
0

__ o ma..,___.. __ _

0

FAST
manual

~rn GRI Computer Corporation
320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02164

TEL: (617) 969-0800

Price $1. 75

GRI-909

FAST MANUAL

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164

(S) November 1970 by the GRI Computer Corporation

71-44~02-A

1170~700

TABLE OF CONTENTS

1 THE FAST ASSEMBLER

1.1 Introduction . . . • •.•......••.•. 1-1

2 FAST LANGUAGE ELEMENTS

. 2 .1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3

Character Set

Symbols

Key Wprds

Labels • . .

Constants

Expressions

Comments ..

Statements • .

MACHINE INSTRUCTIONS

. 2-2

. • 2-4

• • 2-7

.• 2-8

2-9

• 2-10

• 2-11

•• 2-12

3.1 Register-to-Register Data Transmission Instructions. 3-3

3.2 Memory Reference Data Transmission Instructions .• 3-11

3.2.1

3.2.2

3.2.3

3.2.4

3.3

3.4

3.5

4

Direct Addressing Mode • .

Def erred Addressing Mode • .

Immediate Mode Addressing

Immediate-Deferred Addressing Mode •

Data Testing Instructions

Function Output Instructions .

Sense Function Instructions

ASSEMBLER INSTRUCTIONS

3-13

. 3-14

• 3-16

•• 3-18

3-19

.. 3-24

. • . 3-26

4.1 Parameter Definition •••.•.•..•••..•. 4-1

4.2

4.3

4.4

4.5

4.5.1

4.5.2

4.5.3

5

5.1

5.2

5.3

6

6.1

6.2

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

APPE~IDICES

A

B

Radix Control • •

Location Counter

Program Terminators .

Data Definition • .

Word Values .

Text

Combined Text and Word Values

DEFINITION OF NEW SYSTEM SYMBOLS

Device and Device Related Codes •

Abbreviated Machine Instructions

Local Pseudo-Instructions

USAGE NOTES

System Linkage

Subroutine Linkage

Some Fast Examples

%TBO

%TBI

%TLO

%TLI

%TMO

OPERATING INSTRUCTIONS

STANDARD SYMBOL TABLE •

. . 4-2

. 4-4

. 4-5

. 4-6

4-6

. 4-7

. 4-8

• • 5-2

. 5-6

. 5-8

. 6-1

. 6-2

. 6-5

. 6-5

6-5

. . • 6-5

. 6-6

• 6-7

.• A-1

. • B-1

1-1

CHAPTER ONE

THE FAST ASSEMBLER

FAST MANUAL
71-44-002

The FAST acronym stands for Functional Assembly System Technique.

It is an aid in the preparation of programs for the GRI-909 computers.

1.1 Introduction: -

An assembler is an indispensible aid to the process of pre-

paring programs to run on a computer. All of these programs to be

run on a computer are called object programs. They are often

prepared in a punched paper tape format where the holes or. absence

of holes literally represent the l's and O's of the machine language

instructions. A program called a loader is then used to load this

object tape into the computer's memory where it can be executed by

the computer.

An assembler literally does what its name implies; it assembles.,

object programs from symbols and expressions that have one for one

correspondence to binary portions of an instruction word, or in some

cases, have a binary word equivalent. The use of symbolic statements

or expressions permits the programmer to relate the problem and its

parameters more closely to the language he must write in order to

produce an object tape. This simplifies the task of programming

without degrading program efficiency. It differs from a compiler

language in that each compiler instruction might generate many

equivalent machine language instructions, decreasing program ef-

ficiency and making it difficult to relate to time based operations.

1-2
FAST MANUAL

71-44-002

The assembler, then, is a translator of source material (called

the SOURCE PROGRAM) into an OBJECT PROGRAM which can then be loaded

into the computer's memory and run. The assembler also provides

other useful functions for the programmer. It furnishes a listing

which can be used to debug the object program once it is stored in

memory. This listing is also used to correlate the object program

as it resides in memory to the source program as it was originially

prepared. The preparation of source programs is relegate.cl to a

program called the SOURCE TEXT EDITOR (%STE), Manual M44-3.

FAST is a functional assembly technique that is very much re-

lated to the basic organization ·of the GRI-909 computer. It is a

symbolic assembly language that deals at a high functional level with

the components of the system and the computer. It also provides all

of the symbolic aids that are normally provided by an assembly language.

The basic organizational concept of the GRI-909 treats all com-

ponents in a computer system as equal members of a data system that

either produce or receive data •. Furthermore, the control structure

of the GRI-909 permits the basic instruction; move data from Source A

to Destination B to be progrannned by the user where the source and

destination of data are any two system devices. When these system

devices are internal parts of a computer, they also perform proces-

sing functions on the data they receive. Often these processing

functions are independent parallel processing functions that are

going on while other devices are in operation. 'nlus, an arithmetic

unit independently performs its function on data received. It makes

a result, which is some function of the data received, available to

the system for transfer to some other system device or function.

1-3
FAST MANUAL

71-44-002

The GRI·-909 architecture also provides a bus modifier which permits

simple modifications to the data while it is being transmitted from

source to destination. These modifications are incrementing the data,

shifting and complementing (the latter being performed prior to in­

crementing or shifting so that combined operations are permissible).

Thus, the basic format of the instruction now becomes: SOURCE A (mod)

to DESTINATION B.

Ihe functional components of the svstem are assi~ned mnemonics,

and the user describes the data transfers that take place between

these components in concise, highly functional statements such as

AX TO TTO. Memory locations may be referenced as symbolic entities

in high level statements such as COUNT Pl. Other statements are

provided for control purposes in the assembler itself. Statements

such as *END denote the end of a program. Statements like this are

directives to the assembler itself and do not generate binary infer-

mation for the object program.

The assembler interprets each such statement and either generates

the appropriate binary object information or performs the implied as­

sembler functions.

The programs are generally prepared on punched paper tape, although

other media such as punched cards or magnetic tape may be used.

2-1

CHAPTER TWO

FAST LANGUAGE ELEMENTS

FAST MANUAL
71-44-002

This chapter describes the various elements that are used to form

FAST language source program statements. When learning the FAST language,

a cursory reading of this chapter will suffice -- the details contained

herein may be referred to from time to time as the user gains experience

with FAST programming. Throughout this manual, the following notational

conventions will be employed when presenting general forms of language

elements:

[] Brackets - used to contain an optional item. Tiie language

element may be written with or without the item -- generally,

the meaning of the statement containing that language element

is changed when such an item is omitted~

{} Braces - used to contain alternate items. 'nlese items will be

arranged vertically within the braces -- the language element

must include one, and only one, of the alternate items.

Ellipses - used to denote permissible repetition of the im­

mediately preceding language element.

When braces are enclosed within brackets, then either the entire form

in brackets is omitted or the form is included with the appropriate alter-

nate item selected. Some examples of this notational usage are:

2-2

Form May

A [TO] B

A [,A] •••

A [B [C]]

2.1 Character Set:

be Written

A B

A TO B

A B D

A c D

AD

A B D

A C D

A

A,A

A,A,A

etc.

A

A B

A B c

as

FAST MANUAL
71-44-002

The FAST assembler processes source program statements com-

posed of 8-bit ASCII characters and recognizes two distinct cate-

gories of characters: general usage characters and reserved charac-

ters.

General usage characters are used to form symbols (2.2) and

simple numeric constants (2.5):

Character External Internal

Alphabetics A through z 301 through 332

Numerics 0 through 9 260 through 271

Dollar Sign $ 244

Percent Sign % 245

At Sign @ 300

2-3
FAST MANUAL

71-44-002

Reserved characters are used to impart special meanings to the

assembler, to separate or delimit certain language elements, or t·.)

enable error-recovery within source lines:

Character

Colon

Semi-colon

Equals

Plus

Minus

Comma

Ampersand

Exclamation

Asterisk

Period

Quote

PoWld

Carriage-return

Line-feed

Back-arrow

Rubout

Block-mark

Sp Ace

::

External

-
+

&

*

(CR)

(LF)

(RO)

(BL)

Internal

272 Delimits a label (2.4)

273 Delimits a comment (2.7)

275

253

Used to define parameters
(4 .1)

Denotes addition in ex­
pressions (2.6)

255 Denotes subtraction in
expressions (2.6)

254 Separates data definitions
(4.5)

246 Denotes logical "AND" in
expressions (2.6)

241 Denotes logical "OR" in
expressions (2.6)

252 Precedes certain assembler
instructions (4.2-4.4)

256 Represents the assembler's
LOCATION COUNTER

247 Delimits text definition
(4.5.1)

243

215

212

337

377

375

Used to define new system
symbols (5)

Delimits source statements
(2. 8)

Optionally follows CR at end
of source statement (2.8)

(1)

(1)

(1)

240 Used to separate language elements

2-4
FAST MANUAL

71-44-002

(!)Back-arrow and rubout are used for error-recovery within a

source line. Block-mark serves to delimit a source text block.

See section 1.2, "SYSTEM CONVENTIONS" in the GRI-909 Manual M44-3,

"SOURCE TEXT EDITOR II.

NOTE: Although the FAST assembler recognizes only no-parity 8-bit

ASCII characters internally, the characters punched onto a source

tape may be 8-bit, even-parity, odd-parity, or no-parity codes

s1nce the text input routine logically OR's the high-order bit

into each character read.

2. 2 Symbols:

A FAST language symbol consists of one or more general usage

characters (2.1), the first of which must not be numeric. Since

only the first five characters are stored in the assembler's symbol

table, symbols of greater length must be unique in the first five

characters -- the assembler ignores all characters in a symbol after

the fifth.

The following character strings could validly be used as symbols:

START

LOOP

N23@

PARAH

PARA21

These character strings are invalid as symbols for the reason

given:

2-5

8ABC First character numeric

GO* Reserved character, *

AB LE Embedded blank

FAST MANUAL
71-44-002

PARAM11 Not unique in the first five characters
iARAM2

In FAST, as in any symbolic programming language, a symbol

must ultimately represent some numeric value. Many connnonly-used

symbols are built into the assembler's standard symbol table

(APPENDIX C). These, of course, already have numeric values asso-

ciated with them. Other symbols are defined by the user in his

source program -- these have values assigned to them during the

assembly process. User-defined symbols and their associated values

are added to the assembler's symbol table -- they reside there only

during the assembly of a specific source program. As the assembler

translates source statements into their binary or machine language

equivalents, it merely replaces each symbol it encounters with its

specific numeric value.

It is possible to use a symbol in a source program in such a

fashion that the assembler cannot associate a numeric value with it.

Symbols being defined by the user must appear in a symbol-defining

context at least once in the source program. These symbol-defining

contexts are described in detail in sections 2.4, 4.1, and S of this

manual. If, by the end of the second pass of the assembly, there are

still undefined symbols (i.e. symbols with no numeric values assigned),

the assembler will flag each statement containing such a symbol with

2-6
FAST MANUAL

71-44-002

the error code "U" as it generates the assembly listing.

Pre-defined symbols in the assembler's symbol table have

mnemonic value -- for instance, AO represents the arithmetic op-

erator, HSP represents the high speed punch, LTZ represents the

data condition of less than zero, and CLIF represents a pulse code

to clear an input flag. In order to enhance the overall utility

of assembly listings, the user should attempt to compose his symbols

with mnemonic value as well.

Symbols in the FAST language are of the following categories:

Key Words (2. 3)

Labels (2.4)

Parameters (4.1)

System Symbols (5)

Key words are pre-defined in the assembler's symbol table.

These symbols comprise the framework of specific FAST language

statements and enable the assembler to distinguish the various

types of machine and assembler instructions.

The standard symbol table does not contain either labels or

parameters -- these are always defined by the user in his program.

A label is prefixed to a FAST statement so that the associated

instruction or data item may be referenced symbolically from other

points in the same program. A parameter is used to represent con-

stants that may be referred to many times in a program -- a constant

is often given a symbolic equivalent because it is more meaningful

to the user than are octal or decimal numbers.

2-7
FAST MANUAL

71-44-002

System symbols represent devices (registers), output pulse

codes, status test codes, path codes for the GRI-909 Bus Modifier,

data test codes, and pseudo-codes (5). The standard symbol table

contains the more commonly used system symbols. Other system symbols

may be defin~d by the user when doing so, the user is cautioned not

to employ any symbols already in the standard table unless it is his

specif:Lc intent to alter their standard meaning.

2 • 3 Key Words :

Key words are reserved character strings that have particular

meanings to the FAST assembler. No key word may be redefined by

the user nor may it be used in a context other than those shown

in the general forms of FAST language instructions. Included in

the FAST language key words are all the reserved characters -- see

section 2.1 for a tabulation of these characters and their functions.

The other FAST key words are as follows:

END

EOT

OCT

DEC

SKIP

IF

TO

GO

c

I

Function

Program terminator (4.4)

Program terminator (4.4)

Radix Control (4.2)

Radix Control (4.2)

Indicates sense function instruction (3.5)

Indicates data test instruction (3.3)

Used in data transmission (3.1, 3.2), data test (3.3)
and function output instructions (3.4)

Combined with TO to indicate transfer of program
control in data test instructions (3.3)

Indicates taking of one's complement in register-to­
register data transmission instructions (3.1)

Indicates i.mmediate addressing mode in memory reference
data transmission instructions (3.2)

2-8
FAST MANUAL

71-44-002

Symbol Function

D

ID

Indicates deferred addressing mode in memory reference
data transmission instructions (3.2)

Indicates immediate-deferred addressing mode in memory
reference data transmission instructions (3.2)

2.4 Labels:

A FAST statement may be labeled or tagged by the use of the

form

symbol :

(a symbol followed by the reserved character :) as the first element

of the statement. The assembler assigns the current value of its

LOCATION COUNTER (4.3) to this symbolic label -- this will be the

memory address of the first word assembled after the label is en-

countered. If, for instance, a label is prefixed to a statement

which assembles as a two-word instruction, the label's value will be

the memory address of the first word of the instruction. A label

may also be associated with a statement which assembles as data.

A label, then, is a symbolic equivalent of the address of a

specific machine instruction or data word in the user's program.

The label may be used to symbolically reference the instruction or

data word from other points in the same program. Tilerefore, each

label must be unique. An attempt to use the same symbol more than

once as a label will be flagged with the error code M (rnul ti ply-

defined symbol) on the assembly listing.

When the assembler encounters a symbolic label in a context

other than the one which defines it (above), the assigned numeric

value is substituted for the symbol. Given the labeled statements:

and

then

and

2-9
FAST MANUAL

71-44-002

LOOP: AO TO HSP (1-word instruction)

TABLE: 1,10,100,1000 (4-word table)

GO TO LOOP

TABLE TO AX

transfers program control to the

instruction at LOOP,

loads the first word of TABLE

(the value 1) into the register AX.

Addresses of machine words near these labeled may be accessed

by forming a symbolic relative address in a FAST statement. Such

an address expression (2.6) consists of a label plus or minus a

constant (2.5). For instance,

GO TO LOOP+l

and TABLE+2 TO AX

transfers control to the next

instruction after the one at LOOP,

loads the third word of TABLE

(the value 100) into the register AX.

These expressions result in addresses of words relative to labeled

instructions or data. Note that if the instruction at LOOP were two

words long, the expression pointing to the next instruction would be

LOOP+2.

2.5 Constants:

A simple constant is represented by one or more successive numeric

characters. The assembler converts the character string into its

equivalent binary value -- the digits are interpreted according to the

setting of the assembler's RADIX (4.2). The user may write constants

as either octal or decimal numbers provided he has specified the

appropriate radix. The range of a constant, so as not to arithmetically

overflow out of the fifteen magnitude bits of a signed machine word, is:

2-10 FAST MANUAL
71-44-002

0 to +32767 decimal

or 0 to +77777 octal

A constant may be preceded with a minus sign (e.g. -20) and the

assembler will form the two's complement value of the number (e.g.

177760). If the assembler's RADIX is set to octal, any single oc-

currence of the character 8 or 9 in a constant will be flagged with

the error code D on the assembly listing and converted to octal.

Multiple occurrences of 8 or 9 in a constant will result in an in-

correct conversion to octal.

2.6 Expressions:

Compound addresses or data values may be formed by combining

simple values in FAST language expressions. An expression consists

of a numeric operand, or a series or operands separated by arithmetic

and/or logical operators. The first operand in an expression may be

preceded by a leading sign (arithmetic operator). Any given operand

may be one of the following:

Label

Parameter

Constant

(2.4)

(4 .1)

(2.5)

represents the current value of the
assembler's LOCATION COUNTER.

The permissible operators are:

+ denoting addition

denoting subtraction

& denoting logical AND

denoting logical OR

A general expression, e, is assembled into a 16-bit value. The

resultant value may be positive or negative -- addresses, of course,

2-11
FAST MANUAL

71-44-002

must be positive and result in a valid machine address. The general

form of an expression e is:

Label + Label

Parameter Parameter

Constant & Constant

An expression is evaluated by the assembler in a single left-to-

right scan: no priorities are assigned to the operators. Some ex-

amples are:

2.7 Comments:

15

-237

LOOP-25

A+ B - C

. + 4

Xl & X2 X3

Comments are used to augment the source program with documentation

meaningful to the user. Such documentation often explains the use of a

program or subroutine, describes the functions performed by a sequence

of instructions, gives the reasons for various specific steps or

statements, etc. A comment may be appended to a FAST statement by

prefacing the comment with the reserved character semi-colon(;).

Also, an entire statement may consist of only such a comment. When

the assembler encounters the semi-colon, it ignores the rest of the

statement until it reaches the carriage-return terminator (2.8).

Comments are reproduced on the assembly listing -- only as much of

a conunent as will fit on an assembly listing line will be printed,

2-12

\

FAST MANUAL
71-44-002

however. Any printable ASCII character may be included in the

body of a conunent. Examples are:

;THIS ROUTINE PACKS CHARACTERS

IF AO LTZ GO TO ERR ;LIMIT EXCEEDED?

2.8 Statements:

A source program statement (line) is a meaningful arrangement

of FAST language elements and is terminated by the reserved character

carriage-return, which itself may optionally be followed by a line-feed

character. This latter character is ignored by the assembler -- it is

·usually included in a source tape so that it might be listed by an

off-line device which requires the line-feed to advance the paper. A

FAST statement may contain no more than 80 characters including spaces

(blanks) • The assembler will ignore all characters beyond the SO th.

The general forms for machine instructions and assembler in-

structions are presented in chapters 3 through 5 of this manual.

Other than the rules given for specific instructions, there are no

formatting requirements imposed upon a source statement. The major

elements of a free-form source statement are label, instruction and

conunent -- the assembler isolates these elements and arranges them

in columns on the assembly listing.

The most basic elements, symbols and constants, must be separated

or delimited from each other. Since these basic elements consist

solely of general usage characters (2.1), an expression such as

Vl +V2&V3 I 25

is easily understood by the assembler since the basic elements are

2-13
FAST MANUAL

71-44-002

separated by reserved characters. Therefore, the rule to be

observed when preparing source statements is:

When any two successive basic elements are not separated

by a non-blank reserved character, then they must be

separated by at least one blank (space).

3-1

CHAPTER THREE

MACHINE INSTRUCTIONS

FAST MANUAL
71-44-002

Tile bulk of the FAST language statements written by a user

assemble into GRI-909 machine instructions. A sequence of machine

instructions, and their associated data, constitutes a program to

perform a specific task on some GRI-909 machine configuration. All

basic machine instructions are described by a single internal for-

mat:

where

15 10 9 6 5

I SDA I MOD I DDA

SDA is the source device address,

MOD contains modifier, addressing mode, and function
information, and

DDA is the destination device address.

0

I

'nle execution of any machine instruction causes, in effect, the

transmission of information in the form of data or control signals

from the source device specified by SDA to the destination device

specified by DDA. Tile qualities of the transmission and/or the end

result of the instruction is influenced by the specification of MOD.

GRI·-909 complete machine instructions are either one or two words in

length. A machine instruction consists of either 1) a basic in-

struction in the above format or 2) a basic instruction followed by

a word containing a memory address or data for the instruction.

Once an assembled program has been loaded and started, the GRI-909

control logic normally fetches ana executes machine instructions from

3-2
FAST MANUAL

71-44-002

sequential locations. The computer's sequence counter (SC) con-

tains the memory address of the next instruction to be executed.

As one or two-word machine instructions are executed sequentially,

the SC is automatically updated by the GRI-909 control logic. During

such normal flow of program control, the SC is analagous to the

assembler's LOCATION COUNTER (4.3). Some instructions, however,

cause this normal program flow to be altered. The sense function

or SKIP instruction causes, under certain conditions, a skip over

the next two memory locations. The data testing or GO TO instruction

can cause an absolute jump to some new location. Also, since the

SC can be modified by the user, a transmission of data to the SC

causes an absolute jump to some new location. In any case, after

any one of these instructions alters the program flow, the sequential

execution of instructions begins anew.

FAST source program machine instructions are oriented to the

functional organization of the GRI-909. The major element of a

machine instruction statement, for the most part, corresponds to and

is written in the same order as the SDA, MOD, and ODA components of

the basic instruction itself. Specific key words (2.3) are used by

the assembler to distinguish five major classes of machine instructions.

In some cases, the class of instruction implies a standard SDA or DOA

(or both), and these are not supplied by the user but are automatically

filled in by the assembler.

In most of the FAST language examples in this chapter, the cor-

responding machine language instruction will be printed to the left

of the statement as it would appear on an assembly listing. Comments

3-3
FAST MANUAL

71-44-002

to the right are intended to amplify the meaning of the example and

are not part of the instruction itself.

3.1 Register-to-Register Data Transmission Instructions:

A register is a storage place for data that has been produced

by an input device, for data to be accepted by an output device, for

data to be operated upon by a firmware device, or for data that is

merely to be saved for temporary use. The data register associated

with most input devices may only be used a·s a source of data.

Generally, all other registers in the system may be used as both

sources of and destinations for data. In other words, given a GRI

firmware device or user-developed device with a data register, the

nature of the device determines that the register will be interfaced

to the source bus, to the destination bus, or to both.

The GRI-909 architecture enables the transmission of data be-

tween any two registers in the system. This is accomplished via a

direct connection between the source bus and the destination bus.

For data transmission there is no distinction between internal regis-

ters, firmware device registers, and input/output device registers.

In addition, the connection between the source bus and destination

bus contains a special device called the Bus Modifier, which enables

simple modifications to data during the transmission process. This

Bus Modifier may be portrayed as follows:
-----4~~

+
0

+
1 1 1

0 c data flow

3-4
FAST MANUAL

71-44-002

The modification(s) to data as it passes. from one register to

another is specified by the MOD portion of the data transmission in-

struction. If no modification is selected (MOD= 0000), then data

passes through the two +o paths, which results in a direct 16-bit

parallel. transfer. The FAST key words (2. 3) used to specify

modifications to data are:

C one's complement

Pl plus one .(increment)

Rl shift right one bit

11 shift left one bit

If the one's complement is selected, it occurs before other

modification, i.f any. Only one of the upper paths may be specified

during a data transmission instruction. Tiiere ar~ 2 X 4 or 8 possible

paths through the Bus Modifier.

Tiie increment (Pl) path has a bus overflow indicator associated

with it. When this path is selected, the overflow indicator will

be set (true) if, and only if, the source data was equal to -1 (all

one's). If such overflow did not occur, then the indicator will be

cleared. Tiiis indicator, referenced as BOV, may be tested after a

data transmission instruction with the appropriate Sense Function

instruction (3.5).

Tiie shifting paths (Rl or 11) have a one-bit LINK register as-

sociated with them. Any shift, right or left, is performed circularly

through this link (LNK). For instance, during a right shift, the

entire word is displaced right one bit, and the low-order bit of thf

source word goes into the LNK· The previous contents of the LNK

3-5
FAST MANUAL

71-44-002

goes into the high-order position of the data word as it is sent

to its destination. After any shift the new state of the LNK may

be tested with the appropriate Sense Function instruction (3.5).

If it is desired to shift a zero (or a one) into the word being

transmitted, the LNK is first cleared (or set) with the appropriate

Func.tion Output instruction (3.4).

A further feature of the GRI-909 is the bus address 00, refer-

enced as ZERO, which is a source of a zero data word. This special

source may be used to clear any data register. ZERO through the Pl

path can be used to transmit plus one and ZERO through the comple-

ment path yields minus one. ZERO may be used as a destination for

data. Then tests of the BOV (or LNX) can be done without affecting

the source data itself.

The MOD format for register-to-register data transmission in-

structions is:

6

(not used)

one's complement

00 - no upper path modification

01 - plus one

10 - left one

11 - right one

These statements have the general form

[symbol :] [CJ register [HH] [TO register] [;comment]

3-6
FAST MANUAL

71-44-002

If the transmission is between different registers, the source

register is left unchanged and the contents of the destination reg-

ister is replaced by the source data with the selected modifications.

If the destination is omitted in this statement, then the operation

is upon the contents of the source register -- the assembler copies

SDA into DDA when constructing the instruction word.

The statement

77 0000 11 TTI TO AX

transmits the teletype input register to the arithmetic operator

X-register. To transmit the incremented value of AX to AY, one

writes.

11 0100 12 AX Pl TO AY

To send the one's complement of the high speed reader input to

AX, we write

76 0010 11 C HSR TO AX

The one's complement is formed by merely inverting all the bits

in the data word. The two's complement is formed by following the

one's complement with an increment. To transmit the two's complement

in the above instruction, we would change it to

76 0110 11 C HSR Pl TO AX

Keep in mind that the arithmetic operator assumes that negative

numbers are in two's complement notation. Given two general purpose

registers, GRl and GR2, the following code computes their sum and

difference and leaves the sum in GRl and the difference in GR2 (of

3-7
FAST MANUAL
71-44-002

course, the original contents of GRl and GR2 will be destroyed)

GRl TO AX' ;1st argument

GR2 TO AY ;2nd argument

ADD ;select add function (3.4)

AO TO GRl ; store sum

C AY Pl TO AY ;negate 2nd argument

AO TO GR2 ;store difference

The initial values of the arguments need not have been positive --

either one or both of them could have been negative (in two's comple-

ment notation). Note that to subtract argument 2 from argument 1, we

add the two's complement of argument 2. The instruction that negated

the data in AY could, of course, have been written

C AY Pl

Some examples of the use of the special address ZERO are

00 0000 11 ZERO TO AX ;CLEAR AX

00 0100 76 ZERO Pl to HSP ;PUNCH +l

00 0110 12 C ZERO TO AY ;AY • -1

11 1000 00 AX Ll TO ZERO ;COPY AX SIGN TO LNK

This last example does not alter the contents of AX, but since

the source word is sent through the Bus Modifier shifted left, the

sign bit of AX is now also in the LNK.

An arithmetic right shift is often required in computer arithmetic.

The arithmetic right shift displaces bits 0-14 each time it is per-

formed and leaves the sign bit the same. Thus, if a word started

with a 1 in the sign bit and were continually, arithmetically, shifted

right, the word would eventually fill up with l's from the left hand

end.

3-8
FAST MANUAL

71-44-002

During an arithmetic right shift, the sign of the argument

being shifted is copied into the word as it is shifted right.

Since the previous contents of the LNK is always shifted into the

bit position vacated, the following two instructions perform an

arithmetic right shift on the contents of AY

12 1000 00

12 1100 12

AY Ll TO ZERO

AY Rl ;AY/2

An arithmetic· right shift is equivalent to dividing an argument

by two. Similarly, a left shift is equivalent to multiplying an ar-

gument by two. In order to ensure that a zero is shifted into the

low-order bit of the destination word, the LNK should be cleared

before the shift. For example, the sequence

CLL

AX Ll

;LNK • 0

;AX*2

shifts AX left one bit. It is not always necessary to set or clear

the LNK before a shift. Sometimes it is only desired to examine a

data word bit by bit. Such a data word might represent up to 16

switch settings. A device might be implemented such that each bit

in its data register represented a contact setting or switch setting

in some portion of the overall system. The GRI-909 console switch

register continuously represents the settings of the 16 data switches.

Since it is a source of data only, it must be transmitted to some

other register before shifting its value. For example

10 0000 11

11 1100 11

11 1100 11

11 1100 11

3-9

SWR Rl TO AX

;bit 0 of SWR in LNK here

AX Rl

;bit 1 of SWR in LNK here

AX Rl

;bit 2 of SWR in LNK here

AX Rl

;bit 3 of SWR in LNK here

etc.

FAST MANUAL
71-44-002

As mentioned before, the LNK may be tested after each shift to

see if the bit shifted out of the data word was a zero or a one.

The data is sent back to AX so that after each shift, the next bit

to be examined moves to the low-order position.

Sometimes data is packed into ~ 16-bit machine word. The word

may contain two or more pieces of information with one or more bits

used to contain each item. For example, sometimes two ASCII characters

are packed into a word, 8 bits each. Suppose we wish to isolate the

high order three bits of AX by shifting AX left three places and

storing the item in the low order bits of AY. We write

AX Ll

ZERO Ll TO AY

AX Ll

AY Ll

AX Ll

AY Ll

Note that the second instruction in this sequence ensures that

the 13 high order positions of AY will be zeros when the unpacking

operation is complete.

3-10
FAST MANUAL

71-44-002

·As a final register-to-register data transmission example,

suppose we wish to decrement (subtract one from) the contents of

a register, say GRl. We can use the arithmetic operator for this

purpose.

GR! TO AX

C ZERO TO AY

ADD

AO TO GRl

;AY • -1

;SELECT ADD FUNCTION

;STORE RESULT

This code requires four machine words and ties up the arithmetic

operator. The third instruction (ADD) could be left out if the AO

were already in the required state. A better way to do this in the

GRI-909 is:

C GRl Pl

C GRl

To demonstrate this, assume we have an 8-bit register contain-

ing the binary equivalent of 5.

00000101 (20 + 22 • 1 + 4 • 5)

taking the two's complement, we have

11111010

+ 00000001

11111011

following this with the one's complement, we have

00000100

3-11
FAST MANUAL

71-44-002

3.2 Memory Reference Data Transmission Instructions:

Main memory of the GRI-909 may contain from 1024 to 32,768

(decimal) locations. Any of these 16-bit words may be used as a

source or destination in a data transmission instruction. 'nlese

instructions are two words long the first word is in the usual

SDA MOD DDA format, and the second word is either an address of

some other memory location or is data to be operated upon. 'nle

overall memory system is accessed whenever the bus address 06

(memory buffer) appears as either the SDA or the DDA (or both) of

a machine instruction. 'nle assembler infers memory referencing

from the nature of the FAST statement and fills in SDA and/or DDA

appropriately. Further information, which specifies the memory

address of the particular location involved in the data transmission,

is supplied by the combination of MOD and the second word of the

instruction. The MOD format for these instructions is:

8 7 6
\... -I

deferred addressing

I mmediate addressing mode

00 - no upper

01 - plus one

10 - left one

11 - right one

path modification

mode

Note that only the modifications available in the upper portion

of the Bus Modifier may be selected during memory reference data

transmission -- bit 7 of the instruction word is here used to specify

an addressing mode.

3-12
FAST MANUAL

71-44-002

Data transmission statements involving main memory are of

three types:

1) Register-to-memory - The contents of the hardware (non-memory)

register at SDA is transmitted via the upper half of the Bus

Modifier to the specified memory location. The assembler

sets DDA = 06. This type has the general form:

[symbol:] register [ng 1 TO [I] [D] e [;conunent]

2) Memory-to-register - The contents of the specified memory

location is transmitted via the Bus Modifier to the hardware

register at DDA. The assembler sets SDA = 06. This type

has the general form:

[symbol:] [I] [D] e [HB] TO register [;comment]

3) Memory-to-self - The contents of the specified memory lo­

cation is transmitted via the Bus Modifier back to the

~memory location.

has the general form:

[symbol:] [I] [D] e

Here, SDA • DDA • 06. This type

!LPRli~ l } [; connnent]

In the foregoing general forms, e is a general FAST language

expression (2.6) whose value assembles into the second word of the

instruction. The key words (2.3) I and D are used to select the

memory addressing mode.

The address of the particular memory location into which data

is transmitted, or from which data is transmitted, is called the

effective address. The effective address is determined differently

for each of the memory addressing mo des . Given the form [I] [D],

3-13
FAST MANUAL

71-44-002

any one of the four GRI-909 addressing modes may be selected in a

FAST memory reference statement.

Form Mod Mode

0000 Direct (3. 2 .1)

D 0001 Deferred (3.2.2)

I 0010 Immediate (3.2.3)

ID 0011 Immediate - def erred (3.2.4)

3.2.1 Direct Addressing Mode

The direct mode is implied by the absence of both of the

codes I and D in the FAST statement. In the direct addressing

mode, the second word of the instruction contains the effective

address -- the GRI-909 control logic fetches this second word

and uses its value to access the location involved in the data

transmission. The statement

06 0000 11

000100

100 TO AX

loads the contents of location 100 into the AX register. The

statement

12 0100 06

001234

AY Pl TO 1234

stores the incremented value of AY into location 1234. To

increment or shift the data word labeled Xl (assume it is at

location 501), we could write

06 0100 06

000501

Xl Pl

or

or

3-19

06 1000 06

000501

06 1100 06

000501

Xl Ll

Xl Rl

FAST MANUAL
71-44-002

Note that, unless the user alters the second word during

program execution, the same location is accessed every time a

direct mode memory reference instruction is encountered.

3.2.2 Deferred Addressing Mode

The key word D selects the deferred mode in a FAST ~emory

reference statement. In this mode, the second word of the in-

struction contains the address of another location whose in-

cremented contents is the effective address. The second word

of the instruction is fetched and its value is used to acce:Ss

another location whose contents is incremented and written back

into the same location. The control logic then uses this in-

cremented value as the effective address.

If location 5 contains the value 200, then

11 0001 06

000005

AX TO D 5

stores AX into location 201. Location 5 now contains the value

201. If we do not change the value in lacation 5 before executing

the above (or an identical) instruction again, then AX will be

stored into location 202 aad location 5 will be left at 202.

The deferred mode is sometimes called "indirect with

auto-indexing". "Indirect" means that the address in the m1emory

reference instruction is not itself the effective address, but

3-15
FAST MANUAL

71-44-002

is the address of the effec~ive address. "Auto-indexing" means

that the effective address is incremented before it is used in

the data transmission.

The deferred mode (and the immediate-deferred mode, below)

is ordinarily used to access the sequential words in a data

table, work area, or buffer area. Assume location 5 is in-

itialized to 200 before each of the following examples. Then,

06 0001 12

000005

D 5 TO AY

can be successively executed to load the contents of location

201, 202, 203, etc. into AY. Obviously, the data in AY will be

processed by other instructions in the program before the next

item is retrieved. 'nle instruction

00 0001 06

000005

ZERO TO D 5

can be used to clear successive locations beginning at 201.

Also, the instruction

06 0101 06

000005

D 5 Pl

can be used to increment these sequential locations.

Often the data entries in a table will consist of two or

more words each. The first word of an entry is fetched and,

depending on its value, a decision is then made either to

fetch the rest of the entry or to skip over the current entry

and retrieve the next entry. If our auto-indexing location

(assume. location 5 again) is labeled INDX, the instruction

3-16

06 0100 06

000005

INDX Pl

FAST MANUAL
71-44-002

executed n times will, in effect, skip over n words in the

table in order to point us to the next entry.

3.2.3 Immediate Mode Addressing

1be key word I selects the immediate mode in memory

reference statements. "Immediate" implies that the instruc-

tion itself provides or receives the data being transmitted.

1berefore, the effective address in this mode is merely the

address of the second word of the instruction itself.

To load the constant 14 into AX, one writes

06 0010 11

000014

I 14 TO AX

Note that the data to be transmitted has been assembled

into the second word of the instruction. To initialize an

auto-indexing location (INDX) so that successive entries of a

table (TABLE) may be retrieved using a deferred mode, we could

write

I TABLE-! TO TRP

TRP TO INDX

Sometimes counting of events, like the number of times

through a given program loop, is done with an immediate mode

instruction. 1be statement

06 0110 06

000000

I 0 Pl

3-17
FAST MANUAL

71-44-002

causes the second word of the instruction to be incremented.

The statement could be written with other than 0 as the value

for the second word in any case, before entering a loop

containing this counter, the second word of the instruction

must be set to some appropriate initial value.

When an interrupt is detected, some portion of the

:Lnterrupt-handling routine usually saves the contents of

crucial registers in the system. Th.is is often done with a

sequence of immediate mode instructions.

03 0010 06

000000

17 0010 06

000000

11 0010 06

000000

12 0010 06

000000

SAVE: TRP TO I

MSR TO I

AX TO I

AY TO I

etc.

When the interrupt has been processed, the following

direct mode statements could be used to restore the saved

t'egisters

SAVE+l TO TRP

SAVE+3 TO MSR

SAVE+5 TO AX

SAVE+7 TO AY

etc.

3-18

3.2.4 Inunediate-Deferred Addressing Mode

FAST MANlJAL
71-44-002

The key word ID selects the inunediate-deferred mode in

memory reference statements. This mode combines the immediate

and deferred features. "Immediate" here implies that the ad-

dress of the auto-indexing location is merely the address of

the second word of the instruction itself. The GRI-909 control

logic fetches the second word of the memory reference instruc-

tion, incremP.nts it, and writes the incremented value back

into the second word. This incremented value is then used as

the effective address in the data transmission. The statement

11 0011 06

000200

AX TO ID 200

can be used to store AX into locations 201, 202, 203, etc. It

is the second word of the instruction itself which is auto-

indexed. Of course, this second word must be re-initialized

before a new set of AX values can be stored into the same lo-

cations. The statement

GET: ID TBL-1 TO AY

loads AY with the word labeled TBL the first time it is executed.

The next n times, without being re-initialized, it loads the

words at TBL+l, TBL+2, TBL+3, •.. , TBL+n. This instruction at

GET would probably be the first instruction in a program loop

which processes the entries in the data table, TBL. Before

entering the loop, the instruction at GET could be initialized

by writing

3-19

I TBL-1 TO TRP

TRP TO GET+l

FAST MANUAL
71-44-002

where the expression GET+l represents the address of the second

word of the immediate-deferred instruction at GET. If each

entry in TBL we~e two words long, then some other instruction

in the loop, after the instruction at GET, might be used to load

the second word of the entry into a register, say AX. The

~auto-indexing location is used for this purpose. For

example,

D GET+! TO AX

loads the second word of the entry provided that the instruction

at GET has already loaded the first entry word. If it is de-

sired to bypass this second word and point to the next entry,

then the auto-indexing location can be updated by the instruction

represented by

GET+l Pl

3.3 Data Testing Instructions:

These instructions are used to test the data in a register relative

to zero. The DDA is always the data tester and is filled in by the

assembler. SDA refers to any non-memory data register, and MOD

specifies the nature of the test and the addressing mode. Tile MOD

format is:

3-20
FAST MANUAL

71-44-002

deferred mode jump

negate test

test for data equal to zero

test for data less than zero

If the test specified by MOD is not true, then the GRI-909 con-

trol logic precedes to the next sequential instruction in the program.

If the test is true, the second word of the instruction is taken as

a jump address or, in the deferred mode, as the address of the jump

address. If a jump occurs (test is true), the address of the second

word of the data test instruction is stored in the trap register

(TRP), and the effective jump address replaces the contents of the

computer's sequence counter (SC) (the TRP is used for subroutine

linkage -- see section 6.2). The FAST statement for data testing

is an exact description of the action performed by the GRI-909, and

has the general form

[symbol:] [IF register test] GO TO [D] e [;comment]

where e is a general expression (2.6) whose value assembles into the

second word of the instruction, and the word "test" in this context

refers to a standard or user-defined symbolic data test code (6).

The standard data test codes, their MOD values and associated mean-

ings are:

ETZ 0100

LTZ 1000

LEZ 1100

NEZ 0110

GEZ 1010

GTZ 1110

3-21

equal to zero

less than zero

less than or equal

not equal to zero

to zero

FAST MANUAL
71-44-002

greater than or equal to zero (not less
than zero)

greater than zero (not less than and not
equal to zero)

In order to jump to location 100 if the AX register contains

zero, one writes

11 0100 03

000100

IF AX ETZ GO TO 100

Note that the first word, as in all GRI-909 instructions, is

a data transfer format telling the processor to connect device 11

(AX) to device 03 (data tester). The non-memory source and the 03

destination indicates the data test instruction to the processor.

The MOD in this case has the meanings shown above. For the purpose
, "
of the example, we have used a constant as the jump address -- the

statement may be written with any meaningful expression to represent

the jump address.

Because of the jump address, the data testing instruction is

a form of memory reference instruction. The deferred mode jump

operates similarly to the def erred mode memory reference data trans-

missi.on instruction (3.2.3). If location 200 contains the value

543, then the statement

13 1001 03

000200

IF AO LTZ GO TO D 200

3-22
FAST MANUAL

71-44-002

causes a jump to location 544 if the arithmetic operator output

(AO or device 13) is less than zero. Tiie second word of the data

test instruction is used by the processor to fetch the jump ad-

dress at 200 -- this address is first incremented and the in-

cremented value replaces the contents of location 200 before the

jump address is transmitted to the SC. Normal program flow begins

at location 544. Since location 200 now contains the value 544, the

next jump affected by the foregoing data test instruction would

cause a transfer of control to location 545 unless the user re-

initialized location 200. Tiie major use for the deferred mode jump

is to return from subroutine (6.2).

In order to apply a data test to the contents of a memory lo-

cation, it is first necessary to load it into some non-memory

register. Suppose the data word Xl is at location 1234 and the

instruction OVER is at location 157. In order to jump to OVER if

Xl is greater than zero, we could write

06 0000 11

001234

11 1110 03

000157

Xl TO AX

IF AX GTZ GO TO OVER

If the AX register were being used for some other purpose and

we did not wish to destroy its contents, the TRP register associated

with the data tester could be used to contain the data for testing.

We could accomplish the foregoing test by writing

06 0000 03

001234

03 1110 03

000157

Xl TO TRP

IF TRP GTZ GO TO OVER

3-23
FAST MANUAL

71-44-002

Regarding this last example, we note the following: 1) since

the TRP register has the same address as the data tester, it cannot

be loaded with data from another non-memory register since this

combination defines the data testing instruction, 2) the TRP can

be loaded from memory (SDA•06) -- this is the only instance of

DDA•03 that is not a data testing instruction, and 3) if the jump

occurs, the data in TRP will be lost, since it is automatically

loaded with the address of the second word of the data test instruc-

tion.

Other than the aforementioned restriction on the TRP, it can

be used as a general purpose register. Its contents can be trans-

mitted to another register or to some memory location. For example,

03 0000 12

03 0000 06
000501

03 0010 06

000000

TRP TO AY

TRP TO 501

TRP TO I STORE IMMEDIATE

This last example instruction is often used to save the contents

of the trap upon entry to a subroutine (6.2).

Often we require an instruction which causes a jump every time

it is encountered. This enables us to jump back to the beginning

of a loop, to call or enter subroutines, etc. Since device ZERO is

a source of a zero data word, we could always employ the following

artifice to jump to some location, say 533

00 0100 03

000533

IF ZERO ETZ GO TO 533

3-24
FAST MANUAL

71-44-002

The FAST language provides a short form for this particular

instruction, a simple GO TO

00 0100 03

000533

GO TO 533

Tile deferred mode jump may also be used with this short form

jump instruction.

3.4 Function Output Instructions:

Function output instructions are used to deliver control or

function pulses to those system devices which require them for

mechanical or electrical control. A function output instruction

always has the function generator as its SDA. Its code, 02, is

supplied by the assembler. The DOA is some controllable system de-

vice, and the MOD specifies up to four pulses to be transmitted in

parallel to the device at DOA. '!'he MOD format is:

correspond to the four pulse output
lines

Tile four pulses are transmitted in parallel. Therefore, up to

16 unique pulse patterns may be transmitted to a single device. Of

course, the device must be interfaced so as to discriminate between

the patterns. Simple devices usually associate a single line with a

specific function. The general form of a function output statement is:

[symbol:] pulse [pulse] [[TO I device J ['comment]

3-25
FAST MANUAL

71-44-002

The word "pulse" in this context refers to a standard or

user-defined symbolic pulse code (5). The symbolic destination

device code must be included unless the pulse code used has a

destination built into it (5.1).

Standard pulse codes for operating devices such as teletype

input/output, high speed reader, and high speed punch are

Mnemonic Definition Mod Code

STRT

CLIF

CLOF

-start

-clear input flag

-clear output flag

0001

1000

0010

The STRT pulse causes a paper tape reader to advance and read

the next frame of data.

02 0001 77

02 0001 76

STRT TO TTI

STRT HSR

;ADVANCE TTY READER

;ADVANCE HS READER

Note that the "TO" may optionally be omitted from the statement.

It is possible to combine start and clear flag commands in one

instruction.

02 1001 77

02 1001 76

STRT CLIF TO TTI

CLIF STRT TO TTO

The ordering of multiple pulse codes is immaterial as each

one is encountered, the assembler OR's its value into MOD. Depend-

ing upon how a device is being operated, the clear flag commands may

be issued separately.

02 1000 77

02 0010 77

02 1000 76

02 0010 76

CLIF TO TTI

CLOF TO TTO

CLIF TO HSR

CLOF TO HSP

3-26
FAST MANUAL

71-44-002

Standard pulse codes corresponding to internal functions of

the GRI-909 have been defined so as to contain their destination.

This means that the entire function output statement consists of

merely the pulse code (5.1).

02 0100 00 HLT

02 0010 00 STL

02 0001 00 CLL

02 0011 00 CML

02 0000 13 ADD

02 0100 13 AND

02 1000 13 XOR

02 1100 13 OR

02 0010 04 ICO

02 0001 04 ICF

;HALT MACHINE

;SET LINK

;CLEAR LINK

;COMPLEMENT LINK

;SET AO TO ADD

; INTERRUPT CONTROL ON

;INTERRUPT CONTROL OFF

Note that the CML command is equivalent to

02 0011 00 STL CLL

The combined command is included in FAST as a convenience to

the user.

3.5 Sense Function Instructions:

Sense function instructions are used to test the status or

function signals of various types of devices. The device's status

indicators are often used to represent such conditions as "ready",

''busy", "overflow", "data error", etc. In a sense function instruc-

tion, the DDA is always the function tester, and its code (02) is filled

in by the assembler. The SDA is any system device that has one or more

status indicators associated with it. The MOD format is:

3-27
FAST MANUAL

71-44-002

the result of the test

correspond to the three function
test lines

If the test specified by MOD is true. then the GRI-909 con-

trol logic causes a skip over the next two machine words. Two

words are skipped because a SKIP is usually followed by a jump

(GO TO) instruction. The general form of a sense function is

[symbol] SKIP [IF] [device] status [status] [;comment]

The word "status" in this context refers to a standard or

user-defined status test code (5). The symbolic source device

code must be used unless the status test code has a source built

into it (5.1).

Standard status codes for testing devices such as teletype

input/output, high speed reader, and high speed punch are:

Mnemonic Definition Mod Code

IRDY -input ready 1000

ORDY -output ready 0010

For example:

77 1000 02 SKIP IF TTI IRDY ;CHARACTER READ?

76 0010 02 SKIP HSP ORDY ;READY TO PUNCH?

Note that the word "IF" may be omitted as desired. The

standard status code NOT causes the low·-order bit of MOD to be set.

76 1001 02

77 0011 02

3-28

SKIP IF HSR NOT IRDY

SKIP TTO NOT ORDY

FAST MANUAL
71-44-002

If the status code NOT is included, then a skip occurs only

if the selected condition is not true. Standard status codes

corresponding to internal conditions of the GRI-909 have been

defined so as to contain their sources. This means that the

sense function instruction may be written without the source

device.

13 0010 02

00 0010 02

00 0100 02

00 1000 02

SKIP IF AOV

SKIP BOV

SKIP LNK

SKIP POK

;ARITHMETIC OPERATOR OVERFLOW

;BUS OVERFLOW

;LINK SET

;POWER OK

The code NOT may be included if it is desired to skip on the

falsity of a given condition. Codes for status indicators residing

on the same device may be combined in the same sense function in-

struction. For example,

00 0110 02 SKIP BOV LNK

skips if the OR of the selected conditions is true, that is, if

either BOV or LNK is true. Setting the NOT bit complements this

inclusive OR. Thus, the instruction

00 0111 02 SKIP NOT LNK BOV

skips only if BOV is not true and LNK is not true. Note that in

neither of the foregoing instructions the setting of the POK

indicator affected the tests in any way.

3-29
FAST MANUAL

71-44-002

As a further clarification of sense function instructions,

assume a device Q that has three status indicators X, Y, Z cor-

responding to bits 9, 8, 7 of MOD respectively. Further assume

that we wish to test for unique combinations of the status in-

dicators -- given the three indicators, there are 8 unique com-

binations to test for. In the examples which follow, program

control passes to YES if the desired combination test is true,

and to NO if it is not true.

To test for the condition 000 (X, Y, Zall false), we write

SKIP Q NOT X Y Z

GO TO NO

YES: test true here ;NONE ON

To test for a single indicator on, such as 010, we could write

SKIP Q Y

GO TO NO

SKIP Q NOT X Z

GO TO NO

YES: test true here ;ONLY Y ON

To test for two indicators on, such as 110, we could write

SKIP Q NOT z
GO TO NO

SKIP Q X

GO TO NO

SKIP Q X
GO TO NO

Y.t.;~: test true nere ;UNLY X and Y

To test for all three indicators on, we write

SKIP Q X

GO TO NO

SKIP Q Y

YES:

3-30

GO TO NO

SKIP Q Z

GO TO NO

test true here ;ALL ON

FAST MANUAL
71-44-002

Of course, the assumption we must make here is that the state

of the device Q remains constant when testing for any unique com-

bination.

4-1

CHAPTER FOUR

ASSEMBLER INSTRUCTIONS

FAST MANUAL
71-44-002

Some FAST statements merely act as directives to the assembler

during the assembly process and do not result in object code output.

Other assembler instructions enable the inclusion of numeric or textual

data into the user's program. All of these so-called assembler instruc-

tions (pseudo-ups), with the exception of the one for defining new system

symbols (Chapter 5), are presented in ~his chaoter.

4.1 Parameter Definition:

It is often desirable to establish a numeric value or constant

and to be able to refer to it symbolically. For example, instead

of using the constant 215 (the teletype carriage-return code), it

might be more meaningful to use the symbol CR. Such a symbolic

parameter can be defined by the statement:

CR • 215 ;CARRIAGE RETURN

We could then write: I Cl TO TTO 06 0010 77
000215

Tite general form of a FAST parameter definition statement is:

symbol• e [;comment]

where e is a general expression (2.6). Tile value of the symbolic

parameter will be the assembled value of the expression with which

it is associated. A parameter is used to represent a numeric value

this parameter may be used as an operand in other expressions for

address or data values. Note that no object code is generated by a

4-2
FAST MANUAL

71-44-002

parameter definition statement -- the statement merely generates

an entry in the assembler's symbol table.

Examples:

TEN = 10

CRLF = 106612 ;CARRIAGE RETURN AND LINE FEED

DIFF = A - B

A symbolic parameter may be redefined within the same program.

If a parameter does take on more than one value, then its initial

value must be defined in the source program before it is first

used to reference a numeric value. Also, the expression e, used

to specify the value of a parameter, must be fully resolvable by

at least the end of pass 1 (so that it will have the correct

value during passes 2 and 3). In other words, the value of any

symbol in the expression must be established within at most one

fotward reference. For example, in the sequence

A = B + 5

B = 22

the correct value of A is not established when the statement is

first encountered during pass 1 since B is not yet defined (A will

have the value 5 since undefined symbols are assigned the value 0).

Nevertheless, when the definition of A is encountered during pass 2,

it will be assigned the correct value, 27, since B is now defined.

Parameter definition statements are often used for the purpose

of system linkage -- see section 6.1.

4.2 Radix Control:

FAST language constants (2.5) are converted to binary and are

4-3
FAST MANUAL

71-44-002

interpreted according to the setting of an assembler variable

called the RADIX. Constants may be written as either octal

numbers or decimal numbers. The assembler's RADIX is set to

octal at the beginning of each pass. In other words, the assem-

bler assumes all constants to be in octal.

The user may switch the RADIX from one mode to another at

will. The form of the RADIX control statement is:

* f ~~n [; coonnent l

If the user wishes to write constants in decimal notation,

he precedes the first such constant with the statement:

*DEC

All constants between this statement and the end of the

program (or between this statement and a *OCT command) will be

interpreted as decimal numbers. The assembler's RADIX is like a

switch -- once it is thrown to decimal it stays in that mode until

the beginning of the next pass or until the assembler encounters

the other RADIX command

*OCT

causing the RADIX to be set back to octal. While in the octal mode,

the assembler detects the usage of the decimal digits 8 and 9. If

either of these digits occur in a statement while the assembler is

in the octal mode, the assembly listing of that statement will be

preceded by the error code D (decimal digit in octal field).

Remember that the assembler's RADIX is automatically set to

octal at the beginning of each pass.

4-4

4.3 Location Counter:

FAST MANUAL
71-44-002

The assembler ma:lntains a variable called the LOCATION

COUNTER. During the assembly process, the LOCATION COUNTER

always reflects the address of the next memory location that

object code may be assigned to by the assembler. As the as-

sembler processes each statement that generates either a machine

instruction or data, i.t automatically updates the LOCATION

COUNTER by the length (number of machine words) of that state-

ment's object code. At the beginning of each pass, the assem-

bler sets its LOCATION COUNTER to 0. If the user does not

change the LOCATION COUNTER, then his entire program will be

assembled for sequential locations starting with location O.

A statement to set the assembler's location counter is or-

dinarily used to specify the first location of a program being

assembled. The set-LOCATION COUNTER statement has the form:

*e [;comment]

where e is an expression (2.6). A further restriction on this

statement is that the expression must not contain any undefined

symbols when it is first encountered by the assembler. Also, e is

influenced by the current radix (4.2). The statement

*1000 ;START AT lOOO(S)

causes all subsequently encountered machine instructions or data

words to be assembled for sequential locations starting at location

1000. More than one set-LOCATION COUNTER statement may be included

in a given program -- if the user wishes to load various segments

of his program into non-contiguous areas of memory, then a set-

4-5
FAST MANUAL

71-44-002

LOCATION COUNTER statement at the beginning of each source program

segment fixes its respective starting address.

Often it is desirable to reserve a block of memory locations

to be used as a work area or input/output buffer when the object

program is run. This is done by updating the LOCATION COUNTER

relat:i.ve to its current value. Thus, the statement

*.+50 ;NOTE: 50 MAY BE OCTAL OR
DECIMAL

causes the assembler to reserve (skip over) 50 sequential loca-

tions, the first of which will be at the address specified by the

LOCATION COUNTER when the statement is read. This current value

of the LOCATION COUNTER is denoted by the special character period

(.). If the current value was 101, then the next object code

generated will be assigned to location 151.

A block of memory thus reserved may be labeled. lbe statement

WORK: * .+20

reserves 20 locations, the first of which may be symbolically ref-

erenced as WORK. Note that the label is encountered and processed

before the set-LOCATION COUNTER command itself is processed.

4.4 Program Terminators:

The user must indicate the physical end of a program to the

assembler. lbe assembler can then finalize all processing for the

current pass and come to a halt ready to precede to the next pass

in the assembly process, if any. lbe assembler command

*END

4-6
FAST MANUAL

71-44-002

must be the last statement in the program. If a source program

is made up of two or more segments of tape, then each segment but

the last must have the conunand

*EOT

as its last statement. lbis en4-of-tape command causes the as-

sembler to halt for the insertion of the next tape segment in the

reader -- pressing CONT on the console starts the processing of

the new tape as part of the same program.

4~5 Data Definition:

Some of the data a program operates upon may be assembled

into the program itself. Such items consist of numeric constants

and/or textual data. Numeric constants could be upper and lower

limits for checking against input values, tables of values used for

code conversion o,r function interpolation, machine addresses of im-

portant tables or entry points in a program, etc. Of course,

single-valued numeric constants are often assembled into immediate

mode memory reference instructions (3.2.2). Textual data could con-

sist of error messages to be output to an operator, or fixed heading

information for printed reports.

4.5.1 Word Values

Numeric constants can be assembled for consecutive locations

of memory by using the general form

[symbol:] e [,e] ••. [;comment]

where each e is a general expression (2.6). The expressions

4-7
FAST MANUAL

71-44-002

representing values to be assembled for each location are separated

from each other by commas (,). Each expression e results in a full

16-bit binary word in the object program. Tile first word assembled

from this statement may optionally be labeled. Tilus, the statement

PWR: 1750,144,12

causes the three consecutive octal numbers to be assembled for

three consecutive memory locations, the fiTst of which is labeled

PWR. This statement is equivalent to the three statements:

PWR: 1750

144

12

Further eiamples are:

COUNT: 0

LNGTH: B - A + 1

Z!Q,ZQQ

2,15,.+5

Note: If the symbol • (representing the assembler's LOCATION COUNTER)

is encountered in an expression in a comma-separated list of data

word definitions, its value will be the address of the memory loca-

tion for which that specific expression is being assembled.

4.5.2 Text

One or more characters of ASCII text may be assembled for con-

secutive words, packed two characters (8 bits each) per word. If

the text contains an odd number of characters, the rightmost 8 bits

of the last word assembled will be set to O's. A textual data defi-

nition statement consists of the character single-quote ('), followed

4-8
FAST MANUAL

71-44-002

by the body of the text, and is terminated by the same delimiting

character that preceded the text. The general form for defining

textual data is

'de [c] d

where dis a delimiter chosen by the user, and the e's are the

individual characters in the text. The delimiter must be chosen

such that it does not occur within the body of the text. Examples

are

'/LIMIT EXCEEDED/

MSG3: '.Vl/V2 O.

Note that text may be labeled. The label (e.g. MSG3 above) is as-

sociated with the .first packed word assembled from the text. As for

word values, two o:r more text definitions may occur in the same

source statement provided they are separated by commas.

The delimiters and text characters may be any of the printable

ASCII characters, including those outside the FAST general usage and

reserved character sets (2.1). Exceptions -- the following charac-

ters have special meanings to the assembler and the Source Text Editor

and may not be used as a delimiter or text character:

Carriage-return

Line-feed

Back-arrow

Rubout

Block-mark

4.5.3 Combined Text and Word Values

Text and word value definitions may be freely combined in a

4-9
FAST MANUAL

71-44-002

comma-separated list. In this, and in any statement, the

SO-character statement length must not be exceeded. As an ex-

ample of a reasonable such combination, consider the following

ERR4:7, '/TEMP. 4 HIGH/,106612

The address of this hypothetical message, represented by ERR4,

is to be sent to a general output routine which will process the

data assembled from the overall statement. The first word fetched

by the output routine is the value 7 which tells it to unpack and

type out the next 7 words (14 characters). The second list ele-

ment assembles into 6 packed words, since there are 12 characters

in the body of the text. lbe last list element, or 7th message

word, represents the packed characters carriage-return and line-feed.

lbis mechanism is necessary because they could not be made a part

of the text definition itself (4.5.2).

5-1

CHAPTER FIVE

DEFINITION OF NEW SYSTEM SYMBOLS

FAST MANUAL
71-44-002

The most useful function an assembler provides the user is the

ability to give symbolic names to memory locations and word values.

In addition to this, the FAST language also provides the user the

ability to name new system entities beyond those defined in the as-

sembler's permanent symbol table. This ability is extended to encom-

pass not only the SDA and DDA portions of the instruction but also

the MOD portion of the instruction.

'file permanent symbol table contains definitions for standard IO de-

vices such as TT!, TTO, HSP, and HSR. The user may desire to refer to an

analog multiplexer as MUX, or an A/O converter as ADC. These symbols

are added to the assembler's symbol table via a symbol definition state-

ment.

Also included in the permanent symbol table are definitions of

certain pulse patterns from the function output section as well as cer-

tain status codes utilized in sense function instructions. Examples

are STRT, CLIF, BOV, ORDY, etc. The user again may wish to add his own

unique codes to the symbol table, such as GRPl, STOP, LOAD, etc.

The user may al~o wish to develop his own pseudo code for commonly

used instructions. THE DEFINITION STATEMENT THAT DEFINES A NEW SYMBOL

MUST PRECEDE ANY OTHER USE OF THE SYMBOL IN THE PROGRAM. (5.1)

It is strongly recommended that the user not re-define bus modifier

symbols (Pl, Ll, Rl, C) or data testing symbols (ETZ, LTZ, etc.). These

are symbol type numbers 4 and S. Symb0l types 6 and 7 are more normally

5-2
FAST MANUAL

71-44-002

defined as described in 2.4 and 4.1. Tiiey may, however, be defined by

a definition statement.

Tiie symbol definition statement may also be used to add pseudo-codes.

Tiie general form for defining a new symbol is:

S.YMBOL llt , n [; comment]

SYMBOL is the 5 character name being defined. #t is a type number

that describes the type of definition being made (see table). n is the

numeric value (in octal) that the assembler will use to replace the

symbol when it is encountered durin2 an assembly.

Note: ALL NUMERIC REFERENCES MUST BE OCTAL.

SYMBOL DEFINITION TABLE

#t Type of Definition

1 Device Code

2 Output Pulse Code

3 Status Test Code

4 Path Code for Bus Modifier

5 Data Test Code

6 Statement Label

7 Parameter Symbol

10 Register Reference Pseudo Code

11 Memory Reference Pseudo Code

5.1 Device and Device Related Codes:

New devices added to the system by the user will require the

use of the definition statement if they are to be referred to

symbolically in the users program. It is necessary that the

user put these definitions at the front of the program, or perhaps

on a separate tape terminated by an *EOT (section 4.4). Tiiis

5-3
FAST MANUAL

71-44-002

definition tape may be used in front of all program tapes the

user wishes to assemble that refer to the same system devices.

This definition tape need only be read during pass 1 of the as-

sembly.

For example, if a new device named MUX were to be defined

with an octal address 56 (maximum address is 778), the definition

statement is:

MUX/11,56

After this statement has been entered, the name MUX may be

used just as any other device name in the assembler. If one

wished to replace one of the existing assembler symbols with

another address, the same procedure would be used. For example:

TT!lll,44

This associates the symbol TTI with the new address 44. It is

useful to point out here that the values in the assembler's symbol

table for type 1 symbols (devices) exist as right justified numbers.

However, this is not the case when one specifies a MOD code (types

2-5). The MOD codes consist of four binary bits in the middle of

a machine instruction, so defining a new pulse code will require

that the octal value be located in the proper place (bits 9-6) of

the octal ''n" parameter.

Consider the following pulse code:

0110

Its name will be "QUIT", and it will be a type 2. It remains

to define the octal "n" parameter.

Consider the string of sixteen binary digits below:

0000000000000000

5-4
FAST MANUAL

71-44-002

Breaking these up into the more familiar SDA-MOD-DDA style

and adding the binary code for~the new symbol in the right spaces

yields:

000000 0110 000000

If this were to be converted into an octal number, conversion

sould begin by separating the number into groups of three binary

digits, starting from the right.

0 000 000 110 000 000

nie equivalent octal number is, therefore,

600

'nlis, then, is the "n" parameter needed above. The pulse

code digits are in the correct places in the SDA-MOD-DDA form,

and the number is octal. The symbol definition would be

QUIT/12, 600

Now consider the case of defining a pulse code with a specific

destination attachE!d to it in order that the destination need not

be specified each time the pulse is generated. To do this, the user

must define the destination as well as the MOD, and convert this

entire string to an octal number. For example, if the symbol QUIT,

above, had a destination device with octal address 56, then the bi-

nary string would be:

0 000 000 110 101 110

5-5

and the equivalent octal number would be

656

The symbol definition then would be

QUITl/2,656

FAST MANUAL
71-44-002

thus i.ncorporating the destination address as well as the pulse

code. When the newly-defined symbol QUIT is subsequently encount-

ered in'a source statement, the assembler recognizes that it was

defined as a pulse code (type 2) and consequently fills in SDA with

02 (the address of the function-generator) and fills the remainder

of the word with the defined octal value of QUIT, i.e. (in machine

language), 02 0110 56.

If the described symbol were to be a status test code and have

a source device associated with it rather than a destination de-

vice, then the binary string would be

1 011 100 110 000 000

The equivalent octal number is

134600

and the symbol definition would be

QUITl/3,134600

then the statement

SKIP IF QUIT

assembles as

56 0110 02

5-6

Note that the assembler fills in the correct DDA.

5.2 Abbreviated Machine Instructions:·

FAST MANUAL
71-44-002

These FAST language pseudo-instructions are abbreviations of

actual machine instructions. That is, the instruction will trans-

late into the SDA MOD DDA form and will have the same machine

language representation as the instruction to which it corresponds.

The general instruction has two forms

symbol

or

symbol e

which combine into the format

symbol

The D symbol signifies the optional deferred addressing mode

as it did in preceding sections. Note that the immediate mode is

not included in the parameters.

This first usage of pseudo codes is perhaps best illustrated

by several examples. For instance, if a zero memory word were to

be defined at many locations in core, the programmer would have to

use the instruction below for each re-initialization.

ZERO TO Zoaation

To save effort, the pseudo code with operand Type 11

ZM Z.Oaa ti on

could be used in place of the normal FAST instruction.

5-7
FAST MANUAL

71-44-002

1his pseudo code if defined using the procedure shown in

section 6.1. The value is derived from the instruction that the

pseudo code is to represent. The instruction ZERO TO LOCATION

has the machine language equivalent

00 0000 06

Zoaation

for which the octal equivalent is simply the number 6. The data

is put into the general form for symbol definition

SYMBOL/It·, n

where t is the octal type number (from the table in 4.5) and n is

the equivalent octal value.

Thus, to define the pseudo code ZM, the programmer would write

ZM/111, 6

as one of the statements in his source code. Using the instruction

ZM 765

in the source program would then translate into the machine instruc-

tion

00 0000 06

000765

The deferred addressing option could also be specified for

the instruction by

ZM D 765

Other instructions may be assigned pseudo code equivalents as

the programmer wishes. Another example might be an instruction to

5-8
FAST MANUAL

71-44-002

copy the arithmetic overflow bit into the bus modifier link bit.

In FAST, the instruction would be

MSR Rl TO ZERO

(The arithmetic overflow bit is the rightmost bit of the Machine

Status Register.) If the programmer wished to abbreviate the in-

struction as the new instruction

COVL (for copy overflow to link)

a pseudo code without an included operand, the definition would

follow the procedure outlined below.

1. Determine from the table the type of the pseudo code:

no operand - Type number • 10

2. Determin1e the octal value: The machine language

equivalent of MSR Rl TO ZERO is

17 1100 00

The equivalent octal number for the above digit string is

37400

3. Define the symbol

COVLtll0,37400

5.3 Local Pseudo-Instructions:

These are codes used in conjunction with the various interpre-

tive software routines provided with the GRI-909, such as the

Floating Point Interpretive Package. This section will deal with

pseudo codes only as they relate to the floating point package,

but the ideas expressed here are relevant to all such routines.

5-9
FAST MANUAL

71-44-002

The format for these codes is the same as that in the previous

section.

symbol [[DJ e]
However, the set of instructions is not open ended but consists

only of those included in the interpretive routine under discussion.

The following are a few of the instructions in the Floating Point

Package:

FLDA [D] operand

FMPY [D] operand

FADD [D] operand

FSTA [D] operand

FSQT

load the floating point accumulator with the

quantity at the location specified by the

operand.

multiply the contents of the accumulator by

the value at the location specified by the

operand.

add to the current accumulator value the

contents of the location specified by the

operand.

store the value of the accumulator at the

location specified by the operand.

take the square root of the current contents

of the floating accumulator and put the

result back into the accumulator.

These local pseudo codes are defined on a command equate tape

supplied with the Floating Point Interpretive system. The definitions

which create the pseudo-instructions are either type 10 or 11 function

definitions. The command equate statements for the few examples listed

would be as follows:

5-10

FLDA 1111, 01

FLDAD 1111, 101

FADD llll, 10

FADDD 1111, 110

FMPY 1111, 12

FMPYD 1111, 112

FSTA 1111, 2

FSTAD 1111, 102

FSQT 1110, 36

FAST MANUAL
71-44-002

The use of the floating point system is illustrated by the

following example. Suppose one wished to compute the Pythagorean

relation A2 + B2 • c2 and solve for the C value in floating point.

Further suppose that the values for A and B are stored at locations

referenced by the symbols AA and BB respectively. The floating

point interpretive routine is called into play by jumping to the

location referenced by the symbol $SFI. The sequence of instruc-

tions would then be:

GO TO $SFI ;

FLDA AA

FMPY AA

FSTA CC

FLDA BB

FMPY BB

FADD CC

FSQT

FSTA CC

FEXT

I

THIS INSTRUCTION CAUSES ENTRY TO
INTERPRETIVE MODE

LOAD THE ACC WITH A

COMPUTE A SQUARED

STORE A SQUARED IN C

LOAD ACC WITH B

COMPUTE B SQUARED

ADD A SQUARED TO B SQUARED

COMPUTE C=SQRT (A*A+B*B)

STORE THE C VALUE IN CC

EXIT FROM INTERPRETIVE MODE

5-11
FAST MANUAL

71-44-002

The above sequence shows how these special codes are used as

instructions to the floating point package. In effect, the inter-

pretive routine exec·utes each of the instructions following the

call to the routine as if it were an instruction to a firmware

device. Program control returns from the $SFI routine when an

exit instruction (FEXT) is encountered. The FAST assembler as-

signs a specific code to each of the floating point instructions.

This is not in the SDA-MOD-DDA format but rather a unique octal

number which is interpreted by the floating point interpreter and

causes a series of local subroutines to be called to perform the

necessary calculations. The user is referred to manual 71-44-005

for a detailed description of the Floating Point Interpretive

Package.

6-1

CHAPTER SIX

USAGE NOTES

6.1 System Linkage:

FAST MANUAL
71-44-002

When implementing large software systems consisting of several

sub-systems, work is often done on the sub-systems independently

until ~hey are all functioning. The entire system is then put

together by combining all of the sub-systems. There are often
I

portions of executive routines, initializing routines, linkage

programs, etc. that must refer to various parts of the sub-systems.

When it is time to put all of the sub-systems together, a straight-

forward method calls for one large assembly to be< run on all of the

sub-system source tapes and other parts that tie the package to-

gether. This can involve a good deal of computer time if the system

is large enough and could be extremely time consuming if high speed

tape equipment is not available. A practical aspect of the problem

of large system assemblies is the length of the symbol table that

is built during the assembly. Profuse use of such symbols in user

programs are beneficial to the understanding of the system after

it is operational.

These problems can be overcome through the use of a technique

called System Linkage.

Once a sub-system has been debugged and is deemed operational,

a final assembly is done, assigning the starting location of the

sub-system to the beginning of some known free area of memory.

6-2
FAST MANUAL

71-44-002

After the assembly is completed, the user scans the symbol table

and picks out all of the routine entry symbols and other symbols

that must be referenced from outside the sub-system. A linkage

tape is then generated, using a series of parameter definition

statements (4.1). It is assembled with the program that ties all

of the sub-systems together. A set of labels (Li) for subroutine

entries, argument storage points, counters, etc. and their corres-

ponding octal locations (Ni) is prepared. The linkage to them is

established by generating a tape of the form:

Ll • Nl

12 • N2

13 = N3

Li • Ni

*EOT

These linkage statements will be prepared as separate tapes for

each sub-system. At final assembly time, all of the linkage tapes

are assembled along with the final linking routines and executive

program. When assembling these tapes, it is only necessary to read

the linkage statements during PASS 1 of the assembly.

6.2 Subroutine Linkage:

The standard transfer of control to a subroutine in the GRI-909

is via a data testing instruction (3.3). Whenever a jump is about

to occur, the contents of sequence counter (SC) points to the second

word of the data testing instruction just before the actual jump

takes place. At this point, the SC is transmitted to the trap (TRP),

6-3
FAST MANUAL

71-44-002

a hardware register associated with the data tester. The contents

of the second word (or the incremented contents of the word it

points to if deferred addressing is selected) is transmitted to

the SC. The SC now points to the first (or entry) instruction of

the subroutine called -- this instruction is executed next by the

processor.

After any data testing jump is performed, the contents of the

TRP provides a linkage back to the program that called the sub-

routine. Note that the address value in TRP is one less than that

of the next instruction of the calling routine. If the subroutine

does not alter the contents of the TRP, then the subroutine may

return to the next step in the program from which it was called by

simply executing the instruction

TRP TO SC

Since the SC is automatically incremented after this instruction

»' is performed, an absolute return of control to the proper location

is performed.

If the subroutine is going to disturb the TRP, then the con-

tents of the TRP must be saved immediately upon entry to the sub-

routine. This may be done by

SUB: TRP TO I

which places the contents of TRP into the second word of the entry

instruction (i.e. SUB+ 1). The subroutine may now return to the

calling program via any one of the following instructions:

6-4

GO TO D SUB + 1

IF DEVICE TEST GO TO D SUB + 1

SUB + 1 Pl TO SC

FAST MANUAL
71-44-002

Since the last instruction is a three cycle instruction, the

automatic incrementation of SC is completed before the contents

of location SUB + 1 is transferred to the SC; therefore, the in-

struction must increment the value on its way to the SC via the

Pl path of the bus modifier.

A subroutine often performs some operations on one or more

data items, called the arguments of the subroutine. Arguments

may be passed to subroutines by loading thet1 into specified hard-

ware registers before calling the subroutine. Arguments may also

be passed to the subroutine with a list of word values that follow

the subroutine call:

GO TO SUB

Vl, V2, V 3, Vn

Tile word values Vi may be one of the following:

a) An address of data to be operated upon

b) A data word to be operated upon

c) An address to which return is made if errors are
detected by the subroutine

d) An address into which results are to be stored by
the subroutine

If the subroutine entry instruction is

SUB: TRP TO I

then the first argument Vl can be loaded into the AX register by

D SUB + 1 TO AX

6-5
FAST MANUAL

71-44-002

The second and successive arguments can be fetched by exe-

cuting similar instructions. Note that the word stored in SUB+ 1

is auto incremented each time a deferred reference to it is executed.

When all of the arguments have been picked up by the subroutine,

the word at SUB+ 1 contains one less than the normal return address.

The

GO TO D SUB + 1

or its equivalent is used for normal return of control to the

calling program.

6.3 Some Fast Examples:

As an example of typical subroutine development, we present for

consideration a collection of subroutines that form a teletype in-

put package.

6.3.1. %TBO is a simple teletype output service routine. To save

time in the service routine, note that the trap is not saved on

entry and therefore the instruction at %TBO + 1 is an immediate

mode memory to sequence counter type of jump. This jump preserves

the contents of the trap register so that the subroutine returns

control at %TBO + 4 by merely sending the trap to the sequence counter.

6.3.2. %TBI uses the same technique and services teletype input,

one character at a time.

6.3.3. %TLO is a processor subroutine which prints a line of ASC

characters, stored one character per word right justified, to the

byte output routine, %TBO. In this routine, the trap will be

6-6
FAST MANUAL

71-44-002

disturbed so it is saved in %TLO + 1 immediately on entering.

The call for this subroutine carries with it two arguments that

are fetched by the subroutine %TLO. These arguments are the ad-

dress -1 of the line of text in memory and the count of the number

of characters in the line. The subroutine call looks like this:

GO TO %TLO

MSG - 1

120

;address -1 of message

;count • 80 decimal characters

The subroutine will continue outputing characters via %TBO

until the character count runs out or a carriage return character

(215) is encountered in the string. When either of these conditions

is encountered, a carriage return-line feed combination is output,

and the routine returns control to the main program via a deferred

jump through %TLO + 1.

6.3.4. %TLI is a subroutine that fetches a line of teletype char-

acters into a buffer area.specified by the calling routine. The

characters are entered in the buffer area one per word, right just!-

fied. The calling sequence requires the user to specify two argu-

ments, the first of which specifies the buffer address -1 and the

second the character count. The subroutine call, then, is:

GO TO %TLI

MSG - 1

120

;address -1 of input buffer

;count • 80 decimal characters

This routine, similar to %TLO, will input a string of 80

characters and exit or input a string of characters terminated by

a carriage return. Note that this routine, in addition to calling

%TBI for fetching characters, also calls %TBO for echoing the typed

6-7
FAST MANUAL

71-44-002

characters. 'Ille routine also has two other features. When a back

arrow character is typed(..,_), the buffer address and count are

backed up by 1. 'lllis process will continue as long as back arrows

are typed until the buffer address reaches the initial buffer ad-

dress, whereupon the routine ignores further back arrows. A rub-

out character (377) causes the entire line to be dropped and re-

initialized at the beginning of the buffer. When this occurs, the

routine outputs a carriage return, followed by a double line feed.

6.3.5. %TMO is a routine to output a packed message string from

memory. 'Ille call for this routine requires a single argument, the

starting address -1 of the message string. Tile subroutine terminates

when a 0 word is encountered. Notice the use of a conditional jump

as a subroutine call for %TBO at %TM01-3.

Tile subroutine also uses an interesting trick when it unpacks

the left half character of a pair of characters. Tile left half

character is shifted to the right 8 times, moving it to the least

significant 8 bits of AX. Tile least significant 8 bits of AX is

shifted out of the link into the left half of AY. Leading zeros

fill in the left half of AX. A control bit (200) is loaded into

AY and shifted along with the SH character from AX. When the con-

trol bit shifts into the link, the process is complete. When it is

time to print the LSH character of the word, the character may be

tested for 0 because it is present in the MSH of AY, and the LSH of

AY has been filled with O's. Tilis routine does not supply a carriage

return-line feed combination at the end of the string. As an example

of usage, let us write a routine to print a string of characters

from memory and terminate it with a CR-LF.

6-8

GO TO %TMO

MSSG-1

HLT

MSSG: '/GRI-909 /, 106612,0 ;106612 = CR-LF

FAST MANUAL
71-44-002

FAST TELETYPE

6-9

INPUT PACKAGE

001 ;1~L~1YP~ 8YT~ OUl~Ul

FAST
71-44-0021

002 (li,·l"1vl0 ·n ('1 ,'1lVl Vl2 %1RO: S!\Il- Ir TTO Ohl..JY ;t-:f.Al.JY 10 OUTl-U'l?
""'', 3 () O 0 V1 1 (t'1 t- \'1 ~11 0 WI I • - 2 l 0 .S C ; NU ,, \..· A I 1

~HH'!Cl2 l ·1 ·1 ·1 ·1 '1

0 '!)Lj ""'"" l13 1 1 "'(t) VI"" '/'I
0 0 t> (11 0 ~l 0 Li (·: 3 '~ V1 0 v1 Wt
001
k;1(t'2 '';U(lP~ 02 ':C·'L·" 1 '/ 't
003 vH-1006 r1 i ,,1,11,1 0~

004 00007 06 0010 01
0 vH1 1 "~ vH·H~ "; V1 j

00~ ~0011 02 1000 'l1
VlVl6 0Vl'1l l 2 '/ '1 vWL-iV! 1 1
.0WI 0"10 13 0 3 v1L·)l'l1-'1 ~; .,

v'Hl2 ,1(11014 03 L'.Hl 1 L ~·1 6

li "H" 1 ~ vH·10 vw+
'1H13 L·Hrn 16 ~>i2 vW'1lO 13
Vi v. 4 "' '1!Ct1 1 . , (1 ~ (t')(-1 '11 1 1 1

(
1 j Vl "' 2 V1 ,,,, (tl 0 0 1 ~

AX TO 110 iYES,,1..J~LIV~h CYAkAC11'..h
1Hl- 10 SC ;k~lUHN 10 l-hOGHAM

; l~L1'..TYP~ h~A!Jb.h/K~YPOAhL· RY1 }:, INl-Ul
% l B I : S l HT '10 l l I ; .S l .M·n h l:. A l..J ~ h

SK I 1- Ir l1 I HWY ; IN f-U 1 Hr.Al.JY?
I • - 2 1 0 s c ; N 0 ,, YI A I 1

CL Ir TO 1"l I
'1 '1 I 10 AX
lRl-- 10 SC

; l 1'..L ~Tl' H. L IN~ U U 'l H..11
~ TLO: THI-- 10 I

ALil..J

; n.s,, CL 1'..Ah I l\J i-'UT r LAti
; r .l:<i CH CHAhAC1 r.M 'lU AX

v %TLO+l TO AX HUCH BUfH.P. AlJIJ.H-1

0V15 ; r.HUM CALL
(l (1 f (1(71"" 2 1 0 6 (11 (/1 (t1 1 1?.

0(11022 0VlvH' 1 5
'1 Wt (ti (·l VJ 2 3 1 2 ~, 1 1 v1 1 2
vH'1K V1 ~H·)24 11 vHHWi 0f­

(t1~H12~ 000033
vHl 9 0 "'0. 2 6 1 2 v1 vi viJl v16

vi 0 ~ 2 ., 0 o "" ""' 3 ·1
v1r1 GCW1 3v1 P6 ''L'l'' 12

(t~ 0 ,, 3 1 1 7 ., ";) (:-,. 3
vi 1 1 v· vi 0 3 2 ,,,, t: Vi 0 1 1 1 1

00033 vi0vwivH1
012 00034 00 0100 03

00035 000000
013 00036 06 0110 06

0 vH·-1 3 ·1 vrn 0 0 kj 0
014 00040 00 0010 02
015 00041 13 0110 03

00042 0vrnv132
016 00043 12 0110 11
017 ~0044 00 0100 03

0vH145 000000
018 00046 06 0010 11

00047 V>vrn212
~19 0005~ 00 0100 Vi3

000~ l vH-?'100~

020 000~2 00 0101 03
00053 000015

D %TLO+ 1 TO AY ; r r.TCH ClJUN1 .r HOiVj CALL

C AY 1-1
AX 10 .+·1

AY 10 .+11

I -21!:> 10 AY

!Li 0 10 AX

GO 10 %180

I 0 1--1

; c 'S C0i"'il- 1Hl:. COGN1
iSAv}:. F.UrJ:ol'..tt ALl.Jh-1

; !;Av l-, - COUNT

; Cn CHAt\

; r u CH Nr.X1 CHAH L\1 Ll!\Jr

;ou1~u1· ~Yl~ FHOM AX

; INCh~M~l'Jl CULH\11

~nil- 1.r EOv ;couN1~01

Ir AO N~Z GO 10 .-~ iCH?NO,, CONlINU~ LIN~

c AY t-1 TO AX ;~ND Or LINE1r~lCH Ch CHAt·.
GO 10 %180 il-hINl Ch

I 212 TO AX ir~TCH LJ:o CHAk 10 AX

GO TO %1BO ;}-HIN1 Lr

GO TO L> %TLO+ 1 ; .H~lUhN TO iVJAIN i-:HOGHP..!"1

001 iTEL~TYl-E LINE INPUT
0f12 ~ik-105'4 03 0~110 "'6 %TLI: lRP 10 I iSAVr TRAt- FOH RET~riN

000~5 '100000
003 00056 ~2 0000 13
0"' 4 0 0 0 ~ ., 0 6 Vi 0 0 1 l 1

00060 00005~
005 ;
006 00~61 06 0001 12

00062 ~HH10~~

007 ;
008 00063 12 "1110 12

ADD
lJ %TL I+ 1 TO AX ; r ~TCH RUH E.h AJ.JDH- 1

r hOM CALL
L ~1LI+l 10 AY ;.rr..1CH CHAH COUl'Jl

1- hOM CALL
C Al' f'l ;c'S COMl- COUNl

6-10 FAST
FAST TELETYPE INPUT PACKAGE 71-44-002L

00.9 00"'64 1 1 001 (I' 06 AX TO I ; SA\JI:. BUH Alil.JH- 1
'1100 65 vHA ~·H10v~

vi 10 00v~ t 6 12 vrn rn 06 A'/ 10 I ;sAvt. -COUNT
0v'v'f-1 000m,,0

01 1 '1H1P't (' 1 1 (·1~~0~) vit- AX 10 %TLI3+5 ; IN 11 I P1L I 1. t. CUtfrd.·.L'J1 BLlH t. h

vlv~WI 1 ((100.161
itll ::-~ viC"Wt 2 12 ~1'1 ~HJ 06 AY TO ·%TL I 3+3 iAl.JDh Al\ll.J H.irrI:~r: CO lJ1\J l

vH1WI 3 '110 £.') 1 ~ .,
vll 3 00WILI 00 Vi 1 V1 V) 03 % TL I 1 : GO 10 %TRI ; l- t.1 CH A R '('l r.. 10 AX

''wv: ·1 :i ~1 ~w ~" '1 !::>
(ti 1 LI 0v1Wlb ~H 00. 10 12 I 2Vi0 TO AY iOh A 1 IN CHANN:t.L 8

(·'H~ ''"" ., "rn V12 Vl~'
0 1:, v)0 l l·1v1 (t)2 llVJP 13 Ori

"' 16 vi v:ri 0 1 13 vH·lvH1 1 1 AO 10 AX ; AX NO~. NU ~AHl1Y CH Ar.
01 ., vH11V;2 02 vlvHH1 13 Al.Jl.J
01H ("l0103 vrn 010vi "'3 bO 10 %TRO ; t.CHU 1 Ht. CHAh rit.AL·

v101 {l\Lf 00kHrn0
(t'} 9 v10 1 "':, v1f 0010 le I -33 ., TO A't ; CH:t.CK rOh F1ACK AWiUv .. CHAn

"'"' 106
lT/441

v)2v:1 ~rn 1 WI 13 ~1 1 1 (; '1)3 Il- AO L'Jl-..Z GU TO %1Ll2-14
tlO 1 l lfi V1vH.1l3~

0.~ 1 0C 1 1 1 Pf c-1 "~ n P 1 1 %TLI3+!::> TO AX ;RACK AHHU ',•. ~ Ll-..Lt.'l r. Llb'l
v111;112 "'' t; , .. 1161

V122 CH Ah hl-..AlJ
(.123 v1V· 1 13 1 l vi 1 1 Vi 1 1 c AX t-' 1 ; - C lJ k Hr. i\J 'l PLlH l-..H Al>LiH
(·) 214 vH1114 (1) (- ((; (t) ~)ti "1 :2 X.1LI 1-·1 10 A'f ; U.JI1 I AL Fl;rl-t.K Al.Jl.Jh

'''"l 1 1 5
v1{;1n06~

v)25 00116 13 vi l llrn ~3 l}o AO t. l z GU lU %TL I 1 ; !:>lI LL l- I t".Sl CHAh1
0vil 1 ·1 0 Vi '1i Vi 'I LI

02f ; CO~\ll IN Ut.
02·1 0012(;\ 1 1 0"j l "'' 1 1 c AX iPACK u~ PlJHh: Al!lJH
0?.K 00121 1 l L/)000 vit AX 10 %1LI3+':> ; Hr.!:it.l H.1.rr A L;l t-: TO

~w 1 ?.2 '1W•v~l61

'129 Bl.JH AL-LH-1
030 CM'l 23 "'~ ~10~H:1 1 1 %1'LI3+3 10 AX ; H.lCH ClJHkt.N 'l CU LlNl

0Vr 124 00 vj 1 ~'I
031 ~w 12~ ,,,0 (()0 10 12 c l~HO '10 AY ; H.TCH - 1 'l 0 A y

032 00126 13 Vi00~ 06 AO 10 %TLI3+3 ; St. T CL1HHr.N l CO UNl= CO l.Jl\J 1- 1
00127 000 l ':> .,

033 0"1130. Pvi Vl 1 "~VJ v)3 (;0 TO %lL I 1 iCONTINlJt. 1Nt-U1
0(tl 131 0vi0W1 LI

034 (l"'(i\ 132 0f fW 10 12 I - 37'1 10 AY iN01 PACK Ah HU\..,
00133 1 ., ., 14 (11 1

035 ")0134 13 0 l 1 0 "\3 Ir AO Nt.Z GO TO %TLI3 ; IS Il A HUP OU1?
00135 vw 0 1 :,LJ

036 00136 ~rt 0V''10 1 1 %1LI2: I 2 1 t> TO AX ;yE,~ r r.1 CH A er: 10 AX
~rn 13 ·1 fHrn 2 1 5

037 00140 00 0HH:1 03 GO TO %'1 BO ; ANlJ t-t<INl

0 "' 14 1 0v.vrnVi0
038 00142 0 6 0010 1 1 I C:! 12 TO AX ; r t.1 CH A Lr 1LJ AX

001143 vH~v12 12
039 00l4L! 0(1\ vl 1 "' vJ v-13 GO TO %180 ; ANL HdL'Jl

0014!:> 000vHH1
040 00146 0c ~H100 1 1 %TLI 1-7 10 AX ; fit.- I N I lI AL IZ ~-

00147 'HHH?6 5
041 ; RUH t.k 1-' AH A1"i t 'l t. H !:>
042 0((J 150 0t 0000 12 %1LI1-t> TO AY

00151 000067
043 00152 "'~ 0100 03 GO 1'0 %TLI 1-4 iSlAHT LIN!-. AGAIN

6-11 FAST

FAST TELETUPE INPUT PACKAGE 71-44-002L
00153 vH10W/"1

0ll ll '1015li fH:: "'": 10 12 %TLI3: I -215 TO AY ;N01 BACK AHhOV.· OH HO
00155 l 'O':J63

045 00156 06 "'il 1 VJ vl6 I 0 Pl ; INCheM.b'H CH Ah COlJNT
001 '::Jr/ "'00vH'i0

0ll f 0016((. 1 1 0011 06 AX TO I 1' 0 ; STOHl::.. CHA.k IN RUrrl:.k
00161 i.1'110000

0li7 00162 13 "'1 "'0 03 11' AO l::..lZ GO TO .+7 ; Ch?
00163 vi vi 0 1 ·1 1

048 00164 "'0 0 '~ 1 1 "'12 !:>KI 1-' 11' NOT BOV iNO,, IS 8UHl:H r uLL?
049 00165 00 0100 {13 <JO TO ~TLI2 ; Yl::..!:>.1 r lJLL ACl!:> LIKl::.. t\O

00166 ~HH'.i 136
'150 00 l 6r/ 0.Vl (/• l vH1 03 GO TO %1L 11 iNU.1Gl::..1 Nl::..X1 CHA.k

00170 vHH1Wlll
"151 '101 71 k:-16 ~-1 ({) 1 fl 1 1 I 212 TO AX ; CHAh=CH.1 ALL l.JONl:

00172 vHHJ2 12
Cii52 00173 f)0 V1 1 0 (-1 (ii3 GO TO 'i,lBO ; .1--klN1 A Lr

0v1lrl4 vHWOOVl
053 00175 00 0 l 0~i 0 3 GO 10 %180 if-11IL'Jl A Lfo

00176 vH'.'V'IC-10Vl
05li 00177 06 ~H100 1 1 % TL I 1- 5 10 AX ; COMPUH. NU1'>'i8l:.h Or

0020'11 000067
"'55 ; CHAH Hl::...Al..J
056 00201 06 "'"'")0 1 :2 %TL 13+3 TO A'(

00202 00015'/
057 00203 1 1 '11 10 1 1 c AX t-1
058 0020ll 13 00f10 1 1 AO 10 .AX iAX=NO. Or CH Ari hl:.AL
0'::J9 . IN10 8Urrl::..H ..
06~1 Vl0205 vrn "' 10 1 03 GO TO LJ %TLI+l ; hl::.. lUhN TO 1-JAl1\l f-HO Gt<.A1"i

00206 0'110055
001 iTl::..Ll::..TY~l::.. Ml:.!:)!:>AG~ Oul'F-UT
002 00207 03 1.1010 '16 %TMO: TH~ 10 I ; !:>AVl::.. lHA~ foOh Hl::.. llJki\i

002 1 (i) 000000
003 00211 06 0001 l l l.J • - 1 TO AX ; H.TCH AlJDH- 1 Or Ml::..!;~AG~.

00212 000210'
00-4 l-hOM CALL
00~ 00213 1 1 vH1l'10 06 AX 10 %TMO 1 ; AND !:>AVl::..

(-102 1 Lj v~Vi 02 34
006 0,j2 15 ~)6 0"10 1 1 1 1) %TMO 1 TO AX il-t:lCH FI H!:>l 1-AIH 01' CH An

00216 ()10023li
0WI 00217 1 1 0100 03 IF AX ETZ GO TO %TMO+l ; lJONl::.. Ir \o:Hl.i=0

00220 000210
008 00221 0f- '110 1 V,1 12 I 2'10 TO A'f

00222 000t:W0
009 00223 02 "1001 00 CLL
010 00224 1 1 1100 11 AX Hl iMOVl::.. LH TO kHCAX>
01 1 00225 12 l 100. 12 AY Rl iMOVl:. hHCAX> TO LHC AY>
012 ~)0226 00 0100 02 SKI~ H LNK ; liON E.?
013 00227 00 0100 03 GO 10 .-4 iNQ,, CON1INUl:.

00230 000223
014 00231 1 1 0110 03 11' AX NEZ GO 10 %1'80 ;y~s .. ou1~u1 RIGHT

00232 000000
015 ; HALr Ir Nl::..Z
016 00233 06 0000 1 1 0 TO AX ; rl::..TCH HIGH1 HALI- Or Y.·O t-1 l..J

00234 000000
0D 000234 %TM01•·-l
018 0023~ 12 0110 03 11' AY Nl::..l GU 10 %TEO #OUT~U1 HIGH1

0'1236 ~H'.)0000

019 . HALJ- If Nl:.Z ..

0~0 00237 00 0100 03
~,0240 000215

6-12
FAST TELETYPE INPUT PACKAGE

GO TO %TM0+6 ; DO N ~.t\ l \1,0 ril.J

-.
* ~Nl..i

FAST
71-44-0021

A-1

APPENDIX A

OPERATING INSTRUCTIONS

FAST MANUAL
71-44-002

Passes 1, 2, and 3 of the assembler perform user symbol definition,

object code output, and listing output respectively. After Pass 1, the

assembler will continue to Pass 2 and then to Pass 3. Any time after

Pass 1 has been completed, however, the assembler may be re-started and

either Pass 2 or 3 selected.

I. Load the assembler with the Absolute Loader.

II. Transmit "O" to SC.

III. Set

Bit
Bit
Bit

Bits

console switches as follows:

15 selects source input device
14 selects object output device
13 selects listing output device

UP .. High-speed (paper tape)

DOWN = Low-speed

1-0 select Pass

01 • Pass 1
10 • Pass 2
11 • Pass 3

(teletype)

if Pass 1 previously completed

IV. Ready source tape in reader (if TTI, set reader control to START).

V. Press START.

The assembler will halt after encountering an *EOT command. Mount

the next tape segment and press CONTINUE.

The assembler will halt after encountering an *END command. If

another pass is either desired or necessary, remount the source tape (or

the first segment thereof) and

a) Press CONTINUE to proceed to the next pass, or

b) Select the next pass by starting at II, above.

A-2
FAST MANUAL

71-44-002

Turn the appropriate punch on before starting Pass 2 and turn it

off after the pass is completed.

NOTES:

1) If bits 14 and 13 have different settings, then both the object

code and the listing will be generated during Pass 2. The

listing may be punched on the high speed device and later

printed off-line.

2) If the user wishes to type in instructions to see how various

forms are assembled, proceed as follows:

a) Perform I and II, above.

b) Perform III, selecting low-speed 1/0 and Pass 3.

c) Press START.

Statements (each followed by a carriage-return) may now be typed on

the TTY keyboard. The characters typed are not echoed on the teleprinter

as they are struck. After a statement is terminated (carriage-return),

the assembler responds with the corresponding listing output.

B-1

APPENDIX B

STAJ.~DARD SYMBOL TABLE

FAST MANUAL
71-44-002

The following are the pre-defined parameters that are part

of the assembler's symbol table, to which user symbols are added.

INTENDED
CATEGORY

Device Addresses

Status Test Codes

Transmission
Path Codes

Pulse Output Codes

SYMBOL

ISR

TRP

SC

SWR

AX

AY

AO

MSR

HSR

HSP

TT!

TTO

AOV

NOT

IRDY

ORDY

LNK

BOV

NPFL

Pl

Ll

Rl

CLL

STL

CML

HLT

VALUE

4

3

7

10

11

12

13

17

76

76

77

77

2

1

10

2

4

2

10

1

2

3

1

2

3

4

MEANING

Interrupt Status Register

Trap Register

Sequence Counter

Console Switch Register

Arithmetic Operator X-register

Arithmetic Operator Y-register

Arithmetic Operator

MB.chine Status Register

High-speed Reader

High-speed Punch

Teletype Input

Teletype Output

Arithmetic Overflow

Negation of Test Results

Input-ready flag

Output-ready flag

Bus Modifier Link

Bus Overflow

No Power Failure

Increment

Shift Left 1 bit

Shift Right 1 bit

Clear Link

Set Link

Complement Link

Halt Machine

B-2

INTENDED
CATEGORY- SYMBOL VALUE

Pulse Output Codes ADD 0
(continued) AND 4

OR 14

XOR 10

STRT 1

CLIF 10

CLOF 2

ICF 1

ICO 2

Data Test Codes ETZ 2

NEZ 3

GTZ 7

GEZ 5

LTZ 4

LEZ 6

Pseudo Codes NOP 0

FAST MANUAL
71-44-002

MEANING

Select AO "ADD"

Select AO "AND"

Select AO "OR"

Select AO "XOR"

General Start Pulse

Clear Input Flag

Clear Output Flag

Interrupt Control OFF

Interrupt Control ON

Equal to Zero

Not Equal to Zero

Greater Than Zero

Greater Than or Equal

Less Than Zero

to Zero

Less Than or Equal to Zero

No Operation

0

~m GRI Computer Corporation
320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02164

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	A1
	A2
	B1
	B2
	xBack

