
GCLISP 386
GMACS Editor Guide

Chapter 11

Overview of GMACS

GMACS is a full-featured screen display editor modeled after
EMACS, the editor created by Richard M. Stallman at the MIT
Artificial Intelligence Laboratory. This latest version of GMACS
represents a significant upgrade in functionality from previous
versions.

LISP Editing and Debugging Features

In its capacity as a specialized editor for writing and debugging LISP
code, GMACS has commands that provide the following capabilities,
allowing a user to:

• Move the point to the front or back of an s-expression, a
list or a function definition

• Evaluate a single function definition or an entire buffer
of LISP code

• Compile a single function definition or an entire buffer
of LISP code

• Evaluate a LISP expression from within the editor and
either place the results in the edit buffer or have them
displayed in the type-out window

• Indent new LISP lines appropriately, correct the
indentation of an s-expression, and indent comments

• Display the lambda list of a function definition

• Macroexpand an s-expression

84 11: Overview of GMACS

• Perform search and replace operations on a group of
LISP files at once using tag tables

• Set the package associated with the current buffer

• Exit to a temporary LISP listener and re-enter GMACS
without disturbing the current environment

Text Editing Features

GMACS contains many commands that facilitate editing text files.
These include commands that enable the user to transpose words,
lines and regions; fill paragraphs, move back and forth within a file
by paragraphs or pages; perform incremental forward and backward
searches and query-replace operations; and insert binary and ASCII
files into the edit buffer.

Special Editing and File Control Features

GMACS has several powerful features for effectively manipulating
and editing files and buffers. These features include:

• A buffer-edit mode that enables the user to easily visit,
compile, kill, load or save the contents of any active
buffer

• A directory-edit mode for specifying a directory and
easily finding, deleting, viewing, loading, or compiling
any of the files within this directory

• The ability to split the screen into two windows, so that
two separate buffers or different parts of the same
buffer can be edited simultaneously

• Keyboard macros used to create custom commands bound
to user-defined keychords

• Command completion for saving typing time in
specifying names of buffers, files, commands, etc.

On-Line Help Features 85

On-Line Help Features

The editor contains four powerful capabilities. You can:

• Display all the GMACS commands or all the LISP
functions whose names contain a user-specified sub­
string

• Determine the GMACS command bound to a specific
keychord

• Display the documentation for every GMACS command
and every LISP function

• Display information about the location of the point

The initial chapters of this guide are designed to give you a global
sense of how GMACS works and what it is capable of doing. All the
details that you will need to execute a particular command are found
in the topical reference chapter later on. That chapter also includes
the relevant key bindings for each command. Finally, there is an
alphabetical listing of all GMACS commands, along with their key
bindings, at the very end of the guide.

Terminology

Before proceeding, you may want to familiarize yourself with some
of the more important concepts and terminology used in GMACS.

CURSOR/POINT

EDIT WINDOW

EDIT BUFFER

The cursor appears as a blinking mark
(usually an underline or a rectangle) on
the edit screen. The point is the position
between the cursor and the preceding
character. Deletions and insertions take
place at the point.

A part of the terminal display screen
used for displaying the contents of the
edit buffer. The edit window usually
occupies all but the bottom three lines of
the display screen.

A temporary storage area created and
used by GMACS in your GCLISP

86 11: Overview of GMACS

workspace. Since it is possible to have
more than one buffer, the active, or
current, edit buffer refers to the one that
appears in the edit window.

ECHO/MESSAGE AREA The bottom two lines of the edit screen
make up an area where (1) edit
commands that you type are displayed (or
"echoed"), thus allowing you to verify
your input, and (2) various informational
messages are displayed.

EXTENDED COMMAND Any standard GMACS command,
regardless of whether or not it is bound
to a keychord, can be executed by typing
Alt-X (the extended command prefix)
followed by the command name. ·

KILL HISTORY The kill history is a kill ring, where each
entry is put on the ring by a kill
command. A new entry becomes the first
element in the ring. There is a maximum
of fifteen entries, with the oldest (the
fifteenth) dropping out to accommodate
the newest.

MINIBUFFER An area where you are prompted to enter
the names of files and other information
required by certain commands. The
minibuffer appears in the right half of
the echo area. The minibuffer accepts
GMACS commands and has a kill ring
associated with it.

MODE LINE The highlighted line of status
information appearing near the bottom of
every edit screen.

MODIFIED FLAG The condition of the buffer with respect
to changes. If you have added or deleted
data in the current edit buffer since last
reading in a file to the buffer, or writing
out the buffer to a file, an asterisk
appears following the filename in the
mode line. Otherwise this space is blank.

TYPE-OUT A display of information produced by a
GMACS command. It appears in the
type-out window, a temporary window in

\

Terminology 87

the top part of the edit screen. The type­
out window temporarily overlays part or
all of the edit window.

Entering GMACS

You have two ways of entering the editor from your GCLISP
environment:

• Ctrl-E, which has the same effect as the function call
(ed)

• the ed function in one of these forms:

(ed "<pathname>")
(ed t)

The pathname argument to the ed function may be an actual
pathname, a symbol or a string.

When you first invoke GMACS with no pathname (the form (ed)),
you are placed in an empty edit buffer called MAIN. If you specify
a pathname, then the contents of that file are read from disk into a
buffer named after the file. The form (ed t) gives you a new empty
MAIN buffer (and preserves the MAIN buffer from a previous
invocation, if any).

Exit and Re-Entry

To leave GMACS and return to the interpreter environment, type
Ctrl-X Ctrl-C.

When you again invoke GMACS, via Ctrl-E or the ed function, the
GMACS environment of buffers and files will be re-established. If
your command is (ed), without a pathname, you will be placed in the
buffer where you were last editing, and at the same point in that
buffer. If your command is (ed "<pathname>"), then GMACS will re­
establish the edit environment following the rules of the FIND-FILE

\ command.

,/

88 11: Overview of GMACS

Protecting the Buffer Contents

When you are editing a buffer, you should write out the buffer to
the file often. There are good reasons for this. In the following
circumstances, the contents of the GCLISP workspace, including the
buffers, are lost:

II When you exit from GCLISP

II When the operating system or GCLISP has to be re­
initialized due to some unforeseen problem

II When the power fials or is interrupted

)

The Edit Screen

The Edit Screen

This sample screen shows the display after you have loaded a file
into GMACS.

I
I
I (defun foo (bar)
I (print foo))
I
I
I
I

89

I GMACS v4.47 6:03am 4-Aug-86 [LISP fill (GMACS)] C:\PROG.LSP
I Alt-H = HELP
I
!,~~~~~~~~~~~~~~~~~~~~~~~~

The "mode line" appears in reverse video at the bottom of your
screen just above the echo/message area that contains the minibuffer.
It contains:

• The editor name and version number: GMACS v4.47

• The time and the date: 6:03am 4-Aug-86

• In square brackets, the major mode and any active minor
modes currently associated with the buffer; if a package
is associated with the buffer, its name appears in
parentheses: (LISP fill (GMACS)]

• If the name of the buffer is different from the filename
without its extension, then the name of the buffer; in
the above example, the buffername isn't specified

• The pathname of the file currently being edited in the
buffer: C:\PROG.LSP

• An asterisk (*, the buffer-status), if the contents of the
current edit buffer have been changed since they were
last written out to, or read from, a file

• The help string: Alt-H = HELP

90 11: Overview of GMACS

See the chapter "Customizing Your GMACS Environment" to see how
to control whether or not the version number, time, date and help
string are displayed.

Inputting Commands and Characters

While you are in the GMACS environment, everything you type at
the keyboard is part of an edit command.

An edit command is invoked by typing an alphanumeric key, a
keychord, a key sequence, or a special function key. A key, keychord,
or key sequence that invokes a command is said to be bound to the
command, and vice versa. Most GMACS bindings are the same as the
standard EMACS bindings. A GMACS command that is bound can be
invoked in one of two ways:

• Type the keychord that is bound to the command

• Type Alt-X followed by the name of the command

If a particular command isn't bound to a keychord, then the only
way that it can be invoked is with the Alt-X prefix.

Keychords and Key Sequences

A keychord is represented in print by the symbols of the appropriate
keys linked together with hyphens. Thus, Ctrl-F means that the Ctrl
key is held down while the F key is pressed. A key sequence is
represented by keychords and keys written one after the other
without hyphens.

GMACS represents all characters and keystrokes using the IO-bit
character codes described by the COMMON LISP Reference Manual.
GMACS, like most editors patterned after EMACS, accepts keystrokes
consisting of a basic ASCII character, with some combination of the
Control and Meta bits set (note that the "Control" bit here refers to a
high-order bit, not the low-order ASCII Control bit).

Setting the Control and Meta Bits

Generally, the Control bit is set by holding down the Control key,
and the Meta bit is set by holding down the Alt key. However, for

Setting the Control and Meta Bits 91

some characters the Ctrl key does not set the proper bit. Similarly, it
is impossible to set both the Meta and Control bits for any character
by holding down the Control and Meta keys simultaneously.

In these cases, the only way to properly set the bits is to use prefix
keys. Thus, you can alternatively set the Control bit by typing the
prefix keychord Ctrl-'\ that is, the keychord Control-Shift-Caret. In
those cases where you need to set the Control and Meta bits
simultaneously, you can use the prefix keychords Ctrl-C and Ctrl-Z.
Note that the echo window displays M- to indicate Meta, C- to
indicate Control and C-M- to indicate Control/Meta.

On the IBM keyboard, a number of edit commands bound to
keychords or key sequences have also been bound to the "PF"
function keys. To invoke one of these commands, you do not have to
use the keychord or key sequence, but can use the function key
instead.

The Minibuffer

Many GMACS commands prompt the user for the name of a buffer,
file, directory, s-expression, DOS command or GMACS command.
The area where the user provides this information is beneath the
mode line in the right-hand side of the echo area known as the
minibuf fer. Although the mini buffer is only two lines long, it acts
like a regular buffer in that it will accept nearly all of the GMACS
editing commands. This is particularly useful when you need to
provide an s-expression, since most of the LISP editing features can
be used to enter and debug the expression.

Frequently, when you are prompted to enter information into the
minibuffer, you will notice a default provided on the left-hand side
of the echo window. If you type a <Enter>, GMACS will execute the
default. The default specified is the top entry of the kill ring
associated with the current command. GMACS maintains a history
of user input for each family of commands that requires minibuffer
input (for example, there is a separate kill ring for commands
requiring directory names and another for commands requiring
buffer names).

Saving Keystrokes: Command Completion

In many cases, the user need not completely specify minibuffer
input. This is because GMACS includes a feature known as
"command completion," which saves time by allowing the user to type

92 11: Overview of GMACS

only enough characters to specify the required information. GMACS
will be able to use the information typed to complete the command.
Commands that include the command completion feature will display
(cmpl'g) in the left-hand side of the minibuffer. Here is how
command completion works.

For commands that prompt for a buffername or a pathname, the user
need only specify the minimum number of specifying characters and
then type a space. GMACS will automatically complete the command
by choosing the name that matches the specification. If more than
one match exists, GMACS completes as much of the name as possible
and then displays all the possible matches in the type-out window.
Typing <Enter> after typing a name invokes only what is exactly
typed.

For example, let's say the list of current buffer names includes
PROGNEW, PROGOLD and PROG.

• Typing PROGO and a space, completes PROGO to
PROGOLD

• Typing PROG and <Enter>, selects PROG

• Typing PRO and a space, completes PRO to PROG and
displays PROG, PROGOLD and PROGNEW in the type­
out window

• Typing PRO and <Enter>, results in GMACS creating a
new buffer named PRO.

Command completion also works with Alt-X extended commands and
the SET-VARIABLE command. Similar to command-completion is
the DO-IT-AGAIN command, which causes the previous command to
be repeated.

Major Modes

Every GMACS buffer has a major mode and zero or more minor
modes associated with it. A GMACS buffer must have one, and only
one, major mode associated with it at any point in time.

The major mode in effect customizes an editing environment,
establishing a number of crucial editing parameters that affect such
things as paragraph filling and indentation. There are three
predefined major modes: Normal, Text and Lisp. Because normal
mode is very much like text mode (without auto-fill), we really need

Major Modes 93

only distinguish between text and lisp modes. The former is
designed for editing English-language text, the latter for LISP code.

The major mode of a file buffer is automatically determined by the
extension at the end of a filename. A buffer associated with a file
with a .I or .lsp extension is set to LISP mode, and buffer associated
with a file with a .tex, .mss or .txt extension is set to text mode.

However, if there is an attribute-list in the first line of your file,
GMACS will recognize it and set the major mode accordingly. The
line containing the attribute-list must be preceded and followed by
this symbol: -*-. GMACS will recognize COMMON LISP as a mode if
it is specified in the attribute-list, but functionally it is identical to
LISP mode. The following is an example of an attribute-list that
specifies both the mode and the package:

-*- Mode:LISP; Package:GMACS; -*-

Four attribute-list commands allow you to make changes in the mode
and package settings:

• To change the mode and the package settings for the
current buffer back to those specified in a file's
attribute-list, use the PARSE-ATTRIBUTE-LIST
command

• To update the attribute-list using the current mode and
package settings for the buffer (the ones displayed in
th~ mode line), use UPDATE-ATTRIBUTE-LIST

• To update just the package attribute use UPDATE­
.PACKAGE-ATTRIBUTE

• To update just the mode attribute in the attribute-list
use UPDATE-MODE-ATTRIBUTE

If an attribute-list does not exist and the file extension does not have
a mode associated with it, GMACS will set the mode to normal, or to
whatever you set *default-major-mode* to be in your GMACS
initialization file, gmacsini.lsp. You can also use the SET-MODE
command to change the major mode associated with a buffer.

Minor Modes

In addition to the major mode, one or more minor modes may be
active. The possible minor modes are listed as follows (the word in

94 11: Overview of GMACS

parentheses is the one that appears on the mode line when selected
by the user):

• AUTO-FILL (fill), which makes lines of text
automatically wrap when they reach column 65 (the
default setting)

• AUTO-FILL-COMMENTS (filcom), which automatically
wraps comments in LISP code

• LISP-INTERACTION (linter), which turns on LISP­
INTERACT, a command that allows you to evaluate an
s-expression and display the result

A numeric prefix argument can be used to turn a minor mode on and
off. A positive argument turns it on, a negative argument turns it
off. Called with no arguments, a minor mode acts like a toggle. ·

In addition to these three commands, there are three others that
allow you to customize some of the default parameters associated
with the way input is formatted.

• SET-FILL-COLUMN sets the column at which wrapping
takes place

• SET-COMMENT-COLUMN sets the column at which
comments begin

• SET-FILL-PREFIX sets the characters that will appear
on every new line to the left of the point when fill-mode
is on

GMACS Help

GMACS Help

At any time while in the GMACS environment, you can invoke On­
line help about GMACS by typing Alt-H, which displays in the
minibuffer a short menu of options and how to invoke them:

I
I GMACS v4.47 [LISP fill] C:\PROG.LSP
I Help (A,D,K,L,M-A,M-D,M-L,?):
'~~~~~~~~~~~~~~~~~~~~~~~~~-

Typing ? invokes a display of more detailed option descriptions:

I
I These kinds of GMACS on-line help are available. To invoke one
I of them, type the help key (M-H) followed by the indicated key
I (one of A, D, K, L, M-A, M-D, M-L, ?):
I
IA
I
I
I
ID
I
I
I
IK
I
I
I
IL
I
I

"Apropos" - Displays the keychords for all GMACS
commands that contain a specified string.
Prompts for the string.

"Documentation" - Displays documentation on all
GMACS commands containing a specified string.
Prompts for the string.

"Keychord binding" - Displays the GMACS command bound
to a specified keychord. Prompts for the keychord.
For compatibility with other editors, M-H C does this also.

"Listback" - Displays the last 50 keystrokes and their
command bindings.

I M-A "LISP Apropos" - Like doing M-A at top level.
I
I M-D "Function Documentation" - Like typing M-D at GCLISP
I top level.
I
I M-L "Lambda List" - Like typing an M-L at GCLISP top level.
I
I? Displays this guide and reads another key.
'~~~~~~~~~~~~~~~~~~~~~~~~-

95

The help guide appears in a type-out window. Once you have
finished reading a help screen, remember to use only the spacebar to

96 11: Overview of GMACS

continue, since any other input will be executed as a GMACS
command.

Aborting GMACS Commands

You can abort any GMACS command by typing Ctrl-G, the keychord
bound to ED-BEEP. This command will abort the current command
and ring the bell.

(
\

Chapter 12

Manipulating Buffers and Files

Many GMACS commands facilitate the manipulation of buffers and
files. These commands enable the user to do things like compile,
load, delete, evaluate and save the contents of files and buffers. The
user can invoke these commands directly or by first entering either
buffer-edit mode or directory-edit mode.

At the outset, it is important to keep in mind the difference between
a buffer and a file. A buffer is a space set aside in memory to hold
data. A file is a space set aside on a disk to hold data. Just as it's
possible to have more than one file on a disk, so is it possible to have
more than one buffer in memory.

How Buffernames and Filenames are Related

When ·you read a file from disk into a GMACS buffer, the name of
the buffer will be the name of the file without its extension. For
example, executing a FIND-FILE on C:\gclisp3\prog.lsp, will result in
a buffer being named prog. The buffername does not appear in the
mode line unless there is a problem in deriving a buffername from a
filename:

• If a buffer already exists with the same name, then
GMACS will prompt you for a new buffername. If you
choose not to specify a buffername, then a default name
appears in the mode line. The default name is the old
name plus a number designation. In the above example,
prog-1 would be given as the default name, or prog-2 if
prog-1 already existed.

• If the buffername is different from the filename, then
the buffername will appear in the mode line just before
the filename.

98 12: Manipulating Buffers and Files

• If GMACS has newly created a buffer and the buffer is
empty, then there is no file associated with the buffer.
In this instance, the buff ername MAIN is assigned (or
MAIN-I if MAIN is already taken), and it, along with
the designation "null pathname," appears in the mode
line.

Reading and Writing Files

There are two main ways of reading the contents of a file into a
buffer:

• The FIND-FILE command is used to read a file into
some buffer other than the current buffer, or into a new .
edit buffer. If a buffer exists already associated with
this file, it is selected as the current buffer and nothing
is read into it. The point is positioned where it was last
located when that buffer was last the current buffer. If,
on the other hand, no buffer exists, then a new buffer is
created and the file is read into the new buffer, which
is named according to the conventions described above.
The FIND-FILE command accepts wildcard path names;
every file that matches the specified pathname will be
read into a different buffer for each file.

• The READ-FILE command is used to read a file into the
current buffer. Whatever is already in the current
buffer is written over and lost. If you have made
changes to the current buffer since you last wrote it to
disk (via SAVE-FILE or WRITE-FILE), READ-FILE
warns you and offers you the opportunity to cancel the
command.

Writing a File

After you have edited a file in a buffer, or typed text into an empty
buffer, you may want to transfer the buffer's contents to a disk file
(unless you decide not to save the editing you have done). GMACS
provides three main options:

• The SA VE-FILE command will write out the contents of
the current buffer to its corresponding file on disk.

Writing a File

• If you do not want to replace an existing file with the
contents of the buffer, use the WRITE-FILE command.

• The DUMP-BINARY-FILE command will dump a file to
disk in binary format. Unlike WRITE-FILE, this
command will not change any of the information in the
mode line.

Working with Buffers

99

GMACS has many commands for handling buffers. These commands
can be broken down into 3 groups.

1. Commands for manipulating buffers. These provide
various ways for listing, selecting, deleting, compiling
and evaluating buffers. They include:

• LIST-BUFFERS for displaying all the
current GMACS buffers and their associated
filenames

• SELECT-BUFFER and SELECT-PREVIOUS­
BUFFER for switching from one buffer to
another

• KILL-BUFFER for deleting a buffer
entirely or UNLOAD-BUFFER for releasing
the memory associated with a buffer but
preserving its name and file association

• COMPILE-BUFFER and EV AL-BUFFER for
compiling or evaluating an entire buffer of
LISP code

2. Commands for altering the attributes associated with a
buffer. Attributes of a buffer include its mode and
package association, its read/write status, its modified
flag, and its default settings.

• MAJOR MODE: The major mode of a
buffer can be either normal, text or lisp.
SET-MODE is used for changing the major
mode of a buffer. In addition, the major
mode can be changed with three more
specific commands: NORMAL-MODE,
TEXT-MODE, and LISP-MODE.

100 12: Manipulating Buffers and Files

• MINOR MODE: Minor modes are
determined by AUTO-FILL, AUTO-FILL­
COMMENTS, and LISP-INTERACTION.

• PACKAGE ASSOCIATION: The package
associated with the current buffer can be
changed with SET-BUFFER-PACKAGE,
which allows you to assign the buffer to
either an existing package or a new package.

• ATTRIBUTE-LIST: Changes in mode and
package association vis-a-vis the attribute­
list of a file can be made with the series of
attribute-list commands detailed above.

• READ/WRITE STATUS: By default, most
buffers can be read and written to (the
exceptions are the special BUFFED and
DIRED buffers, which are read-only). The
read/write status of a buffer is changed
with two commands: BUFFER-READ-ONLY,
which makes a buffer read-only and
BUFFER-READ-WRITE, which gives
read/write status to a buffer that is read­
only.

• MODIFIED FLAG: Since GMACS marks
buffers as either modified (with a * in the
mode line) or unmodified (no *), it may
sometimes be useful to change the status of
this flag, especially in cases where you may
have unintentionally modified a buffer or
made and unmade changes and do not want
to risk saving the buffer to a file. To reset
the modified flag, use UNMODIFY-BUFFER

• DEFAULT SETTINGS: There are several
ways of changing the default settings
associated with GMACS commands (and
stored as variables in the file gmacsini.lsp).
Permanent changes must be made by editing
the gmacsini.lsp file itself. Temporary
changes made to a global variable are done
using SET-VARIABLE.

Working with Buffers

3. Commands contained within a buffer-edit mode that
facilitates buffer manipulation. The BUFFER-EDIT
command places you in a special buffer that lists all the
buffers and pertinent information about each one under
these headings:

Stat Mod Buffer: Pathname: () => Unloaded

"Stat" gives the read/write status as either RW or RO.
"Mod" indicates with an asterisk (*) whether the buffer
has been modified. You can perform various operations
on the buffers listed by placing the cursor on the line
containing the buffername you wish to edit and then
typing one of the following command letters, which will
allow you to:

c
G

K

L

s
?

E

compile it

go to it

kill it

load it into the interpreter

save it

display a list of all possible buffer
operations

exit the buffer-edit mode

Directory Operations

101

While in GMACS, you can read or write files in the working
directory, or perform other file-handling operations. You may want
to change the working directory, or you may want to examine the
contents of this directory or of some other directory. Two commands
enable you to do this: DISPLAY-DIRECTORY, which lists the names
of files in a specified directory, and CHANGE-DIRECTORY, which
changes the working directory.

Like the special editing mode invoked by BUFFER-EDIT, the
command DIRECTORY-EDIT allows you to perform operations on
files using a single-letter command. After being prompted for a
pathname, you are placed in a buffer, which contains a list of files,
along with other information under these headings:

102 12: Manipulating Buffers and Files

D FileName Creation-Date Creation-Time

"D" is the "delete column," which, if marked with an asterisk (*),
notes that a file has been deleted. As with buffer-edit mode, you
can perform a series of operations. Once a file is selected, you can:

c
D
F

L

u
v
?

E

compile it

delete it

find it

load it into the interpreter

undelete it

view it

display a list of all possible directory operations

exit the directory-edit mode

Sometimes it's desirable to have deleted files not be quite so
permanently disposed of. By default, GMACS sets the variable
dired-trashcan (located in the gmacsini.lsp file) to nil, thus causing
all files to be irrecoverable. However, if the value of *dired­
trashcan* is a string holding the name of a directory (with a trailing
\), a delete command will do the following:

• Copy the file to the trashcan directory

• Delete the file from the directory being edited

• Mark the delete column in the listing of files in
directory-edit mode

A subsequent "undelete command" will perform the inverse operation
on a file that has been marked for deletion. Like all trash
receptacles, the *dired-trashcan* directory must be periodically
cleaned out by the user.

DOS-Related Commands

GMACS includes many commands that enable the user to access DOS
from within the editor or exit temporarily to DOS after performing a
particular operation.

DOS-Related Commands 103

The command EXECUTE-DOS-COMMAND prompts the user for a
DOS command and displays the output from the command in the
type-out window. Similarly, the command INSERT-DOS-OUTPUT
prompts the user for a DOS command and inserts the output from
the command into the buffer at the point. The PUSH-TO-DOS
command pushes the user to the current DOS directory. The SA VE­
FILES-PUSH-TO-DOS first saves all buffers that have been modified
and then pushes to DOS. The commands EVAL-AND-EXIT and
COMPILE-AND-EXIT enable the user to immediately push to DOS
after evaluating or compiling a LISP definition.

Tag Tables

Tag tables enable you to manipulate a program that consists of
multiple source files as a single unit. A tag table is a list of files
that you wish to treat as a unit.

The first step is to create a tag table that contains the files that
comprise your program. The TAGS-ADD-FILE and TAGS-ADD­
FILES commands can be used to create and add to the current tag
table. Similarly, the TAGS-REMOVE-FILE command will remove a
file from the current tag table.

Each of the files in the tag table must have a corresponding index
(.lsx) file. The TAGS-MAKE-INDEX command will create index
files for each of the files in the current tag table, load them into
memory and save them on disk. Note that these files must be loaded
into memory when any tags search or replace operation is performed.
The TAGS-INDEX-FILE command can be used to make an index file
for a -single file that you have added to the tag table. Both of these
commands generate a new index file, regardless of whether or not
the source code file has been changed since the last index file was
made.

Once you have created the tag table and the associated index files,
you can perform search and replace commands such as TAGS­
REPLACE-STRING, TA GS-SEARCH, TAGS-FIND-DEFINITION and
TAGS-QUERY-REPLACE. If you temporarily suspend one of these
operations to do local editing on one of the files, you can use the
TA GS-CONTINUE-MAP command to continue where you left off.

By default, a TAGS-REPLACE-STRING or a TAGS-QUERY­
REPLACE will make changes only to the buffer(s) involved;
typically, you need to explicitly save the buffers in order to make
permanent changes to the corresponding files. However, if you want
GMACS to automatically save these changes when they are made, you
can do so by setting the global variable *save-on-tags-map* to T in

104 12: Manipulating Buffers and Files

your gmacsini.lsp file. By default, GMACS will set this variable to
nil.

If you wish to use a group of files as a unit more than once, you
should use the TA GS-SAVE-TABLE command to save the current
table on disk. Then, the next time you wish to use the table, you
would load it into memory using the TAGS-LOAD-TABLE command.
This command should be followed by the TA GS-LOAD-INDEX
command, which will load all of the existing index files that
correspond to the files in the current tag table.

You may want to use more than one tag table in a given session. If
so, the TAGS-USE-TABLE command will allow you to switch back
and forth between tag tables.

(In this release, the tag-table indices created by TAGS-MAKE­
INDEX are not reliable.)

Chapter 13

Editing Text

Although this chapter deals mostly with commands that aid in
writing and editing English text, many commands are useful in
writing and editing LISP code. Thus "text" can be seen as any
collection of alphanumeric characters and symbols capable of being
manipulated in a buffer. In a later chapter, we will discuss
commands that are used exclusively for handling LISP code.

Whether you are editing text or code, you should make sure that the
major mode associated with the current buffer is set properly so that
the default settings for delimiter characters and fill columns will be
appropriate.

Cursor Motion Commands

In order to understand how the GMACS cursor commands work with
words, lines, paragraphs, pages, etc., one needs to know how these
different text items are delimited in GMACS. The following is a list
of different text items together with a description of how they are
defined in Text Mode:

Word

Sentence

Line

To GMACS, a word is any string of alphanumeric
characters (that is, letters or digits). So the end of
a word is marked by any other character: a
punctuation symbol, special character, or white
space (a space, tab, or newline character).

The end of a sentence is delimited by a period (.),
question mark (?), or exclamation mark (!).

To GMACS, a line consists of the sequence of
characters from one newline character to the next

106 13: Editing Text

(including the ending newline). There may be more
characters in this line than can fit in a single line
of the display screen. Then more than one display
line will be used to display the line. In the edit
buffer it is called a wrapped line on the display,
because the line "wraps around" the end of one
display line and continues on the next. GMACS
informs you that a display line is wrapped by
placing a backslash in the right-most display
position.

Paragraph GMACS interprets a blankspace or a tab at the
beginning of a line as the start of a paragraph.
Also, \begin and \end as well as #I and I# delimit
the beginning and ending of paragraphs when they
appear at the front of a line. Paragraphs are also

Page

delimited by blank lines. ·

The l\L character delimits pages when it appears at
the front of a line.

GMACS has a whole series of commands for moving the point
anywhere in the edit buffer:

• By character with FOR WARD-CHAR and BACK WARD­
CHAR.

• By word with FORWARD-WORD and BACKWARD­
WORD.

• By sentence with BEGINNING-OF-SENTENCE and
END-OF-SENTENCE.

• By line with NEXT-LINE and PREVIOUS-LINE, which
move the point to the same column in an adjacent line.
Two special commands for LISP code, BEGINNING-OF­
NUMBERED-LINE and END-OF-NUMBERED-LINE,
work with either the current line or a specified line
number.

• By paragraph with FORWARD-PARAGRAPH and
BACKWARD-PARAGRAPH.

• By page with FORWARD-PAGE and BACKWARD­
PAGE, which leave the point at the top of the page
centered in the edit window.

• By buffer length with BEGINNING-OF-BUFFER and
END-OF-BUFFER.

Inserting Text 107

Inserting Text

The simplest editing consists of inserting individual characters in an
edit buffer. Insertion always occurs at the point between the
character above the cursor and the character immediately preceding
it. A non-printing character such as a space, tab, or newline is like
any other character in this regard. For example, the newline
character (produced by <Enter>) doesn't show in the screen display,
but it is in the buffer like any other typed data.

GMACS provides four special commands for inserting text.

• QUOTED-INSERT is used to insert as text those
characters which otherwise act as editing commands,
such as control characters.

• INSERT-FILE inserts the entire contents of an ASCII
text file at the current location of the point. INSERT­
BINARY-FILE performs the same function for a binary
file.

• INSERT-COMMAND-NAME prompts for a keychord and
then inserts the name bound to that keychord.

Deleting Text

To delete the character at the cursor position use DELETE-CHAR by
pressing Ctrl-D. The character at the cursor disappears, and all
chara·cters following the cursor move one character backward. To
erase a character you have just typed (i.e, to the left of the cursor)
use either RUBOUT or RUBOUT-HACKING-TABS. Both delete
characters to the left of the cursor, but differ in how they treat tabs.
When RUBOUT deletes a tab, it wipes out the full tab-width of
spaces, changing this:

Column 1 Column 2

to this:

Column !Column 2

When RUBOUT-HACKING-TABS deletes a tab, it converts the tab to
the appropriate number of spaces and then deletes one of the spaces,
so that, this:

Column 1 Column 2

108 13: Editing Text

becomes this:

Column 1 Column 2

The default keybindings for these two commands may cause some
confusion because the <Rubout> key is in fact bound to RUBOUT­
HACKING-TABS, not to RUBOUT, and so converts tabs to spaces
before deleting just one.

Four special-purpose commands can be used to delete multiple blank
spaces in the text.

• DELETE-HORIZONTAL-SPACE deletes any spaces or
tabs on either side of the point.

• JUST-ONE-SPACE does the same thing but leaves "just
one space."

• DELETE-BLANK-LINES collapses the number of blank
lines above and below the point to one line.

• DELETE-INDENTATION has a special use in deleting
indentation (see the section "Understanding Indentation"
for more details).

Numeric Arguments (Repeat Counts)

You will often want to execute a GMACS command a certain number
of times one after the other. For example, you may want to move
the cursor forward exactly 65 characters. It would be a nuisance to
repeat a cursor-motion command this often. Instead, you can invoke
a single command with a numeric argument which specifies how often
the command is to be repeated.

There are two ways to prefix a command with a numeric argument.

• Type Ctrl-U followed by the numeric argument and then
the command: Ctrl-U <number>.

• Type Alt followed by the numeric argument and then
the command: Alt-<number>.

In these cases, the number is called the repeat count for the command
that follows it. For example, to advance the cursor 65 characters,
type: Ctrl-U 65 Ctrl-F. Remember that the ordinary characters of
the keyboard are self-inserting input: typing the character A means

Numeric Arguments (Repeat Counts)

"insert the character A." Thus, to insert a row of 65 asterisks into
the buffer, type: Ctrl-U 65 •.

109

Ctrl-U alone, without a numeric argument, performs the command 4
times. To advance the cursor 4 characters, type: Ctrl-U Ctrl-F. Any
additional Ctrl-U that follows the repeat-count argument multiplies
the repeat count by 4. This input advances the cursor by 64
characters: Ctrl-U 16 Ctrl-U Ctrl-F.

With commands that have an obvious opposite command, a negative
prefix argument will cause the opposite command to be executed the
specified number of times. For example, an argument of -5 to the
SCROLL-UP command will cause the screen to be scrolled down 5
lines.

In general, with commands that act like toggles, such as AUTO-FILL,
a positive prefix argument will turn the command on and a zero or
negative prefix argument will turn the command off. If a command
uses a numeric prefix argument in a non-standard way, it is
documented in the command summary.

Filling Paragraphs

In text mode, all paragraphs are automatically filled. That is, the
default state of auto-fill is on, a situation indicated in the mode line
by the word "fill" in the minor-mode position within the square
brackets.

Paragraph filling is another way of saying that text lines are
wrapped when they reach a predetermined point in the line. Here is
how it works: when a non-white-space character is typed past the
"fill column" (set by default to column 65) at the end of the line, the
line is broken at the nearest word and a newline is automatically
inserted at the break. If auto-fill mode is not on, lines will break
and wrap as soon as they reach the end of the display. The default
setting of the fill column can be changed with the SET-FILL­
COLUMN command.

If auto-fill mode is not on, it can be turned on by calling AUTO­
FILL with a positive numeric prefix argument. When called with 0
as the argument, AUTO-FILL is turned off. When called with no
argument, AUTO-FILL acts as a toggle, switching alternately from
on to off.

The auto-fill feature works only when new text is typed into the
buffer. Unwrapped lines can be eliminated with the FILL­
PARAGRAPH command. When the FILL-PARAGRAPH command is

110 13: Editing Text

invoked, lines extending past the fill column in the current
paragraph are broken at the first space before the fill column and
wrapped onto the next line. Any leading white space is deleted.

Inserting New Lines

There are four different ways for breaking the current line and
generating a new line. The most familiar way is to press <Enter>,
which is bound to the command NEWLINE and which can also be
invoked by pressing Ctrl-M. The current line is broken at the point
and the cursor moves to the beginning of the new line. Thus,

This is an ordinary sentence.

becomes

This is an ordinary
sentence

A related command is OPEN-LINE, invoked with Ctrl-0. This
command inserts a newline character at the point, and leaves the
point where it is, before the newline character:

This is an ordinary ~entence.

now becomes

This is an ordinary
sentence. -

Two additional commands combine the newline function with the
indent function, which, as with indenting by itself, works differently
in Text mode and Lisp Mode. NEWLINE-INDENT operates like
NEWLINE but moves the cursor to the first indented position of the
new line. In text this position is determined by the first occurring
blank space of the line above the new line.

This is an ordinary sentence.

becomes

This is an ordinary
sentence.

OPEN-INDENTED-LINE operates like OPEN-LINE but leaves the
cursor where it is and indents the new line directly beneath the
cursor.

Inserting New Lines 111

This is an ordinary sentence.

becomes

This is an ordinary
sentence.

Understanding Indentation

GMACS includes several commands that facilitate indenting text.
First of all, we ought to understand the distinction between a tab
and indent. A tab is a position somewhere on a line. In GMACS the
<Tab> key moves eight spaces and is bound to TAB-TO-TAB-STOP.
You can change the default 8 spaces to any number you like by using
SET-VARIABLE to alter the value of •tab-stop-width*.

Indentation fills a portion of a line with blank spaces. It is invoked
with Ctrl-1, which, when Text is selected as the Major Mode, is
bound to INDENT-TEXT-LINE. Ctrl-1 causes the current line to
indent to positions just to the right of blank spaces in the previous
line. The real usefulness of this feature can be seen when we want
to align text in columns of varying widths:

Col 1 Col 2 Col 3 Col 4

Pressing Ctrl-1 repeatedly now aligns a row of numbers correctly:

Col 1
3

Col 2
45.00

Col 3
198

Col 4
789

In Lisp mode, Ctrl-1 is bound to INDENT-LISP-LINE and uses a
different algorithm for indenting that is appropriate for typing LISP
code.

In addition to these two commands, there is a third that performs a
special indenting function. INDENT-RIGIDLY indents every line in
the region between the point and the mark one space (a numeric
argument indents the region the specified number of spaces). A
block of text like this:

This is a nice block
of text. It consists
of four lines and two
sentences.

112 13: Editing Text

becomes this when we indent-rigidly 5 spaces:

This is a nice block
of text. It consists
of four lines and two
sentences.

Finally, there are a number of associated indentation commands.
BACK-TO-INDENTATION, useful in Lisp Mode, moves the cursor to
the first character in a line that is not a space.

DELETE-INDENTATION for deleting the newline character and any
indentation at the beginning of the current line. The current line is
appended to the preceding line, with the addition of a single blank
space.

This is an ordinary sentence.
This is another sentence.

becomes

This is an ordinary sentence. This is another
sentence.

Setting Uppercase and Lowercase

To aid you in formatting text, GMACS has commands for setting the
case of alphabetic characters to uppercase (capitals) or lowercase
(small letters):

• UPPERCASE-WORD and LOWERCASE-WORD put all
the letters of the word to the right of the point in either
upper- or lowercase.

• BACKWARD-UPPERCASE-WORD and BACKWARD­
LOWERCASE-WORD search for the first word to the
left of the point and put the entire word in either
upper- or lowercase.

• UPPERCASE-INITIAL and BACKWARD-UPPERCASE­
INITIAL capitalizes the first letter of the word to either
the right or left of the point and put the rest of the
letters of that word in lowercase.

Manipulating Regions and Marks

• UPPERCASE-REGION and LOWERCASE-REGION puts
all the letters in the region in either upper- or lowercase.

Manipulating Regions and Marks

113

The editing operations described so far have included insertions of
characters, words, and lines. These are natural units to manipulate
with the editor. Often, however, it's convenient to manipulate larger
blocks of text: to move, copy, or delete paragraphs or other large
units.

GMACS enables you to define and manipulate text in blocks of any
size, called regions. Unlike a character or a word or a line, a region
is not "naturally" defined: it is not delimited by blanks or newlines,
for example. The limits of a region are completely up to you.

For example, if you wanted to delete a block of text from the
buffer, you would do so in the following way. First, position the
point in the place in the buffer that you wish to be the start of the
region, and use the SET-POP-MARK command to set a mark at the
point. The mark doesn't show in the edit window, but the message
"Mark set" appears in the message area. Then, move the point to the
place in the buffer that you wish to be the end of the region, and
execute the KILL-REGION command to kill the region between the
mark and the point.

The following is a list of commands that operate on regions, that is,
the area between the current mark and the point:

• COPY-REGION copies the region between the point and
the mark to the top of the kill history.

• KILL-REGION moves the text between the current mark
and the point to the top of the kill history.

114 13: Editing Text

• TRANSPOSE-REGIONS uses the top three marks on the
mark stack and the point to delineate two regions, and
then transposes these regions. Here's how it works. Let's
call the two regions Fred and Joan:

Ml ----- Fred ----- M2 .•. M3 ----- Joan ----- P

First, the markers (Ml, M2, M3) and the point (P) are
sorted in the order of their location in the file. Then
Fred is transposed with Joan; that is Joan is placed
where Fred was, and Fred is placed where Joan was. If
there are only two marks on the mark stack, like this:

Ml ----- Fred ----- M2 ----- Joan ----- P

then the markers along with the point are used to define .
two regions separated by the middle of the three
markers (M2). The two regions are transposed around
the middle marker.

• UNTABIFY-REGION converts all the tabs in the region
between the point and the mark to the appropriate
number of space characters.

In addition to the SET-POP-MARK command, there are several other
commands that will set a mark in the buffer: MARK-BEGINNING­
OF-BUFFER, MARK-END-OF-BUFFER, MARK-PAGE, MARK­
SEXP, and MARK-WHOLE-BUFFER, which marks the end of a
buffer and places the point at the top of it.

In addition to using the current mark to define a region, you can
also specify a sequence of marks for immediate or later use. GMACS
keeps a list of these, the mark pdl--"pdl" for "push-down list." You
can add a mark to this list, throw away a mark from the list, or
recover and use a mark which is currently on the list.

The SET-POP-MARK command can be used in conjunction with one
or more Ctrl-U prefix arguments to manipulate the mark pdl in the
following ways:

• Alone, SET-POP-MARK defines a mark (at the current
location of the point) and puts the mark on the top of
the stack. Each mark already on the stack is "pushed
down": the top mark becomes the second, the second
becomes the third, and so on. The top mark is also
called the current mark.

I
\

Manipulating Regions and Marks

• With Ctrl-U, SET-POP-MARK gives you the top mark: in
other words, it gets the current mark and places the
point at that position. The mark is taken off the stack.
All the remaining marks, if any, are moved up one; the
former second mark is now the current mark, etc.

• With Ctrl-U Ctrl-U, SET-POP-MARK takes the current
mark off the stack without placing the point at the
mark. All the remaining marks, if any, are moved up
one.

Besides using a mark to delimit a region, you may want to use a
mark simply as a way to mark a point in the buffer to which you
will want to return at some later time for further editing.

One additional command enables you to move the point quickly to
the current mark, without changing the region and without
discarding the mark. EXCHANGE-POINT-AND-MARK exchanges
the point and the current mark.

Killing and Recovering Text

115

As noted previously, the commands Ctrl-D and <Rubout> delete
individual characters from the buffer permanently; text deleted in
this way cannot be recovered.

All other commands that remove or copy text save the text so that it
can be recovered and copied to another part of the buffer. Text is
saved.in a "ring" where the most recent entry becomes the first
element in the ring and all the other entries are pushed down. There
is a maximum of fifteen entries, with the oldest (the fifteenth)
dropping out to accommodate the newest. The DISPLAY-KILL­
HISTORY command will display in a type-out window all entries
contained in the kill history. Only the first line of each entry in the
kill history is displayed; subsequent lines are represented by ellipses
(...). An arrow marks the current top entry.

Thus, if you delete three of the following four lines, one after the
other:

This is line one.
This is line two.
This is line three.
This is line four.

the kill history will look like this:

116

1: This is line two.
-> 2: This is line three.

3: This is line one.

13: Editing Text

Note that the entries are not stacked in the order they were killed.
The reason for this is that the kill history is a ring, with the arrow
indicating the top entry. Subsequent entries follow, not in a linear
fashion but in a circular one. Thus the next entry after the "last"
entry in the list is the "first" entry.

GMACS contains commands appropriate for performing either
deleting or copying text. Commands that delete the text include
KILL-WORD, BACKWARD-KILL-WORD, KILL-LINE, BACKWARD­
KILL-LINE, and KILL-REGION. Commands that copy the text to
the kill history without deleting it from the buffer include COPY­
LINE and COPY-REGION.

Each of these commands creates a new entry in the kill ring, but
there may be times when you would like to take pieces of text from
various parts of the buffer, join them together and then reinsert
them as one block. Such a task can be done with the commands
already described but at the cost of repetitive keystrokes. The
command APPEND-NEXT-KILL provides an easier alternative.
Instead of creating a new top entry to the ring, this command
attaches the killed text to the existing top entry, making them a
single larger entry but preserving the order and number of the
entries in the ring. Because the killed text is attached to the end of
the existing top entry, it is said to be "appended" to it. Thus, if we
take

This is line four.

and then use APPEND-NEXT-KILL before killing it, the same kill
history that we used above would look like this:

1: This is line two.
-> 2: This is line three.This is line four.

3: This is line one.

Note that you must use APPEND-NEXT-KILL immediately before
invoking the kill or copy command. Any intervening cursor-motion
commands will nullify the effect of the APPEND-NEXT-KILL
command.

Now it may happen that instead of attaching the killed line to the
end of the top entry, you would want to attach it to the beginning.
This is called "prepending." There is no special command to prepend
a piece of killed text. To prepend text, you still use APPEND-

Killing and Recovering Text

NEXT-KILL but in conjunction with a "backward" kill operation,
which has two forms:

• Using a "backward" command like BACKWARD-KILL­
WORD and BACKWARD-KILL-LINE

• Performing a kill or copy operation backward from the
point to the mark

117

Thus, if in the previous example, we had prepended line four instead
of appending it, the kill history would look like this:

1: This is line two.
-> 2: This is line four.This is line three.

3: This is line one.

Recovering Text from the Kill History

Now that we have looked at the different kill and copy commands
that add entries to the kill history, let's take a look at how the text
can be recovered from the kill history and put back in the buffer.

The YANK and YANK-POP commands recover entries from the kill
history. Both of these commands copy a text entry from the kill
history to the current point in the edit buffer. Neither command
changes either the contents or the order of the entries in the kill
history. Remember that the kill history is only changed by the
progressive addition of new entries and the dropping out of entries
once the history has reached its maximum of 15. The whole point of
the kill, copy, and yank commands is to enable you to delete, move
and copy any block of text by first moving it to the kill history with
a kill command, and then recovering it, if wanted, to the same
location or a new one with a YANK or YANK-POP command.

The idea behind the yank commands is that you use YANK to
recover the top entry from the kill history and a series of YANK­
POP commands to recover lower-down entries.

• If the preceding command was neither YANK nor
YANK-POP, then YANK-POP has the same effect as
YANK: it copies the top entry in the kill history.

• If the preceding command was YANK, then YANK-POP
copies the second entry and makes it the top entry.

118 13: Editing Text

• If the preceding command was YANK-POP, then
YANK-POP copies the next-lower entry and makes it the
top entry. (

In other words, YANK-POP copies successively lower entries each
time it is used in succession, going down and around the kill ring
from the most recent entry to earliest, and back again.

Transposing Commands

One needs to use kill and copy commands to move text from one
place in the buffer to another. However, GMACS also includes
commands that will transpose characters, words, lines and regions.
These commands do not use or affect the kill ring. They include:

• TRANSPOSE-CHARACTERS to transpose the characters
surrounding the point

• TRANSPOSE-WORDS to transpose the words
surrounding the point

• TRANSPOSE-LINES to transpose the current line and
the preceding line

• TRANSPOSE-REGIONS to transpose two regions
(described in detail above)

Search Operations

You often need to locate a particular character string within a text.
You may want to delete it, replace it with another string, or perform
some other editing function at that location. You may want to do
this at only one instance of the string, at every instance, or at
selected instances. GMACS includes several search and replace
commands that facilitate these kinds of operations. If you wish to
perform .search and replace operations on several files at once, you
should look at the section on how to create and use tag tables.

The search and replace commands are not case-sensitive to the search
string you specify: a search for "LISP" will also find "Lisp" and "lisp".
Also, each of the commands automatically re-positions the edit
window as necessary to show the located string.

\

Search Operations 119

FOR WARD-SEARCH and REVERSE-SEARCH prompt for a
character string and reposition the point at the first occurrence of
the string found in the specified direction. Searches do not begin
until after the <Enter> key is typed. Typing a Ctrl-S will move the
point to the next occurrence of the search string. Ctrl-R moves the
point to the next occurrence of the search string during a reverse
search. You can switch back and forth between forward and
backward incremental searching using Ctrl-S and Ctrl-R.

Typing any GMACS command that does not directly pertain to
searches will terminate the search, leave the point where the search
left it, and execute the specified command.

Like EMACS, GMACS includes forward and backward search
commands that are incremental. This means that the search begins
before you have finished typing the search string. Let's say you
want to do an incremental search for the word "bar."

• First, you invoke the FORWARD-ISEARCH command,
which prompts you for the search string with "Forward
Search:" in the message line.

• As soon as you type "b," GMACS places the point after
the first location of "b" between the point and end of
the buffer.

• After you type the "a," GMACS places the point after the
first location of "ba."

• After you type the final "r," it places the point after the
first location of "bar."

Let's assume that you wish to terminate the search. You do this by
typing Ctrl-G, which will place the point where it was located before
the search began. Now let's assume there is no occurrence of "bar."
In this case, the editor beeps and displays the message "Failing
Forward Search: bar." At this point, you can either:

• Type Ctrl-G, which will shorten the string to "ba," the
longest string where an occurrence was found, and place
the point back to this occurrence.

• Type Ctrl-G twice, which will terminate the search and
place the point where it was located before the search
command was issued.

120 13: Editing Text

If you make a typing mistake while you are typing in the search
string, you can use the <Rubout> key to erase any mistakes; note that
as you delete characters from the search string, the point will move
back to the first occurrence of the shortened string. \

Search and Replace Commands

There are two commands for replacing one text string with another:
REPLACE-STRING prompts for two strings and replaces all
occurrences of the first string with the second string from the point
to the end of the buffer. QUERY-REPLACE prompts for two
character strings and replaces selected instances of the first character
string with the second string.

When QUERY-REPLACE finds an instance of the string, it halts and
prompts you with seven options. Your choices are:

y

N

s

c
Ctrl-G

Ctrl-C

replace that instance and continue searching

leave that instance unchanged and continue
searching

stop the search, leaving the cursor at the current
location

replace all remaining instances to the end of the
buffer without further prompting

change the replacement string

abort the command--no more searching or replacing

enter a recursive edit to perform additional editing
commands; exit the recursive edit and continue the
QUERY-REPLACE operations by typing Ctrl-C
Ctrl-C

When QUERY-REPLACE has searched to the end of the buffer
(whether it finds instances along the way or not), the cursor is
returned to its original position. This also happens if you abort
QUERY-REPLACE.

Window Commands

Window Commands

GMACS provides several commands that enable the user to easily
scroll through the text in the buffer by lines, screens, or pages,
controlling both what is displayed in the edit window and the
position of the point in the window.

• SCROLL-SCREEN-DOWN and SCROLL-SCREEN-UP
move the window forward and backward in the edit
buffer by about one window-length. The window is
positioned on the edit buffer so that the previous
second-to-last line in the window becomes the new first
line.

• RECENTER-POINT moves the point to the beginning of
the first line in the edit window. If a positive numeric
argument is used, it will position the point the specified
number of lines from the top of the window. If a
negative numeric argument is used, it will position the
point the specified number of lines from the bottom of
the window.

• RECENTER-WINDOW scrolls the buffer so that the line
containing the point is at the center of the window. If a
positive argument is used, it will redisplay the screen
such that the point will be left the specified number of
lines from the top of the page. If a negative argument
is used, it will leave the point the specified number of
lines from the bottom of the page. An argument of 0 or
repeating the command twice (Ctrl-L Ctrl-L) will
redisplay the screen.

• SCROLL-DOWN and SCROLL-UP scrolls the screen
down or up one line.

• WINDOW-BACKWARD-PAGE and WINDOW-
FOR WARD-PAGE scrolls the screen one page backward
or forward, positioning the start of the page at the top
of the edit window.

Editing in Two Windows

121

You can split the edit-window area on the screen into two edit
windows using the TWO-WINDOWS command. The upper window
shows the current buffer and the lower window shows the previous

122 13: Editing Text

buffer. All the editing commands apply to only one window at a
time.

Each window has an edit buffer associated with it. The two buffers
may be the same buffer or they may be different buffers, enabling
you to edit two different files. At any particular time, the cursor
will be in one of the windows, called the current window. Any input
that you type applies to the current window and the current point.

Having established two windows, you can:

• Scroll the noncurrent window without switching the
point to that window with SCROLL-OTHER-WINDOW

• Work in the other window with OTHER-WINDOW,
which makes the other window the current window

• Expand the current window to be the entire screen with
ONE-WINDOW

• Use MOVE-SCREEN-OTHER-WINDOW to scroll the
other window down by approximately one screen

GMACS maintains any needed information about the inactive
window so that when you return there, you can pick up where you
left off. In particular, the point is maintained. There is also a mark
pdl for each buffer; thus, there are two mark pdl's unless the two
windows have the same buffer. However, GMACS maintains only
one kill history, which is accessible in both windows. This feature is
one of the main reasons for editing in two windows: it enables you
to merge text between two buffers with minimum effort.

Chapter 14

Editing LISP Code

This chapter describes the GMACS commands that are designed
specifically for editing LISP code. If you are editing LISP code, you
should make sure that the major mode associated with the buffer is
"Lisp" or "Common Lisp." This will insure that the special features
will work as described here.

Several of the commands refer to such positions in LISP code as "the
end of the current list" and "the beginning of the current s­
expression." For this to make sense, it's necessary to know what the
"current" item means for an s-expression, a function definition or a
list.

• The current item is the lowest-level item of that kind
containing the point.

• The "next" item is the first item of that kind
encountered, in one search direction or the other (the
search direction is always specified).

The beginning and end of an item need to be defined also.
Beginning and end are marked in LISP code by delimiting characters;
for the items of interest, these are as follows:

• For an atom: Parentheses or white space (the space, tab,
or newline character)

• For a list: Parentheses

If a command specifies an action on a current, a previous or a next
item, and there is no such item in the edit buffer, then GMACS rings
the bell and does not move the point. In other words, the command
has no effect in that instance except to ring the bell.

124 14: Editing LISP Code

Cursor Motion

These commands move the cursor to various parts of LISP code. (

• BACKWARD-SEXP moves the point to the beginning of
the s-expression to its left. If the preceding character is
), the point is moved to just left of the matching (. If
the preceding character is white space, the point is
moved to just left of the first character of the preceding
s-expression. If the preceding character is (, the point
moves to the left of it.

• FOR WARD-SEXP moves the point to the end of the s­
expression to its right. If the next character is (, the
point is moved to just right of the matching). If the
next character is white space, the point is moved to just .
right of the last character of the next s-expression. If the
next character is), the point moves to the right of it.

• BACKWARD-LIST moves the point to the beginning of
the list to its left. The command searches for an open
parenthesis and positions the point just to the left of it.

• FORWARD-LIST moves the point to the end of the list
to its right. The command searches for a close
parenthesis and positions the point just after it.

• DOWN-LIST moves the point forward in the edit buffer
until it is just to the right of the next open parenthesis.
DOWN-LIST is a forward move. There is no "backward­
down-list" command. Given this:

±a (+ b (+ c d)))

we get this after DOWN-LIST:

(+a (± b (+ c d)))

• BACKWARD-UP-LIST searches backward for an
unmatched open parenthesis and positions the point to
the left of the first one encountered.

Cursor Motion

• FORWARD-UP-LIST moves the point forward to the
next highest level of a nested list structure. Searches
forward for an unmatched close parenthesis and
positions the point to the right of the first one
encountered. If the point is not currently within a list,
then the terminal beeps and the point is not moved.
Before a FORWARD-UP-LIST command, we might have:

(+a (± b (+ c d)))

After FORWARD-UP-LIST, we have:

(+a (+ b (+ c d)))_

• BEGINNING-OF-DEFINITION and END-OF­
DEFINITION enable you to move the point to the
beginning or to the end of the current function
definition. (It's assumed that a function definition (and
any other form which is not nested within another form)
always begins in column I of a line.) The former moves
the point backward to the beginning of the current LISP
function; it looks backward for the first line that has an
open parenthesis in its first column. The latter moves
the point forward to the end of the current LISP
function.

Convenience Aids to Writing in LISP

Several miscellaneous GMACS features aid you in writing LISP
programs:

• MAKE-MATCHING-(): This command inserts matching
parentheses around the point.

• FIND-UNBALANCED-PARENS: This command
searches for an unbalanced parenthesis and leaves the
cursor at the bottom of the function that precedes the
function containing the unbalanced parenthesis. If no
unbalanced parenthesis is discovered, it displays a
message to this effect. If given no argument, it scans
through the entire buffer; if given an argument, it scans
from the point to the end of the buffer.

125

126 14: Editing LISP Code

• Paren-flash feature: Whenever the point is just to the
right of a close parenthesis, the corresponding open
parenthesis blinks on the screen (if it appears in the
window). This feature is enabled automatically in
GMACS. To disable it, give the GCLISP command (setf
flash-mode nil) after starting up GMACS.

(The paren-flash feature does not function properly
within comments delimited by the GCLISP comment­
delimiter pair #I and I#. If your code includes such
comments, and you want to check the balance of
parentheses within them, the simplest way to use paren­
flash to check the balance is to temporarily remove the
comment markers during this operation.)

• Paren-beep feature: Whenever a close parenthesis is
typed, your terminal will beep, and the message No
matching open parenthesis will be printed, if there is no
matching open parenthesis anywhere in the buffer. (The
matching open parenthesis need not be visible in the
window.) This feature is normally disabled. To enable
it, give the GCLISP command (setf *overbalance-warn*
T) after starting up GMACS. In addition, the paren­
flash feature must be enabled.

Indenting LISP Expressions

These commands enable you to indent a line of LISP code to reflect
the nesting level of the current form.

• INDENT-FOR-COMMENT indents an appropriate
amount for comments. If the current line has no
comment, moves the point out to the comment column
(inserting spaces as necessary) and inserts a semi-colon.
If the line already has a comment, the comment is
indented the correct number of spaces and the point is
positioned to the right of the semi-colon.

• INDENT-LISP-LINE indents the current LISP line to the
appropriate level.

• INDENT-SEXP corrects the indentation of the s­
expression to the right of the point.

• NEWLINE-INDENT and OPEN-INDENTED-LINE are
discussed above in the chapter on text editing.

Displaying Information About LISI' Corl~ 127

Displaying Information About LISP Code

Several commands enable you to display on-line documentation about
LISP functions. The documentation comes from the text which
would be displayed in response to the GMACS help command ED­
DOC.

• DISPLAY-APROPOS prompts the user for a string and
displays a short description of all the symbols whose
print name contains the string as a substring.

• DISPLAY-DOCUMENTATION displays the full Help
documentation for a specified function. It prompts the
user for a function name, choosing as the default
function the first element of the current s-expression.

• DISPLAY-LAMBDA-LIST prompts the user for a
function name and displays the lambda-list of the
requested function. If no function name is provided, it
uses the first member of the current list as the function.

• DISPLA Y-MACROEXPANSION displays in a type-out
window the macroexpansion of the current s-expression.

Killing and Recovering LISP Code

A number of special commands enable you to kill s-expressions and
comments. As described earlier, "killing" text means removing it from
the edit buffer and placing it in the kill history. Like any entry in
the kill history, it can then be recovered by YANK and YANK-POP
commands for insertion, if desired, elsewhere in the buffer or in
another buffer.

• KILL-COMMENT moves to the kill history any comment
on the current line (that is, all of the characters from
the first semi-colon through the last character before the
newline).

• KILL-SEXP moves to the kill history the characters
forward from the point through the end of the current
s-expression.

128 14: Editing LISP Code

Keeping Track of Changes Made to Your Program

The ADD-CHANGE-LOG command enables you to keep a record of
changes that you make to LISP code. If a file called change.log
exists in the current directory, it will load this file into a buffer,
switch you to that buffer and place the point at a place appropriate
to make a new entry; it will create a file called change.log if one
does not already exist.

Evaluating LISP Code from within the Editor

There are two ways to evaluate LISP code from within the editor:

• Invoke one of the commands that will evaluate an s­
expression, function definition or buffer of LISP code
and display the results in the type-out window.

• Invoke LISP-interaction mode, which will evaluate a
form within the buffer and place the results of the
evaluation on the next line of the buffer.

It is important to keep in mind that the type-out method loses the
results of the evaluation whereas LISP-interact mode places the
results in the buff er.

Here are a list of commands that are used to evaluate expressions.

• EV AL-AND-EXIT evaluates the current function
definition and exits to the top-level interpreter.

• EV AL-BUFFER incrementally evaluates the LISP forms
in the current buffer and displays the results in the
type-out window.

• EV AL-DEFINITION evaluates the current function.

• EVAL-IN-MINIBUFFER prompts the user for a form
and evaluates the form in the type-out window. The
advantage of this command is that the environment in
which the user types the form is a two-line mini-buffer
that will accept GMACS commands.

• EV AL-SEXP evaluates the s-expression to the right of
the point. An attempt to do an EV AL-SEXP on an s­
expression with an infinite loop will result in a stack­
group-reset and the user will see a message to this effect.

Evaluating LISP Code from within the Editor 129

If you type Ctrl-Break during the evaluation (or if the break
function is part of the code), the evaluation behavior is the same as
if you were typing the code form-by-form interactively. Evaluation

/ and printing of results are suspended, a new level of the listener is
invoked, and you can then perform debugging operations, which
typically involve viewing the current values of variables, tracing the
execution stack, and so forth. You continue via Ctrl-G (from an
error) or Ctrl-P (from a break), as always in the listener.

You can use the SET-BUFFER-PACKAGE command to set the
package associated with the current buffer to be a specific package.
Subsequent s-expression or function definition evaluations will be
added to the package specified.

LISP-Interaction Mode

LISP-interaction mode is a minor mode that enables the user to
evaluate s-expressions within the editor and have the results of the
evaluation placed back into the edit buffer. LISP-interaction mode is
particularly useful because the results of an evaluation remain in the

, buffer rather than disappear after they have been displayed, which
) is the case with the EV AL-SEXP command since it displays the

results in a type-out window.

LISP-interaction mode acts like the top-level interpreter environment
except evaluation doesn't occur until the LISP-INTERACT command
is executed, at which time the s-expression to the left of the point is
evaluated. If you try to execute LISP-INTERACT when the LISP­
interaction mode is turned off, GMACS will prompt you as to
whether or not you would like it turned on. Note that when LISP­
interaction is turned on, the word "linter" will appear within the
square brackets in the mode line.

Compiling from within the Editor

GMACS includes several commands for compiling LISP code within
the edit buffer. Note that all of these commands add the compiled
definition(s) to the LISP environment as well as display the results of
the compilation in the type-out window. Note that the COMPILE­
BUFFER command does not create a .fas file. The following lists
the GMACS commands that involve compilation:

Here is a list of commands used in compiling LISP code.

130 14: Editing LISP Code

• COMPILE-AND-EXIT compiles the current function
definition and exits to the top-level interpreter.

• COMPILE-BUFFER compiles the forms and definitions
in the current buffer and loads them into memory.
Essentially, it acts like the top-level compile-file
function except that it loads the compiled code into
memory and does not create a corresponding .fas file.

• COMPILE-DEFINITION compiles the current function
definition and adds the compiled definition to your
LISP environment.

Both buffer-edit mode and directory-edit mode also enable the user
to evaluate and compile LISP code. See the details in the chapter
"Manipulating Buffers and Files."

i
\

J

Chapter 15

Customizing Your GMACS Environment

There are two primary ways of customizing your GMACS
environment:

• Changing the default settings for key bindings and
global variables

• Using keyboard macros to define new commands that
consist of a sequence of keystrokes or commands

The file comtab.lsp contains the default command key bindings and
the file params.lsp contains the default global variable settings. The
user can change GMACS default settings by editing these files
directly.

Another way to do so is to edit the GMACS initialization file
gmacsini.lsp in the \gclisp3\gmacs directory. This file is loaded after
all of the other GMACS files are loaded; therefore, any global
variable settings or keybindings specified in this file will override
any previous default settings. The following is a description of what
some of these default settings do and how to change them; you
should also look carefully at the sample initialization file provided.

Change Key Bindings

Key bindings are defined in the file comtab.lsp. Technically, you
\can make changes directly to this file, but the preferred method is to
/ add override commands to your gmacsini.lsp file. This is because the

comtab.lsp file, as part of the distribution package, is likely to
change in the future as new features are added to GCLISP.

132 15: Customizing Your GMACS Environment

• To bind commands to simple keychords, the def-key
function should be used:

(def-key #\m-Z 'eval-definition)

• To bind a Ctrl-X keychord one would use the def-x-key
function. For example, the following line of LISP code
in comtab.lsp binds Ctrl-X Ctrl-F to the FIND-FILE
command:

(def-x-key #\c-F 'find-file)

Associating Modes with Buffers

If the first line of a file is an attribute-list, the major mode
associated with the file will be the one specified in the attribute-list.
GMACS will recognize Common-LISP as a mode in the attribute-list;
however, Common-LISP mode and LISP mode are functionally
identical in GMACS. Otherwise, if the file has a ".l" or ".lsp"
extension, the major mode will be LISP; if the file has a ".tex", ".mss"
or ".txt" extension, the major mode will be text.

The user can add his own defaults; for example, to have GMACS
associate text mode with any files with the ".doc" file extension, the
user should add the following line of LISP code to his gmacsini.lsp
file:

(pushmode "doc" 'text)

If the file does not contain an attribute-list and does not have an
extension associated with a particular mode, its mode will be
determined by the value of the global variable *default-major-mode*.
The default value of this variable is "normal." The user may want to
reset the value of this variable in the gmacsini.lsp file.

Specifying a Trashcan Pathname

The directory-edit mode includes the ability to delete files. If the
variable *dired-trashcan* is nil, a file chosen for deletion will be
deleted permanently. However, if *dired-trashcan* is a string
specifying a valid pathname (including a trailing "\"), the file will be
copied to this directory and deleted from the current directory. An
undelete will perform the inverse operation. The default value of

Specifying a Default Comment and Fill Column 133

dired-trashcan is nil, so you must reset the value of this variable in
gmacsini.lsp if you want to use this feature.

Specifying a Default Comment and Fill Column

The values of the global variables *fill-column* and *comment­
column*, which are specified in the file params.lsp, determine the
column where paragraphs will be filled and the column where LISP
comments will begin, respectively. The user can change these default
values by editing params.lsp or by resetting the values in
gmacsini.lsp.

Eliminating the Pause in the Type-Out Window

By default, a GMACS command that displays text in the type-out
window will pause after one screen and prompt the user as to
whether or not to continue. In some cases, such as during the type­
out window display of the results of a COMPILE-BUFFER command,

1• for example, the user may want the display to be continuous. This
1 can be accomplished by changing the value of *type-out-pause* to nil

in params.lsp or resetting the value in gmacsini.lsp.

\

Changing the Modeline Display

By default, the time, date and GMACS version number will be
displayed in the mode line at the bottom of the edit screen. The user
can eliminate any of this information from the mode line by
changing to nil the value of one or more of the global variables
modeline-time, •modeline-date• or •modeline-version* in the file
params.lsp. Similarly, the user can eliminate the "Alt-H = HELP"
string from the mode line by changing the value of the variable
*show-help-string• to nil.

Limiting the Number of Buffers in Memory

The variable •max-resident-buffers• in the file params.lsp enables the
user to limit the maximum number of buffers resident in memory at
any one time. When the number of buffers is about to exceed this
value, GMACS unloads the least recently used (LRU) buffer from

134 15: Customizing Your GMACS Environment

memory. When the value of this variable is nil, as it is by default,
there is no limit on the number of buffers in memory.

Auto-Save

Having GMACS automatically save the buffer after every hundred
characters are typed into it can be accomplished with the auto-save
feature, which can be implemented by adding this line to your
gmacs.ini file:

"(setf *auto-save-hook* 'auto-save-hook-fn)"

The buffer will be saved on disk with a filename identical to the one
associated with the buffer but with a .sav filetype extension.

To change the number of characters that must be typed before a save
is done, change the value of *auto-save-limit* in your gmacs.ini file.

Keyboard Macros

A keyboard macro is a user-defined command that consists of a
sequence of keystrokes. If you need to perform a particular sequence
of commands several times, you can define a single keyboard macro
that will perform the entire sequence each time it is invoked.

The DEFINE-KEYBOARD-MACRO command can be used to start a
keyboard macro definition. Any commands and keystrokes typed
subsequent to this command will be recorded as part of the macro.
The command END-DEFINE-KEYBOARD-MACRO is used to
terminate the definition. If any of the keystrokes typed during the
macro definition causes an editor error, the macro definition is
terminated.

The most recently defined keyboard macro is the current keyboard
macro; it is the macro that will be named with the NAME­
KEYBOARD-MACRO command, and the macro that will be executed
when the EXECUTE-KEYBOARD-MACRO command is called with
no arguments. When given a positive numeric argument, the
EXECUTE-KEYBOARD-MACRO command will execute the current
keyboard macro the specified number of times.

The NAME-KEYBOARD-MACRO command will prompt the user for
a name and assign this name to the current keyboard macro. A
named macro can be executed by calling the EXECUTE­
KEYBOARD-MACRO command with a negative numeric argument.

Keyboard Macros 135

The user will be prompted for the name of a macro and that macro
will be executed the specified number of times.

Once you have named a macro, you can bind it to a keychord. The
BIND-KEYBOARD-MACRO command will prompt you for a named
keyboard macro, and then prompt you for the keychord that you
wish to bind to the macro. This keychord can be any single
keychord except those that are prefixed with Ctrl-X or F2. A
command can be bound to several keychords at one time. However, a
keychord can be bound to only one command at one time. If you use
the BIND-KEYBOARD-MACRO command to rebind a keychord that
is currently bound to another GMACS or user-defined command, the
name of the command to which the keychord was previously bound
will be displayed on the mode-line.

The UNBIND-KEYBOARD-MACRO command can be used to unbind
a keychord from its current command binding. For each keychord,
GMACS maintains a complete stack of all the commands to which a
keychord has been bound. When the UNBIND-KEYBOARD-MACRO
command is used to unbind a keychord, the keychord is
automatically rebound to the command to which it had been most
recently bound - that is, the command at the top of the stack. An
UNBIND-KEYBOARD-MACRO command removes a given command
from a keychord's stack history. You can restore the standard
GMACS keychord bindings at any time by loading the file
C:\gclisp3\gmacs\comtab.lsp into your environment.

The SAVE-KEYBOARD-MACROS command can be used to save the
currently defined keyboard macros in a file for future use. Note
that this command will save the current keychord bindings, but it
will not save the binding stack for the keychords. The LOAD­
KEYBOARD-MACROS command will prompt you for a file name
and load the macros saved in the file into your GMACS environment.

136 16: Customizing Your GMACS Environment

Chapter 16

Summary Key and Command Reference

This chapter lists commands by function key and by command type.

Function-Key Binding Table

Fl EXIT-EDITOR
F2 HELP
F3 SELECT-BUFFER
F4 SELECT-PREVIOUS-BUFFER
FS Ctrl
F6 Esc
F7 FIND-FILE
F8 READ-FILE
F9 SA VE-FILE
FlO ED-BEEP

138 16: Summary Key and Command Reference

Table of Keypad Keys

Left Arrow
Right Arrow
Up Arrow
Down Arrow
Ctrl-Left Arrow
Ctrl-Right Arrow
Pg Up
Pg Dn
Ctrl-Pg Up
Ctrl-Pg Dn
Home
End
Ctrl-Home
Ctr I-End
Del
Ins

BACK WARD-CHAR
FOR WARD-CHAR
PREVIOUS-LINE
NEXT-LINE
BACKWARD-WORD
FORWARD-WORD
SCROLL-SCREEN-UP
SCROLL-SCREEN-DOWN
BACK WARD-SEXP
FOR WARD-SEXP
BEGINNING-OF-BUFFER
END-OF-BUFFER
BEGINNING-OF-DEFINITION
END-OF-DEFINITION
DELETE-CHAR
OPEN-LINE

Cursor Motion Commands 139

Cursor Motion Commands

BACKWARD-CHAR Ctrl-B or Left Arrow
Moves the point to the left (back) one
character position.

BACKWARD-WORD Alt-B or Ctrl-Left Arrow
Moves the point backward to the
beginning of the current word.

BEGINNING-OF-BUFFER Esc <or Home
Positions the point at the beginning of
the edit buffer.

BEGINNING-OF-NUMBERED-LINE
Ctr I-A

END-OF-BUFFER

END-OF-NUMBERED-LINE

FOR WARD-CHAR

FORWARD-WORD

NEXT-LINE

Moves the point to the beginning of the
current line. If called with a numeric
prefix argument, it will position the
point to the beginning of the specified
line number.

Esc >or End
Positions the point after the last
character in the edit buffer.

Ctrl-E
Moves the point to the end of the
current line. If a numeric prefix
argument is used, it will move the point
to the end of the line number specified.

Ctrl-F or Right Arrow
Moves the point one character position
to the right (forward).

Alt-F or Ctrl-Right Arrow
Moves the point forward to the end of
the current word.

Ctrl-N or Down Arrow
Moves the point forward to the same
column in the next line.

140

PREVIOUS-LINE

16: Summary Key and Command Reference

Ctrl-P or Up Arrow
Moves the point backward to the same
column in the preceding line.

Edit Window Commands

\

MOVE-SCREEN-OTHER-WINDOW
Alt-X MOVE-SCREEN-OTHER­
WINDOW
Scrolls the other window down by
approximately one screen.

SCROLL-SCREEN-DOWN Ctrl-V or PgDn
Moves the window forward in the edit
buffer by about one window-length (one
edit screen). The window is positioned
on the edit buffer so that the previous
second-to-last line in the window
becomes the new first line.

ONE-WINDOW Ctrl-X 1
Returns the editor display to one
window by expanding the current
window to the size of the terminal
display.

OTHER-WINDOW Ctrl-X 0
Moves the cursor to the other window,
which becomes the current window.

SCROLL-SCREEN-UP Alt-V or PgUp
Moves the window backward in the edit
buffer by about one window-length (one
edit screen). The window is positioned
on the edit buffer so that the previous
first line in the window becomes the
new second-to-last line.

RECENTER-POINT Alt-R
Moves the point to the beginning of the
first line in the edit window. If a
positive numeric argument is used, it
will position the point the specified
number of lines from the top of the
window. If a negative numeric
argument is used, it will position the

Edit Window Commands

RECENTER-WINDOW

SCROLL-DOWN

point the specified number of lines
from the bottom of the window.

Ctrl-L

141

Scrolls the buffer so that the line
containing the point is at the center of
the window. If a positive argument is
used, it will redisplay the screen such
that the point will be left the specified
number of lines from the top of the
page. If a negative argument is used, it
will leave the point the specified
number of lines from the bottom of the
page. An argument of 0 or a repeating
the command twice (Ctrl-L Ctrl-L) will
redisplay the screen.

Alt-X SCROLL-DOWN
Scrolls the screen down one line.

SCROLL-OTHER-WINDOW Ctrl-Z V

SCROLL-UP

TWO-WINDOWS

Scrolls the other window forward one
screen.

Alt-X SCROLL-UP
Scrolls the screen up by one line.

Ctrl-X 2
Splits the edit window display area in
two, with the upper window showing
the current buffer and the lower
window showing the previous buffer.
The upper window becomes the current
window.

WINDOW-BACKWARD-PAGE

WINDOW-FORWARD-PAGE

Ctrl-X {
Scrolls the screen one page backward,
positioning the start of the page at the
top of the edit window.

Ctrl-X }
Scrolls the screen one page forward,
positioning the start of the new page at
the top of the edit window.

142 16: Summary Key and Command Reference

Text Commands

AUTO-FILL Ctrl-X M
AUTO-FILL is a minor mode that can
be toggled on or off. When auto-fill
mode is on, paragraphs are filled. This
means that when a non-white-space
character is typed past the fill column
at the end of the line, the line is broken
at the nearest word and a newline is
automatically inserted into the buffer
at the break. When called with a
positive numeric prefix argument, auto­
fill is turned on. When called with 0 as
the numeric prefix argument, AUTO­
FILL is turned off. When called with
no arguments, AUTO-FILL acts as a
toggle.

BACKWARD-COPY-LINE Alt-X BACKWARD-COPY-LINE
Copies all characters to the left of the
point on the current line to the top of
the kill history.

BACK WARD-KILL-LINE Alt-X BACKWARD-KILL-LINE
Moves all characters to the left of the
point on the current line to the kill
history.

BACKWARD-KILL-WORD Ctrl-Rubout or Esc-Rubout
Moves the word to the left of the point
to the kill history.

BACKWARD-PAGE Ctrl-X (

BACK WARD-PARAGRAPH

BACK-TO-INDENTATION

Moves the point backward one page.
Note that a Ctrl-L at the beginning of a
line acts as a page delimiter.

Esc I
Moves the point to the beginning of the
preceding paragraph.

Alt-M
Moves the cursor to the first character
in a line that is not a space.

Text Commands 143

BEGINNING-OF-SENTENCE
Alt-A

COPY-LINE

DELETE-BLANK-LINES

DELETE-CHAR

Moves the point to the beginning of the
current sentence.

Alt-X COPY-LINE
Copies the characters from the point to
the end of the current line to the top of
the kill history and repositions the
point at the end of the line.

Ctrl-X Ctrl-0
Collapses the number of blank lines
above and below the point to just one
blank line.

Ctrl-D or Del
Deletes the character to the right of the
point.

DELETE-HORIZONTAL-SPACE
Ctrl-\
Deletes any spaces or tabs adjoining the
point on either side.

DELETE-INDENTATION Ctrl-Z"
Deletes the newline character and any
indentation at the beginning of the
current line. This action appends the
current line to the preceding line.

FILL-PARAGRAPH Alt-Q
Fills the current paragraph. Lines
extending past the fill column in the
current paragraph are broken at the
first space before the fill column and
wrapped onto the next line. Any
leading whitespace is deleted.

FORWARD-PAGE Ctrl-X]
Moves the point forward one page,
leaving the point at the top of the page
centered in the edit window. Pages are
delimited by a Ctrl-L in the first
column of a line.

FORWARD-PARAGRAPH Esc I
Moves the point forward one paragraph.

144 16: Summary Key and Command Reference

INDENT-RIGIDLY

INDENT-TEXT-LINE

INS ER T-COMMAND-N AME

JUST-ONE-SP ACE

KILL-LINE

KILL-REGION

KILL-WORD

NEWLINE

Ctrl-X Tab
Rigidly indents the region between the
point and the mark one space. If a
numeric argument is used, it will indent\
the region the specified number of
spaces.

Alt-X INDENT-TEXT-LINE or, in text
mode, Ctrl-1
Indents the text on the current line to
the next tab stop.

Alt-J
Prompts for a keychord and inserts the
name of the command bound to the
keychord into the buffer at the point.

Ctrl-Z Space or Esc \
Collapses the number of spaces between
the text to the right of the point and
the text to the left of the point to one
space.

Ctrl-K
Moves all characters to the right of the
point on the current line to the kill
history, not including the terminating
newline character. (If newline is the
only character to the right of the point
on the current line, it is moved to the
kill history.)

Ctrl-W
Moves the characters between the
current mark and the point to the kill
history.

Alt-D
Moves the word to the right of the
point to the kill history.

Enter
Inserts a newline character at the point.
Any characters to the right of the point
move to the new line.

Text Commands

OPEN-LINE

QUOTED-INSERT

RUBOUT

RUBOUT-HACKING-TABS

SET-FILL-COLUMN

SET-FILL-PREFIX

TAB-TO-TAB-STOP

TEXT-MODE

145

Insert or Ctrl-0
Inserts a newline character after the
point (unlike Enter, which inserts the
newline before the point). The text is
moved to the next line, and the cursor
remains on the current line.

Ctrl-Q
Used for inserting as text those
characters which otherwise act as
editing commands, such as control
characters. The character typed after
Ctrl-Q is inserted into the buffer.

Alt-X Rubout
Deletes the character to the left of the
point.

Ctrl-H or Rubout
Deletes the character to the left of the
point. If the preceding character is a
tab, it converts the tab to the
appropriate number of spaces and
deletes one of the spaces.

Ctrl-X F
If called with no arguments, SET-FILL­
COLUMN will reset the margin used to
fill paragraphs to the column where the
cursor is currently positioned. If a
numeric argument is given, it will set
the fill margin to the specified number.

Ctrl-X Alt-F Defines a set of characters
to be a fill prefix-- that is characters on
the current line to the left of the point
will appear at the beginning of every
new line when fill mode is on.

Tab
Moves text to right of the point to the
next tab stop.

Alt-X TEXT-MODE
Sets the major mode to text. Note that
this will be reflected in the mode-line
at the bottom of the edit window.

146 16: Summary Key and Command Reference

TRANSPOSE-CHARACTERS
Ctrl-T

TRANSPOSE-LINES

TRANSPOSE-WORDS

UNT ABIFY-REGION

Transposes the characters to the left of
the point.

Ctrl-X Ctrl-T
Transposes the current line and the
preceding line.

Alt-T
Transposes the words surrounding the
point.

Alt-X UNT ABIFY-REGION
Converts all the tabs in the region
between the point and the mark to the
appropriate number of space characters.

Buffer and File Commands

BUFFER-EDIT Ctrl-X Alt-B
Places you in a special buffer that
contains a list of all the buffers. The
list includes the name of the buffer, the
full pathname of the file associated
with the buffer, whether or not the
buffer has been modified since the last
time it was saved, and whether the
buffer is read/write or read only. In
this special buffer, you can compile (C),
go to (G), kill (K), load into the
interpreter (L) or save (S) any of the
buffers listed.

The way to do this is to place the
cursor on the line corresponding to a
given buffer, and then type the letter
corresponding to a buffer operation. If
you try to load or compile a buffer that
has not been saved, it will ask you if
you would like to save it; if you don't,
it will perform the operation on the
corresponding file saved on disk. To
obtain a list of all possible buffer
operations, type "?"; to exit the buffer­
edit buffer, type "E."

Buffer and File Commands 147

BUFFER-READ-ONLY Alt-X BUFFER-READ-ONLY
Changes the status of a buffer that is
read/write to a buffer that is read-only.

BUFFER-READ-WRITE Alt-X BUFFER-READ-WRITE
Changes the status of a buffer that is
read-only to a buffer that is read/write.

CHANGE-DIRECTORY Ctrl-X C
Prompts for a directory name, and
changes the current default directory to
the directory with that name.

DIRECTORY-EDIT Ctrl-X D
Prompts for a pathname and places you
in a special buffer that displays a list
of all the files that match in that
directory. The list contains the
filename, file-size in bytes, creation
date and creation time. In this special
buffer, you can compile (C), find (F),
delete (D), undelete (U), view (V) or
load into the interpreter (L) any of the
files listed. Typing a "?" will list all the
possible file operations and typing an
"E" will exit you from the directory edit
buffer.

The way to do perform an operation on
one of the files is to place the cursor on
the line in the buffer corresponding to
a given file, and then type the letter
corresponding to the desired file
operation. If the GMACS variable
*dired-trashcan• is nil, a delete
command will permanently delete the
specified file. However, if *dired­
trashcan• is a string holding the name
of a directory (with a trailing \), a
delete command will copy the file to
the trashcan directory, delete the file
from the directory being edited and
mark the delete column in the buffer.
A subsequent "undelete command" will
perform the inverse operations on a file
that has been marked for deletion.
Note that the *dired-trashcan* directory
must be periodically cleaned out by the
user.

148 16: Summary Key and Command Reference

DISPLAY-DIRECTORY Ctrl-X Ctrl-D
Prompts for a pathname and displays in
a type-out window a list of all files that (
match it.You are prompted for the \
pathname of the directory you want.
You can specify either a directory or a
filename, or a set of filenames using the
"*" wild-card convention, just as in the
DOS dir command. The directory listing
is displayed in a type-out window.

DUMP-BINARY-FILE Alt-X DUMP-BINARY-FILE

EXECUTE-DOS-COMMAND

EXIT-EDITOR

FIND-FILE

INSERT-BINARY-FILE

INSERT-DOS-OUTPUT

Dumps a file to disk in binary format.
Prompts for a filename.

Alt-X EXECUTE-DOS-COMMAND
Prompts the user for a DOS command,
executes it and displays the results in
the type-out window.

Ctrl-X Ctrl-C or Fl
Exits the GMACS environment and
returns you to the GCLISP environment
from which you entered GMACS.

Ctrl-X Ctrl-F or F7
Searches the set of edit-buffer names
for a specified filename. Selects the
buffer with that filename if there is
one. Otherwise, creates a buffer with
that name and reads the file into the
new buffer from disk. The command
prompts you for the filename.

Alt-X INSERT-BINARY-FILE
Prompts the user for the name of a
binary file and inserts the contents of
the file at the point. The file is opened
in binary mode (unsigned-byte instead
of string-char), and newline processing
is not done. One result is that newlines
are visible as Ctrl-M characters.

Alt-X INSERT-DOS-OUTPUT
Prompts the user for a DOS command
and inserts the output from the DOS
command at the point.

Buffer and File Commands 149

INSERT-FILE Ctrl-X I
Prompts the user for a file and inserts
the contents of the file at the point.

KILL-BUFFER Ctrl-X K
Prompts for the name of a buff er and
removes it from the list of buffers
known to the editor.

LIST-BUFFERS Ctrl-X Ctrl-B
Lists the names of all existing buffers
in a type-out window, together with the
name of associated files, if any.
Modified buffers are marked with the
buffer-status (*).

NORMAL-MODE Alt-X NORMAL-MODE
Sets the major mode associated with a
buffer to normal. Normal mode is
similar to text mode except that, unlike
text mode, normal mode does not
automatically turn on auto-fill mode.

) PUSH-TO-DOS Alt-X PUSH-TO-DOS
Pushes the user directly to DOS. To
return to GMACS, type "exit."

READ-FILE Ctrl-X Ctrl-R or F8
Reads a specified file into the current
buffer, overwriting the existing
contents of the buffer. The command
prompts for the filename.

SA VE-ALL-FILES Ctrl-X Ctrl-M
Saves the contents of all buffers that
have been modified into disk storage
under the current file names.

SA VE-FILE Ctrl-X Ctrl-S or F9
Copies the contents of the current edit
buffer into disk storage under the
current file name. If a file with that
name already exists on disk, the
command overwrites the existing file.

SAVE-FILES-EXIT Alt-X SAVE-FILES-EXIT
Saves the contents of all buffers that
have been modified into disk storage

150 16: Summary Key and Command Reference

SAVE-FILES-PUSH-TO-DOS

SELECT-BUFFER

under the current file names and exits
to the top-level interpreter.

Alt-X SAVE-FILES-PUSH-TO-DOS
Saves the contents of all buffers that
have been modified into disk storage
under the current file names and pushes
to DOS.

Ctrl-X B or F3
Selects a specified buffer and displays
it in the edit window. The command
prompts you for the name of the
desired buffer. Pressing the ENTER key
without entering a buffer name selects
the previous buffer. If the buffer does
not exist, a new buffer is opened
having no current file.

SELECT-PREVIOUS-BUFFER

SET-BUFFER-PACKAGE

SET-MODE

SET-VARIABLE

Ctrl-Z L or F4
Selects the previous buffer.

Ctrl-Z : or Ctrl-X P
Sets the package associated with the
current buffer to a specified package.
The command prompts for the package
name. The command asks you if you
would like to create a new package if
the one you specified does not already
exist.

Alt-X SET-MODE
Prompts the user for a major mode and
resets the major mode to the one
specified.

Alt-X SET-VARIABLE
Prompts the user for a GMACS variable
name and then for a value for the
variable. When stating the variable, you
must enclose the variable name in *'s.
In addition, unless you are in the
GMACS package, you must also state
the GMACS package name when typing
the variable. Typically, this command is

Buffer and File Commands

UNLOAD-BUFFER

UNMODIFY -BUFFER

VIEW-FILE

WRITE-FILE

151

used to reset one of the global variables
specified in the params.lsp file.

Alt-X UNLOAD-BUFFER
Prompts for a buffer name and unloads
the contents of the specified buffer
from memory. It first asks the user
whether or not to save the contents of
the buffer into the corresponding file.
In the buffer-edit buffer, an unloaded
buffer is displayed with parentheses
surrounding the buffer name. If the
user selects an unloaded buffer, the
corresponding file will be read from
disk.

The user can cause the editor to
automatically unload buffers by setting
the global variable *max-resident­
buffers* to something other than nil in
the gmacsini.lsp file. If a command
causes the number of buffers to exceed
the value of *max-resident-buffers*, the
editor will automatically unload a
buffer.

Esc -
Marks the current buffer as
unmodified. Clears the buffer-status (*)
in the mode line.

Ctrl-X V
Prompts the user for a file name and
displays the contents of the file in the
type-out window.

Ctrl-X Ctrl-W
Writes out the contents of the current
buffer to the specified file. The
command prompts you for the filename.

Search and Replace Commands

FORWARD-ISEARCH Ctrl-S
Prompts for a character string and
performs an incremental forward search

152

FOR WARD-SEARCH

QUERY-REPLACE

REPLACE-STRING

REVERSE-ISEARCH

REVERSE-SEARCH

16: Summary Key and Command Reference

for the specified string. All inserting
characters are inserted into the search
string. Typing a GMACS command
keychord will stop the search, set a
mark at the point and execute the
command specified. Esc terminates the
search. Ctrl-S find the next occurrence
of the search string, and Ctrl-R does a
reverse search on the current string. The
Rubout key will delete characters from
the current search string.

Alt-X FORWARD-SEARCH
Searches forward from the point for a
specified character string. The point
moves to the end of the first instance
found. The command prompts you for
the string.

Esc %
Prompts the user for two character
strings and replaces selected instances
of the first string with the second
string from the point to the end of the
buffer. At each occurrence, you are
queried as to whether or not to do the
replace. Typing an "!" will replace all
of the remaining occurrences.

F5 %
Replaces all instances of a specified
string with another string, from the
point to the end of the buffer. The
command prompts for both strings.

Ctrl-R
Prompts for a character string and
performs an incremental backward
search for the string.

Alt-X REVERSE-SEARCH
Prompts for a character string and
performs an incremental backward
search for the specified string. All
inserting characters are inserted into
the search string. Typing a GMACS
command keychord will stop the search,
set a mark at the point and execute the
command specified. Esc terminates the

Search and Replace Commands 153

search. Ctrl-R finds the next occurrence
of the search string, and Ctrl-S does a
forward search on the current string.
The Rubout key deletes characters from
the current search string.

Case-Setting Commands

BACK WARD-LOWERCASE-WORD
Alt-X BACKWARD-LOWERCASE­
WORD
Searches for the first word to the left
of the point and puts the entire word in
lowercase.

BACKWARD-UPPERCASE-INITIAL
Alt-X BACKWARD-UPPERCASE­
INITIAL
Puts the initial character of the first
word to the left of the point in
uppercase.

BACK WARD-UPPERCASE-WORD

LOWERCASE-REGION

LOWERCASE-WORD

UPPERCASE-INITIAL

Alt-X BACKWARD-UPPERCASE­
WORD
Searches for the first word to the left
of the point and puts the entire word in
uppercase.

Ctrl-X Ctrl-L
Puts all the letters in the region
between the mark and the point in
lowercase.

Alt-L
Puts all the letters of a word that are
located to the right of the point in
lowercase.

Alt-C
Capitalizes the first letter of the word
to the right of the point and puts the
rest of the letters of that word in
lowercase.

154

UPPERCASE-REGION

UPPERCASE-WORD

16: Summary Key and Command Reference

C::trl-:X: Ctrl-U
Puts all the letters in the region in
uppercase.

Alt-U
Puts the letters of the word to the right
of the point in uppercase.

Commands for Editing and Debugging LISP

ADD-CHANGE-LOG-ENTRY
Alt-:X: ADD-CHANGE-LOG-ENTRY
Switches you to a buffer containing the
file change.log, placing the point in a
location convenient for making a new
entry.

AUTO-FILL-COMMENTS Alt-:X: AUTO-FILL-COMMENTS
This is a minor mode that can be
toggled on or off. When on, comment
blocks will be filled. Note that comment
blocks begin with a #I in the first
column of the first line and end with a
I# in the first column of the last line. If
AUTO-FILL-COMMENTS is given a
positive numeric argument, it will be
turned on, a 0 argument, then off, no
arguments, then it acts like a toggle.

BACKWARD-KILL-SEXP Ctrl-Z Rubout
Moves to the kill history the characters
backward from the point to the
beginning of the current s-expression.

BACKWARD-LIST Ctrl-Z P

BACK WARD-MARK-SEXP

Moves the point to the beginning of the
list to its left. The command searches
for an open parenthesis and positions
the point just to the left of it.

Alt-:X: BACKWARD-MARK-SE:X:P
Puts a mark at the beginning of the s­
expression to the left of the point. It
does not change the position of the
cursor.

Commands for Editing and Debugging LISP 155

BACK WARD-SEXP

BACKWARD-UP-LIST

Ctrl-Z B or Ctrl-PgUp
Moves the point to the beginning of the
s-expression to its left.

Ctrl-Z U or Ctrl-Z (
Searches backward for an unmatched
open parenthesis and positions the point
to the left of the first one encountered.

BEGINNING-OF-DEFINITION

COMPILE-AND-EXIT

\ COMPILE-BUFFER

COMPILE-DEFINITION

DISPLAY-LAMBDA-LIST

Ctrl-Z A or Ctrl-Home
Moves the point backward to the
beginning of the current LISP function.
Looks backward for the first line that
has an open parenthesis in its first
column.

Alt-X COMPILE-AND-EXIT
Compiles the current function
definition and exits to the top-level
interpreter.

Alt-X COMPILE-BUFFER
Compiles the forms and definitions in
the current buff er and loads them in to
memory. Essentially, it acts like the
Top-level compile-file function except
that it loads the compiled code into
memory and does not create a
corresponding .fas file.

Ctrl-X Alt-E
Compiles the current function
definition and adds the compiled
definition to your LISP environment.

Ctrl-Z L
Prompts the user for a function name
and displays in the type-out window the
lambda-list of the requested function. If
no function name is provided, it uses
the first member of the current list as
the function.

I DISPLAY-MACROEXPANSION
Esc-@ or Ctrl-Z M
Displays in a type-out window the
macroexpansion of the current s­
expression.

156 16: Summary Key and Command Reference

DOWN-LIST Ctrl-Z D
Moves the point forward in the edit
buffer until it is just to the right of
the next open parenthesis.

END-OF-DEFINITION Ctrl-Z E or Ctrl-Z) or Ctrl-End
Moves the point forward to the end of
the current LISP function.

EV AL-AND-EXIT Alt-X EV AL-AND-EXIT
Evaluates the current function
definition and exits to the top-level
interpreter.

EV AL-BUFFER Alt-X EV AL-BUFFER
Incrementally evaluates the LISP forms
in the current buffer and displays the
results in the type-out window.

EV AL-DEFINITION Ctrl-X Ctrl-E
Evaluates the current function.

EVAL-IN-MINIBUFFER Esc Esc or F6 Esc
Prompts the user for a form and
evaluates the form in the type-out
window. The advantage of this
command is that the environment in
which the user types the form is a two­
line mini-buffer that will accept
GMACS commands.

EV AL-SEXP Esc !
Evaluates the s-expression to the right
of the point.

FIND-UNBALANCED-P ARENS

FOR WARD-LIST

Alt-X FIND-UNBALANCED-PARENS
Scans the buffer for an unbalanced
parenthesis and leaves the cursor at the
bottom of the function preceding the
function that contains the unbalanced
parenthesis. If given no argument, it
scans through the entire buffer; if
given an argument, it scans from the
point on.

Ctrl-Z N
Moves the point to the end of the list to
its right. The command searches for a

Commands for Editing and Debugging LISP 157

close parenthesis and positions the point
just after it.

FOR WARD-SEXP Ctrl-Z F or Ctrl-PgDn
Moves the point to the end of the s­
expression to its right.

FORWARD-UP-LIST Ctrl-Z)
Moves the point forward to the next
highest level of a nested list structure.
Searches forward for an unmatched
close parenthesis and positions the point
to the right of the first one
encountered.

LISP-INTERACT Esc Enter
Evaluates the s-expression to the left of
the point and places the results on the
next line of the edit buffer. It gives
you the option of going into LISP­
INTERACTION-MODE if you are not
already in it.

1 LISP-INTERACTION Alt-X LISP-INTERACTION
LISP-INTERACTION is a minor mode
that can be toggled on or off. When you
are in it, the LISP-INTERACT
command can be used to evaluate the s­
expression to the left of the point and
have the results of the evaluation
placed on the next line in the edit
buffer. As with other minor modes, it is
turned on when called with a positive
numeric prefix argument, turned off
with 0, and with no arguments, it acts
like a toggle.

LISP-MODE Alt-X LISP-MODE
Sets the major mode to LISP. Note that
this will be reflected in the mode-line
at the bottom of the edit buffer.

INDENT-FOR-COMMENT Esc;
If the current line has no comment,
moves the point out to the comment
column (inserting spaces as necessary)
and inserts a semi-colon. If the line
already has a comment, the comment is
indented the correct number of spaces

158

INDENT-LISP-LINE

INDENT-SEXP

KILL-COMMENT

KILL-SEXP

MAKE-MATCHING-()

NEWLINE-INDENT

NEXT-COMMENT-LINE

OPEN-INDENTED-LINE

16: Summary Key and Command Reference

and the point is positioned to the right
of the semi-colon.

Ctr I-I
Indents the current LISP line to the
appropriate level.

Ctrl-Z I or Ctrl-Z Q
Corrects the indentation of the s­
expression to the right of the point.

Ctrl-Z ;
Moves to the kill history any comment
on the current line (that is, all of the
characters from the first semi-colon
through the last character before the
newline).

Ctrl-Z K
Moves to the kill history the characters
forward from the point through the end
of the current s-expression.

Esc (
Inserts matching parentheses around the
point.

Ctrl-J or Ctrl-Enter
Inserts a newline character at the
current point, moves the point to the
new line, and inserts white space to
correctly indent the new line. The point
is placed to the right of the indentation.

Alt-N
If the next line has no comment, moves
the point out to the comment column
(inserting spaces as necessary) and
inserts a semi-colon. If the next line
already has a comment, the comment is
indented the correct number of spaces
and the point is positioned to the right
of the semi-colon.

Ctrl-Z 0
Inserts a newline character after the
point (unlike ENTER, which inserts the
newline before the point). The text is
moved to the next line and indented,

Commands for Editing and Debugging LISP 159

and the cursor remains on the current
line.

PARSE-ATTRIBUTE-LIST Alt-X PARSE-ATTRIBUTE-LIST
Changes the major mode and the
package settings for the buffer back to
those specified in the attribute-list;
these changes will be reflected in the
mode line.

PREVIOUS-COMMENT-LINE
Alt-P
If the previous line has no comment,
moves the point out to the comment
column (inserting spaces as necessary)
and inserts a semi-colon. If the previous
line already has a comment, the
comment is indented the correct number
of spaces and the point is positioned to
the right of the semi-colon.

RECENTER-DEFINITION Ctrl-Z R
Positions the beginning of the current
function, or its leading comments if it
has any, at the top of the screen.

REMOVE-SURROUNDING-()
Ctrl-Z \ or Ctrl-Z I
Removes the closest level of parentheses
surrounding the point.

SET-BUFFER-PACKAGE Ctrl-Z: or Ctrl-X P
Sets the package associated with the
current buffer to a specified package.
The command prompts for the package
name. The command asks you if you
would like to create a new package if
the one you specified does not already
exist.

SET-COMMENT-COLUMN Ctrl-X;
If called with no numeric arguments,
sets the comment column to the column
on which the point is currently
positioned. If called with a numeric
prefix argument, it sets the comment
column to the number specified.

160 16: Summary Key and Command Reference

TRANSPOSE-SEXPS

UPDATE-ATTRIBUTE-LIST

Ctrl-Z T
Transposes the s-expessions to the left
and right of the point, leaving the
cursor at the end of the new right-most ,
s-expression.

Alt-X UPDATE-ATTRIBUTE-LIST
Updates the mode and package settings
in the attribute-list using the current
settings for the buffer, i.e., the settings
specified in the mode line.

UPDATE-MODE-ATTRIBUTE
Alt-X UPDATE-MODE-ATTRIBUTE
Updates the mode setting in the
attribute-list using the current major
mode setting for the buffer.

UPDATE-PACKAGE-ATTRIBUTE
Alt-X UPDATE-PACKAGE­
ATTRIBUTE
Updates the package setting in the
attribute-list using the current package
setting for the buffer.

Region and Kill History Commands

APPEND-NEXT-KILL

COPY-REGION

COPY-TO-REGISTER

Ctrl-Z W
Causes the next kill command to append
the killed text to the entry at the top of
the kill history.

Alt-W
Copies the region between the point and
the mark to the top of the kill history.

Ctrl-X X
Prompts the user for a register name
and associates the text between the
point and the mark with this name. It
also copies the text to the kill history.
If preceded by a Ctrl-U, it also deletes
the text from the current buffer.

Region and Kill History Commands 161

DISPLAY-KILL-HISTORY Ctrl-Z Y
Displays in a type-out window all
entries contained in the kill history.
Note that an arrow points to the top of
the kill ring. The next highest entry in
the kill ring is the one that precedes it.

EXCHANGE-POINT-AND-MARK

INSERT-REGISTER

KILL-REGION

SET-POP-MARK

SHOW-REGISTERS

TRANSPOSE-REGIONS

Ctrl-X Ctrl-X
Exchanges the point and the current
mark.

Ctrl-X G
Prompts the user for a register name
and inserts the text associated with this
name into the buffer at the point.

Ctrl-W
Moves the text between the current
mark and the point to the top of the
kill history.

Ctrl-@ or FS Space
Puts a mark where the point is and puts
it at the top of the mark pdl (making it
the current mark). Prefixed with Ctrl­
U, the command positions the point at
the current mark and pops that mark
from the pdl. Prefixed with Ctrl-U
Ctrl-U, the command just pops the
current mark from the mark pdl.

Lists all the registers. For each register,
it lists the name, and the first line of
text followed by a series of dots, where
each dot represents a line of text.

Ctrl-X T
Uses the top three marks on the mark
stack and the point as markers. Sorts
these markers in the order of their
location in the file and transposes the
region between the first and second
marker with the region between the
third and fourth marker. If there are
only two marks on the mark stack, it
uses these markers along with the point
to define two regions separated by the
middle of the three markers and

162

YANK

YANK-POP

16: Summary Key and Command Reference

transposes the two regions around the
middle marker.

Ctrl-Y '

Inserts the entry at the top of the kill
history into the current buffer at the
point.

Alt-Y
If the last command was YANK or
YANK-POP, the te.xt returned to the
buffer by the last command is replaced
in the buffer by the next lower entry in
the kill history. Otherwise the command
has the same effect as YANK.

Documentation/Help Commands

(Break to listener)

DISPLAY-APROPOS

Ctr I-Break

Alt-H Alt-A or F2 Alt-A
Prompts the user for a string and
displays in the type-out window a short
descriptioni of all the symbols whose
print name contains the string as a
substring. Equivalent to the Top-level
apropos function.

DISPLAY-DOCUMENTATION

DO-IT-AGAIN

ED-APROPOS

Alt-H Alt-D or F2 Alt-D
Displays in a type-out window the full
Help documentation for a specified
function. It prompts the user for a
function name, choosing as the default
function the first element of the
current s-expression. Equivalent to the
Top-level documentation function.

Ctrl-X .
Repeats the previous GMACS command.

Alt-H A or F2 A
Prompts you for a character string, and
displays in a type-out window every
GMACS command which contains the
specified string in its name.

\

Documentation/Help Commands 163

ED-BEEP

ED-DOC

ED-HELP

ED-KEYCHORD

ED-LIS TBA CK

EXTENDED-COMMAND

NUMERIC-ARG-PREFIX

Ctrl-G or Ctrl-X Ctrl-G
Aborts the current command, rings the
terminal bell, and returns you to normal
GMACS command entry.

Alt-H D or F2 D
Prompts you for a character string and
displays in a type-out window the on­
line documentation for every GMACS
command that contains the specified
string in its name.

Alt-H ? or Alt-H H or F2 ? or F2 H
Displays a help menu that describes
how to access on-line documentation
and help facilities from within GMACS.

Alt-H K or F2 K or Alt-H C or F2 C or
Esc?
Prompts you for a keychord, and
displays in a type-out window the
command bound to the specified
keychord.

Alt-H L
Displays the last 50 keystrokes and their
command bindings.

Alt-X
Any GMACS command, including those
GMACS commands not bound to a
keychord or key sequence, can be
invoked by entering Alt-X and typing
the name of the command.

Ctrl-U
Used as a command prefix to establish a
repeat count for the command (valid
for most commands). Prefixed by Ctrl­
U, a command executes 4 times (the
default repeat count is 4). Prefixed by
Ctrl-U <n>, a command executes <n>
times. If <n> is negative and there is a
meaningful "oppm.ite" version of the
command, that is executed positive-<n>
times. (For example, the command to
move the cursor down by -4 lines will
move the cursor up by 4 lines.)
Repetitions of Ctrl-U following the

164

SHOW-POSITION

SHOW-VERSION

16: Summary Key and Command Reference

numeric argument <n>, if any, multiply
the repeat count by 4 each time.

Esc = or Ctrl-X =
Displays information on the current
position of the point. Includes the
current line number and the total
number of lines in the file, the index of
the point in the line, the column that
represents the end of the line, the
ASCII code for the current character
and the syntactic category of the
current character.

Alt-X SHOW-VERSION
Displays the GMACS version number
with its corresponding date.

Marking Commands

EXCHANGE-POINT-AND-MARK
Ctrl-X Ctrl-X
Exchanges the point and the current
mark.

MARK-BEGINNING-OF-BUFFER
FS <
Puts a mark at the beginning of the
buffer.

MARK-END-OF-BUFFER FS >
Puts a mark at the end of the buffer.

MARK-PAGE Ctrl-X Ctrl-P
Puts a mark at the top of the page and
positions the point to the right of the
mark.

MARK-SEXP Ctrl-Z@ or Ctrl-Z A@
Puts a mark at the end of the s­
expression to the left of the point.

MARK-WHOLE-BUFFER Ctrl-X H
Marks the end of the buffer and places
the point at the top of the buffer.

Marking Commands

SET-POP-MARK

165

Ctrl-@ or FS Space
Puts a mark where the point is and puts
it at the top of the mark pd! (making it
the current mark). Prefixed with Ctrl­
U, the command positions the point at
the current mark and pops that mark
from the pdl. Prefixed with Ctrl-U
Ctrl-U, the command just pops the
current mark from the mark pdl.

Tag Table Commands

TA GS-ADD-FILE Alt-X TA GS-ADD-FILE
Prompts the user for a file name and
adds this file to the current tag table.
Note that it will not use this file when
doing search and replace operations
until a corresponding index .lsx file is
built.

TA GS-ADD-FILES Alt-X TA GS-ADD-FILES
Prompts the user for a pathname and
adds the files that match the pathname
to the current tag table. It accepts "*"
as a wildcard character in the
pathname. It will continue to prompt
the user for more pathnames until the
user enters an "!".

TA GS-CONTINUE-MAP Ctrl-Z .
After a search or replace mapping
operation has been interrupted, TAGS­
CONTINUE-MAP will continue the
operation where it left off, placing the
point at the next occurrence of the
search string.

TAGS-FIND-ALL Alt-X TAGS-FIND-ALL
Performs a FIND-FILE on all of the
files listed in the current tag table.

TAGS-FIND-DEFINITION Esc .
Tries to locate a function or variable
definition by loading the appropriate
source file and moving the cursor to the
top of the definition. Given no

166 16: Summary Key and Command Reference

argument, TAGS-FIND-DEFINITION
tries to find the calling function of the
list closest to the point; this will fail if ,
there is no surrounding list. Typing \
Ctrl-U TAGS-FIND-DEFINITION will
prevent the search for the surrounding
list and allow the user to type in any
function name. Typing Ctrl-U Ctr I-U
TAGS-FIND-DEFINITION will search
for the current word rather than the
first word of the current list. Note that
the entire function must be specified if
it is typed in by hand; only exact
matches will be found.

TA GS-INDEX-FILE Alt-X TA GS-INDEX-FILE
Prompts the user for a file name and
creates an index (.lsx) file for the file.
The index file is both loaded into
memory and stored on disk.

TA GS-LOAD-INDEX Alt-X TA GS-LOAD-INDEX
Loads from disk the index files
associated with the current tag table.

TAGS-LOAD-TABLE Alt-X TAGS-LOAD-TABLE
Prompts for the name of a tag table and
loads it from disk.

TAGS-MAKE-INDEX Alt-X TA GS-MAKE-INDEX
Creates index (.lsx) files for all of the
files in the current tag table. It both
loads the index files into memory and
stores them on disk.

TAGS-QUERY-REPLACE Alt-X TAGS-QUERY-REPLACE
Performs a QUERY-REPLACE
operation among all the files listed in
the current tag table. If interrupted,
the QUERY-REPLACE can be
continued using the TAGS-CONTINUE­
MAP command.

TAGS-REMOVE-FILE Alt-X TAGS-REMOVE-FILE
Removes a file from the current tag
table. Note that a TA GS-SAVE-TABLE
must be done to make this change
permanent.

Tag Table Commands 167

TAGS-REPLACE-STRING Alt-X TAGS-REPLACE-STRING
Performs a global replace among all of
the files in the current tag table. All
files that are changed during the
mapping operation are immediately
saved on disk.

TAGS-SAVE-TABLE Alt-X TAGS-SAVE-TABLE
Saves the current tag table in a disk
file.

TAGS-SEARCH Alt-X TAGS-SEARCH
Prompts the user for a string and places
the point at the first occurrence of the
string it finds. The TAGS-CONTINUE­
MAP command can be used to look for
successive occurrences of the string
among all the files in the tag table.

TAGS-SHOW-TABLE Alt-X TAGS-SHOW-TABLE
Displays a list of all the files in the
current tag table.

TAGS-USE-TABLE Alt-X TAGS-USE-TABLE
Prompts the user for the name of a tag
table and makes the specified table the
current tag table. If the table is not
already in memory, it attempts to load
it from disk; otherwise, it creates an
empty tag table of the same name and
makes that the current tag table.

Keyboard Macros

BIND-KEYBOARD-MACRO
Alt-X BIND-KEYBOARD-MACRO
Binds a named keyboard macro to a
keychord. Prompts the user for a named
keyboard macro, using the current
keyboard macro as a default. Then, it
prompts the user to type a keychord.
This keychord can be any single
keychord, except those prefixed with
Ctrl-X or F2.

168 16: Summary Key and Command Reference

DEFINE-KEYBOARD-MACRO
Ctrl-X (
Begins the definition of a keyboard
macro. Any keystrokes subsequent to
this command will be recorded as part
of the macro. The command END­
DEFINE-KEYBOARD-MACRO is used
to terminate the definition. If any of
the keystrokes typed during the macro
definition causes an editor error, the
macro definition is terminated.

END-DEFINE-KEYBOARD-MACRO
Ctrl-X)
Ends the definition of a keyboard
macro.

EXECUTE-KEYBOARD-MACRO
Ctrl-X E
Executes the current keyboard macro.
When given a positive numeric
argument, it executes the current
keyboard macro the specified number
of times. When given a negative
argument, it prompts for the name of
the macro and executes that macro the
specified number of times.

LOAD-KEYBOARD-MACROS
Alt-X LOAD-KEYBOARD-MACROS
Prompts the user for a file name and
loads the macros saved in this file into
the GMACS environment. Note that
the keychord bindings for all of the
macros will be the ones that were
current when the macros were saved;
however, the binding stack for the
keychords was not saved and will not
exist when they are reloaded.

NAME-KEYBOARD-MACRO
Alt-X NAME-KEYBOARD-MACRO
Prompts the user for a name and
assigns that name to the current
keyboard macro. A macro must be
defined before it can be named, and it
must be named before it can be bound
to a keychord.

Keyboard Macros 169

SA VE-KEYBOARD-MACROS
Alt-X SA VE-KEYBOARD-MACROS
Prompts the user for a file name and
saves all of the currently defined
named macros in this file. Note that it
saves the current keychord bindings but
does not save the binding stack for each
keychord.

UNBIND-KEYBOARD-MACROS
Alt-X UNBIND-KEYBOARD-MACROS
Prompts the user for a keychord, and if
the keychord is currently bound to a
command, unbinds it. Note that
GMACS maintains a history of all the
commands to which a keychord has
been bound. When a keychord is
unbound from a given command, it
reverts to its most recent binding - that
is, the command at the top of the stack.
When a keychord is unbound from its
current command, the command is
removed from the stack history.

170 17: Summary Key and Command Reference

Chapter 17

Alphabetical Command Listing

ADD-CHANGE-LOG-ENTRY

APPEND-NEXT-KILL

AUTO-FILL

AUTO-FILL-COMMENTS

BACK-TO-INDENTATION

BACKWARD-CHAR

BACKWARD-COPY-LINE

BACKWARD-KILL-LINE

BACKWARD-KILL-SEXP

BACKWARD-KILL-WORD

BACKWARD-LIST

BACKWARD-LOWERCASE-WORD

A

Alt-X command-name

Ctrl-Z W

Ctrl-X M

Alt-X command-name

B

Alt-M

Ctrl-B
<Left Arrow>

Alt-X command-name

Alt-X command-name

Ctrl-Z <Rubout>

Ctr 1-<R u bout>
Esc <Rubout>

Ctrl-Z P

Alt-X command-name

172 17: Alphabetical Command Listing

BACKWARD-MARK-SEXP

BACKWARD-PAGE

BACKWARD-PARAGRAPH

BACKWARD-SEXP

BACKWARD-UP-LIST

BACKWARD-UPPERCASE-INITIAL

BACKWARD-UPPERCASE-WORD

BACKWARD-WORD

BEGINNING-OF-BUFFER

BEGINNING-OF-DEFINITION

BEG INNING-OF-NUMBERED-LINE

BEG INNING-OF-SENTENCE

BIND-KEYBOARD-MACRO

BUFFER-EDIT

BUFFER-READ-ONLY

BUFFER-READ-WRITE

CHANGE-DIRECTORY

COMPILE-AND-EXIT

COMPILE-BUFFER

COMPILE-DEFINITION

Alt-X command-name

Ctrl-X [

Esc [

Ctrl-Z B
Ctrl-<Pg Up>

Ctrl-Z U
Ctrl-Z (

Alt-X command-name

Alt-X command-name

Alt-B
Ctrl-<Left Arrow>

Esc <
<Home>

Ctrl-Z A
Ctrl-<Home>

Ctrl-A

Alt-A

Alt-X command-name

Ctrl-X Alt-B

Alt-X command-name

Alt-X command-name

c

Ctrl-X C

Alt-X command-name

Alt-X command-name

Ctrl-X Alt-E

Alphabetical Command Listing 173

COPY-LINE Alt-X command-name

COPY-REGION Alt-W

COPY TO REGISTER Alt-X command-name

D

DEFINE-KEYBOARD-MACRO Ctrl-X (

DELETE-BLANK-LINES Ctrl-X Ctrl-0

DELETE-CHAR Ctrl-D

DELETE-HORIZONTAL-SP ACE Ctr!-\
Esc <Space>

DELETE-INDENTATION Ctrl-Z "

DIRECTORY-EDIT Ctrl-X D

DISPLAY-APROPOS Alt-HA
<F2> A

DISPLAY-DIRECTORY Ctrl-X Ctrl-D

DISPLAY-DOCUMENTATION Alt-HD
<F2> D

DISPLAY-KILL-HISTORY Ctrl-Z Y

DISPLAY-LAMBDA-LIST Ctrl-Z L

DISPLA Y-MACROEXP ANSION Esc@
Ctrl-Z M

DO-IT-AGAIN Ctrl-X.

DOWN-LIST Ctrl-Z D

DUMP-BINARY-FILE Alt-X command-name

E

174 17: Alphabetical Command Listing

ED-APROPOS

ED-BEEP

ED-DOC

ED-HELP

ED-KEYCHORD

ED-LIS TBA CK

END-DEFINE-KEYBOARD-MACRO

END-OF-BUFFER

END-OF-DEFINITION

END-OF-NUMBERED-LINE

END-OF-SENTENCE

EV AL-AND-EXIT

EV AL-BUFFER

EV AL-DEFINITION

EV AL-IN-MINIBUFFER

EVAL-SEXP

EXCHANGE-POINT-AND-MARK

Alt-HA
<F2> A

Ctrl-G
Alt-G
Ctrl-X G

Alt-HD
<F2> D

Alt-H?
Alt-H H
<F2>?
<F2> H

Alt-HK
<F2> K
Alt-H C
<F2> C
Alt-?

Alt-H L
<F2> L

Ctrl-X)

Esc >
<End>

Ctrl-Z E
Ctrl-Z]
Ctrl-<End>

Ctrl-E

Alt-E

Alt-X command-name

Alt-X command-name

Ctrl-X Ctrl-E

Esc Esc
<F6> Esc

Esc !

Ctrl-X Ctrl-X

(

Alphabetical Command Listing 175

EXECUTE-DOS-COMMAND Alt-X command-name

EXECUTE-KEYBOARD-MACRO Ctrl-X E

EXIT-EDITOR Ctrl-X Ctrl-C
<Fl>

EXTENDED-COMMAND Alt-X

F

FILL-PARAGRAPH Alt-Q

FIND-FILE Ctrl-X Ctrl-F
<F7>

FIND-UNBALANCED-PARENS Alt-X command-name

FORWARD-CHAR Ctrl-F
<Right Arrow>

FORWARD-ISEARCH Ctrl-S

FORWARD-LIST Ctrl-Z N

FORWARD-PAGE Ctrl-X

FORWARD-PARAGRAPH Esc]

FORWARD-SEARCH Alt-X command-name

FORWARD-SEXP Ctrl-Z F
Ctrl-<Pg Dn>

FORWARD-UP-LIST Ctrl-Z)

FORWARD-WORD Alt-F
Ctrl-<Right Arrow>

INDENT-FOR-COMMENT Esc;

INDENT-LISP-LINE Ctrl-1

176 17: Alphabetical Command Listing

INDENT-RIGIDLY Ctrl-X <Tab>

INDENT-SEXP Ctrl-Z I I

Ctrl-Z Q 1,

INDENT-TEXT-LINE Alt-X command-name
Ctrl-1 in text mode

INSERT-BIN ARY-FILE Alt-X command-name

INSERT-COMMAND-NAME Alt-J

INSERT-DOS-OUTPUT Alt-X command-name

INSERT-FILE Ctrl-X I

INSERT-REGISTER Ctrl-X G

J

JUST-ONE-SPACE Ctrl-Z <Space>
Esc \

K

KILL-BUFFER Ctrl-X K

KILL-COMMENT Ctrl-Z;

KILL-LINE Ctrl-K

KILL-REGION Ctrl-W

KILL-SEXP Ctrl-Z K

KILL-WORD Alt-D

L

LISP-INTERACT Esc <Enter>

LISP-INTERACTION Alt-X command-name

Alphabetical Command Listing 177

LISP-MODE Alt-X command-name

LIST-BUFFERS Ctrl-X Ctrl-B

LOAD-KEYBOARD-MACROS Alt-X command-name

LOWERCASE-REGION Ctrl-X Ctrl-L

LOWERCASE-WORD Alt-L

M

MAKE-MATCHING-() Esc (

MARK-BEGINNING-OF-BUFFER <F5> <
Ctrl-<

MARK-END-OF-BUFFER <F5> >
Ctrl->

MARK-PAGE Ctrl-X Ctrl-P

MARK-SEXP Ctrl-Z @
Ctrl-Z "' @

MARK-WHOLE-BUFFER Ctrl-X H

MOVE-SCREEN-OTHER-WINDOW Alt-X command-name

N

NAME-KEYBOARD-MACRO Alt-X command-name

NEWLINE <Enter>
Ctrl-M

NEWLINE-INDENT Ctr 1-<En ter>
Ctrl-J

NEXT-COMMENT-LINE Alt-N

NEXT-LINE Ctrl-N
<Down Arrow>

NORMAL-MODE Alt-X command-name

178

NUMERIC-ARG-PREFIX

ONE-WINDOW

OPEN-INDENTED-LINE

OPEN-LINE

OTHER-WINDOW

PARSE-ATTRIBUTE-LIST

PREVIOUS-COMMENT-LINE

PREVIOUS-LINE

PUSH-TO-DOS

QUERY-REPLACE

QUOTED-INSERT

READ-FILE

RECENTER-DEFINITION

RECENTER-POINT

17: Alphabetical Command Listing

Ctrl-U

0

Ctrl-X 1

Ctrl-Z 0

Ctrl-0
<Ins>

Ctrl-X 0

p

Alt-X command-name

Alt-P

Ctrl-P
<Up Arrow>

Alt-X command-name

Q

Esc %

Ctrl-Q

R

Ctrl-X Ctrl-R
<F8>
Ctrl-V

Ctrl-Z R

Alt-R

Alphabetical Command Listing 179

RECENTER-WINDOW Ctrl-L

«EMOVE-SURROUNDING-() Ctrl-Z \
Ctrl-Z I

REPLACE-STRING <F5> %
Ctrl-%
Ctrl-X R

REVERSE-ISEARCH Ctrl-R

REVERSE-SEARCH Alt-X command-name

RUBOUT Alt-X command-name

RUBOUT-HACKING-TABS Ctrl-H
<Rubout>

s

SA VE-ALL-FILES Ctrl-X Ctrl-M

SAVE-FILE Ctrl-X Ctrl-S
<F9>

SA VE-FILES-EXIT Alt-X command-name

SA VE-FILES-PUSH-TO-DOS Alt-X command-name

SA VE-KEYBOARD-MACROS Alt-X command-name

SCROLL-DOWN Alt-X command-name

SCROLL-OTHER-WINDOW Ctrl-Z V

SCROLL-SCREEN-DOWN Ctrl-V
<Pg Dn>

SCROLL-SCREEN-UP Alt-V
<Pg Up>

'CROLL-UP Alt-X command-name

SELECT-BUFFER Ctrl-X B
<F3>

180

SELECT-PREVIOUS-BUFFER

SET-BUFFER-PACKAGE

SET-COMMENT-COLUMN

SET-FILL-COLUMN

SET-FILL-PREFIX

SET-MODE

SET-POP-MARK

SET-VARIABLE

SHOW-POSITION

SHOW-REGISTERS

SHOW-VERSION

TAB-TO-TAB-STOP

TAGS-ADD-FILE

TA GS-ADD-FILES

TA GS-CONTINUE-MAP

TA GS-FIND-ALL

TA GS-FIND-DEFINITION

TA GS-INDEX-FILE

TAGS-LOAD-INDEX

TAGS-LOAD-TABLE

~TAGS-MAKE-INDEX

17: Alphabetical Command Listing

<F4>
Ctrl-Z L

Ctrl-Z:

Ctrl-X ;

Ctrl-X F

Ctrl-X Alt-F

Alt-X command-name

Ctrl-@
<F5> <Space>
Ctrl-<Space>

Alt-X command-name

Esc =
Ctrl-X =

Alt-X command-name

Alt-X command-name

T

<Tab>

Alt-X command-name

Alt-X command-name

Ctrl-Z .

Alt-X command-name

Esc.

Alt-X command-name

Alt-X command-name

Alt-X command-name

Alt-X command-name

Alphabetical Command Listing 181

TAGS-QUERY-REPLACE Alt-X command-name

TA GS-REMOVE-FILE Alt-X command-name

TA GS-REPLACE-STRING Alt-X command-name

TA GS-SAVE-TABLE Alt-X command-name

TA GS-SEARCH Alt-X command-name

TAGS-SHOW-TABLE Alt-X command-name

TAGS-USE-TABLE Alt-X command-name

TEXT-MODE Alt-X command-name

TRANSPOSE-CHARACTERS Ctrl-T

TRANSPOSE-LINES Ctrl-X Ctrl-T

TRANSPOSE-REG IONS Ctrl-X T

TRANSPOSE-SEXPS Ctrl-Z T

TRANSPOSE-WORDS Alt-T

TWO-WINDOWS Ctrl-X 2

u

UNBIND-KEYBOARD-MACRO Alt-X command-name

UNLOAD-BUFFER Alt-X command-name

UNMODIFY-BUFFER Esc -

UNTABIFY-REGION Alt-X command-name

UPDATE-ATTRIBUTE-LIST Alt-X command-name

UPDATE-MODE-ATTRIBUTE Alt-X command-name

UPDATE-PACKAGE-ATTRIBUTE Alt-X command-name

UPPERCASE-INITIAL Alt-C

UPPERCASE-REGION C:trl-X Ctrl-lJ

182

UPPERCASE-WORD

VIEW-FILE

WINDOW-BACKWARD-PAGE

WINDOW-FORWARD-PAGE

WRITE-FILE

YANK

YANK-POP

17: Alphabetical Command Listing

Alt-U

v

Ctrl-X V

w

Ctrl-X {

Ctrl-X }

Ctrl-X Ctrl-\V'

y

Ctrl-Y

Alt-Y

GCLISP 386
Low-Level Interface Guide

Chapter 18

Architecture of the GCLISP Environment

Introduction

Most users of the GCLISP 386 Developer do not need to read this
Guide. The material presented here is relevant only if you intend to
directly interface GCLISP programs to DOS, BIOS, or external
hardware or software.

The topic of this document is the low-level interface services
provided by GCLISP, which are similar to those provided by DOS,
but not identical.

Hardware Level

At the hardware level, the GCLISP environment treats the computer
as a dual-processor system consisting of the following two pseudo­
processors:

• A protected-mode processor with up to 15 megabytes of
physical memory (high memory)

• A real-mode processor with up to I megabyte of physical
memory (low memory)

The two processors run synchronously and communicate with each
other through shared memory. Mass storage and other external
devices are controlled by the real-mode processor.

186 18: Architecture of the GCLISP Environment

Operating-System Level

The GCLISP environment is an extension of BIOS/DOS. File system,
information, and 1/0 services are essentially identical to those
provided by BIOS/DOS

The GCLISP kernel (operating system level) is comprised of two
parts:

• P-KERNEL runs in protected mode and services requests
made by software running in protected mode. Some
requests are processed in protected mode, while others-­
primarily file and 1/0 services--are relayed to the R­
KERNEL.

• R-KERNEL runs in real mode as a regular DOS
program. R-KERNEL receives requests from P­
KERNEL and invokes appropriate BIOS/DOS services in
response.

The communication between P-KERNEL and R-KERNEL is achieved
via a shared-memory message passing mechanism.

Applications Level

At the application level, programs written in GCLISP run in
protected mode. All interrupt requests are handled by the P­
KERNEL, which either executes the requests or relays them to R­
KERNEL.

Co-resident DOS programs (such as device drivers, desktop utilities,
or programs invoked from within the GCLISP 386 environment by
the use of the SYS:EXEC or SYS:DOS function) run in real mode
and behave indistinguishably from any such program running under
the normal DOS environment. However, communication between
GCLISP 386 and such programs must recognize certain constraints,
discussed in Chapter 20.

Glossary of Terms

Several terms are used in this Guide with particularly specific
meanings. These terms are defined below.

Glossary of Terms

BIOS Throughout this Guide, BIOS refers to the COMPAQ
DESKPRO 386 BIOS only.

187

DOS Throughout this Guide, DOS refers to MS-DOS version 3.1.

High Memory "Extended memory", that is, RAM above the IM
mark, not normally addressable by DOS.

low Memory "Base memory", that is, RAM below the IM mark,
generally addressable by DOS.

Protected Mode The execution mode of the 80286 which
supports physical addressability of up to 16M bytes of memory, and
which fully utilizes the built-in memory-management capability of
the 80286.

Real Mode The execution mode of the 80286 that supports the
8086-compatible memory-addressing scheme, with the same IM
limitation as the 8086.

188 19: Architecture of the GCLISP Environment

Chapter 19

GCLISP Environment

File System

The file system of the GCLISP environment is completely compatible
with the DOS environment and is subject to the same limitations (for
example, there can be no more than twenty files open for a program
at any one time, including required system files).

The only difference is that file 1/0 may be somewhat slower because
the I/0 requests must be relayed to the real mode, and the data
buffers copied to (or from) low memory each time an 1/0 operation
is performed.

Memory Usage

LISP programs run in protected mode. Co-resident DOS routines run
in real mode. LISP programs cannot access low memory directly;
real-mode routines cannot use protected-mode memory, except for a
small segment used for communication.

sys:%sysint Services

The function %sysint, described in the GCLISP 386 Developer
Reference Manual, provides a way for the programmer to directly
generate a software interrupt request from GCLISP. This function is
used for two purposes:

• Invoking GCLISP interrupt service routines directly.
Such service routines fall into three categories:

190 19: GCLISP Environment

• DOS-Compatible INT-21 Services

• BIOS-Compatible Interrupt Services (

• GCLISP Extended INT-21 Services: These
are system services that are particular to the
GCLISP 386 architecture. These service
routines, described in Chapter 20, are
implemented as an extension to the INT-21
system call mechanism and are invoked
using the same interface protocol.

\

• Communicating with interrupt handlers installed in real
mode. For interrupts other than 10, 11, 16, and 21,
register values are passed to the real-mode kernel, and
the interrupt is issued there. This topic is discussed in
Chapter 20.

Note that sys:%sysint has limited error-checking capabilities. You
must insure that all pointers passed are valid, and that all interrupt
numbers and function codes are defined. A fatal error, which aborts
GCLISP, may occur if invalid values are passed using sys:%sysint.

DOS-Compatible INT-21 Services

This subsection lists the DOS INT-21 functions supported by GCLISP.
Many of these functions are not fully compatible with their DOS
counterparts; limitations and restrictions are noted in the list. For a
complete interface specification, consult the MS-DOS 3.1 Technical
Reference Manual.

The functions described in this section should not be used unless
equivalent GCLISP functions are unavailable or unsuitable. Their
improper use may have undesirable effects on the integrity of the
system.

Some of the functions (e.g., set vector and get vector) pertain only to
the protected-mode environment. They cannot be used to manipulate
the equivalent real-mode environment.

Code Description Restrictions

Olh Keyboard Input
02h Display Output
03h Auxiliary Input

sys:%sysin t Services 191

04h
05h
06h
07h

08h

09h

OAh

OBh

OCh

ODh
OEh
19h
I Ah
25h

29h

2Ah
2Bh
2Ch
2Dh
2Eh
2Fh
30h

33h
35h

36h
39h

3Ah

3Ch

3Dh

3Eh
3Fh

Auxiliary Output
Printer Output
Direct Console 1/0
Direct Console Input
Without Echo
Console Input
Without Echo
Print String

Buffer Keyboard Input

Check Standard
Input Status
Clear Keyboard Buffer
and Invoke a Keyboard
Function
Disk Reset
Select Disk
Current Disk
Set DTA
Set Vector

Parse Filename

Get Date
Set Date
Get Time
Set Time

The string must be no
longer than 256 bytes.
The string must be no
longer than 256 bytes.

The DT A size must be at least 44 byt{
This function affects only the
vectors in protected mode.
It cannot be used for setting
software interrupt handlers
for programs running in real mode
The string must be no
longer than 256 bytes.

Set/Reset Verify Switch
Get DTA
Get DOS Version
Number
Ctrl-Break Check
Get Vector

Get Disk Free Space
Create Sub-Directory
(MK DIR)
Remove Sub-Directory
(RMDIR)
Create File (CREAT)

Open File

Close File
Read From File/Device

Only the protected-mode
vectors are involved.

The ASCIIZ string must be
no longer than 256 bytes.
The ASCIIZ string must be
no longer than 256 bytes.
The ASCIIZ string must be
no longer than 256 bytes.
The ASCIIZ string must be
no longer than 256 bytes.

Up to 512 bytes can be read.

192 19: GCLISP Environment

40h Write To File/Device Up to 512 bytes can be written.
4lh Delete File (UNLINK) The ASCIIZ string must be

no longer than 256 bytes.
42h Move File Pointer

(LS EEK)
43h Change File Mode The ASCIIZ string must be

(CHMOD) no longer than 256 bytes.
44h 1/0 Control for Device Functions 2, 3, 4, 5 (for

(IOCTL) reading from or writing to
device channels) are not
supported.

45h Duplicate File Handle
(DUP)

46h Force Handle Duplicate
(CDUP)

47h Get Current Directory
4Dh Get Return Code of

Subprocess
4Eh Find First Matching The ASCIIZ string must be

File no longer than 256 bytes.
Also, a Set DTA (lAh)
request must have been
issued before issuing
this request.

4Fh Find Next Matching
File

54h Get Verify Setting
57h Get/Set File's Date

and Time
59h Get Extended Error
5Ch Lock/Unlock File

Access

BIOS-Compatible Services

All BIOS interrupt services are supported. The following notes
apply:

• INT 12h (Memory Size): This service returns the size of
the low memory; high memory is not included in the
value returned.

BIOS interrupt services should not be used unless equivalent GCLISP
functions are unavailable or unsuitable. Their improper use may
have undesirable effects on the integrity of the system.

;:
I
I

\

Chapter 20

Interface to Real Mode

Overview

GCLISP can interface to co-resident DOS programs running in real
mode. Such co-resident programs are either:

• DOS programs spawned from within GCLISP 386 via the
use of SYS:DOS or SYS:EXEC

• Terminate-and-stay-resident programs loaded prior to
invoking GCLISP

In either case, such programs behave normally (that is, as if they
were operating in the normal DOS environment). However,
terminate-and-stay-resident programs that require direct
communication with GCLISP programs must follow the interface
procedure described later in this chapter.

Running a DOS Program

To run a DOS program from GCLISP, use SYS:DOS or SYS:EXEC as
described in the Reference Manual. The code runs in real mode; it is
not possible at present to load other protected mode programs or
protected-mode interrupt handlers.

The spawned DOS environment is subject to the following
restrictions:

• An INT-15 BIOS call to determine the amount of high
memory (function code 88H) will return AX = FFFFH,
signaling the presence of GCLISP LM in high memory.

196 20: Interface to Real Mode

• An INT-15 BIOS call to switch into protected mode
(function code 89H) simply returns AH = FFH, signaling
failure in switching. /

• An INT-15 BIOS call to copy memory to/from high
memory (function code 87H) simply returns with CY = 1
and AH = OlH, signaling a memory parity error.

Running a Terminate-and-Stay-Resident Program

To use a terminate-and-stay-resident program, follow these steps:

I. Run the program in real mode. It should install itself as
an interrupt handler.

2. Run GCLISP.

3. If the arguments to, or results from, the DOS program
are too large to pass in the registers, use the functions
described later in this chapter to allocate low memory
and copy objects between low memory and high memory.

4. Call the real-mode routine by issuing its interrupt (using
sys:%sysint or using the REALINT request, described
below). Use the registers to pass arguments and return
results. The arguments and results can include pointers
to low memory, allowing large arguments and results to
be passed.

Managing low memory

Allocating and Accessing low memory

The following GCLISP INT-21 services, accessed using sys:%sysint,
allow you to access, allocate and free low memory.

Request 88h--Define Segment (DEFSEG)

Define a segment selector for accessing already allocated low
memory. Note that the use of this function defies the memory

Managing low memory

protection mechanism; but it is the only way to access buffers
residing in a real-mode device driver.

All selectors defined using this function should be explicitly
undefined (using UNDEFSEG) when no longer needed.

Input: 88h

197

AH
DL:BX
ex

absolute byte address of segment start
number of bytes in segment (0 means
64K)

Output: CY

Error:

AX

CY
BX

0
protected-mode selector for the segment

l
0 if there are no more free segment
selectors available.

Request 89h--Undefine Segment (UNDEFSEG)

Undefine a segment selector that refers to memory. Note that
because it does not check against inadvertent deletion of segment
selectors used internally by the GCLISP system, this function should
be used with extreme caution.

Input: AH
BX

Output: CY

Error: CY

89h
selector to be released

0

if selector invalid

Request 91h--Low Memory Data Segment Alloc (LMALLOC)

Allocate a memory block from the DOS heap space in low memory.

All memory allocated using this function should be explicitly de­
allocated (using LMFREE) before GCLISP is exited.

198 20: Interface to Real Mode

Input: AH 9lh
ex number of bytes to allocate (0 means

64K)

Output: CY 0
DX protected-mode selector of the allocated

block
AX real-mode paragraph number of the

allocated block

Error: CY 1
DX 0 if there is insufficient memory in the

DOS heap space, or if there are no more
free segment selectors available.

Request 92h--LM Data Segment Free (LMFREE)

De-allocate a memory block (to the DOS heap space) in low memory.

Input: AH
DX

BX

Output: CY

Error: CY

92h
protected-mode selector of the allocated
block
real-mode paragraph number of the
block

0

if either of the input addresses is
invalid.

Reading, Writing, and Copying Objects in low memory

Reading and Writing

To read and write objects in low memory, use %contents,
%contents-store, and related functions (%contents-byte, %contents­
store-byte, etc.), described in the Reference Manual. These functions
should normally be used to reference valid GCLISP objects, explicitly
allocated memory blocks, or the memory regions defined by the
following special segment selectors:

·40H BIOS Global Variable Area (000400H to 0005FFH)

t'

"'

Managing low memory

BOH Monochrome Screen Refresh Buffer (OBOOOOH to
OBOFFFH)

199

BSH Color /Graphics Screen Refresh Buffer (OB8000 to
OBBFFFH)

An invalid pointer specification for sys:%contents will result in a
memory-protection error. However, because sys:%contents always
references four bytes each time it is invoked, under some conditions
the returned values may only be partially valid. When only part of
the memory referenced is invalid, GCLISP returns nil for invalid
values, rather than signalling a memory-protection error.

Copying

To copy objects between low memory and high memory, use MCOPY,
a sys:%sysint request:

Request 90h -- Memory Copy (MCOPY)

Copy a block of memory. This function should be used only for
copying objects inside GCLISP environment to the external
environment, or vice versa. Both the source and destination
addresses must be in protected-mode format, whether they refer to
high memory or low memory.

Input: AH
DS:DX
ES:BX
ex
Output: CY

Error: CY

= 90h
source address
destination address
number of bytes to copy (0 means 64K)

0

if the specified addresses are invalid,
or if a segment boundary would be
crossed during the copying process.
Note. In the latter case, no action is
taken--that is, there is no partial
copying.

200 20: Interface to Real Mode

Communicating with Co-Resident Programs

To communicate with co-resident programs, use sys:%sysint,
specifying the interrupt handled by the program you wish to call. i"I
This function allows you pass a number of registers to the called
program.

If you need to pass the SI, DI, and BP registers, which cannot be
passed with sys:o/osysint, use REALINT, described below.

In either case, the registers can contain the addresses of objects in
low memory (obtained from BASEALLOC or DEFBASESEG). Do not
attempt to pass pointers to objects in high memory. Such pointers
cannot be interpreted by routines running in real mode.

The routine should return control to GCLISP by executing an iret
instruction.

REALINT Request

REALINT is itself a sys:%sysint request, number 93h. It is described
below.

Request 93h--Real Mode Interrupt (REALINT)

Generate a real-mode interrupt with real-mode register values passed
in the machine state block (MSB). This is the only way to generate a
real-mode interrupt where one can pass meaningful register values
for SI, DI, and BP directly, or return DS and ES.

Note on flags: Only the arithmetic flags are meaningful; others are
ignored on a call and returned as 0.

Input: AH 93h
AL interrupt number
DS:DX pointer to machine state block (see

Figure I for format)

Output: CY 0
[DS:DX] register block contents updated with

values returned from the interrupt

Error: CY I if the pointer for the MSB is invalid.

I

\

Other Services

.-----.--.--.--.--.--.--.--.--.--.
lflagslaxlbxlcxldxlsildilbpldslesl
•-----•--•--•--•--•--•--•--•--•--•
0 2 4 6 8 10 12 14 16 18

Figure 1: Format of Machine State Block (MSB)

Other Services

The following additional sys:%sysint services are available:

Request 84H -- Get Segment Alias (SGALIAS)

Get the segment selector of the segment which is an alias of the
1 given selector and which has the specified segment type. If the

201

) given selector is already of the right type, it will simply be returned
as the the result. If an alias of the right type does not exist, a new
one will be created and returned as the result.

For definitions of the terms "segment", "segment type", and "segment
alias", consult the Intel iAPX286 Programmer's Reference Manual and
the Intel iAPX286 Operating System Writer's Guide.

Input: AH
AL
DX

Output: CY
AX

Error: CY

84h
segment type
segment selector

0
segment selector for segment alias

l if there are no more free segment
selectors available, or if the given
selector is

202 20: Interface to Real Mode

Request 87h -- High Mem Alloc (HMALLOC)

Allocate a block of high memory. This memory, once allocated,
cannot be returned (that is, there is no corresponding de-allocate
function), and thus cannot be re-allocated by GCLISP.

Input: AH
ex

Output: CY

Error:

DX

CY
DX

87h
number of bytes to allocate (0 means
64K)

0
selector of the allocated block

I
0 if there is insufficient high memory
available

GCLISP 386
Compiler Guide

Chapter 21

Using the Compiler

Loading the Compiler

The compiler is loaded automatically the first time you call it in any
GCLISP 386 session. Loading is triggered by any of the following:

• a compile command or a compile-file command to the
GCLISP interpreter

• a GMACS editor command requesting compilation of an
buff er or a form

Loading the compiler takes about a minute. If loading is being done
from within GMACS, your only signal of the loading activity will be
the flashing red light on your disk drive.

If you want, you can load the compiler explicitly, without waiting
until the automatic load is triggered. To do so, type:

(cd "c:\ \gclisp3\ \compiler")
(load "loadcomp")

The first command sets your DOS default directory to
c:\gclisp3\compiler. The second command performs the load (but
does not execute the compiler).

Once the compiler has been loaded, it can be used in GCLISP, as
described in the following sections of this Guide.

206 21: Using the Compile1

Running the Compiler

To run the compiler, run either the compile-file function or the
compile function in the GCLISP interpreter. The syntax of these '
interpreter functions, and their effects, are described in the
following sections. For a description of how the compile function
can be invoked from within GMACS, see page 129.

Preparation

Before running the compiler:

• Set the current package: When running the compiler,
the current package should be a package that will be
present in the environment where the compiled function
will be run. A safe tactic is always to compile from the
user package, which is always present.

• Set the atom-to-cons ratio: Compiled code is a heavy
user of atom space. When the compiler is to be run, a
reasonable atom-to-cons-space ratio in the interpreter
environment is 6:1. This atom-weighted space allocation
can be obtained by editing the file config.lsp to set the
variables *initial-atom-weight* and *initial-cons-weight*
to 6 and l respectively.

The compile-file Function-

compile-file input-file &key :output-file :error-file
:lap-file :asm-file :load

This command takes a file of GCLISP source code as input. It
produces an output file of compiled (machine-language) code, called
a "fas" (for "fast-load") file, and optionally three other files, which
may be useful for debugging.

The function compiles the source code in the file input-file; creates
an output file; and writes the fas (compiled) output to the output
file.

The keyword arguments have these meanings. (Note. When an
output argument is a stream, the user must explicitly open and close
the stream.)

Running the Compiler 207

:output-file

:error-file

:lap-file

If the output-file keyword argument is not supplied,
or if the value of the argument is t, then the output
file has the same pathname as the input file, but
with the filetype fas. If a fas file of the same
name already exists, then it will be replaced by the
new file.

If the keyword argument is a filename without a
filetype, then the output file has the same name as
this argument with the filetype fas.

If the argument is a filename with a filetype, then
the output file has this name and type.

If the argument is nil, then no output file is
created.

The argument cannot be a stream.

If the error-file keyword argument is not supplied,
or if its value is t, then the error file has the same
pathname as the input file, but with the filetype
err.

If the keyword argument is a filename without a
filetype, then the error file has the same name as
this argument with the filetype err.

If the argument is a filename with a filetype, then
the error file has this name and type.

If the argument is nil, then no error file is created.

The argument may also be an output stream.

In any case, all messages created during the
compilation will be printed to the *standard-output*
stream.

If the lap-file keyword argument is not supplied, or
if the argument is nil, then no lap file is created.

If the keyword argument is t, then the lap file has
the same name as the input file, but with the
filetype lap.

If the keyword argument is a filename without a
filetype, then the lap file has the same name with
the filetype lap.

208 21: Using the Compiler

If the argument is a filename with a filetype, then
the lap file has this name and type.

The argument may also be an output stream.

The lap file is an intermediate-code file which may
be useful during debugging.

:asm-file If the asm-file keyword argument is not supplied,
or if the argument is nil, then no asm file is
created.

:load

If the keyword argument is t, then the asm file has
the same name as the input file, but with filetype
asm.

If the keyword argument is a filename without a
filetype, then the asm file has this name with the ·
filetype asm.

If the argument is a filename with a filetype, then
the asm file has the same name and type.

The argument may also be an output stream.

The asm file is an intermediate-code file which
may be useful during debugging.

If the load keyword is specified as t, then the
output file is loaded after compilation; otherwise, it
is not.

The beginning of the output fas file contains certain useful
information. The first two words of the file are "FASL FILE",
identifying the file as a fas file. Following this are sets of property
names and property values. Currently this information includes:

• source-file name

• interpreter version number

• compiler version number

• creation date

You can see this information by using the DOS command type, at
DOS command level, on the fas file.

Running the Compiler 209

The compile Function

compile function &optional definition &key
:lap-file :asm-file :error-file

This function takes as input the interpreted definition of a function.
It generates fas-code output and, optionally, lap-code output or asm­
code output.

compile replaces the original interpreted code (in the interpreter
environment) with the compiled function. It does not save the
compiled form in an output file.

Subsequently, calls on the function that was compiled are run as calls
on the compiled version, with one exception: if the function was
proclaimed inline (see page 211) before it was compiled, and before
the calling function is compiled, then, when the calling function is
compiled, the interpreted version of the called function is inserted
in-line in the calling function prior to compilation.

Note that you must specify the optional definition in the command in
order to use the keywords. Thus, you should specify it as nil if you
are not supplying it.

function, definition

:error-file

The argument function should be a symbol. If the
optional definition is supplied, it must be a lambda­
expression -- specifically, the interpreted function
that the user wishes to have compiled.

If function is a non-nil symbol, then the compiled­
function object code is installed as the function
definition of the symbol, and the symbol is
returned.

If the argument specified for function is nil, then
the compiled-function object itself is returned.

If the optional definition is not supplied, then
function must be a symbol with a definition that is
a lambda-expression; that definition is compiled
and the resulting compiled code is put back into the
symbol as its function definition.

If no keyword argument is supplied or the keyword
argument is t, then the error messages will go to
standard-output.

210

:lap-file

:asm-file

21: Using the Compiler

If the keyword argument is a filename without a
filetype, then the error file has this filename with
the filetype .err.

If the argument is a filename with a filetype, then
the error file has the same name.

The argument may also be an output stream.

If the lap-file keyword argument is not supplied, or
if the argument value is nil, then no lap file is
created.

If the keyword argument is t, then the lap-file
output will go to *standard-output•.

If the keyword argument is a filename without a
filetype, then the lap file has this name with the
filetype lap.

If the argument is a filename with a filetype, then
the lap file has the same name and type.

The argument may also be an output stream.

If the asm-file keyword argument is not supplied,
or if the argument is nil, then no asm file is
created.

If the keyword argument is t, then the asm-file
output will go to *standard-output*.

If the keyword argument is a filename without a
filetype, then the asm file has this name with the
filetype asm.

If the argument is a filename with a filetype, then
the asm file has the same name and type.

The argument may also be an output stream.

Loading Compiled Code

A .fas file created by the compile-file function is loaded into
GCLISP using the load or fasload functions, described in the
Reference Manual. (See also page 44.)

Loading Compiled Code 211

Note that if the pathname argument to the load function does not
include a filetype, then load will look first (in the specified
directory) for a file with filetype fas and then, if that's not found,
for a file of filetype lsp. Regardless of file-creation date, a file of
filetype .fas will be preferred over a file of filetype lsp.

Loading a .fas file, like loading a file of LISP source code (a ".lsp"
file), includes execution of the code in the file by the interpreter.
The compiled code is smaller and faster than the original source file.
When a .fas file is loaded, the compiled functions replace the
uncompiled versions in the GCLISP environment.

Controlling Compiler Operation

The following symbols, variables, and proclamations affect the
running of the compiler:

compiler::compiler-version
This variable holds the current version number of
the compiler.

:compiling-f or-gclisp
When compiling any form, the compiler places this
symbol on the *features* list. This can be used to
conditionalize code for special purposes -- for
example, compiling for GCLISP as opposed to
compiling for other LISPs.

compiler::*optimize-space*
In order to produce code that runs fast, some
functions are coded in-line with a somewhat
lengthy code sequence. To minimize the size of
compiled code, set this variable to t (it defaults to
nil). This will cause the aforementioned functions
to compile into a shorter code sequence (which will
take somewhat longer to execute, in most cases). In
a future release of the compiler, this flag will have
a larger effect on code size than it does currently.

compiler:*verbose*
If this user-settable variable is non-nil, then more
detailed information concerning the processing of
forms is output to the display and to the file
specified in the optional :error-file argument, if one
is supplied. Note that this variable is initially
non-nil.

212

ignore

21: Using the Compiler

The ignore variable tells the compiler that a return
value will not be used and should be ignored.
Typically, ignore is used with functions such as ,
multiple-value-bind and multiple-value-setq, and (~
with lambda lists.

For example, suppose that your source program
includes code of this form:

(multiple-value-setq (nil x y) form)

The compiler may return this warning message:

NIL is an obsolete variable in the list
of a MULTIPLE-VALUE-SETQ,
using the symbol IGNORE.

This means that in the compiled output for the
above, the compilation of nil has been replaced by
the compilation of ignore. You might as well have
written ignore instead of nil in the source program.

(proclaim '(inline function-name ...))

(proclaim '(notinline function-name ...))
These GCLISP proclamations take effect only in the
compiler. They instruct the compiler to inline-code
or not to inline-code any call on the specified
function(s).
Note that the proclamation must appear before the
specified function is compiled, to instruct the
compiler to preserve code which can be compiled
in-line into any calling function. The proclamation
must also be before any calling functions are
compiled; otherwise, the call will be compiled as a
function call (on the compiled version of the
function, if that exists; and otherwise on the
interpreted version of the function).

(declare '(inline function-name ...))

(declare '(notinline function-name ...))
These GCLISP declarations take effect only in the
compiler. They instruct the compiler to inline-code
or not to inline-code any call on the specified

Controlling Compiler Operation

function(s). The declaration is in effect for the
body of the special form in which it appears.

(declare '(ignore variable-name ...))

213

This GCLISP declaration takes effect only in the
compiler. It instructs the compiler that the binding
of the specified variable is never used. The
declaration is in effect for the body of the special
form in which it appears.

Note: c is a synonym for the package name compiler.

214 22: Using the Compiler

Chapter 22

Programming Notes

Interpreter Compatibility

The GCLISP compiler supports the language implemented by the
GCLISP interpreter in the GCLISP 386 Developer Version 2.2, with
these exceptions (supported in the interpreter, but not in the
compiler):

• The "#," reader macro, which arranges that the following
form is evaluated when the file is loaded

• The use of go and return-from between different
functions in the same lexical environment

An additional restriction is that a compiled function can have a
maximum of 255 constants. If this limit is exceeded, the compiler
produces the error message "ERROR: Too many constants for
compiled function".

It is not always clear how many constants will be defined by a
function definition, since macro expansion can generate an un­
obvious number of constants.

If the error message appears, break up the desired function
definition into several smaller function definitions that call one
another as needed.

The Compilation and Compiled-Code Environments

Here are some important points to be aware of when using the
GCLISP compiler.

216 22: Programming Notes

When to debug There is a trade-off between safe code and fast
code because, on conventional computer
architectures, fast code cannot do a lot of error
checking. By default, the compiler produces code 1\

which is optimized for speed of execution. For
most functions, the types of the arguments of a
compiled function are not checked when the
compiled code is run. This is especially true of
functions which are compiled in-line.

For this and other reasons, it is good software­
engineering practice to debug a given function
completely in the interpreter before running it
compiled. (A future release of the compiler will
feature a compile-time flag to increase the safety of
compiled code, but at the expense of code size and
speed.)

Atom-to-cons ratio
Interpreted code is a heavy user of cons space,
whereas compiled code is a heavy user of atom
space. You will probably want to adjust the atom­
to-cons ratio in your config.lsp file to reflect the
relative weight of interpreted code versus compiled ,
code in your current LISP environment. ·

Structuring a large system
LISP is order-dependent in the way it compiles
certain macros and functions. For example, macros
must be defined before the functions that use them
are compiled. Similarly, any declarations using
defvar, defconstant, defparameter, and defstruct
must be made before the symbols that they define
can be referred to.

For large systems, it may be useful to collect all
declarations of this type into a file that is compiled
and loaded before the rest of the system's files are
compiled. (If the system to be compiled fits into
one file, then all definitions of this type should be
placed at the beginning of the file.)

Evaluation of forms
A difference between loading a file of LISP code
and compiling a file of LISP code is that typically,
while a file is being compiled, the forms being
processed are not evaluated. If the compilation of a
function in a file depends on the evaluation of a
form that occurred earlier in the file, and if the

The Compilation and Compiled-Code Environments 217

earlier form is not a defvar, defconstant, defmacro,
defparameter, defstruct, or package function, then
the eval-when construct can be used to insure that
the earlier form is evaluated when the compiler
encounters it.

Compiled code and the autoload facility
The autoload facility currently does not work with
compiled code. Functions that are autoloaded when
called from the interpreter will not be autoloaded
when called from within compiled code. Instead,
the following message is produced:

Illegal function MACRO in internal function
dispatcher

If your compiled code calls autoloaded functions,
you must explicitly load them into the LISP
environment (using load) before attempting to run
the compiled code.

Incremental compilations from GMACS
When compiling incrementally from within the
editor, or evaluating within the editor, make sure
that you are in the correct package. To keep these
processes simple, only one package should be
associated with each file, rather than several
packages. The GMACS command AZ : ("Ctrl-Z
colon") can be used to set the package of the
current buffer. (See the GMACS Editor Guide.)

While incrementally compiling the contents of a
buffer, remember to periodically save (to a file) the
changes you make during debugging. After you
have made all your changes, the final file should be
compiled if you want to save the final results in
compiled form, since compiling from GMACS only
replaces the in-memory version of code (that is,
compiling from GMACS executes compile, not
compile-file).

Debugging compiled code
Currently, the GCLISP debugger does not provide
much information during debugging of compiled
code. The debugger will find only anonymous
forms on the stack (see Chapter 9). The debugger
will, however, print any special bindings that the
compiled code produces.

218 22: Programming Notes

The trace function can be used to trace all the
functions evaluated when a given function is called.
Also, it can be useful to put print statements within'
a function you are compiling from within the 1

\

editor.

Loading .fas and .lsp files
A .fas file is always preferred over a .lsp file,
regardless of creation date.

Compatibility with earlier GCLISPs
Compiled code generated by the GCLISP compiler
Version 2.2 will work only in the GCLISP
interpreter Version 2.2 or greater. Code generated
for the COMPAQ DESKPRO 386 will run only on
that machine.

Source-Coding for Efficient Compiled Code

Defstruct defstruct-defined data structures result in more
efficient compiled code than lists or arrays. This is
because the set functions and accessor functions for
defstruct-defined structures are compiled into a
small number of assembly instructions, as opposed
to a function call which uses many more
instructions.

Fixnum arithmetic
There are several fixnum-arithmetic functions
which compile particularly efficiently. These are
the standard arithmetic functions suffixed with a
"%", for example +% and logior%. (See GCLISP
Release Note 2.2 - 1 for details.)

Inline proclamations
(See page 211, regarding the inline proclamation.)

Characteristics of LISP Compilation

The GCLISP compiler translates interpreted LISP code into the target
machine's native-machine-language code. This has the dual
advantage of producing code that takes less memory, and much more
efficient (faster) code, as compared with the interpreted code.

Characteristics of LISP Compilation 219

That much is true of a good compiler for any computer language.
However, compiling in LISP, and LISP compiled code, have certain

'c;pecial features arising from particular characteristics of the LISP
.anguage, as described here.

Integration of compiled code
Although LISP is an interpreted language, LISP
source code and interpreted code are easy to
compile. Compiled code is completely integrated
into the LISP environment. A compiled LISP
program that has been loaded into the interpreter
can access all of the functions already defined in
the LISP system. Conversely, compiled functions
can of course be called by other functions.

Manipulating programs as data
A well-known basic feature of the LISP language is
its capacity for manipulating programs as data.
However, this is true only for interpreted LISP
programs: programs that are represented as lists.
Once a program has been reduced to machine code
through compilation, it can no longer be
manipulated as data.

Error-checking A LISP compiler helps verify that the code it is
given is properly written. Of course, it verifies the
syntactic correctness of the code. It will also flag
calls on undefined functions.

The compiler as a LISP function
A LISP compiler is simply a LISP function in the
LISP environment, unlike compilers for other
languages. For this reason, it is easy to integrate
calls on the compiler with calls on other functions,
and to call the compiler from another function. It
is also easy to control the environment in which
compilation occurs. Macros are especially useful
for this.

The macro language
A major difference between LISP and other
programming languages is its macro facility.
(Macros are frequently used to transform a form
that is easily readable by humans into a more
complex form that is easy for the compiler (or
interpreter) to process.) Many other languages have
a macro language, but LISP is unique in that the
macro language and the LISP language itself are the

220 22: Programming Notes

same. (This is not true of the C language, for
example.)

I
Incremental compilation \

A LISP compiler can compile incrementally, one
form at a time. Incremental compilation is not
practical (or not possible) in most other languages.
It simplifies the debugging process, particularly
when the incremental compiles are done within the
editing environment.

Chapter 23

Error and Warning Messages

The GCLISP compiler produces these kinds of messages:

I. Informational messages

2. Warnings, which indicate that some unusual
circumstance was encountered but that the user's code
will probably compile correctly

3. Error messages, which indicate that the compiled code
will run with unpredictable results.

The error and warning messages are listed below.

Warning Messages

Assuming symbol is a special variable.
The variable symbol was used as a free variable
inside the indicated function. This message
indicates that the compiler assumes the variable is
special. However, this warning may mean that you
have misspelled a lexical variable and need to
correct it. Otherwise, make sure that you have
proclaimed or declared the variable as special.

NIL is obsolete in the variable list of a MULTIPLE-VALUE-SETQ,
using the symbol IGNORE instead.
To indicate that you do not want to use a return

value in a multiple-value-setq, use the variable
ignore.

222 23: Error and Warning Messages

Previously called with wrong number of args.
The compiler remembered that you previously
called the function currently being compiled with a/
different number of arguments than it is being ',,,
defined with.

Some declarations have been optimized away, since no variables were
used in a MULTIPLE-VALUE-BIND.
A multiple-value-bind form did not use any of its
return values, so it was eliminated during
optimization. Some declarations were also lost,
since the compiler does not yet support the locally
special form.

Error Messages

function called with count args, wanted at least min.
junction was called with too few arguments.

junction called with count args, wanted at most max.
function was called with too many arguments.

Function must be a symbol or lambda form: function
The object in a functional position of a form was
syntactically incorrect.

GO to unknown tag: tag
The tag must be in the current lexical environment.

Ill-formed EV AL-WHEN situation list: list Ignoring its contents.
The only valid entries in a situation list of eval­
when are eval, compile and load.

Illegal form form (as variable)
form is illegal where a variable is expected.

Illegal Lambda list: lambda-list
The lambda list lambda-list is incorrect. Either the
order of &-keywords is wrong, or an unsupported
&-keyword was specified.

Illegal literal object in function, should satisfy type
A quoted object object to the function function was
of the wrong type. It should have been type type.

Error Messages 223

Illegal use of constant symbol as variable
symbol has previously been declared a constant, so
it cannot be used as a variable.

object not a legal macro name.
A macro name must be a symbol.

object not a legal function name.
A function name must be a symbol.

Too few forms: form
The special form form was given too few sub-forms.

Too many forms: form, the last count will be ignored
The special form form was given too many sub­
forms.

GCLISP 386
Foreign Language Interface Guide

(

\

(

Chapter 24

Introduction to the Interface

Overview

The GCLISP Foreign Language Interface package is used to bring
other programming languages into the GCLISP 386 Developer
environment.

It is important that users of GCLISP, and developers using the
GCLRUN environment, may be able to use, as part of the systems

\they develop, programs written in other languages such as Lattice C
br Microsoft C. In particular, users may want to call interface

"functions to database or spreadsheet systems from GCLISP with
arguments, and use the return values in GCLISP programs.

This is possible in the basic GCLISP environment, but only through
interrupt-handling systems in which a stay-resident interface
function may be "called" from a GCLISP function (via a sys:%sysint­
generated 80386 interrupt) and returned from via an interrupt-return
(IRET) instruction. The Foreign Language Interface software
implements an interface mechanism which is more accessible, more
versatile, more portable, and smoother in operation.

The interface enables both foreign calls from LISP to compiled non­
LISP functions, and foreign entries to LISP functions from compiled
non-LISP functions.

The Foreign Language Interface is particularly useful in conjunction
with GCLRUN, the full runtime loader and linker that can load and
link .fas files generated by the GCLISP compiler running in the

·.GCLISP 386 Developer. Programs written in a foreign language such
as Lattice C or Microsoft C can be separately compiled in the foreign

/language, then debugged in the LISP environment of the 386
Developer, and then brought together using GCLRUN into your
application runtime.

228 24: Introduction to the Interface

The foreign languages currently supported by the Foreign Language
Interface are Lattice C and Microsoft C; and assembly languages
which follow the stack-format and memory-addressing conventions of.1
either of these languages. \

Requirements and Assumptions

The Foreign Language Interface software consists of a number of
GCLISP functions, included with the 386 Developer. In addition to
this software, you also need a compiler for the foreign language you
want to interface to.

You may also want to know the structure of the Intel object file
produced by the foreign language compiler. This is documented in
Intel's "OMF manual", formally titled 8086 Relocatable Object Module
Formats: An Intel Technical Specification (Santa Clara, California:
In tel Corpora ti on, 1981).

Detailed Requirements on the Foreign Code

The foreign language interface should not be used to access foreign­
language functions compiled to .exe files, These contain only a
single entry point and can already be called from GCLISP using the
sys:exec command. The interface should be used only to access
foreign-language functions which have been compiled to .obj object
files or .lib library files, which can contain several entry points.

Call-Argument and Return-Value Data Types

The Foreign Language Interface currently supports Lattice C and
Microsoft C call arguments of the following C parameter types:

char
int
long
float
double
pointer

This means:

Detailed Requirements on the Foreign Code

• When a LISP function calls a C function, the call
arguments can be of any LISP types convertible to these
C data types.

• When a C function calls a LISP function, the call
arguments can be of any of these C data types. They
will be converted to the appropriate LISP types. Also,
when a called LISP function returns to the calling C
function, the LISP function can return a value of any
LISP type convertible to one of these C data types.

229

As described in later sections of this guide dealing with define­
foreign-call and define-foreign-entry, each C data-type name in the
list above can appear in foreign-call and foreign-entry function
definitions as the type in an ordered pair of the form (name type)
(parentheses included).

An exception to this convention is the pointer type. The form of the
ordered-pair specification for an argument of this type is not (name
type), but rather ((name-I name-2) type) (all parentheses included).
Correspondingly, the call argument when the foreign routine is
invoked is two values, not one. The first value is the segment, and

,, the second value is the offset, of the address which the C formal
·. parameter will be set to point to.

These C-language return-value data types are currently supported:

char
int
long
float
double
pointer
void

This means that when a C function called from LISP returns to the
calling LISP function, a return value of any of the above types will
be converted to the appropriate LISP type.

void causes the calling LISP function to return no value. All others
but pointer cause the calling LISP function to return a single value.
pointer causes the calling LISP function to return two values. The

, first is the segment, and the second is the offset, of the data object
pointed to.

230 24: Introduction to the Interface

Far Calls
/

All code written in the foreign language must be compiled to use Cari
calls to enable Foreign Language Interface functions to stamp in long\
calls to LISP (unresolved or resolved) entry handlers. (A far call is a
call which addresses the code of the target function by specifying
both segment and offset, rather than specifying only the offset
within the current segment.)

The Foreign Language Interface will not function if no compilation
mode is available for assembling far calls to external entries. Using
"large-model" compilation, if it is available, will accomplish this. If
it is not, the original code must be written to ensure that only far
calls will be generated during compilation.

Lattice C Requirements

To use the Foreign Language Interface with Lattice C, you need a
Lattice C compiler, version 2.15 or later. You also need to set certain
Lattice C compiler switches to make the object code generated by the
compiler compatible with the requirements of the GCLISP
environment, as follows (note that this may necessitate running
separately the two passes of the LC compiler, LCI and LC2):

• When invoking LCI, set a compiler switch (in version
2.15, the -ml switch) to specify code for the large­
memory model. Set a switch also (in version 2.15, the -s
switch) so that Lattice C will not do pointer
manipulations with pointers in canonical form.

• When invoking LC2, set a compiler switch (in version
2.15, the -v switch) so that the C program will not do
stack checking.

Do not use the Lattice C library memory management routines, and
do not attempt any console input or output.

Microsoft C Requirements
!

To use the Foreign Language Interface with Microsoft C, you need a \
Microsoft C compiler of version 3.00 or later. You must also set
certain Microsoft C compiler switches to make the object code
generated by the compiler compatible with the requirements of the
GCLISP environment:

Detailed Requirements on the Foreign Code

• When invoking CL, set the -ML (or /AL) switch to
specify code for the large-memory model.

• Be sure to set the compiler switch so that no stack
checking occurs.

Do not use the Microsoft C library memory management routines,
and do not attempt any console input or output.

Terminology

These terms are basic to your understanding and use of this guide
and the software itself:

Foreign language

Foreign call

Foreign entry

Any callable non-LISP computer language
supported by the Foreign Language Interface
(currently Lattice C and Microsoft C).

A function call from GCLISP to a foreign­
language function.

A function call from a foreign-language
function to a GCLISP function.

231

Names pace A LISP object consisting of a set of one or more
related functions invoked by foreign calls or
foreign entries. (These will be foreign-language
functions, and LISP functions called from those
foreign-language functions.) The functions in
the namespace are structured into a single
packet of code, and share a single static data
segment.

Object file A compiled foreign-language file in Intel
(standard MS-DOS) .obj or .lib file format.

232 25: Introduction to the Interface

Chapter 25

Basic Usage

The plan of the rest of this guide is as follows:

• We first describe, in the section "Interface Operations",
the logical structure of the interface operations, tying
particular operations to the names of particular
interface functions and macros.

• The section "Operating Suggestions and Restrictions"
details miscellaneous facts that will steer you around
corners of the interface and potential problems in using
it.

• Descriptions of the basic interface macros occupy the
next two sections, under "The Function-Definition
Macros." The section "An Example" illustrates these
macros (define-foreign-call and define-foreign-entry).
Other useful illustrations of define-foreign-call are in
the chapter "Examples and Error Messages."

• Some other functions, and the global variables used by
the interface, are listed in the last sections in this
chapter.

• The complete Foreign Language Interface consists of
about a dozen GCLISP functions, macros, and global
variables. The sub-collection of these described in this
chapter enables the programmer without significant
GCLISP experience to do useful work with foreign­
language programs in the GCLISP environment. The
following chapter, "Programming with the Interface,"
describes the remaining functions.

• The last chapter, "Examples and Error Messages," also
explains the error messages output from the interface.

234 25: Basic Usage

Overview of Operations

Interface Operations

This is how the foreign language interface operates.

Suppose that you have written a function in a supported foreign
language, which we'll take to be (Lattice or Microsoft) C, and you
want to execute this function in the GCLISP environment.

To do so, you must define a LISP function to invoke the C function.
Once this is done, you direct the interpreter to invoke the LISP
function in the usual way; and that call to the LISP function invokes
the C function.

To define the LISP function, execute the LISP macrodefine-foreign­
call (described in a subsequent section). This serves to:

• Define a named LISP function

• Specify by name the C function it is to call

• Specify, by name and data type, the arguments which
the LISP function will take and will pass through to the
called C function at execution time (and similarly for
the return values)

Besides these basic operations, define-foreign-call does the following:

• Finds the C function--its entry point and its code and
data segments--in a DOS file with file extension obj or
lib, using a DOS pathname you specify. This is done
automatically by define-foreign-call, using lower-level
calls on load-object-file, find-object-entry, and find­
data-entry. (See the descriptions of these other
functions in the preceding chapter.)

• Associates the C code segment and data segments with a
namespace, the LISP object which serves to wrap
collections of foreign code and data. (You specify
which namespace in the call to define-foreign-call.)

Overview of Operations

• Establishes, if possible, a link within the LISP workspace
from each external function reference within the C
program to an entry point external to that C program.
This is so that the C function can execute. The linking
is done by lower-level calls on the function resolve­
unresolved-references. Each additional entry point is of
one of two kinds:

• It may be an entry point to another C
function. At run time, such a function must
also be available in the workspace in order
for it to execute: taht is, it must have been
loaded, into the same namespace. If it has
not already been loaded when resolve­
unresolved-ref erences attempts to resolve a
reference with that name, the reference will
be flagged by resolve-unresolved-references
as unresolved. You can then load the needed
function by an explicit call to Ioad-object­
file. Or the function may be loaded by
another call to define-foreign-call, if it so
happens that you also want to call this C
entry point explicitly from LISP.

• It may be an entry point to some LISP
function. This function must be defined in
LISP by defun, like any other LISP function.
It must also be "declared available" to be
called from the C function. You make this
declaration by executing define-foreign­
entry. This call has the effect of declaring
the LISP function to be callable from any C
function with arguments with specified
names and types, and a return value of a
specified type.

In summary:

• define-foreign-call sets up a LISP function to call a
specified C function.

• define-foreign-entry declares that a specified LISP
function shall be callable by a C function (no particular
one, but a class of functions with a particular structure
of arguments and return values).

235

236 25: Basic Usage

The process just described is illustrated in the section "An Example",
below.

Other functions in the foreign language interface perform some
auxiliary operations:

• Namespace-saving: dump-namespace saves (to a DOS
file in the GCLISP .fas format) the exact contents of
any namespace. This image can later be re-loaded into
the GCLISP environment of the same session or any later
session, saving you the time and trouble of running
again the individual commands to define functions, load
files, and resolve references.

Importantly, the .fas file can also be input to GCLRUN,
to incorporate the namespace-packaged C and LISP code
into a runtime application.

• Cleanups: flush-namespace-info serves to release the
part of the GCLISP workspace occupied by a namespace,
after you are done working in it. fli-makunbound frees
up the space occupied by the interface software itself
(the functions, macros, and variables described in this
guide).

• Namespace maintenance: do-namespace-fixups enables
the established links between all code and data in a
namespace to be preserved if the namespace must be
moved in the GCLISP workspace.

Operating Suggestions and Restrictions

Initializing and Accessing the Software

• Initializing the interface: In any GCLISP session, the
first call to define-foreign-call or define-foreign-entry
automatically loads all of the interface software.
However, if you want to invoke any of the other
interface functions first, then begin by loading the file
setup.tsp, to make the interface available. setup.tsp is
found in the directory \gclisp3\lisplib\fli, where all of
the interface software resides.

Overview of Operations

• Loading the compiler: The first call to define-foreign­
call automatically loads the GCLISP compiler (since the
defined LISP function is compiled before define-foreign­
call returns).

• The fli package: The home package of the interface
software is the pre-defined package fli. Since all of the
user-accessible software has been exported from the
package, it can be accessed without using the fli:
package qualifier.

Namespaces and Name Resolution

• One language per namespace: A given namespace
should be used for foreign language functions from only
one source language. If you have some functions written
in Lattice C and some written in Microsoft C, don't load
from both languages into the same namespace.

• Scope of the name-resolution process: When resolve­
unresolved-ref erences is called by define-foreign-call, the
only namespace searched for name-resolution is the
namespace specified in the define-foreign-call function
call (where the foreign-language program is loaded). In
general, if a foreign-language program A is to call
another foreign-language program B, then A and B must
be in the same namespace.

Miscellany: Calling Macros; Call Arguments; Debugging

• Calling LISP macros from C: define-foreign-entry can
be used to declare either a function or a macro (defined
by defun or defmacro respectively).

• Number of arguments in function calls: The interface
software currently supports only calls to foreign
language functions with a fixed number of arguments,
not a variable number.

237

238 25: Basic Usage

• Argument type checking: At program execution time,
argument type checking can be performed (or disabled)
for arguments passed to a C function from a LISP
function (and return values from the C function to the \
LISP function). Argument type checking can't be done
for calls from C to LISP.

• Stack frames and debugging: Execution of a foreign­
language function creates a stack frame for the call.
These frames are not visited by the debugger. (See the
Operating Guide chapter "Debugging in GCLISP" for a
description of the debugger.)

The Function-Definition Macros

Define-foreign-call

define-foreign-call lisp-function-name namespace object-file-pathnam
entry-name &optional args-types-list return-value-type
(compiler *default-foreign-compiler*) => t

The define-foreign-call macro generates and compiles a GCLISP
function which, when executed, calls a program which was written
and compiled in (Lattice or Microsoft) C.

The C program must have been compiled with certain compiler
switches set (see the section "Detailed Requirements on the Foreign
Code" in the first chapter in this guide).

The arguments to define-foreign-call have these meanings:

lisp-function-name

names pace

This symbol names the GCLISP function which
will be created to call a C function.

The call to define-foreign-call defines lisp­
/unction-name in the current GCLISP
environment. lisp-function-name can then be
called like any other GCLISP function.

The code of the C function which you wish to
call will be loaded into the namespace named
by the symbol namespace. This namespace
need not exist at the time of this call to
define-! oreign-call.

The Function-Definition Macros 239

object-file-pathname This string specifies the DOS pathname which
names the .obj or .lib file which you want to
load.

'entry-name This string names the C function which you
want to call. This function must be an entry
point inside the .obj or .lib file specified in
object-file-pathname.

args-types-list This optional parameter gives information
about the formal parameters which the C
function accepts.

return-value-type

compiler

args-types-list must be a list of ordered pairs.
There is one pair for each of the C function's
formal parameters. This list is enumerated in
the same order as the formal parameters in the
C function header.

Each ordered pair in the list has the form
(name type) (parentheses included).

The first element of each ordered pair, name,
specifies a GCLISP formal parameter of the
GCLISP function called lisp-function-name. (An
exception to this is the GCLISP formal
parameter type pointer.) When the function
lisp-function-name is called, the corresponding
call argument of the call will be translated
into the C parameter to which it corresponds.

The second element of each ordered pair, type,
specifies the C data type into which the
GCLISP call argument will be translated.

This optional parameter tells GCLISP the type
of the entity which the C function returns. It
must be the same as the C type which is
returned by the C function entry-name in
object-file-pathname.

This optional parameter specifies the language
which the foreign language program was
compiled in.

It must be either the word :lattice, for the
Lattice C language, or :ms-c, for Microsoft C.

240 25: Basic Usage

The notation (compiler *default-foreign­
compiler*) means that if the compiler
parameter is not specified in the command,
then the current value of the variable *default-\
foreign-compiler* is used. This variable is
initialized to :lattice in the Developer
initialization file config.lsp.

Note that if any optional parameter is to be specified in the
command, then any optional parameters preceding it in the
command-syntax displayed above must be specified (at least as nil).

See the section "Call-Argument and Return-Value Data Types" in the
preceding chapter for a list of the parameter types currently
supported. (Note there also how the specification of an argument or
return value of type pointer differs from the description above.)

Examples of the use of define-foreign-call are in the chapter
""Examples and Error Messages", and also in the section "An Example"
below.

The Function-Definition Macros 241

Define-foreign-entry

define-foreign-entry namespace lisp-target-fname internal-link-fname
&optional args-types-list return-value-type
(compiler *default-foreign-compiler*) =>' t

define-foreign-entry enables a foreign language routine which has
been loaded into the LISP world to call a LISP function. Thus it is
the inverse of define-foreign-call.

The define-foreign-entry call creates a link to the LISP function
named lisp-target-fname. When this name is referenced during
execution of a foreign language routine, the LISP function currently
associated with the name will be called.

An example of the use of define-foreign-entry is in the next section.

The arguments to define-foreign-entry have these meanings:

names pace

lisp-target-fname

This symbol names the namespace where the
lisp-target-fname is to be loaded. The effect of
this argument is to enable any foreign­
language routine in this namespace to call lisp­
target-fname.

The namespace need not exist at the time of
this call to define-foreign-entry; and it will not
be created at this time if it does not already
exist.

This symbol names the LISP function to be
called.

The name must be defined as an external
reference in the foreign language routine. For
example, a C module from which the LISP
function is to be called would include the
declaration:

extern lisp-target-fname;

This function need not exist at the time of this
define-foreign-entry call. The function must
exist by the time it is called. (The result will
otherwise be an "Undefined function" LISP
error.)

242

internal-link-! name

args-types-list

return-value-type

compiler

25: Basic Usage

When lisp-target-fname is invoked during
execution of a C routine, the function internal­
link-fname (which will have been automatically;
compiled) will actually be called. (This is an \
internal implementation mechanism which
concerns the user only during debugging, when
this name may be printed out during
examination of the execution stack or the
bindings stack.)

The user need only supply a name (a symbol)
here; since it will never be used directly in a
user-written GCLISP statement, the exact name
matters very little (so long as it is not already
bound in the GCLISP environment to a needed
value or a function definition).

This has a role similar to args-types-list in
define-foreign-call. (See the preceding
description of define-foreign-call.) Here,
however, the symbol name in the ordered pair
(name type) refers to an actual argument
which will be passed by the foreign language
routine to lisp-target-fname, rather than to a
formal parameter.

Note that if the return-value-type parameter is
to be specified in the command, then the args­
types-list parameter must be specified (as nil,
the empty list) if the C function has no
parameters.

This is the data type which the foreign
language routine expects to receive back from
lisp-target-fname. It thus has a role similar to
return-value-type in define-foreign-call.

This optional parameter specifies the language
which the foreign language program was
compiled in.

It must be either the word :lattice, for the
Lattice C language, or :ms-c, for Microsoft C.

The notation (compiler *default-foreign­
compiler*) means that if the compiler
parameter is not specified in the command,
then the current value of the variable *default­
foreign-compiler* is used. This variable is

The Function-Definition Macros

An Example

initialized to :lattice in the Developer
initialization file config.Isp.

243

Assume that you have coded this Lattice C language routine, which
echoes an input character, converting it to upper case if it is a letter:

int echo()
{ char in;

in = '\0';
while(in != '!')

{
in= fgetc();
if (('a' <= in) && (in <= 'z')) in -= 'a' - 'A';
fputc(in);
}

This C routine, echo, calls two subroutines, fgetc() and fputc(), for
input and output respectively. In C programming, these routines are

',normally found in a library of C subroutines. However, when echo
' is embedded inside a LISP environment, it must use LISP facilities to
communicate with devices external to that LISP environment. So
fgetc() and fputc() must be written in LISP, and echo must access
them (and via them, the I/0 devices) through links defined by
define-foreign-entry. We show now how this is done, in several steps.

Step 1. These two declarations must be added to echo:

extern fputc();
extern char fgetc();

This tells the C compiler that the names fputc and fgetc are not
defined in the C module containing echo. (We assume for simplicity
that this function definition of echo comprises a complete C module
also called echo.)

That is, occurrences of these names in that module are unresolved
references. The C compiler can now compile the module echo into the
object file echo.obj, without trying to resolve the occurrences of

' fputc and fgetc.

However, when echo is loaded into the LISP world, these references
will have to be resolved for echo to run in that world.

244 25: Basic Usage

Step 2. The rest of the work--steps 2 through 4 here--must be done in
the LISP world.

fgetc and fputc are names which are used inside a C routine, but
which refer to functions in the LISP world. So the LISP world must
make the names available to C routines which want to call them,
such as echo.

These references are constructed via define-foreign-entry. A call to
define-foreign-entry defines a name which a foreign routine can
mention.

These two calls to define-foreign-entry do the trick:

(define-foreign-entry sra fputc fputc-internal ((ch :char)) :char)
(define-foreign-entry sra fgetc fgetc-internal nil :char)

Step 3. Now echo.obj can be loaded into the LISP world by define­
r oreign-call:

(define-foreign-call echo sra "echo.obj" "echo")

During loading, the loader will register the two external declarations
which appear in echo.obj. It will try to resolve these names: that is,
it will try to link each of them to an external object or function
with the same name. In general, such an external entity could be in
another C routine; or it could be in the LISP world. In the present
instance, we already know that the intent is to define LISP functions
named fgetc and fputc to be linked to the names declared in the C
function echo.

If the define-foreign-call call above which loads echo.obj were
executed before the two calls to define-foreign-entry (in Step 2
above) which create references for fputc and fgetc, then fgetc and
fputc would be flagged as unresolved references. They could then be
resolved by executing the calls to define-foreign-entry and then re­
running define-foreign-call. (Note that it is not enough to run
resolve-unresolved-references after executing the calls to define­
foreign-entry. The original call to define-foreign-call must be
repeated.)

Thus, this Step 3 and the preceding Step 2 can be done in either
order (with an extra call to define-foreign-call if Step 3 were done
first).

Step 4. The final step is to define the LISP functions which the C
routine is going to call.

Here are LISP definitions of fputc and fgetc:

The Function-Definition Macros

(defun fputc(ch)
(format t "-c" ch)
(coerce ch 'string-char))

(defun fgetc()
(setq ch (read-char))
ch)

245

These LISP defun function definitions must happen before any C
routine--such as echo--is executed which is going to call the functions
thus defined. The reason is that if a name does not refer to
anything in the LISP world, then it will not refer to anything when
it is mentioned inside a C program running in the LISP world; and
the result will be the equivalent of a LISP "Undefined variable"
error. Since this is a LISP-world error, however (it is the LISP-world
function which is undefined), the C routine will not be able to
recover from it, and the LISP system will crash.

However, these definitions of fgetc and fputc may be modified
interpretively in the LISP world, as often as the user wishes. All
that must be preserved is the names of the arguments passed and the
type of the value returned, since these attributes have been
established by the define-foreign-entry calls.

Note that fgetc and fputc do not need to be defined before the
executions of define-foreign-entry which declare them as names
available to a foreign language routine. This is because define­
foreign-entry simply makes a name available to a foreign language
routine.

Thus, Step 2, Step 3, and this Step 4 may be done in any order, as
long as these two rules are obeyed:

• Before the C function is executed (called), any external
name used in the C function must be resolved (by a call
to define-foreign-entry, or by loading a C function with
that name).

• Any function referred to must exist before it is invoked
by name: that is, before the C function which uses the
function's name is executed. If the name names another
C function, that function must have been loaded; if it
names a LISP function, that function must have been
defined. If a referenced function doesn't exist at
execution time, an "Undefined function" error will
result.

At this point, all the necessary steps have been completed. In the
LISP world, a call to echo will invoke the LISP function of that

246 25: Basic Usage

name, which will transfer control to the C routine of the same name,
which, while executing, will call the two LISP functions fgetc and
fputc. When either of these is exited, the C echo regains control.
When this returns, the LISP echo regains control. And the LISP echo\,
returns like any other LISP function.

Other Functions and Variables

Flush-names pace-info

flush-namespace-info &rest namespaces => nil

This function unbinds all objects defined in the specified
namespaces. These objects are no longer needed after all references
have been resolved and the namespaces have been dumped (if
wanted). The effect is to free up space in your GCLISP workspace.

If namespaces is nil, all existing namespaces are flushed.

Fli-makunbound

fli-makunbound => nil

This function unbinds all of the internal functions and variables
which comprise the Foreign Language Interface software.

It should be used only after all desired foreign-language object files
have been loaded.

Other Functions and Variables 247

Global Variables Used by the Interface

These are the global variables used by the interface.

default-foreign-compiler
This specifies the language which a foreign
language program was compiled in. Its value may
be either :lattice or :ms-c, for Lattice C and
Microsoft C respectively. It is initialized to :lattice
in config.lsp. The value of the variable is used
(and may be specified) in a call to the macro
define-foreign-call or the macro define-foreign­
entry.

foreign-type-checking-enabled
This specifies whether or not type checking should
be performed when a function written in a foreign
language is actually called and arguments are
passed to it, and when a LISP function called from
a foreign-language function passes its return value
to the foreign-language function upon exiting. It is
a boolean variable: its value should be either t or
nil. It is initialized to t in config.lsp, meaning that
type checking is enabled (should be done).

While foreign language interface functions are
being debugged, checking should be enabled. After
debugging, for faster execution at run time, type
checking can be disabled by setting the variable to
nil.

Note that whenever you change the value of this
variable, the define-foreign-call call which created
the foreign-language-calling code must be re-run to
re-compile the code minus the type-checking code.

Note also when the foreign language is C, type
checking can be performed only on arguments (or
return values) passed from a LISP function to a C
function, and not from C to LISP.

*object-file-namespaces•
When an .obj or .lib file is first loaded and linked
into a namespace, the namespace is stored in this
list.

248 25: Basic Usage

o bject-da ta-segments
An object module may have multiple data segments,
but only one code segment. This is a list of valid
data segments.

· *objload-debug* During the loading of an .obj file or a .lib file,
debugging messages are output to this stream if it is
non-nil.

Chapter 26

Programming with the Interface

The preceding chapter, "Basic Usage", documented a basic useful
subset of foreign-language-interface functions and variables.

By contrast, the sections of the current chapter document
individually those functions included in the Foreign Language
Interface which should be needed (and used) only by knowledgeable
GCLISP programmers.

The Interface Functions

load-object-file

load-object-file namespace object-file-pathname
&optional entry-list
&rest [(object-file-pathname [entry-list]] ...]
=>nil

This function can be called by the user to load any object or library
files that must be loaded to resolve external references. (load-object­
file is already used (called) automatically by the define-foreign-call
macro to load into the GCLISP world the object file or library file
specified in a user-written call to that macro.)

The arguments to load-object-file have these meanings:

names pace This required argument is a quoted symbol,
specifying the namespace into which the object file

250 26: Programming with the Interface

is to be loaded. If a namespace of this name does
not exist at the time of the call, it is created.

object-file-pathname

entry-list

This required argument is a string specifying the
DOS pathname of the object file to be loaded.

This optional argument is a list of strings, naming
the library entries which should be loaded when
object-file-pathname names a library (.lib) file.
entry-list is meaningless when object-file-pathname
names an object (.obj) file, which is loaded as a
single module.

object-file-pathname [entry-list)
A &rest argument specifies any desired additional
file, and optionally the particular entries in it to b.e
loaded. For all except the last-specified file, the
entry-list is not optional; it must be specified (at
least as nil).

The function returns t if at least one file is successfully loaded; or
nil if all of the specified files were previously loaded.

Resolve-unresolved-references

resolve-unresolved-references &rest namespace-list
=> nil/list

This function is called when the user wants to cause all external
references within the loaded modules to be resolved.

The optional list namespace-list specifies the set of namespaces in
which to complete the resolution process. If namespace-list is
unspecified or is nil, all namespaces are resolved.

The function returns nil if all references are resolved. Otherwise,
information is printed out regarding each remaining unresolved
reference, and the function returns a list of these unresolved
references.

The Interface Functions 251

Do-namespace-fixups

do-namespace-fixups &rest namespace-list => nil

This function is called automatically by the function resolve­
unresolved-references when there are no unresolved references. All
fixups are kept with the namespace.

If a namespace is moved in memory, this function must be called to
re-fixup the code and data segments.

The optional argument namespace-list is a list of namespaces in which
to complete the fixup process. If namespace-list is unspecified or is
nil, the fixups are performed on all namespaces.

Find-object-entry and Find-data-entry

find-object-entry namespace object-file-pathname entry-name
=> segment-of /set-address segment-base-address

find-data-entry namespace entry-name
=> segment-of /set-address segment-base-address

These functions are used primarily by the define-foreign-call macro
to locate the address of the foreign-language code to execute. These
functions may be used by the GCLISP programmer to access the code
or data object directly.

namespace is a symbol naming the namespace where the object is to
be sought. object-file-pathname and entry-name are strings.

The logical address of the entry is returned.

Dump-names pace

dump-namespace namespace output-filename => nil

This function may be called when the user is finished defining
, foreign calls and foreign entries, loading object files, and resolving

references.

The purpose of this function is to preserve the current user-defined
foreign-language-interface functions and their associated states.

252 26: Programming with the Interface

The namespace itself--that is, the parsed object files and their
associated states--is "fasdumped" to an output "fasl" file. The name
of this output file will be the output-filename argument, with a "$"
prepended to the front of the filename and with the same file
extension (or the file extension fas, if none is user-supplied.)

All of the linkage functions which were defined in this namespace
by define-foreign-call or define-foreign-entry calls are written out to
a second file. The name of this file is the output-filename argument
with the file extension lsp.

This second file is then compiled and the compilation output written
to a third file, output-filename.fas. This compiled file may be re­
loaded, via a call to the load function, into a fresh GCLISP
environment at any later time. The new environment may be
another session of the GCLISP 386 Developer, or a session in the
GCLISP 286 Developer or in GCLISP 1.1, or the GCLRUN
environment.

This re-load will automatically load also the first file, $output­
filename.ext, which contains the namespace. The net result is that in
the new environment, all of the needed linkages to foreign entries
and foreign calls will be defined without re-executing the calls to
define-foreign-call and define-foreign-entry which originally created
them.

Note that the loading of this dumped namespace will invoke the
loading of two of the Foreign Language Interface files, objlink.fas
and objfixup.fas.

Chapter 27

Examples and Error Messages

Examples of the Define-foreign-call Macro

Suppose that we want to call three C functions which reside in the
module pointed to by the pathname C:\mycprogs\cl.obj. These three
functions are named foo, bar, and utility18.

For each of these three C functions, a LISP function will be created
(by a define-foreign-call macro call) to establish a link to the C
function. The namespace into which cl.obj is to be loaded will be
called c-region.

Suppose that the three C functions foo, bar, and utility18 are defined
as follows:

254 27: Examples and Error Messages

/* foo accepts an int and returns another * /
int foo(y)
int y;
{ return(y + 1); }

/* bar accepts an int and a float and returns a float • /
float bar(i, f)
int i;
float f;
{ return(f • i); }

/* utility18 calls a function at a supplied address * /
type.def int FUNCT_RETURN_TYPE;

FUNCT_RETURN_TYPE utilityl8(plf)
FUNCT RETURN TYPE (*plf)();
{ - -

}

int Xj

x = (*plf)();
return(x);

The define-foreign-call macro call which establishes a link for a call
to foo can be written as follows:

(define-foreign-call
my-lisp-foo

)

c-region
"C:\mycprogs\cl.obj"
"foo"
((a :int))
:int

; the <lisp-function-name> argument
; <namespace>
; <object-file-pathname>
; <entry-name>
; <args-types-list>
; <return-value-type>

Here args-types-list is the list ((a: int)), containing one ordered pair.

Now my-lisp-foo can be called, as for example in:

(setq x (my-lisp-foo 5))

The define-foreign-call macro call which establishes a link for calls
to bar can be coded as follows:

Examples of the Define-foreign-call Macro 255

(define-foreign-call
jump-to-bar
c-region
"C:\mycprogs\cl.obj"
"bar"

; the <lisp-function-name> argument
; <namespace>

)

((x :int) (y :float))
:float

; <object-file-pathname>
; <entry-name>

; <args-types-list>
; <return-value-type>

Here args-types-list is a list containing two ordered pairs.

Now jump-to-bar can be called, as for example in:

(equal (jump-to-bar 2 3.14159) (* 2 3.14159))

The define-foreign-call macro call which establishes a link for calls
to utility18 is coded as follows:

(define-foreign-call
new-tool

)

c-region
"C:\mycprogs\cl.obj"
"utility18"
(((base off) :pointer))
:int

; <lisp-function-name>
; <namespace>
; <object-file-pathname>
; <entry-name>
; <args-types-list>
; <return-value-type>

Here args-types-list is a list containing one ordered pair. But the
first element of this ordered pair is another ordered pair, (base off),
the address which utilityl8 requests. The two parts of the address,
namely base and off, are two LISP fixnums which will be
concatenated to form a 4-byte C pointer.

Now new-tool can be called, as for example in:

(new-tool funct-seg funct-off)

Note that new-tool takes two call arguments. The first is the
segment, and the second is the offset, of the desired address.

256 27: Examples and Error Messages

Error Messages

These error messages may be issued during running of the foreign
language interface macros and functions.

The messages here are specific to the foreign language interface
operations. Other error messages besides these may appear when you
invoke these functions--for example, messages about syntax errors in
your command input.

The messages here are grouped by the kind of operation or function
execution which produces them, for example "From define-foreign­
call" or "While resolving references." This does not match exactly the
set of interface functions. For example, a call to define-foreign-call
results in loading one or more object files, linking the loaded code in
the GCLISP workspace, and using defined names to resolve
references. So when define-foreign-call is invoked, error messages
may appear from any of the categories "From define-foreign-call",
"During object-file loading", "During linking", or "While resolving
references." You may want to refer to the first section, "Interface
Operations", in the chapter "Basic Usage" for a description of the
logical sequence of operations performed by the interface functions.

From define-foreign-call:

Unsupported C compiler.
The value of the compiler parameter or of *default­
foreign-compiler• did not name a recognized
foreign-language compiler.

Unsupported C parameter type.
The specified argument type is not supported in
this implementation.

Unsupported C return-value type.
The specified return-value type is not supported in
this implementation.

Error Messages 257

From:

Unsupported C compiler.
The value of the compiler parameter or of *default­
foreign-compiler* did not name a recognized
foreign-language compiler.

Unsupported C parameter type.
The specified argument type is not supported in
this implementation.

LISP cannot return this type to C.
The specified return-value type is either
unsupported or invalid.

During object-file loading:

Bad group component descriptor type: type.
The object-file format is corrupted or non-standard,
or this feature is unsupported.

Unknown segdef attribute: value.

During linking:

The object-file format is corrupted or non-standard,
or this feature is unsupported.

t5 not yet implemented.
This object-file-format feature is not supported.

t7 not yet implemented.
This object-file-format feature is not supported.

Unrecognized fixup target.
The object file is corrupted, or the object-file
format is not supported.

path/name not found for fixup.
The object file is corrupted.

Unrecognized fixup mode n.
Unknown type of fixup. This object-file format is
not supported.

Unrecognized fixup loc nnnn.
The object file is corrupted, or the object-file
format is not supported.

258 27: Examples and Error Messages

While resolving references:

na_mespace not a valid namespace.
Use a valid namespace name.

entry-point unresolved reference.

In both cases:

This is issued from a call to resolve-unresolved-
ref erences. The call may have been issued directly
to the GCLISP interpreter. Or it may have
originated in a direct call to define-foreign-call.

The message means that for some entry point
referred to (as a function call) in a C function
which has been loaded into the namespace or
namespaces where you are attempting to resolve
references, there is no defined function name to
resolve the reference to. Either a GCLISP function
name or a C function name must be supplied.

To fix the error:

• If the entry point was intended to refer
to a C function: use load-object-file to
load into the namespace the C-language
.obj or .lib file including the needed
function definition.

• If the entry point was intended to refer
to a GCLISP function: use define-
f oreign-entry to specify the name of
the needed GCLISP function.

• If the message was issued while define­
foreign-call was running, then you
must also re-run the same define­
foreign-call command after fixing the
error.

• Otherwise the message was issued
during the running of a direct call to
resolve-unresolved-references. Then
you must re-run the same resolve­
unresolved-references command after
fixing the error.

Error Messages 259

path not found in namespace namespace.
find-object-entry was called with an incorrect
pathname for an object file in the namespace
names pace.

entry not found in namespace name/object-file path.

At runtime:

The entry being sought by find-object-entry was not
found in the specified object file in the specified
namespace.

This message may be issued during the running of
load-object-file or define-foreign-call. If the source
was a direct call to load-object-file, the cause may
have been an invalid setting of the global variable
def aul t-f oreign-com piler.

Bignum too large to fit in C long.
The integer argument being passed to a C function
was longer than the representation of a long in C.

C type and type of LISP entity are incompatible.
This error message issues from the type checker,
when a LISP object is being passed as an argument
to a C function. If type checking is disabled, the
error will not be detected and the message will not
appear. However, the results of this condition
without the type checking are unpredictable and
could be fatal.

C cannot accept the type returned by LISP.
This error message issues from the type checker,
when a LISP function called from a C function
returns and passes its return value to the C
function. If type checking is disabled, the error
will not be detected and the message will not
appear. However, the results of this condition
without the type checking are unpredictable and
could be fa ta!.

260 27: Examples and Error Messages

GCLISP 386
Index

Index

Symbols

II 48
%contents 198
%contents-store 198
%sysint 189
, 48
(48
(break) 40
(Break to listener) 162
(clean-up-error) 39
(configure-gclisp) 13
(continue) 40
(exit) 13
(sys:dos) 14
) 48
command-line 11
default-foreign-compiler 239,

242
MONITOR-IS-COLOR 9
.exe file 228
.fas file 227, 236, 252
.lib file 228, 250
.obj file 228, 250
84H -- Get Segment Alias 201
88h--Define Segment 196
89h--Undefine Segment 197
90h -- Memory Copy (MCOPY)

199
9lh--Low Memory Data Segment

Alloc 197
92h--LM Data Segment Free 198
93h--Real Mode Interrupt 200
: 48
:: 48
:asm-file 208

:error-file 207
:lap-file 207
:load 208
:output-file 207
. 48
\ 48
\gclisp3 11
I 48

A
ADD-CHANGE-LOG-ENTRY

154, 171
Address Gold Hill 17
Allocati~g and Accessing low

memory 196
alphanumeric 105
Alt-E 12
Alt-H 12
Alternate key 23
APPEND-NEXT-KILL 160, 171
apropos - function 54, 55, 58
apropos - help option 54
arglist 55, 57
attribute-list 93
auto-fill 92, 100, 109, 142, 171
AUTO-FILL-COMMENTS 100,

154, 171
autoexec.bat 9

B
BACK-TO-INDENTATION 142,

171
backslash 45, 48

264

BACKWARD-CHAR 139, 171
BACKWARD-COPY-LINE 142,

171
BACKWARD-KILL-LINE 142,

171
BACKWARD-KILL-SEXP 154,

171
BACKWARD-KILL-WORD 142,

171
BACKWARD-LIST 124, 154, 1 71
BACKWARD-LOWERCASE­
WORD 153, 171

BACKWARD-MARK-SEXP 154,
172

BACKWARD-PAGE 142, 172
BACKWARD~ARAGRAPHl~,

172
BACKWARD-SEXP 124, 155, 172
BACKWARD-UP-LIST 124, 155,

172
BACKWARD-UPPERCASE­
INITIAL 153, 172

BACKWARD-UPPERCASE-
WORD 153, 172

BACKWARD-WORD 139, 172
Base memory 187
Batch file 11
BEGINNING-OF-BUFFER 139,

172
BEGINNING-OF-DEFINITION

125, 155, 172
BEGINNING-OF-NUMBERED­
LINE 139, 172

BEGINNING-OF-SENTENCE
142, 172

BIND-KEYBOARD-MACRO 167,
172

binding keys 131
BIOS 187
BIOS-Compatible Services 192
BIOS interrupt services 192
bound 33
bound (to key) 90
break 61, 129
(break) 40
break - function 61
Break key 24
break level 64
break message 63

Index

BUFFED 100
BUFFER-EDIT 100, 146, 172
buffer-edit mode 97 .
BUFFER-READ-ONLY 100, 147, .

172
BUFFER-READ-WRITE 100,

147, 172
buffer-status 89
buffername 97

c
call argument 228, 242, 247, 259
case - upper

lower 112
CHANGE-DIRECTORY 101,

147, 172
(clean-up-error) 39
clean-up-error - function 62
Co-resident DOS programs 186
code. segment 248
colon 48
Color monitor 9
command-line 11
command completion 91
Command line options 11
COMPAQ monochrome monitor 9
COMPILE-AND-EXIT 103, 155,

172
COMPILE-BUFFER 99, 155, 172
COMPILE-DEFINITION 155,

172
config.hb 9
config.lsp 7, 9, 13, 240, 243, 247
(configure-gclisp) 13
%contents 198
%contents-store 198
(continue) 40
continue - function 63, 64, 65, 71
Control bit 91
Control key 22
COPY-LINE 143, 173
COPY-REGION 160, 173
COPY-TO-REGISTER 160
COPY TO REGISTER 173
Ctrl-Break 40
Ctrl-C 41
Ctrl-D 15

Index

Ctrl-E 12
Ctrl-End 138
Ctrl-G 39
Ctrl-Home 138
Ctrl-Left Arrow 138
Ctrl-P 40
Ctrl-Pg Dn 138
Ctrl-Pg Up 138
Ctrl-Right Arrow 138
current i tern 123
current window 122
Cursor 21, 85
cursor-control keys 24

D
damaged components 18
data segment 231, 248
data type 229
debugging 61, 238
default settings 99, 100
define-foreign-call 229, 234, 238,

244, 253, 256
define-foreign-entry 229, 235,

241, 244, 257
DEFINE-KEYBOARD-MACRO

167, 173
DEFSEG 196
defun 35
Del 138
DELETE-BLANK-LINES 143,

173
DELETE-CHAR 143, 173
DELETE-HORIZONTAL-SPACE

143, 173
DELETE-INDENTATION 143,

173
DIRECTORY-EDIT 101, 147,

173
directory-edit mode 97
DIRED 100
DISPLAY-APROPOS 127, 162,

173
DISPLAY-DIRECTORY 101,

148, 173
DISPLAY-DOCUMENTATION

127, 162, 173

265

DISPLAY-KILL-HISTORY 160,
173

DISPLAY-LAMBDA-LIST 127,
155, 173

DISPLA Y-MACROEXP ANSI ON
127, 155, 173

display device 9
DO-IT-AGAIN 92, 162, 173
do-namespace-fixups 236, 250
doc - function 54, 58
doc - help option 54
DOS 102, 187
(sys:dos) 14
DOS-Compatible INT-21 Services

190
DOS - operating system 13
double colon 48
double quote 48
DOWN-LIST 124, 156, 173
Down Arrow 138
DUMP-BINARY-FILE 99, 148,

173
dump-namespace 236, 251

E
echo window 91
ed 87
ED-APROPOS 162, 174
ED-BEEP 96, 163, 174
ED-DOC 163, 174
ED-HELP 163, 174
ED-KEYCHORD 163, 174
ED-LISTBACK 163, 174
edit buffer 86, 87
edit command 90
editor 44
edit screen 89
edit window 85
edit window - commands 140
edit window - current 122
End 138
END-DEFINE-KEYBOARD-

MACRO 168, 174
END-OF-BUFFER 139, 174
END-OF-DEFINITION 125, 156,

174

266

END-OF-NUMBERED-LINE
139, 174

END-OF-SENTENCE 174
Enter 21
Enter key 22
entry point 239, 250, 258
error 39, 41
error level 62, 64
error message 43
error messages 41
Escape key 23
EVAL-AND-EXIT 103, 156, 174
EVAL-BUFFER 99, 156, 174
EVAL-DEFINITION 156, 174
eval - function 31
EVAL-IN-MINIBUFFER 156,

174
EVAL-SEXP 1.56, 174
evaluation 32
evaluator 31
EXCHANGE-POINT-AND-
MARK 161, 164, 174

EXECUTE-DOS-COMMAND
103, 148, 175

EXECUTE-KEYBOARD-
MACRO 168, 175

(exit) 13
EXIT-EDITOR 148, 175
EXTENDED-COMMAND 163,

175
extended command 86
Extended memory 187
external reference 234, 241, 243,
249

F
Fl 138
far call 230
filename 97
file system 189
FILL-PARAGRAPH 143, 175
filling paragraphs 109
find-data-entry 251
FIND-FILE 87, 97, 98, 148, 175
find-object-entry 251
FIND-UNBALANCED-P ARENS

125, 156, 175

Index

fli-makunbound 236, 246
fli directory 236
fli package 23 7
flush-namespace-info 236, 246
foreign call 227, 231
foreign entry 227, 231
format directive 63
FOR WARD-CHAR 139, 175
FORWARD-ISEARCH 119, 151,

175
FORWARD-LIST 124, 156, 175
FORWARD-PAGE 143, 175
FORWARD-PARAGRAPH 143,

175
FORWARD-SEARCH 119, 152,

175
FORWARD-SEXP 124, 157, 175
FORWARD-UP-LIST 124, 157, .

175
FORWARD-WORD 139, 175
function call 42
function keys 24, 91

G
garbage collection 12
GC 12
GCLISP.BAT 11
GCLISP compiler 227, 236
gclisplm 11, 15
GCLRUN 227, 252
GMACS 44
GMACS editor 12
graphics functions 79

H
harddisk. bat 7
harddskl.bat 7
help - on-line 29, 53
High Memory 187
Home 138

incremental search 119

Index

INDENT-FOR-COMMENT 126,
157, 175

INDENT-LISP-LINE 126, 158,
175

. INDENT-RIGIDLY 144, 176
INDENT-SEXP 126, 158, 176
INDENT-TEXT-LINE 144, 176
indenting LISP 126
Initialization 21
Ins 138
INSERT-BINARY-FILE 148,

176
INSERT-COMMAND-NAME 144,

176
INSERT-DOS-OUTPUT 103, 148,

176
INSERT-FILE 149, 176
INSERT-REGISTER 161, 176
INT-21 190
INT l 2h (Memory Size) 192
interpreter 27
interrupt request 189

J
JUST-ONE-SPACE 144, 176

K
keyboard 22
keyboard macro 134
keychord 12, 15, 90
keys, special 22
key sequence 90
KILL-BUFFER 99, 149, 176
KILL-COMMENT 158, 176
KILL-LINE 144, 176
KILL-REGION 144, 161, 176
KILL-SEXP 158, 176
KILL-WORD 144, 176
kill history 86, 115, 122, 127
killing text 115
kill ring 91

L
lambda-list 59
lambda-list - function 54, 59
lambda list - help option 54
language conventions 48
large-model compilation 230
Lattice C compiler 230
Lattice C requirements 230
Left Arrow 138
LISP 27

267

LISP-INTERACT 157, 176
LISP-INTERACTION 100, 157,

176
LISP-interaction mode 129
LISP-MODE 99, 157, 177
LISP object 31
LIST-BUFFERS 99, 149, 177
listener 31
listener level 39, 62
list processing 2 7
LMALLOC 197
LMFREE 198
LOAD-KEYBOARD-MACROS

168, 177
load-object-file 249
loading files 45
loading GMACS 87
LOWERCASE-REGION 153, 177
LOWERCASE-WORD 153, 177
Low Memory 187, 198

M
macros 237
MAIN 87
major mode 92, 99
MAKE-MATCHING-() 125, 158,

177
mark 113
MARK-BEGINNING-OF­

BUFFER 164, 177

268

mark - current 114
MARK-END-OF-BUFFER 164,

177
MARK-PAGE 164, 177
MARK-SEXP 164, 177
MARK-WHOLE-BUFFER 164,

177
mark pdl 114, 122
MCOPY 199
Meta bit 91
Microsoft C compiler 230
Microsoft C requirements 230
Microsoft mouse 9
minibuffer 86, 91
minor modes 93, 100
missing components 18
mode line 89
modes 92
modified flag 99, 100
MONITOR 9
MONITOR-IS-COLOR 9
mouse support 9
Mouse Systems mouse 9
MOVE-SCREEN-OTHER-

WINDOW 122, 140, 177

N
NAME-KEYBOARD-MACRO

168, 177
namespace 231, 234, 241
NEWLINE 144, 177
NEWLINE-INDENT 126, 158,

177
NEXT-COMMENT-LINE 158,

177
NEXT-LINE 139, 177
NORMAL-MODE 99, 149, 177
null pathname 98
NUMERIC-ARG-PREFIX 163,

178
numeric argument 108
Numeric Lock key 24

0
object file 231

Index

ONE-WINDOW 122, 140, 178
OPEN-INDENTED-LINE 126,

158, 178
OPEN-LINE 144, 178
OTHER-WINDOW 122, 140, 178

p
P-KERNEL 186
package 100
package contents 4
parameter type 228, 239, 242
Paren-beep feature 126
Paren-flash feature 125
parentheses 48
Parentheses keys 23
PARSE-ATTRIBUTE-LIST 93,

159, 178
Pa th command 12
pathname 45, 89, 148
Pg Dn 138
Pg Up 138
Phone number ((617) 492-2071)

17
point 85, 107
pointer type 229, 255
pprint - function 72
pprint - property 73
prepend 116
PREVIOUS-COMMENT-LINE

159, 178
PREVIOUS-LINE 139, 178
print - function 31
print-name 56
Print-Screen Key 23
problems 17
Prompt 21
Protected Mode 187
push-down list 114
PUSH-TO-DOS 103, 149, 178

Q
QUERY-REPLACE 120, 152, 178
QUOTED-INSERT 145, 178
quote marks 48

Index

;R
R-KERNEL 186
read-eval-print 31, 45
READ-FILE 98, 149, 178
read - function 31
read/write status 99, 100, 101
reader 31
REALINT 200
REALINT Request 200
Real Mode 187
RECENTER-DEFINITION 159,

178
RECENTER-POINT 121, 140,

178
RECENTER-WINDOW 121, 141,

179
recursive edit 120
regions 113
REMOVE-SURROUNDING-()

159, 179
repeat count 108
REPLACE-STRING 120, 152,

179
Replacement Order Card 18
resolve-unresolved-references

235, 237, 250, 258
REVERSE-ISEARCH 152, 179
REVERSE-SEARCH 119, 152,

179
Right Arrow 138
RUBOUT 145, 179
RUBOUT-HACKING-TABS

145, 179
Rubout key 22

s
San Marco LISP Explorer 12
SA VE-ALL-FILES 149, 179
SA VE-FILE 98, 149, 179
SA VE-FILES-EXIT 149, 179
SA VE-FILES-PUSH-TO-DOS

103, 150, 179
SA VE-KEYBOARD-MACROS

169, 179

269

SCROLL-DOWN 121, 141, 179
Scroll-Lock/Break key 24
SCROLL-OTHER-WINDOW 122,

141, 179
SCROLL-SCREEN-DOWN 121,

140, 179
SCROLL-SCREEN-UP 121, 140,

179
SCROLL-UP 121, 141, 179
SELECT-BUFFER 99, 150, 179
SELECT-PREVIOUS-BUFFER

99, 150, 179
self-evaluating form 32
self-inserting input 108
semi-colon 48
SET-BUFFER-PACKAGE 100,

150, 159, 180
SET-COMMENT-COLUMN 159,

180
SET-FILL-COLUMN 145, 180
SET-FILL-PREFIX 145, 180
SET-MODE 93, 99, 150, 180
SET-POP-MARK 161, 164, 180
SET-VARIABLE 92, 100, 150,

180
setf 33
setup.tsp 236
SGALIAS 201
SHOW-POSITION 164, 180
SHOW-REGISTERS 161, 180
SHOW-VERSION 164, 180
single quote 48
starting the Developer 11
step - function 66
step - options 67, 70
symbol 33
sys:%sysint 227
sys:backtrace 64
sys:command-line 11
(sys:dos) 14
sys:exec 228
%sysint 189
system requirements 3

T
TAB-TO-TAB-STOP 145, 180
TAGS-ADD-FILE 165, 180

270

TAGS-ADD-FILES 165, 180
TAGS-CONTINUE-MAP 165, 180
TAGS-FIND-ALL 165, 180
TAGS-FIND-DEFINITION 165,

180
TAGS-INDEX-FILE 166, 180
TAGS-LOAD-INDEX 166, 180
TAGS-LOAD-TABLE 166, 180
TAGS-MAKE-INDEX 166, 180
TAGS-QUERY-REPLACE 166,

181
TAGS-REMOVE-FILE 166, 181
TAGS-REPLACE-STRING 167,

181
TAGS-SAVE-TABLE 167, 181
TAGS-SEARCH 167, 181

'TAGS-SHOW-TABLE 167, 181
'TAGS-USE-TABLE 167, 181
tag table 103

·Technical support service 17
'Telephone number ((617)

492-2071) 17
1template 75
· Termina te-and-sta y-residen t

programs 12
'Terminology 21
'TEXT-MODE 99, 145, 181
'Top-Level 39
·trace - function 65
'TRANSPOSE-CHARACTERS

118, 146, 181
'TRANSPOSE-LINES 118, 146,

181
'TRANSPOSE-REGIONS 118,

161, 181
TRANSPOSE-SEXPS 159, 181
TRANSPOSE-WORDS 118, 146,

181
trashcan directory 102
troubleshooting 18
TWO-WINDOWS 121, 141, 181
type 55
type-out window 95
type checking 237, 247, 259

Index

u
UNBIND-KEYBOARD-MACRO

181
UNBIND-KEYBOARD-MACROS

169
UNDEFSEG 197
undelete 102
uninst.bat 7
UNLOAD-BUFFER 99, 151, 181
UNMODIFY-BUFFER 100, 151,

181
unresolved reference 243, 250,

258
UNTABIFY-REGION 146, 181
untrace - function 66
Up Arrow 138
UPDATE-ATTRIBUTE-LIST 93,

160, 181
UPDATE-MODE-ATTRIBUTE

93, 160, 181
UPDATE-PACKAGE-

ATTRIBUTE 93, 160, 181
UPPERCASE-INITIAL 153, 181
UPPERCASE-REGION 153, 181
UPPERCASE-WORD 154, 182
userini t.lsp 13

v
variable 33
vertical bars 48
VIEW-FILE 151, 182

w
white space 33, 105
WINDOW-BACK WARD-PAGE

121, 141, 182

Index 271

WINDOW-FORWARD-PAGE 121, YANK-POP 162, 182
141, 182

working directory 101
wrapped line 106
WRITE-FILE 151, 182

y
YANK 162, 182

