Reference
Manual

GOODYEAR AEROSPACE CORPORATION

AKRON, OHIO 44315

STARAN-E
Reference Manual

GER-16422 ' NOVEMBER 1977

GOODYEAR AEROSPACE

CORPORATION

000000000000000

GER-16422

NOTICE

This document contains material generated by Goodyear Aerospace Corporation and is
transmitted for the purpose of aiding the transaction of business between Goodyear
Aerospace Corporation and the recipient. It is understood that the material contained
herein will not be used, copied, or disclosed to others, without the specific written
consent of Goodyear Aerospace Corporation.

The STARAN-E Computer System continues to be improved and expanded. Interested
parties should contact Goodyear Aerospace Corporation, Digital Systems Marketing,
Akron, Ohio 44315; or telephone (216) 794~3631 for information regarding the latest
update of STARAN-E software.

STARAN is a trademark of Goodyear Aerospace Corporation.

GER-16422

TABLE OF CONTENTS

CHAPTER TITLE PAGE

FOREWORDO00.!..ooocco'.‘oooo-00-00.000....ooo.o.onoso.‘ooooo..o.oooi—g

l STARAN-E ARCHITECTURE.000000000..0-0.0.00...0!..000.0...oo.o.-.'o..l-l

SECTION I. INTRODUCTIONOO'o'.c.c-COI...oo....lo-oo.n-.aco.oooc.o'il_z

GENERAL.....OO......'...0o'..Q..I....OOQlQ..l...‘t..........‘.1-2

MEMORY..D.......Q.OO....'Q'.....O.l.l....l.0'.'.0.0..000.00...1_2

ASSOCIATIVE PROCESSOR CONTROL MEMORYeeeoeococecssccncanssl=2
MDA MEMORY e eeseoovosececscsocscseocesocccsacsnsosscconsscssl=2
CONTROLeoosaccocscecncosssscsosescssnsacsscscssesscsoccsssccssanssssl=l
ASSOCIATIVE PROCESSOR CONTROLsccseccesvsoscccscccscnscsnseel=f
MULTIPLEXED INPUT/OUTPUT CONTROL: cccccccooccnccscssccecesl=t
PROGRAM PAGERe¢ ceeeecocecscesscscsscsescossncssscsescsscasssssscsel=5
SEQUENTIAL CONTROL..o.ooo‘tc-.cco.oooooco-ao.o-oo.o.nooo-1‘5
EXTERNAL FUNCTION CONTROLeceecesocscosceccsoccenossccccsssel=h
INPUT/OUTPUT s sosseecsssooscceosscsccssoscccnccsccasscccsascececl=h

SECTION II. ASSOCIATIVE PROCESSOR CONTROLececcsecesssssocsvsssescssl=?

AP CONTROL MEMORYe ecsooescecnsccccscscocscccsoascscsscosscsncsnscosel=?
GENERAL ¢ soeseonocrscssssossccosssocsosnscsccsssscssossscssoccoccal=?

PAGE MEMORIESccso oo sescoscsccssossccscssescsssscsssseccsscceel=8

HIGH SPEED DATA BUFFEReecceocccescosscevsosssscsssssscseansesl=8

MAIN MEMORY.coo'.o.oo.oc.oo'on-oc-oQooooooooo.noooo.oooo-l‘g
DIRECT MEMORY ACCESScesccessevescecsscecscsosssosscsssossscel=0
ADDRESSINGs cecsvoeovscsvoscccsscscncscsscnsscsnsasasassasseasnal=l0
Generaleccssocscsseessecscsoscasccenscssssoscsssssscscol=l(
Main MemoOIryeeeecsessesccscscscssscscassscsscscnscsseel=lD

Page MemoriesSeesevececooscesosssecsscossccesnssccscsesl=ll

High Speed Data Bufferoo-oooaooc;oo-oooocoooooooooool'll

Direct MemoIy ACCESSeecscecscecscsscsscesscosssscssecl=]l

AP CONTROL MEMORY SUMMARYescsoecsecccscsancsosnocsssannsscssesl=ll

AP EXECUTION CONTROLOl‘oocn..o..ou..o.cooo.l.oo..ooo.u...000001-13
GENERAL..‘00000..o.-o-..cou00.0..0oo'.lco‘-.o.c.'oo..!.o.l-l3
INSTRUCTION REGISTER:ececscecccscocosacocsccsscsscsssnsssssal=l3l

GER-16422

PROGRAM CONTROL..-o'oooooaoooo..ooo-oooo---0000.000-000001-14
Program Countereeeccsceccscoscscsssccscccssssoscssscscncasl=ll
Start Loop Markereeccececoccecscacescccensecnsccannesnl=lé
End Loop Markereeeeceocesascosssossccsscccscassssssesssl=lé
COmParatOresscesseccsescsscccccsccsccsscssascoscssssnl=lf
Program Status Registereccssccscscesccsccsscccsscesesl=lé
Bus LogiCecesscececcccccccscecccscscsssssnssssnssssel=l5

BLOCK TRANSFER CONTROLesesscsccscsceccssosacoscsssnsecsseel=l’
Data Pointer RegiSteTrecesesessesssscsssoscosscssssssssl=15
Block Length Countereecscceccscecccscccesscsssscessssel=ld

COMMON REGISTER.OO..I.I..O.....'O..O....O'l'.l......0000'1-15

FIELD POINTERS AND LENGTH COUNTERS¢c¢scescccscsccsscosaseel=1l6
Field Pointer lesoccscscccssccossssocossconsccsesocssanl=lbd
Field Pointer 2-oooooo-o-.ooon-o-cooon.o-o.ooaooocool-16
Field Pointer 3ececcccoccecscacscsscncssnsscsasosrssecsla=l?
Field Pointer Eeececescsscosscccscsosscncsccccsnsscsssssasl=l?
Field Length Counter lececcscecsccocosvccscsasessnnel=l?
Field Length Counter 2ececscevsecscsssccccscssssascceeal=l?

RESPONSE STORE CONTROLecsscoccocscsscscccscssnsscscsscseal=l?
Control Line Conditionereecesccccccccssscssccsoccscesl=18
Control Line Bufferescsscecccsssccccsscscscscccsocsssel=l8

MDA ARRAY CONTROLessccccssocsossesesccosscanscnsscncsocsseel=l8
Array Select RegiStereccecsescscssesscscsssccccccscaasl-18
Array ACCQSS-aoooao.oocooo..ocooooo.ooo-oo.oo-ooooool’ls
Array Address Modeeesseesscsccccccsssescscsccccsssnesl=19

GENERAL REGISTERSeescessasccscssosscscsscscssasssssssscessl=l9
RO‘R70...-..ooocoo-o.coooooo-oco.otoo'ooc.oooo-ooo.ol‘lg

RB, RB"RF...Q........‘.......‘.0.'.O'.‘..'......'...l-lg

MDA MEMORYOooo.'.oot.oo.0000...l‘oQoooolooo0000000000'000000001-22

GENERAL: ecosesccoocsscccccscasocssrssscccssscscsossccssoscscel=22
ADDRESSINGe s ececesooccossocsosossscsssossssscscsscsssssossceel=23
ArraySececceesssesssescsoscscscsnsssasscsnsssscssssnsel=23
WOrdSeoeoecseosssoessssosscccasrsossscssncscccssnseasl=23
Bit COlumnSo0-ooooooooooooooo-.ooo-co.-o90..0--...061-23
Fields-oonnoooooooooo-voooooooo&ocn000000000000000001‘23
Access MOd@eeeessesescscssscsecsscsosesccsscsssnasnal=2l
OPERATIONSeecoscoocssacoccnossocssssssscsssoscsscsscsscsssel=25
LoaAdececocososeossossccacscscscsssosesssscsssssesccascsel=25
Store..........................-....................1-25
Logical...1-25
RESOLVEeseessssesscccsscsccntsscscssscscsosossssnnsseel=26

Exchange..1-26

GER-16422

SECTION III. PROGRAM PAGER...."....'l.....‘..‘.'l....'l..........1—27

GENERAL-.o.-.oooo.t00000-0000ooooooo.o.oc.otooo.'n.voooloo-to-1—27

OPERATION...Cl..'.‘o‘.coo..l‘..u..loo..-ooonoio-o.o.-.n-'.o.ool-zs

SECTION IV. EXTERNAL FUNCTION CONTROLeecsccccscccossoscscccoessenssl=30

GENERAL.0"'.'......l....‘......"..‘..00.....'..00000000000001_30

PAGE MEMORY PORT SWITCHES:seeecsocescoccosscccssscssscscscssosl=30
INTERLOCKS.O...0....00....0l..‘....'.'....‘.....000000000000001-31
PROGRAM PAGER FUNCTIONSceececsvceccssocoocscecsscssssosscnssssssl=3l
ERROR CONTROL FUNCTIONSeocecooocoscascsccasscsscccssoscsssssssesel=32
ASSOCIATIVE PROCESSOR CONTROL INTERRUPTScecsccnsccsoscccassessl=32
SEQUENTIAL PROCESSOR CONTROL INTERRUPTSceeceoceccecccccccosscosl=32
AP CONTROL ACTIVITYeeeeascccococoscsesssssosnassesssccccsssosssl=33
AP CONTROL LOOP INDICATOR+ccccevevescssnssccvsasascncccsasassesl=34
RESETS AND CLEARSooooooooooooooo.ooooo--..oo-o.oo--.-oooco~o_-nl‘3l§

SECTION VO SEQUENTIAL CONTROL...OQDD....oc-.-'o.col.".oooooooooool-35

GENERALOOO..Q0.‘..0000.o00000000.000000.‘...00.0.0..0....-.0001-35

SEQUENTIAL PROCESSOR ARCHITECTUREe¢sccesccceccscosscscsccsssceceel=35

SEQUENTIAL CONTROL INTERFACE:ceeseesccscscccsscecscscassssosscoesl=37
GENERAL e cocosvooscecsccesosasscscssnsscssscssssssscssscsssssl=37
DIRECT ACCESS TO AP CONTROL MEMORYeceooesecocccossscseesel=37
REGISTER READOUTe ccesscecccococeccoscccssscsssoscsssscscssl=38
EXTERNAL FUNCTIONSeeeeecoosccsccoscesceocoscsosccssccscesl=442
INTERRUPT ACCEPTANCE: ¢ececscssosscooscassvcosscssccsscssesleat?
PERIPHERALScescecscecscoscsososvesncescscssssasecssssasossssl=b2
OPTIONAL PERIPHERALSceccoccescccccscecscssssscacsancscssesl=43

STARAN-E INSTRUCTION SET.‘.0..'....'..0.‘..".....0."....'..‘.'...2-1
SECTION I. GENERAL..DOOCQ....‘o..nt.ob.ooot...t.'0000000000t00.0002—2
PROGRAM SEQUENCE.0.000......;0....o.o00..0..‘000..0.0‘0-..0..02“2
PROGRAM COUNTERQ.......‘.O.........Q'QQ..'..O...l'.....l'.'.'.z-z
INSTRUCTION LENGTHOQ'Qo.Q.000.‘too..00oo.‘i‘0'00000.!0..‘00..02“2
INSTRUCTION TYPESOOOOQOQ0.00toool..Qo.too.oo0.0..00.....0.-..02-2

SECTION II. STARAN AP CONTROL INSTRUCTIONSececscescessessccssccsce2=3

GENERAL-o.ooooooo.oooooooon.ooo-e.ooococ.ooo.oo-o.oo-.no.--co-2—3

SPEm-UP MODE...........I.....l......l.“.lOO'..'.........I...2-3

GER-16422

SPEED=UP CODE¢coccsesscocccccsesssosssssssssesssscsscsccscel=]
RULE FOR SPEED-UPvMODE....D.O.'ICI......‘.000000.000000052-3
MDA ARRAY INSTRUCTIONSO0.0.5000.0...0..00.....0.‘00'.0.00...002-5
ARRAY SELECTIONeecccoessccocsocscsssccsenscsscsssossseccassel=5
MDA FLIP NETWORKeeeeoceoooeccescssccssccacosscccsssconcccel=5
MIXED MODE ACCESSeecscceccssccsccscscscscsscssscscsscsssnscccel=§
LOGIC FUNCTIONSeceooocsevsscsssccscssnsscssssssoscscsanssscel=]3
SHIFTINGeeoeoocossossscocssscscsoscsocososccscasssccsnscsnal=l5
MIRRORING..-..o-oz—ls
LEFT SHIFT....-....................................-..-.o2-15
INPUT SOURCE-...........................-.-.............oZ—lS
DESTINATION OR RESULT OF AN MDA INSTRUCTION:esecessccscee2=17
MDA ARRAY OPERATIONS s eececccsoascscscccccccssccccsccssscncesl=l8
Load X and/or Yeeeeseceosescsscsacecscsscscscssnsnsssl=l8
Load M (MASK)..o-..ao-oooo.oco-oo-oo0-0000000000-0002’18
Store X, Y, or M to MDA Array MemOIYeeeoesoosscscaseel2=18
Store X or Y to MDA Array Memory Through a Maske.eee.2-18
Load Common Register.--o-...........................2-19
Resolve Operationececescccccccecesscsscsccessascosssss2=19
GENERAL MDA INSTRUCTIONscccccocoscssccscsccccscscsaccccnsesl=20
MDA INSTRUCTION FORMAT (DIRECT ADDRESS MODE)esssecoccosces2=25
MDA INSTRUCTION FORMAT (INDIRECT ADDRESS MODE) cseececcecee2=-28
MDA INSTRUCTION FORMAT (LINK POINTER MODE) eecscccosocsceas2=31
ALTERNATE MDA INSTRUCTION FORMATc¢eecesocceccccscoccsaceseel2=34
EXECUTION CONTROL INSTRUCTIONSe esvesccacsoccceccscsccccscsscssse2=35
BRANCH INSTRUCTION-t'00000000000tc'Q-.0000000‘00000000'002-35
UNCONDITIONAL BRANCH INSTRUCTIONeecosooscesccssccesosesss2=35
CONDITIONAL BRANCH INSTRUCTION¢ceeococceccascecsccccnsenes2=36
BRANCH AND LINK INSTRUCTIONecocessccccccscocccsccsscncaces2=38
CALL SUBROUTINE INSTRUCTIONecsceesocoscscscccscoessosscscseee2=40
LOOP INSTRUCTIONecesecceocosccecsscsccscscsccssscsasscncncael=l2
LOAD AND LOOP INSTRUCTIONesescesoscocasscscsescacsascnsesesl=l]
AP CONTROL REGISTER INSTRUCTIONSesecoeccesccscecccsacesccassseel=bl
AP CONTROL REGISTER LOAD OPERATIONSescccceseosccecscesceecel=bl
LEFT SHIFTeecessessecseccossscssssscsossssascnssacssnsassel=lh
EFFECTIVE ADDRESS FORMATION:ceeccocoocoscccsccscccccescacel=bbd
LOAD IMMEDIATE............foao-ooooc-ooocoo.o-ocooooocoo-2—47
LOAD AP CONTROL REGISTER FROM CONTROL MEMORY:eeesescsesee2=52
LOAD AP CONTROL REGISTER FROM AP CONTROL REGISTERe¢sessss+2=-60
STORE AP CONTROL REGISTER TO CONTROL MEMORYeseeececaocsee2=064
SWAP PSWeeeeoooesoccosacecssscsossocsssccsscssnsssnsscnscesl=b7
GENERAL REGISTER INSTRUCTIONSs cesosvccccocsscccasscssscasannseel2=69
LOAD AP CONTROL REGISTER FROM GENERAL REGISTER OR
CONTROL MEMORYe escceoeescosocescscoscssasscscsssccsceel2=69
STORE AP CONTROL REGISTER TO GENERAL REGISTER OR
CONTROL MEMORYO00000..000.00....o'o....l.oo0-000000.2-71

GER~16422

MOVE GENERAL REGISTER OR CONTROL MEMORY TO GENERAL

REGISTER OR CONTROL MEMORY:eesoeoccccaccscorscsccceseel2=73
LOAD GENERAL REGISTER FROM CONTROL MEMORY.:..cecoceecocecss2=75
STORE GENERAL REGISTER TO CONTROL MEMORY:eeceocooccccesae2=77

SECTION III. PROGRAM PAGER INSTRUCTIONS:ccecosconcscescosscsccssse2=78

GENERAIJ.00.0....0.0....0000000‘ouoooo.00oo000000000000000000.02_78

PROGRAM SEQUENCE.oooooooooooo-on.'o.oo.ooo-ooo.0.0000-0002‘78
INSTRUCTION LENGTH.-.-...-.....;..tooooono-oooo.-ooooo‘002°78
INSTRUCTION TYPESeeccesceecsccccscssocsosceccsscsssccsccnsel2=/8
PAGER INSTRUCTIONScceeccocescostscascssssoncsssscocscscsscscsscssneel=79
LOAD PUTececcocccscaseccescssccsocescsscsccscscsscsccssscsanssel=/9
MOVE DATAcecccecoscececsercsccsccsescncsccccacssccnscscssccnees2=80
LOAD PUT AND MOVE DATAcccecocscososoccscasssssscssossssecl2=8l
ISSUE EXFeeeoocacsoccscconcscsccsecscscsessvcssssvsnssscssseel=82
PAGER COMMAND SUMMARYeeeocsseecstsccesssoccsccsensossnossscssssee2=83

SECTION IV. EXTERNAIJ FUNCTION INSTRUCTIONS‘ 5 008 0L BRSO RONPINOSEOSEOCOONS BPOS '2-84

GENERAL.-o..oouco.coooooooocooooooooooonoo..oacc.osco.o'ooo0002”84
FUNCTION CODE CLASSES:cscccossscsscscscsccsvenssccsssssscccel2—84
INSTRUCTION FORMATSecesccosscccoscscscsscscscccsscoscssncesel=84

Instruction Format From AP COntroleceecccsccsccsccecss2=84
Instruction Format From Program Pagereecesccceccacecsse2=-84

EXTERNAL FUNCTION CODES.....-.................................2-85
PAGER PORT SWITCH INSTRUCTIONscecescccecscccoccascscssssel2=85
INTERLOCKS..'0...00‘.....0.......Q.l'.l..'........’.000002-87
PAGER STATE INSTRUCTIONcecoceocsascsscocsasosssceasccncscsel2=80 .
PAGER LOAD GET INSTRUCTION.--...-.--..-ooo-oo-co‘ooo-ot002“9l
ASSOCIATIVE PROCESSOR CONTROL INTERRUPTSeecsccooccsssscse2=92 .

Interrupt MasKeeecoovcsssocesssccscsscecssscsscssssesl=92

Interrupt Conditions...-...............--..........o2-92

Interrupt Handlingeeesesecoeacecccecrococcccosansessa2=92
ASSOCIATIVE PROCESSOR CONTROL ACTIVITYesocoococsencossecce2=94
ASSOCIATIVE PROCESSOR CONTROL LOOP INDICATORececcscoscecee2=96
ERROR CONTROLsecsoocooncoceasscecssscscsssccscssssseasccsssl=97
SEQUENTIAL CONTROL INTERRUPT ¢ sococcccscscsscsscacasscscse2=99
RESETS AND CLEARS.0..0...OI..‘..O..O'.O........'...l..‘.‘z-'lol
SPARE EXTERNAL FUNCTIONScecescoccocovscoscsscsccescssocssoes2=102

GER-16422

3 INPUT/OUTPUT OPTIONSOOOOOQOOIOOO.l.l.lol.o‘.l0.......o.o.o.ooo.“o03-1

GENERAL..O..I........Ql......l..l.‘......Q.Q.........Q..0..‘..3-2

DIRECT MEMORY ACCESS CHANNEL«sseeccescecsccasossascscscessccsccsse3=2
BUFFERED INPUT/OUTPUT CHANNELeeecccccscsccsccnscesscoscsssosss3=3
EXTERNAL FUNCTION CHANNEL..OO.CO......0.0..I...0..."00.0..0..3_4
GENERAL.OQOu-ooo...o-ooootoonoo.'oo-sooo'ooon.oltnocoo..o3"4
HOST COMPUTER EXTERNAL FUNCTION INTERFACEceecccccccecscoee3=4
BUFFERED INPUT/OUTPUT EXTERNAL FUNCTIONSeeocosecosesseese3=5
PARALLEL INPUT/OUTPUT EXTERNAL FUNCTIONSeecosceccscscceas3=5
STARAN COMMAND CHANNEL«eeeccccoovcscsossassscsossssesccsasscsnessld=)
PARALLEL INPUT/OUTPUT CHANNELeecccocsoscososscsossccoscescosssl=5
GENERAL'coooonnooo-o-oo.co-o-o-oco.ooo.....ooooo.o--oooot3"5
INTER-ARRAY DATA COMMUNICATIONeesecccccscososcscecccerscece3=b6
HIGH BANDWIDTH I/Occccescscssscscsccscsconsossssccssccceeli=b

INDEXIQD.IOQQQ...-lo.o...00..ooo.o...'oo.o.o....0.0"....0.00..0..Ox-l

APPENDIX TITLE PAGE

A GLOSSARY OF TERP[S AND ABBREVIATIONS...'...........'.’...0"........A-l
B INSTRUCTION SUMMAvRY IN HEX CODE ORDER.....I....'..I....'......O....B—l

C SUMMARY OF EXTERNAL FUNCTION CODESQn...l-.'oc'o.o'.o.o'.ol'..l..oooc-l

FIGURE

1-1

GER-16422

LIST OF FIGURES

E

TITLE PAGE

STARAN-E Block Diagramescescececscscsscsescsescscoscocvescsnssscosscscesel=]
AP Control Memory Mapeececceccesesvscssscscosnscccevcacosscsccsssonsscscsnncl=?
Base Register FOrmatescsecsescscesescscacossccasccsscscsccsassscssscesel=19
STARAN Register Mapeseccesssscesscccescccscscoscsvsascsssssccscsscnsssel=2]l
Program Pager Block Diagrameeccececcecsccsscscecescscsascsececnscscsessesl=28

AP Control Register GrOUpS-oouo-cooonooooooo-ono-oooootooouoooouo-o2"‘44

TABLE

1-1

2-8
2=9
2-10
2-11
2-12
2-13

2-14

GER=-16422
LIST OF TABLES

TITLE PAGE

AP Control Memory CharacteristiCSececcscccccccsccacocscsscssassesecel=12
Array Base Register Selectionecescececccescscescccscsscscscscacasesel=20
Access MOdeSeseeectvsescecvoscssssvsacccsccsscascsssascsncscssssnsanacel=24
Sequential Control Interrupt Vector AddresseSeesssececscssssccesssel=33
Sequential Control Readout RegisSterSeecsessccescssccscescsssscsceeel=39
Logic Tablessessosesessscecasesosscesssccscsosossescscsssossscscccsssssel=ll
Shift Tableeecscssssesecocacsoosessssscsscossccosesssssesscsccsccsssselolbd
Associative Processor Control Register AbbreviationSeeccecsccceeses2=45
Load Immediate INStructiONecccscssscesccescescscscccssccsssssnssesss2=iB
Load Register from Control MemOryeeeseosesecccococssoosssscsccccsssssl2=54
Load AP Register from Register Source OptionS.ececssccscvcscecsoseee2=62
Load AP Register from Register Destination OptionSeessecssccessaces2-63
Store AP Register to Control Memory Source OptionSesecesecccaseseeea2=66
Pager EXF FunctionSecesececescoccssoccssseonsssoscccacosscccccsesccesesl2=82
Summary of Pager CommandSececescccscscscscscsassesossscscsssscsccacsel2=83
Summary of Pager Port Switch EXF INStructionSeeeeccesesccscccceocesee2=86
Summary of Interlock EXF InstructionSeccccscceccscscsccccccsccccsese2=88
AP Error IndicatOrSeescccececsscocscccosscsecasescocscescnsasssocssesl=98

Sequential Control Interrupt Vector AddresseSsssscesccscccsccccsecee2-100

GER-16422
FOREWORD

STARAN COMPUTER SYSTEM GENERAL DESCRIPTION

STARAN, a new and wunique architecture for computer systems, is the
result of over a decade of intensive development effort in associative
and parallel processing at Goodyear Aerospace. STARAN, the first
associative processor (AP) to go into production, can operate
independently or in a hybrid system to complement a conventional
computer (host computer).

The STARAN approach to parallel processing is rather general and 1is
based on the cooperative interconnection and control of three basic
system components:
(1) A Multi-Dimensional Access (MDA) memory
(2) A set of processing elements (PE’s)
(3) A communications network connecting the MDA to the PE’s and
both of these to other devices
FEATURES
MDA ARRAYS

The key component of the STARAN computer system is the MDA array
memory, which provides content addressability and parallel processing
capabilities.

ASSOCIATIVE PROCESSOR CONTROL

The AP control performs data manipulations within the MDA arrays as
directed by instructions stored in AP control memory.

ASSOCIATIVE PROCESSOR CONTROL MEMORY
AP control memory contains high speed page memories and a High Speed
Data Buffer (HSDB) to provide fast access to data and instructions that
require frequent access and/or fast execution.

AP control memory also contains a main memory for program storage.

A block of AP control memory addresses are reserved for Direct Memory
Access (DMA) to a host computer.

i-10

GER-16422

A basic STARAN Control Memory consists of:

(1) Three page memories, each containing 4096 32-bit words

(2) One HSDB containing 512 32-bit words

(3) A main memory containing up to 32,768 32-bit words

(4) Any addresses not used for main and HSDB memory are reserved
for DMA

PROGRAM PAGER

The program pager moves program segments, which require fast execution,
from main to the page memories.

SEQUENTIAL CONTROLLER AND MEMORY

The Sequential Controller (SC) provides offline capabilities for
assembling and debugging STARAN programs, a communication link between
STARAN and the operator, and control for diagnostic and test programs.

The basic system contains 16,384 16-bit words of sequential control
memory . '

EXTERNAL FUNCTION LOGIC

External function logic enables an element of STARAN to control. and
interrogate the status of other elements. An external function code
may be issued by AP control, the program pager, sequential control, and
the host computer.

INPUT/OUTPUT

The following input/output variations are provided on the STARAN
system:

(1) Direct Memory Access to a host computer

(2) An input/output chanmnel 32 bits wide to STARAN control memory
(BIO)

(3) External Function channel to pass function codes between the
STARAN control elements

(4) Multiplexed Input/Output unit (MIO) providing:
(a) Continuous transmit mode
(b) Block transmit mode
(c) Exchange mode

(5) STARAN Command Channel

GER=-16422

PHYSICAL DESCRIPTION

The basic STARAN computer consists of four standard-size cabinets along
with a free~-standing keyboard printer. The four cabinets are:
sequential control cabinet, AP control cabinet, AP memory cabinet, and
custom I/0 cabinet. Two array modules can be included in the MDA array

cabinet. An expanded STARAN configuration can contain up to 8 MDA
array modules.

i-11

GER-16422

CHAPTER 1

STARAN-E ARCHITECTURE

1-1

GENERAL

MEMORY

GER=-16422

SECTION I. INTRODUCTION

The STARAN-E system introduces a new concept in computers, designed to
achieve very high processing rates economically. Figure 1-1 shows a
block diagram of the STARAN-E computer. Each block of the diagram is
discussed briefly in the following paragraphs. More detailed
discussions are presented in subsequent areas of this manual.

STARAN-E consists of two separate memory organizations: the AP control
memory, essentially a program memory, and the Multi-Dimensional Access
(MDA) array memory, a data memory.

ASSOCIATIVE PROCESSOR CONTROL MEMORY

MDA ARRAY

The main function of the Associative Processor (AP) control memory is
to contain assembled AP application programs. The control memory can
also contain items of data and act as a buffer between AP control and
other elements of STANAN-E. The AP control memory consists of up to 16
memory blocks. Each block contains 4096 32 bit words. Some memory
blocks are fast to enable AP control to fetch its instructions rapidly
(page memories and the High Speed Data Buffer); others are slower to
economically contain the entire control program (main memory).

MEMORY

The heart of the STARAN-E is the array memory, a two dimensional matrix
of bits. Integrated into each array are the three basic components of
the STARAN-E concept: INDA memory, a permutation (flip) network, and a
set of processing elements. The arrays are the basic modules from
which STARAN-E systems of varying size and power are constructed. The
number of arrays in a given system is optional and is within the range
of 1 to 8.

GER~16422

+ ——————————+ ., DMA Fom——
| AP CONTROL MEMORY | ————————— |
| | . BIO |
| MEMORY PORT LOGIC | ——m——mmee |
+ -+ . |
| I | . |
I I | . I
I | I . I
+ -+ + + + -+ . |
|AP CONTROL| |PROGRAM| |SEQUENTIAL CONTROL| . |
I | | PAGER | | . |
+ + 4 + + ————t . |
1 I I . |
[1 I I . |
I 1 | I . |CUST
P I e -+ . | 1/0
1| | | EXTERNAL | . EXF |
|11 | mm———— | FUNCTION| | |
| | |- | LOGIC | . |
|| tm——— -t . SCC |
| |
| + -+ -+ . |
| === | MDA | MIO | - |
| | ARRAY O |CONTROL 0] . |
| + + -+ . l
| . . |
| . . . |
I . . |
| + + -t . |
| | MDA | MIO | . |
| mm—meem | ARRAY 7 |CONTROL 7| - |
+ + —+ . Fo————
STARAN ASSOCIATIVE ARRAY PROCESSOR .

e ® e & ® 6 & e & * e @ & * o o ¢ e s © o O o+ o

Figure 1-1. STARAN-E Block Diagram

— — —— —— — — —— — —— ——— — — ———— — — ———— — {— —— — — — —

GER-16422

The basic STARAN-E array module consists of a set of processing
elements connected to a high bandwidth MDA memory through a permutation
network. Rows, columns, or other subsets of data can be read in
parallel from the memory, permuted in various ways in the permutation
network, and combined with other data 1in the processing elements.
Processed results can also be permuted and stored into memory in
various ways.

Each MDA array contains 256 words, each word having a minimum of 1024
bits with up to 65,536 bits optional. Each array also contains 256
processing elements. Initially, one can think of each of the 256 PE’s
as being connected to one of the 256 MDA words, each PE thus having its
own local 1K to 64K (K=1024) bit memory with data being transferred
between PE’s and memory via the flip network. However, to view each PE
as being connected to its own word is needlessly restrictive. Any of
the 256 PE’s within an array can have access to any bit of MDA storage
within that array.

CONTROL

The STARAN-E consists of 5 processing elements: AP control,
multiplexed I/0 control, program pager, sequential control, and the
external function control which provides control and communication
between the other four processing elements.

ASSOCIATIVE PROCESSOR CONTROL

AP control is directly responsible for manipulation of data within the
MDA arrays under control of the program contained within the AP memory.
Associative operations are coordinated and controlled by AP control.

MULTIPLEXED INPUT/OUTPUT CONTROL

Inter-array communication and input/output between arrays and external
devices 1is controlled by the Multiplexed Input/Output Unit. There are
three main modes of array 1/0 provided:

(a) Continuous transmit mode will transfer a block of data from
an array to an 10P (input/output processor).

GER-16422

(b) Block transfer mode will transfer a block of data from one
array to another.

(c) Exchange transfer mode is extremely flexible in that data
from an array can be transferred to any and/or all of the
other arrays. The only restriction is that a particular
array can receive data from only one source. However, data
from a particular array may be transferred to any number of
other arrays. Any operation using the normal MDA instruction
format can be executed in the exchange transfer mode.

PROGRAM PAGER

The program pager loads the high-speed page memories from the lower
speed main memory of AP control memory. The pager performs these
transfer functions independently of AP control, so that while AP
control is executing a program segment out of one page memory, the
pager can be loading another page memory with a future program segment.

SEQUENTIAL CONTROL

The sequential control portion of STARAN-E consists of a sequential
processor (SP) having a 16k memory, a keyboard/printer, a disk drive, a
paper tape reader/punch, and logic capability to interface the
sequential processor with other STARAN-E elements. Sequential control
is used for system software programs such as assembler, operating
system, diagnostic programs, debugging, and housekeeping routines.

EXTERNAL FUNCTION CONTROL

External function (EXF) logic enables the AP control, sequential
control, or an external device to control the STARAN-E operation. The
external function 1logic facilitates coordination among the different
STARAN-E elements, provides for special functions, and simplifies
housekeeping, maintenance, and test functions. By issuing external
function codes to the EXF logic, a STARAN~E element can interrogate and
control the status of the other elements.

INPUT/OUTPUT

GER-16422

STARAN~-E has a variety of input/output (I/0) options available. A
custom I/0 cabinet can be obtained as part of the basic STARAN-E
system. STARAN-E can also be integrated with a variety of other
computer systems. A Direct Memory Access (DMA) channel to a
host-computer enables a rapid interchange of data between the systems.
An I/0 channel (BIO) provides access to STARAN control memory, and an
external function channel permits interrupts and/or other control
information to be passed between the two systems. THE STARAN Command
Channel (SCC) provides a means for STARAN to control and sense external
peripheral devices.

An optional Parallel Input/Output (PIO) channel, with a width of up to
256 bits per array, can also be implemented in STARAN-E. The extreme
width of this channel plus its submicrosecond cycle time, gives
STARAN-E an I/0 bandwidth many times wider than that of a conventional
computer. This PIO channel can easily accommodate the high data rates
that arise in many real-time applications. Also, it is possible for
STARAN-E to connect with special high-bandwidth mass-storage devices,
permitting rapid retrieval, restructuring, and processing of data in a
large data base.

GER-16422

SECTION II. ASSOCIATIVE PROCESSOR CONTROL

AP CONTROL MEMORY

GENERAL

The main function of the AP control memory is to contain the assembled
AP application programs. AP control memory can also be used for data
storage and as a buffer between AP control and other elements of
STARAN-E. Since the AP control memory is not an integral part of the
MDA array memory, AP control can overlap the AP control memory cycle
with the MDA cycle time.

AP control memory is divided into several memory blocks (see Figure
1-2). Three fast memory blocks, called pages, contain the current
(active) AP program segments; the slower main memory blocks contain the
remainder of the AP program. A program pager is included in STARAN-E
to facilitate transfer from the slow to the fast memory blocks.

Each word of AP control memory contains 32 bits of either data or
instructions. The exception to this rule is page memory, which can
contain instructions only, not data. Bit 0 is the left
(most-significant) bit, and bit 31 is the right (least-significant) bit
of each word. Each word 1is given a 16-bit address expressed 1in
hexadecimal notation.

0 8000 8200 © D000 E000 F000
+ -+ + + e —+
| I | I I I I
| | | | PAGEO | PAGELl | PAGE2 |
| l | DMA | | I |
l. MAIN | HSBD| SHARED | | | |
| MEMORY | | HOST [4096 | 4096 | 4096 |
I I | STORAGE | WORDS | WORDS | WORDS |
I | I I | | |
+ —+ + -—t + + -t

Figure 1=-2. AP Control Memory Map

GER-16422

PAGE MEMORIES

Three page memories are included in the AP control memory: Page O,
Page 1, and Page 2. Page memories use fast, bipolar, solid-state
elements that are volatile. Each page contains 4096 words in the basic
STARAN=-E configuration. The page memories can be doubled to 8192 words
each on an optional basis.

Page 0 may contain a library of routines that require fast execution,
such as arithmetic subroutines. Pages 1 and 2 can be used in ping-pong
fashion, with the AP control executing instructions out of one page
while the other is being loaded by the program pager. This permits the
programmer to use the faster memory for certain segments of the program
or the entire program if fast execution is required.

Each page memory has a port switch that connects it to one of three
buses. The port switch is controlled by external function codes. At
any given time, a page memory is connected to 1) the instruction bus,
which allows AP control to read instructions from the page; 2) the
pager bus, which allows the program pager to load the page; or 3) the
sequential control bus, which allows sequential control to read items
from the page. If one of these buses should try to access a word in
the page memory while the port is set to another bus, a hangup results.
Hangups, which are sensed by error detectors, cause an interrupt in
sequential control.

HIGH SPEED DATA BUFFER

The High Speed Data Buffer (HSDB), like the page memories, uses fast,
bipolar, solid-state elements and 1is volatile. In the basic
configuration of STARAN-E it contains 512 words. As an option, its
size can be doubled to 1024 words. All buses that can access AP
control memory can access the HSDB, thus making the HSDB a convenient
place to store data and instruction items that need to be accessed
quickly by the different STARAN-E elements.

GER-16422

A port priority switch on the HSDB resolves any conflict among buses.
Each memory cycle 1is given to the highest priority bus requesting an
HSDB address at that time, while other buses requesting HSDB addresses
wait for the next memory cycle. Priorities among buses are as follows:

1) An 1/0 bus to I/0O cabinet (highest priority)
2) Sequential control bus

3) AP control instruction bus

4) Program pager bus

5) AP control data bus (lowest priority)

MAIN MEMORY

The main memory uses nonvolatile core storage. In the basic
configuration it contains 32,768 words (hexadecimal addresses 0000
through 7FFF).

Like the High Speed Data Buffer (HSDB), the main memory is accessible
to all buses that can access AP control memory (through a priority port
switch that gives each memory cycle to the highest priority bus
requesting a main memory address). The priorities of the buses are the
same as those for the High Speed Data Buffer.

The main memory 1is used to contain the AP control programs. Because
the main memory is slower than the page memories, it 1is recommended
that program segments be moved into the page memories for execution.
Also, since the main memory is accessible to all buses having access to
AP control memory, it is also useful as a buffer for data.

DIRECT MEMORY ACCESS

A block of AP control memory addresses 1is reserved for the Direct
Memory Access (DMA) channel to external memory. In the basic
configuration this block can contain up to 36,392 addresses
(hexadecimal addresses 8200 through CFFF). If any page memory or the
High Speed Data Buffer is expanded, the DMA block may be reduced.

ADDRESSING

1-10

GER-16422

All buses accessing AP control memory can access the DMA block. A
priority port switch resolves any interbus conflicts, giving each
access cycle to the highest priority bus requesting a DMA address at
the time. Priorities among buses are the same as those for the High
Speed Data Buffer.

General

Each AP control memory word contains 32 bits of either data or
instructions. Each word is given a 16-bit address.

Main Memory

The main memory contains 32,768 words of memory in the basic
configuration. These words are assigned hexadecimal addresses 0000
through 7FFF.

Certain words in the main memory are dedicated to special purposes.
For the basic configuration of ' STARAN-E, these 1locations are as
follows:

Hexadecimal Address Dedicated Usage

0000 First AP control instruction when activated
0001 AP control interrupt 1

O000F AP control interrupt 15

When the AP control becomes active, the instruction at 0000 is the
first instruction executed. It is usually a branch instruction to the
beginning of the first program segment to be executed.

GER-16422

Page Memories

The three page memories, 4096 words each, that are included in the AP
control memory are designated Page 0, Page 1, and Page 2. In the basic
configuration, Page 0 contains hexadecimal addresses D000 through DFFF;
Page 1 contains hexadecimal addresses E(QOO through EFFF; and Page 2
contains hexadecimal addresses FO0O through FFFF.

High Speed Data Buffer

The High Speed Data Buffer contains 512 words of memory in the standard
configuration, but can be doubled to 1024 words on an optional basis.
In the basic configuration, the High Speed Data Buffer contains
hexadecimal addresses 8000 through 81FF.

Direct Memory Access

A block of AP control memory addresses is reserved for the Direct
Memory Access (DMA) channel to access the memory of a host computer.
This block can contain up to 20,480 addresses which are assigned
hexadecimal addresses 8200 through CFFF. This block can be reduced if
page memories or the High Speed Data Buffer is increased in size.

AP CONTROL MEMORY SUMMARY

Table 1-1 summarizes the AP control memory characteristics. The
characteristics of each memory and the connection of each bus to each
section are given.

1-11

GER-16422

Table 1-l. AP Control Memory Characteristics

MEMORY BLOCKS

l | l
| | _ l
ITEM	CORE	PAGE 0	PAGE 1	PAGE 2	HSDB	DMA
f=-	-	-	-	-	-	
Implementation	Mag. Core	Bipolar	Bipolar	Bipolar	Bipolar	
	-	-	I	I		
Volatile	No	Yes	Yes	Yes	Yes	l
	-	- [-	===	I I		
Number of Words	32,768	4096	4096		512	19,968
I I-	- -1- I	-	- l			
Bits Per Word	32	32	32		32	32
[-	- [-				
First Octal Address	000000	150000	160000		- 100000	101000
-		e - !				
Last Octal Adress	777777	157777			100777	147777
	==				-	
First Hex Address	0000	DOOO			8000	8200
[-	-		I			
Last Hex Address	7FFF	DFFF			81FF	CFFF
			I	-		
Port Switch	Priority	Ext Fcn			Priority]	Priority
	-	=== I l	-			
	Buffered 1/0	RW	-			RW
I - :	-	-				
	AP Control Data	RW	- [RW	RW
B	[-	-			I	
U	AP Control Instr.	R	R			R
s	-	-	- l		-	-
	Program Pager	R	W			R
[-	-				
	Sequential Control	RW	R			RW

-~ Bus cannot access memory

R Bus can only read from memory

W Bus can only write into memory

RW Bus can both read and write into memory

* Depends on customized use of DMA

1-12

GER-16422

AP EXECUTION CONTROL

GENERAL

The major function of the AP control is to control the STARAN-E MDA
arrays. AP control fetches instructions from the AP control memory. A
program counter contains the address of the instruction, while an
instruction register contains the instruction itself. Some
instructions perform array operations, while others perform AP control
functions. AP control consists of the following elements:

1) Instruction Register

2) Program Control

3) Block Transfer Control

4) Common Register

5) Field Pointers and Length Counters
6) Response Store Control

7) Array Control

8) General Registers

INSTRUCTION REGISTER

The instruction register contains the instruction being executed. The
instruction loaded into the instruction register is received from AP
control memory via the instruction bus. Parity is checked at the
instruction register. The instruction register contains 32 bits which
are numbered from O to 31 with bit 0 at the left. Portions of the
instruction register are used as a direct source of data or addresses
as a function of the instruction being executed.

PROGRAM CONTROL

The sequence in which instructions are obtained from AP control memory
is controlled directly by the program control logic. The program
control 1logic comnsists of the following: the Program Counter, the
Start Loop Marker, the End Loop Marker, the Comparator, and the Status
Register.

1-13

1-14

GER-16422

Program Counter

The Program Counter contains the address of the instruction being read
from control memory. It is a 16-bit counter incremented by AP control.
The Program Counter may be loaded from the bus logic; e.g., a branch
instruction loads an address. The contents of the Program Counter form
bits 0 through 15 of the program status word.

Start Loop Marker

The Start Loop Marker is wused to store the address of the first
instruction immediately following a loop instruction. The Start Loop
Marker is a 16-bit register loaded directly from the Program Counter at
the start of an instruction loop. It is loaded into the Program
Counter when the last instruction of the loop has been executed and the
loop is to be repeated.

End Loop Marker

The End Loop Marker is used to store the address of the last
instruction of a loop. The End Loop Marker is a l6-bit register loaded
from the rightmost 16 bits of the loop instruction.

Comparator

The Comparator compares the address contained in the end loop marker
with the address in the Program Counter. The Comparator is a full
16-bit Comparator, the output of which is transmitted to control as an
indication that the end of a loop has been reached. The control then
loads the Start Loop Marker contents into the Program Counter if the
loop is to be repeated.

Program Status Register

The program status register consists of three basic parts: (1) a 16
bit program counter (2) a 4 bit interrupt mask for the 15 AP control
interrupts, and (3) a 4 bit condition code consisting of an overflow
bit, a carry bit, a negative result bit, and a zero result bit.

GER-16422

Bus Logic

The bus logic provides a common data path for all pertinent registers
of AP control and the data bus from control memory. The bus is 32 bits
wide. Registers of 1less than 32 bits are grouped to form a 32-bit
word. Details of registers connected to the bus and register grouping
are shown in Figure 1l-4.

Data transmitted via the bus logic passes through the bus shift logic.
The bus shift logic shifts the bus word left end around by either O,
8, 16, or 24 bit positions. The amount of shift is controlled by the
instruction moving the data. Data received from AP control memory is
checked for correct parity as it passes the bus shift logic. Data
stored in the control memory has an odd parity bit generated by the bus
shift logice.

BLOCK TRANSFER CONTROL
Data Pointer Register

The Data Pointer register contains the control address for the data bus
for block transfers. The Data Pointer is a l6~bit counter. The Data
Pointer can be stepped with each transfer within a data block.

Block Length Counter

The Block Length counter, a 16-bit decrementing counter, controls the
length of a data block transfer.

COMMON REGISTER

The Common register contains the argument for a search operation
performed upon the MDA arrays, the input data to be stored into an
array, or the output data loaded from an array. The Common register
contains 32 bits which are numbered from 0 to 31. Bit 0 is the left
(most-significant) bit and bit 31 the right (least-significant) bit.
The search argument or array input data is loaded via the bus logic.
The array output data is loaded through a mask generated by the mask

1-15

GER-16422

generator. The use of the mask allows formatting of an output word
from noncontiguous data in an array.

The mask generator generates a mask pattern to be used in loading array
output data into the Common register. The mask enables data to be
loaded for a number of contiguous bits. The mask generator requires
the bit addresses of the most and least significant bits to be loaded.
All bits between and including these limits are loaded, while those
outside these limits are unaltered.

FIELD POINTERS AND LENGTH COUNTERS

Field pointers generally contain bit slice or word addresses in the MDA
array operations. The field length counters control the number of bits
to be operated on in sequence. There are three field pointers and two
field length counters. In addition, one register is used as a
temporary pointer or can contain a shift code for certain array
operations. A selector is used to route either field pointer 1, 2, or
3 or the address field of the instruction register to the array. These
registers are 8 bits in length and their contents range from 0 to 255.
When attempting to increment above 255, the register will return to
zero; when attempting to decrement below zero, the register contents
become 255. The field length counters can only be decremented.

Field Pointer 1

Field Pointer 1 plus base register RC specifies an array word or bit
address for an MDA operation. FPl is also used to specify the address
of a selected bit of the Common register to be used for a search
instruction. Field Pointer 1 (like field pointers 2 and 3)is an 8-bit
counter. In addition, as a result of the resolve operation, Field
Pointer 1 will be loaded with the number of the array module containing
the first responder (i.e., first selected word whose Y bit is set to
One) .

Field Pointer 2

Field Pointer 2 plus base register RD specifies an array word or bit
address for an MDA array operation. Also, as a result of a resolve
operation, FP2 will be loaded with the word address of the first
responder in the array specified by FPl.

1-16

GER-16422

Field Pointer 3

Field Pointer 3 plus base register RE specifies an array bit or word
address.

Field Pointer E

Field Pointer E 1is an 8-bit counter. It can be used for temporary
storage of an array bit or word address, or it can contain a shift
constant for certain MDA operations.

Field Length Counter 1

Field Length counter 1 and Field Length counter 2 are 8-bit counters.
The length counters can only be decremented. When the contents of a
field counter become zero, a signal is sent to AP control for test
purposes. This permits the program sequence to be altered by a branch
if a field 1length counter becomes zero. Field Length counter 1
contains the number of cycles for a loop instruction.

Field Length Counter 2

Field Length counter 2 may be used to control the cycles of a major
instruction loop, such as multiply fields.

RESPONSE STORE CONTROL

The response store control logic generates the control signals required
by the MDA arrays and buffers them to insure correct timing at the
response store. The response store control consists of the control
line conditioner and the control line buffer.

1-17

GER-16422

Control Line Conditioner

The control line conditioner generates the control signals required to
manipulate the response store. These signals are generated as a
function ‘of the instruction register, a selected bit of the Common
Register and the inclusive~OR output from the resolver.

Control Line Buffer

The control line buffer contains the control signals transmitted to the
MDA arrays which allows overlapping of array instructioms.

MDA ARRAY CONTROL

1-18

Control lines to the MDA arrays not generated by the response store
control are generated by the array control. The array control logic
selects which arrays are to be used and controls such things as
bit/word mode, store masked, and shifting.

Array Select Register

The Array Select register establishes which array modules are to be
enabled for an operation. The Array Select register is 32 bits wide.
Each bit position controls one array. Bit O corresponds to Array O,
and a 1 in a bit position enables the corresponding array. The Array
Select register contents are also used by the resolver logic.

Array Access

The array access logic selects either the Array Select register or
Field Pointer 1 to generate the array enable signals. When Field
Pointer 1 is selected, the five right-most bits of the pointer specify
the one array to be enabled. This 1is done without modifying the
contents of the Array Select register. Such operations as loading one
item of data from an array or storing one item of data into an array
enables only one of the MDA arrays. When more than one array is
involved in an operation, the Array Select register is used to select
the arrays to participate.

GER=-16422

Array Address Mode

The array address mode 1s determined by the value in the most
significant 8 bits of one of the six array address base registers.
Table 1-2 illustrates how a particular base register is selected.

GENERAL REGISTERS

There are 16 general 32-bit registers, RO through RF. Fourteen of
these registers have various special uses.

RO-R7

Registers RO through R7 are used as 1index or branch and 1link
registers. R7 is also used by the special branch and link instruction
whose mnemonic is CAL.

R8, RB-RF

These six registers serve as array address base registers. Each of
these registers contains a 16~bit array base address and an 8-bit
storage mode. The base register format is defined in Figure 1-3.

0 78 15 16 31

I I I I
| MODE | NOT | ARRAY BASE ADDRESS |
| I I

DEFINED |

Figure 1-3. Base Register Format

1-19

1-20

Table 1-2.

ADDRESSING

MODE

DIRECT

INDIRECT
INDIRECT
INDIRECT
INDIRECT
DIRECT

INDIRECT
INDIRECT
INDIRECT
INDIRECT

*1(8-15) refers to bits 8 through
instruction format.

(FP1)
(FP2)
(FP3)
(FP12)

(FP1)
(FP2)
(FP3)
(FP12)

GER-16422

Array Base Register Selection

INSTRUCTION
BIT BIT BIT BIT ADDRESS ADDRESS#*
5 7 8 9 BASE DISPLACEMENT
0 0 - - RB I1(8~15)
0 1 0 0 RC FP1
0 1 0 1 RD FP2
0 1 1 0 RE FP3
0 1 1 1 RF FP2
1 0 - - RB I1(8-15)
1 1 0 0 R8 FP1
1 1 0 1 R8 FP2
1 1 1 0 R8 FP3
1 1 1 1 R8 FP2
15 of the MDA machine

language

These registers, along with R9 and RA, may be used
as general purpose accumulators.

GENERAL REGISTERS

- —d
RF| LINK PTR BASE |
RE| FP3 BASE |
RD| FP2 BASE |
RC| FP1 BASE |

+ -+
RB| DIRECT BASE |
RA| |

 — -—t
RI| |

+ -+
R8| MDA STACK PTR |
R7| SYS RETUKN REG |
R6| SYS STK PTR |
R5| +

+== -—t
R4| |

o -t
R3| |

o INDEX ~-—+
R2| |

+=-- REGISTERS =-—+
R1| |
+=- -
RO| |

g de
LA v

0 31

Figure 1-4.

GER-16422

AP CONTROL REGISTERS

cl CH [cL |
AS| ASH | ASL |
+ —+ —+

| BL | DP |
PSW| PC | O |cc|IM|
| FL2 | FPE | 0 |

F| FL1 | FP3 | FP1 | FP2 |
+ ' + ot

0 8 16 24 31

PC Program Counter
IM Interrupt Mask
CC Arithmetic Condition Code
N Negative Result Bit
Z Zero Result Bit
0 Overflow Bit
C Carry Bit

CH Common, High-half

CL Common, Low-half

ASH Array Select, High-half
ASL Array Select, Low-half
BL Block Length

DP Data Pointer

STARAN Register Map

1-21

MDA MEMORY

GENERAL

1-22

GER-16422

Each STARAN-E array consists of 256 words (rows) with an optional
number of bits per word. The basic array contains two types of memory:
(1) a high speed bipolar section, and (2) a slower speed MOS section.
An array may consist of up to 7K bits per word of high speed memory
(K=1024). The amount is variable in 1K dincrements. An array may
contain a maximum of 64K bits per word. The slower speed MOS portion
is variable in 4K increments. Associated with each word of array
memory is a 3-bit processing element consisting of three l1-bit MDA
registers, M, X, and Y, i.e., one bit for each word of array memory.
Also included 1in each array 1is a permutation (flip) network to
facilitate data manipulation and interword communication, and a 256 bit
wide data path to a Multiplexed Input/Output Unit. The MDA array
consists of three basic components: the array memory, the permutation
(flip) network and the MDA registers. As many as 8 MDA arrays may be
contained within one system. Any combination from l to 8 arrays may be
selected and operated on concurrently.

Each basic array is organized as a matrix of 256 words by 9216 bits of
solid-state storage. By use of a special organization within the
array, access may be made in either the bit or word direction.
Consider an array as organized into square segments of 256 words by 256
bits per word. The basic array would contain 36 such segments. A word
of 256 bits or a bit slice, bit n of all 256 words, of any segment may
be accessed. The permutation network can shift and rearrange bits in
the response store portion of the MDA. The response store portion of
the array consists of 256 response store elements. The M, X, and Y
registers (256 bits each) may be used as temporary storage of data
loaded from the array or may contain the data to be stored into the
array. The X and Y registers can perform logic functions on array
data. The M (MASK) register is used as a mask to select which words
of array memory participate in an array store operation. The Y
register is used as a responder by the resolver in a search type
operation. The X register is used as temporary storage when performing
logic operations. The X and Y registers can also perform logical
functions simultaneously with the load operations.

MDA array input and output may be either 32 bits via the Common
Register or 256 bits via the MDA registers or MIO.

GER-16422

ADDRESSING

Addressing within the MDA arrays 1is represented in hexadecimal
notation. The four basic areas to be addressed are arrays, words, bit
columns, and fields.

Arrays

Addressing of arrays is accomplished by an address from 0, the first
array, to 7, the 1last array. The number of arrays within a system,
therefore, ranges from 1 to 8 as dictated by the requirement placed on
the system. The internal organization and addressing of all arrays is
identical.

Words

Addressing of a word within an array is accomplished by an address from
0, the first word, to 255, the last word. The basic array word
consists of 9216 bits. Any 256-bit section may be accessed in parallel
or divided into eight fields of 32 bits each and accessed via the
Common Register.

Bit Columns

Addressing of a bit position within an array is accomplished by an
address from 0, the most-significant (left), to 9216, the
least-significant (right) bit position. Bit (n) of all words is .
accessed by using address (n).

Fields

Addressing of a particular 32 bit field of an array word within an
array segment is accomplished by an address from O, the
most-significant (left) field, to 7, the least-significant (right)
field. Each field contains 32 contiguous bits within the word being
addressed. The most-significant field starts at the most-significant
bit position.

1-23

1-24

GER-16422

Access Mode

The array memory can be accessed horizontally, vertically or any
combination thereof. Control of the access mode is via an 8-bit code.

There are 256 access modes, each giving a unique mapping of data within
an array.

The most commonly used access modes are mode 0 and its complement, mode
FF (255)« Mode 0 is the bit-slice mode where one bit of each array
word 1is accessed. This mode is used for mapping single bit flags and
arithmetic fields. Mode FF is word mode and accesses 256 bits of one
array word. Other modes are intermediate to the bit-slice and word

modes since they access some bits of some words. Some useful modes are
defined in Table 1-3.

Table 1-3. Access Modes

Number of Number of
selected accessed

Mode Mode rows in bits in the
(Hex) (Binary) each array selected rows
00 00000000 256 1

01 00000001 128 2

03 00000011 64 4

07 00000111 32 8

OF 00001111 16 16

1F 00011111 8 32

3F 00111111 4 64

7F 01111111 2 128

FF 11111111 1 256

FE 11111110 2 128

FC 11111100 4 64

F8 11111000 8 32

FO 11110000 16 , 16

EO 11100000 32 8

Cco 11000000 64 4

80 10000000 128 2

GER-16422

OPERATIONS .

Load

The operations performed within the associative array can be grouped‘

into the following categories: 1load, store, logical, resolve, and
exchange.

Data loaded from the array memory can be sent to the 256-bit output bus
or loaded into one of the MDA registers. By specifying a field address
(section), a field (section) of one word may be loaded from the array
memory for output over the 32-bit output bus to the Common register.
Data is loaded from the array memory in a mode as selected by the
particular base register. One MDA register may be loaded with the
contents of another MDA register. All loads from the array storage are
nondestructive. Logic may be performed on the X and/or Y registers
simultaneously with the load operation.

Store

Data is stored into the array memory in a mode as selected by the
particular base register. Data to be stored may come from the MDA
registers, the 32-bit input bus, or the 256-bit input bus (MIO). The
data, regardless of source, may be stored through a mask contained in
MDA register M.

Logical

To perform operations such as exact-match search and add fields,
certain logical operations must be performed on the data in the MDA
registers. Data loaded from the array memory may be logically combined
with the current contents of the MDA registers to accomplish these
operations. Data may also be tramsferred among the MDA registers with
logic functions applied to the X and/or Y registers.

1-25

1-26

GER-16422

Resolve

The array number and the address of the first Y register bit set is
continuously resolved. This address and the inclusive-OR of all Y
register elements are made available to control. This address (which
is stored in FPl and FP2) may be used in succeeding operations.

Exchange

Items of 256-bit data may be transferred between array modules. All of
the normal MDA instructions may also be performed in this mode.

GENERAL

GER~16422

SECTION III. PROGRAM PAGER

The function of the program pager is to transfer program segments from
the main memory to the page memories.

Under normal programming practice, the pager is activated by AP control
when a new program segment is to be transferred to a page memory. The
program pager transfers the segment one word at a time at a rate
dictated by the source memory, while AP control executes instructions
from previously loaded segments. When the pager completes the
transfer, it restores the page memory port switch to the AP instruction
bus and halts.

The program pager contains three registers (see Figure 1-5). The GET
address register contains a 16~bit AP control memory address. If the
pager 1is in the midst of moving data, the GET address points to the
memory location containing the next source word to be moved. At other
times the GET address register acts like a program counter, pointing to
the location of the next pager instruction to be executed.

The PUT address register holds a l6~bit AP address. It points to the

memory location into which the next . destination word 1s to be put
during a data move operation.

The 14-bit COUNT register holds the number of words still to be
transferred during a transfer operation.

1-27

GER-16422

« AP CONTROL MEMORY AND MEMORY PORT PRIORITY .

.+ - | PORT PRIORITY |
. |PORT SWITCH LOGIC]| |SWITCH LOGIC

-3 ot . _.}_
.

I
I
|
|
l
| .
l
I
I
I
|

R -+
. ~—= |FAN-OUT | 4~==~~ | .
. Fom————— —+ .
. | .
. | m————— .
. | .
. + -+ + + | + -+
« |PUT REGISTER|4~==| PAGER |=--+»|GET REGISTER]| .
« | (16-BIT) | |CONTROL| | I (16-BIT) | .
.+ -+ + + | + + .
. A A A I A . oo —+
. | I + + » | EXTERNAL |
. | ¥ | . | FUNCTION|
. I + -+ | . | LOGIC |
. | | COUNT REGISTER| | . fomm——— -+
. | | (14=-BIT) | | .
. | + + | .
. I A I .
. | -+ .
. PROGRAM PAGER .

Figure 1=-5. Program Pager Block Diagram

OPERATION

Pager transfer speed is governed by the cycle time of the source memory -
which can be slower than AP control execution speed. To keep STARAN-E

1-28

GER-16422

from being 'pager bound", AP programs should be segmented carefully.
An ideal program segment will contain enough long 1instructioms,
subroutine calls and loops, etc., so that before AP control leaves the
segment, the pager has enough time to get the next segment loaded in a
page memory. If all segments are ideal, AP control will never wait for
the pager.

Each page memory has a port switch to prevent AP control from starting
execution 1in a segment before the pager has loaded it. A premature
attempt to execute instructions in a page memory that is still being
loaded by the pager will be delayed until the pager has switched the
port switch to the instruction bus.

Pager operation is initiated by an external function code that loads
the GET address register. With one external function, the current pager
operation can be stopped in midstream and a new operation started. For
instance, suppose from program segment 1 AP control jumps to either
program segment 2 or to program segment 3, depending on some condition.
Most of the time it jumps to segment 2. In this case, AP control can
initiate the loading of segment 2 as it begins executing segment 1, so
that 1little or no time is lost in waiting for the pager. In the rarer
case, when AP control jumps to segment 3, it can stop loading segment 2
in midstream, if necessary, and start the loading of segment 3.

When the program pager is running (busy), it fetches pager commands and

source data from AP control memory. Its commands are sufficiently
general to permit flexible pager programming.

1-29

GENERAL

GER-16422

SECTION IV. EXTERNAL FUNCTION CONTROL

Numerous hardware functions are under the control of external function
(EXF) logic. These include page memory port switches, interlocks, AP
and sequential control dinterrupts, AP control and program pager
activity control, and resets and clears. Control and status sensing of
these functions are accomplished by issuing 19-bit external function
commands to EXF logic and receiving l-bit sense signals in return.
Three elements of STARAN-E can issue EXF commands: AP control, program
pager, and sequential control (see Figure 1-1). EXF logic 1is
expandable to allow receipt of EXF commands from the Custom I/0 Unit
and control of other hardware functions in the Custom I/0 Unit. A
resolver in EXF logic allows only one EXF command to be treated at a
time.

The resolver 1in EXF logic resolves conflicts among the four elements
issuing function codes. One function code at a time is accepted by EXF
logic. The interrogation and/or control called for is performed and
then another function code 1is accepted if one is present. A function
code can 1interrogate and control an element in one operation without
interference from another function code.

The classes of function codes are as follows: page memory port
switches, interlocks, program pager, error control, AP control
interrupts, sequential control interrupts, AP control activity, AP
control 1loop indicator, and resets and clears. These clagses are
described in the following sections.

PAGE MEMORY PORT SWITCHES

1-30

Each page memory has a port switch that connects it to one of three
buses. The port switch 1s controlled by external function codes. At any
given time, a page memory is connected to 1) the instruction bus, which
allows AP control to read instructions from the page; 2) the pager bus,
which allows the program pager to load the page; or 3) the sequential
control bus, which allows sequential control to read items from the
page. If one of these buses should try to access a word in the page
memory while the port switch is set to another bus, a hangup results.
Hangups, which are detected by error detectors, cause an interrupt to
sequential control.

INTERLOCKS

PROGRAM PAGER

GER-16422

This class of external function codes allows interrogation and control
of the port switches. The current state of the selected port switch is
interrogated and, depending on whether it is on the sequential bus,
the instruction bus, or the pager bus, one of the sense bits of the
function code is returned. The current switch status is used to select
the field of the function code containing the new switch setting.

The EXF logic contains 64 stored bits called interlocks. These bits
have no predetermined meaning; software can assign functions to the
interlocks and use them for various purposes. They are useful for
passing signals among STARAN-E elements, such as what programs should
be executed, etce. Function codes allow the current state of an
interlock to be sensed and a new state to be entered in one operation.

Sixteen interlocks (hexadecimal addresses 00 through OF) can be
controlled manually by panel switches and are displayed via 1lights on
the interlock panel to facilitate communication with an operator. The
other 48 interlocks (hexadecimal addresses 10 through 3F) can only be
controlled and sensed via software.

Interlocks are volatile so their states are lost whenever power is
lost.

FUNCTIONS

Certain external function codes allow program pager operation to be.
initialted, halted, modified, and sensed.

The program pager has two states: off and busy. A function code allows
the state to be sensed and changed. If the current pager state is off,
the function code can either leave it in the off condition or turm it

on, in which case (if it is operative) the pager will become busy.

If the current pager state is busy, the function code can either turn
the pager off or leave it in the busy condition.

1-31

GER-16422

ERROR CONTROL FUNCTIONS

Error detectors are included in various elements of STARAN-E to sense
hardware faults and program errors. Each error detector sets an error
indicator when an error is detected. Each error indicator is given a
number by which it may be sensed, set and/or reset by function codes.
If any error indicator is set, an interrupt to sequential control is
generated. Also, certain error indicators will make the program pager
inoperative and others will make AP control inactive. Since an error
indicator can be set by a function code, errors can be simulated in
order to check out error handling routines, etc.

Error indicators in the basic STARAN-E configuration are shown in Table
2=4.

ASSOCIATIVE PROCESSOR CONTROL INTERRUPTS

The AP control interrupt is a class of function codes used to sense,
set, and reset the state of 15 programmable interrupts to AP control.
AP control interrupts are given hex addresses 01 (lowest priority) to
OF (highest priority).

Bits 28 through 31 of the program status word (PSW) in AP control
contain an interrupt mask. AP control accepts interrupt n if the
following conditions are satisfied: 1) AP control is active and at an
interruptable point; 2) the interrupt mask is 1less than n; 3) no
interrupt of higher priority is set; and 4) interrupt n is set. When AP
control accepts interrupt n, it fetches the next instruction from hex
address 0000+n (without disturbing the content of its program counter).
Normally, this dinstruction is a swap PSW instruction which saves the
old PSW and loads the new PSW, causing AP control to enter an interrupt
routine. The interrupt mask of the new PSW must be n or greater to
prevent AP control from accepting interrupt n again until the interrupt
routine is complete and has issued an EXF command to reset interrupt n.
If the new interrupt mask is less than n, error 00 will be generated.

SEQUENTIAL CONTROL INTERRUPTS

1-32

The sequential control interrupt class of function codes can sense,
set, and reset the state of eight programmable interrupts to sequential
control. Table 1-4 shows the vector addresses of the sequential
control interrupts, together with the priority levels.

GER-16422

Table 1-4. Sequential Control Interrupt Vector Addresses

Vector Address
(Octal) Priority Level Relative Priority

334
330
324
320
314
310
304
300

S PPLULUOON N

When the sequential control processor priority is set to n, . all
requests for interrupts at level n and below are ignored.

Bits 19 through 27 of the instruction select one of the sequential
control interrupts. The current state of the selected interrupt is
sensed and a sense bit is returned. Also, a new state may be assigned
to the interrupt.

AP CONTROL ACTIVITY

An external function code senses and controls the AP control activity.
AP control has two states: inactive and active. In the active state it
fetches instructions from AP control memory and exercises the MDA
arrays.

When switched from the inactive state to the active state, AP control
fetches 1its first instruction £from hexadecimal address 0000 without
disturbing the program counter. It could be a no-op, which would cause
AP control to continue with its previous program, or it could be a swap
program status word instruction, which would cause the old status of AP
control to be saved and a new program entered.

1-33

GER-16422

AP CONTROL LOOP INDICATOR

When AP control executes a loop-type instruction, a loop indicator is
set in the loop indicator function code and remains set until all
repetitions of the 1loop are completed. The indicator is neither
disturbed by changes in activity nor by interrupts. Execution of a
loop instruction when the loop indicator is still set from a previous
loop is illegal. Function codes allow the loop indicator to be sensed
and/or reset. Resetting of a currently set loop indicator causes AP
control to forget the loop instruction that set it, even if all
repetitions of the loop were not completed.

RESETS AND CLEARS

1-34

Other external function codes are reserved for selective resetting and
clearing of various STARAN-E registers and status indicators. They are
used for clearing any hangup conditions that may arise.

GENERAL

GER-16422

SECTION V. SEQUENTIAL CONTROL

The sequential control device used in STARAN-E consists of a sequential
processor (SP) with 16K of memory, interface logic to connect the SP to
other STARAN~E elements, and peripheral wunits, which include a
keyboard/monitor, disk drive, card reader, paper tape reader/punch, and
line printer. The sequential controller provides: .

1) A means to initially load AP memory

2) A communication 1link between the operator and STARAN-E for
on-line control and monitoring

3) Off-line capabilities for assembling and debugging STARAN-E
programs

4) Control for STARAN-E maintenance and diagnostic program
routines

5) Housekeeping capabilities

SEQUENTIAL PROCESSOR ARCHITECTURE

The sequential processor is a 16-bit general-purpose minicomputer using
two’s complement arithmetic. The 16,384 16-bit words (32,768 8-bit
bytes of memory) have octal addresses 000000 through 077777. All
communication between system components 1s performed on a single
high-speed bus. There are eight general-purpose registers, which can be
used as accumulators, index registers, or address pointers, and a
multilevel automatic priority interrupt systeme.

The sequential processor features’include:
1) Single and double operand addressing
2) 16-bit word and 8-bit byte addressing

3) Simplified list and stack processing through auto-address
stepping (auto-incrementing and auto-decrementing)

1-35

1-36

GER-16422

4) Eight programmable general-purpose registers
5) Data manipulation directly within external device registers

6) Addressing of device registers using normal memory reference
instructions

7) Asynchronous operation of SP memory, central processor, I/0
processor, and 1/0 devices

8) Hardware interrupt priority structure for devices peripheral
to the SP

9) Automatic interrupt indentification without device polling
10) Direct addressing of the SP 16K words or 32K bytes

A single common path connects the SP memory and all peripherals.
Addresses, data, and control information are sent along the 56 lines of
the bus. All instructions that can be applied to data in the SP memory
can be applied as well to data in peripheral device registers.

The common path lines are bi-directional. A peripheral device register
can be either read or set by the SP or other peripheral devices; thus
the same register can be used for both input and output functions.

Communication between two devices on the common path is in the form of
a master-slave relationship. A controlling device (termed the- bus
master) controls the bus when communicating with another device on the

"bus (termed the slave).

Common path communication is interlocked so that for each control

signal issued by the master device, there must be a response from the
slave device in order to complete the transfer. The maximum transfer
rate on the path 1is one 16-bit word every 750 nanoseconds or 1.3
million 16-bit words per second.

GER-16422

SEQUENTIAL CONTROL INTERFACE

GENERAL

Communication between sequential control and other STARAN-E elements is
accomplished using certain interrupt vector addresses. Four forms of
communication are described below.

1) Direct access to AP control memory: Words in AP control
memory are given sequential control bus addresses to
facilitate transfer of data and instructions between AP
control and sequential control.

2) Register Readout: Certain registers in STARAN-E and in its
associated I/0 wunit, where applicable, can be read by
sequential control. This facilitiates program debugging and
hardware maintenance and testse.

3) External functions: External function codes can be
transmitted to the external function logic and sense bits
received. This allows sequential control to activate and
deactivate AP control, issue interrupts, and perform many
housekeeping functions.

4) Interrupt acceptance: Other elements of STARAN~E can issue
interrupts to sequential control by issuing certain function
codes to the external function logice. Also, when errors such
as parity errors are detected, a sequential control interrupt
is dissued. This function allows real-time control of the
resources in sequential control.

Detailed descriptions of these forms of communication are given in the
next four subsections.

DIRECT ACCESS TO AP CONTROL MEMORY

Sequential control can read and write AP control memory data. For this
purpose AP control memory is considered to be divided into 16 groups.
Each group contains 4096 32-bit words (16,384 bytes). Group O contains
AP octal addresses 000000 through 007777. Group 1 contains addresses
010000 through 017777, etc. Group 15 contains addresses 170000 through
177777.

1-37

GER-16422

To access any of the 16,384 bytes of a group, a sequential control
program should first store the group number in a special 4-bit register
called the Group register (GRP), whose sequential octal address is
164064, This register can be read, written, and incremented by
sequential control.

The 16,384 bytes of the selected group can be accessed using sequential
control addresses 100000 through 137777. Addresses 100000 through
100003 access bytes of the first AP control memory word in a group,
addresses 100004 through 100007 access bytes of the second memory word,
and so on. Addresses 137774 through 137777 access bytes of the last
word in the group. '

Addressing of bytes within an AP control memory word takes place from
right to left; e.g., address 100000 accesses the rightmost byte and
address 10003 accesses the leftmost byte of the first memory word in
the group.

Addressing of 16-bit halves of AP control memory words also takes place
from right to left, using even addresses; e.g., address 100000 accesses
the right half and address 100002 accesses the left half of the first
memory word in the group.

Words in Page O, Page 1, Page 2 memories can only be read by the
sequential controller. Other AP control memory words can be both read
and written by the sequential controller. '

REGISTER READOUT

1-38

To assist personnel during program debugging, hardware maintenance, or
test operations, certain STARAN-E registers and PIC registers can be
read by sequential control by reading certain bus addresses. The
sequential control addresses of the registers are shown in Table 1-5.
The octal addresses for these registers are in the range of 164000 to
164777. The majority of these addresses are read-only registers. The
remainder can be both writtemn and read. Some of the read-only
addresses have special functions to facilitate firmware debug of the
ROM programmed Register Processing Unit. Load operations into all
read-only registers are ignored. AP control must be inactive when
reading AP registers or a sequential hangup error will be generated.

Table 1-5.

OCTAL REGISTER
ADDRESS SYMBOL
164000 CL
164002 CH
164004 ASL
164006 ASH
164010 DP
164012 BL
164014 IMASK
164016 PC
164022 FPE
164023 FL2
164024 FP2
164025 FP1
164026 FP3
164027 FL1
164030 EFS
164032 EFB
164034 DAL
164036 DAH
164040 GET
164042 PUT
164044 CNT
164050 ELM
164052 SLM
164054 PFMT
164056 PFMC
164060 IRL
164062 IRH
164064 GRP
164065 HOME

GER-16422

Sequential Control Readout Registers

REGISTER

AP CONTROL REGISTERS

Common (low order)

Common (high order)

Array Select (low order)

Array Select (high order)

Data Pointer register

Block Length counter

Condition Code & Interrupt Mask
Program Counter

Field Pointer E

Field Length counter 2

Field Pointer 2

Field Pointer 1

Field Pointer 3

Field Length counter 1

External Function register
External Function register
Sequential bus data (low order)
Sequential bus data (high order)
Pager GET address

Pager PUT address

Pager word COUNT

End Loop Marker

Start Loop Marker

Performance monitor timer
Performance monitor counter

AP instruction register (low order)
AP instruction register (high order)
Group register

Home register

LENGTH
IN BITS

ACCESS
MODE

16
16
16
16

16

P Tl T = T ST S SR R SR = o
[s2Ne <M W e We Mo Mo Wi« Mo NNe NEo e We NNe e W e BN BoRNe cJNeJNecle Jeo]

Mo ORI IO ORI IR

= =

1-39

GER-16422

OCTAL " REGISTER LENGTH ACCESS
ADDRESS SYMBOL REGISTER IN BITS MODE

AP BRANCH AND LINK/INDEX REGISTERS

164100 ROL RO (low order) 16 R
164102 . ROH RO (high order) 16 R
164104 RIL Rl (low order) 16 R
164106 RI1H Rl (high order) 16 R
164110 R2L R2 (low order) 16 R
164112 R2H R2 (high order) 16 R
164114 R3L R3 (low order) 16 R
164116 R3H R3 (high order) 16 R
164120 R4L R4 (low order) 16 R
164122 R4H R4 (high order) 16 R
164124 R5L R5 (low order) 16 R
164126 R5H R5 (high order) 16 R
114130 R6L R6 (low order) 16 R
164132 R6H R6 (high order) 16 R
164134 R7L R7 (low order) 16 R
164136 R7H R7 (high order) 16 R
AP ARRAY BASE REGISTER (BIT 5=1)
164140 R8L Array base (low order) 16 R
164142 R8H Array base (high order) 16 R
AP GENERAL PURPOSE ACCUMULATOR REGISTERS
164144 RIL R9 (low order) 16 R
164146 R9H R9 (high order) 16 R
164150 RAL RA (low order) 16 R
164152 RAH RA (high order) 16 R

1-40

GER~16422

OCTAL REGISTER LENGTH ACCESS
ADDRESS SYMBOL REGISTER IN BITS MODE

AP ARRAY BASE REGISTERS (BIT 5=0)

164154 RBL Direct address base (low order) 16 R
164156 RBH Direct address base (high order) 16 R
164160 RCL FPl base (low order) 16 R
164162 RCH FPl base (high order) 16 R
164164 RDL FP2 base (low order) 16 R
164166 RDH FP2 base (high order) 16 R
164170 REL FP3 base (low order) 16 R
164172 REH FP3 base (high order) 16 R
164174 RFL Link Pointer base (low order) 16 R
164176 RFH Link Pointer base (high order) 16 R
AP SPECIAL PURPOSE REGISTERS
164200 ACL Internal processor accumulator (low 16 R
order)
164202 ACH Internal processor accumulator 16 R
(high order) :
164204 MAR RPU memory address 16 R
164206 SCCR STARAN command control 16 R
164210 SRL Internal processor shift (low 16 R
order)
164212 SRH Internal processor shift (high 16 R
order)
164220 STSF AP status flags 16 R
164222 RSM Resume RPU 16 RI
164224 SMAJ Stop every major program loop 16 RI
164226 SMIN Stop every minor program loop 16 RI
164230 SCY Stop after each clock cycle 16 RI
164232 CLDIA Clear diagnostic 16 RI
164234 RPUST RPU self test 16 RI
R A read only address. A load operétion is ignored.

R/W A read or write address.

RI When the address is read it initiates a change in the state of the
Sequential Processor/STARAN interface. The data returned is the STSF.

1-41

1-42

GER-16422

EXTERNAL FUNCTIONS

INTERRUPT

The external function (EXF) logic is used to control and sense various
elements of the STARAN-E. Elements of STARAN-E issue 19-bit external
function codes to EXF logic and receive 1-bit sense returns. Sequential
control issues external functions using two device addresses, 164030
and 164032, that are given the mnemonics EFS and EFB respectively.

To issue an external function, sequential control should put bits 13
through 15 of the external function into bits 2 through O,
respectively, of EFS and then put bits 16 through 31 of the external
function into bits 15 through 0, respectively, of EFB. Loading of EFS
or EFB clears bits 15 and 7 of EFS to zeros. When the external
function is treated by the EXF logic, one of these bits is set to one.
Bit 7 is set to one if the sense bit returned is zero. Bit 15 1is set
to one 1f sense bit returned is one. Bits 7 and 15 of EFS cannot be
set by the bus.

ACCEPTANCE

Sequential control can accept interrupts from other STARAN-E elements.
The interrupts arise from error detection, the panel-interrupt button,
or external functions. Eight different interrupt vector addresses are
provided. Table 1-4 shows the vector addresses and the priority levels.
Bits 7, 6, and 5 in the processor status register (processor priority)
of sequential control determine which interrupts are acceptable. When
the processor priority is set at n, all request for interrupts at
proirity level n and below are ignored.

Some sequential control peripherals may also generate interrupts to
sequential control. Such interrupts do not use this interface.

PERIPHERALS

The STARAN-E Sequential Processor has as standard peripherals a
keyboard/monitor, disk drive, card reader, line printer, and paper tape
reader/punch. Communication between STARAN-E and the peripherals is
handled through sequential control. The keyboard/monitor provides a
communication link between STARAN-E and an operator.

GER-16422

OPTIONAL PERIPHERALS

Additional sequential control peripherals available are additional
standard peripherals as well as magnetic tapes and communication to
remote devices.

1-43

GER-16422

CHAPTER 2

STARAN-E INSTRUCTION SET

GER-16422

SECTION I. GENERAL

PROGRAM SEQUENCE

The AP control fetches instructions from AP control memory sequentially
unless a branch, loop, load program status word, swap program status
word, or interrupt is encountered.

PROGRAM COUNTER

Normally, the Program Counter contains the address of the current
instruction. After an instruction is executed the Program Counter is
incremented to the next sequential instruction. However, when AP
control moves from the 1inactive to the active state the next
instruction will be fetched from a dedicated 1location (0000) in AP
control memory without disturbing the Program Counter. Also, when an
interrupt is accepted, AP control will fetch an_ instruction from
dedicated 1locations (0001 to OOOF) without modifying the Program
Counter. This allows the Program Counter state to be preserved so that
an interrupted program can be continued after an interrupt is
satisfied.

INSTRUCTION LENGTH

STARAN-E instructions are 32 bits in length. The bits of an instruction
are numbered from 0 to 31 with bit O representing the most-significant
bit (left) and bit 31 the least-significant bit (right).

INSTRUCTION TYPES

STARAN-E instructions are divided 1into 3 major types: AP Control
instructions, Program Pager instructions, and External Function
instructions. These three types are discussed in detail in this
chapter.

GENERAL

SPEED-UP MODE

GER=-16422

SECTION II. STARAN AP CONTROL INSTRUCTIONS

Associative Processor (AP) Control instructions are divided into four
classes: MDA Array 1nstructions, Execution Control instructions, AP
Control Register instructions, and General Register instructions.

When executing AP instruction out of a page memory, a speed=-up
capability is provided for certain instruction sequences.

The speed-up mode permits fetching of future instructions while the
current instruction is being processed. When the speed-up mode is
implemented, the execution of an instruction is decreased approximately
50 nanoseconds. '

SPEED-UP CODE

To implement speed-up mode, bit zero of the selected instruction is
cleared to ‘0° and bit one is set to “17.

RULE FOR SPEED-UP MODE

A general rule is that all instructioms which do not reference control
memory or affect the program counter may be executed in speed-up mode.

1 Speed-up mode is active only when executing out of page
memory .

2) The following are instruction types which may have the
speed-up code set:

a) All MDA memory and MDA register instructions

b) Load immediate instructioms

c) AP control register instructions which do not reference
memory

3) The speed-up code must not be set in the following
instructions or the instruction immediately preceeding one of
the following instructions:

a) External functions
b) Branches

4)

KOTE

GER-16422

c) Load immediate to PSW

d) Swap PSW

e) Load AP control register from memory
f) Store AP control register to memory
g) Loop

h) General Register instructions

An additional requirement is that a speed-up code may be set
in one of the valid imstruction types (in 2 above) only if
the instruction is followed by one of the valid types.

The load immediate instruction is not executed faster in
speed-up mode. However, if its speed-up code is set, it
permits faster execution of the instruction which
follows.

CER-16422

MDA ARRAY INSTRUCTIONS

MDA Array instructions perform operations on the MDA arrays and MDA
registers. Each basic array contains 2,359,296 bits, organized as a
matrix of 256 words by 9216 bits. Access may be made in bit mode, word
mode, or a mixed mode. Each MDA array memory module also contains three
256-bit MDA registers: X, Y, and M (Mask).

ARRAY SELECTION

The MDA instruction set operates on all array modules enabled by the
Array Select (AS) register or on a single array module selected by
Field Pointer 1 (FPl). The single array operations are referred to in
this document as Link Pointer mode operations.

The AS register has one bit associated with each array module. If a bit
is set to “1’, the corresponding array module will participate in the
multiple array operations. If the corresponding bit 1is zero, the
corresponding array module will not participate.

Bit O of the AS register selects array module 0, bit 1 of AS selects
array module 1, etc.

For single array operations FPl will contain the array module number in
the right-most 5 bits.

MDA FLIP NETWORK

The flip network in each MDA array module of STARAN scrambles and
unscrambles data to and from the MDA memory. The £flip network can
permute data on transfers from memory to the MDA registers (X, Y and.
M), from the MDA registers to memory, and from MDA register to MDA
register. The flip network is required to scramble the data when it is
stored into memory and to unscramble the data when it is read from
memory .

If the flip network is enabled (i.e., bit 6 of the MDA instruction is
set to “1°) the 256 bit data item is scrambled when stored to the MDA
memory from X or Y and conversely unscrambled when loaded to X and Y
from MDA memory. The scrambled bit pattern is the exclusive-OR (®) of
the true bit position number in X (or Y) and the flip address (address
in bits 8~15 of the MDA instruction or in a field pointer if indirect
addressing is used). Consider the following example:

This example illustrates the bit scrambling which occurs when storing
the X register into word 10 of the MDA memory. The store instruction
will have bit 6 (the flip bit) set to a “1°.

GER-16422

X X Bit # Bit arrangement of word
Bit # @ 10 10 after store operation
0 10 10

1 11 11

2 8 8

3 9 9

4 14 14

5 15 15

6 12 12

7 13 13

8 2 2

9 3 3

255 245 245

When MDA word 10 is loaded back to X (or Y) with the flip bit (bit 6 of
the instruction) set to ‘1’ (flip enabled), the reverse scrambling will
take place (i.e., word 10 bit position numbers will be exclusive=-ORed
with “10’, resulting in X returning to its original order).

Word ‘10’ bit number Original X

108610
11810
8810
9810
14610
15610
12610
13610
2610
3810

L

Ne o ¢« DONOULIESWNREFO

245810 55

It is important to note that M (unlike X and Y) is kept in a flipped
state. The HOME register contains the flip address (current f£flipped
state) of M. For example, if the HOME register contains the value of

GER-16422

“10° (00001010 base 2), then the M register will be in the form shown
above for the bits in word “10° (i.e., the M register will have its
bits arranged as follows: 10, 11, 8, 9, 14, 15, 12, 13, 2, 3, « =« =
245) . When loading data to M from any source, the HOME register
contents will be modified. Since M is flipped automatically when it is
loaded, the flip bit (bit 6 of the instruction) should be cleared to
‘0" when loading M from flipped MDA memory. When storing M to MDA
memory, the flip bit should be set to 1’ and M will be flipped the
same as the MDA memory destination address.

Since M 1is used as a mask to select elements to be stored in a “store
masked’ operation, it is required that the bits of M be scrambled
identically to the destination MDA address. For example, if one wishes
to store X (or Y) masked to MDA array word 20, it is necessary that the
M register bits be rearranged to correspond to the arrangement of the
bits in word 20. To accomplish this, a load M with M (move mask)
operation must be executed with the instruction flip bit set to ‘1° and
the destination address as the flip address.

In the above example, the flip address of this move mask instruction
will contain the address 20. After this instruction is executed, the
HOME register will contain the value 20 and the M register will have
the same bit arrangement as word 20. If one then needs to store the
next value in word 21, it is necessary to do a move mask again with a
‘21’ as the flip address of the instruction. Even though the HOME
register i1s somewhat transparent to the programmer, one must be
constantly aware of its value when any masked store operations are
executed. To further clarify the interaction of the M register and the
HOME register as they relate to various MDA operations, see the
following table.

GER-16422

Operation (1) Flip HOME register Value in Ef fective HOME (2)

bit before bits 8~15 wvalue to register
Operation or field flip after

pointer network operation
X->MDA memory 0 a b 0 a
M->MDA memory 0 a b a a
MDA memory->X 0 a b 0 a
MDA memory->M 0 a b 0 b
X=->X 0 a b 0 a
X=->M 0 a b 0 b
M=->X 0 a b a a
M->M 0 a b a b
X=>MDA memory 1 a b b a
M~>MDA memory 1 a b aéb a
MDA memory=->X 1 a b b a
MDA memory->M 1 a b b b
X->X 1 a b b a
X=->M 1 a b b b
M=->X 1 a b aéb a
M->M 1 a b a®éb b

(1) Y may be substituted whenever X occurs in this table

(2) Home register is altered whenever M is the destination

MIXED MODE ACCESS

Mixed mode is simply a method of breaking up the 256-bit MDA memory
slice into smaller segments and scattering these segments in various
patterns throughout the MDA memory. The MDA access mode 1s an 8-bit
quantity that determines the pattern (stencil) in the MDA memory. It
is contained in the high order 8 bits of the base register. The MDA
address (normally in bits 8-15 of the instruction or a field pointer)
combined with the low order 16 bits of the base registers positions the
pattern in the MDA memory.

A mode value of all zeros (00000000) indicates bit slice access and a
mode of all ones (11111111) indicates word slice access. See the
following figures.

Word O

Word 255

Word O

Word 255

GER-~16422

MODE = “00000000°

Bit Bit
0 255
I X |
| x I
| x |
| x |
l |
| . | One bit
] | of all
| . | words
I I
| . |
I X |
| X |
[x |
| X |
MODE = “11111111°
Bit Bit
0 255
| |
| |
| |
| xxxxxXX « o KAXXXXXX |
I |
| | All bits
| | of one
| | word
| |
| |
| |
| |
| |
| I
I |

2- 10

GER-16422

Several other modes will be illustrated later in this discussiom.
Some general rules for determining the access mode value are:

1) If the mode value contains n ones and 8-n zeros, then the stencil
selects 2**n bits from each of 2%**(8-n) memory words.

2) If the 1left-most n bits of the mode are ones and the right-most
8-n bits are zeros, then the 2**(8-n) memory words will be
together in memory and the 2%**n accessed bits of these words will
be spaced apart. The left-most n bits of the address indicate bit
addresses; the right-most 8-n bits of the address indicate word
addresses.

3) If the right-most n bits of the mode are ones and the left-most
8-n bits are zeros, then 2**(8-n) memory words will be spread
apart in memory and 2%**n accessed bits of these words will be
together. The left-most 8-n bits of the address indicate word
addresses; the right-most 8-n bits of the address indicate bit
addresses.

Example 1:

Assume the mode value 1is 00000111 and, for simplicity of the
discussion, bits 8-15 of the instruction are 00000000.

Ignore the low-order 3 bits of the address, then bump through the
high-order 5 bits. These 5 bits will be word addresses.

00000000 lst word address 0

00001000 2nd word address 8

00010000 3rd word address 16

00011000 4th word address 24

00100000 5th word address 32
etc.

The value of the low-order 3 bits of the address 1is the bit address
which varies from 0 to 7 in each of the words noted above.

In this example, the first 8 bits are stored in word O starting at bit
0, the second 8 bits in word 8 starting at bit 0, etc. (because the
address was zero). If the address had been 00000001 then the first 8
bits would be stored in word 1, the second 8 bits in word 9, etc.

GER-16422

Example 2:

Assume the mode value is 11100000 and the address 1in bits 8-=15 1is
00000000.

Ignore the low-order 5 bits of the address, then bump through the
high-order 3 bits. These 3 bits will be bit slice addresses.

00000000 Ist bit slice address 0

00100000 2nd bit slice address 32

01000000 3rd bit slice address 64

01100000 4th bit slice address 96

10000000 5th bit slice address 128
etc.

The value of the low-order 5 bits of the address is the word address
and ranges from O to 31 (i.e., 32 words). Again, if the address was
other than zero, the value of the address would be added to each bit
slice address and would effectively shift the stencil. Some useful
mixed access modes follow.

MODE = “00000001°

Bit Bit
0 255

XX

XX

XX

XX

XX

2 bits

per word,
every other
word

|
|
I
|
|
|
| .
|
|
I
| XX
| XX
| XX
| XX

Word 255] XX

.
. P— — —— — —— — 2t (— . . S St e

2- 11

GER~16422

MODE = 00000011

Bit - Bit
0 255
Word O] XXXX |

| |
| KXXX |
| |
] XXXX |
| | 4 bits
| . | per word,
| . | every 4th
| . | word
| I
| XXXX |
| |
| XXXX |
I |

Word 255]| XXXX |

MODE = “11111100°
Bit Bit
0 255
Word Ojx X X Xeeo I

[X X X Xeoo |
X X X Xeeo |
| X X Xeeos |
I I
| | 4 words
] | per bit
| | . column,
| I every 4th
| | column
| |
| |
| |
| |

Word 255] |

2= 12

GER-16422

MODE = “11111110°

Bit Bit
0 255
Wot‘d le X X X X o0
[X X X X X oee

2 words
per bit
column,
every other
column

Word 255

LOGIC FUNCTIONS

The logic functions performed on the X and Y registers are specified
directly in the MDA instruction. Two logic functions can be specified
in the instruction format. If a selected Common register bit (specified
in FPl) is set to “1’, the logic function in bits 16 to 19 is enabled;
if the selected Common register bit is “0°, the logic function in bits
20 to 23 1is enabled. If the two logic function fields of the.
instruction are identical, the logic performed is independent of the
contents of the Common register.

2- 13

GER-16422

Logic Table

Table 2-1.

. . . = W..
© F1815% 1w S 51 & 1Y 0
.
o~ o [Fo I B I A = ol _Wu [« - T A I L o I - Iv“] W..I
A T T R R R T .
— —— [N I
. > >
[Ta] x4 > = >
N — . . . > N .
m By < < Wm <) <] < >
T O I Sisis AR el
- TBIEIET IBIGI8InIEIE 18151818181
A N N - A) LY
1 > b ol > > > > tal E T - T - >4 > |V|L|
T T T = o 0 T T T 0] 1 1 1 i] i i i
% “ o o T~ T - R - T - O - T - o S - T - T - T - A .W..l [- B - lv....-lw.wxll_.w.
! | i)
— — — .

| [N He] >
v | <] > By >
~“1e =y BoloObE 9 4 RS
ST R iRl TEIEIE B el IaiE s
M “ _ W v““ “ < L] > < > =< VW > vm m :X 'X M

. . \ . \ L) .

] 1= Moo > > > o B > E] L -2 .W..!

1 I 1 i
O |] ~
N) - m . [N . < j<

1 P F P4 . <) > < Fzy >
—— & > I . | RN <9 = . &P .) .

! oL B bop 1 1O B BB e e
Ual | [}]] i]] 1] ! i]] 1]]]
N | e e e . — — e - — e o —— — — —— — ey S e ot S i i — —— — ———- —— S— — — — ——

] [} [} 1 .
T & Bl O AN A I
5 i P . . .
N Il iRl i ki i lolm 218 iIxikik

1 [| I [1 ! [!] 1]] _ 1 _

N T T T T
o | 1
o~ “.1 W > ol > > gl > > > ol > " > > > ol tal >
——— !] [} 1] 1] [} _ _ _
s] [
o~ o 1 .

[N . . Py e
D m M WV.. By . .m.r wr 1 nw 'V w .m.r. 'V .
AIH —- el b o] > < > > o “ <9 Eo] > — >4 > =< =
1] 1 L L i _
O .
o~ o . 1y [N e =
m w W x4 awr 'F. wW cV M mr 'V \
— .
" “ = > > gl =) -l -l (o] <9 1] el — > Fal gl >
o~ “.I.] i] | i —
|.|_..|
~ | m > > > b = > > > =< =< > < < L] L] >
[I -

I ! ! LI
2] “ o — o i o — (o] (o] o —t o - o —t o r—t
P (=] (=} — — o o - - o o ~ — (o] (o] — —t
| o o (@] o — — — — (=} o o [3 — — —
o] ” o "0 o o o o o (o] — — n...._ ~— “ — — — —

F=Bit from input (source determined by XN=New State of X

®=Exclusive OR

YN=New State of Y

bits 29-31 of instruction format)

X=01d State of X Register

v=Inclusive OR

L4

Y=01d State of Y Register

Complement

2- 14

SHIFTING

MIRRORING

GER~-16422

Shifting may also be specified in some MDA instructions directly in the
instruction format. The shift constant is specified either in bits 8
through 15 of the instruction or in Field Pointer E (FPE). A shift
amount of n bits with a modulus of m causes the 256-bit quantity to be
divided 1into 256/m groups of m bits each. Within each an end-around
right shift of n places occurs. Both n and m must be powers of 2.
(Refer to the shift constant in Table 2-2.)

Mirroring the 256-bit value 1s possible in some MDA instructions. The
mirroring, if selected in the instruction, will cause the 256-bit input
quantity to be flipped end-for-end (bit “i° is put into bit “255-1i°)
before shifting as specified by the shift constant.

LEFT SHIFT

A mirror, a shift of n places, and a mirror again results in a left
shift of n places.

INPUT SOURCE

In each MDA array instruction, an input is selected from the following:
1) A 256-bit slice from the MDA array memory
2) The contents 6f the 256-bit MDA registers X, Y, or M

3) The contents of the 32-bit Common register, with zeros in the .
remaining 224 bits

4) The 32-bit mask generate value, with zeros in the remaining
224 bits

5) The resolver input, with one bit set to “1° and the remaining
255 bits equal to ‘0’

2= 15

GER-16422

TABLE 2-2. Shift table

Hex Shift Shift Shift
Constant Modulus Amount Constant (Binary)
00 - 0 00000000
80 256 128 10000000
co 64 11000000
EO 32 11100000
FO 16 11110000
F8 8 11111000
FC 4 11111100
FE 2 11111110
FF 1 11111111
40 128 64 01000000
60 32 01100000
70 16 01110000
78 8 01111000
7C 4 01111100
7E 2 01111110
7F 1 : 0l111111
20 64 32 00100000
30 16 00110000
38 8 00111000
3C 4 00111100
3E 2 00111110
3F 1 00111111
10 32 16 00010000
18 8 00011000
1C 4 00011100
1E 2 00011110
1F 1 00011111

2- 16

GER-16422

Table 2-2. (continued)

Hex Shift Shift Shift
Constant Modulus Amount Constant (Binary)
08 16 8 00001000
0cC 4 00001100
OE 2 00001110
OF 1 00001111
04 8 4 000006100
06 2 00000110
07 1 00000111
02 4 2 00000010
03 -1 00000011
01 2 1 00000001
Note: A shift amount of n with a modulus of m divides the 256-bit

quantity into 256/m groups of m bits each. Within each
group, an end-around right shift of n places occurs.

DESTINATION OR RESULT OF AN MDA INSTRUCTION
The selected input quantity 1is transmitted through the flip network
which may shift, mirror, or perform other permutations. The 256-bit
result is then transmitted to one of the following:
1) A 256-bit slice in the MDA array memory
2) A bit slice in the MDA array memory through a mask (In this
case, only the bits with the corresponding mask bits set will
receive data.)

3) The M register

4) The Y register combined logically with its previous content

2= 17

GER-16422

5) The X register combined logically with its previous content

6) The X register combined with its previous content, masked by
the Y register

7) The Common register which receives 32 bits and ignores the
remaining 224 bits

8) A 256-bit output channel of the MIO

MDA ARRAY OPERATIONS

2- 18

Load X and/or Y

The load X and/or Y operation permits loading the X and/or Y registers
with a 256-bit quantity. The 256-bit value can come from any of the
sources described later in the instruction format discussions. Logic
may be performed simultaneously with the loading operations. The source
data input can be combined logically (see Table 2-1) with the previous
contents of the X and Y registers to produce new values in X and/or Y.

Load M (MASK)

The 1load M operation permits loading the M register with a 256-bit
quantity. The 256-bit value can come from any of the sources described
later in the instruction format discussions. Logic may be performed on
the X and/or Y registers simultaneous with the load M (MASK) operation.
Logic cannot be performed directly on the M register. When loading the
M register, the HOME register is altered.

Store X, Y, or M to MDA array memory

This operation permits the storing of 256-bit quantities from the X, Y,
or M registers to an MDA array bit column, word, or mixed slice.

Store X or Y to MDA array memory through a Mask

This operation permits the storing of the X or Y register through a
mask in the M register. Bits will be stored in the destination MDA bit
column, word or mixed slice only where the corresponding M register bit
is set to “1°. In a store masked operation it is critical that the M
register bits be arranged in the same order as the destination. The M
register 1is ordered according to the current value in the HOME
register. For example, if one wishes to store in word 55 of the array
the M register must be flipped to the same order as word 55 before the

Load

GER-16422

store masked operation is executed. This is accomplished by performing
a load M with the current M register as the input and the address the
same as the destination of the store operation. NOTE: The flip bit of
the load M instruction should be set to “1°.

Common Register

The load Common register operation permits the loading of the 32-bit
Common register from a selected 32-bit section of the 256-bit input of
the associative instruction. The source can be any of the input
sources specified in the instruction discussions that follow. When the
Common register is loaded, a single array should be enabled. Note that
the remaining 224 bits of the input are ignored.

Resolve Operation

The resolve operation 1is a special case of the associative operation
set. The resolver logic makes available to the user the facility for
finding the first Y register bit set in all selected arrays. This
information combined with the 1logic capability in the associative
instruction permits the user to then clear the first Y bit that is set
and step the resolver to the next Y bit set. In this fashion one can
step through and find all responses to a search.

This operation typically is used after a parallel search algorithm has
been performed. The search algorithms set all Y bits that satisfy the
search criteria. The resolve operation permits the user to easily
identify all words that satisfy the search.

The Link Pointer mode of the associative instruction is used for the
resolve operation. When bit 12 of the instruction is set to ‘1’, the .
resolve operation is selected. If the input field (bits 29, 30 and
31) 1is set to ‘000°, the resolver output becomes the input to the
associative instruction. The resolver output is a 256-bit quantity with
one bit set to “1° and the remaining 255 bits cleared to zero. The bit
that is set to “1° is the bit corresponding to the first Y register bit
sete.

When bits 10 and 11 of the resolve instruction are set to “11°, the

address of the first Y bit set is loaded into the Link Pointer. FP1l
contains the array number and FP2 contains the Y bit number.

2- 19

GENERAL MDA INSTRUCTION

2- 20

Instruction Format

GER~16422

012 5678 16 20 24 27 28 29

|1 ISIFIM| ADDR I | I Is IM | I

jols| op |T|L|O|-] coMl1 | COMO | DEST|F |I | INPUT |

Pl IK|P|D|8 10 I | I I IR | I
|- |- I e L Lo e !
|FP| BUMP | FL | |
| | | ***ALTERNATE FORMAT WHEN OP=001 OR%*%*%*|
|-- -1 I
[8 10 12 13 | *%**kx*x%0P=100 AND INPUT=11lk*kxkkkik|
I |- |
| | |16 19 24 29 |
[R | I
|LP|BLP| R] FS | SFT | FIELD | FIELD | INPUT |
R | | MSB | LSB | |

S

0 Normal operation

1 Speed up mode if executed in page memory

oP

000 Load X and/or Y

001 Load M (Mask)

010 Store to MDA memory through Mask

011 Store to MDA memory (256 bits)

100 Load Common register

STK

0 Selected base register associated with FP or direct address

1 Select R8 as base register (MDA stack pointer)

txf
=
-]

- O l

8
S

- O l

ADDR

COoM1

COoMO

DEST

000
010
101
111
100
110

|

[l]

GER~16422

Unflipped data
Flipped data

Direct address in 8-15 of instruction
Indirect address in selected field pointer

ADDR (bits 8-15 of instruction) contains the displacement
which is added to the contents of selected base register to
form effective MDA address (may also contain a shift
constant).

COM1l contains the 1logic function performed if a selected
Common register bit (FPl selects bit)=1. NOTE: If
COM1=COMO, the Common register 1is not involved in logic
selection (see Table 2-1).

COMO contains the logic function performed if a selected
Common register bit=0 (see Table 2-1).

X and Y unchanged

Y combined logically with input

X combined logically with input

X and Y combined logically with input

X combined logically with input only where Y=1

X combined logically with input only where Y=1; Y combined
logically with input

No shift
Shift enabled (see Table 2-2)

2- 21

GER~16422

MIR

0 No mirror

1 Mirroring enabled

INPUT

000 Common register bits 0-31; bits 32-255 are zero
001 M register

010 Y register

011 X register

100 Reserved for CIOU

101 MDA memory slice

110 Xor Y (X if all Y bits=0; Y if any Y bit=l)
111 Mask generator input in bits 0-31; bits 32~255 are zero
FP

00 FPl contains MDA address displacement

01 FP2 contains MDA address displacement

10 FP3 contains MDA address displacement

BUMP

0000 Field pointers not altered

0001 Field pointers not altered

0010 FPE post-incremented

0011 FPE post-decremented

0100 FPl1 post-incremented

0101 FP1l post-decremented

0110 FPl and FPE post-incremented

0111 FP1 and FPE post-decremented

1000 Selected pointer post-incremented

1001 Selected pointer post-decremented

1010 Sellcted pointer and FPE post-incremented

1011 Selected pointer and FPE post-decremented

1100 Selected pointer and FPl post-incremented

1101 Selected pointer and FPl post-decremented

1110 Selected pointer, FPl and FPE post-incremented
1111 Selected pointer, FPl and FPE post-decremented

2- 22

11

BLP

co
C1
10
11

|

- O

000
001
010
011
100
101
110
111

GER-16422

Length counters not altered
FL1 post-decremented
FL2 post-decremented
BL post-decremented

FP1 contains array number, FP2 contains MDA address
displacement, RF is the associated base register

No change in Link Pointer (LP)

LP post-decremented

LP post-incremented

Load LP with resolve address (current position of first
Y bit set)

Nop

Step resolver

INPUT="000")

Field
Field
Field
Field
Field
Field
Field
Field

~NOoOuUmSswLWND O

(Bits
(Bits
(Bits
(Bits
(Bits
(Bits
(Bits
(Bits

to next Y bit set (input from resolver if

0-31)
32-63)
64-95)
96-127)
128-159)
160-191)
192-223)
224-255)

2- 23

GER-16422

FILELD MSB

00000 Bit 0

11111 Bit 255

FIELD LSB

00000 Bit 0

11111 Bit 255

SFT

000 Shift right 1 bit
001 Shift right 2 bits
010 Shift right 4 bits
011 Shift right 8 bits
100 Shift right 16 bits
101 No shift

110 No shift

111 No shift

2- 24

GER-16422

MDA INSTRUCTION FORMAT (DIRECT ADDRESS MODE)

This instruction performs operations in the MDA portion of the
STARAN-E. The direct address mode will perform the operation in all MDA
modules (arrays) selected in the Array Select register.

Instruction Format

012 56738 16 20 24 27 28 29

I 1 | 1F] | I | I Is M | |

|0]S| oP |1]|L|O| ADDR |COM1 |COMO |[DEST |F |I |INPUT|

L1 I 1P| | I I I I IR | I

S Function

0 Normal execution

1 Speed-up mode 1f instruction is executed in page memory

opP Function

000 Load X and/or Y

001 Load M (see note 1)

010 Store to array memory through Mask

011 Store to array memory (256 bits)

100 Load Common register (see note 1)

Bit 5 =1 Indicates the base register R8 is used to determine the
array address. The contents of R8 1is added to ADDR
(value in bits 8-15); R8 also contains the access mode
(i.e., word, bit or mixed) in bits 0-7.

FLP Function

0 Unflipped

1 Flipped data

Bit 7 =0 Indicates direct addressing mode. The displacement is
contained in bits 8-15.

ADDR Bits 8~15 contain the displacement which is added to the

contents of R8 to determine the effective array address.
Bits 8-15 may also contain a shift constant if array
memory is not the input value.

2- 25

2- 26

CcoMI1

CcoMO

DEST

000
010
101
111
100
110

= =) ’cn
e

- O I

INPUT

- 000

001
010
011
100
101

110

111

GER-~16422

The 1logic function performed if the Common register bit
selected in FPl is equal to “1’. NOTE: If COMl is equal
to COMO, the Common register is not involved in the
logic function selection (see note 2).

The logic function performed if the Common register bit
selected in FP1l is equal to ‘0’. NOTE: If COM1 is equal
to COMO, the Common register is not involved in the
logic function selection (see note 2).

Result

and Y unchanged

combined logically with INPUT

combined logically with INPUT

and Y combined logically with INPUT

combined logically with INPUT only where Y bit =1
combined logically with INPUT only where Y bit =
and Y combined logically with INPUT

IS o o

{
i

Action

No shifting
Shifting enabled (see note 3)

Action

No mirroring
Mirroring enabled (see note 4)

Source

Common register in bits 0-31; bits 32~255 are zero (see
note 5)

M register

Y register

X register

Reserved for CIOU

Array memory (256 bits). NOTE: The array access mode is
contained in a base register.

Xor Y (if all Y bits = 0, X is input; 1f any Y bit =1,
Y is input)

Mask generator input in bits 0-31; bits 32-255 are zero
(see note 5)

NOTES***%

1.

2.
3.
4o
5.

GER-16422

Alternate instruction format for bits 16 through 28 (covered later
in this section).

See logic function table, Table 2-~l.

See shift table, Table 2-2.

Flipping and mirroring occur prior to shifting.

With the shifting capability the 32 bits can be placed into any of
the eight 32-bit sections of the 256-bit input value.

2~ 27

2=

'GER-16422

MDA INSTRUCTION FORMAT (INDIRECT ADDRESS MODE)

28

This dinstruction performs operations in the MDA portion of the
STARAN-E. The indirect address mode will perform the operation in the
one array selected in FPl.

Instruction Format

012 5678 10 14 16 20 24 27 28 29
N O TR N 0 o I oo [l Is M | I
|o|s|oP |O|L|1|FP | BUMP |FL | COM1 | COMO |DEST |F |I |INPUT|
N O U I 0 4 I b l I IR | |
S Function
0 Normal execution
1 Speed-up mode if instruction is executed in page
memory
OP Function
000 Load X and/or Y
001 Load M (Mask)
010 Store to array memory through Mask
011 Store to array memory (256 bits)
100 Load Common register
Bit 5 = 0 Indicates base register RB through RF will be selected;
, the base register selected depends on the selected field
pointer (see Table 1-2).
FLP Function
0 Unflipped
1 Flipped
Bit 7 =1 Indicates indirect addressing mode. The address

displacement 1is contained in one of the field pointers.

BUMP

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

coM1

COMO

GER~16422

Selected Pointer

FPl
FpP2
FP3

Post=-operation

Field pointers not altered

Field pointers not altered

FPE is post-incremented

FPE is post=-decremented

FPl is post-incremented

FP1l is post-decremented

FPE and FPl are post-incremented

FPE and FPl are post-decremented

Selected pointer (in FP) is post-incremented

Selected pointer (in FP) is post-decremented

Selected pointer (in FP) and FPE are post-incremented
Selected pointer (in FP) and FPE are post-decremented
Selected pointer (in FP) and FPl are post-incremented
Selected pointer (in FP) and FPl are post-decremented
Selected pointer (in FP), FPE and FPl are
post-incremented

Selected pointer (in FP), FPE and FPl are
post-decremented

Post Operation on Length Counter

Length counters not altered
FL1 post-decremented
FL2 post-decremented
BL post-decremented

The logic function performed if the Common register bit
selected in FPl is equal to “1°. NOTE: If COMl is
equal to COMO, the Common register is not involved in
the logic function selection (see Table 2-1).

The logic function performed if the Common register bit
selected in FPl 1is equal to “0°. NOTE: 1If COMIl is
equal to COMO, the Common register is not involved in
the logic function selection (see Table 2-1).

2- 29

2- 30

DEST

000
010
101
111
100
110

[22]
o]

=2 — O |

— O l

INPUT

000
001
010
011
100
101

110

111

GER-16422

Result

and Y unchanged

combined logically with INPUT

combined logically with INPUT

and Y combined logically with INPUT

combined logically with INPUT only where Y bit
combined logically with INPUT only where Y bit
and Y combined logically with INPUT.

D4 B4 M D4 g

o
[

Action

No shifting
Shifting enable (see Table 2-2)

Action

No mirroring
Mirroring enabled

Source

Common register in bits 0-31; bits 32-255 are zero

M (Mask) register

Y register

X register

Reserved for CIOU

Array memory (256 bits). NOTE: The array access mode is
contained in a base register

Xor Y (i1f all Y bits = 0, X is input; if any Y

bit = 1, Y is input)

Mask generator inmput in bits 0-31; bits 32-255 are zero

GER-16422

MDA INSTRUCTION FORMAT (LINK POINTER MODE)

This instruction operates in the MDA portion of the STARAN-E. It

performs the
FP1.

Instruction Format

operation in one array only. The array is selected by

012 5678 10 12 13 16 20 24 27 28 29

I 1 FIFL L 1 | l l Is M | |
|o|s| oP |O|L}1]11|BLP|R | FS | COM1 | COMO |DEST |F |I |INPUT|
1 1 B:2 T I T I I | [IR | l

177}

- O

000
001
010
011
100

Bit 5 =0

- O
5

Bit 7 = 1

Bits 8,9 = 11

Function

Normal execution
Speed-up mode if instruction is executed in page memory

Function

Load X and/or Y

Load M (Mask)

Store to array memory through Mask
Store to array memory (256 bits)
Load Common register

Indicates the base register RF is used to determine the
array address. The contents of RF is added to FP2; RF
also contains the access mode (i.e., word, bit or mixed)

Function

Unflipped
Flipped data

Indirect addressing mode
The Link Pointer (FP1l and FP2 concatenated) selects the
array and array address. FPl contains the array number.

FP2 contains the array address displacement which is
added to base register RF to form the effective address.

2- 31

2- 32

BLP

00
01
10
11

|=o

O

000
ool
010
0l1
100
101
110
111

comMl

CcoMO

DEST

000
010
101
111
100
110

GER~16422

Post Operation

Link Pointer is not altered

Link Pointer is post-decremented

Link Pointer is post-incremented

Link Pointer is loaded with the resolver address

Operation Performed

No operation
Resolver stepped to next Y-bit set

Selects field in the 256~bit value where a 32-bit input
resides; used when INPUT is the Common register or the
mask generator.

Field 0 (bits 0-31)
Field 1 (bits 32-63)
Field 2 (bits 64-95)
Field 3 (bits 96-127)
Field 4 (bits 128-159)
Field 5 (bits 160~191)
Field 6 (bits 192-223)
Field 7 (bits 224-255)

The logic function performed if the Common register bit
selected in FPl is equal to “1’°. NOTE: If COMl is equal
to COMO, the Common register is not involved in the
logic function selection (see Table 2-1).

The logic function performed in the Common register bit
selected in FPl is equal to “0°. NOTE: If COMl is equal
to COMO, the Common register is not involved in the
logic function selection (see Table 2-1).

Result

and Y unchanged ‘

combined logically with INPUT

combined logically with INPUT

and Y combined logically with INPUT

combined logically with INPUT only where Y bit = 1
combined logically with INPUT only where Y bit =1
and Y combined logically with INPUT

R B o Bl

GER-16422

SF Action

0 No shifting

1 Shifting enabled (see Table 2-2)

MIR Action

0 No mirroring

1 Mirroring enabled

INPUT Source

000 Common register in bits 0-31; bits 32-255 are zero

001 M register

010 Y register

011 X register

100 Reserved for CIOU

101 Array memory (256 bits). NOTE: The array access mode is
contained in a base register.

110 Xor Y (1f all Y bits = 0, X is input; if any Y bit = 1,
Y is input)

111 Mast generator input in bits 0-31; bits 32-255 are zero

2- 33

GER-16422

ALTERNATE MDA INSTRUCTION FORMAT
An alternate format for MDA instruction bits 16 through 28 is used when
OP is “100° (Load Common register) or when OP is ‘001’ (Load M) and the
input is “111° (mask generator).

Instruction Format

16 19 24

I l I |

| SFT | MSB | LSB |

| I I |

SFT SFT is the power of 2 shift value that 1is applied to the
32-bit input quantity.

000 Shift 32-bit input right end around 2**0 (1) bits

001 Shift 32~bit input right end around 2**1 (2) bits

010 Shift 32-bit input right end around 2**2-(4) bits

011 Shift 32-bit input right end around 2#**3 (8) bits

100 Shift 32-bit input right end around 2**4 (16) bits

101 No shift ' ‘

MSB MSB is the most significant (left-most) bit of the field
selected within the 32-bit input.

00000 Bit 0

00001 Bit 1

11111 Bit 31

LSB LSB is the least significant bit of the field selected within
the 32-bit input.

00000 Bit 0

00001 Bit 1

11111 Bit 31

2- 34

GER~16422

EXECUTION CONTROL INSTRUCTIONS

BRANCH INSTRUCTION

The normal sequence of instruction execution can be modified by a
branch operation, a branch and link to a subroutine, a loop
instruction, or a call subroutine instruction.

UNCONDITIONAL BRANCH INSTRUCTION
The unconditional branch instruction causes the effective address to be
put into the program counter. The next operation is executed from the

effective address.

Instruction Format

0 12 16
I | | I
]001010000000| TAG| ADDR |
I | I I
TAG - Effective Address
0001 ADDR
0010 ADDR+DP
0011 ADDR+DP, decrement BL
0100 ADDR+4DP, increment DP
0101 ADDR+DP, decrement BL and increment DP
0110 ADDR+DP, decrement DP
0111 ADDR+DP, decrement BL and DP
1000 ADDR+RO
1001 ADDR+R1
1010 ADDR+R2
1011 ADDR+R3
1100 ADDR+R4
1101 ADDR+R5
1110 ADDR+R6
1111 ADDR+4R7

2= 35

GER-16422

CONDITIONAL BRANCH INSTRUCTION

If the condition specified by CODE 1is true, the Conditional Branch
operation acts 1like an unconditional branch. If the conditon is not
true, no change in control occurs and the next sequential instruction
is executed. The effective branch address is a function of the address
and tag fields of the imnstruction. This permits address modification
by the DP register and the Branch and Link registers. If the tag field
specifies modification of the DP or BL, these changes will occur
regardless of the condition.

Instruction Format

0 6 12 16

| I I | |
|001010|CODE | TAG | ADDR |

CODE Branch 1f

000000 Unconditional branch
000001 No branch

000010 FP1 = 0
000011 FP1 # 0
000100 FP2 = 0
000101 FP2 # 0
000110 FP3 = 0
000111 FP3 # 0
001000 FL1 = O
001001 FL1 # 0
001010 FL2 = 0

001011 FL2 # O

001100 Selected bit of Common = 0

001101 Selected bit of Common = 1

001110 All Y register bits in enabled arrays = 0
001111 Any Y register bit in any enabled array =1
010000 BL =0

010001 BL # 0

010010 FPE = 0

010011 FPE # 0

010100 DP = 0

010101 DP # 0

2~ 36

TAG

0001
0010
0011
0100
0101
o110
o111
1000
1001
1010
1011
1100
1101
1110
1111

GER-16422

Effective Address

ADDR
ADDR+DP
ADDR+DP,
ADDR4DP,
ADDR4DP,
ADDR+DP,
ADDR+DP,
ADDR+RO
ADDR+R1
ADDR+R2
ADDR+R3
ADDR+R4
ADDR+RS
ADDR+R6
ADDR+R7

decrement
increment
decrement
decrement
decrement

BL

DP

BL and increment DP
DP

BL and DP

2- 37

GER=-16422

BRANCH AND LINK INSTRUCTION

2- 38

Branch and link instructions cause the current contents of the Program
Counter to be stored in the right half of a branch and 1link register,
with the zeros stored in the left half. (The Program Counter will now
contain the address of the next sequential instruction after the branch
and link instruction.) Then the effective address in the branch and
link instruction is loaded into the Program Counter

Instruction Format

0 9 12 16
| | | | I
]001011000| REG| TAG | ADDR |
| ! I l |
TAG Effective Address
0001 ADDR
0010 ADDR+4DP
0011 ADDR+DP, decrement BL
0100 ADDR+DP, increment DP
0101 ADDR+DP, decrement BL and increment DP
0110 ADDR+DP, decrement DP
0111 ADDR+DP, decrement BL and DP
1000 ADDR+RO
1001 ~ ADDR+R1
1010 ADDR+R2
1011 ADDR4R3
1100 ADDR+R4
1101 ADDR+4R5
1110 ADDR+R6
1111 ADDR+4R7

REG

000
001
010
011
100
101
110
111

GER-16422

Register

RO
R1
R2
R3
R4
R5
R6
R7

2= 39

GER-16422

CALL SUBROUTINE INSTRUCTION

2= 40

The call subroutine instruction performs two major operatioms. It
loads ‘N’ general registers with data from the parameter list and then
performs a branch and link to a subroutine. The parameter list begins
with the first memory location following the CAL instruction and has a
length of ‘N’ words. If ‘N’ is zero, there is no parameter list and no
registers are loaded. The words of the parameter list are loaded into
registers numbered R through R+N-1 starting with register R. The
numbering of the registers wraps around from 15 to 0. After the ‘N’
parameters have been loaded into th€ registers, the address of the word
following the last word of the parameter list is stored into general
register 7 (R7) and the Program Counter is loaded with the value of the
address field, effecting a branch to the subroutine entry at the
address.

Instruction Format

0 8 12 16

I l I I I
|10100011| REG| N | ADDR |
l I I l |
REG The REG field selects the first general register to

receive the first word in the parameter list.

0000 RO

0001 R1

0010 R2

0011 R3

0100 R4

0101 R5

0110 R6

0111 R7

1000 R8

1001 R9

1010 RA

1011 RB

1100 RC

1101 RD

1110 RE

1111 : RF

|=

ADDR

GER-16422

The N field contains the number of parameters to be
loaded from the words following the CAL
instruction.

The ADDR field contains a 16-bit program memory
address (bulk memory, pages or HSDB). This address
points to the first instruction of the subroutine.

return address (next dinstruction after the parameter
list) is stored in R7. ’

2- 41

LOOP INSTRUCTION

2= 42

The loop instruction permits the repetitive execution of
sequential instructions.

GER-16422

should contain the number
repetitions are required, FL1 should contain a 9).

Instruction Format

Before

of repetitions minus

0 6 7 8 12 16
I Il | | I
| P | | l
|001111]0}0] | TAG | ADDR |
I I I | |
TAG Effective end-of-loop address
0001 ADDR
0010 ADDR4DP
0011 ADDR+DP, decrement BL
0100 ADDR+DP, increment DP
0101 ADDR+DP, decrement BL and increment DP
0110 ADDR+DP, decrement DP
0111 ADDR4DP, decrement BL and DP
1000 ADDR+RO
1001 ADDR+R1
1010 ADDR+R2
1011 ADDR+R3
1100 ADDR+R4
1101 ADDR+R5
1110 ADDR+R6
1111 ADDR+R7
Restrictions

Instructions that

sequence.

1

one

(i.e.,

or

if

more

the loop operation is performed, FL1

10

alter the Program Counter, i.e., branches, external
functions, etc., should not be used as the last instruction of
No .instruction within a loop should alter FLl. FL1 is equal
to zero on a normal exit from a loop.

a

loop

GER-16422

LOAD AND LOOP INSTRUCTION

The load and loop operation is identical to the loop operation, except
FL1 need not be preloaded with the repetition count. This operation
permits loading of FL1 with the count in the same operation. In both
the loop and the load and loop instructions, the end of loop address is
the effective address.

Instruction Format

0 6 78 16

I [1] I I

| | | | Loor | |

jOO1111|1]0| COUNT | ADDR |

I Pl I I

LOOP_COUNT Number of repetitions minus 1

ADDR End-of-loop address
Restrictions

This instruction has the same restrictions as the Loop instruction.

2- 43

GER-16422

AP CONTROL REGISTER INSTRUCTIONS

Register instructions allow AP control registers to be loaded with an
immediate value, with the content of an AP control memory address, or
from another AP control register. Also, the AP control registers may
be stored into AP control memory. Figure 2-1 provides a map of the AP
control registers on the 32-bit bus.

AP CONTROL REGISTER LOAD OPERATIONS

2- 44

Three load operations are possible:

1) Load low half will load the right, or least-significant half,
of the register group.

2) Load high half will load the left, or most-significant half,
of the register group.

3) . Load high and low half will load the entire register group
specified.

Figure 2~1. AP Control Register Groups

| GROUP | BITS | BITS | BITS | BITS |
| | 0-7 | 8-15 | 16-23 | 24-31]
] -t + -t + -
| 000 | €O | C1 | c2 | €3 |
| + + -t + |
| o001 | AsO | Asl | AS2 | AS3 |
| -+ + + -+ |
| o010 | BLO | BL1 | DPO | DP1 |
| + + + + |
| o011 | PCO | ECl | | CC-IMASK |
| + + it & [
| 100 | FL2 | FPE | | |
| + + + -+ |
| 101 | FL1 | | | FP2 |
| -+ -+ -+ + |
| 110 | | FP3 | FPl | |
| + + + + |
| 111 | FL1 | FP3 | FP1 | FP2 |

Table 2-3.

ABBR

C
CH
CL
co
Cl
c2
C3
AS
ASH
ASL
ASO
AS1
AS2
AS3
BL
BLO
BL1
DP
DPO
DP1
FL1
FL2
FP1
FP2
FP3
FPE
PSW
PC
cC

IMASK

LEFT SHIFT

The

source

GER-16422

REGISTER

Common

Common (bits
Common (bits
Common (byte
Common (byte
Common (byte
Common (byte
Array Select
Array Select
Array Select
Array Select
Array Select
Array Select
Array Select
Block Length
Block Length
Block Length
Data Pointer
Data Pointer
Data Pointer
Field Length
Field Length
Field Pointe
Field Pointe
Field Pointe
Field Pointe

Program Status Word

0-15)

16-31)

0)
1Y)
2)
3)

(bits
(bits
(byte
(byte
{(byte
(byte

0-15)
16-31)
0)

1)

2)

3)

Counter
Counter (byte 0)
Counter (byte 1)

(byte
(byte

0)
1)

Counter 1
Counter 2

rl
r 2
r3
r E

Program Counter (bits 0-15 of PSW)
Condition Code (bits 24=27 of PSW)
Interrupt Mask (bits 28-31 of PSW)

data 1is

NO.

Assoclative Processor Control Register Abbreviations

OF BITS

32
16
16
8
8
8
8
32
16

[
()]

—

—

- W
S POV 000000 00000 000000000 OO 00 0O OO

shifted left-end-around 0, 1, 2, or 3 bytes as

specified in the shift field.
31 toward bit O.

The direction of the shift is

from bit

2- 45

GER-16422

EFFECTIVE ADDRESS FORMATION

2- 46

Register operations that referance AP control memory for loading from
memory or storing to memory allow effective address to be a function
of:

1) The address field of the instruction (bits 16-31).

2) The Data Pointer (DP) or general registers RO to R7.

The tag field of the instruction determines the usage of the DP or

. general registers.

Decrementing and incrementing of DP and BL are also permitted as
specified in the tag field. This permits stepping through a block of
data in AP control memory.

LOAD IMMEDIATE

The Load Immediate
field (bits
register receiving

value

field

value by appending

GER-16422

instruction loads either 4, 8, or
16-31) of the instruction into a register group. The
the immediate data is selected in the group (GRP)
7,8, and 9). The 16-bit value is extended to a 32-bit
16 zeros. The 32-~bit quantity is then shifted 0, 1,

16 bits of the

2, or 3 bytes (left shift end around) as designated by the shift (SHFT)

field.

group specified in the operation (OP) field.

Instruction Format

Parts of the shifted quantity are then loaded into the register

0 12 16

| I | | |
| OP |GRP |SHFT|0000 | VALUE |
| | | | I
op Action

0011001 Load low half of group
0011010 Load high half of group
0011011 Load high and low halves of group
GRP Register Group

000 Common

001 AS

olo0 BL and DP

011 PSW

100 FL2 and FPE

101 FP2 and FL1

110 FP3 and FP1

111 FL1, FP3, FPl, and FP2
SHFT Shift Amount

00 No shift

01 Left shift 8 bits

10 Left shift 16 bits

11 Left shift 24 bits

VALUE Contains 16~bit immediate value to be loaded

2- 47

GER-16422

Table 2-4 1is described as follows:

1) The 4 digit hex code on the left indicates the high order 16 bits
of the Load Immediate instruction.

2) The low-order 16 bits of the instruction are stored into the
registers shown in bits 16 to 31 of the table.

3) The registers shown in bits 0-15 of the table are cleared.

Table 2-4. Load Immediate Instruction

IMMEDIATE

CLEARED __VALUE _
OPCODE |0 7 8 15|16 23 24 31}
3200 ‘ i i Cc2 i C3 }
e | o] | e
3230 { i C2 i c3 i }
3240 } i i AS2 i AS3 :
s250 | asa | | v
270 | P v
3280 { | | DPO | DP1 :
3200 | oei ; e
3o | S |
32C0 : | | -icc-n»msx}
B p—-— |
3320 | | M |
3330 |:_ I l FL2 E

4 — 4

2- 48

GER~16422

(continued)

Table 2-4.

IMMEDIATE

VALUE

CLEARED

— — — — — — — — — — ——— —— — — —— ——— — — ——— —— — — —— — — — — — — T — — —— — — ——

M i 1] 1
[« 7] o] =] 2] - (&7
~
o~
t—t—t—t—t—t—t—t—t—t—t—-t—-t—-t—-F—-t—-1t—-t—-1—1%
Q
~ - — ~ - o - =N - o
[<]] -9 P P - o w wn 1 -1 [&] (&)
\O
= ; f—t—f—F—F—F—t—t—f——F—t—F—+—+
= 1 t—1—1 T 1] 1
-
“.I.. o o (o]
[+ ¥ [e] w [| o
B (&} <4 [==] [2Y]
L +— 4 4 : ; d—f—t—f—t—t—
~T- 1771~ 1 1 1 11
o~ - — —
o — [77] [(&)
= (&} < M (=%
o 1] i]] 1 Inl- [}]]
a
Q (o] o o (o] o (=) o [} o (o] O o o o (] o o o o
OII ~ ® & O A B = & ®d 1’ © ~ o6 @ @m A B m
a9 (28] [32] [ya] [32] ™ o [3g] = ~ ~ ~ ~ ~r L ~3 < ~r < <
(e} ™ [2a] [sa] [2a] [ag] (32] o [s2] (a2] [ya] (12] [3a] [32] (32] o (22] (3] o o

2- 49

GER-16422

(continued)

Table 2-4.

IMMEDIATE

VALUE

CLEARED

e | |
j<a] —t [l o — ™ o~ — o -~ o
-0 n [-" [W i) o~ — o w0 0 ©n n [N [
= 7] = =2 (&) [®] (&) (& < < < < (o] s
~
o 4 E b 4 E 4 . 4 4 4 E 4 4 4
o i 1 T -1 T
=1 — o ™ — o~ — (=}) [=} —_
ey = P Py | o~ — o () w2 %5} 1771 7] (9 - |
P Fx4] = 28 (&} (&} &) o <¢ < < << (=) /M
O
g P I — 4 — t—Ft—t—t—ft—t—t—4—+ +— A
~ L 4 J
—t -t o ™ (3] —t o
H — o ™ o~ %) 75} w0 7] = |
(&) [®] (&) o < < < < m m
©
.TI..T.I._-I:+|I+I.4-||.-|..‘.I..+||.fI.J-I.A-..I.TI..T.I.T..I%I.A-I.T-l.A-.l.T
™~
3 o) o~ — o —
- o) o~ -— 0 w0 7] w | -
< (] (&) (&) (&) < < < < M (=]
o i 1 i] 1 i 1 1 1
a
o o o o o o o o o o o =) [} (=} o o o o o o
[&} — o O ~ o) < =] = e o — o~ (2] ~ n \O ~ [~3] N
[N) N n 3] 75} 73] 75} 75} O O O O O O O O O O
o 3] ™ ™ ™0) e})) ™ %) 32} 12) 2]] [3e}) 2] 2]

2- 50

GER-16422

(continued)

Table 2-4.

IMMEDIATE

VALUE

CLEARED

—— et S c—— ——— —— — — — — — — — — —— — —— — — —— — — — — —— — — —— ——— — — — —— ———— ——— {— —

— 1 154 1]
™ 1 w0]
-~ | O M — o j<a] o~ o~ — —_ (8] o~ — ™ —
w1 -l (&) (&) 2% — P m.u 23] (=3 23] [0} Ay =]
22} m Tm. [=¥] a4 < P e =] = B <] [&] <
< (&)
~ 2 ; § SRS SN R A GO (U SN (UUN AU NI I N
at—1—1 4 = —_— —
o~ (5]
S SISISIEIN R RV RV Elalal
el &
~ ¢ 4 f—f—F—t—t—f—+—+—§ —
ST 1= 71— 71— 1% 1 1
— [7]
sigigigial i3 AR 2izlals
| &)
® o
7._I.*vl.‘-l.‘-m.ill%l;-l%II.TII.TI.AuIA‘vl..TI-.TI.TII.._-I..._-|l4-||+..|l+
Ei1a181s 3 a1 SRR IV Vi Y
(&)
Q
o i O t]] i 1]
. ,
[@] Q (o] (=} o [ev] [=] o o o o o (@] o o o o o [} o
Sid m 0O g B B =4 Q9 9O § 0 ~ X & £ O A B &
9] O O O O O Vel ~ [d ~ ~ ™~ ™~ ™~ r~ ~ ~ ~ ™~
o o (32} o (30 oy [3p] o (a2] [2g] [3a] ™ o (28] ™M [22] ™ [\a] a2 (28]

2- 51

GER-16422

LOAD AP CONTROL REGISTER FROM CONTROL MEMORY

2- 52

The load register instruction loads a byte, a half word, or a word of
data from main memory or HSDB into a register group.

The effective address of the source is formed using the TAG and ADDRESS
fields of the instruction. A hangup will result if the effective
address points to non-existant memory or to a word in page memory. The
register or registers loaded are selected by the GRP and SHFT fields of
the instruction.

Instruction Format

0 7 10 12 16
op	GRP	SHFT	TAG	ADDR
		l		
oP Action
0011001 Load low half of group
0011010 Load high half of group
0011011 Load high and low halves of group
GRP Register Group
000 Common
001 AS
010 BL and DP
011 PSW
100 FL2 and FPE
101 FP2 and FL1
110 FP3 and FP1
111 FL1, FP3, FPl, and FP2
SHFT Shift Amount
00 No shift
01 Left shift 8 bits
10 Left shift 16 bits
11 Left shift 24 bits

TAG

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Table 2-5

1Y)

2)

3)

GER-16422

Ef fective Address

ADDR

ADDR+DP

ADDR+DP, decrement BL
ADDR+DP, increment DP
ADDR+DP, decrement BL and increment DP
ADDR+DP, decrement DP
ADDR+DP, decrement BL and DP
ADDR+RO

ADDR+R1

ADDR+R2

ADDR+R3

ADDR+R4

ADDR+RS5

ADDR+R6

ADDR+R7

is described as follows:

The 3 digit hex code on the left indicates the high order 12
bits of the Load AP Register instruction.

The bit indicators at the top of the table indicates the bit
positions of the source memory word.

The registers indicated in the blocks show the destination |
registers receiving each of the 8-bit quantities from memory.

2- 53

GER-16422

Load Register from Control Memory

Table 2-5.

32-BIT VALUE

— — — —— — — — — — —— — — — — — —— —— — —— — — —— — — — — — —— — — — — — —— — —

—]]] ||
(2] 1] v |
) o~ ~— ol <
[a) o~ 7)) 7] [[m
(&) [&] < < QA a N
3 S
3.Tl.._-l..A'l.._...l.A.I..?nl.fl._-|.7ll4.||+|.1lu._r.l+.I.A.ul._-wM.T..l.A-l..T
o~ [77]
o~ [sa} o — <
o~ [l 0 (%] Ay -9 m
(&) [&] < LA fa) a :
O 3 [&]
- (5]
+ -ttt -ttt —-tt--t—-t -t —-—-tt—-t-—-t+—++—=+—-+—+—+4
) M
—t wn
(32] o~ — o o~
2] o~ (75} [95] -9} %] M =
(&) (& < < (] [=] J.. =
© o
T s S S SIS IR T s S S I R B S el de D
~ 4 4 4 4 b 4 4 X 4 E E 4 4 4 W 4 4 5 E
) o~ - [=) M o~
™ o~ 7] w0 -A Ay = i |
&) [&] < <4 A a 4 =
&
o (L I I of_ i i i 1
=
8
&} o — ~ ™ < [Ta] O ~ <] o < 0 | & m =] = o —
[o~ o~ o~ o~ o~ o~ o~ o~ o~ ~N o~ o~ ~ o~ o~ ™)
[« B! 2] 2} lal 'l)] 3}) ™ ™ ™ ™ ™ ™ ™ 3] ™

2~ 54

GER-16422

(continued)

Table 2-5.

32-B1IT VALUE

lllllllllllllllllll e e ———
—
(3]
o~ o~ — o~ -
m.w 23] [P P ~—t o
= P <] <] O (&
~
™ o
ot — 1 + —+—+ — t—t—t—t—-T1T—-1t—-t—-1t-—-Ft—-1—1%
o~
o~ o~ -t — o~ .
— [) [=] 4 o
=] = =23 By 2] (&) [&)
el
Tttt -ttt -ttt -ttt —F—t—+
" Sk Sk S B R Bt R B T] 1 i
—
~N — o~ —
5] P 3]] -~ o
<] = 7] =] [& o
© + — A . +—+—+—+—+—
~T 71T] 171 =111
o~ —4 ~N —
[P P4 o (=] —t
= <] P~ = [&] (&)
o [} 1] i 1 |
=
8
[&] o~ o < ny O ~ (=] [=A] <4 m Q [=] 2] P (=] - o~ 3]
A ™ [3a) (a2l [2a) o (22} (3] o o o [3a] [3a) oy ™ (S ~r < 5
(@] (2] [3a] o [se] o o ™ (18] o ™ (3] (3] e [2a} [\ (3] o 2]

2- 55

GER-16422

(continued)

Table 2-5.

32-BIT VALUE

— — — —— — — — — — . —— — — — — —— — — — — — — ——— — — — — — — — — — — — — — —— —— —

— 1 1
o]
— (=] — o I - o =
(7] %] & i]] (&3 [+
< < m m -] 3] <]
<
o -_t — + — 4 — L 4 .A + + L L L 4 AA- 4 +
ot ™11 4 T4
=l A o213 o519 & “ 2
< < m m -9 Ay < (2
O
—t
U._-.I.A-..I.A-..l.,-ll.*-al.f|._.|+|.4.||._-||+I»+|.+I..+.|+I.+al;.nl+|.4.|l+
318 313 518 3 <
&)
< < M m 2] =] 2] H
@
+|I+I.+||1-.|+|l.*||+|._.I;.‘-IL.I.A.I-.A.I.T.I.A-.I.Tll._-.|+|.._.l|+.l.+
N~
2 13 318 5 Rge
-1 Q
< < m [=5] Y] Ay (< B
[}
(] i [} 1 -t I]] [} 1
=]
e
&} < 75 O ~ o} [o) < m Q a [<3] x4 o — o~ ™ < ny O
-9 ~ ~ < < < < ~ < < < ~r ~ n o) wn [a) wn n [Ty
o 32] o [22] (2] ™ 32} ™ ™ ™ 2] ™)) ™) ™ ™ ™ 22}

2= 56

GER-16422

(continued)

Table 2-5.

32-BIT VALUE

—t i 1
(58]
— [s2] [2a] -— (28] o~ — o
| -} By &) o~ — o 17, 7)) (%) w0
fxy 29 By (&) ($) () (3] < < < <
~
Y —_—t—t—t—+—+ — 4 . 4 4 +—+ i
St e A A 4 - 4
o L ! ~ - | O)
=Y] 9] % | I N - o (2] w0 w [45] w2
< “ <N P “ L (&) (&) &) B4 < < <
O
oy
+—t—t—-t—t—t—t+t—t—t—tFt—FT—t—t—Ft—"t—FtT—1T—1%
[Ta}
ol
o™ o - — o o o~
By By n — o o o~ 0 n 17} 0
B [N (&) 5] &) (s} < < < <
® A S U D N ; $—+4—
7+|I.A..Il b — 4+ — 4 —_— l.TnI.A-In _— II.AII.A..I. — .A
™ Lol ™ o o o~ —
-9 n -9 o) o~ - (7 w0 177 %
= Fxy &) (S) (&) (&) < < < <
o ! | | i | t 1] i 1] i
3]
8
(&) ~ © o) < =2] |9} a = x4 o — o~ o ~ 7o) O ~
-9 " N Wy 7 n N on) O O VS O O O O
(@] o ™ o [y2] o o (22} (42} (421 (3] [30] o (22 o0 o (22} (22]

2- 57

GER-16422

(continued)

Table 2-5.

32-BIT VALUE

—— — —— — — — — — — — — — — ————— — — — — —— — — — — — — — — ——— ——" — —— — —

-4 [| [}]]
28] v | [
b (] — o < — o = 3] o~ — -~ 1
Ay ay -1 [m (&) (&) [m 2] | -
a a M m " -] %] = <1 (<] =]
~ [&]
N $2 4444 t—d—5—4—+—
o T™T =11 = —t—1— - —1—1
o~ %)
o - o — — o < = o~ — o~ — o
[I =3 A [] (] = P] mm [o]] <" <"
(=] m m [=] Y] [=3] J_ = P <2 x4 <]
2 8
e e afe e e e o e e e e e e e b e ——
] 4 4 4 4 b A = 4 4 4 L 4 4 4 4
—t <2}
—t [— o — (] < = o~ — o~ o
i - [(o & [&] = [on] o | 1 [-9
m o =] [an] [=¥] 9] T_._ = <0 2] (<] (<]
(&
® 4 2 b 4 1 L 4 E
~ 1 A St = S Ak e Sk et T—1—1 1
(@] — (@} - o M — ('] = — o~
o [Ay -3 [&] |®] 1 P =] P4
[=~] (=] a m Ay J [< = B o
O
o 1 1] 1 O 1 1]]] i] !
=1
8
5] [o°] =) <¢ 2] (8} [« 23] e o — o~ ™ 3 n O ~ [+ o) o
[N \O O O O O O O O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
o (2} 2] ™ ™ ™ 2] ™) 2] I} [2a) ™ e o 2] [22] ™ 3]

2- 58

GER-16422

(continued)

Table 2-5.

32-B1IT VALUE

— [}
o 1
o™ o~ — (a2l -
[P [o] 1
<] =y <] =) <]
~5
2._ 4 E
e T—11
o
— o — o~
[} o ﬂ fe
<] <] <)
O
—f
wt—t—t—t—-41t—-t—1¢
—
— o — o~ —
) ~ 1 P 23}
<2} = =) < B
-]
d—F—F+—t—+—+—+
~
Ll o - (] — 22l
P P = -] [[l
<] < <2} <5 B =
(2] 1 [} i 1
<3
a
m <¢ 3 | & w1 o
Ay ~ ~ ~ .m ~ ~
(=] (28] (22} (52} o o o

2- 59

GER-16422

LOAD AP CONTROL REGISTER FROM AP CONTROL REGISTER

The load register from register instruction allows the transfer of data
between AP control registers. Registers may be tramnsferred
individually or in various group combinations.

Instruction Format

0 10 12 27 29

| | | | | |
]0011000|SRC |SHFT | |OPD | DEST |
| I | P |
SRC Source Register Group

000 Common

001 AS

010 BL, DP

011 PSW

100 FL2, FPE

101 FL1, FP3, FPl, FP2

110 FL1, FP3, FPl, FP2

111 FL1, FP3, FP1l, FP2

SHFT Shift Amount

00 No shift

01 Left shift 8 bits

10 Left shift 16 bits

11 Left shift 24 bits

OPD Store Operation

01 Store low half of group

10 Store high half of group

11 Store high and low halves of group

2- 60

GER-~16422

DEST Destination Register Group
000 Common
001 AS
010 BL, DP
011 PSW
100 FL2, FPE
101 FP2, FL1
110 FP3, FPl
111 FL1, FP3, FP1l, FP2
Table 2-6 is described as follows:
1) The 3 digit hex code on the left indicates the high order 12
bits of the Load AP Register from Register instruction.
2) The bit indicators at the top of the table indicate the bit
position of the source register shown in the blocks.
Table 2-7 is described as follows:
1) The 2 digit hex code on the left indicates the low order 8
bits of the Load AP Register from Register instruction.
2) The bit indicators at the top of the table indicate the bit

position of the destinaticn register shown in the blocks.

2- 61

GER-16422

—t
™
o~ = (=] o~ —) —
w1 By [wd ~ Ay
(2N B < 2% Py =
~
ZL . 4 -
‘SR U S A S S S
e 1 T
[+] o~
0] =3
e85 ICiNiEiZigigin
=
o I 129 = Py 29 By =
+ (&) Vo)
& & T4-—4— =t =t —
N S S SN S S SR &
[Ta}
[=2 —
3] &]
o] ~ (o] o o~) — o~ —
3 =) w3 =9 -9 <9 o
[*] (] B F Fxy 29 29
wn 173}
= 8._ 4 4 4 4 4 4
) ~ 1
) 1
0
s €3] o o — o — N
&0 W -] y By ¥
M 29 B = fx =y
N =)] |] |] |
< a
=] () — o~ o (&) [(<3 [
Q (@] — —f -t — — - —t
Y [))) 2] %)) o
iy o
-
[0}
4 s e s S — — — — — — t—— —— St — — — —— —" —— —— —— —— — — — — — — — v—— — — — —
® — 1 t 1 154 1 |
ot)] 1 (7] 1
60 | { m H .
[O) [aa) O o~ ~N o (] — o~ —t () — o [e=] - |
e &) oo) 95} (%) 17 0 Ay e -1 £y - &) &) o o
| < < < < [2] m m | (=¥ A
Yy ~ | &)
< 2; L .~. & C.A . 4 - 4
e — e e e e e — e e oy v o — e w— e c—m e —— e — e — e e
. q 4 I hmi it Sk Sl 171z
§ B ° ! n 2
W | [o~ o [— o~ ™ o — o - | O — o M o —
2] (&} (&) (&) &) %)) 7 %} [- | 3 H (&) o o
g <} < <¢ < a =) M m 1 ~ e
o &) O (&
T = S S ; ; +2 5 -4 —4—
i st S S e I I L A S R T i g Tl il e o
& “ .4 E 4 .A 4 - .A v
=3] -t I
9] &) Wm
— [+ — o~ ™ o — o~ 2] o - (=] — (@] — o 3 (] [#5]
o] =) (&) © &) 5]) 7)) W w . ¥ ~ | &) [Q "
) o < <¢ <4 < M a (] m Ay ! Ay <]
e w . (&)
® ; t—+ — 1 f—d—t—f—F— 12
Tt diaadts dhanlly dndl dhi T s e I S s s v s ittt Ut i s o
7._ .A 1 9 4
n
o — o~) o — o~ 2] o —t [— o — o M o~
3} &) (&) [&] %) (7)) %) % 3 w1 A R4 5] O — w1
<5 < < < M m [=) (o Ay Ay n.b ™
o | 1 | (&)
a
o o — ~N) ~ I7a) O ~ © N ¢ m Q a &3 <N o
(&) = o o o o o o o o o o o o o o o —
W ™ 32 %)) ™ ™ o) ™)) %) ™ ™ ™))

2~ 62

Load AP Register from AP Register Destination Options

Table 2-7.

DESTINATION REGISTER

DESTINATION REGISTER

GER-16422

]
= 7
R M ~ o~
[7;] -9} = -9 <Y
< (=] 1 <] B~
ug 3
. .l.Tll.Tl.._..ll.Avli.TI.T.l..T
~N
o o — —
(%] A =3 7]
L. [=] y <5
O
—
SR S S N S A S
5._ 4 4 . 1 .A :
—
) - — = [al o
(7] w3 [$) Py 28] Ay
< m A x e =
[+
.TI.TII.TII.%I.TI#'.TI!.T
™~
gigigigizt iz
<4 -] <Y =7 < B
o [} i
53]
=]
o =) < -] (&} a K3 P
[} — — - — — — —
[
o
Y T T N R T T R T N T T
(38 177}
[l [aa] — m ~N ~N ™
[&] w o] N [+7] -9} [}
< [=] S <) B
o] - *
o I e e e A A A P R B | 1
~N
~N o~N o — — o~
(& «\ [-l o) (&)
< [=] [[
O
—
54Il.Tll.Tll.T'..A.l.*.I....AIl.TIv.A-I.TII.A..II.A.II.TII.T.Iu.JII.TII.T'.T
—
-t — ~—d -t <3} (vl o —
[&] (7] o (&) e ay Ay [&]
< m =¥ x4 =y <
[+
./.A..I..A..l.A..ll.Tll.A..II._..I.%I.T.I.L..II.TII.TII.Tll.TI.A-II.T.I.T.I.TII.T
o~ (=] o (=] [} — — [
- [&] w - [&] m 1 O
<3 < m [=3}
o 1
= e e e
8
(&) o (=) o — o~ [3p] ~r w O ~ (=]

2~ 63

GER-16422

STORE AP CONTROL REGISTER TO CONTROL MEMORY
The store register instruction stores AP control registers into main
memory or the HSDB. The effective address is formed by wusing the TAG
and ADDRESS fields of the instruction. The source may be any of the AP
register groups.

Instruction Format

0 7 10 12 16

I I | | | |
JOO11000|GRP |SHFT | TAG | ADDRESS |
| | | | | I
GRP Source Register Group

000 Common

001 AS

0l10. BL, DP

011 PSW

100 FL2, FPE

101 FL1, FP3, FPl, FP2

110 FL1, FP3, FPl, FP2

111 FL1, FP3, FPl, FP2

SHFT Shift Amount

00 No shift

01 Left shift 8 bits

10 Left shift 16 bits

11 Left shift 24 bits

2- 64

GER=-16422

TAG Effective Address

0001 ADDR

0010 ADDR+4DP

0011 ADDR+DP, decrement BL

0100 ADDR+4DP, increment DP

0101 ADDR+DP, decrement BL and increment DP
0110 ADDR4DP, decrement DP

0111 ADDR+DP, decrement BL and DP
1000 ADDR+RO

1001 ADDR+R1

1010 ADDR+R2

1011 ADDR+R3

1100 ADDR+R4

1101 ADDR+4RS

1110 ADDR+R6

1111 ADDR+4R7

Table 2-8 is describes as follows:

1) The 3 digit hex code on the left indicates the high order 12
bits of the Store AP Register imstruction.

2) The bit indicators at the top of the table indicate the bit
positions of the source register to be stored into memory.

2- 65

GER-16422

e s — — — —— — — — —— — — — — — —

-—
3¢}
~N 221 o o~ - o -
-1 [Ay =] <% P
< Fxs <2 <) <) = = =
JINE S 4 &
" " —_—t—t —+ — |.+|..+I..A. o
o o~ ~y
o <
] o o~ = — o~ —) =
o e ElRialaIiglE @
o j=] O «
unu - 4 4 4 4 E 4 b
e S S S— —— e c— e e o e e e o
3] > 5.4
= —
=) B
[o] [o (o] o~ o — ('] -
[%2] [==] =] 7] [a¥] P —
1 <9 =N Fes < <]
> ~
s 7 %2y +—t—+—+—+—4
o iR R R SR S T e o o
g ~ 1
[}
=
=3 o] o — o — o~
— =% ~ <] 7] R
m 2% P Fxy <] P
) o t i |] i |
[} e e i i e o it it e i o o e et
o j£2]
(&] (=)
o) — o~) (&) a 3] <7
o] (&} — - 4 — — — i
] W 32}]) ™ ™ 52} ™
[
] *® * *® x«
&
0 Bt e e e S S S U U S U S U —
o — i (VA
wo g} i _,M
-1] (=} — o~ [3a) o — o~ — [- o = o ~ o o
& (& (&] Q 0 [77] (7, 77) [- | By - [&] [&]
B < < < < [a) m m (=) [} =] =%}
P-4 ~ [&]
o] e e R 1
Q e e e e e e e e e e e e e e e e e e — e e e e — o — e - de — e —
2 o s e e 11] o]
o o~ (%] 1
2 i
1) o~) o — o~ ™ o — o — o - o M o — o
= (&) (&) (&) [&] 7,1 wn (%] 0 - ¥ I | - (&) (&]
. w o < <¢ < < (=] [=] m m ﬂ.u =%} []
i g 2
& " .I.Tnl.f||+|.+||+I|+.I.+|I+I..._,.I.A-Iu.T|.+|.A-..I+N.+l|+ul.4-
B ~— (7]
W} — M
— M — o~ 32 o — o~ o o — o — o — o o m
D } (&] (&) [&) (&) %] %] wn w0 -1 [[— (&) (N [&] oy
o ~N < < < < =] (=] A =]] I A B
[™ © .; m
7.A_.I..f|.T|...f|.+|..,-|..+I.;...l+||+.|+..l.4.||4r|l .aI.L-..I.A-nvM.TII.A.
w
Ol I NITO IO I~ININIOI—~IOIlm|IOI|l~|O M o~
Q (] (&} o w (7] w0 (7] 1 | B Ay (&) &) 4 =
< < < A_B m [=] an] 7] Y] n_v <
o 1 | | 1 o
a
o o — o~ ™ ~ n O r~ -} [} <4 0 [&] a = <2 o
(&) o o o o o o o o (=} (=} (=] o o o o o —
W.B ' [2] ™ ™] 2]) ™ ™) o 3a) %) 3})

2- 66

GER-16422

SWAP PSW (Special case of store AP register to memory)

The swap PSW operation causes the current program status word to be
stored in the memory location specified by the effective address and a
new PSW value to be fetched from the succeeding location. (If shifting
is specified, both the o0ld and new PSW values will be shifted.) The
result is a change in the PC, CC, and IMASK. The next instruction is
fetched from the location specified in the left half of the PSW (PC).
The location where the current PSW is store must not be a page memory
address. NOTE: A swap PSW occurs anytime the PC, CC-IMASK, or PSW are
stored into memory. To prevent a swap, move them into another register,
then store that register into memory. See Table 2-8 for swap PSW
option of Store AP register to memory.

Instruction Format

0 10 12 16

| | | | |
]0011000011|SHFT| TAG | ADDR |
| I I | |
SHFT Shift Amount

00 No shift

01 Left shift 8 bits

10 Left shift 16 bits

11 Left shift 24 bits

2- 67

2~ 68

TAG

oool
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

GER~16422

Effective Address

ADDR

ADDR+DP

ADDR+DP, decrement BL
ADDR+DP, increment DP
ADDR+DP, decrement BL and increment DP
ADDR+DP, decrement DP
ADDR+DP, decrement BL and DP
ADDR+RO

ADDR+R1

ADDR+R2

ADDR+R3

ADDR+R4

ADDR+R5

ADDR+R6

ADDR+R7

GER-16422

GENERAL RECISTER INSTRUCTIONS
LOAD AP CONTROL REGISTER FROM GENERAL REGISTER OR CONTROL MEMORY
The Load AP control register instruction loads an AP control register
or register group from a general register or a memory location pointed
to by a general register.

Instruction Format

0 16 20 24 25 27 31

[I |
| A084 | M | R | 0] LS| ACR |
I | |

=

Source mode field. The wvalue 1in this field selects the
address mode used to fetch the source data. The data may be
fetched directly from the source register R (register mode),
R may be a pointer to the memory location containing the data
(indirect mode), or R may be a pointer to a memory location
which points to the data (double indirect mode).

M also determines if the source register R 1is to be
incremented or decremented before or after the 1load
operation.

The legal values for M are

register mode with no modification
indirect mode with no modification
double indirect mode with no modification
indirect mode with post-increment
indirect mode with post-decrement
indirect mode with pre-increment
indirect mode with ‘pre-~decrement

double indirect mode with post-increment
double indirect mode with post-decrement
double indirect mode with pre-increment
double indirect mode with pre-decrement
register mode with post-increment
register mode with post—-decrement
register mode with pre~increment
register mode with pre-decrement

MWD OWP»OVONOOULSWN -

2- 69

2- 70

|

ACR

GER-16422

Source register field. This field specifies the general
register (RO-RF) to be used as the source register. The
interpretation of the content of R is determined by the mode
field M.

The LS field specifies an end-around left shift of 0, 1, 2,
or 3 bytes which is applied to the source data before it is
stored.

For determining the shift amounts, Figure 2-1 shows the
allignment of the AP control registers.

Destination field. This field specifies the destination AP
control register or register group.

The legal values for ACR are

08 CL

09 ASL

0A DP

0B CC-IMASK

oC FL2

0D ~ FP2

OE FP1

OF FP1, FP2

10 CH

11 ASH

12 BL

14 FPE

15 FL1

16 FP3

17 FL1, FP3

18 CH, CL

19 ASH, ASL

1A BL, DP

1c FL2, FPE

1D FL1, FP3, FPl, FP2
1E FL1, FP3, FPl, FP2
IF FL1, FP3, FP1l, FP2

GER-16422

STORE AP CONTROL REGISTER TO GENERAL REGISTER OR CONTROL MEMORY

The store AP control register instruction stores an AP control register.
or register group to a general register or a memory location pointed to
by a general register.

Instruction Format

0 16 20 24 25 27 31

Il
i A080 | M | R | 0] LS| ACR |
o

M Destination mode field. The value in this field selects the
address to be used as the destination. The data may be
stored directly into destination register R (register mode),
R may be a pointer to the destination memory location
(indirect mode), or R may be a pointer to a memory location
which points to the destination memory 1location (double
indirect mode).

M also determines if the destination register R is to be
incremented or decremented before or after the store
operation.

The legal values for M are

register mode with no modification
indirect mode with no modification
double indirect mode with no modification
indirect mode with post-increment
indirect mode with post-decrement
indirect mode with pre-increment
indirect mode with pre-decrement

double indirect mode with post-increment
double indirect mode with post-decrement
double indirect mode with pre-increment
double indirect mode with pre-decrement
register mode with post-increment
register mode with post-decrement
register mode with pre-~increment
register mode with pre-decrement

HEMOODEP>OooNoWUL S WN -

2- 71

2=~

72

|

ACR

GER-16422

Destination register field. This field specifies the general
register (RO-RF) to be used as the destination register. The
interpretation of the content of R is determined by the mode
field M.

The LS field specifies an end-around left shift of ¢, 1, 2,
or 3 bytes which is applied to the source data before it is
stored.

For determining the shift amount LS, Figure 2-1 shows the
alignment of the AP control registers.

Source field. This field specifies the source AP control
register or register group.

The legal values for ACR are

CH, CL

ASI, ASL

BL, DP

FL2, FPE

FL1, FP2

FP3, FP1

FP1, FP3, FP1, FP2

~No s -0

GER-16422

MOVE GENERAL REGISTER OR CONTROL MEMORY TO GENERAL MEMORY OR CONTROL MEMORY

The general register to general register instructions provide a means
of moving data between any two of the 16 general registers (RO-RF), or
between two memory locations pointed to by the general registers, or
between a general register and memory. The memory specified must be a
location in main memory or HSDB.

Instruction Format

0

I
| OP CODE | M1 | Rl | M2 | R2 |
I

OP CODE

A000

A001

A002

A00B

Function

Load register from register. This 1instruction moves the
32-bit value referenced in Ml-Rl to the destination specified
by M2-R2.

Load register halfword. This instruction moves the least
significant sixteen bits of the M1-Rl source to the least
significant 16 bits of the M2-R2 destination. The source and
the most significant 16 bits of the destination remain
unchanged.

Load register byte. This instruction moves the least
significant 8 bits of the MI1-Rl source to the most
significant 8 bits of the M2-R2 destination. The source and
least significant 24 bits of the destination remain
unchanged.

Load complement of high order byte. This instruction
complements the most-significant byte of the MI-Rl source and
stores the result in the M2-R2 destination. The source and
the low order 3 bytes of the destination remain unchanged.

Source mode field. The value in this field selects the
address mode used to fetch the source data. The data may be
fetched directly from the source register Rl (register mode),
Rl may be a pointer to the memory location containing the

2- 73

2- 74

GER-16422

data (indirect mode), or Rl may be a pointer to a memory
location which points to the data (double direct mode).

Ml also determines if the source register Rl 1is to be
incremented or decremented before or after the move
operation.

The legal values for Ml are

register mode with no modification
indirect mode with no modification
double indirect mode with no modification
indirect mode with post-increment
indirect mode with post-decrement
indirect mode with pre-increment
indirect mode with pre-decrement

double indirect mode with post-increment
double indirect mode with post-decrement
double indirect mode with pre-increment
double indirect mode with pre-decrement
register mode with post~increment
register mode with post-decrement
register mode with pre-increment
register mode with pre-decrement

HEHDOWPPOVEONOULEWN -

Source register field. This field specifies the general
register (RO-RF) to be used as the source register. The
interpretation of the content of Rl 1is determined by the
source mode field Ml.

Destination mode field. The value in this field selects the
address to be used as the destination. The data may be
stored directly into destination register R2 (register mode),
R2 may be a pointer to the destination memory location
(indirect mode), or R2 may be a pointer to a memory location
which points to the destination memory location (double
indirect mode).

M2 also determines if the destination register R2 1is to be
incremented or decremented before or after the move
operation. The legal values for M2 are the same as for Ml.

Destination register field. This field specifies the general
register (RO-RF) to be used as the destination register. The
interpretation of the content of R2 is determined by the
destination mode field M2.

LOAD GENERAL REGISTE

GER~16422

R FROM CONTROL MEMORY

The load general register from memory instructions load the general
registers with data from main memory or HSDB.

Instruction Format

0

|
| OP CODE

I | |
| R | TAG | ADDR |
| | I

OP CODE

81

82

83

|

Function

Load register from memory. This instruction moves a 32-bit
data value from the control memory location specified by TAC
and ADDR to the selected register (R). The source value
remains unchanged. '

Load halfword from memory. This dinstruction moves the
least-significant 16 bits of the memory value specified by
TAG and ADDR to the least-significant 16-bits of the selected
register (R). The source and the most-significant 16-bits of
the destination remain unchanged. ‘

Load byte from memory. This instruction moves the
least=-significant byte of the source specified by TAG and
ADDR to the most-significant byte of the selected register
(R). The source and the least significant 24 bits of the
destination remain unchanged.

R is the destination register field. Its value (0-F) selects
the general register to be loaded.

2= 75

GER~16422

TAG The value in the TAG field combined with ADDR forms the
effective destination address.

The legal values for TAG are

TAG Effective Address

0 Load immediate value

1 ADDR

2 ADDR + DP

3 ADDR + DP, Decrement BL

4 ADDR + DP, Increment DP

5 ADDR + DP, Increment DP, Decrement BL
6 ADDR + DP, Decrement DP

7 ADDR + DP, Decrement DP and BL
8 ADDR + RO

9 ADDR + R1

A ADDR + R2

B ADDR + R3

C ADDR + R4

D ADDR + R5

E ADDR + R6

F ADDR + R7

Note that when TAG=0, the value of ADDR is loaded into the
specified general register R.

2- 76

GER-16422

STORE GENERAL REGISTER TO CONTROL MEMORY
The store general register instruction stores the content of the
general register R into the control memory location in main memory or
HSDB specified by the TAG and ADDR fields.

Instruction Format

0 8 12 16 31

| l
| 80 | R | TAG | ADDR |
l l

R R is the source register field. Its value (0-F) selects the
general register which contains the data to be stored.

TAG The wvalue in the TAG field combined with ADDR forms the
effective destination address.

The legal values for TAG are

TAG Effective Address

0 ADDR

1 ADDR

2 ADDR + DP

3 ADDR + DP, Decrement BL

4 ADDR + DP, Increment DP

5 ADDR + DP, Increment DP, Decrement BL
6 ADDR + DP, Decrement DP

7 ADDR + DP, Decrement DP and BL
8 ADDR + RO

9 ADDR + Rl

A ADDR + R2

B ADDR + R3

C ADDR + R4

D ADDR + RS

E ADDR + R6

F ADDR + R7

Note that TAG=0 is equivalent to TAG=l.

2-.77

GENERAL

GER-16422

SECTION III. PROGRAM PAGER INSTRUCTIONS

PROGRAM SEQUENCE

Pager operation is initiated by an external function code (Load GET).
When the pager is first put in the busy state, the GET address register
points to the location of the first pager instruction. Normally, the
pager fetches instructions from sequential memory locations, and the
GET address register is incremented by 1 for each instruction
(operation is similar to that of the Program Counter in AP control).
The execution sequence 1is modified if a Move Data instruction is
fetched. 1In this case, the memory locations immediately following the
Move Data command contain the source block to be moved, and the next
pager instruction immediately follows this source data block.

The execution sequence is also modified when a Load GET external
function 1is 1issued by the pager or another STARAN element. In this
case, the GET address register is loaded with a new address from which
the next instruction is fetched.

The execution sequence is halted when an external function to stop the
pager is issued by the pager or another STARAN element.

INSTRUCTION LENGTH

v

Each pager instruction is a 32-bit word. Bits 0 and 1 determine the
instruction type.

INSTRUCTION TYPES

78

The pager instructions are: Load Put, Move Data, Load Put and Move
Data, and Issue EXF.

GER-16422

PAGER INSTRUCTIONS

LOAD PUT

The Load PUT instruction loads the PUT address register with the
address field (bits 16~31) of the instruction. The first word
transferred by the next Move Data instruction will be put into this
address.

Instruction Format
012 15 16 ' 31

I | -
{0 1] | PUT ADDRESS |
I | I

PUT ADDRESS = AP control page memory address

2- 79

MOVE DATA

GER-16422

The Move Data instruction causes memory words immediately following the
instruction to be 1loaded into the page memory. The block length is
contained in the count field of the command. The first instruction of
the block 1is 1loaded into the location pointed to by the PUT Address
register. Succeeding instructions are loaded in sequential page memory
locations. At the end of the Move Data execution, the PUT Address
register points to the 1location following the last word of the
destination block and the GET Address register points to the location
following the last word of the source block where the next instruction
is fetched.

Instruction Format

2- 80

012 15 16 31

COUNT | |

—
(=]

COUNT = Block Count (number of words to be moved)

GER-16422

LOAD PUT AND MOVE DATA

The Load PUT and Move Data instruction loads the PUT Address register
and then causes a block of data to be moved. It performs the same
function as a Load PUT instruction followed by a Move Data instruction.

Instruction Format

012 15 16 31

I
|1 1] COUNT | PUT ADDRESS |
b

COUNT = Block Count (number of words to be moved)

PUT ADDRESS = AP control page memory address

2- 81

2=

ISSUE EXF

GER-16422

When the pager issues an external function, it competes with other
STARAN elements that are issuing external functions. The EXF logic
treats one EXF at a time. If the EXF 1logic accepts one EXF from
another element (which affects the pager) before the pager EXF is
accepted, the pager EXF will be ignored.

When the pager issues a function code to the EXF logic, and the EXF
logic accepts the code, it returns a sense bit dependent on the
particular code and status of the STARAN element. If the sense.bit 1is
0, the pager fetches its next instruction from the next sequential
memory location. If the sense bit is 1, a skip of one instruction is
performed and the GET address register is incremented by 2 instead of 1
at the end of instruction execution.

Certain external functions affect the pager itself. These codes and
their functions are shown in Table 2-9.

Instruction Format

82

012 12 13 31
[| |
|0 0] | FUNCTION CODE |
I I |
FUNCTION CODE = any one of the wvalid external function codes

described in Appendix C.

Table 2-9. Pager EXF Functions

EXF CODE Function ,
4aaaa Causes the pager to branch to hex address aaaa
08005 Causes the next sequential instruction to be skipped
08000 Causes the pager to halt
08001 Causes the pager to halt with the GET address register
pointing to the second location after the EXF
instruction ’

GER-16422

PAGER COMMAND SUMMARY

A summary of Pager commands is shown in Table 2-10.

Table 2-10. Summary of Pager Commands

I + -
| Hex Code (Bits 0-31) | Operation |
|- + |
| 4000nnnn | Load PUT Address register |
| + l
| 8kkk0000 (1) | Move block from bulk core to |
| | page memory |
| + I
| Ckkknnnn (1) | Load PUT Address register |
| | and move block from bulk]
| | core to page memory |
|- + —— I
| OOOf££ff | Issue external function from |
{ | pager |

+ |
| 0004aaaa | Branch to new GET address |
| -- + !
| 00008001 | Halt Pager and skip next |
| | sequential instruction |
| + |
| 00080005 | Skip to next sequential l
I | instruction |
|- + -

where nnnn = page address
kkk = number of words to be moved (count)
fffff = 19 bit function code
aaaa = hexadecimal code for new address

(1) The count may extend into the left-most digit since the count
field is actually 14 bits in length.

2- 83

GER~-16422

SECTION IV. EXTERNAL FUNCTION INSTRUCTIONS

GENERAL

The External Function instruction issues an external function (EXF)
code to EXF logic. If the EXF logic returns a sense bit of 1, the next
sequential instruction 1s skipped; 1if the sense bit is 0, the next
sequential instruction is executed. Each function code is 19 bits long
and indicates what element of STARAN is to be interrogated and/or
controlled. Function codes may be transmitted to EXF logic by AP
control, the program pager, sequential control, or the host computer
(if the EXF channel is implemented). One function code at a time is
accepted by EXF logic. A function code can both interrogate and
control an element in one operation.

FUNCTION CODE CLASSES.

The classes of function codes are Page Port Switches, Interlocks,
Program Pager, Error Control, AP Control interrupts, Sequential Control
interrupts, AP Control activity, resets and clears, and spare external
functions.

INSTRUCTION FORMATS

Instruction Format From Associative Processor Control

0 78 12 13 31

| I | |
]00111000| | EXTERNAL FUNCTION CODE |

Instruction Format From Program Pager

012 12 13 .31

b I : |
|0 o] | EXTERNAL FUNCTION CODE |
P I . I

2- 84

CER-16422

EXTERNAL FUNCTION CODES
PAGER PORT SWITCH INSTRUCTION
Each page memory has a port switch which can connect the memory to the
AP control instruction bus, the pager bus, or the sequential control
bus. This function code permits interrogation and control of these

switches.

Instruction Format

0 78 12 13 18 19 20 21 22 27 28 29 31
| + + ot + et |
| | | | | PAGE |NEW SWITCH| |SENSE(1l) |
| | I P | SETTING | | I
]00111000] | 000000 | | | | 1= |
| | | Il [T A I I
] + -+ ot e s At St R Rat el
Bits 20-21 00 = Page O

0l = Page 1

10 = Page 2

Bits 22-23 If now on sequential bus
00 = No=-op

01 = Switch to sequential bus
10 = Switch to instruction bus
11 = Switch to pager bus

Bits 24-25 If now on instruction bus

00 = No-op

01 = Switch to sequential bus
10 = Switch to instruction bus
11 = Switch to pager bus

Bits 26-27 If now on pager bus
00 = No=-op
01 = Switch to sequential bus
10 = Switch to instruction bus
11 = Switch to pager bus

Bits 29-31 100
010
001

On sequential bus
On instruction bus
On pager bus

[]

(1) Only one of bits 29-31 is returned as a sense bit.

2- 85

GER~-16422

A summary of Pager Port Switch EXF instructions is shown in Table 2-11.

Table 2-11. Summary of Pager Port Switch EXF Instructions

f- + |
|Hex Code (Bits 0-31)] Operation |
|- + |
380002A0	Switch Page O to Instruction Bus
380006A0	Switch Page 1 to Instruction Bus
38000AA0	Switch Page 2 to Instruction Bus
E - — —	
380003F0	Switch Page 0 to Pager Bus
380007F0	Switch Page 1 to Pager Bus
38000BF0	Switch Page 2 to Pager Bus
- + I	
38000150	Switch Page 0 to Sequential Bus
38000550	Switch Page 1 to Sequential Bus
38000950	Switch Page 2 to Sequential Bus
+ -	
380001B2	Sense if Page 0 on Instruction Bus
380005B2	Sense if Page 1 on Instruction Bus
38000982	Sense if Page 2 on Instruction Bus
- + ---	
38000C1B1	Sense if Page 0 on Pager Bus
380005B1	Sense if Page 1 on Pager Bus
38000981	Sense if Page 2 on Pager Bus
+	
380001B4	Sense if Page 0 on Sequential Bus
380005B4	Sense if Page 1 on Sequential Bus
380009B4	Sense if Page 2 on Sequential Bus
I- + - —

2- 86

GER-16422

INTERLOCKS

The EXF logic contains 64 stored bits called interlocks. These bits
have no predetermined meaning. Software can assign a meaning to an
interlock and use it for any purpose. Function codes allow the current
state of an interlock to be sensed and a new state entered 1in one
operation. The current state of the selected interlock is sensed, and
depending on the state, either bit 30 or bit 31 is returned as a sense
bit. The current state also selects bit 28 or bit 29 as the new state
of the interlock. If the selected bit for the new state is 0, the
interlock 1s cleared; if the selected bit for the new state is 1, the
interlock is set.

Interlock Switches and Lights

Sixteen interlocks (00 through OF) can be controlled manually by panel
switches and are displayed via panel lights. The other 48 interlocks
(10 through 3F) can be sensed and controlled only by software function
codes. A summary of interlock EXF instructions is shown in Table 2-12.

Instruction Format

0 78 12 13 18 19 27 28 29 30 31

| + + + + —t |
| | I | | NEW | SENSE |
| I | | | STATE | |
100111000] | 000011 |INTERLOCK NUMBER |- | |

| | I | [R
| —t- + + e SR |
INTERLOCK NUMBER 00 through 3F
NEW STATE

00 Clear interlock n

01 Leave interlock n unchanged

10 Toggle interlock n

11 Set interlock n

SENSE

00 Sense returned is zero

01 Sense returned 1s one if interlock n is set
10 Sense returned is one if interlock n is reset
11 Sense returned is one

2- 87

2- 88

GER-16422

Table 2~12. Summary of Interlock EXF Instructions

Hex Code (Bits 0-31)

Operation

38006nnC
38006nn0
38006nn5
38006nn6
38006nnl

38006nnD
38006nn2

38006nnE

— . —— e e e e e e e e e e oo

Set Interlock nn
Clear Interlock an
Sense if Interlock
Sense if Interlock
Sense if Interlock
then clear it
Sense if Interlock
then set it

Sense 1f Interlock
then clear it
Sense if Interlock
then set it

nn

nn

nn

nn

nn

nn

set
clear
set,
set,

clear,

clear,

where 00<nn<3F

— . — — —— — —— — — ot ——— ———— —

GER~-16422

PAGER STATE INSTRUCTION

The program pager has two states, off and busy. The Pager State
instruction allows the state of the pager to be sensed and changed. If
the current pager state is off, bit 30 is returned as a sense bit and
bit 28 governs the new pager state; if the pager is busy, bit 31 is
returned and bit 29 governs the new pager state. If the selected bit
for the new state is 1, the pager will become busy; if the selected bit
is 0, the pager will be turned off.

Instruction Format

o 78 12 13 16 17 27 28 29 30 31
| —t + + + —+ |
| | | | | NEW |SENSE |
| | | | | STATE| I
|00111000] | 0001 | | mm——t e |
I I | | A T I I
| I | I T I
| —+ -+ + —t e b et |
Bit 28 If Off
0 Pager remains off
1 Pager will become busy (if operative)
Bit 29 If Busy
0 Pager turned off
1 Pager remains busy
Bits 30-31 SENSE
00 Sense returned is zero
01 Sense returned is one if pager state is busy
10 Sense returned is one if pager state is off
11 Sense returned is one

2- 89

2~ 90

Sample Coding:

|Hex Code (Bits 0-31)

|-

l
|
|
l
|
|-

GER~16422

ol

ol §

| Operation

38008000
3800800C

38008005
38008006

|Stop pager.

|Start pager where previously
|stopped (if operative).
|Sense if pager is busy.
‘|Sense if pager off.

.

GER-16422

PAGER LOAD GET INSTRUCTION

The Pager Load GET instruction loads the pager GET address register
with a new address. The sense bit returned for this function code will
always be zero.
the PUT address and moving data, the moving will be interrupted between
word transfers.
processed if EXF logic has accepted the Load GET EXF first.

Instruction Format

If the pager is in the midst of moving data or loading

If the pager was issuing an EXF, the EXF will not be

| register.

-4
T

0 78 12 13 16 17 31

I | I I |

]00111000] | 100 | GET ADDRESS |

I I | I |

GET ADDRESS Address to be loaded into the GET address register
If pager is inoperative, its GET address register is not
disturbed and pager remains inoperative.
If pager 1is operative, 1its GET address register is
loaded with bits 16-~31 of the instruction and the count
register 1is cleared, the pager becomes busy and fetches
its first instruction from the new get address.

Sample Coding

| -+ |

|Hex Code (Bits 0-31)] Operation |

I |- |

| | I

| 3804nnnn | Load pager GET address |

| |

I I

| I

where nnnn is the GET address

2- 91

GER-16422

ASSOCIATIVE PROCESSOR CONTROL INTERRUPTS

2- 92

The AP Control Interrupt instruction is used to sense, set, and reset
the state of the 15 interrupts to AP control. AP control interrupts
are given hex numbers 0l {(lowest priority) to OF (highest priority).

Interrupt Mask

Bits 28 through 31 of the Program Status Word (PSW) in AP control
contain an Interrupt Mask (IMASK).

Interrupt Conditiomns

AP control accepts interrupt n if the following conditions exist

1) AP control is active and at an interruptible point.
2) The current IMASK is less than n.

3) No interrupt of higher priority is set.

4) Interrupt n is set.

Interrupt Handling

When interrupt n is accepted, AP control fetches the next instruction
from hex address 0000+n without altering the program counter.
Normally, the instruction at the above address is a swap PSW which
saves the o0ld PSW and loads a new PSW, causing control to be
transferred to an interrupt handling routine. The IMASK of the new
PSW should be n or greater to prevent AP control from accepting the n
interrupt again until the interrupt handling routine is complete.

The current state of the interrupt is used to select bit 30 or 31 to be
returned as a sense bit and to select either bit 28 or 29 for the new
state of the interrupt. If the selected bit for the new state is 1,

the interrupt is 1left in the set state; if it is 0, the interrupt is
left in the clear state.

Instruction Format

GER-16422

0 78 12 13 18 19 27 28 29 30 31
| + + —+ + + |
| | | | | NEW |SENSE |
I | I | | STATE| I
{00111000] | 001000 | INTERRUPT |=—=—metmmm——m |
| ! | | NUMBER | R I B
| l l l I
| + -t + Tt s et ey |
INTERRUPT NUMBER 00 through OF
NEW STATE
G0 Reset interrupt n
01 Leave the state of interrupt n unchanged
10 Toggle interrupt n
11 Reset interrupt n
SENSE
00 Sense returned is zero
01 Sense returned is one if interrupt n is set
10 Sense returned is one if interrupt n is reset
11 Sense returned is one

Sample Coding

de

Hex Code (Bits 0-31)|

J—,

Operation

38010nnC
38010nn0
28010nn5
38010nn6

|Set AP Interrupt nn
|Clear AP Interrupt nn

| Sens
|Sens

-

e 1f AP Interrupt nn is set’
e if AP Interrupt nn is clear]

where nn is the interrupt number

2- 93

GER-16422

ASSOCIATIVE PROCESSOR CONTROL ACTIVITY

2~ 94

The AP Control Activity instruction permits the sensing and controlling
of AP activity. The AP control has two states: active and inactive.
In the active state AP control fetches instructions from AP control
memory and exercises the associative arrays. When switched from the
active to the inactive state, all AP control registers remain as they
were after executing the 1last instructionm. When going from the
inactive to the active state, AP control fetches its first instruction
from location 0000 without altering the Program Counter. Thus, if 0000
contains a No-op 1instruction, AP control would continue with its
previous program. If 0000 contains a branch, a new program sequence
would be entered. If 0000 contains a swap PSW a new program sequence
would be entered while saving the old Program Counter status to allow
future re-~entry into the old program sequence.

The current state of AP activity is sensed and bit 30 or 31 is returned
as a sense bit; bit 28 or 29 is selected as the new state. If the
selected bit for the new state is 0, the AP will become inactive; if
the selected bit is 1, the AP will become active.

Instruction Format

0 7 8 12 13 27 28 29 30 31
| s + + + |
| I | | NEW |SENSE|
| I | | STATE| |
]00111000] | 000001000000000 | mmm—t e J
| | | I T I
I | | T I A
|- + -+ s |
NEW STATE

00 Clear AP activity

01 Leave AP activity unchanged

10 Toggle AP activity ’

11 Set AP activity

SENSE

00 Sense returned is zero

01 Sense returned is one if AP is active
10 Sense returned is one if AP is 1inactive
11 Sense returned is one

GER-16422

Sample Coding

-

ex Code (Bits 0-31)| Operation

| |
| |
[-+ |
38002000	Halt AP (AP becomes inactive).
3800200C	Start AP at location 0000 (AP
	becomes active).
38002005	Sense if AP is active.
38002006	Sense if AP is inactive.

-,
T

2- 95

GER-16422

ASSOCIATIVE PROCESSOR CONTROL LOOP INDICATOR

2- 96

The AP control loop dindicator 1is set and remains set until all
repetitions of a 1loop are completed. This function code allows the
loop indicator to be sensed and/or cleared. Clearing the set loop
indicator causes AP control to terminate the 1loop, even if all
repetitions have not been completed. The current state of the 1loop
indicator is sensed and bit 30 or 31 is returned as a sense bit; if bit
29 1is set to 1, the indicator 1is cleared; otherwise, it remains
unchanged.

Instruction Format

0 7 8 12 13 28 29 30 31
| e e e —t——t -
I | | |S |SENSE|
|00111000| | 0000010000000010 |T |===—-]
I I | lal | |
I | I T | |
I I I lE1 | |
|- + + R e S |
STATE

1 Reset loop indicator

0 Leave loop indicator unchanged

SENSE

00 Sense returned is zero

01 Sense returned is one if loop 1is set

10 Sense returned is one if loop is reset
11 Sense returned is one

Sample Coding

|- +

|Hex Code (Bits 0-31)| Operation
I_ A
38002012 |Sense if AP is not in loop mode.

|

|

+ |

38002011 |Sense if AP is in loop mode.]
|

|

|

|

|

| 38002014 |Take AP out of loop mode.
I_ 1

¥

GER~-16422

ERROR CONTROL

The Error Control instruction will sense and/or set or reset error
indicators. Error detectors are included in various elements of STARAN
to sense hardware faults and program errors. Each error detector sets
an error indicator when an error is detected. Each error indicator is
given a number by which it may be sensed, set, and/or reset. If any
error indicator is set, an interrupt to sequential control is
generated. Certain errors will make the pager inoperative and the AP
control inactive.

Instruction Format

0 78 12 13 18 19 21 22 27 28 29 30 31
|- -+ + 4 + + + |
| | | | | ERROR | NEW |SENSE|
| | | | | NUMBER |STATE| |
00111000] | 000010 | | [———
{ I | | | [I

-3 ot 4. - B
! T T T

ERROR NUMBER One of the valid AP error numbers described 1in Table

2-13.
NEW STATE
00 Clear error indicator n
01 Leave error indicator n unchanged
10 Toggle error indicator n
11 Set error indicator n
SENSE
00 Sense returned is zero
01 Sense returned is one if error indicator n is set
10 Sense returned is one if error indicator n is reset
11 Sense returned is one

2- 97

GER-16422

Sample Coding

3

ex Code (Bits 0-31)] Operation

Jon the AP control instruction bus;
|if yes, reset error indicator 09.

+ ——

|

|

|- }

| 38004091 |Test if there was a parity error
|

|

I_.

Table 2-13. AP Error Indicators

e

AP ERROR |
|

- I

' I I

ERROR DESCRIPTION |ACTION WHEN SET(1) |
[I

4 I

|

|

| NUMBER

| (Hexadecimal) |

|- -t

00 [Illegal instruction in AP control	AP control inactive	
01	Instruction bus inactivity time	AP control inactive
]out error	
02	Buffered I/0 bus hung up	- l
03	AP control data bus hung up	AP control inactive]
04	AP control instruction bus hung	AP control inactive]
	up I	
05	Pager GET bus hung up	Pager inoperative
06	Pager PUT bus hung up	Pager inoperative
07	Parity error on SCC	-
08	Parity error on AP control data	AP control inactive]
	bus	
09	Parity error on AP control JAP control inactive]	
Jinstruction in bus]		
OB	Parity error on sequential	- I
	control bus	
ocC	RPU time out error)	-
- + —+ —

1 —— v —

(1) The current state also selects either bit 28 or 29 and loads the
selected bit into the error indicator as a new state. I1f the
selected new state bit is 1, the error indicator will be set. If
the selected bit is 0, the error indicator will be cleared.

2- 98

GER=-16422

SEQUENTIAL CONTROL INTERRUPT

The Sequential Control Interrupt instruction can sense, set, and reset

the state of eight interrupts to sequential control. The current state’
of the selected interrupt is sensed and, depending on the state, either

bit 30 or bit 31 is returned as a sense bit. The current state also

selects bit 28 or bit 29 and uses the selected bit as the new state of

the dinterrupt. If the selected bit for the new state is 1, the

interrupt is left in the set state; if the selected bit is 0 , the

interrupt 1is left 1in the clear state. When an interrupt occurs,

control is transferred to the Sequential Controller at the interrupt

vector address shown in Table 2-14.

Instruction Format

0 78 12 13 19 20 27 28 29 30 31
| + + + -+ —+ |
| | | | INTERRUPT | NEW |SENSE|
| | | | VECTOR |STATE| |
]00111000| | 0010010} ADDRESS |==—m—t=—memm|
l | I l I
l I | I T
| ~+ + -+ e |
INTERRUPT VECTOR ADDRESS One of the interrupt vector addresses
defined in Table 2-14.
NEW STATE
00 Clear interrupt n
01 Leave interrupt n unchanged
10 Toggle interrupt n
11 Set interrupt n
SENSE
00 Sense returned is zero
01 ‘ Sense returned is one if interrupt n is set
10 Sense returned is one if interrupt n is reset
11 Sense returned is one

2- 99

GER~16422

Sample Coding

|- +

b
T

|
|Hex Code (Bits 0-31) Operation |
| + I
| 38012nnC |Set Sequential Interrupt nn |
] 38012nn0 |Clear Sequential Interrupt nn |
g 38012nn5 |Sense if Sequential Interrupt nn |
»	is set
38012nn6	Sense if Sequential Interrupt nn
	is clear
I -

where C0<nn<DC

Table 2-14. Sequential Control Interrupt Vector Addresses

+ —+

-+

| INTERRUPT| VECTOR | | {
| VECTOR | ADDRESS| PRIORITY | REMARKS |
| ADDRESS | (OCTAL) | | |
T |
e 1 s 1w |
=— Cc8 i 310 i 5 —]Panel Interrupt :
: ¢ | 314 | 5 |Errors “i
i Do i 320 i 6 iPFM Event Overflow :
=- D4 i 324 i 6 iPFM Timer Overflow ;
i D8 | 33 | 7 |STARAN Command Channel}
E Y E

2-100

GER-16422

RESETS AND CLEARS

The reset and clear function codes are used for resetting and clearing
various STARAN logic and status bits. They are used for clearing
hangup conditions and initial clearing when STARAN power 1s turned on.
Because certain clears will clear out the logic issuing the EXF, these
function codes are not usually issued by AP control or by the program
pager.

Instruction Format

0 78 12 13 18 19 21 22 27 28 31
|- 4 + + ~+ —t --]
I | I [| CLEAR & | |
|00111000] | 000001 | | RESET | 0000 |
} | | | | NUMBER | [
- + + + + + |

Sample Coding

e

T

| ; |
|Hex Code (Bits 0-31) | Operation |
|- +- - |
38002(n)0	Reset n (02<n<E)
38002020	Clear SCC Devices
38002030	Clear Errors, Sequential Interrupts]
38002040	Clear AP Interrupts
38002050 [Clear DMA Logic	
38002060	Clear Core Logic]
38002070	Clear Next Instruction Logic
3800208¢C	Clear Branch Logic
38002090	Clear Register Logic
38002040	Clear Pager Logic
38002080	Clear HSDB Logic
380020C0	Clear Sequential Control Interface
380020D0	Clear Associative Instruction Logic
380020E0	Clear Page 0 Logic]
380020F0 [Clear Page 1 Logic	
38002100	Clear Page 2 Logic
38002110	Clear Register Processor Unit i
38002300	Master Clear

2-101

GER-16422

SPARE EXTERNAL FUNCTIONS
Certain function codes are left as spare functions to be used by the

custom I/0 cabinet. They may be used for generating interrupts to a
host computer or setting up I/0 channels.

2-102

GER-16422

CHAPTER 3

INPUT/OUTPUT OPTIONS

3-1

GENERAL

DIRECT MEMORY

GER-16422

A wide variety of input/output options are available with STARAN.
Input/output (I/0) control in STARAN is located in an I/0 cabinet which
can be customized to fit the needs of a particular installation. Since
the custom I/0 cabinet will differ from installation to installation,
this chapter discusses only what I/0 options are available. The I/0
controls for particular installations are discussed 1in a separate
document .

One 1/0 option available with STARAN is integration with another
computer system (called the host computer), either with Direct Memory
Access (DMA), buffered 1/0, external functions, STARAN Command Channel
(SCC), or a combination of these. Another option available is
interfacing with a wide variety of data gathering, data transmitting,
or data storing devices with either the standard STARAN buffered 1/0
channel or the very high bandwidth parallel I/0O channel. Error
checking can also be included in the I/0 cabinet to check for errors in
data transmission. The different types of I/0 options available are
discussed in the following subsections.

ACCESS CHANNEL

Direct access to a host computer memory allows that memory to act as
part of the AP control memory. Items in the host computer memory are
accessible by the host computer and by STARAN, thus reducing the need
for buffered 1/0 transfers from the host computer and STARAN.

Implementation of Direct Memory Access (DMA) from STARAN to the host
computer depends on the characteristics of the host computer. A wide
variety of computers can be accommodated. There are, however, some
that do not support DMA without extensive modification. Cycle times
with DMA will be somewhat longer than the normal cycle times of the
host computer memory because of extra cable lengths and logic gating.
If the host computer word 1length is 1less than 32 bits, the host
computer word is padded with zeros to provide 32 bits when it -is read
by STARAN; the padded bits are truncated when the word is written by
STARAN. If the host computer word length is more than 32 bits, the
host computer word is truncated to 32 bits when it is read by STARAN;
the truncated bits are padded with blanks when the word is written by
STARAN.

GER~-16422

Address translation may be required on the DMA interface to match the
AP control addresses with the host computer addresses. This
translation can be accommodated in the custom I/O cabinet.

The DMA block of addresses may be put to other uses besides access to a
host computer memory. Possible uses 1include access to an external
memory, which may or may not be accessible by other devices, and access
to special I/0 devices.

BUFFERED INPUT/OUTPUT CHANNEL

The BIO channel is a 32-bit wide input/output port on the STARAN
computer. This port allows external devices to access the STARAN
control memory.

The BIO channel is under control of the external device which initiates
the transfer of either data or command words over the channele. This
channel can be used to perform many operations. A few possible uses of
the BIO channel are listed below.

1) The transfer of data to be processed from an external device
to STARAN such as sensor inputs, etce.

2) The transfer of data to and from a host computer to STARAN
for processing

3) The transfer of processed data to a display subsystem

4) The transfer of command information from STARAN to an
intelligent peripheral

Devices placed on the BIO channel directly address the STARAN control
memory. The BIO does not access the high speed control memory pages.
It can only access Bulk Core, High Speed Data Buffer and DMA addresses.
Communications between STARAN and the BIO devices normally take place
through software established buffers in the STARAN control memory.

Of the several data buses accessing the High Speed Data Buffer (HSDB),
the Bulk Core Memory (BCM), and the external memory accessed via the
DMA channel, the priority resolver logic gives the BIO port highest
priority.

GER-16422

EXTERNAL FUNCTION CHANNEL

GENERAL

The external function (EXF) channel is used extensively for direct
communication with the control logic of peripherals connected to the
custom I/0 cabinet. Up to 19 bits of function code can be received
simultaneously at the custom I/0O from a large number of peripheral
units. The custom I/0 handles each of the function codes one by one on
a priority basis until all have been processed.

HOST COMPUTER EXTERNAL FUNCTION INTERFACE

When STARAN is integrated with a host computer, the external function
interface is used to pass control information back and forth.

If the host computer can accept external interrupts, OSTARAN can
generate such interrupts by using spare external function codes. The
custom I/0 cabinet generates an interrupt to the host whenever these
external function codes are decoded. A 1large number of separate
interrupts can be accommodated if necessary.

STARAN can accept interrupts from a host computer if the host can
generate signals on discrete output lines. The custom I/0 cabinet will
accept such signals and generate certain function codes to the external
function logic in the mainframe which can cause interrupts or control
other elements of STARAN.

If the host computer has an external function output (direct output,
etc.) capability which can output a data item at least 19 bits wide, -
the custom I1/0 cabinet can accept the item and send it to the EXF logic
in the mainframe as a function code. This allows the host computer to
generate any external function code and exercise complete control of
STARAN. Not only can it generate interrupts, but it can also activate
and deactivate elements of STARAN, control interlock bits, initiate
transfers, etc. If the host computer can accept one bit of data (for
instance, a condition code bit) while it is outputting the 19 bits,
then the sense bit output of the EXF logic can be sent back to the
host, allowing it to interrogate various elements of STARAN.

GER-16422

BUFFERED INPUT/OUTPUT EXTERNAL FUNCTIONS

Buffered I/0 can be easily initiated by means of EXF codes. Word
counts, starting addresses, and other information can be packed into
the specific format necessary to communicate with a peripheral device.
This data is sent along with the command that initiates a sequence of
events.

PARALLEL INPUT/OUTPUT EXTERNAL FUNCTIONS

Parallel I/0 is initiated with EXF codes in much the same manner as
BIOC. However, PIO may need more data than can be packed in omne or two
EXF codes. Because of this, it may be desirable to use the EXF code to
initiate an operation that transfers several data words over buffered
I1/0. These data words then allow a PIO transfer to be executed.

STARAN COMMAND CHANNEL

The STARAN Command Channel is the vehicle by which command and control
information is passed to I/0 processors. The SCC 1s driven by I/0O
instructions executed by STARAN. As new devices are added to the
STARAN system the instruction set will be upgraded to effectively deal
with them.

The SCC provides a data output and input path 36 bits wide including
four bits of parity. The IOP number, function code, and device address
are held in a 16-bit register called the SCCR. The function code and
address are decoded by the IOP to determine the nature of the command.
IOP generated interrupts are supported by the channel at levels 8, 9,
A, and B in STARAN.

PARALLEL INPUT/OUTPUT CHANNEL

GENERAL

Each associative array can have up to 256 inputs and 256 outputs into
the custom I/0 cabinet. (An 8-array system could have 2,048 input and
2,048 output 1lines.) These can be used for various purposes. For
example, it could greatly speed up inter-array data communication

GER-16422

through the shifting of array data, allow a very high bandwidth I/C
device to communicate with STARAN, or allow any device to talk directly
with the associative arrays. Two of these applications are discussed
in the following subsections.

INTER-ARRAY DATA COMMUNICATION

The PIO lines for each array may be interconnected in one or more ways
to effect the fast transfer of data between arrays. The control of
these lines will be set up by various external function codes sent to
the I/0 cabinet from STARAN prior to the transfer. Without inter-array
communications, data can still be transferred from one array to another
by sending it through the Common register.

HIGH BANDWIDTH I/O

The basic width of the PIO is 256n, where n is equal to the number of
associative arrays in the system (n can have a maximum value of 8).
The custom I/0 cabinet is capable of buffering and reformatting the
data received from any peripheral device to match the width necessary
to communicate with the STARAN associative array. In order to
synchronize read and write operations with an external device operating
through PIO, certain AP control instructions wait for sync pulses from
the external device. As 1in inter-array communication, an external
function code sent to the custom I/0 will set up and initiate the PIO
operation.

GER~16422

APPENDIX A

GLOSSARY OF TERMS AND ABBREVIATIONS

AP

GER-16422

Logical AND

Assocliative Processor

AP CONTROL INTERRUPTS

AP control interrupts are given hex addresses from 01 (lowest priority)
to OF (highest priority). A class of external codes is used to sense,
set, and reset the state of the 15 interrupts to AP control. Bits 28
through 31 of the Program Status Word (PSW) in AP control contain an
Interrupt Mask. AP control accepts interrupt n if AP control is active
and at an interruptible point, the interrupt mask is less than n, no
interrupt of higher priority is set, and interrupt n is set. When it
accepts interrupt n, it fetches its next instruction from hex address
00004n without disturbing the contents of its program counter.

AP CONTROL MEMORY

ARRAY

The main function of AP control memory is to store assembled AP
application programs. It can also store items of data and act as a
buffer between AP control and other elements of STARAN. Each AP
control memory word contains 32 bits of either data or instructions.
Bit 0 1is the left (most-significant) bit and bit 31 is the right
(least-significant) bit of each word. Each word is given a 16-bit
address.

The MDA array consists of two basic components: array storage and
response store. Each basic array contains 36 square segments 256 words
by 256 bits per word. Access may be made in either bit, word, or mixed
mode. An entire word of 256 bits or a bit slice, bit n of all 256
words, may be accessed. Array input and output may be either 32 bits
or 256 bits in parallel. Input data may be written into the array
through a mask contained in the response store.

GER-16422

ARRAY ADDRESS SELECT

The array address select logic in AP array control selects either the
Array Select register or Field Pointer 1. If FPl is selected, the
rightmost five bits of the pointer are decoded to indicate the one and
only array to be enabled. Selection 1is made without modifying the
contents of the Array Select register. Such operations as reading one
item of data from an array or writing one item of data into an array
enable only one of the associative arrays. The Array Select register
selects arrays when more than one array participates in an associative
operation.

ARRAY CONTROL

Control lines from AP control to the MDA arrays that are not generated
by the response store control are generated by the array controle. The
array control logic selects the arrays that are to be used and controls
such things as bit/word mode, store masked, and shifting. The array
control logic includes:

1) Array Select Register
3) Array Mode
4) Shift Control

ARRAY MODE

The array mode logic controls the accessing mode. Either a bit slice,
a word slice or a mixed slice is selected for loading or storing. The
mode is contained in the high byte of a base register.

ARRAY SELECT REGISTER .

AS

The Array Select register in array control establishes those array

modules that are to be active for an associative operation. The Array

Select register is 32 bits wide. Each bit position controls one array.

Bit 0 corresponds to Array 0, and a one in a bit position enables the

corresponding arraye. The Array Select register is loaded and read
through the bus logic. The Array Select register contents are also

used by the resolver logic.

Array Select register (32 bits)

GER~-16422

ASH
Array Select register, high half (bits 0-15)

ASL
Array Select register, low half (bits 16-31)

ASO
Array Select register, byte 0 (bits 0-7)

AS1
Array Select register, byte 1 (bits 8-15)

AS2
Array Select register, byte 2 (bits 16-23)

AS3

| Array Select register, byte 3 (bits 24-31)

BIO
Buffered Input/Output

BIT COLUMN
A bit column is a selected bit in every word in an array.

BITS
An array slice consists of 256 bits, 41l of which may be accessible in
parallel or divisible into eight fields of 32 bits each. Addressing a
bit position within an array is accomplished by an address between O,
the most-significant (left) bit, and’'255, the least-significant (right)
bit position. Bit n of all words is accessible from address n.

BL

Block Length counter (16 bits)

GER-16422

BLO

Block Length counter byte 0 (bits 0~7)

BL1

Block Length counter byte 1 (bits 8-15)

BLOCK LENGTH COUNTER

The Block Length counter is a 16-bit decrementing counter. It controls
the length of a data block transfer.

BRANCH AND LINK REGISTERS

Eight of the 16 general registers are used to facilitate subroutine
linkage. They are RO through R7.

BUFFERED INPUT/OUTPUT

Buffered I/0 (BIO) 1is available for tying several different types of
peripherals into the AP control memory of STARAN. In addition, BIO can
be used to transfer blocks of data and/or programs between the AP
control memory and the host-computer memory. The basic width of the
BIO interface is 32 bits plus a parity bit. The custom I/0 cabinet can
include buffers that allow a wide variety of repacking to take place so
that I/0 channels of any width can be assembled. Normally, the EXF
channel 1s used to set up and initiate buffered I/0 transfers. Of the
several data buses accessible to the High Speed Data Buffer (HSDB), the
bulk core memory, and the external memory accessed from a DMA channel,
the priority resolver logic gives the BIO port highest priority.

BUS LOGIC

The bus logic provides a common data path for all pertinent registers
of AP control and the data bus from AP control memory. The bus 1is 32

bits wide. Registers of less than 32 bits are grouped to form a 32-bit
word.

BYTES

A byte is a portion of a word consisting of 8 consecutive bits.

CC

CH

CL

Cco

Cl

c2

C3

GER-16422

Common register (32 bits)

Condition Code (bits 24-27 of PSW)

Common register, high half (bits 0-15)

Common register, low half (bits 16-31)

Common register, byte 0 (bits 0-7)

Common register byte 1 (bits 8-15)

Common register, byte 2 (bits 16-23)

Common register, byte 3 (bits 24-31)

COMMON REGISTER

The Common register 1is an AP control register that contains 32 bits
numbered 0 to 31. Bit 0 is the left (most-significant) bit. Bit 31 is
the right (least-significant bit). The Common register may contain the
argument for a search operation performed upon the arrays, the input
data stored into an array, or the input data received from an array in
a load operation. Data from an array is loaded into the Common
register through a mask generated by the mask generator.

GER~16422

COMPARATOR

The comparator is a portion of the program control logic in AP control
that compares the address contained in the end loop marker with the
Program Counter. The comparator transmits an indication to control
when the end of a loop sequence has been reached. Control then loads
the start loop register contents into the Program Counter if there are
more repetitions to be completed in the loop count.

CONTROL LINE BUFFER

The control line buffer in the response store control controls the
timing of the control lines transmitted to the arrays.

CONTROL LINE CONDITIONER

The control 1line conditioner in the response store control generates
the control lines required to manipulate the response store. Control
line signals are generated as a function of the instruction register, a
selected bit of the Common register, and the inclusive-OR output from
the resolver.

DATA POINTER

"The Data Pointer in the bus logic of AP control contains the control

memory address for the data bus for block transfers. It is a 16-bit
register. The Data Polnter can be stepped with each tramsfer within a
data block.

DIRECT MEMORY ACCESS

DMA

A block of AP control memory addresses is reserved for the Direct
Memory Access (DMA) channel to external memory. In the Dbasic
configuration this block can contain up to 30,720 addresses. Direct
access to a host-computer memory allows that memory to be shared with
AP control memory and a host computer. Items in the memory are equally
accessible by a host computer and by STARAN, thus reducing the need for
buffered I/0 transfers between the host computer and STARAN.

Direct Memory Access

A~ 7

DP

DPO

DP1

EFB

EFS

ELM

END

EXF

GER-16422

Data Pointer (16 bits)

Data Pointer, byte 0 (bits 0-7)

- Data Pointer, byte 1 (bits 8-15)

External Function Buffer

External Function Status

End Loop Marker

LCOP MARKER

The End Loop Marker is a 16-bit register in the program control logic
of AP control. It is used to store the last address of an instruction
loop. The End Loop Marker register is loaded from the right-most 16
bits of the loop instruction format.

External Function

GER~16422

EXTERNAL FUNCTION LOGIC

The external function (EXF) logic facilitates coordination between the
different elements of STARAN. By issuing external function codes to
the EXF logic, an element of STARAN can control and interrogate the
status of other elements. Each function code is 19 bits long and
indicates what element of STARAN is to be interrogated and/or
controlled. For each function code transmitted to EXF logic, the logic
returns a single sense bit indicating the result of the interrogation.
Function codes may be transmitted to EXF logic by AP control, the
program pager, sequuential control, and a host computer (if the EXF
channel to the host computer is implemented).

FIELD LENGTH COUNTERS

Field length counters are 8~bit AP control registers used to contain
the length of data fields. They may be decremented to allow stepping
through the bits of a data field. When the counter’s contents equal
zero, an indication is sent to the AP control for test purposes. There
are two field length counters: FL1 and FL2.

FIELD POINTER

A field pointer is an 8-bit AP control register that generally contains
an array bit column or word address. Field pointers may be incremented
or decremented to facilitate stepping through data fields. There are
four field pointers: FPl, FP2, FP3, and FPE.

FIELD POINTER 1

Field Pointer 1 is an 8-bit AP control register that may c¢ontain an
array bit column or word address for the indirect addressing mode.
Field Pointer 1 is used by the resolver for the address of the array
module containing the first responder.

FIELD POINTER 2

Field Pointer 2 is an 8-bit AP control register that may contain an
array bit column or word address. Field pointer 2 is also used by the
resolver for the array bit column or word address of the first
responder in the array specified in FPl.

A- 9

A-10

GER-16422

FIELD POINTER 3

Field Pointer 3 is an 8-bit AP control register that may contain an
array bit column or word address.

FIELD POINTER E

Field Pointer E 1is an 8-bit AP control register that may contain an
array bit column or word address or a shift constant.

FIELDS (SECTIONS)

FL1-

FL2

FPE

FPl

FP3

GET

Each 256-bit word in an array contains eight fields (or sectiomns).
Each field contains 32 contiguous bits within the word being addressed.
Addressing of a particular field of an array word 1s accomplished by an
address between 0, the most-significant (left) field, and 7, the
least=-significant (right) field. The most-significant field starts at
the most-significant bit position.

Field Length Counter 1 (8 bits)

Field Length Counter 2 (8 bits)

Field Pointer E (8 bits)

Field Pointer 1 (8 bits)

Field Pointer 3 (8 bits)

Pager GET address register

GER-16422

GET ADDRESS REGISTER

GRP

The GET address register in the program pager holds a 16-bit AP control
memory address. If the pager 1is in the midst of moving data, the GET
address points to the memory location holding the next source word to
be moved. If the pager is executing instructions, the GET address acts
like a program counter that points to the location of the next pager
instruction.

Group register

HIGH SPEED DATA BUFFER

The High Speed Data Buffer (HSDB) is a section of AP control memory
using fast bipolar solid-state elements. In the basic configuration of
STARAN it contains 512 words. All buses accessible to AP control
memory can gain access to the HSDB, making it a convenient place to
store data and dinstruction items that need to be accessed quickly by
different elements of STARAN.

HOST COMPUTER

HSDB

IMASK

A conventional sequential-type computer integrated with STARAN to
provide efficient processing for sequential operations. (STARAN
performs tasks requiring parallel operatiomns.)

High Speed Data Buffer

Interrupt Mask (bits 28-31 of PSW)

INSTRUCTION REGISTER

’

The instruction register in AP control contains the current instruction
being executed. The instruction loaded into the instruction register
is received from AP control memory through the instruction bus. Parity
is checked at the instruction register. The instruction register
contains 32 bits, which are numbered from 0 to 31, with bit 0 at the
left. Portions of the instruction register are used as a direct source
of immediate data or addresses as a function of the instruction being
executed.

A-11

INTERLOCKS

INTERRUPT

1/0

GER-16422

The EXF logic contains 64 stored bits called interlocks. These bits
have no predetermined meaning. Software may assign a meaning to an
interlock and use it for any purpose. Function codes allow the current
state of an interlock to be sensed and a new state to be entered in one
operation. Sixteen interlocks (hex addresses 00 through OF) can be
controlled and sensed manually by panel switches and 1lights to
facilitate communication with an operator. The other 48 interlocks
(hex addresses 10 through 3F) can be sensed and controlled only by
function codes.

MASK

The Program Status Word in the program control logic contains the
interrupt mask for the -15 AP control interrupts. All interrupts with
numbers greater than the mask are accepted. The Interrupt Mask is
contained in bits 28 through 31 of the Program Status Word.

Input/Output

LEAST-SIGNIFICANT BIT

LP

LSB

LSF

A-12

A significant bit 1s a bit that contributes to the precision of a
numeric value. The number of significant bits 1s counted beginning
with the bit contributing the most value, called the most-significant
bit, and ending with the one contributing the least value, called the
least-significant bit. In STARAN memory the least-significant bit is
bit 31 in a 32-bit word or field or bit 255 in a 256-bit array word..

Link Pointer (FPl and FP2 linked)

’

Least Significant Bit (bit 31 of 32 bit word); right most bit; low
order bit '

Least-Significant Field

GER-16422

M Array register; Mask (256 bits)

M REGISTER

The M register (MASK) is a 256-bit register contained in the response
store element of each array. Its special use is to select array words
participating in an associative operation.

MAIN MEMORY

MASK

The main memory 1is a section of AP control memory using nonvolatile
core storage. In the basic configuration it contains 16,384 words and
is expandable to 32,768 words. Like the High Speed Data Buffer, main
memory is accessible to all buses that can gain access to AP control
memory (a priority port switch giving each memory cycle to the highest
priority bus requesting a main memory address). The priority of the
buses is the same as for the High Speed Data Buffer. Since it 1is large
and nonvolatile, the main memory is useful for storing the AP control
programs. Because it 1s slower than the page memories, 1t 1is
recommended that program segments be paged into the page memories for
execution. Since it is accessible by all buses accessible to AP
control memory, it 1s also useful as a buffer for data items that do
not require the higher speed of the HSDB.

M Array register

MASK GENERATOR

MDA

The mask generator in AP control generates a mask pattern to be used in
loading array output data into the Common register. The mask enables
data to be loaded for a number of contiguous bits. The mask generator
requires the bit addresses of the most and least-significant bits of
the field to be loaded. All bits between and including these limits
are loaded while those outside these limits are unaltered.

Multi-Dimensional Access memory; associative array

A-13

GER-16422

MIRRORING

Mirroring will cause the 256-bit imput quantity to an associative
instruction to be flipped end-for -end (i.e., bit i is put into bit
255-1).

MOST-SIGNIFICANT BIT

A significant bit is a bit that contributes to the precision of a
numeric value. The number of significant bits is counted beginning
with the bit contributing the most value, called the most-significant
bit, and ending with the bit contributing the least value, called the
least-significant bit. In STARAN memory the most-significant bit 1is

bit 0.
MSB

Most Significant Bit (bit O of word); left-most bit; high order bit
MSF

Most~Significant Field
OR

Logical inclusive~OR

PAGE MEMORY

Three page memorlies are included in the AP control memory: Page O,
Page 1, and Page 2. Each page memory uses fast bipolar solid-state
elements and 1is volatile. Each page contains 4096 words in the basic
STARAN-E configuration.

PAGE PORT SWITCHES
Each page memory has a port switch that connects the memory to the AP
control instruction bus, the pager bus, or the sequential control bus.
A page port switch function code is used for interrogation and control
of these switches.

PAGEO

High speed solid state memory; 512 32-bit words

A-14

PACE1

PAGE2

GER-16422

High speed solid state memory; 512 32-bit words

High speed solid state memory; 512 32-bit words

PARALLEL INPUT/OUTPUT

PC .

PCO

PCl

PIO

Each associative array in STARAN can have up to 256 inputs and 256
outputs into the custom I/0 cabinet. The basic width of the PIO 1is
256n, where n 1is equal to the number of associative arrays in the
system (n can have a maximum value of 8). The custom I/0 cabinet is
capable of buffering and reformatting the data received from any
peripheral device to match the width necessary to communicate with the
STARAN associative array. In order to synchronize read and write
operations with an external device operating through PIO , certain AP
control instructions wait for sync pulses from the external device. As
in inter~array communication, an external function code sent to the
custom I/0 will set up and initiate the PIO operation.

Program Counter (16 bits)

Program Counter (bits 0-7)

Program Counter (bits 8-15)

Parallel Input/Cutput

PROGRAM COUNTER

The Program Counter occupies bits 0-15 of the Program Status Word in AP
control. The Program Counter contains the address of the current
instruction being executed. It is normally incremented sequentially
through control memory. Its normal sequence may be altered by a branch
or loop instruction.

A-~15

GER~16422

PROGRAM PAGER

A-16

The program pager loads the high-speed page memories from the bulk core
portion of AP control memory. The pager performs these transfers
independent .of AP control, so that while AP control is executing a
program segment out of one page memory, the pager can be loading
another page memory with a future program segment. Pager operation is
initiated by external function codes. The program pager contains three
registers: a GET address register, a PUT address register, and a word
count register. The GET address register holds a 16-bit AP control
memory address. If the pager is in the midst of moving data, the GET
address register points to the memory location holding the next source
word to be moved. When executing instructions, the GET address
register acts 1like a program counter, pointing to the location of the
next page memory instruction. The PUT address register contains a
16-bit AP control address. It points to the memory location into which
the next destination word is to be put during a move-data operation.
The word count register, which is 14 bits in length, contains the
number of words still to be transferred during a transfer operation.

PROGRAM STATUS WORD

PSW

PUT

The Program Status Word (PSW) consists of the Program Counter (PC)
(bits 0-15) which contains the address of the current AP control
instruction being executed, the Condition Code (CC) (bits 24-27) and
the Interrupt Mask (IMASK) (bits 28-31) which contains the current
interrupt status. (All interrupts with numbers greater than the IMASK
are accepted.)

Program Status Word

Pager PUT Address register

PUT ADDRESS REGISTER

The PUT address register in the program pager holds a 16 bit page
memory address. It points to the memory location into which the next
destination word is to be put during a move-data operation.

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

General

General

General

General

General

General

General

General

General

General

General

register,

register,

register,

register,

register,

register,

register,

register,

register,

register,

register,

index

index

index

index

index

index

index

index

stack

index

index

GER~-16422

base

A-17

RB

RC

RE

REGISTER

RESOLVER

RESPONDER

GER-16422

General register, direct mode base
General register, FPl base
General register, FP2 base

General register, FP3 base

A register is a memory device capable of containing one or more bits or
words._

The resolver logic in AP control finds the array address and word
address of the first (most-significant) responder. The array address
is loaded into Field Pointer 1 and the word address 1s loaded into
Field Pointer 2. This allows subsequent operations to only affect the
first responder of a search.

¢

A responder is a response store element in an enabled array whose Y
register bit is set. Generally, responders indicate those words
satisfying some search criteria. :

RESPONSE STORE CONTROL

A-18

’

The response store control logic generates the control signals required
by the MDA arrays and buffers them to insure correct timing at the
response store. The response store control consists of two basic
portions: 1) the control line conditioner and 2) the control 1line
buffer.

GER-16422

RESPONSE STORE ELEMENT

The response store portion of the array memory consists of 256 response
store elements, each containing an X, Y, and M register bit. The 256 X
bits are considered the X register; the 256 Y bits are considered the Y
register; the 256 M bits are considered the M register or the MASK.

RF

General register, Link Pointer base
sC

Sequential Controller
SEQUENTIAL CONTROL

The sequential control block of STARAN contains a sequential processor
(SP) with 16K of memory, a keyboard/monitor, a disk drive, and
interface logic to connect the SP to other STARAN elements.

SEQUENTIAL CONTROL INTERRUPTS

Sequential control can accept interrupts from other STARAN elements.
The interrupts arise from error detection, the panel interrupt button,
or external functions. Eight different interrupt vector addresses are
provided.

SEQUENTIAL PROCESSOR

The sequential processor is a 16~bit, general-purpose, parallel-logic
computer using two’s complement arithmetic for addressing 16,384 16~bit
words (32,768 8-bit bytes) of memory. All communication between system
components is done on a single high-speed bus. There are eight general
purpose registers, which can be used as accumlators, index regilsters,
or address pointers, and a multi-level automatic priority interrupt
system.

.

A~19

A=20

GER~-16422

SHIFT CONTROL

The shift control logic in array control generates the controls signals
required by the array to perform shifting and mirroring operations.

SHIFT LOGIC

SLM

sp

Data transmitted from the bus logic of AP control passes through the
bus shift logic. The bus shift logic is used to shift the 32-bit bus
word left-end around by either 0-, 8-, 16~, or 24~bit positions. The
shift is controlled by the instruction moving the data. Data received
from AP control memory 1s checked for correct parity as it passes the
bus shift logic. Data being stored in the control memory has a parity
bit generated at the bus shift logic.

Start Loop Marker

Sequential Processor

START LOOP MARKER

The start loop marker 1s a 16-bit register in the program control logic
of AP control. The start loop marker 1is used to store the first
address of the loop whenever a loop instruction is executed. The start
loop marker is loaded directly from the program counter at the start of
an instruction loop. It is read into the program counter whenever the

last instruction of the 1loop is executed and the 1loop is to be
repeated.

WORD COUNT REGISTER

WORDS

The word count register is a l4-bit register in the program pager which

contains the number of words still to be transferred during a move-data
operation.

An array word consists of 256 bits, all of which may be accessed in
parallel or via fields of 32 bits each. Addressing of a word within an
array 1s accomplished by using an address from 0, the first word, to
255, the last word. An AP control memory word is 32 bits in length. A
sequential control word is 16 bits in length.

GER~16422

X
X Array register (256 bits)

X REGISTER
The X register is a 256-bit register contained in the response store
element of each array. It may be used as temporary storage of data
loaded from the array or stored in the array. It can be combined
logically with the input data and/or the Y register. It is useful as
temporary storage in parallel arithmetic operations or searches.

XOR
Logical exclusive~OR

Y

Y Array register (256 bits)

Y REGISTER

The Y register is a 256-bit register contained in the response store
element of each array. It may be used as temporary storage of data
loaded from the array or stored in the array. It can be combined
logically with the input data. It is useful as temporary storage in
parallel arithmetic operations and searches. It is also used as the
responder in a resolve operation.

A-21

GER-16422

APPENDIX B

INSTRUCTION SUMMARY IN HEX CODE ORDER
(APPLE MNEMONICS ARE IN PARANTHESES)

OPCODE

GER-16422

FUNCTION PERFORMED

LOAD MDA REGISTERS
(L, LN, LOR, LORN, LAND, LANDN, LXOR, LXORN)

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load

unflipped from MDA array by direct address
unflipped from MDA array by field pointer
flipped from MDA array by direct address
flipped from MDA array by field pointer
unflipped from MDA stack by direct address
unflipped from MDA stack by field pointer
flipped from MDA stack by direct address
flipped from MDA stack by field pointer

Mask unflipped from MDA array by direct address
Mask unflipped from MDA array by field pointer
Mask flipped from MDA array by direct address
Mask flipped from MDA array by field pointer
Mask unflipped from MDA stack by direct address
Mask unflipped from MDA stack by field pointer
Mask flipped from MDA stack by direct address
Mask flipped from MDA stack by field pointer

STORE MASKED TO MDA ARRAY

(SM, SNM, SORM,

10
11
12
13
14
15
16
17

SORNM, SANDM, SANDNM, SC, SCW)

Store through Mask unflipped to MDA array by direct address
Store through Mask unflipped to MDA array by field pointer
Store through Mask flipped to MDA array by direct address
Store through Mask flipped to MDA array by field pointer
Store through Mask unflipped to MDA array by direct address
Store through Mask unflipped to MDA array by field pointer
Store through Mask flipped to MDA stack by direct address
Store through Mask flipped to MDA stack by field pointer

STORE TO MDA ARRAY
(S, SN, SOR, SORN, SAND, SANDN)

18
19
1A
1B
1C
1D
1E
1F

Store unflipped to MDA arréy by direct address
Store unflipped to MDA array by field pointer
Store flipped to MDA array by direct address
Store flipped to MDA array by field pointer
Store unflipped to MDA array by direct address
Store unflipped to MDA array by field pointer
Store flipped to MDA array by direct address
Store flipped to MDA array by field pointer

GER-16422

LOAD COMMON REGISTER
(LC, LCM, LCW)

20
21
22
23
24
25
26
27

Load Common unflipped from MDA array by address

Load Common unflipped from MDA array by field pointer
Load Common flipped from MDA array by addresss

Load Common flipped from MDA array by field pointer
Load Common unflipped from MDA array by address

Load Common unflipped from MDA array by field pointer
Load Common flipped from MDA array by address

Load Common flipped from MDA array by field pointer

BRANCH INSTRUCTIONS
(B, BAL, BBS, BBZ, BNOV, BNR, BNZ, BOV, BRS, BZ)

28
29
2C

Branch on array control register zero
Branch on array control register non-zero
Branch and link

AP CONTROL REGISTER STORE INSTRUCTIONS
(LRR, SPSW, SR)

30~31

Store AP control register to AP control register or memory

AP CONTROL REGISTER LOAD INSTRUCTIONS
(LI, LR, LPSW)

32

33

34

35

36
37

Load low half of control register from memory or with
immediate value

Load low half of field pointer from memory or with
immediate value

Load high half of control register from memory or with
immediate value

Load high half of field pointer from memory or with
immediate value

Load control register from memory or with immediate value
Load field pointer from memory or with immediate value

EXTERNAL FUNCTION INSTRUCTIONS

38

Issue external function

GER-16422

LOOP INSTRUCTIONS
(LOOP, RPT)

3C
3D
3E
3F

Repeat instruction

Loop

Load FPl and repeat instruction
Load FP1l and loop

SPEED-UP MODE

40-7F

Same as 00-3F with early fetch (speed-up) option enabled

GENERAL REGISTER INSTRUCTION

80
81
82
83
A000
A001
A002
AOOB
A080

A084

Store general register to memory (ST)

Load general register from memory (LD)

Load general register halfword from memory (LDH)

Load general register byte from memory (LDB)

Move general register (or memory) to general register (or
memory) (MOV)

Move general register (or memory) to general register (or
memory) halfword (MOVH)

Move general register (or memory) to general register (or
memory) byte (MOVB)

Move complement general register (or memory) upper byte to
general register (or memory) (MCUB)

Store AP control register to general register (or memory)
(SAC)

Load general register (or memory) to AP control register
(LAC)

CALL SUBROUTINE INSTRUCTION

A3

Subroutine link (CAL)

GER-16422

APPENDIX C

SUMMARY OF EXTERNAL FUNCTION CODES

c-1

EXF CODE
(BITS 13-31)

GER-16422

FUNCTION PERFORMED

PAGE PORT SWITCHES

002A0
006A0
00AAQ
003F0
007F0
OOBFO
00150
00550
00950
001B2
005B2
00982
001B1
005B1
00981
001B4
005B4
009B4

INTERLOCKS

(ILOCK)

06nn0
06nn5
06nné6
06nnC

PAGER CONTROL

(PAGER)

08000
0800C
08005
08006
{nnnn

C- 2

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

NHONF‘ONI—‘ON’—'ONHONI—‘O

to
to
to
to
to
to
to
to
to
on
on
on
on
on
on
to
to
to

instruction bus
instruction bus
instruction bus

pager bus

pager bus

pager bus

Sequential controller
Sequential controller
Sequential controller
instruction bus?
instruction bus?
instruction bus?

pager bus?

pager bus?

pager bus?

Sequential controller?
Sequential controller?
Sequential controller?

Reset interlock nn

Is interlock nn set?
Is interlock nn reset?
Set interlock nn

Stop pager

Resume pager

Pager busy?

Pager non busy?

Start pager at address ‘nnnn’

GER-16422

AP INTERRUPTS
(INT)

100n0
100n5
100n6
100nC

Reset AP interrupt n

Is AP interrupt n set?
Is AP interrupt n reset?
Set AP interrupt n

AP CONTROL ACTIVITY

0200C
02000
02005
02006
040EC
040E0
022F0
040FC
040F0
040F5
040F6
02011
02012
02014

Start AP at location O

Stop AP execution (WAIT)

Is AP active?

Is AP inactive?

Place AP in ‘single step’ mode
Remove AP from “single step’ mode
Resume “single step’ mode

Set AP trap

Reset AP trap

Is AP trap set?

Is AP trap reset?

Is AP loop indicator set?

Is AP loop indicator reset?
Reset AP loop indicator

ERROR CONTROL

NOTES:

040n5
040n6
040n0
040nC
040DC
040D0
040D5
040D6
040AC
040A0
040A5
040A6

()

(2)

Is error n set?

Is error n reset?

Reset error n

Set error n

Set error interrupt enable
Reset error interrupt enable
Is error interrupt enable set?
Is error interrupt enable reset?
Set lockout control (2)

Reset lockout control

Is lockout control ‘set?

Is lockout control reset?

Errors 0, 1, 3, 4, 7, 8, or 9 will force the AP activity
into the reset state.

No other EXF’s may be issued by these devices until this
lockout is reset by the Sequential controller.

bit

GER-16422

CLEARS AND INTERFACE CONTROLS

02020
02030
02040
02050
02060
02070
02080
02090
020A0
020BO
020C0
020D0
020E0
020F0
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
021A0
021BO
021C0
021D0
021E0
021F0
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
022A0
022B0
022Cc0
02200

Clears STARAN command channel devices
Clears errors, Sequential interrupts
Clears AP interrupts

Clears DMA control

Clears bulk core control

Clears next instruction

Clears branch instruction

Clears register instruction

Clears pager control

Clears HSDB control

Clears Sequential controller interface
Clears associative instruction
Clears Page 0 control

Clears Page 1 control

Clears Page 2 control

Clears Register Processor Unit

Scope trigger

Unassigned (1)

Unassigned (2)

Unassigned (2)

Unassigned (2)

Unassigned (2)

Write status for RADC display interface
Read control word for RADC display
RADC display interface

Clears PHD errors

Clears PHD control

Clears CIOU Sigma~9 control

Sets HIS 645 single step

Clears HIS 645 single step

Clears HIS 645 interface control
Clears HIS 645 interface pointers
Unassigned (3)

Clears CIOU control memory controller
Clears CIOU next instruction

Clears CIOU register instruction
Clears CIOU branch instruction
Clears CIOU associative instruction
Clears CIOU array assignment

Clears CIOU BIO channel interface
Clears CIOU EXF fan-in

Clears CIOU EXF decode

Clears CIOU performance monitor
Unassigned (4)

GER-16422

022E0 Issue CIOU Resume
022F0 Issue AP Resume
02300 Master Clear
NOTES: (1) can cause unexpected results in AP execution

(2) may interfere with another’s use of this memory
(3) may cause execution faults in issuing device

(4) interference with host interface

GER~-16422

INDEX

GER-16422

Access mode, 1-24

Activity, AP control, 1-33

Addressing, 1-10, 1=23

Alternate MDA instruction format, 2-34
AP Control, 1-4, 1-33

AP Control activity instruction, 2-94
AP Control instructions, 2-3

AP Control interrupts, 1-32, 2-92

AP Control loop indicator, 1-34, 2-96
AP Control loop instruction, 2-96

AP Control memory, 1-2, 1-7

AP Control register groups, 2-44

AP Control register instructions, 2-44
AP Control registers (abbreviations), 2-45
AP error numbers, 2-98

AP execution control, 1-13

Array access, 1-18

Array address mode, 1-19

Array base register selection, 1-20
Array memory, 1=2

Array Select register (AS), 1-18

Array selection, 2-5

Arrays, 1-23

AS register, 1~18

Base register selection, 1-20

BI1O, 3-3

Bit columns, 1-23

BL, 1-15

Block Length counter, 1-15

Branch and link instruction, 2-38
Branch instructions, 2-35

Buffered 1/0 (BIO), 3-3

Buffered I/0 external functiomns, 3-5

Call subroutine instruction, 2-40
Common register, 1-15, 2-34
Comparator, 1-14

Control memory, 1=2

Control memory characteristics, 1-12
Control register groups, 2-44

GER-16422

Data Pointer register (DP), 1-15
Destination, MDA array instruction, 2-17
Direct address mode, 2-25

Direct Memory Access (DMA), 1-9, 1-11, 3-2
DMA, 1-9, 1-11, 3-2

DP register, 1-15

Effective address, 2-35

End loop marker, 1-14

Error control functions, 1-32

Error control instructions, 2-97

Error numbers, 2-98

Exchange operation, 1-26

Execution control instructions, 2-35
External function channel, 3-4

External function control, 1-5, 1-30, 1-42
External function instructions, 2-84

Field Length counter 1 (FL1), 1-17
Field Length counter 2 (FL2), 1-17
Field Pointer 1 (FP1l), 1-16

Field Pointer 2 (FP2), 1-16

Field Pointer 3 (FP3), 1-17

Field Pointer E (FPE), 1-17

Field pointers, 1-16

Fields, 1-23

Flip network, 2-5

FL1, 1-17

FL2, 1-17

FP1l, l-16

FP2, 1-16

FP3, 1-17

FPE, 1-17

General register instructions, 2-69
General registers, 1-19

GER-16422

High bandwidth 1/0, 3-6

High Speed Data Buffer (HSDB), 1-8, 1-11

Home register, 2-6, 2-8)

Host Computer external function interface, 3-4
HSDB, 1-8, 1-11

IMASK, 2-98

Indiret address mode, 2-28

Input source, MDA array instruction, 2-15
Input/Output, 1-6, 3-2

Instruction length, 2-2

Instruction register, 1-13
Instruction set, 2-1

Instruction types, 2-2

Instructions, AP Control, 2-3
Instructions, external function, 2-84
Instructions, MDA array, 2-5, 2-20
Instructions, Program Pager, 2-78
Interlocks, 1-31, 2-87

Interrupt conditions, 2-92

Interrupt handling, 2-92

Interrupt instructions, 2-92, 2-99
Interrupt Mask (IMASK), 2-92
Interrupt vector addresses, 2-100
Interrupts, AP Control, 1-32, 2-92
Interrupts, Sequential Control, 1-32, 2-99
1/0, 1-6, 3-2

Left shift, 2-15

Length counters, 1-16

Link Pointer mode, 2~5, 2-31

Link Pointer register, 2-5, 2-19, 2-=31

Load and loop instruction, 2-43

Load AP Control register from AP Control register, '2-60
Load AP Control register from control memory, 2-52

Load AP Control register from general register or control memory, 2-69
Load AP Control registers, 2-44, 2-52

Load Common register, 2-34

Load general register from control memory, 2-=75

Load immediate, 2-47

Load M, 2-34

Load MDA register instructions, 2-20

GER-16422

Load operations, 1-25, 2-18, 2-34
Load PUT, 2-79

Load PUT and move data, 2-81
Logic functions, 2-13, 2-14

Logic table, 2-14

Logical operations, 1-25

Loop instruction, 2-42

Main memory, 1-9, 1-10

Mask generator, 1-15, 2-34

MDA array control, 1-18

MDA array instructiomns, 2-5, 2-20

MDA array memory, 1-2, 1-22

MDA array operatiomns, 2-18

MDA flip network, 2-5

MDA instruction format (direct address mode), 2-~25
MDA instruction format (indirect address mode), 2-28
MDA instruction format (Link Pointer mode), 2-31
Mirroring, 2-15

Mixed mode access, 2-8

Move data, 2-80

Move general register or control memory to genmeral register or control memory, 2-73

Page memory, 1-8, 1-11

Page memory port switches, 1-30
Pager command summary, 2-83

Pager external functions, 2-82
Pager load GET instruction, 2-91
Pager port switch instruction, 2-85
Pager state instruction, 2-89
Parallel 1/0 (P10), 1-6, 3-5
Parallel I/0 external functions, 3-5
PC, 1-14, 2-2 :
Peripherals, 1-42

P10, 1-6, 3-5

Program control, 1-13

Program counter (PC), 1-14, 2-2
Program pager, 1-5, 1-27, 1-31
Program pager block diagram, 1-3
Program pager instructions, 2-78
Program Status register, 1-14

GER-16422

Register groups, 2-44

Register instructions, 2-44

Reset and clear instructions, 2-101
Resets and clears, 1-34

Resolve operation, 1-26, 2-19
Response store control, 1-17

. scc, 3-5
Sequential control, 1-5, 1-35
Sequential control, access to AP control memory, 1-37

Sequential control, access to AP countrol registers, 1-38, 1-39, 1-40, 1-41

Sequential control, external functions, 1-42
Sequential control, interrupt instruction, 2-99
Sequential control interrupts, 1-32

Shifting, 2-15, 2-16

Speed-up mode, 2-3

STARAN Command Channel (SCC), 3-5

STARAN register map, 1-21

STARAN-E block diagram, 1-3

STARAN-E instruction set, 2-1

Start loop marker, l-14

Store AP control register to control memory, 2-64

Store AP control register to general register or control memory, 2-71

Store general register to control memory, 2-77
Store MDA register instructions, 2-20

Store operations, 1-25, 2-18

Swap PSW, 2-67

Tag, 2-35

Words, 1-23

