
STARAN S
APPLE

Programming
Manual

a new way 01 thinking

GOODYEAR AEROSPACE CORPORATION AKRON,OHIO 315

Price $ 25. 00

GOODYEAR AEROSPACE
CORPORATION

AKRON, OHIO 44315

STARAN S APPLE PROGRAMMING MANUAL

GER-15637 JUNE 1972

NOTICE

This document contains material generated by Goodyear Aerospace

Corporation and is transmitted for the purpose of aiding the transaction

of business between Goodyear Aerospace Corporation and the recipient.

It is understood that the material contained herein will not be used, copied,

or disclosed to others, without specific written consent of Goodyear

Aerospace Corporation.

APPLE UPDATING

The Associative Processor Programming Language (APPLE) continues

to be improved and expanded. Interested parties should contact Goodyear

Aerospace Corporation, Computer Division Marketing, Akron, Ohio

44315, Telephone: (216) 794 -3631 for information regarding the latest

update of APPLE.

LIST OF EFFECTIVE PAGES

Insert latest changed pages and dispose of superseded pages.

NOTE: On a changed page, the portion of the text affected by the latest

change is indicated by a vertical line in the outer margin of the page.

Changes to illustrations are indicated by miniature pointing hands. A

zero in the change number column indicates an original page.

The total number of pages in this manual is 247, consisting of the following:

Page Change
No. Number

Title. a
A. a
i-vi a
1-1 - 1-3 a
2-i, 2-1 -" 2-163. a
3-1 - 3-29 • a
Ai, Al - A5 a
Bi, Bl

'"
a

Ci, Cl - C7 a
Di, Dl - D5 a
Ei, El - E4 a
Fi, F1 a
Gi, Gl - G7 a
X-I - x-6 a

NOTE - This document supers edes GER-l5532 and GER-15635.

A

CHAPTER

2

TABLE OF CONTENTS

TITLE

INTRODUCTION .
General .
APPLE.

One- To-One

One - To-Many.

In Line
Subroutine Call Sequence.

Assembler Directives ••

Comment Statements

APPLE Features ••

PAGE

1-1

1-1

1-2

1-2

1-2

1-2
1-2

1-2

1-2

1-2

QUICK INDEX OF APPLE INSTR U CTlON G ROUPS ~:;:;:;:;:;:;:;:;:;:;:;:;:::::::;:::::;:;:::::;:;:;=::;=;=;=;=;=;=;:;:::;:;:::;:;;;:;:::;;;:;:;;:::;:;;;;;;;;:::;:;;: 2 - i

APPLE LANGUAGE STRUCTURE.

Source Statements.

Label Field

Command Field.

Argument Field •

Comment Field

Required Entries

Summary

Language Elements

Character Set •

Symbols •••

Symbol Table •

Constants

Octal Constants ••
Decimal Constants
Hexadecimal Constants.

Expressions •••

Examples.

Location Counters ••

Load Location Counter •
Execution Location Counter
Location Counter Symbol ($) •

Addre s sing. • • • • • •

Control Memory Address •••••••
Associative Memory or Common Register Field Expression •
1
2
Example 1
Example 2

Assembler Directives.

2-1

2-1

2 -1

2 -1

2-1

2-3

2-3

2-3

2-4

2-4

2-4

2-4

2-5

2-5
2-5
2-5

2-6

2-6

2-6

2-6
2-6
2-6

2-7

2-7
2-7
2-8
2-8
2-8
2-8

2-9

i

CHAPTER

2 (cont)

3

TABLE OF CONTENTS

TITLE

Branch Instructions •..........•..•....•••••...••.••...•..•.••..•.•..•..

Register Instructions •..•....•.....•....•.•.....••.•......•••••.••••.•.

As sociative Instructions ••..•....•..•.••••.......•.•..•.••..••..••••••.

Loads•.......•..••.•.•.••••.•••...••.•••••.•...•..•..

Stores ••......••..•..•.•..••...•..•....•..•.•..••••.•..•.•.•••.•

Searches•....•.•..•..•.•.•............••....•.•.....•..••..

Moves ••....••.•..•.•..•....••.•.•..........•..•..•.••••••••••.

Arithmetics •...••......•..•.•..........•.......•....•...........

Control and Test •...••..•...•..•....•...............•..•..•.•..•..•.•.

Pager Instructions .•......•.............•....•.•........•..•••.....•.•

SUPERVISOR CALLS •....•..•....•.••.•..•...•••....•.•....•..••.••...

PAGE

2 -17

2-35

2-55

2-55

2-79

2-108

2 -125

2-138

2-154

2-159

3-1

Introduction ..••.•..•..•.....•••.•..•..•.•.......•........•.•••....•• 3-1

Slot Numbers 3-1

Device As signment Table (DAT) . • • • . . • • . . . • . • • . • . . • . . • . • • 3-2

Instruction Description ••...•..•.••...•..•....•..•..•.••••.••.••..•.•• 3-3

BUFFER Pseudo-op Format.... .• . .• .•. . .. •• .• . .•• •• .• . ••. •. •. ..• 3-3

Supervisor Call (SVC) Format. .. •• .••• •. •. .• . . •. •••. .• . . .•• 3-3

Buffer. • • . • . • . . • . . • • . . • . . . • • . . • . • . . • . . . • . . . • . • . . • • . • • . . • . • • • 3-3

Supervisor Call (SVC) . • • . . • • . • . . • . . . • • . • • . . • . . • • . • . . . • • • 3-3

SPS Services or Calls. • . . • . . . • . . . • . . • . • • . . . • . . • . • • . . • . • • • 3-4

Attach. • . . • . . . • . . • • . • . . . • • . • . • • . • • . • . • • . • . . • . . • 3-5

Format .••..•.•..•.••.•..•..•.•.••....••.•..•••..•.••.•... 3-5

Device Codes. . • • • . • . • • • . • . • • . . • • • • • . . • . • • • • . • . . • • • 3-5

STARAN Special Device Codes For ATTACH Function •••••.••• 3-6

STARAN Control Memory.............................. 3-6

Format ••......••......••.•..••..••.••.••...•.• 3-6
Buffer Format For Device -1 • • . • • . . • . . . • • • • 3-7
Example. . • • . • • . • • . . • • • . . • • • 3-8

STARAN Associative Memory.......................... 3-8

Format. • • . • • . . • . . . • • . • • • • . . • • • • • • • . • . • • • 3-8
Buffer Format For Device -2 . . . • • • • • . • • • . • • . • • . • • 3-9
Example. . • . . • . • . . • . . • • . • . • • . . . • • . • • . • . • • • • . • . . • 3 - 11

ii

CHAPTER

3 (cont)

APPENDIX

A

B

C

D

E

F

G

TABLE OF CONTENTS

TITLE PAGE

STARAN Registers. . . • . . • • • • . • . . . • 3 -12

Format. . • . • . . • • • . . • • • 3 -12
Buffer Format For Device -3 .•..•. ...•.... 3-13
Example. • . . • • . . • . • • . • • • . . • • . . • . . . • 3 - 14

Read. • •••.•• . . .• . . . •• .••. •.• . .• •• 3-15

Format•.......•....•....•..••....•.•..•....•.......... 3 -15

Example•..•....••.•...........••.••..•..•••.•..••...• 3 - 15

Write. .•..••.•..•.•....••..•......•....•..•...••....••.•....•...• 3-16

Format .•.•••.•.......•.••.......•......•.....••.•....•...• 3 -16

Example •••..•..•.•..•..•.........•..•..•....••........•..• 3 -16

Read/Write BUFFER Pseudo-op •......••......••....•..•.........• 3-17

Format. •. . • •. • •. . . . ••. .• • . .•• ... •.•. •. .• .•. . 3-17

Example •••..•..•.••.........•....•................••.••..• 3 -19

Restart Program. • • • • • . . • . • • 3 -21

Reset Peripheral Devices ••...... '.•.. •. •• . . .• 3-22

Free Device For New Task. .• •.•. •.. •. . 3-23

Exit to Supervisor •.....•..•..•..............••...••..•..•.....•. 3 -24

Timer Start•.......•.•..•..•....••.... 3-25

Int - Signal Sequential Processor Interrupt .•...•.......•.•..•..•... 3-26

Isetup - Setup Interrupt. • • . . • • . . . • . . • . . • . • . • • . • • . • . • 3-27

Pager Control. • • . . • . • . . . • . . . • • • . . . • . • . . • . • . . • • . • 3 -2 8

PI/O Control. • . . . • . • • . . . • • . . • • • • • . • • • • . • . • • . • . . • . • . . • • • • 3 -29

TITLE PAGE

SUMMARY OF APPLE MNEMONICS AND INSTRUCTION FORMATS......... A-i

ERROR CODES . . • • . • . . . • . • . • • . • • • . . • . . • . . . • • . • • • • . • • . . . • B-i

TERMS AND SyMBOLS... C-i

HEXADECIMAL/DECIMAL TABLE. . • . . • . . • • • . • • . . • • . • . . . • . . . D-i

OCTAL/DECIMAL. •.•.. •. . . .• . .•. ••.•. . •. ••.•. •.•. •. E-i

POWERS OF TWO TABLE.. F-i

PROGRAM EXAMPLES. • . • . G-i

INDEX X-I

iii

FIGURE

Frontispiece

2-1

3-1

TABLE

2-1

2-2

LIST OF FIGURES

TITLE PAGE

STARAN S Computer System...•. . • . •. ••. . . .•• . . ••. vi

APPLE Assembler Coding Form .•...•..••......•.•...•.....••. 0.. 2-2

Device Assignment Table (OAT) .•..•.•. 0 •••••• 0.00 •••••••••• 0 •••• 0 3-2

LIST OF TABLES

TITLE PAGE

Registers ••.•••.•.• 00. 0 •••••••• 0 •••••• 0 ••••• 0 •••••• 0.... •• • •• • •• 2-36

Register Combinations ••.•.•••••.••.•....•..••••.••••.•••••.•.••• 2-36

iv

GENERAL

APPLE
MANUAL

CUSTOM
INPUT/
OUTPUT

FOREWORD

The APPLE Programming Manual is one of five standard manuals for

STARAN S. As a composite group, the manuals provide the information

necessary for programming, operating, and maintaining the standard

STARAN S. The titles and publication numbers of the STARAN S manuals

are as follows:

STARAN S Reference Manual

STARAN S APPLE Programming Manual

STARAN S Operator's Guide

STARAN S Systems Programmer's Reference Manual

STARAN S Maintenance Manual

Publication

GER -15636

GER -15637

GER -15638

GER -15639

GER -15640

The APPLE Programming Manual is intended as a reference manual to

guide the programmer in the use of the assembly language. The manual

is written for the experienced programmer who has familiarized himself

with the STARAN S Reference Manual, GER -15636.

Since the I/O cabinets are not standard units, but are customized for each

particular installation, this manual include s no de scription of I/O mnemonic s

included in the APPLE language of a given installation.

v

SASIC (FOUR-CASINET) STARAN SYSTEM

KEYBOARD PRINTER

STARAN S COMPUTER SYSTEM

OPTIONAL
ASSOCIATIVE
ARRAY
CABINETS
(UP TO TE N)

vi

GENERAL

'~TM.

CHAPTER 1

INTRODUCTION

The Goodyear Aerospace Corporation (GAC) Associative Processor,

STARAN S':(, is a new digital computer system differing significantly

from conventional digital computers.

The Associative Processor (AP) is a general-purpose computer

capable of performing search, arithmetic, logic, and store operations

simultaneously on many independent sets of data. This capability,

which is a feature unique to STARAN S, results in certain major

differences between programming techniques for STARAN S and those

for conventional machines.

As an example, consider the familiar "loop" programming concept.

A loop is defined as a set of commands repeatedly and consecutively

executed on different sets of data. Conventional programming of a

loop involves the following steps:

1. Initialize

+~ ~

l 2. Process

3. + List Pointer A(lvance

+ .
4. ExamIne Exit Criterion

J s. D~cide
6. .. D .

~ Act on ecislon

!
To process a new set of data conventionally requires execution of the

complete loop, including steps 3, 4, 5, and 6, as coding and execution

time overhead.

In an AP, execution of the equivaleht of a loop on associative items

requires initialization and a single pass through the process step.

There is no need to advance a list pointer to reference the next set of

data to be processed, to determine when to exit from the loop, or to

repeatedly execute the process step. The loop is one of many examples

of program simplification and improved execution time possible with

an AP.

Goodyear Aerospace Corporation, Akron, Ohio 44315

1-1

APPLE

ONE-TO-ONE

ONE-TO-MANY

In Line

Subroutine
Call
Sequence

ASSEMBLER
DIRECTIVES

COMMENT
STATEMENTS

Development of a new digital machine organization involves the design

of a programming language suitable for the computer.

APPLE is the acronym for the ~ssociative ..!:rocessor ..!:rogramming

Languag~. APPLE is a machine-oriented symbolic language designed

to expedite programming for the STARAN S system.

APPLE mnemonics produce four basic types of assembler generated

output:

1) One-to-One Translation

2) One-to-Many Translation

3) Assembler Directives

4) Comment Statements

Most assembler level languages for conventional computers generate one

machine language instruction per mnemonic. Many of the basic APPLE

mnemonics fall into this category.

Several APPLE mnemonics are in the one-to-many category. Many

basic AP programming functions require more than one machine

language instruction per mnemonic. Some of these mnemonics pronuce

in-line machine instructions; others generate a subroutine call to a

sequence of machine instructions.

The one-to-many mnemonics producing in-line machine instructions are

equivalent to macro instructions of higher level assembly languages.

A library of subroutines is provided by APPLE and resides in Page 0

memory. The one-to-many mnemonics produce in-line subroutine call

sequences similar to the linkages provided in FORTRAN to the SIN or TAN

functions of a FORTRAN library.

Assembler directive statements provide functions that assist the

programmer in controlling the assignment of storage addresses, defining

data and storage fields, and controlling the APPLE system itself. With

a few exceptions, assembler directive statements do not generate

machine language code.

Comment statements may appear anywhere in the program and will be

printed on the listing device. However, comment statements have no

effect on the object code produced.

1-2

APPLE
FEATURES

APPLE is essentially a symbolic assembly language. All AP

memories and registers may be referenced symbolically.

Constants can be expressed as decimal, octal, or hexadecimal

numbers in source statements. Addresses can be expressed

absolutely or symbolically.

A listing of the source program statements, the resulting machine

language code, and a symbol table may be produced by APPLE for

each program. When a source program is assembled, an extensive

syntactical check is provided by APPLE. Detected errors are

printed on the program listing in error codes (Appendix B) at the

left-hand margin of the particular statement in error. A maximum

of two error codes can be printed for each statement.

1-3

QUICK INDEX

APPLE INSTRUCTION GROUPS

ASSEMBLER DIRECTIVES I

BRANCH INSTRUCTIONS _____________ _

REGISTER INSTRUCTIONS ____________JI

ASSOCIATIVE INSTRUCTIONS -----------.....11
Loads ___________________________________ 111

Stores __________________________________ 111

Searches ______________________________ ~III

Moves ________________________________ ~III

Ari thrnetics _______________________ 111

CONTROL and TEST ___ --I

PAGER INSTRUCTIONS ___ ------II

SUPERVISOR CALLS ____ I
2 -i

SOURCE
STATEMENTS

LABEL
FIELD

COMMAND
FIELD

ARGUMENT
FIELD

CHAPTER 2

APPLE LANGUAGE STRUCTURE

The source statement is the basic component of an APPLE program.

Source statements consist of the following four entries: Label, Command

Argument, and Comment. APPLE accepts source statements in free format.

Blanks act as field delimiters. The suggested coding form for source

statements is shown in figure 2 -1. The columns on the coding form

correspond to those of a standard 80-column Hollerith coded card. One

line of coding on the form corresponds to one source card.

Columns 1 through 72, inclusive, constitute the active line. Columns

73 through 80 are ignored by APPLE except for listing purposes. The

source statement may be continued past 72 columns by inserting

a semicolon (;), which, when scanned, terminates the present active

line. APPLE then searches the next active line to complete the

source statement.

The Label Field is usually an optional symbol created by the pro­

grammer to identify the statement line. The symbol may consist of

nine characters or less, with the first character in column one. If

the first column is blank, the Label entry is assumed omitted. The

symbol in the Label Field can contain alphabetics (A- Z) or numerics

(0-9); however, at least one of the characters must be an alphabetic.

The Label Field entry may have the same configuration as predefined

mnemonics without conflict, since APPLE distinguishes through

context which usage is intended. Only one entry is permitted in the

Label Field.

The Command Field is a requirement. It may consist of several

symbols separated by commas (,). The first symbol is the

predefined mnemonic (Appendix A) for a particular command.

Command modifiers may follow the command, depending upon the

individual command. No embedded blanks are allowed in the Command

Field.

Entries in the Argument Field properly specify the instruction. In

general, the purpose of this field is to identify the source and

destination locations to the command. Other entries, such as Control

Digits, are also included in this field. The entries are separated by

commas and no embedded blanks are allowed. APPLE assumes no

Argument Field entries if 16 contiguous blanks follow the Command

2-1

N
I

N

L-1751(5-72) * APPLE ASSEMBLER CODING FORM

I

2

3

4

5

15

7

8

II

10

"
12

13

14

15

16

17

18

19

20

PROGRAM ________ _ PAGE ___ OF ___ _

PROGRAMMER __________ _ DA TE ________ _

LABEL COMMAND

123456789 • 1\1213141516171

I I I I I 1 1. i

II I I I I I I I

I I

J.. -.I I I I I I I I I I I

J...l I 1 I I I I I I I I

..l ..l I I 1 I 1 til I

I I I 1 I I I

-'- 1 I 1 I I I I I I

L 1 I I I

J I I I I I

-.I J ..l I I I I

I I 1.1 I I

I I I .1 I I

I I I

I I I I I

I I I I I

I I I I I I

I I .1 .1.1 I 1.

11 J I ..l 1 il I J

I I I I I I I I I 1

'THIS IS A SUGGESTED FORM TO FACILITATE READING SOURCE LISTINGS, THE "APPLE"

ASSEMBLER WILL ACCEPT FREE FORM WITH A SPACE TERMINATING EACH FIELD.

ARGUMENT COMMENTS

• 202122232425262728293031323334353637.38 • 404142434445464748495051525354555657585960 6162 6364656667 686~ 7071 72

J -'-II -.I. ~I I II I I I I I I I I 1 IJ -'-.1 I I I I I I I

I I I 1 I I I I I I J j i II I 1. ill

I 1 I 1 I J iii 1 -.I -'- J -'- I 1 I 1 I I I I 1 I I 1 I I 1 I I I I

I 1 I I I I I I 1 1 I I I 1 I I 1 I I 1 1 I I I 1 III I -'- I 1-,-
t

I I I I I I I I I I I I I I I I I 1 I I 1.1 I I 1.1 I .II I 1 I I I I ~I 1 I .
I I I I 1 I 1 I I I

I 1 I I I I I I I I I I I I I , I I 1 I I I I I I 1 I I 1 I i I I

I I 1 I I I I I I I I I I I I I I I I I 1 I I I I I I 1 I I I I I

I I I I 1 I I I I I I I I I I I I I I I I I I 1 1 I I I I I I I I I 1. I I I 1 I I

I

II .I I I .11 ,1 i I I I I I I I f

I 1 I I 1 I I I I I I 1 I I I I I I I I I I I I I I 1 I I I I I I I I -.I
t t

I 1 I I I I I 1 I I I I I I I I I I I I j I I I I I I I I i I 11 I I I I I I I I

I I 1 1 .1 i I

I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I

I I I 1 f I I I I I I I I I 1 I I 1 I I II I II 1 I -'- I Ii I f I I I I

I

l..l 1 III I I I 1 I I I I, j 1 .1t -.I 1. Jl 1 .1 J 1 i.1l I I I I 1 I I I 1 I I I

1.1 11-,-1 II III I III 11-.1 .t.1 I J.. 1 I .1 -'-I I I I I 1 I I I I I 1

I 1 I 1 I I I 1 I 1.1 I 1 -.I l..l I l 11 1 I II I 1 1. I 1 -'- I I 1 I I I I I I I I

Figure 2- 1. APPLE Assembler Coding Form

ID/SEQ

7374757677787~8C

I I 1

1 I I I 1

1 I I I 1 1

1.1.~-'-L-'-.1

I I I I

I I I 1 1

I I I I I

I 1 I .1 I It

I I I I

I I I I

1 f I

I I I

I I I I I I I

1 I I I I I

I I I I I I I

I f I

I I l J I

I I I I 11

I I I I 11

I I I I I I

ARGUMENT
FIELD
(cont)

COMMENT
FIELD

REQUIRED
ENTRIES

SUMMARY

Field. Symbols appearing in the Argument Field must be defined to

the program, either by being predefined by APPLE or by appearing

in the Label Field of a source statement.

Comments are descriptive items of information that may be included

on the program listing. Comment entries consist of any information

the programmer wishes to record. All valid characters, including

blanks, can be used. The Comment Field begins one blank after the

Argument Field, or if no Argument Field exists, comments begin

after 16 contiguous blanks follow the Command Field. An asterisk

(~:c) in column one indicates the entire source statement is a comment.

Required entries for the various mnemonics are underlined in the

~"ormat description of each instruction discussion {i. e., B ~(r)±k, cd).

1) APPLE interprets the fields from left to right: Label,

Command, Argument, Comment.

2) A blank column terminates any field except the Comment Field,

which is terminated at column 80.

3) One or more blanks at the beginning of a line indicates there is

no Label Field entry.

4) The Label Field entry, when present, must begin in column 1.

5) The Command Field begins with the first nonblank column

following the Label Field or in the first nonblank column follow­

ing column 1, if the Label Field is omitted.

6) The Argument Field begins with the first nonblank column

following the Command Field. An Argument Field is designated

as being blank in either of two ways:

a. Sixteen or more blank columns follow the Command Field.

b. The end of the active line (column 72) is encountered and

continuation is not indicated.

7) The Comment Field begins in the first nonblank column following

the Argument Field, or when the Argument Field is omitted,

at least 16 blank columns following the Command Field.

2-3

LANGUAGE
ELEMENTS

CHARACTER
SET

SYMBOLS

Symbol
Table

APPLE language statements are written using the following

alphabetics, numerics, operators, and delimiters:

Alphabetics A through Z

Numerics 0 through 9

Operators $+-~:::=

Delimiters () BLANK I

Each character is represented by an 8-bit byte. Only 47 characters

of the set of 256 code combinations defined as the Extended Binary

Coded Decimal Interchange Code (EBCDIC) are included in APPLE's

character set. Most of the terms used in APPLE source statements

are expres sed in the character set shown above; however, language

features, such as comments, permit the use of any of the 256 EBCDIC

codes.

Symbols are formed from combinations of characters. Symbols

provide programmers with a convenient means of identifying program

elements so that they can be referred to by other elements. Symbols

must conform to the following rules:

1) Symbols consist of 1 to 9 alphanumeric characters.

2) At least one character in a symbol must be alphabetic.

3) No special characters or embedded blanks can appear in a symbol.

4) A symbol may be defined only once. If duplicate symbols occur

they will be flagged as errors.

Symbols provide the most commonly used means of addressing source

statements, constants, and storage locations. Symbols are normally

defined in the Label Field of a source statement. After a symbol has

been defined, it can be referred to by Argument Field entries. The value of

a symbol can be equated to an absolute value (see EQU, DF in the

Assembler Directives discussion)

APPLE compiles a table containing all the symbols that appear in the

Label Field and the addresses at which they appear. References to

symbols cause APPLE to interrogate the symbol table for the address

associated with the symbol.

2-4

CONSTANTS

Octal
Constants

Decimal
Constants

Hexadecimal
Constants

A constant is a self-defining language element whose value is explicit.

Self-defining terms are useful in constants requiring a value rather

than the symbolic address of the location where that value is stored.

Three constant notations are used in APPLE instructions: octal,

decimal, and hexadecimal.

An octal constant consists of a signed octal number enclosed by single

quotation marks and preceded by the letter O.

The constant is right -justified in its field. For example,

Constant Binary Value Hexadecimal Value

0' 1234' 001 010 all 100 0010 1001 1100

The octal digits and their binary equivalents are as follows:

a - 000
1 - 001
2 - 010
3 - all

4 - 100
5 - 101
6 - 110
7 - III

(29C)

A decimal constant consists of an integer (no decimal point) that may

be signed. For example, 100 or -5423.

A hexadecimal constant consists of a signed hexadecimal number

ene!osed by single quotation marks and preceded by the letter X.

F or example,

X' 9C01F' X' COFFEE' X' FFFF'

The assembler generates four binary bits of storage for each hexa­

decimal digit. The hexadecimal digits and their binary equivalents

are as follows:

a - 0000
1 - 0001
2 - 00 1 a
3 - 0011
4 - 0100
5 - 0101
6 - 0110
7 - 0111

8 - 1000
9 - 100 1
A-lOla
B - 1011
C - 1100
D - 1101
E- 1110
F_ 1111

2-5

EXPRESSIONS

Examples

LOCATION
COUNTERS

Load
Location
Counter

Execution
Location
Counter

Location
Counter
Symbol
($)

Argument Field entries consist of either single-term expressions or

double-term expressions. Single-term expressions are symbols,

constants, or Location Counter references ($). Double-term

expressions are two single terms connected with an arithmetic

operator. The valid arithmetic operators are a plus sign (+) for

addition and a minus sign (-) for subtraction. The first single-term

expression of a double -term expression may be a symbol or constant,

and the second single-term expression must be a constant.

Valid

TAG+5
LABEL-23
5+32

Invalid

TAG-LABEL
5+TAG
TAG+5+23

APPLE maintains two internal Location Counters: a Load Location

Counter and an Execution Location Counter. The Load Location

Counter keeps track of the addresses associat~d with the instructions

when the program is loaded. The Execution Counter keeps track of

the addresses associated with the instructions when they are executed.

The Load Location Counter keeps track of the addresses associated

with the instructions when they are loaded.

As each instruction or data area is assembled, the Load Location

Counter is incremented by the length of the assembled item. There­

fore, the Load Location Counter is the address of the next available

storage location in Control Memory after the instruction is assembled.

This address is the location where the instruction will reside after

being loaded.

As each instruction or data area is assembled, the Execution Location

Counter is incremented by the length of the assembled item. The

Execution Location Counter differs from the Load Location Counter when

Pager commands are encountered. (See Pager Instructions.) Each

STR TSG that appears in an assembly reinitializes the Execution

Location Counter. This address is the location where the instruction

will reside when executed.

The special symbol, $ (dollar sign), is predefined by APPLE as

Location Counters. The $ may be used to alter the Location Counters

at assembly time (see ORG in Assembler Directives Discussion). The

$ may also be used in an absolute expression to refer to an address. In

this context it is the Execution Location Counter that forms the address.

2-6

ADDRESSING

Control
Memory
Address

Associative
Memory or
Common Register
Field Expression

The Control Memory Address is a symbolic or absolute address in

bulk core, page memory, or High Speed Data Buffer. A Control

Memory Address expression is comprised of four terms in the form

~ (r)±k,cd. Note that required terms are underlined.

a - This entry is the only one required. This term may be

a symbol or a constant.

k - This entry must be a constant. At assembly time :l:k is

added to the value of la l to form the address.

r - This entry must be one of the following registers:

RO through R7, DP.

At execution time the contents of this specified register is

added to the value a±k. It is this result that defines the

Control Memory Address. The contents of the register can

be considered to be the base address, and the double-term

expression a±k can be considered to be the displacement.

cd _ This entry is the Control Digit. A Control Digit indicates

that after the specified instruction is completed a step is

desired. This step may increment or decrement the data

pointer (DP) register by one and/or decrement the- block

length (BL) register by one. The Control Digit may be

specified by an a:l:k type of expression, where I a' - and I k'

are defined as above.

cd Values

2

3

4

5

Action

Decrement BL

Increment DP

Decrement BL and Increment DP

Decrement DP

Decrement BL and DP

The Control Digit is a valid entry only when the base

register option has been selected, and the register forming

the base register is the DP register.

A field expression defines the most significant bit position and the

number of contiguous bit positions (field length) occupied by a field.

There are two ways of constructing a field expression:

2-7

Associative
Memory or
Common Register
Field Expression
(cont)

• 1

• 2

• Example 1

• Example 2

b±:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or Associative Memory. The optional constant modifier, i, modifies

only the most significant bit position.

(b, i)±j

where b may be a constant or a symbol and represents the most

significant bit position of a field. If b was defined as a field via a

previous DF instruction, the most significant bit position is the value

used. i must be a constant and represents the number of contiguous

bits occupied by the field. j is an optional constant modifying only the

most significant bit position of the field.

AJAX DF 10,3

SC AJAX-3,(100,3)

The field AJAX begins in bit column 10 and spans 3 bit columns

(bit columns la, II, 12).

The expression AJAX - 3 has modified the most significant bit position

to a value of 7 and spans 3 bit columns (bit columns 7, 8, 9).

The expression (100,3) defines a field beginning with bit column 100

and spans 3 bit columns (bit columns 100, 101, 102).

FIELD1 DF a,s

SC (FIELD1, 17)+0'17', (X' 80',0' 21')

The field FIELD1 begins in bit column a and spans 5 bit columns

(bit columns 0,1,2,3,4).

The expression (FIELD1, 17)+0' 17+ has modified the most significant

bit position to a value of IS, and has also modified the number of bit

columns to 17 (bit columns IS, 16, ••. ,31).

The expres sion (X' 80' ,0' 21') defines a field beginning with bit column

128 and spans 17 bit columns (bit columns 128,129, ••. ,144).

2-8

ASSEMBLER
DIRECTIVES

Assembler directive statements provide auxiliary functions to APPLE

and assist the programmer in checking, documenting, and organizing

a program.

The assembler directives are:

Mnemonic

START

END

ORG

EQU

DF

DS

TOF

EVEN

DC

GEN

NOP

A or E

Instruction

Start APPLE

End APPLE

Initialize Location Counter

Equate

Define a Field

Define Storage

Top of Form

Make Location Counter Even

Define Constant

Generate Machine Instructions

No Operation

Character String Generator

I

2-9

START

Format

• Label

• Command

• Argument

END

Format

• Label

• Command

• Argument

• • a:!:k

• • blank

Start APPLE

This instruction performs initializing functions for APPLE, and

generates pertinent header information for all object programs. This

instruction is required and should be the first source statement in

all APPLE programs.

Label Command Argument Comment

symbol START

Any valid symbol or blank.

START

No entry required.

End APPLE

This instruction will process and assemble all previous source

program statements. The END instruction is required and must be

the last source statement of every assembly.

Label Comma.nd Argument Comment

symbol END a:!:k

Any valid symbol or blank.

END

An optional entry.

'a' may be either a symbol or a constant whose value may be

optionally modified by plus or minus the constant k. This term

represents an address designating where program execution will

start immediately after the object program is loaded.

If no address is specified in the argument field, this program will

not automatically begin execution upon completi"on of loading. In this

case the END - statement signals to the assembler the end of the

current program.

2-10

ORG

Format

• Label

• Command

• Argument

• • a±k

Example

• Note

Initialize Location Counter

This instruction commands the assembler to assemble succeeding instructions

beginning at the address specified in the Argument Field. The Load Location

Counter and Execution Location Counter are loaded with the value of a±k.

Label Command Argument Comment

symbol ORG a±k

Any valid symbol or blank.

ORG

One entry is required.

'a' may be either a symbol or a constant whose value may be

optionally modified by plus or ITlinus the constant k. Moreover' a'

may be one of the following special predefined symbols provided

for ease of programming:

a

PAGED

PAGEl

PAGE2

HSDB

DMA

BULKC

ORG

Definition

Page 0 Memory Starting Address

Page MeITlory Starting Address

Page 2 MeITlory Starting Address

High-Speed Data Buffer Memory
Starting Address

Direct Memory Access
Memory Starting Address

Bulk Core Storage Memory
Starting Address

BULKC+16

In this example the first instruction following the ORG statement will be

assigned the Bulk core address X' 8020' (BULKC assigns the address

X' 8010' in the APPLE assembler).

2-11

EQU

Format

• Label

• Command

• • a±k

DF

Format

• Label

• Command

• Argument

Note

Equate

This instruction permits the programmer to assign a value to a symbol.

Whenever the symbol appears in a succeeding instruction, the equated

value will be used to form the machine language code.

Label Command Argument Comment

symbol EQU ~±k

Any valid symbol. This entry is required.

EQU

'a' may be either a symbol or a constant whose value may be optionally

modified by plus or minus the constant k. la l ITIay also be one of the special

predefined APPLE sYITIbols such as register abbreviations (Table 2 -1) PAGEO,

PAGE 1, PAGE2, HSDB, DMA, B ULKC , X, Y I and M. Huwever , if a special

syITIbol is us ed it cannot be ITIodified by k.

Define a Field

This instruction permits the programmer to as sign a field definition

value to a symbol for later use. Whenever the symbol appears in

instructions, the defined field value will be used to form the machine

language code.

Label Command Argument Comment

symbol DF

Any valid symbol. This entry is required.

DF

Two entries are required.

'a' may be either a symbol or a constant whose value may be optionally

modified by plus or minus the constant k. The value of the term al±kl

represents the most significant bit position of the field being defined.

The value of the term a2±k2 represents the number of contiguous bit

positions (field length) occupied by the field being defined.

The sum of al±k l or a2±k2 must not exceed the total number of bits in

an associative memory word (0 to 255). If the field being defined is a

field in the Common register, the sum of al±kl or a2±k2 should not exceed

the number of bits in the Common register (0 to 31).

2-12

I

DS

Format

• Label

• Command

• • a±k

• Argument

TOF

Format

• Label

• Command

• Argument

• Comment

Define Storage

This assembler directive will allocate the next specified number of

32 bit words as a contiguous block of control memory.

Label Command Argument Comment

symbol ~a±k

Any valid symbol or blank.

DS

'a' may be either a symbol or a constant whose value may be optionally

modified by plus or minus the constant k. The value of the term a±k

specifies the number of contiguous words to be reserved. If this entry

is omitted, a default value of one is assumed.

Blank

Top of Form

This assembler directive will issue a form feed to the assembly

listing device. TOF may be placed anywhere in the program and

has no effect on the object code produced.

Label Command Argument Comment

TOF

Must be blank.

TOF

None required.

The comment will be printed at the top of the page after the form feed.

2-13

EVEN

Format

• Label

• Command

• Argument

DC

Format

• Label

• Command

• Argument

Make Location Counter Even

If the Execution Location Counter is odd when this instruction is

encountered, an NOP will be produced in the object code; otherwise, no

object code will be produced. Therefore, after this instruction has been

processed the Execution Location Counter will be even. (Ref. SPSW instruction.)

Label Command Argument Comment

symbol EVEN

Any valid symbol or blank.

EVEN

N one required.

Define Constant

This instruction will generate a specified value for a specified

number of 32 bit control memory words.

Label Command Argument Comment

symbol

Any valid symbol or blank.

DC

al may be either a symbol or a constant whose value may be optionally

modified by plus or minus the constant kl. The value of the term al±k l

specifies the nUITlber of contiguous 32 - bit words. If this entry is

omitted, a value of one is assumed.

a2 may be either a symbol or a constant whose value may be optionally

modified by plus or minus the constant k2. The value of the term a2±k2
is the value to~be inserted in each of the 32 -bit words.

2-14

I

GEN

Format

• Label

• Command

• Argument

Note

NOP

Format

• Label

• Command

• Argument

Generate Machine Instructions

This instruction permits the programmer to generate machine codes for

instructions not covered by APPLE. (See STARAN S Reference Manual

for detailed machine language coding.) This instruction is also useful

when generating words of data rather than instructions.

Label Command Argument Comment

symbol GEN, k), ••• ,kn

Any valid symbol or blank.

GEN

One or more constants that define the length of the consecutive data fields

ai±ji respectively. The sum of all the kl s must be less than or equal to 32.

a i may be either a symbol or a constant whose value may be optionally

modified by plus or minus the constant ji. These term{s) represent the

value{ s) to be inserted into each of the corresponding data field{ s).

There must be a one-to-one correspondence between the k i and ai±ji terms.

If the sum of the lengths of the data fields is less than 32, the information

will be right-justified in the word.

No Operation

This instruction performs no operation when it is executed.

Label Command Argument Comment

symbol NOP

Any valid symbol or blank.

NOP

No entry required.

2-15

I

A or E

Format

or

• Label

• Command

• • A

• • E

• • x

• • c 1 cZ· - - ci -1 ci

• Argument

Note

Character String Generator

These two assembler directives enable the programmer to generate

messages for output.

Label Command Argument Comment

symbol Axc 1 c Z· .• c i-I c· X 1 _

Label Command Argument Comment

symbol Exc1cZ···ci_l c· 1
x

Any valid symbol or blank.

A character string entry is required.

I AI represents an assembler directive commanding the as sembler to

generate the seven bit ASCII code equivalent to the succeeding character

string.

E represents an assembler directive commanding the assembler to

generate the eight bit EBCDIC code equivalent to the succeeding

character string.

x must be any non-alphanumeric character and serves as the "begin" and

"end" marker of the character string cl cZ- _ • ci_l ci' x cannot be

a I; I.

The ci may be any allowable ASCII or EBCDIC character (except the I j I)

depending on whether A or E is used respectively. One or more full thirty­

two bit words are generated with the ASCII or EBCDIC code of the ci
packed on byte boundaries at four characters per word. If there are not

enough character s to generate a full word, the remaining bytes will be

padded with blank (or space) characters.

No entry is required.

There is no provision for continuation of a character string onto

several source cards.

A I ; I character can be used in the text of the character string if

there are enough blank delimiters preceding it so that it would

fall in the comment field when parsed according to the free format

rules of an ordinary source statement.

Z-16

BRANCH
INSTR UCTIONS

Branch instructions alter the execution sequence of a program if certain

conditions exist.

The branch instructions are:

Mnemonic Instruction

B Unconditional Branch

BZ Branch if Zero

BNZ Branch if Not Zero

BBS Branch if Bit Set

BBZ Branch if Bit Zero

BRS Branch if Re sponse

BNR Branch if No Re sponse

BOV Branch if Overflow

BNOV Branch if No Overflow

BAL Branch and Link

RPT Repeat

LOOP Loop

2-17

B

Fortnat

• Label

• Cotntnand

• Argutnent

•• a

•• k

•• r

•• cd

Unconditional Branch

This instruction will transfer control frotn the current progratn address

to the address specified in the Argutnent Field.

Label Cotntnand Argutnent Cotnment

sytnbol B ~(r)±k, cd

Any valid sytnbol or blank

B

The Control Metnory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r)±k, cd.

This entry is required only if the optional term (r) is omitted. This term

may be either a symbol or a constant.

This optional term must be a constant and modifie s 'a' .

This entry may be one of the following nine registers: R 0 through R 7, DP .

The contents of this specified register is added to the value a±k at execution

time. It is this result that defines the Control Memory Address. The

contents of the register can be considered the base address, and the a±k

expre ssion can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the

specified instruction is completed a step is desired. This step may increment

or decrement the data pointer (DP) register by one and/or decrement the

block length (BL) register by one. The Control Digit may be specified by an

a±k type of expression where 'a' and k are as defined above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-18

BZ

Format

• Label

• Command

• Argument

• • a

• • k

Branch if Zero

This instruction will transfer control from the current program addre s s

to the address specified in the argument field, if the command field register,

r I' is zero.

Label Command Argument Comment

symbol BZ, r 1

Any valid symbol or blank.

BZ

Register

FPl
FPZ
FP3
FLl
FLZ
FPE
BL
DP

Definition

Field Pointer 1 (8 bits)
Field Pointer Z (8 bits)
Field Pointer 3 (8 bits)
Field Length Counter 1 (8 bits)
Field Length Counter Z (8 bits)
Field Pointer E (8 bits)
Block Length Counter (16 bits)
Data Pointer Register (16 bits)

The Control Memory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(rZ)±k, cd.

This entry is required only if the optional term (rz) is omitted. This

term may be either a symbol or a constant.

This optional term must be a constant and modifie s 'a'.

This entry must be one of the following nine registers: RO through R 7,

DP. The contents of the specified register is added to the value a±k

at execution time. The result defines the Control Memory Address.

The contents of the register can be cO"G.sidered the base address, and the

a±k expression can be considered the displacement.

2-19

BZ

•• cd This entry is the Control Digit. A Control Digit indicate s that after

the specified instruction is completed a step is desired. This step

may increment or decrement the data pointer (DP) register by one and/or

decrement the block length (BL) register by one. The Control Digit

may be specified by an a±k type of expression, where tat and k are

as defined above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement Bl and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-20

I

BNZ

Format

• Label

• Command

• Argument

•• a

• • k

• •

•• cd

Branch if Not Zero

This instruction will transfer control from the current program address

to the addre s s specified in the argument field, if the command field register,

r l' is not zero.

Label Command Argument Comment

symbol ~(r2)±k, cd

Any valid symbol or blank.

BNZ

Register

FPl
FP2
FP3
FLl
FL2
FPE
BL
DP

Definition

Field Pointer 1 (8 bits)
Field Pointer 2 (8 bits)
Field Pointer 3 (8 bits)
Field Length Counter 1 (8 bits)
Field Length Counter 2 (8 bits)
Field Pointer E (8 bits)
Block Length Counter (16 bits)
Data Pointer Register (16 bits)

The Control Memory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r2)±k, cd.

This entry is required only if the optional term (r2) is omitted. This term

may be either a symbol or a constant.

This optional term must be a constant and modifie s 'a '.

This entry may be one of the following nine registers: R a through R 7, DP.

The contents of the specified register is added to the value a±k at execution

time. It is this result that defines the Control Memory Address. The contents

of the register can be considered the base address, and the a±k expression

can be considered the displacement.

This entry is the Control Digit. A Control Digit indicate s that after the

specified instruction is completed a step is desired. This step may

increment or decrement the data pointer (DP) register by one and/or

decrement the block length (BL) register by one. The Control Digit

may be specified by an a±k type of expression, where 'a' and k are

defined as above.

2-21

II

BNZ

•• cd
(cant)

cd Values

I
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option

has been selected, and the register forming the base register is the

DP register.

2-22

BBS

Format

• Label

• Command

• Argument

• • a

• • k

• • r

• • cd

Branch if Bit Set

The execution of the branch in this instruction is contingent on the status

of a selected bit in the Common register. Prior to execution of this

instruction, an instruction must be executed to load the FP 1 register

with the address of the bit in the Common register to be tested for the

contingency. If the selected Common register bit is one, this instruc­

tion will transfer control from the current program address to the

address specified in the Argument Field.

Label Command Argument Comment

symbol a(r)±k, cd BBS
"---

Any valid symbol or blank.

BBS

The Control Memory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r)±k, cd.

This entry is only required if the optional term (r) is omitted. This term

may be either a symbol or a constant.

This optional term must be a constant and modifies' a' •

This entry may be one of the following nine registers: RO through R 7,

DP. The contents of the specified register is added to the value a±k

execution time. The result defines the Control Memory Address. The

contents of the register can be considered the base address, and the a±k

expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the

specified irstruction is completed a step is desired. This step may

increment or decrement the data pointer (DP) register by one and/or

decrement the block length (BL) register by one. The Control Digit may

be specified by an a±k type of expression, where' a' and k are

defined as above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-23

BBS

Example

• Common
Register
Contents

TAG

CaNT

o

LI

BBS

FP1,24

TAG

DECR FP1

BBS CaNT

WAIT

LRR C,FP2

CHECK BIT 24

BRANCH IF BIT IS ONE

CHECK BIT 23

BRANCH IF BIT IS ONE

23 24 31

The first branch (BBS TAG) will take place, since FPl is loaded

with 24 and bit 24 in the Common register is one.

The second branch (BBS CaNT) will not take place, since after

the DECR, FP 1 contains 23 and bit 23 in the Common register is

zero. Thus the next instruction executed will be the ·W AIT.

2-24

BBZ

Format

• Label

• Command

• Argument

• • a

• • k

• • r

• • cd

Branch if Bit Zero

The executipn of the branch in this instruction is contingent on the

status of a selected bit in the Common register. Prior to execution

of this instruction, an instruction must be executed to load the

FP 1 register with the address of the bit in the Common register to

be tested for the contingency. If the selected Common register bit

is zero, this instruction will transfer control from the current

program address to the address specified in the argument field.

Label Command Argument Comment

symbol BBZ ~(r}±k, cd

Any valid symbol or blank.

BBZ

The Control Memory Address is a symbolic or absolute address in

Bulk Core, Page Memory, or High Speed Data Buffer. The Control

Memory Address may be represented by four terms in the form a(r)±k, cd.

This entry is required only if the optional term {r} is omitted. This

term may be either a symbol or a constant.

This optional term must be a constant and modifies' a' •

This entry may be one of the following nine registers: RO through R7,

DP. The contents of the specified register is added to the value a±k

at execution time. The result defines the Control Memory Address.

The contents of the register can be considered the base addre s s, and

the a±k expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after

the specified instruction is completed a step is desired. This step may

increment or decrement the data pointer {DP} register by one and/or

decrement the block length (BL) register by one. The Control Digit

may be specified by an a±k type of expression, where' a' and k are

defined as above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option

has been selected, and the register forming the base register is the DP

register. 2-25

BBZ

Example

• Common
Register
Contents

TAG

CaNT

LI

BBZ

INCR

BBZ

WAIT

FPl, 10

TAG

FPl

CaNT

DECR FP2

CHECK BIT 10

BRANCH IF ZERO

CHECK BIT 11

BRANCH IF BIT IS ZERO

The first branch (BBZ TAG) will take place, since FP 1 is loaded

with the number 10 and bit lOin the Common register is zero.

The second branch (BBZ CaNT) will not take place, since after

the INCR, FP 1 contains 11 and bit 11 in the Common register is

one. Thus the next instruction executed will be the WAIT.

2-26

BRS

Format

• Label

• Command

• Argument

•• a

• • k

• • r

• • cd

Branch if Response

This instruction will check the Y response store register. If any

Y response store register bit position is set to one in any enabled

array, the branch will be executed.

Label Comma.nd Argument Comment

symbol BRS ~{r}±k, cd

Any valid symbol or blank

BRS

The Control Memory Address is a symbolic or absolute address in

Bulk Core, Page Memory, or High-Speed Data Buffer. The Control

Memory Address may be represented by four terms in the form

a{r}±k, cd.

This entry is required only if the optional term {r} is omitted. This

term may be either a symbol or a constant.

This optional term must be a constant and modifies' a' •

This entry may be one of the following nine registers: RO through R 7,

DP. The contents of the specified register is added to the value a±k at

execution time. The result defines the Control Memory Address. The

contents of the register can be considered the base address, and the a±k

expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the

specified instruction is completed a step is desired. This step may

increment or decrement the data pointer {DP} register by one and/or

decrement the block length (BL) register by one. The Control Digit may

be specified by an a±k type of expression, where' a' and k are as

defined above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-27

BNR

Format

• Label

• Command

• Argument

• • a

• • k

• • r

• • cd

Branch if No Response

This instruction will check the Y response store register. If all

Y response store register bit positions are equal to zero in all

enabled arrays, the branch will be executed.

Label Command Argument Comment

symbol BNR ~(r}±k, cd

Any valid symbol or blank.

BNR

The Control Memory Address is a symbolic or absolute address in
I

Bulk Core, Page Memory, or High Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r}±k, cd.

This entry is required only if the optional term (r) is omitted. This

term may be either a symbol or a constant.

This optional term must be a constant and modifies I a' •

This entry may be one of the following nine registers: RO through R 7,

DP. The contents of this specified register is added to the value a±k at

execution time. The result defines the Control Memory Address. The

contents of the register can be considered the base address, and the

a±k expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the

specified instruction is completed a step is desired. This step may

increment or decrement th,e data pointer (DP) register by one and/or

decrement the block length (BL) register by one. The Control Digit may

be specified by an a±k type of expression, where' a' and k are defined as

above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
D~crement BL and DP

The Control Digit is a valid entry only when the base register option

has been selected, and the register forming the base register is the DP

register.

2-28

BOV

Format

• Label

• Command

• Argument

• • a

• • k

• • r

• • cd

Branch if Overflow

This instruction allows the programmer to test for an overflow or

underflow condition after an arithmetic operation. This instruction will

perform X exclusive OR Y ANDed with M and store the re sult in Y. Then

if any Y response store bit in any enabled array equals one an overflow

condition exists for that word. If such is the case, this instruction will

branch to the address specified in the Argument Field. The X response

store will equal one for the corresponding word of associative memory

if an underflow occurred; otherwise an overflow occurred.

Label Command Argument Comment

symbol BOV 2:,(r)±k, cd

Any valid symbol or blank.

BOV

The Control Memory Address is a symbolic or absolute address in

Bulk Core, Page Memory, or High Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r}±k, cd.

This entry is required only if the optional term (r) is omitted. This

term may be either a symbol or a constant.

This optional term must be a constant and modifies t at.

This entry may be one of the following nine registers: RO through R7,

DP. The contents of this specified register is added to the value

a±k at execution time. The result defines the Control Memory Address.

The contents of the register can be considered the base address, and

the a±k expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after

the specified instruction is completed a step is desired. This step

may increment or decrement the data pointer (DP) register by one

and/or decrement the block length (BL) register by one. The Control

Digit may be specified by an a±k type of expression, where t at and k are

defined as above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment fDP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-29

BNOV

Format

• Label

• Command

• Argument

• • a

•• k

•• r

•• cd

Branch if No Overflow

This instruction allows the programmer to test for the absence of an

overflow or underflow condition following an arithmetic instruction.

This instruction will perform X exclusive OR Y ANDed with M and store

the result in Y. If all Y response store bits of all enabled arrays equal

zero, i. e., no overflow condition exists, this instruction will branch to

the addre ss specified in the Argument Field. If the branch doe s not take

place, the X response store will equal one for the corresponding word of

associative memory if an underflow occurred; otherwise, an overflow

occurred.

Label Command Argument Comment

symbol BNOV ~(r)±k, cd

Any valid symbol or blank.

BNOV

The Control Memory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r)±k, cd.

This entry is required only if the optional term (r) is omitted. This

term may be either a symbol or a constant.

This optional term must be a constant and modifies la l .

This entry may be one of the following nine registers: R 0 through R 7, DP.

The contents of this specified register is added to the value a±k at execution

time. The result defines the Control Memory Address. The contents of the

register can be considered the base address, and the a±k expression can be

considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the

specified \instruction is completed a step is desired. This step may increment

or decrement the data pointer (DP) register by one and/or decrement the

block length (BL) register by one. The Control Digit may be specified by

an a±k type of expression, where 'al and k are defined as above.

cd Values

I
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-30

BAL

ForMat

• Label

• Command

• Argument

•• a

•• k

•• r

•• cd

Branch and Link

This instruction will transfer control to a subroutine after storing the

Execution Location Counter of the next instruction in the branch and link

register r l'

Label Command Argument Comment

symbol

Any valid symbol or blank.

BAL

One of the branch and link register s R 0 through R 7.

The Control Memory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r}±k, cd.

This entry is required only if the optional term (r2) is omitted. This term

may be either a symbol or a constant.

This optional term must be a constant and modifie s 'a',

This entry may be one of the following nine registers: R 0 through R 7, DP.

The contents of this specified register is added to the value a±k at execution

time. The result defines the Control Memory Address. The contents of the

register can be considered the base addre s s, and the a±k expre s sion can be

considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the

specified instruction is completed a step is desired. This step may

increment or decrement the data pointer (DP) register by one and/or

decrement the block length (BL) register by one. The Control Digit may

be specified by an a±Ie type of expre s sion, where 'ai' and Ie are defined as

above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

I

2-31

BAL

Note

Example

When a programmer branches and links to a subroutine, he generally

will return by issuing an unconditional branch on the register r 1 that

specified the branch and link instruction:

BAL,R2 SUB

SUB

B (R2)

I

2-32

RPT

Format

• Label

• Command

• • a±k

• • blank

• Argument

Note

Repeat

This instruction will execute the following instruction the number

of times specified in the repeat constant term a±k. If a±k is omitted,

it is assumed that FLI previously has been loaded with the number of

times minus one, the next instruction is to be repeated.

Label Command Argument Comment

symbol RPT, a±k

Any valid symbol or blank.

RPT

'a' may be either a constant or a symbol, and k is an optional

constant modifier. The value of this optional term specifies the

number of times the following instruction will be repeated, i. e. ,

1~a±k::256.

Assumes FLI has been loaded with the number of times, minus one,

that the next instruction is to be repeated. FLI should be loaded with

a constant from 0 to 255.

No entry required.

FLI will be decremented to zero when this instruction is executed.

II

2-33

LOOP

Format

• Label

• Command

• • blank

• Argument

• • r

Note 1

Note Z

Note 3

Note 4

Loop

This instruction will sequentially cycle the program from the program

counter location following the loop ins~ruction up to and including the

address specified in the Argument Field. The loop may be cycled any

number of iterations from 1 to Z56. Af~er the loop has cycled the

specified number of times, the program continues with the next address

following the Argument Field address.

Label Command Argument Comment

symbol

Any valid symbol or blank.

LOOP

a l may be either a constant, or a symbol, and kl is an optional constant

modifier. The value of this optional term specifies the number of times

the program will be cycled.

APPLE assumes the number of loop iterations, minus one, has already

been loaded into FLI by the programmer.

The Control Memory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High Speed Data Buffer. The Control Memory

Address may be represented by three terms in the form aZ(r)±kZ.

a z may be either a constant or a symbol, and k Z is an optional constant

modifier. The value of the required term specifies the Control Memory

Address of the last instruction of the sequence of instructions cycled by

the LOOP.

This entry may be one of the following nine registers: RO through R 7,

DP. The contents of this specified register is added to the value of aZ±k
Z

at execution time. The result defines the Control Memory Address.

The contents of the register can be considered the base address, and tJ:le

aZ±kZ expression can be considered the displacement.

Instructions that alter the program counter, i. e., branches, skips, external

functions, etc., will produce unpredictable results if used within a loop.

Also, Load and Store register instructions are illegal within a loop.

Execution times can be improved for instructions within a loop.

FLI register will be decremented to zero upon completion of the loop.

The register modification term, r, is only legal when the number of

iterations term, al±k 1, is omitted.
Z-34

REGISTER
INSTR UC TIONS

The register instructions allow the programmer to either alter or save

the contents of STARAN S registers.

The register instructions are:

Mnemonic

LRR

LI

LR

SR

!NCR

DECR

LPSW

SPSW

Instruction

Load Register from Register

Load Register with Immediate Data

Load Register from Control Memory

Store Register in Control Memory

Increment the Register

Decrement the Register

Load Program Status Word

Swap Program Status Word

I

2-35

Table 2-1. Registers

Mnemonic Register Name
Length
in Bits

AS Array Selector 32

ASH Most -Significant Bits of Array Selector 16

ASL Least-Significant Bits of Array Selector 16

BL Block Length Counter 16

DP Data Pointer 16

C Common Register 32

CH Most -Significant Bits of Common Register 16

CL Least-Significant Bits of Common Register 16

F Field Register group (FL1, FP3, FP1, FP2) 32

FL1 Field Length Counter 1, Bits 0 to 7 of F 8

FP3 Field Pointer 3, Bits 8 to 15 of F 8

FPl Field Pointer 1, Bits 16 to 23 of F 8

FP2 Field Pointer 2, Bits 24 to 31 of F 8

FL2 Field Length Counter 2 8 I
FPE Field Pointer Extra 8

PC Program Counter, Most-Significant Bits of PSW 16

IMASK Interrupt Mask, Least-Significant Bits of PSW 4

RO Branch and Link Register 0 32

Rl Branch and Link Register 1 32

R2 Branch and Link Register 2 32

R3 Branch and Link Register 3 32-

R4 Branch and Link Register 4 32

R5 Branch and Link Register 5 32

R6 Branch and Link Register 6 32

R7 Branch and Link Register 7 32

Table 2-2. Register Combinations

Valid Register Combinations Length in Bits

(ASH, ASL) or AS 32

(BL, DP) 32

(CH,CL) or C 32

(FL1, FP3, FP1, FP2) or F 32

(FL1,FP3) 16

(FP3, FPl) 16

(FP1, FP2) 16

(FP2, FLl) 16

(FL2, FPE) 16

(PC,IMASK) 32

2-36

LRR

Format

• Label

•

• •

Command

k
s

• Argument

Note 1

Note 2

Load Register From Register

This instruction will load register or valid register combination r 2 with

the contents of register or valid register combination r
l

. The contents

the source register is not affected, and the original contents of the

destination register is destroyed.

Label Command Argument Comment

symbol

Any valid symbol or blank.

LRR

ks may be either a constant or a symbol.

Legal value n:

2

3

symbol

blank

- Shift the contents of the source register (r 1) left end
around 8 bits before loading.

- Shift the contents of the source register (r 1) left end
around 16 bits before loading.

- Shift the contents of the source register (r 1) left end
around 24 bits before loading.

- Must be equal to a value of 1, 2, or 3.

- APPLE will provide a shift constant to the source
register r 1 to align the least -significant bits of the
registers. (See examples.)

Both register entries are required .

The de stination register(s)

Valid Entrie s:

Any register or register combination noted in table 2 -2.

The source register(s)

Valid Entries~

Any register or register combination noted in table 2 -2.

An R (Register) error indicate s both r 1 and r 2 are branch and link

registers, which is invalid.

R LRR RO,Rl

A T (Truncation) error warns that r 1 is a larger register than r 2;

therefore all bits cannot be loaded.

I

2-37

LRR

• Example

Note 3

• Example

T LRR FPl, (PC, IMASK)

32 -bit (PC, IMASK) cannot be loaded into 8 -bit FPl,

A W (Warning) error warns that r l is a smaller register than r2' Not

only is r 1 loaded into r 2' but also the other register or registers in r 1 's

group are loaded into r2' (See Reference Manual, Bus Positions,)

W LRR AS,FP2

32-bit register AS is loaded with the four 8-bit registers, FLl, FP3,

FPl, FP2, I

2-38

LI

Format

•

•

• •

Label

Command

k
s

•. Argument

• • r

•• a±k

Load Register with Immediate Data

This instruction will load register or valid register combination r with

the value of a±k in the Argument Field.

Label Command Argument Comment

symbol LI, ks

l

Any valid symbol or blank.

LI

ks may be either a constant or a symbol.

Le gal value s:

1

2

3

symbol

blank

- Shift the value of a±k left end -around 8 bits before loading.

- Shift the value of a±k left end -around 16 bits before loading.

- Shift the value of a±k left end -around 24 bits before loading.

- Must be equal to a value of 1, 2, or 3.

- APPLE will provide a shift constant to the data to align the
least -significant bit of the data with the least-significant
bit of the register(s) specified.

Both entries are required .

The destination register(s) .

Valid entries:

Any register or register combination noted in table 2 -2.

The immediate value to be loaded may be a single -term or a double -term

expression whose value is less than 65,536 10, 'a' may be either a constant

or a symbol; k is an optional constant modifier.

I

LI

Example 1* LI FLl,MEM

MEM

r

>~ Typical for 8- bit register s

I
Example 2*>!c LI ASH,MEM

o 15 16 31

MEM

r

>:o:~ Typical for 16- bit register s

Example 3 LI,3 FP2,MEM

o 15 16 23 24 31

MEM

r

2-40

LR

Format

• Label

• Command

• • k
s

• Argument

•• a±k

Load Register From Control Memory

This instruction will load the register or valid register combination r2 with

the contents of the Control Memory Addre s s specified by a(r 1)±k. The

Control Memory Address is a symbolic or absolute address in Bulk Core or

High-Speed Data Buffer. The Control Memory Address may be represented

by four terms in the form a(r)±lc, cd. The contents of the control memory

address is not affected. However, the contents of the base register may be

changed by the control digit (cd). The original contents of the destination

register is destroyed.

Label Command Argument Comment

symbol .E2.L~Jr 1)±lc, cd

Any valid symbol or blank.

LR

ks may be either a constant or a symbol.

Legal values:

2

3

symbol

blank

- Shift the contents of the address a(rl)±k, left end-around
8 bits before loading the register.

- Shift the contents of the address a(r
1

)±k, left end-around
16 bits before loading the register.

- Shift the contents of the addre s s a(r I)±k, left end -around
24 bits before loading the register.

- Must be equal to a value of 1, 2, or 3.

- APPLE assumes that no shifting is desired.

Two entries are required.

The destination register(s).

Valid entries:

Any register or register combination noted in table 2 -2.

'a' may be either a constant or a symbol; k is an optional constant modifier .

The value of this term specifies a Control Memory Address.

This entry may be one of the following nine registers: R 0 through R 7,

DP.

The contents of the specified register is added to the value a±k at

execution time. The result defines the Control Memory Address. The

contents of the register can be considered the base address, and the

a±k expression can be considered the displacement.

I

2-41

LR

•• cd This entry is the Control Digit. A Control Digit indicates that after the

specified instruction is completed a step is desired. This step may

increment or decrement the pointer (DP) register by one and/or decrement

the block length (BL) register by one. The Control Digit may be specified

by an a::l:k type of term, where. 'a' and k are as defined as above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement Bl and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-42

LR

Example 1

o

o

Example 2

0

0

Example 3

o

E~ample 4

o

LR

7 8

7 0

LR

7 8

7

LR

7 8

F,MEM

15 16 2.3 2.4

7 0 7 0

FLl,MEM

15 16 2.3 2.4

FP3,MEM

15 16 2.3 2.4

o 7

LR,l FPl,MEM

7 8 15 16 2.3 2.4

o 7

31

MEM

7

31

MEM

I
r2.

31

MEM

r2.

31

MEM

2-43

LR

Example 5 LR,3 FPl, MEM

o 7 8 15 16 23 24 31

MEM

o 7

Example 6 LR (BL, DP), MEM

o 15 16 31

I I I MEM

I
o 15 0 15

" " I~ __ B_L _____ II _____ D_P ____ ~I r2

Example 7 LR DP,MEM

o 15 16 31

MEM

o 15

Example 8 LR,2 DP,MEM

o 15 16 31

MEM

o 15

r2

2-44

LR
Example 9

Example 10

Example 11

Example 12

LR

o 7 8

o 7 0

LR

o 7 8

(FL2. FPE), MEM

15 16

FPE.MEM

15 16

o 7

LR.3 FPE,MEM

o 7 8 15 16

LR C,MEM

o 15 16

o

c

31

MEM

31 II MEM

31

MEM

31

MEM

31

2-45

LR

Example 13 LR CH,MEM

o 15 16 31

MEM

o 15

r2

Example 14 LR,2 CL,MEM

o 15 16 31

r MEM

16 31

I CL J

Example 15 LR (PC,lMASK), MEM

o 15 16 27 28 31

MEM

o 15 o 3

Example 16 LR,2 PC,MEM

o 15 16 31

MEM

? AL

SR

Format

• Label

• Command

•• k
s

• Argument

•• a±k

•• cd

Store Register in Control Memory

This instruction will store the contents of the register or valid register

combination r2 in the Control Memory Addres s specified in a(r 1)±k, cd. The

Control Memory Address is a symbolic or absolute address in Bulk Core or

High-Speed Data Buffer. The Control Memory Address may be represented

by four terms in the form a(r)±k, cd. The contents of the source register is

not affected and the contents of the Control Memory Address destination is

destroyed. The contents of the base register (ril may be changed by the

control digit, cd.

Label Command Argument Comment

symbol

Any valid symbol or blank.

SR

ks may be either a constant or a symbol.

Legal values:

2

3

symbol

blank

- Shift the contents of register (r 2) left end -around 8 bits
before storing in Control Memory.

- Shift the contents of register (r
2

) left end-around 16 bits
before storing in Control Memory.

- Shift the contents of register (r 2) left end -around 24 bits
before storing in Control Memory.

- Must be equal to a value of 1, 2, or 3.

- APPLE assumes that no shifting is desired.

Two entries are required.

The source register(s).

Valid entries:

Any register or register combination noted in table 2 -2.

'a' may be either a constant or a symbol; k is an optional constant modifier .

The value of the term specifies the Control Memory Address.

This entry may be one of the following nine registers: R 0 through R 7, DP.

The contents of the specified register is added to the value a±k at execution

time. The result define s the Control Memory Address. The contents of the

register can be considered the base address, and the a±k expression can be

considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the

specified instruction is completed a step is desired. This step may

increment or decrement the pointer (DP) register by one and/or decrement

the block length (BL) register by one. The Control Digit may be specified

by an a±k type of term, where fa f and k are defined as above.

II

2-47

SR

•• cd

Note

Example 1

Example 2

Example 3

Valid entries:

cd Values Action (After the Storage Operations)

1
2
3
4
5

Decrement BL register
Increment DP register
Increment DP register and decrement BL register
Decrement DP
Decrement both DP and BL registers

The Control Digit is a valid entry only when the base register option has been

selected, and the register forming the base register is the DP register.

When register r2 is not a 32-bit register or group, a W (Warning) error

is produced to remind the programmer that the whole 32-bit group will be

stored.

SR C,MEM

0 31 ; C

3\
r2

1
MEM

W SR DP,MEM

0 15 0 15

I DP I~
r2

I
0 * 15 16 . 31

I - ----, rL ____ .J MEM

When register r2 is not a 32 -bit register or group, a
W (Warning) error is produced to remind the program
mer that the whole 32 -bit group will be stored.
Location MEM will contain both DP and BL.

W SR,2 DP, MEM

o 15 0 15
r--------, r - - --,
_____ - ... L- ~ -.J r2

___ T

MEM

2-48

INCR

Format

• Label

• Command

• Argument

Note 1

Note 2

Note 3

Note 4

Note 5

Increment the Register

The contents of the registers specified in the argument field by the term

r l , ••. , rn will be incremented by one.

Label Command Argument Comment

symbol !NCR

May be any valid symbol or blank.

.!NCR

The term r l' •.. , r n identifies the specific registers to be incremented

by one.

Valid entrie s:

FPl
FP2
FP3
FPE
FLI
FL2
BL
DP

- Field Pointer 1
- Field Pointer 2
- Field Pointer 3
- Field PO,inter Extra
- Field Length Counter 1, Decrementable only
- Field Length Counter 2, Decrementable only
- Block Length Counter, Decrementable only
- Data Pointer

If the DP is specified in the Argument Field, it mus: the only register

listed.

Only one of the three "decrementable onlyll registers, FLl, FL2, and BL,

may be used in a single instruction. If one is chosen it will be decremented,

even though the other registers chosen will be incremented.

FP2 and FP3 may not be used in the same instruction.

A register may not appear more than once in any given INCR instruction.

A W (Warning) error is produced whenever a "decrementable only"

register is specified. Such registers will be decremented rather, than

incremented.

II

2-49

DECR

Format

• Label

• Command

• Argument

Note I

Note 2

Note 3

Note 4

Decrement the Register

The contents of the registers specified in the argument field by the term

r I' , , , , rn will be decremented by one,

Label Command Argument Comment

symbol

Any valid symbol or blank.

DECR

The term r 1, ••• , rn identifies the specific registers to be decremented

by one.

Valid entrie s:

FPI
FP2
FP3
FPE
FLI
FL2
BL
DP

- Field Pointer I
- Field Pointer 2
- Field Pointer 3
- Field Pointer Extra
- Field Length Counter 1, Decrementable only
- Field Length Counter 2, Decrementable only
- Block Length Counter, Decrementable only
- Data Pointer

If the DP is specified in the Argument Field, it must be the only register

listed.

Only one of the three "decrementable only" registers, FLI, FL2, and

BL, may be chosen in a single instruction.

FP2 and FP3 may not be used in the same instruction.

A register may not appear more than once in any given DECR instruction,

I

2-50

LPSW

Format

• Label

• Command

• • k
s

• Argument

•• a:l::k

•• r

Load Program Status Word

This instruction will load the contents of a designated Control Memory

Address into the Program Counter (PC) and Interrupt Mask (IMASK)

registers. From the Control Memory word, bits a through 15 are

loaded into the Program Counter and bits 28 through 31 into the Interrupt

Mask. The contents of the source memory word is not affected. The

original contents of the registers are destroyed.

Label Command Argument Comment

symbol LPSW,k
s 1!:.(r):l::k, cd

Any valid symbol or blank.

LPSW

ks may be either a constant or a symbol.

Le gal value s:

1

2

3

symbol

blank

- Shift the contents of the address a(rl):l::k, left end-around
8 bits before loading the register.

- Shift the contents of the addre ss a(r 1):l::k, left end -around
16 bits before loading the register.

- Shift the contents of the address a(r 1):l::k, left end-around
24 bits before loading the register.

- Must be equal to a value of 1, 2, or 3.

- APPLE assumes that no shifting is de sired.

The Control Memory Address is a symbolic or absolute address in Bulk

Core or High-Speed Data Buffer. The Control Memory Address may be

represented by four terms in the form a(r)±k, cd.

'a' may be either a constant or a symbol; k is an optional constant modifier .

The value of this term specifies a Control Memory address.

This entry may be one of the following nine registers: R a through R 7, DP.

The contents of the specified register is added to the value a±k at execution

time. The result defines the Control Memory Address. The contents of the

register can be considered the base address; and the a:l::k expression can be

considered the displacement.

I

2-51

LPSW

•• cd This entry is the Control Digit. A Control Digit indicate s that after the

specified instruction is completed a step is desired. This step may

increment or decrement the data pointer (DP) register by one and/or

decrement the block length (BL) register by one. The Control Digit may

be specified by a±k type of term, where la l and k are defined as above.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

II

2-52

SPSW

Format

• Label

• Command

• Argument

•• a±k

•• r

• • cd

Swap Program Status Word

This instruction will store the current Program Counter (PC) and Interrupt

Mask (IMASK) registers in the designated Control Memory Address. If the

Control Memory Address is an even address (see EVEN), the contents of the

next location will be loaded into the PC and IMASK registers. Loading the

PC register causes a branch to the address loaded. If the Control Memory

address is an odd address, only the store takes place.

Label Command Argument Comment

symbol SPSW ~(r}±k, cd

Any valid symbol or blank.

SPSW

The Control Memory Address is a symbolic or absolute address in Bulk

Core or High-Speed Data Buffer. The Control Memory Address may be

represented by four terms in the form a(r)±k, cd.

'a' may be either a constant or a symbol; k is an optional constant modifier .

The value of this term specifies a Control Memory Address.

This entry may be one of the following nine registers: R 0 through R 7, DP.

The contents of the specified register is added to the value a±k at execution

time. The result defines the Control Memory Address. The contents of the

register can be considered the base address, and the a±k expression can be

considered the displacement.

This entry is the Control Digit. A Control Digit indicate s that after the specified

instruction is completed a step is desired. This step may increment or decrement

the pointer (DP) register by one and/or decrement the block length (BL) register

by one. The Control Digit may be specified by an a±k type of term, where 'a'

and k are defined as abov-e.

cd Values

1
2
3
4
5

Action

Decrement BL
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-53

I

Spsw

Example
PUT
GET

EVEN
DS
DC X'90000009'

SPSW PUT

The current PC and IMASK registers will be stored at location PUT (note

that the address of PUT will always be even); then X'9000' will be loaded

into PC register and X'9'loaded into IMASK register. Since the program

counter (PC) is being loaded, a branch to location X'9000' occurs.

2-54

ASSOCIA TIVE
INSTRUCTIONS

LOADS

The associative instructions allow the programmer to load, store,

search, move, and perform arithmetic operations on the associative

array memory and the response store register s X, Y, and M.

This group of associative instructions allows the programmer to load

the response store registers or the Common register from an

associative memory bit column or an associative memory field,

respectively. All instructions dealing with response store registers

and/or associative memory fields or bit columns. only affect thos e

associative array memory modules enabled via the Array Select register.

The response store registers and associative array memory modules

disabled via the Array Select register remain unchanged.

Mnemonic

L

LN

LOR

LORN

LAND

LANDN

LXOR

LXORN

LC

LCM

SET

CLR

ROT

Instructions

Load Response Store Register

Load Complemented

Load Logical OR

Load Logical OR Complemented

Load Logical AND

Load Logical AND Complemented

Load Logical Exclusive OR

Load Logical Exclusive OR Complemented

Load Common Register from an Associative
Memory Word

Load a Common Register Field from an
Associative Memory Word

Set Response Store Register

Clear Response Store Register

Rotate Response Store Register

I

2-55

L

Format

• Label

• Command

• Argument

• • rS2

• • rs 1

• • a±k

• • r

Load Response Store Register

This instruction will load the response store register, rS2' with the

designated source. The content of the source is not affected,and the

original content of the destination, rS2' is destroyed.

Label Command Argument Comment

L

Any valid symbol or blank.

L

Two entries are required. The first entry is the destinationj the second

entry is the source. As shown there are three distinct types of source

expressions. The brackets are not a part of the possible argument

field terms.

The destination response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

The source response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

'a'may be a constant or a symbolj k is an optional constant modifier.

k is legal only when 'a'is present as a symbol. If'a 'was defined as a

field via a DF instruction, the most-significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory. The value of a±k should be 0 ~ a±:k::: 255.

A field pointer register, which may be post-incremented or post­

decremented. If this form is used, the response store register, rS2'

is loaded indirectly through this register. This register contains

the address of the source bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer 1
Field Pointe r 1
Field Pointer 2
Field Pointer 2
Field Pointer 2
Field Pointer 3
Field Pointer 3
Field Pointer 3

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

•

2-56

L

Example

Example 2

Example 3

TAG

256
Bits

TAG

256
Bits

256
Bits

L M,Y

Before

M Y

0 0
0 1
1 0
1 1

DF 9,4

L Y, TAG

Before

Array
Memory

Y Column 9

0 0
0 1
1 0
1 1

.

DF 9,4

L X,TAG

Before

Array
Memory

X Column 9
0 0
0 1
1 0
1 1

After

M Y

0 0
1 1
0 0
1 1

.

After --
Array
Memory

Y Column 9

0 0
1 1
0 0
1 1

•

After

Array
Memory

X Column 9

0 0
1 1
0 0
1 1 . t

.

2-57

LN

Format

• Label

• Command

• Argument

• • rS2

• • rs 1

• • a:l:k

•• r

Load Complemented

This instruction will load the response store register, rS2' with

the one's complement value of the designated source. The

content of the source is not affected and the original content

of the destination, rS2' is destroyed.

Label Command Argument Comment

symbol

Any valid symbol or blank.

LN

Two entries are required. The first entry is the destination; the

second entry is the source. As shown, there are three distinct types

of source expressions. The brackets are not a part of the possible

argument field terms.

The destination response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

The source re sp onse store register.

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

!a'may be a constant or a symbol; k is an optional constant modifier.

k is legal only when 'a' is pre sent as a symbol. If 'al was defined as a

field via a DF instruction, the most-significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory. The value of a:l:k should be O~a:l:k~ 255.

A field pointer register. If this form is used, the response store

register, rS2' is loaded indirectly through this register. This register

contains the address of the source bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer

1
1
2
2
2
3

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

3 with a post-increment
3 with a post-decrement

•

2-58

LN

Note

Example 1

Example 2

Example 3

If M is chosen for the rS2 entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

TAG

TAG

256
Bits

256
Bits

256
Bits

LN M,Y

Before After

X Y M X Y M

1 0 0 d 0 1
1 1 0 e 1 0
0 0 1 s 0 1
0 1 1 t 1 0

r
0

y
e
d

DF 9,4

LN Y,TAG

Before After

Array Array
MerrlOry Memory

Y Col 9 Y Col 9

0 0 1 0
0 1 0 1
1 0 1 0
1 1 0 1

· . · ·
DF 9,4

LI FPl, TAG
LN X,FPl

Before After

Array Array
Memory Memory

X Col 9 X Col 9

0 0 1 0
0 1 0 1
1 0 1 0
1 1 0 1

· . · ·

•

2-59

LOR

Format

• Label

• Command

• Argument

• • rS2

• • rs 1

• • a±k

• • r

Load Logical OR

This instruction will load the response store register, rS2' with a

logical inclusive OR of itself and the value of the designated source.

The content of the source is not affected and the original content

of the destination, rS2' is destroyed.

Label Command Argument Comment

symbol LOR fOl] E..22' ~±k

Any valid symbol or blank.

LOR

Two entries are required. The first entry is the destination; the second

entry is the source. As shown, there are three distinct types of source

expressions. The brackets are not a part of the possible argument field

terms.

The destination re sponse store register.

Valid entrie s:

X - X response store register
y - Y response store register
M - M response store register

The source response store register.

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

"a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when'ai is present as a symbol. If'a' was defined as a

field via a DF instruction, the most-significant bit position is the value

used. This term represents a source bit position in all words of

enabled associative memory. The value of a±k should be O~a±k:S 255.

A field pointer register. If this form is used, the response store

register, rS2' is loaded indirectly through this register. This register

contains the address of the source bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer
Field Pointer
Field Pointer
Field Pointer 2
Field Pointer 2
Field Pointer 2
Field Pointer 3
Field Pointer 3
Field Pointer 3

with a post~increment
with a post-decrement

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

•

2-60

LOR

Note

Example 1

Example 2

Example 3

If M is chosen for the rS2 entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

TAG

TAG

256
Bits

256
Bits

256
Bits

LOR M,Y

Before After

X Y M X Y M

1 0 0 d 0 0
1 1 0 e 1 1
0 0 1 s 0 1
0 1 1 t 1 1

r .
0

y
e
d

DF 9,4

LOR Y,TAG

Before After

Array Array
Memory Memory

y Col 9 y Col 9

0 0 0 0
0 1 1 1
1 0 1 0
1 1 1 1

.
DF 9,4

LI FP2, TAG
LOR X, FP2

Bef ore After

Array Array
Memory Memory

X Col 9 X Col 9

0 0 0 0
0 1 1 1
1 0 1 0
1 1 1 1 . .

•

2-61

LORN

Format

• Label

• Command

• Argument

• • rs 1

• • a±k

• • r

Load Logical OR Complemented

This instruction will load the response store register, rs
2

, with the

logical inclusive OR of itself and the one's complement of the value

of the designated source. The content of the source is not affected

and the original content of the destination, rs2 , is destroyed.

Label Command Argument Comment

symbol LORN fSlJ ~2' i±k

Any valid symbol or blank.

LORN

Two entries are required. The first entry is the destination; the

second entry is the source. As shown,there are three distinct

types of source expressions. The brackets are not a part of the

possible argument field terms.

The destination response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

The source response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

'ai may be a constant or a symbol; k is an optional constant modifier.

k is legal only when 'a' is pre sent as a symbol. If 'at was defined as a

field via a DF instruction, the most significant bit position is the

value used. This term represents a source bit position in all words of

en~bled associative memory. The value of a±k should be O~a±k'::: 255.

A field pointer register. If this form is used, the response store

register, rS2' is loaded indirectly through this register. This register

contains the address of the source bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer 1 with a post-increment
Field Pointer 1 with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrement
Field Pointe r 3
Field Pointer 3 with a· post-increment
Field Pointer 3 with a post-decrement

•

2-62

J LORN

1
J

J

]

]

]

]

]

]

]

Note

Example 1

Example 2

Example 3

If M is chosen for the rS2 entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

TAG

256
Bits

256
Bits

256
Bits

LORN M,Y

Before

X Y M x Y M

1 0 0 d 0 I
I I 0 e 1 0
0 0 1 s 0 1
0 I 1 t 1 I

· r · · 0 . · · y · e
d

DF 9,4

LORN Y, TAG

Before After

Array Array
Memory Memory

Y Col 9 Y Col 9

0 0 1 0
0 I 0 I
1 0 1 0
1 1 I I

· · ·
LORN Y,9

Before After

Array Array
Memory Memory

Y Col 9 Y Col 9

0 0 1 0
0 I 0 I
1 0 1 0
1 1 1 1

· · ·

•

2-63

LAND

Format

• Label

• Command

.~ Argument

• • rS2

• • rs 1

• • a:f::k

• • r

Load Logical AND

This instruction will load the response store register, rS2' with

a logical AND of itself and the value of the designated source. The

content of the source is not affected and the original content of the

destination, rs2 , is destroyed.

Label Command Argument Comment

symbol LAND [rS
1
] .!:.§.21. ;:f::k

Any valid symbol or blank.

LAND

Two entries are required. The first entry is the destination; the

second entry is the source. As shown,there are three distinct types

of source expressions. The brackets are not a part of the possible

argument field terms.

The destination response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

The source response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

'a'may be a constant or a symbol; k is an optional constant modifier.

k is legal only when'a'is present as a symbol. If'a'was defined as a

field via a DF instruction, the most significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory. The value of a:i:k should be O~a:f::k~Z55.

A field pointer register. If this form is used, the response store

register, rsZ' is loaded indirectly through this register. This

register contains the address of the source bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer
Field Pointer with a post-increment
Field Pointer I with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-64

LAND

. Note

Example 1

Example 2

Example 3

If M is chosen for the rS2 entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

TAG

256
Bits

LAND M,Y

Before

x Y M x Y M

1 0 0 d 0 0
1 1 0 e 1 0
0 0 1 s 0 0
0 1 1 t 1 1

r . 0

y
e
d

DF 9,4

LAND Y, TAG

Before After

Array Array
Memory Memory

Y Col 9 Y Col 9

0 0 0 0
0 1 0 1

0 0
1 1 256 Jill 1 0

1 1

TAG

Bits

256
Bits

. . .

DF 9,4

LI FP3, TAG
LAND X,FP3

Before After

Array Array
Memory Memory

X Col 9 X Col 9
0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 1 . · · .

· . .

2-65

LANDN

Format

• Label

• Command

• Argument

• • rS 2

• • rs I

• • a±k

• • r

Logical AND Complemented

This instruction will load the response store register, rS2' with

the logical AND of itself and the one's complement of the designated

source. The content of the source is not affected and the

original content of the destination, rS2' is destroyed in the

execution of the load.

Label Command Argument Comment

symbol LANDN

Any valid symbol or blank.

LANDN

Two entries are required. The first entry is the destination; the

second entry is the source. As shown ,there are three distinct

types of source expressions. The brackets are not a part of the

possible argument field terms.

The destination response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

The source response store register.

Valid entrie s:

X - X response store register
y - Y response store register
M - M response store register

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined as

a field via a DF instruction, the most-significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory. The value of a±k should be O::Sa±k::S255.

A field pointer register. If this form is used, the response

store register, r s2' is loaded indirectly through this register.

This register contains the address of the source bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1 with a post-increment
Field Pointer 1 with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-66

LANDN

Note

Example 1

Example 2

Example 3

If M is chosen for the rS2 entry, the original content of the X response

store register is de strayed when this multiple instruction is executed.

TAG

256
Bits

256
Bits

256
Bits

LANDN M, Y

Before After

X Y M X Y M

1 0 0 d 0 0
1 1 0 e 1 0
0 0 1 s 0 1
0 1 1 t 1 0

r
0

y
e
d

LANDN Y,9

Before

Array Array
Memory Memory

Y Col 9 Y Col 9

0 0 0 0
0 1 0 1
1 0 1 0
1 1 0 1

· · ·
DF 9,4

LI FPl, TAG
LANDN X,FPl

Before After

Array Array
Memory Memory

X Col 9 X Col 9

0 0 0 0
0 1 0 1
1 0 1 0
1 1 0 1

. . ·

•

2-67

LXOR

Format

• Label

• Command

• Argument

• • rs 1

• • a±k

• • r

Load Logical Exclusive OR

This instruction will load the response store register, rS2' with the

logical exclusive OR of itself and the value of the designated source.

The content of the source is not affected and the original content

of the destination, rS2' is de stroyed.

Label Command Argument Comment

symbol LXOR

Any valid symbol or blank.

LXOR

Two entries are required. The first entry is the destination; the

second entry is the source. As shown,there are three distinct types

of source expressions. The brackets are not a part of the possible

argument field terms.

The destination response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

The source response store register.

Valid entries:

X - X response store register
y - Y respons e store register
M - M response store register

'al'may be a constant or a symbol; k is an optional constant modifier.

k is legal only when la' is present as a symbol. H1a 'was defined as a

field via a DF instruction, the most significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory. The value of a±k should be o:=:: a±k~ 255.

A field pointer register. If this form is used, the response store

register rS2 is loaded indirectly through this register. This

register contains the address of the source bit column.

Valid entries:

FPl Field Pointer 1
FPl+ Field Pointer 1 with a post-increment
FPl- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 ;with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointe r 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

•

2-68

LXOR

Note

Example 1

Example 2

Example 3

If M is chosen for the rS2 entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

256
Bits

256
Bits

256
Bits

LXOR M,Y

Before After

x Y M X Y M

1 0 0 d 0 0
1 1 0 e 1 1
0 0 1 s 0 1
0 1 1 t 1 0

r · a · . y · e
d

LXOR Y,9

Before

Array Array
Memory Memory

Y Col 9 Y Col 9

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

. . .

LI FP2, X' 9'
LXOR X,FP2

Before After

Array Array
Memory Memory

X Col 9 X Col 9

0 0 0 I)

0 1 1 1

1 0 1 0
1 1 0 1

.
.

•

2-69

LXORN

Format

• Label

• Command

• Argument

• • rs 1

• • a:l:k

• • r

Load Logical Exclusive OR Complemented

This instruction will load the response store register, rS2' with the

logical exclusive OR of itself and the one's complement of the

designated source. The content of the source is not affected and

the original content of the de stination, rS2' is destroyed in the

execution of the load.

Label Command Argument Comment

symbol LXORN

Any valid symbol or blank.

LXORN

Two entries are required. The first entry is the destination; the

second entry is the source. As shown, there are three distinct types

of source expressions. The brackets are not a part of the possible

argument field terms.

The destination response store register.

Valid entries:

X - X re spons e store register
y - Y response store register
M - M response store register

The source response store register.

Valid entries:

X - X response store register
y - Y response store register
M - M response store register

'a'may be a constant or a symbol; k is an optional constant modifier.

k is legal only when ra1 is present as a symbol. If1a'was defined as a

field via a DF instruction, the most-significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory. The value of a:l:k should be 02a:l:k~255.

A field pointer register. If this form is used, the response store

register, rS2' is loaded indirectly through this register. This

register contains the address of the source bit column.

Valid entries:

PFI
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer 1 with a post-increment
Field Pointer 1 with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-70

LXORN

Note

Example 1

Example 2

Example 3

If M is chosen for the rS2 entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

TAG

256
Bits

256
Bits

256
Bits

r"

..

r

~

....

LXORN M, Y

Before

x Y M X

1 a a d
1 1 a e
a a 1 s
a 1 1 t

r
0

y
e
d

LXORN Y,9

Before

Array
Memory

y Col 9 Y

a 0 1
a 1 a
1 0 a
1 1 1

· · ·

DF 9,4

LI FP3, TAG
LXORN X, FP3

Before

Array
Memory

X Col 9 X

a a 1
a 1 a
1 a a
1 1 1

· · · .

Y M

a 1
1 a
a a
1 1

Array
Memory
Col 9

a
1
a
1

.

Array
Memory
Col 9

0
1
0
1

· · ·

•

2-71

LC

Format

• Label

• Command

• Argument

•• a

Note I

Note 2

Note 3

Note 4

Load Common Register from an Associative Memory Word

This instruction will load the Common register, right-justified with

a field of the associative memory word whose address is in the link

pointer (FPl, FP2).

Label Command Argument Comment

symbol LC a

Any valid symbol or blank.

LC

One entry is required, an associative memory field expression.

There are two ways of denoting a field expression:

1) 'a' may be in the form

b:t:i

where b must be a symbol, and i is an optional constant

modifier. b should have been previously defined in a DF

instruction. b represents the most-significant bit po·sition

and the number of contiguous bits occupied by a field in

associative memory. The optional constant modifier, i,

modifies only the most-significant bit position of the field.

2) 'at may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is

the value used. i must be a constant and represents the number

of contiguous bits occupied by the field. j is an optional constant

modifying only the most-significant bit position of the field.

The link pointer (FP 1 and FP2 registers) must be loaded with the

address of the particular associative memory word prior to executing

this instruction. Loading the link pointer is generally accomplished

by use of the FIND, STEP, or RESVFST instruction.

If the array memory field length is less than 32 bits, the most­

significant bit positions of the Common register are cleared to zero.

If the array memory field length is greater than 32 bits, the most

significant bits are truncated and the instruction is flagged with a T

on the listing.

The X response store register is destroyed if shifting is required.

•

2-72

LC

Example

Word 0

Word

Word n

Word 255

y

0

0

1

1

10

0

1

1

.

.

1

Common Register

o

FIND

LC (10,6)

Array Memory

Bit Column

11 12 13 14 15

0 0 1 0 1

1 1 0 1 0

0 0 1 1 1

.

1 0 0 1 0

25 26

10 ~.--------------------------------~ ... 0 I 1

FPl FP2

I Address of Word n I •

31

o o

2-73

LCM

Format

• Label

• Command

• Argument

Note 1

Note Z

Note 3

Note 4

Load a Common Register Field From an As sociative Memory Word

This instruction will load a field, aI' in the Common register with a

field, aZ' from the word of associative memory whose address is in the

link pointer (FP 1, FPZ). All other bits in the Common register remain

unchanged.

Label Command Argument Comment

symbol ~l'~Z

Any valid symbol or blank.

LCM

Two entries are required. The first entry is the destination, a field

in the Common register, the second entry is the source, a field in a.

word of associative memory.

There are two ways of denoting a field expression:

1) al or aZ may be in the form

b:l:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

Z) al or a2 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant

modifying only the most significant bit position of the field.

The link pointer (FPl and FPZ registers) must be loaded with the

address of the particular associative memory word prior to executing

this instruction. Loading the link pointer is generally accomplished

by use of the FIND, STEP, or RESVFST instruction.

If the associative memory field length is less than the Common register

field length, a W (warning flag) is noted on the listing. In this case the asso­

ciative memory field will be loaded, right justified in the Common

register field, and all remaining bits are unchanged.

If the associative memory field length is greater than the Common register

field length, a T (truncation flag) is noted on the listing. In this case

the most-significant bits of the associative memory field are truncated.

The X re sponse store register is destroyed if shifting is required.
2-74

•

LCM

Example

Word 0

Word 1

Word n

Word 255

y

0

0

1

1

FPl FP2

10

0

1

.

1

0

I Address of Word n

Common Register

FIND

LCM (15,6),(10,6)

Array Memory

Bit Column

11 12 13 14 15

1 0 1 0 1

0 1 0 1 0

.

1 1 0 0 0

.
. .

0 1 1 0 0

o 14 15 16 17 18 19 2021 31

___ - -_-..",;--Jjf_-........... 1_1 _1_0 _0 -,-0 l-JiD

•

2-75

SET

Format

• Label

• Command

• Argument

• • rs

Note

Example

Set Response Store Register

This instruction will set the designated response store, rs,

to all ones.

Label Command Argument Comment

symbol SET rs

Any valid symbol or blank.

SET

One entry is required.

The designated response store to be set by the instruction.

Valid entries:

x - X response store register
y - Y response store register
M - M response store register

If M is chosen for the rs entry, the original content of the

X response store register is destroyed when this multiple

instruction is executed.

SET

256
Bits

Y

Before

Y

o
o

After

•

2-76

CLR

Format

• Label

• Command

• Argument

• • rs

Note

Example

Clear Response Store Register

This instruction will clear the designated response store, rs,

to all zeroes.

Label Command Argument Comment

symbol CLR rs

Any valid symbol or blank.

CLR

One entry is required.

The designated response store to be cleared by the instruction.

Valid entries:

X - X response store
y - Y response store
M - M response store

If M is chosen for the rs entry, the original content of the X

response store register is destroyed when this multiple

instruction is executed.

256
Bits

~

CLR

Before

M X

0 0

0 1

1 0

1 1

.

. .

M

After

M X

0 d

0 e

0 s

0 t

r

0

. y

e

d

•

2-77

ROT

Format

• Label

• Command

• Argument

• • rs

• • a2±k2

Note

Example 1

Example 2

Rotate Response Store Registers

This instruction will rotate the selected response store register

right, end around.

Label Command Argument Comment

symbol ROT

Any valid symbol or blank.

ROT

The I'espons e store register to be rotated.

Valid entries:

X _ X response store register
y - Y response store register
M - M response store register

The number of end-around bit positions to be rotated. al may be

either a constant or a symbol: kl is an optional constant modifier.

A negative value indicates a left end-around rotate from least­

significant bit position toward a more significant bit position. A

positive value indicates a right end-around rotate from the most­

significant bit position toward a less significant bit position. The

absolute value of the rotate constant must be less than the value

of the modulus a2:1:k2.

The modulus to be rotated. This optional term defines the length of the

equal sections within the response store register. a2 may be

either a constant or a symbol: k2 is an optional constant modifier.

The value of this term must be a power of 2, such that 1 ~ a2±k2 ::: 128.

A default value of 256 is assumed.

If the M response store register is chosen, the X response store register

is destroyed.

ROT Y,5

r---4------~
I 0 255 I

~ . ~
Each bit moves 5 bit positions right end -around.

ROT Y, -2,64

,--+--, r-+-l (-+-1 (+-1
I 0 .6t .. lr8 *192 ¥55

Y.-I.-I.-(.-I
Each bit moves 2 bit positions left end-around in each section.

•

2-78

STORES This group of associative instructions allows the programmer to store

the response store registers or the Common register into an associative

memory bit column or an associative memory field respectively. All

instructions dealing with response store registers, and/or associative

memory fields or bit columns only affect those associative array memory

modules enabled via the Array Select register. The response store

registers and associative array memory modules disabled via the Array

Select register remain unchanged.

Mnemonic

S

SM

SN

SNM

SOR

SORM

SORN

SORNM

SAND

SANDM

SANDN

SANDNM

SC

SCW

Instructions

Store Response Store Into Associative Memory

Store Response Store Masked Into Associative Memory

Store Complement Into Associative Memory

Store Complement Masked Into Associative Memory

Store Logical Inclusive OR Into Associative Memory

Store Logical Inclusive OR, MASKED Into Associative Memory

Store Logical Inclusive OR, Complemented Into Associative
Memory

Store Logical Inclusive OR, Complemented, Masked
Into Associative Memory

Store Logical AND Into Associative Memory

Store Logical AND Masked Into Associative Memory

Store Logical AND Complemented Into Associative Memory

Store Logical AND, Complemented, Masked Into
Associative Memory

Store Common Register Into Associative Memory

Store Common Register Into Associative Word

2-79

•

S

Format

• Label

• Command

• Argument

• • rs

• • a::i:k

• • r

Store Response Store Into Associative MelTIOry

This instruction will store the content of the designated response store

register, rs, into the specified bit column of enabled associative memory.

The content of the source response store is not affected,and the

original content of the bit column is destroyed.

Label Command Argument Comment

symbol

Any valid symbol or blank.

S

Two entries are required. The first entry is the source; the second

entry is the destination. As shown,there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entrie s:

X - X response store
y - Y response store
M - M response store

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined as

a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all words

of enabled associative memory. The value of a±k should be O::a::i:k~ 255.

A field pointer register which may be post-incremented or post­

decremented. If this form is used, the response store register, rs,

is stored indirectly throlgh this register. This register contains the

address of the destination bit column.

Valid entries:

FPl Field Pointer 1
FPl+ Field Pointer 1 with a post-increment
FPl- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

•

2-80

s

Example 1

Example 2

TAG

256
Bits

TAG

256
Bits

.

.

DF 9,4

s Y,TAG

Before ---

Array
Memory

y Column 9

0 0
0 1
1 0
1 1

· · ·

DF 9,4

s X, TAG-5

Before

Array
Memory

X Column 4

0 0
0 1
1 0
1 1

· · · ·

After

Array
Memory

Y Column 9

0 0
0 0
1 1
1 1

· ·

After • Array
Memory

X Column 4

0 0
0 0
1 1
1 1

· ·

2-81

SM

Format

• Label

• Command

• Argument

• • rs

• • a±k

• • r

Store Re sponse Store Masked Into As sociative Memory

This instruction will store the content of the designated response store

register, rs, into the specified bit column of enabled associative memory

in all words whose M response store bit is set. The content of the source

response store is not affected, and the original content of the bit column is

destroyed in those words of associative memory whose M response store

bit is set.

Label Command Argument Comment

symbol SM

Any valid symbol or blank.

SM

Two entries are required. The first entry is the source; the second

entry is the destination. As shown there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entries:

X - X response store
y - Y response store
M - M response store

'a' may be a constant or a symbol: k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined as

a field via a DF instruction. the most-significant bit position is the value

used. This term represents a destination bit position in all selected words

of enabled associative memory. The value of a±k should be O~a±k~255.

A field pointer register which may be post-incremented or post­

decremented. If this form is used. the response store register, rs,

is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPl Field Pointer 1
FPl+ Field Pointer 1 with a post-increment
FPl- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

•

2-82

SM

Example TAG

256
Bits

,.

.

DF

SM

Before

X M

0 0
0 0
0 I
0 1
1 0
1 0
1 1
1 1

.

152,40

X, TAG

Array
Memory
Col 152

0
I
0
1
0
1
0
1 .

After

Array
Memory

X M Col 152

0 0 0
0 0 1
0 1 0
0 1 0
1 0 0
1 0 1
1 1 1
1 1 1

. . .

•

2-83

SN

Format

• Label

• Command

• Argument

• • rs

• • a±k

• • r

Store Complement Into As sociative

This instruction will store the one's complement of the value of the

designated re sponse store register, r s, into the specified bit column

of enabled associative memory. The content of the source response

store is not affected, and the original content of the bit column is

destroyed.

Label Command Argument Comment

symbol

Any valid symbol or blank.

SN

Two entries are required. The first entry is the source; the second

entry is the destination. As shown,there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entries:

y - Y response store
M - M response store

'a' may be a constant or a symbol: k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined as

a field via a DF instruction, the most-significant bit position is the value

used. This term repre sents a de stination bit position in all words of

enabled associative memory. The value of a:l:k should be 05a:l:k~ 255.

A field pointer register which may be post-incremented or post­

decremented. 1£ this form is used, the response store register, rs, is

stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2- .
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer 1 with a post-increment
Field Pointer 1 with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-ciecrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-84

SN

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

TAG DF 9,4

SN M,TAG

Before After

Array Array
Memory Memory

X M Col 9 X M Col 9

1 0 a d a 1
1 0 1 e a 1
a 1 a s 1 a
a 1 1 t 1 a

r . 0 .
y
e
d

•

2-85

SNM

Format

• Label

• Command

• Argument

• • Y

• • a±k

• • r

Store Complement Masked Into Associative Memory

This instruction will store the one's complement of the value of the

Y response store register into the specified bit column of enabled

associative memory in all words of associative memory whose M

re sponse store bit is set. The content of the Y re sponse store is not

affected and the original content of the bit column is destroyed in those

words of as sociative memory whose M response store bit it set.

Label Command Argument Comment

symbol

Any valid symbol or blank.

SNM

Two entries are required. The first entry is the sourcej the second

entry is the destination. As shown, there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

Required and only valid entry.

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' at is present as a symbol. If' a' was defined as

a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all selected

words of enabled associative memory. The value of a±k should be

o -::. a±k~ 255.

A field pointer register which may be post-incremented or post­

decremented. If this form is used, the response store register, rs, is

stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer 1 with a post-increment
Field Pointer 1 with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-86

SNM

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

TAG

256
Bits ~

DF

SNM

Before

X Y

- 0
- 0
- 0
- 0
- 1
- 1
- 1
- 1 .

.

152,40

Y,TAG

Arr~y
Memory

M Col. 152

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1 .

.

After

Array
Memory

X Y M Col. 152

d 0 0 0
e 0 0 1
s 0 1 1
t 0 1 1
r 1 0 0
0 1 0 1
Y 1 1 0
e 1 1 0
d · · · · · ·

•

2-87

SOR

Format

• Label

• Command

• Argume'nt

• • rs

• • a±k

• • r

Store Logical Inclusive OR Into Associative Memory

This instruction will logical inclusive OR the contents of the designated

response store register, rs, and the bit column of enabled associative

memory, and store the resultant value into the bit column. The

content of the source response store, rs, is not affected, and the

original content of the bit column is destroyed.

Label Command Argument Comment

symbol

Any valid symbol or blank.

SOR

Two entries are required. The first entry is the source; the second

entry is the destination. As shown, there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entries:

y - Y response store
M - M response store

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined as

a field via a DF instruction, the most-significant bit position is the value

used. This term represents a destination bit position in all words of

enabled associative memory. The value of a±k should be O':::a±k.:s.255 •

. A field pointer register which may be post-incremented or post­

decremented. If this form is used, the response store register, rs,

is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPI
FPI+
FPI­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer I
Field Pointer I with a post-increment
Field Pointer 1 with a post decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-88

SOR

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

TAG

256
Bits

r-

.

~

DF

SOR

Before

X Y

I 0
I 0
0 1
0 1

· · ·

9.4

Y. TAG-l

Array
Memory
Column 8

0
1
0
1
.

After

Array
Memory

X Y Column 8

d 0 0
e 0 1
s 1 1
t 1 1
r
0 .
y
e
d

•

2-89

SORM

Format

• Label

• Command

• Argument

• • Y

• • a:ik

• • r

Store Logical Inclusive OR, Masked

This instruction will logical inclusive OR the contents of the Y re sponse

store register and the designated bit column of enabled associative memory,

and store the resultant value into the designated bit column in all words of

associative memory whose M response store bit is set. The content of the

Y response store is not affected and the original content of the bit column

is destroyed in those words of associative memory whose M response store

bit is SE::t.

Label Command Argument Comment

symbol SORM

Any valid symbol or blank.

SORM

Two entries are required. The first entry is the source; the second

entry is the destination. As shown, there are two distinct ways of

specifying the de stination bit column. The brackets are not a part

of the argument field terms.

Required and only valid entry.

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined as

a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all selected

words of enabled associative memory. The value of a±k should be 0::= a±k::S 255.

A field pointer register which may be post-incremented or post­

decremented. If this form is used, the response store register, rs,

is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer 1 with a post-increment
Field Pointer 1 with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-<iecrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

2-90

•

SORM

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

SORM

256
Bits

Y,200

Before

X y M

- 0 0
- 0 0
- 0 1
- 0 1
- 1 0
- 1 0
- 1 1
- 1 1

. .

Array
Memory
Col 200

0
1
0
1
0
1
0
1

.

After

Array
Memory

X y M Co1. 200

d 0 0 0
e 0 0 1
s 0 1 0
t 0 1 1
r 1 0 0
a 1 0 1
Y 1 1 1
e 1 1 1
d .

. .

•

2-91

SORN

Format

• Label

• Command

• Argument

• • rs

• • a±k

Store Logical Inclusive OR Complemented Into Associative Memory

This instruction will logical inclusive OR the one's complement

of the contents of the designated response store register, rs, with

the specified bit column of enabled associative Inemory, and store the

resultant value into the designated bit column of all words. The

content of the SO'.lrce response store is not affected, and the original

content of the bit column is destroyed.

Label Command Argument Comment

symbol SORN

Any valid symbol or blank.

SORN

Two entries are required. Th~ first entry is the source; the second

entry is the destination. As shown there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entrie s:

y - Y response store
M - M response store

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined as

a field via a DF instruction, the most-significant bit position is the value

used. This term represents a destination bit position in all words of

enabled associative memory. The value of a±k should be O:::a±k~255.

A field pointer register, which may be post-incremented or post­

decremented. If this form is used, the response store register, rs,

is store~ indirectly through this register. This register contains the

addres s of the de stination bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer
Field Pointer with a post-increment
Field Pointer with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-92

SORN

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

256
Bits

..

,.

SORN

Before

X M

1 0
1 0
0 1
0 1

.

Array
Memory
Column 0

0
1
0
1

. .

M,X'O'

After

Array
Memory

X M Column 0

d 0 1
e 0 1
s 1 0
t 1 1
r .
0

y
e
d

•

2-93

SORNM

Format

• Label

• Command

• Argument

• • Y

• • a±k

• • r

Store Logical Inclusive OR, Complemented, Masked Into Associative Memory

This instruction will logical inclusive OR the one's complement of the

contents of the Y response store register with the specified bit column

of enabled associative memory. The resultant value is then stored into

the designated bit column in all words of associative memory whose M

response store bit is set. The content of the Y response store is not

affected, and the original content of the bit column is destroyed in those

words of associative memory whose M response store bit is set.

Label Command Argument Comment

symbol SORNM

Any valid symbol or blank.

SORNM

Two entries are required. The first entry is the sourcej the second

entry is the destination. As shown there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

Required and only valid entry.

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined

as a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all

selected words of enabled associative memory. The value of a±k shOUld

be 0 ~ a±k ~255.

A field pointer register, which may be post-incremented or post­

decremented. If this form is used, the response store register, rs,
\

is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPl
FPl+
FPl­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer 1 with a post--:increment
Field Pointer 1 with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post-decrern::mt
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

2-94

•

SORNM

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

SORNM

256
Bits

..

~

...

Y,O

Before

X y

- 0
- 0
- 0
- 0
- 1
- 1
- 1
- 1 . . .

Array
Memory

M Col. 0

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1 . .

After

Array
Memory

X y M ColO

d 0 0 0
e 0 0 1
s 0 1 1
t 0 1 1
r 1 0 0
0 1 0 1
Y 1 1 0
e 1 1 1
d

•

2-95

SAND

Format

• Label

• Command

• Argument

• • rs

• • a::l:k

• • r

Store Logical AND Into Associative Memory

This instruction will logical AND the contents of the designated

response store register, rs, with the specified bit column of enabled

associative memory, and store the resultant value into the bit column.

The content of the source response store is not affected,and the

original content of the bit column is destroyed.

Label Command Argument Comment

symbol

Any valid symbol or blank.

SAND

Two entries are required. The first entry is the source; the second

entry is the destination. As shown, there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entries:

y - Y response store
M - M response store

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined

as a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all words of

enabled as sociative memory. The value of a::l:k should be Q:'Sa::l:k:::Z55.

A field pointer register, which may be post-incremented or post­

decremented. If this form is used, the response store register, rs,

is stored indirectly through this register. This register contains the

address \of the destination bit column.

Valid entries:

FPI
FPl+
FPI­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer I
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer

I
I
2
2
2
3

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

3 with a post-increment
3 with a post-decrement

•

2-96

SAND

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

TAG

256
Bits

...

DF

SAND

Before

X Y

1 0
1 0
0 1
0 1

.

9.4

Y.TAG

Array
Memory
Column 9

0
1
0
1

After

Array
Memory

X Y Column 9

d 0 0
e 0 0
s 1 0
t 1 1
r .
0

y . .
e
d

•

2-97

SANDM

Format

• Label

• Command

• Argument

• • Y

• • a:i:k

• • r

Store Logical AND Masked Into Associative Memory

This instruction will logical AND the contents of the Y response store

register and the specified bit column of enabled associative memory.

The resultant value will then be stored into the designated bit column

in all wo'~ds of associative memory whose M response store bit is set .
. /

The content of the Y response store is not affected, and the original

content of the bit column is destroyed in those words of associative

memory whose M response store bit is set.

Label Command Argument Comment

symbol SANDM

Any valid symbol or blank.

SANDM

Two entries are required. The first entry is the source; the second

entry is the destination. As shown, there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

Required and the only valid entry.

'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when' a' is present as a symbol. If' a' was defined

as a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all

selected words of enabled associative memory. The value of a±k should

be Q:Sa±k:s255.

A field point~r register which may be post-incremented or post­

decremented. If this form is used, the response store register, rs,

is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPI
FPI+
FPI­
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer I
Field Pointer I with a post-increment
Field Pointer I with a post-decrement
Field Pointer 2
Field Pointer 2 with a post-increment
Field Pointer 2 with a post--decrement
Field Pointer 3
Field Pointer 3 with a post-increment
Field Pointer 3 with a post-decrement

•

2-98

SANDM

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

SANDM

256
Bits

Before

X Y

- 0
- 0
- 0
- 0
- 1
- 1
- 1
- 1
. .

Y,lO

Array
Memory

M Column 10

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1 .

After

Array
Memory

X Y M Column 10

d 0 0 0
e 0 0 1
s 0 1 0
t 0 1 0
r 1 0 0
0 1 0 1
Y 1 1 0
e 1 1 1
d

•

2-99

SANDN

Format

• Label

• Command

• Argument

• • rs

• • a±k

• • r

Store Logical AND Complemented Into Associative Memory

This instruction will logical AND the one's complement of the contents

of the de signate d re sponse store register, rs, with the specified bit column

of enabled associative memory. The resultant value is then stored into

the designated bit column in all words of associative memory. The content

of the Y re sponse store is not affected and the original content of the bit

column is destroyed.

Label Command Argument Comment

symbol SANDN

Any valid symbol or blank.

SANDN

Two entries are required. The first entry is the source; the second

entry is the destination. As shown, there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entries:

Y - Y response store
M - M response store

'a' may be a constant or a symbol; k is an optional constant modifier •

k is legal only when' a' is present as a symbol. If' a' was defined

as a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all words of

enabled associative ~emory. The value of a:i:k should be 0:::a±k:::255.

A field pointer register which may be post-incremented or post­

decremented. 1£ this form is used, the response store register, rs, is

stored indirectly through this register. This register contains the

addres s of the de stination bit column.

Valid entries:

FPl
FPl+
FP 1-
FP2
FP2+
FP2-
FP3
FP3+
FP3-

Field Pointer 1
Field Pointer I
Field Pointer 1

2
2
2
3

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer
Field Pointer

3 with a post-increment
3 with a post-decrement

•

2-100

SANDN

Note

Example 1

The original content of the X response store register is destroyed

when this multiple instruction is executed.

TAG

256
Bits

..

r-

...

DF

SANDN

Before

X Y

1 0
1 0
0 1
0 1

9,4

Y,TAG

After

Array Array
Memory Memory
Column 9 X Y Column 9

0 d 0 0
1 e 0 1
0 s 1 0
1 t 1 0

r . 0

y
e
d

•

2-101

SANDNM

Format

• Label

• Command

• Argument

• • Y

• • a±k

• • r

Store Logical AND, Complemented, Masked Into Associative Memory

This instruction will logical AND the one's complement of the contents

of the Y re sponse store register with the specified bit column of enabled

associative memory. The re sultant value is then stored into the de signated

bit column in all words of associative memory whose M response store

bit is set. The content of the Y response store is not affected, and the

original content of the bit column is destroyed in those words of as sociative

memory whose M re sponse store bit is set.

Label Command Argument Comment

symbol SANDNM

Any valid symbol or blank.

SANDNM

Two entries are required. The first entry is the sourcej the second

entry is the destination. As shown, there are two distinct ways of

specifying the destination bit column. The brackets are not a part of

the argument field terms.

Required and only valid entry.

I a l may be a constant or a symbol; k is 3..n optional constant modifier.

k is legal only when I a l is present as a symbol. If I a l was defined as

a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all selected

words of enabled associative memory. The value of a±k should be

o:=:: a±k:=:: 255.

A field pointer register, which may be post-incremented or post­

decrem~nted. If this form is used, the response store register, rs,

is loaded indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FPl Field Pointer 1
FPl+ Field Pointer 1 with a post-increment
FPl- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

•

2-102

SANDNM

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

SANDMN

256
Bits

Before

X Y

0 -
- 0
- 0
- 0
- 1
- 1
- 1
- 1

· · ·

Y,O

Array
Memory

M Column 0

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

.

After

Array
Memory

X Y M Column 0

d 0 0 0
e 0 0 1
s 0 1 0
t 0 1 1
r 1 0 0
0 1 0 1
Y 1 1 0
e 1 1 0
d .

•

2-103

SC

Format

.. Label

• Command

• Argument

• • a 1, a2

Store Common Register into Associative Memory

This instruction will store a Common register field, al' into a field,

a
2

, of all words of enabled associative memory whose M response

store bit is set.

Label Command Argument Comment

symbol SC

Any valid symbol or blank .

SC

Two entries are required. The first entry is the source, a field

in the Common register; the second entry is the destination, a

field in words of as sociati v'e memory.

There are two ways of denoting a field expression:

1) a
1

or a 2 may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) a] or a2 may be in the form

(b, i):l:j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

valu~ used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

•

2-104

SC

Note 1

Note 2

Note 3

Example

If the Common register field length is less than the associative memory

field length, a W (warning flag) is noted on the listing. In this case, the

Common r egiste r field will be stored right justified into the as sociati ve

memory field.

If the Common register field length is greater than the associative

memory field length, a T (truncation flag) is noted on the listing. In

this case, the most significant bits of the Common register field are

truncated.

The content of the X response store register is destroyed. Also, the

following field definition registers are used: FP1, FP2, and FLl.

256
Bits

SC (0,3),(10,3)

After Execution

Array Memory
Bit Column

M 10 11 12

1 1 0 1
1 1 0 1
1 1 0 1
0 unchanged
0 unchanged
1 1 0 1
1 1 0 1

Common Register

o 31

o
- I

•

2-105

sew

Format

• Label

• Command

• Argument

Note 1

Note 2

Note 3

Note 4

Store Common Register into Associative Word

This instruction will store a Common register field, aI' into a field, a2' of

one word of associative memory whose address is in the link pointer

(FPl, FP2). All other words in the associative memory remain unchanged.

Label Command Argument Comment

symbol SCW

Any valid symbol or blank.

SCW

Two entries are required. The first entry is the source, a field in the

Common register; the second entry is the destination, a field in a word

of associative memory.

There are two ways of denoting a field expression:

1) a 1 or a 2 may be in the form

b:±:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common .register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) al or a2 may be in the form

(b, i):±:j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The link pointer (FP 1 and FP2 registers) must be loaded with the address

of the particular word of as sociative memory prior to execution of the
\

instruction. Loading the link pointer is generally accomplished by the

use of the FIND, STEP, or RESVFST instruction.

If the Common register field length is less than the associative

memory field length, a W (warning flag)is noted on the listing. In

this case, the Common register field will be stored right justified into

the associative memory field.

If the Common register field length is greater than the associative memory

field length, a T (truncation flag)is noted on the listing. In this case, the

most significant bits of the Common register field are truncated.

The content of the X response store register is destroyed. The content

of the Y response store register will be destroyed if field-alignment

shifting is required.

•

2-106

SCW

Example

Word 0
Word 1
Word 2
Word 3
Word 4

Word 255

FIND

SCW

Before

X y

1 0
0 0
0 0
1 1
0 1

0 0

Common Register

o

(0,3),(10,3)

Array Memory
Bit Column

10 11 12

. ·
· . . ·

FP1 I FP2

ADDR of WORD 3

After

Array Memory
Bit Column

X Y 10 I 11 I 12

d
e
s
t
r
o
y
e
d

d
e
s
t
r
o
y
e
d

I I
unchanged
unchanged
unchanged

1 I 0 I 1

ur~nr .
unchang~d

31

(I 0 1 -. - - - - -I •

2-107

SEARCHES These associative instructions allow the programmer to search for a

particular set of conditions in associative memory. All instructions

dealing with response store registers and/or associative memories

affect only those associative array memory modules enabled via the

Array Select register. The re sponse store register s and as sociative

array memory modules disabled via the Array Select register remain

unchanged. Except for MAXF and MINF, the most-significant bit of

all fields is considered to be the sign bit ..

Mnemonic

FIND

STEP

RESVFST

EQC

EQF

NEC

NEF

GTC

GTF

Instructions

Find the First Bit Set in Y Response Store

Step to First Y Set and Clear It

Step to First Y Set and Clear All Others

Equal to Common Register Field

Equal Fields

Not Equal To Common Register Field

Not Equal Fields

Greater Than Common Register Field

Greater Than Fields

GEC

GEF

Greater Than or Equal To Common Register Field

Greater Than or Equal Fields

LTC

LTF

LEC

LEF

MAXF

MINF

Less Than Common Register Field

Less Than Fields

Less Than or Equal Common Register Field

Less Than or Equal Fields

Maximum Fields

Minimum Fields

2-108

•

FIND

Format

• Label

• Command

• Argument

STEP

Format

• Label

• Command

• Argument

Find the First Bit Set in Y Re sponse Store

The instruction loads FPl with the array addre ss of the first array module

containing a Y response store register bit set to one. FP2 is then loaded with

the bit address of the first Y response store register bit set to one.

Label Command Argument Comment

symbol FrnD

Any valid symbol or blank.

FIND

No entries required.

Step to First Y Set and Clear It

This instruction loads FPl with the array address of the first array module

containing a Y response store register bit set to one. FP2 is then loaded

with the bit address of the first Y response store register bit set to one.

This selected first bit will than be cleared to zero.

Label Command Argument Comment

symbol STEP

Any valid symbol or blank.

STEP

No entries required.

2-109

•

RESVFST

Format

• Label

• Command

• Argument

Step to First Y Set and Clear All Others

This instruction loads FPl with the array address of the first array module

containing a Y response store register bit set to one. FP2 is then loaded

with the bit addre s s of the fir st Y re sponse store register bit set to one.

This selected first bit will remain set to one I but all othe r bits in the Y

response store register are cleared to zero.

Label Command Argument Comment

symbol RESVFST

Any valid symbol or blank.

RESVFST

No entrie s required.

•

2-110

EQC

Conditions

Format

• Label

• Command

• Argument

Note

Equal to Common Register Field

For the field a l in each word of associative memory, this instruction

will set the corre sponding Y re sponse store register bit if, and only

if, the following is true:

1) The particular array is enabled in the Array Select register so
it may participate in the search.

2) The M response store register bit is set for the particular
word participating in the search.

3) The search criteria is met; array field a 1 is equal to Common
register field a

Z
'

Label Command Argument Comment

symbol

Any valid symbol or blank.

EQC

Two entries are required. The first entry, a l , is a field in associative

memorYi the second entry, a
2

, is a field in the Common register.

lengths of the fields ll1.ust be equal and greater than one.

There are two ways of denoting a field expre s sion.

1) a 1 or a 2 ll1.ay be in the form

b:l:i

The

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

repre sents the ITlOst-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative ll1.emory. The optional constant modifier, i, modifies

only the most significant bit position.

2) a l or a
2

m.ay be in the form

(b, i):l:j

where b may be a constant or a sYll1.bol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the m.ost-significant bit position of the field.

Register value s afte r the search:

1) FLl - Zero

2) FPl - Address of the most-significant bit of a 2 .

3) FP3 - Address of the most-significant bit of a l'

•

2-111

EQF

Conditions

Format

• Label

• Command

• Argument

• • aI' a 2

Note

Equal Fields

This instruction will set the Y response store register bit for each word of

associative memory if, and only if, the following is true:

1) The particular array is enabled in the Array Select register so it
may participate in the search.

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a 1 of word. is equal to array
field a

2
of word

i
. 1

Label Command Argument Comment

symbol

Any valid symbol or blank.

EQF

Two entries are required. Both entries represent fialds in associative

memory that are compared with each other. The lengths of the fields

must be equal and greater than one.

There are two ways of denoting a field expre s sion:

l) a 1 or a 2 may be in the form

b±i

where b m.ust be symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

2) a l or a 2 maybe in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:

1) FLI - Zero

2) FPl - Address of the most-significant bit of a 2 .

3) FP3 - Address of the most-significant bit of a l •

The X response store register is utilized.

•

2-112

NEC

Conditions

Format

• Label

• Command

• Argument

Note

Not Equal To Common Register Field

For the field a l in each word of associative memory, this instruction

will set the corresponding Y response store register bit if, and only if,

the following is true:

1) The particular array is enabled in the Array Select register so it
may participate in the search.

2) The M response store register bit is set for the particular
word participating in the search.

3) The search criteria is met; array field a 1 is not equal to Common
register field a

2
•

Label Command Argument Comment

symbol NEC

Any valid symbol or blank.

NEC

Two entries are required. The fir st entry, a l' is a field in as sociative

memory; the second entry, a
2

, is a field in the Common register.

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expre s sion:

1) a
l

or a
2

may be in the form

b:l:i

The

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

repre sents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) a l or a
2

may be in the form

(b, i):l:j

where b may be a constant or a symbol and repre sents the mo st­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register value s after the search:

l) FLl - Zero

2) FPl - Address of the most significant bit of a
2

.

3) FP3 - Address of the most significant bit of a l'

•

2-113

NEF

Conditions

Format

• Label

• Command

• Argument

Note

Not Equal Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:

I) The particular array is enabled in the Array Select register so it may
participate in the search.

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a 1 of word i is not equal to
array field a

2
of word

i
,

Label Command Argument Comment

symbol NEF

Any valid symbol or blank.

NEF

Two entries are required. Both entries represent fields in associative

memory that are compared with each other. The lengths of the fields

lTIust be equal and greater than one.

There are two ways of denoting a field expression:

I) a l or a
2

may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits ofcupied by a field in as sociative lTIemory. The

optional constant modifier, i, modifies only the most-significant

bit po sition.

2) a I or a
2

lTIay be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b wa s defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:

I) FLI - Zero

2) FPI - Address of the most-significant bit of a Z'

3) FP3 - Address of the most-significant bit of a l .

The X response store register is utilized.

•

2-114

GTC

Conditions

Fo:rmat

• Label

• Command

• Argument

Note

Greater Than Common Register Field

For the field a l in each word of associative memory, this instruction

will set the corresponding Y response store register bit if, and only if,

the following is true:

I) The particular array is enabled in the Array Select register so it ITlay
participate in the search.

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is ITlet; array field a
l

is greater than COITlITlon
register field a

2
•

Label Command Argument Comment

symbol GTC

Any valid symbol or blank.

GTC

Two entrie s are required. The first entry, aI' is a field in associative

memory; the second entry, a
2

, is a field in the Common register.

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expressi~n:

I) a 1 or a 2 may be in the form

b±i

The

where b must be a symbol, and i is an optional constant modifier.

b should ha ve been pre viously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The oI;Jtional constant modifier, i,

modifies only the most-significant bit position.

2) a l or a 2 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register value s after the search:

1) FLI - Zero

2) FPI - Address of the most-significant bit of a 2 .

3) FP3 - Address of the most-significant bit of a I .

•

2-115

GTF

Conditions

Format

• Label

• Command

• Argument

Note

Greater Than Fields

This instruction will set the Y response store register bit for each word

of as sociati ve memory if, and only if, the following is true:

1)

2)

3)

Label

The particular array is enabled in the Array Select register so it may
participate in the search.

The M re sponse store register bit is set for the particular word
participating in the search.

The search criteria is met; array field a l of word. is greater than
array field a

2
of word

i
. 1

Command Argument Comment

symbol GTF

Any valid symbol or blank.

GTF

Two entries are required. Both entries represent fields in associative

memory that are compared with each other, The lengths of the fields must

be equal and greater than one.

There are two ways of denoting a field expre s sion:

1) a
l

or a
2

may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-:-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significa.nt

bit po sition.

2) a l or a
2

may be in the form

(b,i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b wa s defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant

modifying only the most-significant bit pqsition of the field.

Register value s after search:

1) FLI - Zero

2) F PI - Addre s s of the most-significant bit of a 2 .

3) FP3 - Address of the most-significant bit of aI'

The X re sponse store register is utilized.

•

2 -116

GEC

Conditions

Format

• Label

• Command

• Argument

Note

Greater Than or Equal To Common Register Field

For the field a 1 in each word of associative memory, this instruction will

set the corresponding Y response store register bit if, and only if, the

following is true:

1) The particular array is enabled in the Array Select register so it
may participate in the search.

2) The M re sponse store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a
1

is greater than or equal to
Common register field a

2
•

Label Command Argument Comment

symbol GEC

Any valid symbol or blank.

GEC

Two entries are required. The first entry, aI' is a field in associative

memory; the second entry, a
2

, is a field in the Common register.

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expression:

1) alor a 2 may be in the form

b:!:i

The

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied bv a field in either the Common register

or associative memory. The optional constant modifier, i,

modifie s only the most-significant bit position.

2) a 1 or a 2 may be in the fonn

(b, i):!:j

where b may be a constant or a symbol and repre sents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register value s after the search:

1) FLI - Zero

2) FPl - Address of the most-significant bit of a 2 .

3) FP3 - Address of the rna st-significant bit of a 1 .

•

2-117

GEF

Conditions

Format

• Label

• Command

• Argument

Note

Greater Than or Eq ual Fields

This instruction will set the Y re sponse store register bit for each word

of as sociative memory if, and only if, the following is true:

1 } The particular array is enabled in the Array Select register so it
may participate in the search.

2} The M re sponse store register bit is set for the particular word
participating in the search.

3} The search criteria is met; array field a 1 of word
i

is greater than
or equal to array field a

2
of word

i
.

Label Command Argument Comment

symbol GEF

Any valid symbol or blank.

GEF

Two entries are required. Both entries represent fields in associative

memory that are compared with each other. The lengths of the fields must

be equal and greater than one.

There are two ways of denoting a field expression:

I} a 1 or a
2

may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

repre sents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most -significant

bit position.

2} a 1 or a
2

may be in the form

(b,i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register value s after search:

1) FL1 - Zero

2} FP1 - Address of the most-significant bit of a 2 •

3} FP3 - Address of the most-significant bit of a l •

The X re sponse store register is utilized.

•

2-118

LTC

Conditions

Format

• Label

• Command

• Argument

Note

Less Than Common Register Field

For the field a l in each word of associative memory, this instruction will

set the corresponding Y response store register bit if, and only if, the

following is true:

1) The particular array is enabled in the Array Select register so it
may participate in the search.

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a 1 is Ie s s than Common
register field a

2
•

Label Command Argument Comment

symbol LTC

Any valid symbol or blank.

LTC

Two entries are required. The first entry, aI' is a field in as sodative

memory; the second entry, a
2

, is a field in the Common register.

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expression:

1) a l or a
2

may be in the form

b±i

The

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) a 1 or a 2 may be in the form

(b, i)±j

where b may be a constant or a symbol and repre sents the mo st­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and repre sents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register val ue s afte r the search:

1) FLI - Zero

2) FPl - Address of the most-significant bit of a 2 •

3) FP3 - Address of the mo st-significant bit of a 1 •

•

2 -119

LTF

Conditions

Format

• Label

• Command

• Argument

Note

Le ss Than Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:

1)

2)

3)

Label

The particular array is enabled in the Array Select register so it may
participate in the search.

The M re sponse store register bit is set for the particular word
participating in the search.

The search criteria is met; array field a l of word. is less than array
field a

2
of word

i
. 1

COlnmand Argument Comment

symbol LTF

Any valid symbol or blank.

LTF

Two entries are required. Both entries represent fields in associative

memory that are compared with each other. The lengths of the fields

must be equal and greater than one.

There are two ways of denoting a field expression:

1) a
l

or a
2

may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifie s only the most -significant

bit position.

2) a 1 or a 2 may be in the form

(b, i)±j

where b may be a constant or a symbol and repre sents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the ITlost-significant bit position is the

value used. i must be a constant and repre sents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register value s after search:

1) FLI - Zero

2) FPl - Address of the most-significant bit of a 2 .

3) FP3 - Address of the most-significant bit of ale

The X response store register is utilized.

•

2-120

LEC

Conditions

Format

• Label

• Command

• Argument

• • aI' a Z

Note

Le s s Than or Equal Common Re gister Field

For the field a I in each word of as sociati ve memory, this instruction will

set the corre sponding Y re sponse store register bit if, and only if, the

following is true:

I) The particular array is enabled in the Array Select register so it
may participate in the search.

Z) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a I is Ie s s than or equal to
Common register field a

Z
'

Label Command Argument Comment

symbol

Any valid symbol or blank.

LEC

Two entries are required. The first entry, aI' is a field in associative

memory; the second entry, a Z' is a field in the Common register.

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expre ssion:

1) a 1 or a
Z

may be in the form

b±i

The

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

Z) a
l

or a
Z

may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. 1£ b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register value s after the search:

1) FLI - Zero

Z) FPl - Address of the most-significant bit of a Z '

3) FP3 - Address of the most-significant bit of ale

•

Z-lZl

LEF

Conditions

Format

• Label

• Command

• Argument

Note

Less Than or Equal Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:

1) The particular array is enabled in the Array Select register so it
may participate in the search.

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a
l

of word. is less than or
equal to array field a

2
of word

i
. 1

Label Command Argument Comment

symbol LEF

Any valid symbol or blank.

LEF

Two entries are required. Both entries represent fields in associative

memory that are compared with each other. The lengths of the fields

must be equal and greater than one.

There are two ways of denoting a field expression:

1) a l or a
2

may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the nUlnber of

contiguous bits occupied by a field in as sociative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

2) a l or a
2

may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b wa s defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and repre sents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:

1) FLl - Zero

2) FPl - Address of the most-significant bit of a 2.

3) FP3 - Address of the most-significant bit of a l .

'T'hp. X -re sDonse store register is utilized.

•

2-122

MAXF

Format

• Label

• Command

• Argument

• • a

Note

Maximum Fields

This instruction will compare a field of those words of the associative memory

whose M response store bit is set. The Y response store will be set for

the word(s) containing the field with the maximum (greatest) unsigned value.

The Y response store for all other words will be cleared to zero.

Label Command Argument Comment

symbol MAXF

Any valid symbol or blank.

MAXF

One entry is required.

There are two ways of denoting a field expre s sion:

I) 'a' may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

repre sents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most--significant

bit po sition.

2) 'a' may be in the form

(b,i)±j

where b may be a constant or a symbol and represents the most

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:

I) FLI - Zero

2) FP3 - Address of the least-significant bit of 'a'.

The X re sponse store register is utilized.

2-123

•

MINF

Format

• Label

• Command

• Argument

•• a

Note

Minimum Fields

This instruction will compare a field of those words of associative memory

whose M response store bit is set. The Y response store will be set for

the word{s) containing the field with the minimum (least) unsigned value.

The Y response store for all other words will be cleared to zero.

Label Command Argument Comment

symbol MlNF

Any valid symbol or blank.

MINF

One entry is required.

There are two ways of denoting a field expression:

I) 'a' may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

repre sents the mo st-significant bit position and the number of

contiguous bits occupied by a field in as sociative memroy. The

optional constant modifier, i, modifies only the most-significant

bit position.

2) 'a' may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:

1) FL1 - Zero

2) FP3 - Address of the least-significant bit of 'a'.

The X re sponse store register is utilized.

•

2-124

MOVES This group of associative instructions allows the programmer to move

an array memory field to another array memory field within the same

word of associative memory.

This group of instructions will operate only on those associative array

memory modules (including response store registers) enabled via the

Array Select register. Also, only those words within enabled associa­

tive array memory modules whose M response store register bit is set

will participate in the execution of the instructions in this group. The

most significant bit of all fields is considered to be the sign bit.

Mnemonic Instructions

MVF Move Field

MVCF Move the One's Complement of a Field

MVNF Move the Negative of a Field

MVAF Move the Absolute Value of a Field

INCF Move Field with Increment

DECF Move Field with Decrement

•

2-125

MVF

Format

• Label

• Command

• Argument

•• a1' a 2

Note

Move Fielq.

This instruction will move the contents of field a1 into field a2 within

the same word for each word of enabled associative memory whose

M response store bit is set. The content of the source field is not

affected unles s overlaid by the de stination field. The original

content of the destination field is destroyed.

Label Command Argument Comment

symbol MVF

Any valid symbol or blank.

MVF

Two entries are required. The first entry is the source; the second

entry is the destination. Both entries represent fields within the same

word of associative memory.

There are two ways of denoting a field expression:

1) a 1 or aZ may be in the form

b±i

where b :must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

2) a1 or aZ may be in the form

(b, i)±j

where b :may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The X response store, FP1, FP3, and FLI registers are used by this

instruction.

•

2-126

MVF

Example

256
Bits

eo

MVF (2,3), (l0, 3)

Before After

Array Memory Array Memory
Bit Column Bit Column

M M
2 3 4 10 11 12 2 3 4 10 11

0 0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 1 1 0 1 0 0 0 1 1 0

1 0 1 0 1 0 0 1 0 1 0 0 1

1 1 1 1 0 1 1 1 1 1 1 1 1

. . · .

. · . · . .

12

0

1

0

1

•

2-127

MVCF

Format

• Label

• Command

• Argument

• • aI' a 2

Note

Move the One's Complement of a Field

This instruction will move the one's complement of the contents of

field al into field a2 within the same word for each word of enabled

associative merrlOry whose M response store bit is set. The content

of the source field is not, affected unless overlaid by the destination

field. The original content of the destination field is destroyed.

Label Command Argument Comment

symbol MVCF

Any valid symbol or blank.

MVCF

Two entries are required. The first entry is the source; the second

entry is the destination. Both entries represent fields within the same

word of associative memory.

There are two ways of denoting a field expression:

1) a l or a2 may be in the form

2)

b±'i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

al or a2 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The X response store, FP 1, FP3, and FLI registers are used by this

instruction.

•

2-128

MVCF

Example

256
Bits

...

04

MVCF (2.3). (20. 3)

After Execution

Array Memory
Bit Column

M
2 3 4 20 21 22

1 0 0 0 1 1 1

1 0 0 1 1 1 0

1 0 1 0 1 0 1

1 0 1 1 1 0 0

1 1 0 0 0 1 1

1 1 0 1 0 1 0

1 1 1 0 0 0 1

1 1 1 1 0 0 0

•

2-129

MVNF

Format

• Label

• Command

• Argument

•• aI' a2

Note

Move theN egative of a Field

This instruction will move the two' s complement of the contents

of field a 1 into field a2 within the same word for each word of

enabled associative memory whose M response store bit is set.

The content of the source field is not affected unless overlaid by

the destination field. The original content of the destination field

is destroyed.

Label Command Argument Comment

symbol MVNF

Any valid symbol or blank.

MVNF

Two entries are required. The first entry is the source; the second

entry is the destination. Both entries represent fields within the

same word of associative memory.

There are two ways of denoting a field expression:

1) a l or a 2 may be in the form

2)

b:l:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in as sociative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

al or a 2 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The X response store, Y response store, FPl, FP3, and FL1 registers

are used by this instruction.

•

2-130

MVNF

Example

256
Bits

MVNF (5,3),(15,3)

After Execution

Array Memory
Bit Column

M
5 6 7 15 16 17

1 0 0 0 0 0 0

1 0 0 1 1 1 1

1 0 1 0 1 1 0

1 0 1 1 1 0 1

1 1 0 0 1 0 O~:c

1 1 0 1 0 1 1

1 1 1 0 0 1 0

1 1 1 1 0 0 1

. . .
. .

~c An overflow condition is set in the response store

registers.

•

2-131

MVAF

Format

• Label

• Command

• Argument

Note

Move the Absolute Value of a Field

This instruction will move the absolute value of the contents

of field al into field a 2 within the same word for each word of

enabled associative memory whose M response store bit is set.

The content of the source field is not affected unless overlaid

by the destination field. The original content of the destination

field is destroyed.

Label Command Argument Comment

symbol MVAF

Any valid symbol or blank.

MVAF

Two entries are required. The first entry is the source; the

second entry is the destination. Both entries represent fields

within the same word of associative memory.

There are two ways of denoting a field expression:

1) a
l

or a 2 may be in the form

2)

b:i:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

a l or a 2 may be in the form

(b, i):i:j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The X response store, Y response store, FPl, FP3, and FLI

registers are used by this instruction.

•

2-132

MVAF

Example

256
Bits

MVAF (2,3),(10,3)

After Execution

Array Memory
Bit Column

M 2 3 4 10 11 12

1 0 0 0 0 0 0

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 0 1 1

1 1 0 0 1 0 O~:~

1 1 0 1 0 1 1

1 1 1 0 0 1 0

1 1 1 1 0 0 1

. . . . · . · . . . ·

)!c An overflow condition is set in the response

store registers.

•

2-133

INCF

For,mat

• Label

• Command

• Argument

Note

Move Field with Increment

This instruction will add one to the value of field a 1 and store the

incremented value into field a2 within the same word for each word

of enabled associative memory whose M response store bit is set.

The content of the source field is not affected unless overlaid by the

destination field. The original content of the destination field is destroyed.

Label Command Argument Comment

symbol INCF

Any valid symbol or blank.

INCF

Two entries are required. The first entry is the source; the second

entry is the destination. Both entries represent fields within the

same word of associative memory.

There are two ways of denoting a field expression:

1) al or a 2 may be in the form

b:f:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in as sociative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

2) al or a2 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FL1, FP2, FP3, and RO registers

are used by this instruction.

•

2-134

INCF

Example

256
Bits

INCF (2,3), (10,3)

After Execution

Array Memory
Bit Column

M
2 3 4 10 11 12

1 0 0 0 0 0 1

1 0 0 1 0 1 0

1 0 1 0 0 1 1

1 0 1 1 1 0 O~:~

1 1 0 0 1 0 1

1 1 0 1 1 1 0

1 1 1 0 1 1 1

1 1 1 1 0 0 0

~:~ An overflow condition is set in the response store

registers.

•

2-135

DECF

Format

• Label

• Command

• Argument

Note

Move Field with Decrement

This instruction will subtract one from the value of field a 1 and

store the decremented value into field a2 within the same word

for each word of enabled associative memory whose M response store

bit is set. The content of the source field is not affected unless overlaid

by the destination field. The original content of the destination field is

destroyed.

Label Command Argument Comment

sybmol DECF

Any valid symbol or blank.

DECF

Two entries are required. The first entry is the source; the

second entry is the destination. Both entries represent fields

within the same word of associative memory.

There are two ways of denoting a field expression:

1) a 1 or a2 may be in the form

2)

b:l:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

a1 or a2 may be in the form

(b, i):l:j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FL1, FP2, FP3, and RO registers

are used by this instruction.

•

2-136

DECF

Example

256
Bits

,

DECF

M

1

1

1

1

1

1

1

1

.

.

(2,3),(10,3)

Array Memory
Bit Column

2 3 4 10 11 12

0 0 0 1 1 1

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 1 1 ~:<

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 1 0

.

* An overflow condition is set in the response store registers.

•

2-137

ARITHMETICS This group of associative instructions allows the programmer to perform

arithmetic operations between associative memory fields, and between a

Common register field with an associative memory field.

This group of instructions will operate only on those associative array

memory modules (including response store registers) enabled via the

Array Select register. Also, only those words within enabled associative

array memory module s whose M re sponse store register bit is set will

participate in the execution of the instructions in this group. The most

significant bit of all fields is considered to be the sign bit.

Mnemonic

ADC

ADF

SBC

SBF

MPC

MPF

DVF

Instructions

Add Common Register to Field

Add Field to Field

Subtract Common Register from Field

Subtract Field from Field

Multiply Field by Common Register

Multiply Field by Field

Di vide Field by Field

•

2-138

ADC

Format

• Label

• Command

• Argument

Note

Add Common Register to Field

This instruction will add field a Z of the Common register (addend) to field

a 1 of word i in as sociati ve memory (augend) and then store the re sultant

sum into field a3 of wordio Only those words of associative memory

whose M response store bit is set will participate in this instruction.

The original content of the addend field a Z is undisturbed. The content

of the augend field a
l

will be undisturbed unless the sum field a 3 overlays it.

Label Command Argument Comment

symbol ADC

Any valid symbol or blank.

ADC

Three entries are required. The first entry represents the augend and is

a field in as sociativ'e memory. The second entry is the addend and is a field

in the Common register. These two fields are added together and the sum

is stored into the third entry, a field in associative memory.

There are two ways of denoting a field expression:

1) aI' a Z' or a 3 may be in the form

b::l:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position of the field.

Z} aI' a Z' or a 3 may be in the form

(b, i)::I:j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X re sponse store, Y re sponse store, FLl, FPl, FPZ, FP3, and R 0

registers are used by this instruction.

•

Z-139

ADC

Example

256
Words

.

r

ADC {o, 3), (5, 3), (11,3)

After Execution

Array Memory

Bit Column

M 0 1 2 11 12 13

1 0 0 0 0 0 1

1 0 1 0 0 1 1

1 1 0 0 1 0 1

1 1 1 0 1 1 1

1 0 1 1 1 0 o~~

1 1 0 1 1 1 0

1 1 1 1 0 0 0

~~An overflow condition will be set in the response store registers.

Common Register

o 45678 31

•

2-140

ADF

Format

• Label

• Command

• Argument

Note

Add Field to Field

This instruction will add field a l of wordi to field a
Z

of word
i

and store

the resultant sum into field a 3 of wordi , Only those words of associative

memory whose M re sponse store bit is set will participate in this instruction

The original content of the source fields a 1 and a
Z

will remain undisturbed

unless overlaid by the sum field a 3 ,

Label Command Argument Comment

symbol ADF

Any valid symbol or blank.

ADF

Three entries are required. Each represents a field in associative memory,

The first field a l represents the augend; the second field a Z represents the

addend; and the third field a 3 repre sents the sum.

There are two ways of denoting a field expression:

1) aI' a Z' or a 3 may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier,

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

Z) aI' a Z' or a 3 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field, If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field, j is an optional constant,

mofifying only the most-significant bit position of the field.

X response store, Y response store, FLI, FPI, FPZ, FP3, and RO

register s are used by this instruction.

•

2-l41

ADF

Example

256
Words ~

r

ADF (0,3),(5,3),(10,3)

After Execution

Arra y MerrlOry
Bit Column

M 0 1 2 5 6 7 10

1 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0

1 1 0 0 0 1 0 1

1 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1

1 0 1 1 1 0 1 0

1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 1

11 12

0 0

1 1

1 0

0 1

0 1

0 0

1 1 ~~

1 0

* An overflow condition will be set in the response store registers.

•

2 -142

SBC

Format

• Label

• Command

• Argument

Note

Subtract Common Register from Field

This instruction will subtract field a
Z

of the Common register (subtrahend)

from field a l of wordi in associative memory (minuend) and then store the

resultant difference into field a 3 of word
i
. Only those words of associative

memory whose M re sponse store bit is set will participate in this instruction.

The origianl content of the Common register field is undisturbed. The con­

tent of field a l will be undisturbed unless the difference field a
3

overlays it.

Label Command Argument Comment

symbol SBC

Any valid symbol or blank.

SBC

Three entries are required. The first entry represents a field in associativ'e

memory and is the minuend. The second entry repre sents a field in the

Common register and is the subtrahend. The third entry represents a

field in as sociative memory and is the difference of the minuend minus the

subtrahend.

There are two ways of denoting a field expression:

1) aI' a Z' or a 3 may be in the form

Z)

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifie s only the most-significant bit position.

aI' a Z' or a 3 may be in the form

(b, i)±j

where b may be a constant or a symbol and repre sents the most­

significant bit position of a field. If b wa s defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FLl, FPl, FPZ, FP3, and RO

registers are used by this instruction.

•

2-143

SBC

Example

256
Words ..

SBC (5,3), (8,3), (11,3)

After Execution

Array Memory
Bit Colmnn

M 5 6 7 11 12 13

1 0 0 1 1 1 1

1 0 1 0 0 0 0

1 0 1 1 0 0 1

1 1 0 0 0 1 0*

1 1 0 1 0 1 1 ~:~

1 1 1 0 1 0 0

1 1 1 1 1 0 1

1 0 0 0 1 1 0

.
::~An overflow condition will be set in the response store registers.

Common Register

o 7 8 9 10 11 31

•

2-144

SBF

Format

• Label

• Command

• Argument

Note

Subtract Field from Field

This instruction will subtract field a
Z

of word
i

from field a 1 of word
i

and

store the resultant difference into field a
3

of wordi . Only those words of

associative memory whose M re sponse store bit is set will participate in

this instruction. The original content of the source fields a 1 and a
Z

will

remain undisturbed unle s s overlaid by the difference field a
3

•

Label Command Argument Comment

symbol SBF

Any valid symbol or blank.

SBF

Three entries are required. Each entry represents a field in associative

memory. The first field, a l' represents the minuend; the second field,a Z'

represents the subtrahend; and the third field,a 3,represents the difference.

There are two ways of denoting a field expre ssion:

1) aI' a Z' or a 3 may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant

bit position.

Z) aI' a Z' or a 3 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. 1£ b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FLl, FPl, FPZ, FP3, and BO

register s are used by this instruction.

•

2-145

SBF

Example

256
Words

SBF (5,3),(8,3),(11,3)

After Execution

Arra y Memory
Bit Column

M 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1

1 0 0 0 1 1 1 0

1 1 1 0 0 1 0 1

1 0 1 0 0 0 1 0

1 1 1 1 1 1 1 0

1 1 0 1 0 1 0 0

1 1 1 1 1 1 0 0

12 13

0 0

1 1

0 1

0 0

0 1

0 0

1 1 ~:~

0 1

*An overflow condition will be set in the response store registers.

•

2-146

MPC

Format

• Label

• Command

• Argument

Note

Multiply Field by Common Register

This instruction will multiply associative memory field a l of wordi {multiplicand}

by field a
Z

of the Common re gister (multiplier) and store the product into as so­

ciative memory field a
3

of word
i
. Only those words in associative memory

whose M response store bit is set will participate in the multiplication. The

original content of the multiplier field a
Z

and the multiplicand field is undisturbed

i. e. I the product field a
3

must not overlay the multiplicand field ale

Label Command Argument Comment

symbol MPC

Any valid symbol or blank.

MPC

Three entries are required. The first entry represents a field in associative

memory and is the multiplicand. The second entry represents a field in the

Common register and is the multiplier. The third entry repre sents a field

in associative memory and is the product. The product field width must

equal the sum of the multiplier and multiplicand field widths.

There are two ways of denoting a field expre ssion:

I) a l I a 2, or a
3

may be in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction.. b

repre sents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifie s only the most-significant bit position.

2) aI' a Z' ora3 maybeintheform

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a prev'ious DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FLl, FPI, FPZ, FP3, FL2, FPE,

and RO registers are used by this instruction.

2-147

•

MPC

Example MPC (0,3),(5,3),(8,6)

After Execution

Arra y M\!mory

256
Words

<

... :

M

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1 . .

Common Register

o 45678

1

0

1

1

0

0

1

1 .

Bit Column

2 8 9 10 11

1 0 0 0 0

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

1 1 1 1 0

0 1 1 1 1

1 1 1 1 1 . . .
.

12 13

1 0

0 0

1 0

0 0

1 0

0 0

1 0

.

31

II

2-148

MPF

Format

• Label

• Command

• Argument

Note

Multiply Field by Field

This instruction will multiply field a of word. -by field a of word., and
1 1 2 1

store the re sultant product into field a
3

of word
i
. Only those words of the

associative memory whose M response store bit is set will participate in

this instruction. The original content of the multiplicand field a 1 must

remain intact, i. e., it cannot be overlaid by the product field a 3 . The

original content of the multiplier field a
2

may be overlaid by the product

field a
3

.

Label Command Argument Comment

symbol MPF

Any valid symbol or blank .

MPF

Three entries are required. The first entry represents a field in associative

memory and is the multipllcand. The second entry repre sents a field in the

associative memory and is the multiplier. The third entry represents a -field

in associativ'e memory and is the product. The product field must equal the

width of the sum of the multiplier and multiplicand fields.

There are two ways of denoting a field expression:

1) aI' a 2 , or a 3 may be in the form

2)

b:l:i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

repre sents the mo st -significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most- significant

bit position.

aI' a 2 , or a 3 may be in the form

(b,i):l:j

where bmay be a constant or a symbol and represents the most­

significant bit position of a field. If b was defined as a field via

a previous DF ins truction, the most -significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most -significant bit position of the field.

X response store, Y response store, FLI, FPI, FP2, FP3, FL2, FPE,

and R 0 registers are used' by this instruction.

2-149

•

MPF

Example I

Example 2

256
Words

MPF (0,2),(2,3)'(5,5)

After Execution

Array Memory
Bit Column

M 0 I 2 3 4 5 6

I 1 0 0 0 0 0 0

I I I 0 0 I I I

I I I 0 I 0 I I

I 0 I 0 I I 0 0

I I 0 I 0 0 0 I

I 1 1 1 0 1 0 0

I I 0 I I 0 0 0

I 0 I I I I 1 I

7 8 9

0 0 0

I I 1

I I 0

0 I I

0 0 0

0 1 1

I 0 0

1 I 1

Overlaying the multiplier field a 2 must be handled carefully by the pro­

grammer. Array memory storage may be condensed (minimum bit

positions) in the following manner if there are at the lea st m" spare"

bits to the right of the multiplier field as shown:

Before Execution

word.
1

I Field a l I

i-'-m Bits~
Spare =l

m Bits

word.
1

After Execution

I Field a l I

r-m Bits--1

I Field a 3 I
i"'" -----m + n Bits-----II_~I

The number of spare bits must be equal to the length of the multiplicand

field a 1.

2-150

•

DVF

Overflow
Check

Format

• Label

• Command

• • b

• Argument

Di vide Field by Field

This instruc~ion will divide field a 1 of word
i

by field a 2 of word j , Only

those words of associative array whose M response store bit is set will

participate in the divide instruction. The quotient and the remainder

are stored into field a 3 of wordi , with the remainder being right justified

and having the same length and sign as the divisor, a
2

, The quotient is

stored adjacent to the remainder and must have a length of 2 or more,

The contents of the divisor must not be overlaid by the quotient-remainder

field a
3

.

Unlike other arithmetic routine s, DVF doe s not check for overflow unle s s

specifically requested in the command field. When requested, the overflow

check is made prior to performing the divide. The associative memory words

where overflow would occur will have their M response store bit cleared

to zero and therefore will not participate in the divide. After the divide,

the M is restored, and the possible overflow condition is recorded in the

response store registers.

Label Command Argument Comment

symbol DVF,b

Any valid symbol or blank.

DVF

b may be a constant, a symbol, or a symbol plus or minus an optional

constant modifier. If b was defined as a field via a DF instruction, the

most-significant bit position is the value used. This term represents a

scratch bit column position in all words of enabled associative arrays and

is used to save the original content of the M response store register. The

value of b should be O:::b::: 255.

Three entrie s are required. Each repre sents a field in as sociati ve memory.

The first field a 1 repre sents the dividend; the second field a 2 repre sents

the divisor; and the third field a
3

represents the quotient-remainder. The

field length of the quotient -remainder field must be at least two bit positions

longer than the divisor field and at least one bit position longer than the

dividend.

There are two ways of denoting a field expre s sion:

1) aI' a 2 , or a 3 maybe in the form

b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in as sociative mernory. The

optional constant modifier, i, modifie s only the most -significant

bit po sition.

•

2-151

DVF

• • a 1,a2 ,a 3
(cont)

Overlapping

Note

Example 1

2) aI' a 2 , or a 3 may be in the form

(b, i)±j

where b may be a constant or a symbol and represents the most­

significant bit position of a field. If b wa s defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The most efficient field layout is overlapping. This technique can save

execution time as well as memory. The least-significant bit of the dividend

and quotient-remainder fields should have the same address, and the length

of field a 3 must be at least one bit column wider than a l . The address

of the least-significant bit of a
3

and a l must be the same to reduce execution

time.

X response store, Y response store, FLl, FPl, FP2, FP3, FL2, FPE,

and BL registers are used by this instruction.

Dividend and divisor not affected:

A

B

C

WORD 0

WORD 1

WORD 255

Decimal
Equivalent

10

I

DF

DF

DF

DVF

Field A

0 0

13

~ Dividend --l
(4 bits)

5

10,4

50,3

100,5

A,B,C

Field B

50

0 1

52

I
~Divisor1

(3 bits)

3

Field C

100

I 0 I 0

1"7 .. I ..
Quotient
(2 bits)

104

Remainder
(3 bits)

2

•

2-152

DVF

Example 2

Example 3

Mo st efficient memory layout:

CO EQU 4 OVERFLOW SCRATCH BIT

DIVISOR DF 5,5 DIVISOR

DIVIDEND DF 100,10 DIVIDEND

QUOTREM DF 99, 11 QUOTIENT, REMAINDER

DVF, CO DIVIDEND,DIVISUR,QUOTREM

In this example overflow will occur in a word if the quotient requires more

than 6 bits.

Most efficient memory layout with no overflow condition

DIVISOR

DIVIDEND

QUOTREM

DF

DF

DF

5,5

100,10

95,15

DIVISOR

DIVIDEND

QUOTIENT, REMAINDER

DVF DIVIDEND, DIVISOR, QUOTREM

•

2-153

CONTROL
AND
TEST

This group of instructions allows the programmer to control and test the

AP control.

Mnemonic Instructions

!NT Interrupt Control and Te st

ILOCK Interlock Control and Te st

WAIT Deactivate the AP

I

2-154

!NT

Format

• Label

• Command

• •• As sociativ'e
Processor
Interrupts

• •• Se quential
Processor
Interrupts

• Argument

Interrupt Control and Te st

This instruction will generate an interrupt and/or interrogate the current

state of an interrupt according to the value of the argument field expression

a 2:f:k2 . The interrupt number is denoted by the expre s sion a I :f:k1 .

Label Command Argument Comment

symbol INT, a 1 :f:k1

Any valid symbol or blank

INT

a l may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k l .

Valid Entries:

Interrupt Number

X'l"

XiI'

X'F'

Valid Entries:

Interrupt Number

0'300'

0'304'

0'310'

0'334'

Vector Address
in Bulk Core

X'800l'

X'8002'

X'800F'

Vector Address in
Sequential Processor

0'300'

0'304'

0'310'

0'334'

a 2 may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k 2 .

Legal Values for a 2:f:k2 :

o Unconditionally disable the interrupt.

Skip the next instruction if interrupt is enabled, and then
unconditionally disable the interrupt

2 Skip the next instruction if interrupt is disabled, and then
unconditionally disable the interrupt

3 Unconditionally skip the next instruction and then disable
the interrupt

II

2-155

INT
Legal Values for a 2±k2 : (cont)

5 Skip the next instruction if the interrupt is enabled.

6 Skip the next instruction if the interrupt is disabled.

7 Unconditionally skip the next instruction.

8 Unconditional complement of current state.

9 Skip the next instruction if interrupt is enabled, and then
unconditionally complement current state.

10 Skip the next instruction if interrupt is disabled, and then
unconditionally complement current state.

11 Uncontitionally skip the next instruction, and then
unconditionally complement current state.

12 Unconditionally enable the interrupt.

13 Skip the next instruction if the interrupt is enabled, and then
unconditionally enable the interrupt.

14 Skip the next instruction if the interrupt is disabled, and then
unconditionally enable the interrupt.

15 Unconditionally skip the next instruction and then
enable the interrupt.

I

2-156

!LOCK

Format

• Label

• Command

• Argument

Interlock Control and Te st

This instruction will set or re set the specified interlock number a 1 ±kl

and/or interrogate the current state of this interlock number according to

the value of the expression a
2

±k
2

,

Label Command Argument Comment

symbol

Any valid symbol or blank

ILOCK

a 1 may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k l , The value of a l ±kl must be

in the range OSa 1 ±k1
s 63, The se interlocks have no predetermined meaning,

The programmer can as sign any meaning to any interlock,

a
2

may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k2' The value of a 2±k2 determine s

the action taken on the specified interlock number al±kl ,

Legal Value s for a 2±k
2

:

o Unconditionally re set the interlock.

Skip the next instruction if set, and then unconditionally re set the
interlock number.

2 Skip the next instruction if re set, and then unconditionally re set
the interlock number.

3 Unconditionally skip the next instruction and then re set the interlock
number.

4 No operation.

5 Skip if the interlock number is set.

6 Skip if the interlock number is re set.

7 Unconditionally skip the next instruction.

8 Unconditionally complement current state.

9

10

Skip the next instruction if set, and then unconditionally complement
current state.

Skip the next instruction if reset, and then unconditionally complement
current state.

11 Unconditionally skip the next instruction and then unconditionally
complement current state.

12 Unconditionally set the interlock number.

13 Skip the next instruction if the interlock is set, and then unconditionally
set the interlock number.

14

II

Skip the next instruction if the interlock is re set, and then
unconditionally set the interlock number. 2-157

15 Unconditionally skip the next instruction, and then set the interlock
""'" h",.,.

WAIT Deactivate the AP

This instruction will cause the associative processor to go inactive.

Format Label Command Argument Comment

symbol WAIT

• Label Any valid symbol or blank.

• Command WAIT

• Argument No entry is required.

I

2-158

PAGER These instructions allow the programmer to utilize the page memories.
rnSTR UCTIONS

Mnemonic Instructions

STRTSG Start Segment

ENDSG End Segment

MVSG Move a Page Segment

MVSGI Mov'e a Page Segment Immediate

PAGER Pager Control

2-159

STRTSG

Format

• Label

• Command

• • a±k

• Argument

ENDSG

Format

• Label

• Command

• Argument

Note

Start Segment

This instruction marks the beginning of a page segment by reinitializing

the Execution Location Counter as specified in the Command Field.

Label Command Argument Comment

symbol STRTSG, a±k

Any valid symbol or blank. This will be the name of the following segment.

STRTSG

lal may be either a constant or a symbol whose v'alue may be optionally

modified by plus or minus the constant k. Moreover,'a' may be one of the

following special symbols: PAGEO, PAGE I, PAGE2. The value of the

expression a±k initializes the Execution Location Counter and represents

where succeeding assembled APPLE instructions are to be loaded and then

executed.

No entries required.

End Segment

This instruction marks the end of a page segment.

Label Command Argument Comment

symbol ENDSG

Any valid symbol or blank.

ENDSG

No entries required.

Nested STRTSG -ENDSG pairs are illegal.

2-160

II

MVSG

Format

• Label

• Command

• Argument

Move a Page Segment

This instruction will comma nd the Pager to move a segment of instructions

referenced by the Memory Address a2±k2 if the Pager is not busy with a

previous move, If the Pager is busy, AP Control will wait until the previous

move is completed before initiating this move,

Label Command Argument Comment

symbol

Any valid symbol or blank,

MVSG

a 1 may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k l , Moreover, a l may be one of

the following special symbols: PAGED, PAGEl, PAGE2, This term

corresponds to the same term in the STR TSG mnemonic. Its value is

used to tell the Pager where to begin storing the program segment,

One term is required,

a
2

may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k2' The value of this term should

reference the address of a STR TSG mnemonic in bulk core.

2-161

I

MVSGI

Format

• Label

• Command

• Argument

Mov'e a Page Segment Immediately

This instruction will command the Pager to move a segment of instructions

referenced by aZ±kZ to the Page Memory address a 1±k 1 immediately. If the

AP Control encounters the MVSGI instruction while the Pager is busy with

a previous move, it will interrupt the Pager and initiate the new move

immediately. The remainder of the previous move is forgotten. If the

Pager is not busy when the AP control encounters an MVSGI instruction,

it acts like an MVSG instruction.

Label Command Argument Comment

symbol

Any valid symbol or blank.

MVSGI

a I may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k l . Moreover, a l may be one of

the following special symbols: PAGED, PAGEl, PAGEZ. This term

corresponds to the same term in the STRTSG mnemonic. Its value is

used to tell the Pager where to begin storing the program segment.

One term is required.

a
Z

may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k Z' The value of this term should

reference the address of a STR TSG mnemonic in bulk core.

z-16Z

I

PAGER

ForITlat

• Label

• Command

• Argument

•• a:l::k

Pager Control

This instruction will cOITlITland and/or interrogate the state of the Pager.

The Pager can be considered to be on (busy) or off (not busy).

Label ComITland ArguITlent ComITlent

sYITlbol PAGER a:l::k

Any valid symbol or blank.

PAGER

One entry is required.

'a' may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k.

Legal Values of a:l::k:

o Unconditionally turn Pager off.

Skip the next instruction if Pager is on, and then unconditionally
turn Pager off.

2 Skip the next instruction if Pager is off, and then unconditionally
turn Pager off.

3 Unconditionally skip the next instruction and then turn Pager off.

4 No operation.

5 Skip the next instruction if Pager is on.

6 Skip the next instruction if Pager is off.

7 Unconditionally skip the next instruction.

8 Unconditionally complement current state.

9 Skip the next instruction if Pager is on, and then unconditionally
complement current state.

10 Skip the next instruction if Pager is off, and then unconditionally
complement current state.

11 Unconditionally skip the next instruction, and then unconditionally
complement current state.

12 Unconditionally turn Pager on~

13 Skip the next instruction if Pager is on, and then unconditionally
turn Pager on.

14 Skip the next instruction if Pager is off, then unconditionally
turn Pag er on.

15 Unconditionally skip the next instruction, and then turn Pager on.

I

2-163

INTRODUC TION

SLOT
NUMBERS

CHAPTER 3

SUPERVISOR CALLS

STARAN Program Supervisor (SPS) provides services to supplement the

APPLE language such as managing input/output, handling errors, and

controlling STARAN processors. This chapter describes all services

available to APPLE programs executed by the associative processor.

SPS consists of two program modules which ar e resident in the sequential

control memory at execution time. Module zero (SPSO) manages the sequential

controller and its as sociated peripherals. Module one (SPS 1) manages the

rem.aining STARAN processors. SPSO and SPS 1 together manage the entire

stand-alone configuration; that is, the sequential controller and its I/O

devices, the associative processor, the Pager, the Parallel I/O unit):C and

additional Custom I/O, as im.plemented for a specific installation.

The m.ain purpose of SPS is to m.ake input/output operations possible. A

programmer can use the supervisor through the APPLE SVC (Supervisor

Call) m.nem.onic by specifying the, particular service desired, a buffer,

and som.e I/O device.

The convention is not to refer to devices directly, but to the slots assigned

them. (a slot is similar to a logical unit, see figure 3 -1). An I/O request

is m.ade on a slot which, in turn, refers to a device. (Slots 0, 1, and 2

are anchored to the keyboard, teleprinter, and high-speed reader. While

it is necessary to refer to these slots, any attempt to reassign them will

cause an error message to be printed at execution time.) Slot assignm.ents

are recorded in the Device Assignment Table (DAT) (figure 3-1). More

than one slot may be as signed to a device, but only one device can be

attached to a slot. Additional devices will be added to satisfy requirem.ents

of specific custom.er s (for example - disk units, magnetic tape units,

rem.ote terminals, etc).

STARAN registers, associative memory, and control mem.ory are

referenced in SPS calls as though they were devices. They are given

negative device codes which m.ay be used to attach them. to slots (see

figure 3-1). SPS provides for data transfer between these associative

proces sor elements, or between them. and any peripheral device.

':C Parallel I/O unit is an optional STARAN feature.

3-1 I

USER'S 1/0
REQUESTS

/
/

//
//

//
// /'

// /

,/" ------
---- --- ---

* SPS permanent assignments. Any attempt
to reassign these slots will be in error.

SLOTS

'SLOT\
\ NO. L ,;.~

DEVICES

STARAN 3
REGISTERS -

STARAN -2
ARRAYS

STARAN -1
MEMORY

,-----,
, DUMMY I °
L __ ~

HIGH-SPEED
READER

HIGH-SPEED
PUNCH

CARD
READER

.......... r CUSTOM -,
~I INPUT/ I
-. OUTPUT
LD~IC~) -I

2

5

6

7

lOa

Figure 3-1. Device Assignment Table (DAT)

3-2 I

INS TR UC TION
DESCRIPTION

BUFFER
PSEUDO-OP
FORMAT

SUPERVISOR
CALL
FORMAT

Note

BUFFER

SVC

This section of the manual is concerned with the description of two

mnemonics and their pos sible variations. Their basic format is:

Label Command Argument Comment

symbol BUFFER

and

Label Command Argument Comment

symbol

The terms in the argument field for these mnemonics will be described

in more detail later.

All I/O functions included in this basic manual, except Parallel r/o,
require a buffer area (usually either in the HSDB or in BULK core

memory) to contain the data as they are input or output. The purpose

of the BUFFER mnemonic is to create for the SPS r/o routine required

buffer-area header information describing in more detail the exact nature

of the intended r/o proces s. For example, data input from the high­

speed paper tape unit may be in the form of ASCII characters (formatted

or unformatted) or pure binary values (formatted or unformatted).

These cases will be described in more detail later. In other words there

is more than one way to input or output data on a given device, and the

purpose of the BUFFER pseudo-op is to fully describe the desired method.

There are currently twelve different variations (SPS services) of the SVC

mnemonic. The services will be expanded for future requirements as

neces sary for Customized Input/Output features. Some of the variations

require a corresponding BUFFER mnemonic counterpart to fully describe

the nature of the r/o operation to the system. The twelve SVC functions

are:

3-3

I

SPS
SERVICES
OR
CALLS

Function

Attach

Read

Write

Reset

Free

Exit

Restart

Timer

Int

I Setup

Pager
Control

PLio
Control

Label

symbol

symbol

symbol

symbol

symbol

symbol

symbol

symbol

symbol

symbol

symbol

symbol

Source Statement Format

Com-
mand Argument

SVC l,slot-number,device-code-address

SVC 9 z slot-number,buffer-address

SVC 10z slot-number, buffer-address

SVC 1-

SVC 5 z slot-number

SVC 7

SVC 8

SVC 13, timer-number, interruEt number, time-value

SVC 14, interruEt-number

SVC 15, interrupt-number, status, done-address

SVC 18, command, start-address

SVC 19, command, start-address --

Each of the above SVC instructions will be described separately in the

following pages. Note the distinguishing feature of each SVC instruction

is the first term in the argument field. All argument field terms shown

are required. Each term in the argument field may be in the form

a±k

where la l may be either a constant or a symbol optionally modified by

plus or minus the constant k.

Comment

I
3-4

ATTACH

Format

• Label

• Command

• Argull1ent

• • 1

• • Slot
Number

• • Device­
Code­
Address

• • Device
Codes

Attach an SPS Slot Number to an r/o Device

This function allows the programmer to as sign SPS slot numbers

to different r/o devices at execution till1e (see figure 3 -1). Note

that slot numbers 0, 1, and 2 always refer to the keyboard,

teleprinter, and high-speed reader, respectively. These slot

nUll1bers may not be reas signed to different devices.

Label Command Argument

symbol SVC l,slot-number,device-code-address

Any valid symbol or blank.

SVC

The argument field consists of three entries.

The value of the first entry (ll1ust be equal to one) denotes an attach

function.

The value of the second entry (must be a value between 0 and 178)

denotes one of the SPS slot numbers (see figure 3-1).

The third entry represents an address (must be in either HSDB or in

BULK core memory) which contains a device code value.

Value !Octal~ Device

-3 STARAN Registers

-2 STARAN Associative Memory

-1 STARAN Control Memory

0 Dummy

Keyboard (KBD)

2 Teleprinter (TTY)

3 Low-Speed Reader (LSR)

4 Low-Speed Punch (LSP)

5 High-Speed Reader (HSR)

6 High-Speed Punch (HSP)

7 Card Reader (CDR)

10 Line Printer (LPT)

Comment

3-5

STARAN
Special
Device
Codes
For
ATTACH
Function

• STARAN
Control
MerrlOry

• • Format

• •• Label

• •• Command

• •• Argument

Note that STARAN storage is given device codes. To allow access to

parts of STARAN not directly addres sable, the memory elements are

formally treated as devices. SVC calls utilizing STARAN device

codes require corresponding specially formatted BUFFER pseudo-op

mnemonics.

When STARAN control memory is referenced by an SVC instruction,

it should be for the purpose of a memory-to-memory transfer of a

block of instructions or data within STARAN Control Memory, which

consists of the Page, HSDB, and Bulk core memories.

For an SVC instruction referencing a slot as signed to device -1

(STARAN Control Memory) the form of the corresponding BUFFER

mnemonic is:

Label Command Argument Comment

symbol BUFFER address, 0, byte-count

Any valid symbol or blank.

BUFFER

The argument field consists of three terms. The value of the first

term represents any STARAN control memory address and is the

destination addres s. The value of the second term must be zero.

The value of the third term represents the byte-count of the number

of bytes of data following the BUFFER pseudo-op involved in the

memory-to-memory transfer.

The above BUFFER pseudo-op will generate the following two 32 -bit

words of memory:

I
3-6

• • BUFFER
ForITlat
For
Device -1

••• Byte
Count

••• Status
Byte

0 15 16 31

Address

0 15 16 23 24 31

Byte Cr)Unt Status

0 31

Data

0
0

0 0 " 1

Data

As shown the upper half of the first word will contain the value of the

first iteITl of the arguITlent field. The upper half of the second word

will contain the value of the nUITlber of bytes of data involved in the

ITleITlory -to-ITleITlory transfer. The bytes of data ITlust be contained

in the words of meITlory iITlITlediately following the BUFFER pseudo-op

ITlneITlonic as shown.

This value represents the actual nUITlber of bytes of data to be ITloved

to or froITl the buffer area that follows.

Bits of the Status Byte shown in bits 16-23 of the second word set by

SPS upon completion of the ITleITlory-to-ITleITlory transfer are bits

16 and 17:

16 17 18 19 20 21 22 23
Done I E;i:orl I Bit

The Done bit will be set to a value of one by SPS upon cOITlpletion of

the operation. The ERROR bit will be set to a value of one by SPS

if an error occurred during the operation. If an error occurred

before the ITleITlory -to -ITleITlory transfer was cOITlpleted, the Byte

Count value in the upper half of the second word will contain the

actual nUITlber of bytes of data transferred by SPS before the operation

was terITlinated. Otherwise the Byte Count value will reITlain intact. I

•• Example

'. STARAN
Associative
Memory

• • Format

• •• Label

• •• Comm.and

• •• Argum.ent

~ODE

Attach to slot 6 device -1 (STARAN Control Memory)

.

S~~.PBFR
~_/

Write on slot 6 from PBFR

DVCODE DC -1

PBFR~SDB'O'l\ .

Destination address in HSDB Transfer the followmg 17 bytes

A'A 17 BYTE MESSAGE'

Execution of the above two SVC instructions will result in the mem.ory­

to-memory transfer of the above 17 bytes of ASCII characters to the

HSDB.

When STARAN Associative Memory is referenced by an SVC instruction,

it should be for the purpose of a mem.ory-to-memory transfer between

associative m.emory and a buffer located either in the HSDB or Bulk core

mem.ories. For an SVC instruction referencing a slot as signed to

device -Z (STARAN Associative Mem.ory) the form of the corresponding

BUFFER m.nem.onic is:

Label Command Argument

symbol BUFFER maxsize, address-mode, byte count, al> az, bl, bZ

Any valid symbol or blank.

BUFFER

The argument field consists of seven term.s. Before describing these

terms consider the three words of object-code generated by this particular

BUFFER pseudo-op m.nemonic (the words of data are not generated by

thi s mnemonic).

Comment

I
3-8

• • BUFFER
Format
For
Device -2

• •• Maximum
Size

• •• Byte
Count

• • • Status
Byte

0 15 16 31

Maximum size of
Buffer in bytes

0 15 16 23 24 31
Address

Byte Count Status Mode

0 7 8 15 16 23 24 31

I b2 I bl I a2 I al I
\.)

Y
co -ordinate s

Data Data Data Data

0
0
0

Data Data Data Data

The upper half of the first word will contain the value of the first

term of the argument field. This value represents the maximum

size (in bytes) of the data words portion of the buffer and also the

maximum allowable number -of bytes of data that may be moved to

or from the buffer.

The upper half of the second word will contain the value of the third

term of the argument field. This value represents the actual number

of bytes of data to be moved to or from the buffer area that follows.

If for some reason an error condition occurs before a buffer transfer

is completed, this value will be modified to reflect the actual num.ber

of data transfers.

Bits 16-23 of the second word contain the Status Byte. The bit

value in this byte are set and m.aintained by SPS.

16 19
,...----,----......--1':':' E~m

17 18 20

Done Error EOM':<

':: End of Medium or Power
Off or Out of Tape, etc.

':0:: Form.atted Binary Data
':<>:<>:< End of Tape Code

21 22 23

Nonfatal Error Code
2=Checksum error
3=Long-line error
4=Im.proper Mode (FBIN>::>::)
5=EOT'::>!<>!< will occur if an ASCII EaT

code is read outside of a FBIN block
of data. I

3-9

• ••• Done
Bit

• ••• Error

• •• Address
Mode
Byte

• •• Array
Co-ordinates

This bit will be set by SPS upon completion of the buffer transfer

regardless of whether or not an error occurred.

This bit will be set by SPS if an error is detected during the buffer

transfer operation. Examine bits 18 and 21-23 for the exact nature

of the error.

Bits 24-31 of the second word comprise the Address Mode Byte and

is loaded with the value of the second term in the argument field.

The interpretation of the bit and sub-field values of the byte by SPS is:

Word/
Bit Slice

25

An Associative Array
Memory Module or a
Response Store Register

27 28 29 30 31

Associative Array Memory Module Number

~~----__ __----~------------------__ r-----____________ ~J y y
00 Array 0-31
01 M register
10 Y register
11 X register

Bit 24= 1 means access by word.
Bit 24=0 means access by bit column.

The third word of the buffer header information is loaded with the

associative memory coordinate values as shown from the fourth through

seventh terms in the argument field of the BUFFER pseudo-op mnemonic.

al and a2 define the starting and ending "line" which may be bit column

numbers or word row numbers, depending on bit 24 of the Address Mode;

i. e.', O:::a f::a2:='255. bland b2 are the starting and ending byte numbers

for the data; i. e., O:::::b lsb 2:=' 3 1. 1£ a response store register instead of

associative mernory is specified, a maximum of 32 bytes of data can be

transferred.

I
3-10

• • Example

• •• Supervisor
Call
Statement

• •• Corresponding
BUFFER
Pseudo-op
Statement

• • •

• • •

Buffer
Data

Associative
Memory
Map,
Word
Mode

Writing Into As sociative Memory

If slot 9 has been attached to associative memory (device code -2),

the following statements will load array 0 as shown.

ARBFR

:.d9'AR~om billfer

BUFFER

To as sociative memory
(attached to slot 9)

Max size
in bytes byte s to move co-ordinates

AIARTICHOKE' ASCII character string

o 31
o

Word 01 5 A R T

I C H

0 K E

Word 02 10 UNCHANGED

a l and a
2

define the starting and ending II line II, 0:sa
l
:sa

2
::::255. b

l
and

b
2

are the starting and ending byte numbers for the data, 0:::: b I :::: b 2.:::: 31.

3-11

I

• • • Associative
Memory
Map,
Bit
Column
Mode

• STARAN
Registers

• • Format

• •• Label

• •• Command

• •• Argument

o

o

31

Bit
Column

°1

5

A !

R C

T H

0

K

E

Bit
Column

°2
10

U
N
C
H
A
N
G
E
D

255

When STARAN registers are referenced by an SVC instruction, it

should be for the purpose of obtaining the value of those STARAN

registers accessable only by the sequential controller. For an SVC

READ instruction referencing a slot assigned to device -3 (STARAN

Registers) the form of the corresponding BUFFER mnemonic is:

Label Command Argument Comment

symbol BUFFER register -code

Any valid symbol or blank.

BUFFER

The argument field consists of one term. Before describing this

term consider the two words of object code generated by this

particular BUFFER pseudo-op mnemonic (the word of data is not

generated by this mnemonic).
I

3-12

• • Buffer
Format
For
Device -3

••• Register
Code

0 1 5 16 31

Register Code 1m
0 15 16 23 24 31

Status ~~~m~~~~~~~~~W~ ~
0 31

Data I

The upper half of the first word will be loaded with the value of the

argument field term. This value represents the code assigned to

a particular register.

STARAN Main Frame

Register Register Code Length (bytes)

Instruction 0 4
Pager Put 1 2
Pager Get 2 2
Pager Count 3 2
Start Loop Marker 4 2
End Loop Marker 5 2

PILO Unit~:: Main Frame

Instruction 6 4
Start Loop Marker 7 2
End Loop Marker 8 2
Buffer Register 9 4
Buffer Control Word No.1 10 2
Buffer Control Word No.2 11 2
Buffer Control Word No.3 12 2
Block Length Counter 13 2
Data Pointer 14 2
Program Counter 15 2
Field Length Counter 16 1
Field Pointer No.1 17 1
Field Pointer No.2 18 1
Field Pointer No.3 19 1

STARAN Address Mode 20 2
,Plio Address Mode 21 2
Performance Timer 22 2
Performance Counter 23 2

~::: The Plio Unit is a STARAN option.

I
3-13

• •• Status Byte

• • Example

• •• Supervisor
Call
Statement

• •• Corresponding
BUFFER
Pseudo-op
Statement

The status byte occupies bits 16-23 of the second word of the BUFFER

instruction and is maintained by SPS. Only the Done and Error bits

are of significance.

Obtain the current value of the End Loop Marker register. Assure slot

7 has been assigned to STARAN registers (device code -3).

SVC
J~.ENDL~

Read From device Into buffer
attached to
slot 7

ENDLOOPBF BUFFER 5

/
End Loop Marker register code

ENDLOOPRG DC a Buffer storage word

The value of the End Loop Marker register may be obtained from the

contents of the one word buffer ENDLOOPRG.

3-14

READ

Format

• Label

• Command

• Argument

• • 9

• • Slot­
Number

• • Buffer­
Address

Example

This SVC function permits the transfer of data from a valid

input device to a buffer area in Bulk core or the High-Speed

Data Buffer. The input device is referenced by a slot number.

Detail on memory to memory transfers for special AP devices

is described in the ATTACH section.

Label Command Argument

symbol SVC 9, slot-number, buffer -addres s

Any valid symbol or blank.

SVC

Three entries are required.

This entry may be a constant or a symbol whose value is 9.

This entry may be a constant or a symbol whose value is the slot

number as signed to the input device (s ee figure 3 -1).

This entry may be a constant or a symbol representing the

address of the associated buffer which is set-up in a BUFFER

pseudo-op instruction. (READ/WRITE BUFFER Pseudo-Op

instruction is described in a later section.)

As sume slot nUITlber 3 has been attached to the high speed paper

tape reader.

SVC 9,3, BUFF

R£j 'fer
Slot number

This example will cause data to be read from the high speed

paper tape reader and stored into the buffer area defined by

BUFF (buffer area in Bulk core or High Speed Data Buffer).

BUFF must be defined in a BUFFER Pseudo-Op instruction.

Comment

I
3-15

WRITE

Format

• Label

• Command

• Argument

• • 10

• • Slot- Number

• • Buffer­
Address

Example

This SVC function permits the transfer of data from a buffer area

in Bulk core or the High-Speed Data Buffer to a valid output device.

The device is referenced by a slot number. Detail on memory-to­

memory transfers for special AP devices is described in the ATTACH

section.

Label Command Argument Comment

symbol SVC 10, slot-number, buffer-address

Any valid symbol or blank.

SVC

Three entries are required.

This entry may be a constant or a symbol whose value is 10.

This entry may be a constant or a symbol whose value is the slot-

number assigned to an output device.

This entry may be a constant or a symbol representing the address

of the associated buffer which is set-up in a BUFFER Pseudo-Op

instruction. (READ/WRITE BUFFER Pseudo-Op instruction is

described in a later section.)

As sume slot number 0 1171 has been attached to the line printer.

SVC ,)O.OI,·BU~

WRITE Slot number Buffer

This example will cause the contents of BUFF (buffer area in Bulk

core or High-Speed Data Buffer) to be printed on the line printer.

BUFF must be defined in a BUFFER Pseudo-Op instruction.

I
3-16

READ/
WRITE
BUFFER

PSEUDO-OP

Format

• Label

• Command

• Argument

• • Max-size

• • Address

• • Register
Code

• • Mode

The BUFFER Pseudo-Op instruction sets up a properly formatted

buffer area in control memory for the READ and WRITE supervisor

call functions. Detail on special AP device buffers is described in the

ATTACH section.

Label Command Argument Comment

symbol

lmax-size],mOde, byte-count, aI' aZ' bl' bZ
address
register code

BUFFER

Any valid symbol or blank.

BUFFER

The first three entries are required for all READ /WRITE operations

except the AP register transfers (device code -3) which requires only

the first entry. The remaining four entries are required for Associative

memory data transfer s.

This entry may be a constant or symbol whose value represents the

maximum size of the buffer in bytes.

This entry may be a constant or symbol representing a Bulk core or

High-Speed Data Buffer address in a memory to memory transfer.

This entry may be a constant or symbol representing an AP register

code for data transfers involving AP registers.

This entry may be a constant or symbol whose value represents the

mode of data transfer. The mode entry will always be zero for a

memory to memory transfer since mode is not applicable.

Value

3

Z

o

Mode

Unformatted Binary (UBIN)

Unformatted ASCII (UASCII)

Formatted Binary (FBIN)

Formatted ASCII (FASCII)

3-17

I

• •• Unformatted
Binary

• •• Unformatted
ASCII

• •• Formatted
Binary

• •• Formatted
ASCII

• • Byte
Count

• • aI' aZ' b l' b Z

Eight bit bytes are transferred as specified by the buffer byte

count. This mode is suitable for paper tape reader s and punches.

Possible errors are Error bit set and End of Medium (EOM)

Seven bits per byte are transferred as specified by the buffer byte

count. This mode is suitable for keyboard, teleprinter, and line

printer. Possible errors are Error bit set, End of Medium,

Checksum, and Long line.

This format is used primarily for paper tape r/o (used by APPLE.)

For output SPS blocks the data as follows:

Z018 }
000
xxx
xxx

yyy
yyy

zzz
zzz

}

)
}

The header for the APPLE assembler output

The byte count of the block, equal to the number
of data bytes plus 4.

Data bytes

The checksum, the two's complement of the sum
of all the preceding bytes in the block (Sum plus
checksum equals zero)

When a block with a header ZO 1000 (i. e. APPLE block) is encountered,

the number of bytes transferred is the block byte count -4. The data

are followed by a checksum. On output, SPS creates the header, the

block byte-count, and the checksum.

Seven bits per byte are transferred until a terminating character is

encountered. Terminating characters are, a line feed (OlZ), a form feed

(0 14), or a carriage return (0 15). These characters will end trans-

mission of data. Possible errors are Error bit set, End of medium,

and Long line.

Actual number of data bytes in the block to be transferred.

These entries are used only when an as sociative memory data transfer

is performed. a 1 and aZ define the start and end of the array words or

bit slices (ranges: O::::a 1~ai5.Z55). bland b Z define the start and end

byte numbers for the 4ata (range:O::;b 1::;b2~ 31). If a response store

register is specified, up to 3Z bytes will be moved in or out of the

buffer.

I
3-18

Example

• Buffer
Pseudo-Op

• Buffer
Header

• • Max-Size

• • Byte
Count

• • Status
Byte

• •• Done
Bit

• •• Error
Bit

• •• EOM
Bit

• •• Error
Codes

The following example illustrates the buffer format for transfer

of data to or from an I/O device.

BUFF BUFFER 9,0'101',8

j
0 15 16 31 0 If 15 16 .0:.:.:"

i:li.: ,i··i
Status Mode

Max-size Byte Count Byte Byte

Word 1 Word 2

The maximum size, in bytes, of the buffer is contained in bits 0

to 15 of the first 32 bit buffer word.

This is the actual number of bytes of data in the buffer to be

transferred.

16 17 18 19 20 21 22 23

Done Error EOM

i : .1 bit bit bit

~,------~~,-------~/

Error Codes

Bit 16= 1 indicates a transfer to or from the buffer is complete.

Bit 17= 1 indicates that the device in use has signalled an error in

the status register.

Bit 18= 1 indicates an end of medium has been detected.

Error code

2

3

4

5

Error

Checksum

Long line

Improper mode

End of tape marker detected

I
3-19

• • Mode
Byte

• •• Echo
Bit

• •• Byte
Count
Update

• •• Format

• •• Binary/
ASCII

24 25 26 27

Echo
Byte

Bit Count
Update

28 29

:;:;:;:

30 31

IBinary/
'orlTIat ASCII

11 unformatted binary
01 formatted binary
10 unformatted ASCII
00 formatted ASCII

Normally data entered through the keyboard are printed on the

teleprinter (referred to as echo). If bit 7= 1 in the mode byte, the

echo is inhibited. This bit applies only to keyboard input.

SPS revises the byte count in the buffer header after each r/o call

using that buffer. This is not always desirable. For example, an

error during attempted printing of a mes sage might zero the byte

count. Subsequent calls using that buffer would output zero bytes.

Bit 6= 1 will inhibit the updating and should be us ed only for a read

operation.

Bit 30 indicates iorlTIatted or unforlTIatted data lTIode. If bit 30 is zero,

the mode is formatted, if bit 30 is equal to 1, the mode is unformatted.

A one in bit 31 indicates binary mode; a zero in bit 31 indicates

ASCII mode.

3-20 II

RESTART
PROGRAM

Format

• Label

• Command

• Argwnent

This statement will completely reinitialize the STARAN and return

control to a sequential control program (refer to STARAN Systems

Programmer i s Reference Manual)

Label Command Argwnent Comment

symbol SVC 8

Any valid symbol or blank.

SVC

The argument must be an expression whose value is 8.

3-21 I

RESET

Format

• Label

• ComITland

• ArguITlent

To reinitialize peripheral devices, issue RESET. This has the effect of

RES TAR T, but control will return to the following instruction, not to

a restart address. It is not usually necessary to RESET since

conditions that call for reinitializing usually call for restarting, too.

Label Command Argument Comment

symbol 2

Any valid symbol or blank.

SVC

Any expression whose value is 2 denotes the reset function.

3-22 I

FREE
DEVICE
For

NEW
TASK

Format

• Label

• Command

• Argument

• • 5

•• Slot-Number

Example

The device attached to the designated slot will be made ready to

start a new I/O process. If the device is busy, its current I/O

proce s s will be halted and cannot be resumed.

This service is most useful for getting an urgent - and usually

terminal - mes sage in or out.

Label Command Argument Comment

symbol 5, slot-number

Any valid symbol or blank.

SVC

Two entries are required.

The first entry may be any expression whose value is 5j this

denotes the FREE function of the supervisor call.

The second entry may be any expression whose value is between

o and 15 (see :figure 3-1).

KILL SVC 5,0

The statement named KILL will cause the device attached to slot 0

(the teleprinter) to halt any current output and make it ready for a

WRITE request.

3-23 I

EXIT
TO
SUPERVISOR

Format

• Label

• Command

• Argument

A STARAN program may return control to the supervisor with

this command.

Label Command Argument Comment

symbol 7

Any valid symbol or blank.

SVC

Any expression whose value is 7 denotes the EXIT function

of the supervisor call.

3-24

TIMER
START

Format

• Label

• Command

• Argument

• • 13

•• Timer­
Number

•• Interrupt­
Number

• •. Time­
Value

Example

The TIMER statelTIent allows clocking of an interval beginning

with the execution of the statement. At the end of the specified

interval, STARAN interrupt will be triggered.

Label Command

symbol SVC

Argument

13, timer-nUInber, interrupt-·
number, time-value

Any valid symbol or blank.

SVC

All entries are required.

The first entry may be any expression whose value is 13;

this denotes the TIMER function of the supervisor call.

Comment

The second entry must be an expression whose value is 0, 1,2, or 3 •

These numbers specify four different "clocks" which may be started.

The third entry may be an expression whose value is 1,2,3, .•. , 14,

or 15. It specifies the STARAN interrupt which will be triggered

when the timer expires.

The fourth entry will be evaluated and taken as an unsigned l6-bit

quantity in units of 1/300 sec.

EXCELS SVC 13,2,5,300

When the above statement is executed, timer 2 will trigger AP

interrupt 5 in 1 second (300/300ths).

I
3-25

INTERRUPT
SIGNAL

Format

• Label

• Command

• Argument

• • 14

• • Interrupt­
Number

Example

This command is used to cause the sequential processor to execute a

program. SPS simulates sixteen interrupt vectors in the sequential

processor. (This is not a STARAN hardware interrupt into the sequential

proces sor, signalled by external-function codes. It is a software facility

to make possible user linkages between STARAN and the sequential

processor.) When the software interrupt is triggered, the sequential

processor will execute a program at the address specified in the I SETUP

call (discussed on following page).

Label Command Argwnent Comment

symbol SVC 14, interrupt-nwnber

Any valid symbol or blank.

SVC

The argwnent field consists of two entries.

The first entry must be an expression whose value is 14;

this denotes the INT function of the supervisor call.

The second entry is an expression whose value must be

0, 1,2, •.. , 14, 15. It specifies a software interrupt to the

sequential controller.

SVC 14,0

This will trigger the interrupt setup as shown in the next section

(I SETUP example).

3-26 I

I SETUP

Format

• Label

• Argument

• • 15

• • Interrupt­
Number

• • Status

• • Interrupt­
Vector

Example

This SVC function creates a software interrupt vector for the

sequential controller.

Label Command

symbol SVC

Argument

15, interrupt-number, status,
interrupt-vector-address

Any valid symbol or blank.

All entries are required.

The first entry must be an expression whose value is 15;

it denotes the I SETUP function of the supervisor call.

Comment

The second entry is an expression whose value must be 0, 1,2, ••• ,

14, or 15. It specifies a software interrupt vector maintained by

SPS. (See Staran System Programmer's Reference Manual.)

The third arguITlent specifies the status to be as sumed when the

interrupt is signalled. It will be evaluated and taken to be a number

froITl zero to seven.

The fourth argUITlent is an expression whose value is a sequential

control addres s in Bulk core memory.

EXETER SVC l5,0,7,HANDLR

The above line of coding will attach sequential control software

interrupt ° to a routine called HANDLR. Priority 7 will be assumed.

3-27

PAGER
CONTROL

Format

• Label

• Command

• Argument

• • 18

• • Operation

• • Start­
Address

Example

This SVC function is used to control certain Pager operations.

Label Command Argument Comment

symbol SVC 18, operation, start-addres s

Any valid symbol or blank.

SVC

Two entries are required in all operations except the Start Pager ,

which requires all three entries.

The first entry may be a constant or a symbol whose value is 18.

The second entry may be a constant or a symbol with the following values:

Value

o

1

2

3

Operation

Start Pager at start-address

Stop Pager

Pause Pager

Continue Pager from pause

The start-address is used only in the Start Pager operation (i. e. when

the operation value is zero).

TAG DC o

SVC 18, TAG, X' 00' Start Pager at address 0

SVC 18, 1 Stop Pager

3-28
I

Plio
CONTROL':~

Format

• Label

• Command

• Argument

• • 19

• • Operation

• • Start­
Address

This SVC function is us ed to control certain parallel 1/0 operations.

Label Command Argument Comment

symbol SVC 19, operation, start-address

Any valid symbol or blank.

SVC

Two entries are required in all operations except the Start Plio,

which requires all three entries.

The first entry may be a constant or a symbol whose value is 19.

The second entry may be a constant or a . symbol with the following

values:

Value

o
1

2

3

Operation

Start Plio at start-address

Stop Plio

Pause Plio

Continue Plio from paus e

The start-address is used only in the Start Plio operation (i. e.

when the operation value is zero).

,:~ Parallel 1/0 is an optional STARAN feature. Other Custom I/O

features may be handled similarily.

I
3-29

APPENDIX A

SUM1y1ARY OF APPLE MNEMONICS

AND

l;N'STR UC TION FOR MA TS

A-i

ASSEMBLER
DIRECTIVES

BRANCH

Mnemonic
(Command)

START :.:~

ORG

B

Argument

~(r}±k, cd

Instruction Page

Start APPLE source 2 -1 0

2 -16

Unconditional Branch 2 -18
INSTRUCTIONS r-~-----------------------------r--------~---------+~~------=-----------------------------~r-----~

2-21

Branch and Link 2-31

LOOP, al±kI 2-34

LPSW, ks 2-51

~ ±k, cd ogram Status 2-53

* Required entries are underlined throughout

A-I

ASSOCIA TIVE
INSTR UC TIONS

LOAD
RESPONSE
STORE
REGISTERS
AND
COMMON
REGISTER

Mnemonic
(Command)

L

LN

LOR

LORN

LAND

LANDN

LXOR

LXORN

LC

LCM

SET

CLR

ROT

Argument

t ~ll ~2.!... a:i::k
r

{~ll ~2.l.. a:i::k
r

1~11 ~21... a:i::k
r

I ~ll ~2.L a:i::k
r

1~11 ~2L a:i::k
r

{ ~ll ~2..!... a:i::k
r

{ ~ll ~2..!... a:i::k
r

I ~ll ~2.!. a:f:k
r

.2:

.2:l~2

rs

rs

rs,a r :i::k 1,a
2

:f:k
2

Instruction Page

Load Response Store Register 2-56

Load Complemented 2-58

Load Logical OR 2-60

Load Logical OR Complemented 2-62

Load Logical AND 2-64

Load Logical AND Complemented 2-66

Load Logical Exclusive OR 2-68

Load Logical Exclusive OR Complemented 2-70

Load Common Register from an 2-72
Associative Memory Word

Load Common Register Field from 2-74
an Associative Memory Word

Set Response Store Register 2-76

Clear Response Store Register 2-77

Rotate Response Store Register 2-78

A-2

STORE
RESPONSE
STORE
REGISTERS
AND
COMMON
REGISTER

SEARCHES

Mnemonic
(Command)

S

SM

SN

SNM

SOR

SORM

SORN

SORNM

SAND

SANDM

SANDN

SANDNM

SC

SCW

FrnD

STEP

RESVFST

EQC

EQF

NEC

NEF

GTC

GTF

GEC

GEF

LTC

LTF

LEC

LEF

MAXF

.MlliK

Argument

{ a±k} rs -
~ r

{ a±k}
~~

{ a±kJ
~~

L- {~±k}

rs -{ a±k}
--' r

{ ~±k} L. r

rs -{ a±k}
...:...:::.z.. r

:h {~±k}

rs -{ a±k}
..:::..:::.z. r

{ ~±k} L. r

{ a±k} rs, ~

L. {~±k}

~1.zJ!:2

~1~2

~1~2

~1~2

~1~2

~1~2

~1~2

~1~2

~1~2

~1~2

~1~2

~1~2

.§!;1~2

~1~2
a

.£:

Instruction Page ---
Store Re sponse Store Into Associative Memory 2-80

Store Response Store Masked Into
Associative Memory 2-82

Store Complement Into Associative Memory 2-84

Store Complement Masked Into
2-86 As sociative Memory

Store Logical Inclusive OR Into
2-88 Associative Memory

Store Logical Inclusive OR, Masked Into
2-90 Associative Memory

Store Logical Inclusive OR, Complemented Into 2-92
Associative Memory

Store Logical Inclusive OR, Complented, Masked
2-94 Into As sociative Memory

Store Logical AND Into As sociativ'e Memory 2-96

Store Logical AND Masked Into
2-98 Associative Memory

Store Logical AND Complemented Into
Associative Memory 2-100

Store Logical AND, Complemented, Masked
2-102 Into Associative Memory

Store Common Register Into 2-104
Associative Memory

Store Common Register Into
2-106

Associative Word

Find the First Bit Set in Y Response Store 2-109

Step to First Y Set and Clear It 2-109

Step to First Y Set and Clear All Other s 2-110

Equal to Common Register Field 2-111

Equal Fields 2-112

Not Equal to Common Register Field 2-113

Not Equal Fields 2-114

Greater Than Common Register Field 2-115

Greater Than Fields 2-116

Greater than or Equal to Common Register Field 2-117

Greater than or Equal Fields 2-118

Less Than Common Register Field 2-119

Less Than Fields 2-120

Less Than or Equal Common Register Field 2-121

Less Than or Equal Fields 2-122
Maxim urn Fie1 d s 2-123

Minimum Fields 2-124

A-3

MOVES

ARITHMETICS

CONTROL
AND
TEST

PAGER
INSTR DC TIONS

Mnemonic
(Command)

MVF

MVCF

MVNF

MVAF

INCF

DECF

ADC

ADF

SBC

SBF

MPC

MPF

DVF

STRTSG, a±k

ENDSG

MVSG, a 1±k l
MVSGI z a 1 ±k1
PAGER

Argument

~1~2

~1~2

~1.!.1!2

~l~2

~1~2

~1~2

~1~2~3

~1~2~3

~1~2~3

~1.!.1!2~3

~1~2~3

~l~2~3

~l~2~3

a 2±k
Z

~Z±k2
a±k

Instruction Page

Move Field 2 -126

Move the One's Complement of a Field 2-128

Move the Negative of a Field 2-130

Move the Absolute Value of a Field 2-132

Move Field with Increment 2 -134

Move Field with Decrement 2-136

Add Common Register to Field 2-139

Add Field to Field 2-141

Subtract Common Register from Field 2 -143

Subtract Field TromField 2 -145

Multiply Field by Common Register 2 -147

Multiply Field by Field 2 -149

Di vide Field by Field 2-151

Interrupt Control and Te st 2-155

Interlock Control and Te st 2-157

Deactivate the AP 2-158

Start Segment 2-160

End Segment 2-160

Move a Page Segment 2-161

Move a Page Segment hnmediate 2-162

Pager Control 2-163

A-4

APPLE I/O
Statements

Mnemonic
(Command)

BUFFER

SVC

SVC

SVC

SVC

SVC

SVC

SVC

SVC

SVC

SVC

SVC

SVC

Arguments

Maxsize, mode, byte-count

I, slot-number,device-code-address

2

5, slot-number

7

8

9, slot-number, buffer-address

la, slot-number, buffer-address

13, timer -number, interrupt-number, time -value

14, interrupt-number

15, interrupt-number, status,done-address

18, operation, start-address

19, operation, start-addres s

Instruction Page

Buffer-header Pseudo-op 3-17

Attach Device to Slot 3-5

Reset Peripherals 3-22
.. -

Free a Device for I/O 3-23
--f----

Exit From Program 3-24

Restart Program 3-21
-- --.. -.---

Read Into Buffer 3-15

Write From Buffer 3-16

Start a Timer 3-25

Int-Signa1 Interrupt 3-26

I Setup-Interrupt 3-27

Pager Control 3-28

PLio Unit Control 3-29

APPENDIX B

ERROR CODES

B-i

ERROR CODES

Error Code

A

B

D

F

I

K

L

M

P

Q

R

S

T

U

v

W

When APPLE scans source statements to produce the object code. it

checks for improper use of the defined grammar. Up to two error codes

can be printed in the left hand margin for each statement in error.

Error code meanings are listed below.

Meaning

Addressing error. An address within the instruction is incorrect.

~oundary error. An address that should be even (odd) is odd (even).

J2oubly-defined symbol referenced. Reference is made to a symbol

that is defined more than once.

Illegal forward reference of a symbol.

illegal character detected.

Array address out of range.

.f:engths of array fields incompatible.

Multiple definition of a label. A label is encountered that is identical

to a previously encountered label.

A page segment boundary syntax error.

Questionable syntax. There are missing arguments or the instruction

scan W3.S not completed.

Register-type error. An invalid use of or reference to a register has

been made •

..§.ymbol table overflow. When the quantity of user-defined symbols

exceeds the allocated space available in the user's symbol table. the

assembler outputs the current source line with the S error code. then

returns to the initial dialogue •

.!.runcation error. A number being loaded into a register or storage

location is larger than the length the register or location allows.

Qndefined symbol. An undefined symbol is encountered during the

evaluation of an expression. Relative to the expression. the undefined

symbol is assigned a value of zero.

Value out of range.

Warning. Nonstandard usage or procedure. Processing continues.

B-1

APPENDIX C

TERMS AND SYMBOLS

AP

As sociative
Memory

Array
Selector

AS

ASH

ASL

As sociative
Array

BL

Block
Length
counter

Branch
and
Link
registers

Bulk
Core

C

cd

As sociativc Proces sor

An associative array memory module consists of two basic components:

array storage and response store. Each array contains 65,536 bits,

organized as a square 256 words by 256 bits of solid state storage.

Array input and output may be either 32 bits or 256 bits in parallel.

Input data may be stored into the array through a mask contained in the

response store.

The Array Select register establishes those associative array memory

modules that are to be active for an associative operation. The Array

Select register is 32 bits wide. Each bit position controls one array,

i. e., bit 0 corresponds to array 0, bit 1 corresponds to array 1, etc.

A value of one in an Array Select register bit position will enable the

corresponding array number.

Array Select register (32 bits)

Array Select register, High half (bits 0 -15)

Array Select register, Low half (bits 16-31)

See Associative Memory

Block length counter (16 bits)

The block length counter is a l6-bit decrementing counter. The

block length counter may be sued to control the length of a data

block transfer.

A group of registers that occupies dedicated memory locations in

the HSDB (addres ses 600 16 to 607 16)' They are used as linkages

to subroutines.

The bulk core memory is a section of AP control memory us ed to

store instructions or data. In the standard STARAN S configuration

it contains 16,384 words (32 bits each). Bulk core addresses range

from 8000 16 to BFFF 16'

Common register (32 bits)

Control Digit

C-l

CDR

CH

CL

COITlITlon
Register

Control
Digit

Control
Memory
Address

Data
Pointer

DMA

DP

DPO

DP1

EOM

EOT

Execution
Location
Counter

Card Reader

Com.m.on register, High half (bits 0-15)

COITlITlon register, Low half (bits 16 -31)

The COITlITlon register is an AP register that contains 32 bits nUITlbered

a to 31. Bit 0 is the 1eft-ITlost (ITlost-significant) bit. Bit 31 is the right­

ITlost (least-significant) bit. The Com.m.on register ITlay contain the

argUITlent for a search operation perforITled upon the associative ITleITlory,

the input data stored into an as sociative ITleITlory, or the input data

received froITl an associative ITleITlory in a load operation. Data froITl an

associative ITleITlory is loaded into the COITlITlon register through a ITlask

generated by the ITlask generator.

A control digit perITlits post-incrementing or post-decreITlenting of the

DP register and/or post-decrementing the BL register. It is iITlplemented

in instructions with a Control MeITlory address, using the DP register as

a base register.

The Control memory addres s is a symbolic or absolute addres s in Bulk

Core, Page Memory, or the High Speed Data buffer. Valid address

ranges are 000 16 to 7FF 16 and 8000 16 to BFF 16·

The data pointer is a 16-bit register in AP control that may contain the

control memory addres s for block transfers. The data pointer can be

stepped with each transfer within a data block.

Direct Memory Access

Data Pointer (16 bits)

Data Pointer, byte 0 (bits 0 -7)

Data Pointer, byte 1 (bits 8-15)

End of MediUITl

End of Tape

The Execution Location counter indicates the address of the instruction

when it is executed. This will differ from the Load Location Counter only

when program segments are moved to a Page Memory for execution.

C-2

FASCII

FBIN

Field
Expression

Field
Lengh
Counter

Field
Pointers

FLI

FL2

FPE

FPl

FP2

FP3

Formatted ASCII Code

Formatted Binary Code

There are two ways of denoting a field expression:

1) b±i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b represents

the most-significant bit position and the number of contiguous bits

occupied by a field in either the Common register or associative

memory. The optional constant modifier, i, modifies only the most­

significant bit position.

2) (b, i)±j

where b may be a constant or a symbol and represents the most

significant bit position of a field. 1£ b was defined as a field via a

previous DF instruction, the most-significant bit position is the value

used. i must be a constant and represents the number of contiguous bits

occupied by the field. j is an optional constant modifying only the most­

significant bit position of the field.

Field length counters are 8-bit AP control registers used to contain the

length of data fields. They may be decremented to allow stepping through

the bits of a data field. When the counter's contents equal zero, an

indication is sent to the AP control for test purposes. There are two

field length counters: FLI and FL2.

A field pointer is an 8-bit AP control register that generally contains

an array bit column or word address. Field pointers may be incremented

or decremented to facilitate stepping through data fields. There are four

field pointers: FP 1, FP2, FP3, and FPE.

Field Length counter 1 (8 bits)

Field Length counter 2 (8 bits)

Field Pointer E (8 bits)

Field Pointer 1 (8 bits)

Field Pointer 2 (8 bits)

Field Pointer 3 (8 bits)

C-3

High­
Speed
Data
Buffer

Interlocks

Interrupt
MASK

Link
Pointer

Load
Location
Counter

LSB

M

M
Response
Store
register

MASK

The High-Speed Data Buffer is a section of AP Control merrlOry consisting

of fast solid state elements. In the standard configuration of STARAN S

it contains 512 words with addresses from 600 16 to 7FF 16. Since the

HSDB can be accessed faster than bulk core, it is a convenient place to

store data and instructions that require quick access.

The EXF logic contains 64 stored bits called interlocks. These bits have

no predetermined meaning. Software may assign a meaning to an inter­

lock and use it for any purpose. Sixteen interlocks (hex addres ses 00

through OF) can be controlled and sensed manually be panel switches

and lights to facilitate communication with an operator. The other 48

interlocks (hex addresses 10 through 3F) can only be sensed and controlled

by function code s.

The program status word in the program control logic contains the

interrupt mask for the 15 AP control interrupts. All interrupts with

numbers greater than the mask are accepted. The interrupt ITlask is

contained in bits 28 through 31 of the program status word.

The link pointer is registers FP 1 and FP2 concatenated together. FP 1

contains the address of the selected associative array ITlemory module

and FP2 contains the array word or bit column addres s. The link pointer

is commonly used to store the address of the first responder of a search

operation.

The load location keeps track of the addresses associated with instructions

when they are loaded.

Least Significant Bit (bit 31 of 32 -bit word); right-most bit; low order bit.

M-Response Store Register; MASK (256 bits)

The M response store register (MASK) is a 256-bit register contained

in the response store element of each associative array memory module.

Its special use is to select associative memory words participating in an

as sociative operation.

M-Response Store Register

Masked
Store

MDA

MSB

Page
Memory

PageO

Pagel

Page2

PC

PARALLEL
INPUT /
OUTPUT
(OPTIONAL
FEATURE)

ProgralU
Counter

Data being stored into as sociati ve memory may be stored through a

mask which is contained in the M response store register. This is a

masked store. Data will be stored only into words that have the

corresponding M register bit set. Other words are unchanged.

Multi-Dimensional Access meluory; associative memory

Most Significant Bit (bit a of word); left-most bit; high-order bit.

Three page memories of 512 words each are included in the AP control

melUory of the standard STARAN S configuration. They are fast lUemories

that should be used for program segments that require frequent usage

and/or fast execution. The page lUelUory address ranges are: Page a -

000 16 to IFF 16; Page 1 - 200 16 to 3FF 16; Page 2 - 400 16 to 5FF 16 •

High- speed solid state lUelUory; 512 32 -bit words

High-speed solid state lUelUory; 512 32 -bit words

High-speed solid state lUelUory; 512 32 -bit words

ProgralU Counter (16 bits)

Each associative array in STARAN can have up to 256 inputs and 256 out­

puts into the CustOlU I/O cabinet. The basic width of the parallel input/output

(PI/O) is 256 n where n is equal to the nUlUber of associative arrays in the

systelU (n can have a maximulU value of 32). The CUstOlU I/O cabinet is

capable of buffering and reforlUatting the data received frolU any peripheral

device to lUatch the width necessary to cOlUlUunicate with the STARAN

as sociative array.

The progralU counter occupies bits a -15 of the progralU status word in

AP control. The progralU counter contains the addres s of the current

instruction being executed. It is norlUally increlUented sequentially

through control lUelUory. Its norlUal sequence lUay be altered by branch

or loop instruction.

C-s

Progratn
Status
Word

PSW

Resolve

Responder

Response

RS

RO

Rl

R2

R3

R4

R5

R6

R7

SPS

SVS

UBIN

UASCH

The Program Status Word (PSW) consists of the program counter (PC)

(bits 0-15), which contains the address of the current AP control

instruction being executed, and the Interrupt Mask (IMASK) (bits 28-31),

which contains the current interrupt status.

Program Status Word

The resolver logic in AP control finds the as sociative array memory

tnodule address and word address of the first responder. The array

address is loaded into FP 1 and the word address into FP2 (see link pointer).

This permits subsequent operations to only affect the first responder.

A responder is a response store eletnent in an enabled associative array

tnemory tnodule whose Y register bit is set. Generally, responders

indicate words satisfying sotne search criteria. The Y register can be

tested for a response or a no-response condition.

See responder

Response Store

Branch and Link Register (memory location 600 16)

Branch and Link Register (tnemory location 601 16)

Branch and Link Register (memory location 601 16)

Branch and Link Register (tnetnory location 603 16)

Branch and Link Register (metnory location 604 16)

Branch and Link Register (memory location 605 16)

Branch and Link Register (tnemory location 606 16)

Branch and Link Register (tnemory location 607 16)

STARAN Program Supervisor

Supervisor call

Unfortnatted Binary

Unfortnatted ASCII

x

X
Response
Store
Register

Y

Y
Response
Store
Register

X Response Store Register (256 bits)

The X response store register is a 256-bit register contained in the

response store eleITlent of each associative array ITleITlory ITlodule.

It ITlay be us ed as teITlporary storage of data loaded froITl the array

or stored into the array. It can be cOITlbined logically with data froITl

the input network and/or the Y register. It is useful as teITlporary

storage in parallel arithITletic operations or searches.

Y Response Store register (256 bits)

The Y response store register is a 256-bit register contained in the

response store eleITlent of each associative array ITlemory module.

It may be used as temporary storage of data loaded from the array or

stored into the array. It can be cOITlbined logically with data from the

input network. It is useful as temporary storage in parallel arithmetic

operations and searches. It is also used as the responder in a resolve

operation.

C-7

APPENDIX D

HEXADECIMAL/DEClMAL TABLE

GENERAL

HEXADECIMAL­
DECIMAL
NUMBER
CONVERSION

Example

Example

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

The table provides for direct conversion of hexadecimal and decimal

numbers in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

In the table, the decimal value appears at the intersection of the row

representing the most significant hexadecimal digits (16 2 and 161) and

the column representing the least significant hexadecimal digit (16 0).

C 1 16 = 310510

HE~l 2

3072 3073 3074

3088 3089 3090

3104 @ 3106

C3 3120 3121 3122

For numbers outside the range of the table, add the following values to

the table figures:

Hexadecimal Decimal Hexadecimal Decimal

1000 4,096 COOO 49,152
2000 8,192 DOOO 53,248
3000 12,288 EOOO 57,344
4000 16,384 FOOO 61,440
5000 20,480 10000 65,536
6000 24,576 20000 131, 072
7000 28,672 30000 196, 608
8000 32,768 40000 262, 144
9000 36,864 50000 327,680
AOOO 40,960 60000 393, 216
BOOO 45,056 70000 458,752

lC2ll6 = 720110

Hexadecimal Decimal

C2l 3105
+1000 4096

1C21 7201 D-l

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 (ju47
03 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 OU6i' 0062 0063

04 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0876 0077 OU78 0079

05 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095

06 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

08 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143

09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159

OA 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175

OB 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OC 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 U2C 7
OD 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OE 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239

OF 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 C271
11 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335

15 0336 0337 0338 0339 0340 0341 0342 0343 0344 03 ~5 0346 0347 0348 0349 0350 U351

16 0352 0353 0354 0355 ·)356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367

17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399

19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415

lA 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431

IB 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lC 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 U463

ID 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479

lE 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495

1F 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7 8 9 A B l 0 E F

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543

22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 05% 0587 0588 05~9 0590 0591
25 0592 0593 0'594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 U623
27 0624 0625 0676 0627 0628 Oh?q 0630 0631 0632 0633 0634 063:; 0636 0637 063~ 0639
28 0640 0641 0642 0643 0644 0645 0646 0647 0648 Ob4lJ 0650 0651 0652 0653 0654 0655
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 06tll 0682 0683 0684 0685 u686 0687
2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 u7U2 07U3
2C 0704, 0705 0706 0707 0708 07a9 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 U735
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

0 1 2 3 4 5 6 7 8 <;) A B C 0 E F

30 lJ768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 0816 0817 0818 0819 0820 0821 . 0822 0823 0824 0825 0826 0827 0828 0~29 0830 0831
34 L832 U833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0~44 0845 0846 0847
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 uno 0911
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 U926 0927
3A 0928 0929 0930 093l 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000]001 1002 1003 1004 1005 1006 1007
3F 1008 1009 1010 1011 1012 1013 10]4 1015 1016 1017 1018 1019 1020 1021 1022 1023

D-2

0 1 2 3 4 5 6 ij 9 A B C D E F

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1Q81 1082 1083 1084 1085 108S 1087
44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 III 7 1118 1119
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48 1152 1153 1154 1155 1156 1157 l1SR 1159 1160 1161 1162 1163 1164 1165 1166 1167
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 11 7B 1179 1180 1181 1182 IUD
4A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 119B 1199
4B 1200 1201 1202 1203 1204 1205 120h 1207 1208 1209) 210 1211 1212 1213 1214 1215
4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 122) UL6 LUi' InC! 1229 1230 1231
4D 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

U 1 2 3 4 5 6 7 ~ 9 A B C D E F

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 1360 1361 1362 1363 1364 1365 1366 1367 136H 1369 1370 1371 1372 1373 1374 1375
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SA 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 146h 1467 1468 1469 1470 1471
5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
50 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SF 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

U 1 2 3 4 5 6 8 9 A B C D E F·

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64 1600 16ul 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 162B 1629 1630 1631
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
6<1 168li 1681 1682 1683 1684 1685 1686 16B7 1688 1689 1690 1691 1692 1693 1694 1695
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 17U7 1708 1709 1710 1711
6B 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6e 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
60 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E 176U 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F 1776 1777 1778, 1779 1780 1781 1782 1 783 1784 1785 1786 1787 1788 17B9 1790 1791

U 1 2 3 4 5 6 H 9 A B C D E F

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 18u6 1807
71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 lR6B 1869 IB70 1871
75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 19u2 1903
77 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 195u 1951
7A 1952 1953 1954 1955 1956 1957 1958 1959 ·1960 1961 1962 1963 1964 1965 1966 1967
7B 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
70 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E 2016 2U17 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

D-3

0 1 2 3 4 5 b 7 t! 9 A B C 1) [F

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 2160 2161 2162 ?lil1 ?164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
80 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

U 1 2 3 4 5 h t! <j A B C D E F

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 2352 2353 2354 2355. 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 8 9 A B C 1) E F

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4 2624 2625· 2626 2627 2628 2629 2630 2631 2632 2633 2634 . 2635 2636 2637 2638 2639
AS 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670. 2671
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
AB 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

0 1 2 3 4 5 6 7 8 9 A B C D E F

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B1 2832 2833 2834 2835 2836 2837 ·2838 2839 2840. 2841 2842 2843 2844 2845 2846 2847
B2 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9 2960 2961 2962 2963 2964 2965 2966 2967 i968 2969 2970 2971 2972 2973 2974 2975
BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB 2992 2993- 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

D-4

0 1 2 3 4 5 6 7 H 9 A B C D E; F

CO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C1 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 '?~98 3099 3100 3101 3102 3103
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
CB 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

0 1 2 3 4 5 6 7 8 9 A B C D E F

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 8 9 A B C D E F

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
El 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4 3648 3649 3650 3651 3652 3653 ·3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 ·3706 3707 3708 3709 3710 3711
E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 ·3758 3759
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

0 1 2 3 4 5 6 7 8 9 A B C D E F

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F1 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933· 3934 3935
F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 3952 3953. 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8 3968 3969 3970 3971 397.2 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD' 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

D-5

APPENDIX E

OCTAL/DECIMAL TABLE

E-i

0000
to

0777
(Octal)

0000
to

0511
(Decimal

Octal Decimal
10000· 4096
20000· 8192
30000 . 12288
40000· 163M
50000 . 20480
60000·24576
70000 . 28672

)

1000
to

1777
(Octal)

0512
to

1023
(Decimal)

0000
0010
0020
0030
0040
OO~O

0060
0070

0\00
0110
0120
0130
0140
0150
0180
0170

0200
0210
0220
0230
0240
0250
0260
0270

0300
0310
0320
0330
0340
03S0
0360
0]'70

1000
1010
1020
1030
1040
1050
1060
1070

1100
1110
1120
1130
1140
1150
1160
1110

1200
1210
1220
1230
1240
1250
1260
1210

1300
1310
1320
1330
1340
1350
1360
1370

0

0000
0008
0016
0024
0032
0040
0048
00~6

0064
0072
0080
0081
0096
0104
0112
0120

0128
(j:36
0144
0152
0160
('161
0176
0184

0192
0200
0208
0216
0224
0232
0240
0248

0

0512
0520
0528
0536
0544
0552
0560
0568

0576
0584
OS92
0600
0608
0616
0624
0632

0640
0648
06~6

0664
0672
0680
0688
0696

0704
0712
0720
0728
0736
0744
0752
07&0

I 2 3

0001 0002 0003
0009 0010 0011
0017 0018 0019
002~ 0026 0027
0033 0034 003~

0041 0042 0043
0049 0050 OOSI
00~7 00~8 00S9

006~ 0086 0067
0073 0074 007~

0081 0082 0083
00'9 0090 0091
0097 009' 0099
010~ 0106 0107
0113 0114 Oll~

0121 0122 0123

0129 0130 0131
0137 0138 0139
OUS 0146 0147
01S3 0154 0lS5
0161 0162 0163
0169 0170 0171
0177 0171 0179
0185 01&6 0187

0193 0194 019~
0201 0202 0203
0209 02tO 0211
0217 0211 0219
0225 0226 0227
0233 0234 0235
0241 0242 0243
0241) 0250 02~1

I 2 3

0513 0514 0515
0521 0522 0523
0529 0530 0531
0537 0531 0539
0545 0548 0547
0553 0554 0555
u561 OS62 0563
0569 0570 0571

0577 0578 0579
0585 0586 0~87

OS93 0594 0595
0601 0602 0603
0609 0610 0611
0617· 0618 0619
0625 0626 0627
0633 0634 0635

0641 0642 0643
0649 0650 06S1
(6)7 0658 0659
0665 0666 0667
0673 0674 067~

0681 0682 0683
0689 0690 0691
0697 0698 0699

070~ 0706 0707
0715 0714 0715
0721 0722 0723
0729 0730 0731
0737 0738 0139
0745 0746 0747
0753 0754 075S
0761 0762 076J

4 ~ 6 7

0004 OOO~ 0006 0007 0400
0012 0013 0014 001~ 0410
0020 0021 0022 0023 0420
0028 0029 0030 0031 0430
0036 0037 0038 0039 0440
OOH 0045 0046 0047 04S0
00~2 00~3 00~4 OO~~ 0460
0060 0061 0062 0063 0470

0068 0069 0070 0071 O~OO
0076 0077 0078 0079 O~IO
0084 008~ 0086 0087 O~~O
0092 0093 0094 009~ 0~30

0100 0101 0102 0103 OHO
0108 0109 OliO 0111 0550
0116 0117 0118 0119 0560
0124 0125 0126 0127 0~70

0132 0133 0134 0135 0600
0140 0141 0142 0143 0610
0148 0149 01~0 0151 0620
0156 0lS7 0158 0159 0630
0164 016S 0166 0167 0640
0172 0173 0174 0175 0650
0180 0181 0182 0183 0660
0188 0189 0190 0191 0670

0198 0197 0198 0199 0700
0204 020S 0206 0207 0710
0212 0213 0214 0215 0720
0220 022a 0222 0223 0730
0228 0229 0230 0231 0740
0236 0237 0238 0239 07S0
0244 0245 0246 0247 0760
0252 0253 02S4 02S~ 0770

4 S 6 7

OSI6 OSI7 OSI8 OSI9 1400
0524 0~2S 0526 0527 1410
0532 0~33 0534 0~35 1420
0540 0541 (lS42 0~43 1430
0548 0549 0550 OS51 1443
0556 0~57 0558 0559 1450
0564 1}565 0566 0567 1460
0572 0573 aSH 0575 1470

0580 OS8I 0582 0583 I~OO
0588 0.09 0590 0591 I~IO
0596 0597 0598 0599 IS20
0604 0605 0606 0607 IS30
0612 0613 01514 0615 1~40
0620 01121 0622 ~23 1550
0628 0629 0630 0631 1560
0636 0637 0638 0639 1570

0644 0645 0646 0547 1600
06S2 0653 06S4 0555 1610
0660 0661 0662 0663 1620
0668 0669 0670 0671 1630
0676 0677 0678 0679 1640
0684 068~ 0686 0687 16~0
0692 0693 0694 0695 1660
0700 0701 0702 0703 167('

0708 0709 0710 0711 1700
0716 0717 0':18 0719 1710
0724 0725 0726 0727 1720
0732 0733 0734 0735 1730
0740 0741 0742 0743 1740
0748 0749 0750 0751 1750
0751'i 0757 0758 0759 1760
0764 0765 07&5 0767 1170

0 I 2 3 4 ~ 6 7

02~6 02~7 02~8 0259 0260 0261 0262 0253
0264 0265 0266 0267 0268 0269 0270 0211
0272 0273 0274 027~ 0276 0277 0278 0279
0280 0281 0282 0283 0284 028~ 0286 0281
0288 0289 0290 0291 OB2 0293 0294 029S
0296 0297 0298 0299 030C! 0301 0302 0303
0304 030~ 0306 0307 0308 0309 0310 0311
0312 0313 0314 031~ 0316 0317 0318 0319

0320 0321 0322 0323 0324 032S 0326 0~21

0328 0329 0330 0331 0332 0333 0334 033~

0336 0337 0338 0339 0340 0341 0342 0343
0344 034~ 0346 0347 0348 0349 0350 03S1
03~2 a3~3 03S4 0355 03~6 03~7 03S8 03~9

0360 0361 0362 0363 0364 0365 0366 03'57
0368 0369 0371) 0371 0372 0373 0374 037~

0376 0377 0318 0379 0380 0381 0382 0383

0384 0385 0386 0387 0388 0389 0390 0391
0392 0393 0394 0395 0396 0397 0398 0399
0400 0401 0402 0403 040-4 0405 0406 0407
0408 0409 0410 0411 0412 0413 0414 041~

0416 0417 0418 0419 0420 0421 0422 0423
0424 042S 0426 0427 0428 0429 0430 0431
0432 0433 0434 0435 0436 0437 0438 0439
OHO OHI 0442 0443 0444 0445 OH6 0447

0448 0449 0450 04~1 0452 0453 0454 045S
0456 0457 0458 0459 0460 0~61 0462 0463
0464 046S 0466 0467 0468 0469 0410 0411
0472 0473 0474 0475 0476 0477 0478 0479
0480 0481 0482 0483 0484 0485 0486 0487
0488 0489 0490 0491 0492 0493 0494 00195
0496 0497 0498 0499 O~OO 0501 0~O2 0503
0504 0~05 050~ 0507 OS08 nc,09 0)10 O~II

0 I 2 3 4 S 6 7

0768 0769 0770 0771 0772 0773 0774 0775
0776 0777 0778 0779 0780 0781 0782 0783
0784 0785 0786 0787 0788 0789 0790 0791
0792 0793 0794 0795 0796 0797 0798 0799
08JO 0801 0802 0803 0804 0805 0808 0807
0808 080!l 0810 0811 0812 0813 0814 0815
0816 0817 0818 0819 0820 0821 0822 0823
0824 0825 0826 0827 0828 0829 0830 0831

0832 0833 0834 0835 0836 0837 0838 0839
0840 0841 0842 0843 0844 0845 0846 0147
0848 0849 0850 0851 0852 0853 0854 0855
08S6 0857 08~8 0859 0860 0161 08~2 OUj
0864 0865 0866 0867 0868 0869 0170 0171
0872 0873 0874 0875 0176 0877 0178 017&
0880 0881 0882 0883 0814 0115 0816 0887
0888 0889 0890 0891 0892 OIU 089' 0'95

0896 0897 0898 0899 0900 0901 0~02 0903
0904 0905 0906 0907 0908 0909 0910 0911
0:H2 0913 0914 0915 0916 0917 0918 0919
0920 0921 0922 0923 0924 0925 0926 0927
0928 0929 0930 0931 0932 0933 0934 0935
0936 0937 0938 0939 0940 0941 0942 0943
09H 0945 0946 0947 0948 0949 09S0 09S I
09~2 09 !:I 3 0954 09SS 0956 0957 0958 09~9

0960 0961 0962 0963 0964 0965 0966 0967
1)968 0969 09'70 0971 0972 09j3 0974 0975
0976 0977 0918 0979 0980 0981 0982 0983
098 4 0985 0986 0987 0918 0989 0990 0991
0992 0993 0994 0995 0996 0997 09i8 0999
1000 1001 1002 1003 1004 1005 1008 1007
1008 1009 1010 1011 1012 lOll 1014 10:5
1016 1017 1018 1019 1020 1021 1022 1~23

E-l

2000 I 1024 to to
2777 1535

(Octal) (DecImal)

Octal o..cimal
10000· 4096
20000· 8192
30000 . 12288
40000 . 16384
50000 . 20480
60000 . 24576
70000 . 28672

.3000
to

3777
(Octal)

1536
to

2CW7
(DecImal)

2000
2010
2020
2030
204n
2050
20~0

2070

2100
2110
2120
2130
2 .. 0
2150
2HiO
2170

2200
2210
2220
2231)
2240
2250
2210
2270

23"0
nlo
2320
2330
2340
2350
2360
2nD

30M
)nlO

)1)20
303n
3040
3050
30AO
3(\71)

3100
3110
3120
ll30
3141)
3150
3IfiO
3170

3200
3210
3220
3230
3740
3150
3260
3270

3300
HIO
3320
3110
H40
3350

.13M
))70

0

1024
1032
11)40
1:>48
10~6
1064
1012
1080

10""
log,
1104
1112
1120
1128
1136
1144

II !)2
1160
1158
\176
IIlt4
1192
1200
1208

1216
1224
1232
1740 .,."
125fi
1264
1212

0

1536
1544
1~~2

15'0
I~U
1515
1584
1592

1600
1608
1616
1824
1632
16·0
1648
1656

1~64

1672
1,)80
I 'All
1696
1704
1712
1720

17711
1736
17"
I7S2
17fiO
I1fiA
1776
P84

1 2

102~ 1026
1033 1034
1041 1042
1049 IO~O

1057 10~R

10~S 1066
1073 1014
1081 1082

10119 1090
1097 1098
1I0S 1106
1113 1114
1121 1122
1129 1130
1137 II 38
114'1 II4G

II 53 11 4
116\ IH52
11~9 1170
1177 1111
118~ 1186
1193 1194
1201 1202
1209 1210

1217 121'
1225 1226
1233 1234
1241 1242
1249 12S0
1251 1251
1265 I2A6
1273 1214

I 2

IS:l7 153.
1545 1~46

1!l53 1554
IS61 1562
151;9 1570
1577 1578
1585 1586
1591 1594

1601 1602
1609 1610
1617 1618
1625 1626
Ifill 1634
1641 1642
1649 1650
1657 1658

IMS 1666
1673 1674
Ifi81 1682
1f\R9 1690
1697 1698
1705 1706
1713 1714
112 I 1722

1729 1130
1137 17311
1145 1746
J1H J7~4
1761 1762
176!) 1770
J 777 1778
J785 J711fl

3 4 ~ 6

1021 1028 1029 1030
1035 IOl6 IOl1 1030
1043 tOH 1045 1046
10~1 IO~2 10j3 1054
10~9 10SO 1061 1062
1061 1068 1069 1010
101~ 1016 1011 1018
1083 1084 1085 1086

1091 1092 1093 1094
1099 1100 IIUI 1102
1107 1108 1109 1110
1115 1116 1111 1110
1:23 1124 Il2S 1126
1131 1132 1133 1134
II 19 1140 1141 1142
1141 1148 1149 1150

II SS 1156 1157 1158
1163 1164 1165 1166
1171 1112 1113 1114
1179 1180 1181 1112
III" 1188 1189 1190
119~ 1196 1191 1191
1203 1204 1205 1206
1211 1212 1213 1214

1219 1220 1221 1222
1221 12211 1229 1230
1235 1236 1231 1230
1743 1244 1245 1246
1251 I2S2 J253 1254
1259 1250 1261 1262
12157 12150 1269 1210
1275 12115 1271 1278

3 4 5 6

1539 1540 1541 1542
1~41 1~40 1549 1550
1555 1556 15S7 15S8
1563 1564 IS6S IS66
J571 1572 1513 1574
1579 1~80 1581 1582
1581 1588 1589 1590
159~ 1596 1597 1598

1603 1604 1605 1606
1611 1612 1613 1614
1619 1620 1621 1622
1627 1628 1629 1630
1635 1636 1637 i638
1643 1644 1645 16-\6
16S1 1652 1653 16.)4
1659 1660 1661 1662

1661 1868 1669 1670
1675 1676 1611 1678
1683 1684 1685 1686
1691 1692 1693 1694
1699 1100 1101 1702
1701 1108 1709 1710
1715 1116 1717 1718
1723 1724 1125 1726

1731 1732 17:i3 1734
1739 1740 1141 1742
1741 1748 1749 1750
1755 1156 17S7 1758
1763 1764 1765 1766
1771 1772 1113 1774
1779 1780 1781 1782
1787 n88 1709 1'9~

1 0 I 2 3 4 ~ 6 7

1031 2400 1200 1201 1282 121U 1211'4 1285 12.6 un
1030 2410 1208 1289 1'290 1291 1292 1293 1294 1295

1041 2420 1298 1291 1298 1299 1300 llOI 1302 1l0l

10~5 2410 1304 lJ05 Il06 1301 1308 ll09 1310 1311

1063 2440 1312 1313 Ill4 1315 1316 ll11 1318 1311

1011 2450 1320 1321 1322 1323 1324 1125 1326 1327

1079 2460 1320 1329 1330 1331 1332 1113 1334 1335

IOS1 2470 1338 1131 1338 1339 1340 1141 i 342 IlU

1095 2500 tJ.44 1145 1346 1341 1348 1149 1350 1351
1103 2510 1352 1353 1354 1355 1356 1357 135' 1359
1111 2520 1360 1361 13;)2 1363 1364 1165 1366 1367

1119 2530 1360 1369 1310 1371 1372 137J 1314 13n
1127 2540 1116 1371 1318 1319 1380 1181 1382 138J
IllS 2550 1~4 1385 1386 1381 1388 IJ89 1)90 1191
1143 2560 1392 1393 1394 1395 1396 1391 139. 1399
1151 2570 1400 1401 1402 1403 1404 1405 140E 1401

1159 2600 1408 1409 1410 1411 1412 1413 1414 14 IS
1161 2610 1416 1417 1418 1419 1420 1421 1422 1423
1I1~ 2620 1424 142~ 1426 1421 1428 1429 1430 lUI
1103 2630 1432 1433 1434 1435 1436 1431 1438 1431
1191 2640 1440 1441 1442 1443 1444 1445 1446 1447
1199 26~& 1448 1449 14~0 1451 14~2 1453 1454 1455
1201 2660 1456 1451 1458 1459 1460 1461 1462 14U
1215 2610 1464 1465 1466 1461 1468 1469 1410 14'71

1223 2700 1412 1473 1414 1415 1416 1411 141a 141'
1231 2110 1480 1401 1482 1483 1484 1415 1411a 141'7
1239 2120 1488 1489 1490 1491 1492 1493 1494 14'S
1241 2730 1496 1491 1490 1499 ISoo 1501 1502 1503
I2SS 2740 1504 1505 1506 1501 1508 IS09 1510 1511
1263 21S0 1512 1513 1514 ISIS 1516 1517' 1518 ISII
1211 2760 1520 1521 1~22 1523 1524 1525 1526 1527
1279 2110 1528 1529 1530 1531 1532 1531 1534 1535

? 0 I 2 3 4 5 6 7

1543 3400 1192 1193 1194 1795 1196 1791 1191 In9
1551 3410 1800 1801 1802 1803 1804 1805 1.06 1101
15~9 3420 1808 1809 1810 1811 1812 1813 1814 1815
1561 3430 1816 1811 1818 1019 1120 1821 1822 1823
1515 3440 1824 1825 1826 1821 1128 1829 1830 1831
1583 3450 1832 1833 1834 1835 1836 1831 1838 1839
1591 3460 1840 1841 1842 1843 1-844 1845 1846 1847
1599 3410 1848 1849 1850 1851 1852 1853 1854 laS5

1601 3500 1856 1857 1858 1859 1860 1861 1862 1~3

1615 3510 1864 1865 1866 1861 1868 1869 1810 1111
1623 3520 1872 1873 1814 1815 1816 1811 1818 1819
1631 3530 1880 1881 1882 1883 1884 1885 18116 1881
1639 3540 1808 1889 1890 1891 1892 1193 1894 1895
1641 3550 1096 1897 1898 1899 1900 1901 1902 1903
1655 3560 1904 1905 1906 1907 1908 1909 1910 1911
1663 3510 1912 1913 1914 1915 1916 1917 1918 1919

1671 3600 1920 1921 1922 1923 1924 1925 1926 1921
1679 3610 1928 1929 1930 1931 1932 1933 1934 U35
i681 3620 1936 1931 1938 1939 1940 1941 1942 1943
1695 3630 1944 1945 1946 1947 1948 1949 1950 19~,

1703 3640 1952 1953 1954 19S5 1956 1951 1958 1959
1711 3650 1960 1961 1962 1963 1964 1965 1966 1961
1119 3660 1968 1969 1910 1971 1972 1973 1974 1975
1121 3610 1916 1971 1978 1979 1980 1981 19"2 1983

1135 3700 19114 1985 1986 I 11ft 7 1988 1989 1990 1991
1743 3710 1992 1993 1994 199~ 1996 1997 1998 1999
1751 3720 2000 2001 2002 2003 2004 2005 2006 2007
1759 3130 2008 2009 2010 2011 20lZ 2013 2014 20lS
1767 3140 2016 2017 2018 2019 2020 2021 2Q22 20n
Ins 3"50 2024 :lon 2026 2027 201$ 2(129 2030 2011
1713 3160 2032 2033 2034 203S" 2036 20"37 203a 2031
1791 l77J 2~0 2041 2042 20.3 2~04 20-45 Z046 Z047

E-2

4000 2048
to to

4777 2559
(Oct.l) (Decim.1

Oct. I Decim.1
10000· 4096
20000· 8192
30000 . 12288
40000 . 16384
50000 . 20480
60000 . 24576
70000 . 28672

5000 2560
to to

5777 3071
(Oct.l) (Oecim.1

)

)

4000
4010
4020
4030
4040
40"10
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
4310
4320
4330
4340
4350
4360
4370

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
5140
5150
5180
5170

5200
5210
5220
5230
5240
5250
5260
5270

5300
5310
5320
5330
5340
5:50
5360
5310

0

2048
2056
2064
2072
2080
2088
2096
21114

2112
2120
2128
2136
2144
2152
2160
2168

2176
21B-4
2192
2200
2208
2216
2224
2232

2240
22-48
2256
2264
2212
2280
2288
2296

0

2560
25 ..
2575
2584
2592
2100
260.
2616

2624
2632
2640
2648
2656
2664
2672
2680

2688
2696
2704
2712
2720
2728
2736
2744

2'752
2160
2768
27'76
2784
%792
2100
210.

I 2

20049 20'j0
20~7 20~8

2065 2066
2073 2074
2081 2082
2089 2090
2097 2098
2105 2106

2113 2114
2121 2122
2129 2130
2137 2138
214) 2146
2153 2154
2161 2162
2169 2170

2177 2178
2185 2186
2193 2194
2201 2202
2209 2210
2217 2218
2225 2226
2233 2234

2241 2242
2'49 2250
2257 2258
2265 2266
2273 2274
2281 2282
2289 2290
2297 2298

1 2

2561 2562
2589 2570
2577 2S7.
2585 2585
2Si3 2594
2101 21S02
2809 2610
2617 2618

2625 2626
2633 2634
2641 2642
2649 2650
2657 2658
2665 2666
2673 2674
2681 2682

2689 2690
2697 2698
2705 2706
2713 2714
2721 2722
2729 2'730
2737 2738
2145 2746

2153 215-4
2761 2762
2769 2770
2777 2778
2785 2786
2793 2794
2801 2102
2109 2110

J 4 ~ 6 7

20'jl 20~2 20~3 20~4 20~5

2059 2060 2061 20:62 2063
2067 2068 2069 2070 2071
207"1 2076 2077 2078 2079
2083 2084 208~ 2086 2087
2091 2092 2093 2094 2095
2099 2100 2101 2102 2103
2107 2108 2109 2110 2111

2115 2116 2117 211 R 2119
2123 2124 2125 2126 21:7
2131 2132 2133 21 J4 2135
2139 2140 2141 2142 2143
2147 2148 2149 2150 2151
215~ 2156 2157 2158 21~9

216~ 2164 2165 21G6 2167
2171 2172 2173 2174 2175

2179 2180 2181 2182 2183
2187 2188 2189 2190 2191
2195 2196 21~7 2198 2199
2203 2204 2205 2206 2207
2211 2212 2213 2214 2215
2219 2nO 2221 2222 222J
2227 2228 2229 2230 2231
2235 n36 2237 2238 2239

2243 2244 2245 2246 2247
2251 2'52 2253 2254 n~5

2259 2260 2261 2262 2263
2267 2268 2269 2270 2271
2275 2276 2277 2278 2279
2283 2284 2285 2286 2287
2291 2292 2293 2294 2295
2299 2300 230 I 2302 2303

3 4 '> 6 7

2563 2564 2565 2566 2567
2571 2572 2S73 2574 2575
2579 2580 2581 :t582 2583
2587 2511 2~'" 2590 2591
2595 25ie 2597 25U 2599
2803 2e04 2105 21Soe 2607
2811 2612 2G13 2~1" 2615
2619 2620 2e21 2622 2823

2627 2G28 2629 2630 2631
263) 2636 2637 2638 2639
2643 2644 2645 2646 2647
2651 2652 2653 2654 2655
2659 2660 2661 2682 2663
2667 2668 2669 2670 267\
2675 2676 :!677 2678 2679
2683 2684 2685 2686 2687

2691 2692 2693 2694 2695
2699 2700 2701 2702 2703
2707 2708 2709 2710 2711
2715 2716 2717 2718 2;19
2123 2724 2725 2726 2727
273\ 2732 2733 2734 2735
2139 2740 2141 2742 2743
27047 2148 2749 27S0 275'1

2155 2756 2757 2758 2759
2763 2764 2765 2766 2767
2771 2772 2773 2774 2775
2779 2780 2781 2782 2783
2787 2788 2789 2790 2791
2795 2796 2797 2798 2799
2803 28004 2805 2a06 2a07
2111 2812 2113 2814 2115

0 1 2 l 4 S • 7

4400 2)04 2305 2306 2307 2308 2309 2310 UII
4410 2)12 2313 231~ 2315 2316 2317 2311.\131,
4420 2320 2321 2322 2323 2324 2325 2328 U27
01430 2328 2)29 2330 2331 2332 23J3 2334 il35
4440 2336 2337 2338 2339 2340 2341 2342 nu
44:'0 2344 2345 2346 2347 2348 2349 21S0 USI
01460 2352 23~3 2354 2355 2356 2357 2351 21St
4470 2360 2361 2362 2363 2364 2365 236. 2317

4500 2368 2369 2370 2371 2372 2373 2374 237S
4510 2376 2377 2378 2379 2380 7381 2382 2383
4520 2384 2385 2386 2387 2388 2389 2390 2191
4530 2392 2393 2394 2395 2396 2397 2391 2399
4540 2400 2401 2402 2403 2404 2405 2406 2407
45~0 2408 2409 2410 2411 2412 2413 2414 241S
4560 2416 2417 2418 2419 H2O 2421 2422 2423
4570 2424 2425 2426 2427 2428 2429 2430 2431

4600 24 n 2433 H34 2435 2436 2437 2438 243'
4610 2440 2441 2442 2443 2441 2445 2446 2447
4620 2448 2449 2450 2451 2452 245J 2454 2455
4630 2456 2457 2458 2459 2460 2461 2462 2483
4640 2-164 2465 2466 246" 2468 2469 2470 2471
4650 2472 2473 2474 2475 2476 2477 24'78 2479
4660 24BO 2481 2482 2483 2184 2485 2486 2487
4670 2488 2489 2490 2491 2492 2493 2494 2495

4700 2496 2497 2498 2499 2500 2')01 2502 2503
4710 2504 2'105 2506 2507 2'>08 2509 2510 2SIl
4720 2S12 2513 2514 2515 2516 2517 2518 2519
4130 2S20 2521 2522 2523 2524 2525 2528 2527
4740 2528 2529 2530 2531 2532 2533 2534 2535
4750 2536 2537 2538 2539 2540 2541 2542 2543
4760 25.;.4 2545 2546 2547 2548 2549 2550 2551
4770 2552 2553 2554 2555 2556 25'>7 2558 2559

0 I 2 3 4 ~ 6 7

5400 2P.16 2817 2818 2819 2820 28'-1 2122 2.23
54'0 2824 2825 2826 2827 2828 2829 2130 2UI
5420 2832 2833 2834 2835 2836 2837 2.38 2U.
5430 2840 2841 28-42 2843 2844 2845 2846 :1.,
5440 2&.48 2849 2850 2851 2852 2853 2854 2.U
5450 2856 2857 2858 2859 2860 286L 2862 2 • .,
5460 2864 2865 2866 2867 2868 2869 2170 le71
5470 2872 2873 28701 2875 2816 2877 28n 281W

5500 2880 2881 2882 2883 :!884 2885 2886 2817
5510 2888 2889 2890 2891 2892 2893 2894 289~
5520 2896 2897 2898 2899 2900 2901 2902 290~
5530 2904 2905 2906 2907 2908 2909 2910 2911
5540 2912 2913 2914 2915 2916 2917 291' 2.19
5550 2920 2921 2922 2923 2924 2925 2928 292'7
5560 2928 2929 2930 2931 2932 2933 2934 2935
5570 2936 2937 2938 2939 2940 2941 2942 2943

5600 2944 2945 2946 ~947 2~48 2949 2950 2951
51)10 2952 2953 2954 2955 2956 2957 2958 2959
5620 2960 2961 2962 2983 :!964 2965 2966 2967
5630 2968 2969 2970 2971 2972 2973 29'74 29'7S
5640 2976 2917 2918 2979 2980 2981 2982 n.3
5650 298" 2985 2986 2997 2988 2989 2990 2991
5660 2992 2993 2994 2995 2996 2997 2998 2999
5610 3000 3001 3002 3003 3004 3005 3006 3007

:l700 3008 3009 3010 3011 3012 3013 3014 3015
5'710 3016 3017 JOl8 3019 3020 3021 3022 302l
~720 3024 3025 3026 3027 3028 3029 3030 3031
5730 30n 30n 30~4 3035 3036 3037 3038 3039
5740 3040 3041 3042 3043 3044 3045 3046 3047
5750 30411 3049 3050 30S1 3052 '30S3 3054 3055
5'760 3056 3057 30S1 3059 3060 3061 3062 3~l
5'7'70 3064 301S5 3De6 3067 3068 3069 lOlO 307l

E-3

6000 3072
to to

6777 3583
(Oet~l) (D~elm~l)

Oetil D~clm~1
10000· 4096
20000· 8192
30000· 12288
40000 . 163804
50000 . 20480
60000 . 24576
70000 . 28672

7000 3584
to to

7777 4095
(Oet .. l) (Declm .. l)

.000

.010

.020

.030

.040

.O~O
6080
1070

1100
61\0
1120
1130
6140
81S0
8160
8170

1200
.210
.220
6230
&240
82~0
S2l0
1270

8300
8310
8320
8110
1340
8150
6360
6370

7000
7010
7020
7030
7040
7050
7010
7070

7100
7110
'7120
7130
7140
71!10
7180
7170

7200
7210
7220
7230
7240
'7250
1210
7270

?loo
?l10
?l20
7330
~l40
7H:>
7)tO
1)70

0

3072
3080
30U
3096
3104
3112
3120
3121

3136
3144
3152
3160
3168
3176
3184
3192

3200
3208
3216
3224
3232
3240
3241
3256

3264
3272
3280
3288
3296
3304
3312
3320

0

3584
3592
1600
3101
3616
3624
3632
3840

3648
3656
3664
3172
3610
3811
3896
3704

3712
3720
3721
3731
3744
l7!l2
1780
3761

3778
3714
3792
~.oo

3101
3111
3124
3132

1 2

3073 3074
JOl1 3082
3089 3090
3097 3098
310S 3106
311 J 3114
3121 3122
JI29 3130

31 J7 3138
314S 3146
31)3 3154
3161 3162
3169 3170
31H) lit!
3185 3186
3193 3194

3201 3202
3209 3210
3117 3218
3225 3226
3233 3234
3241 3242
3249 32~0

3257 32~8

326S 3266
3273 3274
3281 3282
3289 3290
3297 3298
3305 3306
3313 3314
3321 3322

1 2

3~85 3')86
3~93 3594
3601 3602
3609 361U
:-617 3618
362S 3626
36J3 3634
3641 3642

3649 36S0
36S7 36S8
366S 3666
3673 3874
3811 3682
3U9 3890
3891 3698
370S 3706

3713 3714
3721 3722
)lJ29 3730
3137 3738
3745 3748
3H3 3H4
3761 3782
3769 3770

3777 3778
3715 3788
3793 3794
3101 3802
3109 3810
3817 3118
312S 3826
3133 3'134

3 4 ~ 6 •
307~ 3076 3077 3078
3()8) 3084 308~ 3086
3091 3092 3093 3094
30')9 3100 3101 3102
3107 3108 3109 3110
3115 3116 3117 3118
3123 3124 3125 3126
3 13 I 31n 3133 3134

3139 3140 3141 3142
3141 3148 3149 3150
31) S 3156 31S1 31:'8
316) 3164 3165 3166
j 171 3112 3\13 ~!74

)IB 3180 3181 3182
3181 3188 3189 3190
3195 3196 3191 3198

3203 n04 3205 3206
3211 3212 3213 3214
3219 3220 3221 3222
3227 3228 3229 32)0
3235 3236 3237 3238
3243 3244 3245 3246
3251 3252 3253 3254
3259 3260 3261 3262

3267 3268 3269 3210
3275 3276 3277 3278
3283 3284 3285 3286
3291 3292 3293 3294
3299 3300 3301 3302
3307 3308 3309 3310
3315 3316 33\1 3318
3323 3324 3325 3326

3 4 5 6

3587 3588 3589 3590
3595 3596 3597 3598
3603 3604 3605 3606
3611 3612 3613 3614
3619 3620 3621 3622
3627 3628 3629 3630
3635 3636 3637 3636
3643 3644 3645 3646

3651 3652 3653 3654
3659 3660 3661 3662
3667 3668 3669 3670
3675 36115 3677 3678
3683 3884 3685 3688
3691 3892 3893 3694
3699 3700 3701 3702
3707 3708 3709 3710

3715 3718 3717 3"18
3723 3724 3725 37215
3731 3732 3733 3734
3139 3740 3741 3742
3741 3748 3749 37S0
3755 3758 37S7 37S8
3783 3784 3765 3768
3771 3772 3773 3774

3779 3780 3781 3782
3787 3788 3709 3790
3795 3'796 3797 3790
3103 3804 380~ 3808
3811 3812 3813 3114
311g 3820 31121 3822
3127 3820 3829 3.30
3135 lUG lIl7 3830

7 0 1 2 3 4 ~ 6 7

3079 6400 3328 3J29 3330 ll31 3332 3333 33H 33)~

3M7 6410 3336 3337 3338 3J39 3340)341 3J42 JJ4 3
3095 6420 3344 334.5 3346 3347 3348 3349)3')0 33~1

3103 6430 3JS2 3353 3354 3355 33')6 33~7 33')8 33')9
3 III 6440 3360 3361 ·3362 3363 3364 3365 3366 3367
3119 64S0 3368 3369 3J70 3)71 3372 3373 3374 337S
3127 6460 3376 3377 33;!j 3379 3380 3381 3382 JJ83
313S 6410 3384 338~ 3386 3381 3388 3389 3390 3391

31.0 6500 3392 3393 3394 339S 3396 3391 3)98 3399
3 I ~ I 6~10 HOD 3401 3402 3403 H04 340~ 3406 3407
31,)9 6520 H08 3409 3410 HII 3412 ~ ~ 13 3414 3415
3167 6530 HI6 3417 3418 3419 3420 3421 3422 3423
3175 6~40 H24 342~ 3426 3421 3428 3429 3430 3431
)183 6~50 3432)433 3434)435 34:6 3437 3438 3439
3191 6560 3440 3441 3442 344 3 3444 344~ 3446 34.7
3199 6510 3448 3449 3450 34 ~ I 3452 3453 3454 ~455

3201 6600 3456 3451 3458 34~9 3460 3461 3462 3463
3115 6610 3464 3465 3466 3467 3468 3469 3470 3471
3223 6620 3412 3473 3474 3475 3476 3471 34';'8 3419
3231 6630 3480 H81 H82 3483 3484 348~ 3486 H87
3239 6640 3488 3489 3490 3491 H92 3493 3494 3495
3247 66~0 3496 3497 3498 3499 3500 3501 3502 3503
325~ 6660 3j04 3~05 3~06 3507 3508 3509 3510 3511
3263 6610 3512 3~ 13 3514 3515 3516 3~ 17 3518 3519

3271 6700 3520 3521 3522 3523 3~24 3525 3526 352'1
3279 6110 3528 3529 3530 3531 3532 3533 3~34 3535
3281 6120 3536 3537 3~38 3539 3~40 3541 3542 3543
3295 6130 3544 3~4'> 3546 3547 3548 3549 3550 3S51
3303 6HO 3552 35'13 3554 3555 3556 3557 3558 35~9

3311 61~0 3560 3~61 3562 3563 3564 3565 3566 3567
3319 6760 3'>68 3569 3~10 3571 3572 3~73 3574 3575
3327 6770 35:6 JS77 3578 3519 3580 3581 3~82 3~83

7 0 I 2 3 4 5 6 7

3591 1400 3840 3841 3842 3843 3844 3845 3846 3847
3599 1410 3848 3849 3850 3851 3852 :l853 3854 3855
3607 7420 3856 3857 3858 3859 3860 3861 3862 3863
361~ 7430 3864 3865 3866 3867 3868 3869 3870 3871
3623 1440 3872 3873 3814 3875 3876 3877 3878 3879
3631 7450 3880 3881 3882 3883 3884 3885 3886 3887
3639 7460 3888 3889 3890 3891 3892 3893 3894 3895
3647 7470 3896 3891 3898 3899 3900 3901 3902 3903

3655 7500 3904 3905 3906 3907 3908 3909 3910 3911
3663 7S10 3912 3913 3914 3915 3916 3917 3918 3919
3611 7520 3920 3921 3922 3923 3924 3925 3926 3927
3679 7530 3928 3929 3930 3931 3932 3933 3934 3935
3687 7540 3936 3937 3938 3939 3940 3941 3942 394~
3695 1550 3944 3945 3946 3947 3948 3949 3950 3951
3703 7560 3952 3953 39~4 3955 3956 3957 3958 3959
3711 7510 3960 3961 3962 3963 3964 3965 3966 3967

3719 7600 3968 3969 3910 3971 3912 3973 3974 3975
3727 7610 3976 3977 3978 3979 3980 3981 3982 398:l
3735 7620 3984 3985 3986 3987 3988 3989 3990 3991
3743 7630 3992 3993 3994 3995 3996 3997 3998 3999
3751 7640 4000 4001 4002 4003 4004 4005 4006 4007
3759 7650 4008 4009 4010 4011 4012 4013 4014 4015
3787 7660 4016 4017 4018 4019 4020 4021 1022 4023
3775 7670 4024 4025 4026 4027 4028 4029 4030 4031

3783 7700 4032 4033 4034 4035 4036 4037 4039 403S
3791 "77.10 4040 4041 4042 4043 4044 404~ 4046 4047
3799 7720 4048 4049 4050 ~051 40S2 405~ 4054 40S5
3007 7730 40S8 4057 40S8 4059 4080 4061 4062 4083
381~ 7740 4064 4065 4066 4067 4068 4069 407:} 4071
3823 7'7S0 4072 4073 4074 40n 4076 4077 4078 4079
)831 7760 4080 4081 4082 4083 4084 4085 4086 4087
U39 7'770 4081 4089 4090 4091 4092 4093 4094 4095

E-4

APPENDIX F

POWERS OF TWO TABLE

F-i

POWERS OF TWO TABLE

2n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.,000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 '048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062,5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 45

1 073 741 824 30 0.000 000 000 931 322 5.74 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653869 628 906 25
8 589 934 592 33 OcOOO 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 OcOOO 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

F-l

APPENDIX G

PROGRAM EXAMPLES

G-i

9~0~

•
•
•

Q~00 OUTBUF
80~~ DATA
~00~ FLAG

8~H'I

801~ 8~10 3bo~C000
8~11 8~11 ~2~~8845
8012 8012 34A0~~C8
8013 8~13 32H~9001
8~14 8014 26~18~18

•

8015 8015 ~3f~6640 LOOP
8016 8~lb 36~~~~00
8~17 8017 27C4A0FD

8019 8019 29~1801B
801A 8~lA 28~1801b

*
*
*

W 8~lB 8016 30819000 DONE

801C 801C 38~12C0C
8~10 H~10 38~~2~0~

'*
*

OUTPUT A FIELD OF nATA IF FLAG IS SfT

DRG
05,21210
DF
EQU

)(190"'01
*200 14I0RD OU1PLJT HllFFfR

128,~2 *MSB=12~,32 elT FtfLO
1.:1 *BIT COLUMN ZERO

ALJU<C DRG
LI,2
L

AS,XIC~0~' *SELFCT ARRAy h~ & ~1
Y, FLAG *RE SPONSE. = wr.ROS 1 n REAr

LI
LI
BNR
STtfJ
LC

~L,2til1~ .MAX RUFF SIZ~ COUt-·TER
DP,OUTBUf+1 *INDFX 10 (llJT!3IJF
DONE *EXIT IF NO FLAG ~ET
-SELECT ~ CLEAR 1ST Y
DATA *C REG. 1:1 VALliE:. Of SELECTED

WORD VIA THE LINK POINTF~ REG.
SR C, (DP),3 .STORE COMf"·Ot--i ~Er,ISTER

INTO ME~ ADDRESS CONTAI~EO IN OP, THE~ DP=UP+l,
BL = BL-l
BZ,BL DONE ... EXIT IF OliTPllT ~V'ftl I-ORCS
BRS ~nop *LOOP IF ~ORc v'S SET
SR BL, OUT8Uf *STORE COI)"'T IN 1 ST
SI-OT. SEQ. PROC. MUST C(J"lPLI1E 21'i'1~·COU"·T FClj;
NUMAEH OF ITEMS IN THE OUTPUT AIJFftR.
INT,O'3~0' 12 *INTERRUPT SfQ. PROC.
WAIT *HALT AP

G-l

80~0 8~00 28~18~1~
8010

*
*
'#I

* ...
'#I

A~l~ 8~10 36b~C00~ PROGCLEAR
8~11 8011 33900000
8~12 8~12 ~~~~7741
8~13 8~13 3ErF8~14

* ..
...
...

ThIS ROUTINE WILL CLEAR TWO ARRAY MfMOkIFS
TO ALL Z~ROES.

ORG X180~OI

NOTt THAT WHEN~VER THE AP GOES FRO~ T~~ I~AC1IvE

STATE TO THE ACTIVE STATE, THF INSTI-'I,rTIp~ AT
LOCATION ~'R0~~' IS EXECUTEO.
B ~ROGCLEAk

ORG bULKC
LI,2 AS,X'C~~~' .S~LfCT ARRAY ~~ & ~1
LI FP1,~ *START wITH All COll Mp.. VI
CLR y *CLEA~ ALL Y
RPT,256 *EXECUTI: NEXT INSTRUCTION 256

*TIME:S

S Y,F P 1+ *STORj; Y H'lC1 ~TT COLl'MN
OF MEMORY REFERENCED BY FP1,THEN FP1 = FP1+1

wAIT HALT AP

G-2

8010 8A1~
8011 812111
8012 8012

OI01.'1088A2
0~F86640

~8E1801J

•
*
*

*
*
*

•
* •

80113 8~13 ~0008843 ONLYONE

CHECK FClR MULTIP~E RESPONSE

~ X,y *SAVE RfSPONSE IN X
STEP *CLEAR FJRST RESPONDER
BNR ON~YONE * BRANeM IF NO YIS SET

MUL.TIPL.E RESPONSE PROCESSING FOLL.O~S

SlNG~E RESPONSE PROCESSING FOLLOWS

L y,X *RESTORE THE SINGLE RESPONDER

G-3

8000
B~00 8~0~ 28~18~1~

8~1~

A~l~ 8~1~ 38~08~~6

B~11 B~ll 28~0R~1~

B~12 8~l2 38~007F~

e~13 8~13 38~46~1~

8~14 801~ 28~1020~

*
* •
*

BULKC

•
•
* •
*
•
* •
*

EXAMPLE OF PAGING ALTERNATING PROGRAM
SEGMENTS INTO PAGE 1 AND PAGE 2

ORG
B
ORG
MVSG,PAGEl

X'8000' .BEGIN BY BOOTLOADING
BULKC .PAGE 1 WITH THE INITIAL
BULKC *PROGRAM SEGMENT
Pr,lPROG *THIS INSTRUCTION WILL

TEST THE PAGER UNITL IT IS NOT BUSY, THEN WILL
COM~AND THE PAGER TO MOVE A PROGAM SEGMENT
INTO PAGE 1 ACCORDING TO THE SPECIfICATIONS
GJVF.N AT PGIPROG.

B BEGIN *AP CONTROL WILL WAIT
HF~E UNTIL THE PAGER HAS COMPLETED LOADING
PAGEl ACCORDING TO THE ABOVE MOVE COM~ANO.

8~15 8P-15 C006~2~0 PG1PROG STRTSG,PAGEl .OEFINE A PAGE 1 PROGRA~

•
*
*

SEGMENT ASSEMBLED TO EXECUTE PROPERLY O~LY
IF LOADED BEGINNING AT THE FIRST LOCATION OF
OF PAGE 1

8016 ~200 38~08~06 BEGIN MVSG,PAGE2 PG2PROG -BEGIN LOADING PAGE 2
8~17 0201 28~0~2~0
8018 0'02 38000BF0
8019 0~r.3 38~4B020

B01C 8~lC ~0~00020
8010 8~10 ~0~00420
801E 801E ~~000820
B01F 801F 00~08~00

•
•
*

*
*
*

WHILE PROGRAM EXECUTION OCCURS HERE IN PAGE
L! C,0 .CLEAR COMMON REGISTER

B INTOPAGE2 .IF THE PAGER HASN'T
FINISHED lOADI~G PAGf 2 BY THE TIME T~IS BRANCH
IS ENCOUNTERED, THE AP WILL WAIT UNTIL PAGING
IS COMPLETE BEFORE BRANCHING.
ENDSG

8020 802~ C0~6A400 PG2PROG STRTSG,PAGE2 *OEFINE A PAGE 2 PROGRAM
* SEGMENT ASSEMBLED TO EXECUTE PROPERLY ONLY
* IF LOADEO BEGINNING AT THE FIRST LOCATJON
• OF PAGE 2

8021 040~ 38008006 INTOPAGE2 MVSr"PAGEl NEXTPAGEl *THIS INSTPUCTION
8022 0401 28000400
8023 0402 38~007F0
80?4 0403 38~48~2B

•
*
*

WILL TEST THE PAGER UNTIL IT IS NOT BUSY,
THEN WILL COMMAND THE PAGER TO MOVE A PROGRAM
SEGMENT INTO PAGE 1 ACCORDING TO THE

G-4

8026 04~5 2801~20A

A~27 8~~7 ~0~0~~2~
6028 8028 0~00~420
8029 8029 000~~820
A.02A 8~2A 0~00A00~

•
'*

'*
'*

'*
'*

SPECIFICATIONS AT NEXTPAGE1.

LRR C.CRL,DP) .COMMON = BL & DP

B INTOPAGEl *AP CONTROL WILL
WAIT HERE UNTIL THE PAGER HAS COMPLETED LOAOING
PAGEl ACCORDING TO THE AAOVE ~OVE CO~MAND.
ENDSG

8028 802B C0040200 NEXTPAGE1 STRTSG,PAGEl .OEFINE A PAGE 1 PROGRAM
'* SEGMENT ASSEMBLED TO EXECUTE PROPERLY ONLY
'* IF LOADED BEGINNING AT THE FIRST LOCATION OF
• PAGE 1

802C 02~~ 3A~08006 JNTOPAGE1 MV5G,PAGE2 NEXTPAGE2 .THIS INSTRUCTION
R~2D 02~1 28~~0200
8~2E 02~2 3e~00BF~

e~2F 02~3 38~40~00

8030 8~3~ ~0~0~~20
8031 8031 ~0~00420
8032 8~32 ~000~820
8~33 8033 00008000

•
*
'*
'*

WILL TEST THE PAGER UNTIL IT IS NOT ~USY,
THEN WILL COMMAND THE PAGER TO MOVE A PROGRA~
SEGMENT INTO PAGE 2 ACCORDING TO THE
SPECIFICATIONS GIVEN AT NEXTPAGE2',ETC.

ENOSG

G-5

8010

•••••
•
•
•
...
...
...
...
* ...
...
...
• ...
...
...
• • ...
...
...
...

8010 8~1~ 00~~00~0 ARRAYNUM
8011 8011 ~00~0~~0 wORDNUM
8012 8012 ~~000~0~ MSBPOSITN
8013 8013 00~~0~0~ NUMBITS
8014 8014 00~00000 PESU~T

...

... ..
•• *** ... *
...
...
* 8015 8015 360~0~00 INSPECT

8016 8016 33918010

8017 8P17 33418011

8018 8~18 35A18~12

8019 8~19 35718013

...

...

...

...

...

...

...

...
801A 8~lA 36~0C00~ LOOP
8018 8~lB 00~07741
801C 8~lC 28218~tF
8010 8010 36604~00
801E 801E 28018020
801F 8~lF 36~08~00 1STARRAY
802e 8~2~ 03808845

•

INSPECT ANO CHANGE AN AR~AY FTELn .*.**

USAGE DIRECTIONS:

1. STORE TrlE ARRAV NUMBER INTr'l ARRAYI'-Ili/'l
(COOING ASSUMES 2 ARRAV MEMORV MOOULES)
2. STORE T~E WORD ~UMAER INTO wORDNUM
3. STORE THE MOST SIGNIFICAI'-IT BIT POSITION

INTO MSBPOSITN
4. STORF. THE NUMbER OF CONTIGUQIJS Bll

POSITIONS INTO NUMBITS
5. TO EXECUTE AN INSPECT FUNCTION, EXECuTE A

RETURN dRANCH (USING R0) TO T~E BULK CORE
ADDRESS ASSIG~EO TO INSPECT. THE RESULTING
CURRENT VALUE OF THE INSPECTtON /'lAY ~E READ
FROM RESULT •

6. TO EXECUTE A CHANGE FUNCTION, STOhf THE
CHANGE INTO Rt:sUL T, THfN EXECUTE: A RETIJI-'N
BRANCH (USING R~) TO THE RUL~ CORE ADDRESS
ASSIGNED TO ChANGE •

START
ORG
DC
DC
DC
DC
DC

BULKC
~ *ARRAY NUMBER STORAGE
o *ARRAY NUMBER STORAGE
o *MSB OF FIELD STORAGE
~ .FIELD LENGTH OR ~lDTH
o .THE ANSWF.R

sTARTI~G PLACE FOR AN INSPECT FU~CTION

LI C,0 *CLEAR COMMON RF.GISTF.R
LR,l FP1,ARRAYNu~ *FPl C LEAST
SIG~IFICANT 8 BITS OF ARRAY~U~, SHOULD BE A
VALUE OF ZERO OR ONE •
LR fP2,WORDNUM *THE LINK POYNTER
REGISTER (FP1,FP2) NOW REFERfNCES THE ARRA¥
AND THE WORD ~ITHIN THE ARRAY •
LR,2 FPJ,M5BPOSITN *FIELD POINTER,
LOAD FP3 ~ITH LEAST SIGNIFICANT ~ RrT POSITIONS
OF MSI3POSITN •
LR,3 FL1,NUMBITs *FI~LO ~JDTH COUNTE~
LOAD FLl ~lTH LEAST SIGNIFICANT ~ 8IT POSITION~
OF NUMBITS
LI,2
CLR
BZ,FPl
LJ,2
B
LI,2
L
USING THE

A5,X'C00~' *SELECT HOTH ARRAYS
Y *CLEAR ALL V
15TARRAY
A5,X'4~~0' *SELECT 2ND ARRAY
$+2
AS,X'A~~~' *SELECT 1ST AR~AY
Y,FP3 * V = PIT COLU~N(FP3)

REsOLV~R LOGIC, GENERATE A 256 BIT

G-6

8~21 8~21 ~3C82240

8~22 8022 28~lA024
8~23 8023 ~0~0BB41
8~24 8024 001F8888
8~25 8~25 22~FA0FB
8~26 8026 21C~AFFA

W 8027 8~27 ~1310~01
A~2a 8028 28918~lA
8~29 8~29 3~~18~14
8~2A 8~2A 28~8~000

*
*

*

*

'* ." '******* ...
...

8~2B 8026 3601a~14 CHANGE
802C 802C 36b0C0~~
8~20 8020 35118~lJ
8~2E 802E ~1~10~~1
8~2F 8~2f 33900~20
8~30 8030 3C~08~31
8~31 8031 ~134~~01
R~32 8032 35718013
8~33 8033 35A18~12

W 8~34 8034 31818043
8~35 8035 33418011

'*

8~36 8036 33818043 REPEAT

8~37 8037 0030B7A0

W 8~38 8038 31818043
R~39 8039 33918010
8~3A 803A 0~007741
A~3B 8038 03C8884~

8~3C 8~3C 08000002
8~30 8030 00008843
8~3E 803E 0BA~~001
8~3F 803F 13A~0V.02

8040 8040 01~10001
8~41 8041 28918036
8~42 8042 28080~00

'*

'*

'*
'* ..
'*

*
'*
*
'*

8043 8043 00000~00 SAVEFP1
~0ClH:1

INPUT ~IT~ A O~E IN THE BIT pnSTTION R~FERENCEO
BY FP2 AND 255 ZEROES ELSEwHERE. LOGICAL AND THIS
GEN,32 X'03C8224~' *VALUE wIT~ V,I.E.,
RESET ALL V'S EXCEPT IN THE SELECT~D ~ORD
8NR $+2 *JUMP IF SELECTED AIT = 0
SET Y *SET ALL Y JF BIT = 1
GEN,32 X'001F88BA' *lEFT SHIFT ARG ONE
GEN,32 X'22FFA0FB' *r.lT POSllION
GEN,32 X'21C~BFFA' *lOAD BIT ~3t OF
COMMON REG. ~ITH SELECTED BIT NU~BER VALUE I~ V
INCR FP1,Fll *FP3=FP3+1,~ FL\=FL1-1
BNZ,FLl LOOP *LOOP ON REST OF FTELD WIDTH
SR C,RESULT *STORE T~E R~5ULT
B (R0) *RETLJRN T(I CALLING PROGRAM

STARTING PLACE FOR A CHANGE FUNCTION

LR C,RESULT *AR~ = NEW VAllIE
LI,2 AS,~'C00~' *SfL~CT BOlh ARRAYS
LR,3 FL1,NUMBITS *OBTAIN FIELD WIDTH
DECR FLI *REPEAT COUNT FOR LOOP
LX fPl,32 *PREPARE TO COMPUTE lHE
RPT *MSB POSITION ON ThE F]El~ I~
DECR FPl *THE COMMON REGISTFR
LR,3 FLt,NUM81TS *RELOAD FIELD WlnTH
LR,2 FP3,MS8POSITN *l.OAD ARRAY FIELD
POINTER. FP1 IS THE COMMON REG. FIELD ~(lINTF.~.
SR FP1,SAVEFPl ,*lE~P SAVt POIN1ER
LR FP2,wORDNUM *INIT LI~K POINTER
LR FP1,SAVEFPl *GFT COM REG FltLO
POINTER. NEXT lOAD THE X RS wITH THE VALUE OF THE
GeN,32 X'~03087A0' *COMMON REG BIT
RfFERENCED BY FP1, THEN INCREMENT FPl
SR FP1,SAVEFPj *TEMP SAVE POINTFR
LR,l fPl,ARRAYNUM *INIT LINK POI~TER

CLR V *CLEAR ~LL y
GEN,32 X'~3C88A4~' *USING THE RESOLVER
LOGIC. GEN~RATE A 256 HIT INPUT ~I'H A ONE I~ THE
BIT POSITION REFERENCED ~Y FP2 A~D 255 ZEROFS
ELSEWHERE. LOAD THIS VALUE TNTO y,l.~., THE Y RS
CONTAINS A nNE FOR ONLY THE REFE~ENCED ~ORn.
L M,y *SET UP FOR A MASKED ~RITE
L Y,X *Y = COMMON REG(FP1) VALUE
SM Y,FP3+ *STORE THE COM~ON REG

BIT VALUE REFERE~CED BY FPl INTO THE ~ORO OF
MEMORV SPECIFtE'D BY F"P2 AND THE BIT COLIiMN IN
THE SELECTED MEMORV wORD REFERENCED ~Y FP3,
THEN INCREMENT FP3.
DECR FL1 *DECREMENT FIELD ~IDTH
RNZ,FLl REPEAT *STORE OTHER BITS
B (R0) *RETURN 10 MAIN PROGRAM
ac ~

END

G-7

A

Addressing

APPLE

APPLE features

APPLE language structure

Argument field

Arithmetic

Array co-ordinates

As sembler directives

As signing slots

Associative instructions

Associative memory device code

INDEX

Associative Memory or Common Register field expression

Attach (SVC)

B

Branch instructions

Buffer format

Buffer format for device -1 (Control memory)

Buffer format for device -2 (As s ociative memory)

Buffer format for device -3 (Registers)

BUFFER pseudo-op

Byte count

Byte count update

2-7

1-2

1-2

2-1

2-1

2-138

3-10

1-2, 2-9

3-1, -5

2-55

3-8

2-7

3-5

2 -17

3-7, -9, -13, -19

3-7

3-9

3-13

3-3, -6, -8, -12, -17

3-9, -18, -19,

3-20

X-I

Character set

Command field

Conunand summary

Comment field

Conunent statements

Common Register field

Constants

Control and test

Control Digit

C

Control Memory addres s

Control Me:rnory device code

D

Decimal constants

Device Assignment Table (DAT)

Device codes

Devices

Done bit

E

Echo Bit

End-of -medium bit (EOM)

Error codes

INDEX

2-4

2-1

A-i

2-3

1-2

2-7

2-5

2-154

2-7,

2-7,

3-6

2-5

3-2

3-5

3-5

C-2

C-2

3-10, -19

3-20

3-9, -19

B-i

X-2

E

Error codes (SVC)

Execution location counter

Exit (SVC)

Expres sions

F

Field expression

ForITlatted ASCII

ForITlatted binary

Free device (SVC) for new task

H

HexadeciITla1 constants

HexadeciITla1/deciITla1 table

I

I setup

IITlITlediate value

IITlproper ITlode

In line

Interrupt setup (SVC)

Interrupt signal (SVC)

INDEX

3-10, -19

2-6, C-2

3-24

2-6

2-7

3-18

3-18

3-23

2-5

D-i

3-27

2-5,

3-9,

1-2

3-26,

3-26,

2-39,

-19

-27

-27

C-4

X-3

Label field

Language elements

Load Location counter

Loads

L

Location counter symbol ($)

Location counters

Max size

Mnemonic summary

Mode byte

Moves

Octal constants

Octal/decimal

One-to-many

One-to-one

Pager control (SVC)

Pager instructions

PI/O Control (SVC)

Powers of two table

M

o

P

Program Counter (location counter)

Program examples

INDEX

2-1

2-4

2-6, C-5

2-55

2-6

2-6

3-9, -17

A-i

3-20

2-125

2-5

E-i

1-2

1-2

3-28

2 -159

3-29

F-i

2-6, C-5

G-i

X-4

R

Read (SVC)

READ BUFFER Pseudo-op

Register device code

Register instructions

Required entries

Reset peripheral device (SVC)

Restart program (SVC)

Searches

Slot numbers

Source statements

S

STARAN S registers (device code -3)

Status byte

Stores

Subroutine call sequence

INDEX

Summary of APPLE mnemonics ans instruction formats

Supervisor calls (SVC)

Supervisor services

Symbol table

Symbols

Terms and symbols

.T

3-15

3-17

3-13

2-35

2 -3

3-22

3 -21

2-108

3-1

2-1

3-13

3-7, -9, -19

2-79

1-2

A-i

3-1

3-4

2-4

2-4

C-i

X-5

Timer (SVG)

Unformatted ASCII

Unformatted binary

Write (SVG)

T

U

W

WRITE BUFFER Pseudo-op

INDEX

3-25

3-18

3-18

3-16

3-17

X-6

GOODYEAR AEROSPACE

