STARAN S
APPLE

Programming
Manual /

a new way of thinking

GOODYEAR AEROSPACE CORPORATION AKRON,OHIO 44315

Price $25.00

GOODYEAR AEROSPACE

CORPORATION

AKRON, OHIO 44315

STARAN S APPLE PROGRAMMING MANUAL

GER-15637 JUNE 1972

NOTICE

This document contains material generated by Goodyear Aerospace
Corporation and is transmitted for the purpose of aiding the transaction

of business between Goodyear Aerospace Corporation and the recipient.

It is understood that the material contained herein will not be used, copied,
or disclosed to others, without specific written consent of Goodyear

Aerospace Corporation.

APPLE UPDATING

The Associative Processor Programming Language (APPLE) continues
to be improved and expanded. Interested parties should contact Goodyear
Aerospace Corporation, Computer Division Marketing, Akron, Ohio
44315, Telephone: (216) 794-3631 for information regarding the latest
update of APPLE,

LIST OF EFFECTIVE PAGES

Insert latest changed pages and dispose of superseded pages.

NOTE: On a changed page, the portion of the text affected by the latest
change is indicated by a vertical line in the outer margin of the page.
Changes to illustrations are indicated by miniature pointing hands, A

zero in the change number column indicates an original page.

The total number of pages in this manual is 247, consisting of the following:

Page Change
119.__ Number
Title, 0
A, . oo v oo o 0
i-vi 0. . 0
1.1 -1.3 0
2-i, 2-1 - 2-163. 0
3.1 -3-29. ... 0
Ai, Al - A5, , . 0
Bi, Bl...... 0
Ci, Cl1 -C7... 0
Di, D1 - D5 . . . 0
Ei, E1 - E4 ., .. 0
Fi, F1...... 0
Gi, G1 -G7 . . . 0
X-1-X-6.. .. 0

NOTE - This document supersedes GER-15532 and GER-15635.

CHAPTER

TABLE OF CONTENTS

TITLE

INTRODUCTION v v v o s o o o

General

APPLE . & ¢ & ¢ vt 6 o e v v e s s s o
One-To-One . « « « ¢ ¢« o s o o o+ &
One-To-Many « ¢« « v v o v o « o

InLine 4.+ ..
Subroutine Call Sequence . .

Assembler Directives. . . « . . .
Comment Statements . . . « « . .

APPLE Features . « « « « o « o« &

QUICK INDEX OF APPLE INSTRUCTION GROUPS !

APPLE LANGUAGE STRUCTURE. . . .

Source Statements « « ¢+ ¢ ¢ ¢ ¢ o ¢ o .
Label Field o 4 o ¢ ¢ 4 o o o o & &
Command Field . « « + ¢« « o « + &
Argument Field« ¢ « . &
Comment Field
Required Entries . « « o 4 o« « 4 &

SUMmMmMATry « o o ¢ ¢ o o o o o o s s

Language Elements + ¢« + 4+ &
Character Set + o« o ¢ o o s o + & &
Symbols . . v v 4 v v vt v e .

Symbol Table + « « &
Constants . . . ¢ ¢ v v o v o o s

Octal Constants . + « « « o &
Decimal Constants . .
Hexadecimal Constants . . .

-
.
.

Expressions . + « « v v v v o 0 .
Examples . . . o v v o o« o &

Location Counters. . + « « « « + &

Load Location Counter . . .
Execution Location Counter
Location Counter Symbol ($)

Addressing. + o + o o 0 v v uuu

Control Memory Address .

Associative Memory or Common Register

Lo e s e e e e e e e e e

2 i e e e e e e e e e
Example 1
Example 2

Assembler Directives « « « « ¢« ¢ ¢« ¢ « .

e o o s o e

Field Expression

* s s s o e o

.

1
1
1
1-
1
1
1
1

)
NNV NN NN

o
1
A

1 L}] 1

]
0 WO 3 OOV O O O TOTOD U

N NN IV DD D VD DD Y
i

TABLE OF CONTENTS

CHAPTER TITLE PAGE

2 (cont) Branch InstrUuctions. t o v et et oaueeeteeseeeeesoenesooesssnesssssssssnenss 2-17
Register INStructions «vve et ieeetiinietoionsaroonsesesesosecsaneseannonss 2-35

Associative Instructions «..vvveiienan.. et es st eie et ea sttt nanas 2-55
B TTC T < 2-55
B e - A 2-79
Searches ceeenen ettt ettt e ete ettt 2-108
MOVES tevierevereneronesnnnnans At 2-125

Arithmetics tveveeierreeeroesesssnsnnensonoeanss Cteececet et 2-138
Controland Teste..eveeneenoaenenenenns 2-154

Pager Instructions «voeeeeeeereconnan et eec ittt ettt 2-159

3 SUPERVISOR CALLS ¢t i vt tvetntererssscatssesosssannnas Cetereenaen 3-1

Introduction teeseccescesaennana cer et aas 3-1
Slot NUMDbDETS toetvteeessriesetsseranssssessssesssossssosssscnssns 3-1

Device Assignment Table (DAT) tuutteunitreneesrsestosoronersnssssasens 3-2

Instruction Description +....0cieviennn cerieasesreviennonne coesnacen

BUFFER Pseudo-op Format «eveveereveeens et ettesstre et s

Supervisor Call {SVC) Format ... cveeeerncnacesnen Ceeeean Ceteeraee

Buffer ceoeereerseresessessnssnssssssosnesonsans ceeracenns cerieneae

Supervisor Call (SVC)..vvvivvnennnnnnn. e e et eeetee e

1

SPS Services O0Fr €Calls ciuiiierierioeeseessesaonsssessossassossanonone

N - o o Ceeesaseenaennn

Format ..v.ieienieneiintineiieeeseeneenesoonnosesasansaonns
Device Codes vveeuieinernrseroneesonesstsasesasesssossnnsna
STARAN Special Device Codes For ATTACH Function

STARAN Control Memory...... cteeeraan Ceeteetienanane

Format ...iiiiieniteneeesnensnssssesecnaanas vee
Buffer Format For Device -10 iiiiieeeenennnn

STARAN Associative Memory....... it eessraees e .

1
-0 0 0 0N O 00 ;W W WWw W

Format,..seeiesieereeeeosesoeseoesesasososesesoas
Buffer Format For Device =2 ... vueiueeesennonsons
Example....veveiiienennas cecacnna ccrecens cesese

WWWw W LWLwWw W W W W W W w w w w w
l

ii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

3 (cont) STARAN RegiSters « v vunernenennneenensroenennens e . 3-12

Format..i.ee e eniiinneeeeeaeesosonseensosnonnenns 3-12
Buffer Format For Device =3 ..etiiitenivnencnnnss 3-13
Example............ Crsesssaavesennne casune 3-14

Read ooovvvene Gt et ecer ettt ceseeseceseeanaann . 3-15
Format .vvieieinenieiiieteieittieeeestassoesassssnsocsanosaans 3-15
Example tiuiirereeeretenensrsssssossesscnsasssssssssassosnsss 3-15

Write. coooue. et esies e e et trei i iesene e 3-16
Format ...cveieeeeerensnennnnas et ecssseveasaertansecasannas . 3-16
Example .ieeviieeinnesiinnnnnnns 3-16

Read/Write BUFFER Pseudo-0P «.vvvevenneennnnns et 3-17

Formatec00. ceeceen e Ce st ee e tee st es e nan 3-17

Examplecivvveeennnnn, 3-19
Restart Program cv.uveeereeesseeroseosoassoosasosscrasnss 3-21
Reset Peripheral Devices .u.ctitiiiineineineerertessnntsnessossncans 3-22

Free Device For New Taskv0v 3-23
Exit to Supervisor ...iieieiierienitiittcrtetesscssssrscsssssssssansns 3-24
Timer Start iu i tusenseeossnesosestosseosesasocssssasssssnnsasas 3-25
Int - Signal Sequential Processor Interrupt 3-26
Isetup - Setup Interrupt....... 3-27
Pager Control, . v eiietieiierieesssressesssstsossssscsossasssssnsnsnss 3-28

PI/O COntrole s uenueeneeauneesosasoneasesosessoaessnnesasneasanss 3-29

APPENDIX TITLE PAGE

A SUMMARY OF APPLE MNEMONICS AND INSTRUCTION FORMATS A-i
ERROR CODES 4. ttvicetunernenneenennneeteransnesnannnnns e, B-i
TERMS AND SYMBOLS sttt tennerennesesonsssuesonssensnaaassansnasas C-i
HEXADECIMAL/DECIMAL TABLE +.vovvveennn.. O o 15
OCTAL/DECIMAL ...vvvuunnn. P et teeeea e .. E-i
POWERS OF TWO TABLE ...vviviinnnennnnnnn e e ieeaa veee. F-i
PROGRAM EXAMPLES .ttt ttnreeenneeeenneroneeonneeaneesoneeeannnsnnn G-i

Q91 B 0w

INDEX enn Ceetesetieetaenacaae sececncecenensavns ceereenaenva X-1

iii

FIGURE

Frontispiece
2-1

3-1

TABLE

LIST OF FIGURES

TITLE

STARAN S Computer System.....
APPLE Assembler Coding Form

Device Assignment Table (DAT)

LIST OF TABLES

TITLE

Registers coveeeieesnrinennnennns

Register Combinations «e.euveeencse

L R A]

s s s s e e e s 00

PAGE
Cetericeeanaas ceessnn vi
et eaaees Ceeeen . 2-2
. .o 3-2

fheteeeitetnenesrstersenrerans - 2-36

iv

GENERAL

APPLE
MANUAL

CUSTOM
INPUT/
OUTPUT

FOREWORD

The APPLE Programming Manual is one of five standard manuals for
STARAN S. As a composite group, the manuals provide the information
necessary for programming, operating, and maintaining the standard
STARAN S, The titles and publication numbers of the STARAN S manuals

are as follows:

Title Publication
STARAN S Reference Manual GER-15636
STARAN S APPLE Programming Manual GER-15637
STARAN S Operator's Guide GER-15638
STARAN S Systems Programmer's Reference Manual GER-15639
STARAN S Maintenance Manual GER -15640

The APPLE Programming Manual is intended as a reference manual to
guide the programmer in the use of the assembly language. The manual
is written for the experienced programmer who has familiarized himself
with the STARAN S Reference Manual, GER-15636,

Since the I/O cabinets are not standard units, but are customized for each

particular installation, this manual includes no description of I/O mnemonics

included in the APPLE language of a given installation,

KEYBOARD PRINTER

STARAN S COMPUTER SYSTEM

CHAPTER 1

INTRODUCTION

GENERAL The Goodyear Aerospace Corporation (GAC) Associative Processor,

STARAN S%, is a new digital computer system differing significantly

from conventional digital computers.

The Associative Processor (AP) is a general-purpose computer
capable of performing search, arithmetic, logic, and store operations
simultaneously on many independent sets of data. This capability,
which is a feature unique to STARAN S, results in certain major
differences between programming techniques for STARAN S and those

for conventional machines.

As an example, consider the familiar ""loop" programming concept.
A loop is defined as a set of commands repeatedly and consecutively
executed on different sets of data, Conventional programming of a

loop involves the following steps:

1. Initialize)

2. Pr‘ocess N

3. Advance List Pointer
4, Examine Exit Criterion
5. Decide

6. Act on Decision —»

To process a new set of data conventionally requires execution of the
complete loop, including steps 3, 4, 5, and 6, as coding and execution

time overhead.

In an AP, execution of the equivalent of a loop on associative items
requires initialization and a single pass through the process step.
There is no need to advance a list pointer to reference the next set of
data to be processed, to determine when to exit from the loop, or to
repeatedly execute the process step. The loop is one of many examples
of program simplification and improved execution time possible with

an AP.

*TM, Goodyear Aerospace Corporation, Akron, Ohio 44315

APPLE

ONE-TO-ONE

ONE-TO-MANY

In Line

Subroutine
Call
Sequence

ASSEMBLER
DIRECTIVES

COMMENT
STATEMENTS

Development of a new digital machine organization involves the design

of a programming language suitable for the computer.

APPLE is the acronym for the Associative Processor Programming
LanguagE. APPLE is a machine-oriented symbolic language designed

to expedite programming for the STARAN S system.

APPLE mnemonics produce four basic types of assembler generated

output:
1) One-to-One Translation
2) One-to-Many Translation
3) Assembler Directives
4) Comment Statements

Most assembler level languages for conventional computers generate one
machine language instruction per mnemonic. Many of the basic APPLE

mnemonics fall into this category.

Several APPLE mnemonics are in the one-to-many category. Many
basic AP programming functions require more than one machine
language instruction per mnemonic. Some of these mnemonics produce
in-line machine instructions; others generate a subroutine call to a

sequence of machine instructions.

The one-to-many mnemonics producing in-line machine instructions are

equivalent to macro instructions of higher level assembly languages.

A library of subroutines is provided by APPLE and resides in Page 0

memory. The one-to-many mnemonics produce in-line subroutine call
sequences similar to the linkages provided in FORTRAN to the SIN or TAN
functions of a FORTRAN library.

Assembler directive statements provide functions that assist the
programmer in controlling the assignment of storage addresses, defining
data and storage fields, and controlling the APPLE system itself, With
a few exceptions, assembler directive statements do not generate

machine language code.,
Comment statements may appear anywhere in the program and will be

printed on the listing device, However, comment statements have no

effect on the object code produced.

1-2

APPLE
FEATURES

APPLE is essentially a symbolic assembly language. All AP

memories and registers may be referenced symbolically.

Constants can be expressed as decimal, octal, or hexadecimal
numbers in source statements. Addresses can be expressed

absolutely or symbolically.

A listing of the source program statements, the resulting machine
language code, and a symbol table may be produced by APPLE for
each program. When a source program is assembled, an extensive
syntactical check is provided by APPLE, Detected errors are
printed on the program listing in error codes (Appendix B) at the
left-hand margin of the particular statement in error. A maximum

of two error codes can be printed for each statement.

1-3

QUICK INDEX

APPLE INSTRUCTION GROUPS

ASSEMBLER DIRECTIVES

BRANCH INSTRUCTIONS

REGISTER INSTRUCTIONS

ASSOCIATIVE INSTRUCTIONS

Loads

Stores

Searches

Moves

Arithmetics

CONTROL and TEST

PAGER INSTRUCTIONS

H E B B R R R EEmEmm =

SUPERVISOR CALLS

SOURCE
STATEMENTS

LABEL
FIELD

COMMAND
FIELD

ARGUMENT
FIELD

CHAPTER 2

APPLE LANGUAGE STRUCTURE

The source statement is the basic component of an APPLE program.

Source statements consist of the following four entries: Label, Command

Argument, and Comment, APPLE accepts source statements in free format.

Blanks act as field delimiters. The suggested coding form for source
statements is shown in figure 2-1, The columns on the coding form
correspond to those of a standard 80-column Hollerith coded card. One

line of coding on the form corresponds to one source card,

Columns 1 through 72, inclusive, constitute the active line. Columns
73 through 80 are ignored by APPLE except for listing purposes. The
source statement may be continued past 72 columns by inserting

a semicolon (;), which, when scanned, terminates the present active
line. APPLE then searches the next active line to complete the

source statement,.

The Label Field is usually an optional symbol created by the pro-
grammer to identify the statement line. The symbol may consist of
nine characters or less, with the first character in column one. If
the first column is blank, the Label entry is assumed omitted. The
symbol in the Label Field can contain alphabetics (A-Z) or numerics
(0-9); however, at least one of the characters must be an alphabetic,
The Label Field entry may have the same configuration as predefined
mnemonics without conflict, since APPLE distinguishes through
context which usage is intended. Only one entry is permitted in the
Label Field.

The Command Field is a requirement. It may consist of several
symbols separated by commas (,). The first symbol is the

predefined mnemonic (Appendix A) for a particular command.
Command modifiers may follow the command, depending upon the
individual command. No embedded blanks are allowed in the Command
Field.

Entries in the Argument Field properly specify the instruction. In
general, the purpose of this field is to identify the source and
destination locations to the command. Other entries, such as Control
Digits, are also included in this field. The entries are separated by
commas and no embedded blanks are allowed. APPLE assumes no

Argument Field entries if 16 contiguous blanks follow the Command

L-1751(5-72)

*APPLE ASSEMBLER CODING FORM

PROGRAM PAGE oF
PROGRAMMER DATE
.THlS 1S A SUGGESTED FORM TO FACILITATE READING SOURCE LISTINGS, THE ““APPLE"’
ASSEMBLER WILL ACCEPT FREE FORM WITH A SPACE TERMINATING EACH FIELD.
LABEL COMMAND ARGUMENT COMMENTS ID/SEQ
12 5 6 78 9dd111213141516171 8K} 20212223242%26 27282930 3132333435363730KfJ4C 434243444546 47 48 4950 51525354555657 5859606162636465666768690707172/73747576777879 8(
B Ly s 11 I T Y S T Y PRI S B !lll]illll!lljlllllllIIJALIIIAI!I IR SR
P B | I PRI I N - T OV I S PR JllcnljllLll-.;aI::»l!||||I|1_L|1I| I B I
JR - | 11441|14I;!LIIIIIIII%IIIIIJ4 54111l1|||!|.1|||a||!u||1|||1|!| [N AR
o | S [S| [T TV N N T ST ST U AR N WY B AN [N T T S IS N T S T U Y U N AU AU W N B B S MU I TSN AN by
T T T R 1
s 1 SRR TN S T IO O T P !1|1141111!|||.IJ«||!|11¢I|.||!« [
. TSR N B! [T R I RIS PR AP }1|14_ln||1l::|:l..||!|.unl|;1|!1IIIL..l
i l v 11 I BRI B | ST RSN T SN S0 TN TN T NN S U B AU S S ST SN U N VO SO AN (N SAT N NNV T AU IR WAV (NN SN0 MY U EN S0 ST ET A A T I
1 t t T T N
s .Y L 13 [W N T | N T N T N T U T NN N U U D T B W I U TS U T Y I N N T Y O Y OO U TS S A N U T N OO O [
T L] v T L] o
o [N B O T SR N TN N VOO N (NI NS N U0 BN A T TN U N T VAN U [N ST W [N SN O T T Y U Y Y A Y 0 OO0 B | I B B
T T T L T T
vo [O T I B | W R N ST U DT TN W N M 0 S0 TSNS N B N Y WONT SAT TN SN NN U U U NN U M SN TN AN S S TN Y U WOV OO A [A
T \ T +
" 44 Loty O T DAY U MY I D W DA A AU Y T T S TN NI N AN ATV SR AN TV H NNV SO SRS BAPUN AN B BT
T L T N | T T
o it | I I A A | S SRTU (0 O VA N IR N B [T W U U T U0 WA VS NN U NN N A N AU OO Y A U A OO U5 0 A SN N B RS S
T T v T T
s TR . SN RN - S T ST TN I N N R IO VU OO U T U O T O T N T R T T B S B
e 1 Ly gy Lo e v v P b |l||l1lllJ|!IL||lLII;’L||||||1||!| Lol
‘s Ly I DO ST N AP ST R IN U! DT I S N T S I O S R
e |t by B * (A VTR T U UV [N S VT N Y O T N O N N T U S N A AU IO O
1 L 1 1
. P T SR U B ST N by b e e b b v by P b e b 1
A L1 I R B I E S S I WS W T O S O VU T T U O S S A T O
‘o - [NN I B S A N U WA U I N DUV O T T VI U S T 0 A O
20 v Bl v by 3o g L | T TN N R VAN U T U VO T W Y N U S N W T N N A 00T NN N A OO

Figure 2-1. APPLE Assembler Coding Form

ARGUMENT
FIELD
(cont)

COMMENT
FIELD

REQUIRED
ENTRIES

SUMMARY

Field. Symbols appearing in the Argument Field must be defined to
the program, either by being predefined by APPLE or by appearing

in the Label Field of a source statement.

Comments are descriptive items of information that may be included
on the program listing. Comment entries consist of any information
the programmer wishes to record. All valid characters, including
blanks, can be used. The Comment Field begins one blank after the
Argument Field, or if no Argument Field exists, comments begin
after 16 contiguous blanks follow the Command Field. An asterisk

(**) in column one indicates the entire source statement is a comment,

Required entries for the various mnemonics are underlined in the

Format description of each instruction discussion (i.e., B a(r)tk,cd).

1) APPLE interprets the fields from left to right: Label,

Command, Argument, Comment,

2) A blank column terminates any field except the Comment Field,

which is terminated at column 80.

3) One or more blanks at the beginning of a line indicates there is

no Label Field entry.
4) The Label Field entry, when present, must begin in column 1,

5) The Command Field begins with the first nonblank column
following the Label Field or in the first nonblank column follow -

ing column 1, if the Label Field is omitted.

6) The Argument Field begins with the first nonblank column
following the Command Field. An Argument Field is designated

as being blank in either of two ways:

a. Sixteen or more blank columns follow the Command Field.

b. The end of the active line (column 72) is encountered and

continuation is not indicated.

7) The Comment Field begins in the first nonblank column following
the Argument Field, or when the Argument Field is omitted,
at least 16 blank columns following the Command Field.

LANGUAGE
ELEMENTS

CHARACTER
SET

SYMBOLS

Symbol
Table

APPLE language statements are written using the following

alphabetics, numerics, operators, and delimiters:

Alphabetics A through Z
Numerics 0 through 9
Operators $ + - * =

Delimiters , () BLANK ' ;

Each character is represented by an 8-bit byte. Only 47 characters
of the set of 256 code combinations defined as the Extended Binary
Coded Decimal Interchange Code (EBCDIC) are included in APPLE's
character set. Most of the terms used in APPLE source statements
are expressed in the character set shown above; however, language
features, such as comments, permit the use of any of the 256 EBCDIC

codes.

Symbols are formed from combinations of characters. Symbols
provide programmers with a convenient means of identifying program
elements so that they can be referred to by other elements. Symbols

must conform to the following rules:

1) Symbols consist of 1 to 9 alphanumeric characters.

2) At least one character in a symbol must be alphabetic.
" 3) No special characters or embedded blanks can appear in a symbol.
4) A symbol may be defined only once. If duplicate symbols occur

they will be flagged as errors.

Symbols provide the most commonly used means of addressing source
statements, constants, and storage locations. Symbols are normally
defined in the Label Field of a source statement. After a symbol has

been defined, it can be referred to by Argument Field entries. The value of
a symbol can be equated to an absolute value (see EQU, DF in the

Assembler Directives discussion)

APPLE compiles a table containing all the symbols that appear in the
Label Field and the addresses at which they appear. References to
symbols cause APPLE to interrogate the symbol table for the address

associated with the symbol.

CONSTANTS

Octal
Constants

Decimal
Constants

Hexadecimal
Constants

A constant is a self-defining language element whose value is explicit,

Self-defining terms are useful in constants requiring a value rather
than the symbolic address of the location where that value is stored,
Three constant notations are used in APPLE instructions: octal,

decimal, and hexadecimal.

An octal constant consists of a signed octal number enclosed by single

quotation marks and preceded by the letter O.
The constant is right-justified in its field. For example,

Constant I Binary Value | Hexadecimal Value

O' 1234 '001 010 011 100 | 0010 1001 1100 (29C)

The octal digits and their binary equivalents are as follows:

0 - 000 4 - 100
1 - 001 5 - 101
2 - 010 6 -110
3 .011 7 -111

A decimal constant consists of an integer (no decimal point) that may

be signed. For example, 100 or -5423.

A hexadecimal constant consists of a signed hexadecimal number
enclosed by single quotation marks and preceded by the letter X.

For example,

X'9CO1F! X!'COFFEE' X'FFFF!

The assembler generates four binary bits of storage for each hexa-
decimal digit. The hexadecimal digits and their binary equivalents

are as follows:

0 - 0000 8 - 1000
1 - 0001 9 - 1001
2 -0010 A -1010
3 .0011 B. 1011
4 - 0100 C-1100
5 - 0101 D. 1101
6 -0110 E-1110
7 -0111 F.-1111

2-5

EXPRESSIONS

Examples

LLOCATION
COUNTERS

Load
Location
Counter

Execution
Location
Counter

Location
Counter
Symbol
($)

Argument Field entries consist of either single-term expressions or
double-term expressions. Single-term expressions are symbols,
constants, or Location Counter references ($). Double-term
expressions are two single terms connected with an arithmetic
operator. The valid arithmetic operators are a plus sign (+) for
addition and a minus sign (-) for subtraction. The first single-term
expression of a double-term expression may be a symbol or constant,

and the second single-term expression must be a constant,

Valid Invalid
TAG+5 TAG-LABEL
LABEL-23 5+TAG
5+32 TAG+5+23

APPLE maintains two internal Location Counters: a Load Location
Counter and an Execution Location Counter. The Load Location
Counter keeps track of the addresses associatzd with the instructions
when the program is loaded. The Execution Counter keeps track of

the addresses associated with the instructions when they are executed.

The Load Location Counter keeps track of the addresses associated

with the instructions when they are loaded.

As each instruction or data area is assembled, the Load Location
Counter is incremented by the length of the assembled item. There-
fore, the Load Location Counter is the address of the next available
storage location in Control Memory after the instruction is assembled.,
This address is the location where the instruction will reside after

being loaded.

As each instruction or data area is assembled, the Execution Location
Counter is incremented by the length of the assembled item. The
Execution Liocation Counter differs from the Load Location Counter when
Pager commands are encountered. (See Pager Instructions.) Each
STRTSG that appears in an assembly reinitializes the Execution
Location Counter. This address is the location where the instruction

will reside when executed.

The special symbol, $ (dollar sign), is predefined by APPLE as
Location Counters. The $ may be used to alter the Location Counters
at assembly time (see ORG in Assembler Directives Discussion), The
$ may also be used in an absolute expression to refer to an address., In

this context it is the Execution Location Counter that forms the address.

2-6

ADDRESSING

Control
Memory
Address

Associative
Memory or
Common Register
Field Expression

The Control Memory Address is a symbolic or absolute address in

bulk core, page memory, or High Speed Data Buffer. A Control

Memory Address expression is comprised of four terms in the form

a(r)xk,cd. Note that required terms are underlined.

a -

cd -

This entry is the only one required. This term may be

a symbol or a constant,

This entry must be a constant. At assembly time zk is

added to the value of 'a' to form the address.

This entry must be one of the following registers:
RO through R7, DP,

At execution time the contents of this specified register is
added to the value axk, It is this result that defines the

Control Memory Address. The contents of the register can

be considered to be the base address, and the double-term

expression atk can be considered to be the displacement.

This entry is the Control Digit. A Control Digit indicates
that after the specified instruction is completed a step is
desired. This step may increment or decrement the data
pointer (DP) register by one and/or decrement the block
length (BL) register by one. The Control Digit may be
specified by an azk type of expression, where 'a' and 'k’

are defined as above.

£d Values Action
1 Decrement BL
2 Increment DP
3 Decrement BL and Increment DP
4 Decrement DP
5 Decrement BL and DP

The Control Digit is a valid entry only when the base
register option has been selected, and the register forming

the base register is the DP register,

A field expression defines the most significant bit position and the

number of contiguous bit positions (field length) occupied by a field.

There are two ways of constructing a field expression:

Associative
Memory or
Common Register
Field Expression
(cont)

o Example 1

¢ Example 2

bxi

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b
represents the most significant bit position and the number of
contiguous bits occupied by a field in either the Common register

or Associative Memory. The optional constant modifier, i, modifies

only the most significant bit position.

(b, i)£j

where b may be a constant or a symbol and represents the most
significant bit position of a field. If b was defined as a field via a
previous DF instruction, the most significant bit position is the value
used. i must be a constant and represents the number of contiguous
bits occupied by the field. j is an optional constant modifying only the

most significant bit position of the field.

AJAX DF 10,3

SC AJAX -3,(100, 3)

The field AJAX begins in bit column 10 and spans 3 bit columns
(bit columns 10, 11, 12).

The expression AJAX -3 has modified the most significant bit position

to a value of 7 and spans 3 bit columns (bit columns 7, 8, 9).

The expression (100, 3) defines a field beginning with bit column 100
and spans 3 bit columns (bit columns 100, 101, 102).

FIELDI1 DF 0,5

sC (FIELDI, 17)+0'17',(X'80',0'21")

The field FIELDI begins in bit column 0 and spans 5 bit columns
(bit columns 0, 1,2, 3, 4).

The expression (FIELDI, 17)}4+0' 17+ has modified the most significant
bit position to a value of 15, and has also modified the number of bit

columns to 17 (bit columns 15, 16, ..., 31).

The expression (X'80',0'21') defines a field beginning with bit column
128 and spans 17 bit columns (bit columns 128, 129,..., 144).

2-8

ASSEMBLER Assembler directive statements provide auxiliary functions to APPLE

DIRECTIVES and assist the programmer in checking, documenting, and organizing

a program.

The assembler directives are:

Mnemonic Instruction
START Start APPLE
END End APPLE
ORG Initialize Liocation Counter
EQU Equate
DF Define a Field
DS Define Storage
TOF Top of Form
EVEN Make Location Counter Even
DC Define Constant
GEN Generate Machine Instructions
NOP No Operation
Aor E Character String Generator

2-9

START

Format

e Label

o Command

e Argument

END

Format

o Liabel

¢ Command

o Argument

e ¢ ik

e o blank

Start APPLE

This instruction performs initializing functions for APPLE, and
generates pertinent header information for all object programs. This
instruction is required and should be the first source statement in

all APPLE programs.

Command

Label l Argument Comment
symbol l START | |

Any valid symbol or blank.
START

No entry required.

End APPLE

This instruction will process and assemble all previous source
program statements. The END instruction is required and must be

the last source statement of every assembly.

Label l Command | Argument | Comment

symbol l END | axk I
Any valid symbol or blank.

END

An optional entry.

'a' may be either a symbol or a constant whose value may be
optionally modified by plus or minus the constant k. This term

represents an address designating where program execution will
start immediately after the object program is loaded.

If no address is specified in the argument field, this program will
not automatically begin execution upon completion of loading, In this
case the END - statement signals to the assembler the end of the

current program.

ORG

Format

e Label
¢ Command
e Argument

e o 2tk

Example

o Note

Initialize Location Counter

This instruction commands' the assembler to assemble succeeding instructions
beginning at the address specified in the Argument Field. The Load Location

Counter and Execution Location Counter are loaded with the value of azxk.

Label | Command l Argument l Comment

symbol | ORG I azk I

Any valid symbol or blank,

ORG

One entry is required.

'a' may be either a symbol or a constant whose value may be
optionally modified by plus or minus the constant k. Moreover 'a'

may be one of the following special predefined symbols provided

for ease of programming:

a Definition
PAGEO Page 0 Memory Starting Address
PAGEIl Page 1 Memory Starting Address
PAGE2 Page 2 Memory Starting Address
HSDB High-Speed Data Buffer Memory
Starting Address
DMA Direct Memory Access
Memory Starting Address
BULKC Bulk Core Storage Memory

Starting Address

ORG BULKC+16

In this example the first instruction following the ORG statement will be
assigned the Bulk core address X'8020' (BULKC assigns the address
X1'8010' in the APPLE assembler).

EQU

Format

e Label

¢ Command

® ® 54k

DF

Format

e Label
¢ Command
e Argument

o0 alikl, azikz

Note

Equate

This instruction permits the programmer to assign a value to a symbol,
Whenever the symbol appears in a succeeding instruction, the equated

value will be used to form the machine language code.

Label | Command | Argument | Comment
symbol | EQU I axk I

Any valid symbol. This entry is required.

EQU

'a' may be either a symbol or a constant whose value may be optionally
modified by plus or minus the constant k. 'a' may also be one of the special
predefined APPLE symbols such as register abbreviations (Table 2~1) PAGEO,
PAGE1, PAGE2, HSDB, DMA, BULKC, X, Y, and M. However, if a special

symbol is used it cannot be modified by k.

Define a Field

This instruction permits the programmer to assign a field definition
value to a symbol for later use, Whenever the symbol appears in
instructions, the defined field value will be used to form the machine

language code.

Label Command | Argument I Comment
symbol | DF | ajxk),atky |

Any valid symbol. This entry is required.
DF
Two entries are required.

'a' may be either a. symbol or a constant whose value may be optionally
modified by plus or minus the constant k. The value of the term ajxk]
represents the most significant bit position of the field being defined.
The value of the term aptk, represents the number of contiguous bit

positions (field length) occupied by the field Being defined.

The sum of ajtk; or ap*k, must not exceed the total number of bits in
an associative memory word (0 to 255). If the field being defined is a
field in the Common register, the sum of ajtk] or aptk, should not exceed

the number of bits in the Common register (0 to 31).
2-12

DS

Format

e Label
e Command

e o atk

e Argument

TOF

Format

e Label

e Command

e Argument

o Comment

Define Storage

This assembler directive will allocate the next specified number of

32 bit words as a contiguous block of control memory.

Label | Command | Argument | Comment
symbol I DS,axk | I

Any valid symbol or blank.
DS

'a' may be either a symbol or a constant whose value may be optionally
modified by plus or minus the constant k. The value of the term azk
specifies the number of contiguous words to be reserved. If this entry

is omitted, a default value of one is assumed.

Blank

Top of Form

This assembler directive will issue a form feed to the assembly
listing device. TOF may be placed anywhere in the program and

has no effect on the object code produced.

Label | Command ! Argument | Comment

TOF I I
Must be blank.
TOF

None required.

The comment will be printed at the top of the page after the form feed.

EVEN

Format

e Label
o Command

e Argument

DC

Format

e Label
o Command

e o a xk

e Argument

o o 2,%k,

Make Location Counter Even

If the Execution Location Counter is odd when this instruction is
encountered, an NOP will be produced in the object code; otherwise, no
object code will be produced. Therefore, after this instruction has been

processed the Execution Location Counter will be even. (Ref. SPSW instruction.)

Label | Command I Argument | Comment

symbol | EVEN | |
Any valid symbol or blank.
EVEN

None required.

Define Constant

This instruction will generate a specified value for a specified

number of 32 bit control memory words.

Label I Command I Argument I Comment
symbol l DC,a k) | aptky ‘

Any valid symbol or blank.
DC

a) may be either a symbol or a constant whose value may be optionally
modified by plus or minus the constant kj. The value of the term a;tk,
specifies the number of contiguous 32-bit words. If this entry is

omitted, a value of one is assumed.

a, may be either a symbol or a constant whose value may be optionally
modified by plus or minus the constant kp. The value of the term aj+k;

is the value to _be inserted in each of the 32-bit words.

GEN

Format

e Label
e Command

o0 k;

¢ Argument

L) ai:t_]i

Note

NOP

Format

e Label
¢ Command

e Argument

Generate Machine Instructions

This instruction permits the programmer to generate machine codes for
jnstructions not covered by APPLE, (See STARAN S Reference Manual
for detailed machine language coding.) This instruction is also useful

when generating words of data rather than instructions.

Label I Command I Argument l Comment
symbol GEN, k],...,kn 3lijl,.-- ’anijn I

Any valid symbol or blank.
GEN

One or more constants that define the length of the consecutive data fields

a.iiji respectively. The sum of all the k's must be less than or equal to 32.

a; may be either a symbol or a constant whose value may be optionally
modified by plus or minus the constant j;. These term(s) represent the
value(s) to be inserted into each of the corresponding data field(s).

There must be a one-to-one correspondence between the k; and a;+j; terms.

If the sum of the lengths of the data fields is less than 32, the information
will be right-justified in the word.

No Operation
This instruction performs no operation when it is executed.

Argument Comment

Label I Command

symbol l NOP I

Any valid symbol or blank.
NOP

No entry required.

A or E

Format

or

e Label
e Command

oo A

[N J CICZ"'ci-lci

e Argument

Note

Character String Generator

These two assembler directives enable the programmer to generate

messages for output.

Label Command . Argument Comment
symbol ﬂ}_cz....ci_l c; x

Label Command : Argument Comment
symbol E{_E_I_CZ"'Ci-l ¢y x

Any valid symbol or blank.
A character string entry is required.

'A' represents an assembler directive commanding the assembler to
generate the seven bit ASCII code equivalent to the succeeding character

string.

E represents an assembler directive commanding the assembler to
generate the eight bit EBCDIC code equivalent to the succeeding

character string.

x must be any non-alphanumeric character and serves as the '"begin" and
""end" marker of the character string cj€...c;_; ¢j- X cannot be

a';'.

The c; may be any allowable ASCII or EBCDIC character (except the ';')
depending on whether A or E is used respectively, One or more full thirty -
two bit words are generated with the ASCII or EBCDIC code of the c;
packed on byte boundaries at four characters per word., If there are not
enough characters to generate a full word, the remaining bytes will be

padded with blank (or space) characters.

No entry is required.

There is no provision for continuation of a character string onto

several source cards.

A ';! character can be used in the text of the character string if
there are enough blank delimiters preceding it so that it would
fall in the comment field when parsed according to the free format

rules of an ordinary source statement.

BRANCH
INSTRUCTIONS

Branch instructions alter the execution sequence of a program if certain

conditions exist,
The branch instructions are:

Mnemonic

B
Bz
BNZ
BBS
BBZ
BRS
BNR
BOV
BNOV
BAL
RPT

LOOP

Instruction

Unconditional Branch
Branch if Zero
Branch if Not Zero
Branch if Bit Set
Branch if Bit Zero
Branch if Response
Branch if No Response
Branch if Overflow
Branch if No Overflow
Branch and Link
Repeat

Loop

Format

e Label

¢ Command

e Argument

Unconditional Branch

This instruction will transfer control from the current program address

to the address specified in the Argument Field.

Label | Command | Argument | Comment

symbol I B | a(r)tk, cd |

Any valid symbol or blank

B

The Control Memory Address is a symbolic or absolute address in Bulk
Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r)tk, cd.

This entry is required only if the optional term (r) is omitted. This term

may be either a symbol or a constant.
This optional term must be a constant and modifies 'a’,

This entry may be one of the following nine registers: RO through R7, DP,
The contents of this specified register is added to the value azk at execution
time. It is this result that defines the Control Memory Address, The
contents of the register can be considered the base address, and the azk

expression can be considered the displacement.

This entry is the Control Digit. A Gontrol Digit indicates that after the
specified instruction is completed a step is desired. This step may increment
or decrement the data pointer (DP) register by one and/or decrement the
block length (BL) register by one. The Control Digit may be specified by an

atk type of expression where 'a' and k are as defined above.

cd Values Action -

¢ Decrement BL,
Increment DP
Decrement BL and increment DP
Decrement DP
Decrement BL, and DP

Vi W -

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

Bz

Format

e Label

e Command

o0 1‘1

e Argument

Branch if Zero

This instruction will transfer control from the current program address
to the address specified in the argument field, if the command field register,

T is zero.

Label I Command | Argument | Comment
symbol | BZ,x I_a_(rz)tk,cd l

Any valid symbol or blank.

BZ

Register Definition

FP1 Field Pointer 1 (8 bits)

FP2 Field Pointer 2 (8 bits)

FP3 Field Pointer 3 (8 bits)

FL1 Field Length Counter 1 (8 bits)
FL2 Field Length Counter 2 (8 bits)
FPE Field Pointer E (8 bits)

BL Block Length Counter (16 bits)
DP Data Pointer Register (16 bits)

The Control Memory Address is a symbolic or absolute address in Bulk
Core, Page Memory, or High-Speed Data Buffer, The Control Memory

Address may be represented by four terms in the form a(rj)tk, cd,

This entry is required only if the optional term (rp)is omitted. This

term may be either a symbol or a constant,
This optional term must be a constant and modifies 'a'.

This entry must be one of the following nine registers: RO through R7,
DP. The contents of the specified register is added to the value atk

at execution time. The result defines the Control Memory Address.

The contents of the register can be cousidered the base address, and the

atk expression can be considered the displacement.

Bz

e o cd

This entry is the Control Digit., A Control Digit indicates that after

the specified instruction is completed a step is desired. This step

may increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one. The Control Digit

may be specified by an atk type of expression, where 'a' and k are

as defined above,

cd Values Action

Decrement BL

Increment DP

Decrement Bl and increment DP
Decrement DP

Decrement BL and DP

Ouh WV~

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

BNZ

Format

e Label -

e Command

[rl

e Argument

e e 2
oo k
o0 1'2
e o cd

Branch if Not Zero

This instruction will transfer control from the current program address
to the address specified in the argument field, if the command field register,

Ty is not zero.

Label | Command l Argument I Comment
symbol | BNer1 I E(rz):l:k, cd 1

Any valid symbol or blank,

BNZ

Register Definition

FP1 Field Pointer 1 (8 bits)

FP2 Field Pointer 2 (8 bits)

FP3 Field Pointer 3 (8 bits)

FL1 Field Length Counter 1 (8 bits)
F1L.2 Field Length Counter 2 (8 bits)
FPE Field Pointer E (8 bits)

BL Block Length Counter (16 bits)
DP Data Pointer Register (16 bits)

The Control Memory Address is a symbolic or absolute address in Bulk
Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r;)xk, cd.

This entry is required only if the optional term (r;) is omitted. This term

may be either a symbol or a constant.
This optional term must be a constant and modifies ‘a’,

This entry may be one of the following nine registers: RO through R7, DP,

The contents of the specified register is added to the value axk at execution
time. It is this result that defines the Control Memory Address. The contents
of the register can be considered the base address, and the axk expression

can be considered the displacement,

This entry is the Control Digit, A Control Digit indicates that after the
specified instruction is completed a step is desired. This step may
increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one. The Control Digit
may be specified by an atk type of expression, where 'a' and k are

defined as above.

BNZ

e o cd cd Values Action
(cont)
1 Decrement BL
2 Increment DP
3 Decrement BL and increment DP
4 Decrement DP
5

Decrement BL and DP

The Control Digit is a valid entry only when the base register option

has been selected, and the register forming the base register is the
DP register,

BBS

Format

e Liabel

¢ Command

e Argument

Branch if Bit Set

The execution of the branch in this instructionis contingent on the status
of a selected bit in the Common register, Prior to execution of this
instruction, an instruction must be executed to load the FP1 register
with the address of the bit in the Common register to be tested for the
contingency, If the selected Common register bit is one, this instruc-
tion will transfer control from the current program address to the

address specified in the Argument Field.

Label I Command I Argument I Comment
symbol I BBS I a(r)tk, cd I

Any valid symbol or blank,

BBS

- The Control Memory Address is a symbolic or absolute address in Bulk

Core, Page Memory, or High-Speed Data Buffer, The Control Memory

Address may be represented by four terms in the form a(r)tk, cd.

This entry is only required if the optional term (r) is omitted. This term

may be either a symbol or a constant.
This optional term must be a constant and modifies 'a',

This entry may be one of the following nine registers: RO through R7,
DP, The contents of the specified register is added to the value atk
execution time. The result defines the Control Memory Address. The
contents of the register can be considered the base address, and the atk

expression can be considered the displacement.

This entry is the Control Digit, A Control Digit indicates that after the
specified instruction is completed a step is desired. This step may
increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one. The Control Digit may
be specified by an atk type of expression, where 'a' and k are

defined as above.

cd Values Action

Decrement BL

Increment DP

Decrement BL and increment DP
Decrement DP

Decrement BL and DP

U W N

The Control Digit is a valid entry only when the base register option has

. been selected, and the register forming the base register is the DP register.

BBS

Example LI FP1,24 CHECK BIT 24
BBS TAG BRANCH IF BIT IS ONE
TAG DECR FP1 CHECK BIT 23
BBS CONT BRANCH IF BIT IS ONE
WAIT

CONT LRR C,FP2

o Common
Register
Contents

The first branch (BBS TAG) will take place, since FP1 is loaded

with 24 and bit 24 in the Common register is one,

The second branch (BBS CONT) will not take place, since after
the DECR, FPI1 contains 23 and bit 23 in the Common register is

zero. Thus the next instruction executed will be the -WAIT,

BBZ

Format

e Label

¢ Command

¢ Argument

Branch if Bit Zero

The execution of the branch in this instruction is contingent on the
status of a selected bit in the Common register., Prior to execution
of this instruction, an instruction must be executed to load the

FP1 register with the address of the bit in the Common register to
be tested for the contingency, If the selected Common register bit
is zero, this instruction will transfer control from the current

program address to the address specified in the argument field.

Label | Command | Argument | Comment

symbol | BBZ I a(r)tk, cd |
Any valid symbol or blank.
BBZ

The Control Memory Address is a symbolic or absolute address in
Bulk Core, Page Memory, or High Speed Data Buffer, The Control

Memory Address may be represented by four terms in the form a(r)tk, cd.

This entry is required only if the optional term (r) is omitted., This

term may be either a symbol or a constant,
This optional term must be a constant and modifies 'a',

This entry may be one of the following nine registers: RO through R7,
DP. The contents of the specified register is added to the value atk
at execution time. The result defines the Control Memory Address,
The contents of the register can be considered the base address, and

the atk expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after

the specified instruction is completed a step is desired. This step may
increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one. The Control Digit
may be specified by an atk type of expression, where 'a' and k are

defined as above.

cd Values Action
1 Decrement BL
2 Increment DP
3 Decrement BL and increment DP
4 Decrement DP
5 Decrement BL and DP

The Control Digit is a valid entry only when the base register option

has been selected, and the register forming the base register is the DP

register. 2_.25

BBz

Example LI FP1,10 CHECK BIT 10
BBZ TAG BRANCH IF ZERO
TAG INCR FP1 CHECK BIT 11
BBZ CONT BRANCH IF BIT IS ZERO
WAIT

CONT DECR FP2

e Common 10 11 31
Register 0 1
Contents

The first branch (BBZ TAG) will take place, since FP1 is loaded
with the number 10 and bit 10 in the Common register is zero.
The second branch (BBZ CONT) will not take place, since after
the INCR, FP1 contains 11 and bit 11 in the Common register is

one., Thus the next instruction executed will be the WAIT.

BRS

Format

Y Label

¢ Command

e Argument

Branch if Response

This instruction will check the Y response store register. If any
Y response store register bit position is set to one in any enabled

array, the branch will be executed.

Label | Command | Argument l Comment
symbol I

BRS I a(r)tk, cd l
Ahy valid symbol or blank
BRS

The Control Memory Address is a symbolic or absolute address in
Bulk Core, Page Memory, or High-Speed Data Buffer. The Control
Memory Address may be represented by four terms in the form
a(r)zk, cd.

This entry is required only if the optional term (r) is omitted. This

term may be either a symbol or a constant,
This optional term must be a constant and modifies 'a',

This entry may be one of the following nine registers: RO through R7,
DP. The contents of the specified register is added to the value azk at
execution time, The result defines the Control Memory Address. The
contents of the register can be considered the base address, and the atk

expression can be considered the displacement,

This entry is the Control Digit, A Control Digit indicates that after the
specified instruction is completed a step is desired. This step may
increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one. The Control Digit may
be specified by an atk type of expression, where 'a' and k are as

defined above.

cd Values Action
1 Decrement BL
2 Increment DP
3 Decrement BL, and increment DP
4 Decrement DP
5 Decrement BL, and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register,

BNR

Format

e Label

¢ Command

e Argument

Branch if No Response

This instruction will check the Y response store register. If all
Y response store register bit positions are equal to zero in all

enabled arrays, the branch will be executed,

Label | Command | Argument I Comment

symbol I BNR I a{r)xk, cd I
Any valid symbol or blank.
BNR

The Control Memory Address is a symbolic or absolute address in
1
Bulk Core, Page Memory, or High Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r)tk, cd.

This entry is required only if the optional term (r) is omitted. This

term may be either a symbol or a constant.
This optional term must be a constant and modifies 'a',

This entry may be one of the following nine registers: RO through R7,
DP. The contents of this specified register is added to the value atk at
execution time. The result defines the Control Memory Address. The
contents of the register can be considered the base address, and the

atk expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after the
specified instruction is completed a step is desired., This step may
increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one. The Control Digit may

be specified by an atk type of expression, where 'a' and k are defined as

above.
cd Values Action
1 Decrement BL,
2 Increment DP
3 Decrement BL and increment DP
4 Decrement DP
5 Decrement BL and DP

The Control Digit is a valid entry only when the base register option
has been selected, and the register forming the base register is the DP

register.

BOV

Format

e Label

¢ Command

e Argument

Branch if Overflow

This instruction allows the programmer to test for an overflow or
underflow condition after an arithmetic operation. This instruction will
perform X exclusive OR Y ANDed with M and store the result in Y, Then
if any Y response store bit in any enabled array equals one an overflow
condition exists for that word. If such is the case, this instruction will
branch to the address specified in the Argument Field. The X response
store will equal one for the corresponding word of associative memory -

if an underflow occurred; otherwise an overflow occurred.

Label I Command l Argument I Comment
symbol l BOV I a(r)tk, cd l

Any valid symbol or blank,
BOV

The Control Memory Address is a symbolic or absolute address in
Bulk Core, Page Memory, or High Speed Data Buffer, The Control Memory

Address may be represented by four terms in the form a(r)zk, cd.

This entry is required only if the optional term (r) is omitted. This

term may be either a symbol or a constant,
This optional term must be a constant and modifies 'a'.

This entry may be one of the following nine registers: RO through R7,
DP. The contents of this specified register is added to the value

atk at execution time. The result defines the Control Memory Address.
The contents of the register can be considered the base address, and

the atk expression can be considered the displacement.

This entry is the Control Digit. A Control Digit indicates that after

the specified instruction is completed a step is desired. This step

may increment or decrement the data pointer (DP) register by one

and for decrement the block length (BL) register by one. The Control
Digit may be specified by an atk type of expression, where 'a' and k are

defined as above,

cd Values Action

Decrement BL

Increment’DP

Decrement BL and increment DP
Decrement DP

Decrement BL and DP

UL W N =

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

BNOV

Format

e Label

¢ Command

e Argument

e e 2
ee Kk
oo T
e o cd

Branch if No Overflow

This instruction allows the programmer to test for the absence of an
overflow or underflow condition following an arithmetic instruction.

This instruction will perform X exclusive OR Y ANDed with M and store
the result in Y. If all Y response store bits of all enabled arrays equal
zero, i,e.,, no overflow condition exists, this instruction will branch to
the address specified in the Argument Field., If the branch does not take
place, the X response store will equal one for the corresponding word of

associative memory if an underflow occurred; otherwise, an overflow

occurred.
Label | Command ‘ Argument | Comment
symbol | BNOV | a(r)ek, cd l

Any valid symbol or blank,
BNOV

The Control Memory Address is a symbolic or absolute address in Bulk
Core, Page Memory, or High-Speed Data Buffer. The Control Memory

Address may be represented by four terms in the form a(r)tk, cd.

This entry is required only if the optional term (r) is omitted, This

term may be either a symbol or a constant,
This optional term must be a constant and modifies 'a',

This entry may be one of the following nine registers: RO through R7, DP,

The contents of this specified register is added to the value atk at execution
time, The result defines the Control Memory Address. The contents of the
register can be considered the base address, and the atk expression can be

considered the displacement,

This entry is the Control Digit. A Control Digit indicates that after the
specified instruction is completed a step is desired., This step may increment
or decrement the data pointer (DP) register by one and/or decrement the
block length (BL) register by one., The Control Digit may be specified by

an atk type of expression, where 'a' and k are defined as above.

cd Values Action
1 Decrement BL,
2 Increment DP
3 Decrement BL and increment DP
4 Decrement DP
5 Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register,

2-30

BAL

Format

e Label

¢ Command

e Argument

e e 2
ee k
oo I
e e cd

Branch and Link

This instruction will transfer control to a subroutine after storing the
Execution Location Counter of the next instruction in the branch and link

register r

1’
Label l Command | Argument l Comment
symbol | BAL, ¥, ‘ _i(rz)d:k, cd |

Any valid symbol or blank.

BAL
One of the branch and link registers RO through R7,

The Control Memory Address is a symbolic or absolute address in Bulk
Core, Page Memory, or High-Speed Data Buffer, The Control Memory

Address may be represented by four terms in the form a(r)zk, cd.

This entry is required only if the optional term (r;) is omitted. This term

may be either a symbol or a constant.
This optional term must be a constant and modifies 'a’,

This entry may be one of the following nine registers: RO through R7, DP,

The contents of this specified register is added to the value atk at execution
time. The result defines the Control Memory Address, The contents of the
register can be considered the base address, and the a*xk expression can be

considered the displacement.

This entry is the Control Digit, A Control Digit indicates that after the
specified instruction is completed a step is desired. This step may
increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one, The Control Digit may

be specified by an atk type of expression, where 'a' and k are defined as

above,

cd Values Action

Decrement BL

Increment DP

Decrement BL and increment DP
Decrement DP

Decrement BL and DP

g W -

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

BAL

Note

Example

When a programmer branches and links to a subroutine, he generally
will return by issuing an unconditional branch on the register r, that

specified the branch and link instruction:

BAL, R2 SUB

-

SUB

B (R2)

RPT

Format

e Label

¢ Command

o o atk

e o blank

e Argument

Note

Repeat

This instruction will execute the following instruction the number
of times specified in the repeat constant term axk, If atk is omitted,
it is assumed that FL1 previously has been loaded with the number of

times minus one, the next instruction is to be repeated.

Label I Command I Argument | Comment
symbol ‘ RPT, atk | |

Any valid symbol or blank,
RPT

'a' may be either a constant or a symbol, and k is an optional
constant modifier., The value of this optional term specifies the
number of times the following instruction will be repeated, i.e.,
1=atk=256.

Assumes FL1 has been loaded with the number of times, minus one,
that the next instruction is to be repeated. FL1 should be loaded with
a constant from 0 to 255.

No entry required.

FL1 will be decremented to zero when this instruction is executed.

LOOP

Format

e Label
¢ Command

. o alikl

e o blank

¢ Argument

* 0 azikz

Note 1

Note 2
Note 3

Note 4

Loop

This instruction will sequentially cycle the program from the program
counter location following the loop instruction up to and including the
address specified in the Argument Field. The loop may be cycled any
number of iterations from 1 to 256. After the loop has cycled the
specified number of times, the program continAues with the next address

following the Argument Field address.

Label l Command Argument | Comment

symbol | LOOP, ajtk; l ap(r)xk, |
Any valid symbol or blank.
1L.OOP

a; may be either a constant or a symbol, and k; is an optional constant
modifier. The value of this optional term specifies the number of times

the program will be cycled.

APPLE assumes the number of loop iterations, minus one, has already

been loaded into FL1 by the programmer.

The Control Memory Address is a symbolic or absolute address in Bulk
Core, Page Memory, or High Speed Data Buffer. The Control Memory
Address may be represented by three terms in the form aj(r)zk,.

a, may be either a constant or a symbol, and k, is an optional constant

modifier., The value of the required term specifies the Control Memory
Address of the last instruction of the sequence of instructions cycled by
the LOOP.

This entry may be one of the following nine registers: RO through R7,

DP. The contents of this specified register is added to the value of azxk,
at execution time. The result defines the Control Memory Address.

The contents of the register can be considered the base address, and the

aptk, expression can be considered the displacement,

Instructions that alter the program counter, i.e., branches, skips, external
functions, etc., will produce unpredictable results if used within a loop.

Also,Load and Store register instructions are illegal within a loop.
Execution times can be improved for instructions within a loop.
FL1 register will be decremented to zero upon completion of the loop.

The register modification term, r, is only legal when the number of

iterations term, ajtky, is omitted.

REGISTER The register instructions allow the programmer to either alter or save
INSTRUCTIONS the contents of STARAN S registers.

The register instructions are:

Mnemonic Instruction
LRR Load Register from Register
LI Load Register with Immediate Data
LR Load Register from Control Memory
SR Store Register in Control Memory
INGCR Increment the Register
DECR Decrement the Register
LPswW Load Program Status Word
SPSW Swap Program Status Word

Table 2-1. Registers

Mnemonic Register Name ll_r:legglzl;
AS Array Selector 32
ASH Most-Significant Bits of Array Selector 16
ASL Least-Significant Bits of Array Selector 16
BL Block Length Counter 16
DP Data Pointer 16
C Common Register 32
CH Most-Significant Bits of Common Register 16
CL Least-Significant Bits of Common Register 16
F Field Register group (FL1, FP3, FPl, FP2) 32
FL1 Field Length Counter 1, Bits 0 to 7 of F 8
FP3 Field Pointer 3, Bits 8 to 15 of F 8
FP1 Field Pointer 1, Bits 16 to 23 of F 8
FP2 Field Pointer 2, Bits 24 to 31 of F 8
FL2 Field Length Counter 2 8
FPE Field Pointer Extra 8
PC Program Counter, Most-Significant Bits of PSW 16
IMASK Interrupt Mask, Least-Significant Bits of PSW 4
RO Branch and Link Register 0 32
R1 Branch and Link Register 1 32
R2 Branch and Link Register 2 32
R3 Branch and Link Register 3 32
R4 Branch and Link Register 4 32
R5 Branch and Link Register 5 32
R6 Branch and Link Register 6 32
R7 Branch and Link Register 7 32

Table 2-2. Register Combinations

Valid Register Combinations Length in Bits
(ASH, ASL) or AS 32
(BL,DP) 32
(CH,CL) or C- 32
(FL1,FP3,FP1,FP2)or F 32
(FL1, FP3) 16
(FP3, FPl1) 16
(FPl,FP2) 16
(FP2,FL1) 16
(FL2,FPE) 16
(PC, IMASK) 32

2-36

LRR

Format

e Label

e Command

e Argument

Note 1

Note 2

Load Register From Register

This instruction will load register or valid register combination r, with
the contents of register or valid register combination r. The contents
the source register is not affected, and the original contents of the

destination register is destroyed.

Label | Command I Argument | Comment
symbol I LRR, ks l RPN l

Any valid symbol or blank.
LRR

ks may be either a constant or a symbol.

Legal values:

Shift the contents of the source register (r) left end
around 8 bits before loading.

—
1

2 - Shift the contents of the source register (r) left end
around 16 bits before loading,

3 - Shift the contents of the source register (r) left end
around 24 bits before loading,

symbol - Must be equal to a value of 1, 2, or 3.

blank - APPLE will provide a shift constant to the source

register r, to align the least-significant bits of the
registers. (See examples,)

Both register entries are required,

The destination register(s)
Valid Entries:

Any register or register combination noted in table 2-2.

The source register(s)
Valid Entries:

Any register or register combination noted in table 2-2.

An R (Register) error indicates both T and T, are branch and link
registers, which is invalid.

R LRR RO,R1

A T (Truncation) error warns that T, is a larger register than T,

therefore all bits cannot be loaded.

LRR

¢ Example T LRR FPIl, (PC,IMASK)

32-bit (PC, IMASK) cannot be loaded into 8-bit FP1,

Note 3 A W (Warning) error warns that T is a smaller register than Ty Not

only is T loaded into r,, but also the other register or registers in rl's

2’

group are loaded into r,. (See Reference Manual, Bus Positions,)

¢ Example W LRR AS,FP2

32 -bit register AS is loaded with the four 8-bit registers, FL1, FP3,
FPl, FP2,

LI

Format

e Label

e Command

e Argument

o o azxk

Load Register with Immediate Data

This instruction will load register or valid register combination r with

the value of atk in the Argument Field.

Label | Command | Argument | Comment

symbol | LI, ks | r,atk

s

Any valid symbol or blank,
LI

ks may be either a constant or a symbol.

Legal values:

1 - Shift the value of atk left end-around 8 bits before loading.

2 - Shift the value of axk left end-around 16 bits before loading.
3 - Shift the value of axk left end-around 24 bits before loading.
symbol - Must be equal to a value of 1, 2, or 3,

blank - APPLE will provide a shift constant to the data to align the

least-significant bit of the data with the least-significant
bit of the register(s) specified.

Both entries are required.

The destination register(s).
Valid entries:

Any register or register combination noted in table 2-2.
The immediate value to be loaded may be a single-term or a double-term

expression whose value is less than 65, 53610. 'a' may be either a constant

or a symbol; k is an optional constant modifier.

2-39

LI

Example 1% LI FL1l,MEM

0 15 16 23 24 31

MEM

* Typical for 8-bit registers

Example 2% LI ASH, MEM

0 15 16° 31

j MEM

0 15
[ASH r

%% Typical for 16-bit registers

Example 3 L1,3 FP2,MEM

0 15 16 23 24 31

MEM

LR

Format

e Label

¢ Command

e Argument

o0 1‘2
o @ a:l:k
® 0 1‘1

Load Register From Control Memory

This instruction will load the register or valid register combination r, with
the contents of the Control Memory Address specified by a(r))tk. The
Control Memory Address is a symbolic or absolute address in Bulk Core or
High-Speed Data Buffer. The Control Memory Address may be represented
by four terms in the form a(r)tk, cd. The contents of the control memory
address is not affected. However, the contents of the base register may be
changed by the control digit (cd). The original contents of the destination

register is destroyed.

Label | Command | Argument l Comment
symbol I l‘B—’ks | Ezﬁ(rl)tk":d I

Any valid symbol or blank.
LR

kS may be either a constant or a symbol.

Legal values:

1 - Shift the contents of the address a(rl):I:k, left end -around
8 bits before loading the register,
2 - Shift the contents of the address a(rl):l:k, left end -around

16 bits before loading the register,

3 - Shift the contents of the address a(rl):l:k, left end-around
24 bits before loading the register.

symbol - Must be equal to a value of 1, 2, or 3.

blank - APPLE assumes that no shifting is desired.

Two entries are required.

The destination register(s).
Valid entries:

Any register or register combination noted in table 2-2.

'a' may be either a constant or a symbol; k is an optional constant modifier.

The value of this term specifies a Control Memory Address.

This entry may be one of the following nine registers: RO through R7,
DP,

The contents of the specified register is added to the value azk at
execution time. The result defines the Contrcl Memory Address. The
contents of the register can be considered the base address, and the

atk expression can be considered the displacement,

2-41

LR

cd

This entry is the Control Digit. A Control Digit indicates that after the
specified instruction is completed a step is desired. This step may
increment or decrement the pointer (DP) register by one and/or decrement
the block length (BL) register by one, The Control Digit may be specified

by an atk type of term, where, 'a' and k are as defined as above.

cd Values Action

Decrement BL

Increment DP

Decrement Bl and increment DP
Decrement DP

Decrement BL and DP

UL W NV —

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-42

LR

Example 1

Example 2

Example 3

Example 4

LR F,MEM

0 78 15 16 23 24 31

MEM

0 70 70 70 7
3

[Fr1 || Fe3 || rm2 || Fr2 | T2

0 78 15 16 23 24 31
MEM
FLI -
LR FP3,MEM
0 7 8 15 16 23 24 31
" MEM _
0 7
FP3 1‘2
LR,1 FPIl,MEM
0 78 15 16 23 24 31
MEM
T2

2-43

Example 5 LR, 3 FPl, MEM

0 7 8 15 16 23 24 31
MEM
0 7
A 4
FPIl I'Z
Example 6 LR (BL, DP), MEM
0 15 16 31
I | MEM
0 15 0 15
BL I DP | =
Example 7 LR DP, MEM
0 15 16 31
MEM
0 15
DP | r,
Example 8 LR, 2 DP,MEM
0
MEM
0 15
A
DP I r2

2-44

LR
Example 9

Example 10

Example 11

Example 12

LR (FL2, FPE), MEM

0 78 15 16

ryrTYYTYY™YS:

31

FL2 FPE

LR,3 FPE,MEM

15 16

31

0 7
FPE
LR C, MEM
0 15 16 31
0 31
v
c |

MEM

T2

MEM

r2

MEM

r2

MEM

r2

2-45

LR

Example 13

Example 14

Example 15

Example 16

LR CH,MEM

15 16 31

CH

LR,2 CL,MEM

15 16 31

LR (PC, IMASK), MEM

15 16 27 28 31

PC | I IMASKI

LR,2 PC,MEM

15 16 31

MEM

T2

MEM

ra2

MEM

T2

MEM

r2

SR

Format

e Label

e Command

e Argument

e @ axk

[2N] rl

e o cd

Store Register in Control Memory

This instruction will store the contents of the register or valid register
combination ry in the Control Memory Address specified in a(rj)tk, ed. The
Control Memory Address is a symbolic or absolute address in Bulk Core or
High-Speed Data Buffer, The Control Memory Address may be represented
by four terms in the form a(r)tk, cd. The contents of the source register is
not affected and the contents of the Control Memory Address destination is
destroyed. The contents of the base register (r}) may be changed by the

control digit, cd.

Label | Command ‘ Argument Comment
symbol | SR k_ | x,.a(r Mk, cd '

Any valid symbol or blank.
SR

ks may be either a constant or a symbol.

Legal values:

1 - Shift the contents of register (rz) left end -around 8 bits
before storing in Control Memory.

2 - Shift the contents of register (r,) left end-around 16 bits

. R 2

before storing in Control Memory.

3 - Shift the contents of register (rz) left end -around 24 bits
before storing in Control Memozty.,

symbol - Must be equal to a value of 1, 2, or 3,

blank - APPLE assumes that no shifting is desired.

Two entries are required.

The source register(s).
Valid entries:

Any register or register combination noted in table 2-2.

'a' may be either a constant or a symbol; k is an optional constant modifier,

The value of the term specifies the Control Memory Address.

This entry may be one of the following nine registers: RO through R7, DP.

The contents of the specified register is added to the value atk at execution
time. The result defines the Control Memory Address. The contents of the
register can be considered the base address, and the atk expression can be

considered the displacement,

This entry is the Control Digit. A Control Digit indicates that after the
specified instruction is completed a step is desired. This step may
increment or decrement the pointer (DP) register by one and/or decrement
the block length (BL) register by one., The Control Digit may be specified

by an axk type of term, where 'a' and k are defined as above.

2-47

SR

oo cd

Note

Example 1

Example 2

Example 3

Valid entries:

cd Values Action (After the Storage Operations)

Decrement BL register

Increment DP register

Increment DP register and decrement BL register
Decrement DP

Decrement both DP and BL registers

Ul N~

The Control Digit is a valid entry only when the base register option has been

selected, and the register forming the base register is the DP register.

When register rp is not a 32-bit register or group, a W (Warning) error

is produced to remind the programmer that the whole 32-bit group will be

stored. -
SR C,MEM

0 31

L C | r2

0 31

[| MEM

w SR DP,MEM

0 15 0 15

{ pop | BL 1 2

0 , 15 16 4 31

| T 71 MEM

When register r, is not a 32-bit register or group, a
W (Warning) error is produced to remind the program
mer that the whole 32 -bit group will be stored.
Location MEM will contain both DP and BL.

w SR,2 DF,MEM

2-48

INCR

Format

e Label

¢ Command

e Argument

Note 1

Note 2

Note 3

Note 4

Note 5

Increment the Register

The contents of the registers specified in the argument field by the term

Trreeas Ty will be incremented by one,

Label | Command | Argument | Comment

symbol | INCR | Tyreen Ty I
May be any valid symbol or blank.
INCR

The term TipeesT) identifies the specific registers to be incremented

by one.
Valid entries:

FP1 - Field Pointer 1

FP2 - Field Pointer 2

FP3 - Field Pointer 3

FPE - Field Pointer Extra

FL1 - Field Length Counter 1, Decrementable only
FL2 - Field Length Counter 2, Decrementable only
BL - Block Length Counter, Decrementable only

DP - Data Pointer

If the DP is specified in the Argument Field, it must the only register
listed. ‘

Only one of the three !'"decrementable only'' registers, FL1, FL2, and BL,
may be used in a single instruction., If one is chosen it will be decremented,
even though the other registers chosen will be incremented.

FP2 and FP3 may not be used in the same instruction.

A register may not appear more than once in any given INCR instruction.

A W (Warning) error is produced whenever a ''decrementable only!"'
register is specified, Such registers will be decremented rather, than

incremented.

DECR

Format

® Label

e Command

e Argument

Note 1

Note 2

Note 3

Note 4

Decrement the Register

The contents of the registers specified in the argument field by the term

T y...,r_ will be decremented by one,

1 n
Label | Command I Argument I Comment
symbol I DECR l Eyreeorr l

Any valid symbol or blank.

DECR

The term Tireees Ty identifies the specific registers to be decremented

by one,

Valid entries:

FP1 - Field Pointer 1

FP2 - Field Pointer 2

FP3 - Field Pointer 3

FPE - Field Pointer Extra

FL1 - Field Length Counter 1, Decrementable only
FL2 - Field Length Counter 2, Decrementable only
BL - Block Length Counter, Decrementable only
DP - Data Pointer

If the DP is specified in the Argument Field, it must be the only register
listed,

Only one of the three '""decrementable only!'' registers, FLI1, FL2, and

BL, may be chosen in a single instruction.
FP2 and FP3 may not be used in the same instruction,

A register may not appear more than once in any given DECR instruction.

LPSW

Format

e Label

e Command

e Argument

L Y axk

Load Program Status Word

This instruction will load the contents of a designated Control Memory
Address into the Program Counter (PC) and Interrupt Mask (IMASK)
registers, From the Control Memory word, bits O through 15 are
loaded into the Program Counter and bits 28 through 31 into the Interrupt
Mask. The contents of the source memory word is not affected. The

original contents of the registers are destroyed.

Label | Command I Argument l Comment
symbol l LPSW, ks a(r)tk, cd I

Any valid symbol or blank,
LPSW

ks may be either a constant or a symbol.
Legal values:

1 - Shift the contents of the address a(rl)ik, left end-around
8 bits before loading the register,

2 - Shift the contents of the address a(rl)ik, left end ~around
16 bits before loading the register,

3 - Shift the contents of the address a(rl):l:k, left end -around
24 bits before loading the register,

symbol - Must be equal to a value of 1, 2, or 3,

blank - APPLE assumes that no shifting is desired.

The Control Memory Address is a symbolic or absolute address in Bulk
Core or High-Speed Data Buffer. The Control Memory Address may be

represented by four terms in the form a(r)tk, cd.

'a' may be either a constant or a symbol; k is an optional constant modifier.

The value of this term specifies a Control Memory address.

This entry may be one of the following nine registers: RO through R7, DP.
The contents of the specified register is added to the value atk at execution
time, The result defines the Control Memory Address. The contents of the

register can be considered the base address; and the atk expression can be

considered the displacement,

2-51

LPSwW

cd

This entry is the Control Digit, A Control Digit indicates that after the
specified instruction is completed a step is desired. This step may
increment or decrement the data pointer (DP) register by one and/or
decrement the block length (BL) register by one. The Control Digit may

be specified by atk type of term, where 'a' and k are defined as above.

cd Values Action
1 Decrement BL
2 Increment DP
3 Decrement BL and increment DP
4 Decrement DP
5 Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register,

2-52

SPsSwW

Format

e Label

e Command

e Argument

e o atk
oo T
ee cd

Swap Program Status Word

This instruction will store the current Program Counter (PC) and Interrupt
Mask (IMASK) registers in the designated Control Memory Address, If the
Control Memory Address is an even address (see EVEN), the contents of the
next location will be loaded into the PC and IMASK registers, Loading the
PC register causes a branch to the address loaded. If the Control Memory

address is an odd address, only the store takes place.

Label | Command I Argument | Comment

symbol I SPSW | a(r)tk, cd l
Any valid symbol or blank.
SPSW

The Control Memory Address is a symbolic or absolute address in Bulk
Core or High-Speed Data Buffer. The Control Memory Address may be

represented by four terms in the form a(r)zk, cd.

'a' may be either a constant or a symbol; k is an optional constant modifier.

The value of this term specifies a Control Memory Address.

This entry may be one of the following nine registers: RO through R7, DP.

The contents of the specified register is added to the value atk at execution
time, The result defines the Control Memory Address. The contents of the
register can be considered the base address, and the atk expression can be

considered the displacement,

This entry is the Control Digit. A Control Digit indicates that after the specified
instruction is completed a step is desired. This step may increment or decrement
the pointer (DP) register by one and/or decrement the block length (BL) register
by one, The Control Digit may be specified by an atk type of term, where 'a'

and k are defined as above,

cd Values Action
1 Decrement BL
2 Increment DP
3 Decrement BL and increment DP
4 Decrement DP
5 Decrement BL and DP

The Control Digit is a valid entry only when the base register option has

been selected, and the register forming the base register is the DP register.

2-53

SPSwW

Example EVEN
PUT DS
GET DC X'90000009!
SPSW PUT

The current PC and IMASK registers will be stored at location PUT (note
that the address of PUT will always be even); then X'9000' will be loaded
into PC register and X'9'loaded into IMASK register. Since the program

counter (PC) is being loaded, a branch to location X'9000' occurs.

ASSOCIATIVE The associative instructions allow the programmer to load, store,

INSTRUCTIONS search, move, and perform arithmetic operations on the associative

array memory and the response store registers X, Y, and M,

LOADS This group of associative instructions allows the programmer to load
the response store registers or the Common register from an
associative memory bit column or an associative memory field,
respectively. All instructions dealing with response store registers
and/or associative memory fields or bit columns, only affect those
associative array memory modules enabled via the Array Select register.
The response store registers and associative array memory modules

disabled via the Array Select register remain unchanged.

Mnemonic Instructions

L Load Response Store Register

LN Load Complemented

LOR Load Logical OR

LORN Load Logical OR Complemented

LAND Load Logical AND

LANDN Load Logical AND Complemented

LXOR Load Logical Exclusive OR

LXORN Load Logical Exclusive OR Complemented

LC Load Common Register from an Associative
Memory Word

LCM Load a Common Register Field from an
Associative Memory Word

SET Set Response Store Register

CLR Clear Response Store Register

ROT Rotate Response Store Register

2-55

Format

e Label

¢ Command

e Argument

ooI'Sz

,.a:tk

Load Response Store Register

This instruction will load the response store register, rs,, with the
designated source. The content of the source is not affected,and the

original content of the destination, rsj, is destroyed.

Label Command Argument Comment
s
L rs,,| axk
x

Any valid symbol or blank.
L

Two entries are required. The first entry is the destination; the second
entry is the source. As shown there are three distinct types of source
expressions. The brackets are not a part of the possible argument

field terms.

The destination response store register,

Valid entries:

X . X response store register
Y - Y response store register
M - M response store register

The source response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

'a'may be a constant or a symbol; k is an optional constant modifier,
k is legal only when'a'is present as a symbol. If'a'was defined as a
field via a DF instruction, the most-significant bit position is the
value used. This term represents a source bit position in all words of

enabled associative memory. The value of azk should be 0 Zaxk< 255,

A field pointer register,which may be post-incremented or post-
decremented. If this form is used, the response store register, ISy,
is loaded indirectly through this register. This register contains

the address of the source bit column.

Valid entries:

FP1 Field Pointer
FP1l+ Field Pointer
FPl. Field Pointer
FP2 Field Pointer
FP2+ Field Pointer
FP2. Field Pointer
FP3 Field Pointer
FP3+ Field Pointer
FP3. Field Pointer

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

WWWHN NN =

L

Example 1 L M, Y

>
n
o+
"

Before

M Y M| Y
0 0 0j]o
0 1 11
0
256 J [|) Ve
Bits
Example 2 TAG DF 9,4
L Y, TAG
Before After
Array Array
Memory Memory
Y Column 9 Y Column 9
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 1
Example 3 DF 9,4
L X, TAG
Before After
Array Array
Memory Memory
X Column 9 X Column 9
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 1

LN

Format

e Label

e Command

¢ Argument

oorsz

L] .I‘Sl

e o axk

Load Complemented

This instruction will load the response store register, rsp, with
the one's complement value of the designated source. The
content of the source is not affected and the original content

of the destination, rsp, is destroyed.

Label I Command l Argument Comment
Is)

symbol LN rs,, azk
r

Any valid symbol or blank.

LN

Two entries are required. The first entry is the destination; the
second entry is the source. As shown,there are three distinct types
of source expressions. The brackets are not a part of the possible

argument field terms.

The destination response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

The source response store register,
Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

'a'may be a constant or a symbol; k is an optional constant modifier,
k is legal only when'a'is present as a symbol. If'a'was defined as a
field via a DF instruction, the most-significant bit position is the
value used. This term represents a source bit position in all words of

enabled associative memory. The value of axk should be 0<axk< 255,

A field pointer register. If this form is used, the response store
register, rs;, is loaded indirectly through this register. This register

contains the address of the source bit column.

Valid entries:

FP1 Field Pointer 1
FP1+ Field Pointer 1 with a post-increment
FPl- Field Pointer 1 with a post-decrement
Fp2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

LN

Note If M is chosen for the rs; entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

Example 1 LN M,Y
Before After
XY | M X]1YyY[M
(11 [0 | o d o |1
1 1 0 e 1 0
0 0 1 s 0 1
256 0 1 1 t 1 0
Bits] | - . rol.
. . . o | .
. . . y | .
e
L d
Example 2 TAG DF 9,4
LN Y, TAG
Before After
Array Array
Memory Memory
Y | Col 9 Y|{Col 9
0 0 1 0
0 1 0 1
1 1
256 J 11| 3 ol 9
Bits . .
Example 3 TAG DF 9,4
LI FP1, TAG
LN X,FP1
Before After
Array Array
Memory Memory
X | Col 9 X | Col 9
0 0 1 0
0 1 0 1
1 0 1
256) | ; ol °
Bits) .

LOR Load Logical OR

This instruction will load the response store register, rsp, with a
logical inclusive OR of itself and the value of the designated source.
The content of the source is not affected and the original content

of the destination, rsj, is destroyed.

Format Label Command Argument Comment
rs]
symbol LOR Is,,| azk
z
e Label Any valid symbol or blank,
o Command LOR
e Argument Two entries are required. The first entry is the destination; the second

entry is the source. As shown,there are three distinct types of source
expressions, The brackets are not a part of the possible argument field

terms.

® o TSy The destination response store register.

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

® o TS The source response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

o o axk gt may be a constant or a symbol; k is an optional constant modifier.
k is legal only when'a'is present as a symbol. If'a' was defined as a
field via a DF instruction, the most-significant bit position is the value
used. This term represents a source bit position in all words of

enabled associative memory. The value of atk should be 0Saxk< 255.

o erT A field pointer register. If this form is used, the response store
register, rsp, is loaded indirectly through this register. This register

contains the address of the source bit column.

Valid entries:

FP1 Field Pointer
FP1+ Field Pointer
FP1l- Field Pointer
FP2 Field Pointer
FP2+ Field Pointer
FP2- Field Pointer
FP3 Field Pointer
FP3+ Field Pointer
FP3- Field Pointer

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

WWWNNDN =

2-60

LOR

Note If M is chosen for the rs; entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

Example 1 LOR M,Y
Before After
X]lY| M X| Y| M
(|1]o]o adlofo
1 1 0 e 1 1
0 0 1 s 0 1
256) 0 1 1 i 1 1
Bits
. . . o . .
. . . vy 1. .
e
L d
Example 2 TAG DF 9,4
LOR Y, TAG
Before After
Array Array
Memory Memory
Y | Col 9 Y | Col 9
0 0 0 0
0 1 1 1
256 1 0 1 0
Bits | | ! 1 1 1
L 3 . .
Example 3 TAG DF 9,4
LI FP2, TAG
LOR X,FP2
Before After
Array Array
Memory Memory
X | Col 9 X | Col 9
([o 0 0 0
0 1 1 1
256 [l | g V0
Bits 3
L] . . .

2-61

LORN Load Logical OR Complemented

This instruction will load the response store register, rs,, with the
logical inclusive OR of itself and the one's complement of the value
of the designated source. The content of the source is not affected

and the original content of the destination, rs,, is destroyed.

Format Label Command Argument Comment
rs)
symbol LORN IS, azk
r
e Label Any valid symbol or blank.
¢ Command LORN
e Argument Two entries are required. The first entry is the destination; the

second entry is the source. As shown,there are three distinct
types of source expressions. The brackets are not a part of the

possible argument field terms.

® oS, The destination response store registern
N

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

o o TS5 The source response store register.

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

e o axk 'aimay be a constant or a symbol; k is an optional constant modifier.
k is legal only when'a'is present as a symbol. Iffatwas defined as a
field via a DF instruction, the most significant bit position is the
value used. This term represents a source bit position in all words of

enabled associative memory. The value of axk should be 0Zaxk<255,

e e A field pointer register, If this form is used, the response store
register, rs,, is loaded indirectly through this register. This register

contains the address of the source bit column.

Valid entries:

FP1 Field Pointer 1
FP1+ Field Pointer 1 with a post-increment
FP1l- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a . post-increment
FP3- Field Pointer 3 with a post-decrement

2-62

L_ ; it

LORN
Note If M is chosen for the rs; entry, the original content of the X response
store register is destroyed when this multiple instruction is executed,
Example 1 LORN M,Y
Before After
XY | M XYl M
1 0 0 d 0 1
1 1 0 e 1 0
0 0 1 s 0 1
256 0 1 1 t 1 1
Bits Y | - . . r | . .
. . o | . .
. . . y |- .
e
d
Example 2 TAG DF 9,4
LORN Y, TAG
Before After
Array Array
Memory Memory
Y | Col 9 Y | Col 9
0 0 1 0
0 1 0 1
R Ll
Bits
Example 3 LORN Y,9
Before After
Array Array
Memory Memory
Y Col 9 Y | Col 9
0 0 1 0
0 1 0 1
2s6 I 0|1 10
Bits . .

2-63

LAND

Format

e Label

o Command

e- Argument

e o I'Sy

® o ISy

Load Logical AND

This instruction will load the response store register, rs,, with
a logical AND of itself and the value of the designated source. The
content of the source is not affected and the original content of the

destination, rs,, is destroyed,

Label Command Argument Comment
rs)

symbol LAND Is,,| azk
r

Any valid symbol or blank.

LAND

Two entries are required. The first entry is the destination; the
second entry is the source. As shown,there are three distinct types
of source expressions. The brackets are not a part of the possible

argument field terms,

The destination response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

The source response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

'a'may be a constant or a symbol; k is an optional constant modifier,
k is legal only when'atis present as a symbol. If'a'was defined as a
field via a DF instruction, the most significant bit position is the
value used. This term represents a source bit position in all words of

enabled associative memory. The value of atk should be 05a+k<$255,

A field pointer register. If this form is used, the response store
register, rsy, is loaded indirectly through this register. This

register contains the address of the source bit column.

Valid entries:

FP1 Field Pointer
FP1l+ Field Pointer
FP1- Field Pointer
FP2 Field Pointer

1
1 with a post-increment
1
2
FP2+ Field Pointer 2 with a post-increment
2
3
3

with a post-decrement

FP2-. Field Pointer 2 with a post-decrement
FP3 Field Pointer

FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

2-64

LAND

Note If M is chosen for the rsp entry, the original content of the X response

store register is destroyed when this multiple instruction is executed,

Example 1 LAND M,Y
Before After
X Y[M X1Y | M
([T oo alo]|o
1 1 0 e 1 0
0 0 1 s 0 0
256 0 1 1 t 1 1
BitSJ . . . r . .
. . . o .
. . v . .
e
L d
Example 2 TAG DF 9,4
LAND Y, TAG
Before After
Array " | Array
Memory Memory
Y Col 9 Y | Col 9
0 0 0 0
0 1 0 1
1 0 0 0
256 1) 1 1 1
Blts
Example 3 TAG DF 9,4
LI FP3, TAG
LAND X,FP3
Before After
Array Array
Memory Memory
X Col 9 X | Col 9
([0 0 0 0
0 1 0 1
1 0 0 0
256 J | 1 1 1
Bits . .] .

2-65

LANDN

Format

e Label

¢ Command

e Argument

O.I'SZ

.CrSl

o o axk

Logical AND Complemented

This instruction will load the response store register, rs,, with

the logical AND of itself and the one's complement of the designated
source. The content of the source is not affected and the

original content of the destination, rs,, is destroyed in the

execution of the load.

Label Command Argument Comment
Is]

symbol LANDN Is,, azk
r

Any valid symbol or blank,
LLANDN

Two entries are required. The first entry is the destination; the
second entry is the source. As shown,there are three distinct

types of source expressions. The brackets are not a part of the
possible argument field terms.

The destination response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

The source response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

'a' may be a constant or a symbol; k is an optional constant modifier.
k is legal only when 'a' is present as a symbol., If 'a' was defined as
a field via a DF instruction, the most-significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory. The value of atk should be 0=atk=255,

A field pointer register, If this form is used, the response
store register, rs,, is loaded indirectly through this register.

This register contains the address of the source bit column.

Valid entries:

FP1

FP1+ Field Pointer 1 with a post-increment

FP1- Field Pointer 1 with a post-decrement

FP2 Field Pointer 2

FP2+ Field Pointer 2 with apost_increment

FP2- Field Pointer 2 with apost_decrement

FP3 Field Pointer 3

FP3+ Field Pointer 3 with a post-increment

FP3- Field Pointer 3 with a post-decrement 2-66

LANDN
Note If M is chosen for the rs) entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

Example 1 LANDN M,Y
Before After
XYy (™M X1 Y| M
([T [0 o dlo o
1 1 0 e 1 0
0 0 1 s 0 1
256 0 1 1 t 1 0
Bits 3 . . r . .
. . . o . .
. . . vy . .
e
L d
Example 2 LANDN Y,9
Before After
Array Array
Memory Memory
Y | Col 9 Y| Col 9
-
0 0 0 0
0 1 0 1
1 0 1 0
123536 1 1 0 1
its
Example 3 TAG DF 9,4
LI FP1, TAG
LANDN X, FP1
Before After
Array Array
Memory Memory
X | Col 9 X | Col 9
0 0 0 0
0 1 0 1
1 0
256 ||, 0 . 1
Bits) .

2-67

LXOR Load Logical Exclusive OR

This instruction will load the response store register, rs,, with the
logical exclusive OR of itself and the value of the designated cource.
The content of the source is not affected and the original content

of the destination, rs,: is destroyed.

Format Label Command Argument Comment
rs]
symbol LXOR ISoaf atk
r
e Label Any valid symbol or blank.
¢ Command LXOR
e Argument Two entries are required. The first entry is the destination; the

second entry is the source. As shown,there are three distinct types
of source expressions. The brackets are not a part of the possible

argument field terms.

P rsz The destination response store register,

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

e oIS, The source response store register,

Valid entries:

X . X response store register
Y - Y response store register
M - Mresponse store register

e o axk !a¥may be a constant or a symbol; k is an optional constant modifier.
k is legal only when'a'is present as a symbol, Iffta'was defined as a
field via a DF instruction, the most significant bit position is the
value used, This term represents a source bit position in all words of

enabled associative memory. The value of azk should be 05axk<255.

e e T A field pointer register, If this form is used, the response store
register rs, is loaded indirectly through this register. This

register contains the address of the source bit column.

Valid entries:

FP1 Field Pointer
FP1l+ Field Pointer
FP1- Field Pointer
FpP2 Field Pointer
FP2+ Field Pointer
FP2- Field Pointer
FP3 Field Pointer
FP3+ Field Pointer
FP3. Field Pointer

with a post-increment
with a post-decrement

‘with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

W W WV —= =

2-68

LXOR

Note If M is chosen for the rsp entry, the original content of the X response

store register is destroyed when this multiple instruction is executed.

Example 1 LXOR M,Y
Before After
XY | M X| Y| M
-
1 0 0 dj| o 0
1 1 0 e 1 1
0 0 1 s 0 1
256 0 1 1 t 1 0
Bits? | - . . r| . .
. . . o| . .
. . . y | . .
e
L d
Example 2 LXOR Y,9
Before After
Array Array
Memory Memory
Y | Col 9 Y | Col 9
0 0 0 0
0 1 1 1
256 || | o . 0
Bits
Example 3 LI FP2,X'9!
LXOR X,FP2
Before After
Array Array
Memory Memory
X Col 9 X | Col 9
([0 0 0 0
0 1 1 1
1 0 1 0
256 1 1
Bits) | ! 0]

2-69

LXORN

Format

e Label

e Command

e Argument

P) atk

Load Logical Exclusive OR Complemented

This instruction will load the response store register, rs,, with the
logical exclusive OR of itself and the one's complement of the
designated source. The content of the source is not affected and
the original content of the destination, rs,, is destroyed in the

execution of the load.

Label Command Argument Comment
rsj

symbol LXORN Xsy,| axk
r

Any valid symbol or blank.
LXORN

Two entries are required. The first entry is the destination; the
second entry is the source. As shown,there are three distinct types
of source expressions. The brackets are not a part of the possible

argument field terms.

The destination response store register.

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

The source response store register.

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

a'may be a constant or a symbol; k is an optional constant modifier.
k is legal only when'a'is present as a symbol. If'a'was defined as a
field via a DF instruction, the most-significant bit position is the

value used. This term represents a source bit position in all words of

enabled associative memory, The value of azk should be 0Saxk<255,

A field pointer register. If this form is used, the response store
register, rs,, is loaded indirectly through this register. This

register contains the address of the source bit column,

Valid entries:

PF1 Field Pointer 1

FP1l+ Field Pointer 1 with a post-increment

FP1. Field Pointer 1 with a post-decrement

FP2 Field Pointer 2

FP2+ Field Pointer 2 with a post-increment

FP2- Field Pointer 2 with a post-decrement

FP3 Field Pointer 3

FP3+ Field Pointer 3 with a post_increment

FP3. Field Pointer 3 with a post-decrement 2-170

LXORN

Note If M is chosen for the rsp entry, the original content of the X response

store register is destroyed when this multiple instruction is executed,

Example 1 LXORN M,Y
Before After
X Y [M X Y | M
(7 [oo a o |1
1 1 0 e 1 0
0 0 1 s 0 0
256 0 1 1 t 1 1
Bits < . . r . .
. . o . .
. . vy . .
e
g d
Example 2 LXORN Y,9
Before After
Array Array
Memory Memory
Y Col 9 Y | Col 9
([o 0 1 0
0 1 0 1
256 1 0 0 0
Bits 1| ! 1 ! !
Example 3 TAG DF 9,4
LI FFP3, TAG
LXORN X,FP3
Before After
Array Array
Memory) Memory
X | Col 9 X | Col 9
0 0 1 0
0 1 0 1
256 i ‘1) (1)]
Bits .

2-71

LC

Format

e Liabel

¢ Command

e Argument

Note 1

Note 2

Note 3

Note 4

Load Common Register from an Associative Memory Word

This instruction will load the Common register, right-justified with
a field of the associative memory word whose address is in the link
pointer (FP1, FP2).

Label | Command | Argument | Comment
symbol ' LC I a I

Any valid symbol or blank,
LC
One entry is required, an associative memory field expression,

There are two ways of denoting a field expression:

1) 'a' may be in the form

bxi

where b must be a symbol, and i is an optional constant
modifier. b should have been previously defined in a DF
instruction. b represents the most-significant bit position
and the number of contiguous bits occupied by a field in
associative memory. The optional constant modifier, i,

modifies only the most-significant bit position of the field.

2) 'a' may be in the form
(b, i)£j

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is
the value used. i must be a constant and represents the number
of contiguous bits occupied by the field. j is an optional constant

modifying only the most-significant bit position of the field.

The link pointer (FP1 and FP2 registers) must be loaded with the
address of the particular associative memory word prior to executing
this instruction. Loading the link pointer is generally accomplished
by use of the FIND, STEP, or RESVFST instruction.

If the array memory field length is less than 32 bits, the most—

significant bit positions of the Common register are cleared to zero.
If the array memory field length is greater than 32 bits, the most
significant bits are truncated and the instruction is flagged witha T

on the listing,

The X response store register is destroyed if shifting is required.

LC

Example

FIND

LC (10, 6)

Array Memory
Bit Column
10 1111213} 14] 15

Word 0 0J]0|oO 1 0 1

Word 1 1 0 0

Word n 1 0 {0 1 1 1 FP1 FP2
Address of Word n

Word 255 1 1 0 {0 |1 0

Common Register

0 25 26 31

0 —- - 0|1 0 0 1 1 1

LCM Load 2 Common Register Field From an Associative Memory Word

This instruction will load a field, aj, in the Common register with a
field, a,, from the word of associative memory whose address is in the

link pointer (FP1, FP2). All other bits in the Common register remain

unchanged.
Format Label | Command | Argument l Comment
symbol | LCM I 2313y l
e Label Any valid symbol or blank,
¢ Command LCM
e Argument Two entries are reguired. The first entry is the destination, a field

in the Common register, the second entry is the source, a field in a.

word of associative memory.

°aj;a, There are two ways of denoting a field expression:
1) a; or a, may be in the form
bi

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of

contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) aj or ap may be in the form
(b, 1)£]

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field, j is an optional constant

modifying only the most significant bit position of the field.

Note 1 The link pointer (FP1 and FP2 registers) must be loaded with the
address of the particular associative memory word prior to executing
this instruction. Loading the link pointer is generally accomplished
by use of the FIND, STEP, or RESVFST instruction.

Note 2 If the associative memory field length is less than the Common register
field length, a W (warning flag) is noted on the listing. In this case the asso-
ciative memory field will be loaded, right justified in the Common

register field, and all remaining bits are unchanged.

Note 3 ' If the associative memory field length is greater than the Common register
field length, a T (truncation flag) is noted on the listing. In this case

the most-significant bits of the associative memory field are truncated.

Note 4 The X response store register is destroyed if shifting is required, 2.74

LCM

Example FIND
LCM (15,6),(10, 6)

Array Memory
Bit Column

Y |10 11}12 (13| 1415

Word 0 0 0 1 0 1 0 1
Word 1 0 0 0 0
Word n 1 1 1 1 0 0 0

Word 255 1 0 0 1 1 0 0

FP1 Fp2

Address of Word n

Common Register

0 14 15 16 17 18 19 20 21 31

----- T K] i I

2-75

SET

Format

° Label
¢ Command

. ‘Argument

Note

Example

Set Response Store Register

This instruction will set the designated response store, rs,

to all ones.

Label | Command | Argument | Comment

symbol l SET I rs I

Any valid symbol or blank,
SET
One entry is required.

The designated response store to be set by the instruction,

Valid entries:
X - X response store register

Y - Y response store register
M - M response store register

If M is chosen for the rs entry, the original content of the
X response store register is destroyed when this multiple
instruction is executed.

SET Y

Before After

Y Y

0 1

0 1

56 1 1
2

Bits 9 1 1

CLR ‘ : Clear Response Store Register

This instruction will clear the designated response store, rs,

to all zeroes.

Format Label | Command I Argument | Comment
symbol I CLR l rs I
e Label Any valid symbol or blank.
¢ Command CLR
e Argument One entry is required,
e oIS The designated response store to be cleared by the instruction.
Valid entries:
X - X response store
Y - Y response store
M - M response store
Note : If M is chosen for the rs entry, the original content of the X

response store register is destroyed when this multiple

instruction is executed.

Example CLR M

Before After

g
%
g
%

—_ - O O
- O = O
c o o ©O
<+ w

256
Bits‘{

a0 o H

2-77

ROT Rotate Response Store Registers

This instruction will rotate the selected response store register

right, end around.

Format Label I Command | Argument I Comment

symbol | ROT rs, alﬂ:kl, azztkz l

e Label Any valid symbol or blank.
e Command ROT
e Argument

® ers The response store register to be rotated.

Valid entries:

X - X response store register
Y - Y response store register
M - M response store register

o ajxk, The number of end-around bit positions to be rotated. aj; may be
either a constant or a symbol: k; is an optional constant modifier.
A negative value indicates a left end-around rotate from least-
significant bit position toward a more significant bit position. A
positive value indicates a right end-around rotate from the most-
significant bit position toward a less significant bit position, The

absolute value of the rotate constant must be less than the value

of the modulus ajxkj.

o o ajxky The modulus to be rotated. This optional term defines the length of the
equal sections within the response store register; a; may be
either a constant or a symbol: k; is an optional constant modifier.
The value of this term must be a power of 2,such that 1< azxky <128,

A default value of 256 is assumed,

Note If the M response store register is chosen, the X response store register

is destroyed.

Example 1 ROT Y,5
—_—— —— — ————
ro 255 |
W S)

Each bit moves 5 bit positions right end-around.

Example 2 ROT Y, -2,64

CTTTNTTA T O
| 0 J64 Li28 192 55 o
d +— <+— «— 2-78

Each bit moves 2 bit positions left end-around in each section.

STORES

This group of associative instructions allows the programmer to store
the response store registers or the Common register into an associative
memory bit column or an associative memory field respectively. All
instructions dealing with response store registers, and/or associative
memory fields or bit columns only affect those associative array memory
modules enabled via the Array Select register. The response store
registers and associative array memory modules disabled via the Array

Select register remain unchanged.

Mnemonic Instructions

S Store Response Store Into Associative Memory

SM Store Response Store Masked Into Associative Memory

SN Store Complement Into Associative Memory

SNM Store Complement Masked Into Associative Memory

SOR Store Logical Inclusive OR Into Associative Memory

SORM Store Logical Inclusive OR, MASKED Into Associative Memory

SORN Store Logical Inclusive OR, Complemented Into Associative
Memory

SORNM Store Logical Inclusive OR, Complemented, Masked
Into Associative Memory

SAND Store Logical AND Into Associative Memory

SANDM Store Logical AND Masked Into Associative Memory

SANDN Store Logical AND Complemented Into Associative Memory

SANDNM Store Logical AND, Complemented, Masked Into
Associative Memory

SC Store Common Register Into Associative Memory

SCW Store Common Register Into Associative Word

S Store Response Store Into Associative Memory

This instruction will store the content of the designated response store
register, rs, into the specified bit column of enabled associative memory.
The content of the source response store is not affected,and the

original content of the bit column is destroyed.

Argument | Comment

Format Label Command
symbol S IS,t axk
dx
e Label Any valid symbol or blank,
¢ Command S
e Argument Two entries are required. The first entry is the source; the second

entry is the destination. As shown,there are two distinct ways of
specifying the destination bit column, The brackets are not a part of

the argument field terms.

e o TS The source response store register,

Valid entries:

X - X response store
Y - Y response store
M - M response store

e o axk 'a' may be a constant or a symbol; k is an optional constant modifier.

k is legal only when 'a' is present as a symbol. If 'a' was defined as

a field via a DF instruction, the most-significant bit position is the
value used. This term represents a destination bit position in all words

of enabled associative memory, The value of atk should be 0Zaxk< 255,

eer A field pointer register which may be post-incremented or post-
decremented, If this form is used, the response store register, rs,
is stored indirectly throwh this register, This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer
FP1+ Field Pointer
FP1- Field Pointer
FP2- Field Pointer

1
1 with a post-increment
1
2
FP2+ Field Pointer 2 with a post-increment
2
3
3

with a post-decrement

FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer

FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

Example 1 TAG DF 9,4
S Y, TAG
Before After
Array Array
Memory Memory
Y | Column 9 Y | Column 9
0 0 0 0
0 1 0 0
256 1 0 1 1
Bits 1] ! 1 1 1
L] - . . .
Example 2 TAG DF 9,4
S X, TAG-5
Before After
Array Array
Memory Memory
X | Column 4 X | Column 4
0 0 0 0
0 1 0 0
256 1 0 1 1
Bits1] ! 1 1 1

SM

Format

e Label

¢ Command

e Argument

e o axk

Store Response Store Masked Into Associative Memory

This instruction will store the content of the designated response store
register, rs, into the specified bit column of enabled associative memory
in all words whose M response store bit is set. The content of the source
response store is not affected, and the original content of the bit column is
destroyed in those words of associative memory whose M response store

bit is set,

Label I Command I Argument I Comment

symbol I SM l rs,’ _a_:!:k] I
r

Any valid symbol or blank.
SM

Two entries are required. The first entry is the source; the second
entry is the destination. As shown there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register,

Valid entries:

X - X response store
Y - Y response store
M - M response store

'a' may be a constant or a symbol: k is an optional constant modifier.

k is legal only when 'a' is present as a symbol. If 'a' was defined as

a field via a DF instruction, the most-significant bit position is the value
used, This term represents a destination bit position in all selected words

of enabled associative memory. The value of atk should be 0Sa+k<255,

A field pointer register which may be post-incremented or post—
decremented, If this form is used, the response store register, rs,
is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer
FP1l+ Field Pointer
FPl- Field Pointer
FP2 Field Pointer

1
1 with a post-increment
1
2
FP2+ Field Pointer 2 with a post-increment
2
3
3
3

with a post-decrement

FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer
FP3+ Field Pointer
FP3-. Field Pointer

with a post-increment
with a post-decrement

2-82

SM

Example

TAG

256
Bits

DF 152,40

SM X, TAG

Before After
Array Array
Memory Memory

X | M| Col 152 X | M| Col 152

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 1

SN

Format

e Label
e Command

e Argument

® @ I'S

e o atk

Store Complement Into Associative

This instruction will store the one's complement of the value of the

designated response store register, rs, into the specified bit column
of enabled associative memory. The content of the source response
store is not affected,and the original content of the bit column is

destroyed.

Label l Command l Argument | Comment

symbol

SN rs,|axk
s

Any valid symbol or blank,

SN

Two entries are required. The first entry is the source; the second
entry is the destination. As shown,there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.

The source response store register.

Valid entries:

Y - Y response store
M - M response store

'a' may be a constant or a symbol: k is an optional constant modifier.
k is legal only when 'a' is present as a symbol. If 'a' was defined as

a field via a DF instruction, the most-significant bit position is the value
used. This term represents a destination bit position in all words of

enabled associative memory, The value of atk should be 0Za+k<255,

A field pointer register which may be post-incremented or post—
decremented, If this form is used, the response store register, rs, is
stored indirectly through this register., This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer 1
FPl+ Field Pointer 1 with a post-increment
FP1- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

2-84

SN

Note

Example

The original content of the X response store register is destroyed

when this multiple instruction is executed.

TAG

DF 9,4
SN M, TAG
Before After
Array Array
Memory Memory
X | M|Col 9 X M| Col 9
1 0 0 d 0 1
1 0 1 e 0 1
0 1 0 s 1 0
0 1 1 t 1 0
. . . r . .
. . . o . .
. . . y . .
e
d

SNM Store Complement Masked Into Associative Memory

This instruction will store the one's complement of the value of the

Y response store register into the specified bit column of enabled
associative memory in all words of associative memory whose M
response store bit is set. The content of the Y response store is not
affected and the original content of the bit column is destroyed in those

words of associative memory whose M response store bit it set,

Format Label I Command I Argument Comment
symbol SNM | L[_g._i:k:l I
r
e Label Any valid symbol or blank,
e Command SNM
o Argument Two entries are required. The first entry is the source; the second

entry is the destination. As shown, there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.

oo Y Required and only valid entry,

e o axk 'a' may be a constant or a symbol; k is an optional constant modifier.
k is legal only when 'a' is present as a symbol, If 'a' was defined as

a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all selected
words of enabled associative memory., The value of atk should be
0<axk< 255,

e er A field pointer register which may be post-incremented or post-
decremented. If this form is used, the response store register, rs, is
stored indirectly through this register, This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer
FP14+ Field Pointer
FP1- Field Pointer
FP2 Field Pointer
FP2+ Field Pointer
FP2- Field Pointer
FP3 Field Pointer
FP3+ Field Pointer
FP3. Field Pointer

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

WWWHNNN - =

SNM

Note The original content of the X response store register is destroyed

when this multiple instruction is executed.

Example TAG DF 152,40

.SNM Y: TAG

Before After

Array Array
Memory Memory
Col. 152 Col. 152

i
=
<
]
g

256 -
Bitsw -

1
————0 00D 0
OO ~OO

Lo OR Tt o] M
C RS O000

.
-
.

" OO~ OO
* s E OO O N~

¢t - O O~O

.
.
.

2-87

SOR Store Logical Inclusive OR Into Associative Memory

This instruction will logical inclusive OR the contents of the designated
response store register, rs, and the bit column of enabled associative
memory, and store the resultant value into the bit column. The
content of the source response store, rs, is not affected, and the

original content of the bit column is destroyed.

Command I Argument | Comment

Format Label
symbol SOR | rs![gtk] |
X
e Label Any valid symbol or blank,
e Command SOR
e Argument Two entries are required. The first entry is the source; the second

entry is the destination. As shown,there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.

e o TS The source response store register,

Valid entries:

Y - Y response store
M .- M response store

e o atk 'a! may be a constant or a symbol; k is an optional constant modifier.
k is legal only when 'a' is present as a symbol. If 'a' was defined as
a field via a DF instruction, the most-significant bit position is the yalue
used. This term represents a destination bit position in all words of

enabled associative memory, The value of atk should be 05a+k<255,

eeor "A field pointer register which may be post-incremented or post-
decremented. If this form is used, the response store register, rs,
is stored indirectly through this register. This register contains the

address of the destination bit column.
\

Valid entries:

FP1 Field Pointer 1
FP1+ Field Pointer 1 with a post-increment
FPl- Field Pointer 1 with a post decrement
FpP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

2-88

SOR

Note The original content of the X response store register is destroyed

when this multiple instruction is executed.

Example TAG DF 9,4
SOR Y, TAG-1
Before After
Array Array
Memory Memory
X Y | Column 8 X {Y | Column 8
-
1 0 0 d 0 0
1 0 1 e 0 1
0 1 0 s 1 1
256 0 1 1 t 1 1
Bits) . . . r . .
. . . o . .
. . . vy . .
e
L d

SORM Store Logical Inclusive OR, Masked

This instruction will logical inclusive OR the contents of the Y response
store register and the designated bit column of enabled associative memory,
and store the resultant value into the designated bit column in all words of
associative memory whose M response store bit is set. The content of the
Y response store is not affected and the original content of the bit column
is destroyed in those words of associative memory whose M response store

bit is set.

Format Label | Command | Argument Comment
symbol SORM _:[_,[gd-k] l
r
e Label Any valid symbol or blank,
¢ Command SORM
s Argument Two entries are required, The first entry is the source; the second

entry is the destination. As shown,there are two distinct ways of
specifying the destination bit column. The brackets are not a part

of the argument field terms,

oo Y Required and only valid entry,

e o aik 'a! may be a constant or a symbol; k is an optional constant modifier.
k is legal only when 'a' is present as a symbol. If 'a' was defined as
a field via a DF instruction, the most-significant bit position is the
value used. This term represents a destination bit position in all selected

words of enabled associative memory, The value of atk should be 0=azk =255,

e o T A field pointer register which may be post-incremented or post-
decremented. If this form is used, the response store register, rs,
is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer 1
FP1l+ Field Pointer 1 with a post-increment
FP1- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2-. Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3. Field Pointer 3 with a post-decrement

2-90

SORM

Note The original content of the X response store register is destroyed

when this multiple instruction is executed.

Example SORM Y, 200
Before After
Array Array
Memory Memory
X1 Y| M| Col 200 X|1Y | M| Col.200
(- 0 0 0 d 010 0
- 0 0 1 e 0]0 1
- 0 1 0 s 0 1 0
- 0 1 1 t 0 1 1
256 - 1 0 0 r 1 0 0
Bits 1| - 1 0 1 o 1 0 1
- 1 1 0 v 1 1 1
- 1 1 1 e 1 1 1

2-91

SORN Store Logical Inclusive OR Complemented Into Associative Memory

This instruction will logical inclusive OR the one's complement

of the contents of the designated response store register, rs, with
the specified bit column of enabled associative memory, and store the
resultant value into the designated bit column of all words, The
content of the source response store is not affected,and the original

content of the bit column is destroyed.

Format Label | Command I Argument

| Comment
symbol SORN l &[g-.l-k] ’
r
o Label Any valid symbol or blank.
e Command SORN
e Argument Two entries are required. The first entry is the source; the second

entry is the destination. As shown there are two distinct ways of
specifying the destination bit column., The brackets are not a part of

the argument field terms.

e e 'S The source response store register,

Valid entries:

Y - Y response store
M - M response store

e o axk "a' may be a constant or a symbol; kis an optional constant modifier.
k is legal only when 'a' is present as a symbol, If 'a' was defined as
a field via a DF instruction, the most-significant bit position is the value
used. This term represents a destination bit position in all words of

enabled associative memory, The value of azk should be 05a+k<255,

eeT A field pointer register, which may be post-incremented or post-—
decremented, If this form is used, the response store register, rs,
is storec\l indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer
FP1+ Field Pointer
FP1l- Field Pointer
FP2 Field Pointer
FP2+ Field Pointer
FP2- Field Pointer
FP3 Field Pointer
FP3+ Field Pointer
FP3- Field Pointer

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

with a post-increment
with a post-decrement

WWWNNDN ==

2-92

SORN

Note The original content of the X response store register is destroyed

when this multiple instruction is executed,

Example SORN M, X'0!
Before After
Array Array
Memory Memory
X | M {Column 0 X | M | Column 0
(1 0 0 d 0 1
1 0 1 e 0 1
0 1 0 s 1 0
0 1 1 t 1 1
2."36 4 .
BltS
. . . o . .
. . . v .
e
d

2-93

SORNM

Format

e Label
e Command

e Argument

e o axk

Store Logical Inclusive OR, Complemented, Masked Into Associative Memory

This instruction will logical inclusive OR the one's complement of the
contents of the Y response store register with the specified bit column
of enabled associative memory. The resultant value is then stored into
the designated bit column in all words of associative memory whose M
response store bit is set, The content of the Y response store is not
affected, and the original content of the bit column is destroyed in those

words of associative memory whose M response store bit is set.

Label | Command I Argument | Comment
symbol SORNM | _‘_[_,l:g:l:k] |
r

Any valid symbol or blank.
SORNM

Two entries are required. The first entry is the source; the second
entry is the destination. As shown there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.
Required and only valid entry,

'a' may be a constant or a symbol; k is an optional constant modifier.
k is legal only when 'a' is present as a symbol. If 'a' was defined

as a field via a DF instruction, the most-significant bit position is the
value used. This term represents a destination bit position in all
selected words of enabled associative memory, The value of atk should
be 0 <atk <255, '

A field pointer register, which may be post-incremented or post-—

decremented, If this form is used, the response store register, rs,
\

is stored indirectly through this register. This register contains the

address of the destination bit column,

Valid entries:

FP1 Field Pointer 1
FP1l+ Field Pointer 1 with a post=increment
FP1- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

2-94

SORNM

Note The original content of the X response store register is destroyed

when this multiple instruction is executed.

Example SORNM Y,0
Before After
Array Array
Memory Memory
X |Y |M |Col. O X]Y]|M]|ColoO
- 0 0 0 d O 0 0
- 0 0 1 e |0 0 1
- 0 1 0 s 0 1 1
- 0 1 1 t 0 1 1
- 1 0 0 r 1 0 0
ZZBF;?S 11 - 1 0 1 o 1 0 1
- 1 1 0 vy |1 1 0
- 1 1 1 e 1 1 1
. . . . d |. . .

2.95

SAND Store Logical AND Into Associative Memory

This instruction will logical AND the contents of the designated
response store register, rs, withthe specified bit column of enabled
associative memory, and store the resultant value into the bit column.
The content of the source response store is not affected,and the

original content of the bit column is destroyed.

Format Label Command Argument I Comment
symbol SAND l _1;5_,[3:‘:1{]
r
e Label Any valid symbol or blank.
¢ Command SAND
e Argument Two entries are required. The first entry is the source; the second

entry is the destination. As shown,there are two distinct ways of
specifying the destination bit column., The brackets are not a part of

the argument field terms,

e o TS The source response store register,

Valid entries:

Y - Y response store
M - M response store

e o azxk 'a' may be a constant or a symbol; k is an optional constant modifier,
k is legal only when 'a' is present as a symbol. If 'a' was defined
as a field via a DF instruction, the most-significant bit position is the
value used, This term represents a destination bit position in all words of

enabled associative memory, The value of atk should be 0=axk=255,

e e A field pointer register,which may be post-incremented or post-
decremented. If this form is used, the response store register, rs,
is stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer 1
FP1l+ Field Pointer 1 with a post-increment
FP1- Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3- Field Pointer 3 with a post-decrement

2-96

SAND

The original content of the X response store register is destroyed

Note
when this multiple instruction is executed.
Example TAG DF 9,4
SAND Y, TAG
Before After
Array Array
Memory Memory
X Y | Column 9 X Y | Column 9
1 {.0 0 d 0 0
1 0 1 e 0 0
0 1 0 s 1 0
256 0 1 1 t 1 1
Bits Y1! - . . r . .
. . . o . .
. . . vy . .
e
L d

2-97

SANDM

Format

° Label
o Command

o Argument

o o axk

Store Logical AND Masked Into Associative Memory

This instruction will logical AND the contents of the Y response store
register and the specified bit column of enabled associative memory.
The resultant value will then be stored into the designated bit column
in all wo'lif-ds of associative memory whose M response store bit is set.
The confent of the Y response store is not affected, and the original
content of the bit column is destroyed in those words of associative

memory whose M response store bit is set.

Label Command l Argument I Comment
symbol SANDM L[E:!: k]
r

Any valid symbol or blank,
SANDM

Two entries are required. The first entry is the source; the second
entry is the destination. As shown,there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.
Required and the only valid entry,

'a' may be a constant or a symbol; k is an optional constant modifier,
k is legal only when 'a' is present as a symbol. If 'a' was defined

as a field via a DF instruction, the most-significant bit position is the
value used. This term represents a destination bit position in all
selected words of enabled associative memory. The value of atxk should
be 0=atk =255.

A field pointer register which may be post-incremented or post-
decremented. If this form is used, the‘response store register, rs,
is stored indirectly through this register. This register contains the

address of the destination bit column,

Valid entries:

FP1 Field Pointer
FP1l+ Field Pointer
FP1- Field Pointer
FP2 Field Pointer

1
1 with a post-increment
1
2
FP2+ Field Pointer 2 with a post-increment
2
3
3

with a post-decrement

FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer

FP3+ Field Pointer 3 with a post-increment
FP3. Field Pointer 3 with a post-decrement

2-98

SANDM

Note The original content of the X response store register is destroyed

when this multiple instruction is executed.

Example SANDM Y, 10
Before After
Array Array
Memory Memory
X1 Y{ M] Column 10 X |Y | M| Column 10
[- 0 0 0 d 0 0 0
- 0 0 1 e 0 0 1
- 0 1 0 s 0 1 0
- 0 1 1 t 0 1 0
- 1 0 0 r 1 0 0
2611 o 1 o |1]o0 1
- 1 1 0 vy 1 1 0
- 1 1 1 e 1 1 1
. . . d . . .
g

2-99

SANDN Store Logical AND Complemented Into Associative Memory

This instruction will logical AND the one's complement of the contents
of the designated response store register, rs, with the specified bit column
of enabled associative memory., The resultant value is then stored into
the designated bit column in all words of associative memory. The content
of the Y response store is not affected and the original content of the bit

column is destroyed.

Format Label l Command | Argument

Comment
symbol SANDN l lfS,[g_:i:kjl
r
e Label Any valid symbol or blank.
o Command SANDN
e Argument Two entries are required. The first entry is the source; the second

entry is the destination., As shown,there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.
o oIS The source response store register.
Valid entries:

Y - Y response store
M - M response store

o o azk 'a! may be a constant or a symbol; k is an optional constant modifier.
k is legal only when 'a' is present as a symbol. If 'a' was defined
as a field via a DF instruction, the most-significant bit position is the

value used. This term represents a destination bit position in all words of

enabled associative memory, The value of atk should be 0=axk=255,

e eor A field pointer register which may be post-incremented or post-
decremented, If this form is used, the response store register, rs, is
stored indirectly through this register. This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer 1
FP1l+ Field Pointer 1 with a post-increment
FPl. Field Pointer 1 with a post-decrement
FP2 Field Pointer 2
FP2+ Field Pointer 2 with a post-increment
FP2- Field Pointer 2 with a post-decrement
FP3 Field Pointer 3
FP3+ Field Pointer 3 with a post-increment
FP3. Field Pointer 3 with a post-decrement

2-100

SANDN

Note v The original content of the X response store register is destroyed

when this multiple instruction is executed.

Example 1 TAG DF 9,4

SANDN Y, TAG

Before After
Array Array
Memory Memory
X 1Y | Column9 X 1Y | Column 9
~
1 0 0 d 0 0
1 0 1 e 0 1
0 1 0] 1 0
256 0 1 1 t 1 0
Bits . r . .
. . o . .
. . . vy |. .
e
d

2-101

SANDNM Store Logical AND, Complemented, Masked Into Associative Memory

This instruction will logical AND the one's complement of the contents

of the Y response store register with the specified bit column of enabled
associative memory. The resultant value is then stored into the designated
bit column in all words of associative memory whose M response store

bit is set. The content of the Y response store is not affected, and the
original content of the bit column is destroyed in those words of associative

memory whose M response store bit is set.

Format Label I Command | Argument | Comment
symbol SANDNM ‘ Y, [_a,:hk:'
r
e Label Any valid symbol or blank.
e Command SANDNM
e Argument Two entries are required. The first entry is the source; the second

entry is the destination. As shown,there are two distinct ways of
specifying the destination bit column. The brackets are not a part of

the argument field terms.

e e Y Required and only valid entry.

o o atk 'a' may be a constant or a symbol; k is an optional constant modifier,
k is legal only when 'a' is present as a symbol. If 'a' was defined as
a field via a DF instruction, the most-significant bit position is the '
value used. This term represents a destination bit position in all selected
words of enabled associative memory. The value of axk should be
O=<atk=255,

ee T A field pointer register, which may be post-incremented or post-
decremented. If this form is used, the response store register, rs,
is loaded indirectly through this register, This register contains the

address of the destination bit column.

Valid entries:

FP1 Field Pointer
FP1+ Field Pointer
FP1l- Field Pointer
FP2 Field Pointer

1
1 with a post-increment
1
2
FP2+ Field Pointer 2 with a post-increment
2
3
3
3

with a post-decrement

FP2- Field Pointer 2 with a post decrement
FP3 Field Pointer
FP3+ Field Pointer
FP3-. Field Pointer

with a post-increment
with a post-decrement

2-102

SANDNM

Note The original content of the X response store register is destroyed

when this multiple instruction is executed.

Example SANDMN Y, 0

Before After
Array Array
Memory | Memory

XY | M| Column0 X1Y | M| Column 0

- :

_ 0 0 0 d 0 0 0

- 0 0 1 e | O 0 1

- 0 1 0 s 0 1 0

- 0 1 1 t 0 1 1

- 1 0 0 r 1 0 0

]Z;;fs 111 1o 1 ol1]o 1

I BT I 0 yl1]1 0

- 1 1 1 e 1 1 0

. . . . d | . . .

2-103

sC

Format

s Label

¢ Command

e Argument

L J al’aZ

Store Common Register into Associative Memory

This instruction will store a Common register field, a;, into a field,

as, of all words of enabled associative memory whose M response

store bit is set,

Label

Comment

Command | Argument

symbol

s¢c | 2.3,

Any valid symbol or blank,

sC

Two entries are required. The first entry is the source, a field

in the Common register; the second entry is the destination, a

field in words of associative memory.

There are two ways of denoting a field expression:

1)

2)

a, or a, may be in the form

bi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.
aj or ap may be in the form
(b, i)+j

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

2-104

SC

Note 1 If the Common register field length is less than the associative memory
field length, a W (warning flag) is noted on the listing. In this case, the
Common register field will be stored right justified into the associative

memory field,

Note 2 If the Common register field length is greater than the associative
memory field length, a T (truncation flag) is noted on the listing., In
this case, the most significant bits of the Common register field are

truncated.

Note 3 The content of the X response store register is destroyed, Also, the
following field definition registers are used: FPIl, FP2, and FLI,

Example SC (0, 3),(10, 3)
After Execution

Array Memory
Bit Column

M] 10 11 12
(1 1 o |1
1 1 0 1
1 1 0 1
0 unchanged’
256 0 unchanged
Bits) | 1 |1 1
1 1 0 1
L . . .

Common Register

2-105

SCWN Store Common Register into Associative Word

This instruction will store a Common register field, a;, into a field, aj, of
one word of associative memory whose address is in the link pointer

(FP1, FP2). All other words in the associative memory remain unchanged.

Format Label I Command J Argument l Comment
symbol | SCw l aj.ap I
o Label Any valid symbol or blank,
o Command SCW
e Argument) Two entries are required. The first entry is the source, a field in the

Common register; the second entry is the destination, a field in a word

of associative memory.
o 0a;:2, There are two ways of denoting a field expression:

1) a) or a, may be in the form

bi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common .register
or associative memory. The optional constant meodifier, i,

modifies only the most-significant bit position.

2) a; or a; may be in the form
(b, i)£j

where b may be a constant or a symbol and represents the most—
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. 1 must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

" Note 1 The link pointer (FP1 and FP2 registers) must be loaded with the address
of the particular word of associative memory prior to execution of the
instructi\on. Loading the link pointer is generally accomplished by the
use of the FIND, STEP, or RESVFST instruction.

Note 2 If the Common register field length is less than the associative
memory field length, a W (warning flag)is noted on the listing. In
this case, the Common register field will be stored right justified into

the associative memory field.

Note 3 If the Common register field length is greater than the associative memory
field length, a T (truncation flag)is noted on the listing, In this case, the

most significant bits of the Common register field are truncated.

Note 4 The content of the X response store register is destroyed. The content
of the Y response store register will be destroyed if field-alignment

shifting is required.
2-106

SCw

Example

FIND
SCW (0,3),(10, 3) FP1 FP2
. ADDR of WORD 3
Before After
Array Memory Array Memory
Bit Column Bit Column
X Y 10 11 12 X Y 10 11 12
Word 0 1 0 d |d unchanged
Word 1 0 0 e e unchanged
Word 2 0 0 . . . s s unchanged
Word 3 1 1 . . . t t 1 [0o | 1
Word 4 0 1 . . . r |r unchanged
. o |o . . .
. vy |y . . .
. e e . . .
Word 255 0 . . . d d unchangled

Common Register

2-107

SEARCHES These associative instructions allow the programmer to search for a
particular set of conditions in associative membry. All instructions
dealing with response store registers and/or associative memories
affect only those associative array memory modules enabled via the
Array Select register, The response store registers and associative
array memory modules disabled via the Array Select register remain
unchanged, Except for MAXF and MINF, the most-significant bit of

all fields is considered to be the sign bit, .

Mnemonic Instructions

FIND Find the First Bit Set in Y Response Store
STEP Step to First Y Set and Clear It

RESVFST Step to First Y Set and Clear All Others
EQC Equal to Common Register Field

EQF Equal Fields

NEC Not Equal To Common Register Field

NEF Not Equal Fields

GTC Greater Than Common Register Field

GTF Greater Than Fields

GEC Greater Than or Equal To Common Register Field
GEF Greater Than or Equal Fields

LTC Less Than Common Register Field

LTF Less Than Fields

LEC Less Than or Equal Common Register Field
LEF Less Than or Equal Fields

MAXF Maximum Fields

MINF Minimum Fields

2-108

FIND

Format

Label

Command

Argument

STEP

Format

Label

Command

Argument

Find the First Bit Set in Y Response Store

The instruction loads FP1 with the array address of the first array module

containing a Y response store register bit set to one, FP2 is then loaded with

the bit address of the first Y response store register bit set to one.

Command I Argument

Label I | Comment
symbol l FIND | l

Any valid symbol or blank.
FIND

No entries required,

Step to First Y Set and Clear It

This instruction loads FPl with the array address of the first array module
containing a Y response store register bit set to one, FP2 is then loaded
with the bit address of the first Y response store register bit set to one.

This selected first bit will than be cleared to zero.

Label | Command l Argument - ' Comment
symbol \| STEP I l

Any valid symbol or blank.

STEP

No entries required.

2-109

RESVFST Step to First Y Set and Clear All Others

This instruction loads FP1 with the array address of the first array module
containing a Y response store register bit set to one, FP2 is then loaded
with the bit address of the first Y response store register bit set to one.
This selected first bit will remain set to one, but all other bits in the Y

response store register are cleared to zero.

Format Label | Command | Argument I Comment
symbol I RESVFST | |

e Label Any valid symbol or blank.

e« Command RESVFST

¢ Argument No entries required.

2-110

EQC

Conditions

Format

° Label
¢ Command

e Argument

['Y al,az

Note

Equal to Common Register Field

For the field a;in each word of associative memory, this instruction
will set the corresponding Y response store register bit if, and only

if, the following is true:
1) The particular array is enabled in the Array Select register so
it may participate in the search,

2) The M response store register bit is set for the particular
word participating in the search.

3) The search criteria is met; array field ay is equal to Common
register field a,.

Label | Command ' Argument l Comment

symbol EQC l 21,3 l

Any valid symbol or blank.
EQC

Two entries are required. The first entry, ag is a field in associative
memory; the second entry, ass is a field in the Common register, The

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expression,

1) a, or a, may be in the form

2
bi

where b must be a symbol, and i is an optional constant modifier,

b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register

or associative memory. The optional constant modifier, i, modifies

only the most significant bit position.

2) a, or a, may be in the form

2
(b, i)*j

\

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:
1) FL1 - Zero
2) FPl - Address of the most-significant bit of as.

3) FP3 - Address of the most-significant bit of a,.
2-111

EQF

Conditions

Format

Label

Command

Argument

° al,a

Note

Equal Fields

This instruction will set the Y response store register bit for each word of

associative memory if, and only if, the following is true:
1) The particular array is enabled in the Array Select register so it
may participate in the search.

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field 2, of word, is equal to array
. i
field a, of word,.
2 i
Label l Command l Argument I Comment
symbol | EQF l 2.3, l

Any valid symbol or blank,
EQF

Two entries are required. Both entries represent fields in associative
memory that are compared with each other. The lengths of the fields

must be equal and greater than one,

There are two ways of denoting a field expression:

1) a, or a, may be in the form

2
bi

where b must be symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction, b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position,

2) a, or a, may be in the form

1 2

(b, i)%]
1
where b may be a constant or a symbol and represents the most-

significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. 1 must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:

1) FL1 - Zero

2) FPl - Address of the most-significant bit of as.
3) FP3 - Address of the most-significant bit of ap

The X response store register is utilized. 2-.112

Conditions

Format

e Label

o Command

e Argument

1’32

Note

Not Equal To Common Register Field

For the field a, in each word of associative memory, this instruction
will set the corresponding Y response store register bit if, and only if,

the following is true:
1) The particular array is enabled in the Array Select register so it
may participate in the search,

2) The M response store register bit is set for the particular
word participating in the search.

3) The search criteria is met; array field a) is not equal to Common
register field a,.

Label l Command ' Argument l Comment

symbol I NEC ' 2.3, I

Any valid symbol or blank.
NEC

Two entries are required. The {first entry, ars is a field in associative
memory; the second entry, ass is a field in the Common register. The

lengths of the fields must be equal and greater than one,

There are two ways of denoting a field expression:

1) a, or a, may be in the form

2
bxi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction, b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position,

2) a, or a, may be in the form

2
(b, i)£j

where b may be a constant or a symbol and represents the most-
significan’c bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used, i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:
1) FL1 - Zero
2) FPl - Address of the most significant bit of a,.

3) FP3 - Address of the most significant bit of a;. 2 113

NEF

Conditions

Format

e Label

¢ Command

e Argument

L N) al'a?_

Note

Not Equal Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:

1) The particular array is enabled in the Array Select register so it may
participate in the search,

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a

of word, is not equal to
array field a, of word,. '
i

1

Label | Command | Argument I Comment
symbol I NEF l 2.2, I

Any valid symbol or blank ,
NEF

Two entries are required. Both entries represent fields in associative
memory that are compared with each other. The lengths of the fields

must be equal and greater than one.

There are two ways of denoting a field expression:
1) a; or a, may be in the form
b+i

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position,

2) a, or a, may be in the form

1 2

(b, i)]

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:

1) FL1 - Zero

2) FPIl - Address of the most-significant bit of a,.
3) FP3 - Address of the most-significant bit of a,.

The X response store register is utilized. 2-114

GTC

Conditions

Format

e Label

¢ Command

e Argument

®2ap 3y

Note

Greater Than Common Register Field

For the field ay in each word of associative memory, this instruction
will set the corresponding Y response store register bit if, and only if,

the following is true:
1) The particular array is enabled in the Array Select register so it may
participate in the search.

2) The M response store register bitis set for the particular word
participating in the search. '

3) The search criteria is met; array field a, is greater than Common
register field as.

Label | Command l Argument I Comment

symbol ' GTC ‘ 2.3, ‘

Any valid symbol or blank.
GTC

Two entries are required. The first entry, ars is a field in associative
memory; the second entry, ass is a field in the Common register. The

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expression:

1) a ora,

bxi

may be in the form

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) a, or a, may be in the form

2
(b,1)j

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:
1) FL1 - Zero
2) FPl - Address of the most-significant bit of a,.

3) FP3 - Address of the most-significant bit of a,. 2115

GTF

Conditions

Format

e Label

¢ Command

e Argument

o0 al'aZ

Note

Greater Than Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:

1) The particular array is enabled in the Array Select register so it may
participate in the search,

2) The M response store re%ister bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a; of word, is greater than
array field a, of wordi. *

Label | Command . Argument ' Comment

symbol | GTF | 2.2, I

Any valid symbol or blank .
GTF

Two entries are required. Both entries represent fields in associative
memory that are compared with each other. The lengths of the fields must

be equal and greater than one.

There are two ways of denoting a field expression:

1) a, or a, may be in the form

2
bxi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction, b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position.

2) a, or a, may be in the form

2
(b,)%

where b may be a constant or a symbol and represents the most—
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field, j is an optional constant

modifying only the most-significant bit position of the field.

Register values after search:
1) FL1 - Zero
2) FPl - Address of the most-significant bit of a,.
3) FP3 - Address of the most-significant bit of a,.

The X response store register is utilized, 2.116

GEC

Conditions

Format

e Label
¢ Command

e Argument

o e alpa.

Note

Greater Than or Equal To Common Register Field

For the field ay in each word of associative memory, this instruction will
set the corresponding Y response store register bit if, and only if, the

following is true:
1) The particular array is enabled in the Array Select register so it
may participate in the search,

2) The M response store register bit is set for the particular word
participating in the search,

3) The search criteria is met; array field a; is greater than or equal to
Common register field as.

Label ' Command ‘ Argument ’ Comment

symbol GEC l 2,3, I

Any valid symbol or blank,
GEC

Two entries are required, The first entry, ar is a field in associative
memory; the second entry, ass is a field in the Common register. The

lengths of the fields must be equal and greater than one,

There are two ways of denoting a field expression:

1) ajor a, may be in the form

2
bxi

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied bv a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) a; or a, may be in the form

2
(b, i)£]

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:
1) FLI1 - Zero
2) FPIl - Address of the most-significant bitof a, .

3) FP3 - Address of the most-significant bit of a, - 2117

GEF

Conditions

Format

e Label

¢ Command

e Argument

0 al’az

Note

Greater Than or Equal Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:

1) The particular array is enabled in the Array Select register so it
may participate in the search,

2) The M response store register bit is set for the particular word
participating in the search,

3) The search criteria is met; array field a; of wordi is greater than
or equal to array field a, of Wordi'

Label l Command l Argument | Comment

symbol l GEF I 2y:2, I

Any valid symbol or blank,
GEF

Two entries are required, Both entries represent fields in associative
memory that are compared with each other., The lengths of the fields must

be equal and greater than one,

There are two ways of denoting a field expression:

1) a, or a, may be in the form

2
bxi

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position,

2) a, or a, may be in the form

2
(b, i)£]

where b may be a constant or a symbol and represents the most—
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. jis an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:
1) FL1 - Zero
2) FPL - Address of the most-significant bit of a, .
3) FP3 - Address of the most-significant bit of a,.

The X response store register is utilized, 2-118

LTC

Conditions

Format

Label

Command

Argument

[] alia

Note

Less Than Common Register Field

For the field a, in each word of associative memory, this instruction will
set the corresponding Y response store register bit if, and only if, the

following is true:
1) The particular array is enabled in the Array Select register so it
may participate in the search,

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a; is less than Common
register field a,.

Label | Command ' Argument l Comment

symbol LTC l 23, l

Any valid symbol or blank,
LTC

Two entries are required, The first entry, a,, is a field in associative
memory; the second entry, 2y, is a field in the Common register. The

lengths of the fields must be equal and greater than one,

There are two ways of denoting a field expression:

1) a, or a, may be in the form

2
bi

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.

2) a; or a, may be in the form

2
(b, i)

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field., jis an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:
1) FL1 - Zero
2) FPl - Address of the most-significant bitof a,.

3) FP3 - Address of the most-significant bit of a,. 2.119

LTF

Conditions

Format

e Label
e Command

e Argument

[} al,a.2

Note

Less Than Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:

1) The particular array is enabled in the Array Select register so it may
participate in the search,

2) The M response store register bit is set for the particular word
participating in the search,

3) The search criteria is met; array field ay of word. is less than array
field a, of word,. '
i

Label ' Command ' Argument I Comment
symbol LTF l apa, l

Any valid symbol or blank,
LTF

Two entries are required. Both entries represent fields in associative
memory that are compared with each other., The lengths of the fields

must be equal and greater than one.

There are two ways of denoting a field expression:

1) a, or a, may be in the form

1
b+i

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction, b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position.
2) a; or a, may be in the form
(b, 1)£]

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:
1) FL1 - Zero
2) FPIl - Address of the most-significant bit of a,.

3) FP3 - Address of the most-significant bit of 2.

The X response store register is utilized. 2-120

LEC

Conditions

Format

e Label
o Command

¢ Argument

Note

Less Than or Equal Common Register Field

For the field ay in each word of associative memory, this instruction will

set the corresponding Y response store register bit if, and only if, the

following is true:

1) The particular array is enabled in the Array Select register so it
may participate in the search,

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a, is less than or equal to
Common register field a,.

Label l Command I Argument l Comment

symbol l LEC | 2y,2, I

Any valid symbol or blank,

LEGC

Two entries are required, The first entry, ap, is a field in associative
memory; the second entry, as, is a field in the Common register. The

lengths of the fields must be equal and greater than one.

There are two ways of denoting a field expression:
1) a, or a, may be in the form

b+i

where b must be a2 symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position,

2) a, or a, may be in the form

2
(b, 1)

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:
1) FL1 - Zero

2) FPl - Address of the most-significant bit of a,.

3) FP3 - Address of the most-significant bit of a. 2121

LEF

Conditions

Format

o Label
o Command

e Argument

e 22,y

Note

Less Than or Equal Fields

This instruction will set the Y response store register bit for each word

of associative memory if, and only if, the following is true:
1) The particular array is enabled in the Array Select register so it
may participate in the search,

2) The M response store register bit is set for the particular word
participating in the search.

3) The search criteria is met; array field a, of word, is less than or
equal to array field ay of wordi. !

Label | Command l Argument | Comment
symbol | LEF l 2.2, |

Any valid symbol or blank.

LEF

Two entries are required. Both entries represent fields in associative
memory that are compared with each other. The lengths of the fields

must be equal and greater than one.

There are two ways of denoting a field expression:

1) a, or a, may be in the form

bxi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position,
2) a, or a, may be in the form
(b, i)%j

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. 1 must be a constant and represents the number of
contiguous bits occupied by the field. jis an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:
1) FL1 - Zero
2) FPl - Address of the most-significant bit of as.

3) FP3 - Address of the most-significant bit of a,.

2-122
The X response store register is utilized.

MAXF

Format

e Label

o Command

e Argument

Note

Maximum Fields

This instruction will compare a field of those words of the associative memory

whose M response store bit is set, The Y response store will be set for
the word(s) containing the field with the maximum (greatest) unsigned value.

The Y response store for all other words will be cleared to zero,

Label I Command | Argument l Comment
symbol | MAXF l a l

Any valid symbol or blank,

MAXF

One entry is required.

There are two ways of denoting a field expression:
1) 'a' may be in the form
bai

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position.,
2) 'a! may be in the form
(b,)]

where b may be a constant or a symbol and represents the most
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after search:

1) FL1 - Zero
2) FP3 - Address of the least-significant bit of 'a’',

The X response store register is utilized.

2-123

MINF

Format

e Label

¢ Command

e Argument

Note

Minimum Fields

This instruction will compare a field of those words of associative memory
whose M response store bit is set, The Y response store will be set for
the word(s) containing the field with the minimum (least) unsigned value,

The Y response store for all other words will be cleared to zero.

Label l Command l Argument l Comment
symbol l MINFE l e I

Any valid symbol or blank,
MINF

One entry is required,

There are two ways of denoting a field expression:
1) 'a' may be in the form
bxi

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most—significanti bit position and the number of
contiguous bits occupied by a field in associative memroy., The
optional constant modifier, i, modifies only the most-significant
bit position.

2) 'a' may be in the form

(b, 1)s]

where b may be a constant or a symbol and represents the most
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. 1 must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Register values after the search:

1) FL1 - Zero
2) FP3 - Address of the least-significant bit of 'a’',

The X response store register is utilized.

2-124

MOVES

This group of associative instructions allows the programmer to move
an array memory field to another array memory field within the same

word of associative memory.

This group of instructions will operate only on those associative array
memory modules (including response store registers) enabled via the
Array Select register. Also, only those words within enabled associa-
tive array memory modules whose M response store register bit is set
will participate in the execution of the instructions in this group. The

most significant bit of all fields is considered to be the sign bit.

Mnemonic Instructions
MVFE Move Field
MVCF Move the One's Complement of a Field
MVNF Move the Negative of a Field
MVAF Move the Absolute Value of a Field
INCF Move Field with Increment
DECF Move Field with Decrement

. 2-125

MVF

Format

e Label
o Command

e Argument

L} al,az

Note

Move Field

This instruction will move the contents of field a; into field a; within
the same word for each word of enabled associative memory whose
M response store bit is set. The content of the source field is not
affected unless overlaid by the destination field, The original

content of the destination field is destroyed.

Label ' Command l Argument I Comment

symbol

MVE I 2y:22 I
Any valid symbol or blank.
MVF

Two entries are required. The first entry is the source; the second
entry is the destination. Both entries represent fields within the same

word of associative memory.

There are two ways of denoting a field expression:
1) a) or a; may be in the form
bxi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position,
2) a; or a; may be in the form
(b, i)%j

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The X response store, FP1, FP3, and FLI registers are used by this

instruction.

2-126

MVF

Example MVF (2,3),(10, 3)
Before After
Array Memory Array Memory
Bit Column Bit Column
M M
2 3 4|10 1112 2 3 4110 11 12
0 oo0oo0j]l 1 O 0 o001 1 O
0 001}j1 0 1 0 0011 0 1
1 0101 0 O 1 0100 1 O
256
Bits Y] ! 11110 1 1 1 11141 1 1
L N . O I

2-127

MVCF Move the One's Complement of a Field

This instruction will move the one's complement of the contents of
field a; into field a, within the same word for each word of enabled
associative memory whose M response store bit is set. The content
of the source field is not affected unless overlaid by the destination

field. The original content of the destination field is destroyed.

Format Label l Command Argument ' Comment
symbol l MVCF l apas l
e Label Any valid symbol or blank,
¢ Command MVCF
e Argument ’ Two entries are required. The first entry is the source; the second

entry is the destination. Both entries represent fields within the same

word of associative memory.

o 022, There are two ways of denoting a field expression:
1) aj or a; may be in the form
bxi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory., The
optional constant modifier, i, modifies only the most-significant

bit position,

2) aj or a; may be in the form

(b, i)£j

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bifs occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Note The X response store, FP1, FP3, and FL1 registers are used by this

instruction.

2-128

MVCF

Example MVCF (2,3),(20, 3)

After Execution

Array Memory
Bit Column
M

2 3 420 21 22
1 00o0}]1 1 1
1 001 1 1 0
1 010 1 0 1
2536 4 1 011 1 0 O
Bits 1 1000 1 1
1 1 01 0 1 0
1 110 0 0 1
1 1 11 0 0 o0

2-129

MVNF Move the Negative of a Field

This instruction will move the two's complement of the contents
of field a] into field ap within the samé word for each word of
enabled associative memory whose M response store bit is set.
The content of the source field is not affected unless overlaid by
the destination field. The original content of the destination field

is destroyed,

Format Label | Command I Argument I Comment
symbol MVNF I aj.a, l
e Label Aqy valid symbol or blank.
¢ Command MVNF
. o Argument Two entries are required. The first entry is the source; the second

entry is the destination, Both entries represent fields within the

same word of associative memory.

e e 2j,ay There are two ways of denoting a field expression:
1) a, or a, may be in the form
bi

where b must be a symbol, and i is an optional constant modifier,
‘b should have been previously defined in a DF instruction, b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position.

2) a; or a, may be in the form

(b, i)%j

where b may be a constant or a symbol and represents the most—
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Note The X response store, Y response store, FP1, FP3, and FLI1 registers

are used by this instruction.

2-130

MVNF

Example MVNF (5, 3),(15, 3)

After Execution

Array Memory
Bit Column
M
5 6 7({15 16 17
-
1 0000 0 O
1 001}1 1 1
1 0oro0oj1 1 0
1 011]1 0 1
256 1 1 00|1 0 O*
5
BitsY | 101]0 1 1
1 1100 1 O
1 111]0 0
S o e . . .
¥ An overflow condition is set in the response store
registers.

2-131

MVAF

Format

e Label
¢ Command

e Argument

e ea;rd,

Note

Move the Absolute Value of a Field

This instruction will move the absolute value of the contents

of field a; into field a, within the same word for each word of
enabled associative memory whose M response store bit is set.
The content of the source field is not affected unless overlaid
by the destination field, The original content of the destination

field is destroyed.

Label Command | Argument l Comment
symbol MVAF | aj.ay !

Any valid symbol or blank.

MVAF

Two entries are required. The first entry is the source; the
second entry is the destination. Both entries represent fields

within the same word of associative memory.

There are two ways of denoting a field expression:
1) a, or a, may be in the form
bxi

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction., b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position.
2) a, or a; may be in the form
(b, i)£]

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

The X response store, Y response store, FP1, FP3, and FL1

registers are used by this instruction.

2-132

MVAF

Example MVAF (2,3),(10, 3)

After Execution

Array Memory
Bit Column
M1 234010 11 12
([1 000]0 0 0
1 00 1]0 0 1
1 01 0|0 1 O
1 0110 1 1
1 1 001 0 o
256
1 10110 1 1
Bits™
1 11070 1 0
1 11 1({0 0 1
K o . . .
%* An overflow condition is set in the response

store registers.

2-133

INCF

Format

e Label
e Command

e Argument

[3} al'az

Note

Move Field with Increment

This instruction will add one to the value of field a; and store the
incremented value into field a; within the same word for each word
of enabled associative memory whose M response store bit is set.
The content of the source field is not affected unless overlaid by the

destination field. The original content of the destination field is destroyed.

Label I Command I Argument | Comment

symbol

INCE | 2122 I
Any valid symbol or blank,

INCF

Two entries are required. The first entry is the source; the second
entry is the destination. Both entries represent fields within the

same word of associative memory.

There are two ways of denoting a field expression:
1) a) or a, may be in the form
bi

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction, b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position.
2) a; or a; may be in the form
(b, i)+]

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FL1, FP2, FP3, and RO registers

are used by this instruction.

2-134

INCF

Example INCF (2,3),(10, 3)

After Execution

Array Memory
Bit Column
M

2 3 4110 11 12
1 0 0O 0 0 1
1 0 01 0o 1 O
1 010 0 1 1
1 011 1 0 0%
256 1 1 00 1 0 1
Bits} | 1 l1o1f|1 1 0
1] 1101 1 1
1 111 0 0 0

An overflow condition is set in the response store

registers.

2-135

DECF

Format

e Label
o Command

e Argument

oo alyaz

Note

Move Field with Decrement

This instruction will subtract one from the value of field a; and

store the decremented value into field a; within the same word

for each word of enabled associative memory whose M response store
bit is set., The content of the source field is not affected unless overlaid

by the destination field., The original content of the destination field is

destroyed.
Label l Command l Argument l Comment
sybmol DECF I 2.3, I

Any valid symbol or blank.
DECF

Two entries are required. The first entry is the source; the
second entry is the destination. Both entries represent fields

within the same word of associative memory,

There are two ways of denoting a field expression:
1) a; or a, may be in the form
bti

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The
optional constant modifier, i, modifies only the most-significant

bit position,

2) a) or a, may be in the form
(b, i)&j

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of

contiguous bits occupied by the field. jis an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FL1, FP2, FP3, and RO registers

are used by this instruction.

2-136

DECF

Example DECF (2,3),(10,3)

Array Memory
Bit Column
M
2 3 4|10 11 12
-
1 0001 1 1
1 001}0 o0 O
1 01 0j0 0 1
1 0110 1 o0
1 10030 1 1%
256
Bits) 1 1ol |1 0 o
1 1101 o0 1
1 11141 1 o
* An overflow condition is set in the response store registers.

2-137

ARITHMETICS This group of associative instructions allows the programmer to perform
arithmetic operations between associative memory fields, and between a

Common register field with an associative memory field.

This group of instructions will operate only on those associative array
memory modules (including response store registers) enabled via the
Array Select register, Also, only those words within enabled associative
array memory modules whose M response store register bit is set will
participate in the execution of the instructions in this group. The most

significant bit of all fields is considered to be the sign bit.

Mnemonic Instructions

ADC Add Common Register to Field

ADF Add Field to Field

SBC Subtract Common Register from Field
SBF Subtract Field from Field

MPC Multiply Field by Common Register
MPF Multiply Field by Field

DVF Divide Field by Field

2-138

ADC

Format

e Label

e Command

e Argument

® 0 2,,2,,2,

Note

Add Common Register to Field

This instruction will add field a, of the Common register (addend) to field
2, of word; in associative memory (augend) and then store the resultant
sum into field a3 of word;. Only those words of associative memory
whose M response store bit is set will participate in this instruction.

The original content of the addend field a, is undisturbed. The content

of the augend field a, will be undisturbed unless the sum field a; overlays it.

Label l Command I Argument ’ Comment
bol ADC
symbo I 220 I 21285224 I

Any valid symbol or blank,

ADC

Three entries are required. The first entry represents the augend and is
a field in associative memory., The second entry is the addend and is a field
in the Common register. These two fields are added together and the sum

is stored into the third entry, a field in associative memory.

There are two ways of denoting a field expression:

1) ay, a,, or a; may be in the form

2
b#i

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position of the field.

2) a), a,, or a; may be in the form

3
(b, i)xj

where b may be a constant or a symbol and represents the most-

significant bit position of a field. If b was defined as a field via

a previous DF instruction, the most-significant bit position is the

value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit 'position of the field,

X response store, Y response store, FL1, FPl, FP2, FP3, and RO

registers are used by this instruction.

2-139

ADC

Example ADC [0,3),(5,3),(11,3)

After Execution

Array Memory
Bit Column

M 01 2 |11 12 13

([1 0 0O 0o 0 1

1 010 0 1 1

1 1 00 1 0o 1

1 110 1 1 1

sVE)c?rds‘ 1 011 1 0 0%

1 1 01 1 1 0

1 111 0 o0 O

*An overflow condition will be set in the response store registers,

Common Register

0 4 56 78 31

2-140

ADF

Format

e Label

o Command

e Argument

L] al, a2,a3

Note

Add Field to Field

This instruction will add field a; of word, to field a, of wordi and store

the resultant sum into field ay of word,. Only those words of associative
memory whose M response store bit is set will participate in this instruction
The original content of the source fields a) and a, will remain undisturbed
unless overlaid by the sum field as.

Command ‘ Argument l Comment

Label
symbol ADF ‘ 2225,23, |

Any valid symbol or blank,
ADF

Three entries are required. Each represents a field in associative memory,
The first field a; represents the augend; the second field a, represents the

addend; and the third field ag represents the sum,

There are two ways of denoting a field expression:
1) ay, a,, Or a; may be in the form
b+i

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction, b

represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant
bit position,

2) aj, a,, or aj may be in the form

(b, 1)%]

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used, i must be a constant and represents the number of

contiguous bits occupied by the field, j is an optional constant,

mofifying only the most-significant bit position of the field.

X response store, Y response store, FL1, FPl, FP2, FP3, and RO

registers are used by this instruction.

2-141

ADF

Example ADF (0,3),(5,3),(10,3)

After Execution

Array Memory
Bit Column
M 01 2 56 7 10 11 12
1 0 00((O0OOTO 0 0 O
1 010 0 01 0 1 1
1 1 00 010 1 1 0
256 1 110 011 0 0 1
words{| ool1|100]|1 o0 1
1 011 1 01 0 0 0
1 1 01 110 0 1 1=
1 1 11 111 1 1 0
L

% An overflow condition will be set in the response store registers,

2-142

SBC

Format

e Label

o Command

e Argument

® 2),35,84

Note

Subtract Common Register from Field

This instruction will subtract field a, of the Common register (subtrahend)
from field a; of wordi in associative memory (minuend) and then store the
resultant difference into field ag of wordi. Only those words of associative
memory whose M response store bit is set will participate in this instruction.
The origianl content of the Common register field is undisturbed. The con-

tent of field a; will be undisturbed unless the difference field aj overlays it,

Label I Command l Argument l Comment

symbol I SBC | 21225523, '

Any valid symbol or blank,

SBC

Three entries are required. The first entry represents a field in associative
memory and is the minuend, The second entry represents a field in the
Common register and is the subtrahend., The third entry represents a

field in associative memory and is the difference of the minuend minus the

s ubtrahen‘d.

There are two ways of denoting a field expression:
1) a;, ay, or aj may be in the form
bi

where b must be a symbol, and i is an optional constant modifier,
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory. The optional constant modifier, i,

modifies only the most-significant bit position.
2) aj, a,, or a; may be in the form
(b, 1)£j

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. jis an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FLI1, FPl, FP2, FP3, and RO

registers are used by this instruction.

2-143

SBC

Example SBC (5,3),(8,3),(11,3)

After Execution

Array Memory
Bit Column
M 5 6 7 11 12 13
_
1 001 1 1 1
1 010 0 0 0
1 011 0 0 1
1 1 00 0 1 (E3
256 1 1 01 0 1 1%
Words §| 1 1101 o0 o0
1 1 11 1 0 1
1 0 0O 1 1 O

*An overflow condition will be set in the response store registers.

Common Register

0 78 9 10 11 ' 31

2-144

SBF

Format

e Label

¢ Command

e Argument

[3K al,az,a3

Note

Subtract Field from Field

This instruction will subtract field a, of wordi from field a, of wordi and

2
store the resultant difference into field a, of wordi. Only those words of

associative memory whose M response store bit is set will participate in

this instruction. The original content of the source fields a) and a, will

2
remain undisturbed unless overlaid by the difference field a

3
Label l Command I Argument Comment
symbol I SBF l 21,235,235 l

Any valid symbol or blank,
SBF

Three entries are required. Each entry represents a field in associative
memory. The first field,a,represents the minuend; the second field,a,,
represents the subtrahend; and the third field,a3,represents the difference.

There are two ways of denoting a field expression:
1) a)s a,, or a; may be in the form
b+i

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of
contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant
bit position.
2) ay, a,, or a; may be in the form
(b, 1)]

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of

contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FL1, FPl, FP2, FP3, and RO

registers are used by this instruction.

2-145

SBF

Example ‘ SBF (5,3),(8,3),(11,3)

After Execution

Array Memory
Bit Column
M 56 7189 10 |11 12 13
-
1 00O0lO0OO0OTO 0 0 ©
1 0 00j00O0°1 11 1
1 000|111 0 0 1
1 11 0]010 1 0 0
1 0601 0}001 0 0 1
256
Words{ 1 1 11§11 1 0 0.0
1 1 01}j01 0 0 1 L%
1 11 1}110 0 0 1

*An overflow condition will be set in the response store registers,

2-146

MPC

Format

¢ Label

¢ Command

e Argument

[I] al’az!a3

Note

Multiply Field by Common Register

This instruction will multiply associative memory field a; of word, (multiplicand)
by field a, of the Common register (multiplier) and store the product into asso-
ciative memory field ag of wordi. Only those words in associative memory
whose M response store bit is set will participate in the multiplication, The
original content of the multiplier field a, and the multiplicand field is undisturbed

i.e., the product field ag must not overlay the multiplicand field ap.

Label l Command I Argument l Comment

symbol l MPC] 31225:25]
Any valid symbol or blank.
MPC

Three entries are required, The first entry represents a field in associative
memory and is the multiplicand, The second entry represents a field in the
Common register and is the multiplier., The third entry represents a field
in associative memory and is the product. The product field width must

equal the sum of the multiplier and multiplicand field widths,

There are two ways of denoting a field expression:

1) ays a,, Or a; may be in the form

3
b+i

where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of
contiguous bits occupied by a field in either the Common register
or associative memory, The optional constant modifier, i,

modifies only the most-significant bit position.
2) a;, a,, or a; may be in the form
(b,i)xj

where b may be a constant or a symbol and represents the most-
significant bit position of a field. If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

X response store, Y response store, FL1, FPl, FP2, FP3, FL2, FPE,

and RO registers are used by this instruction.

2-147

MPC

Example MPC (0, 3),(5,3),(8,6)

After Execution

Array Memory
Bit Column
M 01218 9 10 11 12 13
1 0 01 00 O 0o 1 O
1 010|000 O 1 0 0
1 011 0 0 O 1 1 0
1 1 00 11 1 0 0 O
256
Words 1 101|111 01 o0
1 110 11 1 1 0 0O
1 111 11 1 1 1 0
Common Register
0 4 56 7 8 31

2-148

MPF

Format

e Label

e Command

e Argument

® e dy,35,35

Note

Multiply Field by Field

This instruction will multiply field a1 of wordi by field a, of wordi, and
store the resultant product into field ag of wordi. Only those words of the
associative memory whose M response store bit is set will participate in
this instruction. The original content of the multiplicand field a, must

remain intact, i,e., it cannot be overlaid by the product field as. The

original content of the multiplier field a, may be overlaid by the product

field as.
Label l Command l Argument Comment
symbol MPF l ays2p,aj3 l

Any valid symbol or blank,

MPF

‘'Three entries are required. The first entry represents a field in associative

memory and is the multiplicand, The second entry represents a field in the

associative memory and is the multiplier., The third entry represents afield
in associative memory and is the product. The product field must equal the

width of the sum of the multiplier and multiplicand fields.

There are two ways of denoting a field expression:
1) a), a,, or a; may be in the form
b*i
where b must be a symbol, and i is an optional constant modifier.
b should have been previously defined in a DF instruction. b
represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative memory. The

optional constant modifier, i, modifies only the most-significant
bit position,

2) ay, 3,, Or a; may be in the form

(b,)]

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used. i must be a constant and represents the number of

contiguous bits occupied by the field., j is an optional constant,

modifying only the most-significant bit position of the field,

X response store, Y response store, FL1, FPl, FP2, FP3, FL2, FPE,

and RO registers are used by this instruction.

2-149

MPF

Example 1 MPF (0:2)!(21 3)3(5, 5)

After Execution

Array Memory -
Bit Column
M 01 2 3 4 56 789
1 1 0}000(|0O0O0OO0CO
1 1 14{001 11111
1 11 010 11110
1 01 011 00011
256 1 1 0}100(|0100O0TO0
L ¢
Words 1 11 |101]00001 1
1 10110100100
1 011}111]11111
Y
Example 2 Overlaying the multiplier field a, must be handled carefully by the pro-

grammer, Array memory storage may be condensed (minimum bit
positions) in the following manner if there are at the least m''spare!

bits to the right of the multiplier field as shown:

Before Execution

I Field ay Field a, Spare
word.
' |<——m Bits —— ‘t‘——-—n Bits ——w-tet——m Bits—mt
After Execution
I Field a; Field as
wordi
|<——m Bits letp——o——————m + n Bits ———————

The number of spare bits must be equal to the length of the multiplicand
field a,.

2-150

DVF Divide Field by Field

This instruction will divide field a, of wordi by field a, of word].. Only

those words of associative array wlhose M response stc2>re bit is set will
participate in the divide instruction. The quotient and the remainder

are stored into field ay of wordi, with the remainder being right justified
and having the same length and sign as the divisor, a,. The quotient is
stored adjacent to the remainder and must have a length of 2 or more.

The contents of the divisor must not be overlaid by the quotient-remainder

field ag.

Overflow ' Unlike other arithmetic routines, DVF does not check for overflow unless
Check specifically requested in the command field., When requested, the overflow
check is made prior to performing the divide. The associative memory words
where overflow would occur will have their M response store bit cleared

to zero and therefore will not participate in the divide. After the divide,

the M is restored, and the possible overflow condition is recorded in the

response store registers,

Format Label | Command I Argument l Comment

symbol l DVF, b | 21225,35 I

e Label Any valid symbol or blank,

¢ Command DVFE

eeb b may be a constant, a symbol, or a symbol plus or minus an optional
constant modifier, If b was defined as a field via a DF instruction, the
most-significant bit position is the value used, This term represents a
scratch bit column position in all words of enabled associative arrays and
is used to save the original content of the M response store register, The
value of b should be 0=b=255,

e Argument Three entries are required. Each represents a field in associative memory.

The first field ay represents the dividend; the second field a,, represents

2
the divisor; and the third field as represents the quotient-remainder., The

field length of the quotient-remainder field must be at least two bit positions

longer than the divisor field and at least one bit position longer than the

dividend.

oo a;,a,,3, There are two ways of denoting a field expression:
1) a,, a,, or a; may be in the form
b+i
where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b

represents the most-significant bit position and the number of

contiguous bits occupied by a field in associative meraory. The

optional constant modifier, i, modifies only the most-significant 2_-151

bit position.

DVF

e e aj,a,,3a, 2) aj, a,, or aj may be in the form
(eont) (b, 1)

where b may be a constant or a symbol and represents the most-
significant bit position of a field, If b was defined as a field via
a previous DF instruction, the most-significant bit position is the
value used, i must be a constant and represents the number of
contiguous bits occupied by the field. j is an optional constant,

modifying only the most-significant bit position of the field.

Overlapping The most efficient field layout is overlapping. This technique can save
execution time as well as memory. The least-significant bit of the dividend
and quotient-remainder fields should have the same address, and the length
of fieldva3 must be at least one bit column wider than aj. The address
of the least-significant bit of aj and a; must be the same to reduce execution

time,

Note X response store, Y response store, FL1, ¥FPl, FP2, FP3, FL2, FPE,

and BL registers are used by this instruction,

- Example 1 Dividend and divisor not affected:
A DF 10,4
B DF 50,3
C Dr 100, 5
DVF A,B,C
Field A Field B Field C
10 13 50 52 100 104
WORD 0
WORD 1
WORD 255 01 0 1 0 1 1 o 130 1 0
Dividend Divisor . L o
™7 (4 bits) ™ (3 bits)™] o X
Quotient Remainder
(2 bits) (3 bits)
2-152
Decimal 5 3 1 2

Equivalent

DVF

Example 2 Most efficient memory layout:
CO EQU 4 OVERFLOW SCRATCH BIT
DIVISOR DF 5,5 DIVISOR
DIVIDEND DF 100,10 DIVIDEND
QUOTREM DF 99, 11 QUOTIENT, REMAINDER

DVF,C0O DIVIDEND, DIVISOUR,QUOTREM

In this example overflow will occur in a word if the quotient requires more

than 6 bits,
Example 3 Most efficient memory layout with no overflow condition
DIVISOR DF 5,5 DIVISOR
DIVIDEND DF 100,10 DIVIDEND
QUOTREM DF 95,15 QUOTIENT, REMAINDER

DVFE DIVIDEND, DIVISOR, QUOTREM

2-153

CONTROL

AND
TEST

This group of instructions allows the programmer to control and test the

AP control,
Mnemonic
INT

ILOCK

WAIT

Instructions
Interrupt Control and Test
Interlock Control and Test

Deactivate the AP

2-154

INT Interrupt Control and Test

This instruction will generate an interrupt and/or interrogate the current
state of an interrupt according to the value of the argument field expression

a.Zd:kZ. The interrupt number is denoted by the expression alikl.

Format Label | Command

Argument Comment
symbol I INT, ald:k1 | 32ik2 I
e Label Any valid symbol or blank
¢ Command INT
Y al:!:k1 a, may be either a constant or a symbol whose value may be optionally
modified by plus or minus the constant kl‘
e o o Associative Valid Entries:
Processor Vector Address
Interrupts Interrupt Number in Bulk Core
Xn X'8001!
X1 X'gooz!
XE! X'800F!
e o ¢« Sequential Valid Entries:
Processor
Interrupts Vector Address in
Interrupt Number Sequential Processor
0'300' ‘ 0'300!'
0'304! 0'304!
o310 or'310!
0'334! 01'334!
¢ Argument
PRPY aZ:i:k2 a, may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k2'

Legal Values for a-zi:kz:

0 Unconditionally disable the interrupt.

1 Skip the next instruction if interrupt is enabled, and then
unconditionally disable the interrupt

2 Skip the next instruction if interrupt is disabled, and then
unconditionally disable the interrupt

3 Unconditionally skip the next instruction and then disable
the interrupt 2-155

INT
Legal Values for a,+k,: (cont)

5 Skip the next instruction if the interrupt is enabled.
6 Skip the next instruction if the interrupt is disabled.
7 Unconditionally skip the next instruction.

8 Unconditional complement of current state.

9 Skip the next instruction if interrupt is enabled, and then
unconditionally complement current state.

10 Skip the next instruction if interrupt is disabled, and then
unconditionally complement current state.

11 Uncontitionally skip the next instruction, and then
unconditionally complement current state.

12 Unconditionally enable the interrupt.

13 Skip the next instruction if the interrupt is enabled, and then
unconditionally enable the interrupt.

14 Skip the next instruction if the interrupt is disabled, and the
unconditionally enable the interrupt. ‘

15 Unconditionally skip the next instruction and then
enable the interrupt.

2-156

ILOCK

Format

o Label
¢ Command

(N] a'l*kl

¢ Argument

o o 3y%k,

Interlock Control and Test

This instruction will set or reset the specified interlock number alzi:k

1

and/or interrogate the current state of this interlock number according to

the value of the expression aztkz.
Label | Command l Argument I Comment
symbol | ILOGK, 3, *k, a,%k,

Any valid symbol or blank

ILOCK

a, may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant kl‘ The value of alik1 must be

in the range OSal:bk1563. These interlocks have no predetermined meaning.

The programmer can assign any meaning to any interlock.

a, may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant kZ' The value of az:kk2 determines

the action taken on the specified interlock number alﬂ:kl.

0

1

o~ U B

10

11

12

13

14

15

Legal Values for az:ka:

Unconditionally reset the interlock,

Skip the next instruction if set, and then unconditionally reset the
interlock number,

Skip the next instruction if reset, and then unconditionally reset
the interlock number,

Unconditionally skip the next instruction and then reset the interlock
number ,

No operation.

Skip if the interlock number is set.

Skip if the interlock number is reset.
Unconditionally skip the next instruction.
Unconditionally complement current state.

Skip the next instruction if set, and then unconditionally complement
current state.

Skip the next instruction if reset, and then unconditionally complement
current state .

Unconditionally skip the next instruction and then unconditionally
complement current state.

Unconditionally set the interlock number,

Skip the next instruction if the interlock is set, and then unconditionally

set the interlock number.

Skip the next instruction if the interlock is reset, and then
unconditionally set the interlock number.

Unconditionally skip the next instruction,and then set the interlock

nirrahaw

2-157

WAIT Deactivate the AP

This instruction will cause the associative processor to go inactive.

Format Label | Command | Argument Comment
symbol | WAIT | I

¢ Label Any valid symbol or blank,

¢ Command WAIT

e Argument No entry is required,

2-158

PAGER
INSTRUCTIONS

These instructions allow the programmer to utilize the page memories.

Mnemonic

STRTSG
ENDSG
MVSG
MVSGI

PAGER

Instructions

Start Segment

End Segment

Move a Page Segment

Move a Page Segment Immediate

Pager Control

2-159

STRTSG Start Segment

This instruction marks the beginning of a page segment by reinitializing

the Execution Location Counter as specified in the Command Field.

Format Label | Command | Argument

Comment
symbol | STRTSG, atk | |
e Label Any valid symbol or blank. This will be the name of the following segment.
. Comﬁnand STRTSG
e o axk 'a'may be eithera constant or a symbol whose value may be optionally

modified by plus or minus the constant k. Moreover,'a' may be one of the
following special symbols: PAGEO, PAGE1l, PAGE2. The value of the
expression atk initializes the Execution Location Counter and represents

where succeeding assembled APPLE instructions are to be loaded and then

executed,
e Argument No entries required.
ENDSG End Segment

This instruction marks the end of a page segment,

Format Label l Command Argument I Comment
symbol I ENDSG l l

e Label Any valid symbol or blank.

e Command ENDSG

¢ Argument No entries required.

Note Nested STRTSG—ENDSG pairs are illegal,

2-160

MVSG Move a Page Segment

This instruction will command the Pager to move a segment of instructions
referenced by the Memory Address aptkp if the Pager is not busy with a
previous move, If the Pager is busy, AP Control will wait until the previous

move is completed before initiating this move.

Command . Argument

Format Label Comment
symbol I MVSG, al:l:k1 I Ez*kz l
e Label Any valid symbol or blank.
e Command MVSG
L al-.bkl a; may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant kl. Moreover, a; may be one of
the following special symbols: PAGEO, PAGEl, PAGE2. This term
corresponds to the same term in the STRTSG mnemonic, Its value is

used to tell the Pager where to begin storing the program segment.
e Argument One term is required.

() az‘ik2 a, may be either a constant or a symbol whose value may be optionally
modified by plus or minus the constant kz. The value of this term should

reference the address of a STRTSG mnemonic in bulk core.

2-161

MVSGI Move a Page Segment Immediately

This instruction will command the Pager to move a segment of instructions
referenced by aztk2 to the Page Memory address alzi:k1 immediately. If the
AP Control encounters the MVSGI instruction while the Pager is busy with
a previous move, it will interrupt the Pager and initiate the new move
immediately. The remainder of the previous move is forgotten. If the
Pager is not busy when the AP control encounters an MVSGI instruction,

it acts like an MVSG instruction.

Format Label l Command Argument l Comment
symbol I MVSGI , a,ltkl l EL_Zal:k2 |
e Label Any valid symbol or blank,
¢ Command MVSGI
P a,ld:kl a, may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant kl. Moreover,a1 may be one of
the following special symbols: PAGEO, PAGEl, PAGE2. This term
corresponds to the same term in the STRTSG mnemonic, Its value is

used to tell the Pager where to begin storing the program segment.
e Argument One term is required.

o e a xk

2552 a

, may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant kz. The value of this term should

reference the address of a STRTSG mnemonic in bulk core.

2.162

PAGER

Format

¢ Label

¢ Command

e Argument

‘. axk

Pager Control

This instruction will command and/or interrogate the state of the Pager.

The Pager can be considered to be on (busy) or off (not busy).

Label

symbol

| Command | Argument | Comment

PAGER | e I

Any valid symbol or blank.

PAGER

One entry is required.

'a' may be either a constant or a symbol whose value may be optionally

modified by plus or minus the constant k.

Legal Values of axk:

0
1

O 0 N oy U o W

10
11

12
13

14

15

Unconditionally turn Pager off,

Skip the next instruction if Pager is on, and then unconditionally
turn Pager off,

Skip the next instruction if Pager is off, and then unconditionally
turn Pager off, '

Unconditionally skip the next instruction and then turn Pager off.
No operation.

Skip the next instruction if Pager is on.

Skip the next instruction if Pageris off.

Unconditionally skip the next instruction,

Unconditionally complement current state.

Skip the next instruction if Pageris on, and then unconditionally
complement current state,

Skip the next instruction if Pager is off, and then unconditionally
complement current state,

Unconditionally skip the next instruction, and then unconditionally
complement current state,

Unconditionally turn Pagexr on;

Skip the next instruction if Pager is on, and then unconditionally
turn Pager on.

Skip the next instruction if Pager is off, then unconditionally
turn Pager on.

Unconditionally skip the next instruction, and then turn Pager on.

2-163

INTRODUCTION

SLOT
NUMBERS

CHAPTER 3

SUPERVISOR CALLS

STARAN Program Supervisor (SPS) provides services to supplement the
APPLE language such as managing input/output, handling errors, and
controlling STARAN processors. This chapter describes all services

available to APPLE programs executed by the associative processor.

SPS consists of two program modules which are resident in the sequential

control memory at execution time. Module zero (SPS0) manages the sequential
controller and its associated peripherals. Module one (SPS1) manages the
remaining STARAN processors. SPSO and SPS1 together manage the entire
stand-alone configuration; that is, the sequential controller and its I/O
devices,Athe associative processor, the Pager, the Parallel I/O unit* and

additional Custom 1/0, as implemented for a specific installation.

The main purpose of SPS is to make input/output operations possible. A
programmer can use the supervisor through the APPLE SVC (Supervisor
Call) mnemonic by specifying the particular service desired, a buffer,

and some 1/0 device.

The convention is not to refer to devices directly, but to the slots assigned
them (a slot is similar to a logical unit, see figure 3-1). An 1/0 request
is made on a slot which, in turn, refers to a device. (Slots 0, 1, and 2
are anchored to the keyboard, teleprinter, and high-speed reader. While
it is necessary to refer to these slots, any attempt to reassign them will
cause an error message to be printed at execution time.) Slot assignments
are recorded in the Device Assignment Table (DAT) (figure 3-1), More
than one slot may be assigned to a device, but only one device can be
attached to a slot. Additional devices will be added to satisfy requirements
of specific customers (for example - disk units, magnetic tape units,

remote terminals, etc).

STARAN registers, associative memory, and control memory are
referenced in SPS calls as though they were devices. They are given
negative device codes which may be used to attach them to slots (see
figure 3-1). SPS provides for data transfer between these associative

processor elements, or between them and any peripheral device.

% Parallel I/O unit is an optional STARAN feature.

DEVICES

STARAN
REGISTERS

SLoTS STARAN

ARRAYS

STARAN

/ @ MEMORY
/

= 1
| bummy !

[——

KEYBOARD
USER'S I/O
REQUESTS

1 TELEPRINTER

HIGH-SPEED
READER

HIGH-SPEED
PUNCH

CARD
READER

LINE
PRINTER

~ _/

* SPS permanent assignments. Any attempt ~ r CUSTOM —H

to reassign these slots will be in error. ICB\IUP]%L/T |

LDEVICE(S)

Figure 3-1, Device Assignment Table (DAT)

-3

INSTRUCTION
DESCRIPTION

BUFFER
PSEUDO-OP
FORMAT

SUPERVISOR
CALL
FORMAT

Note

BUFFER

SvVC

This section of the manual is concerned with the description of two

mnemonics and their possible variations. Their basic format is:

Label | Command | Argument | Comment
symbol | BUFFER 21222,383,384,35,2a4,a7
and
Label | Command | Argument l Comment
symbol I SVC | aj,ap,aj |

The terms in the argument field for these mnemonics will be described

in more detail later.

All 1/0 functions included in this basic manual, except Parallel 1/0,
require a buffer area (usually either in the HSDB or in BULK core
memory) to contain the data as they are input or output. The purpose

of the BUFFER mnemonic is to create for the SPS I/O routine required
buffer-area header information describing in more detail the exact nature
of the intended 1/O process. For example, data input from the high-
speed paper tape unit may be in the form of ASCII characters (formatted
or unformatted) or pure binary values (formatted or unformatted).

These cases will be described in more detail later. In other words there
is more than one way to input or output data on a given device, and the

purpose of the BUFFER pseudo-op is to fully describe the desired method.

There are currently twelve different variations (SPS services) of the SVC
mnemonic. The services will be expanded for future requirements as
necessary for Customized Input/Output features. Some of the variations
require a corresponding BUFFER mnemonic counterpart to fully describe
the nature of the I/O operation to the system. The twelve SVC functions

are:

SPS
SERVICES
OR

CALLS

Source Statement Format

Com-
Function Label mand Argument Comment
Attach symbol | SVC 1, slot-number, device-code-address
Read symbol | SVC 9, slot-number, buffer-address
Write symbol | SVC 10, slot-number, buffer-address
Reset symbol | SVC |2
Free symbol | SVC 5, slot-number
Exit symbol | SVC {7
Restart symbol | SVC [8
Timer symbol | SVC 13, timer-number, interrupt number, time-value
Int symbol | SVC 14, interrupt-number
I Setup symbol | SVC 15, interrupt-number, status, done-address
Pager
Control symbol | SVC 18, command, start-address
P1/O
Control symbol | SVC 19, command, start-address

Each of the above SVC instructions will be described separately in the

following pages.

Note the distinguishing feature of each SVC instruction

is the first term in the argument field. All argument field terms shown

are required. Each term in the argument field may be in the form

azxk

where 'a' may be either a constant or a symbol optionally modified by

plus or minus the constant k.

3-4

ATTACH Attach an SPS Slot Number to an I/O Device

This function allows the programmer to assign SPS slot numbers
to different I/O devices at execution time (see figure 3-1). Note
that slot numbers 0, 1, and 2 always refer to the keyboard,
teleprinter, and high-speed reader, respectively. These slot

numbers may not be reassigned to different devices.

Format Label | Command I Argument | Comment
symbol l SvVC l 1, slot-=-number, device-code~address |

e Label Any valid symbol or blank.

¢ Command SVC

e Argument The argument field consists of three entries.

ool The value of the first entry (must be equal to one) denotes an attach
function.

e o Slot The value of the second entry (must be a value between 0 and 178)

Number

denotes one of the SPS slot numbers (see f igure 3-1).

e @ Device- The third entry represents an address (must be in either HSDB or in
Code- BULK core memory)which contains a device code value.
Address

e o Device Value (Octal) Device
Codes
-3 STARAN Registers
-2 STARAN Associative Memory
-1 STARAN Control Memory
0 Dummy
1 Keyboard (KBD)
2 Teleprinter (TTY)
3 Low-Speed Rea;der (LSR)
4 Low-Speed Punch (LSP)
5 High-Speed Reader (HSR)
6 High-Speed Punch (HSP)
7 Card Reader (CDR)

10 Line Printer (LPT)

3-5

STARAN
Special
Device
Codes
For
ATTACH
Function

¢ STARAN
Control
Memory

e o Format

o o o Label
o ¢ ¢ Command

e o ¢ Argument

Note that STARAN storage is given device codes. To allow access to
parts of STARAN not directly addressable, the memory elements are
formally treated as devices, SVC calls utilizing STARAN device

codes require corresponding specially formatted BUFFER pseudo-op

mnemonics.

When STARAN control memory is referenced by an SVC instruction,
it should be for the purpose of a memory-to-memory transfer of a
block of instructions or data within STARAN Control Memory, which

consists of the Page, HSDB, and Bulk core memories.

For an SVC instruction referencing a slot assigned to device -1
(STARAN Control Memory) the form of the corresponding BUFFER

mnemonic is:

Label | Command | Argument | Comment
symbol | BUFFER I address, 0, byte-count I

Any valid symbol or blank,

BUFFER

The argument field consists of three terms. The value of the first
term represents any STARAN control memory address and is the
destination address. The value of the second term must be zero.
The value of the third term represents the byte-count of the number
of bytes of data following the BUFFER pseudo-op involved in the

memory-to-memory transfer.

The above BUFFER pseudo-op will generate the following two 32-bit

words of memory:

3-6

e ¢ BUFFER
Format
For
Device ~1

e o o Byte
Count

e e o Status
Byte

0 15 16 31

Address
0 15 16 2324 31
Byte Count Status
0 31
Data
o
[-]
0 ° ~1
Data

As shown the upper half of the first word will contain the value of the
first item of the argument field. The upper half of the second word
will contain the value of the number of bytes of data involved in the
memory-to-memory transfer. The bytes of data must be contained

in the words of memory immediately following the BUFFER pseudo-op

mnemonic as shown.

This value represents the actual number of bytes of data to be moved

to or from the buffer area that follows.

Bits of the Status Byte shown in bits 16-23 of the second word set by

SPS upon completion of the memory-to-memory transfer are bits

16 and 17:
16 17 18 19 20 21 22 23
Done Error
Bit Bit

The Done bit will be set to a value of one by SPS upon completion of
the operation. The ERROR bit will be set to a value of one by SPS

if an error occurred during the operation. If an error occurred
before the memory-to-memory transfer was completed, the Byte
Count value in the upper half of the second word will contain the

actual number of bytes of data transferred by SPS before the operation

was terminated. Otherwise the Byte Count value will remain intact.

e ¢ Example

Atté..c':.l; to siot 6 device -1 (STARAN Control Memory)

svc , PBFR

Write on slot 6 from PBER

DVCODE DC -1
PBFR BUFFER HSDB,O0, 17

Destination address in HSDB Transfer the following 17 bytes

A'A 17 BYTE MESSAGE!

Execution of the above two SVC instructions will result in the memory-

to-memory transfer of the above 17 bytes of ASCII characters to the

HSDB.
o STARAN When STARAN Associative Memory is referenced by an SVC instruction,
A s
ssoclative it should be for the purpose of a memory-to-memory transfer between
Memory
associative memory and a buffer located either in the HSDB or Bulk core
memories. For an SVC instruction referencing a slot assigned to
device -2 (STARAN Associative Memory) the form of the corresponding
BUFFER mnemonic is:
e o Format Label | Command | Argument | Comment
symbol I BUFFER I maxsize, address-mode, byte count,aj, a2, b, b2 l
e o o Label Any valid symbol or blank.
¢ ¢ ¢ Command BUFFER
.o o o Argument The argument field consists of seven terms. Before describing these

terms consider the three words of object-code generated by this particular
BUFFER pseudo-op mnemonic (the words of data are not generated by

this mnemonic).

3-8

e ¢« BUFFER

Format Maximum size of
For Buffer in bytes
Device -2
0 15 16 23 24 31
Address
Byte Count Status Mode
0 78 15 16 23 24 31
by by ap ay
— _
Y
co-ordinates
Data Data Data Data
(-]
-]
o
Data Data Data Data
e o ¢ Maximum The upper half of the first word will contain the value of the first
Size term of the argument field. This value represents the maximum
size (in bytes) of the data words portion of the buffer and also the
maximum allowable number of bytes of data that may be moved to
or from the buffer.
e @ o Byte The upper half of the second word will contain the value of the third
C
ount term of the argument field. This value represents the actual number
of bytes of data to be moved to or from the buffer area that follows.
If for some reason an error condition occurs before a buffer transfer
is completed, this value will be modified to reflect the actual number
of data transfers.,
e e o Status Bits 16-23 of the second word contain the Status Byte. The bit
Byte

value in this byte are set and maintained by SPS.

16 17 18 19 20 21 22 23

Done |Error

S

~

Nonfatal Error Code
2=Checksum error
3=Long-line error

* End of Medium or Power
Off or Out of Tape, etc.

#% Formatted Binary Data 4=Improper Mode (FBIN**

% End of Tape Code 5=EOQT**% will occur if an ASCIL EOT
code is read outside of a FBIN block
of data.

3-9

e ¢ o ¢ Done
Bit

o¢ e ¢ Error

e o o Address

Mode
Byte

e e o Arra.y
Co-ordinates

This bit will be set by SPS upon completion of the buffer transfer

regardless of whether or not an error occurred.

This bit will be set by SPS if an error is detected during the buffer
transfer operation. Examine bits 18 and 21-23 for the exact nature

of the error.

Bits 24-31 of the second word comprise the Address Mode Byte and
is loaded with the value of the second term in the argument field.

The interpretation of the bit and sub-field values of the byte by SPS is:

W.ord/' An Associative Array
Bit Slice Memory Module or a
Response Store Register

25 26 27 28 29 30 31
I T T T T
Associative Array Memory Module Number
L 1 L 1 1
N — N\ ~ _J

00 Array 0-31
01 M register
10 Y register
11 X register

it 24=1 means access by word.
Bit 24=0 means access by bit column.

The third word of the buffer header information is loaded with the
associative memory coordinate values as shown from the fourth through
seventh terms in the argument field of the BUFFER pseudo-op mnemonic.
a; and ap define the starting and ending "line" which may be bit column
numbers or word row numbers,depending on bit 24 of the Address Mode;
i.edy OEaISaZiZSS. b1 and by are the starting and ending byte numbers
for the data; i.e., 0sby=by=31. If a response store register instead of
associative memory is specified, a maximum of 32 bytes of data can be

transferred.

3-10

e ¢ Example

e & o Supervisor

e o o Corresponding

Call
Statement

BUFFER
Pseudo-op
Statement

Buffer
Data

Associative
Memory
Map,

Word

Mode

Writing Into Associative Memory

If slot 9 has been attached to associative memory (device code -2),

the following statements will load array 0 as shown.

SvVC 10,9, ARBFR

F:r om buffer

To associative memory
(attached to slot 9)

ARBFR BUFFER 9,0'200',9,5,10,1,3

Max size Vi}grd access 'i'.lle number of ..:.Krray

in bytes to array 0 bytes to move co-ordinates
A'ARTICHOKE! ASCII character string
Byte Byte
by by
0 | 1 | 2 3 N 31
0 i =V
| I
| |
| _
Word 9 5 A R T
I C H
0] K E
Word 02‘ 10 UNCHANGED

s

255

a; and a, define the starting and ending ''line'’, 0=a;=a,= 255, b, and
b2 are the starting and ending byte numbers for the data, Osbls by=31.

o o o Associative Bit Bit

ﬁemory Column Column
ap,
Bit 9 92
Column 0 5 10 255
Mode i I \F
I
0 ! |
4]
Byte by 1 Al1]0
U
-t N
C
H
2 RICIK A
1 N
G
E
Byte by 3 TiH|El D
I I
he | | <
I I
T |
31 ! :
| | V—
e STARAN When STARAN registers are referenced by an SVC instruction, it
Registers should be for the purpose of obtaining the value of those STARAN
registers accessable only by the sequential controller. For an SVC
READ instruction referencing a slot assigned to device -3 (STARAN
Registers) the form of the corresponding BUFFER mnemonic is:
e o Format Label | Command | Argument | Comment
symbol I BUFFER l register-code
e o o Laabel Any valid symbol or blank.
e ¢ o Command BUFFER
e o o Argument The argument field consists of one term. Before describing this

term consider the two words of object code generated by this

particular BUFFER pseudo-op mnemonic (the word of data is not

generated by this mnemonic).

3-12

e o Buffer
Format
For
Device -3

e o ¢ Register
Code

0 15 16

31

Register Code

23 24

31

Status

31

Data

The upper half of the first word will be loaded with the value of the

argument field term. This value represents the code assigned to

a particular register.

STARAN Main Frame
Register Register Code | Length (bytes)
Instruction 0 4
Pager Put 1 2
Pager Get 2 2
Pager Count 3 2
Start Loop Marker 4 2
End Loop Marker 5 2
PI/O Unitt Main Frame

Instruction 6 4
Start Loop Marker 7 2
End Loop Marker 8 2
Buffer Register 9 4
Buffer Control Word No. 1 10 2
Buffer Control Word No. 2 11 2
Buffer Control Word No. 3 12 2
Block Liength Counter 13 2
Data Pointer 14 2
Program Counter 15 2
Field Length Counter 16 1
Field Pointer No. 1l 17 1
Field Pointer No.2 18 1
Field Pointer No.3 19 1
STARAN Address Mode 20 2
PI/O Address Mode 21 2
Performance Timer 22 2
Performance Counter 23 2
* The P1/O Unit is a STARAN option.

16

e o ¢ Status Byte
Done

The status byte occupies bits 16-23 of the second word of the BUFFER
instruction and is maintained by SPS. Only the Done and Error bits

are of significance.

s o Example Obtain the current value of the End Loop Marker register. Assure slot

7 has been assigned to STARAN registers (device code -3).

o @ ¢ Supervisor SvVC .9, 7, ENDLOOPBF
Call

Statement 5 h
Read From device Into buffer
attached to
slot 7
e o o Corresponding ENDLOOPBF BUFFER 5
BUFFER
Pseudo-op
Statement End Loop Marker register code
ENDLOOPRG DC 0 Buffer storage word

The value of the End Loop Marker register may be obtained from the
contents of the one word buffer ENDLOOPRG.

3-14

READ

Format

e Label

¢ Command

e Argument

e o Slot-
Number

e # Buffer-
Address

Example

This SVC function permits the transfer of data from a valid
input device to a buffer area in Bulk core or the High-Speed
Data Buffer. The input device is referenced by a slot number,
Detail on memory to memory transfers for special AP devices

is described in the ATTACH section.

Label | Command l Argument | Comment
symbol l SVC | 9, slot-number, buffer-address

Any valid symbol or blank.

SvC

Three entries are required.

This entry may be a constant or a symbol whose value is 9.

This entry may be a constant or a symbol whose value is the slot

number assigned to the input device (see figure 3-1),

This entry may be a constant or a symbol representing the
address of the associated buffer which is set-up in a BUFFER
pseudo-op instruction. (READ/WRITE BUFFER Pseudo-Op

instruction is described in a later section.)

Assume slot number 3 has been attached to the high speed paper

tape reader.

SVC 9,3,BUFF

KEAD

Slot number

This example will cause data to be read from the high speed '
paper tape reader and stored into the buffer area defined by
BUFF (buffer area in Bulk core or High Speed Data Buffer).

BUFF must be defined in a BUFFER Pseudo-Op instruction.
3-15

WRITE

Format

e Label

o Command

¢ Argument

oo 10

e o Slot-Number

o o Buffer-
Address

Example

This SVC function permits the transfer of data from a buffer area
in Bulk core or the High-Speed Data Buffer to a valid output device.
The device is referenced by a slot number. Detail on memory-to-

memory transfers for special AP devices is described in the ATTACH

section.
Label I Command l Argument | Comment
symbol | SVC | 10, slot-number, buffer -address

Any valid symbol or blank,

SvC

Three entries are required.

This entry may be a constant or a symbol whose value is 10.

This entry may be a constant or a symbol whose value is the slot-

number assigned to an output device.

This entry may be a constant or a symbol representing the address
of the associated buffer which is set-up in a BUFFER Pseudo-Op
instruction. (READ/WRITE BUFFER Pseudo-Op instruction is

described in a later section.)

Assume slot number O'17' has been attached to the line printer.

SvC 10,0'17', BUFF

WRITE S.f.c.)t number .Euffer

This example will cause the contents of BUFF (buffer area in Bulk
core or High-Speed Data Buffer) to be printed on the line printer.
BUFF must be defined in a BUFFER Pseudo-Op instruction.

3-16

READ/
WRITE
BUFFER
PSEUDO-OP

Format

e Label

o Command

e Argument

o o Max-size

e o Address

e ¢ Register

Code

e ¢ Mode

The BUFFER Pseudo-Op instruction sets up a properly formatted
buffer area in control memory for the READ and WRITE supervisor
call functions. Detail on special AP device buffers is described in the

ATTACH section.

Label Command Argument Comment

symbol BUFFER max-size J.mode, byte-count,ay,a3,b;, b
address
register code

Any valid symbol or blank.

BUFFER

The first three entries are required for all READ /WRITE operations
except the AP register transfers (device code -3) which requires only
the first entry. The remaining four entries are required for Associative

memory data transfers.

This entry may be a constant or symbol whose value represents the

maximum size of the buffer in bytes.

This entry may be a constant or symbol representing a Bulk core or

High-Speed Data Buffer address in a memory to memory transfer.

This entry may be a constant or symbol representing an AP register

code for data transfers involving AP registers.

This entry may be a constant or symbol whose value represents the
mode of data transfer. The mode entry will always be zero for a

memory to memory transfer since mode is not applicable.

Value Mode
3 Unformatted Binary (UBIN)
2 Unformatted ASCIL (UASCII)
1 Formatted Binary (FBIN)
0 Formatted ASCII (FASCII)

e o ¢ Unformatted
Binary

e o ¢ Unformatted
ASCII

e ¢ ¢ Formatted
Binary

e ¢ ¢ Formatted
ASCII

e o Byte
Count

o o 3-1: az:bl;bz

Eight bit bytes are transferred as specified by the buffer byte
count. This mode is suitable for paper tape readers and punches.

Possible errors are Error bit set and End of Medium (EOM)

Seven bits per byte are transferred as specified by the buffer byte
count. This mode is suitable for keyboard, teleprinter, and line
printer. Possible errors are Error bit set, End of Medium,

Checksum, and Long line.

This format is used primarily for paper tape I/O (used by APPLE.)
For output SPS blocks the data as follows:

201g } The header for the APPLE assembler output
000

XXX
XXX

The byte count of the block, equal to the number
of data bytes plus 4.

.
.
.

ZZZ The checksum, the two's complement of the sum
of all the preceding bytes in the block (Sum plus

checksum equals zero)

yyy
yyy Data bytes

Z2Z

When a block with a header 201000 (i.e. APPLE block) is encountered,
the number of bytes transferred is the block byte count -4. The data
are followed by a checksum. On output, SPS creates the header, the

block byte-count, and the checksum.

Seven bits per byte are transferred until a terminating character is
encountered. Terminating characters are, a line feed (012), a form feed
(014), or a carriage return (015). These characters will end trans-
mission of data. Possible errors are Error bit set, End of medium,

and Long line.
Actual number of data bytes in the block to be transferred.

These entries are used only when an associative memory data transfer
is performed. a; and a, define the start and end of the array words or
bit slices (ranges: 0=sa lsa.ZEZSS). b; and b, define the start and end
byte numbers for the data (range:0<b 1Sb2531). If a response store
register is specified, up to 32 bytes will be moved in or out of the

buifer.

Example

e Buffer
Pseudo-Op

e Buffer
Header

o o Max-Size

e o Byte
Count

o o Status
Byte

e o ¢ Done

Bit

e e ¢ Error

Bit

e o o EOM
Bit

o e e Error
Codes

The following example illustrates the buffer format for transfer

of data to or from an I/O device.

BUFF BUFFER 9,0'101', 8

15 lo 23 24§31

Ny . Status | Mode
ax-size Byte Count | gyt | Byte
Word 1 Word 2

The maximum size, in bytes, of the buffer is contained in bits 0

to 15 of the first 32 bit buffer word.

This is the actual number of bytes of data in the buffer to be

transferred.
16 17 18 21 22 23
Done { Error| EOM
bit bit bit
- g
~

Error Codes

Bit 16=1 indicates a transfer to or from the buffer is complete.

Bit 17=1 indicates that the device in use has signalled an error in

the status register.

Bit 18=1 indicates an end of medium has been detected.

Error code Error
2 Checksum
3 Long line
4 Improper mode
5 End of tape marker detected

3-19

o0 Mode
Byte

e o o Echo
Bit

o 00 Byte
Count
Update

e & ¢ Format

e ¢ ¢ Binary/
ASCII

24 25 26 27 28 29 30 31
Byte E .
Echo Binary/
s Count Format
Bit Update [ASCII

11 unformatted binary
01 formatted binary
10 unformatted ASCII
00 formatted ASCII

Normally data entered through the keyboard are printed on the
teleprinter (referred to as echo). If bit 7=1 in the mode byte, the
echo is inhibited. This bit applies only to keyboard input.

SPS revises the byte count in the buffer header after each 1/0 call
using that buffer. This is not always desirable. For example, an
error during attempted printing of a message might zero the byte
count. Subsequent calls using that buffer would output zero bytes.
Bit 6=1 will inhibit the updating and should be used only for a read

operation.

Bit 30 indicates formatted or unformatted data mode. If bit 30 is zero,

the mode is formatted, if bit 30 is equal to 1, the mode is unformatted.

A one in bit 31 indicates binary mode; a zero in bit 31 indicates

ASCII mode.

RESTART
PROGRAM

Format

e Label

e Command

e Argument

This statement will completely reinitialize the STARAN and return
control to a sequential control program (refer to STARAN Systems

Programmer's Reference Manual)

Label Command ‘ Argument | Comment

|

symbol SVC |

Any valid symbol or blank.

SvVC

The argument must be an expression whose value is 8.

RESET

Format

e Label

e Command

e Argument

To reinitialize peripheral devices, issue RESET. This has the effect of
RESTART, but control will return to the following instruction, not to
a restart address. It is not usually necessary to RESET since

conditions that call for reinitializing usually call for restarting, too.

Label l Command I Argument Comment

symbol l SVC I 2
Any valid symbol or blank.
svc

Any expression whose value is 2 denotes the reset function.

FREE

DEVICE
For

NEW
TASK

Format

e Label

o Command

e Argument

e o Slot-Number

Example

The device attached to the designated slot will be made ready to
start a new 1/0 process. If the device is busy, its current 1/0

process will be halted and cannot be resumed.

This service is most useful for getting an urgent - and usually

terminal - message in or out.

Label | Command | Argument | Comment

symbol | SVC I 5, slot-number

Any valid symbol or blank.

SvcC

Two entries are required.

The first entry may be any expression whose value is 5; this

denotes the FREE function of the supervisor call.

The second entry may be any expression whose value is between

0 and 15 (see .figure 3-1).

KILL SVC 5,0

The statement named KILL will cause the device attached to slot 0

(the teleprinter) to halt any current output and make it ready for a

WRITE request.

EXIT
TO
SUPERVISOR

Format

e Label

¢ Command

e Argument

A STARAN program may return control to the supervisor with

this command.

Label Command l Argument l Comment

symbol SVC I 7 I
Any valid symbol or blank.
svcC

Any expression whose value is 7 denotes the EXIT function

of the supervisor call.

TIMER
START

Format

e Label

¢ Command

e Argument

ee Timer-
Number

e o Interrupt-
Number

oe. Time-
Value

Example

The TIMER statement allows clocking of an interval beginning
with the execution of the statement, At the end of the specified

interval, STARAN interrupt will be triggered.

Label I Command | Argument | Comment
symbol SvC 13, timer -number, interrupt--
number, time-value

Any valid symbol or blank.
SvVC
All entries are required.

The first entry may be any expression whose value is 13;

this denotes the TIMER function of the supervisor call.

The second entry must be an expression whose value is 0, 1,2, or 3,

These numbers si)ecify four different '"clocks'' which may be started.

The third entry may be an expression whose value is 1,2,3,..., 14,
or 15, It specifies the STARAN interrupt which will be triggered

when the timer expires.

The fourth entry will be evaluated and taken as an unsigned 16-bit

quantity in units of 1/300 sec.
EXCELS SvC 13,2,5, 300

When the above statement is executed, timer 2 will trigger AP

interrupt 5 in 1 second (300/300ths).

3.25

INTERRUPT This command is used to cause the sequential processor to execute a
SIGNAL program. SPS simulates sixteen interrupt vectors in the sequential
processor. (This is not a STARAN hardware interrupt into the sequential
processor, signalled by external-function codes. It is a software facility
to make possible user linkages between STARAN and the sequential
processor.) When the software interrupt is triggered, the sequential

processor will execute a program at the address specified in the I SETUP

call (discussed on following page).

Format Label | Command | Argument I Comment
symbol | svcC I 14, interrupt-number I

e Label Any valid symbol or blank.

o Command . SvC

e Argument The argument field consists of two entries.

oo 14 The first entry must be an expression whose value is 14;

this denotes the INT function of the supervisor call.

® o Interrupt- The second entry is an expression whose value must be
Number 0,1,2,...,14,15. It specifies a software interrupt to the

sequential controller.

Example , SVC 14,0

This will trigger the interrupt setup as shown in the next section

(I SETUP example).

3-26

I SETUP

Format

e Label

e Argument

® o Interrupt-

Number

o o Status

e o Interrupt-
Vector

Example

This SVC function creates a software interrupt vector for the

sequential controller.

Label | Commandl Argument I Comment

symbol SVC 15, interrupt-number, status,

interrupt~-vector-address

Any valid symbol or blank.

All entries are required.

The first entry must be an expression whose value is 15;

it denotes the I SETUP function of the supervisor call.

The second entry is an expression whose value must be 0, 1,2,...,
14, or 15. It specifies a software interrupt vector maintained by

SPS. (See Staran System Programmer's Reference Manual.)

The third argument specifies the status to be assumed when the
interrupt is signalled. It will be evaluated and taken to be a number

from zero to seven.

The fourth argument is an expression whose value is a sequential

control address in Bulk core memory.

EXETER SvVC 15,0, 7, HANDLR

The above line of coding will attach sequential control software

interrupt 0 to a routine called HANDLR. Priority 7 will be assumed.

3.27

PAGER
CONTROL

Format

e Label

e Command

e Argument

e ¢ Operation

e o Start-
Address

Example

This SVC function is used to control certain Pager operations.

Label l Command | Argument | Comment

symbol | SvVC | 18, operation, start-address

Any valid symbol or blank.

svcC

Two entries are required in all operations except the Start Pager ,

which requires all three entries.

The first entry may be a constant or a symbol whose value is 18.

The second entry may be a constant or a symbol with the following values:

Value Operation .
0 Start Pager at start-address
1 Stop Pager
2 Pause Pager
3 Continue Pager from pause

The start-address is used only in the Start Pager operation (i.e. when

the operation value is zero).

TAG) DC 0
sSvC 18, TAG, X'00' Start Pager at address 0
SVC 18,1 Stop Pager

3-28

PI/O This SVC function is used to control certain parallel 1/0 operations,
CONTROL:*

Format Label l Command | Argument I Comment
symbol I SVC | 19, operation, start-address

e Label Any valid symbol' or blank,

¢ Command SvC

. Argurnent Two entries are required in all operations except the Start P1/O,

which requires all three entries.

o. e 19 The first entry may be a constant or a symbol whose value is 19.
e e Operation The second entry may be a constant or a symbol with the following
values:
Value Operation

0 Start PI/O at start-address

1 Stop P1/O

2 Pause PI/O

3 Continue PI/O from pause

e o Start- The start-address is used only in the Start P1/0O operation (i.e.

A
ddress when the operation value is zero),

* Parallel I/O is an optional STARAN feature. Other Custom I/O

features may be handled similarily.

3.29

APPENDIX A

SUMMARY OF APPLE MNEMONICS
AND
INSTRUCTION FORMATS

ASSEMBLER
DIRECTIVES

BRANCH

INSTRUC TIONS

REGISTER

INSTRUC TIONS

Mnemonic
(Command) Argument Instruction Page
START ¥ Start APPLE source 2-10
END azxk End APPLE source 2-10
ORG atk Initialize location counter 2-11
Label EQU axk Equate (Define Symbol) 2-12
Label DF ild‘kl-?—az*kz Define Field 2-12
DS, axk Define Storage 2-13
TOF Top of Form 2.13
EVEN Make location counter EVEN 2-14
DG, ald:kl az:i:k2 Define Constant 2.14 I
GEN, kl, e kn a.l:!:jl, .. an:!:j Generate Machine Instruction 2.15 ﬂ
NOP No Operation 2.15
Axcic,...c g ex Character String Generator 2-16 I
1.':’‘21‘:2' <eCy gy G Character String Generator

B a(r)xk, cd Unconditional Branch 2-18
BZ, r g(rz):{:k, cd Branch if Zero 2-19
BNZ,r1 E(rz)dzk, cd Branch if Not Zero 2-21
BBS a(r)tk, cd Branch if Bit Set. 2-23
BBZ a(r)xk, cd Branch if Bit Zero 2-25
BRS a(r)xk, cd Branch if Response 2-27
BNR a(r)xk, cd Branch if No Response 2-28
BOV a(r)xk, cd Branch if Overflow 2-29
BNOV a(r)xk, cd Branch if No Overflow 2-30
BAL, Ty a(rz):bk, cd Branch and Link 2-31
RPT, azk Repeat 2-33
LOOP, altkl Ez(r)d:kz Loop 2.34

LRR,k EPYE 4] Load Register from Register 2-37
LLk r,akk Load Register with Immediate Data 2.39
LR,k 1243(1”1)*1" cd Load Register from Control Memory| ,_4]
SR, - Ezﬁ(rl):tk' cd Store Register in Control Memory 2 _47
INCR ESTRRRTE N Increment the Register 2-49
DECR ESTRRRIE . Decrement the Register 2-50
LPSW, ks a(r)£k, cd Load Program Status Word 2-51
SPSW "a(r)xk, cd Swap Program Status Word 2.53

* Required entries are underlined throughout

Mnemonic

ASSOCIATIVE
INSTRUCTIONS

LOAD
RESPONSE
STORE
REGISTERS
AND
COMMON
REGISTER

(Command) Argument Instruction Page
XIS,
L IS, a:l:k] Load Response Store Register 2-56
x
xIs,
LN XS5 aik‘ Load Complemented 2-58
x
rs
—1
LOR rs,, atk} Load Logical OR 2-60
x
5
LORN s,y |azk Load Logical OR Complemented 2-62
x
XS,
LAND IS, | axk Load Logical AND 2-64
x
s,
LANDN ISys | Lak Load Logical AND Complemented 2-66
=
LS,
LXOR IS,y | azk Load Logical Exclusive OR 2-68
5
sy
LXORN rs,, {axk Load Logical Exclusive OR Complemented 2-70
X
LC a Load Common Register from an 272
- Associative Memory Word
LCM a.,a Load Common Register Field from 2.74
==z an Associative Memory Word
SET rs Set Response Store Register 2-76
CLR rs Clear Response Store Register 2-717
ROT Rotate Response Store Register 2-78

rs, alikl, az:lzk2

STORE
RESPONSE
STORE
REGISTERS
AND
COMMON
REGISTER

SEARCHES

Mnemonic

(Command) Argument Instruction Page
*k
S rs, {;— } Store Response Store Into Associative Memory 2-80
azk Store Response Store Masked Into
SM -
— I {2 } Associative Memory 2-82
axk
SN rs, {E } Store Complement Into Associative Memory 2.84
axk Store Complement Masked Into
SNM X, {1 } Associative Memory 2-86
azxk Store Logical Inclusive OR Into
SOR lS_L{E } Associative Memory 2-88
2tk Store Logical Inclusive OR, Masked Into
SORM po3 {1 } Associative Memory 2-90
azxk Store Logical Inclusive OR, Complemented Into
SORN rs, [1 } Associative Memory 2-92
axk . Store Logical Inclusive OR, Complented, Masked
SORNM L {_1; } Into Associative Memory 2-94
SAND rs, {%tk} Store Logical AND Into Associative Memory 2-96
axk Store Logical AND Masked Int
SAND = 8 asked Into -
SANDM L {2, } Associative Memory 2-98
axk Store Logical AND Complemented Into
SANDN XS, {3 } Associative Memory 2-100
axk St Logical AND, Complemented, Masked
SANDN s ore ogica » mp. ’ _
M L [E] Into Associative Memory 2-102
sC Store Common Register Into .10
- 21222 Associative Memory 2-104
SCW a..a Store Common Register Into _
— 12=2 Associative Word 2-106
FIND Find the First Bit Set in Y Response Store 2-109
STEP Step to First Y Set and Clear It 2-109
RESVFST Step to First Y Set and Clear All Others 2-110
EQC 222, Equal to Common Register Field 2-111
EQF 223, Equal Fields 2-112
NEC 223, Not Equal to Common Register Field 2-113
NEF 2122, Not Equal Fields 2-114
GTC 27,2, Greater Than Common Register Field 2_-115
GTF 31,_§2 Greater Than Fields 2-116
GEC 2.2, Greater than or Equal to Common Register Field 2-117
GEF 22, Greater than or Equal Fields 2-118
LTC 2.3, Less Than Common Register Field 2-119
LTF 2122, Less Than Fields 2-120
LEC 222, Less Than or Equal Common Register Field 2-121
LEF 21235 Less Than or Equal Fields 2.122
MAXEFE a Maximum Fields 2-123
MINF a Minimum Fields 2-124

Mnemonic

(Command) Argument Instruction Page

MOVES MVF 2123, Move Field 2-126

MVCF 22, Move the One's Complement of a Field| 2_.128

MVNF 212, Move the Negative of a Field 2.130

MVAF 2.3, Move the Absolute Value of a Field 2-132

INCF 21223, Move Field with Increment 2-134

DECF 1235 Move Field with Decrement 2-136

ARITHMETICS ADC 29:25,85 Add Common Register to Field 2-139

ADF 212285,35 Add Field to Field 2-141

SBC 21235,3, Subtract Common Register from Field 2.143

SBEF 2y12,,34 Subtract Field from Field 2-145

MPC 2122535 Multiply Field by Common Register 2-147

MPF 2225,23 Multiply Field by Field 2-149

DVE B128,.8, Divide Field by Field 2-151

gggTROL IN_TL_al:i:k1 25k, Interrupt Control and Test 2-155

TEST ILOCK,al:i:k1 az,:!:k2 Interlock Control and Test 2-157
WAIT Deactivate the AP 2-158 |

PAGER STRTSG, atk Start Segment 2-160

INSTRUCTIONS ENDSG End Segment 2-160

MVSG, a,+k, a,*k, Move a Page Segment 2-161

MVSGI,alikl az:lzk2 Move a Page Segment Immediate 2-162

PAGER atk Pager Control 2-163

T Y R L AR O

APPLE I/O

Statements

Mnemonic
(Command) Arguments Instruction Page
BUFFER Maxsize, mode, byte-count Buffer-header Pseudo-op 3-17
sSvVC 1, slot-number, device-code-address Attach Device to Slot 3.5
svcC 2 Reset Peripherals 3-22
SvVC 5, slot-number Free a Device for 1/O 3.23
svcC 7 Exit From Program 3-24
sSvC 8 Restart Program 3-21
svC 9, slot-number, buffer -address Read Into Buffer 3-15
svcC 10, slot-number, buffer .address Write From Buffer 3-16
sSvVC 13, timer -number, interrupt-number, time -value | Start a Timer 3.256
svcC 14, interrupt-number Int-Signal Interrupt 3-26
SVC 15, interrupt-number, status,done -address I Setup-Interrupt 3-27
svcC 18, operation, start-address Pager Control 3.28
SVC 19, operation, start-address PI/O Unit Control 3.29

APPENDIX B

ERROR CODES

ERROR CODES

Error Code

A

-

2 v W

@)

When APPLE scans source statements to produce the object code, it
checks for improper use of the defined grammar. Up to two error codes
can be printed in the left hand margin for each statement in error.

Error code meanings are listed below.

Meaning

Addressing error. An address within the instruction is incorrect.
Boundary error. An address that should be even (odd) is odd (even).

Doubly-defined symbol referenced. Reference is made to a symbol
that is defined more than once,

Illegal forward reference of a symbol.
Illegal character detected.

Array address out of range,

Lengths of array fields incompatible.

Multiple definition of a label. A label is encountered that is identical

to a previously encountered label,
A page segment boundary syntax error.

Questionable syntax. There are missing arguments or the instruction
scan was not completed.

Register-type error. An invalid use of or reference to a register has

been made.

Symbol table overflow, When the quantity of user-defined symbols
exceeds the allocated space available in the user's symbol table, the
assembler outputs the current source line with the S error code, then

returns to the initial dialogue.

Truncation error. A number being loaded into a register or storage

location is larger than the length the register or location allows.

Undefined symbol. An undefined symbol is encountered during the
evaluation of an expression, Relative to the expression, the undefined

symbol is assigned a value of zero.
Value out of range.

Warning. Nonstandard usage or procedure. Processing continues.

APPENDIX C

TERMS AND SYMBOLS

AP

Associative
Memory

Array
Selector

AS
ASH
ASL

Associative
Array

BL

Block
Length
counter

Branch
and

Link
registers

Bulk
Core

cd

Associative Processor

An associative array memory module consists of two basic components:

array storage and response store. Each array contains 65, 536 bits,
organized as a square 256 words by 256 bits of solid state storage.
Array input and output may be either 32 bits or 256 bits in parallel.
Input data may be stored into the array through a mask contained in the

response store.

The Array Select register establishes those associative array memory
modules that are to be active for an associative operation. The Array
Select register is 32 bits wide. Each bit position controls one array,
i.e., bit 0 corresponds to array 0, bit 1 corresponds to array 1, etc.
A value of one in an Array Select register bit position will enable the

corresponding array number.

Array Select register (32 bits)
Array Select register, High half (bits 0-15)
Array Select register, Low half (bits 16-31)

See Associative Memory

Block length counter (16 bits)

The block length counter is a 16-bit decrementing counter. The
block length counter may be sued to control the length of a data

block transfer.

A group of registers that occupies dedicated memory locations in
the HSDB (addresses 600 to 6071¢). They are used as linkages

to subroutines.

The bulk core memory is a section of AP control memory used to
store instructions or data. In the standard STARAN S configuration
it contains 16, 384 words (32 bits each), Bulk core addresses range

from 8000, to BFFF 4.

Common register (32 bits)

Control Digit

CDR

CH

CL

Common
Register

Control
Digit

Control

Memory
Address

Data
Pointer

DMA
DP
DPO

DP1

EOM
EOT
Execution

Location
Counter

Card Reader
Common register, High half (bits 0-15)

Common register, Low half (bits 16-31)

The Common register is an AP register that contains 32 bits numbered

0 to 31. Bit 0 is the left-most (most-significant) bit. Bit 31 is the right-
most (least-significant) bit. The Common register may contain the
argument for a search operation performed upon the associative memory,
the input data stored into an associative memory, or the input data
received from an associative memory in a load operation. Data from an
associative memory is loaded into the Common register through a mask

generated by the mask generator.

A control digit permits post-incrementing or post-decrementing of the
DP register and/or post-decrementing the BL register. It is implemented
in instructions with a Control Memory address, using the DP register as

a base register.

The Control memory address is a symbolic or absolute address in Bulk
Core, Page Memory, or the High Speed Data buffer. Valid address
ranges are 00034 to 7FF, and 80004 to BFF 4.

The data pointer is a 16-bit register in AP control that may contain the
control memory address for block transfers. The data pointer can be

stepped with each transfer within a data block.

Direct Memory Access
Data Pointer (16 bits)
Data Pointer, byte 0 (bits 0-7)

Data Pointer, byte 1 (bits 8-15)

End of Medium

End of Tape

The Execution Location counter indicates the address of the instruction
when it is executed. This will differ from the Load Location Counter only

when program segments are moved to a Page Memory for execution.

FASCIIL

FBIN

Field
Expression

Field
Lengh
Counter

Field
Pointers

FL1
FL2
FPE
FP1
FP2

FP3

Formatted ASCII Code

Formatted Binary Code

There are two ways of denoting a field expression:
1) Db#i

where b must be a symbol, and i is an optional constant modifier.

b should have been previously defined in a DF instruction. b represents
the most-significant bit position and the number of contiguous bits
occupied by a field in either the Common register or associative
memory. The optional constant modifier, i, modifies only the most-

significant bit position.

2) (b,i)%j

where b may be a constant or a symbol and represents the most
significant bit position of a field. If b was defined as a field via a
previous DF instruction, the most-significant bit position is the value
used. i must be a constant and represents the number of contiguous bits
occupied by the field. j is an optional constant modifying only the most-

significant bit position of the field.

Field length counters are 8-bit AP control registers used to contain the
length of data fields. They may be decremented to allow stepping through
the bits of a data field. When the counter's contents equal zero, an
indication is sent to the AP control for test purposes. There are two

field length counters: FL1 and FL2.

A field pointer is an 8-bit AP control register that generally contains

an array bit column or word address. Field pointers may be incremented

or decremented to facilitate stepping through data fields. There are four

field pointers: FP1l, FP2, FP3, and FPE.

Field Length counter 1 (8 bits)
Field Length counter 2 (8 bits)
Field Pointer E (8 bits)
Field Pointer 1 (8 bits)
Field Pointer 2 (8 bits)

Field Pointer 3 (8 bits)

High-
Speed
Data
Buffer

Interlocks

Interrupt
MASK

Link
Pointer

Load
Location
Counter

LSB

M
Response
Store
register

MASK

The High-Speed Data Buffer is a section of AP Control memory consisting
of fast solid state elements. In the standard configuration of STARAN S
it contains 512 words with addresses from 60016 to T7FF 4. Since the
HSDB can be accessed faster than bulk core, it is a convenient place to

store data and instructions that require quick access.

The EXF logic contains 64 stored bits called interlocks. These bits have
no predetermined meaning., Software may assign a meaning to an inter-
lock and use it for any purpose. Sixteen interlocks (hex addresses 00
through OF) can be controlled and sensed manually be panel switches

and lights to facilitate communication with an operator. The other 48
interlocks (hex addresses 10 through 3F) can only be sensed and controlled

by function codes.

The program status word in the program control logic contains the
interrupt mask for the 15 AP control interrupts. All interrupts with
numbers greater than the mask are accepted. The interrupt mask is

contained in bits 28 through 31 of the program status word.

The link pointer is registers FP1 and FP2 concatenated together. FPI1

contains the address of the selected associative array memory module

and FP2 contains the array word or bit column address. The link pointer |

is commonly used to store the address of the first responder of a search

operation.

The load location keeps track of the addresses associated with instructions

when they are loaded.

Least Significant Bit (bit 31 of 32-bit word); right-most bit; low order bit.

M-Response Store Register; MASK (256 bits)

The M response store register (MASK) is a 256-bit register contained

in the response store element of each associative array memory module.

- Its special use is to select associative memory words participating in an

associative operation.

M-Response Store Register

Masked
Store

MDA

MSB

Page
Memory

Page0
Pagel
Page2

PC

PARALLEL
INPUT/
OUTPUT
(OPTIONAL
FEATURE)

Program
Counter

Data being stored into associative memory may be stored through a
mask which is contained in the M response store register. This is a
masked store. Data will be stored only into words that have the

corresponding M register bit set, Other words are unchanged.

Multi-Dimensional Access memory; associative memory

Most Significant Bit (bit 0 of word); left-most bit; high-order bit.

Three page memories of 512 words each are included in the AP control
memory of the standard STARAN S configuration. They are fast memories
that should be used for program segments that require frequent usage
and/or fast execution. The page memory address ranges are: Page 0 -

00016 to 1FF16; Page 1 - 20016 to 3FF16; Page 2 - 40016 to 5FF16 .

High-speed solid state memory; 512 32-bit words
High-speed solid state memory; 512 32-bit words
High-speed solid state memory; 512 32-bit words

Program Counter (16 bits)

Each associative array in STARAN can have up to 256 inputs and 256 out-
puts into the custom I/O cabinet. The basic width of the parallel input/output
(PI/O) is 256 n where n is equal to the number of associative arrays in the
system (n can have a maximum value of 32). The custom I/O cabinet is
capable of buffering and reformatting the data received from any peripheral
device to match the width necessary to communicate with the STARAN

associative array.

The program counter occupies bits 0-15 of the program status word in
AP control. The program counter contains the address of the current
instruction being executed. It is normally incremented sequentially
throﬁgh control memory. Its normal sequence may be altered by branch

or loop instruction.

Program
Status
Word

PSW

Resolve

Responder

Response
RS
RO
R1
R2
R3
R4
R5
R6

R7

SPS

SVS

UBIN

UASCIIL

The Program Status Word (PSW) consists of the program counter (PC)
(bits 0-15), which contains the address of the current AP control
instruction being executed, and the Interrupt Mask (IMASK) (bits 28-31),

which contains the current interrupt status.

Program Status Word

The resolver logic in AP control finds the associative array memory
module address and word address of the first responder. The array
address is loaded into FP1 and the word address into FP2 (see link pointer).

This permits subsequent operations to only affect the first responder.

A responder is a response store element in an enabled associative array
memory module whose Y register bit is set. Generally, responders
indicate words satisfying some search criteria. The Y register can be
tested for a response or a no-response condition.

See responder

Response Store

Branch and Link Register (memory location 600 16)

Branch and Link Register (memory location 601;¢)

Branch and Link Register (memory location 60116)

Branch and Link Register (memory location 60316)

Branch and Link Register (memory location 60416)

Branch and Link Register (memory location 605 16)

Branch and Link Register (memory location 606)

Branch and Link Register (memory location 607,)

STARAN Program Supervisor

Supervisor call

Unformatted Binary

Unformatted ASCII

X

X
Response
Store
Register

Y

Y
Response
Store
Register

X Response Store Register (256 bits)

The X response store register is a 256-bit register contained in the
response store element of each associative array memory module.

It may be used as temporary storage of data loaded from the array
or stored into the array. It can be combined logically with data from
the input network and/or the Y register. It is useful as temporary

storage in parallel arithmetic operations or searches.

Y Response Store register (256 bits)

The Y response store register is a 256-bit register contained in the
response store element of each associative array memory module.

It may be used as temporary storage of data loaded from the array or
stored into the array. It can be combined logically with data from the
input network. It is useful as temporary storage in parallel arithmetic
operations and searches. It is also used as the responder in a resolve

operation.

APPENDIX D

HEXADECIMAL/DECIMAL TABLE

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

GENERAL The table provides for direct conversion of hexadecimal and decimal
numbers in these ranges:
Hexadecimal Decimal
000 to FFF 0000 to 4095
HEXADECIMAL- In the table, the decimal value appears at the intersection of the row
Eg&I%ARL representing the most significant hexadecimal digits (162 and 161) and
CONVERSION the column representing the least significant hexadecimal digit (160).
Example C \1&* 310510 .
HEX 0 1 2
Cco 3072 3073 3074
C1 3088 3089 3090
c2 3104 3106
C3 3120 3121 3122
For numbers outside the range of the table, add the following values to
the table figures:
Hexadecimal | Decimal Hexadecimal | Decimal
1000 4,096 cooo 49,152
2000 8,192 D000 53,248
3000 12,288 E000 57,344
4000 16,384 Fo00 61,440
5000 20,480 10000 65,536
6000 24,576 20000 131, 072
7000 28,672 30000 196, 608
8000 32,768 40000 262, 144
9000 36, 864 50000 327, 680
A000 40, 960 60000 393, 216
B00O 45, 056 70000 458, 752
Hexadecimal Decimal
c21 3105
+1000 - 4096

1C21 7201

0

0000
0016
0032
0048
0064
0080
0096
0112
0128
0144
0160
0176
0192
0208
0224
0240

0256
0272
0288
0304
0320
0336
0352
0368
0384
0400
0416
0432
0448
0464
0480
0496

0512
0528
0544
0560
0576
0592
0608

0624
0640

0656
0672
0688
0704~
0720
0736
0752

U768
0784
0800
0816
832
0848
0864
0880
0896
0912
0928
0944
0960
0976
0992
1008

1

0001
0017
0033
0049
0065
0081
0097
0113
0129
0145
0le6l
0177
0193
0209
0225
0241

0257
0273
0289
0305
0321
0337
0353
0369
0385
0401
0417
0433
0449
0465
0481
0497

0513
0529
0545
0561
0577
0593
0609
0625
0641
0657
0673
0689
0705
0721
0737
0753

0769
0785
0801
0817
0833
0849
0865
0881
0897
0913
0929
0945
0961
0977
0993
1009

2

0002
0018
0034
0050
0066
0082
0098
0114
0130
0146
0162
0178
0194
0210
0226
0242

0258
0274
0290
0306
0322
0338
0354
0370
0386
0402
0418
0434
0450
0466
0482
0498

0514
0530
0546
0562
0578
0594
0610
0626
0642
0658
0674
0690
0706
0722
0738
0754

0770
0786
0802
0818
0834
0850
0866
0882
0898
0914
0930
0946
0962
0978
0994
1010

3

0003
0019
0035
0051
0067
0083
0099
0115
0131
0147
0163
0179
0195
0211
0227
0243

0259
0275
0291
0307
0323
0339
0355
0371
0387
0403
0419
0435
0451
0467
0483
0499

0515
0531
0547
0563
0579
0595
0611

0627
0643

0659
0675
0691
0707
0723
0739
0755

0771
0787
0803
0819
0835
0851
0867
0883
0899
0915
0931
0947
0963
0979
0995
1011

4

0004
0020
0036
0052
0068
0084
0100
0ll6
0132
0148
0164
0180
0196
0212
0228

0244

0260
0276
0292
0308
0324
0340
2356
0372
0388
0404
0420
0435
0452
0468
0484
0500

0516
0532
0548
0564
0580
0596
0612
0628
0644
0660
0676
0692
0708
0724
0740
0756

0772
0788
G804
0820
0836
0852
0868
0884
0900
0916
0932
0948
0964
0980
0996
1012

5

0005
0021
0037
0053
0069
0085
0101
0117
0133
0149
0165
0181
0197
0213
0229
0245

0261
0277
0293
0309
0325
0341
0357
0373
0389
0405
0421
0437
0453
0469
0485
0501

0517
0533
0549
0565
0581
0597
0613
0679
0645
0661
0677
0693
0709
0725
0741
0757

0773
0789
0805

0821

0837
0853
0869
0885
0901
0917
0933
0949
0965
0981
0997
1013

6

0006
0022
0038
0054
0070
0086
0102
0118
0134
0150
0l66
0182
0198
0214
0230
0246

0262
0278
0294
0310
0326
0342
0358
0374
0390
0406
0422
0438
0454
0470
0486
0502

0518
0534
0550
0566
0582
0598
0614
0630
0646
0662
0678
0694
0710
0726
0742
0758

0774
0790
0806
0822
0838
0854
0870
0886
0902
0918
0934
0950
0966
0982
0998
1014

0007
0023
0039
0055
0071
0087
0103
0119
0135
0151
0167
0183
0199
0215
0231
0247

0263
0279
0295
0311
0327
0343
0359
0375
0391
0407
0423
0439
0455
0471
0487
0503

0519
0535
0551
0567
0583
0599
0615
0631
0647
0663
0679
0695
0711
0727
0743
0759

0775
0791
0807
0823
0839
0855
0871
0887
0903
0919
0935
0951
0967
0983
0999
1015

8

0008
0024
0040
0056
0072
0088
0104
0120
0136
0152
0168
0184
0200
0216
0232
0248

0264
0280
0296
0312
0328
0344
0360
0376
0392
0408
0424
0440
0456
0472
0488
0504

0520
0536
0552
0568
0584
0600
06l6
0632
0648
0664
0680
0696
0712
0728
0744
0760

0776
0792
0808
0824
0840
0856
0872
0888
0904
0920.
0936
0952
0968
0984
1000
1016

9

0009
0025
0041
0057
0073
0089
0105
0121
0137
0153
0169
0185
0201
0217
0233
0249

0265
0281
0297
0313
0329
0345
0361
0377
0393
0409
0425
0441
0457
0473
0489
0505

0521
0537
0553
0569
0585
0601
0617
0633
0649
0665
0681
0697
0713
0729
Q745
0761

0777
0793
0809
0825
0841
0857
0873
0889
0905
0921
0937
0953
0969
0985
1001
1017

A

0010
0026
0042
0058
0074
0090
0106
0122
0138
0154
0170
0186
0202
0218
0234
0250

0266
0282
0298
0314
0330
0346
0362
0378
0394
0410
0426
0442
0458
0474
0490
0506

0522
0538
0554
0570
0586
0602
0618
0634
0650
0666
0682
0698
0714
0730
0746
0762

0778
0794
0810

0826
0842
0858
0874
0890
0906
0922
0938
0954
0970
0986
1002
1018

B

0011
0027
0043
0059
0075
0091
0107
0123
0139
0155
0171
0187
0203
0219
0235
0251

0267
0283
0299
0315
0331
0347
0363
0379
0395
0411
0427
0443
0459
0475
0491
0507

0523
0539
0555
0571
0587
0603
0619
0635
0651
0667
0683
0699
0715
0731
0747
0763

0779
0795
0811
0827
0843
0859
0875
0891
0907
0923
0939
0955
0971
0987
1003
1019

C

0012
0028
0044
0060
0076
0092
0108
0124
0140
0156
0172
0138
0204
0220
0236
0252

0268
0284
0300
0316
0332
0348
0364

0380
0396

0412
0428
0444
0460
0476
0492
0508

0524
0540
0556
0572
0588
0604
0620
0636
0652
0668
0684
0700
0716
0732
0748
0764

0780
0796
0812
0828
0844
0860
0876
0892
0908
0924
0940
0956
0972
0988
1004
1020

D

0013
0029
0045
0us6l’
0077
0093
0109
0125
0l4l
0157
0173
0189
0205
0221
0237
0253

0269
0283
0301
0317
0333
0349
0365

0381
0397

0413
0429
0445
0461
0477
0493
0509

0525
0541
0557
0573
0589
0605
0621
0637
0653
0669
0685
0701
0717
0733
0749
0765

0781
0797
0813
0829
0845
0861
0877
0893
0909
0925
0941
0957
0973
0989
1005
1021

E

0014
0030
0046
0062
0078
0094
0110
0126
0142
0158
0174
0190
0206
0222
0238
0254

0270
0286
0302
0318
0334
0350
0366

0382
0398

0414
0430
0446
0462
0478
0494
0510

0526
0542
0558
0574
0590
0606
0622
0638
0654
0670
0686
0702
0718
0734
0750
0766

0782
0798
0814
0830
0846
0862
0878
0894
0910
0926
0942
0958
0974
0990
1006
1022

F

0015
0031
0u47
0063
0u79
0095
0111
0127
0143
0159
0175
0191
0207
0223
0239
0255

€271
0287
0303
0319
G335
0351
0367
G383
0399
0415
0431
0447
0463
0479
0495
U511

0527
0543
0559
0575
0591
0607
0623
0639
0655
0671
0687
0703
0719
0735
G751
0767

0783
0799
0815
0831
0847
0863
0879
0895
0911
0927
0943
0959
0975
0991
1007
1023

1024
1040
1056
1072
1088
1104
1120
1136
1152
1168
1184
1200
1216
1232
1248
1264

1280
1296
1312
1328
1344
1360
1376
1392
1408
1424
1440
1456
1472
1488
1504
1520

1536
1552
1568
1584
1600
1616
1632
1648
1664
168U
1696
1712
1728
1744
1760
1776

1792
1808
1824
1840
1856
1872
1888
1904
1920
1936
1952
1968
1984
2000
2016
2032

1025
1041
1057
1073
1089
1105
1121
1137
1153
1169
1185
1201
1217
1233
1249
1265

1281
1297
1313
1329
1345
1361
1377
1393
1409
1425
1441
1457
1473
1489
1505
1521

1537
1553
1569
1585
1601
1617
1633
1649
1665
1681
1697
1713
1729
1745
1761
1777

1793
1809
1825
1841
1857
1873
1889
1905
1921
1937
1953
1969
1985
2001
2017
2033

1026
1042
1058
1074
1090
1106
1122
1138
1154
1170
1186
1202
1218
1234
1250
1266

1282
1298
1314
1330
1346
1362
1378
1394
1410
1426
1442
1458
1474
1490
1506
1522

1538
1554
1570
1586
1602
1618
1634
1650
1666
1682
1698
1714
1730
1746
1762
1778.

1794
1810
1826
1842
1858
1874
1890
1906
1922
1938
1954
1970
1986
2002
2018
2034

1027
1043
1059
1075
1091
1107
1123
1139
1155
1171
1187
1203
1219
1235
1251
1267

1283
1299
1315
1331
1347
1363
1379
1395
1411
1427
1443
1459
1475
1491
1507
1523

1539
1555
1571
1587
1603
1619
1635
1651
1667
1683
1699
1715
1731
1747
1763
1779

1795
1811
1827
1843
1859
1875
1891
1907
1923
1939
1955
1971
1987
2003
2019
2035

1028
1044
1060
1076
1092
1108
1124
1140
1156
1172
1188
1204
1220
1236
1252
1268

1284
1300
1316
1332
1348
1364
1380
1396
1412
1428
L4444
1460
1476
1492
1508
1524

1540
1556
1572
1588
1604
1620
1636
1652
1668
1684
1700
1716
1732
1748
1764
1780

1796
1812
1828
1844
1860
1876
1892
1908
1924
1940
1956
1972
1988
2004
2020
2036

1029
1045
1061
1077
1093
1109
1125
1141
1157
1173
1189
1205
1221
1237
1253
1269

1285
1301
1317
1333
1349
1365
1381
1397
1413
1429
1445
1461
1477
1493
1509
1525

1541
1557
1573
1589
1605
1621
1637
1653
1669
1685
1701
1717
1733
1749
1765
1781

1797
1813
1829
1845
1861
1877
1893
1909
1925
1941
1957
1973
1989
2005
2021
2037

1030
1046
1062
1078
1094
1110
1126
1142
1158
1174
1190
1206
1222
1238
1254
1270

1286
1302
1318
1334
1350
1366
1382
1398
1414
1430
1446
1462
1478
1494
1510
1526

1542
1558
1574
1590
1606
1622
1638
1654
1670
1686
1702
1718
1734
1750
1766
1782

1798
1814
1830
1846
1862
1878
1894
1910
1926
1942
1958
1974
1990
2006
2022
2038

1031
1047
1063
1079
1095
1111
1127
1143
1159
1175
1191
1207
1223
1239
1255
1271

1287
1303
1319
1335
1351
1367
1383
1399
1415
1431
1447
1463
1479
1495
1511
1527

1543
1559
1575
1591
1607
1623
1639
1655
1671
1687
1703
1719
1735
1751
1767
1783

~

1799
1815
1831
1847
1863
1879
1895
1911
1927
1943
1959
1975
1991
2007
2023
2039

1032
1048
1064
1080
1096
1112
1128
1144
1160
1176
1192
1208
1224
1240
1256
1272

1288
1304
1320

1336

1352
1368
1384
1400
1416
1432
1448
1464
1480
1496
1512
1528

1544
1560
1576
1592
1608
1624
1640
1656
1672
1688
1704
1720
1736
1752
1768
1784

1800
1816
1832
1848
1864
1880
1896
1912
1928
1944

"1960

1976
1992
2008
2024
2040

1033
1049
1065
1081
1097
1113
1129
1145
1161
1177
1193
1209
1225
1241
1257
1273

1289
1305
1321
1337
1353
1369
1385
1401
1417
1433
1449
1465
1481
1497
1513
1529

1545
1561
1577
1593
1609
1625
1641
1657
1673
1689
1705
1721
1737
1753
1769
1785

1801
1817
1833
1849
1865
1881
1897
1913
1929
1945
1961
1977
1993
2009
2025
2041

1034
1050
1066
1082
1098
1114
1130
1146
1162
1178
1194
1210
1226
1242
1258
1274

1290
1306
1322
1338
1354
1370
1386
1402
14138
1434
1450
1466
1482
1498
1514
1530

1546
1562
1578
1594
1610
1626
1642
1658
1674
1690
1706
1722
1738
1754
1770

1786

1802
1818
1834
1850
1866
1882
1898
1914
1930
1946
1962
1978
1994
2010
2026
2042

1035
1051
1067
1083
1099
1115
1131
1147
1163
1179
1195
1211
1227
1243
1259
1275

1291
1307
1323
1339
1355
1371
1387
1403
1419
1435
1451
1467
1483
1499
1515
1531

1547
1563
1579
1595
1611
1627
1643
1659
1675
1691
1707
1723
1739
1755
1771
1787

1803
1819
1835
1851
1867
1883
1899
1915
1931
1947
1963
1979
1995
2011
2027
2043

1036
1052
1068
1084
1100
1116
1132
1148
1164
1180
1196
1212
1228
1244
1260
1276

1292
1308
1324
1340
1356
1372
1388
1404
1420
1436
1452
1468
1484
1500
1516
1532

1548
1564
1580
1596
1612
1628
1644
1660
1676
1692
1708
1724
1740
1756
1772
1788

1804
1820
1836
1852
1868
1884
1900
1916
1932
1948
1964
1980
1996
2012
2028
2044

1037
1053
1069
1085
1101
1117
1133
1149
1165
1181
1197
1213
1229
1245
1261
1277

1293
1309
1325
1341
1357
1373
1389
1405
1421
1437
1453
1469
1485
1501
1517
1533

1549
1565
1581
1597
1613
1629
1645
1661
1677
1693
1769
1725
1741

1757

1773
1789

1805
1821
1837
1853
1869
1885
1901
1917
1933
1949
1965
1981
1997
2013
2029
2045

1038
1054
1070
1085
1102
1118
1134
1150
1166
1182
1198
1214
1230
1246
1262
1278

1294
1310
1326
1342
1358
1374
1390
1406
1422
1438
1454
1470
1486
1502
1518
1534

1550
1566
1582
1598
l6l4
1630
1646
1662
1678
1694
1710
1726
1742
1758
1774
1790

1806
1822
1838
1854
1870
1886
1902
1918
1934
1950
1966
1982
1998
2014
2030
2046

1039
1055
1071
1087
1103
1119
1135
1151
1167
1183
1199
1215
1231
1247
1263
1279

1295
1311
1327
1343
1359
1375
1391
1407
1423
1439
1455
1471
1487
1503
1519
1535

1551
1567
1583
1599
1615
1631
1647
1663
1679
1695
1711
1727
1743
1759
1775
1791

18067
1823
1839
1855
1871
1887
1903
1919
1935
1951
1967
1983
1999
2015
2031
2047

CXREREB

Ab
A7

&

A9

ACO
ADO
AEQ
AFO

0

2048
2064
2080
2096
2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288

2304
2320
2336
2352
2368
2384
2400
2416
2432
2448
2464
2480
2496
2512
2528
2544

2560
2576
2592
2608
2624
2640
2656
2672
2688
2704
2720
2736
2752
2768
2784
2800

2816
2832
2848
2864
2880
2896
2912
2928
2944
2960
2976
2992
3008
3024
3040
3056

1

2049
2065
2081
2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289

2305
2321
2337
2353
2369
2385
2401
2417
2433
2449
2465
2481
2497
2513
2529
2545

2561
2577
2593
2609
2625-
2641
2657
2673
2689
2705
2721
2737
2753
2769
2785
2801

2817
2833
2849
2865
2881
2897
2913
2929
2945
2961
2977
2993
3009
3025
3041
3057

2

2050
2066
2082
2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290

2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2466
2482
2498
2514
2530
2546

2562
2578
2594
2610
2626
2642
2658
2674
2690
2706
2722
2738
2754
2770
2786
2802

2818
2834
2850
2866
2882
2898
2914
2930
2946
2962
2978
2994
3010
3026
3042
3058

3

2051
2067
2083
2099
2115
2131
2147
21613
2179
2195
2211
2227
2243
2259
2275
2291

2307
2323
2339

2355,

2371
2387
2403
2419
2435
2451
2467
2483
2499
2515
2531
2547

2563
2579
2595
2611
2627
2643
2659
2675
2691
2707
2723
2739
2755
2771
2787
2803

2819
2835
2851
2867
2883
2899
2915
2931
2947
2963
2979
2995
3011
3027
3043
3059

4

2052
2068
2084
2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260
2276
2292

2308
2324
2340
2356
2372
2388
2404
2420
2436
2452
2468
2484
2500
2516
2532
2548

2564
2580
2596
2612
2628
2644
2660
2676
2692
2708
2724
2740
2756
2772
2788
2804

2820
2836
2852
2868
2884
2900
2916
2932
2948
2964
2980
2996
3012
3028
3044
3060

5

2053
2069
2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293

2309
2325
2341
2357
2373
2389
2405
2421
2437
2453
2469
2485
2501
2517
2533
2549

2565
2581
2597
2613
2629
2645
2661
2677
2693
2709
2725
2741
2757
2773
2789
2805

2821
2837
2853
2869
2885
2901
2917
2933
2949
2965
2981
2997
3013
3029
3045
3061

6

2054
2070
2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294

2310
2326
2342
2358
2374
2390
2406
2422
2438
2454
2470
2486
2502
2518
2534
2550

2566
2582
2598
2614
2630
2646
2662
2678
2694
2710
2726
2742
2758
2774
2790
2806

2822

2838

2854
2870
2886
2902
2918
2934
2950
2966
2982
2998
3014
3030
3046
3062

2055
2071
2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295

2311
2327
2343
2359
2375
2391
2407
2423
2439
2455
2471
2487
2503
2519
2535
2551

2567
2583
2599
2615
2631
2647
2663
2679
2695
2711
2727
2743
2759
2775
2791
2807

2823
2839
2855
2871
2887
2903
2919
2935
2951
2967
2983
2999
3015
3031
3047
3063

2056
2072
2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296

2312
2328
2344
2360
2376
2392
2408
2424
2440
2456
2472
2488
2504
2520
2536
2552

2568
2584
2600
2616
2632
2648
2664
2680
2696
2712
2728
2744
2760
2776
2792
2808

2824

2840.

2856
2872
2888
2904
2920
2936
2952
2968
2984
3000
3016
3032
3048
3064

2057
2073
2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297

2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473
2489
2505
2521
2537
2553

2569
2585
2601
2617
2633
2649
2665
2681
2697
2713
2729
2745
2761
2777
2793
2809

2825
2841
2857
2873
2889
2905
2921
2937
2953
2969
2985
3001
3017
3033
3049
3065

A

2058
2074
2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298

2314
2330
2346
2362
2378
2394
2410
2426
2442
2458
2474
2490
2506
2522
2538
2554

2570
2586
2602
2618
2634
2650
2666
2682
2698
2714
2730
2746
2762
2778
2794
2810

2826
2842
2858
2874
2890
2906
2922
2938
2954
2970
2986
3002
3018
3034
3050
3066

B

2059
2075
2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299

2315
2331
2347
2363
2379
2395
2411
2427
2443
2459
2475
2491
2507
2523
2539
2555

2571
2587
2603
2619

© 2635

2651
2667
2683
2699
2715
2731
2747
2763
2779
2795
2811

2827
2843
2859
2875
2891
2907
2923
2939
2955
2971
2987
3003
3019
3035
3051
3067

C

2060
2076
2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300

2316
2332
2348
2364
2380
2396
2412
2428
2444
2460
2476
2492
2508
2524
2540
2556

2572
2588
2604
2620
2636
2652
2668
2684
2700
2716
2732
2748
2764
2780
2796
2812

2828
2844
2860

2876

2892
2908
2924
2940
2956
2972
2988
3004
3020
3036
3052
3068

D

2061
2077
2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301

2317
2333
2349
2365
2381
2397
2413
2429
2445
2461
2477
2493
2509
2525
2541
2557

2573
2589
2605
2621
2637
2653
2669
2685
2701
2717
2733
2749
2765
2781
2797
2813

2829
2845
2861
2877
2893
2909
2925
2941
2957
2973
2989
3005
3021
3037
3053
3069

E

2062
2078
2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302

2318
2334
2350
2366
2382
2398
2414
2430
2446
2462
2478
2494
2510
2526
2542
2558

2574
2590
2606
2622
2638
2654

2670 .

2686
2702
2718
2734
2750
2766
2782
2798
2814

2830
2846
2862
2878
2894
2910
2926
2942
2958
2974
2990
3006
3022
3038
3054
3070

F

2063
2079
2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303

2319
2335
2351
2367
2383
2399
2415
2431
2647
2463
2479
2495
2511
2527
2543
2559

2575
2591
2607
2623
2639
2655
2671
2687
2703
2719
2735
2751
2767
2783
2799
2815

2831
2847
2863
2879
2895
2911
2927
2943
2959
2975
2991
3007
3023
3039
3055
3071

0

3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312

3328
3344
3360
3376
3392
3408
3424
3440
3456
3472
3488
3504
3520
3536
3552
3568

3584
3600
3616
3632
3648
3664
3680
3696
3712
3728
3744
3760
3776
3792
3808
3824

3840
3856
3872
3888
3904
3920
3936
3952
3968
3984
4000
4016
4032
4048
4064
4080

2

3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314

3330
3346
3362
3378
3394
3410
3426
3442
3458
3474
3490
3506
3522
3538
3554
3570

3586
3602
3618
3634
3650
3666
3682
3698
3714
3730
3746
3762
3778
3794
3810
3826

3842
3858
3874
3890
3906
3922
3938
3954
3970
3986
4002
4018
4034
4050
4066
4082

3

3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315

3331
3347
3363
3379
3395
3411
3427
3443
3459
3475
3491
3507
3523
3539
3555
3571

3587
3603
3619
3635
3651
3667
3683
3699
3715
3731
3747
3763
3779
3795
3811
3827

3843
3859
3875
3891
3907
3923
3939
3955
3971
3987
4003
4019
4035
4051
4067
4083

4

3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316

3332
3348
3364
3380
3396
3412
3428
3444
3460
3476
3492
3508
3524
3540
3556
3572

3588
3604
3620
3636
3652
3668
3684
3700
3716
3732
3748
3764
3780
3796
3812
3828

3844
3860
3876
3892
3908
3924
3940
3956
3972
3988
4004
4020
4036
4052
4068
4084

5

3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317

3333
3349
3365
3381
3397
3413
3429
3445
3461
3477
3493
3509
3525
3541
3557
3573

3589
3605
3621
3637
3653
3669
3685
3701
3717
3733
3749
3765
3781
3797
3813
3829

3845
3861
3877
3893
3909
3925

13941

3957
3973
3989
4005
4021
4037
4053
4069
4085

6

3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318

3334
3350
3366
3382
3398
3414
3430
3446
3462
3478
3494
3510
3526
3542
3558
3574

3590
3606
3622
3638

3654

3670
3686
3702
3718
3734
3750
3766
3782
3798
3814
3830

3846
3862
3878
3894
3910
3926
3942
3958
3974
3990
4006
4022
4038
4054
4070
4086

7

3079
3095
3111
3127
3143
3159
3175
3191
3207
3223
3239
3255
3271
3287
3303
3319

3335
3351
3367
3383
3399
3415
3431
3447
3463
3479
3495
3511
3527
3543
3559
3575

3591
3607
3623
3639
3655
3671
3687
3703
3719
3735
3751
3767
3783
3799
3815
3831

3847
3863
3879
3895
3911
3927
3943
3959
3975
3991
4007
4023
4039
4055
4071
4087

8

3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320

3336
3352
3368
3384
3400
3416
3432
3448
3464
3480
3496
3512
3528
3544
3560
3576

3592
3608
3624
3640
3656
3672
3688
3704
3720
3736
3752
3768
3784
3800
3816
3832

3848
3864
3880
3896
3912
3928
3944
3960
3976
3992
4008
4024
4040
4056
4072
4088

9
3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321

3337
3353
3369
3385
3401
3417
3433
3449
3465
3481
3497
3513
3529
3545
3561

3577

3593
3609
3625
3641
3657
3673
3689
3705
3721
3737
3753
3769
3785
3801
3817
3833

3849
3865
3881
3897
3913
3929
3945
3961
3977
3993
4009
4025
4041
4057
4073
4089

A

3082
2098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322

3338
3354
3370
3386
3402
3418
3434
3450
3466
3482
3498
3514
3530
3546
3562

3578

3594
3610
3626
3642
3658
3674
3690

- 3706

3722
3738
3754
3770
3786
3802
3818
3834

3850
3866
3882
3898
3914
3930
3946
3962
3978
3994
4010
4026
4042
4058
4074
4090

B

3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323

3339
3355
3371
3387
3403
3419
3435
3451
3467
3483
3499
3515
3531
3547
3563

3579

3595
3611
3627
3643
3659
3675
3691
3707
3723
3739
3755
3771
3787
3803
3819
3835

3851
3867
3883
3899
3915
3931
3947
3963
3979
3995
4011
4027
4043
4059
4075
4091

C

3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324

3340
3356
3372
3388
3404
3420
3436
3452
3468
3484
3500
3516
3532
3548
3564

3580

3596
3612
3628
3644
3660
3676
3692
3708
3724
3740
3756
3772
3788
3804
3820
3836

3852
3868
3884
3900
3916
3932
3948
3964
3980
3996
4012
4028
4044
4060
4076
4092

D

3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325

3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517
3533
3549
3565

3581

3597
3613
3629
3645
3661
3677
3693
3709
3725
3741
3757
3773
3789
3805
3821
3837

3853
3869
3885
3901
3917

3933

3949
3965
3981
3997
4013
4029
4045
4061
4077
4093

E

3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326

3342
3358
3374
3390
3406
3422
3438
3454
3470
3486

3502

3518
3534
3550
3566

3582

3598
3614
3630
3646
3662
3678
3694
3710
3726
3742

" 3758

3774
3790
3806
3822
3838

3854
3870
3886
3902
3918
3934
3950
3966
3982
3998
4014
4030
4046
4062
4078
4094

F

3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327

3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519
3535
3551
3567

3583

3599
3615
3631
3647
3663
3679
3695
3711
3727
3743
3759
3775
3791
3807
3823
3839

3855
3871
3887
3903
3919
3935
3951
3967
3983
3999
4015
4031
4047
4063
4079
4095

APPENDIX E

OCTAL/DECIMAL TABLE

0000
to
0511
(Decimal)

0000

to
0777
(Octal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

0512

to
1023
(Decimal)

1000

to
1777
(Octal)

0 1 2 3 s 6 7 0 1 2 3 q s 6 1
0000 |0000 0001 0002 0003 0004 0005 0006 0007 || 0400|0256 0257 0258 0259 0260 0261 0262 0263
0010 0008 0009 0010 0011 0012 0013 0014 0015} 0410|0264 0265 0266 0267 0268 0269 0270 0271

0020 |0016 0017 0018 0019 0020 0021 0022 0023 f| 04200272 0273 0274 0275 0276 0277 0278 0279
0030 [0024 0025 0026 0027 0028 0029 0030 0031 || 0430|0280 028t 0282 0283 0284 0285 0286 0287
0040 {0032 0033 0034 0035 0036 0037 0038 0039 || 04400288 0289 0290 0291 0232 0293 0294 0295
0050 | 0040 0041 0042 0043 0044 0045 0046 0047 || 0450|0296 0297 0298 0299 0300 030 0302 0303
0060 [0048 0049 0050 0051 0052 0053 0054 0055 || 0460|0304 0305 0306 0307 0308 0309 0310 O}

0070|0056 0057 0058 0059 0060 0081 0062 0063 }| 0470|0312 0313 0314 0315 0316 0317 0318 0N9
0100 | 0064 0065 0066 0067 0068 0069 0070 0071 }| 0500 |0320 0321 0322 0323 0324 0325 0326 0227
01100072 0073 0074 0075 0076 0077 0078 0079 || 0510|0328 0329 0330 0331 0332 0333 0334 0333
0120|0080 0081 0082 0083 0084 0085 0086 0087 }} 0520 {0336 0337 0338 0339 0340 0341 0342 0343
0130|0088 0089 0090 0091 0092 0093 0094 0095 || 0530 [0344 0345 0346 0347 0348 0349 0350 0351

01400096 0097 0098 0099 0100 0101 0102 0103 |} 0540 {0352 Q353 0354 0355 0356 0357 0358 0359
0150|0104 0105 0106 0107 0108 0109 0110 0111|0550 |0360 0361 0362 0363 0364 0365 0366 0367
01600112 0113 0114 0115 0116 0117 0118 0119]| 0560 [0368 0369 0370 0371 0372 0373 0374 037
017070120 0121 0122 0123 0124 0125 0126 0127]|0570|0376 0377 0378 0379 0380 0381 0382 0383
02000128 0129 0130 0131 0132 0133 0134 0135]}0600}0384 0385 0386 0387 0388 0389 0390 0391

02100136 0137 0138 0139 0140 0141 0142 0143]]0610[0392 0393 0394 0395 0396 0397 398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 || 0620 {0400 0401 0402 0403 0404 0405 0406 0407
02300152 0153 0154 0155 0156 0157 0158 0159 || 0630 [0408 0409 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0167 || 0640 {0416 0417 0418 0419 0420 0421 0422 0423
0250168 0169 0170 0171 0172 0173 0174 0175|| 0650|0424 0425 0426 0427 0428 0429 0430 0431

0260(0176 0177 0178 0179 0180 0181 0182 0183 || 0660|0432 0433 0434 0435 0436 0437 0438 0439
0270|0184 0185 0186 0187 0188 0189 0190 0191 || 06700440 0441 0442 0443 0444 0445 0446 0447
0300/0192 0193 0194 0195 0196 0197 0198 0199|0700]0448 0449 0450 0451 0452 0453 0454 0455
03100200 0201 0202 0203 0204 0205 0206 0207]|0710[0456 0457 0458 0459 0460 0461 0462 0463
03200208 0209 0210 0211 0212 0213 0214 0215]|0720| 0464 0465 0466 0467 0468 0469 0470 0471

0330|0216 0217 0218 0219 0220 0221 0222 0223]]|0730|0472 0473 0474 0475 0476 0477 0478 0479
03400224 0225 0226 0227 0228 0229 0230 0231]]0740|0480 0481 0482 0483 0484 0485 0486 0487
035010232 0233 0234 0235 0236 0237 0238 0239]|0750|0488 0489 0490 0491 0492 0493 0494 0495
03600240 0241 0242 0243 0244 0245 0246 0247]|0760|0496 0497 0498 0499 0560 0501 0502 9503
0370|0248 0249 0250 0251 0252 0253 0254 0255]]0770] 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 S 6 7 0 1 2 3] 5 6 7

1000|0512 0513 0514 0515 0516 0517 0518 0519] | 1400|0768 0769 077Q 0771 0772 0773 0774 0779
1010} 0520 0521 0522 0523 0524 0525 0526 0527}] 4100776 0777 0778 0779 0780 0781 0782 0783
1020(0528 0529 0530 0531 0532 0533 0534 0535{] 1420|0784 0785 0786 0787 0788 0789 0790 0791
1030|0536 0537 0538 0539 0540 0541 0542 034311 430|0792 C793 0794 0795 0796 0797 0798 0799
1040)| 0544 0545 0546 0547 0548 0549 0550 0551]|1442{0800 0801 0802 0803 0804 0805 0806 0807
105010552 0553 0554 0555 0556 0557 0558 0559]]1450[0808 080y 0810 0811 0812 0813 0814 0815
1060] 0560 USE1 0562 0563 0564 N565 0566 0567)| 1460 0816 0817 0818 0819 0820 0821 0822 0823f
1070/ 0568 0569 0570 0571 0572 0573 0574 0375]| 1470|0824 0825 0826 0827 0828 0829 0830 083!
1100{ 0576 0577 0578 0579 0580 0381 0582 0583 [500(0832 0833 0834 0835 0836 0837 0838 0839
1110|0584 0585 0586 0587 0588 0889 0590 0591]|510/0840 0841 0842 0843 0844 0B4S 0846 0847
1120{0592 0593 0594 0595 0596 0597 0598 0599]| 1520|0848 0849 0850 0851 0852 0853 0854 0855
113040600 0601 0602 0603 0604 0605 0606 0607]{1530{0856 0857 0858 0859 0860 0861 0852 088J
1140|0608 0609 0610 0611 0612 0613 0814 0615]] 1540|0864 0865 0866 0867 0868 0869 0870 0871
115010616 0617 0618 0619 0620 0621 0622 0623]|)1350| 0872 0873 0874 0875 0876 0877 0878 0879
1160|0624 0625 0626 0627 0628 0629 0630 0631][1560|0880 0881 0882 0883 0884 0885 0886 0887
117010632 0633 0634 0635 0636 0637 0638 0639||1570{0888 0889 08950 0891 0892 0893 0894 0895
1200]| 0640 0641 0642 0643 0644 0645 0646 0647|1600 0896 5897 0898 0899 0900 0901 0902 0903

1210] 0648 0649 0650 0651 0652 0653 0654 C655] 1610|0904 0905 0906 0907 0908 0909 0910 0911

1220} 0656 0657 0658 0659 0660 0661 0662 0663)|1620|0312 0913 09i4 0915 0916 0917 0918 U919

1230|0664 0665 0666 0667 0668 0669 0670 067! 1630|0920 0921 0922 0923 0924 0925 0926 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679|1640 (0928 0929 0930 0931 0932 0933 0934 0933

1250} 0680 068) 05682 0683 0684 0685 0686 0687165010936 0937 0938 0939 0940 0941 0942 0943

1260|0688 0689 0690 0691 0692 0693 0694 0635] 11660 |0944 0945 0946 0947 0548 0949 0950 0951

127010696 0697 0698 0699 0700 0701 0702 0703f 0116700952 0953 0954 0955 0956 0957 0958 G959

1300[0704 0705 0706 0707 0708 0709 0710 071117000960 0961 0962 0963 0964 0965 0966 0967

13100712 0713 0714 0715 0716 0717 0718 OTI9]|1710[n968 0969 0970 0971 0972 0973 0974 0975

1320§0720 0721 0722 0723 0724 0729 0726 0727f{1720/0976 0977 0978 0979 0980 098] 0982 0983
1336)0728 0729 0730 0731 0732 0733 0734 07351 |1730|098¢ 0985 0986 0987 0988 0989 0990 0991

134010736 0737 0738 0739 0740 0741 0742 0743] 174010992 0993 0994 0995 0996 0997 0998 0999
1350|0744 0745 0746 0747 0748 0749 0750 0751} |1750]|100c 1001 1002 1003 1004 1005 1008 1007
1360|0752 0753 0754 0755 0756 0757 0758 0759) | 1760|1008 1009 1010 1011 1012 1013 icte 10:%
1370} 0760 3761 0762 0763 0764 0765 0768 0767| [17701016 1017 1018 1019 1020 1021 1022 1723

2000 1024
to to

2777 1535

(Octal) | (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

2000
2010
2020
2030
2040
2050
2060
2070

2100
2110
2120
2130
2140
2150
2160
a1

2200
210
2220
2219
2240
2250
2240
2270

2300
o
2320
2330
2340
2350
2360
2370

1024
1032
1040
1048
1056
1064
1072

1080

1008
1296
1104
112
1120
1128
1136
1144

1152
1160
1168
176
1184
1192
1200
1208

1216
1224
1232
1240
1248
1256
1264
1272

1025
1033
1041
1049
1057
1065
1073
1081

10R9

1105
1113
na
1129
nn
1145

1153
116)
1169
1177
1185
1193
1201
1209

1217
1225
1223
1241
1249
1257
1265
1273

1026
1034
1042
1050
1058
1066
1074
1082

1090
1098
1106
1114
122
1130
1138
1146

1154
1162
1170
1178
1186
1194
1202
1210

1218
1226
1234
1242
1250
1258
1266
1274

1027
1035
1043
1051
1059
1067
1075
1083

1091
1099
1107
1115
1:23
113
1139
1147

1155
1163
Hnn
1179
1187
1195
1203
121

1219
1227
1235
1243
1251
1259
1267
1275

1028
1036
1044
1052
1080
1068
1076
1084

1092
1100
1108
1116
1124
1132
1140
1148

1156
1164
1172
1180
1188
1196
1204
1212

1220
1228
1236
1244
1252
1260
1268
1276

1029
1o
1045
1053
1061
1069
1077
1085

1093
1101
1109
17
1125
1133
1141
1149

1157
1165
1173
1181
1189
1197
1205
1213

1221
1229
1237
1245
1253
1261
1269
1277

1030
1030
1046
1054
1062
1070
1078
1086

1094
1102
1110
1118
1126
1134
1142
1150

1158

1166
1174
1182
1190
1198
1206
1214

1222
1230
1230
1246
1254
1262
1270
1278

103t
1039
1047
1055
1061
107
1079
1087

1095
1103
it
19
127
1135
1143
1151

1159
1167
1
1103
1191
1198
1207
1215

1223
1231
1239
1247
125%
1263
1271

| 2400
2010
2420
2430
2440
2450
2460
2470

2500
2510
2520
2530
2540
2550
2560
2570

2600
2610
2620
2630
2640
2650
2660
2670

2100
2mo
2720
2730
2740
2750
2760

1279

2770

1200
1208
1296
1304
1312
1320
1328
1336

1344
1352
1360
1368
1376
1384
1392
1400

1408
1416
1424
1432
1440
1448
1456
1464

1472
1480
1408
1496
1504
1512
1520
1528

1201
1269
1297
1305
1313
1321
1329
1337

1345
1353
1361
1369
13717
1385
1393
1401

1409
1417
1425
1433
1441
1449
1457
1465

1473
1481
1489
1497
1505
1513
1521
1529

1282
1290
1298
1306
1314
1322
1330
1338

1346
1354
1352
1370
1378
1386
1394
1402

1410
1418
1426
1434
1442
1450
1458
1466

1474
1482
1490
14980
1506
1514
1522
1530

1281
1291
1299
1307
1315
1323
133
1339

1347
1355
1363
1371
1379
1387
1395
1403

1411
1419
1427
1435
1443
1451
1459
1467

1475
1483
1491
1499
1507
1515
1523
1531

1284
1292
1300
1308
1316
1324
1332
1340

1348
1356
1364
1372
1380
1388
1396
1404

1412
1420
1428
1436
1444
1452
1460
1468

1476
1484
1492
1500
1508
1516
1524
1532

1285
1293
1301
1309
1317
1325
1333
1341

1349
1357
1365
1373
1381
1389
1397
1405

1413
1421
1429
1427
1445
1453
1461
1469

1477
1485
1493
1501
1509
1517
1525
1533

1286
1294
1302
1310
1318
1326
134
1342

1350
1358
1366
1374
1382
1290
1398
140€

1414
1422
1430
1438
1446
1454
1462
1470

1478
1486
1494
1502
1510
1518
1526
1534

1287
1299
1303
1311
1319
1327
1335
1343

1351
1353
1367
1375
1382
1391
1399
1407

1415
1423
1431
1439
1447
1453
1463
1471

1479
1487
1498
1503
1511
1519
1527
1533

3000 1536
to to

3777 2047

(Octal) | (Decimal)

2

3000
mo
20
Joln
3040
3050
h [iLT]
3010

300
o
20
3o
3140
3150
J160
170

3200
J210
3220
3230
3240
3250
1260
3270

3300
30
31320
31330
3340
3350
133%0
3370

1536
1544
1552
1560
1568
1578
1584
1592

1600
1608
1616
1624
1632
1640
1648
1656

1664
1672
1680
1648
1696
1704
12
1720

1728
1736
1744
1752
1760
1768
1776
1784

1517
1545
1553
1561
1569
1577
1585
1593

1601
1609
1617
1625
1633
1641
1649
1657

16K5
1673
1681
16R9
1697
1705
1713
1m0

1729
17227
1745
1753
1761
1769
17177
1785

1538
1546
1554
1562
1570
1578
1586
1594

1602

1634
1642
1650
1658

1666
1674
1682
1690
1698
1706
1714
1722

1730
1738
1746
1754
1762
17170
1778
1786

1539
1547
1595
1563
1571
1579
1587
1595

1603
1611
1619
1627
1635
1643
1651
1659

1667
1675
1683
1691
1699
1707
1715
1723

1731
1739
1747
1795
1763
1771
17179
1787

1540
1548
1556
1564
1572
1580
1588
1596

1604
1612
1620
1628
1636
1644
1652
1660

1668
1676
1684
1692
1700
1708
1716
1724

17132
1740
1748
1756
1764
1772
1780
1788

1541
1549
1557
1565
1573
1581
1589
1597

1605
161)
1621
1629
1637
1645
1651
1661

1669
1677
1685
1693
17014
1709
1717
1725

1733
1741
1749
17157
1765
17713
1781
1789

1542
1550
1558
1566
1574
1582
1590
1598

1606
1614
1622
1630
1638
1646
16,4
1662

1670
1678
1686
1694
1702
1710
1718
1726

1734
1742
1750
1758
1766
1774
1782
1799

1543113400

1551
1559
1567
1575
1583
1591
1599

1607
1615
1623
1631
1639
1647,
1655

1663

1671
1679
1687
1695
1703
1711
1719
1727

1735
1743
1751
1759
1767
1775
1783
1791

3410
3420
3430
3440
3450
3460
3470

3500
3510
3520
3530
31540
3550
3560
3570

3600
3610
3620
3630
1|3640
3650
3660
3670

3700
3110
3120
3730
3140
3750
3760
3172

1792
1800
1808
1816
1824
1832
1840
1848

1856
1864
1872
1880
1888
1896
1904
1912

1920
1928
1936
1944
1952
1960
1968
1976

1904
1992
2000
2008
2016
2024
2032

2040

1793
1801
1809
1817
1825
1833
1841
1849

1857
1865
1873
1881
1889
1897
1905
1913

1921
1929
1937
1945
1953
1961
1969
1977

1985
1993
2001
2009
2017
2025
20))
2041

1794
1802
1810
1818
1826
1834
1842
1850

1858
1866
1874
1882
1890
1898
1906
1914

1922
1930
1938
1946
1954
1962
1970
1978

1986
1994
2002
2010
2018
2026
2034
2042

1795
1803
1811
1819
1827
1835
1843
1851

1859
1867
1875
188)
1891
1899
1907
1915

1923
1931
1939
1947
1955
1963
1971
1979

1987
1995
2003
201
2019
2027
2035
2043

1796
1804
1812
1820
1828
liG
1844
1852

1860
1868
1876
1884
1892
1900
1908
1916

1924
1932
1940
1948
1956
1964
1972
1980

1988
1996
2004
2012
2020
2028
2036
2044

1797
1805
1813
1821
1829
1837
1845
1853

1861
1869
1877
1885
1893
1901
1909
197

1925
1933
1941
1949
1957
1965
1973
1981

1989
1997
2005
2013
2021
2029
2037
2045

1798
1806
1814
1822
1830
1838
1846
1854

1862
1870
1878
1836
1894
1902
1910
1918

1926
1934
1942
1950
1958
1966
1974
1982

1990
1998
2006
2014
2022
2030
2028

2046 2047

1799
1807
1815
1823
1831
1839
1847
1855

1883
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
195¢
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039

7

4000 2048
to to

4777 2559

(Octal) | (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
4310
4320
4330
4340
4350
4360
4370

2060
2068
2076
2084
2092
2100
2108

2116
2124
2132
2140
2148
2156
2164
2172

2180
2188
2196
2204
2212
2220
2228
2236

2244
2252
2260
2268
2276
2284
2292
2300

2061
2069
20M
2085
209]
2101
2109

2117
2125
2133
214y
2149
2157
2165
2173

2181
2189
2197
2205
2213
2221
2229
2217

2245
2253
2261
2269
2217
2285
2293
2301

[400

4410
4420
4430
4440
4450
4460
4470

4500
4510
4520
4530
4540
4550
4560
4570

4600
4610
4620
4630
4640
4650
4660
4670

4700
4710
4720
4730
4740
4750
4760
47170

2304
2312
2320
2328
2336
2344
21352
2360

2368
2376
2384
2392
2400
2408
2416
2424

2432
2440
2448
2456
2464
2472
2480
2488

2496
2504
2512
2520
2528
25136
2544

2552

2106
2314
2322
2330
2138
2346
2354
23162

2370
2378
2386
2394
2402
2410
2418
2426

2434
2442
2450
2458
2466
2474
2482
2490

2498
2506
2514
2522
2530
2538
2546
2554

2307
215
2323
2331
2339
2347
2355
2161

237t
23719
2387
2195
2403
2411
2419
2427

2435
2443
2451
2459
2467
2475
2483
2491

2499
2507
2515
2523
2531
2519
2547
2555

2308
2316
2324
2332
2340
2348
2356
2364

23712
2380
2388
2396
2404
2412
2420
2428

2436
2444
2452
2460
2468
2476
2484
2492

2500
2508
2516
2524
2532
2540
2548
2556

2309
217
2325
2333
2341
2349
2157
2165

2373
2381
2389
2397
2405
2413
2421
2429

2427
2445
2453
2461
2469
2477
2485
2493

2501
2509
2517
2525
2503
2541
2549
2557

2310

1311

2318.\2319

2228
234
2342
2350
2358
2366

234
2382
2390
2398
2406
2414
2422
2410

2418
2446
2454
2462
2470
2478
2486
2494

2502
2510
2518
2526
2534
2542
2550
2558

2327
2335
2343
2351
2359
2347

2375
2302
2391
2399
2407
2415
242)
2431

2429
2447
2455
2463
47
2479
2487
2495

2503
2511
2519
2527
2538
2543
2551
2559

4

)

wve

6

7

5000 2560
to to

5777 3071

(Octal) | (Decimal)

5000
$010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5139
5140
$150
5160
5170

5200
5210
$220
5230
5240
$250
$260
$270

$300
5310
$320
3330
5340
5350
53680
3370

2561
2569
2577
2585
2593
2601
2609
2617

2625
2613
2641
2649
2657
2665
26173
2681

2689
2697
2705
2113
2721
2729
2737
2745

27153
2761
2769
27117
2785
2793
2801
2809

25€2
2570
2578
2388
2594
2602
2610
2618

2626
2624
2642
2650
2658
2666
2674
2682

2690
2698
2706
2714
2722
2130
2738
2746

2754
2762
27170
2718
2786
2794
2802
2810

2563
257
2579
2587
2995
2603
2611
2619

2627
2625
2643
2651
2659
2667
2675
2683

2691
2699
2707
2715
2123
2731
2139
2747

2155
2763
21N
2719
2787
2795
2803
2811

2564
2572
2580
2588
2596
2€04
2612
2620

2628
2636
2644
2652
2660
2668
2676
2684

2692
2700
2708
2n6
2724
2732
2740
2748

2756
2764
2772
2780
2788
2796
2804
2012

2565
2573
2581
250y
2597
2605
2613
2621

2629
2617
2645
2651
2661
2669
2677
2685

2693
2701
2709
2717
2725
2733
2741
2749

2757
2765
2773
21781
2789
2797
2805
2813

2567
2575
2583
2591
2599
2607
2615
2623

2631
2619
2647
2655
2663
2671
2679
2687

2695
2703
2711
2719
2727
2735
2743
2751

2759
2767
2775
2783
2791
2799
2807
2815

5400
5410
5420
5430
5440
5450
5460
5470

$500
9510
5520
5530
5540
5550
$560
5570

5600
3610
5620
5610
5640
5650
5660
5670

5700
5710
5120
5730
5740
5750
5760
5770

2R16
2824
2812
2840
2848
2856
2864
2872

2880
2888
2896
2904
2912
2920
2928
2936

2944
2952
2960
2968
2976
2984
2992
3000

Joos
3016
3024
3032
3040
3048
3056
3084

2817
2825
2833
2841
2849
2857
2865
2873

2881
2889
2897
2905
2913
2921
2929
2937

2945
2953
2961
2969
2911
2985
2993
3001

3009

Jo17
3025
3033
3041
3049
3057
3085

2818
2826
2834
2842
2850
2858
2866
2874

2882
2890
2898
2906
2914
2922
2930
2938

2946
2954
2962
2970
2918
2986
2994
3002

3o01e
Jo1s
3026
3034
3042
3050
3058
1086

2819
2827
2835
2842
2851
2859
2867
2875

2883
2891
2899
2907
2915
2923
2931
2919

2947
2955
29683
297}
2979
2987
2995
3003

3ot

3019
3027
3035
3043
3051
3059
3067

2820
2828
2836
2844
2852
2860
2868
2816

2884
2892
2900
2908
2916
2924
2932
2940

2948
2956
2964
2972
2980
2988
2996
3004

3012
3020
3028
3036
3044
3052
3060
3068

2821
2829
2837
2845
285)
2861
2869
2877

2885
2893
2901
2909
2917
2925
2933
2941

2949
2957
2965
2973
2981
2989
2997
3005

3013
3021

3029
3037
3045
3053
306!
3069

2822
2830
2828
2846
2854
2862
2870
2878

2886
2894
2902
2910
2918
2926
2934
2942

2950
2958
2966
2974
2982
2990
2998
3006

3014
3022
3030
3038
3046
3054
3062
3070

2023
2801
203
<847
2058
2863
2em
2879

2887
2899
2901
2911
2919
2927
2938
29435

2951
29%9
2967
2973
298]
2991
2999
3007

3015
3023
303t
3039
3047
3055
3063
3071

6000

to
6777
(Octal)

Octal

10000 -
20000 -
30000 -
40000 -
50000 -
60000 -
70000 -

7000
to
7777
(Octal)

3072

to
3583
(Decimal)

Decimal
4096
8192

12288
16384
20480
24576
28672

3584

to
4095
(Decimal)

.| 6000

8010
6020
4030
6040
64050
6080
6070

6100
8110
6120
6130
6140
8150
6160
6170

8200
210
6220
6230
6240
6250
4260
€270

8300
8310
8320
6330
6340
6350
6360
6370

Jo72
3080
3088
3096
J104
ma2
3120
e

11136
R
3152
3160
Jies
3176
J184
3192

3200
3208
J216
3224
1210
3240
1248
1256

3264
nn
3280
J288
3296
3304
32
3320

073
Jos!
3089
3097
3105
nn
Ji2t
29

nn
J14s
313
Ji6l
3169
nn
3185
3193

3201
3209
7
3225
3231
J241
3249
3257

3265
17
Ja281
3289
3297
3305
3313
3321

3074
Jos2
3090
3098
3106
4
122
3130

318
3146
3154
3162
3170
RERL
3186
3194

3202
3210
J218
3226
3234
1242
3250
3258

3266
3274
3282
3290
3298
3306
3314
3322

3075
3083
3091
3039
3107
s
N
313

3139
N4
3159
3163
31T
3Im
3187
3195

3203
3211
3219
nn
3235
3243
3251
3259

3267
3275
3283
3291
3299
3307
3315
3323

3076
3084
3092
3100
308
3116
3124
3132

3140
3148
3156
3164
3172
1180
3188
3196

1204
3212
3220
3228
3236
J244
3252
3260

3268
3276
3284
3292
3300
3308
1316
3324

3077
3085
3093
3101
3109
RN
125
313

Jlal
3149
3157
3165
nn
3181
J189
3197

3205
3213
3221
3229
3237
3245
3253
3261

3269
21
3285
3293
3301
3309
N7
3325

3078
3086
3094
3102
o
Jite
3126
J134

3142
3150
Ji158
3166
5174
3182
3190
3198

3206
3214
3222
3230
3238
3246
3254
J262

3210
3278
3286
3294
3302
3310
3318
3326

1079
3087
3095
3103
i
19
27
3135

3143
3181
3159
3167
75
3183
3191
3199

3207
3215
322)
3231
3239
247
32595
3263

327!
3279
3287
3295
3303
3311
3319
3327

6400
6410
6420
6430
6440
6450
6460
6470

6500
6510
6520
6510
6540
6550
6560
6570

6600
6610
6620
6630
6640
6650
6660
6670

6700
6710
6720
6730
6740
6750
6760
677

3328
3336
3344
3352
3360
3368
1176
3384

3392
3400
3408
3416
3424
4N
3440
3448

3456
3464
3472
3480
J488
3496
3504
3512

3520
3528
3516
3544
3552
1560
1568
31576

3329
337
3345
3383
3361
3369
1317
1385

3391
3401
3409
Ja?
3425
340
Ja4l
3449

3457
3465
3473
3481
3489
3497
1505
3513

3521
3529
3537
3545
3593
3561
3569

3877

3330
3338
3146
3354
3362
3370
31378
3386

3394
3402
J410
3418
3426
3434
3442
3450

3458
3466
3474
3482
J490
3498
3506
3514

3522
3530
3538
3546
3554
3562
3570
1578

ER R
1339
3347
3355
3363
3371
3373
3187

3399
34013
3411
3419
3427
3435
3443
3451

3459
3467
3475
3483
3491
3499
3507
3515

3521
RERD
3539
3547
3555
3563
3571
3579

1332
3340
3348
1356
3364
3372
3380
3388

3396
3404
3412
3420
3428
3426
444
J452

1460
3468
3476
3484
3492
3500
3508
3516

3524
3532
3540
3548
3556
3564
3572
3580

333
3341
3349
3357
3365
3373
3381
1389

3397
3405
113
3421
3429
3437
3445
3453

3461
3469
34N
3485
3493
3501
3509
3517

3525
3533
3541
3549
3557
3565
3573
3581

33
1342
3350
3398
3366
3374
13182
3390

3398
J406
Jatd
422
J430
J438
3446
3454

3462
3470
3478
3486
3494
3502
3510
3518

3526
3534
3542
3550
3558
3566
3574
3582

333
334]
3351
3359
3367
3375
3382
3391

3399
3407
J415
3423
N
3439
3447
3455

3463
347
3479
3487
3495
3503
3511
3519

3527
3538
3543
3551
3559
3567
3575
3583

7000
7010
7020
7030
7040
7050
7060
7070

7100
7110
1120
7130
7140
7150
7180
7170

7200
7210
7220
7230
1240
7250
7260
7270

7300
7310
7320
7330
U0
73%3
7340
7370

1584
3592
3600
3608
Je1s
3624
612
1640

3648
1656
1664
3672
Jea0
Jess
1698
3704

I
3720
e
3736
3744
3752
3760
768

778
3784
3792
20800
Js08
Jee
B
3812

3585
3593
3601
3609
817
3625
3633
3641

3649
3657
3665
3673
Jes!
Jess
3697
3705

3N
2
»nH
1N
3745
37133
3761
3769

nnm
3788
3793
3801
3809
817
3825
RLRR)

3586
3594
3602
J6tu
3618
3626
1634
3642

3650
3658
3666
3674
3682
3690
3698
3706

34
37122
3130
3738
3746
3754
3762
3770

3118
3786
3794
3802
3810
818
3026
3834

3587
3595
2603
3611
3619
3627
3635
3643

3651
3659
3667
3675
3683
3691
3699
3707

NS
3723
373
3739
3747
37538
3763
7N

3779
3787
3795
3803
811
819
3827
3835

3588
3596
3604
3612
3620
J628
3636
1644

3652
3660
3668
3676
3684
3692
3700
3708

e
3724
3732
3740
3748
3756
3784
37712

3180
3788
3796
3804
3812
3820
3028
3838

3589
3597
3605
3613
3621
3629
3637
3645

3653
3661
Jee9
3677
3685
3691
3701
3709

N7
3725
371
741
3749
3187
3765
371713

3781
3789
3797
3805
3813
ie21
3829
3837

3590
3598
3606
614
3622
3630
3638
3646

3654
3662
1670
1678
3686
3694
3702
3710

LAY :]
37268
3734
3742
3750
3758
3766
3174

3782
3790
3790
38068
814
3822
3830
3830

3591
3599
3607
3615
3623
3631
3639
3647

3655
3661
3671
3679
3687
3695

STOJL
i

1719
3727
3735
3743
3751
3759
3767
3775

3783
3791
3799
3807
3815
3823
8
1839

7400
7410
7420
7430
7440
7450
7460
7470

1500
7510
7520
7530
7540
7550
7560
7570

7600
1610
7620
7610
7640
7650
7660
7670

7700
7710
1720
7130
7140
7150
7760
7170

3840
3848
1856
3864
38172
3880
jses
3896

3904
3912
3920
3928
3916
1944
3952
1960

3968
3976
3984
3992
4000
4008
4016
4024

4032
4040
4048
4058
4064
4072
4080
4088

3841
3849
3857
3865
3873
388l
3889
3897

3905
3913
3921
3929
3937
3945
3953
3961

3969
3977
1989
3993
4001
4009
4017
4025

4033
4041
4049
4057
4065
4073
4081
4089

1842
3850
3858
1866
3874
3882
3890
3898

3906
3914
3922
3330
3938
3946
3954
3962

3970
3978
1986
3994
4002
4010
4018
4026

4034
4042
4050
4058
4066
4074
4082
4090

3843
3851
3859
3867
3875
38831
1891
3899

3907
3915
3921
3931t
3939
3947
3955
3963

3971
3979
3987
3995
4003
4011
4019
4027

4035
4042
1051
4059
4067
4075
4083
4091

3844
3852
3860
1868
1876
3884
3892
3900

3908
3916
3924
3932
3940
3948
3956
3964

3972
3980
3988
3996
4004
4012
4020
4028

4036
4044
4052
4080
4068
4076
40084
4092

3845
3853
3861
3869
3877
3885
3893
3301

3909
917
3925
3333
1941
3949
3957
3965

3973
3981
3989
3997
4005
4013
4021
4029

4037
4045
4052
4061
4069
407
4085
4093

1846
3854
1862
3870
3878
3886
3894
3902

3910
3918
3926
3934
3942
3950
3958
3966

3974
3982
3990
3998
4008
4014
1022
4030

4038
4046
4054
4062
4072
4078
4086
4094

3847
3855
3863
3871
3879
3887
3895
3963

3911
3919
3927
3935
1942
3951
3959
1967

3975
1982
3991
3999
4007
4015
4023
4031

4035
4047
4055
4083
4071
4079
4087
4095

APPENDIX F
POWERS OF TWO TABLE

N

17
34

68
137
274
549

1 099

oo HN =

33
67
134

268
536
073
147

294
589
179
359

719
438
877
755

511

131
262
524

‘048

097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476

953
906
813

627

216
432
864
728

456

912
824
648

296
592
184
368

736
472
944
888

776

WO 3

~Noy»nm o

POWERS OF TWO TABLE

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000
000
000

000
000

000

25

125
562
281

140
070
035
517
258
629

814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

0ao

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062

531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

625
312
656
828

914
957
478
739

865
934
467
733

366
183
091
545

772

25
125

062

031
515
257

628
814
407
703

851
425
712

856

928

45
625
812

906
453
226
613

806
903
951

475

237

5

25

125
562 5
281 25

640 625
320 312 5
660 156 25

830 078 125

915 039 062 5

F-1

APPENDIX G

PROGRAM EXAMPLES

8410
8at1
8012
8n13
8114
8015
am16
80n17

8u18
8219

801A
8n1B

8n1C
8u1D

810
8ot
8n12
8013
8a14
8015
8p1b
8a17

8a18
8019

801A
8018

8nic
8a1D

9nan
000
8020%
vonn

8e1o
ds6acenn
n2npnaeds
J4qAnnucCs
d2gvonny
28L18@18
WIF86640
36VpANADR
27C4A0FD

Junudannan
29u18p18B

28F 18015
JeB19¢0n

dgunt2cac
3sna2vae

3

OUTBYF
DATA
FLAG

LOOP

QUTPUT 4 FIELD OF NATA IF FLAG 1S SFT

NRG X1900a¢
Ds,200 w20@ wWORD DUTPLT RUFFER

DF 128,32 *MSB=128,32 BTT FIELD

EQU ¥ *BIT COLUMN ZEROD

ORG BULKC

LI.2 AS,X1CRVAY «SELFCY ARRAY #2 & #1
L Y,FLAG «RESPONSE = WCRDS 10 REAP
L1 BL,2r0 «MAX BUFF SIZF COUNTER

LI DP,OUTBUF+1 *INDEX 10 QUTBLF

BNR DONE «EXIT IF NO FLAG SET

STEP *SELECT % CLEAR 31ST ¥

Le DATA *C REG, ® VALUE DF SELECTED

WORD VIA THE LINK POINTER REG,

SR C,(DP),3 =*STORE COMMON REGISTER
INTO MEM ADDRESS CONTAINED IN DP, THEM DP=DP+1, =
Bl = BL=1

BZ,BL DONE +EXIT IF QUTPLT 200 «ORDS
BRS LODP *LOOP IF MORE Y'S SET
SR BL,OUTBUF *STORE COLNMT IN 18T

SLOT, SEB, PROC. MUST COMPUTE 20@=-COUNT FOR
NUMBER OF ITEMS IN THE OUTPUT BIIFFER,

INT, 01300 12 »INTERRUPT SFQ, PROC,
WATT *HALT AP

G-1

80a0n
8019
8ail
anti2
BN13

8R14

8015

8poe
8a1n
o1l

Bpy2
813

8ni4

8m15

800Q

28018010

8p1a@
36vucCeonn
33930000
AavAz741
JEFF8@n14

168vna0nna2

d8ea2000

*

*

PROGCLEAR

THIS ROUTINE WILL CLEAR TWO ARRAY MEMURIFS
TO ALL ZEROES.

ORG xrgaon!

NOTE THAT WHENEVER THE AP GQOES FROM Twr INACTIVE
STATE TO THE ACTIVE STATE, THF INSTRuCTION AT
LOCATION X'8AAnY TS EXECUTED,

8 FROGCLEAR

ORG BULKC

LI,2 AS,X'CvnapY *SELFCYT ARRAY #0 & #1

Lt FP1,2 *START WITH BIT COLUMN @

CLR Y *CLEAR ALL ¥

RPT,256 *EXECUTE NEXT INSTRUCTION 256
*TIMES

S Y,FP1+ «STORF Y INTEG RYT COLUMN

OF MEMQRY REFERENCED BY FP{,THEN FP1 = FPR1+1

WAIT HALT AP

*

8012 801® ARAABBADR
Bua11 8a11 @AIFB6640
Bpi2 812 2BELIBA1]

v
"
v
8a13 8m13 NEPMABB43 ONLYONE

CHECK FOR MULTIPLE RESPONSE

L X,Y wSAVE RESPONSE IN X
STEP vCLEAR FIRSYT RESPONDER
BNR ONLYONE + BRANCH IF NO Y'!S SET

MULTIPLE RESPONSE PROCESSING FOLLOWS

SINGLE RESPONSE PROCESSING FOLLOWS

L YosX #RESTORE THE SINGLE RESPONDER

8209

anie
8@11
8m12
RAL3

8214

8u15

8016
8n17
Ba18
8049

ButA

8018

8a1C
8810
801E
8OLF

8020

8n21
8n22
8023
8024

sane

8ni0Q
8l
8m12
8013

8n14

8e15

v2e0
@a2el
n2e2
Q2e3

a2pd

8205

8myC
8m1D
8n1E
8a1F

sa20

g4an
o401
2402
2403

supe
2818017

8n1@
38008QR6
28p08r10
JBAQQRTFQ
38048015

28010200

cCor6n2an

3gvn8eac
28000200
38AQNBFN
38M48020

a6npnaaa

28710400

nonanp2ae
nnRRaN420
neapns20
oane8enn

can6n4nn

38AnBRA6
28npnd4nn
JgepazFe
Jsn48p28

* & & %

BULKC

*
"
"
*
PG1PROG
*
"
»
B

EGIN

»

*
*

*

PG2PROG

*

*

.
INTOPAGE?2

*

EXAMPLE OF PAGING ALTERNATING PROGRAM
SEGMENTS INTO PAGE 1 AND PAGE 2

ORG X'8apa' «BEGIN BY BOOTLOADING
B BULKC +#PAGE | WITH THE JINITIAL
0RG BULKC +PROGRAM SEGMENT

MVSG,PAGE] PGIPROG #THIS INSTRUCTION WILL

TEST THE PAGER UNITL IT IS NOT BUSY, THEN WILL
COMMAND THE PAGER TO MOVE A PROGAM SEGMENT
INTD PAGE 1 ACCORDING TO THE SPECIFICATIONS
GIVEN AT PG1IPROG,

B BEGIN #AP CONTROL WILL WAIT
HERE UNTIL THE PAGER HAS COMPLETED LOADING
PAGEY ACCORDING TO THE ABOVE MOVE COMMAND,

STRTSG,PAGEY *DEFINE A PAGE { PROGRAM
SEGMENT ASSEMBLED TO EXECUTE PROPERLY ONLY

IF LOADED BEGINNING AT THE FIRST LOCATION OF
OF PAGE

MVSG,PAGE?2 PG2PROG +*BEGIN LOADING PAGE 2

WHILE PROGRAM EXECUTION OCCURS HERE IN PAGE
L C,@ «CLEAR COMMON REGISTER

B INTOPAGE2 wIF THE PAGER HASN'T
FINISHED LOADING PAGE 2 BY THE TIME ThIS BRANCH
1S ENCOUNTERED, THE AP WILL WAIT UNTIL PAGING
IS COMPLETE BEFORE BRANCHING,

ENDSG

STRTSG,PAGE2 . «DEFINE A PAGE 2 PROGRAM
SEGMENT ASSEMBLED TO EXECUTE PROPERLY ONLY
IF LLOADED BEGINNING AY THE FIRSY LOCATION

OF PAGE 2

MVSG,PAGE1 NEXTPAGEY #THIS INSTRUCTION

WILL TEST THE PAGER UNTIL IT IS NOT BUSY,
THEN WILL COMMAND THE PAGER TO MOVE A PROGRAM
SEGMENT INTO PAGE 1 ACCORDING TQ THE

8025

8n26

Ra27
8028
8929
RA2A

an2s

aaac
8A2D
802E
a8n2F

8233
RAJY
8032
8233

P4e4d

@45

8p27
8n28
8m29
8A2A

8@28

ldy
n201
nee2
p203

8n3op
831
8na32
8033

leBone18

c8010200

reeanrB2n
PARAR42D
nearrB20
ANDABRAN

cCondn200

382A8QN6
28000200
381 A0BFQ
3sndpenn

20000020
2erpAa20
neanne2n
2NPN8OAY

* SPECIFICATINONS AT NEXTPAGEY,

LRR C,(BL,DP) *COMMQON = Bl & DP
8 INTOPAGEY +AP CONTROL WILL

w WAIT HERE UNTIL THE PAGER HAS COMPLETED LOADING

L PAGEY1 ACCORDING TOD THE ABOVE MOVE COMMAND,
ENDSG

L]

*

NEXTPAGEYL STRYSG,PAGE! *DEFINE A PAGE § PROGRAM

L SEGMENT ASSEMBLED TO EXECUTE PROPERLY ONLY

» IF LOADED BEGINNING AT THE FIRST LOCATION OF

. PAGE 1

INTOPAGEY MVSG,PAGE?2 NEXTPAGE2 *TH]IS INSTRUCTION

WILL TEST THE PAGER UNTIL IT IS NOT BUSY,
THEN WILL COMMAND THE PAGER TD MOVE A PROGRAM
SEGMENT INTO PAGE 2 ACCORDING TO THE
SPECIFICATIONS GIVEN AT NEXTPAGEZ,ETC.

* % & &

an1o
sai}
8012
8013
8ai4

8015
BAt16

8a17

8a18

ani9

8atA
8a18
8oic
801D
B01E
8a1F
8o2e

1784
8nyl
8na12
8m13
8014

8a15
8@16

817
8p18
8p19

BrtA
8018
8¢1C
8010
801E
8R1F
8p2e

Ba10
[l adds
avbanean
rreAaRAR
aevannan
aganaean

3J6vanaraa
33918010

33418011
35A18012
35718013

Jéeacoap
nOne7741
2821801 F
36604000
28018020
3668600
n38n8B45

*
*
*
*
*

% % % % % % ¥ & & ¥ % % ¥ & * * ¢ ® & ¥ ®

ARRAYNUM
WORDNUM
MSBPOSITN
NUMBITS
RESULT

*

*

*
TRk W AN
*

w

w

INSPECT

*
»

1STARRAY

»*

INSPECY AND CHANGE AN ARRAY FTELD Ak
USAGE DIRECTIONSS

{. STORE THE ARRAY NUMBER INTN ARRAYNLM

(CODING ASSUMES 2 ARRAY MEMORY MONDULES)

2, STORE THE WQORD ~NUMBER INTO WORDNUM

3. STORE THE MQOST SIGNIFICANT BIT POSITION
INTQ MSBPOSITN

4, STORE THE NUMBER OF CONTIGUQCUS BIN
POSITINONS INTO NUMBITS

5. TO EXECUTE AN INSPECT FUNCTION, EXECUTE A
RETURN BRANCH (USING R@®) TN THE BULK COKRE
ADDRESS ASSIGNED TO INSPECT, THE RESULTING
CURRENT VALUE OF THE INSPECTION MAY BE KEAD
FROM RESULT,

6, TO EXECUTE A CHANGE FUNCTION, STORE THE
CHANGE INTO RESULT, THEN EXECUTE A RETHKN
BRANCH (USING RA) TO THE RULK CORE ACDRESS
ASSIGNED TO ChANGE,

START

ORG BULKC

Dc " »ARRAY NUMBER STORAGE
] g] *ARRAY NUMBER STORAGE
DC %] «MSB OF FIELD STORAGE
neC 4 #FIELD LENGTH OR ®IDTH
nc) »THE ANSWER

STARTING PLACE FOR AN INSPECT FUNCTION

LI C,?2 «CLEAR COMMON REGISTER
LR,1 FP1,ARRAYNUM *FPY s LEAST
SIGNIFICANT 8 BITS OF ARRAYNUM, SHOULD BE A
VALUE OF ZERO OR ONE,

LR FP2,WORDNUM *THE LINK POINTER
REGISTER (FP1,FP2) NOW REFERENCES THE ARRAY
AND THE WORD WITHIN THE ARRAY,

LR,2 FP3,MSBPOSITN «FIELD POINTER,
LOAD FP3 WITH LEAST SIGNIFICANT 8 BIT POSITION
OF MSBPOSITN,

LR,3 FL1,NUMBITS *FIELD wIDTH COUN
LOCAD FL1 WITH LEAST SIGNIFICANT & BIT POSITION
NOF NUMBITS

LI,2 AS,X'CANA' «SELECT BOTH ARRAY
CLR Y «CLEAR ALL Y

BZ,FPY {STARRAY

LI.2 AS,X'4MAA' «SELECT 2ND ARRAY
8 $+2

L1,2 AS,X'80@2' «SELECT 18T ARRAY
L Y,FP3 w Y = BIT COLUMN(FP3)

USING THE RESOLVER LCGIC, GENERATE A 256 BIT

S

TER
S

§

8n2t

8U22
8123
8n24
8225
8n26

8a27
R028
8n29
Bn2A

8n28
8p2cC
8u2n
8A2E
802F
suae
8n31
an32
8433

8134
8135
BW36

82437

8a38
8039
BA3A
aniB

823C
8n30
8R3E
BAJF

8049
B8ndy
Ba42
8143

an21

8n22
8023
8n24
8025
8026

8n27
8n2s
8p29
8n2A

8n28
8pac
8p20
BM2E
Ba2F
8030
8n31
8p32
8033

834
8035
8236

8037

8038
8039
BA3A
8a3B

8n3C
823D
80A3E
BA3F

8adae
8n4y
8042
8n43d

n3cs2240

28E18p24
acGaaBBAY
ne1FB8aBa
22FFAQFB
21COBFFA

pidi1oeny
28918014
Je18n14
2808ap00

36p18n14
3660C000
356718013
pluiocal
33gave2a
3Cvp8N31L
n1340021
35718013
3s5a18p12

31818043
3idi8pi1t
33818443

WaA3RB7 A0

31818043
33918010
neAna7741
n3Cagsdn

e8paneR?2
8ePAB843
NBAvRARL
13a20002

faleineay
28918036
28080008
apnanena

fRQQ

*
. -
T Y
*
*
CHANGE

REPEAT
w

*

+ % ¥ %

® % ® %

SAVEFP1

INPUT wITH A ONE IN THE BIT POSTTION REFERENCED
BY FP2 AND 255 ZEROES ELSEWHERE, LOGICAL AND THIS

GEN, 32 X103C822401 wVALUE WITh Y,J,E.,
RESET ALL Y'S EXCEPT IN THE SELECTED vORD

BNR $+2 *JUMP IF SELECTED RIT = @

SET Y «SET ALL Y IF BIT = 1

GEN, 32 X'Q01F88BAY «LEFT SHIFT ARG QONE
GEN, 32 X122FFAQFB! «BIT POSITION

GEN, 32 X'21CABFFA' «LOAD BIT #31 OF
COMMON REG, WITH SELECTED BIT NUMBER ValLUE IN Y
INCR FPL,FLl *FP3=FP3+1,8 FL1SFL1w=
BNZ,FLY LOOP *LDOOP ON REST OF FTELN WINTH
SR C,RESULT «STORE ThE RESULT

B8 (R?) *RETURN T0O CALLING PROGRAM

STARTING PLACE FOR A CHANGE FUNCTICON

LR C,RESULT ARG = NEW VALUE

LI,2 AS,X1CRAR' *SELFCT ROTh ARRAYS
LR,3 FL1,NUMBITS wOBTAIN FIELD WIDTH
DECR FL1 *REPEAT COUNT FQR LOOP

LI FP1,32 +«PREPARE TO COMPUTE THE
RPT *MSB POSITION ON THE FIELD IM
DECR FP1 #THE COMMON REGISTFR

LR,3 FLL1,NUMBITS «RELOAD FIFLD WIDTH
LR,2 FP3I,MSEBPOSITN | 0AD AKRRAY FIELD
POINTER, FP1 IS THE COMMON REG, FIELD FOINTER,
SR FP1,SAVEFPL *TEMP SAVE POINIER
LR FP2,WORDNUM *INIT LINK POINTER
LR FP1,SAVEFP1 *GFT COM REG FIELD
POINTER, NEXT LOAD THE X RS wITH THE VALUE OF THE
GEN,32 X'0@3AB7 AR *COMMON REG BIT
REFERENCED BY FP1, THEN INCREMENT FP1

SR FPY{,SAVEFP1 #TEMP SAVE PDINTER
LR, 1! FP1,ARRAYNUM wINIT LINK POINTER
CLR Y «CLEAR ALL Y

GEN, 32 X'43C88840"' *USING THE RESOLVER

LOGIC, GENERATE A 256 BIT INPUT wWITH A ONE IN THE
BIT POSITION REFERENCED BY FP2 AND 258 ZERCFS
ELSEWHERE, LCAD THIS VALUE INTO Y,l.k,, THE Y RS
CONTAINS A ONE FOR ONLY THE REFERENCED WORD,

L M,Y «SET UP FOR A MASKED WRITE
L Y,X *Y = COMMON REG(FP1) VALUE
SM Y,FP3+ «STORE THE COMMON REG

BIT VALUE REFERENCED BY FP1 INTN THE WORD OF
MEMORY SPECIFIED BY FP2 AND THE BIT COLUMN IN
THE SELECTED MEMORY WORD REFERENCED BY FP3,
THEN INCREMENT FP3,

DECR FLY wDECREMENT FIELD WIDTH
BNZ,FL1 REPEAT «STORE OTHER BITS

B (R@) *RETURN T0 MAIN PROGRAM
nc 7

END

G-7

INDEX

A
Addressing 2-7
APPLE 1-2
APPLE features 1-2
APPLE language structure 2-1
Argument field 2-1
Arithmetic 2-138
Array co-ordinates 3-10
Assembler directives 1-2, 2-9
Assigning slots 3-1, -5
Associative instructions ' 2-55
Associative memory device code 3-8
Associative Memory or Common Register field expression 2-7
Attach (SVC) 3-5

B
Branch instructions 2-17
Buffer format 3-7, -9, -13, -19
Buffer format for device -1 (Control memory) 3-7
Buffer format for device -2 (Associative memory) 3-9
Buffer format for device -3 (Registers) 3-13
BUFFER pseudo-op 3-3, -6, -8, -12, -117
Byte count - 3-9, -18, -19,
Byte count update 3-20

INDEX

Character set

Command field
Command summary
Comment field

Comment statements
Common Register field
Constants

Control and test

Control Digit

Control Memory address

Control Memory device code

Decimal constants

Device Assignment Table (DAT)
Device codes

Devices

Done bit

Echo Bit
End-of -medium bit (EOM)

Error codes

2-5
2-154
2-7, C-2
2-7, C-2

3-6

3-2
3-5
3-5

3-10, -19

3-20

3-9, -19

INDEX

Error codes (SVC)
Execution location counter
Exit (SVC)

Expressions

Field expression
Formatted ASCII
Formatted binary

Free device (SVC) for new task

Hexadecimal constants

Hexadecimal/decimal table

I setup

Immediate value
Improper mode

In line

Interrupt setup (SVC)

Interrupt signal (SVC)

3-10, -19
2-6, C-2

3-24

3-27
2-5, 2-39, C-4
3-9, -19

1-2

3.26, -27

3-26, -27

Label field

Lianguage elements

Load Location counter
Loads

Location counter symbol ($)

Location counters

Max size
Mnemonic summary
Mode byte

Moves

Octal constants
Octal/decimal
One-to-many

One-to-one

Pager control (SVC)
Pager instructions
P1/O Control (SVC)

Powers of two table

Program Counter (location counter)

Program examples

INDEX

3-9, -17
A-i
3-20

2-125

INDEX

Read (SVC)

READ BUFFER Pseudo-op
Register device code
Register instructions
Required entries

Reset peripheral device (SVC)

Restart program (SVC)

Searches

Slot numbers

Source statements

STARAN S registers (device code -3)
Status byte

Stores

Subroutine call sequence

Summary of APPLE mnemonics ans instruction formats

Supervisor calls (SVC)
Supervisor services
Symbol table

Symbols

Terms and symbols

INDEX

T
Timer (SVC)

18)
Unformatted ASCII
Unformatted binary

w

Write (SVC)

WRITE BUFFER Pseudo-op

GOODYEAR AEROSPACE

