FAST
manual

O
SIS GRI Computer Corporation
320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02164

TEL: (617) 969-0800

Price $1.75

GRI-909

FAST MANUAL

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164

(:) November 1970 by the GRI Computer Corporation

71-44<0G2-A
1170<70Q

1.1

. 2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.4

3.5

4.1

TABLE OF CONTENTS

THE FAST ASSEMBLER

Introduction
FAST LANGUAGE ELEMENTS

Character Set « . .
Symﬁols c e e e e e e e e e e e
Key Wprds

Labels+« v+ .+ .
Constants . . . « ¢« 4+ & &+ & o+ .
Expressions
Comments
Statements 4 4 v o0 . . .

MACHINE INSTRUCTIONS

. 1-1

2-2

. 2=4

. 2=7

. 2-10

2-11

. 2-12

Register-to-Register Data Transmission Instructions.

Memory Reference Data Transmission
Direct Addressing Mode
Deferred Addressing Mode . . .

Immediate Mode Addressing

Immediate-Deferred Addressing Mode .

Data Testing Instructions . . .
Function Output Instructions .

Sense Function Instructions .

- ASSEMBLER INSTRUCTIONS

Parameter Definition

Instructions

3-11

3-13

3-14

. 3-16

3-18

. 3-19

. 3-24

. 3-26

. 4-1

4.5.1

4.5.2

4.5.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

APPENDICES
A

B

Radix Control, , ., . . .
Location Counter . . , ., ., . .
Program Terminators

Data Definition . . ., ., .

Word Values,
Text
Combined Text and Word Values .
DEFINITION OF NEW SYSTEM SYMBOLS
Device and Device Related Codes .
Abbreviated Machine Instructions
Local Pseudo-Instructions .
USAGE NOTES

System Linkage, , . . .
Subroutine Linkage
Some Fast Examples . . .,
ZTBO . . . v,
ZTBI

ATLO . v v v v v v e e e e
4 ¥ 2

z TMO L] . .

OPERATING INSTRUCTIONS

STANDARD SYMBOL TABLE .

-

. 6=5

6-5

. 6-6

6-7

1.1

FAST MANUAL
71-44-002

CHAPTER ONE

THE FAST ASSEMBLER

The FAST acronym stands for Functional Assembly System Technique.

It is an aid in the preparation of programs for the GRI-909 computers,

Introduction:-

An assembler 1s an indispensible aid to the process of pre-
paring programs to run on a computer. All of these programs to be
run on a computer are called object programs. They are often
prepared in a punched paper tape format where the holes or absence
of holes literally represent the l's and 0's of the machine language
instructions. A program called a loader is then used to load this
object tape into the computer's memory where it can be executed by

the computer.

An assembler literally does what its name implies; it assembles.:
object programs from symbols and expressions that have one for one
correspondence to binary portions of an instruction word, or in some
cases, have a binary word equivalent. The use of symbolic statements
or expressions permits the programmer to relate the problem and its
parameters more closely to the language he must write in order to
produce an object tape. This simplifies the task of programming
without degrading program efficiency. It differs from a compiler
language in that each compiler instruction might generate many
equivalent machine language instructions, decreasing program ef-

ficiency and making it difficult to relate to time based operations.

1-2
FAST MANUAL
71-44-002

The assembler, then, is a translator of source material (called
the SOURCE PROGRAM) into an OBJECT PROGRAM which can then be loaded
into the computer's memory and run. The assembler also provides
other useful functions for the programmer. It furnishes a listing
which can be used to debug the object program once it is stored in
memory. This listing is also used to correlate the object program
as it resides in memory to the source program as it was originially
prepared. The preparation of source programs 1is relegated to a

program called the SOURCE TEXT EDITOR (%STE), Manual M&44-3.

FAST is a functional assembly technique that is very much re-
lated to the basic organization of the GRI-909 computer. It is a
symbolic assembly language that deals at a high functional level with
the components of the system and the computer. It also provides all

of the symbolic aids that are normally provided by an assembly language.

The basic organizational concept of the GRI-909 treats all com-
ponents in a computer system as equal members of a data system that
either produce or receive data. ~Furthermore, the control structure
of the GRI-909 permits the basic tnstruction; move data from Source A
to Destination B to be programmed by the user where the source and
destination of data are any two system devices. When these system
devices are internal parts of a computer, they also perform proces-
sing functions on the data they receive. Often these processing
functions are independent parallel processing functions that are
going on while other devices are in operation. Thus, an arithmetic
unit independently performs its function on data received. It makes
a result, which 1s some function of the data received, available to

the system for transfer to some other system device or function.

1-3
FAST MANUAL
71-44-002

The GRI-909 architecture also provides a bus modifier which permits
simple modifications to the data while it is being transmitted from
source to destination. These modifications are incrementing the data,
shifting and complementing (the latter being performed prior to in-
crementing or shifting so that combined operations are permissible).
Thus, the basic format of the instruction now becomes: SOURCE A (mod)

to DESTINATION B.

The functional components of the system are assigned mnemonics,
and the user describes the data transfers that take place between
these components in concise, highly functional statements such as
AX TO TTO. Memory locations may be refefenced as symbolic entities
in high level statements such as COUNT Pl. Other statements are
provided for control purposes in the assembler itself. Statements
such as *END denote the end of a program. Statements like this are
directives to the assembler itself and do not generate binary infor-

mation for the object program.

The assembler interprets each such statement and either generates
the appropriate binary object information or performs the implied as-

sembler functions.

The programs are generally prepared on punched paper tape, although

other media such as punched cards or magnetic tape may be used.

This

2-1
FAST MANUAL
71-44-002

CHAPTER TWO

FAST LANGUAGE ELEMENTS

chapter describes the various elements that are used to form

FAST language source program statements. When learning the FAST language,

a cursory reading of this chapter will suffice -~ the details contained

herein may be referred to from time to time as the user gains experience

with FAST programming. Throughout this manual, the following notational

conventions will be employed when presenting general forms of language

elements:

[

Brackets - used to contain an optional item. The language
element may be written with or without the item -- generally,
the meaning of the statement containing that language element

1s changed when such an item is omitted.

Braces - used to contain alternate items. These items will be
arranged vertically within the braces -- the language element

must include one, and only one, of the alternate items.

Ellipses - used to denote permissible repetition of the im-

mediately preceding language element.

When braces are enclosed within brackets, then either the entire form

in brackets is omitted or the form is included with the appropriate alter-

nate item selected. Some examples of this notational usage are:

A [,A] ...

A [B [C]]

2.1 Character Set:

May be

FAST MANUAL
71-44-002

Written as

A

A

B
TO B

BD

CD

D
BD
CD

A,A
AAA

etc.

A
A

B
B C

The FAST assembler processes source program statements com-~

posed of 8-bit ASCII characters and recognizes two distinct cate-

gories of characters: general usage characters and reserved charac-

ters.,

General usage characters are used to form symbols (2.2) and

simple numeric constants (2.5):

Character

Alphabetics
Numerics
Dollar Sign
Percent Sign
At Sign

External

A through Z
0 through 9

Internal

301 through 332
260 through 271
244
245
300

FAST MANUAL
71-44-002

Reserved characters are used to impart special meanings to the
assembler, to separate or delimit certain language elements, or to

enable error-recovery within source lines:

Character External Internal
Colon : 272 Delimits a label (2.4)
~ Semi-colon H 273 Delimits a comment (2.7)

Equals = 275 Used to define parameters
(4.1)

Plus + 253 Denotes addition in ex-
pressions (2.6)

Minus - 255 Denotes subtraction in
expressions (2.6)

Comma . 254 Separates data definitions
(4.5)

Ampersand & 246 Denotes logical "AND" in
expressions (2.6)

Exclamation ! 241 Denotes logical "OR" in
expressions (2.6)

Asterisk * 252 Precedes certain assembler
instructions (4.2-4.4)

Period . 256 Represents the assembler's
LOCATION COUNTER

Quote ! 247 Delimits text definition
(4.5.1)

Pound # 243 Used to define new system
symbols (5)

Carrilage-return (CR) 215 Delimits source statements
(2.8)

Line-feed (LF) 212 Optionally follows CR at end
of source statement (2.8)

Back-arrow +~— 337 (1)

Rubout (RO) 377 @D

Block-mark (BL) 375 (1)

Space 240 Used to separate language elements

2.2

FAST MANUAL
71-44-002

(l)Back—arrow and rubout are used for error-recovery within a
source line. Block-mark serves to delimit a source text block.
See section 1.2, "SYSTEM CONVENTIONS'" in the GRI-909 Manual M44-3,

"SOURCE TEXT EDITOR".

NOTE: Although the FAST assembler recognizes only no-parity 8-bit
ASCII characters internally, the characters punched onto a source
tape may be 8-bit, even-parity, odd-parity, or no-parity codes
since the text input routine logically OR's the high-order bit

into each character read.

Symbols:

A FAST language symbol consists of one or more general usage
characters (2.1), the first of which must not be numeric. Since
only the first five characters are stored in the assembler's symbol
table, symbols of greater length must be unique in the first five
characters -- the assembler ignores all characters in a symbol after

the fifth,

The following character strings could validly be used as symbols:
START
LOOP
N23@
PARA1l
PARA21
These character strings are invalid as symbols for the reason

given:

2-5
FAST MANUAL
71-44-002

8ABC First character numeric
GO* ‘ Reserved character, *
AB LE Embedded blank

PARAMl}
Not unique in the first five characters
PARAM?

In FAST, as in any symbolic programming language, a symbol
must ultimately represent some numeric value. Many commonly-used
symbols are built into the assembler's standard symbol table
(APPENDIX C). These, of course, already have numeric values asso-
ciated with them. Other symbols are defined by the user in his
source program —-- these have values assigned to them during the
assembly process. User-defined symbols and their associated values
are added to the assembler's symbol table -- they reside there only
during the assembly of a specific source program. As the assembler
translates source statements into theilr binary or machine language
equivalents, it merely replaces each symbol it encounters with its

specific numeric value.

It is possible to use a symbol in a source program in such a
fashion that the assembler cannot associate a numeric value with it.
Symbols being defined by the user must appear in a symbol-defining
context at least once in the source program. These symbol-defining
contexts are described in detail in sections 2.4, 4.1, and 5 of this
manual. If, by the end of the second pass of the assembly, there are
still undefined symbols (i.e. symbols with no numeric values assigned),

the assembler will flag each statement containing such a symbol with

2-6
FAST MANUAL
71-44-002

the error code "U" as it generates the assembly listing.

Pre-defined symbols in the assembler's symbol table have
mnemonic value -- for instance, AO represents the arithmetic op-
erator, HSP represents the high speed punch, LTZ represents the
data condition of less than zero, and CLIF represents a pulse code
to clear an input flag. In order to enhance the overall utility
of assembly listings, the user should attempt to compose his symbols

with mmemonic value as well.

Symbols in the FAST language are of the following categories:

Key Words . (2.3)
Labels (2.4)
Parameters (4.1)

System Symbols (5)

Key words are pre-defined in the assembler's symbol table.
These symbols comprise the framework of specific FAST language
statements and enable the assembler to distinguish the various

types of machine and assembler instructions.

The standard symbol table does not contain either labels or
parameters -- these are always defined by the user in his program.
A label is prefixed to a FAST statement so that the associated
instruction or data item may be referenced symbolically from other
points in the same program. A parameter is used to represent con-
stants that may be referred to many times in a program -- a constant
is often given a symbolic equivalent because it is more meaningful

to the user than are octal or decimal numbers.

2.3

2-7
FAST MANUAL
71-44-002

System symbols represent devices (registers), output pulse
codes, status test codes, path codes for the GRI-909 Bus Modifier,
data test codes, and pseudo-codes (5). The standard symbol table
contains the more commonly used system symbols. Other system symbols
may be defined by the user -- when doing so, the user is cautioned not
to employ any symbols already in the atandard table unless it is his

specific intent to alter their standard meaning.

Key Words:

Key words are reserved character strings that have particular
meanings to the FAST assembler. No key word may be redefined by
the user nor may it be used in a context other than those shown
in the general forms of FAST language instructions. Included in
the FAST language key words are all the reserved characters -- see
section 2.1 for a tabulation of these characters and their functions.

The other FAST key words are as follows:

Symbol Function
END Program terminator (4.4)
EOT Program terminator (4.4)
OCT Radix Control (4.2)
DEC Radix Control (4.2)
SKIP Indicates sense function instruction (3.5)
IF Indicates data test instruction (3.3)
TO Used in data transmission (3.1, 3.2), data test (3.3)

and function output instructions (3.4)

GO Combined with TO to indicate transfer of program
control in data test instructions (3.3)

C Indicates taking of one's complement in register-to-
register data transmission instructions (3.1)

I Indicates immediate addressing mode in memory reference
data transmission instructions (3.2)

2

A

2-8

FAST MANUAL
71-44-002
Symbol Function
D Indicates deferred addressing mode in memory reference
data transmission instructions (3.2)
ID Indicates immediate-deferred addressing mode in memory

reference data transmission instructions (3.2)

Labels:

A FAST statement may be labeled or tagged by the use of the

form
symbol :

(a symbol followed by the reserved character :) as the first element
of the statement. The assembler assigns the current value of its
LOCATION COUNTER (4.3) to this symbolic label -- this will be the
memory address of the first word assembled after the label is en-
countered. If, for instance, a label is prefixed to a statement
which assembles as a two-word instruction, the label's value will be
the memory address of the first word of the instruction. A label

may also be associated with a statement which assembles as data.

A label, then, is a symbolic equivalent of the address of a
specific machine instruction or data word in the user's program.
The label may be used to symbolically reference the instruction or
data word from other points in the same program. Therefore, each
label must be unique. An attempt to use the same symbol more than
once as a label will be flagged with the error code M (multiply-

defined symbol) on the assembly listing.

When the assembler encounters a symbolic label in a context
other than the one which defines it (above), the assigned numeric

value is substituted for the symbol. Given the labeled statements:

2.5

FAST MANUAL
71-44-002
LOOP: AO TO HSP (1-word instruction)
and TABLE: 1,10,100,1000 (4-word table)
then
GO TO LOOP transfers program control to the

instruction at LOOP,
and TABLE TO AX loads the first word of TABLE
(the value 1) into the register AX.

Addresses of machine words near these labeled may be accessed
by forming a symbolic relative address in a FAST statement. Such
an address expression (2.6) consists of a label plus or minus a
constant (2.5). For instance,

GO TO LOOP+1 transfers control to the next
instruction after the one at LOOP,
and TABLE+2 TO AX loads the third word of TABLE
(the value 100) into the register AX.
These expressions result in addresses of words relative to labeled
instructions or data. Note that if the instruction at LOOP were two

words long, the expression pointing to the next instruction would be

LOOP+2.

Constants:

A simple constant is represented by one or more successive numeric
characters. The assembler converts the character string into its
equivalent binary value -- the digits are interpreted according to the
setting of the assembler's RADIX (4.2). The user may write constants
as elther octal or decimal numbers provided he has specified the
appropriate radix. The range of a constant, so as not to arithmetically

overflow out of the fifteen magnitude bits of a signed machine word, is:

2.6

2-10 FAST MANUAL

71-44-002

0 to +32767 decimal

or 0 to 477777 octal

A constant may be preceded with a minus sign (e.g. -20) and the
assembler will form the two's complement value of the number (e.g.
177760). 1If the assembler's RADIX is set to octal, any single oc~-
currence of the character 8 or 9 in a constant will be flagged with
the errof code D on the assembly listing and converted to octal.
Multiple occurrences of 8 or 9 in a constant will result in an in-
correct conversion to octal.

Expressions:

Compound addresses or data values may be formed by combining
simple values in FAST language expressions. An expression consists
of a numeric operand, or a series or operands separated by arithmetic
and/or logical operators. The first operand in an expression may be
preceded by a leading sign (arithmetic operator). Any given operand

may be one of the following:

Label (2.4)
Parameter (4.1)
Constant (2.5)

represents the current value of the
assembler's LOCATION COUNTER.

The permissible operators are:

+ denoting addition

- denoting subtraction
& denoting logical AND
! denoting logical OR

A general expression, e, is assembled into a 16-bit value. The

resultant value may be positive or negative —- addresses, of course,

2.7

2-11
FAST MANUAL
71-44-002

must be positive and result in a valid machine address. The general

form of an expression e 1is:

+

Label Label
+ Parameter - Parameter
- Constant Constant et

. LU . _

-

An expression is evaluated by the assembler in a single left-to-
right scan: no priorities are assigned to the operators. Some ex-
amples are:

15

-237
LOOP-25
A+B-C

.+ 4
X1 & X2 ! X3

Comments:

Comments are used to augment the source program with documentation
meaningful to the user. Such documentation often explains the use of a
program or subroutine, describes the functions performed by a sequence
of instructions, gives the reasons for various specific steps or
statements, etc. A comment may be appended to a FAST statement by
prefacing the comment with the reserved character semi-colon (;).

Also, an entire statement may consist of only such a comment. When
the assembler encounters the semi-colon, it ignores the rest of the
statement until it reaches the carriage-return terminator (2.8).

Comments are reproduced on the assembly listing -- only as much of

a comment as will fit on an assembly listing line will be printed,

2.8

2-12
FAST MANUAL
71-44-002

however. Any printable ASCII character may be included in the

body of a comment. Examples are:

;THIS ROUTINE PACKS CHARACTERS

IF A0 LTZ @0 TO ERR ;LIMIT EXCEEDED?

Statements:

A source program statement (line) 1s a meaningful arrangement
of FAST language elements and is terminated by the reserved character
carriage-return, which itself may optionally be followed by a line-feed

character. This latter character is ignored by the assembler -- it is

‘usually included in a source tape so that it might be listed by an

off-line device which requires the line-feed to advance the paper. A
FAST statement may contaln no more than 80 characters including spaces

(blanks). The assembler will ignore all characters beyond the 80th.

The general forms for machine instructions and assembler in-
structions are presented in chapters 3 through 5 of this manual.
Other than the rules given for specific instructions, there are no
formatting requirements imposed upon a source statement. The major
elements of a free-form source statement are label, instruction and
comment —-- the assembler isolates these elements and arranges them

in columns on the assembly listing.

The most basic elements, symbols and constants, must be separated
or delimited from each other. Since these basic elements consist
solely of general usage characters (2.1), an expression such as

V1+V2&V3!25

1s easily understood by the assembler since the basic elements are

2-13
FAST MANUAL
71-44-002

separated by reserved characters. Therefore, the rule to be
observed when preparing source statements is:
When any two successive basic elements are not separated

by a non-blank reserved character, then they must be

separated by at least one blank (space).

FAST MANUAL
71-44-002

CHAPTER THREE

MACHINE INSTRUCTIONS

The bulk of the FAST language statements written by a user
assemble into GRI-909 machine instructions. A sequence of machine
instructions, and their associated data, constitutes a program to
perform a specific task on some GRI-909 machine configuration. All
basic machine instructions are described by a single internal for-
mat :

15 10 9 6 5 0
SDA MOD DDA

where SDA 1s the source device address,

MOD contains modifier, addressing mode, and function
information, and

DDA 1s the destination device address.

The execution of any machine instruction causes, in effect, the
transmission of information in the form of data or control signals
from the source device specified by SDA to the destination device
spécified by DDA. The qualities of the transmission and/or the end
result of the instruction is influenced by the specification of MOD.
GRI-909 complete machine instructions are either one or two words in
length. A machine instruction consists of either 1) a basic in-
struction in the above format or 2) a basic instruction followed by

a word containing a memory address or data for the instruction.

Once an assembled program has been loaded and started, the GRI-909

control logic normally fetches and executes machine instructions from

FAST MANUAL
71-44-002

sequential locations. The computer's sequence counter (SC) con-
tains the memory address of the next instruction to be executed.

As one or two-word machine instructions are executed sequentially,
the SC is automatically updated by the GRI-909 control logic. During
such normal flow of program control, the SC is analagous to the
assembler's LOCATION COUNTER (4.3). Some instructions, however,
cause this normal program flow to be altered. The sense function

or SKIP instruction causes, under certain conditions, a skip over

the next two memory locations. The data testing or GO TO instruction

can cause an absolute jump to some new location. Also, since the

SC can be modified by the user, a transmission of data to the SC
causes an absolute jump to some new location. In any case, after

any one of these instructions alters the program flow, the sequential

execution of instructions begins anew.

FAST source program machine instructions are oriented to the
functional organization of the GRI-909. The major element of a
machine instruction statement, for the most part, corresponds to and
is written in the same order as the SDA, MOD, and DDA components of
the basic instruction itself. Specific key words (2.3) are used by
the assembler to distinguish five major classes of machine instructions.
In some cases, the class of instruction implies a standard SDA or DDA
(or both), and these are not supplied by the user but are automatically

filled in by the assembler.

In most of the FAST language examples in this chapter, the cor-
responding machine language instruction will be printed to the left

of the statement as it would appear on an assembly listing. Comments

FAST MANUAL
71-44-002

to the right are intended to amplify the meaning of the example and

are not part of the instruction itself.

3.1 Register-to-Register Data Transmission Instructions:

A register 1s a storage place for data that has been produced
by an input device, for data to be accepted by an output device, for
data to be operated upon by a firmware device, or for data that is
merely to be saved for temporary use. The data register assoclated
with most input devices may only be used as a source of data.
Generally, all other registers in the system may be used as both
sources of and destinations for data. In other words, given a GRI
firmvare device or user-developed device with a data register, the
nature of the device determines that the register will be interfaced

to the source bus, to the destination bus, or to both.

The GRI-909 architecture enables the transmission of data be-
tween any two registers in the system. This is accomplished via a
direct connection between the source bus and the destination bus.

Fo: data transmission there is no distinction between internal regis-
ters, firmware device registers, and input/output device registers.
In addition; the connection between the source bus and destination
bus contains a special device called the Bus Modifier, which enables
simple modifications to data during the transmission process. This

Bus Modifier may be portrayed as follows:

0 C &— data flow

3-4
FAST MANUAL
71-44-002

The modification(s) to data as it passes from one register to
another 1s specified by the MOD portion of the data transmission in-
struction. If no modification is selected (MOD = 0000), then data
passes through the two +0 paths, which results in a direct 16-bit
parallel transfer. The FAST key words (2.3) used to specify

modifications to data are:

C one's complement

Pl plus one (increment)
Rl shift right one bit
L1 shift left one bit

If the one's complement is selected, it occurs before other
modification, 1f any. Only one of the upper paths may be specified
during a data transmission instruction. There are 2 X 4 or 8 possible

paths through the Bus Modifier.

The increment (Pl) path has a bus overflow indicator associated
with it. When this path is selected, the overflow indicator will
be set (true) if, and only if, the source data was equal to -1 (all
one's). If such overflow did not occur, then the indicator will be
cleared. This indicator, referenced as BOV, may be tested after a
data transmission instruction with the appropriate Sense Function

instruction (3.5).

The shifting paths (Rl or L1) have a one-bit LINX register as-
sociated with them. Any shift, right or left, is performed circularly
through this link (LNK). For instance, during a right shift, the
entire word 1s displaced right one bit, and the low-order bit of the

source word goes into the LNK. The previous contents of the LNK

3-5
FAST MANUAL
71-44-002

goes 1into the high-order position of the data word as it is sent

to its destination. After any shift the new state of the LNK may
be tested with the appropriate Sense Function instruction (3.5).

If it is desired to shift a zero (or a one) into the word being
transmitted, the LNK 1s first cleared (or set) with the appropriate

Function Output instruction (3.4).

A further feature of the GRI-909 is the bus address 00, refer-
enced as ZERO, which 1s a source of a zero data word. This special
source may be used to clear any data register. ZERO through the Pl
path can be used to transmit plus one and ZERO through the comple-
ment path yields minus one. ZERO may be used as a destination for
data. Then tests of the BOV (or LNK) can be done without affecting

the source data itself.

The MOD format for register-to-register data transmission in-

structions 1s:

9181716

[—(not used)

one's complement

00 - no upper path modification

01 - plus one
10 - left one
11 - right one

These statements have the general form

Pl
[symbol :] [C] register ZLIK [TO register]) [; comment]
R1

FAST MANUAL
71-44-002

If the transmission is between different registers, the source
register 1s left unchanged and the contents of the destination reg-
ister is replaced by the source data with the selected modifications.
If the destination is omitted in this statement, then the operation
is upon the contents of the source register -- the assembler copies

SDA into DDA when constructing the instruction word.

The statement

77 0000 11 TTI TO AX

transmits the teletype input register to the arithmetic operator
X-register. To transmit the incremented value of AX to AY, one

writes.
11 0100 12 AX P1 TO AY

To send the one's complement of the high speed reader input to

AX, we write
76 0010 11 C HSR TO AX

The one's complement is formed by merely inverting all the bits
in the data word. The two's complement 1s formed by following the
one's complement with an increment. To transmit the two's complement

in the above instruction, we would change it to
76 0110 11 C HSR P1 TO AX

Keep in mind that the arithmetic operator assumes that negative
numbers are in two's complement notation. Given two general purpose
registers, GRl and GR2, the following code computes their sum and

difference and leaves the sum in GR1 and the difference in GR2 (of

FAST MANUAL
71-44-002

course, the original contents of GRl and GR2 will be destroyed)

GR1 TO AX ;1st argument

GR2 TO AY ;2nd argument

ADD - ;select add function (3.4)
A0 TO GR1 ; store sum

C AY P1 TO AY snegate 2nd argument

A0 TO GR2 ;store difference

The initial values of the arguments need not have been positive --
either one or both of them could have been negative (in two's comple-
ment notation). Note that to subtract argument 2 from argument 1, we
add the two's complement of argument 2. The instruction that negated

the data in AY could, of course, have been written
C AY P1

Some examples of the use of the special address ZERO are

00 0000 11 ZERO TO AX ;CLEAR AX

00 0100 76 ZERO P1 to HSP ;PUNCH +1

00 0110 12 C ZERO TO AY JAY = -1

11 1000 00 AX L1 TO ZERO ;COPY AX SIGN TO LNK

This last example does not alter the contents of AX, but since
the source word is sent through the Bus Modifier shifted left, the

sign bit of AX is now also in the LNK.

An arithmetic right shift is often required in computer arithmetic.
The arithmetic right shift displaces bits 0-14 each time it is per-
formed and leaves the sign bit the same. Thus, if a word started
with a 1 in the sign bit and were continually, arithmetically, shifted
right, the word would eventually fill up with 1's from the left hand

end.

3-8
FAST MANUAL
71-44-002

During an arithmetic right shift, the sign of the argument
being shifted is copied into the word as it is shifted right.
Since the previous contents of the LNK is always shifted into the
bit position vacated, the following two instructions perform an
arithmetic right shift on the contents of AY

12 1000 00 AY L1 TO ZERO
12 1100 12 AY R1 sAY /2

An arithmetic’ right shift is equivalent to dividing an argumeht
by two. Similarly, a left shift is equivalent to multiplying an ar-
gument by two. In order to ensure that a zero is shifted into the
low-order bit of the destination word, the LNK should be cleared
before the shift. For example, the sequence

CLL ;LNK = 0
AX L1 sAX*2

shifts AX left one bit. It is not always necessary to set or clear
the LNK before a shift. Sometimes it is only desired to examine a
data word bit by bit. Such a data word might represent up to 16
switch settings. A device might be implemented such that each bit
in its data register represented a contact setting or switch setting
in some portion of the overall system. The GRI-909 console switch
register continuously represents the settings of the 16 data switches.
Since it is a source of data only, it must be transmitted to some

other register before shifting its value. For example

FAST MANUAL
71-44-002

10 0000 11 SWR R1 TO AX

;bit 0 of SWR in LNK here
11 1100 11 AX R1

;bit 1 of SWR in LNK here
11 1100 11 AX R1

;bit 2 of SWR in LNK here
11 1100 11 AX Rl

;bit 3 of SWR in LNK here

etc.

As mentioned before, the LNK may be tested after each shift to
see if the bit shifted out of the data word was a zero or a one.
The data is sent back to AX so that after each shift, the next bit

to be examined moves to the low-order position.

Sometimes data 1s packed into b 16-bit machine word. The word
may contain two or more pieces of information with one or more bits
used to contain each item. For example, sometimes two ASCII characters
are packed into a word, 8 bits each. Suppose we wish to isolate the
high order three bits of AX by shifting AX left three places and
storing the item in the low order bits of AY. We write

AX L1
ZERO L1 TO AY
AX L1
AY L1
AX L1
AY L1
Note that the second instruction in this sequence ensures that

the 13 high order positions of AY will be zeros when the unpacking

coperation is complete.

3-10
FAST MANUAL
71-44-002

‘As a final register-to-register data transmission example,
suppose we wish to decrement (subtract one from) the contents of

a register, say GRl. We can use the arithmetic operator for this

purpose.
GR1 TO AX
C ZERO TO AY sAY @ -
ADD ;SELECT ADD FUNCTION
A0 TO GR1 ;STORE RESULT

This code requires four machine words and ties up the arithmetic
operator. The third instruction (ADD) could be left out if the AO
were already in the required state. A better way to do this in the

GRI-909 is:

C GR1 r1
C GR1

To demonstrate this, assume we have an 8-bit register contain-

ing the binary equivalent of 5.
00000101 (20 + 222144 =5
taking the two's complement, we have

11111010
+ 00000001
11111011

following this with the one's complement, we have

00000100 (22 = 4)

3-11
FAST MANUAL
71-44-002

3.2 Memory Reference Data Transmission Instructions:

Main memory of tﬁe GRI-909 may contain from 1024 to 32,768
(decimal) locations. Any of these 16-bit words may be used as a
source or destination in a data transmission instruction. These
instructions are two words long -- the first word is in the usual
SDA MOD DDA format, and the second word is either an address of
some other memory location or is data to be operated upon. The
overall memory system is accessed whenever the bus address 06
(memory buffer) appears as either the SDA or the DDA (or both) of
a machine instruction. The assembler infers memory referencing
from the nature of the FAST statement and fills in SDA and/or DDA
appropriately. Further information, which specifies the memory
address of the particular location involved in the data transmission,
is supplied by the combination of MOD and the second word of the

instruction. The MOD format for these imstructions is:

9 817 1]6
e,/
[-deferred addressing mode
' mmedlate addressing mode

00 - no upper path modification
01 - plus one
10 - left one
11 - right omne
Note that only the modifications available in the upper portion
of the Bus Modifier may be selected during memory reference data

transmission -- bit 7 of the instruction word is here used to specify

an addressing mode.

3-12
FAST MANUAL
71-44-002

Data transmission statements involving main memory are of

three types:

1)

Register-to-memory - The contents of the hardware (non-memory)

register at SDA is transmitted via the upper half of the Bus
Modifier to the specified memory location. The assembler
sets DDA = 06. This type has the general form:

Pl
[symbol:] register L1 TO [I] [D] e [;comment]
R1
2) Memory-to-register - The contents of the specified memory
location is transmitted via the Bus Modifier to the hardware
register at DDA. The assembler sets SDA = 06. This type
has the general form:
P1
[symbol:] [I] [D] e Ll TO register [;comment]
R1
3) Memory-to-self - The contents of the specified memory lo-

cation is transmitted wia the Bus Modifier back to the
same memory location. Here, SDA = DDA = 06. This type

has the general form:
Pl
[symbol:] [I] [D] e §1L1 [;comment]
R1

In the foregoing general forms, e is a general FAST language

expression (2.6) whose value assembles into the second word of the

instruction. The key words (2.3) I and D are used to select the

memory addressing mode.

The address of the particular memory location into which data

is transmitted, or from which data is transmitted, is called the

effective address. The effective address is determined differently

for each of the memory addressing modes. Given the form [I] [D],

3-13
FAST MANUAL
71-44-002

any one of the four GRI-909 addressing modes may be selected in a

FAST memory reference statement.

Form Mod Mode
0000 Direct (3.2.1)
D 0001 Deferred (3.2.2)
0010 Immediate (3.2.3)
1§)) 0011 Immediate - deferred (3.2.4)

3.2.1 Direct Addressing Mode

The direct mode is implied by the absence of both of the
codes I and D in the FAST statement. In the direct addressing
mode, the second word of the instruction contains the effective
address -- the GRI-909 control logic fetches this second word
and uses 1its value to access the location involved in the data
transmission. The statement

06 0000 11 100 TO AX
000100
loads the contents of location 100 into the AX register. The
statement
12 0100 06 AY P1 TO 1234
001234
stores the incremented value of AY into location 1234. To
increment or shift the data word labeled X1 (assume it is at
location 501), we could write

06 0100 06 X1l Pl
000501

3-14
FAST MANUAL
71-44-002

or 06 1000 06 X1 L1
000501

or 06 1100 06 X1 Rl
000501

Note that, unless the user alters the second word during
program execution, the same location is accessed every time a

direct mode memory reference instruction is encountered.

3.2.2 Deferred Addressing Mode

The key word D selects the deferred mode in a FAST memory
reference statement. In this mode, the second word of the in-
struction cantains the address of another location whose in-
cremented contents is the effective address. The second word
of the instruction is fetched and its value is ﬁsed to access
another location whose contents is incremented and written back
into the same location. The control logic then uses this in-

cremented value as the effective address.
If location 5 contains the value 200, then

11 0001 06 AX TO D 5

000005
stores AX into location 201. Location 5 now contains the value
201. 1f we do not change the value in lacation 5 before executing
the above (or an identical) instruction again, then AX will be

stored into location 202 aand location 5 will be left at 202.

The deferred mode is sometimes called "indirect with
auto-indexing'". 'Indirect' means that the address in the memory

reference instruction is not itself the effective address, but

3-15
FAST MANUAL
71-44-002

is the address of the effective address. "Auto-indexing" means
that the effective address is incremented before it is used in

the data transmission.

The deferred mode (and the immediate-deferred mode, below)
is ordinarily used to access the sequential words in a data
table, work area, or buffer area. Assume location 5 is in-
itialized to 200 before each of the following examples. Then,

06 0001 12 D 5 TO AY
000005
can be successively executed to load the contents of location
201, 202, 203, etc. into AY. Obviously, the data in AY will be
processed by other instructions in the program before the next
item is retrieved. The instruction
00 0001 06 ZERO TO D 5
000005
can be used to clear successive locations beginning at 201.
Also, the instruction

06 0101 06 D5P1
000005

can be used to increment these sequential locations.

Often the data entries in a table will consist of two or
more words each. The first word of an entry is fetched and,
depending on its value, a decision is then made either to
fetch the rest of the entry or to skip over the current entry
and retrieve the next entry. If our auto-indexing location

(assume location 5 again) is labeled INDX, the instruction

3-16
FAST MANUAL
71-44-002

06 0100 06 INDX P1
000005

executed n times will, in effect, skip over n words in the

table in order to point us to the next entry.

3.2.3 Immediate Mode Addressing

4

The key word I selects the immediate mode in memory
reference statements. ''Immediate'" implies that the instruc-
tion itself provides or receives the data being transmitted.
Therefore, the effective address in this mode is merely the

address of the second word of the instruction itself.
To load the constant 14 into AX, one writes

06 0010 11 I 14 TO AX
000014
Note that the data to be transmitted has been assembled
into the second word of the instruction. To initialize an
auto-indexing location (INDX) so that successive entries of a
table (TABLE) may be retrieved using a deferred mode, we could
write
I TABLE-1 TO TRP
TRP TO INDX
Sometimes counting of events, like the number of times
through a given program loop, is done with an immediate mode

instruction. The statement

06 0110 06 I0P1
000000

3-17
FAST MANUAL
71-44-002

causes the second word of the instruction to be incremented.
The statement could be written with other than O as the value
for the second word -- in any case, before entering a loop
containing this counter, the second word of the instruction

must be set to some appropriate initial value.

When an interrupt is detected, some portion of the
interrupt-handling routine usually saves the contents of
crucial registers in the system. This is often done with a
sequence of immediate mode instructions.

03 0010 06 SAVE: TRP TO I
000000

17 0010 06 MSR TO I
000000

11 0010 06 AX TO I
000000

12 0010 06 AY TO I
000000

etc.
When the interrupt has been processed, the following

direct mode statements could be used to restore the saved

registers

SAVE+1 TO TRP
SAVE+3 TO MSR
SAVE+5 TO AX
SAVE+7 TO AY

etc.

3-18
FAST MANUAL
71-44-002

3.2.4 Immediate-Deferred Addressing Mode

The key word ID selects the immediate-deferred mode in
memory reference statements. This mode combines the immediate
and deferred features. ''Immediate' here implies that the ad-
dress of the auto-indexing location is merely the address of
the second word of the instruction itself. The GRI-909 control
logic fetches the second word of the memory reference instruc-
tion, increments it, and writes the incremented value back
into the second word. This incremented value is then used as
the effective address in the data transmission. The statementh

11 0011 06 AX TO ID 200

000200
can be used to store AX into locatiomns 201, 202, 203, etc. It
is the second word of the instruction itself which is auto-
indexed. Of course, this second word must be re-initialized
before a new set of AX values can be stored into the same lo-

cations. The statement
GET: 1D TBL-1 TO AY

loads AY with the word labeled TBL the first time it is executed.
The next n times, without being re-initialized, it loads the
words at TBL+1, TBL+2, TBL+3, ..., TBL+n. This instruction at
GET would probably be the first instruction in a program loop
which processes the entries in the data table, TBL. Before
entering the loop, the instruction at GET could be initialized

by writing

3-19
FAST MANUAL
71-44-002

I TBL-1 TO TRP

TRP TO GET+1
where the expreésion GET+1 represents the address of the second
word of the immediate-deferred instruction at GET. If each
entry in TBL were two words long, then some other instruction
in the loop, after the instruction at GET, might be used to load
the second word of the entry into a register, séy AX. The
same auto-indexing location is used for this purpose. For

example,
D GET+l1 TO AX

loads the second word of the entry provided that the instruction
at GET has already loaded the first entry word. If it is de-
sired to bypass this second word and point to the next eatry,
then the auto-indexing location can be updated by the instruction

represented by

GET+1 P1

3.3 Data Testing Instructions:

These instructions are used to test the data in a register relative
to zero. The DDA is always the data tester and is filled in by the
assembler. SDA refers to any non-memory data register, and MOD
specifies the nature of the test and the addressing mode. The MOD ‘

format 1is:

3-20
FAST MANUAL
71-44-002

9)8})71]6

l'-defel.'red mode jump
negate test

test for data equal to zero

Ltest for data less than zero

If ﬁhe test specified by MOD is not true, then the GRI-909 con-
trol logic procedes to the'next sequential instruction in the program.
If the test is true, the second word of the instruction is taken as
a jump address or, in the deferred mode, as the address of the jump
address. If a jump occurs (test is true), the address of the second
word of the data test instruction is stored in the trap register
(TRP), and the effective jump address replaces the contents of the
computef's sequence counter (SC) (the TRP is used for subroutine
linkage -- see section 6.2). The FAST statement for data testing
is an exact description of the action performed by the GRI-909, and

has the general form
k[symbol:] [IF register test] GO TO [D] e [;comment]

where e is a general expression (2.6) whose value assembles into the
second word of the instruction, and the word "test" in this context
refers to a standard or user-defined symbolic data test code 6).
The standard data test codes, their MOD values and associated mean-

ings are:

3-21

FAST MANUAL
71-44-002
ETZ 0100 equal to zero
LTZ 1000 less than zero
LEZ - 1100 less than or equal to zero
NEZ 0110 not equal to zero
GEZ 1010 greater than or equal to zero (not less
than zero)
GTZ 1110 greater than zero (not less than and not

equal to zero)

In order to jump to location 100 1f the AX register contains
zero, one writes
11 0100 03 IF AX ETZ GO TO 100
000100
Note that the first word, as in all GRI-909 instructions, is
a data transfer format telling the processor to connect device 11
(AX) to device 03 (data tester). The non-memory source and the 03
destination indicates the data test instruction to the processor.
The MOD in this case has the meanings shown above. For the purpose
of‘the example, we have used a constant as the jump address -- the
statement may be written with any meaningful expression to represent

the jump address.

Because of the jump address, the data testing instruction is
a form of memory reference instruction. The deferred mode jump
operates similarly to the deferred mode memory reference data trans-
mission instruction (3.2.3). If location 200 contains the value
543, then the statement

13 1001 03 IF A0 LTZ GO TO D 200
000200

3-22
FAST MANUAL
71-44-002

causes a jump to location 544 if the arithmetic operator output

(A0 or device 13) is less than zero. The second word of the data
test instruction is used by the proéessor to fetch the jump ad-
dress at 200 -- this address is first incremented and the in-
cremented value replaces the contents of location 200 before the
jump address is transmitted to the SC. Normal program flow begins
at location 544. Since location 200 now contains the value 544, the
next jump affected by the foregoing data test instruction would
cause a transfer of control to location 545 unless the user re-
initialized location 200. The major use for the deferred mode jump

is to return from subroutine (6.2).

In order to apply a data test to the contents of a memory lo-
cation, it is first necessary to load it into some non-memory
register. Suppose the data word X1 is at location 1234 and the
instruction OVER is at location 157. In order to jump to OVER if

X1l is greater than zero, we could write

06 0000 11 X1 TO AX

001234

11 1110 03 IF AX GTZ GO TO OVER
000157

If the AX register were being used for some other purpose and
we did not wish to destroy its contents, the TRP register associated
with the data tester could be used to contain the data for testing.

We could accomplish the foregoing test by writing

06 0000 03 X1 TO TRP
001234
03 1110 03 IF TRP GTZ GO TO OVER

000157

3-23
FAST MANUAL
71-44-002

Regarding this last example, we note the following: 1) since
the TRP register has the same address as the data tester, it cannot
be loaded with data from another non-memory register since this
combination defines the data testing instruction, 2) the TRP can
be loaded from memory (SDA=06) -~ this is the only instance of
DDA=03 that is not a data testing instruction, and 3) 41if the Jump
occurs, the data in TRP will be lost, since it is automatically
loaded with the address of the second word of the data test instruc-

tion.

Other than the aforementioned restriction on the TRP, it can
be used as a general purpose register. Its contents can be trans-

mitted to another register or to some memory location. For example,

03 0000 12 TRP TO AY

03 0000 Q6 TRP TO 501

000501

03 0010 06 TRP TO I ; STORE IMMEDIATE
000000

This last exampie instruction is often used to save the contents

of the trap upon entry to a subroutine (6.2).

Often we require an instruction which causes a jump every time
it is encountered. This enables us to jump back to the beginning
of a loop, to call or enter subroutines, etc. Since device ZERO is
a source of a zero data word, we could always employ the following
artifice to jump to some location, say 533

00 0100 03 IF ZERO ETZ GO TO 533
000533

3.4

3-24
FAST MANUAL
71-44-002

The FAST language provides a short form for this particular

instruction, a simple GO TO

00 0100 03 GO TO 533
000533

The deferred mode jump may also be used with this short form

jump instruction.

Function Output Instructions:

Function output instructions are used to deliver control or
function pulses to those system devices which require them for
mechanical or electrical control. A function output instruction
always has the function generator as its SDA. Its code, 02, is
supplied by the assembler. The DDA is some controllable system de-
vice, and the MOD specifies up to four pulses to be transmitted in

parallel to the device at DDA. The MOD format is:

CB3 2 1 i
91 81716
W
correspond to the four pulse output
lines

The four pulses are transmitted in parallel. Therefore, up to
16 unique pulse patterns may be transmitted to a single device. Of
course, the device must be interfaced so as to discriminate between
the patterns. Simple devices wusually associate a single line with a

specific function. The general form of a function output statement is:

[symbol:] pulse [pulse] ... [[TO] device] ['comment]

3-25
FAST MANUAL
71-44-002

The word '"pulse' in this context refers to a standard or
user-defined symbolic pulse code (5). The symbolic destination
device code must be included unless the pulse code used has a
destination built into it (5.1).

Standard pulse codes for operating devices such as teletype

input/output, high speed reader, and high speed punch are

Mnemonic Definition Mod Code
STRT -start 0001
CLIF ~clear input flag 1000
CLOF ~clear output flag 0010

The STRT pulse causes a paper tape reader to advance and read

*

the next frame of data.
02 0001 77 STRT TO TTI ;sADVANCE TTY READER
02 0001 76 STRT HSR sADVANCE HS READER

Note that the "TO'" may optionally be omitted from the statement.

It is possible to combine start and clear flag commands in one

instruction.
02 1001 77 STRT CLIF TO TTI1
02 1001 76 CLIF STRT TO TTO
The ordering of multiple pulse codes is immaterial —- as each

one is encountered, the assembler OR's its value into MOD. Depend-
ing upon how a device is being operated, the clear flag commands may

be issued separately.

02 1000 77 CLIF TO TTI
02 0010 77 CLOF TO TTO
02 1000 76 CLIF TO HSR

02 0010 76 CLOF TO HSP

3.5

3-26
FAST MANUAL
71-44-~002

Standard pulse codes corresponding to internal functions of
the GRI-909 have been defined so as to contain their destination.
This means that the entire function output statement consists of

merely the pulse code (5.1).

02 0100 00 HLT ;HALT MACHINE

02 0010 00 STL sSET LINK

02 0001 OO0 CLL ;CLEAR LINK

02 0011 00 CML s COMPLEMENT LINK

02 0000 13 ADD ;SET AO TO ADD

02 0100 13 AND

02 1000 13 XOR

02 1100 13 OR

02 0010 04 ICo s INTERRUPT CONTROL ON
02 0001 04 ICF s INTERRUPT CONTROL OFF

Note that the CML command is equivalent to

02 0011 00 STL CLL

The combined command is included in FAST as a convenience to

the user.

Sense Function Instructions:

Sense function instructions are used to test the status or
function signals of various types of devices. The device's status
indicators are often used to represent such conditions as 'ready'",
"busy', "overflow', 'data error'", etc. In a sense function instruc-
tion, the DDA is always the function tester, and its code (02) is filled
in by the assembler. The SDA 1s any system device that has one or more

status indicators associated with it. The MOD format is:

3-27
FAST MANUAL
71-44-002

FIB 3 2 1
91 81716

l Alnegate the result of the test
correspond to the three function

test lines

If the test specified by MOD is true. then the GRI-909 con-

trol logic causes a skip over the next two machine words. Two

words are skipped because a SKIP is usually followed by a jump

(GO T0) instruction. The general form of a sense function is
[symbol] SKIP [IF] [device] status [status] ... [;comment]

The word '"status' in this context refers to a standard or
user-defined status test code (5). The symbolic source device
code must be used unless the status test code has a source built

into it (5.1).

Standard status codes for testing devices such as teletype

input/output, high speed reader, and high speed punch are:

Mnemonic Definition Mod Code
IRDY -input ready 1000
ORDY -output ready 0010

For example:
77 1000 02 SKIP IF TTI IRDY ;CHARACTER READ?
76 0010 02 SKIP HSP ORDY ;READY TO PUNCH?
Note that the word "IF" may be omitted as desired. The

standard status code NOT causes the low-order bit of MOD to be set.

3-28
FAST MANUAL
71-44-002

76 1001 02 SKIP IF HSR NOT IRDY
77 0011 02 SKIP TTO NOT ORDY

If the status code NOT is included, then a skip occurs only

if the selected condition is not true. Standard status codes

corresponding to internal conditions of the GRI-909 have been
defined so as to contain their sources. This means that the
sense function instruction may be written without the source

device.

13 0010 02 SKIP IF AOV ;ARITHMETIC OPERATOR OVERFLOW

00 0010 02 SKIP BOV ;BUS OVERFLOW
00 0100 02 SKIP LNK ;LINK SET
00 1000 02 SKIP POK ; POWER OK

The code NOT may be included if it is desired to skip on the
falsity of a given condition. Codes for status indicators residing
on the same device may be combined in the same sense function in-

struction. For example,
00 0110 02 SKIP BOV LNK

skips if the OR of the selected conditions is true, that is, if

either BOV or LNK 1s true. Setting the NOT bit complements this

inclusive OR. Thus, the instruction
00 0111 02 SKIP NOT LNK BOV

skips only if BOV is not true and LNK is not true. Note that in

neither of the foregoing instructions the setting of the POK

indicator affected the tests in any way.

3-29
FAST MANUAL
71-44-002

As a further clarification of sense function instructions,
assume a device Q that has three status indicators X, Y, Z cor-
responding to bits 9, 8, 7 of MOD respectively. Further assume
that we wish to test for unique combinations of the status in-
dicators -- given the three indicators, there are 8 unique com-
binations to test for. In the examples which follow, program
control passes to YES if the desired combination test is true,

and to NO if it is not true.
To test for the condition 000 (X, Y, Z all false), we write

SKIP Q NOT XY Z
GO TO NO
YES: test true here ;NONE ON

To test for a single indicator on, such as 010, we could write

SKIP Q Y
GO TO NO
SKIP Q NOT X 2
GO TO NO
YES: test true here ;ONLY Y ON

To test for two indicators on, such as 110, we could write

SKIP Q NOT Z
GO TO NO
SKIP Q X
GO TO NO

SKIP Q X
GO TO NO

YES: test true nere ;UNLY X and Y

To test for all three indicators on, we write

SKIP Q X
GO TO NO
SKIP Q Y

FAST MANUAL
71-44-002

GO TO NO
SKIP Q 2
GO TO NO
YES: test true here ;ALL ON

Of course, the assumption we must make here is that the state

of the device Q remains constant when testing for any unique com-

bination.

4-1
FAST MANUAL
71-44-002

CHAPTER FOUR

ASSEMBLER INSTRUCTIONS

Some FAST statements merely act as directives to the assembler
during the assembly process and do not result in object code output.
Other assembler instructions enable the inclusion of numeric or textual
data into the user's program. All of these so-called assembler instruc-
tions. (pseudo-ups), with the exception of the §ne for defining new system

symbols (Chapter 5), are presented in this chapter.

4.1 Parameter Definition:

It is often desirable to establish a numeric value or constant
and to be able to refer to it symbolically. For example, instead
of using the constant 215 (the teletype carriage-return code), it
might be more meaningful to use the symbol CR. Such a symbolic
parameter can be defined by the statement:

CR = 215 ;CARRIAGE RETURN

We could then write: I CR TO TTO 06 0010 77
000215

The general form of a FAST parameter definition statement is:
symbol = e [;comment]

where e 1s a general expression (2.6). The value of the symbolic
parameter will be the assembled value of the expression with which
it is associated. A parameter is used to represent a numeric value --
this parameter may be used as an operand in other expressions for

address or data values. Note that no object code is generated by a

4.2

FAST MANUAL
71-44-002

parameter definition statement -- the statement merely generates

an entry in the assembler's symbol table.

Examples:
TEN = 10
CRLF = 106612 ;CARRIAGE RETURN AND LINE FEED
DIFF = A - B

A symbolic parameter may be redefined within the same program.
If a parameter does take on more than one value, then its initial
value must be defined in the source program before it is first
used to reference a numeric value. Also, the expression e, used
to specify the value of a parameter, must be fully resolvable by
at least the end of pass 1 (so that it will have the correct
value during passes 2 and 3). In other words, the value of any
symbol in the expression must be established within at most one
forward reference. For example, in the sequence

A B+5
B = 22

the correct value of A is not established when the statement is
first encountered during pass 1 since B is not yet defined (A will
have the value 5 since undefined symbols are assigned the value 0).
Nevertheless, when the definition of A is encountered during pass 2,

it will be assigned the correct value, 27, since B is now defined.

Parameter definition statements are often used for the purpose

of system linkage -- see section 6.1.

Radix Control:

FAST language constants (2.5) are converted to binary and are

4-3
FAST MANUAL
71-44-002

interpreted according to the setting of an assembler variable
called the RADIX. Constants may be written as either octal
numbers or decimal numbers. The assembler's RADIX is set to

octal at the beginning of each pass. In other words, the assem-

bler assumes all constants to be in octal.

The user may switch the RADIX from one mode to another at

will. The form of the RADIX control statement is:

DEC
* .
fOCTz [; comment]

If the user wishes to write constants in decimal notation,

he precedes the first such constant with the statement:

*DEC
All constants between this statement and the end of the
program (or between this statement and a *OCT command) will be
interpreted as decimal numbers. The assembler's RADIX is like a
switch —- once it 1s thrown to decimal it stays in that mode until
the beginning of the next pass or until the assembler encounters

the other RADIX command
*OCT

causing the RADIX to be set back to octal. While in the octal mode,
the assembler detects the usage of the decimal digits 8 and 9. If
either of these digits occur in a statement while the assembler is
in the octal mode, the assembly listing of that statement will be

preceded by the error code D (decimal digit in octal field).

Remember that the assembler's RADIX is automatically set to

octal at the beginning of each pass.

FAST MANUAL
71-44-002

4.3 Location Counter:

The assembler mailntains a variable called the LOCATION
COUNTER. During the assembly process, the LOCATION COUNTER
always reflects the address of the next memory location that
object code may be assigned to by the assembler. As the as-
sembler processes each statement that generates either a machine
instruction or data, it automatically updates the LOCATION
COUNTER by the length (number of machine words) of that state-
ment's object code. At the beginning of each pass, the assem-
bler sets its LOCATION COUNTER to O. If the user does not
change the LOCATION COUNTER, then his entire program will be

assembled for sequential locations starting with location 0.

A statement to set the assembler's location counter is or-
dinarily used to specify the first location of a program being

assembled. The set-LOCATION COUNTER statement has the form:
*e [;comment]

where e is an expression (2.6). A further restriction on this
statement is that the expression must not contain any undefined
symbols when it is first encountered by the assembler. Also, e is

influenced by the current radix (4.2). The statement

*1000 ;START AT 1000(8)

causes all subsequently encountered machine instructions or data
words to be assembled for sequential locations starting at location
1000. More than one set-LOCATION COUNTER statement may be included
in a given program -- if the user wishes to load various segments

of his program into non-contiguous areas of memory, then a set-

4.4

4-5
FAST MANUAL
71-44-002

LOCATION COUNTER statement at the beginning of each source program

segment fixes 1ts respective starting address.

Often it is desirable to reserve a block of memory locations
to be used as a work area or input/output buffer when the object
program is run. This is done by updating the LOCATION COUNTER

relative to its current value. Thus, the statement

* .+50 ;NOTE: 50 MAY BE OCTAL OR
DECIMAL

causes the assembler to reserve (skip oyer) 50 sequential loca-
tions, the first of which will be at the address specified by the
LOCATION COUNTER when the statement islread. This current value
of the LOCATION COUNTER is denoted by the special character period
(.). If the current value was 101, then the next object code

generated will be assigned to location 151.
A block of memory thus reserved may be labeled. The statement
WORK: *,+20

reserves 20 locations, the first of which may be symbolically ref-
erenced as WORK. Note that the label is encountered and processed

before the set-LOCATION COUNTER command itself is processed.

Program Terminators:

The user must indicate the physical end of a program to the
assembler. The assembler can then finalize all processing for the
current pass and come to a halt ready to procede to the next pass

in the assembly process, if any. The assembler command

*END

4.5

FAST MANUAL
71-44-002

must be the last statement in the program. If a source program
is made up of two or more segments of tape, then each segment but

the last must have the command

*EOT

as its last statement. This end-of-tape command causes the as-

sembler to halt for the insertion of the next tape segment in the
reader -- pressing CONT on the console starts the processing of

the new tape as part of the same program.

Data Definition:

Some of the data a program operates upon may be assembled
into the program itself. Such items consist of numeric constants
and/or textual data. Numeric constants could be upper and lower
limits for checking against input values, tables of values used for
code conversion or functioﬂ interpolation, machine addresses of im-
portant tables or entry points in a program, etc. Of course,
single-valued numeric constants are often assembled into immediate
mode memory reference instructions (3.2.2). Textual data could con-
sist of error messages to be output to an operator, or fixed heading

information for printed reports.
4.5.1 Word Values

Numeric constants can be assembled for consecutive locations

of memory by using the general form
[symbol:] e [,e] ... [;comment]

where each e is a general expression (2.6). The expressions

4-7
FAST MANUAL
71-44-002

representing values to be assembled for each location are separated
from each other by commas (,). Each expression e results in a full
16-bit binary word in the object program. The first word assembled

from this statement may optionally be labeled. Thus, the statement
PWR: 1750,144,12

causes the three consecutive octal numbers to be assembled for
three consecutive memory locations, the first of which is labeled

PWR. This statement is equivalent to the three statements:

PWR: 1750
144
12
Further diampies are:
COUNT: O
LNGTH: B - A + 1
21Q,2QQ
2,15, .45

Note: If the symbol . (representing the assembler's LOCATION COUNTER)
1s encountered in an expression in a comma-separated list of data
word definitions, its value will be the address of the memory loca-

tion for which that specific expression is being assembled.
4,5.2 Text

One or more characters of ASCII text may be assembled for con-
secutive words, packed two characters (8 bits each) per word. If
the text contains an odd number of characters, the rightmost 8 bits
of the last word assembled will be set to 0's. A textual data defi-

nition statement consists of the character single-quote ('), followed

4-8
FAST MANUAL
71-44-002

by the body of the text, and is terminated by the same delimiting
character that preceded the text. The general form for defining

textual data is
'de [c] ... d

where d is a delimiter chosen by the user, and the c's are the
individual characters in the text. The delimiter must be chosen
such that it does not occur within the body of the text. Examples

are
'/LIMIT EXCEEDED/
MSG3: '.V1/v2 0.

Note that text may be labeled. The label (e.g. MSG3 above) is as-
sociated with the first packed word assembled from the text. As for
word values, two or more text definitions may occur in the same

source statement provided they are separated by commas.

The delimiters and text characters may be any of the printable
ASCII characters, including those outside the FAST general usage and
reserved character sets (2.1). Exceptions -- the following charac-
ters have special meanings to the assembler and the Source Text Editor
and may not be used as a delimiter or text character:

Carriage-return
Line-feed
Back-arrow

Rubout
Block-mark

4.5.3 Combined Text and Word Values

Text and word value definitions may be freely combined in a

FAST MANUAL
71-44-002

comma-separated list. In this, and in any statement, the
80-character statement length must not be exceeded. As an ex-

ample of a reasonable such combination, consider the following
ERR4:7,'/TEMP. 4 HIGH/,106612

The address of this hypothetical message, represented by ERR4,

is to be sent to a general output routine which will process the
data assembled from the overall statement. The first word fetched
by the output routine is the value 7 which tells it to unpack and
type out the next 7 words (14 characters). The second list ele-
ment assembles into 6 packed words, since there are 12 characters

in the body of the text. The last list element, or 7th message
word, represents the packed characters carriage-return and line-feed.
This mechanism is necessary because they cquld not be made a part

of the text definition itself (4.5.2).

5-1
FAST MANUAL
71-44-002

CHAPTER FIVE

DEFINITION OF NEW SYSTEM SYMBOLS

The most useful function an assembler provides the user is the
ability to give symbolic names to memory locations and word values.
In addition to this, Fhe FAST language also provides the user the
ability to name new system entities beyond those defined in the as-
sembler's permanent symbol table. This ability is extended to encom-
pass not only the SDA and DDA portions of the instruction but also

the MOD portion of the instruction.

The permanent symbol table contains definitions for standard IO de-
vices such as TTI, TfO, HSP, and HSR. The user may desire to refer to an
analog multiplexer as MUX, or an A/O converter as ADC. These symbols
are added to the assembler's symbol table via a symbol definition state-

ment.

Also included i; the permanent symbol table are definitions of
certain pulse patterns from the function output section as well as cer-
tain status codes utilized in sense function instructions. Examples
are STRT, CLIF, BOV, ORDY, etc. The user again may wish to add his own

unique codes to the symbol table, such as GRP1l, STOP, LOAD, etc.

The user may also wish to develop his own pseudo code for commonly

used instructions. THE DEFINITION STATEMENT THAT DEFINES A NEW SYMBOL
MUST PRECEDE ANY OTHER USE QF THE SYMBOL IN THE PROGRAM. (5.1)

It is strongly recommended that the user not re-define bus modifier
symbols (P1, L1, R1l, C) or data testing symbols (ETZ, LTZ, etc.). These

are symbol type numbers 4 and 5. Symbcl types 6 and 7 are more normally

5-2
FAST MANUAL
71-44-002

defined as described in 2.4 and 4.1. They may, however, be defined by

a definition statement.

The symbol definition statement may also be used to add pseudo-codes.

The general form for defining a new symbol is:
SYMBOL #t,n [;comment]

SYMBOL is the 5 character name being defined. #t is a type number
that describes the type of definition being made (see table). n is the
numeric value (in octal) that the assembler will use to replace the

symbol when it is encountered during an assembly.
Note: ALL NUMERIC REFERENCES MUST BE OCTAL.

SYMBOL DEFINITION TABLE
14 Type of Definition

Device Code

Output Pulse Code

Status Test Code

Path Code for Bus Modifier
Data Test Code

Statement Label

NN LW NN

Parameter Symbol
10 Register Reference Pseudo Code

11 Memory Reference Pseudo Code

5.1 Device and Device Related Codes:

New devices added to the system by the user will require the
use of the definition statement if they are to be referred to

symbolically in the users program. It is necessary that the

user put these definitions at the front of the program, or perhaps

on a separate tape terminated by an *EOT (section 4.4). This

5-3
FAST MANUAL
71-44-002

definition tape may be used in front of all program tapes the
user wishes to assemble that refer to the same system devices.
This definition tape need only be read during pass 1 of the as-
sembly.

For example, if a new device named MUX were to be defined
with an octal address 56 (maximum address is 778), the definition

statement is:

MUX#1,56
After this statement has been entered, the name MUX may be
used just as any other device name in the assembler. If one
wished to replace one of the existing assembler symbols with
another address, the same procedure would be used. For example:
TTI#1,44
This associates the symbol TTI with the new address 44. It is
useful to point out here that the values in the assembler's symbol
table for type 1 symbols (devices) exist as right justified numbers.
However, this is not the case when one specifies a MOD code (types
2-5). The MOD codes consist of four binary bits in the middle of
a machine instruction, so defining a new pulse code will require
that the octal value be located in the proper place (bits 9-6) of
the octal '"n' parameter.
Consider the following pulse code:
0110
Its name will be "QUIT", and it will be a type 2. It remains
to define the octal 'n'" parameter.
Consider the string of sixteen binary digits below:

0000000000000000

5-4
FAST MANUAL
71-44-002

Breaking these up into the more familiar SDA-MOD-DDA style
and adding the binary code for the new symbol in the right spaces

yields:
000000 0110 000000

If this were to be converted into an octal number, conversion
sould begin by separating the number into groups of three binary

digits, starting from the right.
0 000 000 110 000 000
The equivalent octal number is, therefore,
‘600

This, then, is the '"n" parameter needed above. The pulse
code digits are in the correct places in the SDA-MOD-DDA form,

and the number is octal. The symbol definition would be

Py

QUIT#2,600

Now consider the case of defining a pulse code with a specific
destination attached to it in order that the destination need not
ﬁe specified each time the pulse is generated. To do this, the user
must define the destination as well as the MOD, and convert this
entire string to an octal number. For example, if the symbol QUIT,
above, had a destination device with octal address 56, then the bi-

nary string would be:

0 000 000 110 101 110

5-5

FAST MANUAL
71-44-002

and the equivalent octal number would be
656
The symbol definition then would be
QUIT#2,656

thus incorporating the destination address as well as the pulse
code. When the newly-defined symbol QUIT is subsequently encount-
ered in'a source statement, the assembler recognizes that it was
defined‘as a pulse code (type 2) and consequently fills in SDA with
02 (the address of the function-generator) and fills the remainder
of the word with the defined octal value of QUIT, i.e. (in machine

language), 02 0110 56.

If the described symbol were to be a status test code and have
a source device associated with it rather than a destination de-

vice, then the binary string would be
1 011 100 110 000 000
The equivalent octal number is
134600

and the symbol definition would be

QUIT#3,134600
then the statement

SKIP IF QUIT
assembles as

56 0110 02

5.2

5-6

FAST MANUAL

71-44-002

Note that the assembler fills in the correct DDA.

Abbreviated Machine Instructions:’

These FAST language pseudo-instructions are abbreviations of
actual machine instructions. That is, the instruction will trans-
late into the SDA MOD DDA form and will have the same machine
language representation as the instruction to which it corresponds.

The general instruction has two forms
symbol
or
symbol e
which combine into the format
symbol [D] e

The D symbol signifies the optional deferred addressing mode
as it did in preceding sections. Note that the immediate mode is

not included in the parameters.

This first usage of pseudo codes is perhaps best illustrated
by several examples. For instance, if a zero memory word were to
be defined at many locations in core, the programmer would have to

use the instruction below for each re~initialization.
ZERO TO location
To save effort, the pseudo code with operand Type 11
ZM location

could be used in place of the normal FAST instruction.

5-7
FAST MANUAL
71-44-002

This pseudo code if defined using the procedure shown in
section 6.1. The value is derived from the instruction that the
pseudo code is to represent. The instruction ZERO TO LOCATION

has the machine language equivalent

00 0000 06

location

for which the octal equivalent is simply the number 6. The data

is put into the general form for symbol definition
SYMBOL#t,n

where t is the octal type number (from the table in 4.5) and n is

the equivalent octal value.
Thus, to define the pseudo code ZM, the programmer would write
ZMi#11,6
as one of thg statements in his source code. Using the instruction
ZM 765

in the source program would then translate into the machine instruc-

tion

00 0000 06
000765

The deferred addressing option could also be specified for

the instruction by
ZM D 765

Other instructions may be assigned pseudo code equivalents as

the programmer wishes. Another example might be an instruction to

5-8
FAST MANUAL
71-44-002

copy the arithmetic overflow bit into the bus modifier link bit.

In FAST, the instruction would be
MSR R1 TO ZERO

(The arithmetic overflow bit is the rightmost bit of the Machine
Status Register.) If the programmer wished to abbreviate the in-

struction as the new instruction
COVL (for copy overflow to link)

a pseudo code without an included operand, the definition would
follow the procedure outlined below.
1. Determine from the table the type of the pseudo code:
no operand - Type number = 10

2. Determine the octal value: The machine language
equivalent of MSR R1 TO ZERO is

17 1100 00
The equivalent octal number for the above digit string is
37400

3.. Define the symbol

COVL#10, 37400

5.3 Local Pseudo-Instructions:

These are codes used in conjunction with the various interpre-
tive software routines provided with the GRI-909, such as the
Floating Point Interpretive Package. This section will deal with
pseudo codes only as they relate to the floating point package,

but the 1deas expressed here are relevant to all such routines.

FAST MANUAL
71-44-002

The format for these codes is the same as that in the previous

symbol [[D] %]

However, the set of instructions is not open ended but consists

section.

only of those included in the interpretive routine under discussion.
The following are a few of the instructions in the Floating Point
Package:

FLDA [D] operand load the floating point accumulator with the

quantity at the location specified by the

operand.

FMPY [D] operand multiply the contents of the accumulator by
the value at the location specified by the

operand.

FADD [D] operand add to the current accumulator value the
contents of the location specified by the

operand.

FSTA [D] operand store the value of the accumulator at the
location specified by the operand.

FSQT take the square root of the current contents
of the floating accumulator and put the

result back into the accumulator.
These local pseudo codes are defined on a command equate tape
supplied with the Floating Point Interpretive system. The definitions
which create the pseudo-instructions are either type 10 or 11 function

definitions. The command equate statements for the few examples listed

would be as follows:

5-10
FAST MANUAL
71-44-002

FLDA #11, 01
FLDAD #11, 101
FADD #11, 10
FADDD #11, 110
FMPY #11, 12
FMPYD #11, 112
FSTA #11, 2
FSTAD #11, 102
FSQT #10, 36

The use of the floating point system is illustrated by the
following example. Suppose one wished to compute the Pythagorean
relation A2 + B2 = C2 and solve for the C value in floating point.
Further suppose that the values for A and B are stored at locations
referenced by the symbols AA and BB respectively. The floating
point interpretive routine is called into play by jumping-to the

location referenced by the symbol $SFI. The sequence of instruc-

tions would then be: -

GO TO $SFI ; THIS INSTRUCTION CAUSES ENTRY TO
INTERPRETIVE MODE

FLDA AA H LOAD THE ACC WITH A

FMPY AA H COMPUTE A SQUARED

FSTA CC H STORE A SQUARED IN C

FLDA BB H LOAD ACC WITH B

FMPY BB H COMPUTE B SQUARED

FADD CC H ADD A SQUARED TO B SQUARED

FSQT ; COMPUTE C=SQRT (A*A+B*B)

FSTA CC H STORE THE C VALUE IN CC

FEXT H EXIT FROM INTERPRETIVE MODE

5-11
FAST MANUAL
71-44-002

The above sequence shows how these special codes are used as
instructions to the floating point package. In effect, the inter-
pretive routine executes each of the instructions following the
call to the routine as if it were an instruction to a firmware
device. Program control retﬁrns from the $SFI routine when an
exit instruction (FEXT) is encountered. The FAST assembler as-—
signs a specific code to each of the floating point instructions.
This is not in the SDA-MOD-DDA format but rather a unique octal
number which is interpreted by the floating point interpreter and
causes a series of local subroutines to be called to perform the
necessary calculations. The user is referred to manual 71-44-005
for a detailed description of the Floating'?oint\Interpretive

Package.

6-1
FAST MANUAL
71-44-002

CHAPTER SIX

USAGE NOTES

6.1 System Linkage:

When implementing large software systems consisting of several
sub-systems, work is often done on the sub-systems independently
until they are all functioning. The entire system is then put
together by combining all of the sub-systems. There are often
portion; of éxecutive routines, initializing routines, linkage
programs, etc. that must refer to various parts of the sub-systems.
When 1t is time to put all of the sub-systems together, a straight-
forward method calls for one large assembly to be run on all of the
sub-system source tapes and other parts that tie the package to-
gether, This can involve a good deal of computer time if the system
is large enough and could be extremely time consuming if high speed
tape equipment is not available. A practical aspect of the problem
of large system assemblies is the length of the symbol table that
is built during the assembly. Profuse use of such symbols in user
programs are beneficial to the understanding of the system after

it is operational.

These problems can be overcome through the use of a technique

called System Linkage.

Once a sub-system has been debugged and is deemed operatiomnal,
a final assembly 1is done, assigning the starting location of the

sub-system to the beginning of some known free area of memory.

6.2

FAST MANUAL
71-44-002

After the assembly is completed, the user scans the symbol table
and picks out all of the routine entry symbols and other symbols
that must be referenced from outéide the sub-system. A linkage
tape is then generated, using a series of parameter definition
statements (4.1), It is assembled with the program that ties all
of the sub-systems together. A set of labels (Li) for subroutine
entries, argument storage points, counters, etc. and their corres-
ponding octal locations (Ni) is prepared. The linkage to them is

established by generating a tape of the form:

L1 = N1
L2 = N2
L3 = N3

Li = Ni
*EOT
These linkage statements will be prepared as separate tapes for
each sub-system. At final assembly time, all of the linkage tapes
are assembled along with the final linking routines and executive
program. When assembling these tapes, it is only necessary to read

the linkage statements during PASS 1 of the assembly.

Subroutine Linkage:

The standard transfer of control to a subroutine in the GRI-909
is via a data testing instruction (3.3). Whenever a jump is about
to occur, the contents of sequence counter (SC) points to the second
word of the data testing instruction just before the actual jump

takes place. At this point, the SC is transmitted to the trap (TRP),

FAST MANUAL
71-44-002

a hardware register associated with the data tester. The contents
of the second word (or the incremented contents of the word it
points to if deferred addressing is selected) is transmitted to
the SC. The SC now points to the first (or entry) instruction of
the subroutine called -- this instruction is executed next by the

processor.

After any data testing jump is performed, the contents of the
TRP provides a linkage back to the program that called the sub-
routine. Note that the address value in TRP is one less than that
of the next instruction of the calling routine. If the subroutine
does not alter the contents of the TRP, then the subroutine may
return to the next step in the program from which it was called by

simply executing the instruction
TRP TO SC

Since the SC is automatically incremented after this instruction
"
is performed, an absolute return of control to the proper location

is performed.

If the subroutine is going to disturb the TRP, then the con-
tents of the TRP must be saved immediately upon entry to the sub-

routine. This may be done by
SUB: TRP TO 1

which places the contents of TRP into the second word of the entry
instruction (i.e. SUB + 1). The subroutine may now return to the

calling program via any one of the following instructions:

6-4
FAST MANUAL
71-44-002

GO TO D SUB + 1
IF DEVICE TEST GO TO D SUB + 1
SUB + 1 P1 TO SC

Since the last instruction is a three cycle instruction, the
automatic incrementation of SC is completed before the contents
of location SUB + 1 is transferred to the SC; therefore, the in-
struction must increment the value on its way to the SC via the

Pl path of the bus modifier.

A subroutine often performs some operations on one or more
data items, called the arguments of the subroutine. Arguments
may be passed to subroutines by loading thewn into specified hard-
ware registers before calling the subroutine. Arguments may also
be passed to the subroutine with a list of word values that follow
the subroutine call:

GO TO SUB
v1i,v2,v3,....Vn

The word values Vi may be one of the following:

a) An address of data to be operated upon
b) A data word to be operated upon

¢) An address to which return is made if errors are
detected by the subroutine

d) An address into which results are to be stored by
the subroutine
If the subroutine entry instruction is
SUB: TRP TO I

then the first argument V1 can be loaded into the AX register by

D SUB + 1 TO AX

6.3

6-5
FAST MANUAL
71-44-002

The second and successive arguments can be fetched by exe-
cuting similar instructions. Note that the word stored in SUB + 1

is auto incremented each time a deferred reference to it is executed.

When all of the arguments have been picked up by the subroutine,
the word at SUB + 1 contains one less than the normal return address.

The
GO TO D SUB + 1

or its equivalent is used for normal return of control to the

calling program.

Some Fast Examples:

As an example of typical subroutine development, we present for
consideration a collection of subroutines that form a teletype in-

put package.

6.3.1. Z%TBO is a simple teletype output service routine. To save
time in the service routine, note that the trap is not saved on
entry and therefore the instruction at %TBO + 1 is an immediate
mode memory to sequence counter type of jump. This jump preserves
the contents of the trap register so that the subroutine returns

control at ZTBO + 4 by merely sending the trap to the sequence counter.

6.3.2, ZTBI uses the same technique and services teletype input,

one character at a time.

6.3.3. #TLO is a processor subroutine which prints a line of ASC
characters, stored one character per word right justified, to the

byte output routine, ZTBO. In this routine, the trap will be

6-6
FAST MANUAL
71-44-002

disturbed so it is saved in %TLO + 1 immediately on entering.
The call for this subroutine carries with it two arguments that
are fetched by the subroutine %TLO. These arguments are the ad-
dress -1 of the line of text in memory and the count of the number
of characters in the line. The subroutine call looks like this:

GO TO %ZTLO

MSG - 1 ;address -1 of message

120 scount = 80 decimal characters

The subroutine will continue outputing characters via %TBO

until the character count runs out or a carriage return character
(215) is encountered in the string. When either of these conditions
is encountered, a carriage return-line feed combination is output,
And the routine returns control to the main program via a deferred

jump through ZTLO + 1.

6.3.4. ZTLI is a subroutine that fetches a line of teletype char-
acters into a buffef area specified by the calling routine. The
characters are entered in the buffer area one per word, right justi-
fied. The calling sequence requires the user to specify two argu-
ments, the first of which specifies the buffer address -1 and the

second the character count. The subroutine call, then, is:

GO TO ZTLI
MSG - 1 ;address -1 of input buffer
120 ;count = 80 decimal characters

This routine, similar to %TLO, will input a string of 80
characters and exit or input a string of characters terminated by
a carriage return. Note that this routine, in addition to calling

4TBI for fetching characters, also calls ZTBO for echoing the typed

FAST MANUAL
71-44-002

characters. The routine also has two other features. When a back
arrow character is typed (#=—), the buffer address and count are
backed up by 1. This process will continue as long as back arrows
are typed until the buffer address reaches the initial buffer ad-
dress, whereupon the routine ignores further back arrows. A rub-
out character (377) causes the entire line to be dropped and re-
initialized at the beginning of the buffer. When this occurs, the

routine outputs a carriage return, followed by a double line feed.

6.3.5. %TMO is a routine to output a packed message string from
memory. The call for this routine requires a single argument, the
starting address -1 of the message string. The subroutine terminates
when a 0 word is encountered. Notice the use of a conditional jump

as a subroutine call for %TBO at %TMO1-3.

The subroutine also uses an interesting trick when it unpacks
the left half character of a pair of characters. The left half
character is shifted to the right 8 times, moving it to the least
significant 8 bits of AX. The least significant 8 bits of AX is
shifted out of the link into the left half of AY. Leading zeros
fill in the left half of AX. A control bit (200) is loaded into
AY and shifted along with the SH character from AX. When the con-
trol bit shifts into the 1link, the process 1is complete. When it is
time to print the LSH character of the word, the character may be
tested for O because it is present in the MSH of AY, and the LSH of
AY has been filled with O's. This routine does not supply a carriage
return-line feed combination at the end of the string. As an example
of usage, let us write a routine to print a string of characters

from memory and terminate it with a CR-LF.

6-8
FAST MANUAL
71-44-002

GO TO %TMO
MSSG-1
HLT

MSSG: '/GRI-909 /, 106612,0 ;106612 = CR-LF

il
nwne
Vw3
e
ans
el
vz
"3
noy

(]
nne
Qe
Anl
nue

wn3
viv4

nns
Ope

d
Ay

NS

“loe

nll

nie

013

D14
1B -]

nle
Y

Ny

19

7217

001
woe

b3
a4

nes
o6
vov
poY

AU'dUL
vl
nuvne
NDVu3
hpvra

Lunns
AAAdAS
HnHnnT
V1w
el
nnple
nnni13

nula
LvlsS
W leé
ol
hr20

Menel

e

K23
rev24
vnas

wnuze

neez24
OOE36
run3l
ron32
wen33
nwva34
VY35
wpun3e
VO3
vevap
vaval
nuua2
0043
rvunaq
aonas
nAn4UE
nov4aT
noosH
noosS1
PoBsS2
PONHS3

LRvsS4y
20055
npvse
A12-%)
noRe6n

novel
vwoboee

vwvre63

FAST TELETYPE

1Y (Al
e Y lp
Vet

11 vy
3 Prpw

P2 el
T 1o
ne vnly
AAAUdDe)

bz 10ne
T BV
V3 vy

03 Ll
nednee
Ve nhne
ne el
wnnls

PE (]
POrR1S
12 w1l
11
VOVV33
12 0uee
DOrn37
(e (il
177563
ne vell
NenRNY
Ve A1
VOBVLY
e v11l1v
AT
0o vule
13 0llo
nenn32
12 0110
e n10e
ARONR
ne ¢prio
noapa12
DY V1Y
NOLRVY
e Nlpl
o015

w3 velw
A AAAAY
ne nne
e Rl
NANNOSS

ne Dunl
BRVOSS

12 vliov

o

ne
n

Tt
7N
Y
e
(5]
1
11
(2]

vie

12

12
ne

ne

11

n3

ve

ve
©v3

11
03

11

3

03

Ve

13
11

le

6-9
INPUT PACKAGE

5 TELETYFE BYTE OUTFUT
41RO
I «=-2 T0 5C

AX TO TTO
TRF 10 sC

SKIF IF TTO OkbLY

FAST
71-44-002L
s RFALY T0 OQUTFRUT?
sNU»WAI1

3YES, DELIVER CHARACTEK
5 RETURN 10 FHOGRAM

5TELETYPE KEADRH/KEYROARKL RY1E INFUT

ATBI¢ STRT 10 T1T1 3 START KEADER
SKIF IF T1I1 1EDY 3INFU1 REALY?
I «.=-2 10 §C JNO,WAIT
CLIF TO 7111 5 Yh5, CLEAK INFUT FLAG
11T 10 AX 5PEICH CHARACTER 10 AKX
TRF 10 S$C sERETURN TO MAIN FhUGrAY
sTELETYFE LINE OUTFU1
4TLO TRF T0 1 3 SAVE TrAF FOL KETURN
ALD

L #ZTLO+1 TO AX

-

L #TLO+1 T0 AY

C AY Fli
AKX TO o+7

AY TO «+11

I =215 10 AY
IL v 10 AX
60 10 %7TBO

I v kI

SKIF Ik BOV
IF A0 NEZ GO TO

C AY F1 TO AX
GO TO %TBO

I 212 TO AX
GO TO %TRO

GO TO D %TLO+1

5TELETYPE LINE INPUT
%*TLI: TRP 10 1

ADL
L ¥TLI+1 TO AX

e

L ®#TLI+1 10 AY

C AY Fl1

5FE1CH BUFFER ALDhR-1

FROM CALL

3FETCH CUOUNT FHOM CALL

32'S COMPF THE COULNT
3 S5AVE RUPFER ALLK-1
3 5AVE -COUNT
5 Cn

CHAR

JPETCH NEX1 CHAR IN LINE
;OUTPUT RYTE FROM AX
5 INChREMENT CUOUN1

s COUNT=0?

e=7 3CH?NO» CONTINUE LINE

sENL OF LINEsFETCH Ch CHAG
5FRINT Ck

sFETCH LF CHAR 10 AX
s FRINT LF

sHRETURN 10 MAIN FROGHAM

5 5AVEF TRAF FOR RETULKN

5FETCH RUFFEH ADDR-1

FHOM CALL
3FE1CH CHAR COUN1

FROM CALL
32'S5 COMF COULNT

nao

61e

vle
n13
wla
“wis
nie
vl
B1y
ni9
neo
nel
waz
w23
weda
nwes
nee
=N
ney

ve9
030

“w31
n32

nw33
D34
n35
w36
n37
B3y
©39
nao

41
42

043

none6y
“Banes
nnree6
Ve
QO e
Wl
o2
U3
o1y
AnGTS
POGT6
AN
v lvy
Orilinl
nulee
Nnlp3
Rl ng
0105
o106
XYM
Ohlle
Al
nrll2

ne113
nalla
115
nnlle
vl

polee
121
nelez

Prp123
bvlz24a
2125
pelz2e6
nen1a27
ne13e
w131
prl3e
nen133
w134
nP135
ne136
w137
Vo140
nnlal
nolae
w143
volada
Vo145
Pol4e
polav

P15
Peisl
pvl1sS2

11 vVl
o
12 o01p
POV
11 ¢R00
Brelel
12 wuve
BOBL1ST
v vlen
AU
Ve vrloe
Va2
w2 1106
13 Vovwy
N2 Puue
ne N106
TAd0 A
Ne Vvu1e
177441
13 1l
nnwvl132
e PPee
rnlel

11 vlle
ne Gout
ponpes
13 0luvo
B4

11 vole
11 Doen
Veel161

ne Weo
OB 157
e bOlp
13 veee
aeelst
Dy N1eY
neania
e pRle
1171401
13 nilp
154
ge onlo
D215
o 2100
proere
ne olo
vaoz212
PV V10w
AAAUAd%
Ve VoY
HvBnes

neE POV
PenveT
e 0100

FAST TELETYPE

ne
Ve
ne
ve
03
12
13
11
13
03
12
“3

11

11

12

w3

11

ne

11

12
NE

03

12

n3

11

"3

1l

“w3

11

12

03

6-10

ZTLT L1

A1L1Ie:

AX TO
AY T0
AX T0
AY TO
GO 10
I 2v0
Or

A0 T0
ALV
GO 10
I -337
IF AD

4#TLI3+

INPUT PACKAGE

I

I

#TLI3+5

#TLI3+3

4TBI

10 AY

AX

*TRU

TO AY

FAST

71-44-002L
3 SAVE. BUFF ALDR-1

3 SAVE -COUNT

5INITIALLIZE CURKRENT BUFFER
s ALK ANDL FUFFEH COUNT
sFETICH A RY1E 10 AX

5O A 1 IN CHANNEL ¥

sAX NOW NU FAKITY CHAR
3 ECHU THE CHAR rEAL

5 CHECK PUR BACK AKROW CHAR

NEZ GU TO %1LI2-4

5 10 AX

C AX Pl

“TLI1=

1M AO

C AX
AX 10

C%TLI3+

C ZERO
A0 10

O TO

I =377

IF AO

I 215

GO T0O

I 212

GO 71O

4TLIL-

%1LI1-

GO TO

7T 10 AY

ETZ GU

#1LI3+5

3 10 AKX

10 AY
#TL13+3

ZTLI1

TO AY

s RACK ARKOw, LELETE LAST

CHAK KEAD
5 ~CURRENT RUFFEH ALLR
s INITIAL LiUFRFER ADLR

TO #TLIL 3STILL FInRST CHAK,

CONTINUE
s PACK UF BUFFEE ALLK 1
3 RESLT FUFF ALLE TO

FUFF ALLR-1
sPETCH CURKENT COUNT

sPETCH -1 10 AY
5 SET CURRENT COUNT=COUNT=1

sCONTINUE INFU1

3NOT RACK AKROW

NEZ GO TO %1LI3 IS IT A RUR 0UT1?

TO AX

%#1RO

TO AX

#7180

7T TO AX

5 TO AY

ATLILl-4

5YES FEICH A Cr 10 AX

5ANL FHINT

5FE1ICH A LF TO AX

3ANL FRINT

5RE-INITIALIZE

RUFFER PARAMETEKRS

5 START LINE AGAIN

Va4

p4as

nae

wat

way
49

woy

051

ns2

053

ns4y

Wob
056

hws7
voy
w59
vee

ol
po2

a3

o4
Bes

voe
d'a
0oy
o9
1o
011
ple
013
P14

P15
olé6

017
vly

019

90153
Vo154
PB155
palse
0157
Poléew
volel
velez
20163
ne164
vol1esS
0wplee
PA167
val70
w171
val172
wn173
w14
PO175
notL7e
20177
w200

Po2ul
buv2ue
PB203
Vo204

w25
va2ve

o207
vo21o
noz211
veoelz

»we213
nu214
pe21s5
nuale
pua17
220
noez1
Pu222
ppa223
Pv224
225
pnoaz26
o221
PNa3y
P23l
pve3e2

vp233
nP234

Y235
pp236

WAne1o
we Velo
177563
we (l1lp
novpuny
11 voll
novone
13 V1vY
A BWE!
we vell
Ny ¢1ov
vwovl136
Y 100
Vevvra
we Vulo
prrele
Nne vl1uo
neeone
oy V1o
noaennn
e VYA
6T

Ve VHowv
WopB 157

11 0110
13 000w

g 01vl
DY ss

03 VY1
vovaALy

Ve vvol
vrv210.

11 vove
wouw234
ne vuel
noa234
11 @100
houn210
6 VA1V
PVVB200
e voovl
11 1100
12 1100
v 0100
b 100
Q223
11 vilo
VROBVo

ne POV
PoVVOY
POP234
12 0110
DVRYLO

12

e

Ve

03

nwa
03

03

11

03

03

il
11

03

Ve

11

ne
11
03
12
Vo
11
12
B2
03

03

11

03

FAST
#TLI3:

e

e

6-11 FAST
TELETUPE INPUT PACKAGE 71-44~002L
I -215 T0 AY 3NOT BACK ARKOW OK KO

I 0 Pl 3 INChEMENT CHAR COUNT
AX TO IL 0 3 STURE CHAK IN BUFFEKR
IF¥ AO RTZ GO TO «+7 3Ch?

SKIF IF NOT BOV ;NO»IS BUFFER FLLL?

GO TO XTLIZ2 s YES, FULL AC1S LIKE KO
GO T0 %1L11 3NU» GET NEX1 CHAK

I 212 TO AX 3 CHAk=CH» ALL LONE

GO TO %1BO s FHINT A LF

GO 10 %71BO sFRINT A LF

%#TLI1-5 TO AX ;COMPUTE NUMREK OF

CHAKR KEADL
ZTLI3+3 TO AY
C AX F1
A0 10 AX 3sAX=NOe« OF CHAR hEALU

INT0 BUFFER
GO TO L %TLI+1 ;hETURN TO wAIN FKOGhAM

STELETYFE MESSAGE OUTFUT

%¥TMO: TKF 10 1 5 SAVE TRAF FOR KETURN

U =1 TO AX 35FETCH ALDR-1 OF MESSAGE
; FKOM CALL

AX 10 %TMO1 3AND SAVE

U %TMO1 TO AX 3 FETCH FIRST FAIR OF CHAn

IF AX ETZ GO TO 2TMO+1 ;LONE IF WRL=@

I 200 TO AY

CLL

AX Rl 3MOVE LH TO KHCAX)

AY Rl JMOVE KHCAX) TO LHCAY)

SKIF IF LNK 5 LONE?

GO 10 «-4 3NO» CONTINUE

IF AX NEZ GO T0 %TBO YES,OUTFUT RIGHT
; HALF IF NEZ

® TO AX ;FETCH RIGHT HALF OF WORD
XTMO 1=~ 1

IF AY NEZ GO 10 %TBO 30UTFU1 RIGHI

e

HALF IF NEZ

6-12
FAST TELETYPE INPUT PACKAGE FAST
020 V0237 PO V108 03 G0 TO %TMO+6 ;DO NEAT worp 71=44-002L
00240 POV215)
001 * ENL

FAST MANUAL
71-44-002

APPENDIX A

OPERATING INSTRUCTIONS

Passes 1, 2, and 3 of the assembler perform user symbol definition,
object code output, and listing output respectively. After Pass 1, the
assembler will continue to Pass 2 and then to Pass 3. Any time after
Pass 1 has been completed, however, the assembler may be re-started and

elither Pass 2 or 3 selected.

I. Load the assembler with the Absolute Loader.
II. Transmit "0" to SC.
III. Set console switches as follows:
Bit 15 selects source input device
Bit 14 selects object output device
Bit 13 selects listing output device
UP = High-speed (paper tape)
DOWN = Low-speed (teletype)
Bits 1-0 select Pass
01 = Pass 1 .
10 = Pass 2 if Pass 1 previously completed
11 = Pass 3
IvV. Ready source tape in reader (if TTI, set reader control to START).
o~
V. Press START.

The assembler will halt after encountering an *EOT command. Mount

the next tape segment and press CONTINUE.

The assembler will halt after encountering an *END command. If
another pass 1s either desired or necessary, remount the source tape (or
the first segment thereof) and

a) Press CONTINUE to preceed to the next pass, or

b) Select the next pass by starting at II, above.

FAST MANUAL
71-44-002

Turn the appropriate punch on before starting Pass 2 and turn it

off after the pass is completed.
NOTES :

1) 1If bits 14 and 13 have different settings, then both the object
code and the listing will be generated during Pass 2. The
listing may be punched on the high speed device and later

printed off-line.

2) 1If the user wishes to type in instructions to sée how various
forms are assembled, proceed as follows:
a) Perform I and II, above.’
b) Perform III, selecting low-speed I/0 and Pass 3.
c) Press START.
Statements (each followed by a carriage-return) may now be typed on
the TTY keyboard. The characters typed are not echoed on the teleprinter
as they are struck. After a statement is terminated (carriage-return),

the assembler responds with the corresponding listing output.

B-1

APPENDIX B

FAST MANUAL
71-44-002

STANDARD SYMBOL TABLE

The following are the pre-defined parameters that are part

of the assembler's symbol table, to which user symbols are added.

INTENDED
CATEGORY SYMBOL

Device Addresses ISR
TRP
Sc
SWR
AX
AY
AO
MSR
HSR
HSP
TT1
TTO
Status Test Codes AQV
NOT
IRDY
ORDY
LNK
BOV
NPFL
Transmission P1
Path Codes L1
R1
Pulse Output Codes CLL
STL
CML
HLT

VALUE

10
11
12
13
17
76
76
77
77

10

N

10

ES R I CE R CEES SEE

MEANING

Interrupt Status Register

‘Trap Register

Sequence Counter
Console Switch Register
Arithmetic Operator X-register
Arithmetic Operator Y-register
Arithmetic Operator
Machine Status Register
High-speed Reader
High-speed Punch
Teletype Input

Teletype Output
Arithmetic Overflow
Negation of Test Results
Input-ready flag
Output-ready flag

Bus Modifier Link

Bus Overflow

No Power Failure
Increment

Shift Left 1 bit

Shift Right 1 bit

Clear Link

Set Link

Complement Link

Halt Machine

INTENDED
CATEGORY "

Pulse Output Codes
(continued)

Data Test Codes

Pseudo Codes

SYMBOL

ADD
AND
OR
XOR
STRT
CLIF
CLOF
ICF
Ico
ETZ
NEZ
GTZ
GEZ
LTZ
LEZ
NOP

B-2

VALUE

0

14
10
1

b
o

O o0 & U N W N DN = BN

FAST MANUAL
71-44-002

MEANING

Select AO "ADD"

Select AO "AND"

Select AO "OR"

Select AO "XOR"

General Start Pulse

Clear Input Flag

Clear Output Flag
Interrupt Control OFF
Interrupt Control ON

Equal to Zero

Not Equal to Zero

Greater Than Zero

Greater Than or Equal to Zero
Less Than Zero

Less Than or Equal to Zero

No Operation

S-S0

(@)
ST GRI Computer Corporation

320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02164

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	A1
	A2
	B1
	B2
	xBack

