(©

©
®
©

Tamfa)
[1]
(=)
=)
o
I e
]
o
=
Il- | |
o

manual

O
g ST GRI Computer Corporation

o

220 MNEEDH &4 Q'{‘%*f"‘r NEWTOM MASSACHUSETTS 02144

AL
FEER A T et 1w P e

Price $1.75

GRI-909

FLOATING POINT MANUAL

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164
e October 1970 by GRI Computer Corporation
71-44-001-A
1170-500

FLOATING POINT MANUAL

TABLE OF CONTENTS 71-44-001
1 FLOATING POINT INTERPRETER
1.1 Introduction « « o o v ¢ ¢ 4 4 ¢ 4 e 4 e e e e e e e e e o171
1.2 Basic Package, $SFI . . & &+ ¢ & o o o s o o o o o o « « o 1-4
1.3 Floating Point Format . . . « ¢ « o o « « o o« o« » o + o+ » 1-6
1.4 Internal Registers . . v & v ¢ ¢ ¢ ¢ o o o o « o o o o o o 1-7
2 BASIC COMMANDS
2.1 Command CategoriesS v v v ¢ v ¢ o o o o o o o o o o o o+ . 271
2.2 Command Descriptions . . . ¢« ¢ & ¢ ¢ 4o 6o o ¢ o o o o o & o 2=2
2.2.1 Type I Commands - Load & Store Commands 2-2
2.2.2 Type II Commands - Binary Commands 2-3
2.2.3 Type III Commands -~ Unary Commands . . . « « « o & o o« o« o+ 2=7
2,2.4 Type IV Commands - Index Commands 2-8
2.2.,5 Type V Commands - Conditionals « ¢« +« + ¢« « « . . 2-8
2.2.6 Type VI Command = Exit . . . ¢ v ¢ o o o 4 o ¢ o o o &+ o » 2-11
3 ~ DATA CONVERSION
3.1 Introduction . o ¢ ¢ ¢ ¢ 4 ¢ o6 o o o e 0 e s e e s e s . 31
3.2 Floating Point to Character Conversion 3-2
3.3 Character to Floating Point. « « ¢« ¢« ¢ « ¢« &« ¢« « 35
3.4 Common Tables & Routines . .', .
3.5 Character Set Table ¢« « ¢ ¢ v ¢« ¢ ¢ ¢« o« .« o« 3-8
3.6 Floating Point Powers of Ten Table « . « « « « « 39
3.7 Left Shift FAC . « v v v 4 v v o ¢ 4 s o o o o s o o« « « 310
3.8 Multiply FAC by Ten . & & 2 ¢ o o o o o o o o o o o o » o 3-11
4 EXTENDED COMMANDS
4.1 Introduction . « + ¢ v v ¢ v ¢ 4 4 e e e e e e e e e e .. b1

4.2 Sine, Cosine . + ¢ v 4 o ¢ + ¢ « o ¢ 4 s e o s e e o o s s 4=3

FLOATING POINT MANUAL

71-44-001

4.3 Arc Tangent . « « + « o ¢ s s o o s o o s o o s o 0 o s+ . b6
4.4 Natural LOg + « v o o o o ¢ o o o o o o o s o s s o o o o o 4=7
4.5 Exponential . . &+ v & &« o 4 & ¢ 4 4 4 4 4 4 o s s« o o+ o o 4-8
4.6 Square ROOt &+ v ¢« &+ & & & o o o o o s &« o & o o o s o o o o 49
5 NON-INTERPRETIVE MODE USAGE
5.1 Introduction . .« & « ¢ ¢ ¢« ¢ v 4 e 4 e e e e e e e e e s w51
5.2 Subroutines . . .« ¢ ¢ v 4 st 4 4 4 e 4 e e e e e e e e . s 52
5.2.1 Double Precision Fixed Point Add 52
5.2.2 Double Precision Fixed Point Multiply 5-3
5.2.3 Double Precision Fixed Point Divide « « « + + + . . 5-4
5.2.4 Single Precision Divide « ¢« ¢« ¢ ¢ ¢« ¢ v 4« o o . .« 55
5.2.5 Floating Point Normalize + « ¢« & ¢« &+ &« o « » 5-7
5.2.6 Negation and Store . . ¢« v ¢ & « o ¢ o o o s o s o « o « « 59
5.2.7 Generate Zero or Largest Number 5-10
5.2.8 Floating Arithmetic Right Shift 5-11
5.2.9 Other Notes on Non-Interpretive Usage + + + « « o+ . 5-12
5.3 User Generated Extended Functions 5-12
6 OPERATING INSTRUCTIONS AND SYSTEM GENERATION
6.1 Using the Packége as Supplied B
6.2 User Generated SYStemS . . + &+ « « « o« o o o o o o o o + o 6-4
6.2.1 General . . v v 4 v o 4 4 e e e e s e e e e e e e e .. . b4
6.3 Assembling $SFIL . . v v ¢ v 4 4 ¢ o & o o o o s o o s o o . 64
6.4 Generating a Floating Point System 6-5

APPENDICES
Appendix A Command Summary - Basic ¢« . . ¢« 4 o 4o e . . . A-]

Appendix B Commented Command Equate Tape . . . O

FLOATING POINT MANUAL
71-44-001

Appendix C Source Tape Organization ¢« ¢+ ¢ ¢« & &« « + ¢« « « . C-1
Appendix D %FCG - Floating Point Constant Generator . . . « « « . » o . D-1
Appendix E FPSET - Error Trap Routine . . . + « ¢« ¢« ¢« ¢« ¢« ¢ v o « « « . E-1

Appendix F Trace Routine . « o ¢ & & ¢ v ¢ ¢ o o o o o o o o o o s o » F-1

1.1

1-1
71-44-001

CHAPTER ONE

FLOATING POINT INTERPRETER

Introduction:

The GRI Floating Point Intrepreter is a complete system that allows the
user to process data in floating point arithmetic. Floating point arithmetic,
through the e of multiple precision arithmetic and an exponential concept
greatly extends the range of precision available to the user‘beyond that of
fixed point arithmetic. It also, through utility routines, frees the user
of the bookkeeping involved with scaling and unscaling of numbers that is

necessary in a fixed point system.

The GRI-QO9 has an instruction set which is known as machine language.
The computer reads instruction words out of its memory and hardware is ac-
tivated by the interpretation of each instruction word to cause the execution
of that instruction. An interpretive software system fetches instructions
which we shall call commands from the computer's memory and causes various
subroutines to be entered as a result of the interpretation of the command.
These commands fetched by the interpreter are alsc called psuedo-instructions
because their format deviates from the machine's instruction format. The

standard machine format instruction is

WORD 1 SDA MOD DDA

WORD 2 [ADDRESS] (if a memory reference in-
struction)

A pseudo-instruction or command such as the ones used in the GRI Floating
Point Interpreter looks like this:

WORD 1 OP CODE

WORD 2 [ADDRESS] (if a memory reference pseudo-instruction)

The interpreter actually simulates the process used by the computer's

hardware to execute an instruction. The interpreter fetches the OP CODE words

FLOATING POINT MANUAL

1-2
FLOATING POINT MANUAL
71-44~001

and addresses, sets up arguments, flags, and performs a function on the ar-

gument (s) as specified by the OP CODE of the pseudo-instruction.

An interpretive approach to floating point arithmetic provides the user
with a functionally oriented language that makes usage of floating point
arithmetic much easier than if it were done through a series of subroutines
called in machine language. The user references floating point numbers
with a single address which is the first address of the two word floating
point number. The interpreter takes care of the address bookkeeping neces-
sary for two word argument handling. The interpreter also maintains a set
of accumulators much the same as an arithmetic unit. Arguments and results
are manipulated and left in these accumulators. The interpreter utilizes

two such accumulators plus an index register.

There are a set of commands in the interpretive system that are not
floating point arithmetic commands. These are program control commands such
as conditional jumps and index register manipulators. The index is simply
used to keep track of the number of times command loops are executed. These
commands, although they could be effected by use of basic machine language,
are also provided in the interpretive mode because they can save the user time
that wquld be spent entering and leaving the interpretive mode, and almost

always save space in terms of the coding needed.

When the user is ready to execute commands in his program, he first is-
sues a machine language command that causes a jump to the interpreter to take
place. The interpreter now assumes contrbl and starts fetching commands which
follow the jump that caused interpretive mode entry. If the user wishes to
begin executing machine language instructions, he must issue an interpretive

command that causes the interpreter to relinquish control. In essence, the

FLOATING POINT MANUAL
71-44-001

machine is running in two different modes; a machine language mode and a

psuedo-language mode -- in this case, a floating point language.

The GRI interpretive system offers a novel error trap feature which
may be invoked by the user to assist in tracking down places in the program
where data values are causing error checks to occur. Errors such as dividing
by 0, exceeding the capacity of the psuedo-accumulators in either the mantissa
or exponent portions, etc., can all be caused by an unknown data base. All
manipulations of data refer to manipulations in and out of the psuedo-accumulator
called FAC. This accumulator behaves like the accumulator in an adding machine.
It must be lo;ﬁed to initialize it, stored to save it, and all arithmetic op-
erations leave their results in the accumulator. Commands with two operands
are called binary commands and operate on a data word in user memory and
the contents of FAC, replacing the result in FAC. Commands with one operand

are called unary commands and operate on FAC, leaving their results in FAC.

Let us consider a simple example:

Compute R = phX4 + y2
JU $SFI ;enter floating mode
FLDA X ;fetch X to FAC
FMPY X ;X2 in FAC
FSTA Tl ;jstore FAC in temporary loc
FLDA Y ;fetch Y to FAC
FMPY Y ;Y2 in FAC
FADD T1 ;x2 + Y2 in FAC
FSQT ; %2 + Y2 in FAC

FSTA R ;store result in R

FEXT sexit from floating mode

FLOATING POINT MANUAL
71-44-001

1.2 Basic Package, $SFI:

Floating point arithmetic capabilities are provided through an inter-
pretive package. Associated with the package is an externale internal for-
mat data conversion routine that can be easily tailored to the character set

being processed.

The interpretive package is invoked by a normal subroutine call. The
call is followed by a string of commands that are established by use of
equate statements during the assembly. The last command in the sequence
causes a return to the calling program. Operations are performed using a
pseudo accumulator maintained locally by the interpretive package. The
package also contains a 16 bit pseudo index to allow loops within the command
sequence. Without this feature, it would be necessary to exit and re-enter the
interpretive package and perform loop counts outside the interpreter: Al-
though the latter procedure is, in most instances, faster in terms of time
tgken to do the loop, it usually involves considerably more code and, there-

fore, takes more space.

As an example of a typical problem programmed in the interpreter
language, we evaluate the polynomial

Y = Ay + AjX + Apx2 + Agx3 + agXt
which can iteravely be expressed as Y = (((A4X + A3)X + A)X + ADX + Ay

as follows;

1.OOP:

CONST:

A4

A3:

M4:

JU

FLDX

FLDA

FMPY

FADDD

FJIX

FSTA

FEXT

WRD

$SFL
M4

A4

CONST

LOOP

0,0
A3-1

X1,X2

A4l ,A42
A31,A32
A21,A22
A11,A12
A01,A02

-4

1-5
FLOATING POINT MANUAL
71-44-001

;ENTER INTERPRETER

;LOAD PSEUDO INDEX WITH -4

;LOAD PSEUDO-ACCUMULATOR
sMULTIPLY IT BY X

;DEFERRED ADD A3 (THEN A2, Al, AO)
;COUNT THE LOOP

;STORE RESULT IN Y

sEXIT THE INTERPRETER

;STORAGE SPACE FOR ANSWER
;DEFERRED ADDRESS (GETS CHANGED)
sTWO WORD FLOATING POINT VALUE OF X

sFLOATING A4 VALUE

sONE WORD INDEX COUNT VALUE

1-6

FLOATING POINT MANUAL
71-44-001

1.3 Floating Point Format:

Internal representation of a floating point number occupies two successive
locations in memory and consists of a fixed point fraction (mantissa) with an
associated exponent. The mantissa is in two's complement notation with a
sign bit followed by 23 bits of significance. The binary point is assumed
to be immediately to the right of the sign. The exponent, which is the power
of two by which the mantissa is multiplied, has the range -200g to +177g
(27128 o 2+127)y, this exponent is represented in "excess 200g'" notation by
adding +2008 to the true exponent. Thils requires a total of 8 bits and the
range of the excess 200g notation is 000 to 377g, where 200g represents 20,

Thus, a floating point number looks like:

15 14 L 0
Word 1 (16 bits) Ei__ Fraction - most significant

15 8 0,
Word 2 (16 bits) T Fraction

least significant Exponent

This format allows an accuracy of 6+ decimal digits and a range of i;.469368x10'39

to +1.701411x10%38,

To obtain correct results, all floating point operations (except FLDA,
FSTA and FNOR) require the floating point numbers being operated on to be
normalized; that is, bit 14 of word 1 must be the most significant bit of
the fraction (mantissa). The only exception to this requirement is a floating
point zero, which has no significant bitsf-a normalized floating point zero
is two words of all zero (mantissa = 0, excess 200g exponent = 0).

Note: The mantissa of a normalized floating point number other than zero

has an absolute value in the range 1/24& mantissa%(]ﬂ

104

FLOATING POINT MANUAL

71-44-001
Examples:

Decimal Internal Floating Point (octal)
word 1 word 2
1.0 | 040000 000201
1.25 050000 000201
-1.0 140000 000201
-1.25 130000 000201
100. 062000 000207
-100. 116000 000207
0.5 040000 000200
0.25 040000 000177
T 062207 166602
/2 062207 166601
=T 115570 011602

Internal Registers:

There are three pseudo-registers contained in the interpreter i) the
pseudo-accumulator (FAC), ii) a temporary pseudo-accumulator (FTM), and

iii) the pseudo-index register (FINDX).

i) FAC - The floating pseudo-accumulator. This consists of three
locations in the interpreter and is used to contain the left-hand argument
of a binary floating point command as well as the results of any floating
point command. It is organized as follows:

FACHI - contains high order mantissa and sign of value in FAC
FACLO - contains low order mantissa of value in FAC

FACXP - contains excess 200g exponent of value in FAC

1-8
FLOATING POINT MANUAL
71-44-001

ii) FIM - temporary pseudo-accumulator. This consists of three lo-
cations analogous to FAC. They are named FTMHI, FTMLO, and FIMXP. The
temporary accumulator is used to hold an additional floating point value
for those commands which require two floating point values in order to op-

erate, e.g. a type II (binary) command (see 2.2.2).

iii) FINDX - pseudo index. This consists of one location of the same

name and holds the current value of the index.

Note: FACHI, FACLO and FTMHI, FTMLO are treated as full 31 bit double
precision quantities for the basic arithmetic operations add, sub-

tract, multiply, and divide.

2-1
FLOATING POINT MANUAL

71-44-001
CHAPTER TWO
BASIC COMMANDS
2.1 Command Categories:
The commands are of the following categories:
I v load & store ; the command specifies the source or destina-

tion of floating point data - the corresponding
destination or source is the pseudo accumula-

tor.

II binary
commands 3y the command specifies the source of the
rightmost operand - the floating accumulator
contains the leftmost operand. The result

will be in the accumulator.

ITI unary

commands the command merely specifies the function to

we

be performed on the accumulator. The result

wiil be in the accumulator.

Iv index

commands the command specifies the source or destina-

we

tion of an index value - the corresponding

destination or source is the pseudo index.

\ conditionals ; the command specifies an address to which con-
trol passes if the test defined by the command
is true -~ the address must contain another
floating point command. Tests may be per-
formed on the floating accumulator, certain

flags, and the index.

VI exit this command causes a return to the calling

wse

program.

2.2

2-2
FLOATING POINT MANUAL
71-44-001

The load & store (Type I) and binary (Type II) commands may
specify deferred (indirect and auto-indexed) addressing mode. Deferred
addressing in floating point commands operates exactly as in machine

language.

Command Descriptions:

2.2.1 TYPE I COMMANDS -- LOAD & STORE COMMANDS

LOAD FLOATING ACCUMULATOR (AC)

mnemonic address code no. of words

FLDA X 01 2

The contents of the location specified by X and X + 1 are treated as
a floating point number and are loaded into the floating point pseudo ac-
cumulator. The floating point number in locations x and X + 1 is split into
three parts i) X, which consists of the high order mantissa, goes into
FACHI; ii) bits 8-15 of X + 1, which consists of the low order mantissa,
goes into bits 8-15 of FACLO and bits 0-7 of FACLO are set to zero; and
iii) bits 0-7 of X + 1, which consists of the excess 2005 exponent, goes

into bits 0-7 of FACXP and bits 8~15 of FACXP is set to zero.
DEFERRED LOAD FLOATING AC

mnemonic address code no. of words

FLDAD A 101 2

The contents of location A is incremented by one, replaced in A, and
the result is used as the effective address X; then the contents of A are
incremented and replaced a second time forming the effective address X + 1.
The contents of X and X + 1 are then treated as a floating point number and

loaded into FAC as explained under FLDA.

FLOATING POINT MANUAL
71-44-001

STORE FLOATING AC

mnemonic address code no. of words

FSTA X 02 2

The contents of‘FAC are rounded into bit 8 of FACLO, bits 0-7 of FACLO
are set to zero. Then FACHI, FACLO, and FACXP are packed into a floating
point number and stored in X, and X + 1. Note that this operation alters

FAC so that it agrees with the value stored in X, and X + 1.

It is also possible for the rounding operation to cause exponent over-
flow (excess 200g exponent exceeds +3778). This can occur only if the
number being rounded is very close to the largest possible positive float-

ing point number. The value stored in this case will be X = 077777g,

X+1= 1777778, and FXFLG will be set non-zero. A successful FSTA will set

FXFLG to zero.

DEFERRED STORE FLOATING AC

mnemonic address code no. of words
FSTAD A 102 2

The contents of A are incremented twice as explained under FLDAD, form—
ing effective addresses X and X + 1 into which FAC is stored as explained

under FSTA.

2.2.2 TYPE II COMMANDS - BINARY COMMANDS

All Type II commands depend on both FAC and the argument of the
command to have normalized mantissas. If unnormalized numbers are
used, the results are unpredictable. A FNOR instruction (see 2.2.3) is
provided to normalize any quantity if it is necessary to do so. Also,

if all inputs are normalized, the results in FAC will be normalized as

2-4
FLOATING POINT MANGAT
71-44-001

will the value retrieved from FAC by use of an FSTA instruction.

Type II commands can cause exponent underflow or overflow if the
number created in FAC by the command has an excess 2008 exponent out-
side the range O to +377g respectively. The occurrence of either
condition is indicated by FXFLG being non-zero after the operation
has been completed. It may be tested by use of the FJEV command.

The successful completion of a Type II command will set FXFLG to zero.

FLOATING ADD

mnemonic address code no. of words

FADD X 03 2

The floating point number in locations X and X + 1 are added to

the contents of FAC, and the result replaces FAC.

DEFERRED FLOATING ADD

mnemonic address code no. of words

FADDD A 103 2

The contents of A are incremented twice as explained under FLDAD,
forming effective addresses X and X + 1, the contents of which are

added to FAC, and the result replaces FAC.

FLOATING SUBTRACT

mnemonic address code no. of words

FSUB X 04 2

The floating point number in locations X and X + 1 are subtracted
from the contents of FAC, and the result replaces FAC.

DEFERRED FLOATING SUBTRACT

mnemonic address code no. of words

FSUBD A 104 2

FLOATING POINT MANUAL
71-44-001

Effective address is formed from A as in FADDD.

FLOATING MULTIPLY

mnemonic address code no. of words

FMPY X 05 2

FAC is multiplied by the floating point number in X and X + 1.
The result replaces FAC.

DEFERRED FLOATING MULTIPLY

mnemonic address code no. of words

FMPYD A 105 2

Effective address is formed from A as in FADDD.

FLOATING DIVIDE

mnemonic address code no. of words

FDIV X 06 2

FAC is divided by the floating point number in X and X + 1. The
result replaces FAC. Divide check will occur if X, X + 1 is zero or
not normalized. This causes FAC to be set to the largest possible
floating point number of the sign which would be the result of the
divide if it could take place, and the divide check flag (FDFLG) will
be non-zero. A successful divide sets FDFLG to zero.

Note - if both FAC and X areVO, the result will be the largest
possible positive floating point number in FAC with FDFLG set non-zero.

DEFERRED FLOATING DIVIDE

mnemonic address code no. of words

FDIVD A 106 2

Effective address 1is formed from A as in FADDD.

2-6
FLOATING POINT MANUAL
71-44-001

FLOATING ADD MAGNITUDE

mnemonic address code no. of words

FADM X 07 2

The absolute magnitude of the floating point number in X and

X + 1 is added to FAC. The result replaces FAC.
DEFERRED FLOATING ADD MAGNITUDE

mnemonic address code no. of words

FADMD A 107 2
Effective address is formed from A as in FADDD.
FLOATING SUBTRACT MAGNITUDE

mnemonic address code no. of words

FSBM X 10 2

The absolute magnitude of the floating point number in X and

X + 1 is subtracted from FAC. The result replaces FAC.
DEFERRED FLOATING SUBTRACT MAGNITUDE

mnemonic address code no. of words

FSBMD A 110 2

Deferred subtract magnitude. Effective address is formed from

A as in FADDD.

2-7
FLOATING POINT MANUAL

71-44~-001

2.2.3 ‘TYPE ITITI COMMANDS - UNARY COMMANDS

FLOATING ABSOLUTE VALUE

mnemonic address code " no. of words

FABS none 14 1

The absolute value of the FAC replaces the FAC, i.e.’ FAC ‘

replaces FAC.
FLOATING SQUARE

mnemonic address code no. of words

FASQ none 15 1

The square of FAC is returned in FAC. This instruction requires
that the mantissa of FAC be normalized prior to execution as in

type II instructions (see 2.2.2),.

FLOATING NORMALIZE

mnemonic address code no. of words

FNOR none 16 1

The contents of FAC are normalized and replace FAC. This in-
struction can cause exponent overflow or underflow in which case FAC
will contain the largest possible negative floating point number or

all zeros respectively and FXFLG will be set non-zero. A successful

normalize will set FXFLG to zero.

FLOATING NEGATIVE VALUE

mnemonic address code no. of words
FNEG none 17 1

The contents of FACHI and FACLO are twos complemented, i.e. —-FAC

replaces FAC.

2-8
FLOATING POINT MANUAL

71-44-001
2.2.4 TYPE IV COMMANDS - INDEX COMMANDS
LOAD INDEX
mnemonic address code no. of words
FLDX I 27 2

The pseudo-index is loaded with the 16 bit contents of location I.

STORE INDEX

mnemonic address code no. of words

FSTX I 30 2

The 16 bit pseudo-index is stored into location I.

2.2.5 TYPE V COMMANDS - CONDITIONALS

These commands allow the program to alter the path of control which the
interpreter is following based on the results of certain tests. The lo-
cation to which the interpreter is caused to transfer must contain a valid
floating point command. If the interpreter should encounter an invalid com-
mand at any time during execution, it will come to a halt with the address
of the illegal command displayed in the MB register on the front panel. This

is the only halt in the program.
JUMP UNCONDITIONAL

mnemonic address code no. of words

FIMP C 20 2

Unconditional jump. The interpreter will take the next command

from location C and continue from there.

2-9
FLOATING POINT MANUAL

71-44-001
JUMP IF AC POSITIVE
mnemonic address code no. of words
FJAP C 21 2

If FAC is positive or zero, the interpreter takes the next
command from location C. Otherwise, the interpreter continues with
the command following the FJAP command.

JUMP IF AC ZERO

mnemonic address code no. of words

FJAZ c 22 2

If FAC is 0, the interpreter will take the next command from
location C. Otherwise, the interpreter continues with the command
following the FJAZ command. Note: The interpreter tests only FACHI
for zero. FAC may be non-zero and FACHI = 0 only if the number in
FAC is not normalized. This condition cannot be created by the inter-

preter unless the user has intreduced unnormalized numbers into his

calculations (see 2.2.2).
JUMP IF AC NEGATIVE

mnemonic address code no. of words

FJAN C 23 2

If FAC is negative, the interpreter will take the next command
from location C. Otherwise, the interpreter continues with the com-—

mand following the FJAN command.

2-10
FLOATING POINT MANUAL
71-44-001

JUMP IF EXPONENT OVERFLOW (OR UNDERFLOW)

mnemonic address code no. of words

FJEV C 24 2

If FXFLG is non-zero, the interpreter will take the next command
from location C and set FXFLG to zero. Otherwise, the interpreter will
continue with the command following the FJEV command. The FJEV command
is used to detect the occurrence of either exponent overflow or exponent
underflow resulting from the execution of the last preceding Type II command
or FSTA, FNOR, or FASQ. If desired, the type of overflow may be detected
by an FJAZ command at location C, since exponent underflow returns FAC=0,
and exponent overflow returns the largest number (+ or -) in FAC.
JUMP IF DIVIDE CHECK

mnemonic address code no. of words

FJDC C 25 2

If FDFLG is non-zero, the interpreter will take the next command
from location C and set FDFLG to zero. Otherwise, the interpreter con-
tinues with the command following the FJDC command. The FJDC command is
used to detect the occurrence of divide check during execution of the last
previous FDIV or FDIVD command. If desired, one may test whether the con-
dition occurred because the divisor was O or not normalized by checking the
divisor with an FLDA and FJAZ instruction at location C.

JUMP IF INCREMENTED INDEX NOT ZERO

mnemonic address code no. of words
FJIX C 26 . 2

The pseudo-index (FINDX) is incremented by one, and if the result is

non-zero, the interpreter takes the next command from location C.

2-11 FLOATING POINT MANUAL

71-44-001

If the result is 0, the interpreter continues with the command follow-
ing the FJIX instruction. The pseudo-index will contain the incremented

value whether or not the jump occurs.

2.2.6 TYPE VI COMMAND - EXIT

EXIT FLOATING INTERPRETER

mnemonic address code no. of words
FEXT none 0 1

This command causes the interpreter to return control to the
user at the location immediately following the FEXT. None of the
internal registers or flags are altered by either the FEXT or entering

the package. The AO is returned in the ADD state.

3.1

3-1
FLOATING POINT MANUAL
71-44-001

CHAPTER THREE

DATA CONVERSION

Introduction:

Two conversion foutines are provided; one to convert from floating point
to character, the other to convert from character to floating point. Both
conversion routines are core to core operations rather than being bound to a
particular I/0 device (that is, characters are fetched from and stored into
memory). For added flexibility, all characters are referenced with an index
into a character set table called QFCST, which initially contains 8-bit
ASCII codes. Changing the character set for a specific I/0 device can easily

be accomplished by changing the character codes in @FCST.

External floating point format is expressed as a mantissa or fraction
portion and a power of ten by which the mantissa is multiplied. This is

written as +n.nnnnnn E +nn, where n is a decimal digit. The number to the
— , & 1

mantissa exponent

right of the E is the power of ten by which the mantissa is multiplied. Thus,

-3.527614E+03 is -3.527614%103 or -3527.614. The floating point number

+172.100123E-02 is +172.100123%10"2 or +1.72100123.

3-2
FLOATING POINT MANUAL
71-44-001

3.2 Floating Point to Character Conversion:

NAME:

SUBROUTINES CALLED:

ALTERED REGISTERS & FLAGS:

CALLING SEQUENCE:

ARGUMENTS :

FUNCTION:

@sFcC

$SFI, @FXC
FAC, FTM, FXFLG, FDFLG

JU @SFC
WRD el-1
WRD e2
WRD e3

return

el is the address of the location into
which the first output character is

to be stored.

e2 is the address of the two word float-
ing point argument. The argument need
not be normalized but the magnitude must
be zero or in the range (2'129, 2+128)
(in decimal this is 1.469367E-39 tp
1.701411E+38)

e3 is the address of the error return.

Converts a signed two word floating
point argument to a string of thirteen
characters, stored one character per
word, right justified starting in lo-
cation el. The character string is of
the format
Ty .
i % n.nnnnnn E{i}nn

- |

where n is character representation of a

decimal digit.

FLOATING POINT MANUAL
71-44-001

ERRORS: ' If normalization of the floating point
argument caused either exponent over-
flow or underflow, an * is stored rather
than a leading + or - sign, and when
conversion is completed, control returns
to e3. The * can be considered a - sign.
An argument resulting in overflow con-
verts to * 1.701411 E + 38. An argu-
ment resulting in underflow converts to
*0,000000 E + 00.

NOTE: The magnitude of the three smallest nor-
malized non-zero floating point numbers
are converted to one of the character
strings +1.469367E-39 or +1.469368E-39.
These two character strings cannot be
converted back to a floating point number.
The smallest character string which can
successfully be converted to a floating
point number is +1.469369E-39. Therefore,
if the user converts any one of these
three numbers to a étring of characters,
he should be aware that he cannot suc-
cessfully convert the string back to

a floating point number.
LENGTH: 306g (1981p) locations

Description of Algorithm:

The sign of the floating point argument is stored, the argument is then
normalized, and the absolute value is taken and used for conversion. If nor-
malization caused either exponent overflow or underflow, the error return is
taken when conversion is completed and an asterisk (which may be considered

1

as a '-'), is stored rather than a leading sign.

3-4
FLOATING POINT MANUAL
71-44-001

Tk

Since the output character string is of the form(+§n.nnnnnnEjpn, the
floating point argument is first manipulated to make izigreater than or
equal to one and less than ten. (If the floating point argument is exactly
zero, this portion of the algorithm is bypassed.) Making 1% floating
point argument < 10 is accomplished by first checking if it is > 1. If it
is not, it is multiplied by the largest possible power of ten (1038 and,
if necessary, it is multiplied once again by ten to force it21. The ar-
gument is then checked for< 10. 1If it is not<10, it is forced so by
dividing by the largest power of ten, which is less than the argument. The
powers of ten used in multiplying and dividing the argument to force its

value to be between one and ten are used to form the exponent portion of

the character string.

With the floating point argument (stored in FAC) now2>1 and <10, the
mantissa portion of the character string can be formed. FACHI, FACLO is
treated as a double precision mixed number with FACXP showing the position
of the binary point. FACHI, FACLO is left shifted (with overflow bits shifted
into a 3rd word) until the binary point immediately precedes bit 15 of FACHI.
The overflow word is then converted to character and stored as the first digit
of the mantissa, immediately followed by a decimal point. The fraction por-
tion of the mantissa is formed by successively multiplying FACHI, FACLO by

10. ., and storing the most significant word of the 3 word product. The ex-

10

ponent is then converted and stored, preceded by an E and either a + or - sign.

FLOATING POINT MANUAL

71-44-001
3.3 Character to Floating Point:
NAME: @SCF
SUBROUTINES CALLED: $SFI, @FXC
ALTERED REGISTERS & FLAGS: FAC, FIM, FXFLG, FDFLG
CALLING SEQUENCE: JU @SCF
WRD el-1
WRD e2
WRD e3
return
ARGUMENTS: 8l is the address of the first character

in the string to be converted. The char-

acter string should be stored one charac-

ter per word right justified in the format

- \ |

}

‘,+ n [n...] . [n...] [+1{ nlnli [L&...] [{]

L;A [.]n [n...] !_

I+

-

The notational conventions are:

1. n is a decimal digit

2. D\ is a space

3. J is a delimiter

4. braces [] contain optional items
which may or may not be included.

5. bragkets {i contain alternate items
where one and only one of the items
must.be included.

6. ellipses ... denote permissible

repetition of the preceding item.
The string is treated as follows:

1. If there is no sign, it is treated as +.

FUNCTION:

ERRORS:

FLOATING POINT MANUAL
71-44-001

2., 1If the leading sign is * or -, it
is treated as -.

3. If there is no decimal point, it is
assumed to follow the last mantissa
digit.

4. Characters are processed up to and
including the first 2, or 13;q¢ char-

acters have been processed.

e2 is the address where the two word

floating point answer is stored.
e3 is the address of the error return.

Converts a string of decimal characters
to a two word normalized floating point
answer. The two word normalized float-
ing point answer is returned in registers
AX (MSH), AY (LSH), and is stored in lo-
cation e2 (MSH) and e2+1 (LSH). The AO

is returned in the ADD state.

A scan error occurs if the character
string is illegally formed. Location
@SCF+3 is set to zero and control im-

mediately returns to e3.

An overflow error occurs if the charac-

ter string contains more than 10;g man-
tissa digits (discounting leading zeros)

or if the magnitude of the number is out-
side the range 1.469369E-39 to 1.701411E+38.
Location @SCF+3 is set to one and control

immediately returns to e3.

Whenever control returns to e3, the AO

is in the ADD state.

FLOATING POINT MANUAL

71-44-001
NOTES: See NOTES under @SFC.
LENGTH: 406g (26215) locations

Description of Algorithm

The mantissa portion of the character string is converted to a
double precision integer by multiplying the answer by 10)3 and adding
in the latest digit. This doubie precision mantissa is then converted
to a normalized floating point number. A count of the number of digits
to the right of the decimal point is kept and, after the exponent portion
of the character string has been converted, this digit count is subtracted
from it to obtain the final exponent. The magnitude of the final exponent
is used as an index into the positive floating point powers of ten table
(see 3.6). The floating point number obtained from the mantissa portion
of the character string is then multiplied (if the final exponent was
positive) or divided (if the final exponent was negative) by this power
of ten to form the final floating point answer. If there was a leading
minus sign or asterisk, the floating point answer is two's complemented

before return.

3.4 Common Tables & Routines;

The eonversion routines @SFC and @SCF reference a common routine called
@xc, which has four entry points. @FXC occupies a total of 2134 (13949)
locations. Since @FXC is common to both @SFC and @SCF, it need appear only
once if the conversion routines are used together. In the discussion of @FXC
which follows, each of the four entry points is treated separately for the

sake of clarity.

3.5 Character Set Table:

NAME:

FUNCTION:

NOTES:

LENGTH:

FLOATING POINT MANUAL
71-44-001

@FCST

Common external character set table for
floating point data conversion routines.

The table is ordered as follows:

Location Contents
@FCST code for zero
@FCST+1 code for nine
@FCST+2 code for +
@FCST+3 code for -

@FCST+4 code for *

@FCST+5 code for .

@FCST+6 code for E

@FCST+7 code for space
@FCST+10 code for delimiter

The standard table is in full 8-bit ASCII.
The delimiter character at @FCST+10g is a

carriage return and may be changed if

desired.

The entire table may be replaced with a
different character set provided that the
numeric codes in the new sét are sequential
and the code for zero (0) is less than the
code for nine. No code may occupy more

than 15 bits.

12g (1070) locatioms

3-9
FLOATING POINT MANUAL

71-44-001
3.6 Floating Point Powers of Ten Table:
NAME: @FPT
FUNCTION: Common floating point positive powers of

1079 table for floating point data con-
version routines. Each floating point
power occupies two locations in the table.

The table is organized as follows:

@FPT: WRD 45473,46777 constant for 1038
WRD 74136,160773 constant for 1037
WRD 40000,201 constant for 100
NOTE: @FPT is located at @FCST+12g

LENGTH: 116g (78;9) locatioms

3.7 Left Shift FAC:

NAME:

SUBROUTINES CALLED:

ALTERED REGISTERS & FLAGS:

CALLING SEQUENCE:

ARGUMENTS :

FUNCTION:

ERRORS:

NOTES:

LENGTH:

3-10

FLOATING POINT MANUAL
71-44-001

@LSHF
none
none

Load AX with the negative shift count
JU @LSHF |

return

Register AX contains minus the number of

places to left shift FACHI, FACLO

Performs double precision left shift of
FACHI, FACLO. On return, the shifted
result is in AX (MSH), AY (LSH). Any
carry out of MSH is found in location
@IG+1.

none detected

€LSHF=@FCST + 306g

@DIG+1=ELSHF + l4g
238 (1910) locations

3.8 Multiply FAC by Ten: "

NAME:
SUBROUTINES CALLED:

ALTERED REGISTERS & FLAGS:
CALLING SEQUENCE:
ARGUMENTS :

FUNCTION:

ERRORS:

NOTES:

LENGTH:

3-11

FLOATING POINT MANUAL
71-44-001

@10x
@LSHF

FAC
JU @10X
n/a

Performs unsigned multiplication of
FACHI, FACLO by 1075. The most sig-
nificant word of the three word product
is returned in AY. The second and
third words of the product are found
in FACHI, FACLO respectively.

n/a
@10X=@FCST+650

408 (3210) locations

4.1

-1
FLOATING POINT MANUAL
71-44-001

CHAPTER FOUR

EXTENDED COMMANDS

Introduction:

In addition to the basic floating point interpreter, a set of mathematical
functions is supplied which can be invoked by a command in the same line with
the basic commands. These functions also call the floating interpreter and
since the interpreter has already been entered at this point, a push-down
scheme is supplied to allow recursive calls such as this. The push-down list

will accomodate recursive calls up to seven levels.

It should be noted that all pseudo registers - the floating accumulator,
the temporary accumulator and index -~ and the flags, FDFLG and FXFLG, are
common to all levels of the recursion. In other words, if an extended func-
tion which calls the interpreter recursively is invoked by a command, these
registers and/or flags may be altered. Information detailing such factors

is supplied in the documentation accompanying the individual package.

The push~down scheme and command code structure is tailored so that the
user may easily add his own functions. The procedure for doing this is

described in section 5.3.

The mathematical subroutines which are supplied with the extended package
are SINE, COSINE, ARC TANGENT, LOG,, EXPONENTIAL, and SQUARE ROOT. The com-
mands associated with these are FSIN, FCOS, FATN, FLNE, FEXP, and FSQT (codes
31, 32, 33, 34, 35, and 36) respectively. They each perform the desired
function on the contents of the floating pseudo-accumulator and return the
results in the same register. Errors which can result, such as attempting

to take the square root or log of a negative number, are flagged by the

4-2
FLOATING POINT MANUAL
71-44-001

routines in internal locations not accessible in interpretive mode, i.e.
cannot be tested with an interpreter command. An error trap routine is
available which will handle these and other errors when they occur (see

Appendix E).

In the writeups that follow, FAC is the floating pseudo-accumulator,
FIM is the temporary floating pseudo-accumulator, FDFLG is the divide check

flag, FXFLG is the exponent overflow flag, and FINDX is the pseudo-index.

4,2 Sine, Cosine:

COMMAND:

FUNCTION:

ERRORS :

ALTERED REGISTERS & FLAGS:

METHOD:

FLOATING POINT MANUAL
71-44-001

FSIN (code 31), FCOS (code 32)

a. FSIN - calculates the SINE of the
contents of FAC which is assumed to be
a radian argument and replaces FAC

with the result.

b. FCOS - calculates the COSINE of
the contents of FAC which is assumed to
be a radian argument and replaces FAC

with the result.
none
FAC, FTM, FXFLG

For FCOS, the absolute value of FAC is
subtracted from T'/2 (=1.570796) and the
SINE of the result is taken.

For FSIN, the argument (FAC) is first
multiplied by 2/T] to convert it into
units of a quarter circle, and the result
is checked for its absolute magnitude
being less than one. If so, it is a
first quadrant quantity and the procedure
continues with the series calculation
described later. If the magnitude of the
result is greater than or equal to one,
its sign is saved, it is forced positive,
and the integer portion is shifted out -
leaving a positive fraction (referred to
as Y in the following). The last two
bits of the integer portion and the sign
are used to determine which quadrant the

original argument was in and the quantity

Y is altered as follows:

4-4
FLOATING POINT MANUAL

71-44-001
sign last two bits Y quadrant
+ 00 Y 2>Y I
+ 01 1-Y »>Y II
+ 10 -Y9Y III
+ 11 -1+ Y=Y Iv
- 00 -Y->Y v
- 01 -1+Y2Y : III
- 10 Y=Y II
- 11 1-Y =Y I

This new value of Y is then treated as a fraction and is normalized.

The series used to calculate the sine is basically a 5 term Chebyshev
economized polynomial approximation of a 6 term McLaurin series for sin | 2 /-
The coefficients are further "adapted" to allow the series to be calculated
with one less multiplication than would be the case for a standard polynomial

evaluation procedure. This results in the sine being calculated as follows:
in (=Y) = - * * *
sin (12];{) ((z -Y + A2) Z+ A3) A4 Y

where

Z=(Y+Ag) *Y+A;
and

Ag = -14.93104811

Ay = =39.74079011

Ay = +367.8139482

A3 = +23410.00773

= +0.0001514440767

o
)
I

Accuracy is 6 + significant decimal digits for arguments in the first

FLOATING POINT MANUAL
71-44-001

quadrant (,FACifgga. Accuracy loss is about two thirds of a decimal
digit for each complete rotation, i.e. if 2"n$_lFACI<2]T(n+1), the ac-

curacy is about 6 - %n decimal digits.

4.3

Arc Tangent:

COMMAND:

FUNCTION:

ERRORS :

ALTERED REGISTERS & FLAGS:

METHOD:

4-6
FLOATING POINT MANUAL
71-44-001

FATN (code 33)

The arc tangent of the contents of FAC
replace FAC. The result is in radians

and lies in the range (—11; +1%3.
none

FAC, FIM, FDFLG, FXFLG

The argument (FAC) is checked for its
absolute magnitude being greater than or
equal to one. If so, a flag is set and
the reciprocal of the argument is taken

and replaces FAC.

The arc tangent of the quantity in FAC

is then approximated by

(Ag + A1X%+ Ax%)
Z = ATAN X = X * (By + B1X4+ Box™

where X is the argument and
Ag = 0.6402481953
A1 = 0.4229908144

Ay = 0.0264694361
By = 0.6402487022
By = 0.6363779373
By = 0.1108328778

If the flag was set by the initial check,
the value Z is checked for + or -. If Z
is +,|5 - Z)replaces Z. If Z is -,

(— %{-+ i) replaces Z. (This is effected
by subtracting Z from + or - g—depending
on the sign of Z.)

If the flag was not set by the initial
check, the value Z is not altered. Accur-

acy is 6+ significant decimal digits for all
arguments.

4.4

Natural Log:

COMMAND:

FUNCTION:

ERRORS :

ALTERED REGISTERS & FLAGS:

METHOD:

FLOATING POINT MANUAL
71-44-001

FLNE (code 34)

The natural log of the contents of FAC
replace FAC.

If FAC is negative, a flag (FNLNF) is set,
FAC is forced positive, and the natural

log taken.

FAC, FTM, FXFLG, FNLNF (FPLNE+4)

The quantity in FAC is

Z=X "2l where .5¢%X<1 and I is an

integer.
i1n Z = 1n [X * 2T}
=1n X+ I 1n2

The quantity 1ln X is approximated by the
polynomial.

InX=1nA-2 (Y+ Y3/3+7Y/5+7Y/7)

which is a Taylor series evaluated at A

I
where A >

A-X
and Y = A+ X

The product [I 1ln 2] is added to 1ln X, and
the sum is left in FAC.

A = 0.70710678
In A = 0.34657359
In 2 = 0.69314718

Accuracy is 6+ significant decimal digits
except for .9044£24£1.110. 1In the latter

range, accuracy decreases as Z —*1.

4-8
FLOATING POINT MANUAL

71-44-001
4.5 Exponential:
COMMAND: FEXP (code 35)
FUNCTION: The exponential of the contents of FAC

replace FAC. (FAC = eFAC)

ERRORS : If the result is going to be out of
range, i.e. if FAC 88.722, a flag
(FEXOF) is set. If FAC was negative,
zero is left in FAC. 1If it was positive,

the largest positive number is left.

ALTERED REGISTERS & FLAGS: FAC, FTM, FDFLG, FXFLG, FEXOF (FPEXP+l)

METHOD: eX = 2X logy e
=2l 4 F=021-2F
where I is the integer portion

and F is the fractional portion of X 1og2 e

Multiplication by 2l is computed by the

continued fraction:

A
B+F +C
F+D
F
where

A = -34.624680982

B = -17.312340491

C = 104.0684491

D = 20.813689813
logy e = 1.442695041

Accuracy is 6+ significant decimal digits
for thQlO. Accuracy decreases slowly as
‘Xl becomes large until ac'X,::BB, the ac-
curacy is 5+ significant decimal digits.

4.6

Square Root:

COMMAND:

FUNCTION:

ERRORS:

ALTERED REGISTERS & FLAGS:

METHOD:

4-9
FLOATING POINT MANUAL
71-44-001

FSQT (code 36)
The square root of FACéreplaces FAC.

If FAC is negative, it is forced posi-
tive, and FSFLG (internal to the square
root routine) is set non-zero. If FAC

is positive, FSFLG is set to zero.

FAC, FSFLG (=FPSQT + 6)

After FAC is forced positive and FSFLG
is determined, the exponent of the re-
sult is determined by dividing FACXP
by two (by shifting right once) and
adding 100g to preserve the excess 200g
notation. If the original exponent was
odd, the shifted FACXP is increased by
one; otherwise, it is left alone. If
the original exponent was even, FACHI
and FACLO are shifted left once. Since
the algorithm treats FACHI and FACLO as
a 32 bit positive fraction with the
binary point to the left of bit 15 of
FACHI, the fact that the left shift will
set the sign bit (bit 15) of FACHI does

not matter.

The algorithm then proceeds to determine
a fourteen bit first approximation to
the square root by a method based:on the
fact that N2 is the sum of the first N
odd numbers. This method also leaves as
a "remainder" the difference between the

square of the approximation and the original

4-10
FLOATING POINT NUMBER
71-44-001

number. This remainder and the initial
approximation are then used for one
Newton-Raphson iteration which completes
the square root using the single pre-
cision divide entry (FSDVD) of the

floating point package.

Accuracy is 6+ significant decimal

digits for all input arguments.

5.1

5-1
FLOATING POINT MANUAL
71-44-001

CHAPTER FIVE

NON-INTERPRETIVE MODE USAGE

Introduction:

Certain sections of the floating point interpreter are directly
accessible to the user without the need to supply commands. These sec~-
tions may be invoked by a JU SUBR instruction and, after the operation
is completed, will return control to the instruction following the jump.
In order to use these routines successfully, it is necessary to know that
in addition to the pseudo-accumulator (FACHI, FACLO, and FACXP) there is
a "temporary" accumulator (FTMHI, FTMLO, and FTMXP) which is used to
contain the floating argument of a Type II command duringvthe execution
of fhe operation (see 1.3). This temporary pseudo-accumulator, referred
to as FIM, is loaded in the same manner as FAC (see FLDA instruction in
2.2.1). If the user desires to access the routines described in this sec-
tion, he may need to load FIM in addition to FAC for those routines that

operate on both accumulators.

These sections will be described as subroutines since they are essen-
tially used in this manner when accessed directly. When the floating in-

terpreter resides in memory, all of these subroutines also lie in memory.

A "command equate' source tape is included in the software package.
This tape defines these subroutines as well as the various pseudo-registers

and locations associated with them (see chapter 6).

5.2 Subroutines:i

5-2
FLOATING POINT PACKAGE
71-44-001

5.2.1 Double Precision Fixed Point Add

NAME:
CALLING SEQUENCE:

INPUT:

FUNCTION:

NOTES ;

FDAD
JU FDAD

FACHI, FACLO; FIMHI, FTMLO; AO must be in
ADD state.

FACHI, FACLO and FTMHI, FTMLO are treated
as signed double precision numbers and
added. The result of the addition ap-
pears in FACHI, FACLO. FTMHI, FIMLO are
left unchanged.

If arithmetic overflow occurred (two
numbers of like sign are added and the
result has opposite sign), the link
will be set to 1. If no arithmetic
overflow occurred, the link will be

Z2exo.

The AO is in the ADD state upon return.

It is possible to generate the maximum
negative number (FACHI = 100000g, FACLO =
0000008), which is not considered a case
of arithmetic overflow; and so the link

will not be set.

5.2.2 Double Precision Fixed Point

FLOATING POINT MANUAL
71-44-001

Multiply

NAME:
CALLING SEQUENCE:

INPUT:

FUNCTION:

NOTES ;

FDMPY
JU FDMPY

FACHI, FACLO; FTMHI, FTMLO

AX must be set to the value in FTMHI
AY must be set to the value in FTMLO
The AO must be in the ADD state

FACHI, FACLO and FIMHI, FTMLO are
treated as signed double precision
numbers and are multiplied. The high-
order 30 bits of the 62 bit product
are returned, right justified, in
FACHI, FACLO. The value in FTMHI,
FTMLO is unchanged.

P A=)

The AO is in the ADD state upon return.

The 30 bit product is inaccurate in the
right-most two bits. If FACHI, FACLO
and FTMHI, FIMLO are each considered as
a double precision fraction with its
binary point immediately to the right
of the sign, i.e. between bits 14 and
15 of the high-order Wofd, the binary
point of the product will be shifted
right once so that it is between bits
13 and 14 of FACHI.

5-4
FLOATING POINT MANUAL

71-44-001

5.2.3 Double Precision Fixed Point Divide

NAME: FDDIV
CALLING SEQUENCE: JU FDDIV
INPUT: FACHI, FACLO; FTMHI, FTMLO

AX must be set to the value in FTMHI
AY must be set to the value in FTMLO
The AO must be in the ADD state

FUNCTION: FACHI, FACLO and FTMHI, FTMLO are
treated as signed double precision
numbers, and the former is divided
by the latter. The quotient appears
in FACHI, FACLO. The value in FTMHI,
FTMLO has been destroyed.

The quotient will be 30 bits in FACHI,
FACLO with the binary point displayed
one position to the right in the same

way as explained in the note for FDMPY,

The absolute magnitude of FTMHI, FTMLO
must have bit 14 of FTMHI set for the
divide to take place. If this con-

dition is not satisfied, divide check

will occur.

The AO is in the ADD state upon return.

NOTES: - The rightmost three bits of the quotient
are inaccurate. Divide check causes
FACHI, FACLO to be set to a large double
precision number of the sign which would
result if the divide could take place
(FACHI, FACLO = 077777, 177400 or 100000,
000400 for + and - respectively); also,
FDFLG is set non-zero. A successful

divide sets FDFLG to zero.

5.2.4 Single Precision Divide

NAME:

CALLING SEQUENCE:

INPUT:
FUNCTION:
JU
RRC
This code may be SFM
eliminated if the RR
remainder is to be
disregarded. NOP
RR

5=5

FSDVD

JU FSDVD

FLOATING POINT MANUAL
71-44-001

.“’

AX = high order dividend ; must be a posi-
b

. tive 30 bit

FLODV = low order dividend

~double preci-
sion number (see

below)

AY = negative divisor

The AO must be in the ADD state.

This is an inner loop which, if used

correctly, can be invoked to supply an

unsigned single precision divide. The

quotient is incomplete in the sense that

it is right shifted and truncated upon

return.

To obtain a complete single precision

unsigned divide, the following procedure

may be used. First, load AX and the lo-

cation FLODV with a valid two word posi-

tive product (bits 14 and 15 of AX must

be zero).

Then load AY with the positive

single precision divisor and twos .comple-

ment it.

The following code will then

perform the divide:

FSDVD
A0,L1,0
NOT LNK
A0,AX

TRP,L1,AY

; INCOMPLETE QUOTIENT IN TRP
3GET LAST BIT OF QUOTIENT
sUPDATE

;REMAINDER

sIN AX

sTRUE QUOTIENT IN AY

NOTES:

5-6
FLOATING POINT MANUAL
71-44-001

Note that the incomplete quotient is in
the TRP register on return from FSDVD.
The AO is in the ADD state upon return.

If either the link is set or AY (the
final quotient) is negative following
this code, divide check has occurred.
This means that the high-order portion
of twice the dividend was greater than
or equal to the divisor, and the quotient

is incorrect.

No flag is set if divide check occurs.

5.2.5 Floating Point Normalize

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

1

or,
2)

5-7
FLOATING POINT MANUAL
71-44-001

FNORM
JU FNORM
FACHI, FACLO, FACXP

Same as FNOR command (see 2.2.3), in-
cluding the setting of FAC and FXFLG
should exponent overflow or underflow

occur.

The advantage of the accessibility of
this routine lies mainly in the saving
of time. For instance, to convert a
single precision integer value to

floating point, the following two

methods could be used. (Assume the
integer is in AX, and the floating

equivalent is wanted in location X.)

RM AX, FACHI

ZM FACLO

MRI 217, AX

RM AX, FACXP

Ju FNORM

Ju $SFI

FSTA X

FEXT

RM AX, FACHI

ZM FACLO

MRI 217, AX

RM AX, FACXP
- Ju $SFI

FNOR

FSTA X

FEXT

FLOATING POINT MANUAL
71-44-001

Version 1) takes one more location in

core and saves about 80 machine cycles.

NOTE: The AO may not be in the ADD state upon

retum.

5.2.6 Negation and Store

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

NAME:

CALLING SEQUENCE:

FUNCTION:

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

FLOATING POINT MANUAL
71-44-001

FACMP, FACMA
JU FACMP or JU FACMA
FACHI, FACLO or AX, AY

a) FAGMP - replaces FACHI, FACLO with
its two's complement. Result is
also returned in AX, AY.

b) FACMA - replaces FACHI, FACLO with
the two's complement of the double
precision number in AX, AY. Result
is also returned in AX, AY.

FTCMP, FTCMA
JU FICMP or JU FTCMA
FTMHI, FTMLO or AX, AY

a) FICMP - replaces FTMHI, FTMLO with
its two's complement. Result is
also returned in AX, AY.

b) FTCMA - replaces FTMHI, FTMLO with
the two's complement of the double
precision number in AX, AY. Result

is also returned in AX, AY.
FASAX
JU FASAX
AX,AY

Stores AX into- FACHI and AY into FACLO

FTSAX
JU FTSAX
AX,AY

Stores AX into FTMHI and AY into FTMLO

5-10

5.2.7 Generate Zero or Largest Number

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

FLOATING POINT MANUAL
71-44-001

FOFAC
JU FOFAC
none

sets FACHI, FACLO and FACXP to zero
also returns AX and AY = 0

FCMAX
JU FCMAX
FACHI

FACHI, FACLO, FACXP will be set to the
maximum possible floating point number

of the original sign of FACHI.

1) 1If FACHIL 0, this routine sets
FACHI = 100000
FACLO = 000400
FACXP = 000377

2) If FACHI=0, this routine sets
FACHI = 077777
FACLO = 177400
FACXP = 000377

Upon return, AX and AY will be equal to
the value stored in FACHI and FACLO re-

spectively.

5-11
FLOATING POINT MANUAL

71-44-001
5.2.8 Floating Arithmetic Right Shift
NAME: FARSN
CALLING SEQUENCE: JU FARSN
INPUT: AX, AY, FARSC
FUNCTION: - This routine arithmetically right shifts

the double precision number in AX, AY
by the number of places indicated by
—FARSC .

NOTES : FARSC must be set to a negative count
before calling FARSN.

5.

3

5-12
FLOATING POINT MANUAL
71-44-001

5.2.9 Other Notes on Non-Interpretive Usage

1) The pseudo-index is kept in location FINDX and may be set by the
user without using an FLDX command (see 2.2.4) by simply storing
the desired value via a RM R,FINDX where R is a register con-

taining the index value. This, as with FNORM, is a time saver.

2) The two flags, FXFLG and FDFLG, are in locations defined by their
names, and can be checked (or cleared) in non-interpretive mode

to save time.

3) The usage of the locations FTBLE, FARGD, FETCH, and FMASK which

are on the command equate source tape is described in 5.3.

User Generated Extended Functions:

If the user desires to add functions of his own to the extended package,

the procedure is quite easy as outlined below.

The extended package as delivered uses command codes 00-—368 inclusive
and 1018 through 1108 inclusive. There are available codes of 37g-77g inclu-

sive which the user may assign to his own functions.

User functions may be of two types — invoked by one word commands or
invoked by two word commands where the second word is an argument address
or value. If deferred mode addressing is‘desired as an option for the same
function, it must be accomplished by user code. Setting bit 6 of the command
code to attempt deferred addressing will cause the floating interpreter to

take the error halt.

Suppose the command name used to invoke the function is to be FFCN

5-13
FLOATING POINT PACKAGE
71-44-001

assigned to code 378.

Step 1) Using the Source Text Editor, add the statement FFCN = 37

to the Command Equate Tape (see operating instructions).

Step 2) The user code which accomplishes the function must have

the following code just before the END statement

LOC FTBLE + FFCN
WRD ENTRY
where ENTRY is the location at which the user function

begins execution.

Step 3) The last instruction executed by the user function must re-
turn control to FGET, usually via a JU FGET. Remember that
when the user function is invoked by a command, the interpreter

passes control to the user function. The JU FGET returns control
to the interpreter.

tep 4) If the function the user is generating needs the fioating point
capability supplied by the interpreter, the user function may

call the interpreter followed by a list of commands to ac-

complish the task subject to the following restrictions:

a) The command name corresponding to the function it-

self (in this case, FFCN) may not be used.

b) Commands which cause the interpreter to be called re-
cursively may be used so long as care is taken not to
exceed seven levels of recursion in total (see 4.1)
(remember that the function being coded is at least
at level 1 during its execution, and if it calls the
interpreter, all commands in the list are at least at
level 2).

¢) No function invoked by a command may have in its code

5-14
FLOATING POINT MANUAL
71-44-001

a call to the interpreter whose command string con-
tains the command name corresponding to the function
itself. This is an indirect violation of restriction

a) above.

Step 5) Assemble the function using the Command Equate Tape for

pass 1 as explained under operating instructions.

Notes: If the function being generated is invoked by a two word com-
mand whose second word is an argument, one and only one of the follow-

ing steps must occur during its execution.

a) JU FARGD
This fetches the contents of the location following the command into
register AX.
b) JU FETICH
This calls FARGD and uses the contents of the location following the
command as an address to fetch a floating point argument which is
placed in FTM. Also, AX and AY will be set to the value in FTMHI
and FIMLO respectively upon return.
c) ZM FMASK

JU FETCH
This causes deferred fetching of a floating point argument. The con-
tents of the location following the command is used as an address of
another location which is incremented twice to form the addresses of

the floating argument which is loaded into FTM and AX, AY as in b).

Examples:

1) FCSX is to be the command name, 1 word, code 378, When in-
voked it is to take the COSINE of the SINE of the value in FAC. Assume

Step 1 has been accomplished by adding the statement FCSX=37 to the command

5-15
FLOATING POIgglMANUAL

equate tape. This function may be accomplished by the following code:

FCS: JU $SFI senter floating interpreter
FSIN ;3sin of FAC
FCOS scos of FAC
FEXT) sexit interpreter
JU FGET sreturn to interpreter
LOC FTBLE + FCSX
WRD FCS

END

When this is assembled with the Command Equate Tape resulting
from step 1 and loaded with $SFI and the SINE, COSINE routine, the
user may now call the routine in the floating interpretive mode as
follows:

JU S$SFI

FEXT
Note: The routine must be assembled with the new command equate tape.
2) FMCS is to be the command name, 2 words, assigned to code 408.
When invoked, it is to take the SIN of the COSINE of the value in FAC
and set the sign of the result to the sigp of the floating point ar-
gument whose address is the second word of the command. Step 1 re-
quires the new command to be added to the command equate tape. This

function could be coded as follows:

5-16
FLOATING POINT MANUAL

71-44-001

FMC: JU FETCH ;fetch arg to AX,AY

RMI AX, O ;save MSH arg (sign of arg)

JU S$SFI senter floating interpreter

FCOS scos of FAC

FSIN ;sin FAC

FABS ;abs value of FAC

FEXT sexit floating interpreter

MR FMC + 3,AX ;get sign of arg

JC AX, GEZ, FGET ;plus, exit

JU FACMP sminus, comp FAC

JU FGET sjreturn to interpreter

LOC FTBLE + FMCS
WRD FMC

END

When assembled with the Command Equate Tape and loaded with $SFI,
and the SINE, COSINE routine, it may be invoked by another routine
agsembled with the Command Equate Tape via

JU $SFI

FEXT.
3) FMCSD is to be the command which does the same thing as
FMCS, only using deferred mode addressing for the argument. FMCSD
must be assigned a different code - say 418. Both FMCSD and FMCS

may be coded in the same routine as follows, assuming their equates

have been added to the Command Equate Tape.

FMCD:

FMC:

>-17

ZM FMASK

JU FETCH

RMI AX, O

JU $SFI

FCOS

FSIN

FABS

FEXT

MR FMC-+ 3, AX
JC AX, GEZ, FGET
JU FACMP

JU FGET

LOC FTBLE + FMCS
WRD FMC

LOC FTBLE + FMCSD

FMGD

FLOATING POINT MANUAL
71-44-001

6.1

6-1
FLOATING POINT MANUAL
71-44-001

CHAPTER 6

OPERATING INSTRUCTIONS AND SYSTEM GENERATION

Using the Package as.Supplied:

A Command Equate Tape is supplied for the package as delivered. This
tape is a source tape and contains the definitions of the floating point
commands as well as the entries for $SFI, the conversion routines, and the
names and entry points for the various flags and routines in $SFI that can
be used in non-interpretive mode or by user coded extended functions. A
commented listing of this tape appears in Appendix B of this document. The

tape supplied with the package is not commented.

This tape is intended for use during assembly of the user programs
which reference all or part of the Floating Point System. The user need
not define the nameé or locations appearing on this tape when he generates
the source tape for the program he has written. Assuming the source tape
isrgenerated, the following procedure will assemble the program for use
with $SFI:

1) Load the Assembler and select pass 1.

2) Position the Command Equate Tape in the reader.

3) Press start. The assembler will come to a halt after reading the

Command Equate Tape.
4) Position the source tape for the program in the reader.
5) Press continue. The assembler will now complete pass 1.

6) Run pass 2 and pass 3 as usual, using only the source tape for the
program. The Command Equate Tape need not be used during these

two passes.

FLOATING POINT MANUAL
71-44-001

Steps 1-6 apply to each separate assembly of a user program. When
the program(s) are assembled and are to be loaded, the user must be sure
that $SFI is loaded before anything else, because any extended functions
being used (including user-generated functions) overlay portions of FTBLE

in $SFI.

With the object tapes for $SFI, the conversion routines, and the
extended routines, as delivered, it is possible to create one of the four
memory maps depicted below. The user may generate his own system suiting

his needs by following the procedures outlined in the next section.

6-3

FLOATING POINT MANUAL
71-44-001

POSSIBLE MEMORY MAPS

WITH OBJECTS AS DELIVERED

$SFI Only $SFI & Conversion $SFI & Extended
v Only Only Entire System
7777 Utility 7777 Utility 7777 Utility 7777 Utility
Loaders Loaders Loaders Loaders
2610 7610 7610 7610
7607 7607 7607 7607
$SFI $SFI . S$SFI ! $SF1
’
€120 6120 6120 6126
6117 6117 6117 6117
@FXC User @Fxc
@SFC Area I @SFcC
@scCF @sCF
4771 4771 4771
4770 4770 4770
User
FPSIN FPSIN
Area FPCOS FPCOS
User FPATN FPATN
FPLNE FPLNE
Area FPEXP FPEXP
_ FPSQT FPSQT
3714 3114
3713 3713
User User
Area I1 Area
0000 0000 0000 0000

6.2

6.3

6-4

FLOATING POINT MANUAL

71-44-001

User Generated Systems:

6.2.1 General

The source tapes supplied for the basic package, conversion rou-
tines, and extended package are organized so that the components of
any Floating Point System the user may select for his problem will
assemble such that the object tape generated will load as high as
possible in memory. Since any configuration of routines which could
comprise a Floating Point System must contain $SFI as a component,
the procedure outlined for generating the system assumes that $SFI
is located at the highest possible place in memory, and all other

(if any) components will be located at successively lower locations.

Assembling $SFI:

Should the user desire to have $SFI load at some other place in
core, the package must be re-assembled. Since $SFI will be assembled
so that it occupies the highest location possible, the user need only
supply that address. This is done by creating a separate source tape

which has the following two assembly instructions:

$SEND = XXXXX

EOT
where XXXXX is the last address that the user wishes $SFI to occupy.

To assemble $SFI, one follows the usual assembly procedure, ex-

cept that the short source tape constructed above must be read in before

the $SFI source tape at each pass.

FLOATING POINT MANUAL
71-44-001

Note: Do not use the Command Equate Tape for this assembly.

After completion of this assemb;y, the "$SFI=" statement on
the Command Equate Tape should be updated (using the Source Text
Editor) so that it states the new location at which $SFI begins.
Thig location may be read off the symbol table printed out at the

beginning of pass 3 of the assembly of $SFI.

Generating a Floating Point System:

If a configuration not obtainable with the object tapes supplied
is desired, the user may, by editing the source tapes supplied (using
the Source Text Editor), create a new source tape consisting of the

routines he needs for his purposes.

Since $SFI is the integral component of any floating point con-
figuration, it is assumed here that either the object tape supplied
for $SFI or a relocated version assembled as in 6.3 (and the as-

sociated revised Command Equate Tape) will be used.

The source tapes for the conversion and extended routines are
arranged so that there is one routine per block on the tape starting
with the second block. (The first block contains comments comprising
an index to the rest of the tape.) This makes it easy to extract the
routines desired using the Source Text Editor. The routines on the
extended package source tape are completely independent. However, the
conversion source tape consists of three routines - the first (physically
on the tape) of which is shared by both @SFC and @CF. This means if

the user desires a conversion routine in only one direction, he must

FLOATING POINT MANUAL
71-44-001

also include the shared routine (@FXC). The routines @SCF and @SFC

are independent of each other.

The procedure for extracting the desired routines from these two

tapes is outlined below:

i)

2)

3)

4)

5)

6)

7)

8)

Load and start the Source Text Editor

Punch a single block at the beginning of the source tape

being created which says:
$SEND = $SFI

($SFI-1 will be the last location into which the resulting
object tape will load.)

If either or both of the conversion routines are desired,
position the conversion routine source tape in the reader
and skip the first (index) block. Copy the second block
(@FrxC), which is the shared routine; then copy the block(s)
containing the desired conversion routine(s). If neither

conversion is required, this step may be skipped entirely.
If one or more of the Extended Package routines is required,

position the source tape for the extended routines in the
reader and skip the first (index) block. Then copy the
blocks corresponding to the routines required. If no ex-
tended package routines are required, this step may be

skipped entirely.
Punch a final block consisting of the single statement:

END
Load the Basic Assembler, select pass 1.

Position the Command Equate Tape which corresponds to the

object of $SFI to be used in the reader.

Press start. The assembler will come to a halt after reading

the Command Equate Tape.

9)

10)

11)

12)

13)

Note:

6-7
FLOATING POINT MANUAL
71-44-001

Position the source tape generated in steps 1-5 in the

reader.
Press continue. The assembler will now complete pass 1.

Run pass 2 and pass 3 as usual using only the source tape
created in steps 1-5. The Command Equate Tape need not be
used for these two passes. (Even if no assembly listing is
required, pass 3 should at least be started so that the
Symbol Table is obtained.

Check the Symbol Table entries for @FCST, @SFC and @SCF
against the values appearing on the Command Equate Tape
used for the assembly and, if they are not the same, create
a new Command Equate Tape which has the values for @FCST,

@SFC, and @SCF as they appear in the Symbol Table.

Assemble any user programs using this new Command Equate

Tape as explained in 6.1.

1) The lowest location occupied by the Floating Point
System as created above will be the value appearing
for $SEND on the Symbol Table printed as a result of
step 11) above.

2) The object tape created by this procedure rust be
loaded after $SFI as explained in 6.1.

Code (octal)

Definitions:

[D] ~optional selection of deferred addressing

APPENDIX A

Command Summary - Basic

Y ~ address of floating operand

~ address of location containing address - 1 of floating operand

~ address of another floating command

~ address of index value

FLOATING POINT MANUAL
71-44-001

I ~ index value of source or destination at address Y

A ~ pseudo-accumulator (FAC)

X ~ pseudo-index register

F ~ floating value of source or destination at effective address formed

from Y.

Basic Commands

01
02
03
04
05
06
07
10

00
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[110]

14

15

16

17

20

21

22

FEXT

FLDA [D]
FSTA [D]
FADD [D]
FSUB [D]
FMPY [D]
FDIV [D]
FADM [D]
FSBM [D]
" FABS
FASQ
FNOR
FNEG
FJIMP
FJAP
FJAZ

oo K d

Operation
exit
F—>A
A~»F
A+F —$A
A-F =p A
A*F—¥ A
A/F —PA
A+|F|—>aA
A-1F|-»A

|al—»a

A2 A
normalized A—"A
~A—®A

jump to Y
jump to Y if A20
jump to ¥ if A= 0

Flags

none
none
FXFLG
FXFLG
FXFLG
FXFLG
FXFLG, FDFLG
FXFLG
FXFLG
none
FXFLG
FXFLG
none
none
none

none

Registers
none
FAC,FTM
FAC
FAC,FIM

' FAC,FTM

FAC,FTM
FAC,FTM
FAC,FTM
FAC,FTM
FAC
FAC,FTM
FAC
FAC
none
none

none

FLOATING POINT MANUAL

71-44-001
Code (octal) Basic Commands Operation Flags Registers‘
23 FJAN Y jump to Y if AL 0 none none
24 FJEV Y jump to Y if FXFLG setf0 FXFLG (set to zero) none
25 FJDC Y jump to Y if FDFLG setf0 FDFLG (set to zero) mome
26 FJIX Y X+1-X, jump to Y if X0 none FINDX
27 FIDX Y I—»X none FINDX
30 FSTX Y X—»I none none
Command Summary - Extended Functions
Code (octal) Extended Command Operation Flags Registers
31 FSIN SIN. (FAC)—® FAC FXFLG FAC,FTM
32 FCOS COS (FAC)—* FAC FXFLG FAC,FTM
33 FATN TAN—l (FAC) —»FAC FXFLG, FDFLG FAC,FTM
*
34 FLNE LOG, (|FAc|)—w FAC rxrLe) FAC,FTM
35 FEXP eFAC_p FAC FXFLG, FDFLG 1) FAC, FTM
36 FSQT JFAC]-»FAC none (+) FAC
(*) If input argument is negative, FNLNF internal to the FPLNE routine will
be set non-zero (see write-up).
(+) If input argument is negative, FSFLG internal to the FPSQT routine will
be set non-zero (see write-up).
(1) If input argument is too large, FEXOF internal to the FPEXP routine will

be

set non-zero (see

write-up).

B-1
APPENDIX B
w1 3 5FCd - COMMENTED

Commented Command Equate Listing

FLOATING POINT MANUAL

002 3 74-43- 492L 71-44-001
vo3 3 COMMAND EQUATE TAPE

Vo4 $SFI=6120 35 ENTRYs INTERPRETEsx

) @FCST=5705 5 CHARACTER SET TABLE

VY6 @SFC=5377 5 ENTRYs FLTNGe TO CHAHe
©wo7 @SCF=4771 5 ENTAYs CHARe TO FLTNG.
0oy FGET=$SFI+2 5 ENITRY> EXTERNAL RETURN
VoY FMASK=FGET+12 3 MASK FOK DEFERKED MODE
P10 FPUNT=FMASK+13 5 ILLEGAL COMMAND ROUTINE
V11 FTBLE=FPUNT+14 3 TABLE OF ENTRIES

w1z FTCMP=FTBLE+111 3 ENTRY» F1v NEGATION

913 FTCMA=FTCMP+4 3 ENTRYs -(AX>AY) TO FTu
pla FTSAX=FTCMA+5 3 ENTRYs CAX>AY) TO F1M™
15 FTMHI=FTSAX+1 5 HIGH ORDER FTM

vle FTMLO=FTMHI +2 3 LOW ORDER FTs

w17 FACMP=FTMLO+2 3 ENTRYs FAC NEGATION

D18 FACMA=FACMP+4 5 ENTRY» -(AX»AY) TO FAC
619 FASAX=FACMA+5 3 ENTRY, (AX,AY) TO FAC
pay FACHI=FASAX+1 3 HIGH ORDER FAC

021 FACLO=FACHI +2 5 LOW ORDER FAC

22 FNORM=FACLO+2 5 ENTRY> NORMALIZATION
pa3 FXFLG=FNORrM+3 3 EXPONENT OVERFLOW FLAG
g4 FACXP=FXFLG+50 3 FAC EXPONENT

V25 FINDX=FACXP+20 3 PSEUDO-INDEX

w6 FDAD=FINDX+5 3 ENTRY» DBLEe PRECe. ADD
peT FDMPY=FDAD+31 3 ENTRY» DBLEe PRECe MULTe
228 FDDIV=FDMPY+143 3 ENTRY> DBLEe FRECs DIVe.
vy FDFLG=FDDIV+3 5 DIVIDE CAECK FLAG

U3 FSDUD=FDFLG+121 5 ENTRY» SNGLe PRECe DIV
031 FLODU=FSDVD+19 5 Lo O« DIVIDEND FOK ABOVE
@32 FETCH=FLODU+27 5 ENTRYs FLTING ARG TO FTM
¥33 FSPLT=FETCH+16 35 SPLIT ARGe TO FAC.

234 F1MXP=FSPLT+6 3 FTv EXPONENT

835 FARGD=FTMXP+24 5 ENTRYs IMMED FETCH TO AX
P36 FPUSH=FARGD+1 3 PUSH DOWN POINTER

037 FARSN=FPUSH+2 5 ENIRY» ARITH RGHT SHFT
238 FARSC=FARSN+6 3 SHIFT COUNTER FOR ABOVE
839 FCMAX=FARSC+7 3 ENTRY», MAK. NJ. TJ FAC
vay FOFAC=FCMAX+21 3 ENTHY» ZEKRO TO FAC

B4l FPSTA=F@PFAC+32 3 STORE FAC

P4z FINAC=FPSTA+34 3 PACK FAC

43 FLIST=FINAC+373 3 PUSH DOWN LIST

Qa4 FEAT=0 3 =EXIT COMMAND

45 FLDA=1 3 LOAD FAC COMMAND

D46 FLDAD=101 3 LOAD FAC DEFEHRRED

vat FsTa=2 3 STORE FAC

Q48 FSTAD=102 3 STORE FAC DEFERKRED

@49 FADD=3 3 FLOA1ING ADD

¥50 FADDD=103 3 FLOATING ADD DEFERRED
¥51 FSUB=4 3 FLOATING SUBTRACT

ps52 FSUBD=104 5 FLOATING SUBe DEFERRED
853 FMPY=5 3 FLOATING MULTIPLY

254 FMPYD=105 3 FLOATING MULle DEFERKED
0855 FDIV=6 5 FLOATING DIVIDE

056 FDIVD=106 3 FLOATING DIVIDE DEFERRED
057 FAD1=7 3 FLOATING ADD MAGNI TUDE
858 FADMD=107 3 FLING ADD MAG DEFEKRRED
¥59 FsBM=10 3 FLOATING SUBe. MAGNI TUDE

B-2 FLOATING POINT MANUAL

71-44-001
(4163%] FosBMb=11¢ 5 FLING SUB MAG DEFERAEL
061 FlrN=11 3 THACE ON
vez FinrrF=12 53 lnAaCkE OFPF
063 FS5ET=13 3 SET ERROK InAP
064 FABS=14 3 ABSULUTE MAGNI 1UDE
065 FASH=15 5 SWUARE
v66 FNO=16 5 NJIRMALIZE
ve7 FNEG=17 ; NEGATE
vey FdMP=20 3 UNCONDITIONAL JUMpP
069 Fdar=21 35 JUMP IF FAC > DR = ¢
D70 FJdAL=22 5 JuMp IF FAC = ¥
071 FuAN=23 3 JUMP IF FAC < U
w72 FdkEv=23 5 JUMP IF FAFLG NOT W
¥73 FJdbC=25 3 JUMP IF FLDFLG NJUIL U
B14 FJIX=26 5 BUMP PFPINDX, J¥ir IF NJL W0
Bi15 FLDX=27 5 LOADL PSEUDI-INDEX
076 FOoTA= 30 3 S1Jdnk PSEUDO~INDEX
B77 FSIN=31 5 Slnk
V7c FCIS>=32 5 COSINE
079 FAIN=33 3 ARCIANGENT
%23 FLNE=34 3 NAlURAL LIGARI idx
va 1 FEAP=35 5 BEAPUONENTIAL
vs2 FSul=36 5 SWUARE HOUI
V8 3 EJ1 5 ASSEMBLER HaALT

FLOATING POINT MANUAL
31-44-001

APPENDIX C

Source Tape Organization

NAME: $SFI

1;$sF1
$74-43-401L
; IDENTIFICATION

$SEND=$SEND-1467
LOC $$SEND

block mark

$SFI1:

comprises several blocks

‘block ‘mark

s @FXV
. 374-43-410L
. ; IDENTIFICATION
" ;INDEX (BLOCK NO.
' VS. ROUTINE)

N
:

block mark

| 3@FCST
374-43-411L
sIDENTIFICATION
$$SEND=$$END-213
LOC SEND
@FCST=.

block mark

;@SFC

3 74-43-4121,
;IDENTIFICATION
$SEND=$SEND- 306
LOC $SEND
@SFC=.

block mark

|
'3SCF
1374-43-413L !
‘s IDENTIFICATION !
. $$END=$$END-406
LOC $SEND
@SCF=.

block mark

END

block mark

c-2 FLOATING POINT MANUAL
71-44-001

index (block Q)

common module (block 1)

floating to character (block 2)

.y

character to floating (block 3)

NAME ;

(

" $FEF

3SFEF
374-43-420L

s IDENTIFICATION
;INDEX (BLOCK NO.
;VS. ROUTINE)

i Sees

block mark

. ;FPSIN
:74-43-421L
; IDENTIFICATION

$$END=$SEND-173
C $SEND
FPSIN:

block mark

ey

sFPATN
3 74-43-422L

i
H

.

$SEND=$SEND-146
LOC $SEND
FPATN:

block mark

—

i

¥

WS

sFPLNE
374~43-423L

s IDENTIFICATION
$$END=$$END-164
LOC $SEND
FPLNE:

block mark

g s e

Y.

; FPEXP

3 74~43-424L

; IDENTIFICATION
$$END=$ $END-201
LOC $$END
FPEXP:

i
t

4 ——

block mark

s FPSQT

s

P ———— S nt— o -

374-43-425L
s IDENTIFICATION

$SEND=$SEND-127
LOC $SEND
FPSQT.

|
|

block mark

[

i

‘END

block mark

!

— .

=
.

N

FLOATING POINT MANUAL
71-44-001

index (block 0)

Sine/Cosine (block 1)

arctangent (block 2)

natural logarithm (block 3)

exponential (block 4)

square root (block 5)

FLOATING POINT MANUAL
71-43-001

APPENDIX D

ZFCG - Floating Point Constant Generator

4#FCG - Floating Point Constant Generator

ZFCG is a utility routine which is provided should the user wish to
use floating point constants whose octal equivalences are unknown. With
ZFCG, the user can type in a floating point decimal number and receive

the equivalent internal floating point representation.

%#FCG occupies locations 0-2660 inclusive.

Operating Instructions

1. Load %ZFCG by means of 7ZALD.

2. Turn teletype on-line.

3. Set SC=0.

4, Press START.

5. ZFCG responds with a carriage return, line feed.

6. Type a string of up to 13lO characters terminated with an equal
sign (=). The character string should be in the format described
in section 3.3, where the delimiter is an = rather than a carriage
return. Typing a back arrow at any point causes the first previous
non-back arrow to be ignored. Typing rubout at any point causes
ZFCG to type a carriage return, line feed, question mark (?) and
returns to step 5. Typing more than 13 characters before typing

an equal sign has the same effect as typing rubout.

7. When the user terminates the character string with the equal
sign, #4FCG responds by typing the 2 word floating point equivalent

(in octal) and returns to step 5.

8. If the character string did not conform to the format specified in
section 3.3, the message SCAN ERROR is typed and %FCG returns to
step 5.

FLOATING POINT MANUAL
71-44-001

If the character string resulted in a number whose magnitude was
outside the range 1.469369E-39 to 1.701411E+38 or if the character
string contained more than 10lO mantissa digits, the message

ANSWER OUT OF RANGE is typed and ZFCG returns to step 5.

E-1
FLOATING POINT MANUAL
71-44-001

APPENDIX E

FPSET - Error Trap Routine

Introduction:

A series of floating point calculations on an unknown data base can
generate errors, such as results which exceed the capacity of the machine
or dividing by 0, etc. In order to facilitate the localization of the oc-
currence of such errors, FPSET is provided and serves as an error trap
routine. When an error specified by the user is detected, FPSET will
interrupt the operation of the interpreter and give control to a user
supplied error routine. FPSET supplies the user error routine with the
following information, allowing the user to pinpoint the step in his cal-
culations at which the error occurred:

AX = recursion level at which the command at the address in AY was

executed.

AY = address of command executed immediately previous to detecting

the error.

TRP = error number indicating which flag in the user supplied error
list waé set non-zero. (TRP = position of address of error
flag in user supblied table (see usage)).

The recursive capability of the interpreter somewhat complicates cer-
tain usages of FPSET and, for this reason, three modes of operation of
FPSET are allowed: "On", "Off'", and "Partially On". The latter mode
allows FPSET to keep track of commands and recursion levels without ex-
amining any error flags. The utility of this mode is described in the ex-

amples at the end of this appendix.

FLOATING POINT MANUAL
71-44-001

Usage:

FPSET is controlled by the use of the FSET command in the sequence of
floating commands being executed by the interpreter. There are three modes

of operation of FPSET: 1) ON, 2) OFF, and 3) PARTIALLY ON.
1) To turn FPSET ON, the command is

FSET A

where A is the address of a table with the following format:

Az WRD ERR sUSER ERROR ROUTINE ENTRY
WRD FLG1 sADDRESSES OF SYSTEM
WRD FLG2 sFLAGS TO BE CHECKED...
WRD -1 sEND OF TABLE SIGNAL

When this FSET command is encountered with a positive non-zero value for
A, FPSET will examine the state of every flag listed in the table at address A
after every command executed by the interpreter from the point of the FSET A
command onward. Whenever a flag whose address is in the user list has become
non-zero (indicating an error), FPSET zeros the flag, and then gives control
to the user error routine at the address specified in the first word of the
table at A. The information supplied to the user error routine is as stated

in tle introduction.

The user error routine may use $SFI, but any additional errors which might
occur will not be checked by FPSET, and any FSET commands in the command se-
quence will be ignored. If the user wishes to call $SFI in his error routine,
it is up to him to save and restore the states of the interpreter system flags

and the floating accumulator (FAC) before and after such S$SFI use.

FLOATING POINT MANUAL
71-44-001
2) To turn FPSET "off", the command is

FSET O
This completely disconnects FPSET from the interpreter.
3) To turn FPSET 'partially on", the command is

FSET N

where N is any negative number.

In this mode, FPSET will keep track of the current command address and
recursion level but will not examine any flags. If FPSET is at some later
time turned "on'" and discovers a flag set non-zero, the level and the com-

mand address will be correct within certain limitations (see Notes).

This mode is useful when the user does not wish to enter his error
routine for errors which occur during execution of a section of his command
sequence. For example, the command sequence may contain an FJEV or similar
test for conditions known to the user, and with FPSET "on', these conditions
could be altered (cleared) if the corresponding flags are in the user error
list at A. In this case, an FSET N (where N{O0), issued before entering this
section, and an FSET A (AD 0, A=address of table), issued after completion of

this section will allow FPSET to retain the necessary information should

other errors occur and allow the section itself to operate properly.

User Error Routine:

Basically, the user error routine may do anything. However, the user must
remember that his error routine is considered as an extension of the inter-
preter. At the completion of the error routine, control should be given back

to the interpreter via a JU FGET or similar return.

Register AX is used as an argument upon return (via JU FGET) and can turn

FLOATING POINT MANUAL
71-44-001

FPSET "on", "off", or 'partially on" according to AXD> 0, AX=0, or AX< 0

respectively. If AX}>0, it must be the address of an error table as de-

scribed above (it need not necessarily be the same one as before).

Notes:

1

2)

3)

It is generally the case that an error flag is set by the command
immediately preceding the detection of the flag non-zero. In the
case where FPSET was not "on'" at that moment, but was turned on
later and found the flag non-zero, FPSET will report that it does
not know which command caused the error by giving an AY value
which points to the FSET "on'" command or by AY = -1. The dif-~

ference in meaning of the two AY values is as follows:

a) AY = address of FSET "on" command if the flag was non-zero

at the time the FSET "on" command was encountered.

b) AY = -1 if all flags were zero when the FSET "on'" was en-
countered, but a flag was set non-zero later at a point
which indicated that the command which caused the error
was at a recursion level one less than the level at which
the error was detected. This situation is avoided if

FPSET is partially on throughout until it is turned on.

If the user wishes to restart his entire program or in any other way
wishes to use the interpreter without reloading it, he should make
sure that FGET+l is initialized to FARGD and FPUSH is initialized

to FLIST-1.

A FEXT command does not affect the mode of operation of FPSET, i.e.
upon re-entering $SFI, FPSET will operate as per the last FSET com-

mand encountered before the FEXT.

Operating Instructions:

1.

If a user generated floating point system is being used (as per
section 6.4), the FPSET program needs to be reassembled. To do

this, make a short source tape with the following two instructions:

$SEND = XXXXX

EOT

FLOATING POINT MANUAL
71-44-001

where XXXXX is the lowest location occupied by the user generated
system. Then assemble FPSET as explained in section 6.1 of this
document, making sure that the short source tape above is read in
before the FPSET source at the beginning of each pass (steps 4 & 6
of 6.1) and the Command Equate Tape is read in at the beginning
of Pass 1.

Load FPSET after S$SSFI.

Start user program which has FSET commands in the usual way.

Examples

1. Typical usage of FSET '"on" and "off"

User Main Code

sTurn FPSET on

causes divide check, FPSET gives co

This returns control to interprete

User Error Routine

JU $SFI
FSET A
FD
. W

FSET O
FEXT

A: WRD ERR
WRD FXFLG
WRD FDFLG
WRD -1

R —— - -

to execute next command

Errors in here
are not detected
by FPSET

sAddress of user error routine
;Address of exp over/underflow flag
s;Address of divide check flag

-3End of table

ERR: . (TRP = 000002
. indicating second
. flag in table at A
. was set)
MRI A,AX ;Turn FPSET back on

JU FGET

e e o hmpbmtlmaootiontuntn)

T00-%%-TL
TYANVH INIOd ODNILIVOTd

Example

2. Use of FSET "Partially Om"

User Main_ Code ‘ User Coded Extended Function
JU $SFI | S — |FPUFN: JU $SFI
FSET -1 ;turn FSET partially on ; FSET A ;Turn FPSET on

. (Detects FDFLG error

. o immediately and traps

. ~ to user error routine)
FJEV ;sReason for FSET partially on
FDIV sError (divide check) occurs here A: WRD ERR ;Usgr supplied table
FUEN ;User defined function WRD FDFLG

WRD -1

In this example, bécause FPSET was only partially on when the error actually occurred, the
error trap will indicate that the erring command was FSET. It will, however, indicate that the
divide check flag was on (TRP = 000001 since FDFLG is first in table A) and that the error oc-

curred in recursion level 2 since FPSET was turned on in the user function.

T00-%%=TL
TVINVH INIOd ONIIVO1d

Examples

3. Another usage of FPSET "Partially On"

User Coded Extended Function

In this example, FPSET indicates an error on
recursion level 1, and that the command
causing tue error was FUFN (i.e. AY will have
address of FUFN command). This is as it should

be since the arguments given to the user function at
the FUFN caused the function to set an error con-
dition.
Note: If the FSET -1 had not been issued in the Main
Code, FPSET would have indicated the AY= -1 condition.
It would, however, indicate the correct flag and the

correct level (i.e. level 1).

User Main Code
-»
JU $SFI
FSET -1 sTurn FPSET partially on
FJEV
FUFN ;User defined function

FPUFN:
A; WRD
WRD
WRD
WRD

JU S$SFI

JU $SF1I

ERR

- FXFLG
FDFLG
FUFLG

sTurn FPSET on
(no errors yet)

Input argument cause
user coded function
to set error flag

$ error is detected here

by FPSET

T00-%%-TL
TVANVH INIOd ONILVOTd

8-d

FLOATING POINT MANUAL
71-44-001

APPENDIX F

Trace Routine

The floating point trace is a debugging aid which prints
the value of pertinent variables in $SFI and the user's program
before the execution of each floating point pseudo command. The

variables printed are:

A. current level of $SFI

B. address of the instruction to be executed
C. code for the instruction to be executed
D. FINDX (floating point index)

E. FDFLG (divide check flag)

F. FXFLG (exponent overflow/underflow flag)
G. FAC (floating point pseudo accumulator)
H. effective address of argument, if any

I. wvalue of argument, if any

The user specifies which of the variables are to be printed
and the maximum level for which he wants the information printed.
This is done through the floating point pseudo commands FTRN

and FTRF.

To turn the trace on and specify which of the nine variables
are to be printed, the pseudo command is:
FIRN X
ﬁhere bits 0-8 of the integer X correspond to the variables A through

I above. For each bit that is on (=1) the corresponding variable

F-2
FLOATING POINT MANUAL
71-44-001

will be printed before the execution of each floating point command.
The FTRN command sets maximum recursion level to be traced tc 7,

turns the trace on and prints a heading (A-I), telling which variables
are to be printed. The "trace on" causes the specified variables to

be printed on one line before each instruction is executed.

The printed value of variables H (argument effective address)
and I (argument) need further explanation. If ile command to be
executed has no argument, columns H and I will be blank. If the
argument is floating point, I is printed as a floating point deci-
mal number, otherwise it is octal. If the command is FTRN, FTRF or
a JUMP command, then H is the address+l of the command and I is the
contents of H. In the case of the commands FLDX Y, or FSTX Y, H is
the address Y and I is the contents of Y. For user coded extended
functions, columns H and I will be blank unless the function has a

floating point argument.

To turn the trace off beyond a certain level, the pseudo command
is:
FTRF X
where the integer value X specifies the maximum recursion level (1-7)
for which the specified variables are to be printed. If X is less
than or equal to O, the trace is disabled and no variables will be

printed from then on until another FTRN X command is executed.

F-3
FLOATING POINT MANUAL
71-44-001

Notes:

1) When the trace has been turned on, certain locations in
$SFI are changed. $SFI is restored to its original state
only after the trace is completely disabled by an FTRF 0
command. Therefdre, to restart the user program or use
$SFI without reloading when the trace has been on, the user

should make sure that:

a) FGET+l is initialized to FARGD
b) FSPLT is initialized to 11 0000 06
c¢) FSPLT+1 is initialized to FTMHI

d) FPSTA+1 is initialized to FARGD

2) The trace program cannot run at the same time as FPSET,
and so should be assembled over the FPSET program. Therefore,
if the trace is on and an FSET command is encountered, the
FSET command is considered illegal. That is, the interpreter
halits with the address of the iilegal command in the MB reg-

ister on the front panel. (See section 2.2.5).

Operating Instructions:

1) 1If a user generated floating point system is being used

(see section 6.4), the trace program (FPTRC) should be re-

assembled. Since FPSET and FPTRC are mutually exclusive,

FPTRC is assembled over the FPSET program. To do this, make

a short source tape with the following two instructions:
$SEND = XXXXX

EOT

F-4
FLOATING POINT MANUAL
71-44-001

where XXXXX is the lowest location occupied by the user
generated system (excluding FPSET). Then assemble FPTRC
as explained in 6.1. Make sure that the short source tape
above is read in before the FPTRC- source at the beginning
of each pass (steps 4 & 6 of 6.1). Read the Command

Equate Tape in at the beginning of Pass 1.

2) Load FPTRC after S$SFI,

3) Load and start user program with FTRN and FTRF commands

in the usual way.

Vo1
¥o2
003
Vo4
V5
006
vY7
008
009
P10
811
p1e
013
V14
015
316
017
218
219
620
P21
P22
923
p24
625

nee6

VLPvoo
Yoo 1
ppov2
PYYB3
Boeo4
YBvvs
poove
powVBLT
Voo10
Bobl1
vvol12
voo13
vool14
PoB1Ls
vovle
Pop1T
BBV2V
poval
b2
vuva23
Dov24
voY25
0oB26
pBB217
PBB30
PoB31
Boo32
BYY33
Vo034
¥Pa3s
VoV36
vBB3T
bov4Y

bo 2100
bvB6120
ne BAvBY
820757
Ve doLY
vPYB 32
09 0oL
pBPVB33
08 VvPoY
VBB 35S
Vb Bobo
PBBVY3S
Vo VBLYY
0RVID6
Vo 00V
voB367
bY BVLY
VYBD33
by BoVo
VBB 35S
Po 0000
DoBo37
Vo BV
VOvBBo
B0 00DV
B2 16D
177775
V50800
BoR2B3
2400002
pv2e2
VoVBYBG
vPBOBY

63

11

27

/B

85

ga

26

11

g1

86

e

i2

0o
0o

5 EXAMPLE 1

F-5

FLOATING POINT MANUAL
71-44-001

5 THIS EXAMPLE USES TWO FThN COMMANDS.
5THE 15T FTRN SELECTS VARIABLES AsBsCsDsFsGoHs I

3TO BE PRINTED.
52ND FTBEN 1S EXECUTEDs

THIS IS5 IN EFFECT UNTIL THE

THE SELECTED VARIABLES

3 ARE THEN CHANGED TO A»B»CsEsFs GsHe THE
- 3FTRF © COMPLETELY DISABLES THE TRACE.

JU

FTRN

FLDX

FLDA

FMPY

F5TA

FJIX

FTRN

FLDA

FDIV

FSTA

$SF1

757

W

~N

HLT
-3
SPBBYB, 203

480808, 202

0,9

JPRINT AsBsCsDsFs GoHs 1

3 Y=X%xY

5 DONE LOOP 3 TIMES?

SPRINT AsBsCrEsFs»GsH

35 TURN TRACE OFF

sLOOFP COUNT
350

[T g Sy e p ey Ty S s

b2

— e

F-6
FLOATING POINT MANUAL
71-44-001

B C D F G H I

BoYv4 PYY2T7 YPVBYY © +2.356227E-39 0BYB32 177775

VRPBE6 VRVBL 177775 @ +2.356227E-3Y @W0W33 +5.00000VE+VY
Vovly voBBS 177775 U +5.0D00VQE+VY BBB3S +2.00B0VUE+QD
BOV1l2 VBYV2 177775 BV +1.000000E+01 0BPB35 +2.0VVVYBE+BY
povla VPYV26 177775 © +1.000000E+G1 0VBV1S BVOVB6

PLYB6 VPBBL 177776 @ +1.000000E+01 ©DBV33 +5.00P00BVE+VO
PUVLY VBBBS 177776 @ +5.000000E+00 ©Q0V035 +1.0000V00E+01
Vvl PveR2 177776 O +5.000000E+0V1 QBU3S +1.000000E+D]
VBvl4 wVBR26 177776 U +5.00D0VVE+P] BRVOLS BVVLYVG

Viovwe VRBBL 177777 © +5.000V00E+01 0BOBVB33 +5.00VVVBYE+VY
POY1IY PVYRLS 1T7777 @ +5.0000VYE+PB 0QBV35 +5.0PBVYVVE+VL
wvvle VB2 177777 © +2.500P00E+082 0BDBV3S. +5.000V0VVE+VI]
PYYla VYB26 L1TT7777 U +2.500000E+02 VVBLS VBYBVE

VYB16 BYVL1 PYOPBYVE ¥ +2.50V0VVE+VE BBVLT WVVBB36T

B C E F G H

VYo29 Vool
pog22 VVVYE
bouz4a pvBv2
Vo6 vvvle

+2¢ SVYBVVEFTVZ VB33
+5.00VBVOE+PY BPBB35
+2. VDYOVOE-B2 ©BBV37
+2.000VOVE-B2 BvaT

[SOl NN
cEET

Vol
vz
Yo 3
V4
095
vve

Ba7

vy

09

v21l
vze
B23
ve4
0a2s
¥26
027
02y
b2y
b3v
831
632
033
V34
B35
B36

PVYLe
bl
Budeve
PBV©B3
Bvov4a
PVOYS
vwYvoe6
VeovT
PRO1Y
vwoBll
vvBl2
pBoL3
vool4
BBB15
vvvle
Vov17
VL
vzl
pov22
buvw23
vwove4
BoVV25
pYB26
voveT
B39
Va3l
vvev32
PYY33
VY34
BUv35
VY36
wov3T
BYY4LY
vov4al
vev4az
P43
Bov4a4
o045
PRba6
povat
VVVBSY
BVov51
Bu166
bolol

buvleoe
VO1v3

pez2zz

Vo blos
BYv6120
o bOBY
BoBTT7
bo BYYVY
povv2
Vo BLYY
BOvB4a3
09 Vo1
VBBB4aa
0B BBYYL
DYvL46
vo Vovo
VoBB46
vo Vvoo
VYDl
vo Booe
voLBBY
by BoLBY
vwe 81vo
Vo 819
0YT057
11 v20d
VVBY3S
Vo vlve
guelzy
Vo DBYY
BBRBSY
By VBVY
VYYLVY
D6 bl
bBv4as
Yo ©ooo
wY V1Y
vveliez
177776
POBBTT
VRVDTT
BYBBYBY
VBVYY
076400
Y211

862800
DVLB296
B5VLYO
vBv2Y4

Y24

27
Bl

ve

37

26
12
vo
Y%
V3

03

vl

06

va

Vo
B3

F-7

s EXAMPLE 2

FLOATING POINT MANUAL
71-44-001

5TdIS EXAMPLE PRINTS ALL 9 VARIABLES
3 FOr nECURSION LEVELS 1 AND 2.
5 THE USER EXTENDED FUNCTION I> AT

5 HECURSION LEVEL 2.

JU $5F1
FIrRN 777
FTRF 2
FLDX X
FLLADL X+1
FSTA Y
FUFN Y
FJIX «=6
FIRF ©
FEXT
FOM HLT
FpPUuFNe: JU FARGD
M AXs ARGH]
JU $S5SFI
FLLA Z
AHRG: FDIV ©
FSTAD X+2
FELT
JU FGET
X wrD =2
Wb 77
wrb 77
Ye WD 0,0
48 wnrD 764p0,211
LOC 100
WhD 62000, 206
wWhD 50000,204
FUFN=37
LOC FIBLE+FUFN
wWwriD FPUFN

END

SPRINT AsBsCor Do bsribsGordsl

3MAX THACE LEVEL=2

5FETCH ARG DEFERRED

3USER EXTENDED FUNCTION

5 DONE?

3YESs TRACE OFF

3500.0/Y

3LOJOP COUNT
3 FETCH ADH»
3 STORE ADR»
3 FUFN ARG

DEFERRED
DEFERRED

3506.0

3500

;1.0

[y

e

I3 /'-"i ." -~
Ff@é?
(GRS N
CLSOR I
ISYCRCE WA
AP S
IR CR ERE Y
CERRA
T LR
EISISR NS
[ARSEAN W&
YO

ISESTON ¥4
TR
[BECREPS]
o R6G
ISNAR Y
SOOI

totcy=Yed

(:1

AR BE]
e
[z R
[aicialer=
PAERRT
e el
GOMAE
GE1R2
7.AR A
G926
GICh NaR
(REEGO
GOmRT
e
GG
[CIER NLEs
[sIcdcia
RCT AT

TSR s

et

SN
R
~1 0T
] B
N D

2

PRI
N
AR

Sy

~

2

-~ =

-~
a
~

~
AT

K
IR T T S S

N

-
)

~3 =
<3

™

=9
=

~1
~J3
=~ ol
N
3

2
~
DN
=

,
~1 9

~

B}
-~
N

<
-0

-
N
<
o o

2

A
<
FOE}
L
=

*

B I
<9

Q

<

<

.
<&
-~

o o
SIS

=~ =
ol
RRIE I
~)
-1 <2
)

b Y S RGP PP NN I I
=
=
>

FLOATING POINT MANUAL
71-44-001

o)
e
a

L O G READO T~ 10 meees
+2e 2RAC2TF- 0 83 VYT UE

+0, REALOTH=1D ARIEG 2R, AEACTHOTLO]
e R A ACIACKE BaN | CoCLA 0, CEGHRAORR O
B (P AFEAC YL (]
+ R ARG ART 4]
+ 5.
+ 1o AGAMAGARA]
+ 1 s AACGRGRET+ A
+1le PG FIVAEMT IACN) A T

L1 ARRGRRRLG] CE10Y 2] AOCACP 40
+ e CAGARETLA] CACAA 25, (AL YR
+) s ARPMAME YA]

+ 1, MAGMAAGHS] CEERE e i
+ R AAGAGATL S COC LA
+ Qe APGRRMETFL] GICH NOES
+he FACHLARS (]

+ 8, GOAGAGE T4] SAGIC0 I
L5, AAGGTATE G GICErEen |

AN 00
x S

O AR+ (D
2B GHOGT T G
LB, RGEHAGE 0]

G AT
CERYER L |

SO 6

01
voz
Vo3
vo4a
P85
Vo6
BB7
VoY
VoY
w1y
P11l
pla
013
vla
015
816
017
218
g1y
n2o
B21
yaa

ya23
R24

B2s
026
pet
[7F=2<]

hey

030
931
v32
V33

B34
835

936

PPVOY
bovo1
vvvLBa
YB3
Vbwoa
20095
VovwVe
povo7
DAty
vYo11l
povle
PVo13
pBo14
BYBLS
vovl6
wouvlLT
pYv2Y
BYB2l
pepae
vwove3
voBa4
buwvwves
Buv26
P27
BoYv30
VidB31
pBB32
V2633
VoB34
PBB35
Vob36
b6B37

0YV4B
vpo4al
vBB42
PvR43
pov4s
BBvas
V46
bvovaT7
VYv50
bB0B51

vo1ved
Poiol
Bo162
Vo103

pez222

Vo B1V0
006120
0o VoY
PBVTTT
VY VYL
BVooo !
Vo VOBY
POBB43
ny 2vvl
JOBB4a4
B2 90006
BoBB4L6
B0 VoGO
vRBB46
VY BVl
15151 R
o BvLY
VPBOBG
Vo VoVY
b2 vl
0o V1vod
Bo70B57
11 6YY
VBPB3S
Vo BloY
po6120
DB VLYY
BBoB5Y
00 VBRY
PovRVO
B0 Vool
YBBB45
BY BBOB
vy 6100
pos6l122
177776
LOOBTT
BOBBTT
VBBV
BOBBBY
076400
Bov211

062000
VoL2V6
850000
Dov204

vPBB24

v3
1
12
27
01
g2
37
26
12
0o
0o

03

p6

03

a1
86
g2

0o
83

F-9

3 EXAMPLE 3

FLOATING POINT MANUAL
71-44-001

3THIS 15 THE SAME AS EXAMPLE 2
5 EACEPT THE MAXIMUM RECURSION
JLEVEL PRINTED IS LEVEL 1 DUE

3T0 THE FTRF 1 COMMAND.

JU $SFI
FTRN 777
FTRF 1
FLOX X
FLDAD X+1
FSTAa Y
FUFN Y
FJIX «-6
FIRF @
FEXT
FOM HLT
FPUFN: JU FARGD
R AXs ARG+
JU $SFI
FLDA Z
ARG: FDIV ©
FSTAD L+2
FEXT
Ju FGET
X3 wrD =2
wnib 77
Wwrb 77
Y3 WRD 0,0
VA WRD 76406,211
LOC 100
WRD 620800,206
WHD 50000, 204
FUFN=37
LOC FTBLE+FUFN
WRrRD FPUFN

END

SPRINT AsBsCsDs EsFsGsH>» 1

5MAX THACE LEVEL=1

3 FETCH ARG DEFERRED

3USER EXTENDED FUNCTIOWN
3 DONE?

3YEss TRACE OFF

3 50Bev/Y

3LOOP COUNT
3FETCH ADR,
3 STORE ADR,
3 FUFN ARG.

DEFERRED
DEFERRED

3500.0

3506.0

i 10.0

>

O

(RO RY Eil
o G3i (A
ey @
GG A
GRS W)
el A
e R N
[EEaNa R)

rre s
(e A

srare ey e
[OR O RE

.

el e
(e oy
7o
ele¥odor=
FERRT
CrroA
pr1e

nR7
COrSA

prmy o

e¥e
le¥e

CoAn iR
A
197776
177%7%96
]”7776
76

17
17
1
1
1-
P

AN N e

F-10

+ 20 REEDP TN 10
+ P06 35620
+24356207F- 30
+H AACEACFY O]
+ 5 (RGAREFEA]
+1e FORCERAR+ Y
L] POERROF+F]
+ 1 FCARRTE0]
+ 1 AGRPHAECFLC]

+ 8 CEARAACE+ (]
+ 5. (AR L0

p - {O

FLOATING POINT MANUAL

H

FEAG
IO AAREY
Gy o
GIGAFARS

Cre
Elee
ol

71-44-001

COpeed
177776
+ B CEGBET R (]
O (PG ART

S dcEe
+1.000
+ 5

CEGR ¢

BRCen

(@)
S GRI Computer Corporation

320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02164
TEL: (617} 969-0800

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	xBack

