.

(©
=

‘redl time
executive

-~ a

(% I1X)

i Lomputer Corporation
AIEEMLE A V" STLEET ORMIAATINNG BAALC 2 MG ICRTTE At d
PNRER T QIRGL T, IRV 1IN, IVWVRSIMAT Wk T d WL

GRI

REAL, TIME EXECUTIVE

% RTX

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164

Copyright @ 1972 by GRI Computer Corporation

70-44-001
0772-0300

TABLE OF CONTENTS

CHAPTER ONE - GENERAL

Introduction « « ¢ o o ¢ ¢ o o o o s o o
System Structure . « + ¢ « o o o o o o o o
Active and inactive states « .« « ¢ « o« o

CHAPTER TWO - REAL TIME EXECUTIVE (ZRTX)

NTT A TS

Attact SATCH . v v ¢« v ¢ v o o o o« o o

Subroutine Release $SREL . . . « + &« « .« .
Get memory/put memory S$GETM, S$PUTM, S$SPUTP
Set memory $SETM ¢ . « ¢« ¢ « « .« .
Allow High/Low $AHGH, SALOW
Wait SWAIT . & v ¢ ¢ &+ v o o o o o o s o

Enqueue, Dequeue $ENQ, $ENQF, $DEQ, $DEQF

CHAPTER THREE - STANDARD I/0 SERVICE ROUTINES .

Introduction « +« v v « ¢ v ¢ ¢ ¢ ¢ o 4 . .
SSRET Starter Return « « « « « o « o« « & @
$SAVI Save Routine for ICF Interrupts . .
STICF Teletype Interrupt Acknowledge - ICF

TTY77 Interrupt Handler - ICF ($CB77) . .

S$HICF High Speed reader/punch Interrupt acknowledge ICF

HSR/HSP 76 Interrupt Handler — ICF (S$CB76)

%RTX

70-44-001

Page No.

1-1

1-5

2-1
2-15
2-21

2-22

. 2-25

2-26

. 2-27

2-30

3-25

. 3-27

TABLE OF CONTENTS (Continued)

CHAPTER THREE - continued
$TTYQ TTY ICO Service
S$FND Find Interrupting Device .
$ASCI-ASCII Input User Exit . .

$ECHO-Echo TTI Keyboard ILnput .

SLINE-Echo and Input Line from TTI keyboard

$TKP-Time Keeper Interrupt Service

.

ZRTX-Directory Tape « + « « o » o o o & o &

ZRTX
70-44-001

. 3-34

3-38
3-40

3-41

. 3-43

3-45

3-49

Figure
Figure
Figure
Figure

Figure

LIST OF FIGURES

Basic Structure of a Real Time System . .

Example of Cascaded Interrupts

Differences Between Active and Inactive State .

Enqueuing .

Dequeuing .

.

%RTX

70-44~-001

Page
Page
Page
Page

Page

1-4
2-6

2-12
2-33

2-34

ZRTX
70-44-001
1-1

GRI Real Time Executive

Introduction:

The GRI Real Time Executive (%ZRTX) is a generalized controller which can
be utilized to structure a particular real-time system aimed at a particular
application. It utilizes oﬁiy 22410 core memory locations and has a completely
modular organizétional approach. The use of %ZRTX, in most cases, simplifies
and shortens the tasks involved in designing and coding such a real-time appli-
cations system; and in many cases, allows the user options which would not be

economically available to him in terms of time spent in designing and imple-

menting such a controller himself.

In order to understand the specifications of the various modules which

can be assembled into an executive applicable to the task at hand, it 1

w

necessary to understand how ZRTX expects a real-time system to be structured.
The overall structure may be separated into four categories: 1) Control
Programs, 2) Interrupt Service Routines, 3) Task Processors, and 4) Shared
Subroutines. The actual functions of modules in these four categories in

any given system may overlap somewhat, but their basic definitions in func-

tional terms is as follows:

1) Control Programs

These are the programs which do the bookkeeping and keep
track of machine states necessary to coordinate the activities
of the other units in the system. It is intended that these

functions be provided for by ZRTX and its modules. (It should

2)

3)

4)

7% RTX
70-44-001,
1-2

be pointed out here that this dis not the same as what is
usually referred to as a monitor although one possible
applications of ZRTX might be to serve as the nucleus of

a monitor.)

Interrupt Service Routines

These are the routines which are entered in response
to an interrupt, usually a unique routine per unique inter-
rupt. They can range in complexity from a simple acknowledge
to a complete task depending on the system design and/or
timing requirements. $RTX requires certain minimal communi-
cation with these routines in order to save and restore

registers and flags correctly.

Task Processors

These are the modules which actually perform the tasks
required for the user's application. Z%RTX also requires
certain communication with these modules in order to preserve
system integrity. Normally, the Task Processors will comprise
the major programming effort for a typical user, although
special devices may make it necessary for the user to write,

in addition, some of his own Interrupt Service Routines.

Shared Subroutines

These are subtasks which need to be performed by more than
one of the Task Processors in the system. Generally speaking,
if a subtask is relatively short, it should be incorporated
"in line" with each of the processors which require it. If

it is a lengthy routine, however, core space limitations may

.require that it be utilized as a shared subroutine. The

coding of such a subroutine is no different than that of a
normal subroutine not used in real-time. The call to it

from the Task Processors which use it, however, involves the

% RTX
70-44-001
1-3

use of the $SATCH and $SREL routines supplied in the %RTX
package. These routines attach and release shared sub-

routines to or from the processor requiring them.

A very general pictorial representation of the relation-
ship between these four categories in a typical system is

offered in Figure 1.

External
Device

Interrupt

Interrupt

Service

Control

Programs

$RTX

Task

Processors Shared
Subroutines

FIG.

1

7-1
100-%%-0L

X139 %

% RTX
70-44-001
1-5

System Structure:

After initialization and startup of a system, as well as during the
periods when a real-time system is idle, ZRTX enters a scan or polling mode.
In this mode, ZRTX continually and sequentially invokes each user written
Task Processor. 1In order for ZRIX to know where each processor in the system
is, and in what state its operations are in, it must reference a processor
list which is supplied by the user during startup. This list also defines
the priority of the processors in the system since the entries are polled
from top to bottom and the entries toward the top of the list have a tendency
to be polled more often. The highest priority processor is at the top of the
list, and successively lower priority processors occupy successively lower

positions on this list.

Each of the Task Processors has four basic parts: 1) a save area,
2) prologue, 3) main body, and 4) exit. The save area is used by ZRTX
to save registers and processor status when a Task Processor is interrupted.
Thus,'the save area must be at least six words long -- one word for processor
status and one each for the AX, AY, MSR, TRP, and SC registers. If the user's
system has other registers that need to be saved, sufficient space must be
provided to save each one, and the user must supply the code to save and
restore them -- this procedure is covered in detail under the specifications
sheets for $USAV and SURES. The prologue is generally a series of tests which
determine whether the task for this processor needs to be performed, i.e. whether
the main body should be entered. If the prologue determiﬁes that the task does

not need to be performed, it simply issues a return to ZRTX which causes it

% RTX
70-44-001
1-6

to invoke the next lower priority processor in the list. If it decides the
task needs to be performed, it continues on into the main body of code.

The latter, when completed, must exit to ZRTX. There are two choices of
exit -- one which causes 7ZRTX to invoke the next lower priority processor
(if any) on the list, and another which causes it to begin scanning at the

top of the 1list again.

Generally, most or all of the code within a Task Processor ~— including
any Shared Subroutines, as well as portions of ZRTX itself, are interruptable.
This means that the '"interrupt active flip—flop within the GRI-909 is in the
"on" state (via an FOIL ICO instruction). Exactly which device or devices are
allowed to interrupt the system during such times depends on the setting of
the interrupt status register (ISR) and on which devices have been selected.
These conditions are under user control within his Task Processors since
they may initiate input/output or otherwise start devices. The only restric-
tion applicable to this manipulation is that whatever is done to ISR must

also be done to the contents of a location within ZRTX labeled $ISR.

e

When an interrupt occurs, the 9interrupt active" flip-flop is automatically
turned off by hardware so that it is as if an FOI ICF had been issued just prior
to entry to the interrupt service routine which handles the interrupt. There
are two types of Interrupt Service Routines —-- those which operate with the
interrupt active off (or send a zero to the ISR and turn interrupt active on,
thereby allowing the power fail interrupt only), and those which operate with
interrupt active on to allow other devices to interrupt. The former are refer-

red to as "ICF type" or "non-interruptable" Interrupt Service Routines, and

ZRTX
70-44-001
1-7

the latter as '"ICO type'" or "interruptable" Interrupt Service Routines.
ZRTX must be informed which type of Interrupt Service Routine is currently
operating. For an ICO-type Interrupt Service, ZRTX is so informed by a
call to $ICO in Z%RTX before entering the routine, and by exiting with
either a call to $EICO or $NICO. For an ICF-type, %ZRTX is so informed by

the exit from the interrupt service which is a call to either $EICF or S$NICF.

The differences between the two types of returns to $SRTX from an
Interrupt Service Routine are analogous to the two returns to ZRTX avail-
able to a Task Processor. The $EICF or $EICO are called "end-mode" returns
and cause ZRTX to save all the registers for the Task Processor which was
interrupted, and when all current interrupts have been taken care of, resume
scanning at the top of the priority list which may result in invoking a
processor other than the one which was interrupted. The "end-mode" returns
are generally taken when the interrupt signals a significant change in the
system. For instance, suppose the Interrupt Service detected a carriage
return from teletype which usually indicates the end of a line of input.
this instance, an entire line is now in the computer as opposed to the pre-
vious teletype interrupts which delivered only one more character into the
line. The state of the system has changed significantly since the information
in the input line can now be processed instead of merely collected. If the
Task Processor which takes care of this is near or at the top of the priority
list and the Interrupt Service Routine takes an "end-mode" return, the line

will be processed as soon as possible. On the other hand, the $NICF and $NICO

ZRTX
70-44-001
1-8

return from an Interrupt Service Routine cause no alteration of the scan
pointer in 7RTX so that when all current interrupts are taken care of, ZRTX

resumes by invoking the Task Processor which was interrupted.

The following running commentary of the flow of control through a
hypothetical real-time system will give some idea of the bookkeeping and
control maintained by ZRTX. Suppose there are three Task Processors A, B,
and C in the processor list and there are three Interrupt Service Routines
I, J, and K where I and J are ICO types and K is an ICF. Further suppose
that when I has been entered, the ISR is set to allow both J and K to inter-

rupt it and when J has been entered, it allows only K.

Let us say that the system has just been loaded and started so that 7ZRTX
begins by invoking processor A whose task might be to start up the three
devices which correspond to I, J, and K. When this is done, A exits and XRIX
invokes B, and then C (both of which might have nothing to do until some
device interrupts). The processor list being exhausted, ZRTX returns to the
top and invokes A again, which since it has started the devices now has
nothing to do. It then invokes B, C, A, etc. until finally somebody interrupts,
say the device which goes to K. Let us say that K issues an end-mode return
forcing %RTX's scan pointer to the top of the list to invoke processor A. This
processor sees that K must be restarted and so enters its main body code to
accomplish this, then exits to ZRTX. Now ZRTX invokes processor B, which, say,
has something to do in response to the interrupt from K. But before B can
finish, an interrupt comes from the device which goes to Interrupt Service

Routine I. ZRTX is informed by I that it is an ICO type and to allow interrupts

% RTX
70-44-001
1-9
from J and K. Before I can finish servicing its interrupt, J interrupts it.
J finishes and takes an "end-mode' return to %ZRTX. Since J interrupted I
which is an Interrupt Service Routine, ZRTX simply remembers the "end-mode"
condition and resumes I at the point it was interrupted. When I finishes,
ZRTX resumes scanning at the top of the processor list due to the "end-mode"

. Thus, ZRTX invokes processor

)
)
Q
[a]
B
)
b=
[a]
(]
+

N

return from J (even if I made
A, which restarts devices I and J. Then ZRTX invokes B. Since B was in the
middle of some process when it was interrupted, ZRTX invokes B by restoring
all the registers to what they were when I interrupted it and continues.

And so forth....

Note that in the above description, there are two different ways in
which ZRTX invokes a processor. In one case, it gives control to the processors
prologue which decides whether toc enter the main body of code. 1In the other
case, ZRTX resumes the main body of code at the point it was interrupted. These
two different modes of entry will be called inactive entry or active entry
respectively. Also, a processor is in the inactive state, or simply inactive,
if it will be reinvoked via an inactive entry should it be interrupted. Similarly

a processor is in the active state, or simply active, if it will be reinvoked via

an active entry should it be interrupted.
The difference between the active and inactive states is that if a processor
is interrupted while it is active, all registers are saved, and when it is in-

voked again, the registers are restored and processing continues at the point of

% RTX
70-44-001
1-10

interrupt; whereas if a processor is interrupted when it is inactive, no registers
are saved, and when it is invoked again, it is entered at a specified location
rather than continuing at the point of interrupt. The address -1 of this speci-
fied location is in the first word of the processor's save area. This word is

¢ if the processor is in the active state.

The state (active or inactive) of a processor at a given point in its
operations is extremely important to the successful completion of its assigned
task. When the user is writing a section of code for a processor in the system,
he should make sure which of the two states he wants that section to be operat-
ing under and set up the first word of his save area accordingly. A general
rule for making this decision is that if the section of code is referencing
things that can change via an interrupt (either by an Interrupt Service routine
or a higher priority processor which might gain control via an "end-mode"
return) and if such a change would make it meaningless to continue to the
completion of the code, that section should be inactive. Otherwise, the active
state is generally desirable. Typically, a prologue is inactive since it
usually involves testing things that change, and the first instruction of the
main body would be to set the processor active (by zeroing the first word of
its own save area). For this reason, whenever ZRTX enters a processor's pro-

logue, it is in the inactive state.

% RTX

70-44-001
2-1
CHAPTER TWO
REAL TIME EXECUTIVE (ZRTX)

Length: 3408(22410)

Entry Points: Detailed descriptions follow

Name Function

$STRT - start scan, main entry

SPRCL - contains address -1 of processor list

$NEXT -~ return from inactive processor (e.g. prologue) which

allows next lower priority processor to be invoked.

SRSME - return from inactive processor which allows resumption

of another specified processor.

SNREL - return from active processor which forces processor

scan to begin at top of priority list.

$EXEC - return from active processor which allows next lower

priority processor to be polled.

SACTV - subroutine czllable by processor or interrupt service

routine to set itself active.

$ICO - must be called at beginning of ICO-type interrupt

service routines.
SSAVA - contains address of current save area.

STRP - save location for TRP register prior to calling $ICO,
$EICF, or $NICF.

SEICO - end mode return from ICO-type interrupt service routine,

forces processor scan pointer to top of list.

SNICO - normal return from ICO-type interrupt service routine,

processor scanner not altered.

% RTX

70-44-001
2-2
Name Function
S$ISR - system interrupt status word.
$PROL - contains address -1 of current processor's prologue
entry.
$SCAN - contains address of second word of current entry on
processor list.
$REST - contains processor save area address during restering
registers.
$EICF - end mode return from ICF-type interrupt service
routine (see S$SEICO).
$NICF - normal return from ICF-type interrupt service routine
(see $NICO).
$INTL -~ contains address -1 of interrupt location for ICF-type

interrupt service.

The most commonly used entry points are discussed first. The others are

used generally by the special sharable subroutines supplied with ZRTX such as

SATCH or S$GETM, etc.

1

2)

$STRT

This is the call to ZRTX which starts the scan after the
user has submitted his processor list (see below) the interrupt
active flip-flop should be off, as will normally be the case
during start-up since depressing the Start switch on the console

automatically turns it off.
$PRCL

During initialization, the user must submit a processor
list to ZRTIX. This is done by storing the address -1 of the
beginning of the list in $PRCL. The format of the list is as

follows:

3)

% RTX

70-44-001
2-3

Processor List

15 14 0 <e————e———address in SPRCL

X PROL1-1

9 SAVAl-1

X PROL2-1

@ SAVA2-1

PROLn-1
) SAVAn-1
¢ ¢

PROL1 is the address of the highest priority processor's
prologue, and SAVAl is the address of its save area. PROL2
and SAVA? are for the next lower priority processor, etc.

The list ends with a zero word.

Bit 15 of the PROL entries are normally = @. Should
Bit 15 be set to 1, ZRTX will skip that processor entirely
during the scan - this allows the user to exercise some extra

control over which processors can be invoked at any given time.

Also, when a processor list is initially submitted, the
first word of each processor's save area should contain the
address -1 of its prologue (i.e. the same address as is in
the list). This is a required initial condition, the actual
contents of this word will change during operation. It is
suggested that this initial condition be taken care of during
the assembly of the processors so they will be loaded with the

proper value in the first word of their save areas.
$NEXT

This is a return to ZRTX which causes ZRTX to bump its
scan pointer to the next processor on the list. This return

can only be made from an inactive processor —— if this is

called from anywhere else, ZRTX will blow up.

% RTX
70-44-001
2-4

The most common use of this return is if a processor's
prologue finds that the processor has nothing to do. It
returns control to ZRTX via a JU SNEXT (or a JC, etc.),

allowing the next processor to be scanned.
4) $NREL

This is one of two types of return to ZRTX that can be
made from either an active or inactive processor. The
processor which issues this return will be set inactive in
such a way that the next time it is invoked, it will be
entered, inactive, at its prologue. The scanner in 7ZRTIX

is forced to the top of the processor list by this return.

5) $EXEC
This is the normal exit from an active processor. It
does the same thing as $NREL, except the scanner is bumped

to the next lower priority processor in the list. This

exit can also be called from an inactive processor.

6) $ICO and $TRP

$ICO is called by an ICO-type interrupt service routine
after saving the TRAP in S$TRP and before it does any actual
processing. The call should look like:

RM TRP, $TRP 3sSAVE TRAP REGISTER
JU $1ICO
WRD INTLC ; INTERRUPT LOCATION
WRD IRMSK ;s ISR MASK

ISAVA: LoC .+10 ;8 WORD SAVE AREA

sBEGIN INTERRUPT SERVICE

Where INTLC is the address of the location where the SC
was stored when the interrupt occurred, IRMSK is used by 7ZRIX
to "AND" against the ISR, so IRMSK should have 1's in all bit

positions except those for which interrupts from the corresponding

% RTX
70-44-001
2-5

device are not to be allowed. (In particular, another interrupt
from the same device should not be allowed, i.e. IRMSK should
have at least one (§ bit position corresponding to the device which

just interrupted.)

The area at ISAVA is used as follows:

ISAVA: Cascade information

Saved ISR

Active/Inactive

Save area for
AX, AY, MSR, TRP,
SC should this

interrupt service

be interrupted

When ZRIX returns from the $ICO call, the interrupt active
flip-flop will be on, the ISR will contain the result of
"ANDing' the old ISR with IRMSK and the interrupt service
routine will be in the active state (ISAVA+2 will be set to @).

Furthermore, ZRTX will have set itself in "interrupt mode"
which has certain consequences for saving and restoring registers
if further interrupts occur, the main one being that if an ICO-type
interrupt service routine is interrupted, only AX, AY, MSR, TRP, and
SC are saved in its save area -- no provisions are made for saving

.additional registers as is the case with processors.

An ICO-type interrupt service routine can set itself inactive
the same way a processor can -- and for the same reasons. It does
so by setting its ISAVA+2 location to the address -1 of the inactive
entry.

The "cascade information" location is set by ZRTX to the address
of the previous (if any) interrupted interrupt service routine's
ISAVA area. A diagram showing pictorially how cascading operates

is shown in Figure 2.

Original Processor
(active for this example)

()

EXAMPLE OF CASCADED INTERRUPTS

Interprupfted h s to A
l— %

Ju $ICO Saves all regs in.
P's save area. Gives
control to
A here.

. . fl————
A is active

Interrupted he s to
$RTX ‘ i

restores P JU $1C0 Saves AX,AY ,MSR,TRP,SC
if no calls - only in A's save area.
to $EICO B's Save Are3 gives control to B herew

P's save are A's save areag

A completes B is active

%RTX goes . '
toitop pri-| A calls $NICT MDJMLL_M} to @
<«4—ority pro-
cessor if [or SEICO Saves AX,AY,MSR ,TRP,
$EICO was Ju__$1€0 SC only in B's
called by |3RTX ‘ . C's save Apealin B's save area
one or more restores gives control to C
of A, B or A and : : here.
C. resumes B callsd—completes | € is Active
$NICO

%RTX SE—

restores

B and o 11 C completes

calls
resumes 1718N1c0 or $EICO

9~¢

T00-%%-0L
X1d %

FIG. 2

% RTX
70-44-001
2-7

7) S$EICO

This may be called by an ICO-type interrupt service routine
only. If it is called from anywhere else, 7RTX winces. A call
to SEICO exits from the ICO-type interrupt service routine and
alters the processor scanner so that when all current interrupts

have been serviced, ZRTX resumes scanning at the top of the list.
8) $NICO

This is the other exit from an ICO-type interrupt service
routine. It is the same as $EICO except the processor scanner

is not altered.

9) S$ISR

This location should reflect what the ISR says when ZRTX
is in the processor scan. To be safe, whenever the ISR is
altered, $ISR should be altered in the same way and the line
of code which does these operations should be preceded by an
FOI ICF and followed by and FOI ICO.

Note: Do not alter ISR and then store ISR in $ISR.
First alter ISR, and then do the same operation on
$ISR. Normally (e.g. during processor scanning),
ISR and $ISR will be equal, but certain relations
between cascaded interrupt routines can cause them

to be unequal.
10) $INTL

This location is set up during the entering of an ICF-type
interrupt service routine. It should be set to the address -1
of the location in which the SC was stored when the interrupt

occurred.

An ICF-type interrupt service routine should save and
restore all registers it alters during its operation. Thus,
a typical entry to an ICF-type interrupt service routine is

as follows:

11)

INRUP:

RM TRP,S$TRP

MRI INTLC-1,TRP

RM TRP,$INTL

RMI AX,0
RMI AY,¢

RMI MSR,(
RMI ISR,0

ZR ISR
FOI ICO

% RTX
70-44-001
2-8

;SAVE TRAP REGISTER

;SET UP ADDR-1

sOF INTERRUPT LOCATION

;SAVE REGS

sTHESE 3 INSTRUCTIONS
sALLOW POWER FAIL

- 3AND ARE NOT VITAL

The last three instructions need not be included if

allowing a power fail interrupt is not crucial while the

ICF-type service routine is operating.

Similarly, the

saving of one or more of AX,AY or MSR may be omitted if

it is not altered ~- although typically all of them will be.

SEICF and S$NICF

service routine.

These are the exits available to an ICF-type interrupt

They are analogous to the $EICO and $NICO

exits available to an ICO-type interrupt service routine.

registers upon entry, it must restore them upon exit.

Since an ICF-type interrupt service routine saved

To

continue the example above, the exit from that routine would

be:

MR
MR
MR

FOI
MR

necessary if the power fail was not enabled on entry.

that the TRP need not be restored.

STRP.

JU

INRUP+7,AX

INRUP+11,AY

INRUP+13,MSR
ICF
INRUP+15, ISR

|

$NICF (or JU SEICF)

;RESTORE REGISTERS

;ONLY FOR POWER

;FAIL OPTION

Where the two instructions beginning at the FOI ICF are not

Note also

4RTX will restore it from

% RTX
70-44-001
2-9

If SEICF or $NICF are called from anywhere but an ICF-type
interrupt service routine, ZRTX grumbles.

The less commbnly used entry points are $ACTV, SRSME, $SAVA
$PROL, $SCAN and SREST. They are present primarily for such
routines as $ATCH, $GETM, etc. which need to reference certain

locations in Z%RTX.
12) S$SACTV

This entry point merely zeroes the first word of the save
area of the current processor or the ISAVA+2 location in the
case of an Interrupt Service Routine. le.,it sets the current
pfocessor or Interrupt Service Rbutine active. Usually this can
be accomplished by a ZM instruction. However, in some cases,
notably in certain types of shared subroutines, the location to
be zeroed may not be known. The user is not likely to encounter

this situation.
13) S$RSME

If this 1is called with AX set to the save area address -1,
and AY set to the prologue address -1 of a given processor in
the system, that processor will be invoked correctly and imme-—

diately. The scan pointer remains as it was so that if the

'..I

invoked processor calls $NEXT or $EXEC, the scan pointer is
updated to the next lower priority processor below the proces-
sor which calléd $RSME, The interrupt control flip-flop must
be off before $RSME is called (i.e. issue a FOI ICF and then
go to $RSME).

The primary purpose of $RSME is to accommodate the $ATCH
and $SREL routines. It is also used by $GETM.

14) $SAVA, $PROL, $SCAN

These are adequately described in the list of entry points

given on pages 10 and 11.
15) S$REST

A call to SREST-1 with AX set to a save area address will

restore registers and resume an interrupted, active processor.

% RTX
70-44-001
2-10

Again, this entry point is defined for use by some of the other
routines supplied with %RTX and is normally not called by user

programs.

Notes:

1) S$ACTV and $ICO are the only entries in %RTX which return
control to the caller immediately following the call. No registers
(except the TRAP) are altered by S$ACTV.

2) Whenever %RTX transfers control to an inactive entry,
only the following conditions are guaranteed:

a) AX = address -1 of current save area

b) AO is in ADD state

c) BOV is clear

d) LNK is clear

e) ICO is on (i.e. a FOI ICO has been executed)

f) The contents of the save area will not have
been altered in any way. '

3) Whenever %RTX transfers control to an active processor or
Interrupt Service Routine, the following conditions are guaranteed:

a) All registers, except possibly the ISR, will
contain the values they had at the time of the
interrupt. This includes the SC, meaning that
the program resumes as if nothing had happened.

b) The contents of the save area may have been
altered in order to save (and subsequently
restore) the registers.

c) ICO is on (i.e. a FOI ICO has been executed).

A pictorial diagram of the differences between an inactive
and active state is ghown in Figure 3.
4) Should the system need to provide for saving registers in

addition to AX, AY, MSR, TRP and SC (e.g. 6 GPR) the procedure in-

volves using a version of ZRIX with calls to $USAV and $URES and

% RTX
70-44-001
2-11

providing two routines with entries $USAV and $URES. This is des-
cribed in detail under tﬁe specifications for $USAV and $URES.
5) It is possible to dynamically submit a new processor list.
For instance, during the operation of the system a condition may
occur which requires a different set of processors to handle than
those currently operating; all that needs to be done here is to
submit a new processor list.
A new list can be sumbitted at any time by anybody except a
shared subroutine or within the scope of an attach (see $ATCH).
The procedure is to simply store the address—1 of the new processor
list into $PRCL, To assure that ZRTX begins scanning the new list
immediately, do the following:
a) If the new list is being submitted by an
Interrupt Service Routine, exit via an "end-
mode" return (i.e. $EICO or SEICF).
b) If the new list is being submitted by a Task
Processor, start the procedure by issuing a FOL

ICF, then store the new list address -1 in S$PRCL,
and then exit wvia S$SNREL.

INCTV:

SAVE:

Inactive section of
code, SAVE 1is set to

INCTV-1

Interrupt

Active section, SAVE
is set to @

Interrupt

status(active/inactive)

Room for saving
registers

FIG. 3

should interrupt occur
7RTX saves nothing and
eventually re-enters at
inactive entry

should interrupt occur
%ZRTX saves everything

| and eventually restores

everything and resumes
at point of interrupt

Zi-¢

100-%%-0L
X1d %

% RTX
70-44-001
2-13

USER SAVE/RESTORE

These are user written routines to save and restore registers other
than the standard. A special version of %RTX with $USAV/SURES calls must
be used rather than the normal version of ZRTX. The tape of ZRTX with
SUSAV/$URES calls is numbered 70-43-022R-A and is four locations longer

than the normal version of %RTX.

$USAV

This will be called during the saving of registers. The AX register
will contain the value of the SC at the time of interrupt. ZRTX expects
SUSAV to save additional registers and return without destroying the AX

register. An example might be, for the 6 GPR option (or a Model 40);:

ENTRY SUSAV
$USAV: RMD 30, $SAVA;SAVE GPR's
RMD | 31,$SAVA
RMD 32,8SAVA
RMD - 33,$SAVA
RMD 34 ,$5AVA
RMD 35,$SAVA
RR TRP ,SC;RETURN
END

$URES

This wil be called during the restoring of registers. Everything
except the users registers and the SC will be restored before control is
given to SURES. ZRTX expects this routine to restore the user's registers
without destroying any of AX, AY, MSR or TRP, and then $URES must restore

the SC. To continue the example, the $URES that corresponds to the $USAV

ZRTX
70-44-001
2-14

above could be:

ENTRY " SURES
SURES : MRD $REST, 30 ;RESTORE GPR's
MRD $REST, 31
MRD $REST, 32
MRD $REST, 33
MRD $REST, 34
MRD $REST, 35
FOI 1Co ;THESE RESTORE
MRD $REST,SC sTHE SC
END

Note: If $SREL, $AHGH or $ALOW are to be included in the system, the
special versions (which call $USAV,$URES) of these routines must be
used. The special version of $SREL is numbered 70-43-023R-A and is
two locations longer than the normal. The special version of $AHGH/
SALOW is numbered 70-43-024R-A and is four locations longer than the

normal.

ZRTX
70-44-001
2-15

ATTACH

Length: 778 (6310)

Entry Points: $ATCH

Function:

This routine is used to eliminate conflicts in the usage of shared
subroutines in the system. It does this without requiring the subroutine to
be written differently from a subroutine written for non real~time use. If

SATCH and $SREL are used, for instance, reentrant code is unnecessary.

Usage:

For each subroutine which is to be shared between processors in the
system, the user should assign a single core location initially set to zero.
This location will be used as a flag to indicate whether the associated sub-

routine has been "attached" or not. The flag is examined and set by SATCH.

Before a processor in the system calls a shared subroutine, it should
first "attach" it by calling $ATCH and giving as an argument the address of
the flag or flags associated with the subroutine(s) it wishes to attach.

The general format of the call is:

Ju SATCH

WRD FLAGL ;ADDRESS OF SUBRL FLAG
WRD FLAG2 ;ETC

WRD FLAGn+100¢@¢¢

whereas the last or, in most cases, the only argument has Bit 15 set (by

adding 1qa¢¢qé to the address).

% RTX
70-44-001
2-16

When control is returned to the processor which called $ATCH, each
FLAG listed in the call sequence will be set to the address -1 of the pro-
cessor's prologue -1 entry in the processor list to identify the processor
who has attached the subroutine(s). In addition, the processor will be set
active (i.e. SATCH could possibly be called from an inactive section, but

upon return the caller will be active).

The processor is now free to call the subroutines whose flags were
listed in the call to the $ATCH. To release the subroutine for use by
other processors it is only necessary to zero the flag word associated with
that subroutine, and the ZM FLAG instruction must be followed by a JU S$SREL
which informs gRTx that any higher priority processor which may ha?e tried

to attach the subroutine can now do so.

The scope of an attach consists of all code within a processor from the

call to the $ATCH routine to the point at which either the last of the flags
listed in the SATCH call has been zeroed followed by a JU $SREL, or an exit
has been made to %ZRTX ($NREL or $EXEC). (Usually all flags should be zeroed
before such an exit, although it is possible to structure things so that a

subroutine is attached to the same processor for several scans by %RTX.)

Great care must be taken if $AICH is called within the scope of an attach.
For example, to attach more than one subroutine, the following procedures

are okay:

SCOPE .

$ATCH

- FLAG1

FLAG2

SUBR1

SUBR2
FLAG2
$SREL

SUBRL
FLAG1
$SREL

+ 10¢9d¢

sNEED SUBR1 TWICE

sNEED SUBR2 ONCE
sSIGNAL DONE SUBR2

;2nd TIME SUBR1
;THEN DONE

% RTX
70-44-001
2-17

The scope of the attach extends from the JU $ATCH to the JU $SREL

following the ZM FLAGl and is bracketed above.

following the ZM FLAG2 does not delimit

Another way:

JU
WRD

JU
: M
JU

SCOPES .

JU
ZM
JU

:
%”

$ATCH
FLAG1

SUBR1
FLAG1
$SREL

$SATCH
FLAG2

SUBR2
FLAG2
$SREL

$ATCH
FLAG1

SUBR1
FLAG1
$SREL

The scopes are marked.

+ 100099

+ 100099

+ 100999

scope.)

(Note that the JU $SREL

% RTX
70-44-001
2-18

However, the following could cause a disaster unless the two rules

stated below are complied with.

JU SATCH
WRD FLAGY+ 100dgg
JU SUBR1
JU $ATCH
WRD FLAG2 + 19¢ggg
1 .
2 Ju SUBR2
ZM FLAG2
Ju $SREL
ZM FLAG1
Ju $SREL

1. Scopes must be fully nested, i.e. the following overlapping of scopes

will cause a disaster:

2. There must not exist two processors in the system with nested scopes in
reversed sense of each other. 1le., the following will cause a disaster if

Processors A and B are in the same system:

% RTX

70-44-001
2-19
Processor A Processor B
Ju $SATCH Ju $ATCH
WRD FLAG1 + 1¢0ggg . WRD FLAG2 + 100¢g¢
Ju $ATCH Ju SATCH
WRD FLAG2 + 1¢0¢¢gg WRD FLAGL + 1¢0@¢0g¢
ZM FLAG2 ZM FLAG1
Ju $SREL Ju $SREL
ZM FLAGL . ZM FLAG2
Ju $SREL Ju $SREL

Note that Processor A has the scope of the attach for FLAG2 nested
within the scope of the attach for FLAGl whereas in Processor B it is the other
way around. The following would be okay, however:

frocessor A Processor B

§ 1 {2
DO

Description of Algorithm

If SATCH is called énd'one of the flags in the argument list is non-zero
(attached_to somebody else), the processor which called $ATCH is set inactive
in such a way that the next time it is invoked by #%RTX it will resume inside
the $ATCH routine to examine the particular flag again. S$ATCH then uses the
information in the non-zero flag to call $RSME to force the processor to which
the subroutine was attached to continue operating. Should the latter zero the
flag and call $SREL, things have been set up so that $ATCH is immediately re-
entered. Since the flag is now zero $ATCH attaches the subroutine to the
original caller, and, if the last flag in the argument list has been processed,

sets the caller active and returns.

% RTX
70-44-001
2-20

Note that the processor which "finished" the subroutine had control

only up to the call to $SREL at which point the original caller to $ATCH

regained control.

By this means, the subroutine is given to the highest priority processor

which is trying to attach it at any particular time.

Notes

1) It is okay to have inactive code in the scope of an attach. (But see note 5.)
2) S$ATCH cannot be used by Interrupt Service Routines.

3) Since $ATCH may set the caller inactive, and in this state
no registers are saved in case of interrupt, it may be safely
said that $ATCH has the possibility of destroying the contents
of every register. However, when $ATCH returns, the following
machine conditions are guaranteed:

a) AO is in the ADD state.
b) AX = contents of $SCAN.
c) AY = -2

d) LNK is set.

e) BOV is clear.

In addition, the caller will be active and all flags in the
argument list will be non-zero (attached).

4) S$SATCH can be used to attach anything. For instance, one pro-
cessor may wish to alter a table and keep other processors from
using the table until it is done. Or, on the Model 40,

instead of taking the time to save and restore the 6 GPR at every
interrupt, the processors which use them can attach them either
singly or as a group. S$ATCH is perfect for such applications.

5) $ATCH. may be used in a system which submits more than one pro-
cessor list in the course of its operation provided:

a) All elements of the system are permanently in core.
b) The scope of any attach which references a flag which is

also attached by a task in another processor list must be
free of any inactive code or returns to ZRTX.

% RTX
70-44-001
2-21

SUBROUTINE RELEASE

Length: 248 (2010)

Entry Points: $SREL

Function:
Allows higher priority processor to attach and use subroutine just

released.

Usage: (See SATCH)

Call $SRELFimmediate1y after zeroing an attached flag. This allows
the released flag to be attached by any processor waiting for it (if any).
No information other than the trap register is destroyed by this call. 1I.e.,
$SREL acts as if it were an interrupt and saves all registers (and goes to
$USAV if incorporated) so that ZRTX restores everything, returning just follow-

ing the call to $SREL.

Description of Algorithm:

$SREL saves all registers in the callers save area, decrements $SCAN
by two and jumps to SNEXT. This has the net effect of either restoring the
caller immediately, or resuming in the SATCH routine should it be waiting on

the flag just zeroed before the JU $SREL.

Notes
1) Do not call'$SREL from an inactive processor.

2) See note to write up for $USAV, S$URES.

ZRTX
70-44-001
2-22

GET MEMORY/PUT MEMORY

Length: 4548 (30010)

Entry Points: SGETM, $PUTM, SPUTP

Function: Dynamic Core Allocation

Subroutine Called: ZRTX, S$SREL

~Usage:
Should the real-time system be such that the demands for memory which
need to be assigned to tasks are unpredictable, these routines can be used

to assign and release areas of core storage.

$GETM - Get Memory

This is called with one argument stating the number of storage loca-
tions desired, e.g.
JU $GETM sGET 300 WORDS
WRD 300 ;OF FREE CORE
Upon return the address of the first location of the requested block
of core will be in the AX register. The free area will consist of exactly
the number of words requested and no more. If a block of core of the size
requested is not available at the time it is requeste&, the processor which
called SGETM will be placed in a 'wait" state until that memory is available.
In this state the processor is inactive and, essentially, removed from the

system. The net result is that a call to SGETIM may allow all other proces-

ZRTX
70-44-001
2-23

sors to operate before control is returned. Also, since it can become inactive
there is the possibility that all registers in the system will be altered. The

only conditions guaranteed on return are:

1) AX = address of first location of free core area of size requested.
2) AO in ADD state.

3) LMK is clear.

$PUTM - Put Memory

This is called with the address of the first word of the free area in
register AX. This value must be equal.to a value returned by some previous
call to SGETM. Upon return the core area will no longer be assigned, i.e. it
is available to $GETM to assign to the next request. Since this routine can
become inactive waiting for $GEIM to finish operating, it is possible for all
registers in the system to be altered on return. The only condition guaranteed

on return is that the AO is in the ADD state.

SPUTP - Put Partial Memory

This is called to make a partial area of core available to $GETM. For
instance, a processor might call $GETM to read in a block of data from a

device. It is known that this data could occupy up to 200, words of core, so

8
the call to $GETM requests 200 words. When the data has been read in, the
processor discovers that it consisted of only 508 words. If desired, the last
1308 words can be released for $GETM to assign elsewhere by calling $PUTP.

For this call, AX must be set at the address of the first word of the complete
block (i.e. the value originally returned by $GETM) and AY is set to the address

of the first word of the partial area to be put back.

% RTX
70-44-001
2-24

For example, suppose it is desired to read in a-data block which might

be 500, words long. A processor could proceed as follows:

8
JuU $GETM GET 500 WORDS
WRD 500
| RMI AX,0 ;SAVE START OF
STBFR = -1 :BUFFER ADDRESS.

Suppose after reading, the address of the last data word stored is in
'LAST'. The following will allow the area from the word following the last

data to the end of the original buffer to be made available to $GETM:

MR LAST, P1, AY ;ONE BEYOND LAST TO AY
MR STBFR, AX ;START OF BUFFER
JU $PUTP

And finally when the processor is completely done with that memory area

it calls $PUTM with the original address to release the rest of the buffer, i.e.

MR STBFR, AX ;PUT BACK ASSIGNED
Ju $PUTM ; MEMORY

Of course, the intermediate steps of putting back the partial area could

be omitted if core space is not that much of a premium.

Notes

1) These routines can be called from an inactive area. However, the
caller will be active upon return.

2) Free core is originally set by a call to $SETM (see its write-up)-
during initialization.

% RTX
70-44-001
2-25

SET MEMORY

Length: 308 (2410)

Entry Points: $SEIM

Function: To initialize pointers in memory for $SGETM and S$PUTM.

address of first free core location.
address of last free core location.

Calling Sequence: AX
AY

JU $SETM

Usage.
This routine should be called during system initialization (start-up)
to define free core to $GETM and $PUTM if dynamic core allocation is to be

used.

Notes: (See also SGETM, $PUTM)

1) If $SETM is loaded last, it can reside in the free core area. In
this case it will be destroyed during the operation of the system, but
usually this does not matter since $SETM cannot be called at any other
time except initializatiorn,start-up. ’

2) Free core must be one contiguous block (usually from the end of the
programs to the beginning of the resident loaders in high core).

3) $SETM does not zero the free core area, it only intializes pointers.

% RTX
70-44-001
2-26

ALLOW HIGH/LOW

Length: 3l8 (2510)

Entry Points: $AHGH, S$SALOW

Function: Allows all higher priority ($AHGH)or all lower and higher priority

(SALOW) processors to be invoked before resuming.

_Usage:

If it is known that a processor in the system is going to take a consider-
able amount of time to complete its task, it can prevent other processors from
being excessively "locked-out™ by calling SAHGH or $ALOW. The calling sequence
has no arguments. Both routines save and restore all registers with operation
resuming at the return point. $AHGH and $ALOW may be thought of as a program-
med interrupt. $AHGH forces the scan pointer to the top of the priority list
and returns to ZRTX, thereby beginning the scan on all higher priority proces-
sors. S$ALOW bumps the scan pointer to the next lower priority (if any) pro-
cessor in the list and returns to %P .X, thereby beginning the scan on all
lower priority processors, followed by a scan on all higher priority processors.
In either case. ZRTX eventually re-invokes the processor which called $AHGH or
SALOW, causing registers to be restored and processing to resume following the

point of call.

Notes

1) Do not call these from an inactive area. Instead, call S$NEXT
(analogous to $ALOW) or $STRT (analogous to SAHGH).

2) See notes to write-up of $USAV, S$URES.

% RTX
70-44-001
2-27

WAIT

Length: 548 (4410)

Entry Points: S$WAIT

Function: To wait for a dynamic condition without locking up the system in
a tight loop.

Calling Sequence:

Set AY

JU SWAIT

WRD ARG1 3CONDITION

WRD ARG2 sADDRESS OF FLAG

Usage:

If a processor needs a certain condition fulfilled before it can proceed
with its operations, it can use $WAIT to avoid locking up the system in a tight
loop. For instance, suppose the condition is the completion of input into a
buffer, and that this is signaled by the Interrupt Service Routine setting "IDONE"

to a value greater than ¢). The following could be done, but is not advisable:

MR IDONE, AX
Jc AX, LEZ, .-2

because the entire system is locked out while this processor is in the two

instruction loop waiting for IDONE to become greater than zero.

The calling sequence to $WAIT consists of setting AY, the jump to S$WAIT,
followed by two arguments. The first argument must be a data test on the AO.
I.e. it must be (in instruction format) of the form 13 XXX@ 03; where XXX

specifies the test. The second word is the address of the flag whose condition

- % RTX
70-44-001
2-28

is being tested. The easiest way to specify the arguments to $WAIT is to

follow the JU $WAIT with a JC on the AO. E.g. for the example above:

ZR AY ;SET AY = ¢
JU SWAIT
JC A0, GTZ, IDONE ;SET UP BOTH ARGUMENTS

Note that the JC AO, GTZ, IDONE is never executed; it only serves to

~establish the arguments - word 1 is the data test on AO, word 2 is the address

""IDONE".

Description:

What SWAIT does is to set the AO to the ADD state, load the contents of
IDONE into AX, (the caller having set the contents of AY) and test the AO for
the condition specified in the calling sequence. If the condition is true
(successful), the caller is set active, and SWAIT returns following the two
arguments. If the condition is not true, the calling processor is set inactive
in such a Qay that the next time it is invoked it reenters the $WAIT routine

to repeat the test. Thus the caller is temporarily removed from the system.

Notes

1) Since the caller may be set inactive, no registers are saved. Thus,
a call to $WAIT could result in all registers being altered. The only
conditions guaranteed on return are:

a) AY is same as before call to $SWAIT.
b) AO is in ADD state.

c¢) LNK is clear.

d) BOV is clear.

ZRTX
70~44-001
2-29

(Although it seems that a guaranteed condition should also be:
AX is equal to the contents of the flag tested, it is not the case.
Most of the time it will be-—--but in some systems it is possible
for the flag to be altered between the time it was tested and the
time return is made from $WAIT.)

2) SWAIT can be called from an inactive area.

However, the caller
will be active upon return.

% RTX
70-44-001
2-30

ENQUEUE, DEQUEUE

L .
ength: 718 (5710)

Entry Points: $ENQ, $ENQF, S$DEQ, $DEQF

Function: First-in, first—out list using linking pointers.
Usage:
The primary use of these routines is to facilitate the passing of large
blocks of data from one system component to another without having to physically
move the data from one area of core to another. This scheme also allows data
to '"back-up' without being lost if a real-time system should become temporarily

overloaded.

When a part or all of a system uses this approach to handle data, the
components must reference so-called 'queues'" to find out where the data is
located. A particular queue consists of two words at a known place in memory.
The first word of the queue contains the address of the first word of the first
item (e.g. block of data) on the queue. The first word of the first item (link
word) contains the address of the first word (link word) of the second item on
the queue, the first word of the second item contains the address of the first
word of the third item, etc. The first word of the last item on the queue is
set to zero to identify it as being last. The second word of the queue contains
the address of the first word of the last item on the queue. Figure 4 offers
a pictoral representation of the enqueuing process. An empty queue is identified
by the first word of the queue being zero -- and in this case the second word
must contain the address of the first word. Figure 4 also illustrates an empty

queue.

% RTX
70-44-001
2-31

$ENQ (or $ENQF) is provided to enter a new item as the last item on a
queue, and $DEQ (or DEQF) is provided to remove the first item from a queue.
Both of these routines involve changing link words only, they do not move any

data from one place to another.

Calling Sequence - $ENQ, $ENQF

Load AX with address of link word of new item.

JU $ENQ (or JU SENQF)
WRD QADDR ;ADDRESS OF FIRST WORD OF 2 WORD QUEUE

This adds the item whose link word address is in AX to the end of the
queue at QADDR. $ENQ returns with interrupt control on, $ENQF returns with

interrupt control off (FOI ICF). Neither AX nor AY is changed by $ENQ or $ENQF.

Calling Sequence - $DEQ, $DEQF

JU $DEQ (or JU S$DEQF)
WRD QADDR ;ADDRESS OF FIRST WORD OF 2 WORD QUEUE

$DEQ (or $DEQF) returns ufter deleting the top (first) item from the queue
at QADDR. This brings to the top a new item whose link address is in both QADDR
and AY. The address of the deleted item's first (link) word is in AX. This is
convenient for an immediate call to $ENQ (or $ENQF) to enqueue the same item on
to another queue to pass data to another component in the system. $DEQ returns

with interrupt control on, S$DEQF returns with interrupt control off. Figure 5

shows the dequeuing process.

% RTX
70-44-001
2-32

Notes

1) Normally $ENQ and $DEQ are the desirable calls. However, in some
cases, to assure that information is not lost (e.g. dequeuing within
an inactive area) the "return with ICF" versions should be used. An
example, which also illustrates "rotating a queue'might be as follows:

Suppose one of the processors in the system is dedicated to
handling all teletype input and that there are several teletypes
on the system. Each teletype has been assigned an input buffer
by some processor (say via a $GEIM) and all the buffers are linked
onto the queue "TTYIB" (teletype input buffers). Also suppose
that the word following the link word in each buffer is a flag
which is set to zero when the input is complete (e.g. the Interrupt
Service Routine might set this flag when it detects a carriage
return). The following prologue (inactive) for this processor will,
at each scan by 7ZRTX, examine the flag in the top item on the queue,
remove the item from the top of the queue and replace it at the
bottom. (The next %ZRTX scan will thus examine a new flag if there
is more than one buffer on the queue).

PROL: MR TTYIB, AX ;ADDR. OF TOP BUFFER LINK TO AX.
JC AX, ETZ, $NEXT ;IF NO ITEMS ON QUEUE.
RM AX, P1, .43 ;ADDR. OF FLAG TO NXT INSTR.
MR @, AY ;CONTENTS OF FLAG TO AY.
JC AY, ETZ, ENTER ;FLAG IS ¢, SO GO ENTER.
JU $DEQF ;DEQUEUE TOP BUFFER
WRD TTYIB ;BRINGING UP NEXT BUFFER.
JU $ENQ ;PUT TOP BACK ON BOTTOM
WRD TTYIB ; THEREBY ROTATING

- JU $NEXT
ENTER: ZM PSAV ;SET SELF ACTIVE

.

Note that the call to $DEQF (rather than $DEQ) is absolutely
essential. This is because if $DEQ is called an interrupt could
occur between the call to dequeue and the call to $ENQ, and since
the prologue is inactive ZRTX would re-enter at "PROL" so that the
item dequeued before the interrupt will never be enqueued back onto
TTYIB (or anywhere else) and is lost to the system.

2) On return from $DEQ, AY contains the same new value which is in the
first word of the queue so that if AY is @, the queue is empty. If AX
is also @, the queue was empty before $DEQ was called.

QUEUE:

ITEML1:

QUEUE :

ITEM1:

Initial Queue

¢
QUEUE

link

data

e

MRI ITEM1,AX
JU $ENQ
WRD QUEUE

Queue with one item

ITEM1

ITEM1

data

empty

data block to

be enqueued

enqueuing
process

FIG. &4

If a second item is enqueued via:

load AX with ITEM2

JU SENO
WRD QUEUE

Queue with two items

QUEUE: ITEM1
ITEM2

ITEM1: ITEM2

data

ITEM2: ?

data

(Enqueuing)

€e-C
T100-%7%-0L

X118 %

Same Oueue after ..

Again JU $DEQ

Initial Queue .
(3 items) JU $DEQ get:
QUEUE: ITEM 1 QUEUE: ITEM 2 NUEUE: ITEM 3
ITEM 3 ITEM 3 ITEM 3
ITEML: ITEM 2 ITEM2: ITEM 3 ITEM3: ¢
data data data
y and finally another JU
ITEM2: ITEM 3 ITEM3: f
results in the empty queue:
data data
. . OUEUE
on return from $DEQ, AX
ITEM3:)
contains ITEM 1, AY contains
ITEM 2
data

FIG. 5 (Dequeuing)

€-2
100-%%-0L

X1d %

CHAPTER THREE

STANDARD I/0 SERVICE ROUTINES % RTX
70-44-001
INTRODUCTION 3-1

A set of interrupt service routines are provided to handle interrupts
from the teletype and the high speed reader/punch. Before an I/0 device can
cause an interrupt, the device must be started. Therefore, a set of device
starter subroutines are provided in conjunction with the interrupt service
routines. The starters and interrupt service routines are linked by information
found in a control block. The control block consists primarily of queues
containing buffers to be used for input and output and the addresses of the
next locations from which data is to be output and into which data is to be stored.
Each buffer on an input or output queue must contain a negative count of the
number of words in the buffer.

Generally, output works as follows. The desired output device starter is
called. The starter uses the top buffer on the output queue to determine where
to start the output from. It then outputs the first character, sets a bit in
the ISR to allow the output device to interrupt and returns. Then each time
the output device causes an interrupt, the interrupt service routine bumps the
count in the output buffer. If the count is not yet zero, the next character
is output and a non-end-modée return is taken. When the count finally becomes
zero, the buffer is removed from the output queue and an end-mode return is
taken. If another output buffer is on the output queue, the output starter is
called again before the end-mode return is taken.

For input, the appropriate input starter is called. The starter uses the
top buffer on the input queue to determine where the first character is to be
stored. It then sets a bit in the ISR to allow the input device to interrupt,
starts the input device and returns. Each time the input device interrupts , a
user subroutine (specified in the control block) is called. This user sub-

routine allows the user to test for any special end-mode conditions (for example

% RTX
70-44-001
3-2

a carriage return or end of message character). When this subroutine returns

the character is stored in the next location of the input buffer, the count is
bumped, and if it is non-zero the device is restarted and a non-end-mode return
is taken. If the count is zero it is reset to the actual number of characters
stored in the buffer, the buffer is removed from the input queue and an end-
mode return is taken. If another buffer is on the input queue, the input starter
is called again before the end-mode return is taken. Note that the end-mode
condition is signaled by a count equal to zero. Thus, if the user routine dis-
covers the special end mode condition to be true, he must set the count to -1
-so when it is bumped it will become zero and thereby indicate an end-mode con-
dition.

In the discussion which follows TTY refers to the teletype, TTI refers to
the teletype input, TTO to the teletype output, HSR to the high speed reader,
and HSP to the high speed punch. The term "multiple devices'" means two or more
hardware devices of the same type but with different device addresses. For example
in a configuration consisting of three teletypes with addresses 77, 67, and 57
respectively the teletypes are referred to as a set of multiple devices. They all
interrupt to the same location and use the same bits in the ISR, but the teletypes
can be distinguished from each other since each has its own unique address and

its own ready flags.

Length:

% RTX
70-44-001
3-3
$SRET STARTER RETURN
138 (lll G) locations
This routine contains the common return used by all the
standard device starters. Therefore, if any of the standard

device starters are used, $SRET must be loaded. If the user

writes additional device starter subroutines, $SRET could be

Entry Points:

$SRET

$SRT1

Common Return from Device Starter

This routine is called by all the standard device starter
subroutines to return to the calling program. It sets up $ISR
and ISR to allow the started device to interrupt. When $SRET
is called register AY must contain the bit to be OR'd into
SISR and ISR. The MSR is zeroed, interrupt control is turned
on and control is returned to the program calling the device
starter subroutine.

Return Address for S$SSRET

This location contains the return address-1 for the pro-—
gram calling the device starter. This location is used by
SSRET to return to the program which called the device starter
subroutine. Hence a device starter using this routine should

begin by storing the TRP register into $SRT1.

ZRTX
70-44-001
3-4

$SAVI Save Routine For ICF Interrupts

Length: 368 (4¢l¢) locations

This subroutine is used to save and restore registers
when an interrupt occurs. Its entries are called by the
standard ICF-type interrupt acknowledge routines. Therefore,
if any ICF-type interrupt routines are being used, $SAVI must
be loaded. If additional ICF-type interrupt routines are
written by the user, $SAVE may prove useful.

Entry Points:

$SAVI Save Registers

This subroutine is called by all the standard ICF-type
interrupt acknowledge routines (after the TRP has been stored
in $TRP) to save registers ISR, AX, AY, and MSR when an inter-
rupt occurs. $SAVI then zeroes the. ISR and issues a FOI ICO to
allow power fail interrupts only, zeroes the MSR to ensure that

- the AO is in the ADD state and returns. $SAVI has no arguments.

SEMR Restore Registers, End-Mode Return

This routine is called by the standard ICF-type inter-
rupt service routines., It turns interrupt control off, re-
stores the registers saved by $SAVI and takes an ICF-type end-
mode return to %RTX. $EMR has no arguments.

SNEMR Restore Register, Non-End-Mode Return

This routine is the same as $EMR except an LCF-type

non-end-mode return to ZRTX is taken.

% RTX
70-44-001
3-5

STICF Teletype Interrupt Acknowledge - ICF

Length: Absolute Locations 1lg - 168 plus 308 (24 l(l)relocatable locations.

This tape contains the ICF-type interrupt acknowledge routines
for the teletype. Absolute locations ll8 - 138 are used to save
the SC when TTI causes an interrupt and to transfer control to the
TTI interrupt acknowledge routine. Absolute locations 14—168 are
used to save the SC when TTO interrupts and to transfer control to
the TTO interrupt acknowledge routine.

Both the TTI and TTO interrupt acknowledge routines store the
TRP in $TRP, call SSAVI to save additional registers, store the ad-
dress-1 where the SC was stored in $INTL and then check the ready
flag for TTY77. 1If TTY77 caused the interrupt, control is trans-
ferred to the ICF-type TTY77 interrupt service routine. Otherwise,
STICF halts. If the user adds additional teletypes to the system,
STICF must be edited and reassembled to check the ready flags for
the additional teletypes. TFor this reason $TICF is provided as
both a source tape and relocatable object tape.

Entry Points:

STICF ICF-type TTY77 Interrupt Acknowledge

This is a dummy entry entry point since no other standard in-
terrupt routine references any symbol defined in $TICF. It is de-
clared as an ehtry point simply so the user will know after load-

ing where the interrupt acknowledge routines have been loaded.

% RTX
70-44-001
3-6

TTY77 Interrupt Handler - ICF ($CB77)

This tape contains the control block, device starter subroutines and
interrupt service routines for ICF-type handling of TTY77. If another
Teletype is added to the system it must have a unique address other than
77. An interrupt handler similar to $CB77 must also be created to handle
the additional Teletype. To do this, the source tape for $CB77 should be
copied using ZSTE and the exchange command used to change every occurence
of 77 to the address of the additional Teletype. This new source tape
should then be assembled and the resulting object tape loaded to handle
the additional Teletype.

For example, suppose another Teletype with address 67 were added to
the system. Then $CB77 would be copied and all occurences of 77 changed
to 67. The name of the control block for TTY67 would thus become $CB67,
.the name of the reader starter for TTY67 would become $RS67 and so on.

In the discussion which follows all references to the Teletype are to

TTY77.

Length: 4278 locations

Entry Points Detailed descriptions follow

Name Function

$CB77 address of control block associated with Teletype 77.

$SF77 reader stop flag, can be set up by the user to stop
reader input.

SRN77 for internal use by Teletype handler, contains address-1

to store next reader character.

Name

$RQ77

$RU77

SKN77

$KQ77

$KU77

$PQ77

$NN77

$NQ77

$EC77

$RS77

$KS77

ZRTX
70-44-001
3-7

Function

reader queue, contains pointers to reader input buffers,

the user must enqueue reader buffers onto $RQ77.

contains address of user subroutine to modify reader data
and/or check for special reader end-mode conditions.

for internal use by thé Teletype handler; contains address-1
to store next keyboard character.

keyboard qﬁéue, contains pointers to keyboard input buffers,
the user must enqueue keyboard buffers onto $KQ77.

contains address of user subroutine to modify keyboard data
and/or check for special keyboard end-mode conditions.

for internal use by Teletype handler, contains address-1 of
next character to output in priority mode.

priority output queue, contains pointers to priority output
buffers, the user must enqueue priority output buffers onto
$PQ77.

for internalluse by Teletype handler, contains address-1 of
next cﬁaracter to output in normal mode.

normal output queue, contains pointers to normal output buf-
fers, the user must enqueue normal output buffers on $NQ77.
echo buffer, used by the standard user subroutine $ECHO to
echo Teletype input.

reader starter, subroutine called by the user to start
reader input.

keyboard starter, subroutine called by the user to start

keyboard input.

Name

$PS77

$§NS77

$IP77

$oP77

$IL77

$1D77

$IE77

% RTX
70-44-001
3-8
Function
priority output starter, subroutine called by the user to
start priority output to TTO.
normal output starter, subroutine called by the user to
start normal output to TTO.

interrupt service routine to process TTI interupts.

interrupt service routine to process TTO interrupts.

‘return address for user subroutine specified in $RU77 or

$KU77, this return adds one to the count in the input buffer,
stores the character in the input buffer, then checks the
count for equal to zero.

return address for user subroutine specified in $RU77 or
$KU77, this return stores the character and checks (but does
not add one to) the count.

return address for user subroutine specified in $RU77 or
$KU77, this return checks the count only, it neither adds

one to the count nor stores the character.

The Teletype routines provided are buffer oriented. That is, input buf-

fers are filled with characters from TTI and characters from the output buf-

fers are sent to TTO. These input buffers and output buffers must be enqueued

by the user onto the input queues and output queues found in the Teletype con-

trol block. The control block consists of the following information, each

label in the control block is an entry point.

% RTX

70-44-001
3-9
$SF77: WRD @ ;READER STOP FLAG
$RN77: WRD ¢ ;READER NEXT LOC
$RQ77: WRD @,.-1 ;READER QUEUE
$RU77: WRD $IL77 ;USER'S READER SUBROUTINE
$KN77: WRD ¢ ;KEYBOARD NEXT LOC
$KQ77: WRD @§,.-1 ;KEYBOARD QUEUE
$KU77: WRD $IL77 ;USER' S KEYBOARD SUBROUTINE
$PN77: WRD ¢ ' ;PRIORITY OUTPUT NEXT LOC
$PQ77: WRD ¢, .-1 ;PRIORITY OUTPUT QUEUE
$NN77: WRD ¢ ' ;NORMAL OUTPUT NEXT LOC
$NQ77: WRD @, .-1 ;NORMAL OUTPUT QUEUE
$ECT7: WRD ¢,0,0,0 ;ECHO BUFFER

Teletype Input - ICF

Teletype input may be from either the reader or the keyboard. Therefore
the Teletype control block has two input queues, one called $RQ77 for reader
input buffers and the other called $KQ77 for keyboard input buffers. Input

buffers (both reader and keyboard) must conform to the following format:

Input Buffer LINK

COUNT

CHAR1L

CHAR2

CHAR
n

The first word is reserved for enqueing the buffer onto the input queue.

The second word must contain a negative count of the maximum number of char-

% RIX

70-44-001

3-10
acters to be stored. Characters will be stored starting in the third word
of the input buffer.

There are two Teletype input starter subroutines, one called $RS77 to
start reader input and the other called $KS77 to star£ keyboard input. Both
$RS77 and $KS77 are entry points.
$RS77

To start input from the Teletype reader, the user should first enqueue
one or more reader buffers onto the reader queue, then call the reader
starter by a JU $RS77. When $RS77 returns, interrupt control will be on,
reader input will have been intitiated and the ISR set up to allow TTI in-
terrupts. Then each Eime TTI interrupts, a character is stored in top buf-
fer on the reader queue. Note that $RS77 simply initiates reader input, the
TTI interrupt service routine actually fills the reader buffer.
$KS77

To start keyboard iﬁput the user should enqueue one or more keyboard
buffers onto the keyboard queue and then call the keyboard starter by a JU
$KS77. When $KS77 returns, interrupt control will be on, keyboard input will
have been initiated and the ISR set up to allow TTI interrupts. Then each
time TTI interrupts, a character is stored in the top buffer bn the keyboard
queue.

Since there is no way for the interrupt service routine to know whether
a TTI interrupt was caused by the reader or by the keyboard, once a Ieletype
input starter‘is called all TTI interrupts are assumed to be of the source
implicit in the starter. That is, if $RS77 was called, all TTI interrupts
are assumed to be from the reader and if $KS77 was called, TTI interrupts are

assumed, to be from the keyboard.

% RTX
70-44-001
3-11
$1P77
When TTI causes an interrupt, control is transferred to $IP77, the TTI
interrupt service routine, for processing. If the reader starter was called
to initiate input $IP77 considers the charactef to be from the reader, the
input queue to be the reader queue and the input buffer to be the top buffer
on the reader queue. If the keyboard starter was called to initiate input,
$IP77 considers the character to be from the keyboard, the input queue to be
the keyboard queue apd the input buffer to be the top buffer on the keyboard
queue.
Each time $IP77 is entered, it stores a character in the input buffer
and adds one to.the count in the input buffer. When the buffer becomes full

5 set to plus the number of

=
£
t
i

characters stored, the buffer is dequeued from the input queue and an end-
mode return is taken. The new buffer now on top of the input queue becomes
the new input buffer. Thus all the buffers on the input queue are filled
and then dequeued until finally the input queue becomes empty. When this
happens, input is through and the user must call an input starter before in-
put will begin again. An exception is during reader input, when the reader
queue finally becomes empty $IP77 will call the keyboard starter if the key-
board queue is not empty.
$5¥77

$8F77 is a flag in the Teletype control block which can be set by the
user to stop reader input before the reader queue becomes empty. If the
user sets $SF77 to one, reader input is stopped after the next TTI interrupt
and $SF77 is reset to zero. In addition; if the keyboard queue is not empty

keyboard input is automatically started. Once reader input has been stopped

% RTX
70-44-001
3-12

in such a manner it can only be restarted by the user jumping to $RS77, at
which time reader input will continue from where it left off.

User Input Subroutines

Before storing a character in the input buffer, the interrupt service
routine $IP77 calls a user subroutine specified in the control block. If the
character is from the reader, the user subroutine specified in $RU77 ié call-
ed. If the character is from the keyboard, the user subroutine specified in
$KU77 is called.

The user subroutine can modify the data before storing it and also check
for special end-mode conditions. Three general user subroﬁtines ($ASCI,
SECHO, and $LINE) are provided. $ASCLI ignores (that is, does not allow the
service routine to store) zero characters and OR's in bit 7 of non-zero char-
acters thus ensuring 8-bit ASCII. Thus, if the user wishes to input ASCII
characters from the reader, $RU77 should contain $ASCI. $ECHO performs the
same function as $ASCI but in addition echoes the input character. Thus, if
the user wishes keyboard input to be echoed, $KU77 should contain $ECHO.
SLINE is used to store a line of ASCII text in the input buffer. It recog-
nizes the special characters back arrow and rubout to mean respectively, ig-
nore previous character and ignore the entire line. ‘Also, if a carriage re-
turn isAencouﬂtered an end-mode condition is forced even if the input buffer
is not yet full.

$1L77, $ID77, $SIE77

If the user wishes to modify data or check for special end-mode condi-
tions not covered in $ASCI, -$ECHO or $LINE, he may write his own special
user subroutines. When the user subroutine is called AY will contain the TTI

character and AX will contain the address of the input queue. When the user

% RTX
70-44-001
3-13

subroutine has completed its task it should return to one of three places in
the TTI interrupt service routine. A return to $IL77 will add one to the
count in the input buffer, store the character (assumed to still be in AY)
then check the count to see if it is zero indicating the input buffer is full.
A return to $ID77 stores the data and checks, but does not bump, the count. A
return to $IE77 neither bumps the count nor stores the data, it simply checks
the count to see if it is zero. The three returns $IL77, $ID77 and $IE77 are
all entry points. When the user subroutine is called, $IL77 = TRP+1, $ID77

= TRP+3 and $IE77 = TRP+5.

Therefore, to ignore a character the user subroﬁtine need only return to
$IE77. To modify the character before storing, the user subroutine should put
the modified character in AY before returning to either $IL77 or $1ﬁ77= If
the user subroutine discovers a special end-mode condition it should set the
count in the input buffer so that when it is checked by the interrupt service
routine it will be zero indicating an end-mode condition. Specifically, the
count should be set to minus one if returning to $IL77 and zero if returning
to $ID77 or $IE77.

If the user does not wish to modify the data or check for any special
end-mode conditions the user subroutine should -be specified as $IL77. Fof ex—
ample if the user were filling reader buffers with binary data, $RU77 should
contain $IL77.

TTI Example 1

Suppose it is desired to input a maximum of 18 characters from the key-
board into a buffer called KBUF. The following sequence of code will start

input from the Teletype keyboard.

ZRTX

70-44-001
3-14

MRI -22,AX ;SET -COUNT IN

RM AX ,KBUF+1 ; INPUT BUFFER

MRI KBUF , AX sENQUEUE INPUT

Ju $ENQ ;BUFFER ONTO

WRD $KQ77 ;INPUT QUEUE &

Ju $KS77 ;START KEYBOARD INPUT

sCONTINUE PROCESSING

When $KS77 returns, keyboard input will have been started but the input buf-

fer will not yet have been filled. Suppose no further processing can be done
until KBUF is filled. Then $WAIT could be called to wait until the count lo-
cation in KBUF becomes greater than zero, indicating the buffer has been fill-

ed and dequeued from the input queue.

ZR AY ;WAIT UNTIL COUNT
JuU SWAIT ;IS SET GREATER
Jc AO,GTZ ,KBUF+1 ;THAN ZERO, BEFORE PROCESSING

I1f the keyboard user subroutine specified in $KU77 were $SLINE and the following
were typed on the keyboard,

ABD*—CDE;)

KBUF would contain LINK

t=1

ZRTX
70-44-001
3-15
Note that $LINE ignored the first D because it was followed by a back arrow
and that the end-mode condition occurred on the sixth character because it
was a carriage return. The interrupt service routine set the count to plus

the actual number of characters stored.

TTI Example 2

Suppose it is desired to fill two reader buffers, RB1 and RB2, with a
maximum of 10010 binary characters each. The following code would start

reader input. Since binary data is being input $RU77 should contain {L77.

MRI -144 ,AX ;SET —COUNT

RM AX,RB1+1 ;IN READER BUFFER 1
RM AX,RB2+1 ;AND READER BUFFER 2
MRI RBI,AX ;ENQUE BUFFER 1

Ju $ENQ " ;ON'fO INPUT QUEUE
WRD ~ $RQ77

MRT RB2, AX sAND BUFFER -2

Ju SENQ ;ONTO INPUT QUEUE
WRD $RQ77

Ju $RS77 o ~ ;START READER INPUT

As in the case of TTI example 1, when $RS77 returns, reader input will have

been started but the input buffers will not yet be filled.

TTI Example 3

This example shows one way to accomplish double buffering of reader input.
When a reader buffer is full of (or being filled'ﬁith) data it appears on the
"process data queue" called PBQ. When the data in a full reader buffer has

been processe& and is no longer needed, the buffer can be considered empty and

% RTX
70-44-001
3-16

will appear on the ''reader buffer empty" queue.

The two reader buffers RBl and RB2 conform to the format for an input
buffer (i.e. the first word is reserved for enquing the buffer onto $RQ77,
the second word contains a negative count, and characters will be stored
starting in the third word). Since the reader buffers must also be enqueued
onto the "process data' queue (PBQ) or the "reader buffer empty" queue (RBEQ)
each of the input buffers is immediately preceded by another link word. Thus
RB1 is preceded by PBl which is used to enqueue the first reader buffer onto
PBQ or RBEQ and RB2 is preceded by PB2 which is used to enqueue the second
reader buffer onto PBQ or RBEQ.

The first routine START defines the queues and input buffers, initializes
the processor list and starts the scan.

The function of the processor READ is to initiate reader input into empty
reader buffers. To do this, READ checks to see if there is a buffer on RBEQ.
If there is it must be an empty buffer which needs to be filled so READ de-
queues it from RBEQ, enqueues it onto PRQ (queue for buffers being filled) and
$RQ77 (input queue) and calls the reader starter to begin reader input. Note
that when the starter is called the reader may still be going because of a
previous call to the starter. In such a case the starter simply returns.

The function of the processor PROC is to process data in a full reader
buffer and then release the buffer for further input. To do this, PROC
checks to see if there is a buffer on PRQ. If there is the buffer is ei-
ther being filled (indicated by a count less than zero) or is full (indicat-
ed by a count greater than zero). If the buffer is full PROC prdcesses the
data then dequeues the buffer from PRQ and enqueues it onto RBEQ so that pro-

cessor READ can initiate reader input into the now empty buffer.

U

U

31
2e2
233

geeee
eeees

fpeee

ggegl
ggeekn
veeer
ga2eé
peees
geeci1e
gaets
gecic

zee12
gee1y
pag1t
gee1e
Zee17
gge2¢
gge21
ree2z
goe2

S geezy

cages
gegeae
ggeev
gecic
gaeds
zgedz
geell
geedy
peeldc
geele
geriz
ggcae

[T I~ T T i B T o B TN [o T TS B CS JO E o B it T B]

TA M RO

LA e LA

g6 '¢012 11
gaegees
11 '2¢0¢C £6
eao 000
g3 g1g2 £3
rococa
177777
177777
177777
177777
gagecs

£93¢ez4
saeoeca
177772
cgsaeo
cgeaen
g230¢282
gogeeco
cgeeen
gecoes

gazzee
¢gocea

177772

E2e2¢€2
gagiea
£33 3€2
gageca
gaeeced
@opeca
paceca
£22¢35
232213
ggv0ey
©poecH1l

SEXAMPLE 3

ENTRY PBO »RBEQ

REEC: WRD

END

START: MRI PRCL-1sAX
KM AXs3PRCL
Ju BSTRT
PRCL: WRD READ-
" WRD RSAV-1
WRD PROC-1.
WRD PSAV-1
WRD ¢ . :
3FIRST INPUT BUFFER
P31: WRD PB2
RB1: WRD @
WRD -6
WRD @
KRD 9
WRD 2
WRD .0
WRD @
WRD @
s SECOND INPUT BUFFER
PR2: WRD @
RB2: WRO @
WRD -6
WRD @
WRD @
WRD 8
WRD 8
WRD 8
WRD 8
PBO: WRD Bse-1
PB1sPE2

% RTX
70-44-001
3-17

s INITIALI ZE
3PROCESSOR LIST

58 START 'SCAN

sLINK T0 PRQ OR RBEQ
sLINK TO iskQ77
.3 =MAXs NUMe CHARS .

sLINK TO0 PG OK RECQ
sLINK TO -8kQ77

3 -MAXa NUM2 CHARS o

3 PROCESS CLEUE

3 READER BUFRS EMPTY QUEUYE

%091
ca2
0o3
¢au

ear

eas

729

610

U

C C

g12

713

714

€15
o

g1i7
18

¢19

cecee
geeed
reoee
egees
ggercy
ggeecs
£2cce
eeeez
see1e
goe11

pee1z

T ree1s

ceeie
gee17
geeae
geez1
ege2z
gueca2
gacau
ceezc

Pag2e
cage27
gaeie
zoe 31
ree3z
gae3s

- D

Q&té@@ﬂﬁ&ﬂ&

_,eRe S @

g6 "zépe
egoaeed
11 g10¢
gogocea
11 0112
¢3gced
26 €081
gaaeoes
12 1¢e90
esecee

€3 gepe
p2ae2e

¢e pi1c2
gagogo
¢eo0end
23 e1g0¢
eegcoeo
gpaeed
ee 010¢
egooes

177777
eceoco
ceeeeg
#9gaeo
coo@ead
poeaga

11
e3
26
12
03

£6

23

e3

23

(egesy

% RIX
70-44-001
3-18

sROUTINE TO :PROCESS. DATA
' ENTRY PROCsPSAV

sPROLOGUE
PROC: MR PEQ s AX

3 ANY BUFFERS

JC AXSETZs$SNEXTZSEING FIILLED?

kM1 AXsFi1s0 5 YESsCHEC K COUNT TO
MRD eo~1sAY 3 SEE IF THERE IS A

JC %Y:LTZ:$NEXT;FULL BUFK TO PROCESS

s TASK

M PSAV - 3 YES-SET :ACTIVE
L J B

® 3 PROCESS DATA

]

Ju $CEQ "3 REMOVE F.ULL BLFR

WRD PBOQ s FROM FROCESS CUE UE

Ju 3ENO 3 AND ADD TO

WRD RBEOQ 3 "READER BLFFER ENPTY!
Ju SEXEC

sPRCC SAVE AREA
PSAV: WRD PROC-1:sC505C 5250

END

#3 31

U

L

<

g3z
za3

L g4

836
ga27

zas8

289

2132
11
£12
213
g14
215
£16

z17

18

g19

28
221

£22

N Y 8y

SRS SN
S R

[T T o S Y
[FXRLN IR)

eeeeq
ggeer
ggeee
goee7
recele
gse11

zez12
2ae12
gae1y
ggets
ERFE16
2eg17
ggeaee
gee21

gag22
goe23
geees
geegzc
2ae2e¢
geez27
zgeae
gagz31

gae3e
peeE33
g2¢34
gge 3t
gae e
zeed7

N R

L A T T T~ T BN N

N NO N EMRNENG RN DD RN 00D N

;PROLOGUE
06 'efeP 11 READ: MR
corees
11 'g10¢ €3 Jc
¢aeges .

s TASK
0@ "0co0 26 - M
¢80 @32
03 €100 3 Ju
cgagce :
e302¢20 R W RD
g6 2g10 12 MRI
177772 .
11 2110 06 RMI
€39029 .
12 gee1 06 RMD
¢ooaiY .
¢o 01¢0 23 Ju
c200¢9 .
casecs WRD
11 130 11 RS
g3 6180 93 Ju
¢30600 .
gasceq WRD
go 9432 €3 Ju
zaeced
¢o 6192 23 Ju
¢aa020

$READ SAVE
177777 RSAV: WRD
c920ca
¢zeoed
2zzoed
2a92¢3
egeeea

gaocug END

% RTX
70-44-001
3-19

sROUTINE TO BEGIN INPUT.

ENTRY- RSAVsREAD

RBEQ sAX

sEMPTY BUFK TO

AXsETZsSNEXT3BE FILLED?

RSAYV .
$DEOQ.

REEQ
-6sAY

AXsP1,2
AYse ~1
SENO
.PBO,W
CAXsP1
SENG

$RO77

$RS77.

$EXEC

A REA

s FROM

3YES-SET ACTIVE

. 3REMOVE EMPTY EBUFR

'BUFK EMPTY CQUEUE!

3SET =COUNT IN NEW

5ANPUT BUER
3ADD NEW BUFR T0
3 PROCESS QUEUE

sAND TO
s READER QUEUE

INPUT

s START REACER

READ =158 50505850

% RTX
70-44-001
3-20

Teletype Qutput - ICF

$CB77 allows for two types of output to TTO, priority output and normal
output. Normal output should be used for outputting standard messages and data
while priority output should be used for outputting important messages such as
error conditions. The main difference between priority and normal output is
that while priority output is in effect, no normal output can occur. Whereas,
when normal output is in effect, it can be stopped temporarily to allow prior-
ity output.

The Teletype control block has two output queues, one called $PQ77 for
priority output buffers and the other called $NQ77 for normal output buffers.

Output buffers (both priority and normal) must conform to the following format:

Output Buffer LINK

—COUNT

CHAR1

CHAR2

CHAR
n

The first word of the output buffer is reserved for enqueuing the buffer
onto the output queue. The second word must contain a negativevcount of the
number of characters in the buffer wﬁich are to be output to TTO. The first
character output will be in the third word of the output buffer.

There are two Teletype output starter subfoutines, one called $PS77 to
start priority output and the other called $NS77 to staft normal output. Both

$PS77 and $SNS77 are entry points.

% RTX
70-44-001
3-21

$PS77

To start priority output to TTO the user shquld first enqueue one or more
priority output buffers onto the priority output queue, then call the priority
output starter by a JU $PS77. When $PS77 returns interrupt control will be on,
the ISR will be set up to allow TTO interrupts and priority output will have
been initiated (i.e. the first character from the top buffer on $PQ77 will have
been output). Then each time TTO interrupts the next character from the prior-
ity buffer is output. Note that the priority output starter simply dinitiated
priority output by outputting the first character. The TTO interrupt service
routine actually outputs the rest of tﬁe buffer.

If $PS77 is called while normal output is in effect, the actual initia-
tion of priority output will be deferred until the next normal output end-mode
condition occurs (see $0P77).
$NS77

To start normal output to TTO the user should first enqueue one or more
normal outputAbuffers onto the normal output queue and then call the normal
output starter by a Jﬁ 8NS77. When $Ns77 returns, interrupt control will be
on, the ISR will be set to allow TTO to interrupt and normal output will have
been initiated (i.e. the first char%cter from the top buffer on $NQ77 will
have been output). If the normal output starter‘is called while priority out-
put is in effect, the call to the normal output starter is ignored.
$0P77

When TTO causes an interrupt, control is transferred to $OP77, the TTO in-
terrupt service routine, for processing. If output was started by the priority

output starter then the output queue is considered to be $PQ77 and the output

% RTX
70-44-001
3-22

buffer to be the top buffer on $PQ77. If output was started by the normal out-
put starter then the output queue is considered to be $NQ77 and the output buf-
fer to be the top buffer on $NQ77.

Each time $0P77 is entered, it adds one to the count in the output buffer.
If the count is not yet zero, the next character in the output buffer is output
to TTO and a non-end-mode return taken.

If the count has become zero it indicates that the entire buffer has been
output which is considered to be an end-mode condition. ‘The buffer is dequeued
from the output queue and the new buffer now on top of the output queue becomes
the new output buffer. The first character from the new output buffer is out-
put to TTO and an end-mode return is taken. Thus, each of the buffers on the
output queue is output to TTO and then dequeued until the output queue becomes
empty. When this happens, output is through and the user must call an output
starter before output to TTO will begin again.

Each time an end-mode condition occurs during normal output $0P77 checks
to see if the user has attempted to start priority output. If the user has
attempted to do so, $0P77 will then start up pfiority output rather than con-
tinue on to output the next normal buffer. When normal output is stopped af-
ter an end-mode condition by $0P77 in order to begin priority oﬁtput, the
user must call $NS77 to resume normal output.

TTO Example 1

Suppose it is desired to output two bufférs, each containing nine char-
acters, to TTO under normal mode. The following sequence of code would start

the normal output.

JU

WRD

Ju

WRD

JU

-11,AX
AX,NB1+1
AX NB2+1
NB1,AX
$ENQ
$NQ77
NB2,AX
$ENQ
$NQ77

$NS77

ZRTX
70-44-001
3-23

;SET —COUNT IN

;NORMAL OUTPUT

;BUFFERS

sADD 1ST BUFFER

;TO NORMAL QUEUE

;THEN 2ND BUFFER
;TO NORMAL QUEUE

sSTART NORMAL OUTPUT

;CONTINUE PROCESSING

When $NS77 returns the normal output wili have been started. That is, the

first character from NBl1 will have been output. If the user now wished to

stop normal output and start priority output he need only call the priority

starter. For example, suppose an error condition was discovered and the user

wished to print an alarm message stored

MRT

RM

MRT

JU

WRD

JU

When $PS77 returns, the actual priority

-7,AX

AX, ALRM#1

ALRM, AX
$ENQ
$PQ77

$PS77

in a priority buffer called ALRM.

:SET —COUNT IN

;PRIORITY BUFFER

;ADD PRIORITY BUFFER
:TO PRIORITY QUEUE
;THEN START PRIORITY OUTPUT

message may not yet have started to

be output since normal output might be in effect. However, the call to $PS77

will have been noted and when a normal end-mode condition occurs (i.e. when

% RTX
70-44-001
3-24

all of NB1 has been output and NB1l has been dequeued) the output of the pri-
ority message will begin. When priority output is through the user may wish
to continue the normal output of NB2 in which case he need only say JU $NS77

since NB2 is already enqueued onto $NQ77.

Length:

ZRTX
70-44-001
3-25

SHICF High Speed Reader/Punch Interrupt Acknowledge - ICF

Absolute locations 178 - 248 plus 3¢8 (2410) relocatable locations.
This tape contains the ICF-type interrupt acknowledge routines
for high speed reader/punch 76. Absolute locations 178 - 218 are
used to save the SC when HSR causes an interrupt and to transfer
control to the HSR interrupt acknowledge routine. Absolute loca-
tions 228 - 248 are used to save the SC when HSP causes an interrupt
and to transfer control to the HSP interrupt acknowledge routine.
Both the HSR and HSP interrupt acknowledge routines store the
TRP in $TRP, call $SAVI to save additional registers, and store the

address-1 where the SC was stored in $INTL. The interrupt acknow-

76 (input ready flag if HSR caused the interrupt or output ready
flag if HSP caused the interrupt). If high speed reader/punch 76
caused the interrupt then control is transferred to the ICF-type
interrupt service foutine for high speed reader/punch 76. (SIP76
if HSR caused the interrupt or $OP76 if HSP caused it.)

If the interrupt was not caused by high speed reader/punch 76
then SHICF halts since an unknown reader/punch éaused the interrupt.
Therefore, if the user adds additional high speed reader punches to
the system, $HICF must be edited and reassembled to check the ready
flags for the additional high speed reader punches. For this rea-
son $HICF is provided as both a source tape and as a relocatable ob-

ject tape.

ZRTX
70-44-001
3-26

Entry Points:

SHICF ICF-Type High Speed Reader/Punch Interrupt Acknowledge

This is a dummy entry point since no other standard inter-
rupt routine references any symbol in $HICF. Its purpose is
simply to let the user know into what locations $HICF has been

loaded.

% RTX
70-44-001
3-27

HSR/HSP76 Interrupt Handler — ICF ($CB76)

This tape contains the control block, device starter subroutines and in-
terrupt service routines for ICF-type handling of high speed reader/punch 76.
If aﬁother high speed reader/punch is added to the system it must have a
unique address other than 76. An interrupt handler like $CB76 must alsc be
created to handle the additional high speed reader/punch. To do this, the
source tape for $CB76 should be copied using %STE and the exchange command
used to change every occurence of 76 to the address of the additional high
speed reader/punch. This new source tape should then be assembled and the
resulting object tape loaded to handle the additionalrhigh.speed reader

punch .

Length: 2208 locations

Entry Points: Detailed descriptions follow

Name . Function

$CB 76 - , address of control vlock associated with high speed read-
er/punch 76. |

$§SF76 HSR stop flag, can be set by the userlto stop HSR input.

$RN76 for internal use by high speed reader/punch handler, con-
tains address-1 to store next character from HSR.

$RQ76 HSR queue, contains pointers t6 HSR input buffers, the
user must enqueue HSR input buffers onto $RQ76.

$RU76 contains address of user subroutine to modify HSR data
and/or check for special HSR end-mode canditions.

$PN76 for internal use by high speed reader/punch handler, con-

tains address -1 of next character to be output to HSP.

Name

$PQ76

$RS76

$PS76

$IP76

.$0P76

$IL76

$ID76

$IE76

% RTX
70-44-001
3-28

Function

HSP queue, contains pointers to HSP output buffers, the
user must enqueue HSP output buffers onto $PQ76

HSR starter, subroutine called by the user to start input
from HSR.

HSP starter, subroutine called by the user to start output
to HSP.

interrupt service routine to process HSR interrupts.
interrupt service routine to process HSP interrupts.
return address for user subroutine specified in $RU76,
this return adds oné to the count in the HSR input buffer,
stores the character in -the HSR input buffer, then checks
the count for equal to zero.

return address for user subroutine specified in $RU76,
this return stores the character then checks (but does not
add one to) the count.

return address for user subroutine specified in $RU76,
this return checks the count iny, it neither stores the

character nor adds one to the count.

The control block for high speed reader/punch 76 is similar to the Tele-

type control block (§CB77) except that keyboard input and priority output in-

formation is not included. The control block is as follows, each label in the

control block is an entry point.

% RTX

70-44-001
3-29

$CB76=.

$RS76: WRD ¢ ;HSR STOP FLAG

$RN76: WRD ¢ ' sHSR NEXT LOC

$RQ76: WRD ¢,.-1 ;HSR QUEUE

$RU76: WRD $IL76 ;USER'S HSR SUBROUTINE

$PN76: WRD ¢ : ;HSP NEXT LOC

$PQ76: WRD @,.-1 sHSP QUEUE

HSR Input - ICF

Input from HSR is buffer oriented and the format for an HSR buffer is the
same as the format for a Teletype input buffer. That is, the first word is re-
served for enqueuing the buffer onto the HSR queue ($RQ76)-found in the control
block. The second word contains a negative count of the maximum number of
characters to be stored and characters from HSR are stored starting in the
third word.

Input from HSR is handled in the same manner as reader input from TTI.
Since there is no keyboard capability with HSR, there is only one HSR starter
and one HSR queue. As with TTI reader ouffe;s, the user must enqueue HSR
buffers onto the input queue $RQ76. |

$RS76

To start input from HSR the user should first enqueue one or more HSR buf-
fers onto the HSR queue and then call the HSR starter by a JU‘$RS76; When
$RS76 returns, interrupt control will be on, HSR iﬁput willkhave Been initiated
and the ISR set up to allow HSR interrupts. As with the Teletype reader
starter, $SRS76 simply initiates HSR input, the interrupt service fills thé HSR

buffer.

7% RTX
70-44-001
3-30

$1P76

When HSR causes an interrupt, control is transferred to $IP76, the HSR
interrupt service routine, for processing. $IP76 performs the same functions
as the TTI interrupt service routine $IP77. That is, characters are stored
in the top buffer on the reader queue. When the buffer becomes full the
count is set to plus the number of characters stored and the buffer is de-
queued from the reader queue. The new buffer now on top of $RQ76 will then
be filled and so on until all buffers on $RQ76 have been filled and dequeued.
HSR input is then through and $RS76 must be called to begin more HSR input.
$SF76

$SF76 is a flag in the control block which can be set by the user to
stop HSR input before the HSR queue becomes empty. If the user sets $SF76
to one, HSR input is stopped after the next HSR interrupt and $SF76 is reset
to zero. Once this has been done the user must call $RS76 to restart HSR in-
put from where it left off.

User Input Subroutines

$IP76 allows for user subroutines to alter data and check for special
end-mode conditions in the same way that $IP77 allows such subroutines. The
address of the user subroutine should be stored in $RU76 in the.control block.
When the subroutine is called, AY contains the HSR character and AX contains

the address of the HSR queue.

SIL76, $KD76, SIL76

The user subroutine must return to one of three locations in the HSR in-
terrupt service routine. These three returns are similar to the three returns
for Teletype user subroutine returns. A return to $RL76 adds one to the count

in the input buffer,stores the data (assumed to still be in AY) then checks

% RTX

70-44-001

3-31
the count for equal to zero. A return to $ID76 stores the data and checks, but
does not bump the count. A return to $IE76 simply checks the count, it neither
adds one to the count nor stores the data. When the user subroutine is called
$IL76 = TRP+1l, $ID76 = TRP+3, and $IE76 = TRP+5. The standard user subroutine
$ASCI may be used as a user subroutine fof either HSR input or TTI input, and only
one copy of $ASCI is needed if both HSR and TTI are running at the same time.

HSR Example 1

Suppose it is desired to fill an HSR buffer with a maximum of 48 binary

characters. The following code would start reader input. Since the data is bi-

nary $RU76 should contain $IL76.

MRI -60 , AX sSET —COUNT
RM AX HSRB+1 ’ ;IN INPUT BUFR.
MRI HSRB,AX ;ENQUEUE INPUT
JU SENQ sBUFFER ONTO HSR
WRD $RQ76 - :QUEUE AND
Ju $RS76 ' ;START HSR INPUT
: : | ;continue processing

As in TTI example 1, when $RS76 returns HSR input will have been initiated but
the input buffer will not yet be full.

HSP Output - ICF

The output to HSP is buffer oriented. The format for an HSP output buffer is
the same as the format for a Teletype output buffer. That is, the first word
is reserved for enqueuing the’buffer onto the HSP output quége ($PQ76) found in
the control block. The second word contains a negative count of the total num-

ber of characters to be output from the buffer. The first character output is

% RTX
70-44-001
3-32

is in the third word.

Output to HSP is handled in the same manner as output to TTO. However,
there is no priority output feature in HSP so there is only one HSP starter
and one HSP queue.
$PS76

To start output to HSP the user should first enqueue an HSP buffer on the
HSP queue and then call the HSP starter by a JU $PS76. When $PS76 returns, in-
terrupt control will be on, output to HSP will have been initiated and the ISR
set up to allow HSP interrupts. $PS76 simply initiates output by outputting
the first character to HSP, the HSP interrupt service routine outputs the re-
maining characters.
$0p76

Control is transferred to the HSP interrupt service routine ($OP76) when
HSP causes an interrupt. $0P76 performs the ssme functions as the Tele-
type interrupt service routine $0P77. That is, each time an HSP interrupt oc-
curs a character from the output buffer is sent to HSP and the count location
bumped. When all characters in the buffer have been output the buffer is de-
queued from $PQ76. The new buffer on top of $PQ76 is output and so on until
all the buffers have been output and dequeued. HSP butput is tﬁen through and
$PS76 must be called to begin more HSP output.

HSP Example 1

The following sequence of code will start output of an 18 character buffer

called HSPB to HSP.

JU

WRD

JuU

-22,AX
AX HSPB+1
HSPB,AX
$ENQ
$PQ76

$PS76

ZRTX
70-44-001
3-33

;SET —COUNT

;IN OUTPUT BUFR
;ENQUEUE OUTPUT
;BUFR ONTO HSP
;QUEUE AND

:START HSP OUTPUT

scontinue processing

As with TTO example 1, when $PS76 returns output to HSP will have been

started but the entire buffer will not yet have been output.

Length:

% RTX
70-44-001
3-34

$TTYQ TTY ICO Service

Absolute locations 11-16 plus 6318 (409l¢) relocatable locations.

This tape contains the ICO-type teletype interrupt service
routines and the associated teletype starter subroutines. Note
that if ICO-type teletype interrupt service routines are used, the
associated ICO-type teletype starter subroutines must also be used.
The starter routines are called ICO-type even though interrupt
control is off throughout them because these starters are associat-
ed with ICO-type interrupt service routines.

The ICO-type teletype interrupt service routines. and starters
are designed to handle multiple teletypes (one or more teletypes,
each with a unique address). Associated with each teletype must
be a control block and these c&ntrol blocks must be enqueued by the
user onto a queue called $TTYQ. The format for an ICO~-type tele-
type control block is the same as the format for an ICF-type tele-
type control block ($CB77) except that the ICO-type control block
has three additional words at the beginning of the control block.
The first of these three words is reservgd for linking to the next
ICO-type teletype control block. The second and third words con-
tain the instructions FO ¢,XX and SF XX,{ respectively,vﬁhere XX is
the octal address of the.teletype.associated with that particular
control block. The control block must be defined by the uséf.

The control blocks queued onto $TTYQ enables all teletypes to
use the same ICd—type TTI and TTO interrupt service rougines and

starters. When an ICO-type starter is called it has as its argu-

% RTX
70-44-001
3-35

ment the address of the control block associate& with the par-
ticular teletype to be started. When an ICO-type interrupt
service routine prodesses an interrupt, a subroutine ($FND,
discussed later) is called to find which teletype caused the
interrupt. S$FND returns the address of the control block as-
sociated with the teletype which caused the interrupt. The
information in this control block is then used by the inter-
rupt service routine to process the interrupt.

Absolute locations 11—138 are used to store the SC when

a TTI interrupt occurs and to transfer control to the ICO-type

TTI interrupt service routine. Absolute locations 14—168 are

)

used to save SC when TTQO causes an interrupt and to tramsfer
control to the ICO-type TTO interrupt service routine. The

ICO-type TTI and TTO interrupt service routines perform the

n

ame functions as their ICF-type counterparts, $IP77 and $OP77
respectively. However, the ICO-type ihterrupt service routines
turn interrupt control on while thg interrupt is being serviced.
The ICO-type teletype interrupt service routines have two unde-
fined parameters, $LBM and S$LPM, which are use& in the calls to
$ICO (see entry points in %RTX). $LRM and $LEM are the ISR masks
for TTI and TTO respectively. The user must defiﬁe $LRM and $LPM
as parameters in one of his processors énd declare $LﬁM and S$LPM
as entry points. All teletypes in a particular system must be
handled in' the same manner; that is they must bé all ICO-types or

all ICF-types.

% RTX
70-44-001
3-36

Entry Points:

S$TTYQ Queue for TTY Control Blocks (ICO-type)

Contains pointers to the ICO-type teletype control blocks.
Associated with each teletype is an ICO-type control block whose
format is the same as an ICF-type teletype control block (see
$CB77) . However, the ICO-type control blocks has three addition—

al words at the beginning.

word 1 reserved for linking to next control block
word 2 FO ¢,XX
word 3 SF XX,0

The XX appearing in words 2 and 3 of the control block are the
address of the teletype with which this particular control block
is associated.

The control blocks must be enqueued onto $TTYQ by the user.

STKS TTI Keyboard Starter - ICO

This subroutine is called to start keyboard input from any
teletype in a system where teletype interrupts are handled in an
1CO-type manner. The calling sequence is:

JU $TKS

WRD X
where x is the address of the pontrol block associated'with tbe
teletype which is to be started. $TKS perfdrms the same functions

as the ICF-type keyboard starter ($KS77).

$TRS

$TNS

$

PS

% RTX
70-44-001
3-37

TTI Reader Starter - ICO

When teletypes are being handled in an ICO-type manner, $TRS
should be called to start reader input from any teletype. The
calling sequence is:

JU $TRS

WRD X
where x is the address of the control block associated with the
particular teletype which is to be started. $TRS performs the

same functions as the ICF-type reader starter (SRS77).

TTO Normal Output Starter — ICO

This subroutine should be called to start normal output to
any teletype where teletypes- are being handled in an ICO-type
manner. The calling sequence is:

JU _ $TNS

WRD X
where x is the address of the control block associated with the
particular teletype wiiich is to bg started. $INS performs the

same function as the ICF-t;pe pnormal output starter ($NS77).

TTO Priority Output Starter -ICO

This subroutine should be called to start prierity output
to any teletype in a system where teletypes are Being handled
in an ICO-type manner. The calling seqﬁence is:

JU $TPS

WRD X
where x is the address of the control block associated-with
the particular teletype being started. $TPS performs the same

functions as the ICF-type priority output starter ($PS77).

% RTX
70-44-001
3-38

$FND FIND INTERRUPTING DEVICE

Length: 728(5819) locations
This tape contains the subroutine $FND which is called by
the ICO-type teletype interrupt service routines to find which
particular teletype (in a set of multiple teletypes) caused an
interrupt.
Entry Points
$FND Find Interrupting Device
This subroutine is used to find which device in a set of
multiple devices caused an interrupt. It can be callea by any
ICO-type interrupt service routine which has a control block

queue in the same format as $TTYQ. The calling sequence is:

Ju $FND
WRD X
WRD Y

where X defines the status bits to sense if the device is ready and

where Y is the address of the control block ggggg associated with
the set of multiple devices being tested. When $FND returns, in-
terrupt control is off and the top buffer on the control block
queue is the control block associated with'the particﬁlar device
which caused the interrupf. For example, suppose there wére
three teletype control blocks named CB1l, CB2 and CB3 endueued on-
to $TTYQ in the order CB2, CBl, CB3. If TTIL céused én interfppt .

the ICO-type interrupt service routine would call $FND by saying:

JU $FND .
WRD 1000 ;BIT 9 = STATUS TEST FOR IRDY
WRD $TTYQ;TEST TELETYPES)

% RTX
70-44-001
3-39

If the teletype associated with CB3 caused the interrupt, $FND

would return with CB3 as the top buffer on $TTYQ.

% RTX

70-44-001
3-40
$ASCI
Length: 3ll¢ (378) Locations
Function: ASCII input user exit
Calling Sequence: AY contains character from input device.

AX contains address of input queue in the control block.
JU $ASCI (from within the input interrupt routine)
If the input character in AY is equal to zero, $ASCL

~ returns to TRP + 5 which.ignores‘the character. Other-
wise, bit 8 is OR'd into AY to emsure an 8-bit ASCII
character, the character is checked for being a car-
riage return, and a return is made to TRP + 1. If the
character is a carriage return, tﬁe count location in
the input buffer is set to -1 so that when the count is
bumped at TRP + 1, an end mode condition appears.
This routine is called by $ECHO. It can also be used
as the '"user end mode check sﬁbroutine" specified in
the control block if the special end mode condition is

a carriage return.

$ECHO

Length:

Function:

Calling Sequence:

% RTX
70-44-001
3-41

5710 (718) Locations (ICF) 581¢ (]28) Locations (ICO)

To echo TTI keyboard input

AY contains character from TTL keyboard

AX contains address of keyboard queue in the control
block.

JU S$ECHO (from within TTI interrupt service)

The purpose of $ECHO is to‘0utput the character in AY
by putting it in the echo buffer, enqueuing the echo
buffer onto the priority output queue and calling.the
priority output starter. The addresses of the echo
buffer, priority output queue and priority starter are
calculated from the address of the keyboard input

queue. Therefore $ECHO can echo the input from
keyboard only.

SECHO first checks to see if AY is zero. If is is zero,
a return to TRP + 5 is taken. Otherwise5 SASCI is call-

ed to OR in bit 8 and check for end mode. When $ASCL

returns, $ECHO checks the count in the echo buffer. If

the count is not yet zero then the previous character -
has not been echoed .and $ECHO return to TRP + 5 as if
the character were ¢ . (i.e. the character is ignored).
Otherwise, the character is sforgd in the echo buffer.
The echo buffer is then enqﬁeued onto the:priority out—

put queue, the priority output starter is called and

%RTX

70-44-001

3-42
control returns to TRP + 1. If the character was
a carriage return, a line feed is also echoed.
$ECHO is called by $LINE. There are two versions
of $ECHO, one for use with ICF teletype routines
and one for use with ICO teletype routines. Both
versions perform exactly the same functions but
have different ways of calling the priority output

starter.

% RTX

70-44-001
3-43
SLINE
Length: 7ﬁ¢ﬂwyLmumm
Function: To echo'and input a line from TTI keyboard
Calling Sequence: AY contains character from TTI keyboard.

AX contains address of keyboard input queue in the

control block

JU S$LINE (from within Teletype interrupt service

routine)

This subroutine first checks to see if AY is zero.

If AY is zero control returns to TRP + 5. Otherwise,

$ECHO is called. When $ECHO returns, the character

is checked to see if it is a backarrow or rubout.

If the character is a backarrow, keyboard next loc

($KN77) and the count in the keyboard buffer are each

decremented by one (unless doing so would step these
- pointers back beyond thé beginning of the buffer)

| and control returns to TRP + 5. This procedure deletes

the previous character.

If the character is a rubout then the keyboard buffer

coﬁﬁt,and next loc are reset to their initial values,

thus deleting all previous characters in the line. Con-

trol then passes to TRP + 5.

If the character is neither a'bagkarrow nor a rubout,

then control returns to TRP + 1.

This routine can be used aé‘the "user end mode check

subroutine" specified in the control block if the user

ZRTX

70-44-001

3-44
wishes to echo keyboard input where the end mode

condition is a carriage return, and allowing the

backarrow and rubout editing features.

% RIX
70-44-001
3-45

$TKP - TIME KEEPER INTERRUPT SERVICE

Length: absolute loéations 1008—1038, plus 1528 relocatable locations
Function:

This ICF-type interrupt service routine is used with the Real Time
Clock to keep track of time-of day and/or time intervals. The routine has
two constants which are set to the 60 cycle version of the Real Time Clock.
These constants can be changed to accomodate any setting for the Clock.
These constants are in $TPIN and in SIPSC (see below).

Entry Points: Detailed description follows

$DAY - day counter

$HOUR - hour counter

SMIN - minutes counter

$SEC - seconds counter

SFSEC - fraction of second counter

$CLOC - rollover counter (same units as $FSEC)

$TPIN - " ticks per iﬁterrupt (value counted down in loc 103)

$IPSC - interrupts per sec (defines $FSEC and $CLOC units)

$TKP - start of time-keeper routine (for identification on
load-map only)

STMST - routine to start up the Real Time Clock

$GTTM - routine to obtain time of day

Detailed Discussion:

The two constants S$TPIN and $IPSC define the units for the operatidn of
the program. Both quantities must be set to a negative count. The clock
hardware increments location 103 at a regular interval determined by staples

wired on the clock itself. When location 103 overflows, the clock interrupts.

% RTX

70-44-001

3-46
$TPIN is the quantity which is placed in location 103 and determines how
much time elapses before an interrupt occurs. At each interrupt, location
103 is restored to the constant in $TPIN, and both $CLOC and $FSEC are in-
cremented. The value in $CLOC is allowed to overflow (wrap around). The
value in $FSEC, however, is compared to the value in $IPSC and when their
sum is equal to @ (SIPSC is negative, $FSEC is positive), the value in $SEC
is incremented. Thus $IPSC determines the numbet of interrupts per second.
$SEC and $MIN are incremented modulo 60. S$HOUR is incremented modulo 24,
the overflow being counted in $DAY.

To start the timer, the entry $TMST should be called by the system
start up. The clock will be running with location 103 initialized upon re-
turn. If any of the quantities $DAY, $HOUR, $MIN, $SEC or $FSEC are to as—
sume initial values they should be set before $TMST is called. Also, if
the Real Time Clock being used is not the 60 cycle version, or if it is the
60 cycle version but interrupts are desired more than once a second, the
quantities $TPIN and $IPSC should be set before calling S$TMST. The calling
sequence itself is simply JU $TMST. Typically this call will bevjust be-
fore calling $STRT (in ZRTX) to get the system going.

To get instantaneous time-of-day, the entry point $GITM can be called.
This routine turns interrupt control off to prevent the timé variables from
being changed while they are fetched. It then stores $DAY, $HOUR, S$MIN,
$SEC and $FSEC sequentially in the five locations immediately following the
JU $GTTM, turns interrupt control back on and returns. Thus the call to
$GTTM should look like

Ju $GTTM
LOC .+5

% RTX
70-44-001
3-47

where the LOC statement reserves the five locations needed to store the time-

of-day.

Examples
1.
2.
3l

Notes:
l.
2.

If $TKP is used as loaded, the Real Time Clock must be the 60 cycle
version. $TPIN is set to -748 (—6010) and SIPSC is -1. Thus the
clock will interrupt once per second after counting 6010 in location
103 (at the rate of one count per 1/60 second).

If the real time system requires interrupts every half second and
the 60 cycle clock is being used, set $TPIN to -368 (f3010) and $IPSC
to -2.

In general, if the rate at which the clock increments location 103
is n per second, and the unit time interval desired for $CLOC and
$FSEC is %-seconds, set STPIN to -g and $IPSC_to -m. The quantity
m must be D1 and to keep accurate time, the quantity %-should be an

integer.

The timer algorithm is self—correcting for instances when the clock
cannot interrupt due to the interrupt control being off. The inter-
rupt control can be off for a period of time not exceeding the max-
imum of

a) one minute or

b) 32767 clock increments
without loss of timing accuracy in the long run (i.e. $TKP catches
up) .
The quantity $CLOC can be used to time out specified intervals up to

a maximum interval of 65535 units of %'seconds (see Examples) using

% RTX
- 70-44-001
3-48

the SWAIT routine as follows:
Suppose it is desired to delay 1008 $CLOC counts before continuing in

some processor, The following code accomplishes this:

MR $CLOC,AX sADD INTERVAL

MRI 100 ,AY ;TO CURRENT $CLOC
RRC AO,P1,AY

Ju SWALT

JC A0 ,GE%,$CLOC s (SEE $WAIT WRITE-UP)

Since $CLOC is a rollover counter, the comparison supplied to the $WAIT

routine above will fail until $CLOC has been incremented at least 1008

times, even if $CLOC overflowed somewhere along the line.

3. S$TKP always takes an end-mode return after servicing an interrupt.

% RTX
70-44-001
3-49

ZRTX DIRECTORY TAPE

A directory tape is provided for the Real Time Executive and the

standard interrupt service routines. It has the following routines in

this order.

1.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

$TKP
SLINE
$ASCI
$TTYQ
$FND
$CB77
$TICF
$CB76
$HICF
$SAVI
$SRET
$SETM
$GETM/$PUTM

$SREL

SWALT

$AHGH/$ALOW
$ATCH
$ENQ/SDEQ

%RTX

Notes:

% RTIX
70-44-001
3-50

If an executive with $USAV/SURES calls is desired, then the tapes
for ZRTX, $SREL and $AHGH/SALOW which have calls to $USAV/$URES
should be force loaded before the directory tape is loaded.

If the user has any references to $SECHO (or SLINE which calls
SECHO) then either the ICO version or the ICF version of $ECHO
must be force loaded either before or after the'directory tape has

been loaded.

@I’E GRI Computer Corporation

NEEDHAM STREET, NEWTON, MASSACHUSETTS (2144

FEth A1 -t o

TEL. (417} 949-08C0
TEL: (417} 9490800

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	xBack

