
0
.~~

---~I[.........__·· I ___ _

reol time
executive

(o/o rtx)

GRI

REAL TIME EXECUTIVE

% RTX

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02lo4

Copyright 0 1972 by GRI Computer Corporation

70-44-001
0772-0300

TABLE OF CONTENTS

CHAPTER ONE - GENERAL

Introduction • •

System Structure •

Active and inactive states

CHAPTER TWO - REAL TIME EXECUTIVE (%RTX) .

Attact $ATCH . • •

Subroutine Release $SREL • •

Get memory/put memory $GETM, $PUTM, $PUTP

Set memory $SETM . • • • . .

Allow High/Low $AHGH, $ALOW

Wait $WAIT ...

Enqueue, Dequeue $ENQ, $ENQF, $DEQ; $DEQF

CHAPTER THREE - STANDARD 1/0 SERVICE ROUTINES

Introduction . . .

$SRET Starter Return • . .

$SAVI Save Routine for !CF Interrupts

$TICF Teletype Interrupt Acknowledge - !CF .

TTY77 Interrupt Handler - !CF ($CB77)

%RTX
70-44-001

Page No.

. . 1-1

• 1-5

. . 1-9

. 2-1

. . 2-15

. 2-21

• • 2-22

2-26

2-27

. 2-30

• • J-1

3-1

. . . • 3-3

. . 3-4

. • 3-5

. . 3-6

$HICF High Speed reader/punch Interrupt acknowledge !CF 3-25

HSR/HSP 76 Interrupt Handler - !CF ($CB76) 3-27

TABLE OF CONTENTS (Continued)

CHAPTER THREE - continued

$TTYQ TTY ICO Service

$FND Find Interrupting Device

$ASCI-ASCII Input User Exit • •

$ECHO-Echo TTI Keyboard Input •

$LINE-Echo and Input Line from TTI keyboard •

$TKP-Time Keeper Interrupt Service

%RTX-Directory Tape • • • • • • • • •

%RTX
70-44-001

. 3-34

• 3-38

• 3-40

3-41

. 3-43

.. 3-45

• • • 3-49

LIST OF FIGURES

Figure 1 - Basic Structure of a Real Time

Figure 2 - Example of Cascaded Interrupts

Figure 3 - Differences Between Active and

Figure 4 - Enqueuing
Figure 5 - Dequeuing

System .

Inactive

. . . .

.

%RTX
70-44-001

. .

. . . .
State

Page 1-4

Page 2-6

Page 2-12

Page 2-33

Page 2-34

GRI Real Time Executive

Introduction:

%~X

70-44-001
1-1

The GRI Real Time Executive (%RTX) is a generalized control!er which can

be utilized to structure a particular real-time system aimed at a particular

application. It utilizes only 22410 core memory locations and has a completely

modular organizational approach. The use of %RTX, in most cases, simplifies

and shortens the tasks involved in designing and coding such a real-time appli-

cations system; and in many cases, allows the user options which would not be

economically available to him in terms of time spent in designing and imple­

menting such a controller himself.

In order to understand the specifications of the various modules which

can be assembled into an executive applicable to the task at hand, it is

necessary to understand how %RTX expects a real-time system to be structured.

The overall structure may be separated into four categories: 1) Control

Programs, 2) Interrupt Service Routines, 3) Task Processors, and 4) Shared

Subroutines. The actual functions of modules in these four categories in

any given system may overlap somewhat, but their basic definitions in func-

tional terms is as follows:

1) Control Programs

These are the programs which do the bookkeeping and keep

track of machine states necessary to coordinate the activities

of the other units in the system. It is intended that these

functions be provided for by %RTX and its modules.
1

(It should

be pointed out here that this ·is not the same as what is

usually referred to as a monitor although one possible

applications of %RTX might be to serve as the nucleus of

a monitor.)

2) Interrupt Service Routines

These are the routines which are entered in response

% RTX
70-44-0011
1-2

to an interrupt, usually a unique routine per unique inter­

rupt. They can range in complexity from a simple acknowledge

to a complete task depending on the system design and/or

timing requirements. $RTX requires certain minimal communi­

cation with these routines in order to save and restore

registers and flags correctly.

3) Task Processors

These are the modules which actually perform the tasks

required for the user's application. %RTX also requires

certai"n com.munication with these modules in order to preserve

system integrity. Normally, the Task Processors will comprise

the major program.ming effort for a typical user, although

special devices may make it necessary for the user to write,

in addition, some of his own Interrupt Service Routines.

4) Shared Subroutines

These are subtasks which need to be performed by more than

one of the Task Processors in the system. Generally speaking,

if a subtask is relatively short, it should be incorporated

"in line" with each of the processors which require it. If

it is a lengthy routine, however, core space limitations may

.require that it be utilized as a shared subroutine. The

coding of such a subroutine is no different than that of a

normal subroutine not used in real-time. The call to it

from the Task Processors which use it, however, involves the

use of the $ATCH and $SREL routines supplied in the %RTX

package. These routines attach and release shared sub­

routines to or from the processor requiring them.

% RTX
70-44-001
1-3

A very general pictorial representation of the relation­

ship between these four categories in a typical system is

offered in Figure 1.

External
De vice

Interrupt

Interrupt
Service

Control
Programs

\RTX

Task
ProCeS'Sors Shared

Subroutines

'---·---·--------------·
FIG. 1

System Structure~

% RTX
70-44-001
1-5

After initialization and startup of a system, as well as during the

periods when a real-time system is idle, %RTX enters a scan or polling mode.

In this mode, %RTX continually and sequentially invokes each user written

Task Processor. In order for %RTX to know where each processor_ in the system

is, and in what state its operations are in, it must reference a processor

list which is supplied by the user during startup. This list also defines

the priority of the processors in the system since the entries are polled

from top to bottom and the entries toward the top of the list have a tendency

to be polled more often. The highest priority processor is at the top of the

list, and successively lower priority processors occupy successively lower

positions on this list.

Each of the Task Processors has four basic parts: 1) a save area,

2) prologue, 3) main body, and 4) exit. Tne save area is used by %RTX

to save registers and processor status when a Task Processor is

Thus, the save area must be at least six words long -- one word for processor

status and one each for the AX, AY, MSR, TRP, and SC registers. If the user's

system has other registers that need to be saved, Sufficient space must be

provided to save each one, and the user must supply the code to save and

restore them -- this procedure is covered in detail under the specifications

sheets for $USAV and $URES. The prologue is generally a series of tests which

determine whether the task for this processor needs to be performed, i.e. whether

the main body should be entered. If the prologue determines that the task does

not need to be performed, it simply issues a return to %RTX which causes it

% RTX
70-44-001
1-6

to invoke the next lower priority processor in the list. If it decides the

task needs to be performed, it continues on into the main body of code.

The latter, when completed, must exit to %RTX. There are two choices of

exit -- one which causes %RTX to invoke the next lower priority processor

(if any) on the list, and another which causes it to begin scanning at the

top of the list again.

Generally, most or all of the code within a Task Processor ~~·including

any Shared Subroutines, as well as portions of %RTX itself~ are interruptable.

This means that the "interrupt active" flip-flop within the GRI..-909 is in the

"on" state (via an FOI !CO instruction). Exactly which device or devices are

allowed to interrupt the system during such times depends on the setting of

the interrupt status register (ISR) and on which devices have been selected.

These conditions are under user control within his Task Processors since

they may initiate input/output or otherwise start devi.ces. Th.e only restric-

tion applicable to this manipulation is that whatever is done to ISR must

also be done to the contents of a location within %RTX labeled $ISR ..

When an interrupt occurs, the "interrupt active" flip-flop is automatically

turned off by hardware so that it is as if an FOI ICF had been issued just prior

to entry to the interrupt service routine which handles the interrupt. There

are two types of Interrupt Service Routines -- those which operate with the

interrupt active off (or send a zero to the ISR and turn interrupt active on,

thereby allowing the power fail interrupt only), and those which operate with

interrupt active on to allow other devices to interrupt. The former are refer~

red to as "ICF type" or "non-interruptable" Interrupt Service Routines, and

%RTX
70-44-001
1-7

the latter as "ICO type" or "interruptable" Interrupt Service Routines.

%RTX must be informed which type of Interrupt Service Routine is currently

operating. For an ICO-type Interrupt Service, %RTX is so informed by a

call to $ICO in %RTX before entering the routine, and by exiting with

either a call to $EICO or $NICO. For an ICF-type, %RTX is so informed by

the exit from the interrupt service which is a call to either $EICF or $NICF.

The differences between the two types of returns to $RTX from an

Interrupt Service Routine are analogous to the two returns to %RTX avail-

able to a Task Processor. The $EICF or $EICO are called "end-mode" returns

and cause %RTX to save all the registers for the Task Processor which was

interrupted, and when all current interrupts have been taken care of, resume

scanning at the top of the priority list which may result in invoking a

processor other than the one which was interrupted. The "end-mode" returns

are generally taken when the interrupt signals a significant change in the

system. For instance, suppose the Interrupt Service detected a carriage

return from teletype which usually indicates the end of a line of inout.

this instance, an entire line is now in the computer as opposed to the pre-

vious teletype interrupts which delivered only one more character into the

line. The state of the system has changed significantly since the information

in the input line can now be processed instead of merely collected. If the

Task Processor which takes care of this is near or at the top of the priority

list and the Interrupt Service Routine takes an "end-mode" return, the line

will be processed as soon as possible. On the other hand, the $NICF and $NICO

%RTX
70-44-001
1-8

return from an Interrupt Service Routine cause no alteration of the scan

pointer in %RTX so that when all current interrupts are taken care of, %RTX

resumes by invoking the Task Processor which was interrupted.

The following running commentary of the flow of control through a

hypothetical real-time system will give some idea of the bookkeeping and

control maintained by %RTX. Suppose there are three Task Processors A, B,

and C in the processor list and there are three Interrupt Service Routines

I, J, and K where I and J are !CO types and K is an !CF. Further suppose

that when I has been entered, the !SR is set to allow both J and K to inter-

rupt it and when J has been entered, it allows only K.

Let us say that the system has just been loaded and started so that %RTX

begins by invoking processor A whose task might be to start up the three

devices which correspond to I, J, and K. When this is done, A exits and %RTX

invokes B, and then C (both of which might have nothing to do until some

device interrupts). The processor list being exhausted, %RTX returns to the

top and invokes A again, which since it has started the devices now has

nothing to do. It then invokes B, C, A, etc. until finally somebody interrupts,

say the device which goes to K. Let us say that K issues an end-mode return

forcing %RTX's scan pointer to the top of the list to invoke processor A. This

processor sees that K must be restarted and so enters its main body code to

accomplish this, then exits to %RTX. Now %RTX invokes processor B, which, say,

has something to do in response to the interrupt from K. But before B can

finish, an interrupt comes from the device which goes to Interrupt Service

Routine I. %RTX is informed by I that it is an !CO type and to allow interrupts

% RTX
70-44-001
1-9

from J and K. Before I can finish servicing its interrupt, J interrupts it.

J finishes and takes an "end-mode" return to %RTX. Since J interrupted I

which is an Interrupt Service Routine, %RTX simply remembers the "end-mode"

condition and resumes I at the point it was interrupted. When I finishes,

%RTX resumes scanning at the top of the processor list due to the "end-mode"

return from J (even if I made a "normal" return). Thus, %RTX invokes processor

A, which restarts devices I and J. Then %RTX invokes B. Since B was in the

middle of some process when it was interrupted, %RTX invokes B by restoring

all the registers to what they were when I interrupted it and continues.

And so forth ••..

Active and Inactive States:

Note that in the above description, there are two different ways in

which %RTX invokes a processor. In one case, it gives control to the processors

prologue which decides whether to enter the main body of code. In the other

case, %RTX resumes the main body of code at the point it was interrupted. These

two different modes of entry will be called inactive entry or active entry

respectively. Also, a processor is in the inactive state, or simply inactive,

if it will be reinvoked via an inactive entry should it be interrupted. Similarly

a processor is in the active state, or simply active, if it will be reinvoked via

an active entry should it be interrupted.

The difference between the active and inactive states is that if a processor

is interrupted while it is active, all registers are saved, and when it is in-

voked again, the registers are restored and processing continues at the point of

% RTX
70-44-001
1-10

interrupt; whereas if a processor is interrupted when it is inactive, no registers

are saved, and when it is invoked again, it is entered at a specified location

rather than continuing at the point of interrupt. The address -1 of this speci-

fied location is in the first word of the processor's save area. This word is

0 if the processor is in the active state.

The state (active or inactive) of a processor at a given point in its

operations is extremely important to the successful completion of its assigned

task. When the user is writing a section of code for a processor in the system,

he should make sure which of the two states he wants that section to be operat-

ing under and set up the first word of his save area accordingly. A general

rule for making this decision is that if the section of code is referencing

things that can change via an interrupt (either by an Interrupt Service routine

or a higher priority processor which might gain control via an "end-mode"

return) and if such a change would make it meaningless to continue to the

completion of the code, that section should be inactive. Otherwise, the active

state is generally desirable. Typically, a prologue is inactive since it

usually involves testing things that change, and the first instruction of the

main body would be to set the processor active (by zeroing the first word of

its own save area). For this reason, whenever %RTX enters a processor's pro-

logue, it is in the inactive state.

CHAPTER TWO

REAL TIME EXECUTIVE (ioRTX)

% RTX

70-44-001
2-1

Entry Points: Detailed descriptions follow

Name

$STRT

$PRCL

$NEXT

$NREL

$EXEC

$ACTV

Function

start scan, main entry

contains address -1 of processor list

return from inactive processor (e.g. prologue) which

allows next lower priority processor to be invoked.

return from inactive processor which allows resumption

of another specified processor.

return from active processor which forces processor

scan to begin at top of priority list.

return from active processor which allows next lower

priority proces~or to be polled.

subroutine c2llable by processor or interrupt service

routine to set itself active.

$ICO must be called at beginning of ICO-type interrupt

$SAVA

$TRP

$EICO

$NICO

service routines.

contains address of current save area.

save location for TRP register prior to calling $ICO,

$EICF, or $NICF.

end mode return from ICO-type interrupt service routine,

forces processor scan pointer to top of list.

normal return from ICO-type interrupt service routine,

processor scanner not altered.

Name

$ISR

$PROL

$SCAN

$REST

$EICF

$NICF

$INTL

Function

system interrupt status word.

% RTX
70-44-001
2-2

contains address -1 of current processor's prologue

entry.

contains address of second word of current entry on

processor list.

contains processor save area address during restaring

registers.

end mode return from ICF-type interrupt service

routine (see $EIGO).

normal return from !CF-type interrupt service routine

(see $NICO).

contains address -1 of interrupt location for ICF-type

interrupt service.

The most commonly used entry points are discussed first. The others are

used generally by the special sharable subroutines supplied with %RTX such as

$ATCH or $GETM, etc.

1) $STRT

This is the call to %RTX which starts the scan after the

user has submitted his processor list (see below) the interrupt

active flip-flop should be off, as will normally be the case

during start-up since depressing the Start switch on the console

automatically turns it off.

2) $PRCL

During initialization, the user must submit a processor

list to %RTX. This is done by storing the address -1 of the

beginning of the list in $PRCL. The format of the list is as

follows:

Processor List

% RTX
70-44-001
2-3

15 14 0 ,..----address in $PRCL

x PROLl-1

r/J SAVAl-1

x PROL2-1

r/J SAVA2-1

. . .
x PROLn-1

l/J SAVAn-1

r/J r/J

PROLl is the address of the highest priority processor's

prologue, and SAVA! is the address of its save area. PROL2

and SAVA2 are for the next lower priority processor, etc.

The list ends with a zero word.

Bit 15 of the PROL entries are normally = r/J. Should

Bit 15 be set to 1, %RTX will skip. that processor entirely

during the scan - this allows the user to exercise some extra

control over which processors can be invoked at any given time.

Also, when a procc3sor list is initially submitted, the

first word of each processor's save area should contain the

address -1 of its prologue (i.e. the same address as is in

the list). This is a required initial condition, the actual

contents of this word will change during operation. It is

suggested that this initial condition be taken care of during

the assembly of the processors so they will be loaded with the

proper value in the first word of their save areas.

3) $NEXT

This is a return to %RTX which causes %RTX to bump its

scan pointer to the next processor on the list. This return

can only be made from an inactive processor -- if this is

called from anywhere else, %RTX will blow up.

The most common use of this return is if a processor's

prologue finds that the processor has nothing to do. It

returns control to %RTX via a JU $NEXT (or a JC, etc.),

allowing the next processor to be scanned.

4) $NREL

This is one of two types of return to %RTX that can be

made from either an active or inactive processor. The

processor which issues this return will be set inactive in

such a way that the next time it is invoked, it will be

entered, inactive, at its prologue. The scanner in %RTX

is forced to the top of the processor list by this return.

5) $EXEC

This is the normal exit from an active processor. It

does the same thing as $NREL, except the scanner is bumped

to the next lower priority processor in the list. This

exit can also be called from an inactive processor.

6) $ICO and $TRP

% RTX
70-44-001
2-4

$ICO is called by an ICO-type interrupt service routine

after saving the TRAP in $TRP and before it does any actual

processing. The call should look like:

RM TRP, $TRP ;SAVE TRAP REGISTER

JU $ICO

WRD INTLC ;INTERRUPT LOCATION

WRD IRMSK ;ISR MASK

ISAVA: LOC .+l~ ; 8 WORD SAVE AREA

;BEGIN INTERRUPT SERVICE

Where INTLC is the address of the location where the SC

was stored when the interrupt occurred, IRMSK is used by %RTX

to "AND" against the ISR, so IRMSK should have l's in all bit

positions except those for which interrupts from the corresponding

% RTX
70-44-001
2-5

device are not to be allowed. (In particular, another interrupt

from the same device should not be allowed, i.e. IRMSK should

have at least one ~ bit position corresponding to the device which

just interrupted.)

The area at ISAVA is used as follows:

ISAVA: Cascade information

Saved ISR

Active/Inactive

Save area for

AX, AY, MSR, TRP,

SC should this

interrupt service

be interru_E__ted

When %RTX returns from the $ICO call, the interrupt active

flip-flop will be on, the ISR will contain the result of

"ANDing" the old ISR with IRMSK and the interrupt service

routine will be in the active state (ISAVA+2 will be set to 0).

Furthermore, %RTX will have set itself 1n "interrupt mode"

which has certain consequences for saving and restoring registers

if further interrupts occur, the main one being that if an ICO-type

interrupt service routine is interrupted, only AX, AY, MSR, TRP, and

SC are saved in its save area -- no provisions are made for saving

.additional registers as is the case with processors.

An ICO-type interrupt service routine can set itself inactive

the same way a processor can -- and for the same reasons. It does

so by setting its ISAVA+2 location to the address -1 of the inactive

entry.

The "cascade information" location is set by %RTX to the address

of the previous (if any) interrupted interrupt service routine's

ISAVA area. A diagram showing pictorially how cascading operates

is shown in Figure 2.

..--·---------
Original Processor
(active for this example)

Inter

%RTX
restores P
if no calls --­
to $EICO

%RTX goes
to top pri­
ority pro­
cessor if
$EICO was
called by
one or more
of A, B or
c.

A

etes

· %RTX
restores
A and
resumes

EXAMPLE OF CASCADED INTERRUPTS

Saves all regs
P's savearea.
control to
A here.

in
Gives

Saves AX,AY,MSR,TRP,SC
only in A's save area.

's Save Are gives control to B here.

is

Saves AX ,AY ,MSR , TRP,
~-J_u __ $ r_c_o_----t s c on 1 y in B ' s

's save Area in B's save area
gives control to C

here. ·
B calle:tW-~.w..u~~"'"-liii.a..-1 is Active
$NICO

%RTX
restores
B and
resumes

comp etes
C calls
$NICO or $EICO

--·-··-----····---····--·-------·--·- ·-·-··

FIG. 2

7) $EICO

% RTX
70-44-001
2-7

This may be called by an ICO-type interrupt service routine

only. If it is called from anywhere else, %RTX winces. A call

to $EICO exits from the ICO-type interrupt service routine and

alters the processor scanner so that when all current interrupts

have been serviced, %RTX resumes scanning at the top of the list.

8) $NICO

This is the other exit from an ICO-type interrupt service

routine. It is the same as $EICO except the processor scanner

is not altered.

9) $ISR

This location should reflect what the ISR says when %RTX

is in the processor scan. To be safe, whenever the ISR is

altered, $ISR should be altered in the same way and the line

of code which does these operations should be preceded by an

FOI ICF and followed by and FOI ICO.

10) $INTL

Note: Do not alter ISR and then store ISR in $ISR.

First alter ISR, and then do the same operation on

$ISR. Normally (e.g. during processor scanning),

ISR and $ISR will he equal, but certain relations

between cascaded interrupt routines can cause them

to be unequal.

This location is set up during the entering of an ICF-type

interrupt service routine. It should be set to the address -1

of the location in which the SC was stored when the interrupt

occurred.

An !CF-type interrupt service routine should save and

restore all registers it alters during its operation. Thus,

a typical entry to an ICF-type interrupt service routine is

as follows:

11)

% RTX
70-44-001
2-8

INRUP: RM TRP, $TRP ;SAVE TRAP REGISTER

;SET UP ADDR-1

The

allowing

ICF-type

saving of

it is not

$EICF and

MRI

RM

RMI

RMI

RMI

RMI

ZR

FOI

INTLC-1,TRP

TRP,$INTL

AX,~

AY,~

MSR,0

ISR,0

I ISR

ICO

;OF INTERRUPT LOCATION

;SAVE REGS

;TIIESE 3 INSTRUCTIONS

;ALLOW POWER FAIL

;AND ARE NOT VITAL

last three instructions need not be included if

a power fail interrupt is not crucicil while the

service routine is operating. Similarly, the

one or more of AX,AY or MSR may be omitted if

altered -- although typically all of them will be.

$NICF

These are the exits available to an ICF-type interrupt

service routine. They are analogous to the $EICO and $NICO

exits available to an !CO-type interrupt service routine.

Since an !CF-type interrupt service routine saved

registers upon entry, it must restore them upon exit. To

continue the example above, the exit from that routine would

be:

MR INRUP+7,AX

MR INRUP+ll,AY

MR

FOI

MR

JU

INRUP+l3,MSR

ICF

INRUP+l5,ISR }
$NICF (or JU $EICF)

;RESTORE REGISTERS

;ONLY FOR POWER

;FAIL OPTION

Where the two instructions beginning at the FOI !CF are not

necessary if the power fail was not enabled on entry. Note also

that the TRP need not be restored. %RTX will restore Lt from

$TRP.

% RTX
70-44-001
2-9

If $EICF or $NICF are called from anywhere but an ICF-type

interrupt service routine, %RTX grumbles.

The less commonly used entry points are $ACTV, $RSME, $SAVA

$PROL, $SCAN and $REST. They are present primarily for such

routines as $ATCH, $GETM, etc. which need to reference certain

locations in %RTX.

12) $ACTV

This entry point merely zeroes the first word of the save

area of the current processor or the !SAVA+~ location in the

case of an Interrupt Service Routine. le.>it sets the current

processor or Interrupt Service Routine active. Usually this can

be accomplished by a ZM instruction. However, in some cases,

notably in certain types of shared subroutines, the location to

be zeroed may not be known. The user is not likely to encounter

this situation.

13) $RSME

If this is called with AX set to the save area address -1,

and AY set to the prologue address -1 of a given processor in

the system, that processor will be invoked correctly and imme­

diately. The scan pointer remains as it was so that if the

invoked processor calls $NEXT or $EXEC, the scan pointer is

updated to the next lower priority processor below the proces­

sor which called $RSMEJ The interrupt control flip-flop must

be off before $RSME is called (i.e. issue a FOI !CF and then

go to $RSME) •

The primary purpose of $RSME is to accommodate the $ATCH

and $SREL routines. It is also used by $GETM.

14) $SAVA, $PROL, $SCAN

These are adequately described in the list of entry points

given on pages 10 and 11.

15) $REST

A call to $REST-l with AX set to a save area address will

restore registers and resume an interrupted, active processor.

% RTX
70-44-001
2-10

Again, this entry point is defined for use by some of the other

routines supplied with %RTX and is normally not called by user

programs.

Notes:

1) $ACTV and $ICO are the only entries in %RTX which return

control to the caller immediately following the call. No registers

(except the TRAP) are altered by $ACTV.

2) Whenever %RTX transfers control to an inactive entry,

only the following conditions are guaranteed:

a) AX = address -1 of current save area
b) AO is in ADD state
c) BOV is clear
d) LNK is clear
e) !CO is on (i.e. a FOI !CO has been executed)
f) The contents of the save area will not have

been altered in any way.

3) Whenever %RTX transfers control to an active processor or

Interrupt Service Routine, the following conditions are guaranteed:

a) All registers, except possibly the !SR, will
contain the values they had at the time of the
interrupt. This includes the SC, meaning that
the program resumes as if nothing had happened.

b) The contents of the save area may have been
altered in order to save (and subsequently
restore) the registers.

c) ICO is on (i.e. a FOI !CO has been executed) •

A pictorial diagram of the differences between an inactive

and active state is shown in Figure 3.

4) Should the system need to provide for saving registers in

addition to AX, AY, MSR, TRP and SC (e.g. 6 GPR) the procedure in-

volves. using a version of %RTX with_ calls to $USAV and $URES and

% RTX
70-44-001
2-11

providing two routines with entries $USAV and $URES. This is des-

cribed in detail under the specifications for $USAV and $URES.

5) It is possible to dynamically submit a new processor list.

For instance, during the operation of the system a condition may

occur which requires a different set of processors to handle than

those currently operating; all that needs to be done here is to

submit a new processor list.

A new list can be sumbitted at any time by anybody except a

shared subroutine or within the scope of an attach (see $ATCH).

The procedure is to simply store the address-! of the new processor

list into $PRCL. To assure that %RTX begins scanning the new list

innnediately, do the following:

a) If the new list is being submitted by an
Interrupt Service Routine, exi.t via an "end­
mode" return (Le. $EICO or $EICF).

b) If the new list is being submitted by a Task
Processor, start the procedure by issuing a FOI
!CF, then store the new list address -1 in $PRCL,
and then exit via $NREL.

INCTV:

SAVE:

Inactive section of
code, SAVE is set to

INCTV-1

Interrupt

Active section, SAVE

is set to 0

Interrupt

status(active/inactive)

Room for saving
registers

FIG. 3

--

--

should interrupt occur

%PTX saves nothing and
eventually re-enters at

inactive entry

should interrupt occur

%RTX saves everything
and eventually restores
everything and resumes
at point of interrupt

USER SAVE/RESTORE

% RTX
70-44-001
2-13

These are user writt.en routines to save and restore registers other

than the standard. A special version of %RTX with $USAV/$URES calls must

be used rather than the normal version of %RTX. The tape of %RTX with

$USAV/$URE;S calls is numbered 70-43-022R-A and is four locations longer

than the normal version of %RTX.

This will be called during the saving of registers. The AX register

will contain the value of the SC at the time of interrupt. %RTX expects

$USAV to save additional registers and return without destroying the AX

register. An example might be, for the 6 GPR option (or a Model 40):

ENTRY $USAV
$USAV: RMD 30, $SAVA; SAVE GPR's

RMD 31,$SAVA
RMD 32 ,$SAVA
RMD 33,$SAVA
RMD 34,$SAVA
RMD 35 ,$SAVA
RR TRP,SC;RETURN
END

$URES

This wil be called during the restoring of registers. Everything

except the users registers and the SC will be restored before control is

given to $URES. %RTX expects this routine to restore the user's registers

without destroying any of AX, AY, MSR or TRP, and then $URES must restore

the SC. To continue the example, the $URES that corresponds to the $USAV

above could be:

$URES:
ENTRY
MRD
MRD
MRD
MRD
MRD
MRD
FOI
MRD
END

$URES
$REST, 30
$REST, 31
$REST, 32
$REST, 33
$REST, 34
$REST, 35
ICO
$REST,SC

;RESTORE GPR's

;THESE RESTORE
;THE SC

%RTX
70-44-001
2-14

Note: If $SREL, $AHGH or $ALOW are to be included in the system, the

special versions (which call $USAV,$URES) of these routines must be

used. The special version of $SREL is numbered 70-43-023R-A and is

two locations longer than the normal. The special version of $AHGH/

$ALOW is numbered 70-43-024R-A and is four _locations longer than the

normal.

Length~ 77
8

(6310)

Entry Points: $ATCH

Function:

ATTACH

%RTX
70-44-001
2-15

This routine is used to eliminate conflicts in the usage of shared

subroutines in the system. It does this without requiring the subroutine to

be written differently from a subroutine written for non real-time use. If

$ATCH and $SREL are used, for instance, reentrant code is unnecessary.

Usage:

For each subroutine which is to be shared between processors in the

system, the user should assign a single core location initially set to zero.

This location will be used as a flag to indicate whether the associated sub-

routine has been "attached" or not. The flag is examined and set by $ATCH.

Before a processor in the system calls a shared subroutine, it should

first "attach" it by.calling $ATCH and giving as an argument the address of

the flag or flags associated with the subroutine(s) it wishes to attach.

The general format of the call is~

JU
WRD
WRD

WRD

$ATCH
FLAGl
FLAG2

;ADDRESS OF SUBRl FLAG
;ETC

FLAGn+l00000

whereas the last or, in most cases, the only argument has Bit 15 set (by

adding H)CJf/J0CJ 8 to the address).

% RTX
70-44-001
2-16

When control is returned to the processor which called $ATCH, each

FLAG listed in the call sequence will be set to the address -1 of the pro-

cessor'-s prologue -1 entry in the processor list to identify the processor

who has attached the subroutine(s). In addition, the processor will be set

active (i.e. $ATCH could possibly be called from an inactive section, but

upon return the caller will be active).

The processor is now free to call the subroutines whose flags were

listed in the call to the $ATCH. To release the subroutine for use by

other processors it is only necessary to zero the flag word associated with

that subroutine, and the ZM FLAG instruction must be followed by a JU $SREL

which informs %RTX that any higher priority processor which may have tried

to attach the subroutine can now do so.

The scope of an attach consists of all code within a processor from the

call to the $ATCH routine to the point at which either the last of the flags

listed in the $ATCH call has been zeroed followed by a JU · $SRE.L, or an exit

has been made to %RTX ($NREL or $EXEC). (Usually all flags should be zeroed

before such an exit, although it is possible to structure things so that a

subroutine is attached to the same processor for several scans by %RTX.)

Great care must be taken if $ATCH is called within the scope of an attach.

For example, to attach more than one subroutine, the following procedures

are okay:

% RTX
70-44-001
2-17

JU $ATCH
-WRD ·FLAG!

WRD FLAG2 + HJ fJ" (}"

JU SUBRl ;NEED SUBRl TWICE

SCOPE
JU SUBR2 ;NEED SUBR2 ONCE
ZM FLAG2 ;SIGNAL DONE SUBR2
JU $SREL

JU SUBRl ; 2nd TIME S UBRl
ZM FLAGl ;THEN DONE
JU $SREL

The scope of the attach extends from the JU $ATCH to the JU $SREL

following the ZM FLAGl and is bracketed above. (Note that the JU $SREL

following the ZM FLAG2 does not delimit

Another way:

The scopes are marked.

% RTX
70-44-001
2-18

However, the following could cause a disaster unless the two rules

stated below are complied with.

JU $ATCH
WRD FLAGl+ l"CJCJCJCJ

JU SUBRl

JU $ATCH
WRD FLAG2 + lCJCJCICJCJ

1

2 JU SUBR2

ZM FLAG2
JU $SREL

ZM FLAGl
JU $SREL

1. Scopes must be fully nested, i.e. the following overlapping of scopes

will cause a disaster:

1

2

2. There must not exist two processors in the system with nested scopes in
a

reversed sense of each other. 1e., the following will cause a disaster if

Processors A and B are in the same system:

Processor A

JU $ATCH
WRD FLAGl + HJ(J()r)(J

JU $ATCH
WRD FLAG2 + 1(/JCJCJ(JCJ

ZM FLAG2
TTT $SREL >.Ju

ZM FLAGl.
JU $SREL

Note that Processor A has

within the scope of the attach for

way around. The following would be

Processor A

1 2 I
Description of Algorithm

the scope of the

FLAGl whereas in

okay, however:

JU
WRD

JU
WRD

ZM
JU

ZM
JU

attach

% RTX
70-44-001
2-19

Processor B

$ATCH
FLAG2 + HJCJ()CJ(J

$ATCH
FLAGl + 10(J0CJC/J

FLAGl
$SREL

FLAG2
$SREL

for FLAG2 nested

Processor B it is the other

Processor B

1

If $ATCH is called and_ one of the flags in the argmnent list is non-zero

(attached to somebody else), the processor which called $ATCH is set inactive

in such a way that the next time it is invoked by %RTX it will resmne inside

the $ATCH routine to examine the particular flag again. $ATCH then uses the

information in the non-zero flag to call $RSME to force the processor to which

the subroutine was attached to continue operating. Should the latter zero the

flag and call $SREL, things have been set up so that $ATCH is immediately re-

entered. Since the flag is now zero $ATCH attaches the subroutine to the

original caller, and, if the last flag in the argmnent list has been processed,

sets the caller active and returns.

% RTX
70-44-001
2-20

Note that the processor which "finished" the subroutine had control

only up to the call to $SREL at which point the original caller to $ATCH

regained control.

By this means, the subroutine is given to the highest priority processor

which is trying to attach it at any particular time.

Notes

1) It is okay to have inactive code in the scope of an attach. (But see note 5.)

2) $ATCH cannot be used by Interrupt Service Routines.

3) Since $ATCH may set the caller inactive, and in this state
no registers are saved in case of interrupt, it may be safely
said that $ATCH has the possibility of destroying the contents
of every register. However, when $ATCH returns, the following
machine conditions are guaranteed:

a) AO is in the ADD state.
b) AX = contents of $SCAN.
c) AY = -2
d) LNK is set.
e) BOV is clear.

In. addition, the caller will be active and all flags in the
argument list will be non-zero (attached).

4) $ATCH can be used to attach anything. For instance, one pro­
cessor may wish to alter a table and keep other processors from
using the table until it is done. Or, on the Model 40,
instead of taking the time to save and restore the 6 GPR at every
interrupt, the processors which use them can attach them either
singly or as a group. $ATCH is perfect for such applications.

5) $ATCH. may be used in a system which submits more than one pro­
cessor list in the course of its operation provided:

a) All elements of the system are permanently in core.
b) The scope of any attach which references a flag which is

also attached by a task in another processor list must be
free of any inactive code or returns to %RTX.

Length: 24
8

(20
10

)

Entry Points~ $SREL

SUBROUTINE RELEASE

% RTX
70-44-001
2-21

Allows higher priority processor to attach and use subroutine just

released.

Usage; (See $ATCH)

Call $SREL immediately after zeroing an attached flag. This allows

the released flag to be attached by any processor waiting for it (if any).

No information other than the trap register is destroyed by this call. I.e.,

$SREL acts as if it were an interrupt and saves all registers (and goes to

$USAV if incorporated) so that %RTX restores everything, returning just follow-

ing the call to $SREL.

Description of Algorithm:

$SREL saves all registers in the callers save area, decrements $SCAN

by two and jumps to $NEXT. This has the net effect of either restoring the

caller immediately, or resuming in the $ATCH routine should it be waiting on

the flag just zeroed before the JU $SREL.

Notes

1) Do not call $SREL from an inactive processor.

2) See note to write up for $USAV, $URES.

GET MEMORY/PUT MEMORY

Length: 454
8

(300
10

)

Entry Points: $GETM, $PUTM, $PUTP

Function; Dynamic Core Allocation

Subroutine Called: %RTX, $SREL

Usage:

%RTX
70-44-001
2-22

Should the real-time system be such that the demands for memory which

need to be assigned to tasks are unpredictable, these routines can be used

to assign and release areas of core storage.

$GETM - Get Memory

This is called with one argument stating the number of storage loca-

tions desired, e.g.

JU $GETM
WRD 300

;GET 300 WORDS
~OF FREE CORE

Upon return the address of the first location of the requested block

of core will be in the AX register. The free area will consist of exactly

the number of words requested and no more. If a block of core of the size

requested is not available at the time it is requested, the processor which

called $GETM will be placed in a "wait" state until that memory is available.

In this state the processor is inactive and, essentially, removed from the

system. The net result is that a call to $GETM may allow all other proces-

%RTX
70-44-001
2-23

sors to operate before control is returned. Also, since it can become inactive

there is the possibility that all registers in the system will be altered. The

only conditions guaranteed on return are:

··-
1) AX = address of first location of free core area of size requested.

2) AO in ADD state.

3) LNK is clear.

$PUTM - Put Memory

This is called with the address of the first word of the free area in

register AX. This value must be equal to a value returned by some previous

call to $GETM. Upon return the core area will no longer be assigned, i.e. it

is available to $GETM to assign to the next request. Since this routine can

become inactive waiting for $GETM to finish operating, it is possible for all

registers in the system to be altered on return. The only condition guaranteed

on return is that the AO is in the ADD state.

$PUTP - Put Partial Memory

This is called to make a partial area of core available to $GETM. For

instance·, a processor might call $GETM to read in a block of data from a

device. It is known that this data could occupy up to 200
8

words of core, so

the call to $GETM requests 200 words. When the data has been read in, the

processor discovers that it consisted of only 50
8

words. If desired, the last

1308 words can be released for $GETM to assign elsewhere by calling $PUTP.

For this call, AX must be set at the address of the first word of the complete

block (i.e. the value originally returned by $GETM) and AY is set to the address

of the first word of the partial area to be put back.

be

% RTX
70-44-001
2-24

For example, suppose it is desired to read in a·data block which might

500
8

words long. A processor could proceed as follows:

JU $GETM GET 500 WORDS
WRD 500
RMI Ax,(I ;SAVE START OF

STBFR = .-1 ;BUF.FER ADDRESS.

Suppose after reading, the address of the last data word stored is in

'LAST'. The following will allow the area from the word following the last

data to the end of the original buffer to be made available to $GETM:

MR
MR
JU

LAST, Pl, AY
STBFR, AX
$PUTP

;ONE BEYOND LAST TO AY
;START OF BUFFER

And finally when the processor is completely done with that memory area

it calls $PUTM with the original address to release the rest of the buffer, i.e.

MR
JU

STBFR, AX
$PUTM

;PUT BACK ASSIGNED
;MEMORY

Of course, the intermediate steps of putting back the partial area could

be omitted if core space is not that much of a premium.

Notes

1) These routines can be called from an inactive area. However, the
caller will be active upon return.

2) Free core is originally set by a call to $SETM (see its write-up)
during initialization.

SET MEMORY

% RTX
70-44-001
2-25

Length~ 30
8

(2410)

Entry Points: $SETM

Function; To initialize pointers in memory for $GETM and $PUTM.

Calling Sequence: AX = address of first free core location.
AY = address of last free core location.

JU $SETM

Usage~

This routine should be called during system initialization (start-up)

to define free core to $GETM and $PUTM if dynamic core allocation is to be

used.

Notes: (See also $GETM, $PUTM)

1) If $SETM is loaded last, it can reside in the free core area. In
this case it will be destroyEd during the operation of the system, but
usually this does not matter since $SETM cannot be called at any other
time except initializatior:/start-up.

2) Free core must be one contiguous block (usually from the end of the
programs to the beginning of the resident loaders in high core).

3) $SETM does not zero the free core area, it only intializes pointers.

Length: 31
8

(25
10

)

Entry Points: $AHGH, $ALOW

ALLOW HIGH/LOW

% RTX
70-44-001
2-26

Function: Allows all higher priority ($AHGH)Or all lower and higher priority

($ALOW) processors to be invoked before resuming.

Usage:

If it is known that a processor in the system is going to take a consider-

able amount of time to complete its task, it can prevent other processors from

being excessively "locked-cue' by calling $AHGH or $ALOW.. The calling sequence

has no arguments. Both routines save and restore all registers with operation

resuming at the return point. $AHGH and $ALOW may be thought of as a program-

med interrupt. $AHGH forces the scan pointer to the top of the priority list

and returns to %RTX, thereby beginning the scan on all higher priority proces-

sors. $ALOW bumps the scan pointer to the next lower priority (i.f any) pro

cessor in the list and returns to %P~X, thereby beginning the scan on all

lower priority processors, followed by a scan on all higher priority processors.

In either case. %RTX eventually re-invokes the processor which called $AHGH or

$ALOW, causing registers to be restored and processing to resume following the

point of call.

Notes

1) Do not call these from an inactive area. Instead, call $NEXT
(analogous to $ALOW) or $STRT (analogous to $AHGH).

2) See notes to write-up of $USAV, $URES.

Length: 548 (4410)

Entry Points: $WAIT

WAIT

% RTX
70-44-001
2-27

Function: To wait for a dynamic condition without locking up the system in

a tight loop.

Calling Sequence:

Usage:

Set
JU
WRD
WRD

AY
$WAIT
ARGl
ARG2

;CONDITION
;ADDRESS OF FLAG

If a processor needs a certain condition fulfilled before it can proceed

with its operations, it can use $WAIT to avoid locking up the system in a tight

loop. For instance, suppose the condition is the completion of input into a

buffer, and that this is signaled by the Interrupt Service Routine setting "!DONE"

to a value greater than 0. The f0llowing could be done, but is not advisable:

MR IDONE, AX
JC AX, LEZ, .-2

because the entire system is locked out while this processor is in the two

instruction loop waiting for IDONE to become greater than zero.

The calling sequence to $WAIT consists of setting AY, the jump to $WAIT,

followed by two arguments. The first argument must be a data test on the AO.

I.e. it must be (in instruction format) of the form 13 XXX0 ~3; where XXX

specifies the test. The second word is the address of the flag whose condition

% RTX
70-44-001
2-28

is being tested. The easiest way to specify the arguments to $WAIT is to

follow the JU $WAIT with a JC on the AO. E.g. for the example above:

ZR AY ;SET AY = f/J

JU $WAIT
JC AO, GTZ, !DONE ;SET UP BOTH ARGUMENTS

Note that the JC AO, GTZ, !DONE is never executed; it only serves to

establish the arguments - word 1 is the data test on AO, word 2 is the address

11 IDONE".

Description:

What $WAIT does is to set the AO to the ADD state, load the contents of

!DONE into AX, (the caller having set the contents of AY) and test the AO for

the condition specified in the calling sequence. If the condition is true

(successful), the caller is set active, and $WAIT returns following the two

arguments. If the condition is not true, the calling processor is set inactive

in such a way that the next time it is invoked it reenters the $WAIT routine

to repeat the test. Thus the caller is temporarily removed from the system.

Notes

1) Since the caller may be set inactive, no registers are saved. Thus,
a call to $WAIT could result in all registers being altered. The only
conditions guaranteed on return are:

a) AY is same as before call to $WAIT.
b) AO is in ADD state.
c) LNK is clear.
d) BOV is clear.

%RTX
70-44-001
2-29

(Although it seems that a guaranteed condition should also be:
AX is equal to the contents of the flag tested, it is not the case.
Most of the time it will be---but in some systems it is possible
for the flag to be altered between the time it was tested and the
time return is made from $WAIT.)

2) $WAIT can be called from an inactive area. However, the caller
will be active upon return.

ENQUEUE, DEQUEUE

Length: 71
8

(57
10

)

Entry Points: $ENQ, $ENQF,_ $DEQ, $DEQF

Function: First-in, first-out list using linking pointers.

Usage:

% RTX
70-44-001
2-30

The primary use of these routines is to facilitate the passing of large

blocks of data from one system component to another without having to physically

move the data from one area of core to another. This scheme also allows data

to "back-up" without being lost if a real-time system should become temporarily

overloaded.

When a part or all of a system uses this approach to handle data, the

components must reference so-called "queues" to find out where the data is

located. A particular queue consists of two words at a known place in memory.

The first word of the queue contains the address of the first word of the first

item (e.g. block of data) on the queue. The first word of the first item (link

word) contains the address of the first word (link word) of the second item on

the queue, the first word of the second item contains the address of the first

word of the third item, etc. The first word of the last item on the queue is

set to zero to identify it as being last. The second word of the queue contains

the address of the first word of the last item on the queue. Figure 4 offers

a pictoral representation of the enqueuing process. An empty queue is identified

by the first word of the queue being zero -- and in this case the second word

must contain the address of the first word. Figure 4 also illustrates an empty

queue.

% RTX
70-44-001
2-31

$ENQ (or $ENQF) is provided to enter a new item as the last item on a

queue, and $DEQ (or DEQF) is provided to remove the first item from a queue.

Both of these routines involve changing link words only, they do not move any

data from one place to another.

Calling Sequence - _$ENQ, $ENQF

Load AX with address of link word of new item.

JU $ENQ (or JU $ENQF)
WRD QADDR ;ADDRESS OF FIRST WORD OF 2 WORD QUEUE

This adds the item whose link word address is in AX to the end of the

queue at QADDR. $ENQ returns with interrupt control on, $ENQF returns with

interrupt control off (FOI ICF). Neither AX nor AY is changed by $ENQ or $ENQF.

Calling Sequence - $DEQ, $DEQF

JU $DEQ (or JU $DEQF)
WRD QADDR ;ADDRESS OF FIRST WORD OF 2 WORD QUEUE

$DEQ (or $DEQF) returns :~fter deleting the top (first) item from the queue

at QADDR. This brings to the top a new item whose link address is in both QADDR

and AY. The address of the deleted item's first (link) word is in AX. This is

convenient for an immediate call to $ENQ (or $ENQF) to enqueue the same item on

to another queue to pass data to another component in the system. $DEQ returns

with interrupt control on, $DEQF returns with interrupt control off. Figure 5

shows the dequeuing process.

Notes

% RTX
70-44-001
2-32

1) Normally $ENQ and $DEQ are the desirable calls. However, in some
cases, to assure that information is not lost (e.g. dequeuing within
an inactive area) the "return with !CF" versions should be used. An
example, which also illustrates "rotating a queue11 might be as follows:

Suppose one of the processors in the system is dedicated to
handling all teletype input and that there are several teletypes
on the system. Each teletype has been assigned an input buffer
by some processor (say via a $GETM) and all the buffers are linked
onto the queue "TTYIB" (teletype input buffers). Also suppose
that the word following the link word in each buffer is a flag
which is set to zero when the input is complete (e.g. the Interrupt
Service Routine might set this flag when it detects a carriage
return). The following prologue (inactive) for this processor will,
at each scan by %RTX, examine the flag in the top item on the queue,
remove the item from the top of the queue and replace it at the
bottom. (The next %RTX scan will thus examine a new flag if there
is more than one buffer on the queue).

PROL:

ENTER:

MR TTYIB, AX
JC AX, ETZ, $NEXT
RM AX, Pl, .+3
MR ~' AY
JC AY, ETZ, ENTER
JU $DEQF
WRD TTYIB
JU $ENQ
WRD TTYIB
JU $NEXT
ZM PSAV

;ADDR. OF TOP BUFFER LINK TO AX.
;IF NO ITEMS ON QUEUE.
;ADDR. OF FLAG TO NXT INSTR.
;CONTENTS OF FLAG TO AY.
;FLAG IS ~, SO GO ENTER.
;DEQUEUE TOP BUFFER
;BRINGING UP NEXT BUFFER.
;PUT TOP BACK ON BOTTOM
;THEREBY ROTATING

;SET SELF ACTIVE

Note that the call to $DEQF (rather than $DEQ) is absolutely
essential. This is because if $DEQ is called an interrupt could
occur between the call to dequeue and the call to $ENQ, and since
the prologue is inactive %RTX would re-enter at "PROL" so that the
item dequeued before the interrupt will never be enqueued back onto
TTYIB (or anywhere else) and is lost to the system.

2) On return from $DEQ, AY contains the same new value which is in the
first word of the queue so that if AY is ~' the queue is empty. If AX
is also ~' the queue was empty before $DEQ was called.

QUEUE:

ITEMl:

QUEUE:

I TE Ml:

Initial Queue

QUEUE

link

data

MRI ITEMl,AX

JU $ENQ

WRD QUEUE }
Queue with one item

ITEMl

ITEM!

0

data

empty

data block to

be enqueued

enqueuing

p.:ocess

If a second item is enqueued via:

load AX with ITEM2

JU
WRD

$EN<~

QUE FE

Queue with two items

QUEUE: .__ ____ I_T_E_M_l~~-

ITEM2

ITEM!: ITEM2

data

------··--'~

ITF:M2:

data

FIG. 4 (Enqueuinv.)

Initial Queue
(3 items)

Same Oueue after
JU.$DEQ·

Again JU SDEQ
get:

-------------------+-------------------t--·---·----------------- ···--·--·--··---·-·----·-·--

QUEUE : .,_[__ r_T_E_M_l __ ___,.

[ITEM 3

ITEM!: ITEM 2

data

ITEM2: ITEM 3

data

ITEM3: 0

data

QUEUE:1~---l_T_E_M __ 2 ______ ~
. ITEM 3

ITEM2: ITEM 3
1----~------~~-1

data

ITEM3:
a----~-------~--1

data

on return from $DEQ, AX

contains ITEM 1, AY contains

ITEM 2

FIG. 5 (Dequeuing)

QUEUE: ITEM 3

ITEM 3

ITEM3:

data

and finally another JU $DEQ

results in the empty queue:

QUEUE:
OUEUE

INTRODUCTION

CHAPTER THREE

STANDARD I/O SERVICE ROUTINES % RTX
70-44-001
3-1

A set of interrupt service routines are provided to handle interrupts

from the teletype and the high speed reader/punch. Before an I/0 device can

cause an interrupt, the device must be started. Therefore, a set of device

starter subroutines are provided in conjunction with the interrupt service

routines. The starters and interrupt service routines are linked by information

found in a control block. The control block consists primarily of queues

containing buffers to be used for input and output and the addresses of the

next locations from which data is to be output and into which data is to be stored.

Each buffer on an input or output queue must contain a negative count of the

number of words in the buffer.

Generally, output works as follows. The desired output device starter is

called. The starter uses the top buffer on the output queue to determine where

to start the output from. It then outputs the first character, sets a bit in

the ISR to allow the output device to interrupt and returns. Then each time

the output device causes an· interrupt, the interrupt service routine bumps the

count in the output buffer. If the count is not yet zero, the next character

is ou~put and a non-end-mode return is taken. When the count finally becomes

zero, the buffer is removed from the output queue and an end-mode return is

taken. If another output buffer is on the output queue, the output starter is

called again before the end-mode return is taken.

For input, the appropriate input starter is called. The starter uses the

top buffer on the input queue to determine where the first character is to be

stored. It then sets a bit in the ISR to allow the input device to interrupt,

starts the input device and returns. Each time the input device interrupts, a

user subroutine (specified in the control block) is called. This user sub-

routine allows the user to test for any special end-mode conditions (for example

% RTX

70-44-001
3-2

a carriage return or end of message character). When this subroutine returns

the character is stored in the next location of the input buffer, the count is

bumped, and if it is non-zero the device is restarted and a non-end-mode return

is taken. If the count is zero it is reset to the actual number of characters

stored in the buffer, the buffer is removed from the input queue and an end-

mode return is taken. If another buffer is on the input queue, the input starter

is called again before the end-mode return is taken. Note that the end-mode

condition is signaled by a count equal to zero. Thus, if the user routine dis-

covers the special end mode condition to be true, he must set the count to -1

so when it is bumped it will become zero and thereby indicate an end-mode con-

dition.

In the discussion which follows TTY refers to the teletype, TTI refers to

the teletype input, TTO to the teletype output, HSR to the high speed reader,

and HSP to the high speed punch. The term "multiple devices" means two or more

hardware devices of the same type but with different device addresses. For example

in a configuration consisting of three teletypes with addresses 77, 67, and 57

respectively the teletypes are referred to as a set of multiple devices. They all

interrupt to the same location and use the same bits in the ISR, but the teletypes

can be distinguished from each other since each has its own unique address and

its own ready flags.

Length:

$SRET STARTER RETURN

138 (111 ~) locations

% RTX
70-44-001
3-3

This routine contains the common return used by all the

standard device starters. Therefore, if any of the standard

device starters are used, $SRET must be loaded. If the user

writes additional device starter subroutines, $SRET could be

called to return from the subroutine.

Entry Points:

$SRET Common Return from Device Starter

This routine is called by all the standard device starter

subroutines to return to the calling program. It sets up $ISR

and ISR to allow the started device to interrupt. When $SRET

is called register AY must contain the bit to be OR!d into

$ISR and ISR. The MSR is zeroed, interrupt control is turned

on and control is returned to the program calling the device

starter subroutine.

$SRT1 Return Address for $SRET

This location contains the return address-1 for the pro-

gram calling the device starter. This -location is used by

$SRET to return to the program which called the device starter

subroutine. Hence a device starter using this routine should

begin by storing the TRP register into $SRT1.

Length:

Entry Points:

$SAVI

$EMR

$NEMR

$SAVI Save Routine For ICF Interrupts

%RTX
70-44-001
3-4

This subroutine is used to save and restore registers

when an interrupt occurs. Its entries are called by the

standard ICF-type interrupt acknowledge routines. Therefore,

if any ICF-type interrupt routines are being used, $SAVI must

be loaded. If additional ICF-type interrupt routines are

written by the user, $SAVE may prove useful.

Save Registers

This subroutine is called by all the standard ICF-type

interrupt acknowledge routines (after the TRP has been stored

in $TRP) to save registers ISR, AX, AY, and MSR when an inter-

rupt occurs. $SAVI then zeroes the~ ISR and issues a FOI !CO to

allow power fail interrupts only, zeroes the MSR to ensure that

the AO is in the ADD state and returns. $SAVI has no arguments.

Restore Registers, End-Mode Return

This routine is called by the standard ICF-type inter-

rupt service routines. It turns interrupt control off, re-

stores the registers saved by $SAVI and takes an !CF-type end-

mode return to %RTX. $EMR has no arguments.

Restore Register, Non-End-Mode Return

This routine is the same as $EMR except an ICF-type

non-end-mode return to %RTX is taken.

Length:

$TICF Teletype Interrupt Acknowledge - ICF

% RTX

70-44-001
3-5

Absolute Locations 118 - 168 plus 30
8

(24 1~)relocatable locations.

This tape contains the ICF-type interrupt acknowledge routines

for the teletype. Absolute locations 11
8

- 13
8

are used to save

the SC when TT! causes an interrupt and to transfer control to the

TTI interrupt acknowledge routine. Absolute locations 14-168 are

used to save the SC when TTO interrupts and to transfer control to

the TTO interrupt acknowledge routine.

Both the TTI and TTO interrupt acknowledge routines store the

TRP in $TRP, call $SAVI to save additional registers, store the ad-

dress-1 where the SC was stored in $INTL and then check the ready

flag for TTY77. If TTY77 caused the interrupt, control is trans-

ferred to the !CF-type TTY77 interrupt service routine. Otherwise,

$TICF halts. If the user adds additional teletypes to the system,

$TICF must be edited and reassembled to check the ready flags for

the additional teletypes. For this reason $TICF is provided as

both a source tape and relocatable object tape.

Entry Points:

$TICF ICF-type TTY77 Interrupt Acknowledge

This is a dummy entry entry point since no other standard in-

terrupt routine references any symbol defined in $TICF. It is de-

clared as an entry point simply so the user will know after load-

ing where the interrupt acknowledge routines have been loaded.

TTY77 Interrupt Handler - ICF ($CB77)

% RTX
70-44-001
3-6

This tape contains the control block, device starter subroutines and

interrupt service routines for ICF-type handling of TTY77. If another

Teletype is added to the system it must have a unique address other than

77. An interrupt handler similar to $CB77 must also be created to handle

the additional Teletype. To do this, the source tape for $CB77 should be

copied using %STE and the exchange command used to change every occurence

of 77 to the address of the additional Teletype. This new source tape

should then be assembled and the resulting object tape loaded to handle

the additional Teletype.

For example, suppose another Teletype with address 67 were added to

the system. Then $CB77 would be copied and all occurences of 77 changed

to 67. The name of the control block for TTY67 would thus become $CB67,

.the name of the reader starter for TTY67 would become $RS67 and so on.

In the discussion which follows all references to the Teletype are to

TTY77.

Length: 427
8

locations

Entry Points Detailed descriptions follow

Name Function

$CB77 address of control block associated with Teletype 77.

$SF77 reader stop flag, can be set up by the user to stop

reader input.

$RN77 for internal use by Teletype handler, contains address-!

to store next reader character.

Name

$RQ77

$RU77

$KN77

$KQ77

$KU77

$PN77

$PQ77

$NN77

$NQ77

$EC77

$RS77

$KS77

Function

%RTX
70-44-001
3-7

reader queue, contains pointers· to reader input buffers,

the user must enqueue reader buffers onto $RQ77.

contains address of user s•ubroutine to modify reader data

and/or check for special reader end-mode conditions.

for internal use by the Teletype handlerj contains address-1

to store next keyboard character.

keyboard queue, contains pointers to keyboard input buffers,

the user must enqueue keyboard buffers onto $KQ77.

contains address of user subroutine to modify keyboard data

and/or check for special keyboard end-mode conditions.

for internal use by Teletype handler, contains address-1 of

next character to output in priority mode.

priority output queue, contains pointers to priority output

buffers, the· user must enqueue priority output buffers onto

$PQ77.

for internal use by Teletype handler, contains address-! of

next character to output in normal mode.

normal output queue, contains pointers to normal output buf-

fers, the user must enqueue normal output buffers on $NQ77.

echo buffer, used by the standard user subroutine $ECHO to

eclio Teletype input.

reader starter, subroutine called by the user to start

reader input.

keyboard starter, subroutine called by the user to start

keyboard input.

Name

$PS77

$NS77

$IP77

$OP77

$IL77

$ID77

$IE77

Function

1% RTX
70-44-001
3-8

priority output starter, subroutine called by the user to

start priority output to TTO.

normal output starter, subroutine called by the user to

start normal output to TTO.

interrupt service routine to process TTI interupts.

interrupt service routine to process TTO interrupts.

return address for user subroutine specified in $RU77 or

$KU77, this return adds one to the count in the input buffer,

stores the character in the input buffer, then checks the

count for equal to zero.

return address for user subroutine specified in $RU77 or

$KU77, this return stores the character and checks (but does

not add one to) the count.

return address for user subroutine specified in $RU77 or

$KU77, this return checks the count only, it neither adds

one to the count nor stores the character.

The Teletype routines provided are buffer oriented. That is, input buf-

fers are filled with characters from TT! and characters from the output buf-

fers are sent to TTO. These input buffers and output buffers must be enqueued

by the user onto the inpu~ queues and output queues found in the Teletype con-

trol block. The control block consists of the following information, each

label in the control block is an entry point.

$SF77: WRD 0

$RN77: WRD CJ

$RQ77: WRD 0, .-1

$RU77: WRD $IL77

$KN77: WRD CJ

$KQ77: WRD 0, .-1

$KU77: WRD $IL77

$PN77: WRD CJ

$PQ77: WRD CJ, .-1

$NN77: WRD CJ

$NQ77: WRD CJ, .-1

$EC77: WRD (J,C/J 7 fJ 1 </J

Teletype Input - ICF

;READER STOP FLAG

;READER NEXT LOC

;READER QUEUE

;USER'S READER SUBROUTINE

;KEYBOARD NEXT LOC

;KEYBOARD QUEUE

;USER'S KEYBOARD SUBROUTINE

;PRIORITY OUTPUT NEXT LOC

;PRIORITY OUTPUT QUEUE

;NORMAL OUTPUT NEXT LOC

;NORMAL OUTPUT QUEUE

;ECHO BUFFER

% RTX
70-44-001
3-9

Teletype input may be from either the reader or the keyboard. Therefore

the Teletype control block has two input queues, one called $RQ77 for reader

input buffers and the other called $KQ77 for keyboard input buffers. Input

buffers (both reader and keyboard) must conform to the following format:

Input Buffer LINK

COUNT

CHARI

CHAR2
.
.
.

CHAR
n

The first word is reserved for enqueing the buffer onto the input queue.

The second word must contain a negative count of the maximum number of char-

% RTX
70-44-001
3-10

acters to be stored. Characters will be stored starting in the third word

of the input buffer.

There are two Teletype input starter subroutines, one called $RS77 to

start reader input and the other called $KS 77 to start keyboard input. Both

$RS77 and $KS77 are entry points.

$RS77

To start-input from the Teletype reader, the user should first enqueue

one or more reader buffers onto the reader queue, th.en call the reader

starter by a JU $RS77. When $RS77 returns, interrupt control will be on,

reader input will have been intitiated and the ISR set up to allow TTI in-

terrupts. Then each time TTI interrupts, a character is stored in top buf-

fer on the reader queue. Note that $RS 77 simply initiates reader input, the

TTI interrupt service routine actually fills the reader buffer.

$KS77

To start keyboard input the user should enqueue one or more keyboard

buffers onto the keyboard queue and then call the keyboard starter by a JU

$KS77. When $KS77 returns, interrupt control will be on, keyboard input will

have been initiated and the ISR set up to allow TTI interrupts. Then each

time TTI interrupts, a character is stored in the top buffer on the keyboard

queue.

Since there is no way for the interrupt service routine to know whether

a TTI interrupt was caused by the reader or by the keyboard, once a Teletype

input starter is called all TTI interrupts are assumed to be of the source

implicit in the starter. That is, if $RS 77 was called, .all TTI ·interrupts

are assumed to be from the reader and if $KS77 was called, TTI interrupts are

assumed. to be from the keyboard.

$IP77

% RTX
70-44-001
3-11

When TT! causes an interrupt, control is transferred to $IP77, the TTI

interrupt service routine, for processing. If the reader starter was called

to initiate input $IP77 considers the character to be from the reader, the

input queue to be the reader queue and the input buffer to be the top buffer

on the reader queue. If the keyboard starter was called to initiate input;

$IP77 considers the character to be from the keyboard, the input queue to be

the keyboard queue and the input buffer to be the top buffer on the keyboard

queue.

Each time $IP77 is entered, it stores a character in the input buffer

and adds one to the count in the input buffer. When the buffer becomes full

it indicates an is set to plus the nuinber of

characters stored, the buffer is dequeued from the input queue and an end-

mode return is taken. The new buffer now on top of the input queue becomes

the new input buffere Thus all the buffers on the ~nput queue are filled

and then dequeued until finally the input queue becomes empty. When this

happens, input is through and the user must call an input starter before in-

put will begin again. An exception is during reader input, when the reader

queue finally becomes empty $IP77 will call the keyboard starter if the key-

board queue is not empty.

$SF77

.$SF77 is a flag in the Teletype control block which can be set by the

user to stop reader input before the reader queue becomes empty. If the

user sets $SF77 to one, reader input is stopped after the next TTI interrupt

and $SF77 is reset to zero. In addition, if the keyboard queue is not empty

keyboard input is automatically started. Once reader input has been stopped

% RTX
70-44-001
3-12

in such a manner it can only be restarted by the user jumping to $RS77, at

which time reader input will continue from where it left off.

User Input Subroutines

Before storing a character in the input buffer, the interrupt service

routine $IP77 calls a user subroutine specified in the control block. If the

character is from the reader, the user subroutine specified in $RU77 is call-

ed. If the character is from the keyboard, the user subroutine specified in

$KU7 7 is called.

The user subroutine can modify the data before storing it and also check

for special end-mode conditions. Three general user subroutines ($ASCI,

$ECHO, and $1INE) are provided. $ASCI ignores (that is, does not allow the

service routine to store) zero characters and OR's in bit 7 of non-zero char-

,acters thus_ ensuring 8-bit ASCII. Thus, if the user wishes to input ASCII

characters from the reader, $RU77 should contain $ASCI. $ECHO performs the

same function as $ASCI but in addition echoes the input character. Thus, if

the user wishes keyboard input to be echoed, $KU77 should contain $ECHO.

$LINE is used to store a line of ASCII text in the input buffer. It recog-

nizes the special characters back arrow and rUbout to mean respectively, ig-

nore previous character and ignore the entire line. ·Also, if a carriage re-

turn is.encountered an end-mode condition is forced even if the input buffer

is not yet full.

$IL77, $1D77, $IE77

If the user wishes to modify data or check for special end-mode condi-

tions not covered in $ASCI, ·$ECHO or $LINE, he may wri ~e his own special

user subroutines. When the user subroutine is called AY will contain the TTI

character and AX will contain the address of the input queue. When the user

% RTX
70-44-001
3-13

subroutine has completed its task it should return to one of three places in

the TTI interrupt service routine. A return to $IL77 will add one to the

count in the input buffer, store the character (assumed to still be in AY)

then check the count to see if it is zero indicating the input buffer is full.

A return to $ID77 stores the data and checks, but does not bump, the count. A

return to $IE77 neither bumps the count nor stores the data, it simply checks

the count to see if it is zero. The three returns $IL77, $ID77 and $IE77 are

all entry points. When the user subroutine is called, $IL77 = TRP+l, $ID77

TRP+3 and $IE77 = TRP+5.

Therefore, to ignore a character the user subroutine need only return to

$IE77. To modify the character before storing, the user subroutine should put

the modified character in AY befo~e returning to either $IL77 or $ID77. If

the user subroutine discovers a special end-mode condition it should set the

count in the input buffer so that when it is checked by the interrupt service

.routine it will be zero indicating an end-mode condition. Specifically, the

count should be set to minus one if returning to $IL 77 and zero if returning

to $ID77 or $IE77.

If the user does not wish to modify.the data or check for any special

end-mode conditions the user subroutine should-be specified as $IL77. For ex-

ample if the user were filling reader buffers with binary data, $RU77 should

contain $IL 77.

TTI Example 1

Suppose it is desired to input a maximum of 18 characters from the key-

board into a buffer called K.BUF. The following s~quence of code will start

input from the Teletype keyboard.

MRI -22,AX

RM AX,KBUF+l

MRI KBUF,AX

JU $ENQ

WRD $KQ77

JU $KS77

;SET -COUNT IN

;INPUT BUFFER

;ENQUEUE INPUT

;BUFFER ONTO

;INPUT QUEUE &

;START KEYBOARD INPUT

;CONTINUE PROCESSING

%RTX
70-44-001
3-14

When $KS77 returns, keyboard input will have been started but the input buf-

fer will not yet have been filled. Suppose no further processing can be done

until KBUF is filled. Then $WAIT could be called to wait until the count lo-

cation in KBUF becomes greater than zero, indicating the buffer has been fill-

ed and dequeued from the input queue.

AY ;WAIT UNTIL COUNT

JU $WAIT ;IS SET GREATER

JC AO, GTg ,KBUF+ 1 ;THAN gERO, BEFORE PROCESSING

If the keyboard user subroutine specified in $KU77 were $LINE and the following

were typed on the keyboard,

ABD+-CDE ;J

KBUF would contain LINK

+6

A

B

c

D

E

;J

%RTX
70-44-001
3-15

Note that $LINE ignored the first D because it was followed by a back arrow

and that the end-mode condition occurred on the sixth character because it

was a carriage return. The interrupt service routine set the count to plus

the- actual number of characters stored.

TTI Example 2

Suppose it is desired to fill two reader buffers, RBl and RB2, with a

maximum of 10010 binary characters each. The following code would start

reader input. Since binary data is being input $RU77 should contain '${177.

MRI -144,AX ;SET -COUNT

RM AX,RBl+l ;IN READER BUFFER 1

RM AX,RB2+1 ;AND READER BUFFER 2

l-'f ... RI RRT.AX ---,-- ... ;ENQUE BUFFER l

JU $ENQ ;ONTO INPUT QUEUE

WRD $RQ77

MRI RB2,AX ;AND BUFFER·2

JU $ENQ ;ONTO INPUT QUEUE

WRD $RQ77

JU $RS77 ; START READER INPUT

As in the case of TTI example 1, when $RS77 returns, reader input will have

been started but the input buffers will not yet be filled.

TTI Example 3

This example shows one way to accomplish double buffering of reader input.

When a reader buffer is full of (or being filled with) data it appears on the

"process data queue" called PBQ. When the data in a full reader buffer has

been processed and is no longer needed, the buffer can be considered empty and

will appear on the "reader buffer empty" queue.

% RTX
70-44-001
3-16

The two reader buffers RBI and RB2 conform to the format for an input

buffer (i.e. the first word is reserved for enquing the buffer onto $RQ77,

the second word contains a negative count, and characters will be stored

starting in the third word). Since the reader buffers must also be enqueued

onto the "process data" queue (PBQ) or the "reader buffer empty" queue (RBEQ)

each of the input buffers is immediately preceded by another link word. Thus

RBl is preceded by PBl which is used to enqueue the first reader buffer onto

PBQ or RBEQ and RB2 is preceded by PB2 which is used to enqueue the second

reader buffer onto PBQ or RBEQ.

The first routine START defines the queues and input buffers, initializes

the processor list and starts the scan.

The function of the processo·r READ is to initiate reader input into empty

reader buffers. To do this, READ checks to see if there is a buffer on RBEQ.

If there is it must be an empty buffer which needs to be tilled so READ de-

queues it from RBEQ, enqueues it onto PRQ (queue for buffers being filled) and

$RQ77 (input queue) and calls the reader starter to begin reader input. Note

that when the starter is called the reader may still be going because of a

previous call to the starter. In such a case the starter simply returns.

The function of the processor PROC is to process data in a full reader

buffer and then release the buffer fo.r further input• To do this, PROC

checks to see if there is a buffer on PRQ. If there is the buffer is ei- ·

ther being filled (indicated by a count less than zero) or is full (indicat-

ed by a count greater than zero). If the buffer is full. PROC processes the

data then dequeues the buffer from PRQ and enqueues it onto RBEQ so that pro-

cessor READ can initiate reader input into the now empty buffer.

* e '31
002
I? 33 C~('.'H 0 c 6 ·ec·u 11

e e e ~1 1 e 0 w0 ~5
u e 34 · ~ c en r 1 1 · e r0e r6

ee00~ r 000EH~0

u n "c::· ~- I:) _., e0CC'-l c 0 3 0Hl0 e3
e 0 e ~~ e e.000e0

lJ e "6 e. 0 e. e6 z 1 77 777
u 0 0 7 eee01 0 177777
u nm c ~t:nc e 177777

u c a9 tHJe 1:1 0 177 777
e ie r ~ c:-12 e e 00 0r0
011
0 12 e 0c12 1 ~ 0a e21.1
013 ~"£14 r, 0~.rn~e0

c 1 l.J 00IZ1: ~ j 7 7 7 72
C15 00016 e (' 0 0 0 ~0
('! 1.6 e 0e 17 e ea0,rn0
0 17 e0e2e 0 e 33 0e0
01S 0 0 p 21 0 e000e0
019 ~e.e22 e ~ {Hre 1rn
0 20 e01?2:! ~ 00~0e0

e 21
0 22 e 00 2~ 0 0 33 iHrn
e 23 r0e2~ e e ao ee0
e 24 cieu: 0 177772
e 2s r, ~H 27 (J fJ ijg 0ea 1:.-

e26 2 H 3r e e 00 ec0
e21 e ~ e 3 j e -e00:Ha
e 212 e.~Je32 c 0 ~i:HH0
ez9 r0e33 (' e Jn3ea
e 3 ~ cl e 311 I') 0 ac 0c0 ti

e 31 00~3~ e 0:rn0ea
cee~! 1 c l 8 0 ~5

I? -~? v- e e ~ 3 7 e :rn ~1 3
r. 0 ClH? e ~ 0 0 ~q

033 1 e00Z41

;EXAMPLE 3
ENTRY PBO,RBEO

START: MRI PRCL -1 ,AX

kM AX,$PRCL

JU .$STR T

PfiCt: WRO RE AD -1
WRO RSA V -1
W RO ·PROC -1 __
WRD PSA V-1
WRO 0

;FikST INPUT 8 UF FER
PB 1: WRD P82
RB 1: WRO 0

WRD -6
WRO 0
\.iRD 9
\.JRO 0
WRD . 0 _
WRD 0
WRO 0

;SECOND INPUT BU FF ER
PF3 2: WRO 0
RB 2: WRO 0

WRD -6
W RD 0
W RO 0
W RO 0
W RO 0
W RD 0
WRO 0

PB Q: WRD 0,.-1

RS EC: W RO Pl31J PG2

END

% RTX
70-44-001
3-17

; !NIT IALI ZE

;PROCESSOR LIST

; & START ·sr AN

; l INK TO •PFO 01' ~BE Q
; l INK TO i$k07 7

.;-MAX• NUM• l' HARS •

; LINK TO •PfiO OR REE!)
; l INK TO ·$!i07 7
;-MAX, N IJ·M, CHARS•

;PROCESS 0 LE IJ E

;READ Ek 8 L'F RS UiP TY OU E !JE

~ {' "1
(' "2
n13

u (l 3q ~ cn~e 0 e 6 · ez e c 11
e er e1 e e 00 0e0

u e 0s r ca~ 2 0 1 1 0100 03
e0ee.:: e 000~Hrn

e 06 f' 0 cc 4 e 1 1 0110 e6
e0e.0~ tr e'10ee0

e 07' c ~ c e6 0 06 00 01 12
eeee7 1 e300es

u e 0a· 0 00'H 0 1 2 1f00 03
e 0e11 0 e000e0

e09
' 010 00e12 0 e 0 0C0C E6

e0e13 1 0 00 0 26

u e 12 e ee H 0 e 0 0120 03
e0e11 e 0 0 0 0 00

u e 13· 0 0 c·2 £ 0 0 00 0£0
u e 1q e "e 21 0 0 0 0100 e3

0£H~ 2t:· e e000e0
u 015 e0023 0 000~H'0

u (? 16 ~0e2~ " e 0 010e 03
r0e2~ e 0000ee

017
e. 18 l?0C26 1 1 77 777

ee~21 0 0e.00c0
e 0 e·3 r 0· errneee
0 0 e 31 0 e00!H~0

ee~3£ e c 00 0e0
r~rn3~ 0 0000Z0

~ 19 1 rn003q

;ROUTINE TO
ENTRY

; PR 0 l OGU E
PR or: MR

JC

h MI

MRD

JC

; TASK
ZM

• • •
JU

WRO
JU

W RO
JU

% RTX
70-44-001
3-18

:PROCESS DATA
PROC1PSAV

PBO,AX ; .ANY HUFF1ERS

A X, E T Z, $NEXT ; 8 EI NG F:ILLE01

AX,p1,9 ; YES,CHEC K CO UtH TO

• -1, A Y ; SEE IF T:HERE IS A

'.A Y , L T Z , $ NE X T ; F UL L BU Fh T 0 PROCESS

PSAV ; YES-SET :ACTIVE

; •Pi' QC ES S DATA

SDEO ; REMO VE F:ULL 8 LFR

P80 ; F l\OM PROCESS CUE UE
$ENO ; A ND ADD TO

RSEO ; 'f\E A DER B LFF E f' EMPTY I

$EXEC

;PROC SA VE A REA
PSAV: W RO .p " or -1 ,, 0 , 0 , e , 0 , 0

END

*i' 01
r 32
003

u :: 0q · e enH? ~ ~ 6 • ee·e 0 11
e er 01 0 r 0e'1H0

u e 35 e01?e2 0 1 1 '.0Hrn 03
(;' (1 C' r.:. ~
w....- (..ii""' - r e 0 0·0 era

0 06
e Z7 l?C004 0· 0 0 '0f00 06

c~rn0; f 0 0 0 e ~2
u r: 0a· e ee 06 0 0 0 01 00 03

e0ee1 0 e 0 3 0 r.0
u e z9· rei1'~ 0 e~00e0

010 0~"311 0 e6 0~10 12
e0e12 0 177772

eu ca~1~ 0 1 1 0110 06
eae1q e e rm oe0

012 0001~ e 1 2 0e01 06
~~ei6 :I 00001.Q

lJ 013 1?0k117 0 0 0 01 00 03
etH2t? " 0 2 0 0 ig

u 01l.I e e e 21 e 0 0 0 0 e0
015 rrne22 0 1 t 013 0 11

u e t6 e~H2:3 0 0 9 0100 03
evJe2~ 0 e. 0 0 0 ~0

u e17 e~rn2~ 0 e:rnee0
u e1B e0e2e e e 3 0102 03

eee21 El e0eern
u 019 z 0 c·3 e e 0 0 0100 e3

e 0 e 31 0 e ~ 0 0 e0
'3 2 0
e 21 ll0~32 1 1 77 777

00f.33 0 0 0 0·0 ~0
eee3LJ 0 ec00~0

eae3~ 0 e ~ 0 0 e0
'3~~36 e l?:(J00e0
zre37 0 ea e e ea

El 22 1 f3001.J0

;ROUTINE TO BEGIN IN PUT -

% RTX
70-44-001
3-19

ENTRY, RSAV,READ

;PROLOGUE
RE AO: MR RB EO ,AX ; EMPTY BU FR TO

JC AX,ETZ1$NEXT ;BE FILLED?

;TASK
ZM RSAV ; YES-SET :AC TI VE

JU SOEO .. ;REMOVE EMPTY BUF R

WRD RSEO ; FROM 'B U·F R EMPTY 0 UE UE 1

MRI -6,A Y

RMI AX,p1,9 ; SET -r QU;N T IN NEW

t; MD ~ y,. -1 ; :INPUT BU·Ffi

JU $ENO ; ADD NEW 8 lJFR TO

WRO PBO ;PROCESS ·o lJE U E
RS A x,p 1 :AND TO
JU SENO ;READ EE\ 0 UEUE

WRO $R07 7

JU sr;.57 7. ; SHRT DC Af"'CC
'''- """"'-"

T 1\10 llT
.l l'tr VI

JU $EXEC

; READ SA VE A REA
RSAV: \./RO REA0-1,0 ,0,0·,0,0

•

ENO

Teletype Output - ICF

% RTX
70-44-001
3-20

$CB77 allows for two types of output to TTO, priority output and normal

output. Normal output should be used for outputting standard messages and data

while priority output should be used for outputting important messages such as

error conditions. The main difference between priority and normal output is

that while priority output is in effect, no normal output can occur. Whereas,

when normal output is in effect, it can be stopped temporarily to allow prior-

ity output.

The Teletype control block has two output queues, one called $PQ77 for

priority output buffers and the other called $NQ77 for normal output buffers.

Output buffers (both priority and normal) must conform to the following format:

Output Buffer LINK

-COUNT

CHAR!

CHAR2

. .
CHAR

n

The first word of the output buffer is reserved for enqueuing the buffer

onto the output queue. The second word must contain a negative count of the

number of characters in the buffer which are to be output to TTO. The first

character output will be in the third word of the output buffer.

There are two Teletype output starter subroutines, one called $PS77 to

start priority output and the other called $NS77 to start normal output. Both

$PS77 and $NS77 are entry points.

$PS77

% RTX
70-44-001
3-21

To start priority output to TTO the user should first enqueue one or more

priority output buffers onto the priority output queue, then call the priority

output starter by a JU $PS77. When $PS77 returns interrupt control will be on,

the ISR will be set up to allow TTO interrupts and priority output will have

been initiated (i.e. the first character from the top buffer on $PQ77 will have

been output).· Then each time TTO interrupts the next character from the prior-

ity buffer is output. Note that the priority output starter simply initiated

priority output by outputting the first character. The TTO interrupt service

routine actually outputs the rest of the buffer.

If $PS77 is called while normal output is in effect, the actual initia-

tion of priority output will be deferred until the next normal output end=mode

condition occurs (see $OP77).

$NS77

To start normal output to TTO the user should first enqueue one or more

normal output buffers onto the normal output queue and then call the normal

output starter by a JU $NS77. When $N~77 returns, interrupt control will be

on, the ISR will be set to allow TTO to interrupt and normal output will have

been initiated (i.e. the first character from the top buffer on $NQ77 will

have been output). If the normal output starter is called while priority out-

put is in effect, the call to the normal output starter is ignored.

$0P77

When TTO causes an interrupt, control is transferred to $OP77, the TTO in-

terrupt service routine, for processing. If outpu~ was started by the priority

output starter then the output queue is considered to be $PQ77 and the output

% RTX
70-44-001
3-22

buffer to be the top buffer on $PQ77. If output was started by the normal out-

put starter then the output queue is considered to be $NQ77 and the output buf-

fer to be the top buffer on $NQ77.

Each time $OP77 is entered, it adds one to the count in the output buffer.

If the count is not yet zero, the next character in the output buffer is output

to TTO and a non-end-mode return taken.

If the count has become zero it indicates that the entire buffer has been

output which is considered to be an end-mode condition. The buffer is dequeued

from the output queue and the new buffer now on top of the output queue becomes

the new output buffer. The first character from the new output buffer is out-

put to TTO and an end-mode return is taken. Thus, each of the buffers on the

output queue is output to TTO and then dequeued until the output queue becomes

empty. When this happens, output is through and the user must call an output

starter before output to TTO will begin again.

Each time an end-mode condition occurs during normal output $OP77 checks

to see if the user has attempted to start priority output. If the user has

attempted to do s~, $OP77 will then start up priority output rather than con-

tinue on to output the next normal buffer. When normal output is stopped af-

ter an end-mode condition by $OP77 in order to begin priority output, the

user must call $NS77 to resume normal output.

TTO Example 1

Suppose it is desired to output two buffers, each containing nine char-

acters, to TTO under normal mode. The following sequence of code would start

the normal output.

MR.I -11,AX

RM AX,NB-1+1

RM AX,NB-2+1

MR.I NBl,AX

JU $ENQ

WRD $NQ77

MR.I NB2,AX

JU $ENQ

WRD $NQ77

JU $NS77

; SET -COUNT IN

;NORMAL OUTPUT

;BUFFERS

;ADD lST BUFFER

;TO NORMAL QUEUE

;THEN 2ND BUFFER

;TO NORMAL QUEUE

;START NORMAL OUTPUT

;CONTINUE PROCESSING

%RTX
70-44-001
3-23

When $NS77 returns the normal output will have been started. That is, the

first character from NBl will have been .output. If the user now wished to

stop normal output and start priority output he need only call the priority

starter. For example, suppose an error condition was discovered and the user

wished to print an alarm message stored in a priority buffer called Al.RM.·

MR.I -7,AX ;SET -COUNT IN

RM AX, ALRM+l _;PRIORITY BUFFER

MR.I ALRM,AX

JU $ENQ ;ADD PRIORITY BUFFER

WRD $PQ77 ;TO PRIORITY QUEUE

JU $PS77 ;THEN START PRIORITY OUT·PUT

When $PS77 returns, the actual priority message may not yet have started to

be output since normal output might be in effect. However, the call to $PS77

will have been noted and when a normal end-mode condition occurs (i.e. when

% RTX
70-44-001
3-24

all of NB! has been output and NB! has been dequeued) the output of the p~i-

ority message will begin. When priority output is through the user may wish

to continue the normal output of NB2 in which case he need only say JU $NS77

since NB2 is already enqueued onto $NQ77.

Length:

$HICF High Speed Reader/Ptmch Interrupt Acknowledge - ICF

%RTX
70-44-001
3-25

Absolute locations 178 - 248 plus 3~8 (241~) relocatable locations.

This tape contains the ICF-type interrupt acknowledge routines

for high speed reader/punch 76. Absolute locations 17
8

- 21
8

are

used to save the SC when HSR causes an interrupt and to transfer

control to the HSR interrupt acknowledge routine. Absolute loca-

tions 22
8

- 24
8

are used to save the SC when HSP causes an interrupt

and to trans fer control to the HSP interrupt acknowledge routine.

Both the HSR and HSP interrupt acknowledge routines store the

TRP in $TRP, call $SAVI to save additional registers, and store the

address-! where the SC was stored in $INTL. The interrupt acknow-

ledge routines then check the ready flag for high speed reader/pu..nch

76 (input ready flag if HSR caused the interrupt or output ready

flag if HSP caused the interrupt). If high speed reader/pllllch 76

caused the interrupt then control is transferred to the ICF-type

interrupt service routine for high speed reader/pt.lllch 76. ($IP76

if HSR caused the interrupt or $OP76 if HSP caused it.)

If the interrupt was not caused by high speed reader/punch 76

then $HICF halts since an unknown reader/pllllch caused the interrupt.

Therefore, if the user adds additional high speed reader punches to

the system, $HICF must be edited and reassembled to check the ready

flags for the additional high speed reader punches. For this rea-

son $HICF is provided as both .a source tape and as a relocatable ob-

j ect tape.

%RTX
70-44-001
3-26

Entry Points:

$HICF ICF-Type High Speed Reader/Punch Interrupt Acknowledge

This is a dummy entcy point since no other standard inter-

rupt routine references any symbol in $HICF. Its purpose is

simply to let the user know into what locations $HICF has been

loaded.

HSR/HSP76 Interrupt Handler - ICF ($CB76)

% RTX
70-44-001
3-27

This tape contains the control block, device starter subroutines and in-

terrupt service routines for ICF-type handling of high speed reader/punch 76.

If another high speed reader/punch is added to the system it must have a

unique address other than 76. An interrupt handler like $CB76 must also be

created to handle the additional high speed reader/punch. To do this, the

source tape for $CB76 should be copied using %STE and the exchange command

used to change every occurence of 76 ·to the address of the additional high

speed reader/punch. This new source tape should then be assembled and the

resulting object tape loaded to handle the additional high speed reader

punche

Length: 220
8

locations

Entry Points: Detailed descriptions follow

Name Function

$CB76 address of control olock associated with high speed read-

er /punch 76.

$SF76 HSR stop flag, can be set by the user to stop HSR input.

$RN76 for internal use by high speed reader/punch handler, con-

tains address-! to store next character from HSR.

$RQ76 HSR queue, contains pointers to HSR input buffe~s, the ·

user must enqueue HSR input buffers onto $RQ76.

$RU76 contains address of user subro_utine to modify HSR data

and/or check for special HSR end-mode conditions.

$PN76 for internal use by high speed reader/punch handler, con-

tains address -1 of next character to be output to HSP.

Name

$PQ76

$PS76

$IP76

. $0P76

$IL76

$ID76

$IE76

Function

% RTX
70-44-001
3-28

HSP queue, contains pointers to HSP output buffers, the

user must enqueue HSP output buffers onto $PQ76

HSR starter, subroutine called by the user to start input

from HSR.

HSP starter, subroutine called by the user to start output

to HSP.

interrupt service routine to process HSR interrupts .

interrupt service routine to process HSP interrupts.

return address for user subroutine specified in $RU76,

this return adds one to the count in the HSR input buffer,

stores the character in ·the HSR input buffer, then checks

the count for equal to zero.

return address for user subroutine specified in $RU76,

this return stores the character then checks (but does not

add one to) the count.

return address for user subroutine specified in $RU76,

this return checks the count only, it neither stores the

character nor adds one to the count.

The control block for high speed reader/punch 76 is similar to the. Tele-

type control block ($CB 77) except that keyboard input ~nd priority output in-

formation is not included. The control block is as follows, each label in the

control block is an entry point.

$CB 76=.

$RS 76: WRD (a

$RN76: WRD 0

$RQ76: WRD CJ, .-1

$RU76: WRD $1176

$PN76: WRD CJ

$PQ76: WRD (a, .-1

HSR Input - IGF

;HSR STOP FLAG

;HSR NEXT LOG

;HSR QUEUE

; USER'S HS R SUBROUTINE

;HSP NEXT LOG

;HSP QUEUE

% RTX
70-44-001
3-29

Input from HSR is buffer oriented and the format for an HSR buffer is the

same as the format for a Teletype input buffer. That is, the first word is re-

served for enqueuing the buffer onto the HSR queue ($RQ76) found in the control

block. The second word contains a negative count of the maximum number of

characters to be stored and characters from HSR are stored starting in the

third word.

Input from HSR is handled in the same manner as reader input from TTI.

Since there is no keyboard capability with HSR, there is only one HSR starter

and one HSR queue. As with TTI reader ouffers, the user must enqueue HSR

buffers onto the input queue $RQ76.

$RS76

To start input from HSR the user should first enqueue one or more HSR buf-

fers onto the HSR queue and then call the HSR starter by a ~U $RS 76. When

$RS 76 re turns, interrupt control will be on, HSR input will have been initiated

and the ISR set up to allow HSR interrupts. As with the Teletype reader

starter, $RS76 simply initiates HSR input, the in~errupt service fills the HSR

buffer.

$IP76

% RTX
70-44-001
3-30

When HSR causes an interrupt, control is transferred to $IP76, the HSR

interrupt service routine, for processing. $IP76 performs the same functions

as the TTI interrupt service routine $IP77. That is, characters are stored

in the top buffer on the reader queue. When the buffer becomes full the

count is set to plus the number of characters stored and the buffer is de-

queued from the reader queue. The new buffer now on top of $RQ76 will then

be filled and so on until all buffers on $RQ76 have been filled and dequeued.

HSR input is then through and $RS76 must be called to begin more HSR input.

$SF76

$SF76 is a flag in the control block which can be set by the user to

stop HSR input before the HSR queue becomes empty. If the user sets $SF76

to one, HSR input is stopped after the next HS.R interrupt and $SF76 is reset

to zero. Once this has been done the user must call $RS76 to restart HSR in-

put from where it left off.

User Input Subroutines

$IP76 allows for user subroutines to alter data and check for special

end-mode conditions in the same way that $IP77 allows such subroutines. The

address of the user subroutine should be stored in $RU76 in the control block.

When the subroutine is called, AY contains the HSR character and AX contains

the address of the HSR queue.

$1176, $KD76, $1176

The user subroutine must return to one of three locations in the HSR in-

terrupt service routine. These three returns are similar to the three returns

for Teletype user subroutine returns. A return to $RL76 adds one to the count

in the input buffer,stores the data (assumed to still be in AY) then checks

% RTX
70-44-001
3-31

the count for equal to zero. A return to $ID76 stores the data and checks, hut

does not bump the count. A return to $IE76 simply checks the count, it neither

adds one to the count nor stores the data. When the user subroutine is called

$1176 = TRP+l, $ID76 = TRP+3, and $IE76 = TRP+5. The standard user subroutine

$ASCI may be used as a user subroutine for either HSR input or TTI input, and only

one copy of $ASCI is needed if both HSR and TTI are running at the same time.

HSR Example 1

Suppose it is desired to fill an HSR buffer with a maximum of 48 binary

characters. The following code would start reader input. Since the. data is bi-

nary $RU76 should contain $1176.

MRI -60 , AX ;SET -COUNT

RM AX.,HSRB+l ;IN INPtJT BUFR.

MRI HSRB,AX ;ENQUEUE INPUT

JU $ENQ ;BUFFER ONTO HSR

WRD $RQ76 ;QUEUE AND

JU $R~76 ;START HSR INPUT

;continue processing

As in TTI example 1, when $RS76 returns HSR i~put will have been initiated but

the input buffer will not yet be full.

HSP Output - ICF

The output to HSP is buffer oriented. The format for an HSP output buffer is

the same as the format for a Teletype output buffer. That is, the first word

is reserved for enqueuing the· buffer onto the HSP output queue ($PQ~6) found in

the control block. The second word contains a negative count of the total num-

ber of characters to be output from the.buffer. The first character output is

is in the third word.

% RTX
70-44-001
3-32

Output to HSP is handled in the same manner as output to TTO. However,

there is no priority output feature in HSP so there is only one HSP starter

and one HSP queue.

$PS76

To start output to HSP the user should first enqueue an HSP buffer on the

HSP queue and then call the HSP starter by a JU $PS76. When $PS76 returns, in-

terrupt control will be on, output to HSP will have been initiated and the ISR

set up to allow HSP interrupts. $PS76 simply initiates output by outputting

the first character to HSP, the HSP interrupt service routine outputs the re-

maining characters.

$OP76

Control is transferred to the HSP interrupt service routine ($OP76) when

HSP causes an interrupt. $OP76 performs the ssme functions as the Tele-

type interrupt service routine $OP77. That is, each time an HSP interrupt oc-

curs a character from the output buffer is sent to HSP and the count location

bumped. When all characters in the buffer have be~n output the buffer is de-

queued from $PQ76. The new buffer on top of $PQ76 is output and so on until

all the buffers have been output and dequeued. HSP output is then through and

$PS76 must be called to begin more HSP output.

HSP Example 1

The following sequence of code will start output of an 18 characte~ buffer

called HSPB to HSP.

MRI -22,AX

RM AX,HSPB+l

MRI HSPB,AX.

JU $ENQ

WRD $PQ76

JU $PS76

;SET -COUNT

;IN OUTPUT BUFR

;ENQUEUE OUTPUT

;BUFR ONTO HSP

;QUEUE AND

;START HSP OUTPUT

;continue processing

%RTX
70-44-001
3-33

As with TTO example 1, when $PS 76 re turns output to HSP will have been

started but the entire buffer will not yet have been output.

Length:

$TTYQ TTY ICO Service

% RTX
70-44-001
3-34

Absolute locations 11-16 plus 6318 (409 1~) relocatable locations.

This tape contains the ICO-type teletype interrupt service

routines and the associated teletype starter subroutines. Note

that if ICO-type teletype interrupt service routines are used, the

associated ICO-type teletype starter subroutines must also be used.

The starter routines are called ICO-type even though interrupt

control is off throughout them because these starters are associat-

ed with ICO-type interrupt service routines.

The ICO-type teletype interrupt service routines and starters

are designed to handle multiple teletypes (one or more teletypes,

each with a unique address). Associated with each teletype must

be a control block and these control blocks must be enqueued by the

user onto a queue called $TTYQ. The format for an !CO-type tele-

type control block is the same as the format for an ICF-type tele-

type control block ($CB77) except that the ICO-type control block

has three additional words at the beginning of 'the control block.

The first of these three words is reserved for linking to the next

ICO-type teletype contra~ block. The second and third words con-

tain the instructions FO ~,XX and SF XX,0 respectively, where XX is

the octal address of the teletype associated with that particular

control block. The control block must be defined by the user.

The control blocks queued onto $TTYQ enables all teletypes to

use the same ICO-type TT! and TTO interrupt service routines and

starters. When an !CO-type starter is called it has as its argu-

% RTX
70-44-001
3 ... 35

ment the address of the control block associated with the par-

ticular teletype to be started. When an !CO-type interrupt

service routine processes an interrupt, a subroutine ($FND,

discussed later) is called to find which teletype caused the

interrupt. $FND returns the address of the control block as-

sociated with the teletype which caused the interrupt. The

information in this control block is then used by the inter-

rupt service routine to process the interrupt.

Absolute locations 11-138 are used to store the SC when

a TT! interrupt occurs and to transfer control to the !CO-type

TT! interrupt service routine. Absolute locations 14-16
8

are

... --..l ~- --··- CP ... _'Tt...-- '1"1.,.,n -- ... ,...__,.. -- ..:-~---... -.a- --~ ..__ .._ ____ ,t: __
~t::U 1..U i:>Gl.Vt:: vv wu.ir=u J..J..V \.,;.Gl.Ui:JCi:) ClU .J..Ul.CJ.LUpt- ClUU 1..U 1.J.Cl.Ui:>.Lt::L

control to the IGO-type TTO interrupt service routine. The

!CO-type TTI and TTO interrupt service routines perform the

same functions as their I CF-type counterparts, $IP 77 and $OP77

respectively. However, the IGO-type interrupt service routines

turn interrupt control on while the interrupt is being serviced.

The I.CO-type teletype interrupt servi.ce routines have- tw:o unde-

fined parameters, $LRM and $LPM, which are used in the calls to

$I.CO (see entry points in %RTX) .. $LRM and $LPM are the I.SR masks

for TTI and TTO respectively. The user must define $LRM and $LPM

as parameters in one of hi.s processors and declare $LID1 and $LPM

as entry points. All teletypes in a particular system must be

handled in- the same manner; that is they must be all IGO-types or

all !CF-types.

% RTX
70-44-001
3-36

Entry Points:

$TTYQ Queue for TTY Control Blocks (ICO-type)

Contains pointers to the ICO-type teletype .control blocks.

Associated with each teletype is an ICO-type control block whose

format is the same as an ICF-type teletype control block (see

$CB77). However, the IGO-type control blocks has three addition-

al words at the beginning.

word 1 reserved for linking to next control block

word 2 FO (,6,XX

word 3 SF XX,{6

The XX appearing in words 2 and 3 of the control block are the

address of the teletype with which this particular control block

is associated.

The control blocks must be enqueued onto $TTYQ by the user.

$TKS TTI Keyboard Starter - ICO

This subroutine is called to start keyboard input from any

telety~e in a system where teletype interrupts are handled in an

ICO-type manner. The calling sequence is:

JU $TKS

WRD x

where x is the address of the control block associated with the

teletype which is to be started. $TKS performs the same functions

as the ICF-type keyboard starter ($KS77).

% RTX
70-44-001
3-37

$TRS TT! Reader Starter - IGO

$TNS

$TPS

When teletypes are being handled in an !CO-type manner, $TRS

should be called to start reader input from any teletype. The

calling sequence is:

JU $TRS

WRD x

where x is the address of the control block associated with the

particular teletype which is to be started. $TRS perfonns the

same functions as the !CF-type reader starter ($RS77).

TTO Normal Output Starter - ICO

This subroutine should be called to start normal output to

any teletype where teletypes· are being handled in an

manner. The calling sequence is:

JU $TNS

WRD x

T f'f\- +- .. ,..,... ,..,.
... vv ... ypc

where x is the address of the control block associated with the

particular teletype which ib to be started. $TNS performs the

same function as the ICF-t:-pe normal output starter ($NS 77).

TTO Priority Output Starter -ICO

This subroutine should be called to start priority output

to any teletype in a system where .teletypes are being handled

in an IGO-type manner. The calling sequence is:

JU $TPS

WRD x

where x is the address of the control block associated with

the particular teletype being started. $TPS performs the same

functions as the !CF-type priority output starter ($PS77). ·

Length:

$FND FIND INTERRUPTING DEVICE

72 8 (581~) locations

% RTX
70-44-001
3-38

This tape contains the subroutine $FND which is called by

the !CO-type teletype interrupt service routines to find which

particular teletype (in a set of multiple teletypes) caused an

interrupt.

Entry Points

.$FND Find Interrupting Device

This subroutine is used to find which device in a set of

multiple devices caused an interrupt. It can be called by any

!CO-type interrupt service routine which has a control block

queue in the same format as $TTYQ. The calling sequence is:

JU $FND
WRD X
WRD Y

't\here X defines t~e status bits to sense if the device is ready and

where Y is the address of the control block queue associated with

the set of multiple devices being tested. When $FND returns, in-

terrupt control is off and the top buffer on the control block

queue is the control block associated with the particular device

which caused the interrupt. For example, suppose there were

three teletype control blocks named CBl, CB2 and CB3 enqueued on-

to $TTYQ in the order CB2, CBl, CB3. If TT! caused an interr~pt

the !CO-type interrupt service routine would call $FND by saying:

JU $FND
WRD 1000 ;BIT 9 = STATUS TEST FOR IRDY
WRD $TTYQ;TEST TELETYPES

% RTX
70-44-001
3-39

If the teletype associated with CB3 caused the interrupt, $FND

would return with CB3 as the top buffer on $TTYQ.

$ASCI

Length:

Function:

Calling Sequence:

ASCII input user exit

AY contains character from input devi.ce.

% RTX
70-44-001
3-40

AX contains address of input queue in the control block.

JU $ASCI (from wi.thin the input interrupt routine)

If the input character in AY is equal to zero, $ASCI

returns to TRP + 5 whi.ch ignores the character. Other-

wise, bit 8 is OR' d into AY to ensure an 8-bit ASCII

character, the character is checked for being a car-

riage return, and a return is made to TRP + 1. If the

character is a carriage return, the count location in

the input buffer is set to -1 so that when the count is

bumped at TRP + 1, an end mode condition appears.

This routine is called by $ECHO. It can also be used

as the "user end mode check subroutine" specified in

the control block if the special end mode condition is

a carriage return •.

$ECHO

Length:

Function:

Calling Sequence:

% RTX
70-44-001
3-41

5 7
1

(1 (71
8

) Locati.ons (ICF) 58
1

(1_ (72
8

} Locati-0ns (TCO)

To echo TTI keyboard input

AY contains character from TTL keyboard

AX contains address of keyboard queue in the control

block.

JU $ECHO (from within TTL interrupt service)

The purpose of $ECHO is to output the characte-r in AY

by putting it in the echo buffer, enqueuing the echo

buffer onto the priority output queue and calling the

priority output starter. The addresses of the echo

buffer, priorfty output queue and priorit:y starter are

calculated from .the address of the keyboard input

queue·. Therefore $ECI!O can echo the input from

keyboard only.

$ECHO first checks to see if AY.is zero. If is is

a return to TRP + 5 is taken·. Otherwise, $ASCI- is call-

ed to OR in_bit 8 and ch.eek for end mode. When $ASCI

returns, $ECHO checks the count in the echo buffer. If

the count is not yet zero then the previous character
(.

has not been echoed .and $ECHO return to TRP + 5 as i_f

the character were ~.(Le. the character is ignored).

Otherwise, the character is stored in the echo huffer.

The echo buffer is then enqueued onto the- priori.ty out-

put queue, the priori.ty output starter is called and

%RTX
70-44-001

3-42

control returns to TRP + 1. If the character was

a carriage return, a line feed is also echoed.

$ECHO is called by $LINE. There are two versions

of $E9HO, one for use with.- LCF teletype routines

and one for use with. ICO teletype routines. Both-

versions perform exactly the same functions but

have different ways of calling the priority- output

starter.

$LINE

Length:

Function:

Calling Sequence:

% RTX
70-44-001
3-43

To echo and input a line from TTI keyboard

AY contains character from TTI keyboard.

AX contains address of keyboard input queue in the

control block

JU $LINE (from within Teletype interrupt service

routine)

This subroutine first checks to see if AY is zero.

If AY is zero control returns to TRP + 5. Otherwise,

$ECHO is called. When $ECHO returns, the character

is checked to see if it is a backarrow or rubout.

If the character is a backarrow, keyboard next loc

($KN77) and the count.in the keyboard buffer are each

decremented by one (unless doing so would step these

pointers back beyond the beginning of the buffer)

and control returns. to TRP + 5. This procedure deletes

the previous character.

If the character is a rubout th.en the keyboard buffer

count and next loc are reset to their initial values,
'·

thus deleting all previous characters in the line. Con-

trol then passes to TRP + 5.

If the character is neither a back.arrow nor a rubout,

then control returns to TRP + 1.

This routine can be used as the "user end mode check

subroutine" specified in the control block if the user

%RTX
70-44-001
3-44

wishes to echo keyboard input where the end mode

condition is a carriage return, and allowing the

backarrow and rubout editing features.

$TKP - TIME KEEPER INTERRUPT SERVICE

% RTX
70-44-001
3-45

Length: absolute locations 1008-103
8

, plus 152
8

relocatable locations

Function:

This ICF-type interrupt service routine is used with the Real Time

Clock to keep track of time-of day and/or time intervals. The routine has

two constants which are set to the 60 cycle version of the Real Time Clock.

These constants can be changed to accomodate any setting for the Clock.

These constants are in $TPIN and in $IPSC (see below).

Entry Points: Detailed description follows

$DAY day counter

$HOUR hour counter

$MIN minutes counter

$SEC seconds counter

$FSEC f racti.on of second counter

$CLOC rollover counter (same units as $FSEC)

$TPIN ticks per interrupt (value counted down in loc 103)

$IPSC interrupts per sec (defines $FSEC and $CLOC units)

$TKP start of time-keeper routine (for identification on

load-map onlyl

$TMST routine to start up the Real Time Clock

$GTTM routine to obtain time of day

Detailed Discussion:

The two constants $TPIN and $IPSC define the units for the operation of

the program. Both quantities must be set to a negative count. The clock

hardware increments location 103 at a regular interval determined by staples

wired on the clock itself. When locati.on 103 overflows, the clock interrupts.

% RTX
70-44-001
3-46

$TPIN is the quantity which is placed in location 103 and determines how

much time elapses before an interrupt occurs. At each interrupt, location

103 is restored to the constant in $TPIN, and both $CLOC and $FSEC are in-

cremented. The value in $CLOC is allowed to overflow (wrap around). The

value in $FSEC, however, is compared to the value in $IPSC and when their

sum is equal to~ ($IPSC is negative, $FSEC is positive), the value in $SEC

is incremented. Thus $IPSC determines the number of interrupts per second.

$SEC and $MIN are incremented modulo 60. $HOUR is incremented modulo 24,

the overflow being counted in $DAY.

To start the timer, the entry $TMST should be called by the system

start up. The clock will be running with location 103 initialized upon re-

turn. If any of the quantities $DAY, $HOUR, $MIN, $SEC or $FSEC are to as-

sume initial values they should be set before $TMST is called. Also, if

the Real Time Clock being used is not the 60 cycle version, or if it is the

60 cycle version but interrupts are desired more than once a second, the

quantities $TPIN and $IPSC should be set before calling $TMST. The calling

sequence itself is simply JU $TMST. Typi.cally this call ·wi.11 be just be-

fore calling $STRT (in %RTX) to get the system going.

To get instantaneous time-of-day, the entry point $GTTM can be called.

This routine turns interrupt control off to prevent the time variables from

being changed while they are fetched. It then stores $DAY, $HOUR, $MIN,

$SEC and $FSEC sequentially in the five locations immediately following the

JU $GTTM, turns interrupt control back on and returns. Thus the call to

$GTTM should look like

JU $GTTM

LOG .+5

% RTX
70-44-001
3-47

where the LOC statement reserves the five locations needed to store the time-

of-day.

Examples

1. If $TKP is used as loaded, the Real Time Clock must be the 60 cycle

version. $TPIN is set to -74
8

(-60
10

) and $IPSC is -1. Thus the

clock will interrupt once per second after counting 60
10

in location

103 (at the rate of one count per 1/60 second).

2. If the real time system requires interrupts every half second and

the 60 cycle clock is being used, set $TPIN to -36
8

(-3010) and $IPSC

to -2.

3. In general, if the rate at which the clock increments location 103

Notes:

is n per second, and the unit time interval desired for $CLOC and

1 · n
$FSEC is - seconds, set $TPIN to -- and $IPSC to -m. The quantity m m

m must be ~1 and to keep accurate time, the quantity.!!. should be an
m

integer.

1. The timer algorithm is self-.-c.orrecting for instances when the clock

cannot interrupt due to the interrupt control being off. The inter-

rupt control can be off for a period of time not exceeding the max-

imum of

a) one minute or

b) .32767 clock increments

without loss of timing accuracy in the long run (i.e. $TKP catches

up).

2. The quantity $CLOC can be used to time out speci.fied intervals up to

1 a maximum interval of 65535 units of - seconds (see Examples) using
m

the $WAIT routine as follows:

% RTX
70-44-001
3-48

Suppose it is desired to delay 1008 $CLOG counts before continuing in

some processor, The following code accomplishes this:

MR $CLOC,AX ;ADD INTERVAL

MRI 100 ,AY ;TO CURRENT $CLOG

RRC AO ,Pl ,AY

JU $WAIT

JC AO, GEJ.;, $CLOG ;(SEE $WAIT WRITE-UP)

Since $CLOG is a rollover counter, the comparison supplied to the $WAIT

routine above will fail until $CLOG has been incremented at least 100
8

times, even if $CLOC overflowed somewhere along the line.

3. $TKP always takes an end-mode return.after servicing an interrupt.

%RTX DIRECTORY TAPE

% RTX
70-44-001
3-49

A directory tape is provided for the Real Time Executive and the

standard interrupt service routines. It has the following routines in

this order.

1. $TKP

2. $LINE

3. $ASCI

4. $TTYQ

5. $FND

6. $CB77

7. $TICF

8. $CB76

9. $HICF

10. $SAVI

11. $SRET

12. $SETM

13. $GETM/ $PUTM

14. $SREL

15. $WAIT

16. $AHGH/$ALOW

17. $ATCH

18. $ENQ/$DEQ

19. %RTX

Notes:

% RTX
70-44-001
3-50

1. If an executive with $USAV/$URES calls is desired, then the tapes

for %RTX, $SREL and $AHGH/$ALOW which have calls to $USAV/$URES

should be force loaded before the directory tape is loaded.

2. If the user has any references to $ECHO (or $LINE which calls

$ECHO) then either the ICO version or the ICF version of $ECHO

must be force loaded either before or after the directory tape has

been loaded.

0

0

~ GRI Computer Corporation
320 NEEDHA/'A STREET, NEWTON, M.A.SSACHUSETTS 02164

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	xBack

