
floating point 
manual 



Price $1. 75 

GRI-909 

FLOATING POINT MANUAL 

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164 
,·c October 19 70 by GRI Computer Corporation 

71-44-001-A 
1170-500 



TABLE OF CONTENTS 

1 FLOATING POINT INTERPRETER 

1.1 Introduction • 

1.2 Basic Package, $SF! 

1.3 Floating Point Format 

1.4 Internal Registers 

2 BASIC COMMANDS 

2.1 Command Categories 

2.2 Command Descriptions 

2.2.1 Type I Commands - Load & Store Commands 

2.2.2 Type II Commands - Binary Commands • 

2.2.3 Type III Commands - Unary Commands • • 

2.2.4 Type IV Commands - Index Commands 

'l 'l c: 
L • L • ..J T-ype V Commands Conditionals 

2.2.6 Type VI Command - Exit • • • • 

3 DATA CONVERSION 

3.1 Introduction • • . . . . . . .~ . . . . 
3.2 Floating Point to Character Conversion • 

3.3 Character to Floating Point •• 

3.4 Common Tables & Routines • 

3.5 Character Set Table 

3.6 Floating Point Powers of Ten Table • 

3.7 Left Shift FAC 

3.8 Multiply FAC by Ten 

4 EXTENDED COMMANDS 

4.1 Introduction • 

4.2 Sine, Cosine 

FLOATING POINT MANUAL 
71-44-001 

• 1-1 

. 1-4 

. . . 1-6 

1-7 

• 2-1 

2-2 

. 2-2 

. 2-3 

. . • 2-7 

2-8 

2-8 

2-11 

• 3-1 

3-2 

3-5 

. 3-7 

• • 3-8 

3-9 

3-10 

3-11 

. . 4-1 

. 4-3 



4.3 Arc Tangent . 

4.4 Natural Log . 

4.5 Exponential 

4.6 Square Root . 

5 NON-INTERPRETIVE MODE USAGE 

5.1 Introduction 

5.2 Subroutines • • 

5.2.1 Double Precision Fixed Point Add 

5.2.2 Double Precision Fixed Point Multiply . 

5.2.3 Double Precision Fixed Point Divide • • 

5.2.4 Single Precision Divide • 

5.2.5 Floating Point Normalize 

5.2.6 Negation and Store 

5.2.7 Generate Zero or Largest Number • 

5.2.8 Floating Arithmetic Right Shift 

5.2.9 Other Notes on Non-Interpretive Usage • 

5.3 User Generated Extended Functions . . 

6 OPERATING INSTRUCTIONS AND SYSTEM GENERATION 

6.1 Using the Package as Supplied 

6.2 User Generated Systems 

6.2.1 General . • • • 

6.3 Assembling $SF! 

6.4 Generating a Floating Point System 

APPENDICES 

Appendix A Command Summary - Basic • . . 

Appendix B Commented Command Equate Tape 

FLOATING POINT MANUAL 
71-44-001 

. . . 4-6 

. 4-7 

4-8 

. 4-9 

5-1 

. 5-2 

5-2 

. 5-3 

. 5-4 

. . 5-5 

. 5-7 

5-9 

5-10 

. 5-11 

. . • 5-12 

.. 5-12 

. 6-1 

. 6-4 

. 6-4 

. . 6-4 

.. 6-5 

A-1 

• B-1 



Appendix C Source Tape Organization • • • • . • • • • 

Appendix D %FCG - Floating Point Constant Generator 

Appendix E FPSET - Error Trap Routine • 

Appendix F Trace Routine 

FLOATING POINT MANUAL 
71-44-001 

C-1 

D-1 

• E-1 

• F-1 



1-1 FLOATING POINT MANUAL 
71-44-001 

CHAPTER ONE 

FLOATING POINT INTERPRETER 

1.1 Introduction: 

The GRI Floating Point Intrepreter is a complete system that allows the 

user to process data in floating point arithmetic. Floating point arithmetic, 

through the u;e of multiple precision arithmetic and an exponential concept 

greatly extends the range of precision available to the user beyond that of 

fixed point arithmetic. It also, through utility routines, frees the user 

of the bookkeeping involved with scaling and unsealing of numbers that is 

necessary in a fixed point system. 

The GRI-909 has an instruction set which is known as machine language. 

The computer reads instruction words out of its memory and hardware is ac-

tivated by the interpretation of each instruction word to cause the execution 

of that instruction. An interpretive software system fetches instructions 

which we shall call commands from the computer's memory and causes various 

subroutines to be entered as a result of the interpretation of the connnand. 

These commands fetched by the interpreter are also called psuedo-instructions 

because their format deviates from the machine's instruction format. The 

standard machine format instruction is 

WORD 1 

WORD 2 

SDA MOD DDA 

[ADDRESS] (if a memory reference in­
st!'uction) 

A pseudo-instruction or command such as the ones used in the GRI Floating 

Point Interpreter looks like this: 

WORD 1 OP CODE 

WORD 2 [ADDRESS] (if a memory reference pseudo-instruction) 

The interpreter actually simulates the process used by the computer's 

hardware to execute an instruction. The interpreter fetches the OP CODE words 



1-2 
FLOATING POINT MANUAL 

71-44-001 

and addresses, sets up arguments, flags, and performs a function on the ar-

gument(s) as specified by the OP CODE of the pseudo-instruction. 

An interpretive approach to floating point arithmetic provides the user 

with a functionally oriented language that makes usage of floating point 

arithmetic much easier than if it were done through a series of subroutines 

called in machine language. The user references floating point numbers 

with a single address which is the first address of the two word floating 

point number. The interpreter takes care of the address bookkeeping neces-

sary for two word argument handling. The interpreter also maintains a set 

of accumulators much the same as an arithmetic unit. Arguments and results 

are manipulated and left in these accumulators. The interpreter utilizes 

two such accumulators plus an index register. 

There are a set of commands in the interpretive system that are not 

floating point arithmetic commands. These are program control commands such 

as conditional jumps and index register manipulators. The index is simply 

used to keep track of the number of times command loops are executed. These 

commands, although they could be effected by use of basic machine language, 

are also provided in the interpretive mode because they can save the user time 

that would be spent entering and leaving the interpretive mode, and almost 

always save space in terms of the coding needed. 

When the user is ready to execute commands in his program, he first is-

sues a machine language command that causes a jump to the interpreter to take 

place. The interpreter now assumes control and starts fetching commands which 

follow the jump that caused interpretive mode entry. If the user wishes to 

begin executing machine language instructions, he must issue an interpretive 

command that causes the interpreter to relinquish control. In essence, the 



1-3 
FLOATING POINT MANUAL 

71-44-001 

machine is running in two different modes; a machine language mode and a 

psuedo-language mode -- in this case, a floating point language. 

The GR! interpretive system offers a novel error trap feature which 

may be invoked by the user to assist in tracking down places in the program 

where data values are causing error checks to occur. Errors such as dividing 

by 0, exceeding the capacity of the psuedo-accumulators in either the mantissa 

or exponent portions, etc., can all be caused by an unknown data base. All 

manipulations of data refer to manipulations in and out of the psuedo-accumulator 

called FAG. This accumulator behaves like the accumulator in an adding machine. 

It must be loaded to initialize it, stored to save it, and all arithmetic op-

erations leave their results in the accumulator. Commands with two operands 

are called binary commands and operate on a data word in user memory and 

the contents of FAG, replacing the result in FAG. Commands with one operand 

are called unary commands and operate on FAC, leaving their results in FAG. 

Let us consider a simple example: 

Compute 

JU $SF! 

FLDA X 

FMPY X 

FSTA Tl 

FLDA Y 

FMPY Y 

FADD Tl 

FSQT 

FSTA R 

FEXT 

..L v2 
I .L 

;enter floating mode 

;fetch X to FAG 

;x2 in FAG 

;store FAG in temporary loc 

;fetch Y to FAC 

·Y2 in FAG 
' 
;x2 + yZ in FAG 

; '.[xi + y2 in FAG 

;store result in R 

;exit from floating mode 



1-4 

l.i Basic Package, $SF!: 

FLOATING POINT MANUAL 
71-44-001 

Floating point arithmetic capabilities are provided through an inter-

pretive package. Associated with the package is an external~internal for-

mat data conversion routine that can be easily tailored to the character set 

being processed. 

The interpretive package is invoked by a normal subroutine call. The 

call is followed by a string of commands that are established by use of 

equate statements during the assembly. The last command in the sequence 

causes a return to the calling program. Operations are performed using a 

pseudo accumulator maintained locally by the interpretive package. The 

package also contains a 16 bit pseudo index to allow loops within the command 

sequence. Without this feature, it would be necessary to exit and re-enter the 

interpretive package and perform loop counts outside the interpreter. Al-

though the latter procedure is, in most instances, faster in terms of time 

taken to do the loop, it usually involves considerably more code and, there-

fore, takes more space. 

As an example of a typical problem programmed in the interpreter 

language, we evaluate the polynomial 

y = Ao + A1X + Azx2 + A3x3 + A4X4 

which can iteravely be expressed as Y = (((A4X + A3)X + A2)X + A1)X +Ao 

as follows: 



JU $SFI 

FLDX M4 

FLDA A4 

LOOP: FMPY x 

FADDD CONST 

FJIX LOOP 

FSTA y 

FEXT 

Y: WRD o,o 

CONST: WRD A3-l 

X: WRD Xl,X2 

A4: WRD A41,A42 

A3: WRD A31,A32 

WRD A21,A22 

WRD All,Al2 

WRD A01,A02 

M4: WRD -4 

1-5 

;ENTER INTERPRETER 

;LOAD PSEUDO INDEX WITH ~4 

;LOAD PSEUDO-ACCUMULATOR 

;MULTIPLY IT BY X 

;DEFERRED ADD A3 (THEN A2, 

;COUNT THE LOOP 

;STORE RESULT IN Y 

;EXIT THE INTERPRETER 

;STORAGE SPACE FOR ANSWER 

FLOATING POINT MANUAL 
71-44-001 

Al, AO) 

;DEFERRED ADDRESS (GETS CHANGED) 

;TWO WORD FLOATING POINT VALUE OF X 

;FLOATING A4 VALUE 

;A3 

;A2 

;Al 

;AO 

;ONE WORD INDEX COUNT VALUE 



1-6 

FLOATING POINT MANUAL 
71-44-001 

1.3 Floating Point Format: 

Internal representation of a floating point number occupies two successive 

locations in memory and consists of a fixed point fraction (mantissa) with an 

associated exponent. The mantissa is in two's complement notation with a 

sign bit followed by 23 bits of significance. The binary point is assumed 

to be immediately to the right of the sign. The exponent, which is the power 

of two by which the mantissa is multiplied, has the range -200g to +1778 

(2-128 to 2+127). This exponent is represented in "excess 200s" notation by 

adding +2008 to the true exponent. This requires a total of 8 bits and the 

range of the excess 2008 notation is 000 to 377s, where 2003 represents 20. 

Thus, a floating point number looks like: 

Word 1 (16 bits) 
15 14 
EJ.!:.~~-ct_~on - most significant 

o. 

Word 2 (16 bits) 15 SL r - Fraction . 
\least signif:f:_~~nt E~!].ent ___ 

0 

This format allows an accuracy of 6+ decimal digits and a range of +l.469368xl0-39 

to +l.7014llxl0+38. 

To obtain correct results, all floating point operations (except FLDA, 

FSTA and FNOR) require the floating point numbers being operated on to be 

normalized; that is, bit 14 of word 1 must be the most significant bit of 

the fraction (mantissa). The only exception to this requirement is a floating 

point zero, which has no significant bits--a normalized floating point zero 

is two words of all zero (mantissa• O, excess 2008 exponent= 0). 

Note: The mantissa of a normalized floating point number other than zero 

has an absolute value in the range l/2L Jmantissa l ( 1. 



Examples: 

Decimal 

1.0 

1.25 

-LO 

-1.25 

100. 

-100. 

0.5 

0.25 

TT 

1T/2 

-lT 

1-7 
FLOATING POINT MANUAL 

71-44-001 

Internal Floating Point (octal) 

word 1 word 2 

040000 000201 

050000 000201 

140000 000201 

130000 000201 

062000 000207 

116000 000207 

040000 000200 

040000 000177 

062207 166602 

062207 166601 

115570 011602 

1.4 Internal Registers: 

There are three pseudo~registers contained in the interpreter i) the 

pseudo-accumulator {FAC), ii) a temporary pseudo-accumulator (FTM), and 

iii) the pseudo-index register (FINDX). 

i) FAC - The floating pseudo-accumulator. This consists of three 

locations in the interpreter and is used to contain the left-hand argument 

of a binary floating point command as well as the results of any floating 

point command. It is organized as follows: 

FACHI - contains high order mantissa and sign of value in FAC 

FACLO - contains low order mantissa of value in FAC 

FACXP - contains excess 2008 exponent of value in FAC 



1-8 
FLOATING POINT MANUAL 

71-44-001 

ii) FTM - temporary pseudo-accumulator. This consists of three lo-

cations analogous to FAC. They are named FTMHI, FTMLO, and FTMXP. The 

temporary accumulator is used to hold an additional floating point value 

for those commands which require two floating point values in order to op-

erate, e.g. a type II (binary) command (see 2.2.2). 

iii) FINDX - pseudo index. This consists of one location of the same 

name and holds the current value of the index. 

Note: FACHI, FACLO and FTMHI, FTMLO are treated as full 31 bit double 

precision quantities for the basic arithmetic operations add, sub-

tract, mult~ply, and divide. 



:l-1 

CHAPTER TWO 

BASIC COMMANDS 

2.1 Command Categories: 

FLOATING POINT MANUAL 
71-44-001 

The commands are of the following categories: 

I load & store 

II binary 

commands 

III unary 

commands 

IV index 

commands 

v conditionals 

VI exit 

the command specifies the source or destina­

tion of floating point data - the corresponding 

destination or source is the pseudo accumula­

tor. 

the command specifies the source of the 

rightmost operand - the floating accumulator 

contains the leftmost operand. The result 

will be in the accumulator. 

the command merely specifies the function to 

be performed on the accumulator. The result 

will be in the accumulator. 

the command specifies the source or destina­

tion of an index value - the corresponding 

destination or source is the pseudo index. 

the command specifiee an address to which con­

trol passes if the test defined by the command 

is true - the address must contain another 

floating point command. Tests may be per­

formed on the floating accumulator, certain 

flags, and the index. 

this command causes a return to the calling 

program. 



2-2 
FLOATING POINT MANUAL 

71-44-001 

The load & store (Type I) and binary (Type II) commands may 

specify deferred (indirect and auto-indexed) addressing mode. Deferred 

addressing in floating point commands operates exactly as in machine 

language. 

2.2 Command Descriptions: 

2. 2 .1 TYPE I CO:MMANDS ·- LOAD & STORE COMMANDS 

LOAD FLOATING ACCUMULATOR (AC) 

mnemonic address code no. of words 

FLDA x 01 2 

The contents of the location specified by X and X + 1 are treated as 

a floating point number and are loaded into the floating point pseudo ac-

cumulator. The floating point number in locations X and X + 1 is split into 

three parts i) X, which consists of the high order mantissa, goes into 

FACHI; ii) bits 8-15 of X + 1, which consists of the low order mantissa, 

goes into bits 8-15 of FACLO and bits 0-7 of FACLO are set to zero; and 

iii) bits 0-7 of X + 1, which consists of the excess 2008 exponent, goes 

into bits 0-7 of FACXP and bits 8-15 of FACXP is set to zero. 

DEFERRED LOAD FLOATING AC 

mnemonic address code no. of words 

FL DAD A 101 2 

The contents of location A is incremented by one, replaced in A, and 

the result is used as the effective address X; then the contents of A are 

incremented and replaced a second time forming the effective address X + 1. 

The contents of X and X + 1 are then treated as a floating point number and 

loaded into FAC as explained under FLDA. 



2-3 

STORE FLOA1ING AC 

mnemonic address 

FSTA x 

code 

02 

FLOATING POINT MANUAL 
71-44-001 

no. of words 

2 

The contents of FAC are rounded into bit 8 of FACLO, bits 0-7 of FACLO 

are set to zero. Then FACHI, FACLO, and FACXP are packed into a floating 

point number and stored in X, and X + 1. Note that this operation alters 

FAC so that it agrees with the value stored in x,. and X + 1. 

It is also possible for the rounding operation to cause exponent over-

flow (excess 2008 exponent exceeds +3778). This can occur only if the 

number being rounded is very close to the largest possible positive float-

ing point number. The value stored in this case will be X = 0777773, 

x + 1 = 177777
8

, and FXFLG will be set non-zero. A successful FSTA will set 

FXFLG to zero. 

DEFERRED STORE FLOATING AC 

mnemonic address code no. of words 

FSTAD A 102 2 

The contents of A are incremented twice as explained under FLDAD, form-

ing effective addresses X and X + 1 into which FAC is stored as explained 

under FSTA. 

2.2.2 TYPE II COMMANDS - BINARY COMMANDS 

All Type II commands depend on both FAC and the argument of the 

command to have normalized mantissas. If unnormalized numbers are· 

used, the results are unpredictable. A FNOR instruction (see 2.2.3) is 

provided to normalize any quantity if it is necessary to do so. Also, 

if all inputs are normalized, the results in FAC will be normalized as 



2-4 
FLOATING PO INT MtU1 '..:i~.l 

71-44-001 

will the value retrieved from FAC by use of an FSTA instruction. 

Type II commands can cause exponent underflow or overflow if the 

number created in FAC by the command has an excess 2008 exponent out-

side the range 0 to +377s respectively. The occurrence of either 

condition is indicated by FXFLG being non-zero after the operation 

has been completed. It may be tested by use of the FJEV command. 

The successful completion of a Type II command will set FXFLG to zero. 

FLOATING ADD 

nmemonic address code no. of words 

FADD x 03 2 

The floating point number in locations X and X + 1 are added to 

the contents of FAC, and the result replaces FAC. 

DEFERRED FLOATING ADD 

mnemonic address code no. of words 

FADDD A 103 2 

The contents of A are incremented twice as explained under FLDAD, 

forming effective addresses X and X + 1, the contents of which are 

added to FAC, and the result replaces FAC. 

FLOATING SUBTRACT 

mnemonic address code no. of words 

FSUB x 04 2 

The floating point number in locations X and X + 1 are subtracted 

from the contents of FAC, and the result replaces FAC. 

DEFERRED FLOATING SUBTRACT 

mnemonic address code no. of words 

FSUBD A 104 2 



2-5 
FLOATING POINT MANUAL 

71-44-001 

Effective address is formed from A as in FADDD. 

FLOATING MULTIPLY 

mnemonic address code no. of words 

FMPY x 05 2 

FAG is multiplied by the floating point number in X and X + 1. 

The result replaces FAG. 

DEFERRED FLOATING MULTIPLY 

mnemonic address code no. of words 

FMPYD A 105 2 

Effective address is formed from A as in FADDD. 

FLOATING DIVIDE 

mnemonic address code no. of words 

FDIV x 06 2 

FAG is divided by the floating point number in X and X + 1. The 

result replaces FAG. Divide check will occur if X, X + 1 is zero or 

not normalized. This causes FAG to be set to the largest possible 

floating point number of the sign which.would be the result of the 

divide if it could take place, and the divide check flag (FDFLG) will 

be non-zero. A successful divide sets FDFLG to zero. 

Note - if both FAG and X are O, the result will be the largest 

possible positive floating point number in FAG with FDFLG set non-zero. 

DEFERRED FLOATING DIVIDE 

mnemonic address code no. of words 

FDIVD A 106 2 

Effective address is formed from A as in FADDD. 



2-6 

FLOATING ADD MAGNITUDE 

mnemonic address 

FADM x 

code 

07 

FLOATING POINT MANUAL 
71-44-001 

no. of words 

2 

The absolute magnitude of the floating point number in X and 

X + 1 is added to FAC. The result replaces FAC. 

DEFERRED FLOATING ADD MAGNITUDE 

mnemonic address code no. of words 

FADMD A 107 2 

Effective address is formed from A as in FADDD. 

FLOATING SUBTRACT MAGNITUDE 

mnemonic address code no. of words 

FSBM x 10 2 

The absolute magnitude of the floating point number in X and 

X + 1 is subtracted from FAC. The result replaces FAC. 

DEFERRED FLOATING SUBTRACT MAGNITUDE 

mnemonic address code no. of words 

FSBMD A 110 2 

Deferred subtract magnitude. Effective address is formed from 

A as in FADDD. 



2-7 

2.2.3 TYPE III COMMANDS - UNARY COMMANDS 

FLOATING ABSOLUTE VALUE 

mnemonic address 

FABS none 

code 

14 

FLOATING POINT MANUAL 
71-44-001 

no. of words 

1 

The absolute value of the FAC replaces the FAC, i.e. I FAC \ 

replaces FAC. 

FLOATING SQUARE 

mnemonic address code no. of words 

FASQ none 15 1 

The square of FAC is returned in FAC. This instruction requires 

that the mantissa of FAC be normalized prior to execution as in 

type II instructions (see 2.2.2). 

FLOATING NORMALIZE 

mnemonic address code no. of words 

FNOR none 16 1 

The contents of FAC are normalized and replace FAC. This in-

struction can cause exponent overflow or underflow in which case FAC 

will contain the largest possible negative floaLing point number or 

all zeros respectively and FXFLG will be set non-zero. A successful 

normalize will set FXFLG to zero. 

FLOATING NEGATIVE VALUE 

mnemonic address code no. of words 

FNEG none 17 1 

The contents of FACHI and FACLO are twos complemented, i.e. -FAC 

replaces FAC. 



2-8 

2.2.4 TYPE IV COMMANDS - INDEX COMMANDS 

LOAD INDEX 

mnemonic address 

FLDX I 

code 

27 

FLOATING POINT MANUAL 
71-44-001 

no. of words 

2 

The pseudo-index is loaded with the 16 bit contents of location I. 

STORE INDEX 

mnemonic address code no. of words 

FSTX I 30 2 

The 16 bit pseudo-index is stored into location I. 

2.2.5 TYPE V COMMANDS - CONDITIONALS 

These commands allow the program to alter the path of control which the 

interpreter is following based on the results of certain tests. The lo-

cation to which the interpreter is caused to transfer must contain a valid 

floating point command. If the interpreter should encounter an invalid corn-

mand at any time during execution, it will come to a halt with the address 

of the illegal command displayed in the MB register on the front panel. This 

is the only halt in the program. 

JUMP UNCONDITIONAL 

mnemonic address code no. of words 

FJMP c 20 2 

Unconditional jump. The interpreter will take the next command 

from location C and continue from there. 



2-9 

JUMP IF AC POSITIVE 

mnemonic address 

FJAP c 

code 

21 

FLOATING POINT MANUAL 
71-44-001 

no. of words 

2 

If FAC is positive or zero, the interpreter takes the next 

command from location C. Otherwise, the interpreter continues with 

the command following the FJAP command. 

JUMP IF AC ZERO 

mnemonic address code no. of words 

FJAZ c 22 2 

If FAC is O, the interpreter will take the next connnand from 

location c. Otherwise, the interpreter continues with the connnand 

following the FJAZ command. Note: The interpreter tests only FACHI 

for zero. FAC may be non-zero and FACHI = 0 only if the number in 

FAC is not normalized. This condition cannot be created by the inter-

preter unless the user has introduced unnormalized numbers into his 

calculations (see 2.2.2). 

JUMP IF AC NEGATIVE 

mnemonic address code no. of words 

FJAN c 23 2 

If FAC is negative, the interpreter will take the next command 

from location C. Otherwise, the interpreter continues with the com-

mand following_the FJAN command. 



2-10 

JUMP IF EXPONENT OVERFLOW (OR UNDERFLOW) 

mnemonic address 

FJEV c 

code 

24 

FLOATING POINT MANUAL 
71-44-001 

no. of words 

2 

If FXFLG is non-zero, the interpreter will take the next command 

from location C and set FXFLG to zero. Otherwise, the interpreter will 

continue with the command following the FJEV command. The FJEV command 

is used to detect the occurrence of either exponent overflow or exponent 

underflow resulting from the execution of the last preceding Type II command 

or FSTA, FNOR, or FASQ. If desired, the type of overflow may be detected 

by an FJAZ command at location C, since exponent underflow returns FAC=O, 

and exponent overflow returns the largest number (+ or -) in FAC. 

JUMP IF DIVIDE CHECK 

mnemonic address code no. of words 

FJDC c 25 2 

If FDFLG is non-zero, the interpreter will take the next command 

from location C and set FDFLG to zero. Otherwise, the interpreter con-

tinues with the command following the FJDC connnand. The FJDC command is 

used to detect the occurrence of divide check during execution of the last 

previous FDIV or FDIVD command. If desired, one may test whether the con-

dition occurred because the divisor was 0 or not normalized by checking the 

divisor with an FLDA and FJAZ instruction at location C. 

JUMP IF INCREMENTED INDEX NOT ZERO 

mnemonic address code no. of words 

FJIX c 26 2 

The pseudo-index (FINDX) is incremented by one, and if the result is 

non-zero, the interpreter takes the next command from location C. 



2-11 FLOATING POINT MANUAL 
71-44-001 

If the result is· O, the interpreter continues with the command follow-

ing the FJIX instruction. The pseudo-index will contain the incremented 

value whether or not the jump occurs. 

2.2.6 TYPE VI COMMAND - EXIT 

EXIT FLOATING INTERPRETER 

mnemonic address code no. of words 

FEXT none 0 1 

This command causes the interpreter to return control to the 

user at the location immediately following the FEXT. None of the 

internal registers or flags are altered by either the FEXT or entering 

the package. The AO is returned in the ADD state. 



3-1 

CHAPTER THREE 

DATA CONVERSION 

3.1 Introduction: 

FLOATING POINT MANUAL 
71-44-001 

Two conversion routines are provided; one to convert from floating point 

to character, the other to convert from character to floating point. Both 

conversion routines are core to core operations rather than being bound to a 

particular I/O device (that is, characters are fetched from and stored into 

memory). For added flexib.ility, all characters are referenced with an index 

into a character set table called @FCST, which initially contains 8-bit 

ASCII codes. Changing the character set for a specific I/O device can easily 

be accomplished by changing the character codes in @FCST. 

External floating point format is expressed as a mantissa or fraction 

portion and a power of ten by which the mantissa is multiplied. This is 

written as .±_n.nnnnnn. E _±nn, where n is a decimal digit. Tne number to the 
... .,...__,/ 

mantissa exponent 

right of the E is the power of ten by which the mantissa is multiplied. Thus, 

-3.527614E+o3 is -3.527614*103 or -3527.614. The floating point number 

+172.100123E-02 is +172.100123*10-2 or +1.72100123. 



3-2 

3.2 Floating Point to Character Conversion: 

NAME: 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS: 

CALLING SEQUENCE: 

ARGUMENTS: 

FUNCTION: 

@SFC 

$SFI, @FXC 

FLOATING POINT MANUAL 
71-44-001 

FAC, FTM, FXFLG, FDFLG 

JU @SFC 

WRD el-1 

WRD e2 

WRD e3 

return 

el is the address of the location into 

which the first output character is 

to be stored. 

e2 is the address of the two word float­

ing point argument. The argument need 

not be normalized but the magnitude must 

be zero or in the range t2-129, 2+128) 

(in decimal this is l.469367E-39 tp 

1. 701411E+ 38) 

e3 is the address of the error return. 

Converts a signed two word floating 

point argument to a string of thirteen 

characters, stored one character per 

word, right justified starting in lo­

cation el. The character string is of 

the format 
/ +-; 
; * \ n.nnnnnn E {±)nn 
t. - ,' 

where n is character representation of a 

decimal digit. 



ERRORS: 

NOTE: 

LENGTH: 

Description of Algorithm: 

FLOATING POINT MANUAL 
71-44-001 

If normalization of the floating point 

argument caused either exponent over­

flow or underflow, an * is stored rather 

than a leading + or - sign, and when 

conversion is completed, control returns 

to e3. The * can be considered a - sign. 

An argument resulting in overflow con­

verts to* 1.701411 E + 38. An argu­

ment resulting in underflow converts to 

*0.000000 E + 00. 

The magnitude of the three smallest nor­

malized non-zero floating point numbers 

are converted to one of the character 

strings ±l.469367E-39 or ±l.469368E-39._ 

These two character strings cannot be 

converted back to a floating point number. 

The smallest character string which can 

successfully be converted to a floating 

point number is +l.469369E-39. Therefore, 

if the user converts any one of these 

three ntnnbers to a string of characters, 

he should be aware that he cannot suc­

cessfully convert the string back to 

a floating point number. 

3068 (19810) locations 

The sign of the floating point argument is stored, the argument is then 

normalized, and the absolute value is taken and used for conversion. If nor-

malization caused either exponent overflow or underflow, the error return is 

taken when conversion is completed and an asterisk (which may be considered 

as a '-'), is stored rather than a leading sign. 



3-4 
FLOATING PO INT MANUAL 

71-44-001 

' " 
)* (' 

Since the output character string is of the form(1+ '.n.nnnnnnE.±_Im, the 
,- I 

floating point argument is first manipulated to make it greater than or 

equal to one and less than ten. (If the floating point argument is exactly 

zero, this portion of the algorithm is bypassed.) Making 1 ~ floating 

point argument <.10 is accomplished by first checking if it is ~ 1. If it 

is not, it is multiplied by the largest possible power of ten (1038) and, 

if necessary, it is multiplied once again by ten to force it;?.. l. The ar-

gument is then checked for.(_ 10. If it is not< 10, it is forced so by 

dividing by the largest power of ten, which is less than the argument. The 

powers of ten used in mul~iplying and dividing the argument to force its 

value to be between one and ten are used to form the exponent portion of 

the character string. 

With the floating point argument (stored in FAC) now .2..1 and <'.10, the 

mantissa portion of the character string can be formed. FACHI, FACLO is 

treated as a double precision mixed number with FACXP showing the position 

of the binary point. FACHI, FACLO is left shifted (with overflow bits shifted 

into a 3rd word) until the binary point immediately precedes bit 15 of FACHI. 

The overflow word is then converted to character and stored as the first digit 

of the mantissa, immediately followed by a decimal point. The fraction par-

tion of the mantissa is formed by successively multiplying FACHI, FACLO by 

1010 and storing the most significant word of the 3 word product. The ex-

ponent is then converted and stored, preceded by an E and either a + or - sign. 



3.3 Character to Floating Point: 

NAME: 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS: 

CALLING SEQUENCE: 

ARGUMENTS: 

r~ J 
L* 

( n [n ••• ] [n. • • l J 
(. ] n (n ••• ] 

3-5 

FLOATING POINT MANUAL 
71-44-001 

@SCF 

$SFI, @FXC 

FAC, FT.M, FXFLG, FDFLG 

JU @SCF 

WRD el-1 

WRD e2 

WRD e3 

return 

el is the address of the first character 

in the string to be converted. The char­

acter string should be stored one charac­

ter per word right justified in the format 

r~ 
' \ ·· 1 i 

' 

!±l' n[n] ! [ t .. . ] .... 
i ~ 
I 

I 
I ) .L 

The notational conventions are: 

1. n is a decimal digit 

2. ~ is a space 

3. ~ is a delimiter 

4. braces [] contain optional items 

which may or may not be included. 

5. brackets f ~contain alternate items 

where one and only one of the items 

must.be included. 

6. ellipses ••• denote permissible 

repetition of the preceding item. 

The string is treated as follows: 

1. If there is no sign, it is treated as +. 



FUNCTION: 

ERRO~: 

3-6 
FLOATING POINT MANUAL 

71-44-001 

2. If the leading sign is * or it 

is treated as -. 

3. If there is no decimal point, it is 

assumed to follow the last mantissa 

digit. 

4. Characters are processed up to and 

including the first~, or 1310 char­

acters have been processed. 

e2 is the address where the two word 

floating point answer is stored. 

e3 is the address of the error return. 

Converts a string of decimal characters 

to a two word normalized floating point 

answer. The two word normalized float-

ing point answer is returned in registers 

AX (MSH), AY (LSH), and is stored in lo­

cation e2 (MSH) and e2+1 (LSH). The AO 

is returned in the ADD state. 

A scan error occurs if the character 

string is illegally formed. Location 

@SCF+3 is set to zero and control im­

mediately returns to e3. 

An overflow error occurs if the charac-

ter string contains more than 1010 man­

tissa digits (discounting leading zeros) 

or if the magnitude of the number is out­

side the range l.469369E-39 to l.701411E+38. 

Location @SCF+3 is set to one and control 

immediately returns to e3. 

Whenever control returns to e3, the AO 

is in the ADD state. 



NOTES: 

LENGTH: 

Description of Algorithm 

3-7 
FLOATING POINT MANUAL 

71-44-001 

See NOTES under @SFC. 

4068 (26210) locations 

The mantissa-portion of the character string is converted to a 

double precision integer by multiplying the answer by 1010 and adding 

in the latest digit. This double precision mantissa is then converted 

to a normalized floating point number. A count of the number of digits 

to the right of the decimal point is kept and, after the exponent portion 

of the character string has been converted, this digit count is subtracted 

from it to obtain the final exponent. The magnitude of the final exponent 

is used as an index into the positive floating point powers of ten table 

(see 3.6). The floating point number obtained from the mantissa portion 

of the character string is then multiplied (if the final exponent was 

positive) or divided (if the final exponent was negative) by this power 

of ten to form the final floating point answer. If there was a leading 

minus sign or asterisk, the floating point answer is two's complemented 

before return. 

3.4 Connnon Tables & Routines; 

The conversion routines @SFC and @SCF reference a common routine called 

@FXC, which has four entry points. @FXC occupies a total of 2138 (13910) 

locations. Since @FXC is connnon to both @SFC and @SCF, it need appear only 

once if the conversion routines are used together. In the discussion of @FXC 

which follows, each of the four entry points is treated separately for the 

sake of clarity. 



3.5 Character Set Table: 

NAME: 

FUNCTION: 

NOTES: 

LENGTH: 

3-8 

@FCST 

FLOATING POINT MANUAL 
71-44-001 

Common external character set table for 

floating point data conversion routines. 

The table is ordered as follows: 

Location Contents 

@FCST code for zero 

@FCST+l code for nine 

@FCST+2 code for + 

@FCST+3 code for -

@FCST+4 code for * 
@FCST+5 code for . 

@FCST+6 code for E 

@FCST+7 code for space 

@FCST+lO code for delimiter 

The standard table is in full 8-bit ASCII. 

The delimiter character at @FCST+lOg is a 

carriage return and may be changed if 

desired. 

The entire table may be replaced with a 

different character set provided that the 

numeric codes in the new set are sequential 

and the code for zero (0) is less than the 

code for nine. No code may occupy more 

than 15 bits. 

12g (1010) locations 



3.6 Floating Point Power's of Ten Table~ 

NAME: 

FUNCTION: 

@FPT: 

NOTE: 

LENGTH: 

3-9 

@FPT 

FLOATING POINT MANUAL 
71-44-001 

Common floating point positive powers of 

1010 table for floating point data con­

version routines. Each floating point 

power occupies two locations in the table. 

The table is organized as follows: 

WRD 

WRD 

WRD 

454 73, 46 777 

74136, 160 77 3 

40000,201 

constant for 1038 

constant for 1037 

constant for ioO 

@FPT is located at @FCST+l2g 

1163 (7810) locations 



3.7 Left Shift FAC: 

NAME: 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS: 

CALLING SEQUENCE: 

ARGUMENTS: 

FUNCTION: 

ERRORS: 

NOTES: 

LENGTH: 

3-10 

@LSHF 

none 

none 

FLOATING POINT MANUAL 
71-44-001 

Load AX with the negative shift count 

JU @LSHF 

return 

Register AX contains minus the number of 

places to left shift FACHI, FACLO 

Performs double precision left shift of 

FACHI, FACLO. On return, the shifted 

result is in AX (MSH), AY (LSH). Any 

carry out of MSH is found in location 

@DIG+l. 

none detected 

@LSHF=@FCST + 3068 

@DIG+l=@LSHF + 148 
238 (1910) locations 



3.8 Multiply FAC by Ten: . 

NAME: 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS; 

CALLING SEQUENCE: 

ARGUMENTS: 

FUNCTION: 

ERRORS: 

NOTES: 

LENGTH: 

3-11 

@lOX 

@LSHF 

FAC 

JU @lOX 

n/a 

FLOATING POINT MANUAL 
71-44-001 

Performs unsigned multiplication of 

FACHI, FACLO by lOlO· The most sig­

nificant word of the three word product 

is returned in AY. The second and 

third words of the product are found 

in FACHI, FACLO respectively. 

n/a 

@10X=@FCST+650 

408 (3210 ) locations 



4-1 

CHAPTER FOUR 

EXTENDED COMMANDS 

4.1 Introduction: 

FLOATING POINT MANUAL 
71-44-001 

In addition to the basic floating point interpreter, a set of mathematical 

functions is supplied which can be invoked by a command in the same line with 

the basic commands. These functions also call the floating interpreter and 

since the interpreter has already been entered at this point, a push-down 

scheme is supplied to allow recursive calls such as this. The push-down list 

will accomodate recursive calls up to seven levels. 

It should be noted that all pseudo registers - the floating accumulator, 

the temporary accumulator and index - and the flags, FDFLG and FXFLG, are 

common to all levels of the recursion. In other words, if an extended func-

tion which calls the interpreter recursively is invoked by a command, these 

registers and/or flags may be altered. Information detailing such factors 

is supplied in the documentation accompanying the individual package. 

The push-down scheme and command code structure is tailored so that the 

user may easily add his own functions. The procedure for doing this is 

described in section 5.3. 

The mathematical subroutines which are supplied with the extended package 

are SINE, COSINE, ARC TANGENT, LOGe, EXPONENTIAL, and SQUARE ROOT. The com-

mands associated with these are FSIN, FCOS, FATN, FLNE, FEXP, and FSQT (codes 

31, 32, 33, 34, 35, and 36) respectively. They each perform the desired 

function on the contents of the floating pseudo-accumulator and return the 

results in the same register. Errors which can result, such as attempting 

to take the square root or log of a negative number, are flagged by the 



4-2 
FLOATING POINT MANUAL 

71-44-001 

routines in internal locations not accessible in interpretive mode, i.e. 

cannot be tested with an interpreter command. An error trap routine is 

available which will handle these and other errors when they occur (see 

Appendix E). 

In the writeups that follow, FAC is the floating pseudo-accumulator, 

FTM is the temporary floating pseudo-accumulator, FDFLG is the divide check 

flag, FXFLG is the exponent overflow flag, and FINDX is the pseudo-index. 



4.2 Sine, Cosine: 

COMMA.ND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-3 
FLOATING POINT MANUAL 

71-44-001 

FSIN (code 31), FCOS (code 32) 

a. FSIN - calculates the SINE of the 

contents of FAC which is assumed to be 

a radian argument and replaces FAC 

with the result. 

b. FCOS - calculates the COSINE of 

the contents of FAC which is assumed to 

be a radian argument and replaces FAC 

with the result. 

none 

FAC, FTM, FXFLG 

For FCOS, the absolute value of FAC is 

subtracted from [t/2 (=l.570796) and the 

SINE of the result is taken. 

For FSIN, the argument (FAC) is first 

multiplied by 2/iT to convert it into 

units of a quarter circle, and the result 

is checked for its absolute magnitude 

being less than one. If so, it is a 

first quadrant quantity and the procedure 

continues with the series calculation 

described later. If the magnitude of the 

result is greater than or equal to one, 

its sign is saved, it is forced positive, 

and the integer portion is shifted out -

leaving a positive fraction (referred to 

as Yin the following). The last two 

bits of the integer portion and the sign 

are used to determine Which quadrant the 

original argument was in and the quantity 

Y is altered as follows: 



4-4 

sign last two bits 

+ 00 

+ 01 

+ 10 

+ 11 

00 

01 

10 

11 

y 

y ~y 

1-Y .+ Y 

-Y ~ y 

-1 +Y_,.Y 

-Y ~y 

-1 + y ~y 

y~y 

1-Y -.y 

FLOATING POINT MANUAL 
71-44-001 

quadrant 

I 

II 

III 

IV 

IV 

III 

II 

I 

This new value of Y is then treated as a fraction and is normalized. 

The series used to calculate the sine is basically a 5 term Chebyshev 

economized polynomial approximation of a 6 term McLaurin series for sin~) 
The coefficients are further "adapted" to allow the series to be calculated 

with one less multiplication than would be the case for a standard polynomial 

evaluation procedure. This results in the sine being calculated as follows: 

where 

Z = (Y + Ao) * Y + A 1 

and 

Ao -14.93104811 

Al = -39. 74079011 

A2 = +36 7. 8139482 

A3 +23410 .00773 

A4 = +-0 .0001514440767 

Accuracy is 6 + significant decimal digits for arguments in the first 



4-5 
FLOATING POINT MANUAL 

71-44-001 

quadrant ( ) FAC If 'If). _ Accuracy loss is about two thirds of a decimal 

digit for each complete rotation, i.e. if 2Tf n~fFAcf £2IT(n+l), the ac-

2 
curacy is about 6 - )11 decimal digits. 



4.3 Arc Tangent: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-6 
FLOATING POINT MANUAL 

71-44-001 

FATN (code 33) 

The arc tangent of the contents of FAC 

replace FAC. The result is in radians 

and lies in the range ( - Y, + 1f) . 
none 

FAC, FTM, FDFLG, FXFLG 

The argument (FAC) is checked for its 

absolute magnitude being greater than or 

equal to one. If so, a flag is set and 

the reciprocal of the argument is taken 

and replaces FAC. 

The arc tangent of the quantity in FAC 

is then approximated by 

(Ao + A1 x2+ A2x4) 
z = ATAN x = x . (Bo + Bix4 B2X4) 

where X is the argument and 

Ao = 0.6402481953 

Al = u.4229908144 

A2 0.0264694361 

Bo = 0.6402487022 

Bl = J • 6 36 3 7 79 3 7 3 

B2 = 0 .1108328778 

If the flag was set by the initial check, 

the value Z is checked for + or -. If Z 

is +,(¥ - z) replaces z. If z is -. 

(- lf + z) replaces Z. (This is effected 

by subtracting Z from+ or - Vdepending 

on the sign of Z.) 

If the flag was not set by the initial 

check, the value Z is not altered. Accur­

acy is 6+ significant decimal digits for all 
arguments. 



4.4 Natural Log: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-7 

FLNE (code 34) 

FLOATING POINT MANUAL 
71-44-001 

The natural log of the contents of FAC 

replace FAC. 

If FAC is negative, a flag (FNLNF) is set, 

FAC is forced positive, and the natural 

log taken. 

FAC, FTM, FXFLG, FNLNF (FPLNE+4) 

The quantity in FAC is 

Z = X · 2I where . 5fX<1 and I is an 

integer. 

ln Z = ln [X · 21] 

= ln X + I ln2 

The quantity ln X is approximated by the 

polynomial. 

ln X = ln A - z (Y + y3/3 + y5/5 + y7/7) 

which is a Taylor series evaluated at A 

where A =J}-

A - X 
and Y =A+ X 

The product [I ln 2] is added to ln X, and 

the sum is left in FAC. 

A = O. 70710678 

ln A = 0.34657359 

ln 2 = 0.69314718 

Accuracy is 6+ significant decimal digits 

except for . 904L Z ~ 1.110. In the latter 

range, accuracy decreases as Z -. 1. 



4.5 Exponential: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-8 
FLOATING POINT MANUAL 

71-44-001 

FEXP (code 35) 

The exponential of the contents of FAC 

replace FAC. (FAC = eFAC) 

If the result is going to be out of 

range, i.e. if FAC 88.722, a flag 

(FEXOF) is set. If FAC was negative, 

zero is left in FAC. If it was positive, 

the largest positive number is left. 

FAC, FTM, FDFLG, FXFLG, FEXOF (FPEXP+l) 

eX = 2X log2 e 

= 2I + F = 2I · 2F 

where I is the integer portion 

and F is the fractional portion of X log2 e 

Multiplication by 2I is computed by the 

continued fraction: 

A 
B + F + C ---

F + D 
F 

where 

A= -34.624680982 

B = -17.312340491 

c 104.0684491 

D = 20.813689813 

log2 e = 1.442695041 

Accuracy is 6+ significant decimal digits 

for lxl~o. Accuracy decreases slowly as 

\x\ becomes large until atlxf::::::88, the ac­

curacy is 5+ significant decimal digits. 



4.6 Square Root: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-9 

FSQT (code 36) 

FLOATING POINT MANUAL 
71-44-001 

The square root of fFAClreplaces FAC. 

If FAC is negative, it is forced posi­

tive, and FSFLG (internal to the square 

root routine) is set non-zero. If FAC 

is positive, FSFLG is set to zero. 

FAC, FSFLG (=FPSQT + 6) 

After FAC is forced positive and FSFLG 

is determined, the exponent of the re­

sult is determined by dividing FACXP 

by two (by shifting right once) and 

adding lOOg to preserve the excess 200g 

notation. If the original exponent was 

odd, the shifted FACXP is increased by 

one; otherwise, it is left alone. If 

the original exponent was even, FACHI 

and FACLO are shifted left once. Since 

the algorithm treats FACHI and FACLO as 

a 32 bit positive fraction with the 

binary point to the left of bit 15 of 

FACHI, the fact that the left shift will 

set the sign bit (bit 15) of FACHI does 

not matter. 

The algorithm then proceeds to determine 

a fourteen bit first approximation to 

the square root by a method based' ion the 

fact that N2 is the sum of the first N 

odd numbers. This method also leaves as 

a "remainder" the difference between the 

square of the approximation and the original 



4-10 
FLOATING POINT NUMBER 

71-44-001 

number. This remainder and the initial 

approximation are then used for one 

Newton-Raphson iteration which completes 

the square root using the single pre­

cision divide entry (FSDVD) of the 

floating point package. 

Accuracy is 6+ significant decimal 

digits for all input arguments. 



5-1 

CHAPTER FIVE 

NON-INTERPRETIVE MODE USAGE 

5.1 Introduction: 

FLOATING POINT MANUAL 
71-44-001 

Certain sections of the floating point interpreter are directly 

accessible to the user without the need to supply connnands. These sec-

tions may be invoked by a JU SUBR instruction and, after the operation 

is completed, will return control to the instruction following the jump. 

In order to use these routines successfully, it is necessary to know that 

in addition to the pseudo-accumulator (FACHI, FACLO, and FACXP) there is 

a "temporary" accumulator (FTMHI, FTMLO, and FTMXP) which is used to 

contain the floating argument of a Type II connnand during the execution 

of the operation (see 1.3). This temporary pseudo-accumulator, referred 

to as FTM, is loaded in the same manner as FAC (see FLDA instruction in 

2.2.1). If the user desires to access the routines described in this sec-

tion, he may need to load FTM in addition to FAC for those routines that 

operate on both accumulators. 

These sections will be described as subroutines since they are essen-

tially used in this manner when accessed directly. When the floating in-

terpreter resides in memory, all of these subroutines also lie in memory. 

A "connnand equate" source tape is included in the software package. 

This tape defines these subroutines as well as the various pseudo-registers 

and locations associated with them (see chapter 6). 



5-2 

5. 2 Subroutines:·: 

FLOATING POINT PACKAGE 
71-44-001 

5.2.1 Double Precision Fixed Point Add 

NAME: FDAD 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES; 

JU FDAD 

FACHI, FACLO; FT}ffiI, FTMLO; AO must be in 

ADD state. 

FACHI, FACLO and FTMHI, FTMLO are treated 

as signed double precision numbers and 

added. The result of the addition ap­

pears in FACHI, FACLO. FT}ffiI, FTMLO are 

left unchanged. 

If arithmetic overflow occurred (two 

numbers of like sign are added and the 

result has opposite sign), the link 

will be set to 1. If no arithmetic 

overflow occurred, the link will be 

zero. 

The AO is in the ADD state upon return. 

It is possible to generate the maximum 

negative number (FACHI = 1000008, FACLO 

0000008), which is not considered a case 

of arithmetic overflow; and so the link 

will not be set. 



5-3 
FLOATING POINT MANUAL 

71-44-001 

5.2.2 Double Precision Fixed Point Multiply 

NAME: FDMPY 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES: 

JU FDMPY 

FACHI, FACLO; FTMHI, FTMLO 

AX must be set to the value in FTMHI 

AY must be set to the value in FTMLO 

The AO must be in the ADD state 

FACHI, FACLO and FTMHI, FTMLO are 

treated as signed double precision 

numbers and are multiplied. The high­

order 30 bits of the 62 bit product 

are returned, right justified, in 

FACHI, FACLO. The value in FTMHI, 

FTMLO is unchangede 

The AO is in the ADD s~ate upon return. 

The 30 bit product is inaccurate in the 

right-most two bits. If FACHI, FACLO 

and FTMHI, Fl.'MLO are each considered as 

a double precision fraction with its 

binary point immediately to the right 

of the sign, i.e. between bits 14 and 

15 of the high-order word, the binary 

point of the product will be shifted 

right once so that it is between bits 

13 and 14 of FACHI. 



5-4 
FLOATING POINT MANUAL 

71-44-001 

5.2.3 Double Precision Fixed Point Divide 

NAME: FDDIV 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES: 

JU FDDIV 

FACHI, FACLO; FTMHI, FTMLO 

AX must be set to the value in FTMHI 

AY must be set to the value in FTMLO 

The AO must be in the ADD state 

FACHI, FACLO and FTMHI, FTMLO are 

treated as signed double precision 

numbers, and the former is divided 

by the latter. The quotient appears 

in FACHI, FACLO. The value in FTMHI, 

FTMLO has been destroyed. 

The quotient will be 30 bits in FACHI, 

FACLO with the binary point displayed 

one position to the right in the same 

way as explained in the note for FDMPY. 

The absolute magnitude of FTMHI, FTMLO 

must have bit 14 of FTMHI set for the 

divide to take place. If this con­

dition is not satisfied, divide check 

will occur. 

The AO is in the ADD state upon return. 

The rightmost three bits of the quotient 

are inaccurate. Divide check causes 

FACHI, FACLO to be set to a large double 

precision number of the sign which would 

result if the divide could take place 

(FACHI, FACLO = 077777, 177400 or 100000, 

000400 for+ and - respectively); also, 

FDFLG is set non-zero. A successful 

divide sets FDFLG to zero. 



5.2.4 Single Precision Divide 

·5-5 
FLOATING POINT MANUAL 

71-44-001 

NAME: FSDVD 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

JU 

RRC 

This code may be 

[:: eliminated if the 
remainder is to be 
disregarded. NOP 

RR 

JU FSDVD 
"\ 

AX = high order dividend /must be a posi­
) 

tive 30 bit FLODV = low order dividend .. 
double preci­

sion number (see 

below) 

AY = negative divisor 

The AO must be in the ADD state. 

This is an inner loop which, if used 

correctly, can be invoked to supply an 

unsigned single precision divide§ The 

quotient is incomplete in the sense that 

it is right shifted and truncated upon 

return. 

To obtain a complete single precision 

unsigned divide, the following procedure 

may be used. First, load AX and the lo­

cation FLODV with a valid two word posi­

tive proauct (bits 14 and 15 of AX must 

be zero). Tiien load AY with the positive 

single precision divisor and twos_comple­

ment it. The following code will then 

perform the divide: 

FSDVD ;INCOMPLETE QUOTIENT IN TRP 

AO,Ll,O ;GET LAST BIT OF QUOTIENT 

NOT LNK ;UPDATE 

AO,AX ;REMAINDER 

;IN AX 

TRP,Ll,AY ;TRUE QUOTIENT IN AY 



NOTES: 

5-6 
FLOATING POINT MANUAL 

71-44-001 

Note that the incomplete quotient is in 

the TRP register on return from FSDVD. 

The AO is in the ADD state upon return. 

If either the link is set or AY (the 

final quotient) is negative following 

this code, divide check has occurred. 

This means that the high-order portion 

of twice the dividend was greater than 

or equal to the divisor, and the quotient 

is incorrect. 

No flag is set if divide check occurs. 



5.2.5 Floating Point Normalize 

5-7 
FLOATING POINT MANUAL 

71-44-001 

NAME: FNORM 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

1) 

or, 
2) 

RM 

ZM 

MRI 

RM 

JU 

JU 

JU FNORM 

FACHI, FACLO, FACXP 

Same as FNOR command (see 2.2.3), in­

cluding the setting of FAC and FXFLG 

should exponent overflow or underflow 

occur. 

The advantage of the accessibility of 

this routine lies mainly in the saving 

of time. For instance, to convert a 

single precision integer value to 

floating point, the following two 

methods could be used~ (Assume the 

integer is in AX, and the floating 

equivalent is wanted in location X.) 

AX, FACHI 

FACLO 

217, AX 

AX, FACXP 

FNORM 

$SFI 

FSTA x 
FEXT 

RM AX, FACHI 

ZM FACLO 

MRI 217, AX 

RM AX, FACXP 

JU $SFI 

FNOR 

FSTA x 
FEXT 



NOTE: 

5-ts 
FLOATING POINT MANUAL 

71-44-001 

Version 1) takes one more location in 

core and saves about 80 machine cycles. 

The AO may not be in the ADD state upon 

return. 



5-9 

5.2.6 Negation and Store 

FLOATING POINT MANUAL 
71-44-001 

NAME: FACMP, FACMA 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

Tl\T'DTT'T' • 
•.L'IL U.L o 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

JU FACMP or JU FACMA 

FACHI, FACLO or AX, AY 

a) FACMP - replaces FACHI, FACLO with 

its two's complement. Result is 

also returned in AX, AY. 

b) FACMA - replaces FACHI, FACLO with 

the two's complement of the double 

precision number in AX, AY. Result 

is also returned in AX, AY. 

FTCMP, FTCMA 

JU FTCMP or JU FTCMA 

1"'T'MU T "&''T'MT f\ ,.. ...- A V AV 
.L" .LJ.."U.I..._ , .L" .&..1.·.a.uv V .L .a.~, .a. .L 

a) FTCMP - replaces FTMHI, FTMLO with 

its two's complement. Result is 

also returned in AX, AY. 

b) FTCMA - replaces FTMHI, FTMLO with 

the two's complement of the double 

precision number in AX, AY. Result 

is also returned in AX, AY. 

FASAX 

JU FASAX 

AX,AY 

Stores AX into- FACHI and AY into FACLO 

FT SAX 

JU FTSAX 

AX,AY 

Stores AX into FTMHI and AY into FTMLO 



5-10 
FLOATING POINT MANUAL 

71-44-001 

5.2.7 Generate Zero or Largest Number 

NAME: FOFAC 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

JU FOFAC 

none 

sets FACHI, FACLO and FACXP to zero 

also returns AX and AY = 0 

FCMAX 

JU FCMAX 

FACHI 

FACHI, FACLO, FACXP will be set to the 

maximum possible floating point number 

of the original sign of FACHI. 

1) If FACHI L.. 0, this routine sets 

2) 

Upon 

If 

FACHI = 100000 

FACLO = 000400 

FACXP 000377 

FACHI2-0, this routine 

FACHI 077777 

FACLO 177400 

FACXP 000377 

return, AX and AY will be 

sets 

equal to 

the value stored in FACHI and FACLO re-

spectively. 



5-11 

5.2.8 Floating Arithmetic Right Shift 

FLOATING POINT MANUAL 
71-44-001 

NAME: FARSN 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES: 

JU FARSN 

AX, AY, FAR.SC 

This routine arithmetically right shifts 

the double precision number in AX, AY 

by the number of places indicated by 

-FARSC. 

FARSC must be set to a negative count 

before calling FARSN. 



5-12 

5.2.9 Other Notes on Non-Interpretive Usage 

FLOATING POINT MANUAL 
71-44-001 

1) The pseudo-index is kept in location FINDX and may be set by the 

user without using an FLDX command (see 2.2.4) by simply storing 

the desired value via a RM R,FINDX where R is a register con-

taining the index value. This, as with FNORM, is a time saver. 

2) The two flags, FXFLG and FDFLG, are in locations defined by their 

names, and can be checked (or cleared) in non-interpretive mode 

to save time. 

3) The usage of the locations FTBLE, FARGD, FETCH, and FMASK which 

are on the command equate source tape is described in 5.3. 

5.3 User Generated Extended Functions: 

If the user desires to add functions of his own to the extended package, 

the procedure is quite easy as outlined below. 

The extended package as delivered uses command codes 00-368 inclusive 

and 1018 through 1108 inclusive. There are available codes of 378-778 inclu-

sive which the user may assign to his own functions. 

User functions may be of two types - invoked by one word commands or 

invoked by two word commands where the second word is an argument address 

or value. If deferred mode addressing is desired as an option for the same 

function, it must be accomplished by user code. Setting bit 6 of the command 

code to attempt deferred addressing will cause the floating interpreter to 

take the error halt. 

Suppose the command name used to invoke the function is to be FFCN 



5-13 

assigned to code 378 • 

FLOATING POINT PACKAGE 
71-44-001 

Step 1) Using the Source Text Editor, add the statement FFCN ~ 37 

to the Command Equate Tape (see operating instructions). 

Step 2) The user code which accomplishes the function must have 

the following code just before the END statement 

LOC FTBLE + FFCN 

WRD ENTRY 

where ENTRY is the location at which the user function 

begins execution. 

Step 3) The last instruction executed by the user function must re-

turn control to FGET, usually via a JU FGET. Remember that 

when the user function is invoked by a command, the interpreter 

passes control to the user function. The JU FGET returns control 

to the interpreter. 
Step 4) If the function the user is generating needs the floating point 

capability supplied by the interpreter, the user fu..11ction 

call the interpreter followed by a list of commands to ac-

complish the task subject to the following restrictions: 

a) The command name corresponding to the function it­

self (in this case, FFCN) may not be used. 

b) Commands which cause the interpreter to be called re­

cursively may be used so long as care is taken not to 

exceed seven levels of recursion in total (see 4.1) 

(remember that the function being coded is at least 

at level 1 during its execution, and if it calls the 

interpreter, all commands in the list are at least at 

level 2). 

c) No function invoked by a command may have in its code 



5-14 
FLOATING POINT MANUAL 

71-44-001 

a call to the interpreter whose command string con­

tains the command name corresponding to the function 

itself. This is an indirect violation of restriction 

a) above. 

Step 5) Assemble the function using the Command Equate Tape for 

pass 1 as explained under operating instructions. 

Notes: If the function being generated is invoked by a two word com-

mand whose second word is an argument, one and only one of the follow-

ing steps must occur during its execution. 

a) JU FARGD 

This fetches the contents of the location following the command into 

register AX. 

b) JU FETCH 

This calls FARGD and uses the contents of the location following the 

command as an address to fetch a floating point argument which is 

placed in FTM. Also, AX and AY will be set to the value in FTMHI 

and FTMLO respectively upon return. 

c) ZM FMASK 

JU FETCH 

This causes deferred fetching of a floating point argument. The con-

tents of the location following the command is used as an address of 

another location which is incremented twice to form the addresses of 

the floating argument which is loaded into FTM and AX, AY as in b). 

Examples: 

1) FCSX is to be the command name, 1 word, code 378 . When in­

voked it is to take the COSINE of the SINE of the value in FAC. Assume 

Step 1 has been accomplished by adding the statement FCSX=37 to the command 



5-15 
FLOATING POINT MANUAL 

71-44-001 

equate tape. This function may be accomplished by the following code: 

FCS: JU $SFI 

FSIN 

FCOS 

FEXT 

JU FGET 

LOC FTBLE + FCSX 

WRD FCS 

END 

;enter floating interpreter 

;sin of FAC 

;cos of FAC 

;exit interpreter 

;return to interpreter 

When this is assembled with the Command Equate Tape resulting 

from step 1 and loaded with $SFI and the SINE, COSINE routine, the 

user may now call the routine in the floating interpretive mode as 

follows: 

JU $SFI 

FCSX 

FEXT 

Note: The routine must be assembled with the new command equate tape. 

2) FMCS is to be the command name, 2 words, assigned to code 408 . 

When invoked, it is to take the SIN of the COSINE of the value in FAC 

and set the sign of the result to the sign of the floating point ar-

gument whose address is the second word of the command. Step 1 re-

quires the new command to be added to the command equate tape. '!his 

function could be coded as follows: 



FMC: JU FETCH 

RMI AX, 0 

JU $SFI 

FCOS 

FSIN 

FABS 

FEXT 

MR FMC + 3,AX 

5-16 
FLOATING POINT MANUAL 

71-44-001 

;fetch arg to AX,AY 

;save MSH arg (sign of arg) 

;enter floating interpreter 

;cos of FAC 

;sin FAC 

;abs value of FAC 

;exit floating interpreter 

;get sign of arg 

JC AX, GEZ, FGET ;plus, exit 

JU FACMP ;minus, comp FAC 

JU FGET ;return to interpreter 

LOC FTBLE + FMCS 

WRD FMC 

END 

When assembled with the Command Equate Tape and loaded with $SFI, 

and the SINE, COSINE routine, it may be invoked by another routine 

assembled with the Command Equate Tape via 

JU $SFI 

FMCS X 

FEXT 

3) FMCSD is to be the command which does the same thing as 

FMCS, only using deferred mode addressing for the argument. FMCSD 

must be assigned a·different code - say 418 • Both FMCSD and FMCS 

may be coded in the same routine as follows, assuming their equates 

have been added to the Command Equate Tape. 



FMCD: 

FMC: 

5-17 

ZM FMASK 

JU FETCH 

RMI AX, 0 

JU $SF! 

FCOS 

FSIN 

FABS 

FEXT 

MR FMC·+ 3, AX 

JC AX, GEZ, FGET 

JU FACMP 

JU FGET 

LOC FTBLE + FMCS 

WRD FMC 

LOC FTBLE + FMCSD 

WRD FM:OD 

END 

FLOATING POINT MANUAL 
71-44-001 



6-1 

CHAPTER 6 

FLOATING POINT MANUAL 
71-44-001 

OPERATING INSTRUCTIONS AND SYSTEM GENERATION 

6.1 Using the Package as Supplied: 

A Command Equate Tape is supplied for the package as delivered. This 

tape is a source tape and contains the definitions of the floating point 

commands as well as the entries for $SFI, the conversion routines, and the 

names and entry points for the various flags and routines in $SF! that can 

be used in non-interpretive mode or by user coded extended functions. A 

commented listing of this tape appears in Appendix B of this document. The 

tape supplied with the package is not commented. 

This tape is intended for use during assembly of the user programs 

which reference all or part of the Floating Point System. The user need 

not define the names or locations appearing on this tape when he generates 

the source tape for the program he has written. Assuming the source tape 

isTgenerated, the following procedure will assemble the program for use 

with $SF!: 

1) Load the Assembler and select pass 1. 

2) Position the Command Equate Tape in the reader. 

3) Press start. The assembler will come to a halt after reading the 

Conmand Equate Tape. 

4) Position the source tape for the program in the reader. 

5) Press continue. The assembler will now complete pass 1. 

6) Run pass 2 and pass 3 as usual, using only the source tape for the 

program. The Conunand Equate Tape need not be used during these 

two passes. 



6-2 
FLOATING POINT MANUAL 

71-44-001 

Steps 1-6 apply to each separate assembly of a user program. When 

the program(s) are assembled and are to be loaded, the user must be sure 

that $SFI is loaded before anything else, because any extended functions 

being used (including user-generated functions) overlay portions of FTBLE 

in $SFI. 

With the object tapes for $SFI, the conversion routines, and the 

extended routines, as delivered, it is possible to create one of the four 

memory maps depicted below. The user may generate his own system suiting 

his needs by following the procedures outlined in the next section. 



$SFI Only 

7777 Utility 
. Loaders 
. 
. 

1610 

7607 

$SFI 

6120. 

6117 

User_ 

Area 

0000 

6-3 
FLOATING POINT MANUAL 

71-44-001 

POSSIBLE MEMORY MAPS 

WITH OBJECTS AS DELIVERED 

$SFI & Conversion 
Only 

7777 Utility 
Loaders 

L610 

7607 

$SFI 

6J.2il 

6117 

@FXC 
@SFC 
@SCF 

ru_i 
4770 I 

I 

User 

Area 

0000 

$SFI & Extended 
Only 

7777 

7610 r 
1601 I 

6120 
j 

6117 i 
j 

'. 

4771 

4710 

7 

3713' 

0000 

Utility 
Loaders 

$SFI 

User 
Area I 

FPS IN 
FPCOS 
FPATN 
FPL NE 
FPEXP 
FPS QT 

User 

Area II 

7777 

7607 

6117 

4771 

4770 

3LL4 

3713 

0000 

Entire System 

Utility 
Loaders 

$SFI 

@Fxc 
@SFC 
@SCF 

FPS IN 
FPCOS 
FPATN 
FPL NE 
FPEXP 
FPS QT 

User 

Area 



6.2 User Generated Systems: 

6.2.1 General 

6-4 
FLOATING POINT MANUAL 

71-44-001 

The source tapes supplied for the basic package, conversion rou-

tines, and extended package are organized so that the components of 

any Floating Point System the user may select for his problem will 

assemble such that the object tape generated will load as high as 

possible in memory. Since any configuration of routines which could 

comprise a Floating Point System must contain $SFI as a component, 

the procedure outlined for generating the system assumes that $SFI 

is located at the highest possible place in memory, and all other 

(if any) components will be located at successively lower locations. 

6.3 Assembling $SFI: 

Should the user desire to have $SFI load at some other place in 

core, the package must be re-assembled. Since $SFI will be assembled 

so that it occupies the highest location possible, the user need only 

supply that address. This is done by creating a separate source tape 

which has the following two assembly instructions: 

$$END = XXXXX 

EOT 

where XXXXX is the last address that the user wishes $SFI to occupy. 

To assemble $SFI, one follows the usual assembly procedure, ex-

cept that the short source tape constructed above'must be read in before 

the $SFI source tape at each pass. 



6-5 
FLOATING POINT MANUAL 

71-44-001 

Note: Do not use the Command Equate Tape for this assembly. 

After completion of this assembly, the "$SF!=" statement on 

the Command Equate Tape should be updated (using the Source Text 

Editor) so that·it states the new location at which $SF! begins. 

This location may be read off the symbol table printed out at the 

beginning of pass 3 of the assembly of $SFI. 

6.4 Generating a Floating Point System: 

If a configuration not obtainable with the object tapes supplied 

is desired, the user may, by editing the source tapes supplied (using 

the Source Text Editor), create a new source tape consisting of the 

routines he needs for his purposes. 

Since $SF! is the integral component of any floating point con-

figuration, it is assumed here that either the object tape supplied 

for $SF! or a relocated version assembled as in 6.3 (and the as-

sociated revised Command Equate Tape) will be used. 

The source tapes for the conversion and extended routines are 

arranged so that there is one routine per block on the tape starting 

with the second block. (The first block contains comments comprising 

an index to the rest of the tape.) This makes it easy to extract the 

routines desired using the Source ~~xt Editor. The routines on the 

extended package source tape are completely independent. However, the 

conversion source tape consists of three routines - the first (physically 

on the tape) of which is shared by both @SFC and @SCF. This means if 

the user desires a conversion routine in only one direction, he must 



6-6 
FLOATING POINT MANUAL 

71-44-001 

also include the shared routine (@FXC). The routines @SCF and @SFC 

are independent of each other. 

The procedure for extracting the desired routines from these two 

tapes is outlined below: 

1) Load and start the Source Text Editor 

2) Punch a single block at the beginning of the source tape 

being created which says: 

$$END = $SF! 

($SFI-l will be the last location into which the resulting 

object tape will load.) 

3) If either or both of the conversion routines are desired, 

position the conversion routine source tape in the reader 

and skip the first (index) block. Copy the second block 

(@FXC), which is the shared routine; then copy the block(s) 

containing the desired conversion routine(s). If neither 

conversion is required, this step may be skipped entirely. 

4) If one or more of the Extended Package routines is required, 

position the source tape for the extended routines in the 

reader and skip the first (index) block. Then copy the 

blocks corresponding to the routines required. If no ex­

tended package routines are required, this step may be 

skipped entirely. 

5) Punch a final block consisting of the single statement: 

END 

6) Load the Basic Assembler, select pass 1. 

7) Position the Command Equate Tape which corresponds to the 

object of $SF! to be used in the reader. 

8) Press start. The assembler will come to a halt after reading 

the Command Equate Tape. 



6-7 
FLOATING POINT MANUAL 

71-44-001 

9) Position the source tape generated in steps 1-5 in the 

reader. 

10) Press continue. The assembler will now complete pass 1. 

11) Run pass 2 and pass 3 as usual using only the source tape 

created in steps 1-5. The Connnand Equate Tape need not be 

used for these two passes= (Even if no assembly listing is 

required, pass 3 should at least be started so that the 

Symbol Table is obtained. 

12) Check the Symbol Table entries for @FCST, @SFC.and @SCF 

against the values appearing on the Connnand Equate Tape 

used for the assembly and, if they are not the same, create 

a new Connnand Equate Tape which has the values for @FCST, 

@SFC, and @SCF as they appear in the Symbol Tablee 

13) Assemble any user programs using this new Command Equate 

Tape as explained in 6.1. 

Note: 1) The lowest location occupied by the Floating Point 

System as created above will be the value appearing 

for $$END on the Symbol Table printed as a result of 

step 11) above. 

2) The object tape created by this procedure must be 

loaded after $SF! as explained in 6.1. 



Code 

01 

02 

03 

04 

05 

06 

07 

10 

A-1 
FLOATING POINT MANUAL 

71-44-001 

APPENDIX A 

Command Summa!'Y - Basic 

Definitions: 

Y ,-v address of floating operand 

-'address of location containing address - 1 of floating operand 

rJ address of another floating command 

rv address of index value 

[D] ~optional selection of deferred addressing 

I "-'index value of source or destination at address Y 

A "'pseudo-acct111lulator (FAC) 

X "-'pseudo-index register 

F IV floating value of source or destination at effective address formed 

from Y. 

(octal) Basic Commands Operation Flags Registers 

00 FEXT exit none none 

[101] FLDA [D] y F_.A none FAC,FTM 

[102] FSTA [D] y A..,..F FXFLG FAC 

[103] FADD [D] y A+F-.A FXFLG FAC,FTM 

[104] FSUB [D] y A-F_,.A FXFLG FAC,FTM 

[105] FMPY [D] y A*F-+A FXFLG FAC,FTM 

[106] FDIV [D] y A/F _.A FXFLG, FDFLG FAC,FTM 

[107] FADM [D] y A+/Fl-+A FXFLG FAC,FTM 

[110] FSBM [D] y A-fF)-+A FXFLG FAC,FTM 

14 PABS IAi ... A none FAC 

15 FASQ A2-..A FXFLG FAC,FTM 

16 FNOR normalized A -+A FXFLG FAC 

17 FNEG -A_.A none FAC 

20 FJMP y jump to Y none none 

21 FJAP y jump toY if A~O none none 

22 FJAZ y jump to Y if A • 0 none none 



Code 

A-2 
FLOATING POINT MANUAL 

71-44-001 

(octal) Basic Commands Operation Flags Register4 

23 FJAN y jump to Y if A<O none none 

24 FJEV y jump to Y if FXFLG setlO FXFLG (set to zero) none 

25 FJDC y jump to y if FDFLG s e tfO FDFLG (set to zero) none 

26 FJIX y X+l _.X, jump to Y if x/o none FINDX 

27 FLDX y I-+X none FINDX 

30 FSTX y x-.I none none 

Command Summary - Extended Functions 

Code (octal) Extended Command Operation Flags Registers 

31 FSIN SIN (FAC)_. FAC FXFLG FAC,FTM 

32 FCOS cos (FAC) ..... FAC FXFLG FAC,FTM 

33 FATN TAN-1 (FAC)-.FAC FXFLG,FDFLG FAC,FTM 

34 FLNE LOGe <IFACf )..-FAC FXFLG(*) FAC,FTM 

35 FEXP eFAC_.FAC FXFLG,FDFLG(l) FAC,FTM 

36 FSQT JI FAcf-.FAc none(+) FAC 

(*) If input argument is negative, FNLNF internal to the FPLNE routine will 

be set non-zero (see write-up). 

(+) If input argument is negative, FSFLG internal to the FPSQT routine will 

be set non-zero (see write-up). 

(1) If input argument is too large, FEXOF internal to the FPEXP routine will 

be set non-zero (see write-up). 



Commented Command Equate Listing 
B-1 

APPE~"I)!X B 

001 ; $FCQ - C01Yh"1 ENT ED 
002 ; 7 4-43- 402L 
003 ; GOL"lM.Al'l D EQUATE TAPE 
004 $SF'I = 6120 
005 ijFCST= 5705 
006 @SFC= 5377 
007 @SCF=477 l 
008 FGET= $SFI +2 
00'i F1"1A!:trl:= F GET+ 12 
010 FPUi\lT=Fi''1ASK+ 13 
011 FTBLE= FPUNT+ 14 
012 FTC1.Vlf'= FTBL E+ 111 
013 r'TCMA= F'TCMP+ 4 
014 FT SAX= ft'TG1--1A+ 5 
01:, FTlv.IHI=FTSM+ 1 
016 FTMLO=FTt\l.lrlI +2 
'11 7 FAGMP= FTML0+2 
018 FACMA=FAC1"1P+4 
019 FAS.AA= FAGMA+ 5 
020 FAGHI =FAS.AX+ 1 
021 r~ACLO= ft'ACHI + 2 
022 FL\JOrl!Vl= F ACLO+ 2 
023 FXFLG= FL\lOrlLVl+ 3 
024 F'ACXP= ft'XFL G+ 50 
0~5 F' l N DX= F AGXP+ 2 0 
026 1''DAD= FI NlJX+ 5 
027 FU'1Pt= .fo'DAU+ 31 
028 F'DDI V=F'D.V!P'f+ 143 
02~ FDFL G= FDDI V+ 3 
030 F.SDVD= FUF'LG+ 121 
031 F'LODV=FSDVD+ 10 
032 FETCH= F'Lu DV+ 2 7 
033 FSPLT=FETCH+ 16 
034 F'TMXP=F!:iPLT+6 
03!:> FAhGD=FTi"iAP+24 
036 FPUSli;; FARGD+ 1 
037 F'ARSN=F'PUSH+2 
038 fi'AR!:;;C= FArlSt\J+ 6 
039 FGMAX= F'ARSC+ 7 
040 F0FAC= fo'C .. ~AA+ 21 
041 Jo~PSTA=F0FAC+ 32 
042 Fli~AC=FPSTA+34 

043 FLI ST= FI NAG+ 37 3 
044 FEXT=0 
045 FLDA= 1 
046 FLlJAD= 101 
047 F'STA=2 
048 FSTAD= 102 
049 FADD= 3 
IO 50 FADDD=l03 
051 FSUB=4 
052 FSUBD= 104 
053 F\"1PY= 5 
054 F1~F(D= 105 
055 FDI V=6 
056 FD! VD= 106 
057 l-~AU"l= 7 
058 FAIMD=l07 
059 F!:)BLYJ= 10 

; 
; 
; 
; 
; 
; 
; 
; 
; 
; . , 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; . , 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 

FLOATING POINT MANUAL 
71-44-001 

EN TRY, I NTErtP !tKfErl 
CtiAAAGTErt SET TABLE 
El\Jl.H.t, F'L 1'l'1G· 10 CtiAtt. 
E.~ln.Y, GHAH. TO FLTNG. 
EL'J'lhf, EXTERNAL .H.ETUnN 
1'"1ASK F'Oh DEFJ:!:rirtED ivIO DE 
ILLEGAL COMMAJ.\JD ROUTINE 
TABLE OF ENTrlI E!:> 
EN THt, F'Itwl t\J EGA l I ON 
E.\J THY, - C Ax, At> TO FTtvI 
ENTtt'f, CAX,A'f> TO FT:Yl 
HI Grl uHDEH FTM 
LOW ·· Orl DEH F T .. VJ 
E.\J'U-rf, FAG NEGAlI ON 
ENTiff, -c.AA,AY> TO FAC 
El\l1'H'f, CA)(, AY > TO f'AC 
HI Grl OttDErl l-'AC 
LOW OHDER FAG 
EL\J TR'f, NOru'-1.AL l ZATI ON 
EAPON&\JT OVEHFLOW F'LAG 
l-~AC EXPON F.i.\J T 
PSEUDO-INDEX 
ENTRt, DBLE• PREC• ADD 
ENTRY, DBLE• PHEC· l"lULT• 
Et'\J T.H.f, DBLE· !-"HEC • DIV• 
DIVIDE GrlECri: FLAG 
Ei.\J TH'f, SN GL • PnEC • DIV• 
L• o. DIVID&\JD FOtt ABOVE 
EN THY, FL TNG ARG TO FT~"1 

SPLIT ArlG· TO FAG· 
FTlvl EXPONENT 
Ei.\I TR.i, IMM ED FETCH TO AX 
PUSH DO wN PO I NTErl 
l!.:.\J 1tfi, A.HI TH H.GH T SHF'T 
SHI FT COUt\J Teri F'Orl ABOVE 
Ei.\l 'f rlt, MA.A. ~\JJ. TJ FAG 
El'JTHY, lEHJ TO FAG 
STORE F'AC 
~AC.c\ li'AG 
PUS.ti OOWN LI ::>T 
~I T G0i.'1L"1AN D 
LOAD FAG Cu1Wll"lAND 
LOAD FAC DEFERrlED 
STOHE FAG 
!:;;TOHE f'AC DEF'ErlRED 
FLOA1ING ADD 
FLOATING ADD DEFERrtED 
Fl..OAHNG SUBTRACT 
FLOATING SUB· DEFERRED 
FLOATL'J G 1~UL Tl PL 'i 
FLOAT I NG MUL l• DEF'EiirlED 
ft~LOATING DI VI DE 
FLOATING DIVID~ DEFERRED 
FLOATHJG ADD l'1AGNI TUDE 
FL lNG ADD l"lAG DEFEhRED 
FLOATING SUB· MAGNITUDE 



B-2 FLOATING POINT MANUAL 
71-44-001 

060 }t' !::)1:31'"11.J= l l 0 ; FL'!L\JG !:>UB .VJAG DEF' Erin.EU 

lc>61 r'HL\J= 11 ; lnACE Jr-J 
'162 Fltd•~= 12 ; ! ti.AG~ Ofl·· 
ld63 FSET=l3 ; !:iEl EHHUh '!rlAP 
064 F'AB~= 14 ; ABSJLUT~ t'1AG~H I UlJE 
065 ~·A~bi= 1 !::> ; !::)QUArtE 
066 ji'.\J J l-1= 1 6 ; .\J .J rir1 AL I ~ 1£ 
lc>67 F'i.\l~G= 17 ; NEGATE 
06{'} r J<"li-'= 20 ; U\l CJ.\J DI lI J.-.J AL J Ut>'l.P 

06':1 FJAP=21 ; JUtVlP IF F'AC > iJH = ~1 

070 FJA~=22 ; JU.Vl!-J IF F'AC = IO 
071 FvAN=23 ; JU•Vl.l-J IF FAC < 0 
072 F'JEV= 23 ; JUc'l.t-' I .t'' FA.I-LG t\JJ 'i 0 
073 FJl.JC= 2!::> ; J u~vi t-J l}i' FDr'L G .\Ji,) 1 VJ 

074 F'JLl(=26 ; BUl'1r' J:t I :-J L>X., J;V} r' Ir ,\jj l !() 

07!::> F'LDX=27 ; LOAD P bEUDJ- IN DU 
076 r'!:>TA=30 ; !::) 1 t) rtE. .PS .E!. U LiJ - I ,\J DEX 
077 FSL'J= 31 ; !::) I L\J }!; 

07d .l-'CJ S= 32 ; CJSL\JE 
07'J F'A i~\J= 33 ; A.ttC 1 A1\J Gt..L\J l 
k:H:rn FLNE= 34 ; ~\JA.!UnAL LJGfud it-L"1 
081 iq~;~P= 3S ; .E.A r'J i\) EL\J 'i I AL 
iOtS 2 14· !:>bll= 36 ; !:>UUArlE rlOJ'! 
~tS ~ Ed'! ; A!:>!::) E.'1 BL ~rt rlALl 



NAME: $SFI 

C-1 

APPENDIX C 

Source Tape Organization 

;$SFI 
; 7 4-4 3-40 lL 
;IDENTIFICATION 
$$END-$$END-146~ 
LOC $$END 

block mark 

$SF!: 

block mark 

l- END J 
block mark 

FLOATING POINT MANUAL 
11-44-001 

comprises several blocks 



NAME; @FXV 

l \ 

--------·· .// ~ \ ........ ·--··-----

;@FXV 
; 74-43-410L 

I ; IDENTIFICATION 
;INDEX (BLOCK NO. 
VS • ROUT !NE) . . 

" ' ... 

block mark 

, ;@FCST 
;74-43-411L 
;IDENTIFICATION 
$$END=$$END-213 
LOG $$END 
@FCST=. 

block mark 

;@SFC 
; 74-43-412L 
;IDENTIFICATION 
$$END=$$END-306 
LOG $$END 
@SFC=. 

block mark 

·---r 
l 

........ ---···-·---,--·­
: ;SCF 
I; 74-43-413L 
•;IDENTIFICATION 

$$END=$$END-406 
LOG $$END 
@SCF=. 

block mark 

END 

block mark 

~- . _, 

) 
\ 

\ 

·'\., 

: . 

) 

C-2 

index (block 0) 

FLOATING POINT MANUAL 
71-44-001 

common module (block 1) 

floating to character (block 2) 

character to floating (block 3) 



NAME; $FEF 
, 

; 
;SFEF 
j 74-43-420L t 
; IDENTIFICATION I 

; INDEX (BLOCK NO ~ I 
;VS. ROUTINE) i 

' . , ... i 

_j 

block mark 

;FPS IN ----i 
;74~43-421L 
;IDENTIFICATION 

block mark 

$$END=$.$ END-17 3 
LOC $$END 
FPS IN: 

[ 
- .,, __ ·-------- - , _______ ,, ___ _. - --------, 

;FPATN 
;74-43-422L 
$$END=$$END-146 
LOC $$END 
FPATN: 

block mark 
r- -- -- --------

;FPLNE 
;74-43-423L 
;IDENTIFICATION 
$$END=$$END-164 

. LOC $$END 
FPLNE: 

I 

I 
! 

! ' 
L-----------'------------ --

block mark 
r---------· --- --- -

;FPEXP 
;74-43-424L 
;IDENTIFICATION 
$$END=$$END-201 
LOC $$END 
FPEXP: 

block mark 

;FPSQT 
;74-43-425L 
;IDENTIFICATION 
$$END-$$END-127 
LOC $$END 
FPSQT: -

~----------

block mark 

!.~ 
-------1 

I l .,___ __________ ,) 
block mark ,----

' --------....... 

~ 
) 

\ 
I 

I 
/ ... 
I 

\ 
) 

J 

( 
\ 
\ 

) 

C-3 

index (block O) 

FLOATING POINT MANUAL 
71-44-001 

Sine/Cosine (block 1) 

arctangent (block 2) 

natural logarithm (block 3) 

exponential (block 4) 

square root (block 5) 



D-1 

APPENDIX D 

FLOATING POINT MANUAL 
71-43-001 

%FCG - Floating Point Constant Generator 

%FCG - Floating Point Constant Generator 

%FCG is a utility routine which is provided should the user wish to 

use floating point constants whose octal equivalences are unknown. With 

%FCG, the user can type in a floating point decimal number and receive 

the equivalent internal floating point representation. 

%FCG occupies locations 0-2660 inclusive. 

Operating Instructions 

1. Load %FCG by means of %ALD. 

2. Tnrn teletype on-line. 

3. Set SC=O. 

4. Press START. 

5. %FCG responds with a carriage return, line feed. 

6. Type a string of up to 1310 characters terminated with an equal 

sign(=). The character string should be in the format described 

in section 3.3, where the delimiter is an = rather than a carriage 

return. Typing a back arrow at any point causes the first previous 

non-back arrow to be ignored. Typing rubout at any point causes 

%FCG to type a carriage return, line feed, question mark (?) and 

returns to step 5. Typing more than 13 characters before typing 

an equal sign has the same effect as typing rubout. 

7. When the user terminates the character string with the equal 

sign, %FCG responds by typing the 2 wora floating point equivalent 

(in octal) and returns to step 5. 

8. If the character string did not conform to the format specified in 

section 3.3, the message SCAN ERROR is typed and %FCG returns to 

step 5. 



D-2 
FLOATING POINT MANUAL 

71-44-001 

9. If the character string resulted in a number whose magnitude was 

outside the range l.469369E-39 to l.701411E+38 or if the character 

string contained more than 1010 mantissa digits, the message 

ANSWER OUT OF RANGE is typed and %FCG returns to step 5. 



E-1 

APPENDIX E 

FPSET - Error Trap Routine 

Introduction: 

FLOATING POINT MANUAL 
71-44-001 

A series of floating point calculations on an unknown data base can 

generate errors, such as results which exceed the capacity of the machine 

or dividing by 0, etc. In order to facilitate the localization of the oc= 

currence of such errors, FPSET is provided and serves as an error trap 

routine. When an error specified by the user is detected, FPSET will 

interrupt the operation of the interpreter and give control to a user 

supplied error routine. FPSET supplies the user error routine with the 

following information, allowing the user to pinpoint the step in his cal-

culations at which the error occurred: 

AX = recursion level at which the command at the address in AY was 

executed. 

AY address of command executed immediately previous to detecting 

the error. 

TRP = error number indicating which flag in the user supplied error 

list was set non-zero. (TRP = position of address of error 

flag in user supplied table (see usage)). 

The recursive capability of the interpreter somewhat complicates cer-

tain usages of FPSET and, for this reason, three modes of operation of 

FPSET are allowed: "On", "Off", and "Partially On". The latter mode 

allows FPSET to keep track of commands and recursion levels without ex-

amining any error flags. The utility of this mode is described in the ex-

amples at the end of this appendix. 



E-2 

Usag-e: 

FLOATING POINT MANUAL 
71-44-001 

FPSET is controlled by the use of the FSET command in the sequence of 

floating commands being executed by the interpreter. There are three modes 

of operation of FPSET: 1) ON, 2) OFF, and 3) PARTIALLY ON. 

1) To turn FPSET ON, the command is 

FSET A 

where A is the address of a table with the following format: 

A: WRD ERR ;USER ERROR ROUTINE ENTRY 

WRD FLGl ;ADDRESSES OF SYSTEM 

WRD FLG2 ;FLAGS TO BE CHECKED ... 

WRD -1 ;END OF TABLE SIGNAL 

When this FSET command is encountered with a positive non-zero value for 

A, FPSET will examine the state of every flag listed in the table at address A 

after every command executed by the interpreter from the point of the FSET A 

command onward. Whenever a flag whose address is in the user list has become 

non-zero (indicating an error), FPSET zeros the flag, and then gives control 

to the user error routine at the address specified in the first word of the 

table at A. The information supplied to the user error routine is as stated 

in tle introduction. 

The user error routine may use $SFI, but any additional errors which might 

occur will not be checked by FPSET, and any FSET commands in the command se-

quence will be ignored. If the user wishes to call $SFI in his error routine, 

it is up to him to save and restore the states of the interpreter system flags 

and the floating accumulator (FAC) before and after such $SFI use. 



E-3 

2) To turn FPSET "off", the command is 

FSET 0 

FLOATING POINT MANUAL 
71-44-001 

This completely disconnects FPSET from the interpreter. 

3) To turn FPSET "partially on", the command is 

FSET N 

where N is any negative number. 

In this mode, FPSET will keep track of the current command address and 

recursion level but will not examine any flags. If FPSET is at some later 

time turned "on" and discovers a flag set non-zero, the level and the com-

mand address will be correct within certain limitations (see Notes). 

This mode is useful when the user does not wish to enter his error 

routine for errors which occur during execution of a section of his command 

sequence. For example, the command sequence may contain an FJEV or similar 

test for conditions known to the user, and with FPSET "on", these conditions 

could be altered (cleared) if the corresponding flags are in the user error 

list at A. In this case, an FSET N (where N ( 0), issued before entering this 

section, and an FSET A (A) 0, A=address of table), issued after completion of 

this section will allow FPSET to retain the necessary information should 

other errors occur and allow the section itself to operate properly. 

User Error Routine: 

Basically, the user error routine may do anything. However, the user must 

remember that his error routine is considered as an extension of the inter-

preter. At the completion of the error routine, control should be given back 

to the interpreter via a JU FGET or similar return. 

Register AX is used as an argument upon return (via JU FGET) and can turn 



E-4 FLOATING POINT MANUAL 
71-44-001 

FPS ET "on", "off", or "partially on" according to AX) 0, AX=O, or AX< 0 

respecti-vely. If Ax:;>o, it must be the address of an error table as de­

scrirred above (it need not necessarily be the same one as before). 

Notes: 

1) It is generally the case that an error flag is set by the command 

immediately preceding the detection of the flag non-zero. In the 

case where FPSET was not "on" at that moment, but was turned on 

later and found the flag non-zero, FPSET will report that it does 

not know which command caused the error by giving an AY value 

which points to the FSET "on" command or by AY = -1. The dif­

ference in meaning of the two AY values is as follows: 

a) AY = address of FSET "on" command if the flag was non-zero 

at the time the FSET "on" command was encountered. 

b) AY = -1 if all flags were zero when the FSET "on" was en­

countered, but a flag was set non-zero later at a point 

which indicated that the corrnnand which caused the error 

was at a recursion level one less than the level at which 

the error was detected. This situation is avoided if 

FPSET is partially on throughout until it is turned on. 

2) If the user wishes to restart his entire program or in any other way 

wishes to use the interpreter without reloading it, he should make 

sure that FGET+l is initialized to FARGD and FPUSH is initialized 

to FLIST-1. 

3) A FEXT command does not affect the mode of operation of FPSET, i.e. 

upon re-entering $SFI, FPSET will operate as per the last FSET com­

mand encountered before the FEXT. 

Operating Instructions: 

1. If a user generated floating point system is being used (as per 

section 6.4), the FPSET program needs to be reassembled. To do 

this, make a short source tape with the following two instructions: 

$$END = XXXXX 

EOT 



E-5 
FLOATING POINT MANUAL 

71-44-001 

where XXXXX is the lowest location occupied by the user generated 

system. Then assemble FPSET as explained in section 6.1 of this 

document, making sure that the short source tape above is read in 

before the FPSET source at the beginning of each pass (steps 4 & 6 

of 6.1) and the Connnand Equate Tape is read in at the beginning 

of Pass 1. 

2. Load FPSET after $~FI. 

3. Start user program which has FSET connnands in the usual way. 



Examples 

1. Typical usage of FSET "on" and "off" 

User Main Code 

JU $SFI 

FSET A ;Turn FPSET on User Error Routine ..,_ __________________ ..,;._ ___ ___ 

FDLVll(.. __ ~~~~(~c~a~us2!::e~s~d=i~v=i~d:e~ch~e~c~k~.L-!~F~P~S~E~T!:......J2~i~v~e~s~c~o!..U.Jin1t~~~10~1l~~t:~o~•)~~~ERR: (TRP = 000002 
indicating second 
flag in table at A 
was set) 

A: 

FSET 

FEXT 

WRD 

WRD 

WRD 

WRD 

'J....---- "-· 

-
0 

ERR 

FXFLG 

FDFLG 

-1 

} 
This returns control to inter~reter 

to execute next command 

Errors in here 
are not detected 
by FPSET 

;Address of user error routine 

;Address of exp over/underflow flag 

;Address of divide check flag 

;End of table 

MRI A,AX 

r..-....._--JU FGET 

;Turn FPSET back on 

'--~----~~----~~--~-----~~·~--·-



Example 

2. _Use of FSET ''Partially On" 

..-----------------------------,----------.... ~ 
User Main.Code User Coded Extended Function 

JU $SFI r-_. FPUFN: JU $SFI 

FSET -1 ;tum FS.ET partially on 

FJEV 

FDIV 

FUFN 

;Reason for FSET partially on 

;Error (divide check) occurs· here 

;User defined functicm-----..... -

_______________________________ , ____ , ________ . 

A: WRD 

WRD 

WRD 

FSET A 

ERR 

FDFLG 

-1 

;Turn FPSET on 
(Detects FDFLG error 
immediately and traps 
to user error routine) 

;User supplied table 

In this example, because FPSET ·was only partially on when the error actually occurred, the 

error trap will indicate that the erring command was FSET. It will, however, indicate that the 

divide check flag was on (TRP • 000001 since FDFLG is first in table A) and that the error oc-

curred in recursion level 2 sjLnce FPSET was turned on in the user function. 



Examples 

3. Another usage of FPSET "Partially On" 

User Main Code 

JU $SF! . . 
. 

FSET -1 ;Turn FPSET partially on . . 
. 

FJEV 

FUFN ;User defined function 

In this example, FPSET indicates an error on 

recursion level 1, and that the command 

causi:n5 ti1c: error was FUFN (i.e. AY will have 

address of FUFN command). This is as it should 

be since the arguments given to the user function at 

the FUFN caused the function to set an error con­

dition. 

.... --. 

Note: If the FSET -1 had not been issued in the Main 

Code, FPSET would have indicated the AY= -1 condition. 

It would, however, indicate the correct flag and the 

correct level (i.e. level 1). 

User Coded Extended Function 

FPUFN: 

JU $SFI 

FSET A 

FEXT 

ZM Pl,FUFLG 

JU $SFI 

A· 
' 

WRD ERR 

WRD · FXFLG 

WRD FDFLG 

WRD FUFLG 

~ 
WRD 

'---·~-

-1 

;Turn FPSET on 
(no errors yet) 

{Input argument cause 
user coded function 
to set error flag 

• error is detected here 
by FPSET 

tT:1 
I 

00 

t-rj 
t-1 
0 
> 
t-3 
H 

.......iz 
I-' c::i 
I 
~ 1-d 
~o 
IH 
oz 
01-3 
I-' 

~ 
z 
§; 
t-1 



F-1 

APPENDIX F 

Trace Routine 

FLOATING POINT MANUAL 
71-44-001 

The floating point trace is a debugging aid which prints 

the value of pertinent variables in $SFI and the user's program 

before the execution of each floating point pseudo command. The 

variables printed are: 

A. current level of $SF! 

B. address of the instruction to be executed 

C. code for the instruction to be executed 

D. FINDX (floating point index) 

E. FDFLG (divide check flag) 

F. FXFLG (exponent overflow/underflow flag) 

G. FAG (floating point pseudo accumulator) 

H. effective address of argument, if any 

I. value of argument, if any 

The user specifies which of the variables are to be printed 

and the maximum level for which he wants the information printed. 

This is done through the floating point pseudo commands FTRN 

and FTRF. 

To turn the trace on and specify which of the nine variables 

are to be printed, the pseudo command is: 

FTRN X 

where bits 0-8 of the integer X correspond to the variables A through 

I above. For each bit that is on (=l) the corresponding variable 



F-2 
FLOATING POINT MANUAL 

71-44-001 

will be printed before the execution of each floating point command. 

The FTRN command sets maximum recursion level to be traced tc 7, 

turns the trace on and prints a heading (A-I), telling which variables 

are to be printed. The "trace on" causes the specified variables to 

be printed on one line before each instruction is executed. 

The printed value of variables H (argument effective address) 

and I (argument) need further explanation. If tLe command to be 

executed has no argument, columns H and I will be blank. If the 

argument is floating point, I is printed as a floating point deci-

mal number, otherwise it is octal. If the command is FTRN, FTRF or 

a JUMP command, then H is the address+! of the command and I is the 

contents of H. In the case of the commands FLDX Y, or FSTX Y, His 

the address Y and I is the contents of Y. For user coded extended 

functions, columns Hand I will be blank unless the function has a 

floating point argument. 

To turn the trace off beyond a certain level, the pseudo command 

is: 

FTRF X 

where the integer value X specifies the maximum recursion level (1-7) 

for which the specified variables are to be p~inted. If X is less 

than or equal to 0, the trace is disabled and no variables will be 

printed from then on until another FTRN X command is executed. 



F-3 

Notes: 

FLOATING POINT MANUAL 
71-44-001 

1) When the trace has been turned on, certain locations in 

$SF! are changed. $SF! is restored to its original state 

only after the trace is completely disabled by an FTRF 0 

command. Therefore, to restart the user program or use 

$SF! without reloading when the trace has been on, the user 

should make sure that: 

a) FGET+l is initialized to FARGD 

b) FSPLT is initialized to 11 0000 06 

c) FSPLT+l is initialized to FTMHI 

d) FPSTA+l is initialized to FARGD 

2) The trace program cannot run at the same time as FPSET, 

and so should be assembled over the FPSET program. Therefore, 

if the trace is on and an FSET command is encountered, the 

FSET command is considered illegal. That is, the interpreter 

halts with the address of the illegal command in the MB reg-

ister on the front panel. (See section 2.2.5). 

Operating Instructions: 

1) If a user generated floating point system is being used 

(see section 6.4), the trace program (FPTRC) should be re-

assembled. Since FPSET and FPTRC are mutually exclusive, 

FPTRC is assembled over the FPSET program. To do this, make 

a short source tape with the following two instructions: 

$$END = XXXXX 

EOT 



F-4 
FLOATING POINT MANUAL 

71-44-001 

where XXXXX is the lowest location occupied by the user 

generated system (excluding FPSET). Then assemble FPTRC 

as explained in 6.1. Make sure that the short source tape 

above is read in before the FPTRC·source at the beginning 

of each pass (steps 4 & 6 of 6.1). Read the Command 

Equate Tape in at the beginning of Pass 1. 

2) Load FPTRC after $SF!~ 

3) Load and start user program with FTRN and FTRF commands 

in the usual way. 



F-5 FLOATING POINT MANUAL 
71-44-001 

001 ,; EXAi.'1PL E 1 
002 ; THIS EXAi'vlPLE USES TWO FThN COiVltvIAN D5. 
003 ,; THE lST FTRN' !:>ELECTS VARIABLE5 A, B, c, D, F·, G, H, l 
004 ,; TO BE PRINTED· THI 5 IS IN EFFECT UNTIL THE 
005 .i2ND FTRN IS EXECUTED· THE SELECTED VARI ABLE.::> 
006 .iARE THEN CriANGED TO A, a, c, E, F', G, H • THE 
~H17 .iFTHF 0 COMPLETELi DI SABLES THE TRACE• 
008 00000 00 0100 03 JU $SFI 

00001 006120 
009 00002 00 0000 1 1 FTHN 757 ; PHI NT A, s, c, D, F, G, H, I 

00003 000757 
010 00004 00 0000 27 FLDX w 

~H1005 000032 
011 00006 00 0000 01 FLU.A )( ; i=X*'l 

00007 000033 
012 00010 00 0000 05 FMPY '( 

00011 000035 
013 l(Hd0 l 2 00 0000 02 FSTA y 

00013 000035 
IO 14 0£:1014 00 0000 26 FJIX ·-6 ; DONE LOOP 3 TI1"1~~? 

00015 000006 
015 00016 00 0000 11 FTHi.\J 367 ; PRINT A, B, c, E, F, G, rl 

00017 000367 
016 00020 00 0000 01 FLDA x 

00021 000033 
017 00022 00 0000 06 FDIV f 

00023 000035 
018 00024 00 0000 02 FSTA l 

00025 000037 
019 00026 00 0000 12 FTRF 0 ; TURN TrlACE OFF 

00027 000000 
020 00030 00 0000 00 FEXT. 
021 00031 02 0100 00 FOM HLT 
022 00032 177775 WI WRD -3 ;LOOP COUNT 
023 00033 050000 x: WHD 500£iHh 203 ; 5. 0 

00034 000203 
024 00035 040000 ~- t.iWI\ 40000,202 . ("} n. ... W.&'-LJ , c:.. VJ 

00036 000202 
025 00037 000000 l: WRD 0, 0 ; 0. 0 

00040 000000 
026 Ei.\J D 



A B c D 

1 00004 00027 000000 
1 00006 00001 177775 
1 00010 00005 177775 
1 00012 00002 177775 
1 00014 !00026 177775 
1 00006 00001 177776 
1 00010 00rc:rns 177776 
l 00012 00002 177776 
1 !00014 00026 177776 
1 00006 00001 177777 
1 00010 0'1005 177777 
1 00012 00002 177777 
1 00014 00026 177777 
1 !00016 00011 fiH10000 

A ti G E F 

l 00020 00001 0 0 
1 00022 00006 0 0 
1 ~H1024 00002 0 0 
1 01tH:1~6 00012 0 0 

F-6 

F G H 

0 +2 • 356227E- 39 00032 
0 +2. 356227E-3':J 00033 
0 +5• 000000E+00 (CH.00 3:> 
0 + l • 000000E+0 l 00035 
0 +l.000000E+01 00015 
0 + 1•000000E+01 00033 
0 + 5• 000000E+00 00035 
0 + 5. 000000E+ 01 kH1035 
0 +5.000000E+01 00015 
0 +S.000000E+01 00033 
0 +5• ftH10000E+00 00035 
0 +2.500000E+02 00035. 
0 +2·500000E+02 00015 
0 +2·50000IOE+02 00017 

G rl 

+2• 500iOL::H1E+0~ 0{!H133 
+ 5· 000000E+ 00 00035 
+2.000000E-02 00037 
+2• 000000E-02 00027 

FLOATING POINT MANUAL 
71-44-001 

I 

177775 
+ :,. 000000E+00 
+2.0000i00E+00 
+2• 0IOl::H!l00E+k:H1 
000006 
+ 5• 000000E+00 
+ l • 000000E+0 l 
+ 1•000000E+0 l 
000006 
+ 5· lc'.H10000E+00 
+5·000000E+01 
+ 5· 000000E+01 
000006 
IOl.10367 



F-7 

; EX~'1PLE 2 

FLOATING POINT MANUAL 
71-44-001 

001 
002 
003 
004 
005 

; Trll S EAAl.~tJLt.: PHI NT!) .ALL 9 VAB.I ABLES 
;fun rlECUH~ION LEVEL~ 1 AND 2. 
; THE USEX EXTENDED .l-~U .. 'IJCll Ot'IJ I.::> AT 
; li~CU.H.SI ON I.. ~V EL 2 • 

006 00000 00 0100 03 
00001 006120 

007 00002 00 0000 11 
00003 000777 

008 00004 00 0000 12 
00005 000002 

00~ 00006 00 0000 27 
00007 000043 

010 00010 00 0001 ~l 

00011 000044 
011 00012 ~0 0000 02 

00013 000046 
012 00014 00 0000 37 

00015 000046 

JU $5FI 

FT.H.'\J 777 

FTRF' 2 

FLDX X 

FLlJA}) X+ 1 

FSTA Y 

F'UFN Y 

013 00016 00 0000 26 FJIX ·-6 
00017 000010 

014 000c0 00 0000 12 FTH.F 0 
00021 000000 

015 00022 00 0000 00 FEXT 
016 00023 02 0100 00 FJM HLT 
017 0~024 00 0100 03 FPUF~: JU FARGD 

00025 007057 
018 00026 11 0000 06 

00027 000035 
019 00030 00 0100 03 

00031 006120 
020 00032 00 0000 01 

00033 000050 
021 00034 00 0000 06 ArlG: 

00035 000000 
022 00036 00 0001 02 

00037 000045 
023 00040 00 0000 00 
024 00041 00 0100 03 

00042 006lc2 
025 00043 177776 x: 
!0~6 00044 000077 
027 00045 000077 
028 00046 000000 Y: 

00047 000000 
02~ 00050 076400 ~= 

00051 000211 
031.1 

H£V! fJ._X., AH G+ ! 

JU $S.fl 

FLDA Z 

FDIV 0 

FSTAD X+2 

FEAT 
JU J.~GEI 

WRD -2 
WttD 77 
WiW 77 
WHD 0, 0 

wtW 76400, 211 

LOG 100 

; MM Iii.ACE LEVEL=2 

; FETCrl AHG DEFEH.HED 

; USE.tl. EXTENDED FUNCTIOl'IJ 

; DONE? 

; YES, TrlACE OFF 

; 501{}. 0/l' 

;LOOP COUNT 
JFETCH AUH, DEFERRED 
;sTOHE ADH, DEFEHrlED 
; FUFN AHG· 

; 50ll1· 0 

031 vHfl00 062000 
00101 000206 

032 00102 050000 
00103 000204 

WriD 62000,206 ;s0.0 

033 
034 
035 06c22 000024 
036 

FUi''i'J= 31 
LOG fi TBLE+FUF'1.\J 

ENLJ 



(' 1 I -... F (" 

i r·-1 n r• /_: O· r·\ n 1 ') r:·· 0. I r: (:'1 e e r:i + t:> . ·--
1··. r··; r"?, r:> C-. n r;_ ,ry_ r:- 7 (:' r··, (', (. ('!: n 7. C' -·· + ?. . 
(,' r· (? 1 (7\ (7, (,) 1 (1. ,_ 1 7 ""i 7 7 f n G -1- ~) . 
r:· ( 1 i) [ii (i'i (i'i (.~~ 1 't '/ 7 ., h n (7.· + 5 .. r . 
r~. (,; (1 1 L1 f7i n (: ~ 7 1 7 ~i' 7 7 (; (1- n ..J. 5 . 
r.; (: r:. :~ ~·;, (i'! (7: !?('\ 1 l 7 7 7 7F. (i1 ('. ..J. i.:; f' 

._ .-. ,-; ('. < /: (? (_? (~~, ri (-. J 'I "I 7 7 r~ (? (./ -4- 5 .. 
~~ r· r_: e. ;·~ (-, r; (?; 1 G? 1 7 .. , 7 7 f. n (-'1 + l . 
~-:' ( {ij Ln (J (·ir't('i(li 1 7 7 '/ ., f, e, r. ..a. l . 

r· (". n 1 {-- c.r.~ Ci~f) 1 7 7 7 I r; ('\ n + 1 . 
r· r·. 1 e- n n J 0 1 1 '/ 7 ., '"/ 7 ~· C'i -1- l . 
,. 

(-~ r, 1 '.,.) e, ("' 0 r; ~) 1 .. , ~I '/ 7 7 (-''1 r + 1 ,.'I . 
( (·' 1 11 ('; (i n 0 7 l ., 'i 7 I 'I (·i n -1- 1 . ,) 

!.-·: n ( r? 1") r-. r'. 
,~ (' 1 1 7 7 7 .. , '"i (', n ..a. 1 •. ( 
•/) ... . 

:.J r;• ~,· :~IJ n (' r; nF l 7 '1 7 'I 7 n n + ~ • 
(.'; (.-- ( .~6 r.-: (\ J D. ? 1 7 7 7 '( '"/ c n + ~ . 

' '. (''• ( I lt(\ (', c: f7 c (? j 7 '{ ., 7 7 (I n + ~ . 
1 (:, (» 

,.., 
1 f. 0 ,.,. r:-: 

,, ;:-: 1 7 7 7 7 7 f rt', .+ 5 ,. ... -~. • 
l (" (' (-" 5=) (? r:: (? (.>. 1 ~=) r ,, r;·· " u n (.'.1 (?, ..a. 5 . 

F-8 

7J 

r~ 5 F-. ~-~ ':> 7 1~-- '..J.\J r.-< n n 0 5 
') So?.?. 7 F- ;~0 r::1 C'. c ,'J l! .. ') 

~ Sf; ~: ~) 7 - ~<q {i'i(/i , (? (i': 

('> 
1,ll nr:-v r;7 e: r;·+ ,. 

1 (", (.>., (?, L: 6 
('i (,'; ne 171 r: ,._~·· ...&- (i 1 
en (/: 0- 0- r·, .··: J-+ (~ ) (ii (.; 01 c.:; ('; 

0'; 
(l\ ('; "" 

(-l e F+ (i~' . r/\ I'· n L. F 
Ci(11 iii ('1 ., Vi F1 F:..f.. (1! 1 (' (it l t?i !11 

(ii(!\ ('i(?1(ij r F:+ n J 
r-~r (i (1. (t' eF-1- ('. 1 (' r; I/' l 7 
(i (ii (?; (i'; (7 C· i~:..a.. (>; 1 r". (·i 1 r.:-·, ~) 

e:n 0 (!1(?, ( ~~ i,:+ n 1 (."'.: ('i c /_1 (--, 

(11(7 r- (i1 (?1 (/ F+ n 1 
(?1(1 n (!i (>. n 1; -1- r• J (? v' r: c:.: f·>. l/• 

n n n (', ("1 n F·-1- (/ r'· ( ('. r- L. () r· 

('1 v (ii('. (i'. r:-, F+ 1?! 1 (? (-\ l [.l (' ,-

1;·_.c;1 (? (./; v nF+ (i' J 
(~ n (l1(ii (i'\ (7 Ti+ ('. 1 r.:'. (:, (-~ 1 .,. 
('1 (1l (71 (;~ fl·(? F+ e: 1 ,--_ (.': r;.: ~-~ 1 ;/ 

FLOATING POINT MANUAL 
71-44-001 

T 

C' r:-.. ('•, ( f I n --, 7 'i "J 7 ( I 

-1- t:.;, .. (1 (;'. (7 (' r·i r· i:;-.1- c. 1 
..J. ('. . ('. r: (:; (/ r.:-1 r· V+ ('. r.·· 

-1- s . n vr: (i f I• -1- n ~ -~~ 
-1- h, 

~ 
(i r: nc e (/: 1; -1- (.~! 1 

-1- s . (i'i fl': (7 n (,·, n i•+ (' 1 

17 e '" l "'. 

-1- 1 . (?. (,' (' C1 (' (-' ... + C1 l 
.J,. s . Ci (', ('i (:1 (~ I "+ r·, 1 

+ ~) (:' (' (, j; + '-·' ,-. . ~ ... , . ,--

..a. 1 . (l (-'.(',(-- 1< + 
-1- l f (' ( !·1 f.,--1- f" -~ 1 . .,, 

v r·· \'; ('; r· '.···, 1 (.·. 

(' r:· 1:. r: (,' (.:' 



F-9 FLOATING POINT MANUAL 
71-44-001 

001 ; EXAVJPLE 3 
002 ; THI!:> I ::; THE SA~E AS EXA'VJPLE 2 
003 ; EXCEPT THE ~\jAX IM UL"i RECURSION 
004 ;LEVEL PRH'1TED IS LEVEL l DUE 
005 ; TO THE FTHF 1 CO.\lli~Ai"J D· 
006 00000 00 0100 03 JU $S:fl 

00001 006120 
007 00002 00 0000 11 l''THN 777 ; PrlL'V T A, B, c, D, E, 1•, G, .H, I 

IOl.-Jl(:H~ 3 000777 
008 010ta04 00 0000 12 FTRF 1 ; i.1AA TrlACE LEVEL= 1 

00005 000001 
00'J 00006 00 0000 27 FL~~: x 

00007 000043 
IOU-' ~.Hh2l 1 ~".l cw 0001 01 F'LDAD X+l ; F'E'fCH AHG DEFEHHED 

00011 ")00044 
011 00012 00 0000 02 FSlA '{ 

00013 000046 
012 00014 00 0000 37 FUFN 'f ; U .SER EXTENDED FUN CTI Oc\J 

00015 000046 
013 00016 00 0000 26 FJIX .-6 ; DONE? 

00017 000010 
014 00020 00 0000 12 FTHF 0 ; YES, TrlACE OFF' 

00021 000000 
015 00022 00 0000 00 F'EXT 
016 00023 02 0100 00 FJM rll.. T 
017 00024 00 0100 03 FPUF'N: JU l<'AtlGD 

00025 007057 
0HS 00026 11 0000 06 &VJ AX, ARG+ 1 

00027 000035 
01':i 00030 00 0100 03 JU $!->F'I 

00031 006120 
020 00032 00 0000 01 FLDA l ; 5"10· 0/( 

00033 000050 
021 00034 00 0000 06 ArlG: FDIV 0 

00035 000000 
022 00036 00 0001 02 FSTAJJ ;(+2 

111rAOl'l'1 000045 IUIUICJJ I 

023 00040 00 ~000 00 FEXT 
024 00041 00 0100 03 JU fo~GET 

00042 006122 
025 00043 177776 x: WHD -2 ;LOOP CuUNT 
026 00044 000077 WHD 77 ; FETCri ADH., DEF'EHHEW 
027 0(ij045 000077 WrlD 77 ; STOHE ADH, DEFErlHED 
028 00046 00rt>000 Y: WRD 0, 0 ; FUF:-J ARG· 

00047 000000 
0~~ l11l>050 076400 l: WRD 76400,211 ; 500· 0 

00051 000211 
030 LOC 100 
031 00100 062000 WHD 6200~,, 206 ; 50· 0 

00101 000206 
032 00102 050000 WRD 50000,204 ; 10· 0 

00103 000204 
033 FUFN=37 
034 LOG fo'TBL. E+ FUF'i\J 
035 06222 000024 W.HD FPUF1\J 
036 El\lD 



::'!. .. c r F -i:; (2 

'" r. 
,., (7 Li c e (' 1 "' .~ r. , .... r?, "71 (7 r~ (\ f.l. + ~ . 

i (/; f:, c~ n (' ;.~ 7 (\ (·'. (' (' ( (?1 n + ::-i . 
(i: 0. C: 1 r7 (?" t'i; 1 (7i J 1 7 7 'l rl 6 (?1 {?i + l"·, 

r~ . 
[' _,,.~~ ~7; 1 ~) 00 f? (?, ? ] '/ ., 7 7 (-. C? r, + 5 , .. . 
(,' 1- 1 /_J c~ r:·. n ....... 7 l 'l 7 7 7 (-, e e + 5 ,.., . 
c:: e (: J (-, (? e e :-> f; 1 7 r/ 7 7 f (/'. r + 1 . 
r-• r.·. ! 1 (': r~ r:~ 1 0 1 1 7 'i 7 7 'I (": 0 + 1 . 
('. r· (' 1 ~-:) (i r. c·. (.'. ,, J 'I 7 r, 7 'I r.·'. (?. + 1 c' I . 
(' (', n 1 L e (? G :1 7 1 7 7 7 7 7 17· n + 1 . 
(" (/ J {. e C' r' n h l '/ 7 '/ I 7 (.,, c~-·1 + 5 ,... . 
('; (1 t:~ ~-) ('• C" f/ r;: 1 ~) c c { --:~. " (' (,.', (.'; (', + ~ . 

F-10 

q 

1 Sf ~) ~) 7r; - >'Cl f? 17 ( e 
=-i 56 ~) ~·.i 7}· - :~q (· c (.' Ll 

3 ~6 ? ? 7 }t - ~~() (; (~ 1 (? 

(? n (': e (1 (?. F+ (' J 
,.., e e L! ,.'I !."l 

(;·l(-'1 (?i(i~ 0(? F+ (' 1 

c:· (\ !7. e r. r f + (' 1 e '·' n l 
(~ (?, n 0 0 0 }~ + (/ j (.', r l r< 

(?, (.i' (' ' ['1 (7: v F+ ('. 1 c e (,". /! 

(11 (ii (l C1 r~ (? F+ (.' J 
(I\ (i r? (;1 n (1 F + (' 1 r-,\ ('1 (i', 1 ,. 
(i'i e, ('; (/i (I; (?; }• + e 1 e l) (' ' ,.-

FLOATING POINT MANUAL 
71-44-001 

T 

[;) (.' r.'(.! 0· (,' l 
<, 1 7 I I 7 (, 

r·, + s r·· e (;: ('. ('; (.-' 1~ + I I J . 
r-, + r~ c1 (' (' (,' n (' -~-; + ( r· . 
'I {.; e (~» (7i l r:· 
,. 
,~ + 1 .. (' n (1 ( (.·'.; " + { J 
(' + ~ r:· (i• {} (' I h+ . ~ . ., 
'i (.' ("C\ (7 l r.·, 

1 (' .. ( n (.' '··~ ·.·; !.-', 



0 
~m ------~) I I ______ ~~--

0 

~m GRI Computer Corporation 
320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02164 

TEL: 969~0800 


	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	xBack

