(©

bo

[]

relocatable

nssembler
(% 1aSX)

omputer w*:srmmmﬁ

£E ?\E 'f"""i i. i (%f"l— §‘C“T5: ’\"}
o, NEYYILS &4

Price $3.75

GRI-99

Relocatable Assembler
(%RASX)

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164
Copyright @ 1972 by GRI Computer Corporation

Issued: March, 1972 Supercedes: None 71-54-003-A
0372-200

TABLE OF CONTENTS

CHAPTER ONE - The Relocatable Assembler
1.1 Introduction

1.2 Assembler Output

CHAPTER TWO - Language Elements
2.1 Character Set

2.2 Symbols

2.3 Labels

2.4 Parameters

2.5 Constants

2.6 Expressions

2.7 Comments

2.8 Statements

CHAPTER THREE - Machine Instructions

3.1 Function generation

3.2 Function testing

3.3 . Data testing

3.4 Data transmission
3.4,1 Non-memory transmigsion
3.4.2 Memory reference transmission
3.4.3 Indexing

CHAPTER FOUR - Assembler Instructions
4.1 Data definition
4.1.1 Text
4.1.2 Word values
4.1.3 Packed bytes
4.2 Radix
4.3 Set location
4.4 Program terminators
4.5 Listing control
4.6 Entry

FRASX

2-7
2-7

2-10

2-10

3-1
3-2
3-3
3=5

3-6

3-9
3-10

4-1
4-1
4-2
4-2
4-3

4-4
4-6
4-6
4-7

TABLE OF CONTENTS (continued)

CHAPTER FIVE - Usage Notes
5.1 Subroutine linkage
5.2 System linkage

5.3 Pseudo instructions

APPENDIX A - Operating Instructions
APPENDIX B - Instruction Summary
APPENDIX C - Standard Symbol Table

FRASX

1-1 %RASX

CHAPTER ONE
THE RELOCATABLE ASSEMBLER - %RASX
The GRI-99 Direct Function Processor is a highly modular, general-purpose
digital computer. Its programmability and functional architecture enable the
solution of a wide variety of system control and processing problems. An object
program to be run on the GRI-99 consists of a sequence of binary coded machine
instructions and data to be operated upon. GRI-99 basic machine instructions are

descfibed by a single internal format:
15 10 9 6.5 0

SDA MOD DDA

where: SDA is the source device address,
MOD contains modifier or function information, and
DDA is the destination device address.

In effect, information in the form of either.data or control signals is
transmitted from the source device specified by SDA to the destination device at
DDA. The qualities of the transmission and/or the end result of the instruction
is influenced by the specification of MOD. A complete machine instruction
consists of either 1) a basic instruction in the above format or 2) a basic instruction
followed by a word containing a memory address or data for the instruction.

The assembly language supported by the Relocatable Assembler is oriented
to the functional organization of the computer itself. The foregoing SDA MOD
DDA format is employed throughout this manual to illustrate the relationship

between an assembly language instruction and its equivalent in the object program.

1.1 INTRODUCTION
The relocatable assembler is an indispensable aid to the process of
preparing binary object programs for the GRI-99 Computer. The Assembler

enables the writing of programs in a terse and easily understood symbolic

1-2 %RASX

language, called the assembly language. The symbolic form of a program is
called the source program and consists of a meaningful sequence of assembly
language statements. The key item in any statement is a mnemonic code which
identifies the statement type. For instance: . |

1) The code RM denotes the machine instruction, regiater-to-memory

data transmission, V

2) The code ASC enables the insertion of ASCII text into the program

as data, and

3) The code END denotes the end of a program - this code represents a

directive to the assemﬁler itself and does not cause the generation
of binary information for the object program.

The assembler interprets each such code and either generates the appro-
priate binary object information or performs the implied assembler function.

The assembler, then, is simply a translator which translates an assembly
language source program into its equivalent binary object f01;m.

%RASX is always in one of two modes, relocatable mode or absolute mode.
There are assembler instructions (see section 4. 3) which the user can give to
tell %YRASX to switch from one mode to the other. When %RASX is in absolute
mode, an internal variable called the ABSOLUTE LOCATION COUNTER is
maintained. This internal variable continuously reflects the object program
memory address for which source statements are being assembled in absolute
mode. As each statement is read under absolute mode, the ABSOLUTE LOCATION
COUNTER is updated by the number of machine words that will be oc;cupied by
the assembled statement. There is a similar internal variable, called the

RELOCATABLE LOCATION COUNTER, which is maintained while the assembler

1-3 HRASX

is in relocatable mode.

The user can label source statements with symbolic names. When such
a label is encountered the symbol is defined by associating the current value
and mode of the location counter with the symbol name. The location may then
be referenced by its symbolic name rather than by its actual octal address.

Such a symbolic reference can be made from other points in the same program or
from‘points in another program. An undefined or external symbol is a reference
in one program to a symbol which is defined in another program. Such cross
references between programs are resolved by the loader at load time. %RASX
has the very powerful feature of allowing the user to form arithmetic expressions
involving external symbols. This is covered in section 2. 6.

Since a symbol may be referenced in a program before it is defined,
%RASX must read the source tape once (PASS 1) in order to define all symbols
introduced by the user. The source program is read again (PASS 2) and the
object program is generated on paper tape which can be loaded later by %RLHX,
An optional third pass yields an assembly listing described in the next section.

Object tapes generated by %RASX are loaded via the relocatable loader
%RLHX. When %RASX is in absolute mode, an initial address for the ABSOLUTE
LOCATION COUNTER is specified by the user and the absolute object code which
is generated will be loaded starting at this address. Under relocatable mode,
the initial value of the RELOCATABLE LOCATION COUNTER is not specified
by the user. Rather, the code is assembled relative to zero. Then at load time
the user specifies the load address where the relocatable object code is to be
stored.

When a label is encountered in relocatable mode it has an assembled value
relative to zero. At load time the effective value of the label is its value rela-
tive to zero plus the load address. This relocatability feature means a relo-

catable object tape can be loaded anywhere in memory since the load address is

1-4 %RASX

specified at load time rather than at assembly time.

Source programs on paper tape are prepared using the Source Text
Editor (Manual #72-44-001). The Text Editor is also used to generate new
versions of source programs. When reading a source program from paper
tape the assembler follows the conventions as presented in section 1. 2,

"SYSTEM CONVENTIONS" in the Text Editor.

1. 2 ASSEMBLER OUTPUT

Pass 2 of the assembler reads the source program, and using the values
of user introduced symbols defined during PASS 1, generates the corresponding
object program. The assembler punches the object program onto paper tape
and the object program is subsequently loaded into the GRI-99 via the relocat-
able loader %RLHX.

The optional third assembler pass generates an assembly listing. This
listing contains the source program statements and the object program data
generated from each statement. Although source input statements are of free

form, the assembler separates major source fields to enhance the legibility of the

listing. :
¢§ D2
v S F 3 s & ©
“0p1 , ENTRY COMP,Y2
g02 e0eee € €2 'PROE 313 COMP: FOA ADD 3 ADDsSBTRCT SUBR
003 ooce1 ¢ P66 Po12 11 MR! X1sAX 3ARGe 1
coee? 1 esoQ0R2
(XL 1 " g9e802 Xi=e-1 A
UBPS eoeP2 0 P6 0P8R 12 MR X2sAY 3ARGe 2 IS EXTERNAL
geeey p PO OLO
U ess eeees @ 13 oeee €6 KM AOsY1? 3'SUM 1S E XTERNAL
eeP0e 0 Co00LP '
¢07 ecee7 ¢ 12 eoj1e 12 KSC AYyP1 3 =-ARGe 2
9088 cCOEIC € 13 pede 26 kM ADsY2 sDIFFERENCE
gee1y 1 e@eo13
2089 0oR12 9 €3 9e@e 27 RTRM: KRR TRPs SC 3JRETURN FROM COMP
81¢ 0pge12 ¢ fo0008 Y2: WRD 8
e11 -1 sg9014 END

1-5 %RASX

The * in column one is printed only on the first line of a block.

The relocatability attribute will always be zero, one or two indicating
absolute, plus relocatable or minus relocatable respectively.

The line number is a decimal sequence number generated by the assembler.
For paper tape input this number corresponds exactly to the implicit line number
in the Source Text Editor buffer if the source program were to be updated using
the Editor.

The location field contains five octal digits representing the memory lo-
cation for which the associated data is being assembled. The generated data is
in one of two formats:

a) Machine instructions are printed as two octal digits (bits 15-10), four
binary digits (bits 9-6) and two octal digits (bits 5-f). These sub-
fields correspond to the SDA, MOD and DDA portions of an instruction
word.

b) Other data is printed as 6 octal digits where the first digit may be
only § or 1.

For parameter assignment statements there is no address printed in the

location field. However, the six digit value of the expression is printed
starting in column 28.

PASS 3 of the assembler also generates a listing of user-introduced sym-
bols and their assigned values. A single symbol, its relocatability attribute
and its octal value, appear on each line. The error code U (shown in the
following table) is printed before a symbol if appropriate. The code N is printed
before the symbol in the symbol table if the symbol has been declared an entry

point (see section 4. 6).

1-6 | %RASX

A maximum of two error codes will be printed before the line number of

any statement with errors. Since no more than two error codes can be printed,

only the last two errors discovered are printed. The possible error codes and

their meaning are:

X

External symbol in field where external symbol is not allowed
(for example, in the MOD field of a data transfer instruction)

or an external symbol is preceded by the operator ! or &
%RASX assumes a value of zero and an absolute attribute for the
external symbol.

Multiply defined label symbol. %RASX uses the value and
attribute from the first definition.

Relocatability error: an expression did not resolve properly

to absolute, plus relocatable or minus relocatable (see section
2. 6). The expression will not relocate properly at load time.
Syntax error: the statement is not formed according to the rules
defined in this manual. The assembler génerates two zero words
as object output.

Symbol table overflow: the program contains more symbols than
will fit in the symbol table. All symbols defined after the sym-
bol table has become full will have a value of zero and an abso-
lute attribute.

Undefined symbol (also called external symbol): treated as zero
with an absolute attribute. References to external symbols are

resolved at load time (see section 5. 2).

1-7 %RASX

< Too few expressions in operands field.

> Too many expressions in operands field.
Warning, two or more adjacent operators in an expression
or operand missing in expression. %RASX treats A+-B as
A+B and WRD A, ,B as WRD A, §, B.
Decimal digit 8 or 9 is in octal field: a numeric constant
contains an 8 or 9 and the assembler's radix is set to octal.
Truncation error. Too many expressions (more than 19)
in operands field: or ASC statement terminated by carriage
return. (This can mean either than the ASC statement was
legitimately terminated by a carriage return or that it con-
tained more than 751!5 characters and so was truncated.)
Symbol has been declared as an entry point. Note that this is
not an error, it simply flags that symbol as an entry point,
and appears only in the symbol table printout preceding the
listing.
Entry point error: the ENTRY statement is out of place or
improperly formed.

Indexing error; # appears in field where indexing is not allowed.

2-1 %RASX -

CHAPTER TWO

LANGUAGE ELEMENTS

language source statements. Throughout this manual the following notational
conventions will be employed when presenting general forms of language elements:
[1] Brackets - used to contain an optional item.
The statement may be written with or without
the item - generally, the meaning of the
statement is changed when such an item is
omitted.
{1 Braces - used to contain alternate items. These

items will be arranged vertically within the

one, of the alternate items.

. Ellipsis ~ used to denote permissible repetition

of the immediately preceding language element.

When braces are enclosed within brackets, then either the entire form in
brackets is omitted or the form is included with the appropriate alternate item
selected.

2.1 CHARACTER SET
The GRI-99 basic assembler processes source statements composed of 8-bit

ASCII characters, and recognizes two distinct categories of characters: general

2-2

usage characters and reserved characters.

%BRASX

General usage characters are used to form symbols and simple numeric

constants:
Character External
Alphabetics A through Z
Numerics 0 through 9
Dollar Sign $
Percent Sign %o
At Sign @

Internal

301 through 322

260 through 271

244

245

300

Reserved characters are used to impart special meanings to the assembler,

or to separate or delimit certain language elements:

Delimits source line.
Denotes logical "OR".
Denotes logical "AND".
Denotes Addition.
Separates machine instruc-
tion operands or general
Denotes Subtraction.

Represents the assembler's
location counter.

Separates a label from the
rest of the statement.

Separates comments from
the rest of the statement.

Character External Internal Function
Carriage-return 215
Exclamation Point ! 241
Ampersand & 246
Plus Sign + 253
Comma s 254
list elements
Minus Sign - 255
Period 256
Colon 272
Semi-colon H 273
Equals Sign = 275

Separates a parameter sym-
bol from the expression
denoting its assigned value.

2-3 %RASX

Character External Internal Function
Back-arrow <« 337 Causes the first previous

input character not a back-
arrow to be ignored by
the assembler.

Number sign # 243 Denotes indexing

Block mark 375 or 233 Separates block of source
statements. - Valid only
between lines ~ causes the

assembler to reset the
listing line number to one (1).

Rubout 377 Causes the previous portion
of the input line to be ignored
by the assembler.

Space 240 General delimiter.

NOTE! Although the assembler recognizes only 8-bit characters internally
the source tape input may be in either 8-bit or even-parity code

since the text input routine logically OR's the high-order bit into

each character read.

2.2 SYMBOLS

Assembly language symbols are used to represent memory addresses,
device or operator addresses, machine or assembler instructions, and simple
numeric values. Pre-defined symbols in the assembler's symbol table have
mnemonic value: for instance, the symbol RMID represents the ma chine instruc-
tion Register-to-Memory-Immediate-Deferred. User symbols, as defined in the
source program, represent either a statement label (2. 3) or an assembly para-
meter (2.4). In order to enhance the utility of assembly listings, the user should

attempt to define his symbols with mnemonic value as well.

2-4 %RASX

User defined symbols have an assembled value and an attribute. The
attribute of a symbol determines how the value of the symbol is treated at
load time. A symbol has one of three attributes: absolute, plus relocatable, or
minus relocatable. If the symbol is absolute the final value of the symbol is
simply the value assigned at assembly time. If a symbol is plus (minus) relocatable
the final value of the éy'mbol is its assembled value plus (minus) the load address
at load time. Any indexing (specified by #) will cause bit 15 of the field to be
set at load time after all relocation arithmetic has been done.

A symbol consists of one or more non-blank general usage characters, the
first of which must not be numeric. Since only the first five characters are
stored in the symbol table, symbols of greater length must be unique in the
first five characters.

The following symbols are valid and could be used as a label or as a
parameter:

START
LOOP
N23@
PARAIl
The following syﬁbols are invalid for the reasons given. Invalid symbols

may cause a syntax error and generate two zero words for object output.

8ABC First character numeric
LOOP* Invalid character (¥)
GO:TO reserved character (;)
AB LE Embedded blank

PARAMI1
Not Unique in the first five characters

PARAMZ

2-5 %RASX

The user is further cautioned not to define symbols identical to any
of those in the standard assembler symbol table (Appendix C) unless it is

intended to alter their meaning.

2.3 LABELS
A statement label is defined or established by the occurrence of
Symbol:

(a symbol followed by the reserved character!) as the first element of an
assembly language source statement. The assembler assigns the current value
of the location counter to this label - this will be the memory address of the
first word assembled from the statement with which the label is associated. A
label definition results in a symbol whose attribute is either absolute or plus
relocatable. If %RASX is in absolute mode the current value of the ARSOLUTE
LOCATION COUNTER is assigned to the symbol and its attribute is absolute. If
%RASX is in relocatable mode the current value of the RELOCATABLE LOCA-
TION COUNTER is assigned to the symbol and its attribute is plus relocatable.

A label is used to symbolically reference a specific instruction or data
word from other points in the same program or from points in another program.
Therefore, if a user attempts to associate a label with two or more different
memory addresses the error code M, indicating a multiply defined label, is
printed in the assembly listing. It is also possible to discover an M error
at load time. This is discussed in detail in section 4. 6.

EXAMPLES:

TYPE: RR AX, TTO

TABLE: WRD - 114, -12, -1

2-6 %RASX

2.4 PARAMETERS
An assembly parameter is defined by the occurrence of
Symbol = e
(a2 symbol followed by the reserved character =, followed by an expression
e) as an assembly language statement. Expressions are defined in section 2. 6.
The value and attribute of the parameter will be the assembled value and
attribute df the exprgssion with which it is associated.

A parameter is used to represent device addresses, function generation
pulse codes, or function testing status codes (See chapter 3). A parameter may
also be used to represent a numeric value to be used in the formation of other
expressions. Note that no object code is generated byaparameter assignment
statement - the statement merely causes a numeric value and attribute to be
assigned to the parameter symbol. An assembly parameter, unlike a label symbol,
may be redefined within the same program.

To ensure that the proper value of a parameter is used the parameter must
be completely defined before it is referenced in PASS 2. In the following example
the first reference to A will be wrong on PASS 2 since the reference to A

occurs before A is completely defined. The second reference to A will be correct.

MRI A, AY +1st REFERENCE TO A
A=B+5

B=6

MRI A, AX : 2nd REFERENCE TO A

A is completely defined when the statement A = B + 5 is encountered on PASS 2.
It is possible to define parameters in such a way that they are not com-

pletely defined until PASS 3. For example:

2-7 %RASX

X=Y+5
Y=2Z -2
Z = 24

The values assigned to the symbols in this example when their defining state-

ments are encountered will be as follows:

X Y Z
PASS 1 5 -2 24
PASS 2’ 3 22 24
PASS 3 27 22 24

The value of X is different on all three passes: X is not completely defined

until PASS 3.

2.5 CONSTANTS

A simple constant is represented by one or more successive numeric char-
acters. The character string is converted ignoring overflow into its equivalent
binary value according to the setting of the assembler's radix, which may be
either decimal or octal (see section 4. 2). The range of a constant, so as not to
arithmetically overflow out of the fifteen magnitude bits of a signed machine
word, is 0 to 32767 decimal or 0 to 77777 octal.

If a stand-alone constant is to be treated as an unsigned (magnitude only)
entity,v the upper limits may then be 65535 decimal or 177777 octal.

A simple constant is considered to have an absolute attribute.

2. 6 EXPRESSIONS
Compound numeric values may be formed in instruction fields or data words
by arithmetically and/or logically combining simple values in an assembly lan-
guage expression. An expression consists of a numeric operand or a series of
operands separated by arithmetic and/or logical operations, where the first such

operand may be preceded by an arithmetic operator (leading sign). Any given

2-8

operand may be one of the following:

Operand
Label

Parameter

Constant

%RASX

Attribute
absolute, plus relocatable

absolute, plus relocatable, minus
relocatable

absolute

* (representing assembler's absolute, plus relocatable

current location counter)

and the permissible operators are:

+ Denotes addition

- Denotes subtraction

& Denotes logical "AND"
! Denotes logical "OR™"
Space Used to imply logical "OR"

A general expression, e, is assembled into a 16-bit value. The formal

definition of e is

- Label
{ + } Parameter ‘
Constant

. —_—
- ‘ Label
& Parameter
! Constant

Space]

A W error for warning is printed if an expression contains two or more

adjacent operators. Only the first operator is used; for example A+-!B is treated

as A + B. W error is also printed if an operand is missing. For example, WRD ,,

is treated as WRD ﬁ, ﬁj, 25-

An expression is evaluated in simple left-to-right scan: no priorities

are assigned to the operators.

2-9 %RASX

EXAMPLES:
15
-237
A+B
.+B-3
VALIVAL2&VAL3
The attribute of an expression is calculated as follows. Assign absolute
symbols a value of f, plus relocatable symbols a value of +1 and minus relocat-
able symbols a value of -1. Evaluate the expression with these values. If the
result if § the expression is absolute, if +1 the expression is plus relocatable,
and if -1 the expression is minus relocatable. Any other result causes an R error
to be printed on the assembly listing and the result will not relocate properly
at load time. For example the attribute of the following expression (where
TABLE and START are plus relocatable) is absolute.
X = TABLE +5 - START
(+1) + (B) - (+1) = 8
However, the following expression results in an R error:
X = -TABLE - START
-(+1) - (+1) = -2
Also, if the AND or OR operators are used, the attribute of the expression
up to that operator and the attribute of the symbol to the right of that operator
must be absolute or an R error is generated. For example an R error is
caused by
RM AX,5 ! START
but the following expression is okay.

MRI TABLE - START ! 5, AY

2-10 %RASX

%RASX allows undefined or external symbols in an expression. They are
treated as absolute with a value of zero for purposes of evaluating the attri-
bute and value of the expression. However, at load time the value of the
expression will include the values of the undefined symbols if they are declared

as entry points in another program.

2.7 COMMENTS
User comments may be inserted in any line of the source program by
separating them from the rest of the line by the special character; (semi-colon).
A comment must either be the last element of a source line or it must be the

first and only element.

EXAMPLES:
RSC AX, P1 7 NEGATE AX (last element)
; CONVERSION ROUTINE (only element)

Only as much of a comment as will fit will appear on the assembly list-
ing - the remainer of the comment, if any, will be ignored. There are no
special rules regarding the characters, or their spacing, that may be contained
in the body of a comment, except that:

1) a carriage-return terminates the source line
2) the back-arrow and rubout characters perform the functions

presented in section 2.1.

2.8 STATEMENTS
A source program statement (a source line) is a meaningful arrangement

of basic language elements and is terminated by a carriage-return. A statement

2-11 %RASX

may contain no more than 80 characters, including spaces (blanks). An assembly

language statement may take on one of the following general forms:

SYMBOL: INSTRUCTION OPERANDS ; COMMENTS
SYMBOL: INSTRUCTION OPERANDS

SYMBOL: INSTRUCTION ; COMMENTS
SYMBOL: INSTRUCTION

INSTRUCTION OPERANDS ; COMMENTS

INSTRUCTION OPERANDS

INSTRUCTION ; COMMENTS
INSTRUCTION

SYMBOL = e : COMMENTS

SYMBOL = e

; COMMENTS

where an INSTRUCTION is a machine instruction, an assembler instruction,
or a pseudo instruction (described in Chapters Three, Four and Five respectively)
and OPERANDS is a comma - separated list of expressions.

Other than the order of the major elements, as shown above, there are no
formatting requirements imposed upon a source statement. The assembler isolates
the major elements of a free-form source statement and arranges them in columns
on the assembly listing.

The most basic elements (symbols) must, however, be separated or delimited
for each other. Since symbols consist solely of general usage characters (2.1),

a statement such as
VALU=VI+VZ2-V3; DEFINE VALUE

is easily understood by the assembler. Therefore, the main rule to be observed

2-12 %RASX

when preparing source statements is:
When any two successive symbols are not separated by a
reserved character, then they must be separated by at least

one space.

3-1 %RASX

CHAPTER THREE

MACHINE INSTRUCTIONS

Although all basic GRI-99 machine instructions have the same format --
SDA MOD DDA - (See Chapter One), the asseinbler distinguishes four general
classes of instructions as follows:

Function Generation -- Control pulses specified by MOD are 1t‘ransnf:itted
to the nafned destination device: the unique
combination of MOD and DDA defines the function
to be performed.

Function Testing -- Status indicators associated with the named source
device are sensed and program flow is altered if
the test specified by MOD is true: flow alteration,
if any, consists of a skip over the next two memory
words.

Data Test -- Data in ﬁhe named source device register is tested
and program flow is altered if the test specified
by MOD is true: flow alteration, if any, consists
of an absolute transfer (jump) to some new location
specified by the instruction.

Data Transmission -- Data is transmitted from the named source device to
the named destination device: binary modifications
to data in transit and, for memory-reference
instructions, addressing modes are specified by MOD.

An assembly language machine instruction consists of a mnemonic followed

by one to three expressions separated by commas. The expressions in the operands

portion of the instruction are arranged according to the SDA MOD DDA order, left

3-2 %RASX

to right. These expressions provide values to be assembled into specific fields
of the complete machine instruction. For two-word instructions, either the left-
most or the rightmost expression (as implied by the mnemonic) is assembled
into the second word.

NOTE -- The value of any given expression to be packed into n

bits of an instruction is treated modulo 2.

In order to render assembly language program listings more meaningful
and to minimize the amount of writing necessary for the specification of instruc-
tions, the assembler's complement of mnemonics provides useful subdivisions
within each of the four machine instruction classes. These classes and their
subdivisions are described in the following sections. Machine word layouts
presented with general forms detail the contribution of statement components to

the assembled instruction.

3.1 FUNCTION GENERATION
Function generation instructions cause up to four pulses to be transmitted
in parallel to controllable destination devices. A general function generation

instruction is of the form:

FO e, e, [o2 [& [e |

where bits 9-6 of MOD correspond to the four machine pulse control lines.

EXAMPLES:
FO 1,77 » START TTI READER
FO 11,76 ; CLEAR FLAG, START HSR
FO 2,0 ;+ SET LINK
FO 4,13 ; SELECT ARITH. OPERATOR "AND"

- Using standard assembler symbols (or user-defined symbols) for function codes

3-3 %RASX

and device names, the previous examples might be written:
FO STRT, TTI
FO CLIF STRT, HSR
FO STL,O
FO AND, AO
The assembler provides mnemonics which imply a specific destination.
These are of the form:

- machine (control logic)

FOM e | 02 | 00 |

- interrupt control

FOI e [02 | e | 04 |

- arithmetic operator

FOA e [o2, J e] 13
EXAMPLES:

FOM STL ; SET LINK

FOM HLT ; HALT MACHINE

FOI ICO ; INTERRUPT CONTROL-ON

FOA ADD ; SELECT AO "ADD"

FOA AND ; SELECT AO "AND"

3.2 FUNCTION TESTING
Function testing instructions enable the user to alter program flow based
on the setting of status indicators associated with a given device. If the specified
test is true, a skip over the next two words is pe;rformed. A general function

testing instruction is of the form:

e e . e

1’

3-4 %RASX

where MOD (9-7) correspond to the three machine sensing lines, and MOD (6)

is interpreted as follows:
0 -- Skip on the "OR" of the truth of the selected indicators.

1 -- Skip on the "AND" of the falsity of the selected indicators.

EXAMPLES:
SF 77,2 ; SKIP IF TTY OUTPUT READY
SF 76,3 ; SKIP IF HSP NOT READY
SF 0,2 ; BUS OVERFLOW SET?

SF 13,2 ; SKIP AO OVERFLOW

Using standard symbols, the above examples are written:
SF TTI, ORDY
SF HSP, NOT ORDY
SF O, BOV

SF AO, AOV

The assembler provides mnemonics which imply a specific source.

are of the form:

- machine

SFM e 00 e 02

- arithmetic o

SFA e 13 e 02

EXAMPLES:
SFM BOV : BUS OVERFLOW SET?
SFM NOT BOV LNK

SFA AOQOV ; SKIP AO OVERFLOW

These

3-5 %RASX

3.3 DATA TESTING
Data testing instructions enable the user to alter program flow based
on the value of data residing in a given device. The data is tested relative to
algebraic zero. If the specified test is true, a jump is performed“to some new

program location. A general data testing instruction is of the form:

JC [D] epeye, [& T =[] T1T o 7]

L e3 |

where MOD (9-8) specify test conditions

- if MOD (9) = 1, test for less than zero
- if MOD (8) =1, test for equal to zero,
MOD (7) is interpreted as follows:

0-jump to e 3 on the ""OR" of the truth of the selected test conditions.

1- jump to €5 on the "AND" of the falsity of the selected test conditions,
and the optional D, if included, sets MOD (6) which selects the deferred

addressing mode.

Normally, the expression e, will consist solely of one of the assembler's

predefined test codes:

CODE VALUE CONDITION

ETZ 2 Equal to zero

NEZ 3 Not equal to zero

LTZ 4 Less than zero

GEZ 5 Greater than or equal to zero
LEZ 6 Less than or equal to zero

GTZ 7 Greater than zero

3-6 %RASX

EXAMPLES:
JC AX,GEZ, LOOP+5
JC TTLETZ,AGAIN
JCD AO, LTZ, SUB+l
JC O,ETZ,.-7
The last example is an unconditional jump, since device zero is a

source of a zero data word. The assembler provides a mnemonic for uncon-

ditional jumps:

I € l
EXAMPLES:
JU GO ; JUMP TO GO
JUD ADDR ; JUMP DEFERRED THRU ADDR

3.4 DATA TRANSMISSION

Any machine instruction not specifically falling into one of the afore-
mentioned three classes implies the transmission of data from a source device,
through the Bus Modifier, to a destination device. Programmable data paths in the
Bus Modifier enable the selection of binary modifications to data as it passes
between the source and destination devices. The operands portion of every
assembly language data transmission instruction contains an optional expression,
which, if included, is assembled into MOD (9-8). The modifications that can be
selected by MOD (9-8) and the standard codes that may be used to invoke them are:

11 - Shift left one bit

R1 - Shift right one bit

Pl - Increment (add one)

3-7 %RASX

Only one of the above modifications may be selected in any given data
transmission instruction. When data is incremented (P1), the bus overflow
indicator is set if, and only if, the source data was equal to -1 (all ones). If
such overflow did not occur, then the overflow indicator will be cleared. After
a transmission through the incrementing path, ‘the status of the bus overflow
indicator can be sensed with a SEFM[NOT| BOV.

Data is shifted (L1 or Rl) circularly through a one-bit link in the Bus
Modifier. After any shift, the new status of the Link may be sensed with
‘a SFM [NOT] LNK. | If it is desired to shift a éero (or a one) into the word
being transmitted, the pre-transmission state of ‘the Link may be ensured by
a FOM CLL (FOM STL).

The zero or null device address may be used in data transmission instruc-
tions. When used as a source, it provides a zero data word which is transmitted,
with or without modification, to the named destination. When used as a destin-
ation, the source data may be transmitted and Bus Modifier status indicators sub-
sequently tested without modifying the source data itself or replacing' the contents
of some other device register. |

Any data transmission instruction may be used to effect an absolute
transfer of program control (jump) by transmitting a memory address to the
cbmputer's sequence counter (SC). Note, however, that if the transmission in-
struction is a one or a two-cycle instruction, then one less than the desired jump

address must be transmitted.

3.4.1 NON-MEMORY TRANSMISSION
These instructions enable the transmission of data between non-memory

registers in system devices, and have the general form:

3-8 %RASX

e e Ico €
RR [C] elr€,5l: €5 1 2 3

where the optional C, if included, sets MOD (7) -- this bit, available only in
non-memory transmissions, selects the ones complement of data prior
to another modification selected (if any).
EXAMPLES:

RR O, AX ; CLEAR AX

RRC AO,Pl,AX ;2's COMP OF AO TO AX

RR TTL, TTO ; TTI TO TTO

" RR AX, Pl, AX ;INCREMENT AX

This last example involves the transmission of a register to itself. The

assembler provides the shorter form

RSC e e, ©1 €z2|clo €
EXAMPLES:
RS AX, Pl ; INCREMENT AX
RSC AX ;1's COMP AX
RS AY, Ll ; SHIFT AY LEFT

NOTE - Not all system devices may be both a source and destination
for data. For instance, AO, TTI, and HSR are source only,
while TTO and HSP are destination only.

As previously noted, registers may be cleared by transmitting to them

from the zero address. A further mnemonic is pravided to facilitate this.

ZR‘[C] [el] e, 00 € |c|o ®2
EXAMPLES:

ZR AX ; AX=0

ZR P, HSP ;PUNCH A ONE

ZRC AY ;SET AY TO -1

3-9 %RASX

3.4.2 MEMORY REFERENCE TRANSMISSION
These instructions enable the transmission of data either between a
device register and a memory location or from a given memory location to
itself. In either case, the optional characters I and D in the instruction mnemonic
cause the selection of the immediate and deferred addressing modes regpectively.

Registers may be stored in memory using the general form:

RM [I] [D] & l:,ezj . e3 e1 e2 1|D 06

: | €3]
EXAMPLES: .

RM AX, SAVEL

RM AO,PlL,Z14+5 ;STORE OUTPUT+1

RMI TRP,O ; STORE TRAP IMMEDIATE

RMD AX,ADDR

The clearing of memory locations is facilitated by the form:

ZM [[D] EIJ e, 00 e, [I[D] 0

e |
EXAMPLES:
ZM GCOUNT ;CLEAR COUNTER
ZM Pl SWl .SET SWITCH

Registers may be loaded from memory using the general form:

MR[I][D] el[’ez] eq 06 [e,JI[D] e,

B o

EXAMPLES:
MR SAVEL AX ;RESTORE AX
MRI 215, TTO i TYPE CARRIAGE-RETURN
MRD A, Ll, AX

MRI -1, TRP i TRAP=-1

3-10 %RASX

Memory locations may be modified through use of the general form:

s [1]o] o [res] (= T[Tl =

€ I
EXAMPLES:

o
L\-]

MS COUNT, P1 s INCREMENT COUNTER
MSI O,Pl ;INCR 2nd WORD OF INSTRUCTION

MS MULTP, R1 s ROTATE MULTIPLIER

3.4.3 INDEXING

Address words, e.g., the second word of a two word instruction, may
specify that the address word of the instruction is to be indexed to establish
the effective address. This is signaled by bit 15 of an address word being set
to a one. The assembler is directed to set bit 15 of a'word of object by pre-
ceeding the expression which defines the word with a #. Thus

. MR #LABL, AX

or JC AX, ETZ, #SUBR+3
signals the assembler to generate the index bit of the word into which the value
of the expression will be stored. Thes assembler does not actually set this bit
on the object tape - because the value of the expression may need relocation which
must occur before the bit is set. Instead, separate information is output on the
object tape to inform the loader that bit 15 is to be set after relocation (if any)
has occurred. The listing, however, will show bit 15 set to aid in debugging.

The index symbol must occur at the beginning of the expression in whiéh
it occurs, otherwise a syntax error (S) will occur. If indexing is specified for
a field which does not correspond to a 16 bit (full word) quantity of object code,

an indexing error (I) will occur. Thus, valid examples are

3-1 %RASX

WRD #LABEL+5, XYZ,1,#3

MRID #6, AX

JU #5
RM AX, #EXTRN+6
JC AX,ETZ, #RETRN

. Examples causing syntax errors are
WRD LABEL+#5
JU EXTRN#+6

Examples causing index errors are

PARAM:=" fe (parameter definitions do not
generate 16 bit object)
JC #AX, ETZ, LABEL (#AX occurs in a field corres-

ponding to a 6 bit register number)
MR LABEL, #Pl, TRP {(#P1 specifies a 4 bit mod field)

4-1 %RASX

CHAPTER FOUR

ASSEMBLER INSTRUCTIONS

This chapter describes assembly language instructions that either
enable the insertion of data into the object program or merely act as

directives to the assembler during the assembly process

4.1 DATA DEFINITION
The following instructions enable the insertion of data into the object

program.

4.1.1 TEXT

Consecutive characters of ASCII text are assembled into an object

program using the form: C C

1 2
ASC dc1c2c3c4. .o cnd

C3 CL'

where d, the delimiter, is the first non-blank charact:’ez; after the instruc-
tion mnemonic, the rightmost d must be the next character identical to
the delimiter (or a carriage return), and the c, are text characters.

The text delimited by the d's is assembled into consecutive words,
(considered absolute) two ASCII characters per word, as shown. If the
text contains an odd number of characters, the rightmost 8 bits of the last
word assembled will be set to zero. If the text contains no characters,
two words of zero are generated as object output and an S (sytax) error
occurs. Text characters may be drawn from other than the general usage or

reserved character sets. The reserved characters carriage-return, back-

4-2 %RASX

arrow and rubout always perform their usual functions - See section 2. 1.
Hence, a carriage return cannot be used within the delimiters of an ASC

statement. (The delimiter may be any character except back arrow, rubout,

carriage return or colon.)

MSC: ASC /MOUNT NEXT TAPE/
‘ASC 1A/B=LIMI!
ALRML ASC .ALARM ',

A label associated with an ASC instruction may be used to reference

the first word assembled from the text.

4.1.2 WORD VALUES

Full 16 bit values of assembly language expressions may be assembled
into consecutive words of the object program using the form:

| 1
- WRD e [ez] R "

|

e

The values of one or more expressions are assembled into the
corresponding number of consecutive words. The attribute associated

with each word will be the attribute of the corresponding expression.

EXAMPLES:
TABLE: WRD 1750, 144, 12 ; POWERS OF 10
COUNT: WRD 0

WRD .+A-15

A label associated with a WRD instruction may be used to reference

the first word assembled therefrom.

4-3 %RASX

NOTE - If the assembler location counter symbol (.) is encountered
in any expression in the list following WRD, its value
will be the address of the word into which that expres sion

is to be assembled.

4.1.3 PACKED BYTES
A pair of character or expression values may be assembled into

the left and right halves of a word by using the form:

PKB ey e, , L € e,

EXAMPLES:
PKB 17, 31
PKB A+l, A-1
PKB 215, 212
The last example packed a carriage-return and a line-feed character
into a single word. Since the carriage-return cannot be included in the
definition of a rhessage (see ASC, above), it is often useful to follow the
message with the foregoing packed character pair. Alternafively, one
could write
CR=215
LF=212
PKB CR, LF
PKB CR, LF
If e, Or e, contain any external symbols, an X error is orinted and

the external symbol is treated as zero with an absolute attribute.

4-4 %RASX

4.2 RADIX

The assembler converts constants (2.5) to their equivalent binary
value according to the setting of an assembler variable, called the RADIX.
:The statement

OCTAL
causes the assembler to interpret subsequently encountered constants as
~octal numbers. The statement
' DECIM[AL]
requests the assemble; to interpret constants as decimal numbers.
The assembler's RADIX is initialized to OCTAL at the beginning

of each pass. Any setting of RADIX by the user remains in effect until

either the RADIX is reset or the pass is completed.

4.3 SET LOCATION

Aﬁ assembler's location counter continuously reflects the memory
address into which a source statement is being assembled. As stated in the
introduction %RASX maintains two location counters. The ABSOLUTE
LOCATION COUNTER is used to associate memory locations with source
statements assembled in absolute mode and is therefore updated only when
the assembler is in absolute mode. The RELOCATABLE LOCATION COUNTER
associates memory locations with source statements assembled in relo-

catable mode and as such is only updated when the assembler is in relo-

catable mode.

4-5 BRASX

At the beginning of each pass %RASX assumes relocatable mode and
sets the value of the RELOCATABLE LOCATION COUNTER to zero. As each
source statement is translated to object code during relocatable mode, the
RELOCATABLE LOCATION COUNTER is updated by the number of words the
source statement requires. At any time the user can switch to absolute
mode by writing the instruction: |

LOC e
where the expression e contains no undefined symbols when first encountered
dnd e has an absolute attribute. If e has a relocatable attribute the assembler
merely resets the RELOCATABLE LOCATION COUNTER to the value of e
and continues in relocatable mode.

When the instruction LOC e is encountered and é has an absolute
attribute, %RASX enters absolute mode and sets the ABSOLUTE LOCATION
COUNTER to the value of e. As each source statement is assembled during
absolute mode the ABSOLUTE LOCATION COUNTER is updated by the number
of words the source statement requires.

The user can change from absolute mode to relocatable mode by
writing the statement

REL
when %RASX encounters a REL statement it merely switches to relocatable
mode and uses the latest value of RELOCATABLE LOCATION COUNT ER.

Stated simply, the REL statement forces %RASX to relocatable mode.
The LOC e statement sets %HRASX to relo®atable mode if e is relocatable

and to absolute mode if e is absolute.

4-6 %BRASX

In addition to setting the mode of the assembler, the LOC e state-
ment can be used to reserve a block of consecutive words by updating the
location counter relative to its current value. For example to reserve a
block of 5}6 words and to label the first such block AREAl, one would write

AREAl LOC .+58
Note that the symbol AREAII is assigned its value before the location

counter is updated.

4.4 PROGRAM TERMINATORS
Tﬂe last statement of a source program must be
END
which causes the assembler to finalize all processing for the current pass
and come to a halt.
If a source program consists of segments residing on different tapes,
then each tape but the last should be terminated by the statement
EOT
which causes the assembler to pause for the insertion of the next tape into

the reader.

4.5 LISTING CONTROL
There are three instructions to modify the assembly listing output.
The instruction EJECT causes the assembler to go to the top of a page to
continue listing. The EJECT instruction itself will be listed at the top of

the page.

4-7 %RASX

The statement NLIST causes the assembler to stop listing (but not to
stop assembling) until a LIST or END command is encountered. The NLIST
statement itself is printed. The assembler assumes LIST at the beginning

of each pass.

4.6 ENTRY
The format for the ENTRY statement is:
ENTRY sl [, sZ] .. . [; comment]
where sl,s2... are symbol names. A ;ym}sol name should appear in an
ENTﬁY statement in the program which defines the symbol if that symbol
name is to be referenced from another program. When %RASX punches an
object tape it also punches a table of all undefined symbols and a table of
all symbols which have been declared as entry points (i.e. ‘which appear in
an ENTRY statement). At load time, the entry points defined in one program
are used to resolve the undefined symbols in other programs. For example,
if the following two programs were assembled and then lqaded,
s PROGRAM ONE
ENTRY A
A: WRD 15
END
: PROGRAM TWO
MR A, AX
END

the undefined symbol A in program TWO would be resolved by the loader to the

value of A defined in program ONE since A is declared in program ONE to be

4-8 %RASX

an entry point. If A had not been declared as an entry point in program ONE
the loader would have been unable to resolve the reference to A in program
TWO. The reference to A in program TWO may be preceeded by # if the
index bit is ‘to be set when A is resolved.

The possibility exists of a symbol becoming multiply defined (M error)
at load time (section 2.3 discusses fnultiple definition during assembly). If
the same symbol name is declared as an entry point in two different programs
and those two programs are loaded together the symbol will be multiply
defined at load time. As with multiple definitions at assembly time, the first
value of the symbol is used.

If there are any ENTRY statements in a program they mustappear as the
first statements of that program. An exception to the rule is that an ENTRY
statement may be proceeded by lines consisting of comments only.

An E error will be printed if the ENTRY statement is improperly

formed or out of place.

5-1 %RASX

CHAPTER FIVE

USAGE NOTES

This chapter describes conventions regarding subroutine linkage

and presents further features of the assembler itself.

5.1 SUBROUTINE LINKAGE

The standard transfer of control to a subroutine in the GRI-99 is via a
data test instruction. The JU (unconditional) or JC (conditional) jump instruc-
tion is used as appropriate. When any data test instruction results in a
jump, the processor's sequence counter (SC) points to the second word of the
jump instruction immediately before the jump takes place -- at this point
the SC is transmitted to the trap {TRP), a hardware register associated with
the data tester. Then the contents of the second word (or thé incremented
contents of the word it points to if deferred addressing is selected) is trans-
mitted to the SC. The SC now points to the first (or entry) instruction of
he subroutine called -- this instruction is executed next by the processor.

After any data testing jump is executed, the contents of ‘TRP enables the

return of control to the calling program if the jump was to a subroutine.
Note that the address value in TRP is one less than that of next instruction
in the calling program. If the subroutine called does not alter the contents
of the TRP register, either with a data test or a data transmission instruc-
tion, then the subroutine may return control by executing the instruction

RR TRP, SC

5-2 %RASX

Siﬁce the SC is automatically incremented after this instruction is exec-
uted, an absolute return of control to the proper location is performed.

If, on the other hand, the contents of TRP is likely to be affected
by the subroutine itself, then the subroutine entry point instruction might
be

SUB: RMI TRP,0
where the contents of TRP is stored into the second word of the entry instruc-
tion. The subroutine may return control to the calling program via any one
of the following instructions:
JUD SUB+1
JCD Device, test, SUB+l
or MR SUB+I, P1, SC

Since the last instruction (MR) is a three-cycle instruction, the automatic
incremeniiing of SC is completed before the instruction itself is executed -
therefore, the instruction must increment the value being transmitted to SC.

A subroutine usually performs some operation or operations on one
or more data items, called the arguments of the subroutine. Argurnents
are sometimes passed to subroutines by loading them into specific hardware
registers before calling the subroutines. Also, arguments may be passed
by following the subroutine call with a list of word values which define the

arguments:

5-3 %RASX

JU SUB
WRD ARGI
WRD ARG2
WRD ARGS3
WRD ARGn

where any ARG2 might be one of the following:
a) an address of data to be operated upon,
b) an actual data value to be operated upon,
c) an address to which return is made if errors are
detected by the subroutine, or
d) an address into which results are to be stored.
If the subroutine entry instruction is

QITR- RBNMT TRD
DT s IR 1 INL

\PAZS EaY

,» 0
then the first argument (ARG1) can be loaded into the AX registér by

MRD SUB+1, AX
The second and successive arguments can be fetched by executing similar
instructions. Note that the word at SUB+1 is auto-incremented during each
such deferre‘d mode instruction. When all the arguments have been picked

up the word at SUB+] contains one less than the normal return of control

to the calling program.

5-4 %RASX

The index register may also be used to advantage in these situa-
tions. If the TRP register is going to be altered by the subroutine, instead
of saying RMI TRP,f at the beginning one might say RR TRP, XR in which
case (if the XR is not destroyed by the subroutine) a return can be effected by

RR XR,SC

Also, if arguments have been passed in the call, the subroutiné can

begin by saying RR TRP, XR and picking up arguments may proceed by

MR #1,AX ;arg 1to AX,

MR #2, AX ;arg 2 to AX
and at the end, if n arguments are in the call, and the XR has not been
destroye&, the return may be effected by
JU #n+l

or MRI #n, SC (contents of XR+n go to the SC, and
since MRI is a 2 cycle instruction,
the SC is bumped by one after
execution thereby effecting return
to the proper place)

This method of picking up arguments has the disadvantage that it destroys

the XR, but there are many advantages -- every instruction involved is 1

cycle shorter, the arguments need not be picked up sequentially, and all of

the arguments do not have to be picked up in order to effect a proper return;

eg. compare

JU
WRD

WRD

Method 1
SUBR: RMI

MRD

MRD

MRD
JUD
Method 2
SURB: RR

MR

MR

MR

JC

SUBR
ARG1

ARG2

TRP, §

SUBR+1, AX

SUB+1, AX

SUB+1, AY
SUB+1
TRP, XR

#1, AX

#3, TRP

#2, AY

AOQ, ETZ, #n+l

%RASX

; ARGI to AX

+ CAN'T GET ARG 3 OR RETURN

: ARG2 to -AX

; ARGn to AY (MUST BE

;+ DONE BEFORE RETURN)

; 1st ARG

; 3rd ARG

; THEN 2rd ARG

; DO NOT HAVE TO GET

; ALL N ARGS BEFORE RETURN

5-6 %RASX

MR #n, AX
etc.
JU #n+l s ANOTHER RETURN

Note that RMI TRP, f (method 1) is 2 cycles, RR TRP, XR (methc.)d 2)
is 1 cycle, MRD instructions (method 1) are 4 cycles, MR instructions (method
2) are 3 cycles and JUD (method 1) is 3 cycles whereas JU (method 2) is
2 cycles for the return.

The index register may be used as bo'th a loop counter and as an
address modifier at the same time as follows: suppose you wish to zero out
a table which is 1008 words long. The following will accon'aplish this:

MRI -100, XR
ZM #TABLE+100
RS XR, P1

JN .=3

The first time through the loop the ZM instruction will zero
TABLE + 100 + XR = TABLE + 100 - 100 = TABLE; the second time through
the XR. will be -77 since the RS XR, Pl added one to it - hence the ZM
instruction will zero TABLE + 100 + XR = TABLE + 100 - 77 = TABLE+L
and so forth. The last time through the loop XR will equal -1 and the ZM
instruction will zero TABLE + 100-1 = TABLE + 77 (the last word),

then the RS XR, Pl bumps XR to zero which sets BOV so that the JN

5-7 %RASX

instruction fails and the loop is done.

5.2 SYSTEM LINKAGE
| Programs assembled by %RASX are linked together at load time.
As discussed in section 4. 6, when a symbol is defined in one program
and is declared in that program- to be an entry point, then that s‘,rmb.ol
can then be referenced by other programs. The references to the symbol
from other programs will be undefined (exfernal) at assembly time but
will be resolved to the proper value at load time.

For example if TABA and LEN were undefined at assembly time
the expression in the following statement would assemble to a value of
zero and an absolute attribute. |

LOCAT: MRI TABA+LEN, TRP

Howex}er, if the object tape was loaded with a tape which had declared TABA
and LEN as entry points and had defined TABA as 14 and LEN as 26 (both
absolute) then a 3§ would be loaded into LOCAT+l. The expression is
resolved to the proper value at load time.

 If the defining program had defined TABA as plus relocatable with
a value of 32 and LEN as absolute with a value of 24 and the defining
program were loaded starting at location Zﬁﬁﬁ then TABA would have an
effective value of 2000/+32=2632 (see section 2.2). Therefore, 2§32 +24=
2056 would be loaded into LOCAT+l. If, further, the statement had been
LOCAT: MRI #TABA+LEN, TRP then (2632+24) or'd with bit 15 = 162056

would be loaded into LOCAT+1.

5-8 %RASX

5.3 PSEUDO INSTRUCTIONS
In addition to statements containing standard predefined machine

instruction codes, the assembler accepts statements of the form

bol: constant e comment
symbol: symbol
where the item in is called a pseudo instruction. The value of the

constant or symbol is assembled into a single word and is displayed on

the assembly listing in machine instruction formé.t. The expression e,

if present; ‘is assembled into the next word and is displayed as data. The
value of a symbolic pseudo instruction must be established via a parameter
assignment statement (see 2. 4).

The user may employ pseudo instructions to providé short and mean-
ingful forms for machine instructions. For example, the assembly language
instruction " FOM CLL" assembles as 02 0001 00 which has the octal value
004100. Refefining the standard symbol CLL with the statement "CLL=004100, the
user may now code the clear link instruction by writing the pseudo instruction
CLL. Such a redefinition must, of course, be included in each program
that uses this symbol as a pseudo instruction, . Another example is to re-
élace the ihstruction "RR MSR, Ll, 0", which copies the bus overflow indicator
into the link, by a symbol such as BVLNK whose value would be 037000.

VN%RASX has defined the following pseudo instructions in the resident

symbol table:

5-9 %RASX

JO Jump on BOV, equivalent to JC MSR, LTZ, address

JN Jump on NOT BOV, equivalent to JC MSR, GEZ, address

JOD Jump deferred on BOV |

JND Jump deferred on NOT BOV

CLL Clear link, equivalent to FOM CLL

STL ~ Set link, equivalent to FOM STL

CML Complement link, equivalent to FOM CML

HLT Halt, equivalent to FOM HLT

ADD Set AO to ADD, equivalent to FOA ADD

AND Set AO to AND, equivalent to FOA AND

OR Set AO to OR, equivalent to FOA OR

XOR Set AQO to XOR, equivalent to FOA XOR

I1CO Set interrupt control on, equivalent to FOI ICO

ICF Set interrupt control off, equivalent to FOI ICF

CLB Clear BOV, equivalent to ZR Pl, §

STB Set BOV, equivalent to ZRC.Pl, §

BTL Copy BOV to LNK, equivalent to RR MSR, Ll, §

ATL Copy AOV to LNK, equivalent to RR MSR, Rl, §

ZMS Set MSR to f, equivalent to ZR MSR

SKP Skip two words, equivalent to SFM NOT

NOP No operation, equivalent to RR 0,0

The more common function of pseudo instructions is to enable the

coding of commands that are arguments to interpretive subroutines. A call

(JU) to an interpretive subroutine is followed by a sequence of commands

5-10 %RASX.

tha.f are arguments for the subroutine - the subroutine fetches and inter-
prets each such command and performs the operation implied by the
command. The GRI-99 Floating Point Interpreter ($SFI) maintains a
software floating point accumulator. Floating point computations are
invoked by commands to $SFI, where each command represents an oper-
ation to be performed on the software accumulator and calling program |
floating point data. For instance, to compute Y=AX2+BX+C in floating
point, one would write the following assembly language instructions:
Ju $SFI
FLDA A
FMPY X
FADD B
FMPY X
FADD C
FSTA Y
FEXT
where the single~word pseudo instruction FEXT causes the subroutine to
return control to the calling program. The other pseudo instructions each
.'assembler into two words -- a command followed by the address of a floating
point operand. For a complete description of $SFI and its commands, refer

to GRI manual 74-44-001, "Floating Point Interpretive Language. "

A-1 %RASX

APPENDIX A
OPERATING INSTRUCTIONS-

Passes 1, 2 and 3 of the assembler perform user s?mbol defini-

tion, object code output and listing output respectively. After Pass-1, the

assembler will continue to Pass 2 and then to Pass 3. Once Pass 1 has

been completed, however, the assembler may be re-started and either

Pass 2 or 3 selected. Once Pass 2 has been run it should not be run again

without going through Pass 1 first.

I.
IL.

IIl.

Iv.

Load the assembler with the Absolute Loader
Transmit "0" to SC.

Set console switches as follows:

Bit 15 selects source input device

Bit 14 selects object output device

Bit 13 selects listing output device

UP = High-speed

DOWN = Low-speed (Teletype)

Bits 1-0 select Pass

0l = Pass 1
10 = Pass 2
11 = Pass 3 if Pass 1 previously completed.

Ready source tape in reader (if TTI, set reader control to START).
Press START.

The assembler will halt after encountering an EOT mnemonic. Mount

the next tape segment and press START.

A-2 %RASX

The assembler will halt after encountering an END mnemonic. If

another pass is either desired or necessary, remount the source tape (or

the first segment thereof) and

a) press START to proceed to the next pass, or

b) select desired pass by starting at II, above.

At.the beginning of Pass 2 (before it is started), turn the punch ON

if the object output is on TTO and turn it OFF after the pass is completed.

NOTES:
1)

2)

If bits 14 and 13 have different settings, then both

the object code and the listing will be generated

during Pass 2. The listing may be punched on the
high-speed device and later printed off-line.

Since input is interrupt driven, the user must be

sure to press START at all times rather than CONTINUE.
Also he must be sure that the I/O card for the input
device is plugged into the back of the computer in such
a way that the PINL and POUTL lines can reach

the card (see GRI-99 Systems Reference Manual). A
sure way to accomplish this is to plug the card into the

left-most slot in the back I/O bus.

B-1 %RASX

APPENDIX B

INSTRUCTION SUMMARY

MACHINE INSTRUCTIONS

The following symbols represent assembly language expressions

device - a source or destination device; SDA or DDA
pulse - a pulse output code; MOD

status - a status test code; MOD

test - a data test code; MOD (9-7)

path - a bus modifier path code; MOD (9-8)

location - a memory address or data value; full second word

of memory reference instruction.

Function Generate

Function Test

Data Test

- general FO pulse, device
- to machine FOM pulse
- to interrupt control FOI1 pulse

- to arithmetic operator FOA pulse

- general SF device, status

- machine SFM status

- arithmetic operator SFA status

- general JG[D] device, test, location

- unconditional jump JU [[b] location

Data Transmit

Pseudo Codes

register to register
zero to register
register to self
register to memory
zero to meémory
memory to register

memory to self

jump on BOV
jump on NOT BOV
clear link

set link
complement link
halt

add

and

or

exclusive or
interrupt on
interrupt off
clear BOV

set BOV

copy BOV to LNK

copy AOV to LNK

RR [C]
zr[C]
RS tc]
RM{1][D)
zM1][D]
MR[1][D]
ms[1]p]

Jo[D]
o)
CLL
STL
CML
HLT
ADD
AND
OR
XOR
ICO
ICF
CLB
STB
BTL
ATL

%RASX

device, [,path] , device
[patha device

device [path]

device Epaﬂﬂ ~ location
[path,] location

location [,path] , device

location [, path]

location

location

B-3 %RASX

- zero MSR ZMS
- skip two words SKP
- no operation NOP

ASSEMBLER INSTRUCTIONS

e - denotes general assembly language expression

-,

Data Definition

- transient parameter Symbol = e

- text ASC dCIC2C3' .o Cnd
- word values WRDe [,e] ---

- packed bytes PKB e,e

Radix Selection

- octal OCTAL

- decimal ’ DECIM!EALJ
Set Location

- general LOC e

- reserve n words LOC .in

- enter relocatable mode REL

Program Terminators

- end tape segment EOT

- end program END
Listing Control

- list at top of page EJECT

- resume listing LIST

- inhibit listing NLIST

B-4 %RASX

Entrz

- declare symbol as ENTRY SYMBOL [SYMBOL] co
entry point

APPENDIX C

%RASX

STANDARD SYMBOL TABLE

The following are the pre-defined parameters that are part of the

assembler's symbol table, to which user symbols are added.

INTENDED

CATEGORY SYMBOL

Device Addresses ISR
TRP
XR
SC
SWR
AX
AY
AO
MSR
HSR
HSP
TTI
TTO
Status Test Codes AOV
. SOV
NOT

IRDY

VALUE

4
23
22

7
10
11
12
13
17
76
76
77

77

10

MEANING
Interrupt Status Register
Trap Register
Index Register
Sequence Counter
Console Switch Register
Arithmetic Operator X-register
Arithmetic Operator Y-register
Arithmetic Operator
Machine Status Register
High-speed Reader
High-speed Punch
Teletype Input
'I;eletype Output
Arithmetic Overflow
Sum Overflow
Negation of Test Results

Input-ready Flag

Cc-2 %RASX

Intended Category Symbol Value Meaning
ORDY 2 Output-ready Flag
LNK 4 Bus Modifier Link
BOV 2 Bus Overflow
POK 10 Power OK
Transmission Path Pl 1 Increment
Codes
Ll 2 Shift Left 1 Bit
Rl 3 Shift Right 1 Bit
Pulse QOutput Codes CLL 1 Clear Link
STL 2 Set Link
CML 3 Complement Link
HLT 4 Halt Machine
ADD 0 Select AO "ADD"
AND. 4 Select AO "AND"
OR 14 Select AO "OR"
XOR 10 Select AO "XOR™"
STRT 1 General Start Pulse
CLIF 10 Clear Input Flag
CLOF 2 Clear Output Flag
ICF 1 Interrupt Control OFF
I1CO 2 Interrupt Control ON
Data Test Codes ETZ 2 Equal to Zero
NEZ 3 Not Equal to Zero
GTZ 7 Greater than Zero
GEZ 5 Greater than or Equal to Zero
LTZ 4 Less than Ze?‘o

LEZ 6 Less than or Equal.to Zero

O
ngm GRI Computer Corporation

320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02144
TEL. (417} 949.0800

	0001
	0002
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	xBack

