
0 
~~ 

---------~I r .......... 1 ___ _ 

. f lnntinn nnint 
11u1111119 ru1111 

interpretive 
longuoge 

monuol 



GR! 

FLOATING POINT 

INTERPRETIVE LANGUAGE 

MANUAL 

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164 © July 1972 by GR! Computer Corporation 

Issued: July 1972 
Supercedes: Jan. 1972 

74-44-00lC 
0200 0872 



TABLE OF CONTENTS 

1 FLOATING POINT INTERPRETER 

Ll Introduction • 

1.2 Basic Package, $SFI 

1.3 Floating Point Format 

1.4 Internal Registers • • 

2 . BASIC COMMANDS 

2.1 Command Categories • • 

2.2 Command Descriptions 

2.2.1 Type I Commands - Load & Store Commands 

2.2.2 Type II Commands - Bin~ry Commands • 

2.2.3 Type III Commands - Unary Commands 

2.2.4 Type IV Commands - Index Commands 

2.2.5 Type V Commands - Conditionals 

2.2.6 Type VI Command - Exit • • • • 

3 DATA CONVERSION 

3.1 Introduction • • 

3.2 Floating Point to Character Conversion • 

3.3 Character to Floating. Point~ •• 

3.4 Common Tables & Routines • 

3.5 Character Set Table 

3.6 Floating Point Powers of Ten Table 

3.7 Left Shift FAC 

3.8 Multiply FAC by Ten 

4 EXTENDED COMMANDS 

4.1 Introduction • 

4.2 Sine, Cosine 

FLOATING POINT MANUAL 
74-44-001-C 

. . 1-1 

.• 1-4 

. . . . . • 1-6 

1-7 

2-1 

. • 2-2 

. 2-2 

• . • . • 2-3 

•• 2-7 

2-8 

2-8 

2-11 

• • • 3-1 

. 3-2 

• 3-5 

3-7 

3-8 

• • 3-9 

. 3-10 

3-11 

4-1 

. . . . . 4-3 



4.3 Arc Tangent • 

4.4 Natural Log . 

4.5 Exponential • 

4.6 Square Root • 

5 NON-INTERPRETIVE MODE USAGE 

5.1 Introduction 

5.2 Subroutines . 

5.2.1 Double Precision Fixed Point Add 

5.2.2 Double Precision Fixed Point Multiply • 

5.2.3 Double Precision Fixed Point Divide • 

5.2.4 Single Precision Divide • 

5.2.5 Floating Point Normalize 

5.2.6 Negation and Store 

5.2.7 Generate Zero or Largest Number • • . 

5.2.8 Floating Arithmetic Right Shift • 

5.2.9 Other Notes on Non-Interpretive Usage • 

5.3 User Generated Extended Functions • • 

6 OPERATING INSTRUCTIONS AND SYSTEM GENERATION 

6.1 Using the Package as Supplied 

6.2 User Generated Systems 

7 CONVERSION FOR MODEL 40 FLOATING POINT 

APPENDICES 

Appendix A Command Summary - Basic • . • 

Appendix B Commented Command Equate Tape . 

FLOATING POINT MANUAL 
74-44-001-C 

. . 4-6 

. • 4-7 

• • 4-8 

• • 4-9 

. 5-1 

• • 5-2 

. 5-2 

. . 5-3 

• • 5-4 

• . 5-5 

. 5-7 

• • 5-9 

•• 5-10 

.• 5-11 

• 5-12 

•. 5-12 

• 6-1 

. 6-2 

A-1 

. . :B-1 



Appendix C Connnand Table. ($SFIC). . • • , • ·• • • • 

Appendix D %FCG - Floating Point Constant Generator • • 

Appendix E FPSET - Error Trap Routine • 

Appendix F Trace Routine 

Appendix G System Storage Reouirements 

FLOATING POINT MANUAL 
74-44-001-C 

C-1 

• D-1 

• E-1 

•• F-1 

• G-1 



1-1 
FLOATING POINT MANUAL 

74-44-001-C 

CHAPTER ONE 

FLOATING POINT INTERPRETER 

1.1 Introduction: 

The GR! Floating Point Intrepreter is a complete system that allows the 

user to process data in floating point arithmetic. Floating point arithmetic, 
~ 

through the tBe of multiple precision arithmetic and an exponential concept 

greatly extends the range of p~ecision available to the user beyond that of 

fixed point arithmetic. It also, through utility routines, frees the user 

of the bookkeeping involved with scaling and unsealing of numbers that is 

necessary in a fixed point system. 

GRI computers have an instruction set which is known as machine language. 

The computer reads instruction words out of its memory and hardware is ac-

tivated by the interpretation of each instruction word to cause the execution 

of that instruction. An interpretive software system fetches instructions 

which we shall call commands from the computer's memory and causes various 

subroutines to be entered as a result of the interpretation of the command. 

These commands fetched by the interpreter are also called psuedo-instructions 

because their format deviates from the machine's instruction format. The 

standard machine format instruction is 

WORD l 

WORD 2 

SDA MOD DDA 

[ADDRESS] (if a memory reference in­
struction) 

A pseudo-instruction or command such as the ones used in the GR! Floating 

Point Interpreter looks like this:· 

WORD 1 OP CODE 

WORD 2 [ADDRESS] (if a memory reference pseudo-instruction) 

The interpreter actually simulates the process used by the computer's 

hardware to execute an instruction. The interpreter fetches the OP CODE words 



1-2 
FLOATING POINT MANUAL 

74-44-001-C 

and addresses, sets up arguments, flags, and performs a function on the ar-

gument(s) as specified by the OP CODE of the pseudo-instruction. 

An interpretive approach to floating point arithmetic provides the user 

with a functionally oriented language that makes usage of floating point 

arithmetic much easier than if it were done through a series of subroutines 

called in machine language. The user references floating point numbers 

with a single address which is the first address of the two word floating 

point number. The interpreter takes care of the address bookkeeping neces-

sary for two word argument handling. The interpreter also maintains a set 

of accumulators much the same as an arithmetic unit. Arguments and results 

are manipulated and left in these accumulators. The interpreter utilizes 

two such accumulators plus an index register. 

There are a set of commands in the interpretive system that are not 

floating point arithmetic commands. These are program control commands such 

as conditional jumps and index register manipulators. The index is simply 

used to keep track of the number of times command loops are executed. These 

commands, although they could be effected by· use of basic machine language, 

are also provided in the interpretive mode because they can save the user time 

that would be spent entering and leaving the interpretive mode, and almost 

always save space in terms of the coding needed.· 

When the user is ready to execute commands in his program, he first is-

sues a machine language command that causes a jump to the interpreter to take 

place. The interpreter now assumes control and starts fetching commands which 

follow the jump that caused interpretive mode entry. If the user wishes to 

begin executing machine language instructions, he must issue an interpretive 

command that causes the interpreter to relinquish control. In essence, the 



1-3 
FLOATING POINT MANUAL 

74-44-001-C 

machine is running in two different modes; a machine language mode and a 

psuedo-language mode -- in this case, a floating point language. 

The GRI interpretive system offers a novel error trap feature which 

may be invoked by the user to assist in tracking down places in the program 

where data values are causing error checks to occur. Errors such as dividing 

by 0, exceeding the capacity of the psuedo-accumulators in either the mantissa 

or exponent portions, etc., can all be caused by an unknown data base. All 

manipulations of data refer to manipulations in and out of the psuedo-accumulator 

called FAC. This accumulator behaves like the accumulator in an adding machine. 

It must be loaded to initialize it, stored to save it, and all arithmetic op-

erations leave their results in the accumulator. Commands with two operands 

are called binary commands and operate on a data word in user memory and 

the contents of FAC, replacing the result in FAC. Commands with one operand 

are called unary commands and operate on FAC, leaving their results in FAC. 

Let us consider a simple example: 

Compute R = ~x2 + y2 

JU $SFI ;enter floating mode 

FLDA X ;fetch X to FAC 

FMPY X ;x2 in FAC 

FSTA Tl ;store FAC in temporary loc 

FLDA Y ;fetch Y to FAC 

FMPY.Y .y2 
' 

in FAC 

FADD Tl ;x2 + Y2 in'FAC 

FSQT ; ~x2 + y2 in FAC 

FSTA R ;store result in R 

FEXT ;exit from floating mode 



1-4 

1.2 Basic Package, $SF!: 

FLOATING POINT MANUAL 
74-44-001-C 

Floating point arithmetic capabilities are provided through an inter-

pretive package. Associated with the' package is an external~internal for-

mat data conversion routine that can be easily tailored to the character set 

being processed. 

The interpretive package is invoked by a normal subroutine call. The 

call is followed by a string of commands ·that are established by use of 

equate statements during the assembly. The last command in the sequence 

causes a return to the calling program. Operations are performed using a 

pseudo accumulator maintained locally by the interpretive package. The 

package also contains a 16 bit pseudo index to allow loops within the command 

sequence. Without this feature, it would be necessary to exit and re-enter the 

interpretive package and perform loop counts outside the interpreter. Al-

though the latter procedure is, in most instances, faster in terms of time 

taken to do the loop, it usually involves considerably more code and, there-

fore, takes more space. 

As an example of a typical problem programmed in the interpreter 

language, we evaluate the polynomial 

which can iteratively be expressed as Y = (((A
4

X+A
3
)x+A

2
)X+A

1
)x+A

0 

as follows: 



JU $SF! 

FLDX M4 

FLDA A4 

LOOP: FMPY x 

FADDD CONST 

FJIX LOOP 

FSTA y 

FEXT 

Y: WRD o,o 

CONST: WRD A3-1 

X: WRD Xl,X2 

A4: WRD A41,A42 

A3: WRD A31,A32 

WRD A21,A22 

WRD All,Al2 

WRD A01,A02 

M4: WRD -4 

1-5 

;ENTER INTERPRETER 

;LOAD PSEUDO INDEX WITH -4 

;LOAD PSEUDO-ACCUMULATOR 

;MULTIPLY IT BY X 

;DEFERRED ADD A3 (THEN A2, 

;COUNT THE LOOP 

;STORE RESULT IN Y 

;EXIT THE INTERPRETER 

;STORAGE SPACE FOR ANSWER 

FLOATING POINT MANUAL 
74-44-001-C 

Al, AO) 

;DEFERRED ADDRESS (GETS CHANGED) 

;TWO WORD FLOATING POINT VALUE OF X 

;FLOATING A4 VALUE 

;A3 

;A2 

;Al 

;AO 

;ONE WORD INDEX COUNT VALUE 



1-6 

1.3 Floating Point Format: 

FLOATING POINT MANUAL 
74-44-001-C 

Internal representation of a floating point number occupies two successive 

locations in memory and consists of a fixed point fraction (mantissa) with an 

associated exponent. The mantissa is in two's complement notation with a 

sign bit followed by 23 bits of significance. The binary point is assumed 

to be immediately to the right of the sign. The exponent, which is the power 

of two by which the mantissa is multiplied, has the range -2003 to +1778 

(z-128 to 2+127). This exponent is represented in "excess 2003" notation by 

adding +2008 to the true exponent. This requires a total of 8 bits and the 

range of the excess 2003 notation is 000 to 3773, where 2003 represents 20. 

Thus, a floating point number looks like: 

15 14" Q 
Word 1 (16 bits) Is I Fraction - most significant f 

Word 2 (16 bits) 
15 87 0 

lFraction - least significant I Exponent I 

This format allows an accuracy of 6+ decimal digits and a range of +l.469368xl0-39 

to +l.7014llxl0+38. 

To obtain correct results, all floating pain~ operations (except FLDA, 

FSTA and FNOR) require the floating point numbers being operated on to be 

normalized; that is, bit 14 of word 1 must be the most significant bit of 

the fraction (mantissa). The only exception to this requirement is a floating 

point zero, which has no significant bits--a normalized floating point zero 

is two words of all zero (mantissa= 0, excess 2003 exponent= 0). 

Note: The mantissa of a normalized floating point number other than zero 

has an absolute value in the range l/2~lmantissal ( 1. 



Examples: 

Decimal 

1.0 

1.25 

-1.0 

-1.25 

100. 

-100. 

(\ i:::: 
v • .J 

0.25 

1T 

1T12 

-1T 

1-7 
FLOATING POINT MANUAL 

74-44-001-C 

Internal Floating Point (octal) 

word 1 word 2 

040000 000201 

050000 000201 

140000 000201 

130000 000201 

062000 000207 

116000 000207 

040000 000200 

040000 000177 

062207 166602 

062207 166601 

115570 011602 

1.4 Internal Registers: 

There are three pseudo~registers contained in the interpreter i) the 

pseudo-accumulator (FAC), ii) a temporary pseudo-accumulator (FTM), and 

iii) the pseudo-index register (FINDX). 

i) FAC - The floating pseudo-accumulator. This consists of three 

locations in the interpreter and is used to contain the left-hand argument 

of a binary floating point command as well as the results of any floating 

point command. It is organized as follows: 

FACHI - contains high order mantissa and sign of value in FAC 

FACLO - contains low order mantissa of value in FAC 

FACXP - contains excess 2000 exnonent of value in FAC 



1-8 
FLOATING POINT MANUAL 

74-44-001-C 

ii) FTM - temporary pseudo-accumulator. This consists of three lo-

cations analogous to FAC. They are named FTMHI, FTMLO, and FTMXP. The 

temporary accumulator is used to hold an additional floating point value 

for those commands which require two floating point values in order to op-

erate, e.g. a type II (binary) command (see 2.2.2). 

iii) FINDX - pseudo index. This consists of one location of the same 

name and holds the current value of the index. 

Note: FACHI, FACLO and FTMHI, FTMLO are treated as full 31 bit double 

precision quantities for the basic arithmetic operations add, sub-

tract, multiply, and divide. 



:l-1 

CHAPTER TWO 

BAS IC COt1MANDS 

2.1 Command Categories: 

FLOATING POINT MANUAL 
74-44-001-C 

The commands are of the following categories: 

I load & store 

II binary 

connnands 

III unary 

connnands 

IV index 

connnands 

.v conditionals 

VI exit 

;'the connnand specifies the source or destina­

tion of floating point data - the corresponding 

destination or source is the pseudo accumula­

tor. 

th~ command specifies the source of the 

rightmost operand - the floating accumulator 

contains the leftmost operand. The result 

will be in the accumulator~ 

the command merely specifies the function to 

be performed on the accumulator. The result 

will be in the accumulator. 

the command specifies the source or destina­

tion of an index value - the corresponding 

destination or source.is the pseudo index. 

the connnand specifies an address to which con­

trol passes if the test defined by the command 

is true - the address must contain another 

floating point command. Tests may be per­

formed on the floating accumulator, certain 

flags, and the index. 

this command causes a return to the calling 

program. 



2-2 
FLOATING POINT MANUAL 

74-44-001-C 

The load & store (Type I) and binary (Type II) commands may 

specify deferred (indirect and auto-indexed) addressing mode. Deferred 

addressing in floating point commands operates exactly as in machine 

language. 

2.2 Command Descriptions: 

2. 2 .1 TYPE I COMMANDS -- LOAD & STORE COMMANDS 

LOAD FLOATING ACCUMULATOR (AC) 

mnemonic address code no. of words 

FLDA x 01 2 

The contents of the location specified by X and X + 1 are treated as 

a floating point number and are loaded int~ the floating point pseudo ac-

cumulator. The floating point number in locations X and X + 1 is split into 

three parts i) X, which consists of the high order mantissa, goes into 

FACHI; ii) bits 8-15 of X + 1, which consists of the low order mantissa, 

goes into bits 8-15 of FACLO and bits 0-7 of FACLO are set to zero; and 

iii) bits 0-7 of X + 1, which consists of the excess 2008 exponent, goes 

into bits 0-7 of FACXP and bits 8-15 of FACXP is set to zero. 

DEFERRED LOAD FLOATING AC 

mnemonic address code no. of words 

FLDAD A 101 2 

The contents of location A is incremented by one, replaced in A, and 

the result is used as the effective address X; then the contents of A are 

incremented and replaced a second time forming the effective address X + 1. 

The contents of X and X + 1 are then treated as a floating point number and 

loaded into FAC as explained under FLDA. 



2-:3 

STORE FLOA1ING AC 

mnemonic address 

FSTA x 

code 

02 

FLOATING POINT MANUAL 
74-44-001-C 

no. of words 

2 

The contents of FAC are rounded into bit 8 of FACLO, bits 0-7 of FACLO 
\ 

are set to zero. Then FACHI, FACLO, and FACXP are packed into a floating 

point number and stored in X, and X + 1. Note that this operation alters 

FAC so that it agrees with the value stor.ed in x,, and X + 1. 

It is also possi~le for the rounding operation to cause exponent over-

flow (excess 200g exponent exceeds.+3778). This can occur only if the 

number being rounded is very close to the largest possible positive float-

ing point number. The value stored in this case will be X = 0777778, 

x + 1 = 177777
8

, and FXFLG will be set non-zero. A successful FSTA will set 

FXFLG to zero. 

DEFERRED STORE FLOATING AC 

mnemonic address code no. of words 

FSTAD A 102 2 

The contents of A are incremented twice as explained under FLDAD, form-

ing effective addresses X and X + 1 into which FAC is stored as explained 

under FSTA. 

2.2.2 TYPE II COMMANDS - BINARY COMMANDS 

All Type II commands depend on both FAC and the argument of the 

command to have normalized mantissas. If unnormalized numbers are· 

used, the results are unpredictable. A FNOR instruction (see 2.2.3) is 

provided to normalize any quantity if it is necessary to do so. Also, 

if all inputs are normalized, the results in FAC will be normalized as 



2-4 
FLOATING POINT MANUAL 

74-44-001-C 

will the value retrieved from FAC by use of an FSTA instruction. 

Type II commands can cause exponent underflow or overflow if the 

number created in FAC by the command has an excess 2008 exponent out­

side the range 0 to +377g respectively. The occurrence of either 

condition is indicated by FXFLG being non-zero after the operation 

has been completed. It may be tested by use of the FJEV command. 

The successful completion of a Type II command will set FXFLG to zero. 

FLOATING ADD 

mnemonic address ·code no. of words 

FADD x 03 2 

The floating point number in locations X and X + 1 are added to 

the contents of FAC, and the result replaces FAC. 

DEFERRED FLOATING ADD 

mnemonic address code no. of words 

FADDD A 103 2 

The contents of A are incremented twice as explained under FLDAD, 

forming effective addresses X and X + 1, the contents of which are 

added to FAC, and the result replaces FAC. 

FLOATING SUBTRACT 

mnemonic address code no. of words 

FSUB x 04 2 

The floating point number in locations X and X + 1 are subtracted 

from the contents of FAC, and the result replaces FAC. 

DEFERRED FLOATING SUBTRACT 

mnemonic address code no. of words 

FSUBD A 104 2 



2-5 
FLOATING POINT MANUAL 

74-44-001-C 

Effective address is formed from A as in FADDD. 

FLOATING MULTIPLY 

mnemonic address code no. of words 

FMPY x 05 2 

FAC is multiplied by the floating point number in X and X + 1. 

The result replaces FAC. 

DEFERRED FLOATING MULTIPLY 

mnemonic address code no. of words 

FMPYD A - 105 2 

Effective address is formed from A as in FADDD. 

FLOATING DIVIDE 

mnemonic address code no. of words 

FDIV x 06 2 

FAC is divided by the floating point number in X and X + 1. The 

result replaces FAC. Divide check will occur if X, X + 1 is zero or 

not normalized. This causes FAC to be set to the largest possible 

floating point number of the. sign which would be the result of the 

divide if it could take place, and the divide check flag (FDFLG) will 

be non-zero. A successful divide sets FDFLG to zero. 

Note - if both FAC and X are 0, the result will be the largest 

possible positive floating point number in FAC with FDFLG set non-zero. 

DEFERRED FLOATING DIVIDE 

mnemonic address code no. of words 

FDIVD A 106 2 

Effective address is formed from A as in FADDD. 



2-6 

FLOATING ADD MAGNITUDE 

mnemonic address 

FADM x 

code 

07 

FLOATING POINT MANUAL 
74-44-001-C 

no. of words 

2 

The absolute magnitude of the floating point number in X and 

X + 1 is added to FAC. The result replaces FAC. 

DEFERRED FLOATING ADD MAGNITUDE 

mnemonic address code no. of words 

FADMD A 107 2 

Effective address is formed from A as in FADDD. 

FLOATING SUBTRACT MAGNITUDE 

mnemonic address code no. of words 

FSBM x 10 2 

The absolute magnitude of the floating point number in X and 

X + 1 is subtracted from FAC. The result replaces FAC. 

DEFERRED FLOATING SUBTRACT MAGNITUDE 

mnemonic address code no. of words 

FSBMD A 110 2 

Deferred subtract magnitude. Effective address is formed from 

A as in FADDD. 



2-7 

2.2.3 TYPE III COMMANDS - UNA.RY COMMANDS 

FLOATING ABSOLUTE VALUE 

mnemonic address 

FABS none 

code 

14 

FLOATING POINT MANUAL 
74-44-001-C 

no. of words 

1 

The absolute value of the FAC replaces the FAC, i.e. i FAC I 
replaces FAC. 

FLOATING SQUARE 

mnemonic address code no. of words 

FASQ none 15 1 

Tne square of FAC is returned in FAC. Tnis instruction requires 

that the mantissa of FAC be normalized prior to execution as in 

type II instructions (see 2.2.2). 

FLOATING NORMALIZE 

mnemonic address code no. of words 

FNOR none 16 1 

The contents of FAC are normalized and replace FAC. This in-

struction can cause exponent overflow or underflow in which case FAC 

will contain the largest possible negative floating point number or 

all zeros respectively and FXFLG will be set non-zero. A successful 

normalize will set FXFLG to zero. 

FLOATING NEGATIVE VALUE 

mnemonic address code no. of words 

FNEG none 17 1 

The contents of FACHI and FACLO are twos complemented, i.e. -FAC 

replaces FAC. 



2-8 

2.2.4 TYPE IV COMMANDS - INDEX COMMANDS 

LOAD INDEX 

mnemonic address 

FLDX I 

code 

27 

FLOATING POINT MANUAL 
74-44-001-C 

no. of words 

2 

The pseudo-index is loaded with the 16 bit contents of location I. 

STORE INDEX 

mnemonic address code no. of words 

FSTX I 30 2 

The 16 bit pseudo-index is stored into location I. 

2.2.5 TYPE V COMMANDS - CONDITIONALS 

These commands allow the program to alter the path of control which the 

interpreter is following based on the results of certain tests. The lo-

cation to which the interpreter is caused to transfer must contain a valid 

floating point command. If the interpreter should encounter an invalid com-

mand at any time during execution, it will come to a halt with the address 

of the illegal command displayed in the MB register on the front panel. This 

is the only halt in the program. 

JUMP UNCONDITIONAL 

mnemonic address code no. of words 

FJMP c 20 2 

Unconditional jump. The interpreter will take the next command 

from location C and continue from there. 



2-9 

JUMP IF AC POSITIVE 

mnemonic address 

FJAP c 

code 

21 

FLOATING POINT MANUAL 
74-44-001-C 

no. of words 

2 

If FAC is positive or zero, the interpreter takes the next 

command from location C. Otherwise, the interpreter continues with 

the command following the FJAP connnand. 

JUMP IF AC ZERO 

mnemonic address code no. of words 

FJAZ c 22 2 

If FAC is Oj the interpreter will take the next command from 

location C. Otherwise, the interpreter continues with the command 

following the FJAZ command. Note: The interpreter tests only FACHI 

for zero. FAC may be non-zero and FACHI = 0 only if the number in 

FAC is not normalized. This condition cannot be created by the inter-

preter unless the user has introduced tmnormalized numbers into his 

calculations (see 2.2.2). 

JUMP IF AC NEGATIVE 

mnemonic address code no. of words 

FJAN c 23 2 

If FAC is negative, the interpreter will take the next command 

from location C. Otherwise, the interpreter continues with the com-

mand following _the FJAN command. 



2-10 

JUMP IF EXPONENT OVERFLOW (OR UNDERFLOW) 

mnemonic address 

FJEV c 

code 

24 

FLOATING POINT MANUAL 
74-44-001-C 

no. of words 

2 

If FXFLG is non-zero, the interpreter will take the next command 

from location C and set FXFLG to zero. ptherwise, the interpreter will 

continue with the command following the FJEV command. The FJEV command 

is used to detect the occurrence of either exponent overflow or exponent 

underflow resulting from the execution of the last preceding Type II command 

or FSTA, FNOR, or FASQ. If desired, the type of overflow may be detected 

by an FJAZ command at location C, since exponent underflow returns FAC=O, 

and exponent overflow returns the largest number (+ or -) in FAG. 

JUMP IF DIVIDE CHECK 

mnemonic address code no. of words 

FJDC c 25 2 

If FDFLG is non-zero, the interpreter will take the next command 

from location C and set FDFLG to zero. Otherwise, the interpreter con-

tinues with the command following the FJDC command. The FJDC command is 

used to detect the occurrence of divide check during execution of the last 

previous FDIV or FDIVD command. If desired,· one may test whether th~ con-

dition occurred because the divisor was 0 or not normalized by checking the 

divisor with an FLDA and FJAZ instruction at location C. 

JUMP IF INCREMENTED INDEX NOT ZERO 

mnemonic address code no. of words 

FJIX c 26 2 

The pseudo-index (FINDX) is incremented by one, and if the result is 

non-zero, the interpreter takes the next command from location C. 



2-11 FLOATING POINT MANUAL 
74-44-001-C 

If the result is O, the interpreter continues with the command follow-

ing the FJIX instruction. The pseudo-index will contain the incremented 

value whether or not the jump occurs. 

2.2.6 TYPE VI COMMAND - EXIT 

EXIT FLOATING INTERPRETER 

mnemonic address code no. of words 

FEXT none 0 1 

This command causes the interpreter to return control to the 

user at the location immediately following the FEXT. None of the 

internal registers or flags are altered by either the FEXT or entering 

the package. The AO is returned in the ADD state. 



3-1 

CHAPTER THREE 

DATA CONVERSION 

3.1 Introductiori: 

FLOATING POINT MANUAL 
74-44-001-C 

Two conversion routines are provided; one to convert from floating point 

to character, the other to convert from character to floating point. Both 

conversion routines are core to core operations rather than being bound to a 

particular I/O device (that is, characters are fetched from and stored into 

memory). For added flexib.ility, all characters are referenced wit~ an index 

into a character set table called @FCST, which initially contains 8-bit 

ASCII codes. Changing the character set for a specific I/O device can easily 

be accomplished by changing the character codes in @FCST. 

External floating point format is expressed as a mantissa or fraction 

portion and a power of ten by which the mantissa is multiplied. This is 

written as +n.nnnnnn E +nn, where n is a decimal digit. The number to the ·- .·~ 
"-manYissa exponent 

right of the E is the power of ten by which the mantissa is multiplied. Thus, 

-3.527614E+o3 is -3.527614*103 or -3527.614 •. The floating point number 

+172 .100123E-02 is +172 .100123*10-2 or +1. 72100123. 



3-2 
FLOATING POINT MANUAL 

74-44-001-C 

3.2 Floating Point to Character Conversion: 

NAME; 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS: 

CALLING SEQUENCE: 

ARGUMENTS: 

FUNCTION: 

@SFC 

$SFI, @FXC 

FAC, FTM, FXFLG, FDFLG 

JU @SFC 

WRD el-1 

WRD e2 

WRD e3 

return 

el is the address of the location into 

which the first output character is 

. to be stored. 

e2 is the address of the t:Wo word float­

ing point argument. The argument need 

not be normalized but the magnitude must 

be zero or in the range t2-129, 2+128) 

(in decimal this is l.469367E-39 tp 

1. 701411E+38) 

e3 is the address of the error return. 

Converts a signed two word floating 

point argument to a strjng of thirteen 

characters, stored one character per 

word, right justified starting in lo­

cation el. The character string is of 

the format 

(+:~ : f n. nnnnnn E{±)nn 

where n is character representation of a 

decimal digit. 



ERRORS: 

NOTE: 

LENGTH: 

Description of Algorithm: 

3-3 
FLOATING POINT MANUAL 

74-44-001-C 

If normalization of the floating point 

argument caused either exponent over­

flow or underflow, an * is stored rather 

than a leading + or - sign, and when 

conversion is completed, control returns 

to e3. The * can be considered a ~ sign. 

An argument resulting in overflow con­

verts to* 1.701411 E + 38. An argu­

ment resulting in underflow converts to 

*0.000000 E + 00. 

The magnitude of the three smallest nor­

malized non-zero floating point numbers 

are converted to one of the character 

strings ±l.469367E-39 or +l.469368E~39. 

These two character strings cannot be 

converted back to a floating point number. 

The smallest character string which can 

successfully be converted to a floating 

point number is +l.469369E-39. Therefore, 

if the user converts any one of these 

three numbers to a string of characters, 

he should be aware that he cannot suc­

cessfully convert the string back to 

a floating point number. 

306g (19810) locations 

The sign of the floating point argument is stored, the argument is then 

normalized, and the absolute value is taken and used for conversion. If nor-

malization caused either exponent overflow or underflow, the error return is 

taken when conversion is completed and an asterisk (which may be considered 

as a'-'), is stored rather than a leading sign. 



3-4 
FLOATING POINT MANUAL 

74-44-001-C 

Since the output character string is of the fonn{:}n.nnnnnnE~, the 

floating point argument is first manipulated to make it greater than or 

equal to one and less than ten. (If the floating point argument is exactly 

zero, this portion of the algorithm is bypassed.) Making !~floating 

point argument(lO is accomplished by first checking if it is~ 1. If it 

is not, it is multiplied by the largest possible power of ten (1038) and, 

if necessary, it is multiplied once again by ten to force it~l. The ar-

gument is then checked for( 10. If it is not(lO, it is forced so by 

dividing by the largest power of ten, which is less than the argument. The 

powers of ten used in mul~iplying and dividing the argument to force its 

value to be between one and ten are used to form the exponent portion of 

the character string. 

With the floating point argument (stored in FAC) now~l and<'lO, the 

mantissa portion of the character string can be formed. FACHI, FACLO is 

treated as a double precision mixed number with FACXP showing the position 

of the binary point. FACHI, FACLO is left shifted (with overflow bits shifted 

into a 3rd word) until the binary point immediately precedes bit 15 of FACHI. 

The overflow word is then converted to character and stored as the first digit 

of the mantissa, immediately followed by a decimal point. The fraction por-

tion of the mantissa is formed by successively multiplying FACHI, FACLO by 

1010 and storing the most significant word of the 3 word product. The ex-

ponent is then converted and stored, preceded by an E and either a + or - sign. 



3.3 Character to Floating Point: 

NAME: 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS: 

CALLING SEQUENCE: 

ARGUMENTS: 

3-.5 

@SCF 

$SFI, @FXC 

FLOATING POINT MANUAL 
74-44-001-C 

FAC, F!M, FXFLG, FDFLG 

JU @SCF 

WRD el-1 

WRD e2 

WRD e3 

return 

el is the address of the first character 

in the string to be converted. The char-

acter string should be stored one charac­

ter p_er __ word -~ight justified in the format 

{

n [n ••• ] • [n ••• i\ f { +_E t±;\ n[n~ 
[.] n [n ••• ] { J J 

' .,,,,.,, . ~ ...... -:"'" =--

[l>. ••• ] [~] 

The notational conventions are: 

1. n is a decimal digit 

2. /:Jr. is a space 

· 3. ) is a delimiter 

4 •. braces[] contain optional items 

which may or may not be included. 

5. bra.:kets{}contain alternate items 

where one and only one of the items 

must.be included. 

6. ellipses •W• denote permissible 

repetition of the pr~ceding item. 

The string is treated as follows: 

1. If there is no sign, it is treated as +. 



FUNCTION: 

ERRORS: 

3-6 
FLOATING POINT MANUAL 

74-44-001-C 

2. If the leading sign is * or it 

is treated as -. 

3. If there is no decimal point, it is 

assumed to follow the last mantissa 

digit. 

4. Characters are processed up to and 

including the first~ , or 1310 char­

acters have been processed. 

e2 is the addres_s where the two word 

floating point answer is stored. 

e3 is the address of the error return. 

Converts a string of decimal characters 

to a two word normalized floating point 

answer. The two word normalized float­

ing point answer is returned in registers 

AX (MSH), AY (LSH), and is stored in lo­

cation e2 (MSH) and e2+1 (LSH). The AO 

is returned in the ADD state. 

A scan error occurs if the character 

string is illegally formed. Location 

@SCF+3 is set to zero and control im­

mediately returns to e3. 

An overflow error occurs if the charac-

ter string contains more than 1010 man­

tissa digits (discounting leading zeros) 

or if the magnitude of the number is out­

side the range l.469369E-39 to l.701411E+38. 

Location @SCF+3 is set to one and control 

immediately returns to e3. 

Whenever control returns to e3, the AO 

is in the ADD state. 



NOTES: 

LENGTH: 

Description of Algorithm 

3-7 
FLOATING POINT MANUAL 

74-44-001-C 

See NOTES under @SFC. 

406a (26210) locations 

The mantissa portion of, the character string is converted to a 

double precision integer by multiplying the answer by 1010 and adding 

in the latest digit. This double precision mantissa is then converted 

to a normalized floating point number. A count of the number of digits 

to the right of the decimal point is kept and, after the exponent portion 

of the character string has been converted, this digit count is subtracted 

from it to obtain the final exponent. The magnitude of the final exponent 

is used as an index into the positive floating point powers of ten table 

(see 3.6). The floating point number obtained from the mantissa portion 

of the character string is· then multiplied (if the final exponent was 

positive) or divided (if the final exponent was negative) by this power 

of ten to form the final floating point answer. If there was a leading 

minus sign or asterisk, the floating point answer is two's complemented 

before return. 

3.4 Common Tables & Routines; 

The conversion routines @SFC and @SCF reference a common routine called 

@FXC, which has four entry points. @FXC occupies a total of 2138 (13910) 

locations. Since @FXC is common to both @SFC and @SCF, it need appear only 

once if the conversion routines are used together. In the discussi'on of @FXC 

which follows, each of the four entry points is treated separately for the 

sake of clarity. 



3.5 Character Set Table: 

NAME: 

FUNCTION: 

NOTES: 

LENGTH: 

3-8 

@FCST 

FLOATING POINT MANUAL 
74-44-001-C 

Comttlon external character set table for 

floating point data conversion routines. 

The table is ordered as follows: 

Location Contents 

@FCST code for zero 

@FCST+l code for nine 

@FCST+2 code for + 

·@FCST+3 code for -

@FCST+4 code for * 
@FCST+5 code for • 

@FCST+6 code for E 

@FCST+7 code for space 

@FCST+lO code for delimiter 

The standard table is in full 8-bit ASCII. 

The delimiter character at @FCST+lOs is a 

carriage return and may be changed if 

desired. 

The entire table may be replaced with a 

different character set provided that the 

numeric codes in the new set are sequential 

and the code for zero (O) is less than the 

code for nine. No code may occupy more 

than 15 bits. 

12g (1010) locations 



3.6 Floating Point Powers of Ten Table; 

NAME: 

FUNCTION: 

@FPT: 

NOTE: 

LENGTH: 

3-9 

@FPT 

FLOATING POINT MANUAL 
74-44-001-C 

Common floating point positive powers of 

1010 table for floating point data con­

version routines. Each floating ppint 

power occupies two locations in the table. 

The table is organized as follows: 

WRD 

WRD 

WRD 

45473,46777 

74136, 160 77 3 

40000,201 

constant for 1038 

constant for 1037 

constant for ioO 

@FPT is located at @FCST+l2g 

116g (7810) locations 



3.7 Left Shift FAC: 

NAME: 

SUBROUTINES CALLED: 

ALTER.ED REGISTERS & FLAGS:. 

CALLING SEQUENCE: 

ARGUMENTS: 

FUNCTION: 

ERRORS: 

NOTES: 

LENGTH: 

3-10 

@LSHF 

none 

' none 

FLOATING POINT MANUAL 
74-44-001-C 

Load AX with the negative shift count 

JU @LSHF 

return 

Register AX contains minus the number of 

places to left shift FACHI, FACLO 

Performs double precision left shift of 

FACHI, FACLO. On return, the shifted 

result is in AX (MSH), AY (LSH). Any 

.carry out of MSH is found in location 

@DIG+l. 

none detected 

@LSHF=@FCST + 170g 
-v 

@DIG+l=@LSHF + 14g 
238 (1910) locations 



3.8 Multiply FAC by Ten: 

NAME: 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS: 

CALLING SEQUENCE: 

ARGUMENTS: 

FUNCTION: 

ERRORS: 

NOTES: 

LENGTH: 

3-11 

@lOX 

@LSHF 

FAC 

JU @lOX 

n/a 

FLOATING POINT MANUAL 
74-44-001-C 

Performs unsigned multiplication of 

FACHI, FACLO by 1010 • The most sig-

nif icant word of the three word product 

is returned in AY. The second and 

third words of the product are found 

in FACHI, FACLO respectively. 

n/a 

@lOX=@FCST-+ 130 B 

408 (3210 ) locations 



4-1 

CHAPTER FOUR 

EXTENDED COMMANDS 

4.1 Introduction: 

FLOATING POINT MANUAL 
74-44-001-C 

In addition to the basic f~oating point interpreter, a set of mathe~atical 

functions is supplied which can be invoked by a command in the same line with 

the basic commands. These functions also call the floating interpreter and 

since the interpreter has already been entered at this point, a push-down 

scheme is supplied to allow recursive calls such as this. The push-down list 

will accomodate recursive calls up ·to seven levels. 

It should be noted that all pseudo registers - the floating accumulator, 

the temporary acct.tmulator and index - and the flags, FDFLG and FXFLG, are 

common to all levels of the recursion. In other words, if an extended func-

tion which calls the interpreter recursively is invoked by a command, these 

registers and/or flags may be altered. Information detailing such factors 

is supplied in the documentation accompanying the individual package. 

The push-down scheme and command code structure is tailored so that the 

user may easily add his own functions. The procedure for doing this is 

described in section 5.3. 

The mathematical subroutines which are supplied with the extended package 

are SINE, COSINE, ARC TANGENT, LOGe, EXPONENTIAL, and SQUARE ROOT. The com .... 

mands associated with these are FSIN, FCOS, FATN, FLNE, FEXP, and FSQT (codes 

31, 32, 33, 34, 35, and 36) respectively. They each perform the desired 

function on the contents of the floating pseudo-accumulator and re.turn the 

results in the same register. Errors which can result, such as attempting 

to take the square root or log of a negative number, are flagged by the 



4-2 
FLOATING POINT MANUAL 

74-44-001-C 

routines in internal locations not accessible in interpretive mode, i.e. 

cannot be tested with an interpreter command. An error trap routine is 

available which will handle these and other errors when they occur (see 

Appendix E). 

In the writeups that follow, FAC is the floating pseudo-accumulator, 

FTM is the temporary floating pseudo-accumulator, FDFLG is the divide check 

flag, FXFLG is the exponent overflow flag, and FINDX is the pseudo-index. 



4.2 Sine, Cosine: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-3 
FLOATING POINT MANUAL 

74-44-001-C 

FSIN (code 31), FCOS (code 32) 

a. FSIN - calculates the SINE of the 

contents of FAC which is assumed to be 

a radian argument and replaces FAC 

with the result. 

b. FCOS - calculates the COSINE of 

the contents of FAC which is assumed to 

be a radian argument and replaces FAC 

with the result. 

none 

FAC, FTM, FXFLG 

For FCOS, the absolute value of FAC is 

subtracted from -n-12 (=l.570796) and the 

SINE of the result is taken. 

For FSIN, the argument (FAC) is first 

multiplied by 2/TT to convert it into 

units of a quarter circle, and the result 

is checked for its absolute magnitude 

.being less thari one. If so, it is a 

first quadrant quantity and the procedure 

continues with the series calculation 

described later. If the magnitude of the 

result is greater than or equal to one, 

its sign is saved, it is forced positive, 

and the integer portion is chif ted out -

leaving a positive fraction (referred to 

as Yin the following). The last two 

bits of the integer portion and the sign 

are used to determine which quadrant the 

original argument was in and the quantity 

Y is altered as follows: 



sign last two bits 

+ 00 

+ 01 

+ 10 

+ 11 

00 

01 

10 

11 

4-4 

y 

Y7Y 

1-Y-?Y 

-Y~Y 

, -1 + Y-?Y 

-Y-?Y 

-1 + Y-7Y 

y~y 

1-Y~Y 

FLOATING POINT MANUAL 
74-44-001-C 

quadrant 

I 

II 

III 

IV 

IV 

III 

II 

I 

This new value of Y is then treated as a fraction and is normalized. 

The series used to calculate the sine is basically a 5 term Chebyshev 

economized polynomial approximation of a 6 term McLaurin series for sin f!ftl 
The coefficients are further "adapted"·to allow the series to be calculated 

with one less multiplication than would be the case for a standard polynomial 

evaluation procedure. This results in the sine being calculated as follows: 

where 

z = (Y + Ao) * y + A 1 

and 

Ao = -14.93104811 

Al -39. 74079011 

A2 = +36 7. 8139482 

A3 = +23410 .oo 773 

A4 = +o.0001514440767 

Accuracy is 6 + significant decimal digits for arguments in the first 



4-5 
FLOATING POINT MANUAL 

74-44-001-C 

quadrant ( l FAc!<1I}. Accuracy loss is about two thirds of a decimal 

digit for each complete rotation, i.e. if 2Trn.S jFAC j <2n (n+l), the ac-

2 curacy is about 6 - -yi. decimal digits. 



4.3 Arc Tangent: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLA.GS: 

METHOD: 

4-6 

FATN (code 33) 

FLOATING POINT MANUAL 
74-44-001-C 

The arc tangent of the contents of FAC 

replace FAC. The result is in radians 
1T 1T. and lies in the range < - 2, + 2>. 

none 

FAC, FTM, FDFLG, FXFLG 

The argtDDent (FAC) is checked for its 

absolute_ magnitude being greater than or 

equal to one. If so, a flag is set and 

the reciprocal of the argument is taken 

and replaces FAC. 

The arc tangent of the quantity in FAC 

is then approximated by 

(Ao + A1 x2+ A2x4) 
Z • ATAN X = X • (BcJ + B1X4 B2X4) 

where X is the argument and 

Ao = 0.6402481953 

A1 = 0 .• 4229908144 

A2 = 0.~264694361 
Bo = 0.6402487022 

B1 = ~.63637~9373 
B2 = 0.1108328778 

If the flag was set by the initial check, 

the value Z is checked for + or -. If Z 

is +.{¥'- z) replaces z .. If z is -, 

(- lf + z) replaces z. (Th.is is effected 

by subtracting Z from+ or - f depending 

on the sign of Z.) 

If the flag was not set by the initial 

check, the value Z is not altered. Accur­

acy is 6+ significant decimal digits for all 
arguments. 



4.4 Natural Log: 

COMMA.ND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-7 

FLNE (code 34) 

FLOATING POINT MANUAL 
74-44-001-C 

The natural log of the contents of FAC 

replace FAC. 

If FAC is negative, a flag (FNLNF) is set, 

FAC is forc~d positive, and the natural 

log taken. 

FAC, FTM, FXFLG, FNLNF (FPLNE+4) 

The quantity in FAC is 

Z = X · zI where .5~X <1 and I is an 

integer. 

ln Z = ln [X · zI] 

= ln X + I ln2 

The quantity ln X is approximated by the 

polynomial. 

ln x = ln A - z (Y + y3/3 + y5/s-+ y7/7) 

which is a Taylor series evaluated at A 

where A =Fz-

A - X 
·and Y =A+ X 

The product [I ln 2] is added to ln X, and 

the sum is left in FAC. 

A = J. 70710678 

ln A= 0.34657359 

ln 2 = 0.69314718 

Accuracy is 6+ significant decimal digits 

except for .904.SZ~l.110. In the latter 

range, accuracy decreases as z-+ 1. 



4.5 Exponential: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-8 

FEXP (code 35) 

FLOATING POINT MANUAL 
74-44-001-C 

The exponential of the contents of FAC 

replace FAC. (FAC = eFAC) 

If the result is going to be out of 

range, i.e. if FAC 88.722, a flag 

(FEXOF) is set. If FAC was negative, 

zero is left in FAC. If it was positive, 

_the largest positive number is left. 

FAC, · Fl'M, FDFLG, FXFLG, FEXOF (=FPEXP+l) 

eX = 2X log2 e 

= 2I + F = 2I . 2F 

where I is the integer portion 

·and Fis the fractional portion of X log2 e 

2F is computed by tlie continued 

fraction·: 

A -1 
B+F+C --F+D 

F 

where 

A = -34.624680982 

B = -17.312340491 

c = 104.0684491 

D = 20.813689813 

log2 e = 1.442695041· 

Accuracy is 6+ significant decimal digits 

for fxfS10. ~Accuracy decreases slowly as 

fxJ becomes large until atfxf·=ss,' the ac­

curacy is 5+ significant decimal digits. 



4.6 Square Root: 

COMMAND: 

FUNCTION: 

ERRORS: 

ALTERED REGISTERS & FLAGS: 

METHOD: 

4-9 

FSQT (code 36) 

FLOATING POINT MANUAL 
74-44-001-C 

The square root of IFAClreplaces FAC. 

If FAC is negative, it is forced posi­

tive, and FSFLG (internal to the square 

root routine) is set non-zero. If FAC 

is positive, FSFLG is set to zero. 

FAC, FSFLG (=FPSQT + 6) 

After FAC is forced positive and FSFLG 

is determined, the exponent of the re-

sult is determined by dividing FACXP 

by two (by shifting right once) and 

adding 1008 to preserve the excess 2008 

notation. If the original exponent was 

oddj the shifted FACXP is increased by 

one; otherwise, it is left alone. If 

the original exponent was even, FACHI 

and FACLO are shifted left once. Since 

the algorithm treats FACHI and FACLO as 

a 32 bit positive fraction with the 

·binary point to the left of bit 15 of 

FACHI, the fact that the left shift will 

set the sign bit (bit 15) of FACHI does 

not matter. 

The algorithm then proceeds to determine 

a fourteen bit first approximation to 

the square root by a method based· ion the 

fact that N2 is the sum of the first N 

odd numbers. This method also leaves as 

a "remainder" the difference between the 

square of the approximation and the original 



4-10 
FLOATING POINT NUMBER 

74-44-001-C 

number. This remainder and the initial 

approximation are then used for one 

Newton-Raphson iteration which completes 

the square root using the single pre­

cision divide entry (FSDVD) of the 

floating point package. 

Accuracy is 6+ significant decimal 

digits for all input arguments. 



5-1 

CHAPTER FIVE 

NON-INTERPRETIVE MODE USAGE 

5.1 Introduction: 

FLOATING POINT MANUAL 
74-44-001-C 

Certain sections of the floating point interpreter are directly 

accessible to the user without the need to supply commands. These sec-

tions may be invoked by a JU SUBR instruction and, after the operation 

is completed, will return control to the instruction following the jump. 

In order to use these routines successfully, it is necessary to know that 

in addition to the pseudo-accumulat.or · (FACHI, FACLO, and FACXP) there is 

a "temporary" accumulator (FTMHI, FTMLO, and FTMXP) which is used to 

contain the floating argument of a Type II command during the execution 

of the operation (see 1.4). This temporary pseudo-accumulator, referred 

to as FTM, is loaded in the same manner as FAC (see FLDA instruction in 

2.2.1). If the user desires to access the routines described in this sec-

tion, he may need to load FTM in addition to FAC for those routines that 

operate on both accumulators. 

These sections will be described as subroutines since they are essen-

tially used in this manner when accessed directly. When the floating in-

terpreter resides in memory, all of these subroutines also lie in memory. 



5-2 

5. 2 Subroutines:·: 

FLOATING POINT PACKAGE 
74-44-001-C 

5.2.1 Double Precision Fixed Point Add 

NAME: FDAD 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES; 

JU FDAD 

FACHI, FACLO; F'TMHI, FTMLO; AO must be in 

ADD state. 

FACHI, FACLO and FTMHI, FTMLO are treated 

as signed double precision numbers and 

added. The result of the addition ap­

pear~ in FACHI, FACLO. FTMHI, FrMLO.are 

left unchanged. 

If arithmetic overflow occurred (two 

numbers of like sign are added and the 

result has opposite sign), the link 

will be set to 1. If no arithmetic 

overflow occurred, the link will be 

zero. 

The AO is in the ADD state upon return. 

It is possible to generate the maximum 

negative number (FACHI = 1000008 , FACLO = 
0000008), which is.not considered a case 

of arithmetic overflow; and so the link 

will not be set. 



5-3 
FLOATING POINT MANUAL 

74-44-001-C 

5.2.2 Double Precision Fixed Point Multiply 

NAME: FDMPY 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES: 

JU FDMPY 

FACHI, FACLO; FTMHI, FTMLO 

AX must be set to the value in FTMHI 

AY must be set to the value in FTMLO 

The AO must be in the ADD state 

FACHI, FACLO and FTMHI, FTMLO are 

treated as signed double precision 

numbers and are multiplied.·. The high­

order 30 bits of the 62 bit product 

are returned, right justified, in 

FACHI, FACLO. The value in FTMHI, 

FTMLO is unchanged. 

The AO is in the ADD state upon return. 

The 30 bit product is inaccurate in the 

right-most two bits. If FACHI, FACLO 

and FTMHI, FTMLO are each considered as 

a double precision fraction with its 

binary point immediately to the right 

of the sign, i.e. between bits 14 and 

15 of the high~order word, the binary 

point of the product will be shifted 

right once so that it is between bits 

13 and 14 of FACHI. 



5-4 
FLOATING POINT MANUAL 

74-44-001-C 

5.2.3 Double Precision Fixed Point Divide 

NAME: FDDIV 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES: 

JU FDDIV 

FACHI, FACLO; FTMHI, FTMLO 

AX must be set to the value in FTMHI 

AY must be set to the value in FTMLO 

The AO must be in the ADD state 

FACHI, FACLO and FTMHI, FTMLO are 

treated as signed double precision 

numbers, and the former is divided 

by the latter. The quotient appears 

in FACHI, FACLO. The value in FTMHI, 

FTMLO has been destroyed. 

The quotient will be 30 bits in FACHI, 

FACLO with the binary point displayed 

one position to the right in the same 

way as explained in the note for FDMPY. 

The absolute magnitude of.'.FT:t-O:II, FTMLO 

must have bit 14 .of FT:t-O:II set for the 

divide to take place. If this con­

dition is not satisfied, divide check 

will ·occur. 

The AO is in the ADD state upon return. 

The rightmost three bits of the quotient 

are inaccurate. Divide check causes 

FACHI, FACLO to be s_et to a large double 

precision number of the sign which would 

result if the divide could take place 

(FACHI, FACLO = 077777, 177400 or·.100000, 

000400 for+ and.- respectively); also, 

FDFLG is set non-zero. A successful 

divide sets FDFLG to zero .. 



5.2.4 Single Precision Divide 

5-5 
FLOATING POINT MANUAL 

74-44-001-C 

NAME: FSDVD 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

JU 

RRC 

This code may be 

{ 
SFM 

eliminated if the 
RR remainder is to be 

disregarded. NOP 

RR 

JU FSDVD 

AX = high order dividend ~must be a posi­

FLODV = low order dividend tive 30· bit 
double preci-

sion number (see 

below) 

AY = negative divisor 

The AO must be in the ADD state. 

This is an inner loop which, if used 

correctly, can be invoked to supply an 

unsigned single precision divide. The 

quotient is incomplete in the sense that 

it is right shifted and truncated upon 

return. 

To obtain a complete single precision 

unsigned divide, the following procedure 

may be used. First, load AX and the lo­

cation FLODV with a valid two word posi­

tive proauct (bits 14 and 15 of AX must 

be zero). Then load AY with the positive 

single precision divisor and twos_comple­

ment it. The following code will then 

perform the divide: 

FSDVD ;INCOMPLETE QUOTIENT IN TRP 

AO,Ll,O ·;GET LAST BIT OF QUOTIENT 

NOT LNK ;UPPATE 

AO,AX ;REMAINDER 

;IN AX 

TRP,Ll,AY ;TRUE QUOTIENT IN AY 



NOTES: 

5-6 
FLOATING POINT MANUAL 

74-44-001-C 

Note that the incomplete quotient is in 

the TRP register on return from FSDVD. 

The AO is in the ADD state upon return. 

If either the link is set or AY (the 

final quotient) is negative following 

t~is code, divide check has occurred. 

This means that the high-order portion 

of twice the dividend was greater than 

or equal to the divisor, and the quotient 

is incorrect. 

No flag is set if divide check occurs. 



5.2.5 Floating Point Normalize 

5-7 
FLOATING POINT MANUAL 

74-44-001-C 

NAME: FNORM 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

1' . J 

or, 
2) 

RM 

ZM 

MRI 

RM 

JU 

JU 

JU FNORM 

FACHI, FACLO, FACXP 

Same as FNOR command (see 2.2.3), .in­

cluding the setting of FAC and FXFLG 

should exponent overflow or underflow 

occur. 

The advantage of the accessibility of 

this routine lies mainly in the saving 

of time. For instance, to convert a 

single precision integer value to 

floating point, the following two 

methods could be used. (Assume the 

integer is in AX, and the floating 

equivalent is wanted in location X.) 

AX, FACHI 

FACLO 

217, AX 

AX, FACXP 

FNORM 

$SFI 

FST~ x 

FEXT 

RM AX, FACHI 

ZM FACLO 

MRI 217, AX 

RM AX, FACXP 

JU $SFI 

FNOR 

FSTA x 
~F.Y'r 



NOTE: 

5-ts 
FLOATING POINT MANUAL 

74-44-001-C 

Version 1) takes one more location in 

core and saves about 80 machine cycles. 

The AO may not be in the ADD state upon 

return. 



5-9 

5.2.6 Negation and Store 

FLOATING POINT MANUAL 
74-44-001-C 

NAME: FACMP, FACMA · 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

JU FACMP or JU FACMA 

FACHI, FACLO or AX, AY 

a) FACMP - replaces FACHI, FACLO with 

its two's complement. Result is 

also returned in AX, AY. 

b) FACMA.- replaces FACHI, FACLO with 

the two's complement of the double 

precision number in AX, AY. Result 

is also returned in AX, AY. 

FTCMP, FTCMA 

JU FTCMP or JU FTCMA 

FTMHI, FTMLO or AX, AY 

a) FTCMP - replaces FTMHI, FTMLO with 

its two's complement. Result is 

also returned in AX, AY. 

b) FTCMA - replaces FTMHI, FTMLO with 

the two's complement of the double 

precision number in AX, AY. Result 

is also r.eturned in AX, AY. 

FASAX 

JU FASAX 

AX,AY 

Stores AX into FACHI and AY into FACLO 

FTSAX 

JU FTSAX 

AX,AY 

Stores AX into FTMHI and AY into FTMLO 



5-10 
FLOATING POINT MANUAL 

74-44-001-C 

5.2.7 Generate Zero or Largest Number 

NAME: FOFAC 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NAME: 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

JU FOFAC 

none 

s~ts FACHI, FACLO and FACXP to zero 

also returns AX and AY = 0 

FCMAX 

JU FCMAX 

FACHI 

FACHI, FACLO, FACXP will be set to the 

maximum possible floating point number 

of the original sign of FACHI. 

1) If FACHI < 0, this routine sets 

FACHI = 100000 

FACLO = 000400 

FACXP = 000377 

2) If FACHI >o, this routine sets 

FACHI = 077777 

FACLO = 177400 

FACXP = 000377 

Upon return, AX and AY will be equal to 

the value stored in FACHI and FACLO re­

spectively. 



5-11 

5.2.8 Floating Arithmetic Right Shift 

FLOATING POINT MANUAL 
74-44-001-C 

NAME: FARSN 

CALLING SEQUENCE: 

INPUT: 

FUNCTION: 

NOTES: 

JU FARSN 

AX, AY, FARSC 

This routine arithmetically right shifts 

the double precision number in AX, AY 

by the number of places indicated by 

-FARSC. 

FARSC must be set to a negative count 

before calling FARSN. 



5-12 

5.2.9 Other Notes on Non-Interpretive Usage 

FLOATING POINT MANUAL 
74-44-001-C 

1) The pseudo-index is kept in location FINDX and may be set by the 

user without using an FLDX command (see 2.2.4) by simply storing 

the desired value via a RM R,FINDX where R is a register con-

taining the index value. This, as with FNORM, is a time saver. 

2) The two flags, FXFLG and FDFLG, are in locations defined by their 

names, and can be checked (or cleared) in non-interpretive mode 

to save time. 

3) The usage of the locations FTBLE,- FARGD, FETCH, and FMASK which 

are entry points to $SF! is described in 5.3. 

5.3 User Generated Extended Functions: 

If the user desires to add functions of his own to the extended package, 

the procedure is quite easy as outlined below. 

The extended package as delivered uses command codes 00-368 inclusive 

and 1018 through 1108 inclusive. There are available codes of 37g-77g inclu-

sive which the user may assign to his own functions. 

User functions may be of two types - invoked by one word commands or 

invoked by two word commands where the second word is an argument address 

or value. If deferred mode addressing is desired as an option for the same 

function, it must be accomplished by user code. Setting bit 6 of the command 

code to attempt deferred addressing will cause the floating interpreter to 

take the error halt. 

Suppose the command name used to invoke the function is to be FFCN 



5-13 FLOATING POINT PACKAGE 
74-44-001-C 

assigned to code 378 • AsstDne further that the entry point to the function 

is to be FPCN. 

Step 1) Using the Source Text Editor, substitute the statement WRD FPCN 

to the Command Table ($SFIC Source - see operating instructions) 

for the statement WRD FPUNT ;37 which is on the supplied tape. 

Step 2) The user code which accomplishes the function must have the 

following statement at the beginning: 

ENTRY FPCN 

where FPCN is the location at which the user function 

begins execution. 

Step 3) The last instruction executed by the user function must re-

turn control to FGET, usually via a JU FGET. Remember that 

when the user function is invoked by a command, the interpreter 

passes control to the user function. The JU FGET returns control 

to the interpreter. 

Step 4) If the function the user is generating needs the floating point 

capability supplied by the interpreter, the user function may 

call the interpreter followed by a list of commands to accomplish 

the task subject to the following restrictions: 

a) The command name corresponding to the function it-

self (in this case, FFCN).may not be used. 

b) Commands which cause the interpreter to be called re-

cursively may be used so long as care is taken not to 

exceed seven levels of recursion in total (see 4.1) 

(remember that the function being coded is at least 

at level 1 during its execution, and if it calls the 

interpreter, all commands in the list are· at least at 

level 2). 

c) No function invoked by a command may have in its code 



5-14 
FLOATING POINT MANUAL 

74-44-001-C 

a call to the interpreter whose command string con­

tains the command name corresponding to.the function 

itself. This is an indirect violation of restriction 

a) above. 

Step 5) Assemble the function and the new Connnand Table and load these 

objects along with the rest of the system. 

Notes: If the function being generated is invoked by a two word com-

mand whose second word is an argument, one and only one of the follow-

ing steps must occur during its execution. 

a) JU FARGD 

This fetches the contents of the location following the command into 

register AX. 

b) JU FETCH 

This calls FARGD and uses the contents of the location following the 

command as an address to fetch a floating point argument which is 

placed in FTM. Also, AX and AY will be set to the value in FTMHI 

and FTMLO respectively upon return. 

c) ZM FMASK 

JU FETCH 

This causes deferred fetching of a floating point argument. The con-

tents of the location following the command is used as an address of 

another location which is incremented twice to form the addresses of 

the floating argument which is loaded into FTM and AX, AY as in b). 

Examples: 

1) FCSX is to be the command name, 1 word, code 378 • When in­

voked it is to take the COSINE of the SINE of the value in FAC. Assume 

Step 1 has been accomp~ished_ by ad_~ing the statement WRD FCS to a Connnand 



5-15 FLOATING POINT MANUAL 
74-44-001-C 

Table tape which already includes the SIN and COSINJ! routines. This 

ftmction may be accomplished by the following code: 

ENTRY FCS 

FSIN = 31 

FCOS = 32 

FEXT = f) 

FCS: JU $SFI ;enter floating interpreter 

FSIN ;sin of FAC 

FCOS ;cos of FAC 

FEXT ;exit interpreter 

JU FGET ;return to interpreter 

END 

When this and the new CoIIlllland Table are assembled and loaded with 

$SFI and the SINE, COSINE routine, the user may now call the routine 

in the floating interpretive mode as follows: 

FCSX = 37 

JU $SFI 

FCSX 

FEXT 

2) FMCS is to be the command name, 2 words, assigned to code 408• 

When invoked, it is to take the SIN of the COSINE_ of the value in FAC 

and set the sign of the result to the sign of the floating point argument 

whose address is the second word of the command. Step 1 requires the 

new command entry (say FMC) to be added to a Command Table tape which 

_includes the SIN and COSINE. This function could be coded as follows: 



ENTRY FMC 

FCOS = 32 

FSIN = 31 

FABS = 14 

FEXT = CJ 

FMC: JU FETCH 

RMI AX, 0 

JU $SFI 

FCOS 

FSIN 

FABS 

FEXT 

MR FMC+ 3,AX 

JC AX, GEZ, FGET 

JU FACMP 

JU FGET 

END 

5-16 FLOATING POINT MANUAL 
74-44-001-C 

;fetch arg to AX,AY 

;save MSH arg (sign of arg) 

;enter floating interpreter 

;cos of FAC 

;sin FAC 

;abs value of FAC 

;exit floating interpreter 

;get sign of arg 

;plus, exit 

;minus, comp FAC 

;return to interpreter 

When this and the new Comm~nd Table are loaded with $SFI, and 

the SINE, COSINE routine, it may be invoked by another routine via 

. FMCS = 40 

JU $SF! 

FMCS X 

FEXT 



5-17 FLOATING POINT MANUAL 
74-44-001-C 

3) FMCSD is to be the collllnand which does the same thing as 

FMCS, only using deferred mode addressing for the argument. FMCSD must 

be assigned a different code - s_ay 41
8 

in the routine that invokes it. 

Both FMCSD and FMCS may be coded in the same routine as follows, assuming 

their corresponding entry names have been added to the Collllnand Table Tape. 

ENTRY FMCD, FMC 

FCOS = 32 

FSIN = 31 

FABS = 14 

FEXT = CJ 

FMCD: ZM FMASK 

FMC: JU FETCH 

RMI AX, 0 

JU $SFI 

FCOS 

FSIN 

FABS 

FEXT 

MR FMC + 3,AX 

JC AX, GEZ, FGET 

JU FACMP 

JU FGET 

END 



6-1 

CHAPTER 6 

FLOATING POINT MANUAL 
74-44-001-C 

OPERATING INSTRUCTIONS AND SYSTEM GENERATION 

6.1 Using the Package as Supplied: 

An equate tape labeled $FCQ is supplied for the package as delivered. 

This tape is a source tape containing the equates for all the floating 

point commands. It is intended to be copied via the Source Text Editor (%STE) 

onto any user written source tape which uses the floating point system in 

order to define the conunands. For convenience, the user may preceed 

these definitions with an· 'NLIST' statement and follow them with an 'LIST' 

statement to avoid having the lengthy listing of these equates. Of course, 

conunands which are not used in the particular program may be edited out 

of the source as well to shorten assembly timee A conunented listing of 

this tape is in Appendix B. The supplied tape is not commented. 

Also supplied is a source tape labeled $SFIC which consists of a 

table of addresses of entry points in $SFI corresponding to each 

floating point command. The pack.age as delivered has two object versions 

of this tape--one with the basic connnands only (labeled also $SFIC) and 

one with the basic connnands and all of the extended ftmctions as well 

(labeled $SFEC-extended). A listing of the basic $SFIC tape is 

in Appendix C. 

The basic steps for using $SF! as supplied are as follows: 

1. Using %STE, construct a source tape consisting of the user 

program and command definitions (which can be read in from $FCQ). 

Note that the definitions must come somewhere after any ENTRY 

statements in the user program. 



6-2 FLOATING POINT MANUAL 
74-44-001-C 

2. Assemble the user program using %RAS 

3. Load the user program, the version of $SFIC desired, then the 

other components of the floating point system which may be done 

via a library load using %LLH or via the individual objects 

using either %RLH or %LLB. 

4. Run it! 

NOTES: 

1. Whenever any component of the floating point system is to be 

used, some version of $SFIC must be loaded. 

2. It is good practice to initialize $SFI when starting up or 

restarting a program by storing FLIST-1 into FPUSH via, e.g. 

MRI FLIST-1,AX 

RM AX,FPUSH 

This resets the push-down list which may have been left 

''hanging" by stopping the program in the middle of a floating 

point operation. 

6.2 User Generated Systems 

If the user desires a configuration of the floating point system 

other than that supplied he must edit and assemble the $SFIC tape supplied 

with the package (see also Chapter 5). 

Every command used in an interpretive string following a JU $SFI 

must have a corresponding entry in the Connnand Table ($SFIC) loaded with 

$SFI. This entry defines the address to which the interpreter is to 

pass control in order to perform the command. It may be an address within 

$SFI, or in one of the extended fllllctions, or in a user written extended 

function. All unused commands go to the entry point in $SFI labeled 



6-3 FLOATING POINT MANUAL 
74-44-001-C 

'FPUNT'. The source tape for $SFIC supplies the appropriate labels for 

all the basic counnands at the proper place in the table (code n is the nth 

entry - see listing in Appendix C). 

The user need only change the 'FPUNT' at the appropriate entry in 

$SFIC to the desired name (which.must be an entry point in some 

program), reassemble the tape and load the resulting object along with 

the rest of the system. 



7-1 

Model 40 Floating Point 

Floating Point Manual 
74-44-001-C 

Conversion of 71-44-001-C (Model 30 Manual) 

This package is upward compatible with floating point software 

written using the Model 30 floating point package. The only differ-

ences are 1) the Model 40 floating point is faster and uses less 

space, 2) FAC~ and FTM occupy registers 30-35 and 3) the usage of 

some of the subroutines in non-interpretive mode is slightly different. 

Any changes in going from Model 30 to Model 40 floating point 

are described in this document qy referring to changes that should 

go into the Floating Point Manual if the Model 40 version is being 

used. 

Pg. 1-7 last 6 lines, change to: 

registers in the interpreter and is used to contain the left-hand 

argument of a binary floating point command as well as the results 

of any floating point connnand. It is organized as follows: 

reg. name 

35 FACHI contains high order mantissa and sign of 
value in FAC 

34 FACLO contains low order mantissa of value in FAC 

33 FACXP contains excess 2008 exponent of value in FAC 

Pg. 1-8 first three sentences, change to: 

ii) FTM - temporary pseudo-. accumulator. This consists of three 

registers analogous to FAC. They are named FTMHI (reg. 32), 

FTMLO (reg. 31), and FTMXP (reg. 30). 



7-2 

Pg. 3-2 second line from top, change to: 

NAME: @SFC4 

Pg. 3-3 seventh line from bottom, change to: 

LENGTH: 2638 (17910) 

Pg. 3-5 second line from top, change to: 

NAME: @SCF4 

Pg. 3-7 second line from top, change to: 

LENGTH: 3618 (24 710) 

Floating Point Manual 
74-44-001-C 

Pg. 3-7 last paragraph, change all references to @SFC to @SFC4, @SCF to 

@SCF4 and @FXC to @FXC4. 

Pg. 3-7 first line, change reference to @SFC to @SFC4. 

Pg. 3-7 fifth line from bottom, @FXC4 occupies a total of 1758 (12510) 

locations. 

Pg. 3-10, change page to read: 

3.7 Left Shift FAC: 

NAME: @LSHF 

SUBROUTINES CALLED: 

ALTERED REGISTERS & FLAGS: 

CALLING SEQUENCE: 

none 

FTMLO,FTMXP 

Load FTMXP with negative shift count. 

JU @LSHF 

return 



7-3 

Floating Point Manual 
74-44-001-C 

ARGUMENTS; 

FUNCTION: 

ERRORS: 

NOTES: 

LENGTH: 

FTMXP (reg. 30) contains minus the 

number of places to left shift FACHI,FACLO 

(regs. 35 and 34). 

Performs double precision left shift 

of FACHI,FACLO. On return, the shifted 

result is in AX(MSH),AY(LSH). Any 

carry out of MSH is found in FTMLO. 

None detected 

@LSHF = @FCST+l618 

Pg. 3-11 fourth line from top, change to: 

ALTERED REGISTERS & FLAGS: FAC,FTM 

Pg. 3-11 last line, change to: 

LENGTH: 

Pg. 5-3 delete 5th and 6th lines from top_(i.e. AX and AY do not need 

to be set to FTMHI,FTMLO). 

Pg; 5-4 same as Pg. 5-3 

Pg. 5-5 delete this page entirely, single-precision divide is supplied 

on the extended arithmetic operator (see EIR Devices Manual). 

Pg. 5-6 same as Pg. 5-5 



Pg. 5-7 change 

1) 

or, 

2) 

line 17 through 

RR AX,FACHI 

ZR FACLO 

MRI 217,FACXP 

JU FNORM 

JU $SFI 

FSTA x 

FEXT 

RR AX,FACHI 

ZR FACLO 

MRI 217,FACXP 

JU $SFI 

FNOR 

FSTA x 
FEXT 

7-4 

last line to: 

Floating Point Manual 
74-44-001-C 

Pg. 5-8, change "80 machine cycles" to 1127 machine cycles 11
• 

Pg. 5-9 delete all references to ''Result is also returned in AX,AY" 

Pg. 5-9 delete last eight lines, i.e. FASAX and FTSAX do not exist. 

Pg. 5~10 fourth line from top, change to: 

sets FACHI,FACLO,FACXP to zero. No other registers are affected. 

Pg. 5-10 delete last three lines, i.e. AX,AY"" are not affected. 

Pg. 5-11 delete this page, arithmetic right shift is supplied on the 

extended arithmetic operator (see EIR Devices Manual). 

Pg. 5-14 last sentence of paragraph b), change to: 

AX and AY are destroyed. 



7-5 

Pg. 5-14 last line of paragraph c), change to: 

Floating Point Manual 
74-44-001-C 

the floating point argument which is loaded into FI'M as in b). 

Pg. 5-16 after line saying FEXT = O, insert: 

FTMHI = 32 

Pg. 5-16 change line beginning with RMI AX,O to say: 

RMI FTMHI,~ ;save' MSH arg (sign of arg) 

Pg. 5-17 same changes as on pg. 5-16 

Appendix B - replace with attached Appendix B 

Appendix F pg. 3 paragraph 1) b) c) and d) , change to: 

b) FSPLT is initialized to 06 0010 12 

c) FSPLT+l is initialized to 377 

d) FPSTA+3 is initialized to FARGD 



tE 0 01 
002 
0 03 

. 0 0q 
005 
e 06 
r. 0 7 
~0 0 s 
.0 09 
010. 
011 
012 
013 
01Lt 
015 
e.16 
017 
018 
fl 19 
~ 20 
"21 

. 022 
023 

. 0 2£1 
e 25 
e26 
227 
~_28 

~29 

030 
031 
0 3.2 
e33 
0 3Lt 
e 35 
e 36· 
0 37 

\fj 38 
e39 
(HJ0 

0q1 

042 
. e q 3 
C LIQ 
0 Li 5 
e t.J6 
e LI 7 
01.f 8 

REPLACES APPENDEX B 
7-6 

APPENDIX B (MODEL 40) 

;>FCOEJ - roMMENTED 
_;7Q-Ll3-702L _ 

Floating Point Manual 
74-44-001-C 

;fRI 9e9/trn r OMMANO E OUATE. TA PE 
0 . 
0 
e 
0 
0 
0 

- -·- 0_ 

" " . 0 

•. HHrn 3 e. F TM x P_ = 3 0_. 
• £00031 FTML0=31 

f!00032 FTr1t-1I=32 
. f(HC:3 FACXP=33 
• e.00e34 FACL0=3LI 
. ~000~·5 FAChl=35 

e00000 FEX1=0 
r.(HHHJ1 FLDA=1 

. e0e1.e1 FLOAD~101 

000002 FSTA=2 
.00e1e2_. FSTAD=HJ2. 

'1 . £00003 FA0fl=3 
_ ·-·-- ... 0 . ~0~1_e_3_ F.ADOD=10 3 

e e 0 e 0 0 q F s us= q 

·; FTM _FXPOf\ENT 
; LOW OR[l E~ F TM 
1 HIGH. ORDER F TM 
; F AC E X P 0 i~ E N T 
; LOW ORD Ef\ ~At 

; HIGH Oh.DER FAC 
; EXIT COMt'iA~rn 

;· lOAO FA~ COMMAND 
; LOAD FAC OEFERhEQ 
;. STORf F Af 
; STORE" FM' DEFERRED 
; FLOATING Aro 

··-·- -- .. __ ;_ FL 0 AT ING AD .D D~ FE RR r.r 
; FLOATING SUBTRACT 

0 - __ · - e 0 e 1 ~ 4 F s u ~ t: = H' q J F L 0 A T I N G s l' 8 0 G E F E R KE ~ 
0 e00ers FMPl=~ ; FLOATING MULTIPLY 
0 ___ _- .. e ~Hi 1 e 5 F M P ) D _= H: ? ; F L 0 A T I N G M fJ L T o 0 ~ F E R r: r.: r, 
e . 'HHHrn 6 F c I \' = 6 ; FL 0 AT 1 NG 0 I v J {) E 

.0. _____ : __ ~_0e1:E!_6 F[lI_\0=1_~§_ ______________ ·- --·- --~ _FLOA_UNG OI VIDE CEF Ef::R~O 
e eee0e7 FAD~=7 ; FLOATING ADD MAG~ITUO~ 

- - e._ - . 00~107 FAOt~D=t0_7_ ; FLTNG ADD MAG QEFERREIJ 

" e 
0 

0 

lHl0010 FSBt'.=10 
{j0e11 0 F SB r-:o =U 0 
00 0011 F TRt-.=11 
lHHHY12 FTRF=12 
0~e2:1. 3 FSET=13 

. 00001£1 FABS=1ll 
- IP ~ • , 

00ce15 FASC=15 

; FLOATING sue~ MAGNITV0E 
; FLTNG S.U~ MAG DEFE.RRElJ 
;: TRACE ON 
;_TRAf'E_OFF 
; SET FRROF TF;/IP 
; ABSOLUTE MAGN11UDE 
; ~OUARE 

. r. _· _ -~ ~ e e j _6 . F No R. = ! 6 _ __ _ _ _ _ _ _ _ _ _ . ; . N 0 R M A l J Z f 
~ 000017 FNEG=17 

_____ 0 ____ ·---·--- ~-0 e·.~ ~-0 .. F JM f_=: 2~. ---·· . ·----- --·-··--- ... -·-·· 
0 . NHi021 FJAP=21 
e ~~0222 FJA2=2~ 
~ f-00023 FJA~=23 

e e00e2ll FJEV=2tr 
r 
e 

c 

e000?5 FJDC=25 
P00t2'26 FJI)=26 
0 0 e 0 2 7 F L D. >: :: 2 7 
P00030 FSD=30 
fHlC 0 3 1 F S I ~. = :: 1 
e00032 Ff OS=:32 

: -· fl Z C 0 3 3 F Ii H. = 2 3 

. 0e0e.~LJ FLNE=3LJ 

. nrne.35 FEXF=35 

. r00e36 FSOT=::6 

; "4f: GATE 
; lfNC 0 ND I: TI ON AL JUMP 
; JUMP lF. FAr" > QR = e 
; JUMP IF FAr :: r 

- . 

; JUMP ·IF FAf' < e 
; JUMP IF F XF l G r,: 0 i r. 
; JUMP !F FOFLC NGT :3 
J 8 UM r IN 0 E X ' JM t"-' I F 
; LO.l\G P~EL·f}CJ-Ii~CEY 

;. STORC PSEL'Co-r:.C1 EX 
SI f\; E 

· r 0 8 I~-: [ 
; ARC TP,NGENT 
; t" A T l' R A L l 1) G A F\ I i h r·; 
; E X P 0 r.: E N T I AL 
;. SQUARE - ROOT 



Code 

01 

02 

03 

04 

05 

06 

07 

10 

A-1 

APPENDIX A 

Command Summary - Basic 

FLOATING POINT MANUAL 
74-44-001-C 

Definitions: 

Y .IV address of floating operand 

,_.address of location containing address~ 1 of floating operand 

rv address of another floating command 

rv address of index value 

[D],yoptional selection of deferred addressing 

I i'Vindex value of source or destination at address Y 

A "'pseudo-accumulator (FAC) 

X ~pseudo-index register 

F IV floating value of source or destination at effective address formed 

from Y. 

(octal) Basic Commands Operation Flags. Registers 

00 FEXT exit none none 

[101] FLDA [D1 y F~A none FAC,FTM 

[102] FSTA [D] y A-)F FXFLG FAC 

[103] FADD [D] y A+F-?A FXFLG FAC,FTM 

[104] FSUB [D] y A-F__,;;, A FXFLG FAC,FTM 

[105] FMPY [D] y A*F~A FXFLG FAC,FTM 

(106] FDIV [D] y A/F_:;,A FXFLG, FDFLG FAC,FTM 

[107] FADM [D] y A+IFl?A FXFLG FAC,FTM 

[110] FSBM [D] y A-,Ff-?A FXFLG FAC,FTM 

14 FABS IA\~A none FAC 

15 FASQ A2~A FXFLG FAC,FTM 

16 FNOR normalized A~A FXFLG FAC 

17. FNEG -A-?A none FAC 

~o FJMP y jump to Y none none 

21 FJAP y jump to Y if A~O none none 

·22 FJAZ y jump to Y if A = 0 none none 



Code 

A-2 
FLOATING POINT MANUAL 

74-44-001-C 

(octal) Basic Commands Operation Flags Registers 

23 FJAN y jump to y if A<O none none 

24 FJEV y jump to y if FXFLG set 0 FXFLG (set to zero) none 

25 FJDC y jump to y if FDFLG set 0 FDFLG (set to zero) none 

26 FJIX y X+l~X, jump to Y if X 0 none FINDX 

27 FLDX y I-?X none FINDX 

30 FSTX y X-71 none none 

Command Summary - Extended Functions 

Code (octal) Extended Command Operation Flags Registers 

31 FSIN SIN (FAC)-"7FAC FXFLG FAC,FTM 

32 FCOS cos (FAC)-?FAC FXFLG FAC,FTM 

33 FATN TAN-1 (FAC)~FAC FXFLG,FDFLG FAC,FTM 

34 FLNE LOGe (fFACf )~FAC FXFLG(*) FAC,FTM 

35 FEXP eFAC~FAC FXFLG,FDFLG(l) FAC,FTM 

36 FSQT JjFAC,~FAC none(+) FAC 

(*) If input argument is riegative, FNLNF internal to the FPLNE routine will 

be set non-zero (see write-up). 

( +) If input argument is negative, FSFLG internal to. the FPSQT routine will 

be set non-zero (see write-up).• 

(1) If input argument is too large, FEXOF internal to the FPEXP routine will 

be set non-zero (see write-up). 



B-1 

APPENDIX B 

-- ... -- . ·---·----· ---··-------- ------·- - ·- .•.. ----·---····- -· ~---· ... - ------ -- . -· 

•001 ;SFCO - COMMENTED 

FLOATING POINT MANUAL 
74-44-001-C 

_________ 9-_0_2- _______________ . _______ ;]_~~-~ :! :-Lf __ ~_i_L __ . _____ _ _____ -------· __________________________________________ _ 
003 ;GRI9e9/3r. COMMAN(l EQUATE TAPE 

-----' -~_q _____ . ___ 0 _____ · --~-"-~~-VLf ~lJ = ~------------------··---_! __ J_ ~_IJ __ f.O ~MAN Q_ .. _ ·- __ .. ________________ _ 
005 " - 000ee1 FLOA=1 ' ; LOAD FAC COMKAND . 
0_0_6 ____ ------·-----~----------e001e_1 ___ FLDAP=J_~_J ____________________________ ; ____ tO_AO fA (' OEFE_BnEf. ------- -··· 
007 0 . 000002 FSTA=2 -L STORE F·Af · 

-------~ 08 _____________ L ________ !_0 __ ~_1 __ ~~---.f-~J_~ R:=.t~ ?___ -------------·----- _!~ $JQ ~E F Ar D E~E R RE 0 ___________ _ 
009 e . e-00003 FAD0=3 .; FLOATING Ar:o 

___ 0_1,,0 e e0Jt1_[_3_£AP:..C1_0_::_10 3 -------~ _ _fJ .. _O_A_JJN G ___ Ar Q __ [J_E_FE RR Ej: ____________ -
011 e - ~0000q FSUe=q ; FLOATING SL'8TRArT 

________ J!12 ·- . _______ JL ___ !~ULl~ __ q_ ___ E_~_u_~ o_::J~ q_ --------'---------- _______ _L_f L_ O A I ING s us c. Q E FER RE f'.l 
013 0 .. CHJ0005 FMPY=5 ; FLOATING MULTIPLY 

______ Jtl'·t ___________ L ____ - ~-~9-~0_5 ___ F:_f'~_ID.~t-~_? ______________________ ;__ FLOATING _MIJL To DEFE RRC:':' 
015 0 . ~0"006 FOIV=6 ; FLOATING fJIV!OE 

______ 0J._ ~- ~ ~_0JL!~-~-f. I. I __ ~Q.::_1. e_ § _______________ J ___ f L PA_T IN G ___ D r ~--I 0 E c E F E R RE c 
017 e ee0e27 FAD~=? ; FLOATING ADD MAGNITUO; 

_ ----~J ~-------- ________ ._0 _________ ~~~-~-~ ~! ___ E ~- ~~r __ D :=~ ~ i__ _____ ______________________ _l __ FJ.J NG A OD MAG Q E FER f\E rt 
" 1 9 0 I 0 0 "1 0 F s B ,.. = 1 0 ; F L 0 A T I N G s l! 8 0 r: A r f ,J I T un !?. 
0 2 " e •nm 11 0 F s B t' 0=11 0 ; FL T NG s ue M ~- G c E F E R R [f) 

------"i,-2i---------e---~-0-001f_F_T_R_~-;-11--------------------------------;--fRACE ON ---- - ----. -------------

022 E 0~HHJ12 FTRF=12 ;· TRACE OFF 
----·~·--·-··--· --- ------ --- -----··-- ·-·-----------------------------------·-···----. - . ---·---·- .. . - --- - -------·. ---· - _____ .,. __ ,.. ________ ·--

023 0 lHHHJ13 FSET=13 ; SET ERR Oh iRAP 

----~-? ~----------- _____ 9-__ ___ -----~-~-~-~J __ ~ __ fA_§_;_=_1- ~-- _____________________ J _ __ABS_ O_L UTE_ r:'~- G_~;-~_T_ ur i=: -- ------- -- -
025 0 0~rn015 FASQ=:15 ;. SQUARE 

_______ 0._~6 ______________ 0 _____ 0 __ 0_~_~_1-~---.fNO ~ __ ::_J 6 _____________ -- --------- ___________ ;. ___ NO_R MA l J_' zr _____ --- -- -- --- -- ·- ... ·----. ----
- 027 0 000017 Ff'.;EG=17 ; NEGATE 

____ Jt~_& ___ e __ ·--~-~-~0_2-_0__£_J1'£_=?_~------·---------~-,-~t~~--QN_[) !J_I _ _QNA~_._.)_UM p ______________ _ 
029 0 . ttrne021 FJAF=21 ; JUMP IF FAr > OR = e 
030 . ii . e0c~22 FJA Z=22 ; JUMP IF FA,. = e 

---· .. ---------·- -·-·-·------------- -------- --- --·· ----·---·--···-··---· --------------··- ----------------·--·- --- -··- ··--· -- .. - -·· - --- . - -·---·- ··-· ------ ------- -· 
031 e . e0e023 FJAf\=23 ; JUMP IF FM' < 0 
032 " . eee02q FJEV=2q _; JUMP IF" FXFLG NOT 6 ---------0 3·3----------·--0-----0-00·025··-i:-:;-o-c-;25---------------------------------·;---juM p ·-fi::-·· FOF LG-- N 0 T VJ - - - --- ·-·--

____ 0_~~-------0 ___ :_J_~-~-02_(5_F JJ_~-=-~_€________ ; e UM p IN CE x, JMP. IF NOT r 
0 3 5 -e · 0e~e21 r= Lox =21 ---;-t. o iii- P s E·"LcfO-=-T~i-DE--x ----- ------------ ---- ---

--~--~ _6_ -·-···- - _. ___ @_ _______ • __ e_ 0_~ -~) Jt _f _S. T ~ -~ 3 !' ___ ---------- ------- _ __J_ ~-- $ T 0 RE p ·s E u D 0 - IN DE '.( ··---" -- -
037 8 . e00031 FSH=31 ; SINE 

_______ 0_3~_ ---------------~~ _____ __:__0"00_0_~? ____ f_f_Q_S_;::3_? _______________________________ !_ _C'_O~ I.NE_ . __ ___ _ ___________ ----·-- _____ _ 
039 C . 0U033 FA H.=33 ; ARC TANG ENT 

------~_Q_0 0 . ~~~j-~__9 __ E1_f'J(=_3-Ll_ ____________ ; ___ ~~--T_l1-_BAL_ l OG AF! THM _______________ _ 
0Q1 0 . M00035 FE XF=35 ;. EXP or~EN TIAL 

---~-'t? ______ . ___ 'L ___ · _ -~~!! ~_§_£ ~-9_ !__=: ~-~----·--------- ______ _; __ s_~-~ ~ R§ __ ~- o _o_ !__ ___ _ ______________ -·- __ ·- __ -· __ 

' 

-------------·--------------·---------·------ ···---- ------------------- ----.. -- •··- ----·-· --·--·· - ·-----·-· --·-·-·----- ·---. 



FLOATING POINT MANUAL 
C-1 74-44-001-C 

APPENDIX C 

$SFIC 

•IU JSSFif 
__ lU_2_. ____ ;7_q-~3=-~U'7L _________________________________________________ _ 

8 0 3 ; e AS IC' C OMMA ND T A8 LE 
____ 0__0 q E_~_T_R Y __ _£J_8 Ls ____ . ______ _ 

005 1 177177 FTBLE=o-1 
_u_e 06 __ 0 0·1rn_0 ___ e-__ 0_00 e_0_0 _________ . __ Jr1RQ ____ EP_LO_~----- ________ _;_J ___ ---·------ ______________________ ----· _________________ ------·-
- u 0 0 7 0 01r 01 0 0 eHnHrn ~RD F p s T A ; 2 
_ _u -0 a 8 . ~Hr~ 0_ 2 --- 2 __ lHHHHUL __________ :_ ______ W_RQ _____ E=_PAQ_0 _______ : _ _1_ ~- ___ _:_ ______ ------ - ----- -- -- ------- --- - -- . -- - --- --- ----- --- -

u e 09 fcHJ~03 ~ 0 00 000 WRO FPSU3 ; q 
-1LJU 0--~HJ"e~ 0_g__ __ e_: ___ 0. 0 0JH! 0____ W_R_D __ _Ef'_M e__y~ ____ _;_5_ ___ _ 

u e 11 e ~rr e ~ e e e e 0 0 0 w Ro F Po r v ; 6, 
__ _u __ 0_12 ___ .0 0'W0 6 1L e 0 0·0 0frL ____ _W_RQ __ _f_PAD M _________ ; 7 ________________________________ ------~- _::_ __ 

U 013 0~CHH 0 0 00 0e0 WRO FPS8 M ; t0 
_.u __ 0_1_~ __ 0_~-fJ'_UJ_W __ 0 __ 0 __ 0JJ_e_c w_RP.. ___ F_ev~J __________ t_1J._EJ~JRN ___________________________________ _ 

u 015 PHle-11 0 0 e~nrn0 WRD FPUN T ; 12 F PTRF 
__ u_t._t6 ___ ft0. e-1_2___0._0.__0 ~L~ 0 0 w Eill_-_f_p_tHLl_ ____ l_!_~ __ f _e_s_~ _ _I _____________ -·--·-------------·-

u 0 1 7 0 ~e: 1 3 0 0 tH~ 0 e 0 W R 0 F PA B S ; 1 q 

U 0 18 " """' 1 q . 0 0 0 0 0 € 0 W R D F PA S 0 - ; 15 u--ii9--0ii1 ~ -0--e-·00_0_e_0 _____________ w_Ro----.=PN0 R-- --------;-{6 -----------------------------
u 020 0iH!'i6 0 0 0Z 000 WRO FPNEG ; v ---..;-9·2·1--e 0l"if° ___ 0 ___ 0_ 0_0=~ffHf--------~·iRD--F pj~1 P--- ------ --;- 20- -- ------- -- --- ------- ------------------

-~_?._~_~Jf~:_?_.LL~0._?iJrn_~ W RO F t_JA P _____ ; __ ~J 
U 023 ~HH!21 0 0000C0 WRO FPJAZ :22 
U 02L4 lHHf-22 e ~ 00 0@0 WRD FPJA N ; 23 

--u--·025-.0-0:if.·2·3--0---iz--00-e·0~---------------w-R--o----;:-F>TE_v ________ ;24---------------·----·---·-----·------ --·-------- -·------ --
~~-~_6 ____ ~ 0'~_2_':f __ !__~_~Jr_~-~-~-------!!_~_Q _____ F ~;p_~-- _____ J_?5 _________________________________ _ 

U 027 0~~25 0 000020 WRO .FFJIX 126 -
__J) __ 0_2JL_~_ [_~£.L~-[_~_~J3_~c w R!l_f..F ~-rue L? 7 -------------------------·---

U 0 2 9 -0 0-~ 2 7 0 0 0 0 0 0 0 WR D FPS T X ; 3 e 
_lL __ ~-.~~---0 0'.~3_!_ ___ 0 ___ ~-0~ 0_~0 _ _t!_RQ ____ F ~WtL ____________ ! __ ~_1 __ f.??.Jr! _______________________________ _ 

u 031 00·~31 0 00nrn0 WRO FPUNT ;32 FPfOS 
_ _!J_Jt~_?---~-~l~_~_? ___ 0 __ ~ __ 0 __ ~:~-~-0 _________ !!B_P __ f' ~tJ~ '!:_ ____________ J __ 3_~-- f PA TN 

u " 3 3 0 0'~ 3 3 0 0 '"n e 0 w R 0 F p u N T ; 3 lt F p L NE 
_lLJt3_L4 __ 0_0Jf_~_!L __ ~~0_3_0_~_~J W RD - F PUNT _ ; 35- F PE XP u 0 35 0 0'0'3 5 _ 0 0 0 0·0 iz 0 w fio---.=-r:·uN i ----- --· ;·3"6 ___ F P--5 a·1·----------- -----------·--·--·-----·--
--~~-~§ ___ ~_0_!_~_LLJ'_JHt!~J! _________ ~_B_D ____ __£~_~N T__ _________ !_3Z _________________________________________________ _ 

037 NLIST ;tU-77 SA·ME AS 37 
_-_I]_~------ ___ . ..J___ l IS T u 071 0el'.'77 e 0 n·0e0 w-ifD--FPliNf---------;-fe0- -cA-t\iA·-.y.5----iti..EG~-L>- ---- ---
__u___z__2 __ ~ __ e_r_"_e_[_!_~-~--~-~ w~_o __ f_~_L_Q_ ~ _______ L1 ~--L _<DEF E "RE 0) 
_ U 973 00ffJ1 0 f H800 WRD FPSTA ;"102 CCEFE"RED > 

_. u_~}_ ~- ___ 0 ~-~~-? ___ e ____ e __ e e_'! e _e _____ _:_ __________ . __ '! _~p _____ f PA Q o _ _ _ ______ .. L ~-~ 3_. _ < p ~ F E "R ~ n > 
u e75 001"83 0 ee0s00 WRD FPSUB ;1eq rnEFEh.REO> 

---~---~]_§__ 0 0re_~_ --~- --~ ~--~~J ~--------------~-~p __ ~_f_Pi1_~-~ - - _____ -_ __;__~_~5 CD EF E fi_~E_O_) 
u 077-00'.!0~ e 0e00e0 WRD FFDIV ;1e6 (('EFEf\RED> 

_JL!2~ ____ 0_0_f0§_~ __ _!' __ ~_0 0_~_0 --------~~-9 __ . F_~~.~~.!! __________ ?, ___ ~_g_z ____ ~~-EF E ttRE D > 
U 979 001'"1'7 0 00000-0 ~IRD FFSBM J119 CC'EFEkREOl 

____ Jte. ~---- ___ J __ _:__t~@J_L~--------------_!_--~°----·-·-- --·---- ··--·--·----~--·-·----- ---·------ ----·-.;----- _ _ _ _____ .. ___ ·-- ____ --·- _ ------·- _ ·---·---··--



D-1 

APPENDIX D 

FLOATING POINT MANUAL 
74-44-001-C 

%FCG - Floating Point Constant Generator 

%FCG - Floating Point Constant Generator 

%FCG is a utility routine which is provided should the user wish to 

use floating point constants whose octal equivalences are unknown. With 

%FCG, the user can type in a floating point decimal number and receive 

the equivalent internal floating point representation. 

%FCG occupies locations 0-2660 inclusive. 

Operating Instructions 

1. Load %FCG by means of %ALH. 

2. Turn teletype on-line. 

3. Set SC=O. 

4. Press START. 

5. %FCG responds with a carriage return, line feed. 

6. Type a string terrr~nated with an equal 

sign(=). The character string should be. in the format described 

in section 3.3, where the delimiter is an = rather. than a carriage 

return. Typing a back'arrow at any point causes the first previous 

non-back arrow to be ignored. Typing rubout at .any point causes 

%FCG to type a carriage return, line feed, question mark (?) and 

returns to step 5. Typing more than 13 characters before typing 

an equal sign has the same effect as typing rubout. 

7. When the user terminates the character string with the equal 

sign, %FCG responds by typing the 2 wora floating point equivalent 

(in octal) and returns to step 5. 

8. If the character string did not conform to the format specified in 

section 3.3, the message SCAN ERROR is typed and %FCG returns to 

step 5. 



D-2 
FLOATING POINT MANUAL 

74-44-001-C 

9. If the character string resulted in a number whose magnitude was 

outside the range l.469369E-39 to l.701411E+38 or if the character 

string contained more than 1010 mantissa digits, the message 

ANSWER OUT OF RANGE is typed and %FCG returns to step 5. 



E-1 

APPENDIX E 

FPSET - Error Trap Routine 

Introduction: 

FLOATING POINT MANUAL 
74-44-001-C 

A series of floating point calculations on an unknown data base can 

generate errors, such as results which exceed the capacity of the machine 

or dividing by 0, etc. In order to facilitate the localization of the oc-

currence of such errors, FPSET is provided and serves as an error trap 

routine. When an error specified by the user is detected, FPSET will 

interrupt the operation of the interpreter and give control to a user 

supplied error routine. FPSET supplies the user error routine with the 

following information, allowing the user to pinpoint the step in his cal-

culations at which the error occurred: 

AX recursion level at which the command at the address in AY was 

executed. 

AY = address of command executed immediately previous to detecting 

the error. 

TRP error number indicating which flag in the user supplied error 

list was set non-zero. (TRP = position of address of error 

flag in user supplied table (see usage)). 

The recursive capability of the interpreter somewhat complicates cer-

tain usages of FPSET and, for this reason, three modes of operation of 

FPSET are allowed: "On", "Off", and "Partially On". The latter mode 

allows FPSET to keep track of commands and recursion levels without ex-

amining any error flags. The utility of this mode is described in the ex-

amples at the end of this appendix. 



E-2 

Usag-e: 

FLOATING POINT MANUAL 
74-44-001-C 

FPSET is controlled by the use of the FSET (code 13g) command_ in the, se-

quence of floating commands being executed by the interpreter. There are three 

modes of operation of FPSET: 1) ON, 2) OFF, and 3) PARTIALLY ON. 

1) To turn FPSET ON, the command is 

FSET A 

where A is the address of a table with the following format: 

A: WRD ERR ;USER ERROR ROUTINE ENTRY 

WRD FLGl ;ADDRESSES OF SYSTEM 

WRD FLG2 ;FLAGS TO BE CHECKED ••. 

WRD -1 ;END OF TABLE SIGNAL 

When this FSET command is encountered with a positive non-zero value for 

A, FPSET will examine the state of every flag listed in the table at address A. 

after every command executed by the interpreter from the point of the FSET A 

command onward. Whenever a flag whose address is in the user list has become 

non-zero (indicating an error), FPSET zeros the flag, and then gives control 

to the user error routine at the address specified in the first word of the 

table at A. The information supplied to the user error routine is as stated 

in Ue introduction. 

The user error routine may use $SFI, but any additional errors which might 

occur will not be checked by FPSET, and any FSET commands in the command se-

quence will be ignored. If the user wishes to call $SF! in his error routine, 

it is up to him to save and restore the states of the interpreter system flags 

and·the floating accumulator (FAC) before and after such $SF! use. 



E-3 

2) To turn FPSET "off", the command is 

FSET 0 

FLOATING POINT.MANUAL 
74-44-001-C 

This completely disconnects FPSET from the interpreter. 

3) To turn FPSET "partially on", the command is 

FSET N 

where N is any negative number. 

In this mode, FPSET will keep track of the current command address and 

recursion level but will not examine any flags. If FPSET is at some later 

time turned "on" and discovers a flag set non-zero, the level and the com-

mand address will be correct within certain limitations (see Notes). 

This mode is useful when the user does not wish to enter his error 

routine for errors which occur during execution of a section of his command 

sequence. For example, the command sequence may contain an FJEV or similar 

test for conditions known to the user, and with FPSET "on", these conditions 

could be altered (cleared) if the corresponding flags are in the user error 

list at A. In this case, an FSET N (where N <O), issued before entering this 

section, and an FSET A (A>O, A=address of table), issued after completion of 

this section will allow FPSET to retain the necessary information should 

other errors occur and allow the section.itself to operate properly. 

User Error Routine: 

Basically, the user error routine may do anything. However, the user must 

remember that his error routine is considered as an extension of the inter-

preter. At the completion of the error routine, control should be given back 

to the interpreter via a JU FGET or similar return. 

Register AX is used as an argument upon return (via JU FGET) and can turn 



E-4 FLOATING POINT MANUAL 
74-44-001-C 

FPS ET "on", "off", or "partially on" according to AX> 0, AX=O, or AX(' 0 

respectively. If AX> 0, it must be the address of an error table as de-
• 

scri~ed above (it need not necessarily be the same one as before). 

Notes: 

1) It is generally the case that an error flag is set by the command 

immediately preceding the detection of the flag non-zero. In the 

case where FPSET was not "on" at that moment, but was turned on 

later and found the flag non-zero, FPSET will report that it does 

not know which command caused the error by giving an AY value 

which points to the FSET "on" command or by AY = -1. The dif­

ference in meaning of the two AY values is as follows: 

a) AY = address of FSET "on" command if the flag was non-zero 

at the time the FSET "on" command was encountered. 

b) AY = -1 if all flags were zero when the FSET "on" was en­

countered, but a flag was set non-zero later at a point 

which indicated that the command which caused the error 

was at a recursion level one less than the level at which 

the error was detected. This situation is avoided if 

FPSET is partially on throughout until it is turned on. 

2) If the user wishes to restart his entire program or in any other way 

wishes to use the interpreter without reloading it, he should make 

sure that FGET+l is initialized to FARGD and FPUSH is initialized 

to FLIST-1. 

3) A FEXT command does not affect the mode of operation of FPSET, i.e. 

upon re-entering $SFI, FPSET will operate as per the last FSET com­

mand encountered before the FEXT. 

Operating Instructions: 

1) Edit the Command Table ($SFIC) source to include WRD FPSET in place 

of WRD FPUNT;13 which is on the tape as supplied, and assemble it. 



E-5 FLOATING POINT MANUAL 
74-44-001-c· 

2. Load FPSET and the new Command Table with the system. 

3. Start user program which has FSET commands in the usual way. 



Examples 

L Typical usage of FSET "on" and "off" 

User Main Code 

ENTRY A 
. 
. 

JlJ $SFI 
. . 
. 

FSET A ;Turn FPSET on User Error Routine . . . ENTRY ERR 

FDilT ~ Jcauses divide check~ FPSET 2ives _co_n_trol to) ~ERR: . (TRP = 000002 .... . 
This returns control to interpreter . indicating second .. ' . .... . flag in table at A . to execute next command was set) . 

FSET 0 } Errors in here . . are not detected MRI A,AX ;Turn FPSET back on . by FPSET 
JU FGET . 

FEXT END . . . 
A: WRD ERR ;Address of user error routine 

WRD FXFLG ;Address of exp over/underflow flag 

WRD FDFLG ;Address of divide check flag 

WRD -1 ; End of table 
. . 
. 

~ 
END 



Example 

2. Use of FSET "Partially On" 

User Main Code 
1-----------------·--·-·~·---~----. 

JU $SF! 

FSET -1 ;turn FSET partially on 

FJEV 

FDIV 

FUFN 

; Reason for FSET partially on 

;Error (divide check) occurs here 

;User defined function-----------..--

~---------------·------- .. -------
User Coded Extended Function 

FPUFN: JU $SF! 

FSET A 

A: WRD 

WRD 

ERR 

FDFLG 

WRD -1 

;Turn FPSET on 
(Detects FDFLG error 
immediately and traps 
to user error routine) 

;User supplied table 

In this example, because FPSET was only part:ially on when the error actually occurred, the 

error trap will indicate that th1e erring conunand was FSET. It will, howe.ver, indicate that the 

divide check flag was on (TRP = 000001 since FDFLG is first in table A) and that the error oc-

curred in recursion level 2 sinc1e FPSET was turned on in the user function. 

tr.l 
I 

. -.....J 



Examples 

3. Another usage of FPSET "Partially On" 

User Main Code 

JU $SFI . . 
. 

FSET -1 ;Turn FPSET partially on . . 
. 

FJEV 

FUFN ;User defined function 

In this example, FPSET ind:lcates an error on 

recursion level 1, and that the command 

causin5 tl.1~ error was FUFN (i.e. AY will have 

address of FUFN command). This is as it should 

be since the arguments given to. the. user function at 

the FUFN caused the function to set an error con­

dition. 

.Ao. ....... 

Note: If the FSET -1 had not been issued in the Main 

Code, FPSET would have indicated the AY= -1 condition. 

It would, however, indicate the correct flag and the 

correct level (i.e. level 1). 

User Coded Extended Function 

FPUFN: 

JU $SFI 

FSET A 

FEXT 

ZM Pl,FUFLG 

;Turn FPSET on 
(no errors yet) 

{

Input argument cause 
user coded function 
to set error flag 

JU $SFI 
~------~~~~aa.. error is detected here 

A· , WRD ERR 

WRD · · FXFLG . 

WRD FDFLG 

WRD FUFLG 

WRD -1 

by FPSET 

trj 
I 

00 



F-1 

APPENDIX F 

Trace Routine 

FLOATING POINT MANUAL 
74-44-001-C 

The floating point trace is a debugging aid which prints 

the value of pertinent variables in $SFI and the user's program 

before the execution of each floating point pseudo command. The 

variables printed are: 

A. current level of $SF! 

B. address of the inst~uction to be executed 

C. code for the instruction to be executed 

D. FINDX (floating point index) 

E. FDFLG (divide check flag) 

F. FXFLG (exponent overflow/underflow flag) 

G. FAC (floating point pseudo accumulator) 

H. effective address of argument, if any 

I. value of argument, if any 

The user specifies which of the variables are to be printed 

and the maximum level for which he wants the information printed. 

This is done through the floating point pseudo commands FTRN 

and FTRF. 

To turn the trace on and specify which of the nine variables 

are to be printed, the pseudo command is: 

FTRN X. 

where bits 0-8 of the integer X correspond to the variables A through 

I above. For each bit that is on (=l) the corresponding variable 



F-2 
FLOATING POINT MANUAL 

74-44-001-C 

will be printed before the execution of each floating point command. 

The FTRN command sets maximum recursion level to be traced to 7, 

turns the trace on and prints a heading (A-I), telling which variables 

are to be printed. The "trace on" causes the specified variables to 

be printed on one line before each instruction is executed. 

The printed value of variables H (argument effective address) 

and I (argument) need further explanation. If the command to be 

executed has no argument, columns H and I will be blank. If the 
. 

argument is floating point, I is printed as a floating point deci-

mal number, otherwise it is octal. If the command is FTRN, FTRF or 

a JUMP command, then H is the address+! of the command and I is the 

contents of H. In the case of the commands FLDX Y, or FSTX Y, His 

the address Y and I is the contents of Y. For user coded extended 

functions, columns H and I will be blank. 

To turn the trace off beyond a certain level, the pseudo command 

is: 

FTRF X 

where the integer value X specifies the maximum recursion level (1-7) 

for which the specified variables are to be printed. If X is less 

than or equal to O, the trace is disabled and no variables will be 

printed from then on until another FTRN X command is executed. 



F-3 

Notes: 

FLOATING POINT MANUAL 
74-44-001-C 

1) When the trace has been turned on, certain locations in 

$SF! are changed. $SF! is restored to its original state 

only after the trace is completely disabled by an FTRF 0 

command. Therefore,'to restart the user program or use 

$SF! without reloading when the trace has been on, the user 

should make sure that: 

a) FGET+l is initialized to FARGD 

b) FSPLT is initialized to 11 0000 06 

c) FSPLT+l is initialized to FTMHI 

d) FPSTA+l is initialized to FARGD 

2) The trace program cannot run at the same time as FPSET· 



•0 01 
rnn 
e 03. 
p 01.J 
0 05 
e 06 
0 07 
e 0e 
p 09 

u 010 00eee 0 r. 0 ·010~ e3 
0 0H01 e 0 00 000 

e11 00002 0 ee 0000 ~1 

P0lHl3 0 000757 
e12 00e0Ll 0 00 ·0r0e 21 

e0tHl~ 1 0000~2 
et3 00B06 0 00 ·0e00 ~1 

f0fcU7 1 000033 
etLJ e~uue 0 00 ·000e 05 

eow1j 1 r0ee~5 

e:15 e0e12 e ee ·ee.00 e2 
000!13 1 0000~5 

rH6 01HHLI 0 e 0 ·0urn 26 
000'.:1~ 1 01U~rn6 

017 00erH e e0 ·0e00 11 
0lH!17 0 000367 

618 l!HH.'2V 0 00 '00"00 01 
'rng21 1 eee0:3 

019 00@22 0 0 0 ·ee00 06 
00123 1 000035 

020 001:J2LI e 00 '0000 02 
e0"2~ 1 e00037 

021 00026 0 00 ·0000 12 
0 0 g 2 7 0 e 0 0· 0 e 0 

022 0003e 0 e 0 ·0e00 e 0 
023 001:r31 0 02 ·e100 e0 
02LI 000'32 0 1 77775 
0 2 5 0 0 iJ 3 3 e 0 5 0· 0 0 0 

e~HJ3LI e e00,2e3 
026 0003~ e 0q(;nrn0 

e 0 ~ 3 6 e 0 0 e·2 e 2 
021 e0037 0 e 011nrn0 

lHHr4e 0 0 00·0e0 

F-4 

1EXAHPLE 1 

FLOATING POINT MANUAL 
74-44-001-C 

;THIS EXAMPLE USES TWO FTRN rOMMANDSo 
;THE '1ST FTRN SELECTS VARIABLES A.1R,r1!J,F1G1H'! 
;To BE PRINTEro THIS IS IN EFFECT UNTIL Ti-if:: 
;?ND FTRN IS EXEr:tTEDo THE SELErTEQ Vf..R!AELES 
;ARE THEN CH ANGEC TO A 18 ,r 1E 1F 1G ,H <> T~E 

;FTRF 0 r.OMPLETELY nISABLES THE HA!''En 
;THE ~SF!C' LISTING k!ITH Tt-IE A[:OITIOr-4 CF 
;·THE FPTRN ANr FPTRF ADDED IS NOT SHQ\.'No 

JU SSF I 

FTRN 7C:7 ; PR IN T A , 8 ,c , D 1F , G t H, I · 

F LOX W 

FLOA X 

F HPY Y 

F STA Y 

FJIX o-6 ;DONE LOOP 3 TIMES? 

FTRN 367 

F LOA X 

F 0 IV Y 

F STA Z 

F TRF P ; TURN TRA ".'E OFF 

FF. XT 
FOM Hl.T 

W: WRD -3 ;LOOP rouNT 
X: WRD 5f0~ e.ra 3 ; 5o0 

; E 0 I TE 0 SF C 0 TAPE F 0 LL 0 W So A N 
:NLIST WAS AODEO AT THE BEGINNING 
;TO CUT DOWN ASSEMBLY LISTING TIME= 

NL I ST 

02S 
029 
030 
031 
0LJ1 1 ' £00041 END 



A B c D 

1 00004 00027 000000 
1 00006 00001 1 77775 
1 00010 00005 177775 
1 00012 00002 177775 
1 00014 00026 177775 
l 00006 00001 177776 
1 00010 00005 1 77776 
1 00012 00002 177776 
1 00014 00026 177776 
1 00006 00001 177777 
1 00010 00005 177777 
1 00012 00002 177777 
1 00014 00026 177777 
1 00016 00011 000000 

A B c E F 

1 00020 00001 0 0 
1 00022 00006 0 0 
1 0002L! 00002 0 0 
1 00026 00012 0 0 

F-5 Floating Point Manual 
74-44-001-C 

PRINTOUT FROM EXAMPLE 1 

.. 

F G H I 

0 +8.320525E-25 00032 1 77775 
0 +8.320S25E-25 00033 +5.000000E+00 
0 +5.000000E+00 00035 ·+2.000000E+00 
0 +1.000000E+Ol 00035 . +2.000000E+00 
0 +1=000000E+01 00015 • (,1\i?H;\.l?ll?I t:.. 

r:_l\UIUV'i.J V 

0 +1.000000E+01 00033 +5.000000E+00' 
0 + 5. 000000E+00 00035 +l.000000E+01 
0 +5.000000E+01 00035 +l.000000E+01 
0 +5.000000E+01 00015 000006 
0 +5.000000E+01 00033 +5.000000E+00 
0 +5e000000E+00 00035 +5=000000E+01 
0 +2.500000E+02 00035 +5.000000E+01 
0 +2.500000E+02 00015 000006 
0 +2.500000E+02 00017 000367 

G H 

+2.500000E+02 00033 
+5.000000E+00 00035 
+2.000000E-02 .00037 
+2. ~H?HJ000E-02 !{)0027 



F-6 FLOATING POINT MANUAL 
74-44-001-C 

•01H· ;E XA HPLE 2 - TH!S EX 4t1PL E PR IN ts -,.:LL ~ 
-
VARIA8Lt::S 

U'2 IF OR REC URS I ON LEVELS 1 AND 2. THE USER EXTENri::r, 
e 03 ;FUN CTI 0 N IS AT RECURSION LEVEL 2 AND ITS ENTFY 
0 0q ;POINT HAS e EFN Ar OED TO SSF rr AT roor "!-: 7 0 TH!~ 

e05 ; STEP IS NOT SHOl,,'No 
e06 ENTRY FPt:!=N 

u 0 07 0 unrn rtl 0 0 0Hrn r3 JU SSF I 
0 0~01 e 0 0nH~0 

e 0e 
'""-'" 2 

~- 00·0e00 j 1 F TRN 777 ; PIH NT A J e Jr. , n JE J F , G, H J T 
~HHle3 0 000777 

0 09 00e:0q l" 00 ·0000 12 F TRF '2 ; MAX TRACE LF.Vr=L=-2 
e0tt0~ ~ 0 0 0 0 02 

010 00806 0 ~ 0 ·0000 27 F LOX x 
00t'07 1 000024 

011 0fHJ112' 0 ~ 0 0~01 01 F LOAD X+1 ; FETCH ARG DE FERREE' 
eeg1j 1 e00e25 

012 000'12 0 0 0 ·e 0·00 02 F STA y 

00lt13 1 00e021 
013 00'114 0 0" '0000 37 F UFN y ;USER .EXTENDED F UNf TI Of'! 

0LHH~ 1 000027 
~ 1t4 000"16 0 ~ e ·0e0e 26 F JI X o-6 ; 0 ONE? 

00'f!17 1 e 0 0·01 0 
e 15 00R20 0 00 fiJ0 0 0 12 F TRF 0 ; YES, TRA t:'E OF~ 

0 0e21 e 0 00·0e.0 
016 00B22 0 e 0 -~HHJ 0 00 F EXT 
017 001l23 e 02·0100 00 F OM HLT 
e 1a 00"24 0 j77776 x: WRD -2 ; LOOP roUNT 
e: 19 00e".2~ 1 000032 WRD C50-1 ; FETCH AO R, CEFEliRf?D 
020 00£126 1 000032 WRD r.!5e-1 ; S TOF\ E AD R, QEl=~RRED 
021 e 0112 7 e 0 1Hr0e0 y: WRD Cl'J0 ; F UFN A RG o 

0lHf3e 0 e'00000 
022 ~ 0W31 0 fl'76'Hl0 z: WRO 76Q'3 0J211 ; 500e 0 

00032 0 e 0 0i211 

0 23 0 0033 0 0 62 00 0 rs 0: k RD 6?000J206 ;5eo0 
00g3~ 0 e0022'6 

0 2 LI 00!3~ 0· ese0e0 W RD se000,2e1.1 ; Ho0 
e00'36 0 0 0020£4 

025 0 000037 FUFf\=37 i USER F UN t'.' T I 0 N C 0 G £ 
026 ; USER EX TE NO Er F UNC T I ON - INCLUDE[' I N 
0 27 ;SAME ASSEMBLY AS C 0 DE WH !CH USES IT <ACOVE> 
028 ; F Of< SAKE OF SPArE I N TH IS EXAMPLE'o 

u 0 29 0 0037 e 0 0 ·01·00 03 F P UF N: JU F/i.RGD 
00840 e 0 00·0e0 

030 0 0fa4:t 0 11 ·0e-00 06 RM AX,ARG+1 
000'42 1 000050 

u fl' 31 00843 0 0 0 01 00 03 JU SSF I : ENTER LEVEL 2 
~0R4L! 0 0 0 0'0 "0 

032 ee&J4~ 0 00·0211210 01 F LOA z ;5e'0o'UY 
00W.4~ 1 fl' 0 0 0 31 

e33 e0lf47 " 0 e ·0e-ee 06 ARG: F 0 IV 0 
eewse 0· e 00·0e0 

034 IHHJ5j 0 e 0 ·0e01 r. 2 F STAD X+2 
· 0'Hl52 1 000026 

035 00053 0 fl' 0 '0£'90 P. 0 FE XT 
u 036 00054 e 0 0 0100 03 JU FGET 

eell55 0 0 00 0r0 
e' 3 7 ; ED I TED SF CC TAPE FOLLOWS WI TH NU ST 
038 NL I ST 
~l.19 1 £0 0 0~ 6 ENO 

--·········-·--···-·-···· 



A B c D 

1 . 00004 00012 000000 
1 00006 .00027 000000 
1 00010 00101 177776 
1 00012 00002 177776 
! 00014 00037 1 7777t:... 

• ' . ' 'v 
2 00045 00001 177776 
2 00047 00006 177776 
2 00051 00102 177776 
2 -00053 00000 177776 
1 00016 00026 177776 
1 00010 00101 177777 
1 00012 00002. 1 77777. 
1 00014 00037 177777 
2 000LJ5 00001 177777 
2 00047 00006 177777 
2 00051 00'f02 177777 
2 00053 00000 177777 
1 00016 00026 177777 
1 00020 00012 000000 

F-7 

PRINTOUI FROM EXAMPLE 2 

E F G 

0 0 +6.902202E-21 
0 0 +6.902202E-21 
0 0 + 6. 902202E-21 
0 0 + 5. 000000 E+0 J 
0 0 +5.000000£+01 
0 0 +5.000000E+01 
0 0 +5.000000E+02 
0 0 +l.000000E+01 
0 0 +1.000000E+01 
0 0 +1.000000E+01 
0 0 +1.000000E+01 
0 0 +l.000000E+01 
0 0 +l.000000E+01 
0 0 +l.000000E+01 
0 0 +5.000000E+02 
0 0 +5.000000E+01 
0 0 + 5 • 000000'E+0 l 
0 0 +5.000000E+01 
0 0 + 5 • 0 0 0 0 0 0 E + 0_ l 

H 

00005 
00024 
00033 
00027 

00031 
00027 
00033 

00017 
00035 
00027 

00031 
00027 
00035 

000f 7 
00021 

I 

Floating Point Manual 
74-44-001-C 

000002 
1 77776 
+ 5 • 00000vJE+0 l 
+0.000000E+00 

+5.000000E+02 
+5.000000E+01 
+5.000000E+01 

000010 
+1 .. 000000E+01 
+5.000000E+01 

+5.000000E+02 
+1.000000E+01 
+l.000000E+01 

000010 
000000 



* 0 01 
002 
0 03 

0 0 LI 
I?- 05 
0 06 

u 007 00000 

~ 0001 

0 08 0 0'0'02 
fHHJ03 

009 00lHll.I 
00~05 

010 0 0ll' 0 6 
000'07 

011 000'.10 
000'11 

012 00'112 
000'1~ 

013 £'.H:Hr11.1 
00fU~ 

01LI ~0'f16 

fHHt17 
01s· 00CJ2e 

00lr21 
016 00ll22 
017 00e'23 
018 0 0'f2LJ 
e19 00W25 
020 00l'26 
0 21 e 0w2 7 

00113e 
022 000'31 

00CJ32 
023 001'3~ 

00ir31.f 
0 2LI e 01'3~ 

00"0=36 
0 25 
0 26 
0 27 
028 

0 00 0100 V-3 
e 00~rne0 

0 e0 ·0,rne 11 
0 000777 
0 0 0 00 0 0 1 2 
0· e 0 0 0 et 
0 0 0 ·0 e 0 0 2 7 
1 000024 

0 00 0001 01 
1 00e02s 
0 0 0 ·0f'0~ e2 
1 000027 
0 00 0P.1210 37 
1 000027 
0 00 ·0000 26 
1 000010 
0 00 0000 12 
0· e 00·000 
e 00 ·0r~H 00 

0 02 01.00 ee 
fl 177776 
1 e00e32 
1 ~00032 
e 0 (HHHHJ 
e· 0 0 0·0 00 
0 0 76400 
0 0 0 01211 
e 062000 
e 0~0206 
e 0 s'nrne 
0 01210201.l 
0 eU037 

F-8 

;EXAMPLE. 3 

Floating Point Manual 
74-44-001-C 

:THIS IS THE SAME AS EXAMPLE 2 
;EXCEPT THE MAXIMUM RECURSION 
;LEVEL PRINTEC: IS LEVEL 1 DUE 
;TO THE FTRF 1 COMMANOo 

X: 

y: 

z: 

ENTRY FPl.JFN 
JU SSF I 

F TRN 777 

F TRF 1 

F u:x X 

FLOAO X+1 

F STA Y 

F UFN Y 

F JI X • -6 

F Tf\F 121 

FE XT 
F OM 
WRD 
WRO 
WRD 
WRD 

WRO 

WRO 

WRO 

HL T 
-2 
C50-1 
c= e- ~ 

"'" 

.:MAX TRACE LFVFL:~ 

; FETCH AR G 0 E' Ft Rf\ EC 

;USER EXTENDED FLJNfTION 

; DONE 'Z 

; YES, TR A ".' E !J FF 

; l 0 OP f 0 UN T 
.:FETCH AOR1 C:EFERRfD 
;STORE AOR, DEFE~hED 
; F UF N A RG o 

; 5000 0 

.: s 2 o e 

; 10 o0 

FUFf\=37 ;,USER FUNCTION CODE: 
:USER EXTENDEO FUNCTION - INf"LUDE£l TN 
;SAME ASSEMBLY AS CODE WHICH USES IT <ASOVF-l 
;FQli SAKE OF SPArr IN ThIS EXAMPLEo 

u 029 00837 
0 (UJLH! 

030 1!'0lf41 
00~42 

u 031 f2'0l"43 

e 00 '0100 03 FPUFN: JU FARGC' 
0 0 ~HHHrn 
0 11 ·0 0'0 0 0 6 
1. e00050 
0 ~0 0U30 ~3 

00-e:Llt.1 e· 0e00H 
032 00r4: 0 e0 ·0e00 01 

00"'Ll6 1 0000:31 

RM 

JU SSF I .:ENTER LEVEL 2 

F LOA Z ;500o0/Y 

033 00&47 0 ee ·ee00 06 ARG: 
0 00'5e r21· 0 00 000 

FOIV 0 

03LI 0lHf51 0 e0 '0f.0,1 02 
00W52 1 090026 

035 elnJ53 0 00 ·~Hrne 00 
tJ e36 00lJ51.1 0 0 0 0100 03 

0005~ 0 0 00·000 

F STA(' X+2 

F EXT 
JU FGET 

;EDITED SFCO TAPE FOLLOWS WITH NLIST 
NL I ST 

0 37 
038 
0 LI 9 I 200056 ENO 



A B c D 

1 00004 00012 000000 
1 00006. 00027 000000 
1 00010 00101 177776 
1 00012 00002 177776 
1 00014 00037 177776 
1 00016 00026 1 77776. 
1 00010 00101 177777 
1 00012 00002 177777 
.1 00014 00037 177777 
1 00016 00026 177777 
1 00020 00012 000000 

F-9 

PRINTOUT FROM EXAMPLE 3 

E F G H 

0 0 +.6.902202E-21 00005 
0 0 +6.902202E-21 0002LJ 
0 0 +6.902202E-21 00033 
0 0 +5.000000E+01 00027 
0 0 +5.000000E+01 
0 0 +1.000000E+01 00017 
0 0 +l.000000E+01 00035 
0 0 +1.000000£+01 00027 
0 0 +l.000000E+01 
0 0 +5.000000E+01 00017 
0 0 +5.000000E+0i 00021 

I 

Floating Point Manual 
74-44-001-C 

000801 
1 77776 
+5.000000E+01 
+0.000000E+C0 

000010 
+l.000000E~01 

+5.000000£+01 

000010 
000000 



Routine 

$SFI 

$SFIC 

$SFEC 

@SCF 

@SFC 

@FXC 

FPS IN 

FPATN 

FPLNE · 

FPEXP 

FPSQT 

FPS ET 

FPTRC 

G-1 

APPENDIX G 

System Storage Requirements 

Model 30 Model 40 

13608 (75210~ 7608 (49610) 

llO (72) 110 
,...,,.., 
\.IL.) 

110 (72) 110 (72) 

406 (262) 367 (247) 

306 (198) 263 (179) 

213 (139) 175 (125) 

173 (123) 153 (107) 

146 (102) 145 (101) 

164 (116) 145 (101) 

201 (129) 150 (104) 

127 (87) 65 (53) 

230 (152) 230 (152) 

1020 (528 774 (.508) 

FLOATING POINT MANUAL 
74-44-001-C 

Description 

Basic package 

Connnand table 

Ext. command table 

char/float pt. 

float pt. I char 

conversion connnon 

error trap 

trace routine 

Typical Configuration Storage Requirements 

Basic package 
no conversion 

Basic package 
with conversion 
extended Functions 

Total system* 
(no debug features) 

1470 (824) 

2617 (1423) 
1055 (557) 

3674 (1980) 

1070 (568) 

2137 (1119) 
722 (466) 

3061 (1585) 



0 

0 

~m GRI Computer Corporation 


	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	A-01
	A-02
	B-01
	C-01
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	G-01
	xBack

