
0

system
reference

manual

~m GRI Computer Corporation
76 ROWE STREET, NEWTON, MASSACHUSETTS 02166

Attached are correction sheets for the GRI-909 System Reference

Manual, Rev. A, December 1969.

GRI Computer Corporation'

April 10, 1970

Price $3.50

System Reference Manual

December 1969

GRI Computer Corporation, 76 Rowe Street, Newton, Massachusetts 02166

Copyright © 1969 by GRI Computer Corpora ti on

*Patents Pending

The information given herein is for
reference purposes only and is not to
be taken as engineering specifications.

Printed in USA

1 INTRODUCTION

1.1 Computer Organization .

1.2 Memory

1.3 Instructions
Instruction format 1-8
Effective address 1-8
Programming conventions 1-9

1.4 Software

2 DIRECT FUNCTION PROCESSOR

2.1 Operator Codes

2.2 Data Transmission
Memory reference 2-5

2.3 Data Testing

2.4 Function Generation

2.5 Function Testing

2.6 Program Control
External instructions 2-12

2.7 Input-Output

2.8 Program Interrupt

2.9 Direct Memory Access

CONTENTS

2.10 Power Failure Detector and Autorestart

2.11 Operation

3 FUNCTIONAL OPERATORS

3.1 Basic Arithmetic and Logic .

3.2 General Purpose Registers

3.3 Byte Operations

3.4 Multiplication

4 HARDCOPY EQUIPMENT

4.1 Teletypewriter
Teletype output 4-2
Teletype input 4-3

iii

1-1

1-3

1-6

1-6

1-10

2-1

2-2

2-4

2-7

2-9

2-10

2-11

2-13

2-14

2-18

2-20

2-20

3-1

3-1

3-3

3-4

3-4

4-1

4-1

iv

4.2

4.3

Programming examples 4-3
Operation 4-4

Paper Tape Reader and Punch
Paper tape reader 4-6
Paper aape punch 4-7

Bootstrap Loaders

APPENDICES

A

B

c

D

E

F

G

H

The System Oriented Assembly Language, FAST
Data transmission A2
Data testing A3
Function generation A3
Function testing A4
Sample programs A4

Interfacing

I Physical Architecture

II Interface PC Cards

III System Busing

IV Interface Logic and Timing
Programmed data transfers B7
Function generation B9
Function testing BlO
Interrupt Bll
Direct memory access Bll
External instruction Bl3

V Design Examples

Installation

Power Failure and Automatic Restart

Instruction Mnemonics
Operator Codes E3
Instruction variations ES

In-Out Codes
In-out devices Fl
Teletype Code F2

Numerical Tables
Powers of two in decimal Gl
Power of ten in octal Gl
Octal to decimal conversion, integers G2
Octal to decimal conversion, fractions G6

Arithmetic Formats
Floating point arithmetic H2

4-6

4-7

Al

Bl

Bl

Bl

B4

B7

Bl6

Cl

Dl

El

Fl

Gl

Hl

C H A P T E R 0 N E

INTRODUCTION

The GRI-909 is an advanced general pur­
pose computer, whose highly modular
functional design and easy, efficient
programming make it especially suitable
for applications in process or system
control. The machine is based on the
concept of Direct Function Processing
and is organized around two buses, a
source bus and a destination bus. As
shown in the illustration on the next
two pages, all internal control regis­
ters,, device controls, arithmetic units
f . ' unction generators, and even memory it-
self (all ref erred to as "operators")
exist between these buses. Each bus
comprises sixteen data lines, six ad­
dress lines for operator selection, con­
trol lines, sense lines, and lines for
timing signals. A typical operator ac­
cepts data and/or control signals from
the source bus, acts according to the
received control signals and the nature
of the operator, and outputs its result
onto the destination bus. The bus modi­
fier provides a path for moving data
from the destination bus to the source
bus, where it is available as input to
the next spe~cif ied operator. The func­
tion tester senses control signals from
other operators via the destination bus·

. . '
the function generator supplies control
signals to other operators via the source
bus. This structure provides many in~
trinsic advantages over other computer
architectures. Among these are:

The ability to program in an assembly
language directly related to system
functions without the inefficiencies

in time and memory introduced by
compilers.

The capability of direct communication
between system devices and computer
components. Any system device can di­
rectly access memory, and the processor
can transfer data between any two system
devices without tying up accumulators
or special registers. This eliminates
the "bookkeeping" instructions otherwise
needed to manipulate data to, from and
through the processor.

The ability to expand the instruction
repertoire on a modular basis·including
many special or unique instructions.

The minimum processor configuration
comprises all operators shown on the
next page except memory, which is op­
tional. The memory can contain both
alterable core memory modules and read­
only memory modules, and the two are
interchangeable; if only the latter is
present, the computer can be operated
simply as a hardwired controller. Shown
on page 1-3 are typical options in­
cluding functional or "firmware" oper
ators and device operators. Device op­
erators are those that interface periph­
eral equipment such as input-output de­
vices, mass memory media, communications
equipment and displays. Functional op­
erators are those that operate on data
words or perform various functions that
are usually regarded as internal to a
computer: these include the real time
clock, an arithmetic operator that per­
forms addition and basic logical opera-

1-1

1-2

SOURCE BUS

t ~

CONTROL BUS
MODIFIER

IR SC MA
LOGIC

j

DESTINATION BUS

tions, and operators that perform
multiplication, division, byte swap­
ping and packing, and other more com­
plex functions.

The basic package requires only 10~
inches mounted in a standard 19-inch
rack. It contains the processor, a mem­
ory of up to BK words, and has space for
three major firmware options and sixteen
other optional operators of either type.
Additional memory can be held in an ex­
pansion chassis mounted above the basic
package; an expansion chassis for other
options can be mounted below it.

GenePG.Z Characteristics

16-bit parallel processing, with a
1.76 microsecond cycle time when execu­
ting instructions from main memory, an
880 nanosecond cycle time when executing
instructions from an external memory,
ie a read-only memory contained in a
firmware option.

32,768 words of directly addressable,
random access core memory. Minimum core
size is 1024 words.

The functional organization permits
programming in a simple system-oriented
assembly language. Programs can be
assembled on an IBM 360 computer.

Every device in the system, both in­
side and outside the processor, is di-

1 • llf6l •
FUNCTION DISPLAY

~------1

MEMORY MB
DATA

TESTER

GENERATOR
TRAP

FUNCTION
CONSOLE

I-~--- - - -
TESTER SWITCHES

j

Ir ' •

rectly addressable by programmed instruc­
tions, allowing direct data transfer be­
tween devices without need for special
accumulators or temporary storage.

Firmware options can expand the hard­
wired instruction set to provide system
flexibility unequaled by more conventional
computer designs.

Direct memory access can be made via
the standard source and destination buses
at the rate of 1.76 microseconds per 16-
bit word (568,000 words per second). No
multiplexer is required.

Priority interrupts can be executed on
a single level or on sixteen levels at
the choice of the system designer. Addi­
tional interrupt levels are available as
an option.

Core memory and read-only memory are
interchangeable.

Power failure protection and automatic
restart are standard. Remote start and
stop are available for use in a system
interface.

Any register, whether inside or outside
the processor, can be displayed on the
console. Data can be transferred from
the console to any register.

Specifications

Physical. 10~ inches high, 20 inches

§1.1 1-3

' ' • ' • Ii

REAL GENERAL
PAPER TAPE

MASS ARITHMETIC I BYTE PUNCH
TIME PURPOSE MULTIPLIER TELETYPE

MEMORY
CLOCK

OPERATOR OPERATOR
REGISTERS

•

deep, weighs 50 pounds. Mounts from the
front in a standard 19-inch rack with or
without slides.

Electrical. Single phase line power,
either 100-130 vac, 60 Hz ± 3%, or 200-
240 vac, 50 Hz ± 3%. 4 amperes, 150-
250 watts. Logic levels: ground and +4
vdc, DTL and TTL compatible.

Environmental. 0° to 50°C ambient
temperature. Relative humidity to 90%.
Cooling is by convection (no fans re­
quired for operation over the ambient
temperature range). All console switches
are photo-optical without mechanical
contacts subject to wear or bounce.

1.1 COMPUTER ORGANIZATION

The direct function processor controls
the entire system by controlling all
functional and device operators. The
processor handles words of sixteen bits,
which are stored in a memory with a max­
imum capacity of 32,768 words. The bits
of a word are numbered 0 to 15, right to
left, as are the bits in the registers
that handle the words (each bit number
corresponds to the magnitude of the bit
as a power of 2). Memory addresses are
fifteen bits~ numbered according to the
position of the address in a word, ie 0
to 14. Words are used either as computer

PAPER TAPE
READER

' Ii ,

instructions in a program, as addresses,
or as operands (data for the program).
The program can interpret an operand as
a logical word, an address, a pair of 8-
bit bytes, or a 16-digit signed or un­
signed binary number. Arithmetic opera­
tions are performed on fixed point binary
numbers, either unsigned or the equivalent
signed numbers using twos complement con­
ventions.

The processor performs a program by ex­
ecuting instructions retrieved from memory
locations addressed by the low order f if­
teen bits of the sequence counter, SC. At
the end of each instruction that does not
reference memory, SC is incremented by
one so that the next instruction is nor­
mally taken from the next consecutive lo­
cation. In an instruction that does ref­
erence memory, SC is incremented once so
that the instruction can make use of the
next location - for either an address or
an operand - and it is then incremented
again to point t·o the next instruction.
Sequential program flow is altered by
changing the contents of SC, either by in­
crementing it an extra time in a function
test instruction, or by replacing its con­
tents with the value specified by a jump
instruction. In a jump, an address for
returning to the original sequence is
saved in the trap register, TRP, which is
also available for temporary storage.
Since SC is connected across the buses,
either the program or an external operator

1-4

can alter the sequence by transmitting
an address directly to SC. The memory
address register, MA, supplies the ad­
dress for every memory access, and words
are transmitted between the buses and
the memory via the memory buffer, MB.
When each instruction in the stored pro­
gram is taken from memory, it is sent to
the instruction register, IR, for de­
coding and execution by the processor.

The path for data controlled by the
program is from a source operator to the
destination bus, through the bus modi­
fier to the source bus, and then to a
destination operator. For its input data,
the bus modifier can take either the
source word or its complement and can
modify it in transmission in one of the
following ways: increment it by one,
shift it left one bit, or shift it right
one bit. Thus the twos complement nega­
tive of a number can be obtained during
transmission by combining the complement
and increment operations. Associated
with these functions are an overflow
flag and a link bit that connects the
ends of the word for circular shifting.

The other three programmable func­
tional operators that are basic to the
organization of the system allow the com­
puter to perform tests on data and func­
tions, and to generate functions. The
data tester determines whether the arith­
metic value of a word it receives is less
than, equal to or greater than zero, or
any meaningful combination thereof. If
the test result satisfies the condition
specified by the program, the current
contents of SC are stored in TRP and a
jump is executed.

Through the function generator a single
instruction can send up to sixteen inde­
pendent control functions to any operator.
In this way the function generating in­
structions control the peripheral equip­
ment and trigger the functional opera­
tions necessary for effective programmed
use of the system. By means of the f unc­
tion tester a single instruction can
sense up to three control signals sup­
plied by any operator; eg these instruc­
tions sense the status of peripheral de-

§1.1

vices. A function testing instruction
can select one or more of the control
signals and can test whether any of the
selected signals is true or if all those
selected are false; a positive test re­
sult produces a skip.

Two plug-in, interchangeable consoles
are available for the processor. The
programmer's console has lights for si­
multaneous display of IR, SC, MA, MB, and
any selected data. The usual procedure
is to use the programmer's console while
debugging system software, and then sub­
stitute the basic model when the system
is installed. Any register, either in­
ternal or external to the computer, can
be selected for display on either console
by a pair of thumbwheel switches. The
program can read the contents of the
switch register at any time, and a word
sent to the destination dialed into the
thumbwheels is automatically displayed
in the lights. This permits display and
debugging of all system devices directly
from the computer console.

The system described thus far is the
minimum configuration in which the GRI-909
is available. With the addition of some
kind of stored program, it can provide
all the control capabilities of a general
purpose computer, although arithmetic and
logical operations must be performed one
bit at a time using the bus modifier.
Random access core memory can be added to
the system in units of 1024 and 4096 words
to a maximum of 32,768. With core memory
the processor also has facilities for pro­
gram interrupts and high speed data trans­
fers.

The interrupt system facilitates pro­
cessor control of peripheral equipment by
allowing any device to interrupt the nor­
mal program flow on a priority basis. The
processor acknowledges an interrupt re­
quest by storing SC in a memory location
and executing the instruction contained
in the next consecutive location. The
system can be set up so that a unique
triplet of locations is assigned to each
device, or all devices can interrupt to
location 0, and the program must deter­
mine which device requires service.

§1. l 1-5

Console

A high speed device, such as magnetic
tape or disk, can gain direct access to
memory without requiring the execution
of any instructions; the program simply
pauses for a single cycle while access
is made. The logic for direct memory
access allows the transfer of data to or
from memory, or the incrementing of a
memory word, a feature useful in such
appl:i.cations as high speed pulse count­
ing.

This minimal version of the GRI-909
provides an economic controller for ap­
plications with limited arithmetic re­
quirements or where arithmetic execution
time is not a factor. Such applications
might be communication traffic control,
data concentration and formatting, peri­
pheral equipment control, and simple
system control. The addition of plug-in
hardwired or read-only memory instruc­
tions allows the GRI-909 to be expanded
to encompass many powerful features on
a modular basis.

The most basic firmware option that
can be added to the system is an arith-

metic operator. This operator contains
two registers and a functional data out­
put whose generation does not disturb the
contents of the registers. The program
can produce arithmetic and logical func­
tions of the contents of these registers
by placing the arithmetic operator in the
appropriate functional state. The func­
tions that can be performed are addition
and the three logic functions, AND, in­
clusive OR, and exclusive OR. At any
given time the data output of the arith­
metic operator is equal to the selected
function of the contents of the two reg­
isters. The output changes automatically
by changing the functional state of the
operator or the contents of either regis­
ter. Hence the program can compare a
series of values against some limit
stored in one register without disturbing
that register or requiring temporary
storage.

Other firmware options include general
purpose registers and operators that swap
the bytes in a word, that pack bytes into
a word, and that perform computations

1-6

such as multiplication, division, square
root, and so forth. In many cases the
user has a choice of options for per­
forming a given operation at various
speeds. Multiplication can be done by
a subroutine with or without an arith­
metic operator, but two multiply options
are also available. One performs a
multiplication in about 56 microseconds
by requiring the processor to perform
external instructions, ie instructions
supplied by a read-only memory in the
operator; the other is fully implemented
by internal hardware and takes under 10
microseconds.

The execution of external instructions
is a technique that can also be used by
hardwired diagnostics, supplied in the
form of plug-in modules, that can exer­
cise all nonmemory registers in the sys­
tem.

1.2 MEMORY

From an addressing point of view, the
entire memory is a set of contiguous
locations whose addresses range from zero
to a maximum dependent upon the capacity
of the particular installation. In a
system with the greatest possible capac­
ity, the largest address is octal 77777,
decimal 32,767. Core memory is avail­
able in increments of 1024 words or 4096
words. A given system can contain at
most four of the lK modules; a typical
system might contain 4096 words of core
memory and 1024 words of read-only memory.
Read-only memory differs from core only
in that it cannot be altered by the pro­
gram. Common software routines are
available in standard read-only modules,
others are available on a custom basis.
(Some firmware options actually contain
their own small read-only memories, but
these are not addressable by the program.)

Memory Allocation. The only locations
whose use is fixed by the hardware are
those allocated to the program interrupt
system and autorestart, which uses loca­
tions 6 and 7. System operators can be

§1. 3

wired to interrupt to any location, but
the standard product line operators are
wired to use locations 0-5 and 11-62.
Moreover the user can assign all devices
to location O, in which case an interrupt
causes the processor to save SC in loca­
tion 0 and execute the instruction in
location 1. Any location used by the
interrupt or autorestart should ordinar­
ily be regarded as unavailable for gener­
al programming.

1.3 INSTRUCTIONS

Every instruction can address two opera­
tors, one as the source of information,
the other as the destination. These in­
structions are of the general form, Oper­
ator X to Operator Y. Every operator in
the system, from internal control regis­
ters to peripheral devices, can be ad­
dressed with the one exception of the bus
modifier, which plays its role automat­
ically. Thus instead of performing a
jump, the program can alter its own se­
quence simply by transmitting a word to
SC. Generally IR and MA are addressed
only by the processor for its own internal
functions; the program can read these re­
gisters but cannot load them since such
action would be meaningless. In other
respects there is no intrinsic difference
between the automatic operations performed
by the processor and the operations speci­
fied by the program. In reality the pro­
cessor executes a built-in sequence of
instructions into which the instructions
from the program are inserted.

Consider an instruction for a simple
transfer from one nonmemory register to
another. As an instruction in the pro­
gram it is executed in a single processor
cycle; but the cycle is actually divided
into four parts in which the processor
executes four instructions. The first
step is a transfer from SC to MA to re­
trieve the program instruction from memory;
when it is available it is transferred
from memory to IR. In the third step the
processor decodes the instruction in IR

§1. 3

and executes it. In the fourth and
final step SC is moved to itself via the
bus modifier but it is incremented by one
along the way.

The actual type of operation performed
and the type of information moved by any
instruction depends upon the operators
it addresses. For a simple transfer the
programmer can take either the word di­
rectly from the source operator or its
complement, and he can elect to modify
the word as it passes through the bus
modifier. An instruction that specifies
memory as source or destination automat­
ically uses the location following it-
s elf in memory. Besides selecting the
type of modification (if any) of the
word in transit, the instruction also
selects the addressing mode, ie whether
the next memory location is used to re­
ceive or supply an operand, or to supply
an address to be used in locating an
operand.

Other types of instructions are pro­
duced by addressing appropriate operators
either as source or destination. The
program tests a source word for a jump
by addressing the data tester as its des­
tination. The program generates control
signals for a destination operator by
addressing the function generator as
source, and tests control signals from
a source by specifying the function
tester as destination.

Using these basic types of instruc­
tions the program controls the remaining
operators in the system. The two regis­
ters in the arithmetic operator are ad­
dressable for data transmission purposes;
by sending control signals from the func­
tion generator, the program can specify
the arithmetic or logical operation the
unit is to perform, and the result is
available for data transmission. Send­
ing a. word to the byte swapper makes the
word, with its bytes swapped, retriev­
able by addressing the byte swapper as
source. Even though all instructions
are of the same general form - there are
no special in-out instructions - none­
theless, control over a peripheral device
is essentially like that in any computer:
data transmission instructions send data

1-7

to and from the interface, and the func­
tion generating and function testing in­
structions control it. The addition of
any new peripheral device or firmware
option increases the instruction set in
all types for which it is meaningful to
address the new operator. Generally it
will require function generating and test­
ing instructions to control it and sense
its status. If it is a source of data,
its output can be sent, with or without
modification, to any data destination in­
cluding memory: conversely, if it can re­
ceive data, it can be addressed as desti­
nation in a transmission instruction that
sends data (perhaps modified) to it from
any source throughout the entire system.

There are several levels at which oper­
ations can be performed. With only the
basic processor, multiplication must be
performed by a software subroutine. If
general purpose registers are added, the
subroutine is shorter; adding an arith­
metic operator shortens it more; and with
both it is shorter yet. But multipli­
cation can also be performed directly by
an optional operator added to the system.
In some cases a function is implemented
entirely by hardware: the program sets up
the operator and gives an instruction
that causes it to perform its operations
internally. The arithmetic operator is
of this type, and a hardware multiplier
is also available. But there is another
multiplication operator that must be set
up by the program, and the program then
gives an instruction to place it in oper­
ation, but the operator does no~ perform
all of its operations internally. In­
stead it takes over the processor tempo­
rarily and causes the processor to execute
external instructions retrieved from a
read-only memory built into the multi­
plier. Of course the operator contains
enough hardware so that the external
routine is much shorter than a software
routine that uses the arithmetic unit and
general purpose registers. But as far as
the program is concerned, and as far as
other operators in the system are con­
cerned, the entire sequence behaves like
a single instruction. In other words the
instruction that says "go", plus the ex-

1-8

ternal subroutine, looks to the pro­
grammer like a longer instruction that
says "multiply". External instructions
cannot reference memory, and they are
executed at twice the rate required for
instructions stored in main memory.

Instruction Format. There is one
basic format for all instructions in the
GRI-909. In the 16-bit instruction word,
the left and right six bits respectively
(bits 10-15 and 0-5) are the codes of
the operators that are the source and
destination of the information transfer,
and the middle four bits are used for
control or functional information.

SOURCE f'.UNSTIOfV I DESTINAT~
15 10 9 8 7 6 5 0

If the elements named as source and des­
tination are simply registers that can
supply or receive data and are not in
memory, then the instruction is simply
for data transmission and the function
bits specify the way in which the word
taken from the source is modified before
being sent to the destination. In some
cases the actual transmission may cause
the destination to perform some function;
eg sending a character to the tape punch
causes that device to punch the character,
but the instruction is still classed as
data transmission. If the instruction
is for data transmission, but the opera­
tor specified as source or destination
is memory, the contents of the next con­
secutive location following the instruc-
t ion are used either as the data word
transmitted or as an address to locate
that word. The function bits in the
instruction specify not only the modif i­
cation of the word in transit, but how
the word following the instruction is to
be used.

Other types of instructions are pro­
duced by naming as source or destination
an operator that is not simply a register
to hold data. Naming the function gen­
erator as source supplies up to four
control signals to the named destination,
such signals being selected by the func­
tion bits of the instruction. Specifying

§1. 3

the function tester as destination causes
it to test signals from the source for a
skip: bits 6-9 select the signals and the
conditions they must satisfy. Naming the
data tester as destination causes it to
test a word supplied by the source for
the conditions specified by the func­
tion bits; if the condition holds, the
processor jumps to a location determined
from the word following the instruction
in memory.

Thus even though all instructions are
of the same form, the repertoire includes
a variety of operation types depending
upon the properties of the operators ad­
dressed. These run the gamut from basic
core memory storage to peripheral devices
such as line printer and magnetic tape,
to functional operators for performing
arithmetic calculations, to purely con­
trol devices that generate or test func­
tions.

Effective Address. An instruction that
specifies memory as source or destination
or specifies the data tester as destina­
tion takes two words, ie it uses the next
consecutive memory location following the
instruction. Data may be stored in the
second location, or its contents may be
used either as data or as an address.

For any instruction of these types the
processor must determine the effective
address, which is the actual memory ad­
dress used to fetch or store the operand
or alter program flow. A data trans­
mission instruction that references mem­
ory can specify that addressing is direct,
deferred (also called indirect), immediate,
or immediate and deferred. A jump instruc­
tion, ie one that names the data tester
as destination, can specify only direct
or deferred addressing. With direct ad­
dressing bits 14-0 of the location follow­
ing the instruction are used as the ef f ec­
ti ve address, ie the address of the loca­
tion to be used for retrieval or storage
of data or retrieval of the next instruc­
tion (of course the latter case holds in
a conditional jump only if the condition
is satisfied). For deferred addressing
the processor retrieves a word from the
location addressed by the contents of the

§1. 3

location following the instruction; it
then adds one to that word, writes the
result back in the same location and uses
it as the effective address.

Immediate mode addressing can be used
only by the data transmission instruc­
tions. In this case the effective ad­
dress is simply one greater than the ad­
dress of the instruction; in other words
the contents of the location following
the instruction are used as the operand
or that location is the destination for
an ope~rand. If addressing is both imme­
diate and def erred, the processor takes
the word from the location following the
instruction, increments it by one, places
the incremented word back in the same lo­
cation and uses it as the effective ad­
dress.

Programming Conventions. Although all
instructions have essentially the same
format, the assembler distinguishes four
classes: data transmission, data testing,
function generating, and function test­
ing. The assembler also distinguishes
data transmission instructions that ref­
erence memory from those that do not.

The GRI-909 actually has two assembly
programs, a basic assembler (BASE) and
a functional system-oriented assembler
(FAST), that use very different assembly
languages. One is a terse, symbolic
language like those used with most as­
semblers; the other is a compiler-like
system language that is closer to ordi­
nary English. The latter provides a
much easier introduction to the computer,
but the former is more ef f ieient to use
once one gains familiarity with the GRI-
909. Instruction descriptions and pro­
gram examples in the text are given in
the basic assembly language. A detailed
treatment of FAST is given in Appendix A,
although Chapter 2 does give the general
forms for the various instruction types
in the system language.

The basic assembly program recognizes
a number of mnemonics and other initial
symbols that facilitate constructing
complete instruction words and organizing
them into a program [Appendix E]. In
particular there are two-letter mnemonics

1-9

for the basic instruction types, and
letters can be added to these to specify
the type of addressing, to select the
complement of the source in data trans­
mission, and to specify particular opera­
tors for function generating and testing.
The basic form for assembling any in­
struction word is

T S,F,D

where T is the mnemonic for the instruc­
tion type, S and D are the source and des­
tination, and F represents the function
bits in the middle of the instruction
word. For all one-word instructions
(those that do not reference memory), S
and D are 2-digit octal operator codes.
An operator code indicating memory ref er­
ence is always absorbed in T, and a memory
address then replaces the operator code
in the S or D position or both. Consider
the instruction that moves the word in
register AX to register AY shifted right
one place. In mnemonic form this would
be

RR AX,Rl,AY

which assembles as 11 1100 12. To move
a .word from memory location 317 to regis­
ter AX would be

MR 317,11

or

MR 317,AX

either of which assembles as two consecu­
tive words, 06 0000 11 and 000317.

Note

Numbers representing instruction
words always have a pair of octal
digits at each end for the source
and destination operator codes
and four binary digits between
them for the function bits. All
numbers representing codes, ad­
dresses, and register contents
except instruction words are al­
ways octal, and any numbers ap­
pearing in program examples are
octal unless otherwise specified.
Computer words (other than instruc-

1-10

tions) are represented by six
octal digits wherein the left
one is always 0 or 1 represent­
ing the value of bit 15. The
ordinary use of numbers in the
text to count steps in an op­
eration, to specify word or
byte lengths, bit positions,
exponents, etc, or to specify
quantities of objects such as
words or locations, employs
standard decimal notation.

In all but the nonmemory data trans­
mission instructions, one or both of
the operator codes is implied by the
mnemonic for the instruction type.
Hence the basic mnemonic not only repre­
sents the numberical value but also tells
the assembler how to interpret the rest
of the information given for the instruc­
tion. Since the format thus varies from
one instruction type to another, the de­
tailed conventions for programming are
given with the descriptions of the vari­
ous types in Chapter 2.

The programming examples in this manual
use the following addressing conventions:

A colon following a symbol indicates
that it is a symbolic location name.

A: RR 10,04

indicates that the location that con­
tains RR 10,04 may be addressed symboli­
cally as A.

The period represents the current ad­
dress, eg

RM 10, .+4

is equivalent to

A: RM 10,A+4

§1.4

Anything written at the right of a
semicolon is commentary that explains the
program but is not part of it.

1. 4 SOFTWARE

Software for the GRI-909 includes the
following:

FAST - a functional assembler for the
system-oriented programming language
described in Appendix A.

BASE - a basic assembler for the lan­
guage described in the body of this manual.

BASE 360 - a version of BASE written in
PL/l for the IBM 360 series computers.

EDIT - a source tape editor combining
line-oriented and content-oriented editing
commands.

DEBUG - a debugging program.
Fixed point routines for single and

double precision arithmetic.
An interpretive floating point package

for basic floating point arithmetic.
An extended package includes additional
sophisticated mathematical functions.

Input-output routines for the standard
peripherals.

A series of data conversion routines
for converting from external to internal
form and vice versa for single and double
precision fixed point integers and f rac­
tions, BCD integers and fractions, and
floating point numbers.

Diagnostics.

C H A P T E R T W 0

DIRECT FUNCTION PROCESSOR

This chapter describes the instruction
types in detail, describes the use of
the instructions for the basic operators
including the program interrupt and con­
sole, and presents a general discussion
of input-output. The effects of in­
structions that address particular pe­
ripheral devices and optional functional
operators are discussed with the opera­
tors in the remaining chapters.

The description of each instruction
begins with the mnemonic, the name, and
a box showing the format. The mnemonic
assembles to the word in the box, where
bits in those parts of the word repre­
sented by letters assemble as Os. The
letters indicate portions that must be
added to the mnemonic to produce a com­
plete instruction word.

The descriptions of the basic in­
struction types in §§2.2-2.5 give the
processor execution time. This is al­
ways a multiple of the processor cycle
time of 1.76 µs. Each processor cycle
includes one memory read-write cycle,
and every instruction in the stored pro­
gram requires a minimum of one cycle
simply to retrieve the instruction from
memory. Instructions supplied by an ex­
ternal source cannot reference memory
and are executed at the rate of two per
processor cycle. Since instructions de­
scribed in the rest of the manual are
simply particular instances of the basic
types, no times are given except for
function generating instructions that
start operators that in turn preempt the
processor, ie stop the stored program.

Number System. In any arithmetic
operation the hardware treats computer
words as 16-bit unsigned binary numbers
in the range 0 to 2 16 - 1. But the pro­
grammer can interpret these as signed
numbers using the equivalent twos com­
plement conventions.

In a word used as a signed number, bit
15 (the leftmost bit) represents the sign
O for positive, 1 for negative. In a
positive number the remaining fifteen
bits are the magnitude in ordinary binary
notation. The negative of a number is ob­
tained by taking its twos complement. If
x is an n-digit binary number, its twos
complement is 2n - x, and its ones com­
plement is (2n - 1) - x, or equivalently
(2n - x) - 1. Subtracting a number from
2n - 1 (ie from all ls) is equivalent to
forming the logical complement, ie chang­
ing all Os to ls and all ls to Os. There­
fore, to form the twos complement one
takes the logical complement - usually
ref erred to merely as the complement - of
the entire word including the sign, and
adds 1 to the result. In a negative num­
ber the sign bit is 1 and the remaining
bits are the twos complement of the mag­
nitude.

Operations on signed numbers using twos
complement conventions are identical to
operations on unsigned numbers; the hard­
ware simply treats the sign as a more
significant magnitude bit. Suppose we
wish to count seventeen steps by incre­
menting during data transmission. We
would start with a register containing
216 - 17, ie this binary configuration,

2-1

2-2

+14110

-14110

I 1 111 111 111 101 1111
15 0

+215s

-215g

and increment until overflow occurs at
2 16 . As an unsigned number the above
would be equivalent to

177757g 3275110

whereas interpreted as a signed number
using twos complement notation it would
be

-2lg -1710

(2 16 - 17 is the twos complement of 17).
Hence we can regard the count as start­
ing at a large number with overflow at
2 16 , or as starting at a small negative
number with overflow at zero. Insofar
as processor operations are concerned,
it makes no difference which way the
programmer interprets the contents of
various registers provided only that he
is consistent. For further information
on the properties of twos complement
numbers and on the number formats for
the software, refer to Appendix H.

Since each bit position represents a
binary order of magnitude, shifting a
number is equivalent to multiplication
by a power of 2, provided of course that
the binary point is assumed stationary.
Shifting one place to the left multi­
plies the number by 2. A 0 should be
entered at the right, and no informat­
ion is lost if a 0 is shifted out at the
left (for a signed number the condition
is that the sign bit remain the same -
a change in the sign indicates that a
bit of significance has been shifted
out). Shifting one place to the right
divides by 2. Truncation occurs at the
right, and a 0 must be entered at the
left (for a signed number a bit equal to
the sign must be entered).

§2.1

I o ooo ooo 010 001 101 I
15 0

[£ 111 l~~~~ 110 ~~]
15 0

2.1 OPERATORS

The instruction format allows sixty-four
operator codes. The table opposite
lists the octal codes and mnemonics for
the basic operators that are part of
every system, the arithmetic operator,
and some of the standard peripheral de­
vices. A complete list of operator codes
is included in Appendix E.

Sometimes a single code may name two
operators, one as a source, another as a
destination. Thus the code 02 as a
source specifies the function generator,
but as a destination it specifies the
function tester. In some cases a code
cannot be used with all instruction
types, and every code generally has dif­
ferent meanings with different instruct­
ion types. Eg the code 00 specifies the
control logic when used with function
generation or function testing, but it
is a null code when used with data
transmission (ie as a source it supplies
a zero word, and as a destination it can
receive no data). Similarly the code 04
represents interrupt control elements
when used with function generation or
testing, but represents the interrupt
status register when used for a data
transfer.

Consider the arithmetic operator, which
has three codes, two for the registers
in it and one for the operator itself.
The registers can be addressed as
source or destination of data, but no
functions can be generated for them nor
do they supply any functions for testing.
The operator on the other hand can re­
ceive functions - specifically the a­
rithmetic or logical operation to be per­
formed - and it has a flag that can be
tested. It can also be a source of data
for it supplies the result of the arith­
metic operation, but it can receive no
data as destination. Similarly all in-

§2.1 2-3

OPERATOR CODES

Octal Mnemonic Operator
Source Destination

Null-Control 00

01

02

03

Instruction Register

Function Generator

Null

Function Tester

TRP Trap Register Data Tester (nonmemory source)
Trap Register (memory source)

04

05

06

07

10

11

12

13

14

15

16

17

ISR Interrupt Status Register

Memory Address Null

Memory (Buff er)

SC

SWR

AX

AY

AO

MPO

Sequence Counter

Console Switch Register Null

Register AX

Register AY

Arithmetic Operator

Multiply Operator

External Data

External Address Null

MSR Machine Status Register

Real Time Clock 75

76

77

RTC

HSR HSP

TTI TTO

Paper Tape Reader

Teletype Input

Paper Tape Punch

Teletype Output

out devices use both types of function
instructions, but an output device gen­
erally cannot supply data as a source,
and an input device generally cannot re­
ceive data as a destination. Addressing
as a source an operator that cannot
supply data, or addressing as a desti­
nation an operator that cannot receive
it, is equivalent to using the null code.
However, pairs of IO devices sometimes
share a common code; examples are tele­
type input and output, and paper tape
reader and punch. In each case the code
addresses an input buff er as source in
data transmission or data testing, an
output buffer as destination in data

transmission, and the control logic for
both devices as source or destination in
function generation or testing.

Some codes are used only for the inter­
nal operations of the processor and can­
not be used by the program to address the
operators they designate. An attempt by
the program to send data to the instruct­
ion register, the memory address register,
or the external data or address registers
results simply in a no-op. (The codes 15
and 16 are used for direct memory access
for all devices and select individual re­
gisters on a priority basis. The program
can actually address the external address
register in any given device, but a

2-4

unique code (not 16) is assigned to each
register.) The program can read the cur­
rent memory address and the instruction
(which is simply itself), but using code
15 or 16 as a source gives a zero word.

2.2 DATA TRANSMISSION

Any instruction moves a word of data
from one place to another provided only
that meaningful operator codes are used:
no transfer occurs if the programmer
specifies an operator that results in an
instruction of some other type (such as
a function instruction) or uses a code
that is not available to the program.

The word being moved can be modified
in transit: the program can increment it
by one or can shift it one place to the
left or right. Associated with these
functions are a Bus Overflow flag, and
a 1-bit link register which connects the
ends of the word for a circular shift -
in other words the shift is actually a
rotation through the link. The modifi­
cation is selected by bits 8 and 9 of
the instruction as follows.

Bits 9-8 Mnemonic

0

1

2

3

Pl

11

Rl

Modification

None

Add +l. If the re­
sult is 216 set Bus
Overflow, otherwise
clear it.

Rotate left one
place. Bit 15 is
shifted into the
link, the link into
bit o.

~~1_5-o_f:J
Rotate right one
place. Bit 0 is
shifted into the
link, the link into
bit 15.

~..____15_-_o ____,~

§2.2

There are two basic instructions for
transmission from one nonmemory register
to another [transmission instructions that
reference memory are discussed as a spe­
cial case belo~]. One instruction takes
a word from the source directly, the other
takes its complement. System language
statements for these instructions are of
the form

Register X (Modification) TO Register Y

RR Register to Register
1 cycle 1. 76 µs

M 0 0 I D
I

s
1 5 1 0 9 8 7 6 5 0

Take the word from register S, modify it
as specified by M (as given above), and
place the result in register D. The con­
tents of S are unaffected, the original
contents of D are lost.

Add 1 to SC so the next instruction will
be taken from the next location.

RRC Register to Register, Complement
1 cycle 1.76 µs

s M 1 0
I D =1

1 5 10 9 8 7 6 5 0

Take the complement of the word from re­
gister S, modify it as specified by M (as
given above), and place the result in re­
gister D. The contents of S are unaffect­
ed, the original contents of D are lost.

Add 1 to SC so the next instruction will
be taken from the next location.

Suppose we wish to load register AX
with the address of the location contain­
ing the instruction being executed. We
could give

RR 7,11

which addresses SC and AX as source and
destination. To load twice the current

§2.2

address we would give

RR 7,2,11

or, more likely, the mnemonic form

RR SC,Ll,AX

which assembles as 07 1000 11. To load
the twos complement of AX into AY we
would give

RRC AX,Pl,AY

which assembles as 11 0110 12.
For convenience the assembler recog­

nizes special mnemonics for clearing a
register (loading zero into it) and
transferring a register into itself.

ZR M,D

RS S,M

is equivalent to

is equivalent to

RR O,M,D

RR S,M,S

In both cases the letter C can be append­
ed to the basic mnemonic to take the com­
plement of the source. To load +l into
AX we would give

ZR Pl,AX

and to load all ls we would give

ZRC AX

To change the word in AX to its twos
complement this suffices:

RSC AX,Pl

Memory Reference
A special case of data transmission is
instructions that specify memory as the
source or destination of data. The
programmer need specify only the non­
memory operator, but must supply an op­
erand itself for the location following
the instruction. (Of course the second
location can be left clear if an immedi­
ate operand is to be placed in it.) There
are eight basic instruction forms for
the two transfer directions, each with
four modes o:E addressing. System lan­
guage statements for them are like this.

Register (Modification) TO Location

Location (Modification) TO Register

2-5

RM Register to Memory
3 cycles 5.28 µs

L s M 0 0 06 ~ I
15 10 9 8 7 6 5 0

Add 1 to SC to retrieve the effective ad­
dress E from the next location. Add 1 to
SC again so the next instruction will be
taken from the second location following
this instruction.

Take the word from register S, modify
it as specified by M (as given above),
and place the result in location E. The
contents of S are unaffected, the original
contents of location E are lost.

RMD
4 cycles

[s
15

Register to Memory, Deferred
7.04 µs

M
I

0 1 06 ~
10 9 8 7 6 5 0

Add 1 to SC to retrieve the indirect ad­
dress I from the next location. Add 1 to
SC again so the next instruction will be
taken from the second location following
this instruction. Retrieve the word from
location I and add 1 to it to produce the
effective address E. Store E in location I.

Take the word from register S, modify
it as specified by M (as given above), and
place the result in location E. The con­
tents of S are unaffected, the original
contents of location E are lost.

RMI
2 cycles

Register to Memory, Immediate
3.52 µs

[~~-S~~~M~1 ~1~0~~0_6_.~
15 10 9 8 7 6 5 0

Add. 1 to SC to produce the effective ad­
dress E. Take the word from register S,
modify it as specified by M (as given a­
bove), and place the result in location E
(ie the next location). The contents of
S are unaffected, the original contents
of location E are lost.

2-6

Add 1 to SC again so the next instruct­
ion will be taken from the second loca­
tion following this instruction.

RMID

3 cycles

Register to Memory,
Immediate and Deferred

5.28 µs

s M 1 1 06
I

15 10 9 8 7 6 5

Add 1 to SC to produce the indirect ad­
dress I. Retrieve the word from locat­
ion I (ie the next location) and add 1
to it to produce the effective address
E. Store E in location I. Add 1 to SC
again so the next instruction will be
taken from the second location follow­
ing this instruction.

Take the word from register S, modify
it as specified by M (as given above),
and place the result in location E. The
~ontents of S are unaffected, the orig-
inal contents of location E are lost.

0

MR Memory to Register
3 cycles 5.28 µs

06 M 0 0 D
I

1 5 10 9 8 7 6 5 0

Perform the same address operations as RM.
Then take the word from location E, mod­
ify it as specified by M (as given above),
and place the result in register D. Lo­
cation E is unaffected, the original con­
tents of D are lost.

MRD
4 cycles

Memory to Register, Deferred
7.04 µs

c=_o_6~__,____.~__.__o_._1_._~_n~=:J
15 10 9 8 7 6 5 0

Perform the same address operations as
RMD. Then take the word from location
E, modify it as specified by M (as
given above), and place the result in
register D. Location E is unaffected,
the original contents of D are lost.

§2.2

MRI Memory to Register, Immediate
2 cycles 3.52 µs

06 M 1 0 D
i

15 10 9 8 7 6 5 0

Add 1 to SC to produce the effective ad­
dress E~ Take the word from location E
(ie the next location), modify it as
specified by M (as given above), and place
the result in register D. Location E is
unaffected, the original contents of D
are lost.

Add 1 to SC again so the next instruct­
ion will be taken from the second location
following this instruction.

MRID

3 cycles

06
15 10 9

Perform the same
RMID. Then take

M
I

Memory to Register,
Immediate and Deferred

5.28 µs

1 1 D

8 7 6 5 0

address operations as
the word from location

E, modify it as specified by M (as given
above), and place the result in register
D. Location E is unaffected, the original
contents of D are lost.

The assembly format for memory reference
is the same as for other data transmission
instructions except that the contents of
the location following the instruction
replace the unneeded code for the memory
operator.

MR 542,AX

which assembles into the two consecutive
words 06 0000 11 and 000542, places the
contents of location 542 in AX.

RMI AX,Rl,O

assembles as 11 1110 06 and 000000, and
stores the contents of AX divided by 2
into the location following the instruct­
ion (the location left clear in the assem­
bly).

§2.3

For convenience the assembler recogniz­
es special mnemonics for clearing a loca­
tion and transferring a location into it­
self. Letting W be the word given for
the second location,

ZM M_,W

MS W_,M

is equivalent to

is equivalent to

RM O,M_,W

MR W_,M_,6

In both cases the letters D, I and ID
can be appended to the basic mnemonic to
select deferred, immediate, and immediate­
deferred addressing. To simply keep a
count of thirty in the location follow­
ing an instruction we could give

MSI -36,Pl ;3010 = 369

which assembles as 06 0110 06 and 177742.
The thirtieth iteration of this instruc­
tion sets the Bus Overflow flag.

Addressing Examples. Suppose AX con­
tains 000132 and the following locat­
ions contain the numbers listed.

Location

320

1742

171+3

5361

Contents

001742

005360

134267

000023

Then executing these instructions in lo­
cation 317 produces the effects given.

Instruction

MR 1742,AX

MRD 1742,AX

MRI 1742,AK

MRID 1742,AX

RM AX,1742

RMD AX,1742

RMI AX,1742

Effect

Load 5360 in AX.

Change location 1742 to
5361 and load 23 in AX.

Load 1742 in AX.

Change location 320 to
1743 and load 134267 in
AX.

Store 132 in location
1742.

Change location 1742 to
5361 and store 132 in
location 5361.

Store 132 in location 320.

RMID .AX,1742

MS 1742,Rl

MSD

MSI

MSID

ZM

ZMD

ZMI

ZMID

1742,Rl

1742,Rl

1742,Rl

Pl,1742

Pl,1742

Pl,1742

Pl,1742

2.3

2-7

Change location 320 to
1743 and store in loca­
tion 1743.

Change location 1742 to
2570 (5360+2).

Change location 1742 to
5361 and change location
5361 to 11 (23+2).

Change location 320 to
761 (1742+2).

Change location 320 to
1743 and change location
1743 to 56133 (134267+2).

Store 1 in location 1742.

Change location 1742 to
5361 and store 1 in lo­
cation 5361.

Store 1 in location 320.

Change location 320 to
1743 and store 1 in lo­
cation 1743.

DATA TESTING

Using codes 03 and 06 as source and desti­
nation or vice versa produces a standard
data transfer between memory and the trap
register. Thus such instructions as
MR 100,TRP and RMI TRP,O can use TRP simply
as a general purpose register. But code 03
as destination with a nonmemory source
addresses the data tester, allowing the
program to perform an arithmetic test on
the source word interpreted as a signed
number. If the number satisfies the con­
dition specified by the instruction, a
jump is executed and a return address is
saved in the trap register.

There are two forms of the data testing
instruction using direct and def erred ad­
dressing. In the system language they have
the form

IF Operator Condition GO TO Location

2-8

JC Jump Conditional
If no jump: 1 cycle 1. 76]JS

If jump: 2 cycles 3.52]JS

s c 0 03 ~
1 5 10 9 8 7 6 5 0

If S is not 06, test the word from re­
gister S for the condition specified by
C (the contents of S are not affected by
the test).

Bit Effect of a 1 in the bit

9 Selects the condition that the
source word is less than zero
(ie bit 15 of the word is 1).

8 Selects the condition that the
source word is zero (ie its bits
are all Os).

7 Inverts the conditions selected
by bits 8 and 9. A 0 in bit 7
selects the OR of the conditions
selected by 8 and 9; a 1 in bit
7 selects the AND of the comple­
ments of those conditions.

The combined effects of bits 7-9 and the
mnemonics for the various bit conf igura­
tions are as follows.

Bits 9-?

0

1

2

3

4

5

6

7

Mnemonic Jump function

Never Jump

Always Jump

ETZ Jump if Equal to Zero

NEZ

LTZ

GEZ

LEZ

GTZ

Jump if Not Equal to
Zero

Jump if Less than
Zero

Jump if Greater than
or Equal to Zero

Jump if Less than or
Equal to Zero

Jump if Greater than
Zero

If the word from S does not satisfy the
specified condition, add 2 to SC so the
next instruction is taken from the second

§2.3

location following this instruction. If
the condition is satisfied, add 1 to SC,
load the incremented SC into the trap re­
gister and also use it to retrieve the ef­
fective address E from the next location.
Load E into SC to retrieve the next in­
struction from location E and continue
sequential operation from there.

JCD Jump Conditional, Def erred
If no jump: 1 cycle 1. 76)JS

If jump: 3 cycles 5.28]JS

s c 1 03
1 5 10 9 8 7 6 5 0

If S is not 06, test the word from register
S for the condition specified by C, as des­
cribed above under JC. If the word from S
does not satisfy the condition, add 2 to
SC so the next instruction is taken from
the second location following this instruc­
tion.

If the condition is satisfied, add 1 to
SC, load the incremented SC into the trap
register and also use it to retrieve the
indirect address I from the next location.
Retrieve the word from location I, add 1
to it to produce the effective address E,
and store E back in location I. Load E
into SC to retrieve the next instruction
from location E and continue sequential
operation from there.

The assembly format for data testing is
the same as for memory reference data trans­
mission except that the address in the lo­
cation following the instruction replaces
the destination code for the data tester,
which is implied by the instruction mnemonic.
To jump to location NEG for a subroutine
that handles a negative result of an arith­
metic operation, this suffices:

JC AO,LTZ,NEG

For convenience the assembler recognizes
a special mnemonic for an unconditional
jump, ie one that specifies a condition
that is necessarily satisfied. Letting
A be the address given for the second

§2.4 2-9

Example 1.1

JU SUB ;2 words for subroutine call
;N words of data

0 ;A zero word terminating the data
;Next instruction

Examp "le 1 . 2

SUB: RMI
NEXT: MRD

TRP ,0
SUB+l,TRP
TRP,ETZ,END

;Save original SC in next location
;Get next data word

JC ;Is word zero?
;No, process data

JU NEXT ;Get next word
END: ;Yes, complete data processing

JUD SUB+l ;Return to calling sequence

location,

JU A is equivalent to

JUD A is equivalent to

JC O,ETZ,A

JCD O,ETZ,A

Note that when SC is saved it points
to the address location following the
jump instruction. A subsequent return
to the next instruction in the calling
sequence (to the second location follow­
ing the jump) can therefore be made by
giving

RR TRP ,SC

as SC is automatically incremented fol­
lowing the transfer. Note also that SC
is saved in the trap register. Hence
the subroutine can be reentrant (pure),
ie memory is not modified by the act of
calling it. If we wish to have the trap
free during the subroutine, then at the
subroutine entry point we can use

ENT: RMI TRP,O

which moves the address from the trap to
the location following ENT. The return
can then be made by giving

JUD ENT+l

The above technique is also convenient
for argument passing. Suppose we wish
to call a routine to process N words of

(nonzero) data and give the words with
the call. The calling sequence can be
like Example 1.1, and the subroutine
would then be of the form of Example 1.2.

2.4 FUNCTION GENERATION

By addressing the function generator as
source (code 02) the program can perform
functions in the destination operator.
Physically this is done by pulsing control
lines selected by ls in bits 6-9 of the
instruction, which has this form in the
system language.

FO
1 cycle

Function TO Operator

Function Output
1. 76 µs

LL--~0_2~-'--'-~f__,___._~~D-~
15 10 9 8 7 6 5 0

Perform the functions specified by F in
operator D. In some cases individual
functions are selected by ls in specific
bits in F; in other cases the various con­
figurations of a set of bits in F select

2-10

specific functions (eg the four config­
urations of bits 8 and 9 select the four
arithmetic and logical functions that
can be performed by the arithmetic oper­
ator). In any event the actual func­
tions that can be selected and the man­
ner in which they are selected by bits
6-9 depend on the properties of oper-
a tor D.

Since the source code is implied by the
mnemonic FO, assembly statements for the
function generating instructions are of
the form

FO F,D

The assembler recognizes special mnemonics
that include the codes for the more com­
mon destination operators: the machine
(ie the control logic), and the interrupt
and arithmetic operators.

FOM F

FOI F

FOA F

is equivalent to

is equivalent to

is equivalent to

FO F,O

FO F, ISR

FO F,AO

There are also mnemonics for programming
bits 6-9, and functions can be combined
(when it is meaningful to do so) simply
by giving the appropriate mnemonics sep­
arated by spaces.

2.5 FUNCTION TESTING

By addressing the function tester as des­
tination (code 02) the program can test
control signals from the source operator
for a skip. The system language state­
ment for this instruction is

SKIP IF Operator Function

SF Sense Function
1 cycle 1. 76 µs

s T 02
I

15 10 9 8 7 6 5 0

Perform the test T on functions from op-

§2.5

erator S. Individual functions (control
signals, flags) from S are selected by
ls in bits 7-9. If bit 6 is 0, the test
is positive if any function selected by
bits 7-9 is true. If bit 6 is 1, the test
is positive if no function selected by
bits 7-9 is true.

If the test is negative, add 1 to SC
so the next instruction is taken from the
next location. If the test is positive,
add 3 to SC to skip the next two locations
in normal sequence. In other words the
processor takes the next instruction from
the third location following this instruc­
tion - two locations are skipped over so
that the skipped instruction can be a jump.

Since the destination code is implied by
the mnemonic SF, assembly statements for
the function testing instructions are of
the form

SF S,T

The assembler recognizes special mnemonics
that include the codes for the more common
source operators: the machine (control
logic) and the arithmetic operator.

SFM T

SFA T

is equivalent to

is equivalent to

SF O,T

SF AO,T

There are also mnemonics for programming
the functions in bits 7-9, and functions
can be combined simply by giving the ap­
propriate mnemonics separated by spaces.
The mnemonic NOT preceding the function
mnemonics inverts the test, ie it places
a 1 in bit 6. Hence

SFM BOV LNK

which assembles as 00 0110 02 (SFM 6),
skips the next two locations if either
Bus Overflow or the link is set. But

SFM NOT BOV LNK

which assembles as 00 0111 02 (SFM 7),
skips if neither Bus Overflow nor the
link is set.

Function testing instructions for all
operators act in the manner indicated
above, so the descriptions of these in-

§2.6

structions in the remainder of the man­
ual simply list the functions tested.
In each format box, bit 6 is represent­
ed by the letter N.

Note that a function testing instruc-
t ion skips the next two locations.
Hence if the instruction to be skipped
uses only one location, the programmer
must fill in with a no-op. The standard
no-op is simply 00 0000 00, for which the
assembler recognizes the mnemonic NOP.
Suppose we wish to twos complement AX if
the link is set, but otherwise simply
complement it before storing it in memory.
We would complement in either case, but
test to skip the incrementing by one like
this:

RSC AX
SFM NOT LNK
RS AX,Pl
NOP
RM AX,M

2.6 PROGRAM CONTROL

The present section discusses the use of
the various instruction types to control
the program sequence, the transmission
operator, the basic state of the computer,
and the execution of external instruc­
tions. The use of the jump instructions
for handling subroutines is treated in
§2.3. A jump always causes the next in­
struction to be taken from the address
loaded into SC, but this is not always
true when a data transmission instruc­
tion loads SC. The data transfer always
occurs in the final cycle of the instruc­
tion, and SC is incremented in the first
and second cycles. Hence if the instruc­
tion takes only one or two cycles (ie
an RR or MRI), SC is incremented after
it is loaded. In general this simplifies
the return because the address saved in
TRP must be incremented in order to point
to the correct return location. This in­
crementing can also be handled by using
a deferred jump, but the program must in~
crement in the bus modifier when using
a data transmission instruction of three
or four cycles to return with an address

2-11

·originally saved in TRP.
Sending a word to an operator that can­

not receive information or that does not
exist is a no-op, which is effectively a
program delay. The basic no-op NOP is a
one-cycle null transfer. The length of
the delay is equal to the number of cycles
the instruction takes. Provided no modi­
fication is called for, many transmission
instructions have no effect on the com­
puter at all except for the regular SC in­
crementing to go to the next instruction;
but the programmer must remember that de­
f erred addressing does affect some memory
location.

Certain flags and control flip-flops in
the computer are connected to the source
and destination buses in such a way that
their states can be saved and then restored
as though they constituted a register. These
elements are ref erred to collectively as the
machine status register, which can be ad­
dressed as operator code 17, mnemonic MSR.
The elements that make up this register
are the following.

...._lso_.vl_LN__.__Kl ___ _.__IA_o s_TA_TE~I----·------~
15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

Saving and restoring the machine state
is a procedure used primarily in program
interrupts [§2.8], but the programmer
can use it anytime; he can even set up
the machine state in any way he likes by
loading a word of his own construction
into MSR. Having the Bus Overflow and
Arithmetic Overflow flags at the ends of
the register is especially convenient
for either of them can therefore be moved
to the link in only one cycle. This is
done by

RR MSR,Ll,O

and

RR MSR,Rl,O

respectively.
There are also function generating and

testing instructions for the processor
control logic.

2-12

Function Output, Machine FOM

C.~02~~_.___,__~f--L--L~~o_o~__,
15 10 9 8 7 6 5 0

Perform the functions specified by ls in
F as follows.

Bit Mnemonic Function

6 CLL Clear link
7 STL Set link
8 HLT Halt the processor

Programming ls in bits 6 and 7, mnemonic
CML, complements the link.

SFM Sense Function, Machine

00 F 02
15 10 9 8 7 6 5 0

Perform a function test (as described in
§2.5) on the conditions selected by ls
in F as follows.

Bit

7
8
9

Mnemonic

BOV
LNK
POK

Condition

Bus Overflow set
Link set
Power ok

To determine whether location A con­
tains all ls we can use this instruction
pair.

MR A,Pl,O

SFM BOV

;Add 1, throw away
;result
;Skip if overflow
;occurred

Suppose we wish to use bit 0 of location
A as a program flag. We can set it with
this instruction:

ZM Pl,A

and we can test it by giving this
sequence:

MR A,Rl,O ;Put bit 0 in link
SFM LNK ;Skip if link set

If the computer contains an accumulator
or any data register that can be trans-

§2.6

mitted to itself, the twos complement of
a word can be formed by a single RSC.
Without such a register, the twos comple­
ment (say of the word in location Z) must
be constructed one bit at a time, like this.

MRI -21, TRP ;Set count to -17
RM TRP,M2+1

Ml: MS Z,Rl ;Bit by bit rotate
FOM CML ;Complement bit

M2: MSI O,Pl ;Count step
SFM BOV ;Finished ones

;complement?
JU Ml ;No, do next bit
MS Z,Pl ;Yes, add 1

External Instructions
Operations in some functional operators
are limited to single data transfers or
state changes, and they thus take place
entirely within the instructions that
cause them. But in many cases an FO in­
struction for an operator can trigger an
operational sequence that delays execution
of the stored program until it is finished.
There are two types of operators that do
this: one stops the processor while it ex­
ecutes its own internal operations, the
other takes control of the processor to
execute a sequence of external instructions
sent to IR and retrieved from its own built­
in read-only memory. In either case the
sequence is always started by an FO instruc­
tion that addresses the operator as desti­
nation and has a 1 in bit 6 (programmed
by the mnemonic STRT). A sequence of ex­
ternal instructions takes control of the
processor in order to use other operators,
such as the arithmetic operator, or at
least the data transfer paths. In some
respects such a sequence can be regarded
as an extension of the FO that triggered
it, for SC remains constant, and program
interrupts are shut out until the sequence
is finished. But following any cycle the
processor can pause for direct memory access.
Thus high speed in-out operations are not
endangered except to the extent that a pro­
gram interrupt may be delayed.

§2.7

2.7 INPUT-OUTPUT

With direct function processing, an in­
out instruction is simply one that ad­
dresses an in-out operator, ie a peri­
pheral device. A table in Appendix F
lists all devices for which operator
codes have been assigned, and gives
their mnemonics and GRI option numbers.

Besides the standard selection nets
for decoding source and destination ad­
dresses, every device operator has a
Ready flag and an Interrupt Status flag.
The first of these denotes the state of
the device. At power turnon, all output
Ready flags are set, all input Ready
flags and Interrupt Status flags are
clear. Placing a device in operation
clears Ready. If the device will be
used for input, the program places
it in operation by giving an FO instruc­
tion. A complex device to be used for
output may require an FO, but a simple
output device is usually started auto­
matically by giving a data transmission
instruction that sends a unit of data -
a word or character depending on how the
device handles information. (The word
"output" used without qualification al­
ways refers to the transfer of data from
the bus system to the peripheral equip­
ment; "input" refers to the transfer in
the opposite direction.) When the device
has processed a unit of data, it sets
Ready to indicate that it is ready to re­
ceive new data for output, or that it
has data ready for input. In the former
case the program would respond with a
transmission instruction to send more
data; in the latter with a transmission
instruction to bring in the data that is
ready, followed by an FO to restart the
device. If the program has set the In­
terrupt Status flag, the setting of
Ready signals the program by requesting
an interrupt; if Interrupt Status is
clear, then the program must keep test­
ing Ready to determine when the device
is available ..

A consistent format is employed for FO
and SF instructions for all devices.
Except for simple output devices that
start automatically when data is sent to

2-11

them, a device is usually started by pro­
gramming a 1 in bit 6 for an FO that ad­
dresses the device as destination. All
input devices require this, and the mnemonic
is STRT. (Note that this is the same bit
that starts a functional operator, and the
mnemonic is also the same.) Clearing or
sensing of the Ready flag is generally done
by a 1 in bit 7 of an FO or SF respectively.
If a pair of devices - one output only,
the other input only - share a common oper­
ator code, bit 9 handles the flag for input,
bit 7 the flag for output. In other cases
bits 8 and 9 may be used for special flags.
The mnemonic IRDY places a 1 in bit 9, ORDY
places a 1 in bit 7. It is usually con­
venient to clear the input Ready flag when
starting the device, so the assembler rec­
ognizes INP as equivalent to IRDY STRT.

A device may require no data transfers,
such as one type of real time clock that
uses only an FO to turn it on and off. All
of the simpler data handling devices have
only one buffer, eg to hold a single char­
acter in the teletype, tape reader and tape
punch, or to receive incremental plotting
data for a single point in the plotter. A
high speed device, such as magnetic tape
or disk, may use data transmission instruc­
tions only for control information with
data moving between the device and memory
via direct memory access. Control infor­
mation the program must supply to a tape
system includes a transport address and
an actual command the tape operator is to
perform; input information includes error
flags and transport status levels.

Most peripheral devices involve motion
of some sort, usually mechanical. In this
respect there are two types of devices,
those that stay in motion and those that
do not. Magnetic tape is an example of
the former type. Here the device executes
a command (such as read, write, space for­
ward) and a ready flag indicates when the
entire operation is finished. A separate
data flag signals each time the device is
ready for direct memory access, but the
tape keeps moving until an entire record
or file has been processed. Paper tape,
on the other hand, stops after each line
is read, but if the program restarts it
within a critical time the tape moves

2-14

continuously.
Other devices operate in one or the

other of these two ways but differ in
various respects. The tape punch and
teletype printer are like the reader.
Teletype keyboard input is initiated by
the operator striking a key rather than
by the program. Once started the card
reader reads an entire card, with a data
transfer required for each column.

2.8 PROGRAM INTERRUPT

Most in-out devices must be serviced in­
frequently relative to the processor
speed and only a small amount of proc­
essor time is required to service them,
but they must be serviced within a short
time after they request it. Failure to
service within the specified time (which
varies among devices) can often result
in loss of information and certainly re­
sults in operating the device below its
maximum speed. The program interrupt is
designed with these considerations in
mind, ie the use of interruptions in the
current program sequence facilitates con­
current operation of the main program
and a number of peripheral devices. The
hardware also allows a power failure to
signal the program by requesting an in­
terrupt.

Interrupt Requests. Interrupt requests
by a device are governed by its Ready and
Interrupt Disable flags. When a device
completes an operation it sets Ready, and
this action requests a program interrupt
if Interrupt Status has been set by the
program - if Interrupt Status is clear
the device cannot request an interrupt.
At the beginning of every cycle the pro­
cessor synchronizes any requests that
are then being made. Once a request has
been synchronized the device that made
it must wait for an interrupt to start.
The request signal is a level so once
synchronized it remains on the bus until
the program clears Ready or Interrupt
Status. In other words clearing either
flag in a device disables any request
the device has alreay made and had syn-

§2.8

chronized, so it is no longer waiting for
an interrupt. If the program clears In­
terrupt Status but leaves Ready set, sub­
sequently setting the former flag again
restores the request (remember the program
cannot set Ready; only the device can do
that).

Starting an Interrupt. The processor
starts an interrupt if all four of the
following conditions hold.

The processor has just completed an in­
struction or a direct memory access
[§2.9]. Insofar as interrupts are con­
cerned an entire sequence of external
instructions is equivalent to a single
instruction in the program: once a se­
quence has started, the processor does
not handle any interrupts until it is
finished.

At least one device is waiting for an
interrupt to start (ie it was requesting
an interrupt at the beginning of the last
cycle).

The interrupt control is on.

No device is waiting for direct memory
access, ie there are no requests for such
access that the processor has synchronized
but not yet fulfilled. The direct memory
channel has priority over progLam interrupts.

When the processor finishes an instruction
it takes care of all direct memory requests
before it starts an interrupt; this includes
any additional direct memory requests that
are synchronized while access is occurring.
When no more devices are waiting for access,
the processor starts an interrupt if the
interrupt control is on and a device was
requesting an interrupt at the beginning
of the last access. The program governs
the interrupt operator through this in­
struction.

FOI Function Output, Interrupt

02 F 04
I

15 10 9 8 7 6 5 0

Perform the functions specified by ls in
F as follows.

§2.8

Bit Mnemonic Function

6 ICF Turn interrupt
control off

7 ICO Turn interrupt
control on

To start an interrupt the processor turns
off the interrupt control so no further
interrupts can be started, saves SC
(which points to the next instruction)
in a location whose address is supplied
by the device, and loads SC with an ad­
dress one greater than that supplied.
The processor then goes on to the instru­
ct ion in the location now addressed by
SC and continues sequential operation
from there. In general three locations
are allocated to each channel to be used
as follows.

The first location, whose address is
supplied by the device, receives the
current contents of SC.

The second location should contain the
instruction 06 0010 07, ie an MRI -,SC.

The third location should contain an
address one less than the first loca­
tion in the service routine for the
device.

The channel locations allocated to the
basic in-out equipment are these.

Location

11-13
14-16
17-21
22-24

Device

Teletype output
Teletype input
High speed punch
High speed reader

Locations 25-62 are distributed into ten
more channels for other devices [Appendix
F list;s the interrupt locations for all
GRI-supplied devices] . A breakpoint
[see below] or a power failure [§2.10]
causes an interrupt to location 0, and
the first six locations should be set up
for these two combined channels this way.

Location

()

1

Use

SC stored here

Skip if power ok

2-15

2 MRI SC

3 Power failure routine
start address - 1

4 MRI SC

5 Breakpoint routine
start address - 1

In a large system it may be necessary
to have two or more devices sharing a
single channel; in such a case the third
location must contain an address for a
common routine for all of them. The hard­
wired addtess in any device can be dis­
abled so that it interrupts to location
O. If some but not all do so, then the
instruction in location 4 should take the
processor to a service routine for those
devices (plus breakpoint). If all devices
interrupt to 0, the service routine can
begin right in location 1.

A device may actually interrupt direct­
ly to its service routine. In this case
SC is stored in the first location of
the routine, and the second location
contains the first instruction of the
routine.

Servicing an Interrupt. If more than
one device is connected to a single
channel, the service routine should
first determine which one requires serv­
ice; this is easily done by a series of
SF instructions. Once the device has
been identified, the routine should save
the contents of any registers or flags
that will be used in the routine or may
be affected by it. Hence the routine
should save the machine status register
if there will be any modification in the
bus modifier, as Bus Overflow or the
link can be affected by such operations.
Similarly TRP should be saved if the
routine contains a jump or uses it as a
general purpose register. Then the pro­
gram should service the device. While
doing so it can simply leave the inter­
rupt off, or it can turn the interrupt
back on and establish a priority struc­
ture that allows higher priority devices
to interrupt the current device service
routine. This priority is determined
by controlling the states of the Inter­
rupt Status flags in the various devices.

2-16

If this final course is taken and the
program enables another device on the
same channel, the routine must save the
SC location so the return address to the
interrupted program will not be lost
should another interrupt occur on that
channel.

Device Priority. There are several
ways in which priorities are determined
for or assigned to devices. An elemen­
tary priority is established by the hard­
ware for devices that are requesting in­
terrupts simultaneously in that the proc­
essor brings in a channel address from
one and only one device: among those that
are waiting it takes the address from
that one which is physically closest to
the processor on the bus. This however
applies only to those devices that are
waiting at the time an interrupt is
started. Using SFs to determine which
device to service establishes a priority
by the order in which the devices are
tested, but again this applies only to
those that are waiting at the time.

The most significant method is by con­
trolling the Interrupt Status flags to
specify which devices can interrupt a
service routine currently in progress.
These flags are each connected to a par­
ticular data line in the source and des­
tination buses, so collectively they con­
stitute the interrupt status register.
By addressing this register as operator
code 04, mnemonic ISR, the program can
save the current priority structure, es­
tablish a new one, or restore a previous
one. In general the devices are in order
by speed, with the fastest ones (those
requiring the quickest service) assigned
to the higher numbered bits in ISR, but
there is no established priority as the
program can set up any ISR configuration.
All devices whose Interrupt Status flags
are clear cannot cause an interrupt to
start (clearing the flag causes the with­
drawal of any request that has already
been made and prevents the setting of
Ready from making a request) and are
therefore regarded by the program as
being of lower priority. Those devices
in which Interrupt Status is set can in­
terrupt the current routine and there-

§2.8

fore are regarded by the program as being
of higher priority.

The following lists the devices assigned
to the bits in ISR, and for each gives the
mask that must be loaded into ISR to allow
only devices assigned to higher numbered
bits to interrupt. [Complete information
on all devices is given in Appendix F.]

ISR Bit

0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Device

Teletype output
Teletype input
High speed punch
High speed reader

Mask

177776
177774
177770
177760
177740
177700
177600
177400
177000
176000
174000
170000
160000
140000
100000
000000

A ZRC ISR sets all the flags, allowing all
devices to interrupt; a ZR ISR clears them
all.

By means of ISR the program can establish
any priority structure with one limita­
tion: two or more devices whose flags are
the same bit in ISR (ie are connected to
the same data line) are all at the same
priority level. When an interrupt is in
progress for a device, the rest of the de­
vices assigned to the same bit must be re­
garded as all of higher priority or all
of lower priority depending upon whether
they are enabled or not.

Dismissing an Interrupt. After servic­
ing a device the routine should restore
the pre-interrupt states of any operators
affected by the routine (MSR, TRP, general
registers), turn on the interrupt, and
return to the interrupted program. The
instruction that turns the interrupt back
on has no effect until the next instruc­
tion begins. Thus after the FOI ICO the
processor always executes one more in­
struction (assumed to be the return to the
interrupted program) before another inter-

§2.8

rupt can start. The return is usually an
MR L~SC where L is the interrupt location
for the channel, ie the location in which
SC was saved when the interrupt was
started.

If the service routine allows interrupts
by higher priority devices, then before
dismissing as indicated above, the rou­
tine should turn off the interrupt to
prevent further interrupts during dis­
missal. In dismissing, the routine
should reenable lower priority devices
that were not allowed to interrupt the
current routine but will be allowed to
interrupt the program to which the proc­
essor is returning.

Breakpoint. The program can cause an
interrupt at any time by the use of this
instruction.

FO 2,1 Function Output, Breakpoint

02 0 0 1 0 01
15 10 9 8 7 6 5 0

Request an interrupt to location 0 and
force the processor to accept it even if
the interrupt control is off.

The interrupt requested by this in­
struction has priority over all others.
After executing this instruction, the
processor will first handle any direct
memory requests that are waiting, but as
soon as the last direct memory access is
completed, an interrupt starts at loca­
tion 0 even if the control is off. Start­
ing the interrupt automatically removes
the breakpoint request, but as previous­
ly indicated by the instructions recom­
mended for locations 1-5, it should be
assumed that a breakpoint has occurred
if there is no power failure.

Obviously breakpoints are not used in
any normal programming situation. They
are in fact used almost exclusively for
debugging purposes.

Timing. The time a device must wait

2-17

for an interrupt to start depends on how
many devices are using interrupts, how
long the service routines are for de­
vices of higher priority, and whether the
direct memory channel is in use. A single
device will shut out all others of lower
priority if every time its service routine
dismisses the interrupt, it is already
waiting with another request; and the di-
rect memory channel can preempt all proc­
essor time. If the channel is not in use
the highest priority device need never
wait longer than the time required for the
processor to finish the instruction that
is being performed when the request is
synchronized. Maximum waiting time for
ordinary instructions including synchro­
nization is therefore about 9 µs. How­
ever the maximum possible time can be much
longer if the program uses optional func­
tional operators that stop the stored pro­
gram. Eg multiplication can delay an in­
terrupt by 56 ps when done by external
instructions.

The time the processor takes to start
an interrupt and jump to a service rou­
tine is three cycles, about 5 µs. An
interrupt directly to a routine takes
only the single cycle for storing SC.

When to Use the Interrupt. If the pro­
gram has little computing to do and is us­
ing only one or two fast in-out devices
or several slow ones, it may not be nec­
essary to use the interrupt at all. On
the other hand, if there are many calcula­
tions to perform and the program is using
a fast device or is processing data using
several slower devices, then the interrupt
is necessary. The critical factors in
determining whether to use the interrupt,
and beyond that an ISR priority scheme,
are what the program is doing besides in­
out and the time required by the service
routines. Suppose the program is doing
nothing but processing data using reader,
punch and teletype, and further suppose
that no service routine requires more than
say half a millisecond. In these circum­
stances the program could dispense with
the interrupt and test all the devices
(in the order just stated) by a loop con­
taining SF and jump instructions, where

2-18

the reader service routine returns to the
punch test and all others return to the
beginning of the loop. The fastest device,
the reader, will never be delayed too much.
But suppose the program has a significant
amount of computing to do. Then we must
use the interrupt, but what about priority?
If input-output service for the teletype
requires .8 ms and punch service requires
.5 ms, then the reader service will
never be delayed too mu~h if we simply
turn the interrupt off while servicing
each device. But if teletype service re­
quires 20 ms per character, then neither
reader nor punch will be able to run at
full speed unless we use ISR to set up
priority levels.

Programming Suggestions. A convenient
method for handling a large number of
priority levels is to use a pushdown list
for saving the machine state. This ob­
viates setting aside so many specific
locations for saving MSR, TRP and various
registers, and makes it very easy for a
routine at any level in a sequence of
nested routines to restore the state for
the interrupted program.

Remember the following when program-
ming an interrupt routine:

An interrupt cannot be started until
the current instruction is finished.
Therefore be cautious when using f unc­
tional operators with lengthy external
instruction sequences if devices that
require very fast service can request
an interrupt.

If several levels of interrupts are
allowed, save the current ISR and re­
load it to shut out devices of lower
priority.

Save MSR, TRP, etc if they will be
used by the routine. Eg a routine
could begin like this.

SUBR: RMI
RMI
RMI

ISR,0
MSR,0
TRP,O

The principal function of an interrupt

§2.9

routine is to respond to the situation
that caused the interrupt. Eg compu­
tations that can be performed outside
the routine should not be included
within it.

Before returning to the interrupted
program, restore the pre-interrupt
states of ISR, MSR, TRP, etc. If they
were saved as indicated above, they
could be restored like this.

MR SUBR+l,ISR
MR SUBR+3,MSR
MR SUBR+S,TRP

2.9 DIRECT MEMORY ACCESS

The maximum rate for data transfers be­
tween external devices and core memory
could be no greater than 80,000 words per
second if the transfers were executed un­
der program control. To allow rates up
to 568,000 the processor contains a direct
memory channel through which data can
be transferred automatically using only
one processor cycle per 16-bit word. At
lower rates the channel also frees proc­
essor time to allow execution of a pro­
gram concurrently with data transfers for
a device.

Besides the straightforward transfer of
a word between memory and a device in
either direction, the channel also allows
a device to increment by one a word al­
ready in memory. The direct memory chan­
nel is used by devices requiring very high
data transfer rates, such as magnetic tape
or disk, and by devices that utilize the
memory increment feature, such as a pulse
height analyzer.

The program cannot affect the channel
directly because there are no instructions
for it; instead the program sets up the
device to use it. When the device requires
data service, it requests direct memory
access. At the beginning of every cycle
the processor synchronizes any requests
that are then being made. As soon as the
processor completes an instruction in the

§2.10

program or a cycle of two instructions in
an external instruction sequence, it takes
care of all requests that have been syn­
chronized or are synchronized while it is
handling transfers. If several devices
are waiting for service simultaneously,
the first to receive it is the one that
is physically closest to the processor on
the bus. After taking care of all direct
memory requests, the processor returns to
an external instruction sequence if one
is in progress; otherwise it starts an in­
terrupt if a device is waiting for one,
or resumes the execution of instructions.

Timing. The time a device must wait for
access depends on when its request is made
within an instruction and how many devices
of higher priority are also requesting ac­
cess. Once the processor starts handling
requests, a given device must wait until
all devices closer than it on the bus
have been serviced: the highest priority

device can preempt all processor time if
it requests access at the maximum rate.
At less than the maximum rate the closest
device need wait no longer than the time
required for the processor to finish the
instruction that is being performed when
the request is synchronized. Maximum
waiting time including synchronization
is therefore about 9 µs.

2.10 POWER FAILURE DETECTOR
AND AUTORESTART

When ac power is turned on, memory is un­
altered, all output Ready flags are set,
other flags and control f lipflops are
clear, TRP, AX, AY and other registers
are indeterminate, and if the autore­
start switch is off, SC is clear and the
computer is stopped. If ac power should
fail while the computer is running,
there is a delay of at least 100 µs be­
fore the processor shuts down. In doing
so, the processor always completes a
cycle and sequences power off so the con­
tents of memory are unaffected. The
power failure detector warns the program
when power is failing by requesting an
interrupt to location 0. Although there

2-19

is no interrupt status flag for the de­
tector, so the program cannot turn it
off independently, the interrupt control
must be on for a power failure to produce
an interrupt. Before making any other
tests when an interrupt starts at loca­
tion O, the program should give an SFM
POK to skip if power is alright [§§2.6,
2.8].

If power does fail, the program should
save TRP, MSR, ISR, and all registers,
and then halt. The action taken by the
processor when an adequate power level
is restored depends on the autorestart
switch located on the front panel of the
power supply behind the console. If the
switch is off, power comes back on with
the machine stopped. If the switch is
on, then a few seconds after power comes
back on the processor begins executing
instructions in normal sequence at loca­
tion 6. Locations 6 and 7 should there­
fore contain a jump to a suitable re­
start routine.

2.11 OPERATION

The console is illustrated on page 1-5.
The lights at the left display control
conditions, the rows of lights at the
right display the processor registers.
Below the latter is a register of toggle
switches through which the operator can
supply addresses and data to the desti­
nation bus (the down position of a switch
represents a 1). The register can be used
in conjunction with some of the operating
keys, and its contents can be read by the
program by addressing it as source code
10.

In the row at the bottom left are the
operating keys. All but SS and STOP are
momentary-contact. Each switch produces
its indicated function when pressed down,
except for WRITE which is normally down
and must be lifted up to write in memory.
At the upper left is a pair of octal
thumbwheels for selecting operator codes
to be used with the data switches and
lights.

At the bottom of the console are two
key-operated rotary switches. Turning

2-20

the right one clockwise disables the op­
era ting keys so no one can interfere with
the operation of the processor (the oper­
ator can still use the data switches to
supply information to the program). Turn­
ing the left rotary switch clockwise turns
on power. When power comes on the regis­
ter lights bear no relation to the actual
contents of the registers until the oper­
a tor initializes them by performing some
operation. However, if the autorestart
switch is on, the processor will actually
go into normal operation beginning at
location 6. It is thus recommended that
the operator turn on the STOP switch be­
fore turning power on. Then the computer
will execute one instruction and stop,
and the instruction execution will also
initialize the lights (the address in SC
will depend on the instruction).

Indicators. When any indicator is lit
the associated flipflop is in the 1 state
or the associated function is true. A
few indicators display useful information
while the processor is running, but most
change too frequently and are therefore
discussed in terms of the information
they display when the processor has
stopped.

The top four rows of lights at the
right are installed only in the pro­
grammer's console. The top row displays
the instruction being executed or the
last instruction completed. The lights
are organized for ease in reading the
contents of IR, the six lights on each
end being the source and destination ad­
dresses, the middle four lights being
the control bits. The next three rows
of lights in order below IR display the
contents of SC, MA and MB. The MA lights
indicate the address to which the last
memory access was made, the MB lights
display the last data transmitted to MB.
The data display lights at the bottom
are used in conjunction with the opera­
ting keys, but while the program is run­
ning they display any information sent
to the destination selected by the thumb­
wheels. This allows the operator to
monitor any destination, or by selecting
an unused code, it allows the program to

§2 .11

supply information to the operator with­
out affecting any internal register.

The lights at the left display the
following control conditions.

FI The next processor cycle will be
used to fetch an instruction from
memory.

FA The next processor cycle will be
used to fetch the address or
process an immediate operand in
a memory reference instruction.

FO The next processor cycle will be
used to process the operand in

FD

BK

DM

EI

RUN

IA

a memory reference data trans­
mission instruction, or to fetch
the second address in a def erred
memory reference instruction of
any type.

The next processor cycle will be
used to process the operand in
a def erred memory reference data
transmission instruction.

The next processor cycle will be
used to start an interrupt (break)
by storing SC in the location ad­
dressed by the interrupting de­
vice.

The next processor cycle will be
used for direct memory access.

The next processor cycle will be
used to execute a pair of external
instructions.

The processor is in normal opera­
tion with one instruction follow­
ing another. When the light goes
off, the computer stops.

The interrupt control is active
(on).

OF The last data transmission instruc­
tion that incremented the word
being transmitted increased its
value to 216 (this is the Bus
Overflow flag).

L This light displays the contents
of the 1-bit link register.

Operating Keys. All of the switches at
the lower left except SS and STOP are

§2.11

interlocked so that they have no effect
if RUN is lit. The switches perform these
functions when turned on.

START

CONT

READ

WRITE

DISP

TRM

SS

Set all Ready flags, clear all
other flags and control flipflops,
light FI and RUN, and begin nor­
mal operation by executing the
instruction at the location spec­
ified by SC.

Turn RUN on and begin normal op­
eration in the state indicated by
the lights.

Display the contents of the memory
location addressed by SC in the
MB l:Lghts, and in the data lights
if the thumbwheels are set to 06.
Then add 1 to SC. At completion
FI is lit.

Store the contents of the data
switches in the memory location
specified by SC. Then add 1 to
SC. At completion FI is lit and
the MB lights display the word
stored; the data lights also dis­
play the word if the thumbwheels
are set to 06.

Display the contents of the source
register addressed by the thumb­
wheels in the data lights. At
completion FI is lit.

Transmit the contents of the data
switches to the destination reg­
ister specified by the thumb­
wheels. At completion FI is lit
and the data lights display the
word transmitted.

This is an alternate-action key.
While it is down the processor
stops at the end of every cycle
it executes. The key is for
maintenance purposes and allows
the operator to run a diagnostic

STOP

2-21

routine or other program one
step at a time. Operations are
begun by pressing START, and
each succeeding cycle is initi­
ated by pressing CONT.

Stop at the completion of the
current instruction with the IR
lights displaying the instruc­
tion and SC pointing to the next
instruction. The control lights
at the left indicate the type of
cycle the processor will execute
when operation is resumed.

This is an alternate-action
key, so the operator can run a
program one instruction at a
time by leaving STOP on, execu­
ting the first instruction by
pressing START, and executing
each succeeding instruction by
pressing CONT.

To start the computer one must set the
start address of the program in the data
switches, set the thumbwheels to 07 (SC),
and press TRM to load the address into
SC. Then START starts the program at
SC. Note that the operator can also con­
tinue operations in the current computer
state but at any desired location by
transmitting a new address to SC before
pressing CONT.

Use of the DISP key does not affect the
machine state. Thus the operator can
stop the computer, examine the contents
of any registers, and then continue oper­
ation. Use of the TRM key affects only
the register selected by the thumbwheels
and in some cases a device connected to
that register. Eg transmitting the data
switches to the teletype printer will
print the 8-bit character in switches 0-7,
thus affecting the state of the Output
Ready flag and possibly its interrupt
request.

C H A P T E R T H R E E

FUNCTIONAL OPERATORS

These are the optional operators that
perform various arithmetic and logical
operations, keep track of real time, or
just provide general purpose storage.
The instructions that control them are
simply particular cases of the basic in­
struction types discussed in §§2.2-2.5.

Execution times are given only for
function generating instructions that
start an operational sequence in a func­
tional operator. Of course, the actual
instruction in the program takes only
one cycle, but the whole sequence looks
like part of it, since the program can­
not continue until the sequence is com­
plete. The time given assumes no in­
terruption. The time that actually
elapses from the FO instruction until the
result is available is the listed time
plus any time used for direct memory ac­
cess (program interrupts are not allowed).

3.1 BASIC ARITHMETIC AND LOGIC

The arithmet:i.c operator AO contains two
registers, AX and AY, both of which
can be addressed as source and desti­
nation for data. At all times the oper­
ator is in some specific functional
state such that the operator output,
which is addressable as a data source,
is the given function of the contents of
the two registers. Eg turning on sys­
tem power or starting the processor from
the console places AO in the add state,
making the output continuously equal to

the sum of the numbers AX and AY. Chang­
ing the contents of either register
changes the output to a new sum. Once in
a given state, AO retains that state until
changed by the program or by the operator
pressing the start key.

The AO output is actually seventeen bits,
wherein the extra bit is a carry, or equiv­
alently an extra magnitude bit in a sum.
But this extra bit is the overflow of the
unsigned addition of AX and AY regardless
of the functional state of AO - even if
the low order sixteen bits of the AO out­
put are a logical function. The overflow
value can be determined only by function
testing or reading machine status (the
low order sixteen bits of the result are
available as data).

The circumstances that generate a carry
are obvious when dealing with unsigned
numbers. An addition with result greater
than 2 1 6 - 1 overflows. In subtraction
the condition is the same in terms of add­
ing the twos complement; in terms of the
original operands the subtraction A - B,,
which is executed by adding A and the twos
complement of B,, produces a carry if A 2! B.
The statement of the carry conditions for
signed numbers is more complex, but they
are exactly equivalent to the conditions
given above if the numbers are simply in­
terpreted as unsigned. In addition~ both
summands are negative, or their signs dif­
fer and their magnitudes are equal or the
positive one is the greater in magnitude.
In subtraction, say A - B,, the signs of
the operands are the same and A ~ B,, or
the signs differ and A is negative.

3-1

3-2 §3.1

Example 3.1

MR Z,AX
RR AX,AY ;Put word in AX and AY
MRI -10, TRP ;Set up count for eight shifts
RM TRP,M2+1

Ml: RS
RS

M2: MSI

AY,Ll
AX,Ll
O,Pl

;Shift AY into link
;Shift link into AX
;Count step

SFM BOV ;Done?
JU Ml ;No, shift again

;Yes, AX has word with bytes swapped

The register operator codes are 11 and
12, mnemonics AX and AY respectively.
Code 13, mnemonic AO, addresses the
arithmetic operator, both for its output
and for function generating and testing.
The functional state of the operator is
available to the program as bits 9 and
8 of the machine status register (in the
same configuration as given by this FO
instruction).

FOA Function Output, Arithmetic

c 02 F
I

0 0 13
15 1 0 9 8 7 6 5 0

Set AO to the state specified by F as
follows.

Bits 9-8 Mnemonic Function

0 ADD Addition
1 AND And
2 XOR Exclusive Or
3 OR Or

SFA Sense Function, Arithmetic

13 F 02
1 5 10 9 8 7 6 5 0

Perform a function test (as described in
§2.5) on the carry if bit 7 in F is 1.
The mnemonic AOV places a 1 in bit 7.

The simplest way to determine whether
the contents of AX and AY are identical
is this:

FOA XOR ; Exclusive or
JC AO,ETZ,YES;Jump to YES if

;AX = AY

The following computes the number ten times
that contained in location Z. (Assume Z
now has a number less than 216/10.)

FOA ADD ;Add
FOM CLL ;Clear link
MR Z,Ll,AX ;AX 2Z
RR AX,Ll,AY ;AY = 4Z
RR AO,AX ;AX = 6Z, AO = lOZ

Suppose we wish to use the word in loca­
tion Z with its bytes swapped. Example 3.1
accomplishes this. Note that the example
does not use the functional properties of
AO; the shifting could just as well be
done in a pair of general purpose regis­
ters, or in a pair of core locations if
not even AO were available (the latter
would be longer in both space and time).
With both AO and general registers we
could keep the count in one of the latter
instead of in core; this would eliminate
the memory reference in the sixth line
(inside the loop) and would eliminate the
third line altogether.

Multiply Subroutine. In pencil and paper
decimal multiplication, one multiplies the
multiplicand by each multiplier digit sep­
arately to form a set of partial products.
Successive partial products are shifted
one place to the left (they are multiplied

§3.2

Example 3.2

MPY: RMI
FOA
FOM
JC
RSC
FOM

MPYl: JC
RSC
FOM

MPY2: RM
MRI
RM
ZR

MPY3: MSI
SFM
RR
RR
RS

MPY4: MSI
SFM
JU
MR

SFM
JUD

RSC
RSC
SFM
RS
NOP
JUD

TRP,O
ADD
CLL
AX,GEZ,MPYl
AX,Pl
STL
AY,GEZ,MPY2
AY,Pl
CML

AX,MPY3+1
-20,AX
AX,MPY4+1
AX

O,Rl
NOT LNK
MSR,Rl,O
AO,AX
AX,Rl

0,Pl
BOV
MPY3
MPY3+1,Rl,AY

LNK
MPY+l

AX
AY ,Pl
NOT BOV
AX,Pl

MPY+l

;Save return address
;Select add
;Initialize sign flag
;Jump if multiplier positive
;Otherwise negate multiplier
;And set flag
;Jump if multiplicand positive
;Otherwise negate multiplicand and complement flag
;(Result will be positive if flag is 0)

;Store multiplier in loop
;Set count for 16 steps

;Initialize running sum

;Loop: rotate multiplier (carry sign flag along)
;Skip if current multiplier bit is 0
;Otherwise put AOV in link
;And update sum (SF skips two)
;Shift sum - put low bit in link for replacing
;multiplier
;Count step
;Done?
;No, store a bit and get another
;Yes, shift last bit into low part, sign flag into
;link; put low half in AY
;Should product be negative?
;No, return

;Yes, complement high part
;And negate low part
;Any carry out of low part?
;Yes, add it to high part

;Return

3-3

by successive powers of 10) and summed.
In the computer it is easier to add each
partial product as it is formed and
shift the result one place to the right
so the running sum is in the correct po­
sit ion to receive the next one. Since

high and low order parts are left in AX
and AY respectively (sign in AX bit 15,
31-bit magnitude in the rest of AX and
all of AY). The routine, Example 3.2, is
called by a JUMPY.

the numbers are binary, each partial prod­
uct is either the multiplicand or zero.
Hence at each step we either add the
multiplicand and shift or simply shift
depending on whether the next bit of the
multiplier is 1 or 0.

The multiply subroutine operates on
signed numbers in AX and AY to generate
a signed double length product whose

3.2 GENERAL PURPOSE REGISTERS

These are exactly what the name implies:
two nonmemory registers that can be used
for any purpose. Their operator codes
are 26 and 27, mnemonics GRl and GR2.

Suppose we wish to exchange the contents

3-4

of two memory locations, A and B. If we
are limited to the basic processor we
must use the sequence on the left, but
the addition of general registers allows
us to use the shorter sequence on the
right.

MR A,TRP MR A,GRl
RM TRP,TEMP MR B,GR2
MR B,TRP RM GR2,A
RM TRP,A RM GRl,B
MR TEMP,TRP
RM TRP,B

If we have both an arithmetic operator
and general registers, the multiply sub­
routine given at the end of the preced­
ing section can be shortened by keeping
the multiplier and the step count in
GRl and GR2. The three instructions
beginning at MPY2 are replaced by this:

MPY2: RR
MRI

AX,GRl
-20,GR2

;Or simply start
;with multiplier
;in GRl

This saves three locations and five
cycles. But now the MSis at MPY3 and
MPY4 can be replaced by RRs, saving two
locations and two cycles in a loop that
is iterated sixteen times. Hence the
total saving is five locations and thir­
ty-seven cycles.

3.3 BYTE OPERATIONS

The byte handling option card contains
two operators, a byte swapper and a byte
packer. The former has operator code 24,
mnemonic BSW; the latter has code 25,
mnemonic BPK.

Sending a word to the swapper makes the
same word with its left and right halves
interchanged available from the swapper.
Suppose AX contains 012345, ie the two
8-bit bytes 00010100 and 11100101. This
pair of instructions,

RR AX,BSW
RR BSW,AX

changes AX to 162424, ie 11100101
00010100.

§3.4

Addressing the packer as destination in
a data transmission instruction causes it
to shift bits 0-7 of its own contents in­
to bits 8-15, and accept bits 0-7 of the
source register in its own right half.
Thus each pair of transfers into BPK packs
a pair of bytes from left to right. Say
we have the codes for the characters A
and B in bits 0-7 of locations D and D+l,
and we wish to pack them with A on the
left in location C. This suffices.

MR
MR
RM

D,BPK
D+l,BPK
BPK,C

3.4 MULTIPLICATION

Multiplication can be performed much fast­
er than with the multiply subroutine given
in §3.1 by adding a multiply operator to
the system. The user has a choice of two
such operators: one has a read-only memory
with a built-in routine that uses the arith­
metic operator; the other is purely hard­
ware and is even faster.

The first type has operator code 14,
mnemonic MPO. It operates on unsigned in­
tegers to generate a double length product
whenever the following instruction is
given.

FO STRT,MPO
32 cycles

02
15

FO, Start Multiplier
56.32 µs

0 0 0 1 14
10 9 8 7 6 5 0

If the arithmetic operator is in the add
state, multiply the unsigned integer in
AY by the unsigned integer in MPO, and add
the product to the unsigned integer in AX.
Place the high part of the result in AX,
the most significant bit of the low part
in the link, and the rest of the low part
in MPO bits 15-1. MPO bit 0 retains the
original state of the link.

§3.4

Before using the above instruction the
program must set up AO for addition, and
it must clear AX if a straight product
is desired. Following the multiplica­
tion the program should shift MPO right
one if the low order part of the product
is wanted. This also restores the link,
which can be used as a sign flag.

The program must take care of the signs.
The usual procedure is as shown in the
multiply subroutine already given: use
the link for a sign flag, make both op­
erands positive, and then adjust the re­
sult. With the operands in AY and MPO,
the following sequence performs the un­
signed multiplication, with the instruc­
tion defined above replacing the loop in
Example 3.2.

MPY: RMI TRP,0 ;Save return
FOA ADD ;address
ZR AX
FO STRT,MPO ;Start 32 cycle

;multiply
RS MPO,Rl :Finalize low part

;restore link
JUD MPY+l ;Return

3-5

C H A P T E R F 0 U R

HARDCOPY EQUIPMENT

This chapter discusses the simpler peri­
pheral devices: teletypewriter, tape
reader, tape punch, card reader, card
punch, plotter and line printer. These
devices are used principally for commu­
nication between computer and operator
using a paper medium: tape, cards, form
paper or graph paper. All transfers for
them are made by the program.

The program can type out characters on
the teletype printer and can read charac­
ters that have been typed in at the key­
board. This device has the slowest
transfer rate of any, but it provides a
convenient means of man-machine inter­
action. The KSR teletypes comprise only
a keyboard and printer; the ASR models
also have a slow speed tape reader and
punch. This punch and the separate high
speed punch supply output in the form of
8-channel perforated paper tape. The in­
formation punched in the tape can be
brought into the system by the high
speed tape n~ader or the one mounted in
the teletype.

The card equipment processes standard
12-row 80-column cards. Many programmers
find cards a convenient medium for source
program input and for supplying data that
varies from one program to another. Cards
and paper tape are both convenient to
prepare manually, but card input is much
faster than tape, and simple changes are
easier to make: individual cards can be
repunched, and cards can be added or re­
moved from the deck. A possible consid­
eration in using cards is that many in­
stallations do not include an online

4-1

card punch.
The line printer provides text output

at a relatively high rate. The program
must effectively typeset each line; upon
command the printer then prints the en­
tire line. With the plotter, the program
can produce ink drawings by controlling
the incremental motion of pen on paper in
a cartesian coordinate system. Curves
and figures of any shape can be generated
by proper combinations of motion in x and
y.

4.1 TELETYPEWRITER

Two teletype models are regularly available
for use with the GRI-909: the ASR33 and
KSR33, both of which are capable of speeds
up to ten characters per second. The pro­
gram can type out characters and can read
in the characters produced when keys are
struck at the keyboard. With an ASR the
program can also punch characters in a tape
and read characters from a tape.

The teletype separates its input and out­
put functions and is really two distinct
devices that share the same operator code.
Each device has its own Ready and Interrupt
Status flags, and its own interrupt chan­
nel and status bit assignments. Placing a
code for a character in the output buffer
causes the teletype to print the character
or perform the designated control function.
Striking a key places the code for the
associated character in the input buff er
where it can be retrieved by the program,

4-2

but it does nothing at the teletype un­
less the program sends the code back as
output.

Character codes received from the key­
board have eight bits wherein the most
significant is always 1, but the printer
ignores this bit in characters trans­
mitted to it (eg codes 123 and 323 print
the same character). Lower case charac­
ters (codes 340-376) are not available
on the keyboard, but transmitting a
lower case code to the teletype causes
it to print the corresponding upper case
character. (There are, of course, no
restrictions on the codes that can be
punched in or read from tape). To go to
the beginning of a new line the program
must send both a carriage return, which
moves the type block to the left margin,
and a line feed, which spaces the paper.
The horizontal and vertical tabs and
form feed have no effect on the printer.
Horizontal tabs are usually simulated by
spaces, with tab settings at every eighth
co 1 umn (9 , 1 7 , •..)

The teletype input and output both use
operator code 77, mnemonic TTI or TTO.
As the source in a data transmission (or
data testing) instruction, this code re­
trieves a character from the teletype
input buffer; as the destination in data
transmission, it sends a character to
the output buffer. In function genera­
ting or testing instructions, it repre­
sents both devices.

FO -,TTO
FO -,TTI

02 F

15 10 9 8

Perform the functions
in F

Bit

6

7

as follows.

Mnemonic

STRT

ORDY

FO, Teletype Output

7

FO' Teletype Input

77 ~
6 5 0

specified by ls

Function

Read one character
from tape into the
input buff er

Clear Output Ready

§4.1

9 IRDY Clear Input Ready

Programming ls in bits 6 and 9, mnemonic
INP, clears Input Ready and starts the
reader.

SF TTO,
SF TT!'

77
1 5

Perform
§2.5) on
follows.

Bit

7

9

SF, Teletype Output
SF, Teletype Input

F1 N
10 9 8 7 6 5

a function test (as
the flags selected

Mnemonic

ORDY

IRDY

Teletype Output

02
0

described in
by ls in F as

Flag

Output Ready

Input Ready

Output Interrupt Status is bit 0 of the
status register, and the teletype output
interrupts to location 11.

Sending a character from bits 0-7 of
any source register to the output buffer
clears Output Ready (removing the inter­
rupt request) and turns on the transmitter,
causing it to send the contents of the out­
put buffer serially to the teletype (the
buffer is cleared during transmission).
The printer prints the character or per­
forms the indicated control function. If
the punch is on, the character is also
punched in the tape, with bit 0 corre­
sponding to channel 1 (a 1 produces a
hole in the tape). Completion of trans­
mission sets Output Ready, requesting an
interrupt if Output Interrupt Status is
set.

Timing. The teletype can type or punch
up to ten characters per second. After

Output Ready is set, the program has 18.18
ms to send another character to keep typing
or punching at the maximum rate. The se­
quence carriage return-line feed, when

§4.1

iven in that order, allows sufficient
-rime for the type block to get to the
beginning of a new line.

Teletype Input
Input Interrupt Status is bit 1 of the
status register, and the teletype input
interrupts to location 14.

Reception from the keyboard requires
no initiating action by the program:
striking a key clears Input Ready and
transmits the code for the character se­
rially to the input buffer. Completion
of reception sets Input Ready, request­
ing an interrupt if Input Interrupt sta­
tus is set. Upon retrieving the charact­
er in bits 0-7, the program should give
an FO IRDY,TTI to clear Input Ready and
remove the interrupt request if more in­
put is expected.

If the reader is under program control,
giving an FO INP,TTI clears Input Ready
(removing the interrupt request) and
causes the reader to read all eight chan-
.els from the next frame on tape. The
~eader transmits the frame serially to
the buffer, with channel 1 corresponding
to bit 0 (the presence of a hole pro­
duces a 1 in the buffer). Completion of
reception sets Input Ready, requesting
an interrupt if Input Interrupt Status
is set.

Timing. After Input Ready is set the
character is available for retrieval for
20.45 ms before another key strike can
destroy it. If the reader is in use,
the program has 20.45 ms to give an FO
INP,TTI and keep the tape in continuous
motion.

Programming Examples
There are basically two procedures for
using the function testing instructions
in a loop to process a series of charac­
ters. Consider this loop for typing out
characters from a table beginning at lo-
'ation TAB (we assume the printer is not

,ln use).

OUT: MRID TAB-1,TTO
SF TTO,ORDY
JU .-1

JU OUT

4-3

;Type out
;Wait till trans­
;mission done
;Compute

;Go back

This procedure is very poor as most of the
time is spent waiting during the transmis­
sion, and there is very little time to do
anything afterwards if we are to go back
to type out the next character at full
speed. But with this arrangement:

OUT: SF TTO,ORDY ;Wait till printer
JU .-1 ;free
MRID TAB-1,TTO ;Type out

;Compute, etc

JU OUT ;Go back

we have almost all of the time for worth­
while program and we can run at full speed
provided only that we jump back to OUT be­
fore the entire teletype cycle time is
over. Also, the first time into the loop
we wait until any previous (perhaps un­
known to us) teletype output operation is
finished.

Of course, using the interrupt eliminates
all waiting time. Suppose we wish to type
out twenty characters (one per location)
beginning at TAB, using one of the general
purpose registers to count the characters.
Our main program might set things up like
Example 4.1 where we assume that the pro­
gram left Output Ready on the last time
the teletype output was used. Hence an
interrupt will occur immediately for the
first character. The interrupt routine
might be like Example 4.2. If we do not
care whether TRP is affected, we could sub­
stitute

JC GRl,ETZ,DONE

for testing overflow and loading SC. This
saves no time but it takes only two loca­
tions instead of three.

Without the interrupt, the dichotomy
discussed above exists also for input oper­
ations. This is bad:

4-4

Example 4.1

MRI
MRI
RM
MRI
RM
FOI
ZR

Example 4.2

OUT: MRID

DONE:

IN:

RMI
RS
SFM
MRI
MR
FOI
MR
MR
ZR
MR

FO
SF
JU
RMID

JU

but this is

IN: FO

SF
JU
RMID

SF
JU
RR

-24,GRl
014207,TRP
TRP, 7
OUT-1,TRP
TRP, 10
ICO
Pl,ISR

TAB-1,TTO
MSR,O
GRl,Pl
BOV
DONE-1,SC
OUT+3,MSR
ICO
6,SC
OUT+3,MSR
ISR
6,SC

INP,TTO
TTI,IRDY
.-1
TTI,TAB-1

IN

good:

INP,TTI

TTI,IRDY
.-1
TTI,TAB-1

TTO,ORDY
.-1
TTI,TTO

§4.1

;Set up GRl: 2010 = 24s
;Set up channel locations 7~10
;014207 = 06 0010 07 =MRI -,SC

;Turn interrupt on
;Set Output Interrupt Status
;Continue program

;Type out character
;Save machine state
;Count character
;Done yet?
;Yes
;Restore machine state
;Turn interrupt back on
;Return to main program
;Restore machine state
;Disable interrupt
;Return

;Read character
;Wait till recep­
; tion done
;Store character
;Decide whether to
;read another,etc
;Go back

;Read character
;Lots of time

;Wait till recep­
; tion done
;Store character

;Lets make a copy
;of the tape while
;we are at it

;Decide whether to
;read another

JU IN ;Do this if want
;another

Operation

;Skip to here if
;not

A KSR is actually two independent devices,
keyboard and printer, which can be operat­
ed simultaneously. An ASR is really four
devices, keyboard, printer, reader and
punch, which can be operated in various
combinations. Power must be turned on by
the operator: the switch is beside the
keyboard and is labeled LINE/OFF/LOCAL or
ON/OFF and has an unmarked third position
opposite ON. When this switch is set to
LOCAL or the unmarked position, power is
on but the machine is off line and can be
used like a typewriter. Moreover, in an
ASR, turning on the punch allows the op­
erator to punch a tape from the keyboard,
and running the reader allows a tape to
control the printer (if the punch is also
on, it duplicates the tape).

§4.1

Turning the switch to LINE or ON con­
nects the unit to the computer and sep­
arates its input and output functions.
Thus any information transmitted to the
computer from the keyboard affects the
printer only insofar as the computer
sends it back. Turning on the reader
places it under program control, and
turning on the punch causes it to punch
whatever is sent to the printer by the
computer.

The only control on the reader is a
3-position switch. When the switch is
in the FREE position, the tape can be
moved by hand freely through the reader
mechanism. The STOP position engages
the reader clutch so the tape is station­
ary but the reader is still off. Turn­
ing the switch to START causes the read­
er to read the tape if the unit is in
local, but places it under program con­
trol if on line.

The operator controls the punch by
means of four pushbuttons. The two on
the right turn the punch on and off.
Pressing the REL button releases the
tape so it can be moved by hand through
the punch mechanism. Pressing B.SP.
moves the tape backward one frame so the
operator can delete a frame that is in­
correct by striking the rubout key.
Pressing HERE IS with the keyboard in
local punches twenty lines of blank tape
(lines with only a feed hole punched).

The keyboard resembles that of a stand­
ard typewriter. Codes for printable
characters on the upper parts of the key
tops are transmitted by using the shift
key; most control codes require use of
the control key. The line feed spaces
the paper vertically at six lines to the
inch, and must be combined with a return
to start a new line. The local line
feed and return keys affect the printer
directly and do not transmit codes. Ap­
pendix F lists the complete teletype code,
ASCII characters and key combinations.
Pressing the REPT button and striking
any character key causes transmission of
the corresponding code so long as REPT
is held down. Characters that require
the shift key may also be repeated in
this manner, but there is no repetition

4-5

of control characters.
Teletype manuals supplied with the

equipment give complete, illustrated de­
scriptions of the procedures for loading
paper and tape and changing the ribbon.
The best and easiest way to learn how to
do any of these things is to have someone
who knows show you how, but as a precau­
tionary measure we also describe them here.

Tape. The tape moves in the reader from
back to front with the feed holes closer
to the left edge. To load tape, set the
switch to FREE, release the cover guard
by opening the latch at the right, place
the tape so that the sprocket wheel teeth
engage the feed holes, close the cover
guard, and set the switch to STOP.

To load tape in the punch, raise the
cover, feed the tape manually from the
top of the roll into the guide at the back,
move the tape through the punch by turn­
ing the friction wheel, then close the
cover. Turn on the punch with the unit
in local and punch about two feet of lead­
er by pressing HERE IS or the control

' shift and P keys to generate null codes.

Paper. The printer has an 8~-inch roll
of paper at the back. P~inted sections
can be torn off against the edge of the
glass window in front of the platen. To
replenish the paper, snap open the cover,
remove the old roll and slip a new one in
its place. Draw the paper from the roll
around the platen as in an ordinary type­
writer.

Ribbon. Replace the ribbon whenever it
becomes worn or frayed or the printing be­
comes too light. Disengage the old ribbon
from the ribbon guides on either side of
the type block, and remove the reels by
lifting the spring clips on the reel
sp~ndles and pulling the reels off. Re­
move the old ribbon from one of the reels
and replace the empty reel on one side of
the machine; install a new reel on the
other side. Push down both reel spindle
s_pr.ing clips to secure the reels. Unwind
the fresh ribbon from the inside of the
supply reel, over the guide roller, through
the two guides on either side of the type
block, out around the other guide roller,

4-6

and back onto the inside of the takeup
reel. Engage the hook on the end of
the ribbon over the point of the arrow
in the hub. Wind a few turns of the
ribbon to make sure that the reversing
eyelet has been wound onto the spool.
Make sure the ribbon is seated properly
and feeds correctly in operation.

4.2 PAPER TAPE READER AND PUNCH

The high speed reader and punch are to­
tally separate devices - even physi­
cally - but they share a single operator
code in the same manner that the tele­
type input and output do. The common
operator code is 76, mnemonic HSR or HSP.
Each interface contains an 8-bit buff er
that corresponds to bits 0-7 of a comput­
er word; the reader buffer is addressable
as a source of data, the punch buffer as
a destination.

FO -,HSR
FO -,HSP

02

FO, High Speed Reader
FO, High Speed Punch

76 ~ F
I

l 5 10 9 8 7 6 5 0

Perform the functions specified by ls in
F as follows.

Bit

6

7

9

Mnemonic

STRT

ORDY

IRDY

Function

Read one character
from tape into the
reader buff er

Clear Punch (Out­
put) Ready

Clear Reader (In­
put) Ready

Programming ls in bits 6 and 9, mnemonic
INP, clears Reader Ready and starts the
reader.

SF HSR,
SF HSP,

76
15

F

§4.2

FO, High Speed Reader
FO, High Speed Punch

N 02
10 9 8 7 6 5 0

Perform a function test (as described in
§2.5) on the flags selected by ls in F
as follows.

Bit

7

9

Mnemonic

ORDY

IRDY

Paper Tape Reader

Flag

Punch Ready

Reader Ready

The reader processes 8-channel perforated
paper or mylar tape photoelectrically at
a speed of 300 frames per second. Reader
Interrupt Status is bit 3 of the status
register, and the reader interrupts to lo­
cation 22.

Giving an FO INP,HSR clears Ready (re­
moving the interrupt request) and causes
the reader to read all eight channels from
the next frame on tape into the buffer,
with channel 1 corresponding to bit 0 (the
presence of a hole produces a 1 in the
buffer). When the operation is complete
the reader sets Ready, requesting an in­
terrupt if Interrupt Status is set.

Timing. At 300 frames per second the
reader takes 3.3 ms per character, but the
program must read several frames before
the reader reaches maximum speed. After
Ready is set, the program has 1.5 ms to
retrieve the character and give an FO INP,
HSR to keep the tape in continuous motion.
Waiting longer forces the reader to oper­
ate at a speed no greater than 150 frames
per second.

Operation. Tapes can be oiled or not
but must be opaque. To load the reader,
place the fanfold tape stack vertically
in the bin at the right, oriented so that
the front end of the tape is nearer the
read head and the feed holes are away from
you. Lift the gate, take three or four
folds of tape from the bin, and slip the
tape into the reader from the front.

§4.3

Carefully line up the feed holes with
the sprocket teeth to avoid damaging the
tape, and close the gate. Make sure
that the part of the tape in the left
bin is placed to correspond to the folds,
otherwise it will not stack properly.
Turn on the power switch so the reader
can respond to the program.

Paper Tape Punch
The punch perforates 8-channel paper
tape at speeds up to 60 frames per sec­
ond. Interrupt Status is bit 2 of the
status register, and the punch inter­
rupts to location 17.

Sending a character from bits 0-7 of
any source n~gister to the punch buff er
clears Ready (removing the interrupt re­
quest) and causes the punch to punch the
contents of the buffer in the tape, with
bit 0 corresponding to channel 1 (a 1
produces a hole in the tape). After
punching is complete, the device sets
Ready, requesting an interrupt if Inter­
rupt Status is set.

Timing. Punching is synchronized to
a punch cycle of 16.7 ms. After Ready
sets, the program has 10 ms to send an­
other character to keep punching at the
maximum rate; after 10 ms punching is
delayed until the next cycle.

Example. With direct function proc­
essing a program for duplicating a tape
is quite simple.

DUP: FO INP,HSR ;Read
SF HSR, IRDY ;Wait for character
JU .. -1

SF HSP,ORDY ;Got it, wait for
JU .-1 ;punch

RR HSR,HSP ;Move character to
;punch

JU DUP ;Read another

Operation. Punch power must be left
on all the time that the punch might be
used as it otherwise will not respond to
the program. Fanfold tape is fed from
a box behind the punch inside its enclo­
sure. After it is punched, the tape
moves into a storage bin from which the

4-7

operator may remove it through a slot in
the front. Pushing the feed button beside
the slot clears the buff er and punches
blank tape (tape with only feed holes
punched) as long as it is held in, pro­
vided power is on.

To load tape, first empty the chad box.
Then tear off the top of a box of fanfold
tape (the top has a single flap; the bot­
tom of the box has a small flap in the
center as well as the flap that extends
the full length of the box). Set the box
in the frame and thread the tape through
the punch mechanism. The arrows on the
tape should be on top and should point in
the direction of tape motion. If they are
underneath, turn the box around. If they
point in the opposite direction, the box
was opened at the wrong end; remove the
box, seal up the bottom, open the top, and
thread the tape correctly.

To facilitate loading, tear or cut the
end of the tape diagonally. Thread the
tape under the out-of-tape plate, open the
guide plate (over the sprocket wheel),
push the tape beyond the sprocket wheel,
and close the guide plate. Press the
feed button long enough to punch about
a foot and a half of leader. Make sure
the tape is feeding and folding properly
in the storage bin.

To remove a length of perforated tape
from the bin, first press the feed button
long enough to provide an adequate trailer
at the end of the tape (and also leader
at the beginning of the next length of
tape). Remove the tape from the bin and
tear it off at a fold within the area in
which only feed holes are punched. Make
sure that the tape left in the bin is
stacked to correspond to the folds; other­
wise, it will not stack properly as it
is being punched. After removal, turn
the tape stack over so the beginning of
the tape is on top, and label it with
name, date, and other appropriate infor­
mation.

4.3 BOOTSTRAP LOADERS

Before a program can be executed it must
be brought into memory. This requires

4-8

Example 4.3

;BOOTSTRAP LOADER: TELETYPE, BYTE PACKER

FOM
BLTP: FO

SF
JU
JC

FO
SF
JU
RR
FO
SF
JU
RR

Ml: RMID
JU

Example 4. 4

HLT
INP,TTI
TTI, IRDY
.-1

,TTI ,ETZ ,BLTP-1

INP,TTI
TTI,IRDY
.-1
TTI,BPK
INP,TTI
TTI,IRDY
.-1
TTI,BPK

BPK,O
BLTP

;Halt between blocks
;Get first (control) frame

;Jump if end of block

;Got control frame - ignore it and get first byte
;(second frame)

;Left byte (8-15) to packer
;Get second byte (third frame)

;Right byte (0-7) to packer

;Store target word
;Continue

;BOOTSTRAP LOADER: TELETYPE, ARITHMETIC OPERATOR

FOM HLT ;Halt between blocks
BLTA: FO INP,TTI ;Get first (control) frame

SF TTI,IRDY
JU .-1
JC TTI,ETZ,BLTA-1 ;Jump if end of block

RM TTI,M2+1 ;Store control frame for shift count
FO INP,TTI ;Get first byte (second frame)
SF TT!, IRDY
JU .-1
RR TTI,AX ;Left byte (8-15) to AX (0-7)
FO INP,TTI ;Get second byte (third frame)
SF TT!, IRDY
JU .-1
RR TTI,AY ;Right byte (0-7) to AY

FOM CLL ; Initialize link
Ml: RS AX,Ll ;Loop, shift AX left 8
M2: MS! O,Rl

SFM LNK ;Has control frame set link?
JU Ml ;No, shift again

M3: RMID AO,O ;Yes, store target word
JU BLTA ;Continue

§4.3

that a loading program already reside in
core. If the memory is empty, one can
use the console switches to load in a
bootstrap loader, which is ordinarily
used only to bring in a more extensive
block loader. This latter program is
then used to read the object tapes of

all other programs. Both the bootstrap
and the block loader usually reside in
high core where they are not disturbed by
any of the standard GRI-909 software. But
if an undebugged user routine inadvertently
destroys the block loader, it can be re­
stored by first reloading the bootstrap

§4.3

manually.
There are several bootstrap loaders

depending on which functional operators
are i.ncluded in the system, and for each
there are two versions, one for the tele­
type reader, the other for the high
speed reader. Every time any bootstrap
loader is used, the operator must key in
an address one less than the first loca­
tion that is to be loaded.

Every bootstrap loader reads a tape in
a special format in which each word re­
quires three frames. The first is the
control code 200, the second and third
are the left and right 8-bit bytes of
the binary word to be stored. A block
may contain any number of 3-frame sets,
but it is recommended that they be kept
short. The tape should begin with blank
frames (ie leader), and null codes sep­
arate the blocks. The loader halts
every time it: encounters a block separa­
tor (ie a null frame that is not in a
3-frame program segment), but it can be
restarted simply by pressing the continue
key.

Example 4.3 is a bootstrap loader that
utilizes the teletype and the byte pack­
er. To use i.t the operator must key the
initial load address minus one into lo­
cation Ml+l and start the bootstrap from
the console at location BLTP. Example
4.4 uses the arithmetic operator in­
stead of the byte packer. One less than
the load address must be keyed into lo­
cation M3+1. The loader uses the con­
trol frame (200) for the shift count,
and since it is started by the start key,
AO is set up for addition.

The table on the next page lists the
memory words for the two loaders given
above and also for one that uses no op­
tional functional operators. All are
written for the teletype reader; for the
high speed reader simply substitute op­
erator code 76 wherever 77 appears in
the list. Always place the loader in
the very top of core. Thus to key in
the loader for the arithmetic operator
in an BK memory, first set 017742 in
the switch register, set the thumb­
wheels to 07, and press TRM. Then
successively set each word in the

4-9

switch register and press WRITE.
To use the bootstrap to load the block

loader or any other program in the special
format, follow these steps:

1. Put the special format tape in the
reader and turn it on.
2. Set the address of the location that
must contain the initial load address - 1
in the switch register (address xx775 for
the arithmetic operator or byte packer,
otherwise xx770).
3. Set the thumbwheels to 07 and press
TRM.
4. Set the initial load address - 1 in the
switch register and press WRITE.
5. Set the start address of the bootstrap
(the second address from the top in the
appropriate column of the table) in the
switch register and press TRM.
6. Press START

The bootstrap will halt at every block
separator and following the final block
with the start address of the bootstrap
in SC.

4-10 §4.3

BOOTSTRAP LOADERS

Basic Processor
Only

xx727 02 0100 00
xx730 02 1001 77
xx731 77 1000 02
XX732 00 0100 03
xx733 Oxx731
xx734 77 0100 03
xx735 Oxx727
xx736 77 0000 06
XX737 oxx761 Arithmetic
xx740 77 0000 06 Operator
XX741 oxx772
xx742 02 1001 77 xx742 02 0100 00
XX743 77 1000 02 xx743 02 1001 77
xx744 00 0100 03 xx744 77 1000 02
XX745 oxx743 xx745 00 0100 03
xx746 77 0001 06 xx746 Oxx744
XX747 oxx770 xx747 77 0100 03
xx750 02 1001 77 xx750 Oxx742
xx751 77 1000 02 xx751 77 0000 06 Byte Packer
XX752 00 0100 03 xx752 oxx770
xx753 Oxx751 xx753 02 1001 77 xx753 02 0100 00
XX754 77 0000 06 xx754 77 1000 02 xx754 02 1001 77
xx755 Oxx757 xx755 00 0100 03 xx755 77 1000 02
xx756 06 1010 06 xx756 Oxx754 xx756 00 0100 03
xx757 0 xx757 77 0000 11 xx757 Oxx755
XX760 06 1110 06 xx760 02 1001 77 xx760 77 0100 03
XX761 0 xx761 77 1000 02 xx761 Oxx753
XX762 00 0100 02 xx762 00 0100 03 xx762 02 1001 77
XX763 00 0100 03 xx763 Oxx761 xx763 77 1000 02
XX764 oxx756 xx764 77 0000 12 xx764 00 0100 03
xx765 06 1000 06 xx765 02 0001 00 xx765 Oxx763
XX766 oxx757 xx766 11 1000 11 xx766 77 0000 25
XX767 06 1000 06 xx767 06 1110 06 xx767 02 1001 77
XX770 xx770 0 XX770 77 1000 02
XX771 06 1110 06 xx771 00 0100 02 xx771 00 0100 03
xx772 0 xx772 00 0100 03 xx772 Oxx770
xx773 00 0100 02 xx773 Oxx766 XX773 77 0000 25
XX774 00 0100 03 xx774 13 0011 06 xx774 25 0011 06
XX775 oxx765 xxns XX775
XX776 00 0100 03 xx776 00 0100 03 xx776 00 0100 03
XX777 oxx730 XX777 oxx743 XX777 oxx754

Key load address Key load address Key load address
- 1 into xx??O. - 1 into xx??5. - 1 into xx??5.
Start at xx?30. Start at xx?43. Start at xx?54.

Note: For the high speed reader substitute operator code 76 for every 77 that appears
above.

APPENDIX A

THE SYSTEM ORIENTED ASSEMBLY LANGUAGE, FAST

The body of this manual describes the
instructions that can be performed by the
GRI-909 and gives the mnemonic terms
employed to write a program using the
basic asqembly language, BASE. But there
is another assembler that allows the pro­
grammer to write in a functional or sys­
tem-oriented language. The end result
of either language is the same: the 16-
bit words produced for the object program
are identical, since the absolute instruc­
tion format is a function of the hardware.
But in place of the terse symbology of
the basic assembly language, FAST has a
vocabulary and a grammar that allow one
to write a program using statements that
are similar to those in ordinary English.

In order to program properly, the pro­
grammer is strongly advised to read the
body of this manual, particularly Chap­
ters 1 and 2, not only to learn how to
handle the various operators, input­
output, interrupt programming and the
like, but also to learn precisely what
each instruction does. But if the pro­
grammer is going to use FAST, then he
can ignore the basic instruction mnemonics
defined for BASE and can skip the discus­
sion of the various programming conventions
for that language.

To a great extent the two languages
actually share a common vocabulary, and
most of the terms defined in the body of
the manual have the same meaning (and
hence the same numerical value) in FAST.
The primary difference between the two
languages is in the way the terms are
used and the fact that FAST has addi­
tional operational terms that produce the
similarity to ordinary English. The basic
mnemonic terms for operator codes, output
functions, test conditions, etc defined
for FAST are the following.

Operator Codes (Device Addresses)

AO Arithmetic Operator
AX Register AX

Al

Register AY
Byte packer
Byte swapper
General register 1
General register 2

AY
BPK
BSW
GRl
GR2
HSR
HSP
ISR
MPO
MSR
SUM
SWR
SC
TRP
TTI
TTO
ZERO

High speed paper tape reader
High speed paper tape punch
Interrupt status register
Multiply operator
Machine status register
Adder
Console switch register
Sequence counter
Trap register
Teletype input
Teletype output
Null (O) operator

Data Transmission Terms

C Complement of source
I Immediate addressing
D Def erred addressing

The current address
Pl Increment by 1
Ll Shift left one bit
Rl Shift right one bit

Data Test Conditions

ETZ Equal to zero
LTZ Less than zero
GTZ Greater than zero
NEZ Not equal to zero
GEZ Greater than or equal
LEZ Less than or equal to

Functions (Output Pulses)

ADD Select AO addition
AND Select AO AND function
OR Select AO OR function

to zero
zero

XOR Select AO exclusive OR function
CLL Clear link
STL Set link
CML Complement link
HLT Halt machine
CLIF Clear input (Ready) flag (TTI, HSR)

A2

CLOF Clear output (Ready) flag (TTO, HSP)
ICF Interrupt control off
ICO Interrupt control on
STRT Start

Function Test Conditions

AOV
BOV
sov
LNK
IRDY
ORDY
POK
NOT

Arithmetic Overflow flag
Bus Overflow flag
Sum overflow flag
Link
Input Ready (TTI, HSR)
Output Ready (TTO, HSP)
Power ok
Negate test condition

Other basic programming conventions given
on page 1-10 are also used by FAST. The
period represents the current address, a
colon following a symbol indicates that
it is a symbolic location name, and any­
thing written at the right of a semicolon
is commentary that explains the program
but is not part of it.

The system language also contains these
operational symbols.

TO

IF ... GO TO

GO TO

SKIP (IF)

Move data or control
information from the
specified source to the
specified destination.

Test data from the spe­
cified source and transfer
program control (ie jump)
to the specified location
if the test condition is
satisfied.

Transfer program control
(jump) to the specified
location.

Test a function (status)
and skip the next two
locations if the test is
positive.

By combining these operational terms with
the operator codes and other mnemonic sym­
bols that are mostly shared with BASE,
instructions in a program can be represen­
ted by statements that are closer to those
of a natural language. Moreover the struc-

ture of the language actually allows the
programmer to use the symbols for operators,
test conditions, and the like, in a more
flexible way than they can be used in the
basic assembler.

Data Transmission
Nonmemory reference data transmission in­
structions are of the form

Register X (Modification) TO Register Y

or more generally,

Source (Modification) TO Destination

where neither the source nor the destina­
tion is memory. Hence to take a word from
AX, increment it by one, and place the re­
sult in AY, give

AX Pl TO AY

To use the complement of the source, place
the letter C in front of the statement.
Thus

C AX Pl TO AY

places the twos complement of AX in AY.
The twos complement of AX is placed in
AX (in other words the register is trans­
ferred to itself) simply by failing to
specify any destination (the TO is also
dropped):

C AX Pl

Data transmission instructions that re­
ference memory are of either of these two
forms:

Register (Modification) TO Location

Location (Modification) TO Register

The letters I and D, for immediate and
deferred addressing, precede the term
(if any) that specifies the location.
Thus to store AX in location ANS, give

AX TO ANS

but to store it in the location following
the current instruction, give

AX TO I

To load AX from ANS give

ANS TO AX

but to load AX from the location one
greater than that addressed by the con­
tents of say POINT, give

D POINT TO AX

For either type of data transmission
instruction, ZERO specifies a null oper­
ator. This supplies zero when specified
as a source, and as a destination it
allows the programmer to affect Bus Over­
flow or the link without affecting any
operator. Thus

ZERO TO AX

clears AX, whereas

GRl Pl TO ZERO

sets Bus Overflow if GRl contains 2l6_ 1.
The following are typical examples of

data transmission instructions in FAST.

TTI TO TTO

AX Ll

ZERO Pl TO AX

C ZERO TO AX

AX Ll TO ZERO

AX Rl TO ZERO

GRl Pl TO Z+l

I 21 TO AX

Send a character from
teletype input to tele­
type output

Shift AX left one bit
(equivalent to AX Ll
TO AX)

Set AX to +l

Set AX to -1

Set the link if AX is
negative (bit 15 is 1)

Set the link if AX is odd

Increment the word from
GRl and store it in loca­
tion Z+l

Load the numbe~ 21 into AX

COUNT Pl TO GRl Increment the word from
location COUNT and place
the result in GRl

0 TO SC

COUNT Pl

I 0 Pl

Load the contents of loca­
tion 0 into SC (this is
the return from a standard
interrupt routine)

Increment the word in lo­
cation COUNT

Increment the contents of
the location following the
current instruction

A3

X Ll Shift the contents of lo­
cation X left one bit

Data Testing
These instructions have the form

IF Operator Condition GO TO Location

Def erred addressing is selected by a D
preceding the location. Thus the state­
ment

IF TTI ETZ GO TO AGAIN

jumps to location AGAIN if the character
in the teletype input buffer is zero.

IF ISR NEZ GO TO D EXIT

jumps to the location whose address is
one greater than the contents of loca­
tion EXIT if any device is enabled to
interrupt. To jump unconditionally to
location EXIT simply give

GO TO EXIT

Function Generation
The form for these instructions is

Function TO Operator

Thus the statement

STRT TO HSR

causes the high speed paper tape reader
to read the next character on tape,

ADD TO AO

sets up the arithmetic operator for addi­
tion. Functions for the same destination
may be combined by giving them together,
eg

CLIF STRT TO TTO

clears the Input Ready flag and causes the
teletype operator to read the next charac­
ter from tape. The structure of FAST allows
the mnemonic term for a function to be
given alone if it represents a function
that applies to only one destination opera­
tor. Hence the following are complete
function generating instruction statements
in FAST.

CLL Clear link

A4

STL
HLT
OR
ADD
CML

Set link
Halt
Select OR function in AO
Select addition in AO
Complement link (= CLL STL)

Function Testing
The form for these statements is

SUB: TRP TO I
NEXT: D SUB+l TO TRP

IF TRP ETZ GO TO END

GO TO NEXT
END:

GO TO D SUB+l

Operator Function On page 2-12 is a sample program that
where IF is optional and need not be given. forms a twos complement without using a
In a manner analogous to function generat- general register. In FAST it would look

like this.

SKIP IF

ing instructions, the source operator need
not be given if the mnemonic for the func­
tion is unique to that operator. Hence
the statement

SKIP IF TT! IRDY

skips the next two locations if teletype
input is ready, whereas the simpler state­
ment

SKIP IF BOV

tests Bus Overflow for a skip. Since the
IF is optional, statements can be made
even simpler; eg

SKIP AOV

tests Arithmetic Overflow.
An instruction can test whether any of

several conditions is true for the same
operator by giving the mnemonics together,
and the test conditions can be negated,
ie the test can be that none of the named
conditions are true by placing NOT before
the terms that specify the functions to
be tested. Thus

SKIP BOV LNK

skips if either Bus Overflow or the link
is set, whereas

SKIP NOT BOV LNK

skips if neither Bus Overflow nor the link
is set.

Sample Programs
To better show the relation between the
two assembly languages the following rou­
tine written in FAST is the same program
as Example 2.2 on page 2-9.

Ml:

M2:

I -21 TO TRP
TRP TO M2+1
Z Rl
CML
I 0 Pl
SKIP BOV
GO TO Ml
Z Pl

Example 3.2 is a multiply subroutine that
uses the arithmetic operator but does not
use general purpose registers. This is
the same program in FAST.

MPY:

MPYl:

MPY2:

MPY3:

MPY4:

TRP TO I
ADD
CLL
IF AX GEZ GO TO MPYl
C AX Pl
STL
IF AY GEZ GO TO MPY2
C AY Pl
CML

AX TO MPY3+1
I -20 TO AX
AX TO MPY4+1
ZERO TO AX

I 0 Rl
SKIP NOT LNK
MSR Rl TO ZERO
AO TO AX
AX Rl

I 0 Pl
SKIP BOV
GO TO MPY3
MPY3+1 Rl TO AY
SKIP LNK
GO TO D MPY+l

C AX
C AY Pl
SKIP NOT BOV
AX Pl
NOP
GO TO D MPY+l

A5

APPENDIX B

INTERFACING

Functional operators and peripheral de­
vice operators of the user's own design
can be added to the GRI-909 bus system
with great ease. The addition of a
source register makes its data available
to all destination operators (including
memory and the data tester) through the
bus modifier. Similarly a new destina­
tion register can receive data from any
source already in the system, again
through the bus modifier. Control over
any new operator is exercised by the
function generating instructions, which
operate it~ and the function testing in­
structions~ which determine its state.

Chapter 2 describes all of the GRI-909
instruction types and in particular ex­
plains the use of the instructions to
control functional and device operators.
The reader should be very familiar with
the contents of Chapter 2 before he at­
tempts to interface operators of his own
design.

Operators are often referred to as de­
vices, especially in engineering drawings
and other hardware oriented documents.
SDA and DDA stand for "source device
address" and "destination device address".

I PHYSICAL ARCHITECTURE

Figure 1 shows the physical organization
of the basic package. The frame work is
of extruded ano<lized aluminum serving
both as a caged grounding scheme and as
guides for the printed circuit cards in
the system. The console is enclosed in
the hinged door on the front of the
cabinet. Mounted on the door are all of
the console switches and indicators with
their driving and sensing circuits.

All back panel wiring inside the frame
is on printed circuit cards with PC card
sockets soldered onto them. Thus one
card is joined directly to another

Bl

through plugs, and no wire wrapping or
point-to-point wiring is used anywhere
in the system. The processor bus has con­
nectors for nine 9xl3-inch plug-in cards,
three of which are available for large
firmware options such as the arithmetic
operator. The IO bus has sixteen posi­
tions for 9x4-inch cards for smaller
firmware or device operators. The memory
bus is used for core memory modules and
generally is not of interest to the inter­
face engineer.

All connections between the buses and
the console are made with multiconductor
flat cable attached at both ends to PC
cards. Expansion chassis to extend the
memory bus and the IO bus are of the same
type of construction as the main frame.
These expanders are placed either above
or below with flat cable connecting the
buses.

II INTERFACE PC CARDS

Interfaces are of two general types, and
all are referred to as operators. A sys­
tem interface that is not associated with
some external device is a functional or
firmware operator. Typical firmware oper­
ators are those for basic arithmetic,
multiplication, square root, etc. Opera­
tors of this type are actually extensions
of the processor. Device operators are
interfaces to mate the bus system to some
external device such as an A-D converter.

Device operators can be built on one or
more IO interface cards (Figure 2). This
card can contain 33 integrated circuit
packages, and has provision for connect­
ing to both the source and destination
IO buses and to an external device. The
external printed circuit connector has 48
pins and mates to an Amphenol connector
type 583167-1. Contacts and keys for
those connectors are purchased separately
and only those needed are used.

POWER
SUPPLY

3 LARGE
FIRMWARE
OPERATORS

Figure 1.

PROCESSOR BUS
PRINTED CIRCUIT CARD

Physical Organization

MEMORY BUS
PRINTED
CIRCUIT CARD

t;d
N

B4

IO SOURCE BUS

16 SMALL DEVICE OR FIRMWARE OPERATORS
MEMORY

BUS

CORE
MEMORY

3 LARGE
FIRMWARE
OPERATORS

FLAT CABLE

CONSOLE

Figure 4.

Firmware operators may be built on
these cards (without using the external
device connectors), but one or more such
operators may be built on the larger
card shown in Figure 3. This card holds
up to 108 ICs.

III SYSTEM BUSING

The busing scheme and connections inter­
nal to the main chassis are shown in
Figure 4. All PC cards shown in the
lower row are of the larger size (9xl3
inches). The processor is contained on
three large cards, labeled PCl, PC2 and
PC3. The PD buffer board provides the
buffering and cable connection to the
console. The MR board contains the MA
and MB registers, memory controls, and
a connection via cable to the memory bus.

System Busing

Three connectors are available in the
processor bus for the addition of firm­
ware operators.

The IOP and IOI cards have flat
cable between them to connect the pro­
cessor bus to the IO bus. Drive circuits
on these cards provide signal isolation
between the two buses, and decoders
provide operator code signals ~o the IO
bus that are not available on the pro­
cessor bus. These signals are used for
interrupt and direct memory access con­
trol and are generally not needed by
firmware op~rators ..

Both the processor bus and the IO bus
are really each two buses, source and
destination. In general the destination
bus is associated with output from system
operators, whereas the source bus is the
source of data and control information
for input to system operators. The tables

BS

below describe all bus signals and show
the pin connections for them (an asterisk
indicates a signal that appears only on
the IO bus). All signals have two states,
low and high, which correspond to nominal
voltage levels of 0 and +4 volts. The

last letter of every signal name is either
H (for high) or L (for low); the level so
indicated is the voltage level on the line
when the signal represents a 1 or produces
the listed function. The plug-in side of
the connectors are shown~

EIH

CLRH

BKH

DMH

POUTL

PINL

DOUTL

DINL

.Ground
+5 v
CLRH
DMH
PINL
DINL
DABlH
DAB3H
DAB5H
DSTRH
CLIBH
IMBL
STPKL
EIRL
SBOlH
SB03H
SB05H
SB07H
SB09H
SBllH
SB13H
SB15H

Source Bus Destination Bus

1 A
2 B
3 c
4 D
5 E
6 F
7 H
8 J
9 K
10 L
11 M
12 N
13 p

14 R
15 s
16 T
17 u
18 v
19 w
20 x
21 y

22 z

Out

Out

Out

Out

Out

Out

Out

Out

Ground DBOlL
+5 v DB03L
EIH DB05L
BKH DB07L
POUTL DB09L
DOUTL DBllL
DAB OH DB13L
DAB2H DB15L
DAB4H SABOH
XCLL SABlH
INT BL SAB2H
DIRBL SAB3H
STKL SAB4H
DMRL SAB5H
SBOOH IDAH,'c
SB02H EASH*
SB04H · EDDH,.c
SB06H EXTH
SB08H CB3H
SBlOH CBlH
SB12H -A
SB14H Ground

Source Bus

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

A
B
c
D
E
F
H
J
K
L
M
N
p

R
s
T
u
v
w
x
y

z

DBOOL
DB02L
DB04L
DB06L
DB08L
DBlOL
DB12L
DB14L
ISYNH
FTBlL
FTB2L
-FTB3L
LINKH
BOH
P2H
ISAH*
EDSH*
FUN CH
CB2H
CBOH
+A
Ground

External Instruction: the processor external instruction
cycle.

Clear: system clear level generated by the start key or
power on or off.

Break: the processor interrupt cycle.

Direct Memory: the processor direct memory access cycle.

Priority Out: the serial interrupt priority-determining
level out of an operator.

Priority In: the serial interrupt priority-determining level
into an operator.

DMA Out: the serial DMA priority-determining level out of an
operator.

DMA In: the serial DMA priority-determining level into an
operator.

B6

DAB OH-DAB SH Out

XCLL Out

DST RH Out

INT BL In

CLIBH Out

DIRBL In

IMBL In

STKL In

STPKL In

DMRL In

EIRL In

SBOOH-SB15H Out

DBOOL-DB15L In

ISYNH Out

SABOH-SABSH Out

FTB1L-FTB3L In

LINKH Out

BOH Out

P2H Out

IDAH Out

ISAH Out

EASH Out

EDSH Out

Destination Address Bus: the 6-bit address of the destination
operator.

Crystal Clock: a square wave with period 110 ns.

Data Strobe: used by an operator to gate in data from the
source bus.

Interrupt Bus: a common line for all operators to request an
interrupt.

Clear Interrupt Bus: clears the DMA Device Service flipflop
in the requesting device.

Direction Bus: indicates data transfer direction for DMA
(0 volts= out, +4 volts= in).

Increment Memory Bus: increment the memory location during a
DMA cycle.

Start Key: signal generated by the start key.

Stop Key: signal generated by the stop key.

Direct Memory Access Request: a common line for all operators
to request DMA.

External Instruction Request: a common line for all operators
to request an external instruction cycle.

Source Bus Data: the 16 data lines in the source bus.

Destination Bus

Destination Bus: the 16 data lines in the destination bus.

Interrupt Sync: generated in each cycle to synchronize inter­
rupt and DMA requests by operators.

Source Address Bus: the 6-bit address of the source operator.

Function Test Bus: operators use these lines for status input
during an SF instruction.

Link: the link bit associated with the bus modifier.

Bus Overflow: the Bus Overflow flag associated with the bus
modifier.

Time 2 Pulse: strobe that gates FO commands into an operator.

Interrupt Destination Address: the destination address is 04,
the interrupt status register.

Interrupt Source Address: the source address is 04, the inter­
rupt status register.

External Address, Source: the source address is 16, the DMA
address register or interrupt address generator.

External Data, Source: the source address is 15, the DMA data
register or logic that supplies an external instruction from
a read-only memory.

B7

EDDH Out External Data, Destination: the destination address is 15,
the DMA data register.

FUN CH
EXTH
CBOH-CB3H

Out
Out
Out

Function: the current processor instruction is an SF or an FO.
Execute Time. A T2 period when progranuned transfer occurs.
Control Bus: lines that transmit control bits in an FO
instruction.

+A, -A Out Unregulated voltage (26-35 volts) for use in local regulators.

IV INTERFACE LOGIC AND TIMING

There are two types of in-out data trans­
fer: the movement of words or characters
by the program and the automatic transfer
of data via direct memory access. The
program can handle in-out by sensing
Ready or by allowing the device to inter­
rupt when :it requires service. If the
device is automatic, it can use direct
memory access for the transfer of data
and require response by the program only
for control purposes (eg when a block
transfer is complete or there is some
special situation, such as an error,
which the program must handle). An op­
tional operator, particularly a firmware
operator, may also carry out operations
by means of external instructions.

There are thus six categories of
functions used in operating equipment
added to the system: programmed data
transfers, function generation, function
testing, interrupts, direct memory access,
and external instructions. Typical cir­
cuit configurations and timing for these
are given here. The timing diagrams
show the relationships among the various
bus signals involved in the operations.
Each line for a control signal represents
the actual voltage level. For groups of
signals that carry binary information,
such as data and addresses, a raised
section in the line indicates the time
during which that information is held on
the bus.

Programmed Data Transfers

Figure 5 shows the timing and hardware
for data transmission between an inter­
face register and the bus system. If a
register is to receive data it must be

connected to the source bus data lines
SBOOH to SB15H and its input gating must
include a decoding net for the destina­
tion address lines DABOH to DAB5H so
that only this operator responds when
:lts code is specified as the destination.

It is recommended that the data lines
be connected to the D inputs of type 7474
flipflops; these offer the greatest ver-- . .

satility in that they also have de clear
and set inputs for external data entry.
The clock input to the data register is
derived by combining the data strobe
DSTRH with the output of the address de­
coder. As can be seen in the timing
diagram, the strobe occurs at the end of
the interval in which the destination ad­
dress and source data are both valid.
Since the address lines carry high levels,
ls can be recognized by connecting the
lines directly to the inputs of a decoder
such as the 7430 gate, whereas lines for
Os must be connected through inverters.
Eg to decode address 75, DABlH is con­
nected through an inverter, the remaining
lines are connected directly. Should a
master clear signal be desired for the
data register, the CLRH line is available;
this carries +5 volts during the power-up
and power-down sequences and also every
time a start signal is sent from the con­
sole or remotely. CLRH is normally low
and must therefore be inverted to drive
the direct clear inputs of the data reg­
ister.

If a register being added is to supply
data to the system, its outputs must be
connected through open collector gates,
such as the 7401, to the destination bus
data lines DBOOL to DB15L. The gating
input for the register output into the
740ls is derived by decoding the address
that appears on source address lines SABOH

BB

DESTINATION
DEVICE
ADDRESS
lDDA) DABlH

SOURCE
DEVICE
ADDRESS
(SDA) SABlH

SAB0H
Oecode X register
SOA-158

SB15H

SET l

D X15
7474 .._ _ __.c
CLR 0

SOURCE BUS DATA LINES

SB01H SB00H

SET l

D X00
7474

c
CLR 0

Clear on power
up, down, or start

DB15L DB01L
DESTINATION BUS DATA LINES

DB00L

... 1.76µ.S --
PROCESSOR TIMING

Machine cycle

Memory read

Memory write

OUTPUT
DAB valid

DSTRH

Data valid

INPUT

T0 Tl

-
1 1

SAB valid _ _.,_ ____ +-----'-'

T2 T3

~

r l

440NS Destination address bus

-=:r 1-t- 110 NS Data strobe

r 16 bits on source bus

440NS t------4-- Source address bus

Data input 16 bits on destination bus

Figure 5. Programmed Data Transfers

to SAB5H. The decoding technique in a
7430 multiple inP.ut gate is identical to
that for the destination address. The
timing of the transfer is the same as
that for output. The SAB address is valid
for the same 440 ns period that a valid
address appears on the DAB lines. The
110 ns strobe at the input to the re­
ceiving register occurs at the end of this
interval, allowing a settling time of 330

ns to transmit the data from the DB lines
through the bus modifier onto the SB lines.
Whatever logic is added between the DAB
decoder and the open collector gates that
connect to the DB lines must not exceed
two pair delays (four gates). It is re­
commended that any inverters used be of
the high speed type such as the Signetics
8H90 (7 ns delay hex inverter) to minimize
pair delays.

The DDAH and ·sDAH signals produced by
decoding the addresses may also be used
by the logic for function output or func­
tion test instructions, rather than sep­
arately decoding the same addresses for
use in testing, setting or clearing
flags, or controlling an IO device.

Function Generation

An FO instruction delivers up to four
coded or individually usable pulses to
operators for setting, clearing, or com­
plementing flags. These pulses are
placed on the control bus lines CBOH to

CLRH

A
l.76J.L s

J

I .. T0 Tl T2

FO instruction

FU NCH 1

B9

CB3H during time 2 of the FO instruction.
These lines are strobed by the combina­
tion of FUNCH, a signal present during
any SF or FO instruction, DDAH, the de­
coded destination address, and P2H, a
strobe pulse occurring at the end of
time 2.

The examples in Figure 6 show three
uses for the CB signals. At A, direct
clear and set signals are being used to
control a flipflop or flag in the device.
As with the data register, CLRH may be
used for a master clear when starting
and during power on and power off. The
type of connection at B is for clearing,
setting and complementing a flag and is
used with the JK type flipflop. This

:::r:: :::r::
....-- SI en en u u

~ c K c
CLRH CLR

0 0

B c

n .. I T0 Tl

l
DAB valid

Control bus
lines valid

440NS

P2H n
Figure 6. Function Generation

BlO

permits use of control bits 0 and 1 to­
gether to provide a microprogralllliled com­
plement of the flipflop. Example C uses
a D type flipflop (7474) where the data
input is connected to the CBOH line and
the clock is provided by the gating of
FUNCH and P2H with DDAH. This arrange­
ment permits the transfer of the current
state of the CB line, whether it be 0 or
1, into the flipflop, and it can be used
to transfer up to four coded bits of
data into a small function register for
multiplexing or selecting up to sixteen
functions.

By convention, if an operator must be
placed in operation by an FO instruction,
CBOH is used for this purpose. This ap­
plies to both firmware and device opera-
tors, but a simple output operator may be
placed in operation just by sending data
to it. Moreover the Ready flag in a de-

vice should be cleared by CBlH; if a
single operator code addresses two de­
vices, one for input, the other for out­
put (data source and destination, respec­
tively), Input Ready should be cleared by
CB3H, Output Ready by CBlH.

Function Testing

Almost all operators contain flags, relay
contacts or status levels that must be
sensed by the program. These conditions
are connected to the function test bus

. lines, FTBlL, FTB2L and FTB3L, through
open collector gates type 7401 or equiv­
alent (Figure 7). The gating function is
the combination of SDAH and FUNCH. The
latter is the same signal that is high
during an FO instruction, but in this case

Device
Ready

180.0.
{

cc

Sia/us conlocl

SDAH ---f

FUN CH >--~._.__-

SF instruction

FUNCH

SAB valid

Set processor skip
if test positive

SC increment

T~

Flag (/)

FTBlL

1.76uS
T3

~1 Tl T2

1
440NS

----1 ~llONS

I

Figure 7. Function Testing

FTB2L

(Tight lope, low
paper, etc.)

220.0.

l

+3 if test positive
+ 1 if test negative

I

it is combined with the decoding of the
appropriate source address.

At the end of the interval defined by
SDAH the processor strobes the function
test lines to compare the information on
them with the test specification given in
the SF instruction. If the test result
is positive, the processor increments SC
by 3 in thE~ final time interval of the
cycle; otherwise it increments SC only
by 1.

By convention the Ready flag in a de­
vice is connected to FTBlL; if a single
operator code addresses two devices, one
for input, the other for output (data
source and destination, respectively),
Input Ready should be connected to FTB3L,
Output Ready to FTBlL. The other lines
may be assigned at the user's discretion
to test conditions such as tight tape,
low paper, power on, etc.

Interrupt

Any but the simplest device operator con­
tains a flag - usually Ready - which is
set at the completion of an operation to
cause an interrupt. If the operator is
for output, the flag is also set by CLRH
so that following power on or use of the
start key, the operator will indicate
that it is ready to output data. In an
input operator CLRH clears the flag. In
either case the flag must also have pro­
vision for a programmed clear by an FO
instruction.

Once RDY is set, INT REQ will set at
the next ISYNH time providing the INT
STAT bit for the device is on (Figure 8).
INT STAT is a single bit in the interrupt
status register ISR, which can be ad­
dressed as a data source or destination.
The address of this register is decoded
in the processor and is sent on the IO
bus as IDAH when used as a destination,
ISAH when used as a source. Other reg­
isters of this type may be added to the
system, but decoding for them must then
be done from the DAB and SAB lines.

Once INT REQ is set the interrupt bus
line INTBL is pulled to ground causing

BU

the next available cycle to be used for
a break. A serial signal PINL and POUTL
determines which of the operators re­
questing an interrupt has the highest
priority. Among those operators whose
INT REQ flags are set, the one that is
physically closest to the processor on
the bus has priority.

The priority determining signal is
passed along the bus from one device op­
erator to another. If an operator re­
ceives PINL and its own INT REQ flag is
clear, it generates POUTL, which is PINL
at the input to the next operator. But
INT REQ being clear disrupts the serial
signal. Hence the first operator on the
bus.whose INT REQ flag is set is the only
one that both receives PINL and has its
own INT REQ flag set, and this is pre­
cisely the condition that allows the
acknowledgement signal BKH from the pro­
cessor to select an operator for a break.

BKH is gated at two different times by
the external address request signal EASH,
which causes a fixed-wired set of open
collector gates to produce a hardwired
address on the destination bus data lines
during_ those periods of the break state
when an external address is required by
the processor. If no address is generated
at the time of the EASH signal, the pro­
cessor traps to location O, ie it stores
SC in location 0 and resumes operation at
location 1. Otherwise the processor uses
the address generated by the interrupting
operator for storing SC and uses the next
consecutive location to resume the execu­
tion of instructions.

Gating the address into the processor
twice allows the operator to supply a
different address the second time. Thus
an operator might always store SC in the
same pre-assigned location, but then be­
gin program operation at various locations
depending upon the cause of the interrupt.

Direct Memory Access

This feature is available to any operator
in the system for passing data directly
to memory, taking data directly from mem-

Bl2

CLRH

Flog Sense
FTBlL

INTBL

INTERRUPT ___
0

CONDITION DEV
SYNH

D DEV
INT

C REQ
ROY

CLOCK-----iC

Flog Clear

FUN CH
DDAH
CBlH
P2H

DSTRH

IDAH

CLRH

0

SB01H

ISYNH

D DEV
INT

c STAT

ROY ___ __

0 ISAH

Bit I of JSR

INTBL -------'I

440NS

DB0ll

BKH

POUTL

f
Interrupt Address
Generator.
Gates to OB lines
required only to

generate ls.

DB00L

DB01L

I

~DB15L
1.76µ.S Next instruction

Program clears ROY and INT
.__ _ _.. '-__.__ REQ prior to re-enabling

interrupt control.

Interrupt request

------+----+--(1)---+------~-
INT STAT Allow interrupt

PINL----------(0)--~-----~-

POUTL _____ ____.

EASH------+---~
Gate interrupt address

___ '"'~-----1--- onto destination bus
>-------4--Address +1 to ·sc

Address to MA

Figure 8. Interrupt

ory, or incrementing the contents of a
memory location by one. Each access re­
quires one memory cycle during which the
program simply pauses. The operator re­
quest:lng access must always supply the
memory address.

The logic for direct memory access
(Figure 9) is very similar to the logic
for an interrupt except that there is no
status flag. An internal condition sets
DMA SYNC which in turn sets DMA REQ the
next time the processor generates the
ISYNH pulse, which occurs in every cycle.
Setting DMA REQ gives rise to the DMA
request signal DMRL on the bus. Like the
interrupt logic, the DMA logic in an
operator also has hardware for a serial
priority determining signal that goes from
one device to the next. In this case a
device that receives DINL generates DOUTL
for the next device if its own DMA REQ
flag is clear. The setting of DMA REQ
disrupts the serial signal so that it
terminates at and gives priority to the
first operator that both receives DINL
and in which DMA REQ is set.

At the next available cycle after a
reque:St is made the processor generates
the direct memory address signal EASH,
which clears DMA SYNC (so that the next
ISYNH clears DMA REQ) and sets DMA SERV
in the device that has priority. DMA
SERV combined with EASH gates a memory
address onto the destination bus data
lines; and combined with appropriate con­
trol levels in the device it may generate
DIRBI. to specify input (otherwise output
is specified) or IMBL to specify that the
word in the addressed memory location
will be incremented.

The next operations depend upon the
type of cycle. For output the processor
generates EDDH to place the data from
memory on the source bus data lines and
sends a strobe DSTRH to load the data
into a register at the operator. If the
increment function is called for the pro­
cessor sends the incremented word out to
the operator and also writes it back in
memory in pl.ace of the original data.
For input the processor generates EDSH

Bl3

to place data from the operator on the
destination bus data lines and generates
a strobe internally to load the data into
MB. When access is complete CLIBH clears
DMA SERV to end the operation.

The logic diagram shows the basic re­
quest logic required for any type of
cycle but shows the transfer logic only
for input and shows only the gates for
supplying a memory address. Output
transfer logic is not shown and any
operator making a series of DMA transfers
would have a memory address counter for
addressing consecutive locations.

External Instructions

This mode of operation allows a system
operator to take control of the bus
system. and temporarily suspend the stored
program. Then the operator can supply
instructions from its own read-only mem­
ory in place of those from core. The in­
structions cannot reference memory and
are executed at twice the normal rate,
ie two per processor cycle.

Figure 10 shows the logic and timing
for external instructions. The sequence
begins when an FO instruction sets a
flag to generate an external instruction
request on the bus from the operator. An
external instruction sequence follows
immediately, making the FO and the se­
quence appear as one long instruction.
The EI state is maintained until a done
condition in the operator combined with
EDSH drops the request.

While in the EI state, the operator
must supply an instruction to the desti­
nation bus data lines every even time
period. Gating is supplied by EDSH and
the word is sent to IR through the bus
modifier. In each odd time period the
instruction is performed. Except for
memory references, programs running in
the EI state can accomplish the same
tasks as a core program but at twice the
speed.

Bl4

DMRH
DINH
EASH

INTERNAL OMA REQUEST

CLOCK

D DEV
OMA ISYNH

c SYNC

0

D DEV
OMA

C REQ

DMRH

0

DMRL

From device control
(For in transfers on/;'; no gate
required for out transfers)

DIR BL

DMR H >----- D DEV
OMA

EASH ~~c SERV
0

DST RH
EDDH

Clock input to
device data
register for
data on
SB lines

EDSH

IMBL

CLISH
From device control

DEVICE DATA REGISTER

DB15L DB01L DB00L DB00L DB01L DB15L

ISYNH

OMA SYNC

DMRH

~ 1.76µ.S ---I

-----______ __,

DINL -----------(0)----------
DOUTL ______ __,

DMH ____________ f:= 1.76µ.S =::J _____ OMA memory cycle

OMA SERV -------------
EASH ------------

Processor strobes OMA address
---------into MA

EDDH (out only)------------- -------MB increment if specified
(out direction only)

DSTRH (out only)-------------- -------

EDSH (in only)--------------­

Strobe (in only)---------------- -------Processor strobes data
into MB

CLISH _______________ __.

figure 9. Direct Memory Access

FU NCH
DDAH

P2H

CLRH

OPERATOR DONE

EDSH

EIRH

EIH

CB0H

D
EIR

c

-EIRL

Bl5

Read-only memory input
to processor instruction register

DB15L DB14L 0800L

,~O instruction+· External instruction j

TO Tl T2 T3 TO Tl T2 T3 TO Tl T2 T3 TO Tl T2 T3 TO Tl T2 T;

t--+--+--+---t

E OS H .,,___.........,.____.__.

Register to register transfer

Figure 10. External Instruction Request

Bl6

V DESIGN EXAMPLES

A common and relatively simple operation
that is required in many process control
applications is mechanical positioning of
a device upon command from the computer.
Figure 11 shows a valve positioner inter­
faced to the GRI-909 source bus. Valve
position in digital form is loaded into
the operator data buff er when that oper­
ator code is specified as a destination.
The buff er output goes directly to the

ADDRESS

ADDRESS
DECODER

external device connector through the
Amphenol plug to a D-A converter and then
by cable to a positioning servo external
to the computer.

Figure 12 shows an operator that moni­
tors the status of 32 relay contacts. An
FO instruction selects one of the two sets
of 16 contacts, which can then be ad­
dressed as a data source, where the 16
data bits equal the relay contact status
(eg 0 indicates an open relay, 1 indi­
cates a closed relay).

EXTERNAL
DEVICE

CONNECTION

CONTROL

16-B1T BUFFER
DIA

CONVERTER

Figure 11. Valve Controller

t
FLOW

SOURCE
BUS

ADDRESS
DATA

CONTROL

Q
FUNCTION
DECODER

l

CONTROL

DESTINA
BU

TION DATA
s ADDRESS

Bl7

ADDRESS
DECODER

EXTERNAL
DEVICE

CONNECTION

ENABLE
16 CONTACTS SET 1

u ENABLE
SET 2

11
16 CONTACTS

...... ly I

I
J l J ADDRESS

DECODER

Figure 12. Relay Contact Monitor

APPENDIX C

INSTALLATION

The physical layout and dimensions of the
computer chassis are shown on the next
page. The chassis is set up for easy
mounting in a standard 19-inch rack,
either bolted in from the front or mounted
on slides. (Slides can be obtained from
Grant Pulley and Hardware Co., High St.,
Nyack, New York; catalog number SS-300-NT-
20, 23~ inch travel with adjustable r~ar
brackets.) An expansion chassis with the
same dimensions can be mounted above or
below the unit.

Access to the front of the chassis can
be gained by swinging the hinged console
aside. Viewed from the front, the power
supply is on the left, the memories on
the right; in the center are slots for
seven large printed circuit boards. Ac­
cessible from the back of the chassis are
sixteen slots for smaller boards. All
cards are mounted vertically to take max­
imum advantage of convective cooling in­
side the rack. There are two types of
expansion chassis: one is identical to
the basic chassis, the other has connec­
tors at the back for 24K of additional
memory with its power supply.

It is recommended that the ambient
temperature at the installation be main­
tained between 20° and 30°C, but the am­
bient temperature in the vicinity of the
chassis can vary from 0° to 50°C without
adverse effect. The relative humidity
can be as high as 90%. (Although all ex­
posed surfaces are treated to prevent
corrosion, exposure of extreme humidity
for long periods of time should be
avoided.)

The computer uses single phase line
power, 100-130 vac, 60±3% Hz. An optional

Main chassis

Teletype ASR33

Height
(inches)

45

Cl

power supply operates from 200-240 vac,
50±3% Hz. The power source should be ca­
pable of supplying 15 amperes. The power
cable has a standard 3-wire plug and
should be plugged into a properly grounded
receptacle rated at 15 amperes.

Line current
(115 vac)

Dissipation

Processor

4 amperes

150-250
watts

Teletype

2 amperes
Turnon surge

7 amperes

92 watts

The +5 vdc output of the power supply
can deliver 13 amperes, of which about 6
are used by the processor with 4K of
memory; the rest is available for addi­
tional memory and other optional opera­
tors. Each expansion chassis has its own
power supplies.

Complete assembly instructions for the
teletype are given in Section 574-100-201
of Bulletin 273B, Volume 1, Technical
Manual, 32 and 33 Teletypewriter Sets. In
particular, Part 6 of that section de­
scribes the installation of the power
pack, which is mounted inside the stand
as shown in the illustration on page 14.
Plug the power pack cable into the pack,
and plug the teletype power cable into
the line power source. Plug and lock the
signal cable onto the edge fingers on the
back edges of the Teletype interface
cards at the back of the processor chassis
(the teletype output and input interface
cards are at the left end, closest to the
memory, and are marked TTO and TTI re­
spectively).

Width
(inches)

19

22

Depth
(inches)

20

19

Weight
(pounds)

50

56

NOTES:
1. THE NOTED AREA MUST BE FREE OF

OBSTRUCTIONS TO ALLOW FOR POWER
AND IO CABLE SWEEPS.

2. THESE DIMENSIONS ARE FOR SLIDE
MOUNTING OPTION.

+
ALLOW 1" CLEARANCE FOR n ~\. ,._,-, __
CONTROL PANEL SWING ,, ,-l,.£.\[\t~~~- TI 11!2 r-

1

~~r~-=--=--=-~-=----------------------- -#

,--
1
L-.-

f: ... , .. (\ _J)L-\l- -----
-" { '' \ - -- -

,. ,_ f\r\r~rj0r,£\L\L:~·~-'-:--:-_-_--_-_--__ r--r-
J..~~ >'_..}. --- - --- ---- \ ___ J - ---

\ _-- -
I
\
\
\
~
\
\
\
\
\

163/4 RAD.

CONTROL PANEL
OPENS 77° APPROX.

'\.

16%

19

' ' ' " ",,

',,'',,,_ j

--:.- -~ ITT"i~e.-2Pt:ACEs--~~-------~~ ~========-~~~~-----=----~===--=-1
:i~ 1/a TYP.

r
I

2 PLACES

Physical Dimensions

201/4 MAX.

I 1
I
I
I
I

I
I
I

SEE 1

NOTE:
NO. l 1 12

I
I
I

I
I
I
I

17

1112
ADJUSTABLE

n
N

APPENDIX D

POWER FAILURE AND AUTOMATIC RESTART

Power supply specifications are given in
the preceding appendix. A rise or fall
of .25 volt in the +5 volt or -5 volt
output will result in a power failure.
Should this occur, the power supply con­
trol circuitry signals the processor of
the condition and then waits at least
100 µs before initiating an orderly
power down sequence. To protect system
components from being damaged by an ex­
cessive overvoltage, the +5 and -20 vdc
supplies contain silicon-controlled rec­
tif ie:rs (known as crowbars) that will
short circuit the supply if necessary.

To ensure full core memory protection,
the power supply control executes an
orderly power up sequence following
power turnon or a power failure. If the

Dl

failure condition still exists as power
is coming up, the control simply initi­
ates the shutdown sequence again. The
power up sequence takes 3 seconds, and
upon its completion the processor is
ready to run. If the autorestart switch
is on, the processor goes into normal
operation starting at location 6; other­
wise it comes on stopped. The switch is
located on the front panel of the power
supply behind the console.

Caution

If the machine continually shuts
down and restarts, the most
likely cause is transients in
the ac input.

APPENDIX E

INSTRUCTION MNEMONICS

Listed below are the basic instruction
types with their execution times and the
number of words they require. At the
bottom of the page is a chart showing the
derivation of the instruction mnemonics.
The table on the next page lists the

basic assembly mnemonics in alphabetical
order. On pages E3 and E4 is a list of
opera tor codes in numerical order wi.th
page references. Following that is a
table showing the many variations of
which each instruction type is capable.

Data Transmission
Nonmemory reference
Memory reference

Direct
Def erred
Immediate
ImmE~diate and def erred

Data Testing
No jump
Jump d:lrect
Jump dE~ferred

Function Generating

Function Testing

Register} to Register
Zero
Register to Self

Words Cycles

1 1

2 3
2 4
2 2
2 3

2 1
2 2
2 3

1 1

1 1

{ Zomplemerit

~:;!ster} to Memory}

M {
Register

emory to Self
{

direct
Def erred
Immediate
Immediate and Def erred

{
Conditional } Jump
Unconditional

,....,

{
direct
Def erred

. {Machine Function Output I t t n errup
Arithmetic

Sense Function {~achine
Arithmetic

El

Time
Microseconds

1. 76

5.28
7.04
3.52
5.28

1. 76
3.52
5.28

1. 76

1.76

E2

INSTRUCTION MNEMONICS

ADD 0000 !SR 04 Rl llOO
AND 0100 JC 00 0000 03 RM 00 0000 06

AO 13 JCD oo· 0001 03 RMD 00 0001 06
AOV 0010 JU 00 0010 03 RMI 00 0010 06

AX 11 JUD 00 0011 03 RMID 00 OQll 06
AY 12 Ll 1000 RR 00 0000 00
BOV 0010 LEZ 1100 RRC 00 0010 00

CLIF 1000 LNK 0100 RS 00 0000 00

CLL 0001 LTZ 1000 RSC 00 0010 00

CLOF 0011 MPO 14 SC 07
CML 0011 MR 06 0000 00 SF 00 0000 02
ETZ 0100 MRD 06 0001 00 SFA 13 0000 02
FO 02 0000 00 MRI 06 0010 00 SFM 00 0000 02
FOA 02 0000 13 MRID 06 0011 00 STRT 0001
FOI 02 0000 04 MS 06 0000 06 STL 0010
FOM 02 0000 00 MSD 06 0001 06 SWR 10
GEZ 1010 MS! 06 0010 06 TRP 03
GRl 26 MSID 06 0011 06 TTI 77
GR2 27 MSR 17 TTO 77

GTZ 1110 NEZ 0110 XOR 1000
HLT 0100 NOP 00 0000 00 ZM 00 0000 06
HSP 76 NOT 0001 ZMD 00 0001 06
HSR 76 NPFL 1000 ZMI 00 0010 06
ICF 0001 OR 1100 ZMID 00 0011 06
ICO 0010 ORDY 0010 ZR 00 0000 00
IRDY 1000 Pl 0100 ZRC 00 0010 00

Octal

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

Mnemonic

TRP

ISR

SC

SWR

AX

AY

AO

MPO*

MSR

BX*

BY*

BAO*

BSW*

BPK*

GRl

GR2

Page

2-7

2-16

2-11

2-19

3-1

3-1

3-1

3-4

2-11

3-4

3-4

3-3

3-3

E3

OPERATOR CODES

Operator
Source Destination

Null-Control

Null Instruction Register

Function Generator Function Tester

Trap Register Data Tester (nonmemory source)
Trap Register (memory source)

Interrupt Status Register

Memory Address

Memory (Buff er)

Sequence Counter

Console Switch Register

External Address

Register AX

Register AY

Arithmetic Operator

Multiply Operator

External Data

Machine Status Register

Register BX

Register BY

Second Arithmetic Operator

Byte Swapper

Byte Packer

General Register 1

General Register 2

Null

Null

Null

E4

Operator
Octal Mnemonic Page Source Destination

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75 RTC* Real Time Clock

76 HSR HSP 4-6 High Speed Reader High Speed Punch
77 TTI TTO 4-1 Teletype Input Teletype Output

* Not defined in the assembler symbol table.

ES

INSTRUCTION VARIATIONS

In order to show the wide variety of individual instructions available in the GRI-909,

we list here all the variations of the basic instruction types for a single pair of

operators. The assemblers recognize mnemonic or structural forms for eleven instruc­

tion types as follows:

1.
2.
3.
4.
5.
6.

Register to Register
Zero to Register
Register to Self
Register to Memory
Zero to Memory
Memory to Register

7. Memory to Self
8. Conditional Jump
9. Unconditional Jump
10. Function Generate
11. Sense Function

1. Register to Register
Data transmission from one register to another is the fastest and most commonly used

class of machine instruction. The modifications performed on the data by the bus

modifier while the data is in transit expand this form into the set listed below. For

illustration the arithmetic register AX is being sent to general purpose register 1

Data modification BASE FAST

None RR AX,GRl AX TO GRl

Increment by 1 RR AX,Pl,GRl AX Pl TO GRl

Shift left 1 RR AX,Ll,GRl AX Ll TO GRl

Shift right 1 RR AX,Rl,GRl AX Rl TO GRl

Complement RRC AX,GRl C AX TO GRl

Complement and increment by 1 RRC AX,Pl,GRl C AX Pl TO GRl

Complement and shift left 1 RRC AX,Ll,GRl C AX Ll TO GRl

Complement and shift right 1 RRC AX,Rl,GRl C AX Rl TO GRl

2. Zero to Register
This is a special case of the register to register instruction where the source is

the null operator. With no source register delivering data to the destination bus,

the data supplied to the bus modifier is zero, and the following set of instructions

results.

(GRl)

E6

Data modification BASE FAST

None ZR AX ZERO TO AX

Increment by 1 ZR Pl,AX ZERO Pl TO AX

Shift left 1 ZR 11,AX ZERO 11 TO AX

Shift right 1 ZR Rl,AX ZERO Rl TO AX

Complement ZRC AX c ZERO TO AX

Complement and increment by 1 ZRC Pl,AX c ZERO Pl TO AX

Complement and shift left 1 ZRC 11,AX c ZERO 11 TO AX

Complement and shift right 1 ZRC Rl,AX c ZERO Rl TO AX

3. Register to Self
The bus modifier can be made to act directly on the contents of a single register by

specifying that register as both source and destination. This special case of regis­

ter to register gives this instruction set.

Data modification BASE FAST

Increment by 1 RS AX,Pl AX Pl

Shift left 1 RS AX,11 AX 11

Shift right 1 RS AX,Rl AX Rl

Complement RSC AX c AX

Complement and increment by 1 RSC AX,Pl c AX Pl

Complement and shift left 1 RSC AX,11 C AX 11

Complement and shift right 1 RSC AX,Rl C AX Rl

4. Register to Memory
To transfer data from a register to memory the memory buffer is designated as the des­

tination. The next consecutive memory location in the program is then used as a memo­

ry address or as an immediate data storage location. This instruction type expands

into the set given here when memory addressing modes and bus modifier options are con­

sidered. AX is the source, MDATA is the address of a location containing data, and

ADATA is the address of a location containing a deferred address. In immediate mode

the second instruction location will be used to receive data, so we specify its con­

tents initially as 0.

Memory add:riessing
Data modification BASE

Direct

Direct

Direct

Direct

Def erred

Def erred

Def erred

Def erred

Immediate

Immediate

Immediate

Immediate

Immediate deferred

Immediate def erred

Immediate def erred

Immediate def erred

None

Increment by 1

Left 1

Right 1

None

Increment by 1

Left 1

Right 1

None

Increment by 1

Left 1

Right 1

None

Increment by 1

Left 1

Right 1

RM AX,MDATA

RM AX,Pl,MDATA

RM AX,Ll,MDATA

RM AX,Rl,MDATA

RMD AX,ADATA

RMD AX,Pl,ADATA

RMD AX,LlADATA

RMD AX,Rl,ADATA

RMI AX,O

RMI AX,Pl,O

RMI AX,Ll,O

RMI AX,Rl,O

RMID AX,ADATA

RMID AX,Pl,ADATA

RMID AX,Ll,ADATA

RMID AX,Rl,ADATA

5. Zero to Memory

FAST

AX TO MDATA

AX Pl TO MDATA

AX Ll TO MDATA

AX Rl TO MDATA

AX TO D ADATA

AX Pl TO D ADATA

AX Ll TO D ADATA

AX Rl TO D ADATA

AX TO I 0

AX Pl TO I 0

AX Ll TO I 0

AX Rl TO I 0

AX TO ID ADATA

AX Pl TO ID ADATA

AX Ll TO ID ADATA

AX Rl TO ID ADATA

El

This is a special case of register to memory where the source is the null operator.

The source word is therefore zero and the data sent to memory is dependent upon only

the operations performed in the bus modifier. The set of instructions for this spe­

cial case are given using the same terminology as for register to memory.

Memory ad.dressing

Direct

Direct

Direct

Direct

Def erred

Def erred

Def erred

Def erred

Immediate

Immediate

Data modification

None

Increment by 1

Left 1

Right 1

None

Increment by 1

Left 1

Right 1

None

Increment by 1

BASE

ZM

ZM

ZM

ZM

ZMD

ZMD

ZMD

ZMD

ZMI

ZMI

MDATA

Pl,MDATA

Ll,MDATA

Rl,MDATA

ADATA

Pl,ADATA

Ll,ADATA

Rl,ADATA

0

Pl,O

FAST

ZERO TO MDATA

ZERO Pl TO MDATA

ZERO Ll TO MDATA

ZERO Rl TO MDATA

ZERO TO D ADATA

ZERO Pl TO D ADATA

ZERO Ll TO D ADATA

ZERO Rl TO D ADATA

ZERO TO I 0

ZERO Pl TO I 0

EB

Immediate Left 1 ZMI Ll,O ZERO Ll TO I 0

Immediate Right 1 ZMI Rl,O ZERO Rl TO I 0

Immediate def erred None ZMID ADATA ZERO TO ID ADATA

Immediate def erred Increment by 1 ZMID Pl,ADATA ZERO Pl TO ID ADATA

Immediate def erred Left 1 ZMID Ll,ADATA ZERO Ll TO ID ADATA

Immediate def erred Right 1 ZMID Rl,ADATA ZERO Rl TO ID ADATA

6. Memory to Register
This is the exact inverse of register to memory discussed above. MDATA and ADATA

have the same meaning as before, but in immediate mode we must specify the data

to be supplied from the second instruction location. For an example we use 5 as

the data word.

Memory addriessing
Data modification

Direct None

Direct Increment by 1

Direct Left 1

Direct Right 1

Def erred None

Def erred Increment by 1

Def erred Left 1

Def erred Right 1

Immediate None

Immediate Increment by 1

Immediate Left 1

Immediate Right 1

Immediate def erred None

Immediate def erred Increment by 1

Immediate deferred Left 1

Immediate deferred Right 1

BASE

MR MDATA,AX

MR MDATA,Pl,AX

MR MDATA,Ll,AX

MR MDATA,Rl,AX

MRD ADATA,AX

MRD ADATA,Pl,AX

MRD ADATA,Ll,AX

MRD ADATA,Rl,AX

MRI 5,AX

MRI 5,Pl,AX

MRI 5,Ll,AX

MRI 5 ,Rl ,AX

MR.ID ADATA,AX

MR.ID ADATA,Pl,AX

MR.ID ADATA,Ll,AX

MRID ADATA,Rl,AX

7. Memory to Self

FAST

MDATA TO AX

MDATA Pl TO AX

MDATA Ll TO AX

MDATA Rl TO AX

D ADATA TO AX

D ADATA Pl TO AX

D ADATA Ll TO AX

D ADATA Rl TO AX

I 5 TO AX

I 5 Pl TO AX

I 5 Ll TO AX

I 5 Rl TO AX

ID ADATA TO AX

ID ADATA Pl TO AX

ID ADATA Ll TO AX

ID ADATA Rl TO AX

A memory reference instruction can access only one memory data location, but when the

memory buffer is designated as both source and destination, the contents of that loca­

tion can be modified directly, giving this instruction set.

Memory addressing
Data modification BASE

MS

MS

MS

MSD

MSD

MSD

MSD

MSI

MSI

MSI

MSI

MSID

MSID

MSID

MSID

Direct

Direct

Direct

Def erred

Def erred

Def erred

Deferred

Immediate

Immediate

Immeiiate

Immediate

Immediate deferred

Immediate deferred

Immediate deferred

Immediate def erred

Increment by 1

Left 1

Right 1

None

Increment by 1

Left 1

Right 1

None

Increment by 1

Left 1

Right 1

None

Inc.remen t by 1

Left 1

Right 1

MDATA,Pl

MDATA,Ll

MDATA,Rl

ADATA

ADATA,Pl

ADATA,Ll

ADATA,Rl

0

0,Pl

O,Ll

O,Rl

ADATA

ADATA,Pl

ADATA,Ll

ADATA,Rl

8. Conditional Jump

FAST

MDATA Pl

MDATA Ll

MDATA Rl

D ADATA

D ADATA Pl

D ADATA Ll

D ADATA Rl

I 0

I 0 Pl

I 0 Ll

I 0 Rl

ID ADATA

ID ADATA Pl

ID ADATA Ll

ID ADATA Rl

E9

This :Ls a data test instruction. The source data is send directly to the data tester

and is not subject to action by the bus modifier. Jump addressing and conditions for

testing the data produce this instruction set.

Memory addressing

Direct

Direct

Direct

Direct

Direct

Direct

Def erred

Def erred

Def erred

Def erred

Def erred

Def erred

Data test

Data = 0

Data < 0

Data ~ 0

Data 1: 0

Data ~ 0

Data > 0

Data = 0

Data < 0

Data ~ 0

Data 1: 0

Data ~ 0

Data > 0

BASE

JC AX,ETZ,BEGIN

JC AX,LTZ,BEGIN

JC AX,LEZ,BEGIN

JC AX,NEZ,BEGIN

JC AX,GEZ,BEGIN

JC AX,GTZ,BEGIN

JCD AX,ETZ,ABGIN

JCD AX,LTZ,ABGIN

JCD AX,LEZ,ABGIN

JCD AX,NEZ,ABGIN

JCD AX,GEZ,ABGIN

JCD AX,GTZ,ABGIN

FAST

IF AX ETZ GO TO BEGIN

IF AX LTZ GO TO BEGIN

IF AX LEZ GO TO BEGIN

IF AX NEZ GO TO BEGIN

IF AX GEZ GO TO BEGIN

IF AX GTZ GO TO BEGIN

IF AX ETZ GO TO D ABGIN

IF AX LTZ GO TO D ABGIN

IF AX LEZ GO TO D ABGIN

IF AX NEZ GO TO D ABGIN

IF AX GEZ GO TO D ABGIN

IF AX GTZ GO TO D ABGIN

ElO

9. Unconditional Jump
Memory
addressing BASE FAST

Direct JU BEGIN GO TO BEGIN

Def erred JUD AB GIN GO TO D ABGIN

10. Function Generate
The four function bits in an FO instruction word permit up to sixteen unique FO

instructions per destination operator address. These bit combinations can be given

symbolic names or can simply be written in octal in the BASE language. The instruc­

tion set shown here generates functions for an A-D converter, mnemonic ADC.

BASE FAST BASE FAST

FO O,ADC NO TO ADC FO 10,ADC NlO TO ADC

FO l,ADC Nl TO ADC FO 11,ADC Nll TO ADC

FO 2,ADC N2 TO ADC FO 12,ADC Nl2 TO ADC

FO 3,ADC N3 TO ADC FO 13,ADC Nl3 TO ADC

FO 4,ADC N4 TO ADC FO 14,ADC Nl4 TO ADC

FO 5,ADC NS TO ADC FO 15,ADC Nl5 TO ADC

FO 6,ADC N6 TO ADC FO 16,ADC Nl6 TO ADC

FO 7 ,ADC N7 TO ADC FO 17 ,ADC Nl7 TO ADC

11. Sense Function
The four control bits in an SF instruction word allow up to fourteen different skip

instructions per source operator address. The rightmost bit determines whether the

skip shall occur if any condition specified by the other three is satisfied, or if

no condition specified by them is satisfied. The conditions may be given in octal

as is done here in BASE or by a symbolic name as must be done in the FAST language.

BASE FAST BASE FAST

SF ADC,l SKIP IF ADC Fl SF ADC,NOT 1 SKIP IF ADC NOT Fl

SF ADC,2 SKIP IF ADC F2 SF ADC,NOT. 2 SKIP IF ADC NOT F2

SF ADC,3 SKIP IF ADC F3 SF ADC,NOT 3 SKIP IF ADC NOT F3

SF ADC,4 SKIP IF ADC F4 SF ADC,NOT 4 SKIP IF ADC NOT F4

SF ADC,5 SKIP IF ADC FS SF ADC,NOT 5 SKIP IF ADC NOT FS

SF ADC,6 SKIP IF ADC F6 SF ADC,NOT 6 SKIP IF ADC NOT F6

SF ADC,7 SKIP IF ADC F7 SF ADC,NOT 7 SKIP IF ADC NOT F7

APPENDIX F

IN-OUT CODES

The table below lists the in-out devices,
their interrupt status bit and channel
assignments, mnemonics, operator codes
and GR! option numbers. The table be­
ginning on the next page lists the com­
plete teletype code. Codes generated by
the keyboard have a 1 in the most signi­
ficant bit, but this bit can be 0 or 1
in a code sent to the printer. The low­
er case character set (codes 340-376) is

not available on the Model 33, but giv­
ing one of these codes causes the tele­
type to print the corresponding upper
case character. Definitions of control
codes are those given by ASCII. Most
control codes, however, have no effect
on the teletype, and their definitions
bear no necessary relation to the use of
the codes in conjunction with the GRI-909
software.

IN-OUT DEVICES
Interrupt

Status Trap
Bit Location

0

0

0 11

1 14

2 17

3 22

4

5

6

7

8

9

10

11

12

13

14

15

Device

Power failure

Breakpoint

Teletype output

Teletype input

High speed punch

High speed reader

Mnemonic

Fl

TTO

TT!

HSP

HSR

Operator
Code

00

01

77

77

76

76

Page

2-19

2-17

4-1

4-1

4-6

4-6

Option
Number

S42-002

S42-001

S42-006

S42-004

F2

8-Bit
Octal
Code Character

200 NUL

201 SOH

202 STX

203 ETX

204 EOT

205 ENQ

206 ACK

207 BEL

210 BS

211 HT

212 LF

213 VT

214 FF

215 CR

216 so
217 SI

220 DLE

221 DCl

222 DC2

223 DC3

224 DC4

225 NAK

226 SYN

227 ETB

230 CAN

231 EM

232 SUB

TELETYPE CODE

Remarks

Null, tape feed. Control shift P.

Start of heading; also SOM, start of message. Control A.

Start of text; also EOA, end of address. Control B.

End of text; also EOM, end of message. Control C.

End of transmission; shuts off TWX machines. Control D.

Enquiry; also WRU, "Who are You?" Triggers identification
("Here is ... ".)at remote station if so equipped. Control E.

Acknowledge; Also RU, "Are you .•. ?" Control F.

Rings the bell. Control G.

Backspace; also FEO, format effector. Backspaces some machines.
Control H.

Horizontal tab. Control I.

Line feed or line space; advances paper to next line. Duplicated
by control J.

Vertical tab. Control K.

Form feed to top of next page. Control L.

Carriage return to beginning of line. Control M.

Shift out; changes ribbon color to red. Control N.

Shift in; changes ribbon color to black. Control O.

Data link escape. Control P (DCO).

Device control 1, turns transmitter (reader) on. Control Q
(X ON).

Device control 2, turns punch or auxiliary on. Control R
(TAPE, AUX ON).

Device control 3, turns transmitter (reader) off. Control S
(X OFF).

Device control 4, turns punch or auxiliary off. Control T
(AUX OFF).

Negative acknowledge; also ERR, error. Control U.

Synchronous idle. Control V.

End of transmission block; also LEM, logical end of medium.
Control W.

Cancel. Control X.

End of medium. Control Y.

Substitute. Control Z.

8-Bit
Octal
Code

233

234

235

236

237

240

241

242

243

244

245

246

247

250

251

252

253

254

255

256

Character

ESC

FS

GS

RS

us
SP

II

II

$

%

&

(

)

+

257 I
260 0

261 1

262 2

263 3

264 4.

265 5

266 6

267 7

270 8

271 9

272

273

F3

Remarks

Escape, prefix. This code is also generated by control shift K.

File separator. Control shift L.

Group separator. Control shift M.

Record separator. Control shift N.

Unit separator. Control shift 0.

Space.

Accent acute or apostrophe.

F4

8-Bit
Octal
Code Character Remarks

274 <

275

276 >

277 ?

300 @

301 A

302 B

303 c

304 D

305 E

306 F

307 G

310 H

311 I

312 J

313 K

314 L

315 M

316 N

317 0

320 p

321 Q

322 R

323 s
324 T

325 u
326 v
327 w
330 x
331 y

332 z
333 Shift K.

334 \ Shift L.

FS

8-Bit
Octal
Code Character Remarks

335 Shift M.

336 t

337 +

340 Accent grave.

341 a

342 b

343 c

344 d

345 e

346 f

347 g

350 h

351 i

352 j

353 k

354 1

355 m

356 n

357 0

360 p

361 q

362 r

363 s

364 t

365 u

366 v

367 w

370 x

371 y

372 z

373 {

374 I

F6

8-Bit
Octal
Code

375

376

377

REPT

LOC LF

LOC CR

BREAK

BRK RLS

HERE IS

Character

}

DEL

Remarks

On early versions, either of these codes may be generated
by either the ALT MODE or ESC key.

Delete, rub out.

Keys That Generate No Codss

Causes any other key that is struck to repeat contiµously until REPT is
released.

Local line feed.

Local carriage return.

Opens the line (machine sends a continuous string of null characters).

Break release (not applicable).

Transmits predetermined 20-character message.

APPENDIX G

NUMERICAL TABLES

POWERS OF TWO IN DECIMAL

2n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5

131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906

POWERS OF TEN IN OCTAL

1
12

144
1 750

23 420
303 240

3 641 100
46 113 200

575 360 400
7 346 545 000

112 402 762 000
1 351 035 564 000

16 432 451 210 000
221 411 634 520 000

2 657 142 036 440 000
34 327 724 461 500 000

434 157 115 760 200 000
5 432 127 413 542 400 000

67 405 553 164 731 000 000

n
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Gl

1.000 000 000 000 000 000 00
0.063 146 314 631 463 146 31
0.005 075 341 217 270 243 66
0.000 406 111 564 570 651 77
0.000 032 155 613 530 704 15
0.000 002 476 132 610 706 64
0.000 000 206 157 364 055 37
0.000 000 015 327 745 152 75
0.000 000 001 257 143 561 06
0.000 000 000 104 560 276 41
o.ooo 000 000 006 676 337 66
0.000 000 000 000 537 657 77
0.000 000 000 000 043 136 32
0.000 000 000 000 003 411 35
0.000 000 000 000 000 264 11
0.000 000 000 000 000 022 01
0.000 000 000 000 000 001 63
0.000 000 000 000 000 000 14
0.000 000 000 000 000 000 01

5
25

G2

Octal 0000-0777
Decimal 0000-0511

Octal Decimal

10000 4096
20000 8192
30000 12288
40000 16384
50000 20480
60000 24576
70000 28672

Octal 1000-1777
Decimal 0512-1023

10000
0010

,0020
\ oo3o
0040
0050
0060
0070

0100
0110
0120
0130
0140
0150
0160
0170

0200
0210
0220
0230
0240
0250
0260
0270

0300
0310
0320
0330
0340
0350
0360
0370

1000
1010
1020
1030
1040
1050
1060
1070

1100
1110
1120
1130
1140
1150
1160
1170

1200
1210
1220
1230
1240
1250
1260
1270

1300
1310
1320
1330
1340
1350
1360
1370

OCTAL TO DECIMAL CONVERSION, INTEGERS

0 1 2 3 4 5 6 7 0 l

0000 0001 0002 0003 0004 0005 0006 0007 0400 0256 0257
0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265
0016 0017 0018 0019 0020 0021 0022 0023 0420 0272 0273
0024 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281
0032 0033 0034 0035 0036 0037 0038 0039 0440 0288 0289
0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297
0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305
0056 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313

0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321
0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329
0080 0081 0082 0083 0084 0085 0086 0087 05~0 0336 0337
0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345
0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353
0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361
0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369
0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377

0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385
0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393
0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401
0152 0153 0154 0155 0156 0157 0158 0159
0160 0161 0162 0163 0164 0165 0166 0167
0168 0169 0170 0171 0172 0173 0174 0175
0176 0177 0178 0179 0180 0181 0182 0183
0184 0185 0186 0187 0188 0189 0190 0191

0630 0408 0409
0640 0416 0417
0650 0424 0425
0660 0432 0433
0670 0440 0441

0192 0193 0194 0195 0196 0197 0198 0199
0200 0201 0202 0203 0204 0205 0206 0207
0208 0209 0210 0211 0212 0213 0214 0215
0216 0217 0218 0219 0220 0221 0222 0223
0224 0225 0226 0227 0228 0229 0230 0231
0232 0233 0234 0235 0236 0237 0238 0239
0240 0241 0242 0243 0244 0245 0246 0247

0700 0448 0449
0710 0456 0457
0720 0464 0465
0730 0472 0473
0740 0480 0481
0750 0488 0489
0760 0496 0497

0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505

0 1 2 3 4 5 6 7 0 I

0512 0513 0514 0515 0516 0517 0518 0519 1400 0768 0769
0520 0521 0522 0523 0524 0525 0526 0527 1410 0776 0777
0528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785
0536 0537 0538 0539 0540 0541 0542 0543 1430 0792 0793
0544 0545 0546 0547 0548 0549 0550 0551 1440 0800 0801
0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 080~

0560 0561 0562 0563 0564 0565 0566 0567 1460 0816 0817
0568 0569 0570 0571 0572 0573 0574 0575 1470 0824 0825

0576 0577 0578 0579 0580 0581 0582 0583 1500 0832 0833
0584 0585 0586 0587 0588 0589 0590 0591 1510 0840 0841
0592 0593 0594 0595 0596 0597 0598 0599 1520 0848 0849
0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857
0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865
0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873
0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881
0632 0633 0634 0635 0636 0637 0638 0639 1570 0888 0889

0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897
0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905
0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913
0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921
0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929
0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937
0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945
0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953

0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961
0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969
0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977
0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0985
0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993
0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001
0752 0753 0754 0755 0756 0757 0758 0759
0760 0761 0762 0763 0764 0765 0766 0767

1760 1008 1009
1770 1016 1017

2 3 4 5 6 7

0258 0259 0260 0261 0262 0263
0266 0267 0268 0269 0270 0271
0274 0275 0276 0277 0278 0279
0282 0283 0284 0285 0286 0287
0290 0291 0292 0293 0294 0295
0298 0299 0300 0301 0302 0303
0306 0307 0308 0309 0310 0311
0314 0315 0316 0317 0318 0319

0322 0323 0324 0325 0326 0327
0330 0331 0332 0333 0334 0335
0338 0339 0340 0341 0342 0343
0346 0347 0348 0349 0350 0351
0354 0355 0356 0357 0358 0359
0362 0363 0364 0365 0366 0367
0370 0371 0372 0373 0374 0375
0378 0379 0380 0381 0382 0383

0386 0387 0388 0389 0390 0391
0394 0395 0396 0397 0398 0399
0402 0403 0404 0405 0406 0407
0410 0411 0412 0413 0414 0415
0418 0419 0420 0421 0422 0423
0426 0427 0428 0429 0430 0431
0434 0435 0436 0437 0438 0439
0442 0443 0444 0445 0446 0447

0450 0451 0452 0453 0454 0455
0458 0459 0460 0461 0462 0463
0466 0467 0468 0469 0470 0471
0474 0475 0476 0477 0478 0479
0482 0483 0484 0485 0486 0487
0490 0491 0492 0493 0494 0495
0498 0499 0500 0501 0502 0503
0506 0507 0508 0509 0510 0511

2 3 4 5 6 7

0770 0771 0772 0773 0774 0775
0778 0779 0780 0781 0782 0783
0786 0787 0788 0789 0790 0791
0794 0795 0796 0797 0798 0799
0802 0803 0804 0805 0806 0807
0810 0811 0812 0813 0814 0815
0818 0819 0820 0821 0822 0823
0826 0827 0828 0829 0830 0831

0834 0835 0836 0837 0838 0839
0842 0843 0844 0845 0846 0847
0850 0851 0852 0853 0854 0855
0858 0859 0860 0861 0862 0863
0866 0867 0868 0869 0870 0871
0874 0875 0876 0877 0878 0879
0882 0883 0884 0885 0886 0887
0890 0891 0892 0893 0894 0895

0898 0899 0900. 0901 0~02 0903
0906 0907 0908 0909 0910 0911
0914 0915 0916 091 7 0918 0919
0922 0923 0924 0925 0926 0927
0930 0931 0932 0933 0934 0935
0938 0939 0940 0941 0942 0943
0946 0947 0948 0949 0950 0951
0954 0955 0956 0957 0958 0959

0962 0963 0964 0965 0966 0967
0970 0971 0972 0973 0974 0975
0978 0979 0980 0981 0982 0983
0986 0987 0988 0989 0990 0991
0994 0995 0996 0997 0998 0999
1002 1003 1004 1005 1006 1007
1010 1011 1012 1013 1014 1015
1018 1019 1020 1021 1022 1023

() l 2 3 4

2000 1024 1025 1026 1027 1028
2010 1032 1033 1034 1035 1036
2020 1040 1041 1042 1043 1044
2030 1048 1049 1050 1051 1052
2040 1056 1057 1058 1059 1060
2050 1064 1065 1066 1067 1068
2060 1072 1073 1074 1075 1076
2070 1080 1081 1082 1083 1084

2100 1088 1089 1090 1091 1092
2110 1096 1097 1098 1099 1100
2120 1104 1105 1106 1107 1108
2130 1112 1113 1114 1115 1116
2140 1120 1121 1122 1123 1124
2150 U28 1129 1130 1131 1132
2160 1136 1137 1138 1139 1140
2170 1144 1145 114G 1147 1148

2200 ll52 1153 1154 1155 1156
2210 1160 1161 1162 1163 1164
2220 1168 1169 1170 1171 1172
2230 1176 1177 1178 1179 1180
2240 1184 1185 1186 1187 1188
2250 11.92 1193 1194 1195 1196
2260 1200 1201 1202 1~03 1204
2270 1208 1209 1210 1~11 1212

2300 1216 1217 1218 1~19 1220
2310 1224 1225 1226 1~27 1228
2320 1232 1233 1234 1~35 1236
2330 1240 1241 1242 1~43 1244
2340 1248 1249 1250 1~51 1252
2350 1256 1257 1258 1~59 1260
2360 1264 1265 1266 1~67 1268
2370 1272 1273 1274 1~75 1276

0 l 2 3 4

3000 1536 1537 1538 1539 1540
3010 1544 1545 1546 1547 1548
3020 1552 1553 1554 1555 1556
3030 1560 1561 1562 1563 1564
3040 1568 1569 1570 1571 1572
3050 1576 1577 1578 1579 1580
3060 1584 1585 1586 1587 1588
3070 1592 1593 1594 1595 1596

3100 1600 1601 1602 1603 1604
3110 1608 1609 1610 1611 1612
3120 1616 1617 1618 1619 1620
3130 1624 1625 1626 1627 1628
3140 1632 1633 I 634 1635 1636
3150 1640 1641 1642 1643. 1644
3160 1648 1649 1650 1651 1652
3170 1656 1657 1658 1659 1660

3200 1664 1665 1666 1667 1668
3210 1672 1673 1674 1675 1676
3220 1680 1681 1682 1683 1684
3230 1688 1689 1690 1691 1692
3240 1696 1697 1698 1699 1700
3250 1704 1705 1706 1707 1708
3260 1712 1713 1714 1715 1716
3270 1720 1721 1722 1723 1724

3300'1728 1729 1730 1731 1732
3310 1736 1737 1738 1739 1740
3320 1744 1745 1746 1747 1748
3330 1752 1753 1754 1755 1756
3340 1760 1761 1762 1763 1764
3350 1768 1769 17'70 1771 1772
3360 1776 1777 1778 1779 1780
3370 1784 1785 1786 1787 1788

Octal to Decimal Conversion, Integers

5 6 7 0 I 2 3 4 5 6

1029 1030 1031 2400 1280 1281 1282 1283 1284 1285 1286
1037 1038 1039 2410 1288 1289 1290 1291 1292 1293 1294
1045 1046 1047 2420 1296 1297 1298 1299 1300 1301 1302
1053 1054 1055 2430 1304 1305 1306 1307 1308 1309 1310
1061 1062 1063 2440 1312 1313 1314 1315 1316 1317 1318
1069 1070 1071 2450 1320 1321 1322 1323 1324 1325 1326
1077 1078 1079 2460 1328 1329 1330 1331 1332 1333 1334
1085 1086 1087 2470 1336 1337 1338 1339 1340 1341 1342

1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350
1101 1102 1103 2510 1352 1353 1354 1355 1356 1357 1358
1109 1110 1111 2520 1360 1361 1362 1363 1364 1365 1366
1117 1118 1119 2530 1368 1369 1370 1371 1372 1373 1374
1125 1126 1127 2540 1376 1377. 1378 1379 1380 1381 1382
1133 1134 1135 2550 1384 1385 1386 1387 1388 1389 1390
1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398
1149 1150 1151 2570 1400 1401 1402 1403 1404 1405 1406

1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414
1165 1166 1167 2610 1416 1417 1418 1419 1420 1421 1422
1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430
1181 1182 1183 2630 1432 1433 1434 1435 1436 1437 1438
1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446
1197 1198 1199 2650 1448 1449 1450 1451 1452 1453 1454
1205 1206 1207 2660 1456 1457 1458 1459 1460 1461 1462
1213 1214 1215 2670 1464 1465 1466 1467 1468 1469 1470

1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478
1229 1230 1231 2710 1480 1481 1482 1483 1484 1485 1486
1237 1238 1239 2720 1488 1489 1490 1491 1492 1493 1494
1245 1246 1247 2730 14·95 1497 1498 1499 1500 1501 1502
1253 1254 1255 2740 1504 1505 1506 1507 1508 1509 1510
1261 1262 1263 2750 1512 1513 1514 1515 1516 1517 1518
1269 1270 1271 2760 1520 1521 1522 1523 1524 1525 1526
1277 1278 1279 2770 1528 1529 1530 1531 1532 1533 1534

5 6 7 0 I 2 3 4 5 6

1541 1542 1543 3400 1792 1793 1794 1795 1796 1797 1798
1549 1550 1551 3410 1800 1801 1802 1803 1804 1805 1806
1557 1558 1559 3420 1808 1809 1810 1811 1812 1813 1814
1565 1566 1567 3430 1816 1817 1818 1819 1820 1821 1822
1573 1574 1575 3440 1824 1825 1826 1827 1828 1829 1830
1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838
1589 1590 1591 3460 1840 1841 1842 1843 1844 1845 1846
1597 1598 1599 3470 1848 1849 1850 1851 1852 1853 1854

1605 1606 1607 3500 1856 1857 1858 1859 1860 1861 1862
1613 1614 1615 3510 1864 1865 1866 1867 1868 1869 1870
1621 1622 1623 3520 1872 1873 1874 1875 1876 1877 1878
1629 1630 1631 3530 1880 1881 1882 1883 1884 1885 1886
1637 1638 1639 3540 1888 1889 1890 1891 1892 1893 1894
1645 1646 1647 3550 1896 1897 1898 1899 1900 1901 1902
1653 1654 1655 3560 1904 1905 1906 1907 1908 1909 1910
1661 1662 1663 3570 1912 1913 1914 1915 1916 1917 1918

1669 1670 1671 3600 1920 1921 1922 1923 1924 1925 1926
1677 1678 1679 3610 1928 1929 1930 1931 1932 1933 1934
1685 1686 1687 3620 1936 1937 1938 1939 1940 1941 1942
1693 1694 1695 3630 1944 1945 1946 1947 1948 1949 1950
1701 1702 1703 3640 1952 1953 1954 1955 1956 1957 1958
1709 1710 1711 3650 1960 1961 1962 1963 1964 1965 1966
1717 1718 1719 3660 1968 1969 1970 1971 1972 1973 1974
1725 1726 1727 3670 1976 1977 1978 1979 1980 1981 1982

1733 1734 1735 3700 1984 1985 1986 1987 1988 1989 1990
1741 1742 1743 3710 1992 1993 1994 199S 1996 1997 1998
1749 1750 1751 3720 2000 2001 2002 2003 2004 2005 2006
1757 1758 1759 3730 2008 2009 2010 2011 2012 2013 2014
1765 1766 1767 3740 2016 2017 2018 2019 2020 2021 2022
1773 1774 1775 3750 2024 2025 2026 2027 2028 2029 2030
1781 1782 1783 3760 2032 2033 2034 2035 2036 2037 2038
1789 1790 1791 3770 2040 2041 2042 2043 2044 2045 2046

7

1287
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
1391
1399
1407

1415
1423
1431
1439
1447
1455
1463
1471

1479
1487
1495
1503
1511
1519
1527
1535

7

1799
1807
1815
1823
1831
1839
1847
1855

18'63
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

G3

Octal 2000-2777
Decimal 1024-1535

Octal Decimal

10000
- 20000

30000
40000
50000
60000
70000

4096
8192

12288
16384
20480
24576
28672

Octal 3000-3777
Decimal 1536-2047

G4

Octal 4000-4777
Decimal 2048-2559

Octal Decimal

10000
20000
30000
40000
50000
60000
70000

4096
8192

12288
16384
20480
24576
28672

Octal 5000-5777
Decimal 2560-3071

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
4310
4320
4330
4340
4350
4360
4370

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
5140
5150
5160
5170

5200
5210
5220
5230
5240
5250
5260
5270

5300
5310
5320
5330
5340
5350
5360
5370

Octal to Decimal Conversion~ Integers

0 l 2 3 4 5 6 7 0 1

2048 2049 2050 2051 2052 2053 2054 2055 4400 2304 2305
2056 2057 2058 2059 2060 2061 2062 2063 4410 2312 2313
2064 2065 2066 2067 2068 2069 2070 2071 4420 2320 2321
2072 2073 2074 2075 2076 2077 2078 2079 4430 2328 2329
2080 2081 2082 2083 2084 2085 2086 2087 4440 2336 2337
2088 2089 2090 2091 2092 2093 2094 2095 4450 2344 2345
2Q96 2097 2098 2099 2100 2101 2102 2103 4460 2352 2353
2104 2105 2106 2107 2108 2109 2110 2111 4470 2360 2361

2112 2113 2114 2115 2116 2117 2118 2119 4500 2368 2369
2120 2121 2122 2123 2124 2125 2126 2127 4510 2376 2377
2128 2129 2130 2131 2132 2133 2134 2135 4520 2384 2385
2136 2137 2138 2139 2140 2141 2142 2143 4~30 2392 2393
2144 2145 2146 2147 2148 2149 2150 2151 4540 2400 2401
2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409
2160 2161 2162 2163 2164 2165 2166 2167 4560 2416 2417
2168 2169 2170 2171 2172 2173 2174 2175 4570 2424 2425

2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433
2184 2185 2186 2187 2188 2189 2190 2191 4610 2440 2441
2192 2193 2194 2195 2196 2197 2198 2199 4620 2448 2449
2200 2201 2202 2203 2204 2205 2206 2207 4630 2456 2457
2208 2209 2210 2211 2212 2213 2214 2215 4640 2464 2465
2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473
2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481
2232 2233 2234 2235 2236 2237 2238 2239 4670 2488 2489

2240 2241 2242 2243 2244 2245 2246 2247 4700 2496 2497
2248 2249 2250 2251 2252 2253 2254 2235 4710 2504 2505
2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513
2264 2265 2266 2267 2268 2269 2270 2271 4730 2520 2521
2272 2273 2274 2275 2276 2277 2278 2279 4740 2528 2529
2280 2281 2282 2283 2284 2285 2286 2287 4750 2536 2537
2288 2289 2290 2291 2292 2293 2294 2295 4760 2544 2545
2296 2297 2298 2299 2300 2301 2302 2303 4770 2552 2553

0 I 2 3 4 5 6 7 0 1

2560 2561 2562 2563 2564 2565 2566 2567 5400 2816 2817
2568 2569 2570 2571 2572 2573 2574 2575 5410 2824 2825
2576 2577 2578 2579 2580 2581 ~582 2583 5420 2832 2833
2584 2585 2586 2587 2588 2589 2590 2591 5430 2840 2841
2592 2593 2594 2595 2596 2597 2598 2599 5440 2848 2849
2600 2601 2602 2603 2604 2605 2606 2607 5450 2856 2857
2608 2609 2610 2611 2612 2613 2614 2615 5460 2864 2865
2616 2617 2€18 2619 2620 2621 2622 2623 5470 2872 2873

2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881
2632 2633 2634 2635 2636 2637 2638 2639 5510 2888 2889
2640 2641 2642 2643 2644 2645 2646 2647 5520 2896 2897
2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905
2656 2657 2658 2659 2660 2661 2662 2663 5540 2912 2913
2664 2665 2666 2667 2668 2669 2670 2671 5550 2920 2921
2672 2673 2674 2675 2676 2677 2678 2679 5560 2928 2929
2680 2681 2682 2683 2684 2685 2686 2687 5570 2936 2937

2688 2689 2690 2691 2692 2693 2694 2695 5600 2944 2945
2696 2697 2698 2699 2700 2701 2702 2703 5610 2952 2953
2704 2705 2706 2707 2708 2709 2710 2711 5620 2960 2961
2712 2713 2714 2715 2716 2717 2718 2719 5630 2968 2969
2720 2721 2722 2723 2724 2725 2726 2727 5640 2976 2977
2728 2729 2730 2731 2732 2733 2734 2735 5650 2984 2985
2736 2737 2738 2739 2740 2741 2742 2743 5660 2992 2993
2744 2745 2746 2747 2748 2749 2750 2751 5670 3000 3001

2752 2753 27.54 2755 2756 2757 2758 2759 :>700 3008 3009
2760 2761 2762 2763 2764 2765 2766 2767 5710 3016 3017
2768 2769 2770 2771 2772 2773 2774 2775 5720 3024 3025
2776 2777 2778 2779 27Et0 2781 2782 2783 5730 3032 3033
2784 2785 2786 2787 2788 2789 2790 2791 5740 3040 3041
2792 2793 2794 2795 2796 2797 2798 2799 5750 3048 3049
2800 2801 2802 2803 2804 2805 2806 2807 5760 3056 3057
2808 2809 2810 2811 2812 2813 2814 2815 5770 3064 3065

2 3 4 5 6 7

2306 2307 2308 2309 2310 2311
2314 2315 2316 2317 2318 2319
2322 2323 2324 2325 2326 2327
2330 2331 2332 2333 2334 2335
2338 2339 2340 2341 2342 2343
2346 2347 2348 2349 2350 2351
2354 2355 2356 2357 2358 2359
2362 2363 2364 2365 2366 2367

2370 2371 2372 2373 2374 2375
2378 2379 2380 2381 2382 2383
2386 2387 2388 2389 2390 2391
2394 2395 2396 2397 2398 2399
2402 2403 2404 2405 2406 2407
2410 2411 2412 2413 2414 2415
2418 2419 2420 2421 2422 2423
2426 2427 2428 2429 2430 2431

2434 2435 2436 2437 2438 2439
2442 2443 2444 2445 2446 2447
2450 2451 2452 2453 2454 2455
2458 2459 2460 2461 2462 2463
2466 2467 2468 2469 2470 2471
2474 2475 2476 2477 2478 2479
2482 2483 2i84 2485 2486 2487
2490 2491 2492 2493 2494 2495

2498 2499 2500 2501 2502 2503
2506 2507 2508 2509 2510 2511
2514 2515 2516 2517 2518 2519
2522 2523 2524 2525 2526 2527
2530 2531 2532 2533 2534 2535
2538 2539 2540 2541 2542 2543
2546 2547 2548 2549 2550 2551
2554 2555 2556 2557 2558 2559

2 3 4 5 6 7

2818 2819 2820 2821 2822 2823
2826 2827 2828 2829 2830 2831
2834 2835 2836 2837 2838 2839
2842 2843 2844 2845 2846 2847
2850 2851 2852 2853 2854 2855
2858 2859 2860 2861 2862 2863
2866 2867 2868 2869 2870 2871
2874 2875 2876 2877 2878 2879

2882 2883 2884 2885 2886 2887
2890 2891 2892 2893 2894 2895
2898 2899 2900 2901 2902 2903
2906 2907 2908 2909 2910 2911
2914 2915 2916 2917 2918 2919
2922 2923 2924 2925 2926 2927
2930 2931 2932 2933 2934 2935
2938 2939 2940 2941 2942 2943

2946 2947 2948 2949 2950 2951
2954 2955 2956 2957 2958 2959
2962 2963 2964 2965 2966 2967
2970 2971 2972 2973 2974 2975
2978 2979 2980 2981 2982 2983
2986 2987 2988 2989 2990 2991
2994 2995 2996 2997 2998 2999
3002 3003 3004 3005 3006 3007

3010 3011 3012 3013 3014 3015
3018 3019 3020 3021 3022 3023
3026 3027 3028 3029 3030 3031
3034 3035 3036 3037 3038 3039
3042 3043 3044 3045 3046 3047
3050 3051 3052 3053 3054 3055
3058 3059 3060 3061 3062 3063
3066 3067 3068 3069 3070 3071

0 I 2 3 4

6000 3072 3073 3074 3075 3076
6010 3080 3081 3082 3083 3084
6020 3088 3089 3090 3091 3092
6030 3096 3097 3098 3099 3100
6040 3104 3105 3!06 3107 3108
6050 3112 31!3 3114 3115 3116
6060 3120 3121 3122 3123 3124
6070 3128 3129 3130 3131 3132

6100 3136 3137 3138 3139 3140
6110 3144 3145 3146 3147 3148
6120 3152 3153 31.54 3155 3156
6130 3160 3161 3162 3163 3164
6140 3168 3169 3170 3171 3172
6150 3176 3177 3178 3179 3180
6160 3184 3185 3186 3187 3188
6170 3192 3193 3194 3195 3196

6200 3200 3201 3202 3203 3~04
6210 3208 3209 3210 3211 3212
6220 3216 3217 3218 3219 3220
6230 3224 3225 3226 3227 3228
6240 3232 3233 3234 3235 3236
6250 3240 3241 3242 3243 3244
6260 3248 3249 3250 3251 3252
6270 3256 3257 3258 3259 3260

6300 3264 3265 3266 3267 3268
6310 3272 3273 3274 3275 3276
6320 3280 3281 3282 3283 3284
6330 3288 3289 3290 3291 3292
6340 3296 3297 3298 3299 3300
6350 3304 3305 3306 3307 3308
6360 3312 3313 3314 3315 3316
6370 3320 3321 3322 3323 3324

0 1 2 3 4

7000 3584 3585 3586 3587 3588
7010 3592 3593 3594 3595 3596
7020 3600 3601 3602 3603 3604
7030 3608 3609 3610 3611 3612
7040 3616 3617 3618 3619 3620
7050 3624 3625 3626 3627 3628
7060 3632 3633 3634 3635 3636
7070 3640 3641 3642 3643 3644

7100 3648 3649 3650 3651 3652
7110 36'56 3657 3658 3659 3660
7120 3664 3665 3666 3667 3668
7130 3672 3673 3674 3675 3676
7140 3680 3681 3682 3683 3684
7150 3688 3689 3690 3691 3692
7160 3696 3697 3698 3699 3700

.7170 3704 3705 3706 3707 3708

7200 3712 3713 3714 3715 3716
7210 3720 3721 3722 3723 3724
7220 3728 3729 3730 3731 3732
7230 3736 3737 3738 3739 3740
7240 3744 3745 3746 3747 3748
7250 3752 3753 3754 3755 3756
7260 3750 3761 3762 3763 3764
7270 3768 3769 3770 3771 3772

7300 3776 3777 3778 3779 3780
7310 3784 3785 3786 3787 3788
7320 3792 3793 3794 3795 3796
7330 3800 3801 3802 3'803 3804
7340 3808 3809 3810 3811 3812
7350 3816 3817 3818 3819 3820
7360 3824 3825 3826 3827 3828
'7370 3832 3833 3834 3835 3836

Octal to Decimal Conversion~ Integers

5 6 7 0 1 2 3 4 5

3077 3078 3079 6400 3328 3329 3330 3331 3332 3333
3085 3086 3087 6410 3336 3337 3338 3339 3340 3341
3093 3094 3095 6420 3344 3345 3346 3347 3348 3349
3101 3102 3103 6430 3352 3353 3354 3355 3356 3357
3109 3110 3111 6440 3360 3361 3362 3363 3364 3365
3117 3118 3119 6450 3368 3369 3370 3371 3372 3373
3125 3126 3127 6460 3376 3377 3378 3379 3380 3381
3133 3134 3135 6470 3384 3385 3386 3387 3388 3389

3141 3142 3143 6500 3392 3393 3394 3395 3396 3397
3149 3150 3151 6510 3400 3401 3402 3403 3404 3405
3157 3158" 3159 6520 3408 3409 3410 3411 3412 3413
3165 3166 3167 6530 3416 3417 3418 3419 3420 3421
3173 3174 3175 6540 3424 3425 3426 3427 3428 3429
3181 3182 3183 6550 3432 3433 3434 3435 3436 3437
3189 3190 3191 6560 3440 3441 3442 3443 3444 3445
3197 3198 3199 6570 3448 3449 3450 3451 3452 3453

3205 3206 3207 6600 3456 3457 3458 3459 3460 3461
3213 3214 3215 6610 3464 3465 3466 3467 3468 3469
3221 3222 3223 6620 3472 3473 3474 3475 3476 3477
3229 3230 3231 6630 3480 3481 3482 3483 3484 3485
3237 3238 3239 6640 3488 3489 3490 3491 3492 3493
3245 3246 3247 6650 3496 3497 3498 3499 3500 3501
3253 3254 3255 6660 3504 3505 3506 3507 3508 3509
3261 3262 3263 6670 3512 3513 3514 3515 3516 3517

3269 3270 3271 6700 3520 3521 3522 3523 3524 3525
3277 3278 3279 6710 3528 3529 3530 3531 3532 3533
3285 3286 3287 6720 3536 3537 3538 3539 3540 3541
3293 3294 3295
3301 3302 3303
3309 3310 3311
3317 3318 3319
3325 3326 3327

6730 3544 3545 3546 3547 3548 3549
6740 3552 3553 3554 3555 3556 3557
6750 3560 3561 3562 3563 3564 3565
6760 3568 3569 3570 3571 3572 3573
6770 3576 3577 3578 3579 3580 3581

5 6 7 0 1 2 3 4 5

3589 3590 3591 7400 3840 3841 3842 3843 3844 3845
3597 3598 3599 7410 3848 3849 3850 3851 3852 3853
3605 3606 3607 7420 3856 3857 3858 3859 3860 3861
3613 3614 3615 7430 3864 3865 3866 3867 3868 3869
3621 3622 3623 7440 3872 3873 3874 3875 3876 3877
3629 3630 3631 7450 3880 3881 3882 3883 3884 3885
3637 3638 3639 7460 3888 3889 3890 3891 3892 3893
3645 3646 3647 7470 3896 3897 3898 38:)9 3900 3901

3653 3654 3655 7500 3904 3905 3906 3907 3908 3909
3661 3662 3663 7510 3912 3913 3914 3915 3916 3917
3669 3670 3671 7520 3920 3921 3922 3923 3924 3925
3677 3678 3679 7530 3928 3929 3930 3931 3932 3933
3685 3686 3687 7540 3936 3937 3938 3939 3940 3941
3693 3694 3695 7550 3944 3945 3946 3947 3948 3949
3701 3702 3703 7560 3952 3953 3954 3955 3956 3957
3709 3710 3711 7570 3960 3961 3962 3963 3964 3965

3717 3718 3719 7600 3968 3969 3970 3971 3972 3973
3725 3726 3727 7610 3976 3977 39'f8 3979 3980 3981
3733 3734 3735 7620 3984 3985 3986 3987 3988 3989
3741 3742 3743 7630 3992 3993 3994 3995 3996 3997
3749 3750 3751 7640 4000 4001 4002 4003 4004 4005
3757 3758 3759 7650 4008 4009 4010 4011 4012 4013
3765 3766 3767 7660 4016 4017 4018 4019 4020 4021
3773 3774 3775 7670 4024 4025 4026 4027 4028 4029

3781 3782 3783
3789 3790 3791
3797 3798 3799
3805 3806 3807
3813 3814 3815
3821 3822 3823
3829 3830 3831
3837 3838 3839

7700 4032 4033 4034 4035 4036 4037
7710 4040 4041 4042 4043 4044 4045
7720 4048 4049 4050 4051 4052 4053
7730 4056 4057 4058 4059 4060 4061
7740 4064 4065 4066 4067 4068 4069
7750 4072 4073 4074 4075 4076 4077

.7760 4080 4081 4082 4083 4084 4085
7770 4088 4089 4090 4091 4092 4093

6

3334
3342
3350
3358
'3366
3374
3382
3390

3398
3406
3414
3422
3430
3438
3446
3454

3462
3470
3478
3486
3494
3502
3510
3518

3526
3534
3542
3550
3558
3566
3574
3582

6

3846
3854
3862
3270
3878
3886
3894
3902

3910
3918
3926
3934
3942
3950
3958
3966

3974
3982
3990
3998
4006
4014
1022
4030

4038
4046
4054
4062
4070
4078
4086
4094

7

3335
3343
3351
3359
3367
3375
3383
3391

3399
3407
3415
3423
3431
3439
3447
3455

3463
3471
3479
3487
3495
3503
3511
3519

3527
3535
3543
3551
3559
3567
3575
3583

7

3847
3855
3863
3871
3879
3887
3895
3903

3911
3919
3927
3935
3943
3951
3959
3967

3975
3983
3991
3999
4007
4015
4023
4031

4039
4047
4055
4063
4071
4079
4087
4095

GS

Octal 6000-6 7 77
Decimal 3072-3583

Octal Decimal

10000
20000
30000
40000
50000
60000
70000

4096
8192

12288
16384
20480
24576
28672

Octal 7000-7777
Decimal 3584-4095

G6

OCTAL TO DECIMAL CONVERSION, FRACTIONS

Octal Decimal OctaZ Decimal, Octal Decimal Octal Decimal Octal Decimal,

.00000 .000000 .10000 ·125000 .20000 • 250000 • 30000 ·375000 .40000 ·500000

.00100 ·001953 .10100 ·126953 .20100 ·251953 .30100 ·376953 • 40100 ·501953

.00200 ·003906 .10200 • 128~06 .20200 • 253906 • 30200 • 378906 • 40200 • 503906

.00300 • 005859 ·10300 • 130859 ·20300 • 2558 59 • 30300 • 3808 59 • 40300 ·505859

.00400 .007812 • 10400 • 132812 ·20400 ·257812 • 30400 • 382812 ·40400 ·507812

.oosoo • 009 765 • 10500 • 134765 ·20500 • 259 765 • 30500 • 384765 • 40500 • 509765
·00600 ·011718 ·10600 • 136718 ·20600 ·261718 ·30600 • 386718 .40600 •511718
.00100 ·013671 ·10700 • 138671 ·20700 ·263671 ·30700 • 388671 ·40700 ·513671
.01000 ·015625 • 11000 ·140625 .21000 ·265625 •.31000 • 390625 • 41000 ·515625
• 01100 .017578 ·11100 ·142578 .21100 ·267578 • 31100 • 392578 • 41100 ·517578
.01200 ·019531 .11200 ·144531 .21200 ·269531 .31200 • 394531 ·41200 ·519531
·01300 ·021484 • 11300 • 146484 ·21300 • 271484 ·31300 • 396484 ·41300 • 521484
·01400 ·023437 ·11400 ·148437 ·21400 ·273437 ·31400 • 398437 ·41400 ·523437
.01500 • 025390 • 11500 • 150390 ·21500 • 275390 ·31500 • 400390 ·41500 • 525390
.01600 ·027343 ·11600 • 152343 ·21600 ·277343 ·31600 ·402343 • 41600 • 527343
.01100 • 029296 .11100 • 154296 ·21700 • 279296 • 31700 • 404296 ·41700 ·529296
.02000 ·031250 .12000 • 156250 .22000 ·281250 .32000 • 406250 • 42000 ·531250
.02100 ·033203 ·12100 • 158203 .22100 ·283203 • 32100 • 408203 ·42100 • 533203
.02200 ·035156 .12200 ·160156 ·22200 ·285156 ·32200 ·410156 ·42200 •535156
·02300 ·037109 • 12300 ·162109 ·22300 ·287109 • 32300 • 412109 .42300 • 537109
·02400 • 039062 ·12400 ·164062 ·22400 • 289062 • 32400 ·414062 ·42400 • 539062
• 02500 ·041015 ·12500 ·166015 ·22500 ·291015 ·32500 ·416015 • 42500 ·541015
·02600 • 042968 • 12600 • 167968 ·22600 • 292968 • 32600 ·417968 ·42600 • 542968
.02100 ·044921 ·12700 • 169921 ·22700 • 29 49 21 ·32700 • 419921 ·42700 • 544921
• 03000 ·046875 • 13000 ·171875 • 23000 • 296875 ·33000 ·421875 • 43000 • 546875
• 03100 • 048828 ·13100 • 1 7382tS ·23100 ·298828 ·33100 • 423828 ·43100 • 548828
·03200 • 050781 • 13200 • 175781 ·23200 • 300781 ·33200 • 425781 ·43200 • 550781
·03300 ·052734 • 13300 • 177734 • 23300 • 3027 34 • 33300 • 427734 ·43300 ·552734
·03400 • 0 5468 7 • 13400 • 179687 ·23400 • 30468 7 ·33400 • 429687 ·43400 ·554687
• 03500 ·056640 • 13500 ·181640 ·23500 • 306640 • 33500 ·431640 ·43500 • 556640
·03600 • 058 59 3 • 13600 • 18359 3 ·23600 • 308593 ·33600 • 433593 ·43600 • 55859 3
.03700 ·060546 • 13700 ·185546 ·23700 • 310546 ·33700 ·435546 ·43700 ·560546
·04000 ·062500 ·14000 .1a1500 ·24000 • 312500 ·34000 • 437500 • 44000 • 562500
·04100 ·064453 ·14100 ·189453 ·24100 ·314453 • 34100 .439453 ·44100 ·564453
.04200 • 066406 ·14200 ·191406 ·24200 ·316406 ·34200 ·441406 ·44200 • 566406
• 04300 ·068359 • 14300 ·193359 ·24300 • 318359 • 34300 .443359 • 44300 • 568359
·04400 ·070312 ·14400 ·195312 ·24400 • 320312 • 34400 ·445312 • 44400 ·570312
• 04!>00 ·072265 ·14500 ·197265 •24500 ·322265 ·34500 ·447265 • 44500 • 572265
·04600 ·074218 • 14600 • 1~9218 •24600 ·324218 • 34600 ·449218 e44600 • 574218
·04700 ·076171 • 14700 • 2011 71 ·24700 ·326171 • 34700 ·451171 • 44700 ·576171
• 05000 • 078125 • 15000 ~203125 ·25000 ·328125 • 35000 ·453125 • 45000 ·578125
• 05100 ·080078 • 15100 • 205078 • 25100 • 330078 ·35100 • 455078 ·45100 • 580078
• 05200 ·082031 ·15200 ·207031 ·25200 • 332031 • 35200 ·457031 • 45200 • 582031
·05300 ·083984 • 15300 • 208984 ·25300 • 333984 • 35300 • 458984 • 45300 • 583984
·05400 • 08 5937 • 15400 • 2109 37 ·25400 • 3359 37 • 35400 • 460937 • 45400 • 58 5937
• 05500 ·087890 • 1 5500 ·212890 ·25500 • 337890 • 35500 • 462890 • 45500 • 587890
• 05600 • 089843 • 15600 • 214843 • 25600 • 339843 • 35600 • 464843 • 45600 • 589843
·05700 • 091796 ·15700 • 216796 • 25700 ·341796 • 35700 ·466796 ·45700 • 59 1796
.06000 • 093750 ·16000 • 218 7 50 ·26000 • 343750 • 36000 • 468750 ·46000 • 593750
·06100 • 09 5703 ·16100 ·220703 ·26100 • 345703 ·36100 ·470703 .46100 ·595703
·06200 ·097656 ·16200 ·222656 ·26200 ·347656 • 36200 ·472656 • 46200 • 597656
.06300 • 099 609 • 16300 • 224609 • 26300 • 349 609 ·36300 • 474609 .46300 • 599609
·06400 ·101562 • 16400 ·226562 ·26400 ·351562 • 36400 ·476562 .46400 ·601562
·06500 ·103515 ·16500 • 228 51 ~ ·26500 ·353515 ·36500 ·478515 • L&6500 ·603515
·06600 • l 05468 ·16600 • 230468 ·26600 ·355468 • 36600 ·480468 ·46600 ·605468
·06700 ·107421 ·16700 ·232421 ·26700 ·357421 • 36700 • 482421 .46700 ·607421
.01000 • 109375 • 17000 ·234375 .21000 • 359 375 .31000 • 48437 5 .47000 • 609 375
.01100 • 111328 .11100 • 236328 • 27100 • 361328 • 37100 • 486328 .47100 • 611328
.01200 • 11328 1 ·17200 • 238281 ·27200 • 363281 • 37200 • 488281 .47200 • 613281
·07300 ·115234 • 17300 ·240234 ·27300 ·365234 • 37300 • 490234 .47300 ·615234
.07400 ·117187 .. 17400 ·242187 ·27400 ·367187 • 37400 • 492187 ·47400 •617HS7
.07500 • 119 140 • 17500 ·244140 ·27500 • 369140 • 37500 • 494140 e47500 ·619140
.07600 • 12109 3 ·17600 • 24609 3 ·27600 • 37109 3 • 37600 • 496093 .47600 • 62109 3
• 07700 ·123046 ·17700 • 248046 ·27700 ·373046 • 37700 • 498046 • Ll7700 ·623046

G7

Octal to Decimal Conversion, Fractions

Octal. Decimal Octal Decimal Octal Decimal Octal Decimal

• 50000 ·625000 ·60000 • 750000 • 70000 ·875000 .00000 .000000
·50100 • 626953 ·60100 ·751953 ·70100 ·876953 .00001 ·000030
• 50200 • 628906 ·60200 • 753906 ·70200 ·8 78906 .00002 ·000061
• 50300 • 6308 59 ·60300 • 755859 • 70300 • 880859 .00003 • 00009 1
• 50400 • 632~ 12 ·60400 ·757812 ·70400 ·882812 ·00004 .000122
• 50500 • 634765 • 60500 • 759 765 • 70500 • 884765 ·00005 ·000152
• 50600 ·636718 ·60600 ·761718 ·70600 ·886718 ·00006 ·000183
• 50700 • 638671 ·60700 ·763671 • 70700 ·888671 .00001 ·000213
·51000 ·640625 ·61000 • 765625 • 71000 ·890625 .00010 ·000244
• 51100 • 642578 ·61100 ·767578 • 71100 ·892578 • 00011 ·000274
• 51200 ·644531 ·61200 • 769 531 ·71200 ·894531 .00012 ·000305
• 51300 • 646484 ·61300 • 771484 • 71300 ·896484 .00013 ·000335
• 51400 • 648437 ·61400 • 773437 • 71400 ·898437 ·00014 ·000366
• 51500 • 650390 • 61500 • 775390 • 71500 ·900390 ·00015 • 00039 6
• 51600 ·652343 ·61600 .777343 ·71600 ·902343 ·00016 ·000427
• 51700 • 654296 ·61700 • 779 296 • 71 700 • 904296 ·00017 ·000457
• 52000 • 656250 ·62000 • 781250 • 72000 ·906250 .00020 ·000488
• 52100 • 658203 ·62100 • 783203 • 72100 ·908203 .00021 ·000518
·52200 ·660156 ·62200 ·785156 ·72200 • 910156 .00022 • 000549
• 52300 ·662109 ·62300 ·787109 • 72300 ·912109 ·00023 ·000579
• 52400 ·664062 ·62400 e 789062 • 72400 ·914062 ·00024 ·000610
• 52500 ·666015 ·62500 • 791015 • 72500 ·916015 .00025 ·000640
• 52600 • 667968 ·62600 • 792968 ·72600 ·917968 ·00026 ·000671
·52700 • 669921 ·62700 • 79492 l • 72700 ·919921 ·00027 ·000701
• 53000 ·671875 ·63000 • 796875 • 73000 e921875 • 00030 ·000732
·53100 • 673828 ·63100 • 798828 • 73100 ·923828 ·00031 ·000762
• 53200 ·675761 ·63200 • 800781 • 73200 ·925781 .00032 ·000793
·53300 ·677734 ·63300 ·802734 • 73300 ·927734 .00033 ·000823
·53400 • 67968 7 • 63400 ·804687 • 73400 ·929687 .00034 • 0008 54
• 53500 • 681640 ·63500 ·806640 • 73500 ·931640 ·00035 • 00088 5
• 53600 • 683593 • 63600 .808 593 • 73600 • 9 33593 ·00036 • 0009 15
·53700 ·68551!6 ·63700 ·810546 • 73700 ·935546 .00037 ·000946
• 54000 • 687500 • 64000 ·812500 •74000 ·937500 ·00040 • 0009 76
• 54100 • 689453 ·64100 ·814453 ·74100 • 9 39453 ·00041 .001001
• 54200 ·691406 ·64200 .tjl6406 • 74200 ·941406 ·00042 .001037
• 54300 • 693359 ·64300 ·818359 ·74300 .943359 ·00043 ·001068
• 54400 • 69 5312 ·64400 .820312 ·74400 .945312 ·00044 • 001098
• 54500 ·697265 ·64500 ·822265 ·74500 ·947265 ·00045 • 001129
• 54600 ·699218 ·64600 ·824218 ·74600 • 949218 ·00046 • 001159
• 54700 ·701171 ·64700 ·826171 ·74700 ·951171 ·00047 ·001190
• 55000 .703125 ·65000 ·828125 • 75000 ·953125 • 00050 .001220
• 55·100 • 705078 • 651.00 ·830078 ·75100 • 955078 • 00051 .001251
• 55200 .707031 • 65200 ·832031 ·75200 • 9 57031 • 00052 e00121jl
• 55300 • 708984 • 65300 .s 33984 • 75300 .9 58984 • 00053 .001312
• 55400 • 7109 37 ·65400 ·835937 ·75400 .960937 • 00054 ·001342
• 55500 ·712890 • 65500 ·837890 • 75500 ·962890 .00055 ·001373
• 55600 • 714843 ·65600 • 8 39843 ·75600 ·964643 ·000~6 ·001403
• 55700 • 71679 6 ·65700 ·841796 ·75700 ·966796 • 00057 .001434
• 56000 • 718 7 50 ·66000 ·843750 ·76000 ·968750 ·00060 .001464
• 56100 .720703 ·66100 ·845703 ·76100 ·970703 .00061 • 00149 5
• 56200 ·722656 ·66200 ·847656 ·76200 ·972656 ·00062 ·00152!)
• 56300 ·724609 ·66300 • 849609 ·76300 .9 74609 ·00063 ·001556
• 56400 • 726562 ·66400 ·851562 ·76400 .9 76562 ·00064 • 001586
• 56500 • 728 515 ·66500 ·853515 • 76500 ·978515 ·00065 ·001617
·56600 • 730468 ·66600 ·8 55468 ·76600 .980468 ·00066 ·001647
• 56700 ·732421 ·66700 ·857421 • 76700 ·982421 ·00067 ·001678
• 57000 .734375 ·67000 .a 59 375 ·77000 ·984375 .00010 ·001701j
• 57100 .736328 ·67100 ·d61328 ·77100 ·986328 .00011 .001739
• 57200 • 7 38281 ·67200 ·863281 ·77200 ·988281 .00012 ·001770
·57300 ·740234 ·67300 ·865234 • 77300 ·990234 ·00073 • 001800
·57400 • 742 ll:S? ·67400 ·867187 ·77400 ·992187 ·00074 • 0018 31
• 57500 • 74411,10 • 67500 ·869140 • 77500 .994140 ·00075 ·0011361
• 57600 • 74609 3 ·67600 ·87109 3 • 77600 .996093 ·00076 ·001892
• 57700 • 748046 • 67700 ·873046 ·77700 .998046 .00011 ·001922

APPENDIX H

ARITHMETIC FORMATS

The format for single precision numbers
in twos complement fixed point notation
is treated at the beginning of Chapter 2.
Let us first discuss some further proper­
ties of such numbers here.

Zero is represented by a word contain­
ing all Os. Complementing this number
produces all ls, and adding 1 to that
produces all Os again. Hence there is
only one zero representation and its
sign is positive. Since the numbers are
symmetrical i.n magnitude about the sin­
gle zero representation, all even num­
bers both positive and negative end in
O, all odd numbers in 1 (the number all
ls represents -1). But since there are
the same number of positive and negative
numbers and zero is positive, there is
one more negative number than there are
nonzero positive numbers. This is the
most negative number and it cannot be
produced by negating any positive number
(its magnitude is one greater than the
largest positive number and its octal
representation is 100000).

If ones complements were used for neg­
atives one could read a negative number
by attaching significance to the Os in­
stead of the ls. In twos complement
notation each negative number is one
greater than the complement of the posi­
tive number of the same magnitude, so
one can read a negative number by attach-
ing significance to the rightmost 1 and
attaching significance to the Os at the
left of it (the negative number of the
largest magnitude has a 1 in only the
sign position). In a negative integer,
ls may be discarded at the left just as
leading Os may be dropped in a positive
integer. In a negative fraction, Os may
be discarded at the right. So long as
only Os are discarded the number remains
in twos complement form because it still
has a 1 that possesses significance; but
if a portion including the rightmost 1 is
discarded, the remaining part of the
fraction is now a ones complement.

Hl

The computer does not keep track of a
binary point - the programmer must adopt
a point convention and shift the magnitude
of the result to conform to the convention
used. Two common conventions are to re­
gard a number as an integer (binary point
at the right) or as a proper fraction
(binary point at the left); in these two
cases the range of signed numbers repre­
sented by a single word is -215 to 215 - 1
or -1 to 1 - 2-15.

Double Precision Arithmetic. In a
double length fixed point number, the
second word is simply an extension of the
magnitude part of the number. A double
length number consists of two words con­
catenated into a 32-bit string wherein
bit 15 of the high order word is the sign,
and bits 14-0 of that word and bits 15-0
of the low order word are the magnitude
in twos complement notation [see the
upper illustration on the next page]. The
high order part of a negative number is
therefore in ones complement form unless
the low order part is null (at the right
only Os are null regardless of sign).
Hence in processing double length num­
bers, twos complement operations are
usually confined to the low order parts,
whereas ones complement operations are
generally required for the high order
parts. The address of a double length
number is the address of its more sig­
nificant word.

Suppose we wish to negate the double
length number whose high and low order
words respectively are in AX and AY. We
negate the low order part, but we simply
complement the high order part unless
the low order part is zero.

JC AY,ETZ,ZERO ;Low part zero?
RSC AY,Pl ;No,negate low
RSC AX ;Complement high
JU

ZERO: RSC
.+3
AX,Pl ;Yes,negate high

Note that the magnitude parts of the
sequence of negative numbers from the

H2

+262,14610 +2000002 8 Io ooo ooo ooo 001 ooo o ooo ooo ooo ooo 0101
15 0 15 0

-262,14610 -20000028 I 1 111 111 111 110 111 I 1 111 111 111 111 110 I
15 0 15 0

Double Precision Fixed Point Format

+15310 +2318 +.462x28 =

lo 100 110 010 000 ooo I 0 000 000 0110 001 oooi
15 14 0 15 87 0

-2318 -.462x28

11 011 001 110 000 000 0 000 000 0110 001 oool
15 14 0 15 87 0

Floating Point Format

most negative toward zero are the posi­
tive numbers from zero upward. In other
words the negative representation -x is
the sum of x and the most negative num­
ber. Hence in multiple precision arith­
metic, low order words can be treated
simply as positive numbers. In unsigned
addition a carry indicates that the low
order result is just too large and the
high order part must be increased. We
add the number in A and A+l to the num­
ber in GRl and GR2, with the result
going to GRl and GR2.

FOA ADD
RR GR2,AX
MR A+l,AY
RR AO,GR2
SFA NOT AOV
RS GRl,Pl
NOP
RR GRl,AX
MR A,AY
RR AO,GRl

In twos complement subtraction a carry
should occur unless the subtrahend is too
large.

Floating Point Arithmetic
Software is available for processing
floating point numbers. For a given word
length, floating point format sacrifices
some precision for a much greater range
in order of magnitude. The software in­
terprets the two-word floating point rep­
resentation of a number as containing a
sign, a 23-bit proper fraction, and an
8-bit exponent [lower illustration above].
The sign is bit 15 of the high order word,
and in a positive number it is 0. The
contents of bits 14-0 of the high word
and bits 15-8 of the low word are inter­
preted only as a binary fraction; and the
contents of bits 7-0 of the low word are
interpreted as an integral exponent in
excess 128 (2008) code. Exponents from
-128 to +127 are therefore represented by
the binary equivalents of 0 to 255 (0-
3778). The negative of a number is rep­
resented by taking the twos complement of
the sign and fraction only - the exponent
is left in positive form. Zero is repre­
sented by all Os in sign, fraction and
exponent. The routines always represent
a zero result in this form, but they in-

terpret any operand with a zero fractional
part as being zero.

Most routines assume that all nonzero
operands are normalized, and they normal­
ize a nonzero result. A floating point
number is considered normalized if the
magnitude of the fraction is greater than
or equal to ~ and less than l; in other
words the sign and the most significant
bit of the fraction differ or the fraction
is -~. These numbers thus have a f rac-
t ional range in magnitude of ~ to 1 - 2-23
and an exponent range of -128 to +127.

H3

This corresponds to a decimal range of
approximately Sx10-4 o to 5xlQ38. In some
cases a routine may not give the correct
result if the programmer supplies an oper­
and that is not normalized.

Numbers of greater precision are pro­
duced simply by inserting words contain­
ing sixteen fraction bits between the
words described above. As in the fixed
point case, the address of a multiple
precision number is the address of its
highest order word.

0

~ID GRI Computer Corporation
76 ROWE STREET, NEWTON, MASSACHUSETTS 02166

(617) 969-7346 20-40-001-A

1269.5000

	000
	000a
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	A1
	A2
	A3
	A4
	A5
	A6
	B01
	B02
	B03
	B04
	B05
	B06
	B07
	B08
	B09
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	C1
	C2
	D1
	D2
	E01
	E02
	E03
	E04
	E05
	E06
	E07
	E08
	E09
	E10
	F1
	F2
	F3
	F4
	F5
	F6
	G1
	G2
	G3
	G4
	G5
	G6
	G7
	G8
	H1
	H2
	H3
	xBack

