based images are generally not editable 

Pen Point stores fonts as outlines which is far more memory efficient than using 
bitmapped images of the font characters and are scalable to any point size. 

When the font is specified in the SySDC, PenPoint searches for the closest match 
using font metrics. If the application has a bitmapped font with the same name 
and/or 10, the operating system will use that font. 

Chapter 6. ImagePoint 35 



All fonts have standard registered 16-bit IDs that are valid across PenPoint 
configured systems; therefore, moving applications between systems should not 
result in font display issues. The font attributes must defined before the font can 
be used. The font is then selected based on the 10. If the font 10 is not available, 
the the font group will be used to find the "best fit". 

Table 2. Font Attributes 

Attribute Description 

Typeface Name of the font family 

Character weight Bold, normal, light 

Aspect Condensed, normal, or extended 

Italic YeslNo 

6.6 Drawing Text 

36 PenPoint os 

All text drawn in a window is drawn using the current foreground color and 
cannot be color filled without setting the foreground color. Text is treated as 
graphics content in the window and therefore the text unites with the rest of the 
images in the window and will scale and rotate along with the rest. All 
characters appear on the screen as bitmapped images, but are stored in outline 
form. 

When a character is displayed in a particular font, Pen Point will look up the 
character in an internal bitmap character cache. If the character is not present, 
Pen Point will render the character into the bitmap character cache. If the 
installed font is an outline font, the requested character is rendered as a bitmap 
at the requested point size. Characters are rendered into cache with all 
associated attributes and rotation. 



Chapter 7. File System 

This chapter describes the file system of Pen Point. The file system has been 
designed for compatibility with DOS and includes full support for reading and 
writing DOS formatted disks. 

The following features are included in the file system: 

• Hierarchical directories 

• 32-character file names 

• Memory mapped files 

• OOPs APls 

Both the process of remote file transfer, automatic installation and the interface 
to device drivers is based on the architecture of a hierarchical system of 
directories and files. 

Pen Point's file system is based of the concept of a volume; three types of 
volume are supported: 

• Memory resident 

• Local disks 

• Remote disks and servers 

Memory resident volumes are naturally stored in RAM; RAM is always available 
to the application because it cannot be disconnected by the user. 

Local and remote disks are available to Pen Point when an external diskette 
drive is attached to the pen-based hardware, or when attached to a network or 
communications link. 

All volumes have root directories. The operating system and applications make 
extensive use of the subdirectory tree structure of the hierarchical file system to 
store and retrieve specific files. 

7.1.1 File System Activities 
The following file activities are shared with other operating systems: 

• Creating, opening and deleting files on a volume 

• Copying and/or renaming files and directories 

• Moving files and or directories 

• Moving the read pointer to a new location with a seek operation 

• Modifying file and directory attributes. 

Pen Point however also supports a number of unique file activities. Every file and 
directory can have application defined attributes. Pen-based hardware is 
designed to be highly portable; therefore the operating system must manage 
random disconnection and reconnection to external volumes. Activities requiring 
access to external volumes are stored until connection is established. 

© Copyright IBM Corp. 1993 37 



Pen Point automatically performs file compression and decompression. The user 
may select the type of compression to be performed and even elect not to 
perform file compression. 

7.1.2 Application Installation 
The standard for application distribution is a 3.5-inch DOS formatted diskette. 
Applications usually include an installation routine which automatically installs 
the application within the desired file structure for the user. 

Drag and drop routines are also supported whereby the user may drag 
application objects over an installer. 

7.1.3 Interaction with other File Systems 
The file system contains information that is incompatible with the DOS File 
Allocation Table (FAT) system and this superset information must be managed 
by Pen Point to maintain cross file system compatibility. The following information 
is not supported by the DOS FAT system: 

• Long file names 

• Pen Point specific attributes 

• Application defined attributes 

If the files to be stored are to be retrieved and reused by Pen Point, the superset 
information must be retained; this data is therefore stored in an extra file in each 
directory for which superset information exists in the Pen Point system. 

Pen Point will detect and recognize this information when the external volume is 
mounted. 

Pen Point files are only stored on external volumes without the superset 
information, if those files are to be subsequently manipulated by DOS 
applications. 

Note ----------------------------------~----------------~ 

Compound documents (multiple documents composed in and managed by 
two or more applications), are managed via the file system. Pen Point stores 
embedded documents in subdirectories of the "containing" documents. The 
compound document is therefore stored and maintained as a single 
directory, which permits copying and moving of documents without having to 
be aware of the contents of the document. 

7.1.4 File Import and Export 

38 PenPoint os 

Applications generally include a set of filters (routines to process and convert 
data from one format to another format), to facilitate file import or export. 

Pen Point supports data compatibility in the following manner: 

• Use of shareable filters for data so that applications do not need to provide 
unique filters 

• Use of a standard user interface for controlling file formats and interactions. 



7.1.4.1 File Import 
Files imported into Pen Point must be associated with an application. When a file 
is selected and copied/moved from a Disk Viewer window to the Notebook Table 
of Contents, Pen Point will query every application running on the system 
whether the particular file format being imported can be supported. The user is 
presented with a selection list of the appropriate applications. 

The application checks the file import type, which is passed as a parameter, 
against a list of known file types; a positive response places the application on 
the selection list presented to the user. If the application is selected, the import 
process is initiated and a new document is created. 

7.1.4.2 File Export 
When the user selects Export, Pen Point queries the document to determine the 
file formats it can write. A selection list is then presented to the user. The user 
selects a file format and destination, then initiates the export process. 

Each application is aware of the file formats supported for export and presents a 
list of formats supported together with control information that will be used 
during the translation process. The application will also provide a suggested file 
name for the user, which may be overridden. 

The selected exporting application receives, along with the instruction to export, 
information about the source file, destination file and translator to be used. 

Chapter 7. File System 39 



40 PenPoint os 



Chapter 8. Input and Handwriting Recognition 

Note ----------------------------------------------------~ 

IBM has replaced the standard handwriting recognition module supplied with 
Pen Point. the following IBM DLLs have been included in the IBM version of 
PenPoint: 

• XLATE.DLL 

• PLI,DLL 

• IBMSHAPE.DLL 

• SPELL.DLL 

• US Dictionary 

The corresponding text and handwriting classes have also been been 
replaced. 

The general concepts and techniques employed in handwriting recognition 
are described in this chapter. 

The primary input and pointing device in PenPoint is the pen, or stylus. Unlike a 
keyboard and mouse, that are one-way communication devices, the pen requires 
a continuous two-way communication process through which handwriting is first 
recognized, interpreted and acted upon by the operating system, then fed back 
to the user. The user interface will, whenever possible, provide the context to 
guide the gesture and handwriting recognition module through the appropriate 
recognition process. 

Applications do not pass text or numbers as input to the input subsystem. Input 
operations, called scribbles are passed to the application's user interface code 
that deter,mines whether and how to translate the scribble, including the context 
within which the scribble should be translated. The location of a gesture 
determines its intended meaning; for example, depending on where a circular 
gesture is made, it will be interpreted differently: 

• In text input the gesture "0" represents the alphabetic character "0" 

• A circle drawn over text issues the command to edit the selected text 

• A circle drawn in a graphics document represents a circle. 

An operation is triggered by a pen action and subsequent processes are 
determined by the window context in which the pen gesture was made. The 
scribble is passed to the user interface owning the window that controls the 
translation. The application controls the translation by passing the scribble and 
control parameters (window context) to the handwriting recognition (HWX) 
module of the input subsystem. The input subsystem passes the recognition 
results back to the user interface, where the user may view the results of the 
operation. 

While the pen must be able to dribble ink anywhere on the tablet, the system 
must not only support recognition, but also rapidly repaint the tablet. 

(C) Copyright IBM Corp. 1993 41 



8.1 Pen Input Terminology 

8.1.1 Stroke 

8.1.2 Scribbles 

8.1.3 Dribbling 

The terminology used in pen-based computing is unique to this environment and 
some description is necessary: 

A stroke is both a pen action" that leads to the appearance of ink on the tablet, 
and a data structure containing information about the action. Collections of 
related strokes are called scribbles; scribbles are also data structures that can 
be stored and manipulated. 

Scribbles that have a meaning in a particular context may be gestures, 
characters, or shapes. Scribbles are interpreted by the application, consistent 
with the Pen Point User Interface Style Guide recommendations. 

Dribbling is the appearance of "ink" on the tablet as the user moves the pen 
across the screen. 

8.1.4 Input Focus 
Input focus refers to where input from the keyboard will be directed. Keyboard 
strokes are always sent to the current window selection. Gestures on the other 
hand always apply to the data directly beneath where they are made. 

8.2 Optimizing Pen Input 

42 PenPoint as 

Direct input via pen strokes presents a number of challenges in terms of 
optimizing the performance of this form of input: 

• Eliminating flicker and slow response when processing pen input 

• Managing dribbles and windows in the user interface 

• Providing a level of flexibility in handwriting recognition 

The pen is an input mechanism; when dragged across the display, this 
movement must be "echoed" by the ink that traces the pen's path. As soon as 
the pen leaves the screen, the ink must be passed to the user interface and 
erased from the screen. If the echoed "ink" was displayed on the screen directly, 
screen flicker would result from the screen repaint process. 

Pen Point's window system maintains a global, screen wide display plane, called 
an Acetate layer, where the ink is dribbled and strokes are collected into 
scribbles. The operating system ignores intermediate movements of the pen 
between the time a scribble is started and the time it ends. The data points are 
collected into a scribble data structure. The ink on the acetate layer can be 
erased without analyzing the effect of such an erasure, or refreshing the 
underlying display. 

Ink must be confined by the windowing system to the window in which it 
originates. While the windowing system contains/clips display activities within a 
window's boundaries, the ink must be allowed to flow wherever the pen moves, 



to permit writing input a little larger than the size of the input field and gestures 
that might overlap boundaries. 

Pen scribbles are processed to the owning window as an initial step. While the 
acetate layer displays the dribbles, the internal stroke and scribble data objects 
are generated from sampling points. The system passes the scribble data to the 
application when the acetate layer is erased. Strokes drawn outside the window 
boundaries are echoed back to the user; they are not incorporated in the 
sampling points. 

PenPoint's handwriting recognition subsystem is totally replaceable to permit the 
inclusion of new technologies and to accommodate the Cyrillic and Kanji 
alphabets. 

8.3 Handwriting Translation - Concepts 
The input subsystem must generate input messages for all pen activity on the 
screen. This input is grouped together into scribbles, the scribbles are passed to 
a Handwriting Recognition subsystem (HWX) for translation into either text 
characters, or command gestures. 

8.3.1 Characteristics of an HWX Subsystem 
Each implemented HWX sUbsystem should include the following elements: 

• Recognize both upper and lowercase characters, numerals, symbols and 
punctuation. 

• Support both "boxed" (one character per box), and "lined" (characters written 
next to each other on the same line) handwriting. 

• Operate in real time based on the clock speed of the processor complex in 
the hardware. 

• The HWX subsystem plus a dictionary executes directly from memory and 
must be both efficient and compact to avoid excessive memory consumption. 

• The HWX subsystem must achieve a high level of translation accuracy, 
supporting multiple users with minimum "training". 

• Tolerate handwriting inconsistencies by the same user. 

• Support non-unique character forms, that is, context sensitive character 
recognition, distinguishing between the character "a" and a numeric "0". 

• Access context sensitive translation aids provided by applications. 

• Run in background mode. 

In essence strokes are received and examined by the HWX subsystem, character 
recognition is performed by comparing character shapes with a set of character 
prototypes. New prototypes are added by "teaching" the HWX subsystem to 
recognize unique styles in shaping the characters, through the handwriting 
training sessions provided with the subsystem. 

Chapter 8. Input and Handwriting Recognition 43 



8.3.2 Input Processing Concepts 

44 Pen Poi nt OS 

Pen input is generally processed in the following sequence: 

1. The input subsystem notifies the application of a pen event (the stylus tip has 
touched the screen, or some form of stroke has been made). 

2. The input subsystem will analyze the application's window data structure, 
determining an appropriate response, such as echoing the ink on the acetate 
layer or not. 

3. Once the event has completed, which is determined by a combination of time 
and distance thresholds, the input subsystem passes the resulting scribble to 
the application. 

4. The application determines what to do with the scribble; it may be stored or 
translated. 

5. If translation is required, the application packages the scribble with control 
parameters that describe the context in which the scribble is to be translated 
and requests translation. 

6. The translation process results in a ranked list of translations that are 
passed back to the application. The application determines from the list what 
should be displayed to the user. 



Input & Handwriting Recognition 

INPUT EVENT GENERATION 

(Ink echo'ed on Acetate Plane) 

t 
INPUT EVENT ROUTING & FILTERING 

(recording) 

+ 
SCRIBBLES 

(Collect events & display) 

t 
I TRANSLATE I 

+ 
RESULTS 

(Delete scribble & clear display) 

Figure 9. The Input Processing Pipeline 

8.3.3 Application - HWX Dialog 
Pen Point applications, not the operating system, control raw input. The 
application may process the input directly, or via APls pass the input to the HWX 
subsystem. These APls are a feature of Pen Point and its Context Management 
Subsystem, therefore the same dialog will be supported even if a new HWX 
subsystem is integrated into the operating system. 

Applications can provide the following information to the HWX subsystem to aid 
in the recognition process: 

• Choice of input, the application user interface (UI) may be boxed input or line 
input. Using only one, instead of both of these input approaches within a 
document facilitates translation. 

• Choice of context rules which aid the translation process: 

- Spelling dictionary 

- List of acceptable characters 

- List of acceptable words 

Chapter 8. Input and Handwriting Recognition 45 



46 PenPoint as 

Templates 

Punctuation rules 

• Level of influence that context aids and rules should have in the recognition 
process: 

Enable 

Propose 

Veto 

Coerce 

• Choice of post-processing aids: 

Spelling correction 

Case correction 

Space correction 

• List of acceptable gestures to aid in gesture recognition 

• Choice of where to send strokes, the gesture recognition subsystem, or the 
handwriting translation subsystem 

Pen Point applications can also manipulate strokes independently of the 
handwriting recognition system. The application can: 

• Filter the strokes before sending them to the recognition subsystem 

• Analyze and/or recognize strokes 

• Perform post-processing on the output from the recognition subsystem 

These functions may be performed in any combination; it is these functions in a 
graphics application that determine whether a circle should represent either a 
gesture, the character "0", or a circular drawing. 

The HWX subsystem can also provide the application with information to assist 
the application in its interpretation of input: 

• List of possible characters for single character input 

• List of possible words for word input 

• Size, boundary information and hot points for gestures 



Chapter 9. The Windowing System 

Windows are the most visible component of Pen Point. In user terms, a window is 
a document frame, the rectangular border, document title, scroll bars and menu 
surrounding a document. In application development terms, a window is a 
rectangular region of the screen with a capability for customized display and 
input behaviors. The document frame uses one or more windows. 

Every window has a defined relationship with all other windows in terms of: 

• Position 

• Overlap border 

• Transparency 

Most pen activity, and all text display, occurs in a window and windows can 
execute the following types of operations: 

• Input and detection 

• Painting and repainting 

• Obscuring that is, overlapping windows 

• Clipping 

9.1 Working with Windows 
Windows include multiple coordinate systems, clipping and protection, and are 
integrated with the input system. All pen input events are automatically directed 
to the appropriate window. 

Windows can contain embedded windows that may belong to other applications. 
Pen Point structures windows into a tree hierarchy, described as a parent-child 
relationship, beginning at the root window that corresponds to the physical 
screen. A child window is always clipped to the parent window and is never 
visible unless the parent window is visible. 

A document frame consists of many components, each of which is at least one 
window. Within an application, there may be several windows, each of which 
uses different elements of a typical window. 

~ Copyright IBM Corp. 1993 47 



48 PenPoint os 

/ 

PenPoint Window & Components 

Close Corner 
// 

;/ 
Document 

Application Title 

Title Line 
I , 

Insert 

< 1 > 
", ~ 

/~ I Edill 
Page Scroll 

.. 
Undo 

Menu Bar Select All Scrollbar ... 

t .. 
Options 

Move 

Copy 

Body of Document ~ 
Pull·Down Menu 

Cork Margin Resize Handles 

/// 

~/ ~/ '~ 
.J -

Figure 10. A PenPoint Window 

Windows are normally thought of in relation to a display; however Pen Point 
window trees can be rooted to any image device and can be used to create 
virtual, in-memory displays. This means that window trees can be rooted on 
printing devices. The printed image is constructed in memory as a window tree 
with graphics in each window. The entire page image is then sent to the printer. 

New windows are created by providing the operating system with the following 
information: 

• The new window's parent or device 

• The size and location relative to the parent window 

• Flag settings that determine the layout, clipping and repainting 
characteristics of the window, together with what kind of input may be 
received 



9.1.1 Displaying Windows 
A child window is always clipped to the parent window and is never visible 
unless the parent window is visible. This is done in accordance with the 
following principles: 

• Child windows are always placed on top of parent windows. 

• Drawing in a child window is always clipped by the parent. 

Pen Point requires this consistent window hierarchy to provide effective window 
management; for example, if a window is inserted into a hierarchy and then 
removed (closed by a user), an underlying window may be uncovered. This now 
unobscured window must be repainted. In order to avoid the time delays 
inherent in repainting windows, each time a window is inserted into the 
hierarchy, it creates a copy of the physical screen region beneath the screen 
area where it will be displayed. When the window is closed, Pen Point simply 
copies the stored bit image to the screen. 

This concept in Pen Point means that the application specifies the contents of a 
window and the appearance of the window. Pen Point manages the positioning of 
all child windows. 

Parent window design can adopt one of three approaches in positioning child 
windows: 

1. Permissive. The parent window is set up so that child windows can display 
themselves anywhere, even completely covering the parent window. 

2. Strict. The parent window intercepts and can veto all messages to its child 
windows that could affect layout. 

3. Flexible. The parent window will attempt to accommodate child window 
layout requests, but will override them to avoid layout conflicts that the 
parent window has been designed to prevent. 

When the user turns a page in the Notebook, or closes a floating window, the 
parent window files the state and contents of the child windows. 

At any given time, an application's display state reflects the results of recent 
user commands and actions; therefore when an application is closed it files the 
current window hierarchy. 

Pen Point keeps track of each application's window environment: 

• Orientation 

• Pixel size 

• Default system font 

When the application is subsequently re-started this window hierarchy is 
retrieved and the application uses the window environmental information to 
restore the window hierarchy to its previous display state. 

Chapter 9. The Windowing System 49 



50 Pen Poi nt as 



Chapter 10. Service Manager 

A service may be defined as a program that enables applications to 
communicate with a hardware device, or to access a software function. 
(Software functions do not require user intervention and typically run as a 
background task.) 

Pen Point unifies each of these services under a Service Manager that 
generalizes common application operations such as finding, observing, binding 
to and opening services. These operations work in an environment in which 
services may be dynamically installed and deinstalled and in which the 
underlying hardware connections can be made and broken at will. Examples of 
services include: 

• Device drivers 

• In/Out Box 

• Network protocol stacks 

• Databases 

The Service Manager provides a common architecture and implementation to 
allow a variety of services to be accessed by applications and adopts a layered 
approach. The result is a class of services that do not represent hardware 
devices; for example, the most basic services are those that communicate with a 
hardware device, such as a serial port. Pen Point's Service Manager generalizes 
such operations by providing a software service that accesses the hardware 
service (target service), adding function and abstraction on top of the targeted 
service. This provides the layered approach. 

Services may target other services to any depth and the targeting relationships 
are viewed as pipelining. Pipelining is the vehicle used to implement the layered 
approach. For example, an application might open a service designed to interact 
with a bulletin board and via pipelining, the serial port is accessed. 

The Service Manager consists of two classes: 

1. The class that defines the service 

2. The class that provides access to the service 

Services in turn may belong to one or more service managers. Internally these 
services are implemented as non-application dynamic link libraries (OLLs). A 
single Service Manager can manage a group of services, for example, a number 
of serial ports. 

10.1 Standard Service Managers 
A number of predefined service managers are provided by Pen Point: 

• Apple-Talk** devices 

• Serial devices 

• Printer devices 

• Printers 

• Send services - facsimiles and electronic mail 

~ Copyright IBM Corp. 1993 51 



• Transport handlers - component of the networking API 

• Link handlers - component of the networking API 

The following basic functions are provided by these service managers: 

• Locating a particular service (specified printer, or serial port) 

• Binding to the service - allowing the client to receive notification messages 
from the service 

• Establishing exclusive ownership of the service 

• Opening the service for data transfer 

• Closing the service 

10.2 Installing and Using Services 
Services are dynamically installable and deinstallable, by a user, application, or 
another service. Only one copy of the service is installed. The operating system 
maintains a record of the number of clients requesting installation of a service, 
the service is only deinstalled when the last client is deinstalled. 

The application must be bound to the service before it can be used, this is 
performed by the application sending a message to the appropriate Service 
Manager. Once the connection has been established, the service adds the 
application to the list of objects to be notified upon a change in status. The 
application therefore is constantly aware of the availability of the service. 

The Service Manager supports multiple clients sharing the same service. Shared 
access is supported where the service can support it and is arbitrated where 
services cannot be simultaneously accessed. 

In the case of exclusive ownership, the client must gain the ownership rights to 
the service before it can be used, for example, a physical serial port. The 
Service Manager provides protocols for clients to transfer ownership 
cooperatively. 

As with all installable Pen Point objects, services can be deactivated, or 
deinstalled whenever they are not in use. This destroys all the service's objects 
and removes all of the code. 

10.3 Connecting and Disconnecting Services 

52 PenPoint os 

The connection status (presence or absence of a physical hardware connection), 
is managed by the Service Manager. Non-hardware services automatically 
change their connection status when the target service status changes. 
Therefore the connection status propagates upwards from the hardware to all 
the services that are bound to that hardware. 



Service Managers 

I File System Svc Mngr I 
I DOS FAT I Printers Svc Mngr 

HP Laserjet Epson 

I Network Tpt Svc Mngr I 

Prt Devices Svc Mngr 

N/Ptr Lpt1 Com1 

I Machine Interface Layer I 

I Hardware] 

Figure 11 .. Schematic of PenPoint Service Managers 

Chapter 10. Service Manager 53 



54 PenPoint os 



Chapter 11. Connectivity 

The operating system is designed for mobile connectivity. Connectivity is 
provided via three layers: 

• Remote file systems 

• Transport interfaces 

• Link interfaces 

Deferred connectivity is supported via the In/Out Box interfaces, which provide 
mobility. 

Connectivity is accomplished via direct serial connection, or via serial 
connection between modems. 

11.1 Remote File System 
All documents in the Notebook are stored in the file system. Movement and 
access of documents are performed through the file system and these 
operations may extend to remote environments. Pen Point file systems may 
reside on the pen-based systems, locally attached disks and on remote devices, 
linked via a network. 

The remote file system is accessed via APls running under Pen Point using 
networking transport interfaces to communicate with the remote file system. The 
remote file system behaves in the same manner as the local file system and is 
transparent to the user because a single Notebook Table of Contents is used to 
access documents regardless of their location. 

Remote printing employs a similar concept to that of remote file systems. The 
remote printing interface removes the need for clients to know the exact location 
of the printer. 

Program-to-program communication used to establish a live connection, is 
supported via remote procedure calls; for example, a Pen Point system may send 
SQL queries to another system and receive data back. 

The principles involved in connectivity include: 

~ Copyright IBM Corp. 1993 

• Local and remote file systems and volume connectivity, enabling users to 
access documents on local and remote systems 

• The facilities offered by the Service Manager enabling users to connect and 
disconnect to devices and remote systems on the fly 

• The general purpose document import/export architecture, including file 
format conversion 

• In/Out Box support permitting deferred I/O 

55 



11.2 Transport Layer 

11.3 Link Layer 

The transport API provides access to layers three and four in the standard Open 
Systems Interface (OSI) network model. 

Link protocols are the software layer closest to the physical networking 
hardware, residing at Layer 2 of the 051 model. 

OSI Network Model 

Application Layer 

7 - Application Program 

- APls 

6 Presentation Layer I 

51 Session Layer I 

41 Transport Layer 1 

31 Network Layer 

21 Data Link Layer 

1 I Physical Layer 

Figure 12. Sven Layer OSI Model 

11.4 Send User Interface 

56 PenPoint os 

Standard application windows provide a Send command on every document's 
Document menu. The command invokes the Send User Interface, placing the 
documents in the Out Box. This is the standard user interface for addressing 
documents, regardless of which transfer protocol is used. 



The interface is built around a Send List that in effect, is a database, containing 
address information and installed transmission services. 

11.5 In/Out Boxes 
The In/Out Boxes provide support for deferred data transfer and work with all 
data in PenPoint. 

The In/Out Boxes are specialized floating notebooks that act as queues for 
incoming and outgoing documents. They do not perform any transfer operation, 
but do provide a common user interface and architecture in which application 
specific transfer services are grouped. 

The user interface component is a section in the In/Out Boxes Notebook, termed 
a service section. Service sections equate to transfer services, for example, 
printing, electronic mail and facsimile applications. Service sections queue 
documents awaiting a transfer operation. The transfer application is not aware 
that document queuing is occurring; this happens at a file system level using a 
copy of the document. 

The user need not be aware of whether a service is available or not, the Send or 
Print commands will cause a copy of the document to be placed in the 
appropriate Out Box service section. As soon as the connection is available the 
transfer agent (application), is notified of the connection and the documents are 
processed. 

11.6 PenCentral - PenTOPS 
PenCentral ** is communications software, installed on a PS/2* that 
communicates with with PenTOPS** installed on a Pen Point system. 

PenCentral is a DOS application requiring at least 512KB memory and a 
minimum of one parallel, or serial port. Serial connection is via a null modem 
serial cable. Parallel connection is via a parallel cable. If a 9-pin mini-parallel 
port is not available, a converter pigtail is used to convert a 25-pin port. 

PenCentral supports Hayes** compatible dumb modems 

PenCentral is compatible with IBM OS/2 LAN Server 2.0 (Entry and Advanced) 
and Novell Netware**. 

Several Pen Point systems may be attached to a single PS/2, but only one 
pen-based system may access the PS/2 at a time. 

11.6.1 PenCentral Files 
PenCentral is comprised of the following files: 

• PENTALK.EXE - AppleTalk drivers 

• PENSERV.EXE - Server code 

• PENMENU.EXE - User interface code 

The following files that store directory information are created when PenCentral 
is used: 

Chapter 11. Connectivity 57 



• PL.DID - Created in the root directory 

• DRIVEA.DID - Created in the PenCentral directory 

PenCentral creates a temporary file PENMENU.PS$ at startup, in the PenCentral 
directory. The file is deleted upon exiting the application. 

When a document is printed through PenCentral spool files are created in the 
spool subdirectory of PenCentral. 

Excluding spool files PenCentral requires a minimum 700KS of disk. 

11.6.2 Installation and Configuration 

58 PenPoint os 

Default installation stores the PenCentral files in C:~PCENTRAL. All of the 
PenCentral files must be located in a single directory as the application will not 
search a path for required files. 

The PenCentral Server Configuration is displayed upon completion of successful 
installation. The user may select serial, parallel and/or modem links to the 
Pen Point system. Shared (networked) printers may also be configured. 

On invocation, PenCentral displays an Activity Status Line indicating the PS/2 
port with the link that is being served. 

Users may query the PenCentral print queue, pause an active printer and delete 
print jobs. 

PS/2 drives that are available to PenCentral are termed Volumes. Volumes 
include: 

• Actual physical drives 

• RAM disks 

• Drives available via an installed network redirector 

• Drive created through the SUBST command 

The PenCentral configuration file, PENINFO.DAT, determines what information is 
presented in the configuration dialogs and is created during installation. The 
configuration file is divided into the following sections: 

• PenCentral server information: 

Number of configurable serial and parallel ports 

Last configurable disk drive 

PenCentral system directory 

Inactivity timeout value 

Diskette drive polling frequency 

• Modem configuration information 

• Volumes configuration: 

Type of drive (exclude, network, diskette, or hard disk) 

Network name of published drive 

Password for drive 

Directories in root to exclude 



- Readlwrite access for drive 

• Serial (COM) port configuration: 

Type of port (disabled, cable connect, printer, or modem) 

Interrupt number 

I/O base address 

Printer name 

Printer type ( network or local) 

Printer baud rate 

Printer parity 

Printer data bits 

Printer stop bits 

• Parallel (LPT) port configuration: 

Type of port 

Interrupt number 

1/0 base address 

Printer name 

Printer type (networked or local) 

The configuration file may be modified using any text editor. 

PenCentral under OS/2 ---------------------, 

PenCentrai may be installed in multiple Virtual DOS Machines (VDMs) under 
OS/2 2.0. CONFIG.SYS requires modification and the following statements 
must be removed/commented out: 

• DEVICE = C:\OS2\COM.SYS 

• DEVICE =C:\OS2\MDOS\VCOM.SYS 

• BASEDEV = C:\OS2\PRINT02.SYS 

The standard 05/2 driver VLPT.SYS is replaced by the PenCentral driver. The 
net result of these changes is that native OS/2 applications can no longer 
access the parallel and/or serial ports, which are now dedicated to 
PenCentral, a separate port per PenCentral VDM. 

The following services are available from PenCentral: 

• Reconfigure PenCentrai 

• Manage print jobs: 

View print jobs 

Start printing 

Pause printing 

Delete print jobs 

The PenCentral user cannot: 

Chapter 11. Connectivity 59 



11.6.3 PenTOPS 

60 PenPoint os 

• Copy or move files to/from the Pen Point system 

• Access or use files on the Pen Point system 

• Use devices locally attached to the Pen Point system 

PenTOPS is the client component running under Pen Point, permitting access to 
remote resources. Once a connection has been made, the Pen Point user can: 

• Access and use all volumes available to the attached PS/2: 

Access both the local PS/2 disks and network disks. 

Access data files. 

Use notebooks and documents. 

• Transfer files to/from the attached PS/2: 

Back up/Restore copies of Pen Point documents. 

Store both the Pen Point applications and documents. 

Export DOS format files for further processing by DOS applications. 

• Print documents on printers available to the attached PS/2. 

• Access diskette drives available to the attached PS/2. 

PenTOPS is preinstalled on the IBM ThinkPad*; to confirm installation: 

1. Select the Settings Notebook on the Bookshelf. 

2. Select Services in the Installed Software section. 

3. The PenTOPS listing is displayed. 

The Connections notebook is used to set up and modify network connections, 
disks and printers. This notebook is divided into two sections, Disks and Printers. 
Both sections contain a Network View and a Connected Page. 

The Connected pages are used to perform Pen Point tasks for disk or printer, 
either networked, or directly attached. 

The Network View pages display: 

• Network disks available 

• Contents of network disks 

• Connection to network disks 

• Available networked printers 

• Connection to networked printers 

Note ------------------------------------------------------~ 

• The Connections notebook does not open at a contents page. 

• There are no page numbers. 

• There are no contents pages for each section. 



2 
..................... 3 

Disks 

o Connected Cl Network Vie"" 

Printers 

Cl Connected Cl Network Vie"" 

_____ .J. 

? ~ll ~ eW .R~ ~i ~.Q, ~ 
Help Seltir.gs Conr.eclions Stationer), ,o:a,coessories KeYb·~rd Ir.bctl OUtbOH Notebook 

Figure 13. The Connections Notebook 

Chapter 11. Connectivity 61 



62 PenPoint os 



Chapter 12. Software Installation 

Pen Point is pre-installed on the IBM 2521 ThinkPad, but may be re-installed or 
refreshed at any stage. The operating system and applications are installed from 
an attached diskette drive, hard disk, or network disk connected to the IBM 2521 
ThinkPad. Applications include fonts, handwriting recognition modules and 
services. Services include device drivers for printers, plotters and modems, 
together with software for electronic mail and information services. 

Pen Point applications should automatically display the Instal/able Software 
Sheet, when connected to a disk. If the Installable Software Sheet is not 
displayed, either the Settings, or Connections Notebook may be used to install 
software. 

12.1 PenPoint Installation 

Note --------------------------------------------------~ 

Prior to installing the operating system, the IBM 2521 ThinkPad must be 
reset. (Refer to the reference manual provided with the hardware.) 

Check whether similar procedures apply if installing on OEM hardware. 

The following procedure should be used to install the operating system: 

1. Attach an external 3.5-inch diskette drive, minimum density 1.44MB to the 
pen-based system's hardware. 

2. Insert the Pen Point boot diskette and power on the hardware. 

3. If installing on an IBM 2521 ThinkPad, reset the hardware. 

4. Select Begin Hard Disk Installation. You will be prompted to format the hard 
disk. 

5. Once installation is complete, select Start PenPoint to start using the system. 

12.2 Automatic Software installation 
Note --------------------------------------------------~ 

All software installed on a Pen Point system is listed in the Settings Notebook. 

(C) Copyright IBM Corp. 1993 63 



64 PenPoint os 

OPen 

OF onts & Layout 

o Float & Zoom 

Installed Software 

OApplic:ation s 

aSelVices 

a Hand writing 

a Gestures 

Figure 14. The Settings Notebook 

CHime 

a80und 

a Power 

a Dictionaries 

a Fonts 

ClUser Profi les 

Most Pen Point software installs automatically when the application's installation 
diskette is inserted in the diskette drive. The Installable Software Sheet is 
displayed, providing a number of selectable options. 

Upon completion of the installation, the application is available for use. The 
application is placed in the Notebook Table of Contents and a new document 
may be created using this application. 

Use the following procedure for automatic software installation: 

1. Connect the PenPoint system to disk drive that contains the application to be 
installed 

2. The Installable Software Sheet is displayed 

3. Select the items to be installed. 



~l @) r 
.9,] Mir,iTeHt At-Hand 

0: 
::.£1 

.. ~.J --- Empty Bookshelf ---

Figure 15. The Instal/able Applications Software Sheet 

12.3 Manual Software Installation 
If an automatic application installer is not provided, software may be installed via 
the Settings, or Connections Notebooks. 

The Settings Notebook is used when: 

• Software preference settings are required. 

• Software is deinstalled. 

• Changes to software settings have been made. 

The Connections Notebook is used when: 

• Diskettes are to be formatted. 

• Printers are to be set up. 

• Files are to be transferred. 

• Network resources are required. 

12.3.1 Settings Notebook 
The Settings Notebook lists all the installed software within a number of 
categories: 

• Applications 

• Fonts 

Chapter 12. Software Installation 65 



• Services 

• Handwriting 

• Software preference settings 

r-·_ .... ·· ...... ·· .......... · .... ·· .. · ................ · .. _ .... ·· ...... · ............ · .... · .... · .... ·· ........ · .. ·· .. ·N·;~b~~~:; .. C;;·~t~~~ .... · ............ -.......... ·· ........ ·· .............................. · ........ ··_·· .... · .. ·_· .. · .. ·· .. · ...... :·;-·1 .... ~ .... ·'I 

~ Size 
eli: At-Hand 226,475 

81 At-Hand Graph Em 575 

eli: Ocrl\ 40..EB7 

8; MiniNote 25£65 

1511 S-8hot 10,673 

~i: Sys1ernl.J:g 25M4 

el:] Pen DIS,t-pp 7 ACB I 

~~-.w!.:~~~~r~6"«tff~~-- ; If! 
: .. ,1 ... ~ ..... ~.~.! if.i @j F .. 
Ci: MirliTellt At-Hand i I 
() j 
::.:~ 

.. ~j --- Empty Bookshelf ---

1~#AIiIW.<WAIiIW~#.w __ ~IIW#/_ M 

? .~ ~ DHjf~~J ~ 
Help S eitirlg s Sta fiorler, Accessories Ke.,.t oard Notebook 

Figure 16. The Installed Applications Notebook 

Use the following procedure to install software via the Settings Notebook: 

1. Attach an external diskette drive to the PenPoint system. 

2. Insert the software diskette. 

3. Select the Settings Notebook from the Bookshelf. 

4. Select the Applications page. 

S. Select Install. 

Note --------------------------------------------------------~ 

Fonts, services, personal dictionaries and preferences are installed in the 
same manner by selecting the appropriate notebook tab. 

12.3.2 Connections Notebook 

66 PenPoint os 

The Connections Notebook displays the disks connected to the Pen Point system. 

Use the following procedure to install software via the Connections Notebook: 

1. Select the Connections Notebook. 

2. ,Select the Disks Connected page. 



3. Select the appropriate disk icon. 

4. Select the View menu. 

5. Select the appropriate software category. 

r .. ·_· .... · .. ·_ ...... _ .... · ...... · ........ ·_ .. · .......................................... ·· ...... -............ i~·;;;t·~ .. b~~~:; .. o;~·t;~; ........................ · .......... · ........ ·· ............................................ -............ -.......... ; .. 1 .. ·~ .... .. 
! .................................................................................................................................................................................................................................................................................................................... .. 

! Document Edit Options View Create 
I::::'::::::'::::::::'::::::::::::::::::::::':: 

I Name ~ 

I ~ ~::'~HHHHHr:::=~='~~~==~'=== HHHH'H ~ 

I I p;~:~: :::=~:: 
i I ! l 

~ ,:.i; 

I 

I I I .~~~~~~~~~_~~~~~~~~~.J 

;.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--~--~ 

? .'\\ ~ [)ii .li~ .~i ~ & ~ 
Help Seltir.gs Conr.ec1\ons Stationery' f1.coessories Ke-yboard Ir.ba-: OUfbOH Notebook 

Figure 17. The Connections Notebook 

Chapter 12. Software Installation 67 



68 PenPoint os 



Chapter 13. Application Development 

This chapter describes the process and tools available to develop a PenPoint 
application. The following topics are covered: 

• Overview of object-oriented terminology 

• Pen Point Class Manager 

• Resources 

• Pen Point Software Developer's Kit (SDK) 

13.1 Object-Oriented Terminology and Techniques 
A Pen Point program employs functional units called objects. Objects 
communicate with each other by sending and receiving messages. The way in 
which the object responds to a message is determined by the class to which the 
object belongs. 

Classes are the mechanism by which objects are created and it is the class that 
contains the code that determines the response of an object to a message. The 
code that an object executes in response to the message is called a message 
handler. 

When an object is created by a class, that object is an instance of the class. 
Classes moreover may inherit behavior from other classes and subclasses 
inherit the behavior from all of their ancestors. 

When an object receives a message, the class that created the object handles 
the message; the class may pass the message all the way up the ancestral 
inheritance hierarchy to determine the appropriate object behavior. 

Pen Point provides a wide range of built-in classes that generate the instances an 
application requires: 

• Windows 

• Scrollbars 

• Lists 

• Data views 

• Text objects 

These functions, macros and support classes used to implement the Pen Point 
object model, are collectively known as the Class Manager. 

PenPoint's class hierarchy consists of approximately 180 classes, divided into 6 
functional entities: 

~ Copyright IBM Corp. 1993 

• Application classes 

• Installation classes 

• Windows and User Interface (UI) Toolkit Control classes 

• Remote Interfaces and File System classes 

It Text and Handwriting classes 

69 



• Miscellaneous classes 

13.1.1 Application Classes 
Pen Point's Application Framework (refer Chapter 4, "Application Framework" on 
page 15), provides a methodology for building applications that ensures that all 
applications work in a similar manner. The Application Framework implements 
an application class hierarchy that includes the superclass of all application 
classes, elsApp and the Class Manager elselass itself. 

13.1.2 Installation Classes 
The installation classes are used to implement behavior for managing the 
installation of system resources: 

• Fonts 

• Handwriting 

• Applications 

• Services 

• User preferences 

13.1.3 Windows and UI Toolkit Control Classes 
The largest of the Pen Point class hierarchies are dedicated to the 
implementation and control of the Notebook User Interface (NUl). The windows 
class, elsWin is included, which is the superclass to all displayable items in the 
NUL 

13.1.4 Remote Interfaces and File System Classes 
This class hierarchy provides support for network-based computing, file 
management, hardcopy printing and fax/modem support. 

13.1.5 Text and Handwriting Classes 

70 PenPoint os 

This class hierarchy provides support for managing input to applications, 
including support for gestures, scribbles, keys and spelling. 

N~e --------------------------------------------------~ 

The following classes have been replaced in the Pen Point IBM version: 

• clsXGesture 

• clsXTeach 

• clsXText 

- clsXTract 

• clsPDict 

• clsProof 

• clsSpeliManager 



13.1.6 Miscellaneous Classes 
This hierarchy of classes provides support for entities such as the battery 
monitor, timer and string manager. 

13.2 Class Manager 

Note ------------------------------------------------------~ 

Pen Point does not support current object-oriented programming languages, 
but implements a set of function calls and macros for managing objects in 
the Pen Point environment based on ANSI-C. 

Current object-oriented languages tend to have been designed to support a 
single application on a disk-based, procedural operating system. 

PenPoint's Class Manager is a collection of functions, macros and support 
classes used to implement the Pen Point object model. The Class Manager is an 
integral part of the kernel which means that many of the functional elements of 
an application are extensions of the facilities provided by the operating system. 

The Class Manager provides the object functionality to: 

• Create classes and class hierarchies. 

• Create or destroy objects or class instances. 

• Inherit functionality from other objects. 

• Define and send messages between objects. 

PenPoint has two root classes in its class hierarchy. Objects descend from 
clsObject. Classes descend from clsClass. clsClass is a meta-class, and for each 
class in the system there is a corresponding object that stores information about 
the class, including the code that implements its methods and implements class 
level operations. Objects encapsulate data and behavior, the code (behavior) is 
not duplicated with every object instance, because clsClass supports classes as 
a type of object that provides for shared behavior and information for a type, or 
class of objects. 

All Pen Point application programming interfaces (A Pis) are based on Class 
Manager messages and objects. The implications of adopting this approach are 
that system code may be reused and modified at many levels, applications are 
generally compact and provide a consistent user interface. 

13.2.1 Unique Identifiers 
A fundamental process of any program is to reference some entity. These 
entities include references to memory locations, using pOinters, and files, using 
names. The entities are either dynamic or static. 

Dynamic references are either created, then passed into application code, or 
received from other code; these references are generally pointers to memory 
addresses. 

Static references are placed into the code at compile time. If the reference is a 
memory address, the code will not be portable. If the reference is expressed as 
a string, uniqueness cannot be guaranteed and conflicts may occur. 

Chapter 13. Application Development 71 



72 PenPoint os 

Pen Point unifies dynamic and static references into a single naming convention -
Unique Identifiers (UIDs). 

The UID is a unique 32-bit identifier, used to identify and keep track of all classes 
and objects. The UIDs are not data pointers; they contain encoded information 
indicating whether the object referenced is well known or dynamic and include 
an administered value from GO&astersik. &astersik. Corporation. 

13.2.1.1 Well Known UIDs 
Well known UIDs identify classes and are permanently defined at compile time. 
The assigned UID must be unique to avoid conflicts when applications are 
embedded by other applications. There are a number of types of well known 
UIDs in addition to the ones used for objects. These UIDs include: 

• Management of unique values for status information 

• Message identifiers 

• Tags 

Tags are 32-bit values used to identify well known constants within an 
application including: 

• Option sheets 

• Option cards 

• Quick Help strings 

Well known UIDs contain flags that specify the scope of the UID. Global UIDs are 
known to all tasks in PenPoint. All processes in the system are allowed to 
access the same object using the same identifier. 

A process-global well-known UID allows each process to reference different 
objects with a single identifier. This is useful for objects that exist in each 
process, but the object must have the same identifier. For example, WorkingDir 
is a process-global well-known UID identifying the process "working directory". 
A process that refers to this UID will reference its own working directory object. 
Other processes that refer to this UID reference other working directory objects. 

A private well-known UID is used by the application developer; a component 
used only by that application is identified as a private well-known identifier. 

13.2.1.2 Dynamic UIDs 
Dynamic UIDs identify instances created by the application and are created by 
the Class Manager at run time. All dynamic UIDs have global scope. After the 
object referenced by the dynamic UID is released, that UID may refer to a 
different dynamic object at a later time. 

UIDs within filed data are also supported, these UIDs are persistent, that is, 
unique across all time and space. This is accomplished through the use of 
Universal UIDs (UUIDs). UUIDs include a unique machine 10 from the hardware 
on which PenPoint is running. UUIDs may be used to point to Pen Point objects 
even when filed to external media and then loaded back into Pen Point. 



13.2.2 Class Manager - Programming Tasks 
During application development, the following programming tasks typically 
involve the Class Manager: 

• Setting up message arguments 

• Sending messages 

• Creating instances 

• Controlling object access and capabilities 

• Creating new classes 

• Setting up observer objects 

13.2.2.1 Message Arguments 
Sending messages to objects is the primary mechanism for control and data flow 
in Pen Point. Messages are sent to instruct instances to perform some form of 
operation, for example, instruct a table to send back data from a specified 
row/column address. 

All processing in Pen Point takes places as a result of one object sending 
another object a message and responding to the message. The Class Manager 
provides a set of C functions and macros that send messages to objects. These 
functions take arguments that describe the target object, the message being sent 
and a pointer to a structure that may contain additional argument data. 

Like objects, messages are identified by 32-bit constants. Message identifiers 
share the administered portion of the UID of the class that defines the message. 
Each message requires a specific argument structure, and the message 
description in the header files specifies the argument structure for each 
message. 

Objects respond to messages in one of two ways: 

1. Return a status token indicating the success or failure of the operation 
requested by the message. 

2. Return data in the argument structure supplied by the message sender. 

13.2.2.2 Sending Messages 
Messages are sent to objects to elicit some form of behavior from the receiving 
object. The behavior is either part of the object's class definition, or contained in 
a parent class. The application need not know where the behavior is defined, 
merely that the receiving object is able to respond to a specific message. 

Pen Point is a multi-tasking operating system and therefore supports a number of 
different tasks, each task getting a share of CPU cycles. Every active document 
is a separate task. Embedded tasks run in separate tasks from their parent 
documents. The Class Manager provides separate functions for synchronous 
processing or asynchronous processing. 

In synchronous processing, objects can only send messages to objects that 
reside in the same application instance; all processing stops until the receiving 
obfct responds. 

In asynchronous (multitasking) processing, the caller and responder execute 
concurrently because the processes have separate memory address spaces and 

Chapter 13. Application Development 73 



74 PenPoint os 

the Class Manager will copy the argument data structures from the caller's task 
space into the address space of the called task. 

13.2.2.3 Creating New Instances 
Object creation (an instance of a class) is a two-step process involving the 
initialization of a default data structure and then the creation of the object. 

Each class in Pen Point defines the structure that contains the information 
necessary to initialize a new object. The process may be summarized as follows: 

1. Send the class to be instantiated msgNewDefaults, passing a pointer to an 
appropriate argument structure. 

2. The class initializes the argument structure appropriate for the specified 
class. 

3. Default fields may be overridden. 

4. Send msgNew to the class; instantiation of the object occurs in this step. 

13.2.2.4 Object Access and Capability 
A major challenge in an object-oriented .operating system is to protect objects 
from unintentional alteration. PenPoint implements this protection through the 
use of keys and locks. All objects can have an associated key that limits access 
to specific operations, to the applications that have the key. Messages that 
request object operations such as freeing, or removing the object require the 
use of a key, unless that object has specific capability flags set to permit the 
operation without a key. 

Capability flags include: 

• A sending object may change the class of the receiving object. 

• Free or remove an object. 

• Designate the object as the ancestor for a new class. 

• Classify an object as observable and control the messages this object may 
respond to. 

Capability flags can be changed dynamically with the appropriate key. 

13.2.2.5 Class Creation 
New classes are created when an application requires a behavior not available 
within an existing Pen Point class. Each PenPoint application must have its own 
subclass within the Application Class, in order to run. 

The following steps are used to create a new class: 

• Provide a set of functions that defines the behavior for the new class. This 
behavior must distinguish the new class from other classes. 

• Provide a translation mechanism, called a Method Table that translates a 
message into a UID that is used to bind the behavior request (message) with 
the. implementer. 

• Provide the function to send a message to the Class Manager to add the new 
class. Consumers of this class use this function to register the class with the 
Class Manager when the class is used. 

• Provide an interface file containing message definitions required by 
consumers of the class. 



Note -----------------------------------------------------, 

The Class Manager maintains a method table for each class, in which 
message UIDs index into the table containing the memory addresses of the 
associated C routine. 

During application de'Jelopment, the table is created that associates each 
message's UID with a C function call. The table is compiled using the Method 
Table Compiler provided with the PenPoint SDK. At run time the Class 
Manager binds the class to its method table. 

13.2.3 Observer Objects 
A unique capability of all Pen Point objects is the ability of an object to register 
itself as an observer of another object that is capable of being observed. 

An observer is notified of any change in the state of an observed object. 

The Observer Notification Architecture is the foundation of automatic notifications 
and updates in Pen Point, for example, automatically notifying applications that a 
new service has been installed. 

Note -----------------------------------------------------, 

There are two ways of establishing whether an event has occurred in a 
system, polling and notification. 

Polling requires that the program or user must periodically inquire whether 
an event has occurred, such as querying whether a diskette has been 
inserted in a diskette drive. 

13.3 Resources and Resource Management 
A PenPoint resource is defined as a collection of data identified with aUlD. 
Programs use resources to maintain information such as string tables, persistent 
objects, and component descriptions for option sheets. 

Resources are special files managed by a Resource Manager that is used to 
create, find, access and modify resource files. 

13.3.1 Resource Types 
Pen Point has two types of resources, objects and data. A resource file may 
contain both objects and data resources. Different messages are used to read 
and write the two types of resources. 

An object resource contains information needed to create or restore a Pen Point 
object. The objects and all its ancestor classes must be able to unite and read 
the object's instance data to and from a resource file. 

Every class created must be able to read and write its object instance data in 
response to Class Manager messages. The Application Framework maintains an 
instance data resource file for each application instance or document. 

Chapter 13. Application Development 75 



Each resource file has a unique 64-bit resource 10 that is used by the application 
to locate the resource. 

Data resources contain information saved as a stream of bytes and are generally 
used for default Option Sheet settings and default prompt strings. These objects 
are then portable and facilitate internationalization of the code. 

All resources are read and written through resource agents. Pen Point includes 
a number of resource agents designed to manage specific objects and data 
structures, unpack and interpret the formats of the data. 

Resources may be created at program compile-time, or at run time. Static 
resources, created at compile time, change infrequently and can be fully defined 
during application development. This resource is part of the application and not 
part of the document and defines the non-code part of the application such as 
the user interface elements and icons. Static resources are identified with a 
pre-defined 10 and declared at compile-time. The application resources reside in 
a file called App.Res. 

Dynamic resources are only created at run time. these resources are stored in 
resource files created through the Resource Manager. Dynamic resources are 
identified with resource IDs allocated at run time. 

The Application Framework provides a default file for dynamically created 
resources called DocState.Res, that contains all the objects belonging to a 
particular document (application instance). 

13.3.2 Resource Location 

76 PenPoint os 

The Resource Manager uses Resource Lists to locate a resource within a given 
file. This procedure insulates the application from having to know the file in 
which the resource is located and the location of the resource within the file. 

Entries in a Resource File List can be resource file handles, or other Resource 
File Lists. When a message is sent to a list object, the message is sent to each 
object in the list until the message returns a value indicating that the instruction 
has been carried out. 

Every document class has a default Resource File List that contains the following 
elements: 

• The PenPoint system resource file - PenPoint.Res. 

• The application resource file - App.Res. This file is common to all 
application instances. 

• The document resource file - Doc.Res. This file is unique to one instance of 
the application. 

Pen Point applications have flexibility in providing and sharing resources in that 
an application can use system resources such as standard fonts and error 
messages, without having to provide these resources in the application resource 
file. The application may override system resources, or create application wide 
resources, placing such resources in the application resource file. Applications 
can even allow the user to attach specific versions of resources to individual 
documents. 



13.3.3 Resource File Formats 
The Resource Manager supports the notion of maintaining many resources in a 
single file, laid out as a single data stream. The operating system keeps track of 
where each resource begins and the length of the record, preventing accidental 
overwrites. 

The Resource Manager permits non-linear retrieval of resources. Querying the 
location of a resource results in a message being returned indicating the file 
name and the location of the specified resource in that file; this information is 
then used to retrieve the resource. 

13.4 Software Developer's Kit SDK 
The SDK contains the documentation and software required to build Pen Point 
applications and consists of: 

• Application developer's guides 

• Architectural reference describing all classes and messages in the Pen Point 
class library 

• The API reference that is a reproduction of all header files, formal messages 
and parameter definitions and data structures 

• The header and include files 

• An object-aware, source code debugger 

• A database-driven class browser 

• Pen Point User Interface Style Guide 

• A selection of prototyping tools 

• An application development environment version of Pen Point that runs under 
DOS on a PC 

Pen Point development requires an ANSI C compiler. The Class Manager 
provides the object functionality and because the Class Manager is a 
subsysytem of the operating system rather than a language extension, this 
functionality is available via standard C syntax. 

The debugging tools allow the programmer to set and monitor debug flags in a 
separate window in the PC-based development environment. The source level 
symbolic debugger permits: 

• clsMgr objects and messages to be examined 

• Break points to be set in the source code 

• Multiple thread management 

The application development platform for Pen Point is an 80386 processor 
complex, DOS-based PC with a VGA display and a digitizing tablet with stylus to 
simulate pen activity. 

The original source code is created and tested on the PC. The tested application 
is downloaded to the Pen Point system either via diskette, or via 
PenCentrallPenTOPS. If a communications link has been established between 
the Pen Point system and the development PC, the debugger will function in a 

Chapter 13. Application Development 77 



remote debugging mode; the the debugger user interface and symbol table 
reside on the PC, while the application on the Pen Point system is debugged. 

13.5 User Interface Toolkit UI 
The UI Toolkit is the largest API in the SDK and provides the ability to manage 
the user interface through layout windows via behavior supplied in 
clsTableLayout and clsCustomLayout. Twelve types of controls are provided, 
each of which is represented by a class with related behaviors. 

The classes that layout the windows form the user interface elements such as 
buttons, tabs, handwriting fields, labels, icons, menus, frames and option sheets. 
Elements are called UI components; UI components send messages among 
themselves and to their clients when the user interacts with the UI components. 

The UI Toolkit implements the middle layer of the appearance and functionality 
of the user interface architecture in Pen Point. The UI Toolkit calls on the 
Windows and Graphics subsystem to draw the windows. The Application 
Framework and the internal classes implementing the NUl use UI Toolkit objects. 

The basic principle invovled in the Pen Point user interface is that all of the 
elements that appear in a window are themselves windows. Therefore all the UI 
Toolkit based design elements placed into a client window of the application are 
child windows to that window. 

Laying out a window involves arranging the windows in such a way that when 
the window is displayed, all its child windows appear and are usable. The 
application developer only provides the high-level directives that arrange the 
windows and instruct the parent window to lay itself out; the system then 
manages the hierarchical window layout automatically (child windows first laying 
out their child windows). 

13.5.1 User Interface Controls 

78 Pen Point os 

All controls in Pen Point respond to gestures by the user, by sending themselves 
messages. Behavior is implemented for the messages that describes how the 
application should respond when a control is activated. 

Controls are created by storing descriptive information in two data structures: 

1. CONTROL_METRICS 

2. CONTROL_STYLE 

CONTROL_METRICS defines the object that will receive all notifications from the 
control when user input, such as a gesture, causes the object to provide such 
notification. 

CONTROL_STYLE defines the appearance and behavior of the control. 

Each control can have only one client to which it reports user interaction taking 
place within its borders. 



Chapter 14. Sample PenPoint Application 

This chapter describes a sample Pen Point application. 

The sample application was designed to provide: 

• A Pen Point Data Entry document 

• Data transmission via serial port to an OS/2 2.0 system, using a null modem 
cable 

• Update an existing OS/2 2.0 database with the transmitted data 

This application will form the basis of further applications to be developed for 
other pen-based systems, including data transmission via modem. 

Application design included the following elements: 

1. Provide a Pen Point Data Entry application (PenDISApp) using standard 
Pen Point SDK objects and classes. 

2. Manually create an OS/2 2.0 database and Database table, through OS/2 2.0 
Query Manager. 

3. Access the serial port of an IBM 2521 ThinkPad and IBM PS/2. 

4. Transmit the data from the Pen Point system to an OS/2 2.0 system. 

5. Update the database with the data transmitted from the Pen Point system via 
the OS/2 2.0 SQL API. 

14.1 User Interface 
The following sequence of Pen Point panels graphically represents the input 
procedure the user would follow to: 

• Create a document (Input data in PenDISApp). 

• Confirm and/or update communications setup. 

• Transmit data to the OS/2 2.0 system. 

• File data on PenPoint system if required. 

© Copyright IBM Corp. 1993 79 



80 PenPoint os 

Figure 18. Data Entry Panel 

Figure 18 shows the PenDISApp Data Entry document with the pop-up text entry 
window. The user would typically tap (gesture) with the pen on an input field. 
The pop-up writing pad would be displayed, where the data would be entered. 

Figure 19. Options Pull-Down Menu 

Figure 19 shows the Options pull-down menu. This menu reflects one 
application specific option, Communications Setup and three PenPoint default 
options: 

• Controls 

• Access 

• Comments 



Selecting Communications Setup causes the application specific 
Communications Option Sheet to be displayed; refer to figure Figure 20 on 
page 81. 

. ....................................... FenDiSApp 

Figure 20. Communications Setup Options Sheet 

This Option Sheet provides the user with the ability to set/reset communications 
options. 

Figure 21. Communication Option Menu 

Figure 21 displays the communications options available to the user; both 
screen data, and file data may be transmitted. 

Chapter 14. Sample PenPoint Application 81 



82 PenPoint as 

......................... PenDiSApp 

Figure 22. File Option Menu 

Figure 22 displays the options available for filing documents. The user has the 
choice of filing a completed data entry document, or retrieving a completed 
document. 



14.2 Application Design Flow 
Figure 23 is a graphic representation of the application design flow 

1.lnit App 

Application Design Flow 

ClsApp 

Create Application Class 
- clsCommApp 
clsCommApp - Create New Object 

clsTextField to create input fields 
-===----~ clsLabel- Create Descriptionof Input Fields 

2. Create Child Window cstmLayoutObj. 
- Position/Size Input Fields & Description 

clsList - Names of available serial ports 

3. Create Menu Bar 
clsMenu - Creates Menu Bar 

clsMenuButton - Creates Pulldown Options 

clsLabel - Comm Status 
4. Insert Option Card 

clsChoice - Other Settings clsPopupChoice - Port Speed 

clsOption Table - Creates Option Card 

Service Mgr. for Serial Comms 5. Send Data via Serial Port 

Figure 23. Application Design Flow 

Stage 1: (Application initialization) 

• Initialize application by creating a new application class, c/sCommApPJ using 
c/sApp. 

• Generate an object from c/sCommApp. 

Stage 2: (Child windows) 

• Using c/sTextField, create the input fields for the Data Entry document. 

• c/sLabel is used to create the input field descriptions. 

• cstmLayoutObj is used to position and size both the input fields and 
descriptions. 

Chapter 14. Sample PenPoint Application 83 



84 PenPoint as 

• clsList is used to hold the names of the available serial ports. 

Stage 3: (Document pull-down menus) 

• clsMenu is used to create the document Menu Bar. 

• clsMenuButton is used to create the pull-down menus. 

Stage 4: (The Communications Option Sheet) 

• cis Option Table is used to create the Option Sheet. 

• PopupChoice is used to create the optional settings for the port and baud 
rate. 

• clsChoice is used to create the optional settings for data bits, stop bits and 
parity. 

• clsLabel is used to create the communications status. 

Stage 5: (Data Transmission) 

The Pen Point Service Manager is used to access the serial port. 



14.3 Directory Structure Distribution Diskette 

A:\ 
r--PENPOINT 

LPENPOINT.DIR 

AP 

LPENPOINT.DIR 

PP 
COMMAPP.MPE 
PENPOINT.DIR 
PENDISAP 

r--REC_PEN 
REC_PEN.OBJ 
REC PEN.C 
REC PEN.EXE 
M.CMD 

~COMM 

REC PEN.MAP 
REC PEN.H 
REC_PEN.SQC 

COMM.C 
COMMAPP.C 
COMMFILE.C 
COMMSET.C 
COMMSEND.C 
COMM.H 
COMMAPP.H 
METHOD.H 
COMM.OBJ 
COMMAPP.OBJ 
COMMFI LE. OBJ 
COMMSEND.OBJ 
COMMSET.OBJ 
METHOD.OBJ 
METHOD.TBL 
MAKEFILE 

Figure 24. Directory Structure 

Directory structure created from PenPoint 
Directory file for PenPoint 

Directory file for PenPoint 

File created from the Linker 
Directory file for PenPoint 
Application program 

Source directory for OS/2 2.B program 
Object fil e 
Generated C source file (from SQLPREP) 
Executable OS/2 2.B program 
CMD file for compilation 
Map file 
C header file 
C source file with SQL 

Source directory for PenPoint program 
C source file 
C source file 
C source file 
C source file 
C source file 
C header file 
C header file 
Generated C header file (from MI) 
Object fil e 
Object file 
Object fi 1 e 
Object fil e 
Object fil e 
Object fi 1 e 
Method table 
Makefile for compiling 

Chapter 14. Sample PenPoint Application 85 



86 PenPoint os 



A.1 Make File for COMMAPP C Routines 
Compiler control file used when compiling and linking COMMAPP.EXE. The 
source for this program is listed in section A.B, "C Source for COMMAPP.C" on 
page 92. 

I/I/I/I/I/NI///I/////I/I/////I/////#//////I///I/I/////I/I///I/I/I/I/I/I/I/I/I/I/I///I/I/I/// 

1/ lIMa~e Ma~efi 1 e for CounterApp 
1/ 
1/ Copyri ght 199a. 1991.1992 GO Corporat ion. All Ri ghts Reserved. 
/I 

// You may use thi s Samp1 e Code any way you p1 ease provi ded you 
1/ do not rese 11 the code and that thi s not ice (i nc1 udi ng the above 
1/ copyri ght noti ce) is reproduced on all copi es. THIS SAMPLE CODE 
/I IS PROVIDED "AS IS". WITHOUT WARRANTY OF ANY KIND. AND GO CORPORATION 
1/ EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES. INCLUDING BUT NOT 
1/ LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
/I PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
1/ FOR ANY CONSEQUENTIAL.INCIDENTAL.OR INDIRECT DAMAGES ARISING OUT OF 
1/ THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

1/ $Revision: 
/I $Author: 

$Date: 

1.9 $ 
gbarg $ 
21-Jan-92 $ 

/11/1/1/1/1/1/1/#1/1///#1///1/1/#1/1/1/#1/1/1/1/1/1/1/1/1/1//11/1/1/1/1/1/1/1/1/1/1/1/1/1/ 

PENPOINT_PATH = \penpoi nt 

1/ The DOS name of your proj ect di rectory. 
PROJ = commapp 

/I Standard defines for sample code (needs the PROJ) definition 
&exc1. INCLUDE $ (PENPOINT_PATH)\sd~\samp1 e\sdefi nes.mi f 

/I The PenPoint name of your application 
EXE_NAME = PenDISApp 

1/ The 1 i n~er name for your executab1 e : company-name-V<major> «mi nor» 
EXE_LNAME = IBM-commapp-Vl (a) 

/I Obj ect fi 1 es needed to buil d your app 
EXE_OBJS = method.obj comm.obj commapp.obj commfi 1 e.obj commset.obj commsend.obj 

/I L i bs needed to bui 1 d your app 
EXE_LIBS = penpoint app 

1/ Targets 

all: $(APP _DIR)\$(PROJ) .exe .SYMBOLIC 

1/ The clean rule must be :: because it is also defined in sru1es 
clean :: .SYMBOLIC 

-del method.h 
-del method.tc 

1/ Dependenci es 

commsend.obj: commsend.c method.h commapp.h comm.h 

commset.obj: commset.c method.h commapp.h comm.h 

commfi 1 e.obj: commfi 1 e.c method.h commapp.h comm.h 

commapp.obj: commapp.c method.h commapp.h comm.h 

comm. obj: comm. c method. h comm. h 

/I Standard rul es for samp1 e code 
&exc1 • INC LUDE $ (PENPOINT _PATH)\sd~\samp 1 e\sru 1 es. mi f 

A.2 COMM.H C Header 
/11"*************************************************************************** 
File: comm.h 

Copyright 1999. 1991. 1992 GO Corporation. All Rights Reserved. 

You may use this Sample Code any way you please provided you 
do not rese 11 the code and that thi s not ice (i ncl udi ng the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS". WITHOUT WARRANTY OF ANY KIND. AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES. INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABI LITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL. INCIDENTAL. OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE COOE. 

87 



$Revi si on: 
$Author: 

$Date: 

1.8 $ 
gbarg $ 
21-Jan-92 $ 

Thi s fi 1 e contai ns the API defi ni ti on for cl sComm. 
**************************************************************************** / 
lIifndef CO~_INCLUDED 
IIdefi ne C0t+LINCLUDED 

IIi fndef CLSMGR_INCLUDED 
IIi ncl ude <cl smgr.h> 
/lendi f 

/ldefine clsComm MaKeWKN( I, I, wKnPrivate) 

STATUS GLOBAL Cl sCommIni t (voi d); 

/**************************************************************************** 
msgCommChangea (voi d), returns STATUS 

Sent to observer when the comm val ue changes. 
***************************************11'1f*********************************** / 
/ldefi ne msgCommChanged MaKeMsg (c 1 sComm, 5) 

lIendif II CO~_INCLUDED 

A.3 COMMAPP.H C Header 

88 PenPoint os 

/******************************************************************1t********* 
Fi 1 e: commapp.h 

Copyri ght 1999, 1991, 1992 GO Corporati on. All Ri ghts Reserved. 

You may use thi s Samp 1 e Code any way you please provi ded you 
do not resell the code and that this notice (including the above 
copyri ght noti ce) is reproduced on all copi es. THIS SAMPLE CODE 
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revi si on: 
$Author: 

$Date: 

1.9 $ 
gbarg $ 
21-Jan-92 $ 

This file contains definitions for clsCommAPp. 
**************************************************************************** / 
lIifndef COMMAPP _INCLUDED 
IIdefine COMMAPP_INCLUDED 

IIi fndef CLSMGR_INCLUDED 
lIincl ude <cl smgr.h> 
lIendi f 

IIdefine OBJECT_COUNT 8 

typedef struct 
{ 

int length; 
int x; 
int y; 
int width: 
TAG uTag: 
char *labelText; 
TAG uLabel; 
FIELD_INFO, *p JIELD_INFO; 

typedef struct 
{ 

char Defaul tPort [nameBufLength); 
i nt BaudRate; 
int DataBits; 
i nt StopBi ts; 
int Parity; 
CO~_SETUP, • P_CO~_SETUP; 

typedef struct 
{ 

OBJECT Dbj ects [OBJECT COUNT); 
OBJECT Label s [OBJECT_COUNT); 
CO~_SETUP CommSetupData; 
BOOLEAN SerInstanceOK; 
BDOLEAN CommSerConnected: 
U16 SerPortIndex; 
OBJECT SerialNameList: 
OBJECT commSIOServi ce; 
OBJECT commSIOHandl e; 
OBJECT commOptWin; 
COMMAPP_INST, *P_COMMAPP_INST: 

/* Define length of the input fields */ 
_defi ne LASTNAME_LENGTH 29 



'defi ne FIRSTNAME_LENGTH 29 
'defi ne INITS_LENGTH 2 
'define STREET_LENGTH 29 
'define CITY_LENGTH 29 
'define COUNTRY_LENGTH 15 
'define ZIP_LENGTH 5 
'defi ne PHONE_LENGTH 15 

typedef st ruet 
{ 

char LastName[LASTNAME LENGTH + 1]; 
char FirstName[FIRSTNAME LENGTH + 1]; 
char Inits[INITS LENGTH ~ 1]; 
char Street[STREET LENGTH + 1]; 
char City[CITY_LENGTH + 1]; 
char Country[COUNTRY LENGTH + 1]; 
char ZIP[ZIP LENGTH ~ 1]; 
char Phone[PHONE_LENGTH + 1]; 
COI+1_DATA, *p_CmttDATA; 

'define SAVEJILE "\\\\BOOT\\COt+IAPP.DAT" 

'defi ne COt-ttDATAJILE "\ \\ \BOOT\\COt+IAPP.PRO" 

'defi ne COt+tPORT_COMI 
'defi ne COMM_PORT_COM2 

'define COMM_SETBAUO_399 
'define COMM_SETBAUD_6ee 
'defi ne COMM_SETBAUD_12ee 
'defi ne COMM SET BAUD 2499 
'defi ne COMM=SETBAUO= 4Bee 
#define COMM_SETBAUD_96ge 
IIdefi ne COMM_SETBAUO_192e9 

#define COMM_SETDATABITS_7 
'define COMM_SETDATABITS_B 

IIdefi ne COMM_SETSTOPBITS_IPe 
IIdefine COMM_SETSTOPBlTS_1P5 
#defi ne COMM_SETSTOPBITS_2pe 

'define COMM_SETPARITY_NONE 
#define COMM_SETPARITY_ODD 
#defi ne COMM _SET PARITY _EVEN 

II Define a well Known UIO for the app 
'defi ne elsCommApp MBkellKN (1624, I, wknGl obal) 

'define msgCommSave MakeMsg(el sCommApp, 1) 
#defi ne msgCommRestore MaKeMsg (e 1 sCommApp, 2) 
'define msgCommSendSereen MakeMsg(elsCommApp, 3) 
'define msgCommSendFile MakeMsg(elsCommApp, 4) 
IIdefi ne msgCommOpenSeri al MakeMsg (e 1 sCommApp, 5) 
#defi ne msgCommCl oseSeri al MaKeMsg(elsCommApp, 6) 
'defi ne msgCommSetSeri al Metri cs MakeMsg(elsCommApp, 7l 
IIdefi ne msgCommSendSeri al MakeMsg (el sCommApp, 8) 
IIdefi ne msgCommSet ConneetStatusI d MaKeMsg (el sCommApp, 9) 

1* defi ne tags for input fi e 1 ds *1 
#define LastNameTag MaKeTag(elsCommApp, I) 
IIdefine LastNameLabel MakeTag(elsCommApp, 2) 
'defi ne Fi rstNameTag MaKeTag (el sCommApp, 3) 
IIdefi ne Fi rstNameLabel MakeTag(elsCommApp, 4) 
IIdefine InitsTag MaKeTag(elsCommApp, 5) 
IIdefine InitsLabel MakeTag(elsCommApp, 6) 
IIdefi ne StreetTag MakeTag(el sCommApp, 7l 
IIdefine StreetLabel MakeTag(elsCommApp, 8) 
IIdefi ne Ci tyTag MakeTag(el sCommApp, 9) 
#define CityLabel MakeTag(el sCommApp, Ie) 
IIdefi ne CountryTag MakeTag (elsCommApp, II) 
#define CountrYLabel MaKeTag(el sCommApp, 12) 
#define ZIPTag MaKeTag(el sCommApp, 13) 
IIdefine ZIPLabel MaKeTag(el sCommApp, 14) 
IIdefine PhoneTag MakeTag(elsCommApp, 15) 
IIdefine Phone Label MakeTag(el sCommApp, 16) 
IIdefi ne tagComnt-1enu MaKeTag(elsCommApp, 17) 

IIdefi ne tagSetupCard 
IIdefi ne tagPort 
#defi ne tagBaudrate 
IIdefi ne tagDatabi ts 
IIdefi ne tagStopbi ts 
'defi ne tagPari ty 
#defi ne tagConneeted 

MaKeTag(el sCommApp, 18) 
MaKeTag(el sCommApp, 19) 
MakeTag(el sCommApp, 2e) 
MakeTag(el sCommApp, 21) 
MaKeTag(elsCommApp, 22) 
MaKeTag(elsCommApp, 23) 
MaKeTag(elsCommApp, 24) 

/**1c******'f(************ Function defi ni t ions **************************1 
STATUS LOCAL CreateInputll; n (OBJECT el; entObj, 

P COt+IAPP INST InstDatB, 
P-FIELD INFO F; el ds); 

STATUS LOCAL AlignChildren(OBJECT e~tmLayoutObj, P_COt+IAPP_INST inst, 
P FIELD INFO Fi el ds); 

vo; d RestoreDataFromF; 1 e (P-COt+IAPP INST i nst); 
voi d GetCommDataFromF; 1 e (P - COt+IAPP - INST i nst); 
vo; d GetTextOata(P COMM DATA CommO~ta, P COMMAPP INST pOata); 
void CommSendField(OBJECT self, P_CHAR Field, BOOLEAN flag); 

lIendi f II COMMAPP _INCLUDED 

89 



A.4 C Source for METHOD.TBl 

90 PenPoint os 

This is the message table that defines the behavior for the classes used. 

1"IIf.'JI:**************'JI:WYt*********1f*********************************************** 
Fi 1 e: method. tbl 

Copyright 1999. 1991. 1992 GO Corporation. All Rights Reserved. 

You may use thi s Sampl e Code any way you pl ease provi ded you 
do not resell the code and that thi s not ice (i nc 1 udi ng the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS". WITHOUT WARRANTY OF ANY KINO. AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES. INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE 10 YOU 
FOR ANY CONSEQUENTIAL.INCIDENTAL.OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revision: 1.9 $ 
$Author: gbarg $ 

$Date: 21-Jan-92 $ 

This file contains the method tables for the classes in CommApp. 
*******1Ir******************************************************************** / 

Ii fndef CLSMGR_INCLUDED 
Ii ncl ude <cl smgr.h> 
lendi f 

Ii fndef APP _INCLUDED 
linclude <app.h> 
lendi f 

Ii fndef Cm+tINClUDED 
Ii ncl ude <comm. h> 
#endi f 

#i fndef CO~PP _INCLUDED 
#; ncl ude <commapp.h> 
#endi f 

Ii fndef BUTTON_INCLUDED 
#i ncl ude <button.h> 
lend; f 

#i fndef OPTION_INCLUDED 
#include <option.h> 
#endi f 

#i fndef SERVMGR_INCLUDED 
#i nc 1 ude <servmgr. h> 
#endi f 

Ii fndef SID_INCLUDED 
linclude <sio.h> 
lendi f 

MSG_INFO clsCommAppMethods[) = { 
msgAppInit. "CommAppAppIni t". obj Call AncestorBefore. 
msgAppDpen. "CommAppOpen". obj Call AncestorAfter. 
msgAppClose. "CommAppCl ose". obj Call AncestorBefore. 
msgSave. "CommSave" • obj Call AncestorBefore. 
msgRestore. "CommRestore". obj CallAncestOl'Before. 
msgOpt i onAddCards. "CommDpt i onAddCards". obj Call AncestorAfter. 
msgDpt; onProvi deCardWi n. "CommOpt; onProv; deCard". obj Call AncestorAfter. 
msgOpt i onApp lyCard. "CommOpti onApplyCard". obj Call AncestorAfter. 
msgCommSave. "CommSaveButton". e. 
msgCommRestore. 
msgCommSendScreen. 
msgCommSendFi 1 e. 
msgCommOpenSeri a 1 • 
msgCommCloseSeri al. 
msgCommSetSeri alMetri CSt 

msgCommSendSeri al • 
msgCommSetConnect Stat usI d. 
msgSMConnect edChanged. 
msgSi oEventHappened. 
e 

}; 

CLASS INFO classInfo[) = { 

"CommRestoreButton". e. 
"CommSendScreenButton". e. 
"CommSendFi 1 eButton". e. 
"CommOpenSeri al". e. 
"CommCl oseSeri al". 9. 
"CommSetSerialMetrics". e. 
"CommSendSeri al". e. 
"CommSetConnectStatusId". 9. 
"CommSMConnectedChanged". 9. 
"CommS; oEventHappened". e. 

"cl sCommAppTabl e". cl sCommAppMethods. 9. 
e 

}; 



A.S C Source for COMM.C 
This module saves the instance data when it goes to dormant state and restores 
the data when the program is reactivated. 

/******11**111*******************,********1l***************************1r********** 

File: comm.c 

Copyright 1999. 1991. 1992 GO Corporation. All Rights Reserved. 

You may use thi s Sampl e Code any way you pl ease provi ded you 
do not resell the code and that this notice (including the above 
copyri ght noti ce) is reproduced on all copi es. THIS SAMPLE CODE 
IS PROVIDED "AS IS". IIITHOUT IIARRANTY OF ANY KIND. AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED IIARRANTIES. INCLUOING BUT NOT 
LIMITED TO THE IMPLIEO IIARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT IIILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL.INCIDENTAL.OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revision: 1.9 $ 
$Author: gbe.rg $ 

$Date: 21-J an- 92 $ 

This file contains the class definition and methods for clsComm. 

**************************************************************************** I 

IIi fndef DEBUG_INCLUDED 
lIinclude <debug.h> 
/lendi f 

IIi fndef FS_I NCLUDED 
liinclude <fs.h> 
lIendif 

lIifndef FRAME_I NCLUDED 
lIinclude <frame.h> 
lIendi f 

IIi fndef APP _INCLUDED 
IIi ncl ude <app.h> 
lIendi f 

IIi fndef COMM_INCLUDED 
lIinclude <comm.h> 
lIendi f 

IIi fndef COMMAPP _INCLUDED 
IIi ncl ude <commapp.h> 
lIendi f 

IIi ncl ude <method.h> 

/* 11" '* 11" 111 11" 11" *' n * 'Ie 'Ie 'Ie 'Ie 'Ie * * 'If * 'Ie * 'It: * 11" 11" 11: 11: 11" * * * 11" 'if * 11: 'Ie 1( 11" 

Defines. Types. Globals. Etc 
'Ie 'Ie 11: * 11" 11" * * 11" 11" 11' 11: * '/( 1( * 'Ie * 'Ie 1< * * 'Ie 11' * * '* 1< 'Ie * 'Ie 'Ie * '* * 'Ie ~ */ 

/* * 11" 11: * * 'Ie 'Ie 'Ie 'Ie 'Ie * * * * 11" * 'Ie * * * "/{ 'Ie 11" * 1( * '* 11" * * 'Ie * '* 'Ie 'Ie .,.. 11: 

Local Functions 
'Ie '* *- 'Ie 11: 'Ie * 'Ie 11: * * 11" 'Ie * 11: 'Ie * * 'Ie 'Ie * 'If * 1( 'Ie 11" 'Ie * '* * 11: * *" 'If * 11" 11" */ 

/* 'Ie * 11" * 'Ie * 'Ie 11 '* * * * 'It 11" * * 'Ie 'Ie * 'Ie 'Ie 'Ie '* 11" * 11; 'Ie 11" * 'It 11" '/( * 11: 11" 11" '* 
Message Handlers 

'Ie 'Ie 'Ie * 'Ie 11: * * 11 'Ie 11: *' 11" 11" 'Ie '/( 11" 'Ie 'Ie * * * * * * * * * * * * * * * * * * */ 

/11'11'11'**11'1t11'11'11'11'1t11'11'11'*11'11'**11'**11'11:11'*****11'11'11'*11'11'11'11'11'11'11'11'11'*11'*11'11'11'*11'11' 'JIt1I'1I'1I'*1I'1I''JIt1I'1I'**1I'***1I'1I'1I'*1I'** 
CommSave 

Respond to msgSave. 

*********************************************************************'ft'****** / 

MSG_HANDLER CommSave(const MESSAGE msg. 
const OBJECT self. 
const P _OBJ_SAVE pArgs. 
~onst CONTEXT ctx. 
const P _COMMAPP _INST pData) 

STREAM_READ_IIRITE fsllri te; 
STATUS s; 

Debugf( "Comm: CommSave ,,) ; 

/* IIri te instance data to the fi 1 e. * / 
fsllri te.numBytes= Si zeOf(COMMAPP _INST); 
fsllri teo p8uf= pData; 
Obj Call Ret (rnsgStreamliri teo pArgs->fi 1 e. &fsllri teo s); 

return stsOK; 
MsgHandl erParametersNoliarni ng; 
} 

91 



/***************************************************************************1 
/* CommRestore 
/* 
/* Respond to msgRestore. 
/* 

*/ 
*/ 
*/ 
*/ 

/***********************""**************************************************'*/ 

MSG_HANDLER CommRestore(const MESSAGE msg. 
const OBJECT self. 
const P_OBJ_RESTORE pArgs. 
const CONTEXT ctx. 
const P_COM'1APP_INST pData) 

COM'1APP INST i nst; 
STREAM).EAD_WRITE fsRead; 
APP_METRICS am; 
OBJECT frmliin; 
STATUS s; 
int i; 

stati c const TAG Tags[J 
{ 
LastNameTag. 
Fi rstNameTag. 
Ini tsTag. 
StreetTag. 
Ci tyTag. 
CountryTag. 
ZIPTag. 
PhoneTag. 
}; 

Debugf("Comm:CommRestore") ; 

/* Read instance data from the fi 1 e. */ 
fsRead.numBytes= Si zeOf(COM'1APP _INST); 
fsRead. pBuf= &i nst; 
Obj Call Ret (msgStreamRead. pArgs->fi 1 e. &fsRead. 5); 

/* Get the proper UIOs of the input fi el ds */ 
Obj Call Warn (msgAppGetMet ri cs. sel f. &am); 
ObjCallJmp(msgFrameGetClientWin. am.mainWin. &frmliin. s. Error); 
for (i = 9; i < (sizeof(Tags) / sizeof(TAG)); iff) 

{ 
inst.Objects[i] (WIN)ObjectCall (msgWinFindTag. frmliin. 

/* Update instance data. */ 
ObjectWrite(self. ctx. &inst); 

return stsOK; 

Error: 
return (s); 

MsgHandl erParametersNoWarni ng; 
} 

(P _ARGS)Tags [i]); 

/* * * * * * * * '* * * * "" * * '* '* * * * * * * '* * * * '* * * 11" * * 11" * '* * * 
Install at ion 

* * * * * * '* * * ~ * * * 11" '* * * * * * * * * 11" * * * * * * * * * * * * * */ 

A.6 C Source for COMMAPP.C 

92 PenPoint os 

This module creates the new message class clsCommApp and the child window 
with the input fields ::md labels. It also polls available communication ports and 
holds the information in a list. 

/*************************************************************'********'******* 

Fi 1 e: comapp.c 

Copyri ght 1999. 1991. 1992 GO Corporat ion. All Ri ghts Reserved. 

You may use thi 5 Sampl e Code any way you pl ease provi ded you 
do not resell the code and that thi s not ice (i ncl udi ng the above 
copyri ght not ice) is reproduced on all copi es. THIS SAMPLE CODE 
IS PROVIDED "AS IS". WITHOUT WARRANTY OF ANY KIND. AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES. INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABI LITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL.INCIDENTAL.OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revi si on: 
$Author: 

$Date: 

r.e$ 
gbarg $ 
21-Jon-92 $ 



This file contains the implementation of the application class. 

Ii fndef APP _INCLUDED 
Ii nc1 ude <app.h> 
*endi f 

Ii fndef APPMGR_INCLUDED 
linc1 ude <appmgr.h> 
lendi f 

Ii fndef SERVMGR_INCLUDED 
Ii nc1 ude <servmgr.h> 
lendi f 

Ii fndef STROBJ_INCLUDED 
Ii nc1 ude <strobj .h> 
lendi f 

Ii fndef RESFI LE_INCLUDED 
Ii nc1 ude <resfi 1 e.h> 
lendi f 

Ii fndef FRAME_INCLUDED 
Ii nc1 ude <frame.h> 
lIendi f 

IIi fndef DEBUG_INCLUDED 
IIi nc1 ude <debug.h> 
lIendif 

IIi fndef TKTABLE_INCLUDED 
Ii nc1 ude <tKtab1 e.h> 
lendi f 

IIi fndef TKFIELD_INCLUDED 
linc1ude <tkfie1d.h> 
lIendi f 

IIi fndef MENU_INCLUDED 
linc1ude <menu.h> 
lendi f 

IIi fndef COMM_INCLUDED 
IIi nc 1 ude <comm. h> 
lIendif 

IIi fndef COMMAPP _INCLUDED 
Ii nc1 ude <commapp.h> 
lendi f 

Ii fndef CLAYOUT_INCLUDEO 
lIinc1ude <c1ayout.h> 
lIendi f 

IIi fndef BUTTON_INCLUDED 
linc1 ude <button.h> 
lIendi f 

linc1 ude <method.h> 

lIinc1ude <string.h> 
Ii nc1 ude <stdi o.h> 

/* * * * * * * '* * 1( '/( * 'It '/( 11 * '/( '/( * '* '" '* '/( '/( '/( '/( *" '* '/( '/( '/( * * * '/( '/( 11 '/( 

* Defines. Types. G1oba1s. Etc 
'/( '* * * * '* * '/( 11' * '* * "/( 'it '* '* * 1( 'It * * * 1( 11' '/( * 1( * '/( 'It '/( * 11: '/( '* * '/( */ 

/* '/( * * * * '/( * '/( * "" * * * * 11' 'It '/( '/( 'If '* 11' '* '/( * * 'it 1( * * 11" '/( '* * * 'It 11: '/( 

Local Functi ons 
* * 11' '/( * 'It *" * * "'" 1( 11: '/( * *' 11' * * *- * '/( '/( * 'If 1< '/( '* * * 11' * 'It '* * '/( * '/( */ 

/*************************************************************************** / 
/* CreateInputWi n 
/* 
/* Create the input fields in the child window. 
/* 

*/ 
*/ 
*/ 
*/ 

/*************************************************************************** I 
STATUS LOCAL CreateInputWi n (OBJECT c1 i entObj. 

TEXT_FIELD_NEW tfn; 
LABEL_NEil 1n; 
STATUS s; 
int i; 

for (i = 9: i < OBJECT_COUNT: iH) 
{ 

P COMMAPP INST InstData. 
P)IELDjNFO Fields) 

/* Create the input fi e1 d */ 
ObjCallWarn(msgNewDefaults. c1sTextFie1d. &tfn); 

tfn.win.tag = Fi e1 ds[i ].uTag; 
tfn.contro1.c1ient = c1ientObj; 
tfn.1abe1.sty1e.numCo1s = lsNumAbso1ute; 

93 



94 PenPoint as 

tfn.fie1d.maxLen = tfn.1abe1.cols = Fie1ds[i].length; 
tfn.border.sty1e.edge = bsEdgeAll: 
tfn.fie1d.sty1e.editType = fstPopUp: /* input only through popup window */ 
tfn.1abe1.style.xA1ignment = lsA1ignLeft: 
tfn.1 abe1.sty1 e.sca1 eUni ts = bSUni tsFi tWi ndowProper: 
ObjCallRet(msgNew, c1sTextFie1d, &tfn, s): 

Instoata->Objects[i) = tfn.object.ui d: 

r Create the 1 abe 1 for the fi e 1 d descri pt ion * / 
ObjCallRet(msgNewDefaults, c1sLabe1, &In, s): 
1n.win.tag = Fie1ds[iJ.uLabe1: 
1 n.1 abe1.sty1 e.sca1 eUni ts = bsUnitsFi tWi ndowProper: 
1n.1abe1.style.xA1ignment = lsA1ignLeft: 
1n.border.sty1 e.edge = bsEdgeAll: 
1n.1abe1.pString = Fie1ds[i).labelText: 
ObjCallRet(msgNew, c1sLabe1, &In, s): 

Instoata->Labels[i) = 1n.object.uid: 
) 

return (stsOK): 
) 

/* A1 i gnChil dren 
/* 
/* Position/size the input fields and labels 
/* 

*/ 
*/ 
*/ 
*/ 

/********IIr**_*********1c***********.W************* ••• **1r1r*****tlr1r ...... ********.** I 
STATUS LOCAL A1 i gnChil dren (OBJECT cstmLayoutObj, P _ CO"",,,PP _INST plnst, 

P JIELo_INFO Fi e1 ds) 

CSTM_LAYOUT_CHILo_SPEC c1 cs; 
STATUS s: 
int i: 

for (i = 8: i < OBJECT_COUNT: iff) 
{ 
r Set the size and position for the input fields */ 
CstmLayoutSpecIni t (&c 1 cs.met ri cs): 
c1 cs.metri cS.h.constraint = c1 PctOf: 
c1cs.metrics.h.va1ue = 9: /* Height of the input field */ 
c1 cs.metri cs.w.constraint = c1 PctOf: 
c1cs.metrics.x.constraint = C1A1ign(c1MinEdge, c1PctOf, c1MaxEdge); 
c1cs.metrics.y.constraint = C1A1ign(c1MinEdge, c1PctOf, c1MaxEdge): 

c1cs.chi1d • plnst->Objects[i): 
c1 cs.metri cs.w.va1 ue • Fi e1 ds[i] .width; 
c1 cs.metri cs.x.va1 ue • Fi e1 ds[i) .x: 
c1es.metrics.y.va1ue = Fie1ds[i] .y; 
Obj Call Ret (msgCstmLayoutSetChi 1 dSpee, cstmLayoutObj, &e1 cs, s): 

r Set the size and position for the input fields */ 
c1cs.ehi1d = pInst->Labe1s[i); 
c1cs.metries.h.va1ue = 5: /* Height of the label */ 
c1cs.metries.w.va1ue = Fie1ds[i).width: 
c1es.metries.x.va1ue = Fie1ds[i).x: 
c1 cs.metri cs.y.va1 ue = Fi e1 ds[i).y • 5: 
ObjCallRet(msgCstmLayoutSetChildSpee, cstmLayoutObj, &c1es, s): 
) 

return (stsOK): 
) 

/* 1': * * *' .. '" 'If * * '" '* '" * * * '* * 'If tit .. * * 11' * 11' .... * 1r 'Ie ", * * * ." ." */ 
/* Message Hand1 ers * / 
/* * 'It * 'It * 'It 'It * * * * * * '* * * 'It 'It * * * 11' 11 "" * 1\ * * 'It * .. "" * * '" * */ 

/* CommAppAppIni t 
/* 
/* Respond to msgApplnit. 
r 

*/ 
*/ 
*/ 
*/ 

/**************************1r1r********1If*********W*****1r********1:*'#1*********** I 
MSG_HANoLER CommAppAppInit (const MESSAGE msg, 

const OBJECT self, 
const P _ARGS pArgs, 
const CONTEXT ctx, 
const P _IDATA poata) 

APP _METRICS am: 
STATUS s: 
int i: 
CO"",,,PP INST inst: 
CSTM_LAYOUT_NEW eln: 
WIN_METRICS wm: 
MENU_NEW mn: 

/* Oescription of the input fields and the labels */ 
stati c const FIELD INFO Fi e1 ds [OBJECT COUNT] = 
{ - -
/* Length, X, Y, Width, Tag, labe1text, Tag */ 
LASTNAME_lENGTH, 5, 8B, BS, lastNameTag, "Last Name", lastNameLabe1, 
FIRSTNAME_lENGTH, 5, 72, Be, Fi rstNameTag, 'Fi rst Name", Fi rstNameLabe1, 
INITS_LENGTH, 8B, 72, 18, InitsTag, "Initials", InitsLabe1, 
STREET_LENGTH, 5,56, ee, StreetTag, "Street", Street label , 
CITY_LENGTH, 5, 48, B8, CityTag, ·City", Ci tylabe1, 



COUNTRY_LENGTH. 
ZIP_LENGTH. 
PHONE LENGTH. 
}; -

5. 24. 68. CountryTag. 
78. 24. 21. ZIPlag. 
5. 8. 68. PhoneTag. 

"Country" • 
"ZIP". 
"Phone!! • 

/* Oescri pt i on of the menus in the menu bar * / 
static TK TABLE ENTRY CommAppMenuBar[] : 
{ --

{"Fi 1 e". 8. 8. 8. tkMenuPull Down. cl sMenuButton}. 
{"Save". msgCommSave}. 
{"Restore". msgCommRestore}. 
{pNull}. 

CountryLabel. 
ZIPLabel. 
PhoneLabel. 

{"Communication". e. 8. 8. tkMenuPullOown. clsMenuButton}. 
{"Send Screen Data". msgCommSendScreen}. 
{"Send Fil e Data". msgCommSendFil e}, 
{pNull}. 

{pNull} 
}: 

Oebugf("CommApp:CommAppAppInit -- recei ved msgAppInit"): 

/* Initialize instance data */ 
memset ((P _CHAR)&i nst. '\8'. si zeof(COM'lAPP _INST)): 

/* Create Chil d Windows */ 
CreateInputWin(sel f. &i nst. Fi el ds): 

ObjCallWarn(msgNewOefaults. clsCustomLayout. &cln); 

cln.border.styl e.backgroundInk = bsInkGray33: 
ObjCallWarn(msgNew. cl sCustomLayout. &cl n); 

/* Create the menubar * / 
ObjCall Ret (msgNewOefaul ts. cl sMenu. &mn. s); 
mn.tkTable.client = self: 
mn. tkTab 1 e.pEntri es = CommAppMenuBar: 
mn.menu.styl e.type = msTypeMenuBar: 
Obj Call Ret (msgNew. cl sMenu. &mn. s); 

/* Insert the menubar */ 
ObjCallRet(msgAppCreateMenuBar. self. &mn.object.uid. s); 
Obj Call Ret (msgAppGetMetri cs. sel f. &am. s); 
ObjCallRet(msgFrameSetMenuBar. am.mainWin. mn.object.uid. s); 

wm.parent = cln.object.uid: 
wm.opti ons = wsPosTop: 

/* Insert the input wi ndows and 1 abe 1 s * / 
for (i = 8; i < OBJECT COUNT; iff) 

{ -
ObjCallRet(msgWinInsert. inst.Objects[i]. &wm. s): 
ObjCallRet(msgWinInsert. inst.Labels[i]. &wm. s): 
} 

/* Set the size and position of the input fields and labels */ 
AlignChildren(cln.object.uid. &inst. Fields): 

/* Read the saved fi Ie and put the contents into the input fields */ 
RestoreOataFromFi 1 e(&i nst); 

/* Read the setting of the serial communication */ 
GetCommOataFromFi 1 e (&i nst); 

/* Update instance data * / 
ObjectWrite(self. ctx. &inst): 

ObjCallWarn(msgAppGetMetrics. self. &am); 
ObjCallJmp(msgFrameSetClientWin. am.mainWin. cln.object.uid. s. Error); 

return(stsOK) ; 
Error: 
return(s) ; 
MsgHandl erParametersNoWarni n9: 
} 

/*************************************************************************** / 
/* CommAppOpen * / 
r ~ 
/* Respond to msgAppOpen. */ 
r ~ 
1* It's important that the ancestor be called AFTER all the frame */ 
/* manipulations in this routine because the ancestor takes care of any */ 
/* 1 ayout that is necessary. */ 
1* ~ 

/*******11'******************************************************************* I 
MSG_HANOLER CommAppOpen (const MESSAGE msg. 

const OBJ ECT self. 
const P _ARGS pArgs. 
const CONTEXT ctx. 
const P _COM'lAPP _INST pOata) 

STATUS s: 
COM'lAPP _INST i nst: 
LIST_NEW In: 
LIST_ENTRY 1 e: 
U16 n: 
OBJECT serlist: 
CHAR buffer[nameBufLength]: 

95 



96 PenPoint os 

IM_GET_SET_NAME gn; 
STROBJ_NEII sn; 
BOOLEAN haveName; 

Debugf("CommApp:CommAppOpen -- rece; ved msgAppOpen"); 

1* Copy the instance data to local memory *j 

memcpy ((p _CHAR)&i nst, (P _CHAR)pData, si zeof(COMMAPP _INST)); 

1* Create a list to hold the name of the serial port drivers. *j 

ObjCallJmp(msgNewllithDefaults, clsList, &In, s, Error); 

j* Get the seri a 1 port dri ver 1 i st, copy names * j 
Obj Call Jmp(msgIMGet Li st, theSeri al Devi ces, &serl i st, s, Error2); 

1* How many entries are in the list? *j 
ObjCall Jmp(msgLi stNumItems, serl i st, &n, s, Error2); 

if (n == 9) 
{ 
1* there aren't any servi ce instances! Bug out *j 
} 

else 
{ 
/* Get the 1 i st of avai 1 abl e servi ce instances from theSeri al Devi ces. *1 
1* lIal K down the 1 i st, get the name of each instance and store it in my *1 
1* own list. ChecK if a service instance should be default (if none has *1 
1* been stored as default yet), or compare it with a previously stored *1 
1* service name. *1 
inst.SerlnstanceOK = true; 
haveName = false; 
whi 1 e (! haveName) 

{ 

for (le.position = 9; le.position < n; le.position++) 
{ 
ObjCallJmp(msglistGetItem, serlist, &le, s, Error2): 
if (le.item != pNull) 

{ 
gn.handle = (OBJECT)le.item; 
gn.pName = buffer: 
Obj Call Jmp (msgIMGetName, theSeri al Devi ces, &gn, s, Error2): 

/* Copy name *1 
ObjCallllarn(msgNewDefaults, clsString, &sn): 
sn.strobj .pStri ng = buffer; 
ObjCallJmp(msgNew, clsString, &sn, s, Error2); 

1* Add it to the end of the list ttl 
ObjCallJmp(msgListAddItem, In.object.uid, sn.object.uid, s, Error2); 

1* ChecK if thi sis thi 5 one is sel ected or that I ttl 
1* should maKe a default. *1 
if (inst.CommSetupData.DefaultPort[9) == '\9' && le.position == 9) 

{ 
Debugf("Setting default SerialServ to %s", buffer); 
st rcpy (i nst. CommSetupData. Defaul tPort, buffer): 
haveName = true; 
} 

el se 
{ 
if ((strcmp(inst.CommSetupData.DefaultPort, buffer)) == e) 

{ 
Debugf ("Sett i ng defaul t Seri a 1 Serv to %s", buffer); 
inst.SerPortIndex = 1 e.position; 
haveName = true: 
} 

if (! haveName) 
{ 
if (inst.CommSetupData.Defaultport[9) != '\9') 

inst .CommSetupData.DefaultPort [a) = '\9': 
else 

breaK; 

/* Keep list uid ttl 
inst.SerialNameList = In.object.uid: 

j* Update instance data *1 
Obj ectllri te (sel f, ctx, &i nst); 

Itt Open seri a 1 port ttl 
ObjCallJmp(msgCommOpenSerial, self, (P_ARGS)pNull. s, Error); 

Itt Destroy the servi ce instance 1 i st ttl 
ObjCallllarn(msgDestroy, serlist, pNull); 

return stsOK: 
Error2: 
I" Destroy the service instance list ttl 
ObjCallllarn(msgDestroy, serlist, pNull); 
Error: 
return (s); 



MsgHandl erParametersNoWarni ng; 
} 

1********JIf****************************lr************************************* / 
I" CommAppClose * / 
I" ~ 
/* Respond to msgAppCl ose. */ 
I" ~ 
/* It's important that the ancestor be call ed AFTER all the frame */ 
/* manipulations in this routine because the ancestor taKes care of any */ 
/* layout that is necessary. */ 
I" ~ 
/**********************************************************"****111*********** I 
MSG_HANOLER CommAppClose(const MESSAGE msg, 

const OBJ ECT self, 
const P _ARGS pArgs, 
const CONTEXT ctx, 
const P_COIlMAPP_INST pOata) 

lISTJREE If; 

Obj Call Warn (msgCommCl oseSeri a 1, self, (p _ARGS)pNu 11); 

If .Key = objWKNKey; 
1 f .mode = 1 i stFreeltemsAsObj ects; 
ObjCal 1 Warn (msgLi stFree, pOata->Seri al NameLi st, &1f); 

I" Oest roy opt i on sheet */ 
if (pOata->commOptWi n) 

ObjCallWarn(msgOestroy, pOata->commOptWin, Nil (P_ARGS)); 

return stsOK; 

MsgHandl erParametersNoWarni ng; 
} 

/* * .. *' * * * * 'If * * * 11 * * * * 'If 1\' * *' * * * .. * * * 11" 'lit * * * 'Ie '* * .. */ 
/* Installation */ 
/* '/( 'If 11: * * * 'If *' * 'If * '" * '" "If 11 * 11' 1\' '" .. 1\' 11: "" 1\' .. 111" .. 'If * .. * * '* '* .. *1 

/*************************************************1r************************* I 
1* Cl sCommApplnit 
/* 
1* Install the application. 
/* 

10/ 
*/ 
*/ 
*/ 

/**********1f***********************************1t'********.*******************/ 
STATUS GLOBAL Cl sCommAppl ni t (voi d) 
{ 

APP _MGR_NEW new; 
STATUS s; 

/* Create the new message cl ass cl sCommApp */ 
ObjCallJmp(msgNewOefaults, clsAppMgr, &new, s, Error); 

new.object.uid = clsCommApp; 
new.cls.pMsg = clsCommAppTable; 
new.cl s.ancestor = cl sApp; 
new.cl s.si ze = Si zeOf(COIlMAPP INST); 
new.cls.newArgsSize = SizeOf(APP_NEW); 

strcpy(new.appMgr.company, "IBM Corporation"); 
strcpy(new.appMgr.defaul tDocName, "PenOISApp"); 

ObjCal 1 Jmp(msgNew, cl sAppMgr, &new, s, Error); 

return (stsOK); 

Error: 
return(s) ; 
} 

/* I don't liKe goto's in C */ 

1**********1r1llr1cJlf1t1r1t1t1r'lt*'JIf*************1(**1(******************************'lII:'k'lll:*** I 

/* main 
1* 
/* Main application entry point. 
/* 

*/ 
*/ 
*1 
*/ 

/*************************************************************************** / 
void COECL main(int argc, 

char *argv [J, 
U16 processCount) 

if (processCount == e) 
{ 
StsWarn (el sCommApplni t ()); 
AppMonitorMai n(cl sCommApp, obj Null); 
} 

el se 
{ 
AppMain(); 
} 

Unused(argc); /* Supress compiler's "unused parameter" warnings */ 
Unused (argv); 
} 

97 



A.7 C Source for COMMFILE.C 

98 PenPoint os 

This module contains the routines to save and restore the data entered in the 
input fields onto the hard disk or solid state file (SSF). 

/******.*"'****_*************111'***************_******11:******.***11'************** 

Fi 1 e: commapp.c 

Copyright 1998, 1991, 1992 GO Corporation. All Rights Reserved. 

You may use thi s SaMPle Code any WIIj! you please provi ded you 
do not resell the code and that thi s notice (i ncl udi ng the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION 
EXPRESSLY DISCLAIMS All IMPLIED WARRANTIES, INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revision: 
SAuthor: 

SDate: 

1.8 $ 
gbarg $ 
21-Jan-92 $ 

Thi s fil e contai ns savi ng to a fil e and restori ng from there. 

Ii fndef APP _INCLUDED 
Ii ncl ude <app.h> 
lendi f 

Ii fndef APPMGR_INCLUDED 
Ii nc 1 ude <appmgr. h> 
lendi f 

Ii fndef RESFI LE_INCLUDED 
linclude <resfi le.h> 
lendi f 

Ii fndef FRAME_INCLUDED 
linclude <frame.h> 
lendi f 

Ii fndef DEBUG_INCLUDED 
Ii ncl ude <debug.h> 
lendi f 

Ii fndef TKTABLE_INCLUDED 
linclude <tlCtable.h> 
lendi f 

Ii fndef TKFIELD_INCLUDED 
linclude <tkfield.h> 
lendi f 

Ii fndef MENU_INCLUDED 
lincl ude <menu.h> 
lendi f 

Ii fndef TXTOATA..INCLUDED 
Ii ncl ude <txtdata.h> 
lendi f 

Ii fndef COMol_INCLUDED 
Ii nc 1 ude <comm. h> 
lendi f 

Ii fndef COMo\APP_INCLUDED 
linclude <commapp.h> 
lendi f 

Ii fndef CLAYOUT_INCLUDED 
Ii nc 1 ude <c 1 ayout. h> 
lendi f 

Ii fndef BUTTON_INCLUDED 
Ii ncl ude <button.h> 
lendi f 

linclude <method.h> 

Ii ncl ude <string.h> 
Ii ncl ude <stdi o.h> 

/* *' '" '" * 111 * 111" * • 'If * 'If '" * 1: '" * * '" '" .. 'It * * 'If 'If * * * * * * 'If '" .. * */ 
r Defines, Types, Global s, Etc */ 
/* * "" "" * .... * '" 'It '" * * * 'II' 'It * "" * * .. '" * 'If .. '" 'It .. * * '" * '" * 111 .. * */ 
static const int FieldLength(] = 

{ 
LASTNAME_LENGTH, 
FIRSTNAME_LENGTH, 
INITS_LENGTH, 



stati c CHAR 

STREET_LENGTH. 
CITY_LENGTH. 
COUNTRY_LENGTH. 
ZIP_LENGTH. 
PHONE LENGTH. 
}; -

save_file[) ; SAVEJIlE: 

/* * 'If .. 'If .. * * 'If 'If 'Ie 1( .... * 11 * 11' 11 .. "" 'Ie '" * .. 'Ie lit * 111 'It 11: 'It * 11 111 11 * 11"1 

/* local Functions */ 
/* '" * * 11' '* 'It 'It: * 'It * tic 'If * '" 'If * 'If • * 1( * * 'If '" * 'Ie * Pc * 111 11" * • 11: * .. *1 

,1Ir*****1r***1f*************W*************1r***********************1rw1r*1t1lf******* I 
/* Read saved data from CO~PP.DAT and put the data into the input */ 
/' fi el ds. "/ 
/*****************************-**************.***********"'****************** / 

void RestoreDataFromFile(P_CO~PP_INST inst) 

FILE *stream; 
int i; 
CO~_DATA CommData; 
P_CHAR pString; 

memset((P_CHAR)&CommData. '\9'. sizeof(CO~_DATA»; 

/" Read data from fi I e CO~PP.OAT */ 
if ((stream; fopen(save file. "rb"» != NUll) 

{ -
Debugf("Fil e Open (Read) Ok. "); 
i ; fread((P CHAR)&CommData. sizeof(CO~ DATA). 1. stream); 
if(i==I)- -

{ 
Debugf("Read Ok. "); 

pString = (P_CHAR)&CommData; 

/" Put data to the input fi e Ids * / 
for (i = 9; i < OBJECT COUNT; itt) 

{ -
Obj Call Warn (msglabel SetString. inst->Objects[i 1. pString); 
pString = &pString[FieldLength[il + 11; 
} 

fel ose(stream); 
} 

/**************************'IIr****1r*****************************1f'llt'1t"''''''W****1r1l:** I 
/" Get Data from fields and stor it in structure. */ 
/*************************************************************************** / 

voi d GetTextData(P _CO~_OATA CommOata. P _CO~PP _INST pData) 

CONTROL_STRING es; 
int i; 

memset ((P _CHAR)CommOata. '\9'. si zeof(CO~_OATA»; 

cs.pString = (P_CHAR)CommOata; 

for (i = 9; i < OBJECT COUNT; itt) 
{ -
cs.l en = Fi el dlength[i 1 + 1; 
ObjCallWarn(msgLabel GetStri ng. pOata->Objects [i 1. &cs); 
cs.pString = &cs.pString[FieldLength[ij + 1): 
} 

/* * * * * * "Ie * 11 111 * 'It 1r * * * * * 111 'If 'If * 'If 'If '* 'Ie * * * 'If 'Ie * * til 11 '" .. * 
* Message Handl ers 
'If 'If * 11: * * * * * 11: * * 'If * * * * * * * * * 1( * 111 * * * * * * * * * * 1( * */ 

/1t1t1t************************************************************************ / 
,. CommSaveButton 
/* 
/* Respond to msgCommSaveButton 
/" 

"/ 
*/ 
"/ 
*/ 

/**************************************************1r*******1r1r****1r1r********* / 
MSG_HANOLER CommSaveButton(const MESSAGE msg. 

const OBJECT self. 
CO.,st P _ARGS pArgs. 
const CONTEXT ctx. 

CO~_OATA CommOata; 
int i; 
FILE "stream; 

/* Get data from input fields */ 
GetTextOata(&CommOata. pOata); 

/" Save data in file CO~PP.DAT */ 

const P_CO~PP_INST pOata) 

if ((stream = fopen(save file. "wb")) 1= NULL) 
{ -
Oebugf("File Open (Write) Ok."); 
i : fwri te ((P CHAR)&CommData. s i zeof(CO~ OAT A) • 1. stream); 
if (i == 1) - -

{ 

99 



Oebugf("Write OK. "); 
} 

fcl ose(stream): 
} 

return(stsOK) : 

MsgHandl erParametersNoWarni ng; 
} 

/*************************************************************************** / 
1* CommRestoreButton 
1* '* Respond to msgCommRestoreButton 

'* 
*' *' *' *' /***********************.*************************************************** / 

MSG_HANOLER CommRestoreButton(const MESSAGE msg. 
const OBJECT self. 
const P _ARGS pArgs. 
const CONTEXT ctx. 
const P _COM'IAPP _INST pOata) 

Oebugf("Message msgCommRestoreButton"): 

1* Get data from file and store it in the input fields *' 
RestoreOataFromFi 1 e (pData); 

return (stsOK); 

MsgHandl erParametersNoWarni ng: 
} 

/* 1( * * * 11' 11' * * * * 11' 1\" 11' * '* "" 11' 11' * * "" * * * * * * 11' * * * * 1; "" 1( 'If * 
Install ati on 

* 'If * * * '* '* *' 11: * * * 11" * * * 11' 11' 11: * * * tit * 11: *' 1( '* *.11' * 11' * * 11 * * */ 

A.a C Source for COMMSET.C 

100 PenPoint os 

This module contains the routines to insert and handle the option card for setting 
the serial port. 

/**********************************************************1\"***************** 
Fi 1 e: commset. c 

(C) Copyright 1992 by GO Corporation. All Rights Reserved. 

You may use this Sample Code any way you please provided you 
do not resell the code and that this notice (including the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS". WITHOUT WARRANTY OF ANY KIND. AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES. INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL.INCIDENTAL.OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revi si on: 1.5 $ 
$Author: Kcat 1 i n 

$Date: 95 Feb 1992 99:97:19 

Thi 5 fi 1 e contai ns the cl sOpt i onTab 1 e demoi ng code of the tKdemo app 1 i cat i on. 
*******1t*****************************************************************1t** / 

IIi fndef DEBUG_INCLUDED 
lIinclude <debug.h> 
lIendif 

IIi fndef CLSMGR_INCLUDED 
lIinclude <clsmgr.h> 
lIendif 

IIi fndef SEL_INCLUDED 
IIi ncl ude <sel.h> 
lIendi f 

IIi fndef WIN_INCLUDED 
lIinclude <win.h> 
lIendi f 

IIi fndef TLAYOUT_INCLUDED 
IIi ncl ude <tl ayout.h> 
lIendi f 

IIi fndef TKTABLE_INCLUDED 
IIi ncl ude <tKtabl e.h> 
lIendi f 

Ii fndef SWIN_INCLUDED 
lIinclude <swin.h> 
lIendi f 



Itifndef APP _INCLUDED 
Itinclude <app.h> 
itendif 

Iti fndef APPTAG_INCLUDED 
Iti nc 1 ude <apptag. h> 
itendi f 

Iti fndef CHOICE_INCLUDED 
Iti nc 1 ude <choi ce. h> 
Itendi f 

Iti fndef POPUPCH_INCLUDED 
Iti nc 1 ude <popupch. h> 
lIendi f 

IIi fndef STROBJ_INCLUDED 
IIi ncl ude <strobj .h> 
lIendi f 

IIi fndef OPTTABlE_INCLUDED 
IIi ncl ude <opttabl e.h> 
lIendif 

Iti fndef OPTION_INCLUDED 
Itinclude <opti on.h> 
Itendi f 

Itifndef PREFS_INCLUDED 
Itinclude <prefs.h> 
Itendi f 

IIi fndef BUSY_INCLUDED 
IIi nc 1 ude <busy. h> 
lIendi f 

IIi fndef COt+U NC LUDED 
IIi nc 1 ude <comm. h> 
lIendi f 

lIifndef COt+1APP _INCLUDED 
lIincl ude <commapp.h> 
lIendi f 

IIi ncl ude <method.h> 
lIinclude <stdio.h> 
lIinclude <stdlib.h> 
lIinclude <string.h> 

stati c const CHAR comm_data_ fil e [] = COI+tDATAJILE; 

/*******************************************************************"'******* / 
/* Read the communi cat i on setup fi 1 e */ 
/**************************************1':******************1r1f****1r*********** I 

voi d GetCommDataFromFi 1 e (p _COt+1APP _INST i nst) 

FI LE *stream; 
int ReadOK = e; 

stati c const Cpt+1_SETUP CommSetupDefaults = 
{ 

C0t+1_SETBAUD_9699. 
COI+tSETDATABITS_ B. 
COW,_SETSTOPBITS_1P9. 
COt+1 SET PARITY NONE 
}; - -

/* Read data from fi 1 e COt+1APP.PRO */ 
if ((stream = fopen(comm data file. "rb")) != NULL) 

{ - -
Debugf("Comm Fi 1 e Open (Read) OK. "j; 
ReadOk = fread( (P CHAR)&inst·>CommSetupData. si zeof(COt+1 SETUP). 1. stream); 
fclose(stream); - -
} 

if (ReadOk ! = 1) 
memcpy ((P CHAR)&inst·>CommSetupData. (P _CHAR)&COmmSetupDefaults. 

si ;eof(COt+1_SETUP)); 

/************************************************,..************************** I 
/* CommOpt i onAddCards * / 
~ ~ 
/* Handles msgOptionAddCards. */ 
/* */ 
/* Note on error handl ing: Once a card has been added to the sheet. */ 
1* destroying the sheet will destroy the card. */ 
/************* *** 1r1r1r ******* ***** **1Ir1l' *** * ***1t: ** ** * * * * * * "/( * '* *1r1l' ** '" 1c !ir**** 1f** 1r1r1r * / 
MsgHandlerliithTypes(CommOptionAddCards. P OPTION TAG. P COt+1APP INST) 
{ - - - -

OPTION_CARD card; 
STATUS s; 

/11.***11'********11'111'****************1f**************11'***11'11'***************** / 
/* Determine which sheet is requesting the cards. Only create */ 
/* the cards if it is the Document option sheet. This test is */ 
/* only needed by application Subclasses. Other subclasses (such */ 

101 



102 PenPoint os 

f* as Tic-Tac-Toe's view class) don't need to perform such a test. */ 
/**********************************************"'**********************/ 

Debugf("commOpti onsAddCard, pI=%eB.Bl X, p2='seB. B1X", 
pArgs->tag, (U32)tagAppDocOptSheet); 

if (pArgs->tag == tagAppDocOptSheet) 
{ 
Debugf("pData->SerlnstanceOK = 'sd", (UI6)pData->SerlnstanceOk); 
if (pData->SerlnstanceOk) 

{ 
/* Create the card. * / 
card. tag = tagSetupCard; 
card. win = objNull; 
card.pName = "Communication Setup"; 
card.client = self; 
ObjCall Jmp(msgOpt i onAddLastCard, pArgs->opti on, icard, s, Error); 
} 

return stsOK; 
MsgHandl erParametersNo\olarni ng: 

Error: 
return s; 

} /* End CommOpt i onAddCards * f 

/************************1t***********************tIr*********111'**************** / 
f* CommOpt i onProvi deCard *f 
p ~ 

f* Handles msgOpt i onProvi deCardWi n * f 
/****************************************_*********1f1r1f*11'*11'**11'******111********1 
MsgHandl erWi thTypes (CommOpt i onProvi deCard, P OPTION CARD, P COMMAPP INST) 
{ - - - -

STATUS s; 
LIST_ENTRY 1 e; 
OPTION_TABLE_NEW new; 
BUTTON_NEW bn; 
WIN_METRICS wm: 
P _ CHAR sername; 
WIN control; 
WIN choice: 
UI6 n; 

f* Descri pt i on of the option card *f 
static const TK TABLE ENTRY SetupCardEntries[] = 
{ --

{"Port:"}, 
{e, e, 9, tagPort, tkNoClient, clsPopupChoice}, 
{pNull}, 

{"Baudrate:"}, 
{e, 9, 9, tagBaudrate, tkNoClient, clsPopupChoice}, 
{"3ge", e, a, n, 
{"6ea", a, B, 2}, 
{"I2ea", B, B, 3}, 
{"24aB", B, a, 4}, 
{"48eB", B, B, 5}, 
{"96ae", B, B, 6}, 
{"I92ee", B, a, 7}, 
{pNul]} , 

{"Databi ts: "}, 
{e, B, a, tagDatabits, tkNoClient, clsChoice}, 
{"7", 9, B, n, 
{"B", e, a, 2}, 
{pNull}, 

{"Stopbits:"}, 
{a, a, a, tagStopbits, tkNoClient, clsChoice}, 
{"I", a, a, n, 
{"I 1/2", e, e, 2}, 
{"2", e, e, 3}, 
{pNull} , 

{"Parity:"}, 
{e, e, a, tagParity, !KNoClient, clsChoice}. 
{"None", a, a, n, 
{"Odd", B, B, 2}, 
{"Even", e, B, 3}, 
{pNull} , 

{"Status:"}, 
{e, B, B, tagConnected, tkLabelStringld I tKNoClient I 

tKlnputDi sabl e I tKBorderMargi nNone, 
cl sLabe]} , 

{pNul1} 

pArgs->wi n = obj Null ; 

if (pArgs->tag == tagSetupCard) 
{ 
f* Create the opti on card Of 
merncpy ((P _CHAR)&i nst, (P _CHAR)pData, si zeof(COMMAPP _INST)); 

ObjCall Ret (msgNewDefaults, clsOpti onTabl e, anew, s); 
new.tkTable.pEntries = SetupCardEntries; 
new.win.tag = tagSetupCard: 
ObjCallRet(rnsgNew, clsOptionTable, anew, s); 
i nst.comrnOptWi n = pArgs->wi n = new.obj ect.ui d; 



I" Copy data baCK to protected memory -/ 
ObjectWri te (self, ctx, &i nstl; 

I" Check the items in the card -/ 
control· (WIN)ObjectCall (msgWinFindTag, pArgs->win, 

(P _ARGSltagPort): 

/- Get the choice of the popup choice to insert buttons in, -/ 
/- representing the various serial port devices available. -/ 

Obj Call Ret (msgPopupChoi ceGetChoi ce, cont ro 1, &choi ce, s); 

/- How many items in list? -/ 
Obj Call Ret (msgL i stNumItems, pOata->Seri al NameLi st, (P _ARGS)&n, s): 

Debugf("Creating %ld choice items", n): 

for (le.position • 9; le.position < n; le.position++) 
{ 
/- Get item at this position in the list -/ 
ObjCall Ret (msgLi stGetItem, pData->Seri al NameList, &1 e, s); 

/- Get st ri ng for thi s obj ect -/ 
ObjCallRet(msgStrObjGetStr, le.item, &sername, s): 

/* Create a button for the popup menu */ 
Obj Call Warn (msgNewDefaul ts, clsButton, &bn): 

/* Get defaults for this tk type "/ 
Obj Call Warn (msgTKTabl eChil dDefaul ts, choi ce, &bn); 

/* Make it lOOk 1 i ke standard popup item * / 
bn.l abel.styl e.decorati on = 1 sDecorati onPopup; 
bn.label.pString = sername; 

/* Gi ve it the index in the list as tag so I can "/ 
/* linK it easily to the string list "/ 
bn.win_hg = le.position; 

ObjCall Ret (msgNew, clsButton, &bn, sl; 

/* Insert it in the choi ce * / 
Oebugf("Inserting %s", sernamel; 
wm.parent = choice: 
wm.opti ons = wsPosTop: 
ObjCallRet(msgWinInsert, bn.object.uid, &wm, s): 
) 

/" Set communi cat i on port * / 
ObjCallWarn(msgControl SetVal ue, control, 

(P _ARGS)pOata->SerPortIndex); 

/* Set baudrate */ 
control = (WIN) Obj ectCall (msgWinFindTag, pArgs->win, 

(P ARGS) tagBaudrate): 
Obj Call Warn (msgControl Set Val ~e. control, 

(P _ARGS)pOata->CommSetupOata.BaudRate); 

/" Set 7 oder B databits "/ 
control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, 

(p _ARGSltagOatabi ts); 
ObjCall Warn (msgControl Set Val ue, control, 

(P _ARGS)pData->CommSetupOata.OataBi ts): 

I" Set 1, 1 1/2 or 2 stopbits "/ 
control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, 

(P ARGSltagStopbi ts): 
ObjCall Warn (msgControl SetVal ~e, control, 

(P _ARGS)pOata->CommSetupOata.StopBi ts): 

/* Set parity (odd, even or none) "I 
control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, (P_ARGS)tagParity); 
ObjCall lIarn (msgControl Set Val ue, control, 

(P _ARGS)pOata->CommSetupData.Pari ty); 

/* Set the correct resource id for the status label; "/ 
r connected or not. "I 

ObjCallllarn(msgCommSetConnectStatusId, sel f, 
(pOata->CommSerConnected) ? (P ARGS) " Connected" 

((ARGS) "Not connected"); 

1* Mark card as clean "I 
ObjCallRet(msgControlSetOirty, pArgs->win, (P_ARGS)false, s): 
) 

return (stsOK); 
MsgHandl erParametersNoWarni ng: 
) /- End CommOpt i onProvi de Card * / 

1*******.f~**********1r***********1r***1r1r***1c********************************** I 
/* CommOpti onApplyCard "/ 
r ~ 
I" Handl es msgOpti onApplyCard "/ 
/***********1r*****1t*********w1l:1r****1r******1t1l*1r*******1t1r**1r*****1t1lr******tt**1t1r I 
MsgHandl erWi thTypes (CommOpti onApplyCard, P _OPTION_CARD, P _COMMAPP _INST) 
{ 

IIIN control; 

103 



104 PenPolnt os 

TAG Tag: 
STATUS 5: 
COIf.1APP _INST i nst: 
FILE *stream; 
int i: 
U32 val ue: 
LIST_ENTRY Ie: 
P_CHAR sername: 

if (pArgs->tag == tagSetuPCard) 
{ 
Debugf("msgOpti onApplyCard"): 

memcpy ((p _CHAR)&i nst, (p _CHAR)pData, si zeof(COIf.1APP _INST)): 

/* Get the data * / 
control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, (P ARGS)tagPort); 
ObjCallRet(msgControlGetValue, control, (P_ARGS)&value,-s): 
inst.SerPortIndex = le.position = value: 
ObjCall Ret (msgLi stGetItem, pData->Seri al NameLi st, &1 e, s): 
ObjCallRet(msgStrObjGetStr, le.item, &sername, s): 
strncpy (i nst .CommSetupData.Defaul tPort, sername, 

nameBufLength * Si zeOf(CHAR)): 

control = (WIN) DbjectCall (msgWinFindTag, pArgs->win, (P ARGS)tagBaudrate); 
ObjCall Ret (msgControl GetVal ue, control, (P ARGS)&Tag, s): 
inst.CommSetupData.BaudRate = (int)Tag; -

control = (WIN)DbjectCall (msgWinFindTag, pArgs->win, (P_ARGS)tagDatabits); 
ObjCallRet(msgControlGetValue, control, (P ARGS)&Tag, s): 
inst.CommSetupData.DataBits = (int)Tag: -

control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, (P ARGS)tagStopbits): 
ObjCal1 Ret (m5gControl GetVal ue, control, (P ARGS)&Tag, s): 
inst.CommSetupData.StopBits = (int)Tag: -

control = (WIN)ObjectCall (msgWinFindTag, pArgs->win, (P_ARGS)tagParity): 
ObjCallRet(msgControlGetValue, control, (P ARGS)&Tag, 5); 
i nst.CommSetupData.Pari ty = (i ntlTag: -

/* ChecK, if data changed */ 
if (memcmp((P CHAR)&i nst.CommSetupData, (P _CHAR)&pData->CommSetupData, 

si zeof(CO~ttSETUP))) 

/* Copy data back to protected memory */ 
ObjectWri te(self, ctx, &i nst): 

r Close and reopen port */ 
ObjCallWarn(msgCommCloseSerial, self, pNull); 
ObjCall Ret (msgCommOpenSeri aI, sel f. pNull , 5); 

/* Initialize again */ 
Obj Call Warn (msgCommSetSeri alMetri cs, sel f, (P _ARGS)pNull); 

/* Wri te data to fi 1 e */ 
if ((stream = fopen(comm data file, "wb")) 1= NULL) 

{ - -
Debugf("Comm File Open (Write) Ok."); 
i = fwri te ((P CHAR)&i nst.CommSetupData, si zeof(COMM SETUP), 

l,-stream): -
if(i==ll 

{ 
Debugf("Write OK."): 
} 

fcl ose (stream): 
} 

return (stsOK) : 

MsgHandl erParametersNoWarni ng: 
} 

/***11'*****************11'**************************11'************************** / 
/* Respond to msgCommSetConnectStatusId. */ 
r ~ 
/* Set new resource I d for connect i on status 1 abe 1. * / 
/* A custom handler is provided for this (instead of just calling */ 
/* msgLabelSetStringid) because the toolkit accidently sets the */ 
/* infoType to zero. */ 
/*************************************************1t*********1r******1r1l'******* / 
MsgHandl erWi thTypes (CommSetConnectStatusId, P _ARGS, P _COIf.1APP _INST) 
{ 

OBJECT 1 abe 1 ; 

Debugf("msgCommSetConnectStatusId") : 

/* Only update label if card has been created */ 
if (pData->commOptWi n) 

{ 
if (label = (WIN)ObjectCall (msgWinFindTag, pOata->commOptWin, 

(P _ ARGS) tagConnected)) 

ObjCallWarn(msglabelSetString, label, pArgs): 
} 

r.twrn stsOK: 



MsgHandl erParametersNoWarni ng; 
} /* SXSetConnectStatusId */ 

A.9 C Source for COMMSEND.C 
This module contains the code for sending the data via the serial port to an OS/2 
2.0 system. 

/**1I'**************1r****1l'Jllr******1fl'******************************************** 

Fi 1 e: commsend.c 

Copyright 199B. 1991. 1992 GO Corporation. All Rights Reserved. 

You may use thi s Sampl e Code any way you pl ease provi ded you 
do not resell the code and that thi s not ice (i nc 1 udi ng the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS". WITHOUT WARRANTY OF ANY KIND. AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES. INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL.INCIDENTAL.OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revi si on: 
$Author: 

$Date: 

I.e $ 
gbarg $ 
21-Jan-92 $ 

Thi s fi 1 e contai ns the class defi ni t i on and methods for cl sComm. 

****************11'*********************************************************** / 

Ii fndef DEBUG_INCLUDED 
Ii ncl ude <debug.h> 
lendi f 

Ii fndef FS_INCLUOED 
Ii ncl ude <fs.h> 
lendi f 

#i fndef SIO_INCLUDED 
#include <sio.h> 
#endi f 

#i fndef SERVMGR_INCLUDED 
*i nc 1 ude <servmgr. h> 
#endi f 

#i fndef FRAME_INCLUDED 
lIincl ude <frame.h> 
lIendif 

IIi fndef APP _INCLUDED 
#i nc 1 ude <app. h> 
#endi f 

IIi fndef NOTE_INCLUDED 
linclude <note.h> 
lIendif 

IIi fndef CmtUNCLUDED 
IIi ncl ude <comm.h> 
lIendi f 

lIifndef COt+IAPP _INCLUDED 
lincl ude <commapp.h> 
lendi f 

lincl ude <method.h> 

linclude <stdlib.h> 
linclude <stdio.h> 

/* * 11: '* 1( 11 11' * * * '* '* * * * * * tit * 1( * * * * 11: * '* * * '* * * * 'It * * 'If * 
* Defines. Types. Globals. Etc 
* * 'If * '* * 11' 11' 'It 'Ie * 1{ 'If 11" * '* 1( 11' * * * * * '* * 1( '* * * '* * * * 11: 11" 11' 11" 11/ 

/* Identifi cati on sent before the data */ 
static canst char Id[) =" \xelStart\xeZ"; 

/11: '* 'lit '* 11' * 11' 11: 1{ * * * 11: tit 11: 1( 11" '* '" 'It 'if 11: '* * * * 11: 'Ie "It * * 1( * '* * 11' * '* 
Local Functions 

* * * 11' 11' * * * 11" * * * * '* .", * * * 11: * * 11: '* * tit 'It 11: '* 11' 11: 11' '* *" * * 11" * *1 

/*****************11"********************************************************* / 
/* Convert a fi e 1 d and send it to the seri al port */ 
/**********1r*1r****************1r1r************1c******1c********1c*************1c*/ 

void CommSendField(OBJECT self. P_CHAR Field. BOOLEAN flag) 

CHAR Temp(6el; 
P _CHAR sl. 521 

105 



106 PenPoint as 

r 
/" Fi eld points to one data fi eld. The data is put into 
/" quotation marKS. Possible quotation marKS within the text 
/* are doubled. If flag is true, a Komma will be sent after 
/" the field. 
I" 
I" Exampl e: 
/" 
I" Field contents ===> Data sent 
/* 
/* Peter ===> "Peter ll 

/* Robert "Bob" Mi 11 er ===> "Robert ''''Bob .... Mi 11 er" 
/" 

s2 = Temp: 
*52 = I II t; 

52++: 
for (sl = Field; "sl; sl++, s2++) 

{ 
if ("sl == "") 

{ 
s2[9J = ''''; 
s2[IJ = ''''; 
s2++; 
} 

else 
*sZ :: *51; 

*52 = III t. 

s2++; 

/* Append komma if fl ag=true "/ 
if (fl ag) 

{ 
*52 :: I •• 

s2++: 
) 

"s2 = '\9'; 

/" Send the data to the seri al port "/ 
ObjCallwam(msgCommSendSerial. self, (P_ARGS)Temp): 
) 

"/ 
"/ 
"/ 
*/ 
"/ 
"/ 
"/ 
"/ 
"/ 
*/ 
*/ 
*/ 
"/ 

/* * * !If * '* * '* * * 'It * "" * if 11' * * 1: * * 11: 1( 11: * * *' * * * * 11' * 11: 1( * 11: * 
Message Handl ers 

* 'If * 'If 'if '* til' * 11: * * * * * 1r * "" * * 11: * *' * * ,... * * * 1r 'If * * * 11' * * * *1 

/******************************1r********IIr***********************************/ 
/" CommSendScreenButton 
I" 
/" Respond to msgCommSendScreenButton 

"/ 
*/ 
"/ 

/************************************1r1lr*************************************/ 
MsgHandl erWi thTypes (CommSendScreenButton, P _ARGS, P _COMMAPP _INST) 

COM'! DATA Data: 
static const CHAR CrLf[J = "\x90\x9A"; 

Oebugf( "Message msgCommSendButton"); 

GetTextOata(&Oata, pOata); 

/" Send the data, if Lastname is gi ven, any seri al port is avai 1 abl e "/ 
/* and connection estab 1 i shed "/ 
if (Data. LastName [9J && pOata->SerInstanceOk && pOata->CommSerConnected) 

{ 
/" Fi rst send the Id "/ 
ObjCall Warn (msgCommSendSeri al, self, (P ARGS)Id): 
/" Send the fi el ds "/ -
CommSendField(self, Oata.lastName, true); 
CommSendFi el d(sel f, Oata.Fi rstName, true); 
CommSendField(self, Oata.Inits, true); 
CommSendField(self, Oata.Street, true); 
CommSendField(self. Oata.City, true); 
CommSendFi el d(sel f, Oata.Country, true); 
CommSendField(self, Oata.ZIP, true); 
CommSendField(self, Oata.Phone, false); 
I" Send CR/lF "/ 
ObjCallWarn(msgCommSendSerial, self, (P_ARGS)CrLf): 
) 

return (stsOK) ; 

MsgHandl erParametersNoWami ng; 
) 

/*****************************************************11 **fir****************** / 
/" CommSendFi 1 eButton 
/* 
/" Respond to msgCommSendFi 1 eButton 

"/ 
"/ 
"/ 

/**1r********"'***********************"nlr******************w******************* / 

MsgHandl erWi thTypes (CommSendFi 1 eButton, P _ARGS, P _COMMAPP _INST) 

COM'l_OATA Data; 
FI LE "stream; 

static const CHAR CrLf[] = "\xeO\x9A"; 



Debugf("Message msgCommSendButton"); 

memset((P_CHAR)&Data, '\e', slzeof(CO"tDATA)); 

'* Read data from fil e COIfolAPP. OAT *' 
if ((stream - fopen(SAVE FILE, "rb"» ,- NULL) 

{ -
Debugf("FIl e Open (Read) Ok. "); 
fread((P CHAR)&Data, sizeof(COItl DATA), 1, stream); 
fc1ose(stream); -
} 

'* Send the data, If Lastname Is given, any serial port Is available *1 '* and connect Ion estab 11 shed * I 
I f (Date. LastName[e) && pData->SerInstanceOk && pData->CommSerConnected) 

{ '* First send the Id *' 
ObjCallWarn(msgCommSendSerla1, self, (p ARGS)Id); '* Send the fi e 1 ds *' -
CommSendFie1d(self, Date.LastName, true); 
CommSendFle1d(se1f, Data.FirstName, true); 
CommSendFi e1 d(sel f, Data.Inits, true); 
CommSendFi e1 d(se1 f, Data.Street, true): 
CommSendFie1d(se1f, Data.City, true); 
CommSendFle1d(se1f, Data. Country , true); 
CommSendFle1d(se1f, Data.ZIP, true); 
CommSendField(self, Data.Phone, false); '* Send CR/LF *' 
Obj Call Warn (msgCommSendSeri a1, sel f, (p _ARGS)CrL f); 
} 

return (stsOK); 

MsgHand1 erParametersNoWarnl ng; 
} 

'* CommOpenSerl a 1 

'* 1* Respond to msgCommOpenSerl al 

MsgHandl erWlthTypes (CommOpenSeri a1, P _UNKNOWN, P _COItlAPP _INST) 

SM_ACCESS saccess; 
STATUS 5; 
OBJECT slo; 
SIO INIT sinlt; 
SIO)VENT_SET ses; 
COItIAPP _INST Inst; 
SM_GET_STATE servstate; 

Debugf ("Message msgCommOpenSeri a 1 ,,) ; 

memcpy( (P _CHAR)&I nst, (P _CHAR)pData, sl zeof(COItlAPP _INST); 

'* Since I grab the port and won't let go, I can use SMAccess etc.. *1 '* If you don't need exclusive access to the serial port, bind the *' '* server and only open it if you need it. <servmgr.h> shows how to do *1 

'* that. *' 
saccess.pServi ceName • i nst. CommSetupData. Defaul tPort; 
saccess.ca11 er • se1 f; 

Obj Call Warn (msgSMAccessDefaul ts, theSerl al Devl ces, &saccess): 
ObjCall Ret(msgSMAccess, theSerl al Devl ces, &saccess, 5); 

s i 0 = saccess. servl ce; 

'* Inltl a1 he to default state, use small buffers '" 
sinit.inputSize • 512; 
sinit.outputSize a 512; 
ObjCallWarn(msgSiolnit, slo, &sinH); 

'* I'm only interested in transmission errors (well not really, *' 
'" but just to show how). "I 
ses.eventMask = sloEventRxError; 
ses.c1lent • self; 
ObjCallWarn(msgSioEventSet, sio, &ses); 

/*1Ir*1r*1r1t****1r****1nt**1t**1t******1r1c1r1t*_**1t1r _****1t1r****1t**1r****1I:**1Ir**** / 
1* The Service Manager will keep me updated about the connection *1 
'" status, however I want to find out the inita1 status. *1 
/fil**1t***1t**1r**1r******1r1r1r1r1rtUt1r**.ff1l''I\'1ht •• *******W1t1r1lr1r1r***1r1r**1Ir.1r*****1r I 

servstate.handle • (OBJECT) seccess.handl e; 
servstate.connected • false; 
ObjCallWarn(msgSMGetState, theSeri a1 Devi ces, &servstate); 

'" Update instance data *' 
I nst. CommSerConnected - servstate. connected; 
inst.commSIOServi ce • seccess.servi ce; 
Inst.commSIOHandle = saccess.handle; 

'* Copy data baCk to protected memory *' 
ObjectWrlte(self, ctx, &Inst); 

*1 
*1 
*1 

107 



108 PenPoint os 

/" Ini ti al i ze port "/ 
ObjCal Hiarn(msgCommSetSeri al Metri cs, self, (P _ARGS)pNull); 

return (stsOK): 

MsgHandl erParametersNoWarni ng: 
} 

/*************************************************************************** / 
/" CommCI oseSeri al 
/" 
/" Respond to msgCommCI oseSeri al 

"/ 
"I 
"I 

/** 11: ********* * * 11" * * ** ************** ************* *11"*** **** 11; ** ***-************ *1 

MsgHandl erWi thTypes (CommCI oseSeri ai, P _UNKNOWN, P _COMMAPP _INST) 

COMMAPP _INST i nst: 
SM_RElEASE srel ease: 
SI030NTROl_OUT_SET sco: 
STATUS s: 

Debugf("Message msgCommCI oseSeri al "): 

memcpy ((P _CHAR)&i nst, (P _CHAR)pData, si zeof(COMMAPP _INST)): 

I" pull dtr and rts lOll to physically disconnect "I 
sco.dtr = false: 
sco. rts = false: 
sco.outl = fal se: 
sco.out2 = fal se: 
Obj Call Warn (msgSi oCont rol OutSet, i nst. commSI OServi ce, &sco): 

/" re I ease the seri al port "I 
srelease.caller = self: 
srel ease.servi ce = inst.commSIOServi ce: 
srelease.handle = inst.commSIOHandle: 
ObjCal1 Ret (msgSMRel ease, theSeri al Oevi ces, &srel ease,s): 

/" Update instance data "I 
inst.commSIOServi ce = objNull: 
inst.commSIOHandle = objNull: 

/" Copy data baCK to protected memory "/ 
ObjectWrite(sel f, ctx, &inst): 

return (stsOK) : 

MsgHandl erParametersNoWarni ng; 
} 

/*************'11\"1""********************************,.,.*************************** / 
/" CommSetSeri a I Met ri cs 
I" 
I" Respond to msgCommSetSeri alMetri cs 

"I 
"I 
"I 

1* ** *********** * '" ** * *** * 11" 1r** '* * *** ""*1\' ** ************ ** ********* *** '* ** ********* / 

MsgHandl erWi thTypes (CommSetSeri alMetri cs, P _ARGS, P _COMMAPP _INST) 

SIO_METRICS smetri cs: 

stati c const un BaudRateTab[] 
{ 
3ge, 
6ge, 
126e, 
2469, 
4See, 
9699, 
19266, 
}: 

stati c const SIO_PARITY Pari tyTab [] 
{ 
s i oNoPari ty, 
5 i oOddPari ty, 
si oEvenPari ty, 
}; 

stat i c const SIO_DATA_BITS OataSi tsTab [J 
{ 
si oSevenBi ts, 
si oEi ghtBits, 
}; 

static const SIO STOP BITS StopBitsTab[J 
- ( 

sioOneStopBit, 
s i oOneAndAHal fStopBi ts, 
sioTlioStopBits, 
}: 

Oebugf( "Message msgCommSetSeri al Metri cs "); 

I" Initialize serial port to preferences "I 
Obj Call Warn (msgSi oGetMetri cs, pOata·>commSJ OServi ce, &smet ri csJ; 
smetri cs.baud = BaudRateTab [pData->CommSetupOata.BaudRate - 1]; 
smetri cs.1 i ne.dataBi ts = DataBi tsTab [pOata->CommSetupData.DataBi ts - 1]: 
smetri cs.1 i ne.stopBi ts = StopBi tsTab [pData->CommSetupOata.StopBi ts - 1]: 



smetrics.1ine.parity = ParityTab[pData->CommSetupData.Parity - 1); 
smetrics.f10wType.f10wContro1 = sioXonXoffF10wContro1; 
Obj Call Warn (msgSi oSetMet ri cs, pData->commSIOServi ce, &smetri cs); 

return (stsOK); 

MsgHand1 erParametersNoWarni ng; 
} 

'* CommSendSeri a 1 ,* '* Respond to msgCommSendSeri a1 
*' *' *' /***************************************""*********************************** / 

MsgHand1 erWi thTypes(CommSendSeri a1, P _CHAR, P _COM'IAPP _INST) 

STREAM_READ_WRITE_TIMEOUT srw; 
STATUS s; 

Debugf( "Message msgCommSendSeri 81 ,,); 

'* Do nothing if I'm not connected (or open for that matter) *' 
if (pData->CommSerConnected) 

{ 
/* Support uni code ••• *' 
srw.numBytes = str1 en(pArgs) * Si zeDf(CHAR); 

'* Do nothing if there were no characters entered in the IP *' 
if (srw.numBytes > e) 

{ 
srw.pBuf = pArgs; 
srw. timeOut = 759; 

Obj Call Ret (msgSt reamWri teTi meOut, pData->commSIOServi ce, &srw, s); 

'* Flush stream *' 
Obj Call Ret (msgStreamF1 ush, pData->commSI OServi ce, pNu11, s); 
} 

e1 se 
Debugf ("Not Open/Connected"); 

return (stsOK) ; 

MsgHand1 erParametersNoWarni ng; 
} 

/****************7**************************_******************************* / 
/* Respond to msgSMConnectedChanged. *' 
'* *' '* Send by service manager when a change in the connection status has *' '* occured. Update the serial card Status label to reflect current *' '* connect i on status. *' 
/******************************1r*****1r************************************** / 

MsgHandl erWi thTypes (CommSMConnectedChanged, P SM CONNECTED NOTIFY, 
P _COM'IAPP _INST) - - -

stat i c const CHAR Connected (] = "Connected"; 
stat i c const CHAR NotConnected (] = "Not connected"; 

COM'IAPP _INST inst; 

Debugf( "msgSMConnectedChanged"); 

Debugf("Connected %1 d", pArgs->connected); 

memcpy ((P _CHAR)&i nst, (p _CHAR)pData, si zeof(COM'IAPP _INST)); 

i nst. CommSerConnected = pArgs->connected; 

'* Copy data baCK to protected memory *' 
ObjectWrite(self, ctx, &inst); 

Obj Call Warn (msgCommSetConnectStatusld, se1 f, 
pData->CommSerConnected? (P ARGS) Connected: 

return stsOK; 

MsgHand1 erParametersNoWarni ng; } '* CommSMConnectedChanged *' 

[P _ ARGS) NotConnected) ; 

/**********************1r****************1r*********************************11"**** / '* Respond to msgSi oEventHappened. 

'* *' *' '* Respond to an event, in this case only EventRxError. Note that more events *' '* bits may be set in the masK, even those I didn't express interest in. *' '* Don't do much about the apparent transmi ssi on error. Cou1 d put up a note */ '* or something. You can also be informed when the serial input buffer is no *' '* longer empty. That is most suited for non-continious serial 1'0, since it *' 
/* has some overhead. *' 
/****************************************************************************** / 

MsgHand1 erWi thTypes (CommSi oEventHappened, P _SIO_EVENT_HAPPENED, 

109 



NOTE_NEil nn; 
MESSAGE m; 
STATUS s; 

1* Tabl es for transmi ssi on error note "I 
stat i c const TK TABLE ENTRY commNoteContent [) • - ( 

{"A transmission error occured". 9, 9, 9. tkLabelStringId}, 
{pNull) 
} ; 

const TK TABLE ENTRY commNoteButton[] - - { 

{"Ok", 9. 9. 9, hLabel StringId}. 
{pNull } 
}; 

Debugf("msgSi oEventHappened"); 

if (pArgs->eventMask & sioEventRxError) 
{ 
DebugfC"si oEventRxError"); 

1* Show a simple note *1 
ObjCallllarn(msgNewDefaults. clsNote, ann); 
nn.note.metri cs. fl ags = nfDefaultAppFl ags I nfAutoOestroy; 
nn.note.pContentEntri es = commNoteContent; 
nn.note.pCmdBarEntri es = commNoteButton; 
Obj Call Ret (msgNew, cl sNote, &nn, s); 

ObjCallllarn(msgNoteShow. nn.object.uid, am); 

return (sUOK) ; 

MsgHandl erParametersNoliarni ng; 
} 1* CommSi oEventHappened *1 

/* "" 11' * if * '" * "" "'" * 'If * "" * *' * * * * * * * * * * '" * * '" '" '" 11 "" * * * * 
Install ati on 

* 11' * * 'Iff '" * * * * * * *' 'If * * * * * * * * '* 11' *' * * 1r '" * "" * * * 1t * * */ 

A.10 Make File for REC_PEN C Routines 

A.11 

110 

Compiler control file used when compiling and linking COMMAPP.EXE. The 
source for this program is listed later. 

@echo off 
sql prep rec_pen.sqc pen 
if errorl evel 1 goto ende 
icc Ic 1113 IDLINT_ARGS IOES32T016 rec_pen.c 
if errorl evel 1 goto ende 
1 inK3B6 rec_pen ... sql_dyn: 
:ende 

REC_PEN.H C Header 

PenPoint os 

/********************************************************************11******* 
Fil e: rec_pen.h 

*************************************************************************111** I 

1* Define length of the input fields *1 
*defi ne LASTNAME LENGTH 29 
*define FIRSTNAME_LENGTH 29 
*defi ne INITS LENGTH 2 
*define STREET_LENGTH 29 
*define CITY_LENGTH 29 
*defi ne COUNTRY LENGTH 15 
*define ZIP_LENGTH 5 
*defi ne PHONE_ LENGTH 15 

typedef struct 
{ 

char LastName(LASTNAME LENGTH + 1]; 
char Fi rstName (FIRSTNAME LENGTH + 1); 
char Inits(INITS LENGTH; IJ: 
char Street [STREET LENGTH + IJ; 
char City [CITY LENGTH + 1): 
char Country[COUNTRY_LENGTH + 1]; 
char ZIP[ZIP LENGTH + 1]; 
char Phone[PHONE_LENGTH + 1J: 
COMM_DATA, *p _COMM_DATA: 

voi d InsertOata2DB(P _CO~OATA CommOata); 



A.12 C Source for REC_PEN.C 
This module receives the data from the serial port and updates or adds a record 
in the database PEN. 

static unsigned char sqla_program_id[4eJ = 
{lll.65.65 .66.65 .68.67.67.85.83.69.82.73.68.32.32.82.69.67.95. 
89.69.78.32.84.65.52.69.89.76.76.73.48.32.32.32.32.32.32. 32}; 

/* Operati ng System Control Parameters */ 
#i fdef ES32T016 
tincl ude "sql ca.h" 
Ii ncl ude "sql da.h" 
lendif 

Ii fndef SOl_AP1_RC 
#defi ne SOL_STRUCTURE struct 
#i fdef ES32T016 
Idefi ne SOl_API_RC short 
Idefi ne SOL API FN 
Idefine SOl=POINTER _Segl6 
lelse 
Idefi ne SOl_API_RC i nt 
Ii fndef SOL API FN 
Idefi ne SOl=API)N far pascal _loadds 
lendi f 
Idefi ne SOL_POl NTER 
lendi f 
lendi f 

SOl_API_RC SOl_APIJN sql aal oc (unsi gned short. 
unsi gned short. 
unsi gned short. 
voi d *); 

SOl_API_RC SOl_APIJN sql acall (unsi gned short. 
uns i gned short. 
uns i gned short. 
uns i gned short. 
voi d *); 

SOl_API_RC SOl_APIJN sql adl oc(unsi gned short. 
void *); 

SOl_API_RC SOl_APIJN sql asets (unsi gned short. 
unsi gned char *. 
voi d *); 

SOl_API_RC SOl_APIJN sql asetv (unsi gned short. 
unsi gned short. 
uns i gned short; 
unsi gned short. 
void *. 
voi d *. 
void *); 

SOL API RC SOL API FN sql astop(voi d *); 
SOl=API=RC SOL)P(FN sql astrt (voi d *. 

void *. 
struct sql ca *); 

SOl_API_RC SOL_APIJN sql ausda(unsi gned short. 
st ruct sql da *. 
voi d *); 

Ii fdef ES32T016 
Ipragma 1 inKage (sql aal oc. far16 pascal) 
Ipragma 1 inKage (sql acall. far16 pascal) 
Ipragma linKage (sqladloc. far16 pascal) 
Ipragma 1 inKage (sql asets. far16 pascal) 
Ipragma linkage (sqlasetv. far16 pascal) 
Ipragma 1 inkage (sql astop. far16 pascal) 
Ipragma 1 i nkage (sql astrt. far16 pascal) 
Ipragma 1 i nkage (sql ausda. far16 pascal) 
lendi f 

linclude <stdio.h> 
IIi ncl ude <stdl i b.h> 
linclude <process.h> 
#include <string.h> 
linclude <memory.h> 
#include <sql.h> 
#include <sqlenv.h> 

linclude "rec_pen.h" 

Idefi ne INCl_DOSFIlEMGR 
linclude <os2.h> 

Idefine RESTART -1615 
tdefi ne BUFSIZE 512 

/* 
EXEC SOL INCLUDE sql ca; 
*/ 

1* SOL Communi cati on Area - SOlCA - structures and constants */ 

111 



112 PenPolnt os 

,i fndef SQlCODE 

'* SQl Communi cati on Area· SQlCA *' 
SQ l STRUCTURE sql ca 
{ -

}; 

uns i gned char 
long 
long 
short 
unsi gned char 
unsi gned char 
long 
uns i gned char 
uns i gned char 

sql cai d[eJ; 
sql cabc; 
sql code; 
sql errml ; 
sql er.rmc(7eJ; 
sql errp[eJ; 
sql errd[6J ; 
sql warn [11]; 
sql state [S J; 

'" Eyecatcher = 'SQlCA '*' 
'* SQlCA si ze in bytes = .136 '" 
'" SQl return code '" 
'" length for SQlERRMC '" '* Error message tOKens *' '* Di agnost i c i nformat ion *' 
'* Di agnost i c i nformat ion *' '* Warni ng fl ags *' 
'" SOlSTATE *' 

'* Si ze of SQlCA *' 
'define SQlCA_SIZE s; zeof(struct sql cal 

'def; ne SQlCDDE sql ca.sql code 
'def; ne SOlWARNe sql ca.sqlwarn [eJ 
,defi ne SOlWARNI sql ca.sql warn[lJ 
'define SQlWARN2 sql ca. sql warn [2J 
,defi ne SQlWARN3 sql ca.sqlwarn[3J 
'defi ne SOlWARN4 sql ca.sql warn[4J 
'defi ne SQlWARNS sql ca.sql warn[SJ 
'defi ne SQlWARN6 sql ca.sql warn [6J 
'define SQlWARN7 sql ca.sql warn [7] 
'defi ne SQlWARNe sql ca.sqlwarn[eJ 
'defi ne SQlWARN9 sql ca.sql warn [9J 
'defi ne SQlWARNA sql ca.sql warn [leJ 

'end; f 

struct sql ca sql ca; 

'* SQl communi cati ons area '" 

/*"/'(*********************************************************************** / 
/* Error handl i ng for SQl statements *' /************************************************************************* I 

'" EXEC SQl 
WHENEVER SQlERROR GOTO exit_error; 

'" 

/* 
EXEC SQl 

WHENEVER SOlWARNI NG CONTI NUE; 

*' 
,* 
EXEC SQl 

WHENEVER NOT FOUND CONTINUE; 

*' 
/***************************1r***************1r1r**1t**********11'************** / '* SQl declaration section *' /*********************11'**************************************1r************ / 

'" EXEC SOL BEGIN DECLARE SECTION; 

*' 
char lastName[21 J; 
char Fi rstName[2lJ; 
char Inits[3J; 
char Street [21J; 
char City[21]; 
char Country[16J; 
char ZIP [6]; 
char Phone [16]; 

char DBKey[2IJ; 

,* 
EXEC SQl END OEClARE SECTION; 

*' 

void main(argc, argvl 

i nt argc; 
char *argv [J; 

int iI, i2, i3; 
USHORT rc; 
UlONG ulActi on, BytesRead; 
HFllE Fil eHandl e; 
PEAOP2 llellop2 =. (PEAOP2)NULl, 



CHAR Buffer[Z99] ; 
PCHAR Ptr, .ptr2; 

stati c CHAR Id[) = "\x91Start\x92"; 

stat i c USHORT lengthTeb [) = 
{ 
LASTNAME_LENGTH + I, 
FlRSTNAME_lENGTH + I, 
INITS_LENGTH + I, 
STREET_LENGTH + I, 
CITY_LENGTH + I, 
COUNTRY_LENGTH + I, 
ZIP_LENGTH + I, 
PHONE LENGTH + I, 
}; -

stet i c CO~_DATA CommData; 

(si zeof(LengthTeb) / si zeof(USHORT)) 

if (argc < 2) 
{ 
printf("No Com-Port speci fi ed\n"); 
exi t (1); 
} 

i 1 < e; 
if (strlen(argv[I]) =< 4) 

{ 
if (memicmp(argv[ll, "COM", 3) == e) 

{ 
i 2 = atoi (&argv[I][3]): 
if ((i2 >= 1) && (i2 <= 3)) 

{ 

if (Iil) 
{ 

i 1 = 1; 
} 

printf("Invalid Com-Port \"%s\" specified.\n", argv[I]); 
exit(1); 
} 

re = DosOpen(argv[l), 

if (re) 
{ 

&Fi 1 eHandl e, 
&ulAeti on, 
el, 
FILE_NORMAL, 
FILE_OPEN, 
OPEN_ACCESS_READONl Y I OPEN_SHARE_DENYREAD I OPENJLAGS_NOINHERIT 
OPEN FLAGS SEQUENTIAL, 
(PEAOPZ)NULL) ; 

printf("Error %u while opening \"%s\"\n", re, argv[I]); 
exit(1) ; 
} 

whi le (1) 
{ 

printf("Waiting for Data from %s, to end programm press Ctrl-BreaK ••• \n", argv[ll): 

Ptr = Buffer; 

il = 1; 
i 2 = e; 

while (il) 
{ 
if ((rc = DosRead(FileHandle, Ptr, lL, &BytesRead)) == e) 

{ 
if (i 1 == 1) 

{ 
/* Test for Id */ 
if (iZ < (s;zeof(Id) - 1)) 

{ 
; f (*Ptr == Id[i 2)) 

; 2++; 
else 

i2 = e; 
continue: 
} 

if (*Ptr 1= • n.) 
{ 
continue; 
} 

il = 2; 
} 

if (*Ptr == • \xea') 
{ 
U-a: 

113 



114 PenPoint os 

Ptr++: 
} 

else 
{ 
printf["\nError %d while reading file %s\n", rc. argv[l)); 
i 1 = e: 
} 

"Ptr = '\e': 

memset [[PCHAR)&CommData, '\e'. si zeof[COlttDATA»: 

Ptr2 = [PCHAR)&CommData: 

for [Ptr = Buffer, i 1 = i 2 = i 3 = 9: *Ptr: Ptr++) 
{ 
if (OPtr == "") 

{ 
if [il < 2) 

{ 
i 1++: 
cont i nue: 
} 

else 

else 

{ 
il--: 
Ptr2[i3) = "Ptr: 
i 3++: 
conti nue: 
} 

if ["Ptr == ',') 
{ 
if [i 1 == 1) 

{ 
Ptr2[i3) = °Ptr: 
i 3++: 
} 

else 
if [i 1 == 2) 

{ 

else 
{ 

Ptr2 = &Ptr2[lengthTab[i2J): 
i2++: 
i 1 • i 3 = e: 
if [i 2 >= TAB SIZE) 

{ -
breaK: 
} 

if (i 1 == 1) 
{ 
Ptr2[i3) = "Ptr: 
i3++: 
} 

InsertData2DB [&CommData) : 

DosCl ose(Fi 1 eHandl e); 

exi t [9); 
} 

I" InsertData2DB 

1* 
I" Insert data into the database 

0; 
,,; 
,,; 

/*****1t********1t**1Ir**************************1r**************************** / 
voi d InsertData2DB [P _CO,,",_DATA CommData) 

BDOl Update: 
USHDRT rc: 
st ruet sql ca sql ca; 

static char dbase[) = "PEN": 
char msgbuf[BUFSIZE): 

sql estrd(dbase, 'S', &sql ca); 

if [sql ca.sql code == RESTART) 
{ 
sqlerest[dbase, &sqlca): 

if [sql ca.sql code ! = 9) 
{ 
goto exit_error; 
} 

sqlestrd[dbase, 'S', &sqlca): 

;0 start database *; 

;* if start db func ,,; 
;* fails, call restart ,,; 
/* restart database "; 

;* restart failed, exit "; 

;* start database agai n ,,; 



if (sqlca.sqlcode 1= e) 
{ 

/* cheCK database for */ 
/* good start * / 

goto exi terror; 

strcpy (DBKey, CommData->lastNamel; 
st rcpy (lastName, CommData->lastName); 
strcpy (Fi rstName, CommData->Fi rstName); 
strcpy(Inits, CommData->Inits); 
strcpy (Street, CommDatll->Street); 
strcpy (Ci ty, CommDatll->Ci ty); 
strcpy(Country, CommData->Country); 
st rcpy (ZI P, CommData->ZI Pl; 
strcpy (Phone, CommData->Phone); 

/* 
EXEC SOL 

*/ 

UPDATE PENOATA 
SET lAST NAME = : lastName, 

FI RSTNAME = : Fi rstName, 
INITS = :Inits, 
STREET = :Street, 
CITY = :City, 
COUNTRY = :Country, 
ZIP = :ZIP, 
PHONE = :Phone 

WHERE lAST NAME = :DBKey; 

sql astrt (sqla_program_ i d,el,&sql ca); 
sqlaal oc(1,9,l,el); 

sql asetv O,e,469,21,lastName,el,el); 
sql asetv O,l,469,21,Fi rstName ,9l,9l) ; 
sql asetv 0,2,469,3, Ini ts, el ,ell ; 
sql asetv(1,3,469 ,21,Street,9l,el); 
sql aset v 0,4,469 ,21,Ci ty, el,9 L) ; 
sql asetv 0,5 ,469 ,16 ,Country,9l, el); 
sql asetv(1,6,469,6,ZIP ,el,9l); 
sql asetv (1,7,469,16, Phone ,el, ell ; 
sql asetv(1,B,469,21,DBKey,el,el); 

sql acall ((unsi gned short)24,1,1,e,el); 
if (sql ca.sql code < e) 
{ 

sql astop (el); 
goto exi terror; 

sql astop(el); 
} 

if (sqlca.sqlcode == e) 
Update = 1; 

else 

/* exi terror */ 

if (sql ca.sql code == 1e9) 
{ 

/* Record not found? * / 

Update = 9; 
} 

else 
goto exit error; 

if (Update) 
{ 
printf("Updating database record for \"%5\" with the following data:\n", 

lastName) ; 

else 
{ 
printf("Addind database record for \"%5\" with the following data:\n", 

lastName) ; 

printf("\nlast Name: %s\n", CommData->lastName); 
pri nt f("Fi rst Name: %s\n", CommData->Fi rstName); 
printf("Initials: %s\n", CommData->Inits); 
printf("Street: %s\n", CommData->Street); 
printf("City: %s\n", CommData->City); 
printf("Country: %s\n", CommData->Country); 
pri nt f( "ZIP: %5\n", CommData->ZIP); 
printf("Phone: %s\n\n", CommData->Phone); 

if (lUpdate) 
{ 

/* 
EXEC SOL 

INSERT INTO PENDATA 
(lASTNAME, FJRSTNAME, INITS, STREET, CITY, COUNTRY, ZIP, PHONE) 

VAlUES(:lastName, :FirstName, :Inits, :Street, :City, 

115 



116 PenPoint os 

*/ 
:Country, :ZIP, :Phone): 

sql astrt (sql a_program_i d,9l ,&sql ca): 
sql aal oc a,s,2,aLl: 

sql asetv (1,a,46a,21, lastName,9l ,al): 
sql asetv(1,I,469 ,21,Fi rstName,9l,el): 
sql asetv (1,2,46a,3,Ini ts,al,9l): 
sql aset v (!, 3 ,46a, 21,St reet, al, a l): 
sql asetv(1,4,469 ,21,Ci ty,9l ,9ll: 
sql asetv (! ,5 ,46a,16,Country,9l,al): 
sql asetv (! ,6,469,6,ZIP ,9l,aLl: 
sql asetv(! ,7 ,46a ,16,Phone,9l,9l): 

sql aeall ((unsi gned short)24,2,I,9,9l): 
if (sqlea.sqlcode < a) 
{ 

/* 

sql astop(el): 
goto exi terror: 

sql astop(eL): 

EXEC SOL CO'f.1IT WORK: 

*/ 

sql astrt (sql a_program_i d,9l ,&sql ca); 
sql aca 11 ((unsi gned short) 21,9,9, a. 9l) ; 

if (sql ca.sql code < 9) 
{ 

sql astop (9l): 
goto exi terror: 

sql astop(aL): 

sql estpd(&sql ca): 

return: 

/* st op database */ 

/********************************************************************** / 
/* ~ 
/* SO l error rout i ne - ret ri eve the error message associ ated wi th the * / 
/* return code and log error information. */ 
/* */ 
/********************************************************************** / 
exit_error: 

/* 

printf( "\nSOlCODE IS %ld",sqlca.sqlcode ): 

rc = sqlaintp( msgbuf,BUFSIZE,a,&sqlea ): 

if (re < a) 
{ 

/* message ret ri eve err* / 

printf( "\nSOlAINTP ERROR. Return code = %d\n",rc ); 

if (re > 9) 
{ 

printf( "\n%s" ,msgbuf ): 
} 

1* error message return*/ 

EXEC SOL /- reset sql error to prevent -/ 
WHENEVER SOlERROR CONTINUE: 

*/ 
/* endl ess 1 oopi ng if */ 

/* rollbacK fails */ 

/* 
EXEC SOL 

ROllBACK WORK: 

*/ 



Glossary 

Acetate Layer/Plane. The window system's global 
screen-wide display plane. This is where ink from the 
pen is dribbled by the pen tracking software. 

Activation. The transition of a document to an active 
state, with a running process, an application instance. 

Application class. A Pen Point class that contains the 
code and initialization data used to create running 
applications. 

Auxiliary Notebook. A Notebook on the Bookshelf 
such as Stationery, or Connections that is used for 
specialized tasks. 

Behavior. The functionality of an object, the way and 
object reacts to messages. 

Bitmap. An array of pixels, with an optional mask 
and hot spot. 

Bookshelf. An area at the bottom of the screen that 
contains accessories and auxiliary notebooks. Each 
item on the Bookshelf is represented by an icon. 

Chord. A straight line joining the ends of an arc. 

Class. An object that implements a particular style of 
behavior in response to messages. The method table 
tells the class which messages sent to objects of that 
class to respond to. 

Class Hierarchy. A hierarchy of classes in which 
each subclass inherits the the properties of all its 
ancestors. 

Class Manager. Code that supports the 
object-oriented, message-passing, class-based 
programming used in PenPoint and PenPoint 
applications. The Class Manager implements two 
classes, clsObject and clsClass. 

Component layer. The component layer of PenPoint 
consists of general purpose subsystems offering 
function that can be shared among applications. 

Cork margin. An area at the bottom of the screen on 
all documents that stores reference buttons, new 
documents, embedded documents, or accessories. 

Current directory entry. Each directory entry 
maintains a reference to the next directory entry it 
will use when the directory is read one entry at a 
time. 

Data object. An object that maintains, manipulates 
and can recursively filled data. 

© Copyright IBM Corp. 1993 

Deactivate. Removes the application from the 
system, the installer however maintains a record of 
the application's UID and its location. 

Directory handle. An object that references either a 
new, or existing directory node in the file system. 

Document. A filed instance of an application. A 
document has a directory in the application hierarchy, 
but at any given point in time, it may not have a 
running process and a live application instance. Most 
documents reside in the Notebook; running copies of 
floating applications such as the Calculator, are also 
documents. 

Dribble. The ink from the pen where the user writes 
over windows that support gestures and handwriting. 

Embed. The PenPoint Framework provides facilities 
for applications and components to display and 
operate inside other applications without detailed 
knowledge of each other. 

Embedded document. A document contained within 
another document. 

Encapsulation. Protection of the instance variables of 
an object from access by methods other than the 
object's own methods. 

File handle. The object with which a file node and its 
data are accessed. The handle is not a file itself. 

Floating. A floating window appears above the 
Notebook, the user can move and resize a floating 
window. 

Frame. The border surrounding documents and 
Option Sheets which includes a title bar, resize corner 
and move box. 

Gesture. A shape or figure that the user draws with 
the pen on the tablet to invoke an action, or execute a 
command. 

Global memory. Memory accessible from all tasks. 

Grafic. Individual figure drawing operations stored in 
a picture segment. 

Hot mode. A state in which the PenPoint Application 
Framework will not terminate an application. 

Inheritance. A mechanism by which a class defines 
only the properties it needs in addition to those of its 
super-class. 

In-line. In-line fields provide full handwriting and 
gesture recognition allowing the user to write with the 
pen directly in the field. 

117 



In Box. In and Out Box services allow the user to 
defer and batch data transfer operations for later 
execution. In/Out Boxes appear as iconic notebooks. 

Instance data. Data stored in an object. It is normally 
only accessible by the object's class, which uses 
instance data in responding to messages sent to that 
object. The class defines the format of the instance 
data. Classes may have instance data include 
pointers to instance information stored outside the 
object. 

Kernel. That portion of the operating system that 
interacts directly with the hardware. The core memory 
and task management code is the first code loaded 
when the system boots. Most system services are 
implemented in the kernel. 

Local volume. Volumes in hard or floppy disk drives 
attached to a PenPoint system through the built-in 
SCSI port. 

Main window. A window of an application that the 
Application Framework inserts on screen in the page 
location, or as a floating window. An application's 
main window is usually a frame. 

Menu bar. A frame has an optional menu bar below 
. its title bar. The Application Framework defines 
standard application menu items (SAMS) for the 
application's main window frame. 

Message. A 32-bit value sent to an object requesting 
the object to perform some action. Messages are 
constants representing an action that an object can 
perform. The type of message is a tag that defines 
the class defining the message and guarantees 
uniqueness. When a message is sent to an object, if 
the message is recorded in the class's message table 
the Class Manager calls a message handler routine in 
the class's code which responds to the message. 

Message argument. The information needed by a 
cI ass to respond to a message. The message 
argument parameter may be a pointer to a separate 
message argument structure. This is the only way a 
class can pass information back to the sender. 

Message handler. A function in the class's code that 
implements appropriate behavior for a message. It is 
called by the Class Manager in response to the 
message associated with it in the class's method 
table. 

Method. The behavior of objects is implemented in 
their methods. A method may be compared with a 
traditional programming routine. A message is sent 
to the object containing the name of the method to be 
run along with any optional parameters. Methods can 
read/update the instance variables of the object. The 
method will return an object to the sender upon 
completion 

118 Pen Point os 

Method table. An array of message-function name 
pairs and flags that determines which message 
handler function will handle messages sent to the 
objects of that class. 

Node. A location in the file system, can be a 
directory or a file. Pen Point's file system is organized 
as a tree of nodes. 

Notebook metaphor. The visual paradigm in PenPoint 
of a physical notebook containing pages, documents 
and sections with tabs and a page turn effect. 

Object. An entity that maintains private data and can 
receive messages. Each object is an instance of 
some class, created by sending a mess~ge to the 
class. 

Observer. An object that has requested the Class 
Manager to notify it when changes occur to another 
object. Objects maintain a list of their observers. 

Option Sheet. A floating frame that displays 
attributes of the selection in one or more card 
windows. 

PenPoint Framework. Both the protocol supporting 
multiple, embeddable, concurrent applications in the 
Notebook and the support code that implements most 
of an application's default responses. 

Process. An operating system with its own local 
memory. 

Recognition. Matching a set of user pen strokes with 
the most likely prototype during handwriting 
translation. 

Resource. A uniquely identified collection of data. 
Resources allow applications to separate data from 
code in a structured manner. 

SAMS. Standard Application Menus. The Application 
Framework supplies a standard set of SAMS - the 
Document and Edit menus, to which applications can 
add their own menu items. 

Tag. A unique 32-bit number that uses the 
administered value of a well known value UID to 
ensure uniqueness. An arbitrary 32-bit number that is 
associated with any window. A window's tag can be 
checked and searched for. 

UID. Unique Identifier. A 32-bit number that is the 
handle on an object. Messages are sent to an 
object's UID. 

UUID. Universal Unique Identifier. A 64-bit number 
that is guaranteed to be unique across all Pen Point 
computers, used to identify resources in resource 
files. 

Volume. A physical medium or a network entity that 
supports the file system. 



List of Abbreviations 

ANSI American National Standards OOPs Object-Oriented Programming 
Institute OSI Opens Systems Interface 

API Application Programming PAK PenPoint Adaptation Kit 
Interface 

BIOS Basic Input Output Services 
PCL Printer Control Language 

PCMCIA Personal Computer Memory 
CPU Central Processing Unit 

Card International 
DLL Dynamic Link Library Association 

DOS Disk Operating System RAM Random Access Memory 

DRAM Dynamic Random Access RGB Red Green Blue 
Memory ROM Read Only Memory 

EDA Embedded Document SAMS PenPoint Standard 
Architecture 

Application Menus 
FAT File Allocation System SIO Sampled Image Operator 
FAX Facsimile SQL Structured Query Language 
FTT Function Transfer Tables RTF Rich Text Format 
GUI Graphical User Interface SDK Software Developer's Kit 
HWX Handwriting Recognition SSF Solid State Files 
110 Input/Output SysDC System Drawing Contexts 
MIL Machine Interface Library UI User Interface Toolkit 
NUl Notebook User Interface UID Unique Identifier 
OEM Original Equipment UUID Universal Unique Identifier 

Manufacturer 
VDM Virtual DOS Machine 

© Copyright IBM Corp. 1993 119 



120 Pen Poi nt OS 



Index 

A 
abbreviations 119 
acronyms 119 
Application - HWX Dialog 45 
Application Activation 23 
Application Classes 70 
Application Code 17 
Application Development 69 
Application Elements 17 
Application Embedding 25 
Application Framework 2, 15 
Application Framework function 15 
Application Installation 19, 38 
Application Life Cycle 22 
Application Object 18 
Application Stationery 22 
Application Termination 23 
Applications 3 
Automatic Software Installation 63 

B 
Binding a SysDC to a Window 32 
Bookshelf 9 

C 
Characteristics of an HWX Subsystem 43 
Class Creation 74 
Class Manager 13,71 
Class Manager - Programming Tasks 73 
Clipping and Repainting Windows 33 
Color Graphics Interface 35 
COMM.C 91 
COMM.H 87 
COMMAPP.C 92 
COMMAPP.H 88 
COMMFILE.C 98 
COMMSEND.C 105 
COMMSET.C 100 
Connecting and disconnecting Services 52 
Connections Notebook 66 
Connectivity 4, 55 
Copying Pixels 35 
Creating New Instances 74 

D 
Date and Time 13 
Displaying Windows 49 
Document Directory 17 
Document Embed - Basic Concepts 25 
Document Embedding - Example 28 

~ Copyright I BM Corp. 1993 

Document Process 17 
Document Properties 19 
Drawing Text 36 
Drawing/Storing with a SysDC 33 
Dribbling 42 
Dynamic UIDs 72 

E 
Embedded Document Architecture 3 
Embedded Windows 26 

F 
File Export 39 
File Import and Export 20, 38 
File System 37 
File System Activities 37 
File System Hierarchy 26 
Fonts 35 

G 
glossary 117 
Graphics and Imaging System 31 
Graphics Primitives 34 

H 
Handwriting Translation 43 
Hyperlinks 20 

ImagePoint 31 
Input and Handwriting Recognition 41 
Input Focus 42 
Input Processing Concepts 44 
Installation Classes 70 
Installing and Configuring PenCentral 58 
Installing and Using Services 52 
Instance Creation 23 
Interaction with Other File Systems 38 
Introduction 1 

K 
Kernel 11 
Kernel Services 13 

L 
Link Layer 56 

121 



M 
M.CMD 110 
Machine Interface layer (Mil) 14 
Main Window 18 
MAKEFllE 87 
Manual Software Installation 65 
Memory Management 12 
Message Arguments 73 
METHOD.TBl 90 
Miscellaneous Classes 71 
Move/Copy 20 
Multitasking 11, 12 

N 
New Application Instances 19 
Notebook Metaphor 2, 9 

o 
Object Access and Capability 74 
Object-Oriented Terminology and Techniques 69 
Observer Objects 75 
On-Line Help 19 
Optimizing Pen Input 42 

p 
Pen Input Terminology 42 
Pen Operating Systems 1 
Pen-Based Environment 1 
PenCentral - PenTOPS 57 
PenCentral Files 57 
PenPoint - Mil Communication 14 
PenPoint Installation 63 
PenTOPS 60 
Prestored Images 35 
Printing 21 
Process Space 26 

R 
REC_PEN.C 111 
REC_PEN.H 110 
Reliability 13 
Remote File System 55 
Remote Interfaces and File System Classes 70 
Resource File Formats 77 
Resource Files 18 
Resource location 76 
Resource Types 75 
Resources and Resource Management 75 

S 
Sample Application 79 
Sample Application Directory Structure 85 
Scribbles 42 

122 PenPoint os 

Search and Replace 22 
Send User Interface 56 
Sending Messages 73 
Service Manager 51 
Settings Notebook 65 
Software Developer's Kit 77 
Software Installation 63 
Spell Checking 21 
Standard Application Menu Support 20 
Standard Behavior and Inheritance 18 
Standard Service Managers 51 
Stroke 42 
System Drawing Context 32 
System Drawing Context Creation 32 

T 
Task Management 11 
Text and Handwriting Classes 70 
Text Primitives 34 
Transport layer 56 
Traversal 29 

U 
Unique Identifiers 71 
User Interface 7, 79 
User Interface Controls 78 
User Interface Toolkit 78 
User Interfaces 7 

W 
Well Known U I Os 72 
Window Placement 29 
Windowing System 47 
Windows and UI Toolkit Control Classes 70 
Working with Windows 47 



ITSC Technical Bulletin Evaluation 
GG24-3978-00 

REDOOO 

Fold and Tape 

Fold and Tape 

GG24-3978-00 

Please do not staple 

BUSINESS REPL YMAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM International Technical Support Center 
Department 91J, Building 235-2 
Internal Zip 4423 
901 NORTHWEST 51 ST STREET 
BOCA RATON FL 
USA 33431-1328 

11111.1111 •• 11111111.11.1111.111111.111.11111.111.11 

Please do not staple 

--- ------ ----- ---..:. .::: ::E'f§: ® 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

Fold and Tape 



ITse Technical Bulletin Evaluation REDOOO 

Pen Point Operating System 
Overview and Application Development 

Publication No. GG24-3978-00 

Your feedback is very important to us to maintain the quality of ITSO red books. Please fill out this 
questionnaire and return it via one of the following methods: 

• Mail it to the address on the back (postage paid in U.S. only) 
• Give it to an IBM marketing representative for mailing 
• Fax it to: Your International Access Code + 1 914 432 8246 

Please rate on a scale of 1 to 5 the subjects below. 
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor) 

Overall Satisfaction 

Organization of the book 
Accuracy of the information 
Relevance of the information 
Completeness of the information 
Value of illustrations 

Grammar/punctuation/spelling 
Ease of reading and understanding 
Ease of finding information 
Level of technical detail 
Print Quality 

Please answer the following questions: 

a) Are you an employee of IBM or its subsidiaries? Yes -- No 

b) Are you working in the USA? Yes No ----
c) Was the bulletin published in time for your needs? Yes No --
d) Did this bulletin meet your needs? Yes -- No 

If no, please explain: 

What other Topics would you like to see in this Bulletin? 

What other Technical Bulletins would you like to see published? 

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!) 

Name Address 

Company or Organization 

Phone No. 



GG24-3978-00 

• 

-~--------- - ---= = .... ~-~-- -- -~-
GG24-3978-00 ------~- , -

~ 


