IE-09

System Reference Manual

The equipment described in this manual
is covered by U.S. and foreign patents
and patents pending.

O
gﬁ GRI Computer Corporation
' 10-50-001C

320 NEEDHAM STREET, NEWTON, MASSACH USETTS 02164 100-10-75

Printed in U.S.A.
08-73-200

Copyright ® 1972 by GRI Computer Corporation

This manual is for informational purposes only.
The technical information is not to be construed
as engineering specifications.

October 1972

Chapter 1
1.1

1.2

1.3

1.3.1
1.3.2
1.3.3
1.34

Chapter 2
2.1

2.2

23

24
2.4.1
24.2
243
244
24.5
24.6
247
248
249
2.4.10
24.10.1
24.10.2
2.5
2.5.1
252
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5

- 2.6.6
2.6.7
2.6.8
2.6.9

Chapter 3
3.1

3.2

3.2.1
322
3.2:3

33

3.3.1

TABLE OF CONTENTS

The GRI-99 -
Features .
Design Concept
Specifications .
Physical -.
Functional .
Electrical
Environmental .

GRI-99 Systems

GRI-99 Model 40 -

GRI-99 Model 30 -

GRI-99 Model 10 -

Processor Options -

Byte Swap/Pack

Byte Comparator -

Binary Input Multiplexer (BIM)
Binary Output Multlplexer (BOM)
Gate Input Card

Pulse Input Detector (PID) .

General Output Register.
Watchdog-Interval Timer

Selector Channel .

Model 30 Processor Optlons
Extended Math Board
General-Purpose Registers .
Peripheral Devices

Grisette II — Cassette Tape I/O System
Grisette Autoloader .

Basic Software Package .

Assembler Package .

Source Text Editor Package

Utility Package

Diagnostic Package

Single-Precision Fixed Point Package
Double-Precision Fixed Point Package .
Floating Point Math Package .
Real-Time Executive Package .
Additional Diagnostics and Manuals .

GRI-99 Architecture .
Physical Architecture.

Bus System .

Busing Scheme . . .
Power and Signal Dnstnbunon
Bus Schematic - .
Processor Element Description
Bus Modifier

iii

Page

1-1
1-1
1-2
1-3
1-3

I-3
1-3

2-1
2-1
2-2
22
2-3
2-3
2-3
2-3
24
24
24
24
2-4
24
2-5
2-5

2-5
2-5
2-6
2-6

2-7
2-7

27
2-8
2-8
2-8
2-8

3-1
3-1
3-1
3-1
34
34
34
34

3.3.2
333
3.34
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.4
3.5
3.6
3.7
3.7.1
3.7.2
373
374
3.1.5

Chapter 4
4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.14
4.1.1.5
4.1.1.6
4.1.2
4.1.2.1
4.1.22
4.1.3
4.1.4
4.1.5
4.1.6
4.2
4.2.1
422
4.2.3
424
4.2.5
4.2.6
43
4.3.1
4.3.1.1

TABLE OF CONTENTS (Cont)

Sequence Counter (SC)
Instruction Register (IR)
Data Tester

Function Tester .
Function Generator .
Arithmetic Operator (AO)
Machine Status Register (MSR) -
Interrupt Status Register -
Memory Address (MA) -
Memory Buffer

Index Register (XR)
Processor Timing

Memory

Register Interaction -
Power Supply -

Input Specification -
Output Specifications -
AC Line Failure Protection
Overcurrent Protection -
Overvoltage Protection -

GRI-99 Operation and Programmmg
Console Description

Controls

Power

Key Disable

Autoload

Operating Keys

Data Switch Register (SWR)
Device Select Switches .
Indicators .

Processor Register lndxcators
Cycle Indicators .

Start-Up Procedure . .
Examining and Altering Reglsters
Reading and Writing in Memory .

_Shut-Down Procedure .

Programming .

Instruction Format -
Instruction Classes

Device Addresses -
Effective Address

Order of Presentation
Programming Conventions -
Instructions

Function Generation
Machine Language Format

iv

Page

34
3-8
3-8
3-8
3-8
3-8
39
39
39
39
39
39
39
39
3-12
312
3-14
3-14
3-14
3-14

4-1
4.1
4-1
4-1
4.1
4-1
4-1
4.3
4.3
43
4.3
44

4-6
4.6

4.7
4.8
4-9
4.9
4-10
4-11
4-11
4-12
4-12
412

4.3.1.2
432
4.3.2.1
4.3.2.2
433
4.3.3.1
4.3.3.2
4333
4.3.34
434
4.3.4.1
4.3.4.2
4.34.3
4.3.5
4.3.5.1
4.3.5.2
4.3.5.3
4.3.54
4.3.5.5
4.3.5.6
4.3.5.7
4.3.5.8
4.3.6
4.3.6.1
4.3.7
4.3.8
4.39
4.4

4.5

Chapter 5
5.1

5.1.1
5.1.2
5.13
5.14

5.2

Chapter 6
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.7.1
6.7.2

TABLE OF CONTENTS (Cont)

Assembly Language Format .
Function Testing .

Machine Language Format
Assembly Language Format .
Data Testing (Jump)

Machine Language Format
Assembly Language Format .
Indexing .o

Using the Jump Instructlon
Data Transmission
Non-Memory Reference Transmxsswn .
Memory Reference Transmission
Indexing

Program Interrupt

Interrupt Requests .

Starting an Interrupt

Servicing an Interrupt .
Device Priority

Dismissing an Interrupt .
Breakpoint

Timing . . .

When to Use the Interrupt
Direct Memory Access (DMA)
Timing
External Instructions
Input/Output (1/0)

Program Control

Using the AO . .
Other Arithmetic Operatlons

GRI-99 Installation .
Installation Considerations
Access Points .

Temperature .

Power

Specifications . e e
Special Procedures

GRI-99 Interfacing .

Busing Scheme

Bus Schematic .

Source and Destination Bus Slgnals
Processor Timing

Instruction Execution .

Interfaces .

Interface Logic and Tumng
Programmed Data Transfers .
Function Generation

Page
4-12
4-13
4-13
4-13
4-14
4-15
4-15
4-16
4-17
4-17
4-17
4-19
4-21
4.27
4.27
4-27
4-28
4.29
4-29
4-30
4-30
4-30
4-31
4-31
4-31
4-32
4-32
4-33
4-35

5-1
5-1
5-1

5-1
5-1
5-1
6-1
6-1
6-1
64
6-4
69
6-18
6-18
6-20
6-22

673
6.7.4
6.7.4.1
6.7.5
6.7.5.1
6.7.6
6.7.6.1
6.8

6.9
6.9.1
69.2

Appendix A
Al
Al.l
Al2
Al3
A.1.3.1
AlA4
Al4.1
Al.S
All6
A.l.6.1
A1.62
Al1.6.3
A2
A2.l
A2.1.1
A2.1.2
A22
A2.2.1
A222
A2.23

Appendix B
B.1
B2
B3

Appendix C
C.1

C.1.1

C.1.2

C.1.3

C.2

C.2.1

Appendix D
D.1
D.2

TABLE OF CONTENTS (Cont)

Function Testing

Direct Memory Access .

Real-Time Clock (DMA Exa.mple)
Interrupt

Gate Input Card (Interrupt Example)
External Instruction (EIR)
Devices Using EIR

Design Examples

Memory Expansion .

8K Expansion .

4K Expansion .

Hardcopy Equipment .
Teletype . .
Customer Supplied Teletypes
Input/Qutput Commands -
Teletype Output .

Timing -

Teletype Input

Timing - .
Programming Examples
Operation . .

Tape . .

Paper

Ribbon . .
Paper-Tape Reader and Punch
Paper-Tape Reader .

Timing -

Operation .

Paper-Tape Punch

Timing .

Example

- Operation .

Codes

Device Selection Codes
Interrupt Status and Traps
Teletype Codes

Loaders . .o
Bootstrap Loader (%BLD) ..
Basic Processor Bootstrap Loader
%BLD to Load %ALH .
Bootstrap Tape Format

Absolute Loader (%ALH) .
Using %ALH .

RAS Examples
Register to Register .
Zero to Register .

Page

6-23
6-25
6-28
6-30
6-31
6-36
6-37
6-39
6-39
6-39
6-39

A-1
A-l
A-1
A2
A-3
A-3
A-3
A-3
A-3
A-5
A-6
A-6
A-6
A7
A7
A7
A-8
A-8
A-8
A-8
A-8

B-1
B-1
B-3
B4

C-1
C-1
C-1
C-3
C4
C4
C-5
D-1
D-1
D-1

D3
D.4
D5
D.6
D.7
D.8
D.9
D.10
D.11

Appendix E

TABLE OF CONTENTS (Cont)

Register to Self

Register to Memory .
ZerotoMemory
Memory to Register .
Memory to Self

Conditional Jump . .
Unconditional Jump

Function Generate

Sense Function

Numerical Tables

Page

D-1
D2

D-3
D-3
D-4
D4
D4
D4

1-1
2-1
2-2

3-1
32
3-3
34
3-5
3-6
37
3-8

41
4.2

5-1

52

6-1
6-2
6-3
64
6-5
6-6
6-7
6-8

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31

LIST OF FIGURES

Direct Function Processor, Typical Configuration .

GRI-99 Model 40 . .
GRI-99 Model 30 and GRI-99 Model 10 .

Physical Organization of the Basic GRI-99 Package
Basic Machine Microinstruction . ..

System Busing .

GRI-99 Power and Slgnal Dlstnbutlon

GRI-99 Bus Schematic’ .

Data Modification During a chromstructxon

State Flow Diagram .

Derivation of Addresses and Control Slgnals from Elther the lR or ROM
Event Sequence for Single-Cycle Instructions -l

GRI-99 Model 40 Front Panel with Programmer s Console
Basic Processor . e e

GRI-99 Dimensional Drawing
Rack Mounted GRI-99 shown with Gnsette II full Duplex Tape I/O System

System Busing

Bus Schematic .

Source Bus Connector .

Destination Bus Connector

Nominal Processor Timing

State Flow Diagram .

Derivation of Addresses and Control ngnals from Elther the IR or ROM
Event Sequence for Single-Cycle Instructions ..
Event Sequence for Data Test Instructions . .
Event Sequence for Memory Reference Data Transmlssmn lnstructlons .
Large-Size Internal Device PC Card (Component Side)
Small-Size External Device Interface PC Card (Component Slde)
Programmed Data Transfer, Timing .
Programmed Data Transfer, Logic Diagram

Function Generation, Timing .

Function Generation Examples .

Function Testing, Timing . .

Function Testing, Logic Examples .

DMA Timing . .

DMA, Typical Logic Dlagram ..

GRI Real-Time Clock Block Diagram .

Interrupt Timing . . -

Interrupt, Typical Logic

Variable Address Selection

EIR Timing .

EIR, Simplified Loglc Dlagram

Typical EIR Device Logic

Valve Controller .

Relay Contact Monitor .

Staple Pattern for 8K Memory Module

Staple Pattern for 4K Memory Module .-

viii

Page
1-2

2-1
22

32
32
33
35
3-6
3.7
3-11
3-12
3-13
42
4-8

5-3

6-2

6-3

6-5

6-5

6-8

6-10
6-11
6-12
6-14
6-16
6-19
6-19
6-21
6-21
6-22
6-23
6-24
624
6-26
6-27
6-29
6-32
6-33
6-35
6-38
6-38
6-40
6-41
6-42
643
6-43

Table

4-7

6-1
6-2
6-3
6-4
6-5
6-6

6-8
6-9
6-10
6-11
6-12
6-13

B-1
B-2

LIST OF TABLES

Function Generate (Non-Memory Data Transmission)
Function Test (SKIP)

Operating Keys and Functions

Processor Register Indicators .

Processor Cycle Indicators . e
Assigned Device Addresses.
GRI-99 Instruction Summary .

GRI-99 Instruction Times .

GRI-99 Instruction Examples .

Source and Destination Bus Connector Signals .
Function Generate .

Function Test (SKIP) .
Non-Memory Reference Data Transmnssxon .

Data Test (JUMP). .

Memory Reference Data Transmlssxon (DIRECT MODE)
Memory Reference Data Transmission Immediate Mode .
Memory Reference Data Transmission (Immediate Deferred)
Memory Reference Data Transmission (Deferred) .

DMA Execution .

Interrupt Execution .

GIC External Connections and Pm Numbers

External Instruction .

Device Addresses .
Trap Locations
Teletype Codes (No Panty TTY)

ix

Page

3-13
3-13

4-1
4-4
4.4
4-10
4-36
4.37
4.38

6-6

6-13
6-13
6-13
6-15
6-15
6-17
6-17
6-18
6-25
6-30
6-34
6-37

B-1
B-3
B-4

THE GRI-99

CHAPTER 1
THE GRI-99

The GRI-99 Computer is a compact 16-bit machine that combines direct function processing and the Universal Bus
System to provide versatility and reliability unequaled in conventional computers. The GRI-99 is a rugged computer,
especially designed to be an economical, powerful part of larger dedicated systems. To meet the needs of the

system designer: Interfacing is easy, maintenance is minimal, and data handling is fast and efficient. Programming

is directed to performing specific functions, rather than being strictly limited to complex arithmetic or mathematical
calculations; the assembly language is easy to understand and highly systems oriented. Section 1.3 lists the specifi-
cations for the GRI-99 Computer.

1.1 FEATURES

The GRI-99 is completely flexible to satisfy the changing demands of today’s sophisticated systems and is expandable
to fulfill the new requirements of future systems.

¢ The Universal Bus System — Each system element can communicate with any other system
element, internal or external, using high-speed data buses.

Memory — Maximum of 32,768 words or random-access core memory directly addressable
(not page oriented). Minimum core size is 4096 words.
Programming — Simple programming in a very functional language.
Software — All previous GRI software is totally compatible with the new GRI-99. New
software packages are also available.
Expansion — Space is available for 32K words of memory, 2 major firmware modules and
up to 9 device interface modules in the mainframe.
Reliability — The Universal Bus System uses simple two-sided printed circuit (PC) boards.
Back panel wiring and data cables are eliminated. Field proven TTL integrated circuits,
medium scale integrated circuits, conservative design techniques, and stringent quality
- control ensure maximum reliability in industrial, electrical, and physical environments.
® Displays — All system registers, both internal and external to the computer, can be displayed
on the console. Data can be transferred to all system devices using console switches. The
displays are illuminated by bright, long-life light emitting diodes (LEDs).
¢ Peripherals — Peripheral options include: mass memory media, I/0 devices, communication
interfaces, display, and digital system devices.
® Direct Memory Access — Any device can transfer data directly to memory. Direct memory
access (DMA) channel is available on the same data and control lines as the programmed
input/output (I/O) channel (I/O rate: 568,000 16-bit words per second maximum). No DMA
multiplexer is required for multiple DMA devices.

® Direct Data Transfer — Every device in the system is directly addressable by programmed
instructions. Data can be transferred between devices without special accumulators or
temporary storage; thus, many computer instructions normally required for data manipula-
tion are eliminated.

¢ Firmware — Firmware options are plug-in, hardwired modules to expand the instruction
set and provide system flexibility unequaled by more conventional computer designs
(e.g., multiple arithmetic units, extended arithmetic options, byte manipulation hardware
general-purpose registers).

¢ Priority Interrupt System — Priority interrupt system can be used as a single-channel
interrupt or as an automatic hardware interrupt at the option of the system designer. Most
standard GRI /O devices are equipped with full auto-hardware interrupt.

® Index Register — An Index Register, compatible with many GRI-99 instructions, makes
programming more efficient and easier.

¢ Protection — Memory power fail protection is standard in all models. Also, remote start

and stop are available for system interfacing. Automatic restart after power failure is
optional.

* & o0 o

1-1

1.2 DESIGN CONCEPT

The GRI-99 Computer is a direct function processor (see Figure 1-1). Direct function processing, a unique concept
in computer-controller design, enables each system element to communicate directly with any other systems element
using shared high-speed data buses. System elements that utilize this direct access feature include registers internal
to the computer or devices external to the computer. Thus, such peripheral devices as a Teletype ® or CRT are
connected across the same bus structure as the arithmetic unit and memory of the computer, as well as the other
processor elements. Data transfer between external devices and computer devices is accomplished directly, in a
single operation, with no temporary storage of data in special 1/0 registers or accumulators. As a result, data flow
between devices increases, and no special complicated command repertoire is necessary to process and translate
information transmitted between the computer and the device controlled.

A vital block of logic called the Bus Modifier (see Figure 1-1) provides a programmable path between the Source and
Destination Buses. The Bus Modifier is designed to accept data from any source device and move the data to any
Destination device. Moreover, the Bus Modifier can perform operations “on-the-fly” as the data pass from one device
to the other. Operations that can be performed on the data include: left shift, right shift, one’s complement,

two’s complement, and no modification.

The modular design inherent in direct function processing encourages many machine configurations, ranging from
highly economical minimal processors (for systems requiring simple data manipulations) to large systems with
powerful computing instructions and a variety of peripheral devices. Hardwired firmware devices are available in
the form of plug-in modules to augment the current instruction set with virtually thousands of computer instruc-
tions. Plug-in modules provide flexibility and expandability not available in conventional computer designs.

The direct function processing technique, developed in the GRI-909 used in the GRI-99, is the culmination of many
years of experience in both the design of computers and the use of computers in systems. The GRI-99 is a tested,
proven systems control computer. Its flexibility, modularity, and ease of programming provide the original equip-
ment or systems manufacturer with a control center that minimizes many of the problems inherent in conventional
computer designs. The modular firmware capability of the GRI-99 offers the system designer the flexibility to
meet changing system requirements, the ability to incorporate proprietary and unique control features, and a

solid hedge against obsolescence caused by the introduction of new system devices or circuitry.

SOURCE BUSES

(2]
« x FUNCTION
| DATA & i | | cGEnERATOR DIsPLAY
N| NO | o o [SHIFT | shieT TEST 2 s
D | MoD RIGHT | LEFT SEQUENCE < @ ARITHMETIC DeEVICE| _ _| oewice
E gg counTen | | R N MEMORY | > AXE operator [AY] | consoLe x = Y
=== c
X NoT o g
— s W FUNCTION
COMPL. COMPL.] = TEST SWITCHES OTHER PERIPHERAL
SYSTEMS DEVICES
us | MoDIFIER ‘ 1 , ‘ OR FUNCTIONAL
FIRM-WARE OPTIONS
‘ DESTINATION BUSES
PROGRAM
CONTROL

Figure 1-1 Direct Function Processor, Typical Configuration

® Teletype is a registered trademark of Teletype Corp.

1.3 SPECIFICATIONS

1.3.1 Physical
The physical dimensions of the GRI-99 Computer are:
Size: 10-1/2 in. high (26.67 cm), 19 in. wide (48.26 cm), 22 in. deep (55.88 cm)

Weight: 401b. (18.18 kg)

The GRI-99 mounts from the front in a standard EIA 19-in. cabinet with provision for rack slides. Space is provided

in the basic frame for up to 2 major firmware options and up to 9 firmware or interface modules. Memory capacity
of the basic frame is 32K 16-bit words.

1.3.2 Functional
The functional specifications for the GRI-99 Computer are:

Word Length: 16 bits

Core Memory Size: 4096 words, expandable to 32,768 words, direct addressing.

Machine Cycle Time: 1.76 us when executing instructions from main memory;
880 ns in External Instruction (EI) mode.

Instructions: The number of machine instructions is modular and depends

on the firmware and device options used. A basic processor
with arithmetic operator has over 233 instructions.

1.33 Electrical
The electrical specifications for the GRI-99 Computer are:

Power: 99-132 Vac or 196-243 Vac, S0Hz + 3% or 60 Hz + 3%. 1A — 3A, single-phase.
(110 Vac — 220 Vac nominal)
Power Dissipation: 150W nominal
1/0 Logic Levels: DTL and TTL compatible.
134 Environmental

The environmental specifications for the GRI-99 Computer are:

Temperature 0°C to 55°C ambient, based on measurements made at 5 inches
below the computer chassis. See cooling for further explanations.
Relative Humidity: to 95% (operating) '
(non-condensing)
Cooling: The frame and board configuration is designed to allow airflow

through it. The computer will properly cool itself if suspended
in a space which allows at least 3 inches above and below the
frame and no additional heat is added by the presence of other
equipment. The ultimate criterion for proper cooling must be
the temperature of the core stack itself since this is the most
temperature sensitive component in the system. The maximum
allowable temperature of the stack as measured on the back
surface of the core stack board (which allows for a temperature
rise across the board material) is 60° (140°F).

CHAPTER 2
GRI-99 SYSTEMS

21 GRI-99 MODEL 40

The GRI-99 Model 40 (see Figure 2-1) is the top of the line in the GRI-99 series. In a wide range of applications, the
Model 40 clearly demonstrates that it is GRI’s most powerful computer in terms of computational ability. The Model
40, with full programmers console. is easy to program; results are available immediately at the five light emitting
diode (LED) displays or from a wide choice of peripheral devices.

The GRI-99 Model 40 offers the following features:

a.

b.

R T R

Low cost and excellent price/performance ratio.
Powerful hardware extended arithmetic capability.

Extensive systems-oriented, real-time software, simulator, source text editor. math
package, floating point interpreter, utility routines, relocatable assembler, and much more.

Over 233 instruction types, as well as many variations.
Six general-purpose registers.
Unlimited priority interrupt levels. .

Multiply/divide and floating point firmware. Typical floating point execution times
are as follows:

Add: 247 us Multiply: 376 us
Add Magnitude: 256 us Square: 332 us
Sine: 3836 us Square Root: 543 us

Four 1/0 slots (expandable to nine slots) for plug-in modules.

Figure 2-1 GRI-99 Model 40

2.2 GRI-99 MODEL 30

The GRI-99 Model 30 provides many of the features of the Model 40 at a lower price. The front panel of the Model
30 console provides a single set of indicators for data display (see Figure 2-2). The contents of all registers can be
displayed in the DISP indicators. The processor cycle indicators are the same as the Model 40 indicators.

The GRI-99 Model 30 combines moderate price with very efficient data manipulation. The Model 30 offers the
following features:

a. Excellent price/performance ratio

b. Powerful real-time software, a simulator, source text editor, math package, floating
point interpreter, utility routines, relocatable assembler.

c. Over 200 instructions as well as many variations.
d. Unlimited priority interrupt levels.
e. Four I/0 slots (expandable to nine slots) for plug-in modules.

2.3 GRI-99 MODEL 10

The GRI-99 Model 10 is the most economical of the GRI-99 series. It is particularly effective as a programmable
controller in dedicated applications.)

A blank panel is provided in the GRI-99 Model 10 (see Figure 2-2). Automatic restart is standard. Programs can be
loaded by interchanging the blank front panel with one of the console options or by means of an auto-load for a
Grisette II (refer to 2.5.1 and 2.5.2) cassette tape 1/0 system.

The GRI-99 Model 10 combines many of the key features of the other models in the line with extremely low unit
cost. The Model 10 features:

a. Excellent price/performance ratio.

b. Memory expansion from 4K to 32K in the main frame.

GRI-99 Model 30 GRI-99 Model 10

Figure 2-2

ro
(8]

c. Blank front panel with power switch and provision for autoload switch mounting (optional).
d. Auto restart.
e Over 200 instructions as well as many variations.

24 PROCESSOR OPTIONS

A wide variety of processor options is available to expand the capabilities of GRI computers. The processor
options selected depend on the user’s specific application and anticipation of future needs.

The following are common processor options available for all GRI-99 computers:

Byte swap/pack operator.

Byte comparator.

Binary input multiplexer (BIM).
Binary output multiplexer (BOM).
Gate input card.

Pulse input detector.

General Output register.
Watchdog/Interval timer.

Selector channel.

RN SN AN >SN

241 Byte Swap/Pack — The Byte Swap/Byte Pack Option s a plug-in firmware card that allows the user to
swap or pack two 8-bit bytes. When byte swap (BSW) is specified, a 16-bit word sent to the byte swap operator
becomes available with the left half (8-bit byte) and right half (8-bit byte) interchanged. For example, if the following
number were sent to BSW:

Two 8-bit Bytes (Binary) Octal Value .
00010100 11100101 012345
the result from BSW would be:

Swapped Result _ Octal Value
11100101 00010100 162424

When byte pack (BPK) is specified, the contents of bits 0-7 of BPK are shifted into bits 8-15, and bits 0-7 of the
source register are accepted into the low-order eight bits of BPK. Each pair of transfers into BPK packs a pair
of bytes from left to right.

The advantage of using hardware byte swap/byte pack lies in the fact that no software subroutines are necessary.
Thus, the data operations are faster and more efficient.

242 Byte Comparator — The Byte Comparator Option is in the form of a plug-in firmware card. This
option provides the GRI-99 user with the ability to compare two 8-bit bytes, and if the comparison yields a
certain result, proceed to an appropriate subroutine or action.

devices that indicate process states, valve positions, or alarm states, The BIM can be installed in any location on
the 1/0 bus at the rear of the GRI-99 chassis. Fora complete discussion of BIM theory of operation, programming,
and interfacing, refer to the GRI BIM{BOM Manual.

244 Binary Output Multiplexer (BOM) — The BOM is an interface that connects the computer to
various output devices. The BOM is used to control the state of on/off devices (e.g., solenoid valves, electric
motor starters, lamps, and latching relays). Two 16-bit words are output from the BOM to represent the

desired state of the on/off device to be controlled. The BOM is installed in any location in the I/O bus at the

rear of the GRI-99 chassis. For a complete discussion of BOM theory of operation, programming, and interfacing,
refer to the GRI BIM/BOM Manual.

24.5 Gate Input Card — The Gate Input Card is used to interface most parallel data producing devices
to the GRI-99. Function control and testing is provided by the Gate Input Card for such devices, and a complete
interrupt system interface is also included on the card. External status inputs are in the form of positive or
negative signals. This operator functions as a source of data only. As a source, the Gate Input Card can parti-
cipate in any instruction that references it as a source device address. An application for the Gate Input Card

is in interfacing a digital voltmeter to the GRI-99. An appropriate program for this application can be easily
written. In this case, a binary coded decimal (BCD) value is then converted to a binary integer and appropriately
scaled. For a complete description of the Gate Input Card, refer to the GRI Gate Input Card Manual.

246 Pulse Input Detector (PID) — The Pulse Input Detector provides the capability of detecting the
occurrence of pulse events external to the computer via the interrupt system of the GRI-99. Inputs to the PID
from external devices are signals that indicate that certain events have occurred. The signals are generally TTL or
DTL positive logic signals. The output of the PID specifies a predetermined memory address that is loaded into
the GRI-99 Memory Address Register (MA) during the interrupt cycle. The address is also used as a jump address
during the interrupt cycle! There are eight predetermined addresses, only one of which is interrupted at a time.
The PID is installed in any location on the I/O bus at the rear of the computer chassis. One application for the
PID lies in counting external events and incrementing a memory location. If an overflow occurs, a subroutine is
entered to accomplish an appropriate action. For a complete description of the PID, refer to the GRI Pulse Input
Detector Manual,

24.7 General Output Register — The General Output Register is in the form of a plug-in card that is
one of a series of general operators used with the GRI-99 to interface most parallel data output devices. The
General Output Register provides control and testing operations for such devices. In addition, a complete inter-
rupt system interface is also contained on the card. The General Output Register accepts external status signals
from a device in the form of negative or positive inputs; normally, it is set for negative inputs. This sytem device
can function as both a source and destination of data and can participate in any instruction that references it as

a source, destination, or both. However, the General Output Register is limited in that data cannot be shifted left
or right. For a complete description of the General Output Register, refer to the GRI General Output Register
Manual,

248 Watchdog/Interval Timer — The combination Watchdog/Interval Timer serves two purposes:

a. The interval timer is used to calibrate the time period between control actions in a
process or to measure an elapsed time interval.

b. The Watchdog timer is used to monitor a control program, thereby ensuring that the
program is operating properly. If a malfunction occurs (indicated by an overflow),
contacts are closed to sound an audible or visual alarm.

Inputs to the Watchdog/Interval timer take the form of timing signals, (available from a variety of sources) and
control signals from the computer, as well as power. The output from the interval time is an interrupt that
diverts the main program to a subroutine designed for the interval timer. The output from the Watchdog timer
is a signal that drives an alarm device and closes a set of contacts. For a complete discussion of the Watchdog/
Interval Timer, refer to the GRI Interval Timer Manual.

249 Selector Channel — The selector channel is a digital interface processor option consisting of a
set of three P.C. boards that provides auxiliary registers for word count, core address and data buffer for block
transfer, word oriented devices. Typical high-speed devices that can be interfaced to the GRI-99 are disk

2-4

memories, drum memories, and various. A/D.devices. rThe'selecter-chmel,aspart of the DMA system, enables
data words to be transferred into main memory and out of main memory at a rate of one word every 1.76 us.
Access is granted by the processor under program control whenever a request appears on the direct memory request
bus of the processor and the current instruction is complete.

2.4.10 Model 30 Processor Options

The Model 30 processor options are the same as the Model 40 options. In addition, the following items are available
for the Model 30:

a. Extended Math Board.

b. Six general-purpose registers.

2.4.10.1 Extended Math Board — The Extended Math Board (EMB) may be used on any GRI-99 Models if the
six general purpose registers are also installed. The EMB option is contained on a standard, large-size firmware card
that can be plugged directly into either of two option slots. The EMB is an inexpensive device that is used to perform
complex arithmetic operations (multiply, divide, arithmetic right shift, normalize) when speed and precision are the
foremost determining factors. Extended math package is supplied with this option.

2.4.10.2 General-Purpose Registers — This option consists of Six General-Purpose Registers on one printed
circuit board. These registers can be used for argument passing or temporary storage of data. Data can be passed
through these registers and operations can be performed in the same way as any other processor registers. These
general-purpose registers are available for register-to-register transfers or memory-to-register instructions, as well as
data test instructions. Extended math package is supplied with this option.

25 PERIPHERAL DEVICES
The GRI-99 can be easily interfaced to numerous peripheral devices. The following peripheral equipment is a
representative sampling:
a. Teletype Model 33 ASR, Model 35 KSR, and other Teletype models.
High-speed synchronous line printers.
High-speed and low-speed CRT terminals.
Magnetic tape storage systems such as Grisette 1L
Mass storage disk systems.
Card readers.
Analog/Digital devices, plotters.

S T SN T ~ W Y

2.5.1 Grisette Il — Cassette Tape I/O System

The Grisette II cassette system is designed to be a lower cost replacement for paper tape which exceeds the operating
characteristics of high-speed paper tape equipment with greater user convenience. The Grisette I is available in a
number of versions namely: Read only; Read/Write, full duplex; Read/Write, Single unit. The units are offered for
use as table top equipment or as rack mounted equipment.

The Grisette II is a byte oriented system incorporating standard Philips Type II Cassettes employing certified
computer tape (1600 bpi) and a tape speed of 1 - 7/8 ins. per sec. The tape handling units are standard audio recorders

with only the electronics modified. Cassettes are available in 50 ft. (83,000 characters per side) and 300 ft. (500,000
characters per side) lengths.

Utilized in conjunction with GRI computers the Grisette II can perform a variety of input/output operations as loading
programs or diagnostics. In data acquisition systems a write-only unit can be used to store information quickly and con-
veniently. Full duplex read/write systems provide a convenient means of assembling and editing programs during software
development. A typical configuration combines a GRI-99 Model 30 with an 8K memory and a Grisette II full duplex

system which permits source programs to be conveniently loaded into the computer, edited, assembled and final object
code stored on a cassette.

25

Software available for Grisette II users includes cassette-to-cassette tape copy/merge, cassette input/output driver
display unit or other similar devices and cassette utility routines. GRI-99 computer software available in cassette
form includes a relocatable cassette loader, relocatable library loader, source tape editing system and relocatable
assembler. Related computer options include an automatic loader which contains a read-only memory that
automatically loads programs from cassette tape into the computer and a console light indicator light to show lowa
errors.

2.5.2 Grisette Autoloader

The Grisette Autoloader option is a combination hardware and software system that enables the user to create
automatic “load and go” systems on magnetic tape cassettes. On the GRI-99, the autoloader option is activated
by the AUTOLOAD switch; a load error is shown by the LE indicator. '

The Grisette Autoloader option comprises:

a. Input/output PC card that plugs into any 1/0 bus slot.
b. A program to create autoload format tapes.

2.6 BASIC SOFTWARE PACKAGE

With the first GRI-99 Computer that is ordered, GRI ships a complete Basic Software Package. Additional software
packages may be purchased from GRI. The basic software package comprises:

Relocatable assembler.

Source Text Editor Package.
Utility Package.

Diagnostic Packages.
Single-Precision Math Package.
Double-Precision Math Package.
Floating Point Math Package.
System Reference Manual.
Real-Time Executive Package*.

TN s Ad &R

~

NOTE

It is important to note that all GRI software is
fully compatible with new GRI computers.
2.6.1 Assembler Package
The Assembler Package consists of the following items:

a. The GRI-99 Assembler Manual.
b. Line printer conversion program.
¢. Assembler program.

The relocatable assembler is required to prepare binary object programs for the GRI-99 Computer. The assembler
allows the user to write programs in a terse, comprehensible symbolic language (RAS). The symbolic form of a
program, called the source program, is a meaningful sequence of assembly language statements.

*Manual is sent with package tapes by request only.

2.6.2 Source Text Editor Package
The Source Text Editor Package includes the following items:

a. The GRI-99 Source Text Editor Manual.,
b. Source text editor program.

The source text editor provides a convenient method for generating source text paper tape for input to an assembler;
correcting and updating source text tapes from the Teletype; and listing source text tapes on the Teletype. By pro-
viding these benefits, the source text editor eliminates many of the problems associated with paper tape as an input
medium. .

263 Utility Package
The Utility Package includes the following items:

Program loaders for the GRI-99.

Debugging aids used in analyzing system programs.
A memory dump tape in absolute format.

A memory dump tape in bootstrap format.

A routine to copy paper tapes.

Translator (FAST-to-RELOCATABLE).

SRS >R

For a complete description of program loaders, refer to the GRI-99 Loaders Manual.

264 Diagnostic Package

The Diagnostic Package includes diagnostic programs to test the following GRI-99 elements, as determined by the
mode! that is used:

Basic processor.

Power fail,

Arithmetic operator and indexing.

Memory.

AN B R

General-purpose registers (Model 40 only).
f Extended math operator (Model 40 only).

The diagnostics are an invaluable aid in system troubleshooting. Using the diagnostics and appropriate fault isolation
techniques, the system can be tested and corrective measures can be implemented.

2,65 ~ Single-Precision Fixed Point Package
The Single-Precision Fixed Point Package includes the following items:

a. Manual.
Relocatable object tapes.

c. * Specifications and a listing for the functions that can be performed (for example, multiply,
divide, arithmetic/logical shift). For a complete description of functions and their usage
refer to the GRI-99 Fixed Point Manual.

The Fixed Point Manual contains very useful reference information regarding number systems, logical operations,
and single-precision and double-precision operations, as well as scaling and data conversion routines. The user is
directed to this manual, which serves as a valuable tool in understanding fixed point mathematics packages.

2.6.6 Double-Precision Fixed Point Package
The Double-Precision Fixed Point Package includes the following items:

a Manual.
b. Relocatable object tapes.
c. Specifications and listing for the functions that can be performed.

Again, the user is referred to the Fixed Point Manual for complete description of the operations, number systems,
and capabilities of software using double-precision arithmetic.

2.6.7 Floating Point Math Package

The Floating Point Math Package includes the following items:

a. Manual.
b. Relocatable object tapes.
¢ Relocatable debugging object tapes.

Operations that can be performed with floating point are I/O conversion routines, all arithmetic operations, square
1oot, sine, cosine, exponential, logarithm, and arctangent functions, etc. Refer to the Floating Point Manual for a
complete description.

The GRI floating point package uses double-precision arithmetic and an exponential concept to greatly extend the
range of numerical value over that which is available using fixed point arithmetic.

2.6.8 Real-Time Executive Package
The Real-Time Executive Package includes the following items (furnished by request only):
a. Real-time executive program.

b. Real-time executive manual.
¢. Real-time executive listing.

The real-time executive is a supervisory program designed for real-time applications, It monitors shared subroutines,
provides for dynamic memory allocation, handles interrupts, program stacking, foreground and background operations,
queuing and dequeuing of buffers.

2,69 Additional Diagnostics and Manuals

Diagnostics and manuals are available for the options described in Chapter 2 (e.g., real-time clock, BIM/BOM, pulse
input detector, interval timer, etc.). For information concerning software for the options or peripherals, write to
GRI.

CHAPTER 3
GRI-99
ARCHITECTURE

Chapter 3 describes the architecture of the GRI-99 Computer. The level of treatment is purposely simplified to acquaint
the user with basic GRI-99 elements and associated functions. The basic computer elements and the power supply are
described individually, as well as in relation to the total system. For an in-depth treatment of GRI-99 theory of
operation, refer to the GRI-99 Muintenance Manual.

3.1 PHYSICAL ARCHITECTURE

The physical organization of the basic GRI-99 is shown in Figure 3-1. The framework is of stiffened sheet metal,
perforated for ventilation, and serves as a grounding cage. The guides for the printed circuit cards are plastic. The
console, including all console switches and indicators with associated driving and sensing circuits, is built into the
hinged door on the front of the cabinet.

All back panel wiring inside the frame is contained on printed circuit (PC) cards. Card sockets are soldered onto each
PC card; as a result, one card is plugged directly to another card. No wire wrapping or point-to-point wiring is used
anywhere in the system. The processor PC card (bus) has connectors for seven 9-in. x 13-in. plug-in cards, two

of which are available for large firmware devices, such as the Extended Math Board. The I/O bus has 9 positions

for 9-in. X 4-in. cards, which are the smaller firmware devices. The memory bus is used for core memory modules.

3.2 BUSSYSTEM

To achieve functional modularity, the machine architecture is designed around a dual bus arrangement (see Figure 3-2).
All functional operators in the system are interfaced to these buses, which provide communication and control paths
from one device to another. As shown in Figure 3-2, when a 16-bit data word is to be transmitted from Device X to
Device Y, Device X places the data onto the lower bus (Destination Bus). These data are then passed to the upper

bus (Source Bus), through a short logic path between the buses, and then sent to Device Y. A 16-bit data transmission
as just described is the most basic operation performed in the machine and is referred to as a microinstruction. Data
are transmitted by the stored program and also by the buiit-in machine control to perform various bookkeeping tasks.
Each of these transfers requires 440 ns.

The Source Bus and the Destination Bus each contain 44 conductors that can be grouped into three major categories:

a. 16 lines are used for the data paths.
b. 6 lines for selection of the device.
¢. 22 lines provide control and power.

The format of the 16-bit data transmission instruction word is also shown in Figure 3-2. The left-most six bits of this
instruction word select a Source Device Address (SDA). These six bits are impressed upon the six address lines of the
Destination Bus to select one device as a data source. The right-most six bits of the instruction word appear on the
six address lines of the Source Bus to select the Destination Device Address (DDA).

3.21 Busing Scheme

The busing scheme and connections internal to the main chassis are shown in Figure 3-3. All PC cards shown in the
lower row are of the larger size (9-in. x 13-in.). The processor is contained on four large cards, labeled PC1, PC2,
PC3, and AO. The processor Source and Destination Buses extend to the console on ribbon cable. The processor
Source and Destination buses are connected to the 1/0 Source and Destination buses (as well as memory) also by
ribbon cable. Core memory cards are the largest cards used and contain the core planes, and all read, write, inhibit
and sense circuitry also timing, MA, MB, and address decoding. Two connectors are available in the processor bus
for the addition of firmware operators.

31

CONSOLE

POWER SUPPLY

CENTRAL
PROCESSOR

Figure 3-1 Physical Organization of the Basic GRI-99 Package

SOURCE 16 DATA
BUS 6 ADDRESS

CONTROL

SHORT
CIRCUIT
PATH

DEVICE X

DEVICE Y

CONTROL

DESTINATION _6 ADDRESS
BUS

16 DATA

TO DEVY
l SDA

MOD DDA T
15 14 13 12 1" 10 9

Figure 3-2 Basic Machine Microinstruction

(98]
v
(8]

€€

RIBBON CABLE

MEMORY CONTROL
. & DECODING
1/0 SOURCE BUS

UP TO 9 SMALL DEVICE OR FIRMWARE OPERATORS

MEMORY

\ \ BUS

1/0 DESTINATION BUS

CONSOLE

1/0 CONTROL
P
ROCESSOR SOURCE BUS & DECODING
MEMORY
PROTECT
RIBBON
D 2 LARGE CABLE CORE
PC1 PC2 | | PC3 A0 | FIRMWARE
BUFFEW OPERATORS MEMORY
M
PROCESSOR
DESTINATION
BUS

Figure 3-3 System Busing

Note the memory bus buffers and decoding circuitry that are present between the memory, the processor and
1/O buses. The memory write protect feature is optionally contained on the memory bus.

Both the processor bus and the I/O bus are actually each two buses: Source Bus and Destination Bus. In general,
the Destination Bus is associated with output from system devices, whereas the Source Bus is the source of data
and control information for input to system devices.

All connections between the buses and the console are made with ribbon cable that runs between the processor bus
PC and the console PC. The expansion chassis to extend the I/O bus is of the same type of construction as the
mainframe but is half as deep. This chassis is placed either above or below. Ribbon cable connects the mainframe
buses to the expansion bus where the bus signals are buffered.

3.2.2 Power and Signal Distribution

Figure 3-4 shows a simplified version of power and signal distribution for the GRI-99. As noted in the illustration,
the heavy line indicates system ground. The grounding for the 1/O extensions is shown. Note the presence of the
+5V voltages and the switching connection for the POWER, CONSOLE LOCK, and AUTOLOAD switches.

3.23 Bus Schematic
Figure 3-5 is a bus schematic of a GRI-99 configuration. The illustration shows the origin and routing of signals

and DMA signals from PC3 into the firmware options. Interrupt priority signals go to the memory bus and, sub-
sequently, to the I/0 bus and the extension bus.

Some of the signals and signal groups shown in the schematic are private communications signals between the three
major control assemblies (PC1A, PC2A and PC3A) that make up the basic processor. The power supply delivers
voltages and power status and control signals to the bus via two connectors that g0 to the main processor bus. From
PC3 through the last slot on the main processor bus, the signals become the system signals that are distributed in
parallel through the entire system, including the I/O bus section in the rear of the machine. Note that the majority of
signals that arrive at the back panel bus of the processor are still identical to the processor signals used internally and,
therefore, facilitate the use of internal options plugged into these slots, as well as 1/0 options.

33 PROCESSOR ELEMENT DESCRIPTION
3.3.1 Bus Modifier

Both right and-left shiftsare done in a circular fashion through the Link (L) flip-flop. Following a shift during
data transmission, one bit of the source data is retained in the Link, and the bit initially in the Link is passed on
as part of the data word to the destination device.

33.2 Sequence Counter (SC)

The SC is a 15-bit register that is provided to keep track of the program instructions. A Sequence Counter (or
program counter) is common to all computers and indicates the address of the next instruction to be executed.

In the GRI-99, the Sequence Counter is connected across the buses, as are all other elements in the system,
providing direct access from device to device. The device address of the SC is 07.

34

CHASSIS
GROUND
CONNECTION

~— —t—

1/G EXTENSION

i
4 |
[
]
] +5 28 +5
1 2 3l
+5
-28
+5

BUS

+5 -5+20 +5

MEMORY BUS

+5 .28 e
1/0 BUS
BUS
PROCESSOR BUS
+5 -28PFL +5 psH STKL ppgy
14 CONSOLE
"3 _] 32 Il n? 320 DATA
t23_H:23456 1234 56 78 o9fpdqt 2 12 3
— SYSTEM GND
POWER
AC PPLY
INTO P.S. Su
AC
6 s
T 234 56f 12 3
([+5
| CONSOLE
-—-ﬂ I—v— — —
a
w‘(o—-l 4/Io—l Ond - SIGNAL
< O ;’fv
— SWITCHES
NIOEF AUTO-
o Al
CONSOLE LOAD SIG. GND. cosaL
LOCK

Figure 34 GRI-99 Power and Signal Distribution

3-5

S8

170 4X OR 8K
OPTIONS be MEMORY msg
sAB
DAB os
cs
LINK o - {MA IS SOURCE) SDOS
BOF e ==~ (MB 1S SOURCE) SD06
A MEMORY
MAJOR STATES 73— | EROTECY |
kevs{ ST ENABLE (MA IS DEST) LMA
STPK | swWiTcH]
SYSTEM TIMING N PRT EN (MB.IS DEST} LMB
GPB g |
DMA FLAGS TERMINALS e
FUNCH XCLB
MPS et x
FTB'S MEMORY ExT8
POWER
EXT > SWITCH DSTRB
DSTR MPS
CLR CLR
INTB
DDAH saB MsB T
INTB EDSH oeic t‘m’ggm sB SDOS INTERRUPT CONTROL
INTERRUPT CONTROL 1ASH ?’g MEMORY s SDO6 fomipme
PROTECT PRT EN
EASH BUS IS FITTED DAB Lgﬁm LMa
IDAH DAB -, XCL eoRy LMB INHIBIT INH MBS
DMA DSTR BUS xcLB - WRITE
EiR EXT DSTRB RDB
POUT DOUT BiN PIN EXTB PIN POUT
— l L & ‘ l PIN
— L POUT
el O7HER
MEMORY g8 MEMORY SLOTS
10 -
EXTENSION @
110 BUS
-
1 } \ PROCESSOR BUS
] [{ | Pour
S8 sB DOUT POUT gg S8 PN DIN DOUT sg
o8 DB DB be 0B -
SAB SAB SAB SAB
DAB DAB DAB DAB 0AB
{MOD. BITS} CB ce cs cB cs
STK PF PS MPS
(STROBE DEV. DiSP. REG.) SDS DISPLAY STROBES LINK LINK LINK
{DEVICE SELECT) CDA KEYS BOF BOF | w-—] B0OF
MAJOR STATES MAJOR STATES MAJOR STATES | -t——d MAIOR SYATES
KEY STATES KEY STATES vs j STK
POWER SUPPLY (STROBE SW. REG.) CCS KEYS) ‘: STPK
SYSTEM TIMING SYSTEM TIMING SYSTEM TIMING SYSTEM TIMING SYSTEM TIMING
DMA FLAGS DMA FLAGS
FUNCH FUNCH FUNCH FUNCH FUNCH |~
(FUNCTION TEST) FT .
- {FUNC. TEST BITS) # FTa's FTB's FTB'S FT8'S
EXT EXT EXT EXT EXT
DSTR DSTR DSTR DSTR DSTR |t
:g:g CONSOLE CLR (SYSTEM CLEAR) CLR CLR CLR CLR
BUTTON Locx {MEMORY REQUEST) MBR MBR MBR
(DATA TEST) XFR XFR XFR
(INT_REQ.} $ INTS INTB i INT8 =
INTERRUPT CONTROL INTERRUPT CONTROL! INTERRUPT CONTROL |
(FORCE SKI1P) PT PT
PS PS
| PF
ab CcosBL SB bs CCS MAJCR GPS LE DISPLAY CDA KEYS DMR FIRMWARE DMR -
STATES STROBES PC2 % cin pc3 A0 OPTIONS EIR
L= LOAD ERROR
CONSOLE e AUTO-LOAD SIGNAL
NOTE:

1.) TERMINATED POINT OF BUSSED SIGNAL IS SHOWN BY %

Figure 3-5 GRI-99 Bus Schematic

36

16 DATA

4
SOURCE 6 ADDRESS
BUS
CONTROL
+
ov j '—-\ L —l
BUS NO | \ncr | SHIFT| sHiET |]
MODIFIER MOD RIGHT] LEFT
DEVICE X DEVICE Y
COMPL COMPL
CONTROL
DESTINATION 6 ADDRESS
BUS *
16 DATA Py]
complement
one bit shift left +1_ mcremept
shift one bit left
L shift one bit right
15 0 P ~—
one bit shift right SDA DDA

C 1

Figure 3-6 Data Modification During a Microinstruction

333 Instruction Register (IR)

The Instruction Register contains the current instruction in the computer to be executed. As the other elements in
this system organization, the IR is connected across the Source and Destination Buses. The device address of the
IR is 01.

3.34 Data Tester

A computer must decide on the paths that it will follow, based on the value of the data that it receives. In the GRI-99,
the Data Tester uses the modifier code bits to determine the value of the information it receives, i.e., less than zero,
equal to zero, or any combination thereof. This tester is connected between the Source and Destination Buses and is
programmed to accept data directly from any source. A positive response to a data test results in a jump instruction.
The contents of the Sequence Counter are automatically stored in a Trap Register associated with the Data Tester when
a jump is executed. The device address of the Data Tester is 03. The Trap Register associated with the Data Tester can
be utilized as a general-purpose register and carries the device address of 23 in that case.

3.35 Function Tester

Peripheral devices produce status signals that indicate particular conditions to the computer. The GRI-99 contains a
Function Test Operator that compares status signals to the modifier bits and acts on the result.

Three function test lines:are provided for this purpose, and they may be tested for their logical assertion or
negation via the Function Tester. A positive response by the Function Tester to the sense lines results in a skip
instruction. The device address of the Function Tester is 02.

3.3.6 Function Generator

The Function Generator is used by the program to perform specific tasks in the destination device. The function
generation process is accomplished by pulsing certain control lines selected by bits 6 through 9 of the instruction.
An example of function generation is an instruction that causes the high-speed reader to read the next character on
tape. The source device address of the Function Generator is 02.

337 Arithmetic Operator (AO)

The AO is that part of the basic processor that performs arithmetic and logical operations. The functions that can
be performed in the functional Arithmetic Operator are ADD, AND, OR, and EXCLUSIVE OR (XOR). The AO

of the GRI-99 operates somewhat differently from that of a typical computer. In the GRI-99, no instructions are
issued that say “ADD”. A conventional computer ADD instruction translates as, “one number is in the accumulator
and the other number is in memory. Pull the number out of memory, add the number in the accumulator to the
number in memory, and put the sum back into the accumulator.”

In the GRI-99, the Function Generator is used to generate the ADD function. The instruction can be shown as:
Function Output ADD —————-AQ

This element always performs the ADD function between the current value of the AX and AY registers until the user
issues another command changing the state of the AO.

When either of those registers is changed, a new sum appears, immediately available for transfer to any point in the
system. New values can be presented from a system register, and a new result can be obtained in a single cycle time,
1.76 us. The result, contained in a separate accumulator register (AO), always reflects the instantaneous output
generated by the contents of the AX and AY registers as controlled by the function selected. It can be stored in
memory by a single instruction. The introduction of new values to one register does not alter the contents of the
other register.

338 Machine Status Register (MSR)

Certain flag and control flip-flops in the computer are connected to the Source and Destination Buses in such a
way that their states can be saved and then restored as though they were bits in a full-word register. The register
is referred to as the MSR, which can be addressed as device address 17.

3.39 Interrupt Status Register

Priorities of interrupts are determined by a combination of the program-controlled Interrupt Status Register (ISR),
which is a mask register, and hardware position on the bus.

Each device with interrupt capability contains an Interrupt status flip-flop, which can be set and cleared under
program control. When this flip-flop is set, the device can interrupt, if desired. However, if the Interrupt Status
flip-flop is clear, the device cannot interrupt under any circumstances. These Interrupt Status flip-flops, although
distributed throughout the system, are collectively called the Interrupt Status Register. The device address is 04.

3.3.10 Memory Address (MA)

The MA is a 15-bit register that holds the address of the word being read from or written into memory. Unlike the
SC, the MA is used as a pointer during the different modes of addressing. The device address of the MA is 05.

3.3.11 Memory Buffer

The MB holds the data being written into and read out of memory. Data from the MB are subsequently stored in a
memory location, or transmitted to a device in the system. The device address of the MB is 06.

3.3.12 Index Register (XR)

The XR is a 16-bit register that is used to index memory addresses. The XR can also be used as a general-purpose
register. When indexing is specified, the XR contains a value that is added to an address, thereby generating an
effective address which is then used to address memory. The device address of the XR is 22.

In the GRI-99, any value that is used as an address can be indexed. For memory reference instructions, Jump
instructions, or any value sent to the SC, if bit 15 of the address word is set, the value will be indexed.

34 PROCESSOR TIMING

The basic clock frequency in the GRI-99 is provided by a 9.09 MHz crystal clock (Y1). This clock produces a
signal (XCLL) that is distributed throughout the system on source bus pin L. The origin of the clock is on

PC2. The basic clock period is 110 ns. This clock frequency is divided by four to produce the 440 ns micro-
cycle timing (TO, T1, T2, T3). The timing chart demonstrating this relationship is shown in Figure 3-9. The

four microcycles within the basic memory cycle are shown with a 110 ns strobe occurring during the last 110 ns
of each microcycle, except TO and T1, in which it occurs 110 ns earlier. All clocking of data transfers is done with
these strobe pulses. The balance of the time period between the trailing edge of one strobe and the leading

edge of the next is used for propagation and settling time through gates.

3.5 MEMORY

The GRI-99 memory is a random-access, ferrite core memory. Standard memory size is 4K (4096) words of storage.
Storage capacity can be increased to a maximum of 32K (32,768) words. In terms of addressing, the entire

memory is a set of contiguous locations that range from zero to a maximum number that is dependent on the
capacity of the particular system. The highest location for a 4K machine is 077778. Data can be read from
memory or written into memory in 16-bit words by using the appropriate console switches.

3.6 REGISTER INTERACTION

Chapter 4 discusses the instructions used by programmers to perform a task within a program. Those instructions
are referred to as macroinstructions. In the GRI1-99, a group of microinstructions is used to implement

39

a macroinstruction. The microinstructions are in the same format as macroinstructions; the only difference
between the two instructions is the source of the macroinstruction and the speed at which it is executed.

This section describes the GRI-99 major states and the relation of time states (TO - T3) to the various operations
performed. An example of the execution of single cycle instructions is provided to show the interaction of the
various registers. For a complete description of instruction execution for all instructions, refer to Chapter 6.

The GRI-99 macroinstruction set includes the instructions that require 1, 2, 3 or 4 major states to complete. In
addition, the interrupt, direct memory access, and external instruction states are three more major states. When
power is applied to the processor, it is in the FI state. During each state, one memory cycle is executed. Each
state is given a two-letter designator, as follows:

FI Instruction cycle 1

FA Instruction cycle 2

FO Instruction cycle 3

FD Instruction cycle 4

BK Break cycle

DM Direct memory access cycle
EI External instruction cycle

Figure 3-7 is a state flow diagram showing priorities and all possible paths between machine cycles. The End State,
Halt State and Console Stop State are not separate machine states but merely conditions that exist within the
processor, while the processor is in one of the above states. Note that these states represent stop states for the
machine, and no new memory cycle is initiated.

During each memory cycle up to four microinstructions can be performed using either the Instruction Register (IR)
or the processor’s ROM as a microinstruction source. The technique of transferring 16 bits of data from a source
to a destination is discussed in detail in Chapter 4.

For example, consider a single-cycle instruction. At the start of the memory cycle (T0), the instruction word is in
memory and the control logic has no indication of what the macroinstruction will be. A data transfer from the SC
to the memory address (MA) register is made to read the macroinstruction from memory. During the next period
(T1), the instruction word read from memory into the MB is transferred through the bus modifier unaltered to the
instruction register (IR). At the end of T1, the control logic receives the macroinstruction the programmer wishes
to perform (e.g., a data transfer from SDA to DDA). During T2, the transfer is performed. To prepare for the
next instruction, the SC must be incremented. During T3, the SC is transferred to itself and incremented as it
passes through the bus modifier.

Every macroinstruction is implemented in this manner with 1,2, 3, or 4 memory cycles and various microinstruction
sequences. These sequences are stored in a read only memory (ROM), which is part of the basic machine control
logic. The arrangement shown in Figure 3-8 is used to derive microinstructions from either the IR or the ROM. In
the sequence previously discussed, during TO, T1, and T3, microinstructions were taken from the ROM. During T2,
the IR supplied the instruction to be executed.

NOTE

When the programmer is manipulating data within
the control registers of the machine (such as the trap
or SC), it is quite important to know the event se-
quence of microinstructions relative to macroinstruc-
tion execution. Complete event sequences for all
instructions classes are presented in the GRI-99
Maintenance Manual and in Chapter 6 of this manual.

3-10

1 CYCLE 2 CYCLE 3 CYCLE

EIR-DMR

PRIORITIES

1. DM DIRECT MEMORY ACCESS
2. El EXTERNAL INSTRUCTION
3. BKINTERRUPT (BREAK)

4. MACHINE CYCLES (FI, FA, FO, FD)

NOTE:

FI CYCLE IS DRAWN TWICE FOR
SIMPLICITY.

Figure 3-7 State Flow Diagram

3-11

16 DATA

[»
SOURCE 6 ADDRESS
BUS
4- CONTROL
< <
a 3
o a
NO SHIFT | SHIET
moo | "NCR | riGHT| LeFT

o a

— : g

COMPL. compL.
< <
a a
172] w3
IR ROM
6 ADDRESS
DESTINATION
BUS
16 DATA

&

Figure 3-8 Derivation of Addresses and Control Signals from Either the IR or ROM

Figure 3-9 describes all single-cycle instructions. The hexagonal boxes indicate a transfer of informations to or from
memory. Tables 3-1 and 3-2 are provided to supplement the figures with exact sequence information.

3.7 POWER SUPPLY

The GRI-99 power supply furnishes the multiple power requirements for the computer. The power supply protects

the computer from both hardware and software damage during power up, power down, and power fault conditions (such
as ac line failure). Internal circuitry provides ac line sensing and protection and signaling of power status, through

the power supply sense and control electronics. When ac power goes down, the power supply sense and control

board initiates an interrupt and an appropriate memory shutdown sequence. On power up, if the autorestart option

is installed, the SC is set to location 6 and execution starts automatically.

371 Input Specification
The input specifications for the GRI-99 power supply are as follows:
Voltage (1 phase): 99-132 or 196-243 Vac
Voltage Surge (3 cycles): 360V
Voltage Spike: 60V - ms, 600V max.
' Current at Full Load: SA max.
" Frequency: S0 £ 3%Hz, 60 * 3% Hz
Storage at full load
(Without power down): 20 ms

3-12

SC —»= MmA

 Fetch: (MA) ——— MB>

MB——.—IR

Function Generate
Function Test
EXECUTE Data Transmission
{Non Memory)
SC+1 — SC —— SC + 3if SKIP
END

Figure 3-9 Event Sequence for Single-Cycle Instructions

Table 3-1
FUNCTION GENERATE (NON-MEMORY DATA TRANSMISSION)
Major State Time Slot Microinstruction Comments
TO SC to MA Begins memory reference.
FI Tl MB to IR Macroinstruction in IR and decoded.
Fetch Instruction T2 Execute (IR) Macroinstruction now executed as a
microinstruction.
T3 SC+1toSC The SC now points to next instruction
in memory.
Table 3-2
FUNCTION TEST (SKIP)
Major State Time Slot Microinstruction Comments
TO SC to MA Begins memory reference.
Tl MB to IR Macroinstruction in IR and decoded.
F1 T2 Execute (IR) Macroinstruction executed as micro.
Fetch Instruction T3 SC+1to SC Test condition not true.
SC+3toSC Test condition true.

3-13

3.7.2 Output Specifications
The Output voltages provided by the power supply are as follows:

a. +5 Vdc (+6% - 4%), 20A max., 6.5A min.
b. -5 Vdc (+6% - 4%), 0.8A max., 0.1 A min.
c. + 21 Vdc (+6%), 4A max., 0.5A min.
d. -28 Vdc (+ 4V), 0.5A max., OA min.

The +5Vdc is used to supply power to the GRI-99 logic. The 20 Vdc is memory power. The -28 Vdc is
provided for peripheral devices.

3.73 AC Line Failure Protection

The power supply sense and control electronics issue the necessary signals to protect memory data in the event of
ac failure in the basic machine. The signal PFL goes low when there is insufficient drive in the power supply to
maintain the dc voltages at their actual load, and generates an interrupt to location 0. About 3/4 ms later, PSH goes
high and turns off the “clear” state after the current instruction ceases. O s later MPSH goes high and turns off the
20V supply at the memory. Thus an orderly shutdown is assured.

3.74 Overcurrent Protection
The GRI-99 power supply is electronically protected against continuous overload.

375 Overvoltage Protection

The power supply is protected against overvoltage by crowbar circuits. The various outputs are crowbarred as
follows:

a. +5V: between 5.5 Vand 6.25V.

b. -5V: between —-5.5 V and ~6.25V.
c. +20V: between 25V and 29V.

d. -28V: between -34V and -38V.

The GRI-99 power supply is set at the factory for optimum performance.

3-14

CHAPTER 4
GRI-99
OPERATION AND PROGRAMMING

Chapter 4 describes GRI-99 console controls, indicétors, and turn-on and shutdown procedures. The internal processing
command repertoire and 1/0 commands are also fully described. ‘

4.1 CONSOLE DESCRIPTION

Figure 4-1 shows the GRI-99 console. The Operating Keys (STOP, SS, START, WR etc.) on the lower left of the console
and Data Switch Register (SWR) toggle switches, in conjunction with the DEVICE SELECT switches, are used manually
to operate the computer. The indicators on the upper left (F1, FA, FO, etc.) display internal computer conditions. The
rows of indicators on the right display the contents of the various processor registers, Instruction Register (IR), Sequence
Counter (SC), Memory Address (MA), Memory Buffer (MB), and Data Display (DISP). When any indicator is lit, the
associated flip-flop is in the 1 state (set). When an indicator is out, the associated flip-flop is in the O state (clear).

4.1.1 Controls

4.1.1.1 POWER — The POWER switch on the lower left-hand side of the console supplies primary power to the
computer. In the up position, the switch is ON; in the down position, the switch is OFF.

4.1.1.2 KEY DISABLE — The LOCK switch on the lower left-hand side of the console is an optical switch that
disables the Operating Keys to prevent unauthorized tampering with the operation of the processor or turning off
ac power. The key is inserted and turned clockwise to disable the Operating Keys. If the LOCK switch is turned
clockwise, the SWR and DEVICE SELECT are the only switches that are operational.

4.1.1.3 AUTOLOAD - The AUTOLOAD switch is an optional pushbutton on the bottom left of the console that
enables the user to load and start an entire software system automatically from a magnetic tape cassette (GRl-sette).

In the ON position, the AUTOLOAD switch initializes the GRI-99 and initiates an EIR, DMA sequence which brings in
and starts the bootstrap loader. The bootstrap loader, in turn, brings in the absolute loader, which is used to load and
start the system program. If a checksum error occurs, the LE indicator lights and the machine halts,

4.1.1.4 Operating Keys — The Operating Keys are located at the lower left of the console. All keys (except SS and
STOP) are momentary contact switches. Table 4-1 lists the keys and their associated functions,

Table 4-1)
GRI-99 OPERATING KEYS AND FUNCTIONS
Key Function
STOP Stops at the completion of the current instruction with the

IR (01) indicators displaying the instruction and SC pointing
to the next instruction. This key is an alternate-action key;
the operator can run a program one instruction at a time by
leaving STOP on, and pressing CONT.

SS Allows the operator to run diagnostic routines or other programs
one major state at a time for maintenance purposes. This key

is an alternate-action key: while the key is down, the pracessor
stops at the end of every cycle it executes. The operator can run -
a program one cycle at a time by leaving SS down and pressing
CONT.

4.1

)
<

Figure 4-1 GRI1-99 Model 40 Front Panel with Programmer’s Consol

3

4.

Table 4-1 (Cont.)
GRI-99 OPERATING KEYS AND FUNCTIONS
Key Function

START Sets all Output Ready flags, clears all other flags and control
flip-flops, and begins normal operation by executing the
instruction at the location specified by SC (07). Specifically,
START resets the machine, i.e., Output flags are set ready,
input flags are set not ready; LNK and BOV are cleared, the
AQ is set to the ADD state, IA is turned off, and ISR is set to
all Os.

WR Stores the contents of the Data Switch Register (SWR) in the
memory location specified by SC. Then adds 1 to SC. At
completion, the MB indicators display the word stored; and
MA displays the address where the word is stored.

RD Displays the contents of the memory location addressed by

SC in the MB (06) indicators. Then adds 1 to SC. MA displays
the address of the word shown in MB.

TRM Transmits the contents of the SWR to the destination register

specified by the DEVICE SELECT switches. At completion,
DISP shows the word transmitted.

DISP Displays the contents of the source register addressed by the
DEVICE SELECT switches in the DISPLAY indicators.
CONT Begins normal operation in the state shown by the indicators,

without sending a system clear pulse.

4.1.1.5 Data Switch Register (SWR) — The SWR is located beside the Operating Keys. The computer operator manipu-
lates these switches to supply addresses, instructions. or data to the Destination Bus of the computer. A switch that is
depressed (down) represents a binary 1; a switch that is not depressed represents a binary 0. The SWR can be used as
follows:

a. As sense switches under program control by specifying source address 10.
b. To write into memory in conjunction with the WR key.
c To transmit data to a device selected by the DEVICE SELECT switches.

4.1.1.6 DEVICE SELECT Switches — Six toggle switches (to represent two octal digits) are located at the bottom right
of the console. The DEVICE SELECT switches are used to select a device address to which data can be transmitted
(using the TRM key) from the SWR or the contents of the device can be displayed using the DISP key. To use the TRM
or DISP key, the GRI-99 must be stopped.

All of the operating keys except STOP and SS will not
function when the machine is running (RUN light on).

4.1.2 Indicators

Most indicators on the GRI-99 console change state too frequently or too quickly to display useful, readable information
when the processor is running. For this reason, the description of many of the indicators is limited to information
displayed when the processor is not running, NOTE

The top four rows of indicators at the right of the
GRI-99 console are installed only on models that have
the programmer’s console.

4.1.2.1 Processor Register Indicators — The indicators that display the contents and status of the various processor
registers are listed in Table 4-2, accompanied by a brief description of the function of each display.

4.1.2.2 Cycle Indicators — These indicators are located to the left of the processor registers on GRI-99 console.
Table 4-3 lists the indicators and gives a brief description of the function of each indicator.

Table 4-2
PROCESSOR REGISTER INDICATORS
Display Function
Instruction Register Displays the instruction being executed or the last instruction
(IR) completed.
Sequence Counter Displays, in the low-order 15 bits, the address in memory of the
(SO) next instruction to be executed. (Except in the case of Read

- (RD) and Write (WR) operating keys, where the SC points to
the next location to be read from or written into.)

Memory Address Displays the address to which the last memory access was made,
MA) also 15 bits (as SC). v

Memory Buffer Displays the last data transmitted to memory or read from
(MB) memory.

Data Display DISP always displays the last value sent to the device selected by the

(DISP) DEVICE SELECT switches if the DEVICE SELECT switches
were set to that device at the time the data were sent.

Table 4-3
PROCESSOR CYCLE INDICATORS
Indicator _ Function

FI Indicates that the next processor cycle will be used to fetch an
instruction from memory.

FA Indicates that the next processor cycle will be used to fetch the
address or to process an immediate operand in a memory reference
instruction.

FO Indicates that the next processor cycle will be used to process the

operand in a memory reference data transmission instruction, to
fetch the second address in a deferred memory reference instruction
of any type, or to process the operand in an immediate deferred
memory reference instruction.

FD Indicates that the next processor cycle will be used to process the
operand in a deferred memory reference data transmission instruction.

BK Indicates that the next processor cycle will be used to start an
interrupt (BRK).

DM Indicates that the next processor cycle will be used for direct
memory access (DMA).

El ’ Indicates that the next processor cycle will be used to execute a

pair of external instructions.

RUN Indicates that the processor is in normal operation with one
instruction following another. When the computer stops, this
indicator goes out.

LE Indicates that a load error occurred in loading the system program
using the Autoload option. A checksum error halts the loading
process and lights LE.

1A Indicates that the interrupt control is active (on).
BOV Displays the state of the 1-bit Bus Overflow Register.
LNK Displays the state of the 1-bit Link Register.

44

4.1.3 Start-Up Procedure
When ac power is applied to the computer, it is important to note the following conditions:

a The register indicators do not necessarily represent the actual contents of the registers until’
the operator initializes them by performing an operation.

The machine is reset as if START had been depressed.

If the autorestart switch (located on the power supply) is off (or not fitted), the SC is set
to location 6 and the computer is stopped.

d. If the autorestart switch is on, the processor begins normal operation at location 6,
provided the STOP and SS switches are in the up position.

e. If the autorestart switch is on, it is recommended that the operator depress the STOP
switch before applying ac power. The computer then performs one instruction and
stops, thereby initializing the register indicators. The contents of the SC depends on
the instruction executed. .

The following procedure is used to start the GRI-99 Computer:
Step Procedure

1. Place the STOP and SS switches in the desired poéition
(refer to par. 4.1.3) and place the POWER switch in the
ON position.

2. Set the DEVICE SELECT switches to 07 (SO).

3. Set the starting address of the program using the Data
Switch Register (SWR).

4. Depress the TRM key to load the starting address into
the SC.

S. Place STOP and SS switches in the up position.

Depress the START key or CONT to start the program
at the SC value. The RUN indicator then lights.

To continue operation in the current computer state. but at any desired location, proceed as follows:

Step Procedure
1 Depress the STOP switch.
2 Set the DEVICE SELECT switches to 07 (SC).
3. Set the new address using the SWR switches.
4 Depress the TRM key to transmit the new address to
the SC.
5. Place the STOP and SS switches in the up position.
6. Depress CONT to continue the program or START if

it is desired to reset the machine state before continuing.

NOTE

Use of the TRM or DISP key affects only the register
selected by the DEVICE SELECT switches and, in
some cases, a device connected to that register. For
example, transmitting the contents of the SWR to the
teleprinter causes the 8-bit character in switches 0-7 to
be printed, thus affecting the Output Ready flag and
possibly generating an interrupt request if the Teletype
interrupt status bit is set.

4.5

4.1.4 Examining and Altering Registers

To examine the contents of any register, proceed as follows:

Step Procedure
1. Depress the STOP key.
2. Set the DEVICE SELECT switches to the device address of the

desired register. (Appendix B lists the device addresses for
GRI-99 devices.)

3. Depress the DISP key.
4. Read the contents of the selected register in the DISP indicators.
NOTE

Use of the DISP key does not affect the machine state.
However, the DISP key can affect the state of an output
device that may share the same system address as an input
device. For example, TTI and TTO share 77; displaying
77 also cause the contents of TTI to echo on TTO.

To alter the contents of any register, proceed as follows:

Step Procedure
1. Depress the STOP key.
2. Set the DEVICE SELECT switches to the address of the
desired register.
3. Set the SWR to the new value.
. Depress the TRM key.
5. The DISP key may be depressed to verify that the

correct value was loaded.
4.1.5 Reading and Writing in Memory

To read the contents of a memory location, proceed as follows:

Step Procedure
1. Depress the STOP key.
2. Set the DEVICE SELECT switches to 07 (SC).
3. Set the SWR to the address to be read.
4, Depress TRM.
S. If an operator’s console is used, set the DEVICE SELECT

switches to 06. If a programmer’s console is used, this
step is unnecessary.

6. Depress RD.

7. If the programmer’s console is used, the contents of the
memory location is displayed in MB. If an operator’s
console is used, the contents of the location is displayed
in the DISP indicators.

8. Depress the RD switch successively to read successive

locations.

4.6

To write a value into a memory location, proceed as follows:

Step Procedure
1. Depress the STOP key.
2. Set the DEVICE SELECT switches to 07 (SC).
3. Set the SWR to the location into which data is to be written.
4. Depress TRM.
5.

Set the SWR to the value that is to be written into the
location. ;

Lift the WR key.
To write into successive locations, repeat Steps 5 and 6.

o

7.

4.1.6 Shut-Down Procedure
The following procedure is used to shut down the GRI-99 Computer.

Step Procedure

1. Depress the STOP key except in case of Autorestart
(Just turn power off).

Turn the POWER switch to OFF.

[3®]

NOTE
When ac power is turned off, it is important to note the
the following conditions:
a. The processor shuts down after approximately 20 ms.
b. The previous contents of memory are unaltered.

4.2 PROGRAMMING

As a prerequisite to a description of programming, it is important to understand the elements of the basic processor and
the instruction format. The basic processor (see Figure 4-2) comprises:

a. Back panel bus with bus modifier

b. Controller

C Four functional operators connected to the bus.

A core memory operator to hold a program and data is also shown in Figure 4-2. The Sequence Counter (SC), Instruction
Register (IR), Data Test Operator, and Function Generate/Function Test Operator are required devices using fixed
addresses in the bus address scheme. In conjunction with the control logic, these devices select instructions from the

program stored in memory, interpret the instruction type as being one of four classes of instructions, and then perform
the decoded instruction.

4.7

16 DATA

SOURCE Bus 6 ADDRESS
CONTROL
07 01 03 05
mim 02
FUNCTION
o 1| | GENERATE
BUS INDEX | mop | 'NCR | SHIFT ISHFETH | conrro | [s | | 1| | oata | & w | memory
MODIFIER REG LoGIC cl|m TEST | al | FuncTion | [A sTack
P TEST
COMPL. COMPL. —
L
07 01 03 05
CONTROL
DESTINATION 6 ADDRESS
BUS
16 DATA

4.2.1 Instruction Format

A GRI-99 command consists of either a one-word instruction or a one
contains an address or data. In either case, the one-word instruction i

and is described by the format:

Figure 4-2 Basic Processor

15 10 9 6 5 0
SDA MOD DDA
where:
SDA = Source Device Address, the source of information transfer.
MOD = Modifier bits for control or functional information.
DDA = Destination Device Address, the destination of information transfer.

4.8

-word instruction followed by a second word that
s of the general form DEVICE X TO DEVICE Y

4.2.2 Instruction Classes

There are four general classes of GRI-99 instructions:

a. Function Generation — Control pulses specified by MOD are transmitted to the named
destination device; the manner in which the Destination Device (specified by DDA)
interprets the MOD bits defines the function to be performed.

b. Function Testing — Status indicators associated with the named source device are sensed,
and program flow is altered if the test specified by MOD is true; flow alteration, if any,
consists of a skip over the next two memory words.

c. Data Testing — Data in the named source device register are tested, and program flow is
altered if the test specified by MOD is true: flow alteration, if any, consists of an absolute
transfer (jump) to some new location specified by the second word of this instruction.

d. * Data Transmission — Data are transmitted from the named source device to the named
destination device; binary modifications to data in transit and, for memory reference instruc-
tions, addressing modes are specified by MOD.

Tables 4-5 through 4-7 in the back of this chapter contain reference data pertaining to the four classes of instructions.

If the elements named as SDA and DDA are system registers that can supply or receive data (i.e., not memory), then the
instruction is simply for data transmission and the MOD bits specify the way in which the word taken from the source is
modified before being sent to the destination. In some cases, the actual transmission may cause the destination device to
perform some function; e.g., sending a character to the tape punch causes that device to punch the character, but the
instruction is still classed as data transmission. If the instruction is for data transmission. but the device specified as
source or destination is memory, the contents of the next consecutive location following the instruction are used either as
the data word transmitted or as an address to locate that word. The MOD bits in the instruction specify not only the
modification of the word in transit, but also the way in which the word following the instruction is to be used.

Other types of instructions are produced by specifying an SDA or DDA that is not simply a register to hold data. Naming
the Function Generator as SDA supplies up to four control signals to the named DDA, such signals being selected by the
MOD bits of the instruction. Specifying the Function Tester as the DDA causes it to test signals from the source device
for a skip: bits 6-9 (MOD) select the signals and the conditions they must satisfy. Naming the Data Tester as the DDA
causes it to test a word supplied by the source for the conditions specified by the modifier bits; if the condition is true,
the processor jumps to a location determined from the word following the instruction in memory.

Thus, although all instructions are of the same form, the repertoire includes a variety of operation types depending upon
the properties of the devices addressed. These devices range from basic core memory storage to peripheral devices (such

as line printer and magnetic tape), to functional operators for performing arithmetic calculations, to purely control devices
that require function control or supply functions for testing.

4.2.3 Device Addresses

The instruction format allows 64 device address codes. Table 4-4 lists the octal codes and mnemonics for the basic
device addresses that are part of every system. A complete list of device addresses is included in Appendix B. Some-
times a single code may name two devices, one when referenced as a source, another when referenced as a destination.
Thus, the-code 02 as a source-specifies the Function Generator;but as a-destination it specifies the Function Tester. In
some cases, a code cannot be used with all instruction types; every code generally has different meanings with different
instruction types. For example, the code 00 specifies the control logic when used with Function Generation or Function
Testing, but it is a null code when used with data transmission (i.e., as a source, it supplies a zero word, and as a destina-
tion it can receive no data). Similarly, the code 04 represents interrupt control elements when used with Function Gen-
eration or Function Testing, but represents the Interrupt Status Register when used for a data transfer.

Consider the arithmetic operator (AO), which has three device addresses, two for the registers (AX and AY) and one for
the device itself. The registers can be addressed as source or destination of data, but no functions can be generated for
them nor do they supply any functions for testing. The AO, on the other hand, can receive functions (specifically the
arithmetic or logical operation to be performed), and it has two flags that can be tested. The AO can also be a source of

data because it supplies the result of the arithmetic operation, but it can receive no data as destination. Similarly all 1/0
devices use both types of function instructions, but an output device generally cannot supply data as a source, and an
input device generally cannot receive data as a destination. Specifying a source device that cannot supply data, or a des-
tination device that cannot receive data, is operationally equivalent to specifying the null device address (00). However,
pairs of IO devices sometimes share a common device address: examples are Teletype input and output, and paper-tape
reader and punch. In each case, the device address specifies an input buffer as source in data transmission or data testing,
an output buffer as destination in data transmission, and the control logic for both devices as source or destination in
Function Generation or Function Testing.

Some device addresses are used only for the internal operations of the processor and cannot be used by the program. An
attempt by the program to send data to the Instruction Register (IR), device address 01 Memory Address Register (MA),
device address 05; results simply in a no-operation (NOP).

Table 4-4
ASSIGNED DEVICE ADDRESSES*
Device Device
Address Device Address Device
00 Machine (Null) 14 External Instruction Register
01 Instruction Register 17 Machine Status Register
02 Function Generator 22 Index Register
03 Data Test 23 Trap Register (General-Purpose Register)
04 Interrupt Status Register 24 Byte Swap
05 Memory Address 25 Byte Pack
06 Memory Buffer 30-35 General Registers
07 Sequence Counter 76 High-Speed Reader/Punch
10 Console Switch Register 77 Teletype 1/O
11 AX Register
12 AY Register
13 Arithmetic Operator

*For a complete list of device addresses refer to Appendix B.

42.4 Effective Address

An instruction that specifies memory as source or destination or specifies the Data Tester as destination requires two
words, i.e., it uses the next consecutive memory location following the instruction. Data can be stored in the second
location, or its contents can be used as an address.

For any instruction of these types, the processor must determine the effective address, which is the actual memory
address used to fetch or store the operand or alter program flow. A data transmission instruction that references memory
can specify the following addressing modes: direct, deferred (also called indirect and auto-increment), immediate, or
immediate and deferred. A jump-instruction (i.e., one that names the Data Tester as destination) can specify only direct
or deferred addressing. With direct addressing bits 14-0 of the location following the instruction are used as the effective
address (i.e., the address of the location to be used for retrieval or storage of data or retrieval of the next instruction).

Of course, the latter case holds in a conditional jump only if the condition is satisfied. For deferred addressing. the second
word of the instruction specifies a location, the contents of which are incremented and replaced. The incremented value
is the effective address.

Immediate mode addressing can be used only by the data transmission instructions that reference memory. In this case,
the effective address is simply one greater than the address of the instruction: in other words, the contents of the location
following the instruction is used as the data or that location is the destination for the data. If addressing is both immedi-
ate and deferred. the processor takes the word from the location following the instruction. increments it by one, places
the incremented word back in the same location and uses it as the effective address.

4.2.5 Order of Presentation

The description of GRI-99 instructions is presented in three parts:

a. A diagram of the actual bit patterns with appropriate notation as to the interaction of the
various bits.

b. Machine language examples in octal and binary, accompanied by the assembly language equiva-
lents and a brief description.

. The assembly language format of the instruction in symbolic form. Each symbol is explained
in detail.

Detailed descriptions and flowcharts of actual instruction execution are included in Chapter 6.

4.2.6 Programming Conventions

The GRI-99 assembly language is called RAS. RAS consists of terse, symbolic statements of efficiently writing system
programs. The assembler that translates RAS statements into machine language instructions is “RASX. For a complete
description of RAS, refer to the GRI-99 Relocatable Assembler Manual.

Although all instructions have essentially the same format, the assembler distinguishes four classes: data transmission,
data testing, function generating, and function testing. The assembler also distinguishes data transmission instructions
that reference memory from those that do not.

The relocatable assembler recognizes a number of mnemonics and other initial symbols that facilitate constructing com-
plete instruction words and organizing them into a program. In particular, there are two-letter mnemonics for the basic
instruction types. Letters can be added to these to specify the type of addressing, to select the complement of the source
in data transmission, and to specify particular devices for function generating and testing. The basic form for assembling
any instruction word is

T SDA, MOD, DDA

Where T is the mnemonic for the instruction type, SDA4 and DDA are the source and destination device address, and
MOD represents the modifier bits in the middle of the instruction word. For all one-word instructions (those that do not
reference memory), SD4 and DDA are two-digit octal device addresses or symbolic names for them. For memory refer-
ence instructions, the device address is implied by T, and a memory address then replaces the device address in the SDA
or DDA position.

Consider the instruction that takes the word in register AX, shifts the word right one place, and deposits the shifted
result in register AY. In mnemonic form this instruction is:

RR AX,RI1,AY
which assembles as 11 1100 12. To move a word from memory location 317 to register AX, the mnemonic form is:

MR 317,11
or

MR 317, AX
either of which assembles as two consecutive words, 06 000011 and 000317.

NOTE

Numbers representing instruction words always have a
pair of octal digits at each end for the source and destin-
ation device address and four binary digits between them
for the MOD bits. All numbers representing codes, addres-
ses, and register contents (except instruction words) are
always octal, and any numbers appearing in program
examples are octal unless otherwise specified. Computer
words (other than instructions) are represented by six
octal digits, where the left digit is always 0 or 1 represent-
ing the value of bit 15.

4-11

The programming examples in this manual use the following addressing conventions:
a. A colon following a symbol indicates that it is a symbolic location name. For example,
A: RR 10, 04
indicates that the location that contains RR 10, 04 may be addressed symbolically as A.
b. A period denotes the current address. For example,

A: RR 10, +4
is equivalent to
A: RM 10, A+4

c Anything written at the right of a semicolon is commentary that explains the program but
is not part of it. For example,

RM 10, .+4 , store contents of
register 10

4.3 INSTRUCTIONS

The following sections describe the four general classes of GRI-99 instructions. In each description, a bit map shows the
way in which the various bits of the instruction word are placed to produce the desired result. Machine language examples
are presented for each instruction type, and assembly language (RAS) statements are described.

4.3.1 Function Generation

The Function Generator, specified by a Source Device Address of 02 (represented as SDA = 02), causes control signals
(rather than data) to be transmitted to the device at DDA. The instruction format is:

FO Function Output
1 Cycle 1.76 us

15 10 9 8 7 6 5 0

[spa=o2 | | l | | DDA]

| ~—

Specifies four parallel pulses (16 possible combinations)

The unique combination of MOD and DDA defines the function to be performed. Pulses are transmitted in parallel;
therefore, up to 16 unique commands can be issued to the device at DDA. The receiving device must, of course, be
capable of decoding the pulse pattern.

Refer to Tables 4-5 through 4-7 for an instruction summary, instruction times, and examples.

4.3.1.1 Machine Language Format — The following examples show machine instructions and RAS statements for some
specific Function Generation instructions:

Machine Instruction RAS Description
02 0001 76 FO STRT, HSR Start the high-speed reader.
02110013 FO OR, AO Set the arithmetic operator to the OR state.
02 1001 77 FO CLIF STRT, HSR Clear input flag and start the Teletype reader.
02 0001 00 FOCLL, 0 Clear the Link.
02 0010 00 FO STL, 0 Set the Link.
020011 00 FOCML, 0 Complement the Link.

4.3.1.2 Assembly Language Format — The SDA is implied by the mnemonic FO; thus, assembly statements for the
function generating instructions are of the form:

4-12

FO P, DDA
where:

FO = Instruction mnemonic (Function Output)
P Pulse, defines the MOD bits
DDA = Destination device

The assembler recognizes special mnemonics that imply the addresses for the more common destination devices. When the
special mnemonics are used, there is no need to specify DDA. For example:

Long Form Short Form Description

FOP, 0 FOM P Function output to the machine.
FO P, ISR Fol1 P Function output to ISR,

FOP AQ FOA P Function output to AQ.

Also. there are mnemonics for programming the pulse (P) bits. Function bits can be combined (ORed) simply by giving
the appropriate mnemonics separated by spaces; for example: .

FO CLIF STRT, TTI

The assembler will also recognize abbreviated forms of the more common mnemonics, such as:
OR AND XOR CLL STL CML

4.3.2 Function Testing

The Function Tester, specified by Destination Device Address 02 (represented as DDA=02), senses status indicators
associated with the device at SDA. If the indicators satisfy the test specified by MOD, the control logic of the machine
causes a skip of the next two locations. In other words, the next instruction to be executed is in the third location
following the function testing instruction. If the indicators do not satisfy the test specified by MOD, then the instruction
in the location following the function test is executed next. The instruction format is:

SF Sense Function
1 Cycle 1.76 us

15 10 9 8 7 6 5 0

[SDA L1 T 1T] 02]

)4 LSpecifies logical negation of test results
Specifies up to three status indicators

Any bit in MOD (9-7)=1 selects the testing of the corresponding status indicator at SDA. If MOD (6)=0, the test is true
if any of the selected indicators is on (true). If MOD (6)=1, the test is true only if all of the selected indicators are off
(false).

Refer to Tables 4-5 through 4-7 for an instruction summary, instruction times, and examples.

4.3.2.1 Machine Language Format — The following examples show machine instructions and RAS statements for some
specific Function Testing instructions:

Machine Instruction RAS Description
76 1000 02 SF HSR, IRDY Skip if high-speed reader flag on
76 1001 02 SF HSR, NOT IRDY Skip if high-speed reader flag not on.
000100 02 SF 0, LNK Skip if Link set (=1).
00011002 SF 0, BOV LNK Skip if Link or bus overflow set.
000111 02 SF 0, NOT BOV LNK Skip if neither Link nor bus overflow set.

4.3.2.2 Assembly Language Format — The DDA is implied by the mnemonic SF: as a result, assembly statements for
the Function Testing instructions are of the form:

4-13

SF SDA, S

where
SF = Instruction mnemonic (Sense Function)
SDA = Source device address
S = Status, defines the MOD bits.

NOTE

Note that a function testing instruction skips the next two
locations. Hence, if the instruction to be skipped uses only
one location, the programmer must fill in with a no-op.
The standard no-op is simply 00 0000 00, for which the
assembler recognizes the mnemonic NOP.

The assembler recognizes special mnemonics that include the codes for the more common source devices. When
the special mnemonics are used, there is no need to specify SDA. For example:

Long Form Short Form Description
SFO,S SFM § Sense status of machine
SF AO, S SFA S Sense status of AQ.

Also there are mnemonics for programming the status (S) bits. Functions can be combined (ORed) simply by giving
. the appropriate mnemonics separated by spaces. For example:

SFM BOV LNK
assembles as 00 0110 02. This instruction skips the next two locations if either the Bus Overflow or Link is set.
The mnemonic NOT preceding the status mnemonics inverts the test, ie., it places a 1 in bit 6. For example:
SFM NOT BOV LNK

assembles as 00 0111 02. This instruction skips the next two locations if neither Bus Overflow nor Link is set.

43.3 Data Testing (Jump)

The Data Tester. specified by DDA = 03. tests data at SDA relative to zero. The SDA must be a non-memory register
(06). If the data test specified by MOD is true. program control is transferred to the address specified in the next
location. If the test is not true, the control logic of the machine skips this next location. The instruction format is:

{6 Jump Conditional

15 10 9 8 7 6 5 0
| SDA | | | | I DDA=03]

/Deferred mode jump

Logical negation of test results
Test for data equal to zero

Test for data less than zero

The bits in MOD (9-7) specify the precise test that the data at SDA must satisfy in order for a jump to occur. The
combinations are:

414

MOD (9-7) Mnemonic Test

100 LTZ Less than zero.

101 GEZ Not less than zero (greater than or equal to zero).

010 -ETZ Equal to zero.

011 NEZ Not equal to zero.

110 LEZ Less than or equal to zero.

111 GTZ Not less than and not equal to zero (greater than zero).

A jump instruction is a two-word instruction. If a jump occurs, the address of the second word of the Data Test instruction
is placed in the Trap Register, 23 (also addressed as 03 for compatibility purposes with GRI-909 software) before the jump
address is transmitted to the SC. This procedure provides a link back to the calling program if the jump was to a subroutine.

NOTE

When a Data Test instruction is true and a jump occurs,
the previous contents of the Trap Register (23) will be
destroyed. If no jump occurs, the Trap Register is not
affected.

In the direct mode jump (MOD 6=0), the contents of the second word of the instruction is transmitted to the SC. In
the deferred mode jump (MOD 6=1), the contents of the second word is used as a memory address to fetch the jump
address. This jump address is incremented, replaced in memory, and the incremented value is transmitted to the SC.

Refer to Tables 4-5 through 4-7 for an instruction summary, instruction times, and examples.

4.3.3.1 Machine Language Format — The following examples show machine instructions and RAS statements for
some specific Data Testing instructions.

Machine Instruction RAS Description

11 1000 03 JC AX,LTZ, 125 If AX less than zero, jump to location 125.
000125

77 0101 03 JCDTTL ETZ,200 If Teletype input equal to zero, jump deferred
000200 through location 200.

23111003 JCTRP, GTZ, 4150 If the Trap Register is greater than zero (ie., not
004150 less than nor equal to zero), jump to location 4150.

00010003 JU 500 Jump to location 500 (00 as source is a zero word;
000500 thus, the equal to zero test is always true).

4.3.3.2 Assembly Language Format — The DDA is implied by the mnemonic JC; as a result assembly statements for
data testing are of the form:

JC SDA, T, Address
where:

JC Instruction mnemonic (J ump Conditional)

SDA = Source device containing data to be tested

T = Test to be performed., as defined in the MOD bits, as follows:
Bit 9-7 Mnemonic Jump Function

000 - Never jump

001 - Always jump

010 ETZ Jump if Equal to Zero

011 NEZ Jump if not equal to zero

100 LTZ Jump if less than Zero

101 GEZ Jump if Greater than or Equal to Zero
110 LEZ Jump if less than or Equal to Zero

111 GTZ Jump if Greater than Zero

4-15

address = The address to which control is transferred if the test is true. This address is called the jump
address. The address is assembled into the second word of the two-word data test instruction.

Jump Conditional Deferred (JCD) — A deferred jump instruction takes the following form in the assembly language:

JCD SDA, T, address
where
JCD = Instruction mnemonic that specifies the setting of bit 6 (Jump Conditional Deferred).
SDA = Source device containing data to be tested.
T = Test to be performed, as defined in the MOD bits (refer to IC)
address = The address of the jump address — 1. When a deferred jump occurs, the contents of the location

referenced by address is auto-incremented and control is transferred to the location specified by
the incremented result.

Jump Unconditional (JU) — The assembler recognizes a special mnemonic (JU) that specifies a condition that is always
satisfied, i.e., the mnemonic always causes a jump to occur. When using JU, it is not necessary to specify the SDA or

the test to be performed, because the condition implied by JU is that the SDA is the null register and the test performed
is ETZ. For example,

Long Form Short Form Description

JC0,ETZ, 100 JU 100 Jump unconditional to location 100.
As in the case of JC, the JU instruction can specify deferred mode addressing. For example,

Long Form Short Form Description

JCD 0,ETZ, 100 JUD 100 Jump unconditional deferred through

location 100.

4.3.3.3. Indexing — Indexing can be used with Jump instructions. When indexing is specified the contents of the Index
Register is added to the address that is fetched to produce the jump address. To index an instruction, bit 15 of the word
that is fetched must be set.

JC with Indexing — The assembly language format for a JC instruction with indexing is:

JC SDA, T, #address
where:
IC = Instruction mnemonic (Jump Conditional)
SDA = Source device containing data to be tested.
T = Test to be performed, as defined in the MOD bits (refer to JC).
= The special symbol to specify indexing. (Sets bit 15 of address to 1).
address = If T is true, the address to which the contents of the XR are added to produce the jump

address. Address is assembled into bits 14-0 of the second word of the two-word
instruction.

JCD with Indexing — The assembly language format for a JCD instruction with indexing is:

JCD SDA, T, #address
where
JCD = Instruction mnemonic (Jump Conditional Deferred)
= The symbol to specify indexing.
SDA = Source device containing data to be tested.
T = Test to be performed, as defined in the MOD bits (refer to JC).

4-16

address = The XR is added to address to produce another address,
the contents of which is incremented and replaced. Program
control is then transferred to the address specified by the
incremented value.

JU with Indexing — The JU instruction, which specifies a condition that is always satisfied, can also be used with indexing.
That is, a jump will always occur to the address formed by the sum of address and the Index Register value. The
assembly language format is:

JU # address

4.3.3.4 Using the Jump Instruction — The jump instruction can be used to call a subroutine, because when a jump
occurs the address of second word of the jump instruction is stored in the Trap Register. When the subroutine is
finished. and if the subroutine has not modified the contents of the Trap Register, it can return control to the calling
program by executing the one-cycle instruction:

RR TRP, SC

which causes a return to the contents of TRP + | (refer to Section 4.3.9). If the contents of the Trap register is likely
to be affected by the subroutine itself, then the first instruction of the subroutine must save the return address. For
example,

SUB: RMI TRP, 0
The subroutine returns control to the calling program in either of the following ways:

JUD SUB + 1
or
JCD SDA, T, SUB + |

For a complete description of subroutine linkage and argument passing, refer to the GRI-99 Relocatable Assembler
Manual.
434 Data Transmission

A Data Transmission Instruction causes the transmission of data from a source device, through the bus modifier, to
a destination device. There are two types of Data Transmission instruction:

a. Non-memory reference — instructions that transmit data from one non-memory register
to another.

b. Memory Reference — instructions that specify memory as the source or destination
of data.

4.3.4.1 Non-Memory Reference Transmission — These instructions enable the transmission of data directly between
system devices. The instruction format is:

RR Register to Register
15 10 9 8 7 6 5 0
[spa | [| DDA |
L(not used)

one’s complement before any other
modification

00 — no modification

01 — increment (plus one)
10 — shift left one bit

11 — shift right one bit

4-17

NOTE

It is important to note that for RR transfers, if bit 15
of the source data is set and DDA=07 (SC) the source
data are automatically indexed and placed in the SC.

Refer to Tables 4-5 through 4-7 for an instruction summary, instruction times, and examples.

Machine Language Format — The following examples show machine instructions and RAS statements for some
specific non-memory reference instructions:

Machine Instruction RAS Description

11 0000 76 RR AX, HSP Transmit contents of register AX to
high-speed punch.

77 0000 77 RR TTI, TTO Transmit Teletype input to Teletype
output (echo function).

11 010011 RS AX, P1 Increment register AX.

00 9000 12 ZR AY Clear register AY (00 is source of Zeros).

76 0110 12 RRC HSR. Pi, AY Two’s complement of high-speed reader

to register AY (one’s complement
followed by increment.

11 1000 11 RS AX, L1 Shift AX left one bit (rotate left one
bit through link)
111100 11 RS AX,R1 Shift AX right one bit (rotate right

one bit through link)

Assembly Language Formar - The basic assembly language format for instructions that transfer data from one non-
memory register to another is:

RR [C] SDA, MOD, DDA

where
RR = Instruction mnemonic (Register to Register).
SDA = Source device that originates the data.
MOD = The modification to data, as defined in the MOD

bits (9 and 8). The combinations of bits 9 and 8
and the associated mnemonics are:

Bits 9-8 Mnemonic Modification

00 — None

01 Pl Add +1. If the result is 216, set
Bus Overflow, otherwise clear it.

10 L1 Rotate left one place. Bit 15 is
shifted into the link. the link into
bit 0.

11 R1 Rotate right one place. Bit 0
is shifted into the link. the link
into bit 15

DDA = Destination device to receive the data

4-18

Also, the 1’s complement of the data at SDA can be taken, modified or not modified by the user, and the result
transferred to DDA. The assembly format is:

RRC SDA, MOD, DDA

To transfer zero to a register, the mnemonic is ZR. To transfer the 1’s complement of zero to a register, the mnemonic
isa ZRC. When using ZR or ZRC the SDA is unnecessary:

Long Form Short Form Description
RR 0, P1, AX ZRP1, AX Transfer O plus 1 to the AX.
RRCO, L1, AX ZRC L1, AX Transfer 1’s complement of 0

rotated left one bit, to the AX.

A register can also be transferred to itself (RS) or complemented and transferred to itself (RSC). When using the
mnemonics RS or RSC, the DDA is unnecessary:

Long Form Short Form Description
RR AX, P1, AX RS AX, P1 Transfer the contents of AX plus
I to the AX.
RRC AX, P1, AX RSC AX, P1 Transfer the 1.s complement of AX

plus 1 to the AX. This instruction
produces the 2’s complement of
the source datum.

4.3.4.2 Memory Reference Transmission — These instructions enable the transmission of data to and from memory.
If SDA=06, data are transmitted from memory. If DDA=06, data are transmitted to memory. If SDA=DDA=06. data
are transmitted from a memory location back to itself. Memory reference instructions require 2-4 cycles for
execution. The instruction formats are:

MR Memory to Register

15 10 9 8 7 6 5 0
[spa=oe] [[[DDA]

L Deferred mode

Immediate mode

00 — no modification

01 — increment (plus one)
10 — shift left one bit

11 — shift right one bit

RM Register to Memory
15 10 5 0
[SDA | MOD, as above | DDA =06]
Ms Memory to Self
15 10 5 0
[06 | MOD_ as above [06]

4-19

All Memory Reference Data Transmission Instructions are two words in length. The first word is the actual
instruction. The second word is either:

a. The source of data.
b. The destination of data.

c An address of data.

d. An address that points to another memory address (a deferred or indirect address).

The address of the memory location into which data are transmitted or from which data are fetched is called the
effective address. The effective address is determined by the addressing mode as specified by MOD (7-6):

Bits 7-6 Mnemonic Description
00 — Direct mode — the contents of the second word
is the effective address.
01 D Deferred mode — the contents of the second word

is used to fetch another address which is incremented
and replaced. The incremented value is the effective
address.

10 I Immediate mode — the effective address is the
address of the second word of the instruction.
Thus, the contents of the second word of the
instruction is data.

11 ID Immediate and deferred mode — the contents of the
second word is incremented and replaced. The
incremented value is the effective address.

Refer to Tables 4-5 through 4-7 for an instruction summary, instruction times, and examples.

Machine Language Format — The following examples show the machine instructions and RAS statements for some
specific memory reference instructions (assume location 500 contains 1000):

Machine Instruction RAS Description

11 0000 06 RM AX, 200 Transmit contents of AX to location
000200 200.

06 0010 23 MRI -2, TRP Transmit contents of second word (-2)
177776 to the Trap Register.

23 0010 06 RMI TRP, 0 Transmit contents of Trap Register to
000000 second word — sometimes used to save

subroutine linkage.

06 0110 06 MSI 100, P1 Increment second word of this
000100 instruction.

06 0001 11 MRD 500, AX Transmit contents of location 1001
00500 to register AX.

130011 06 RMID AO, 1000 Transmit contents of AO to location
001000 1001.

The deferred mode is sometimes called one level indirect with auto-indexing. The term indirect in this sense means
that the address in the instruction is not the effective address but is the address of the effective address-1. The term
auto-indexing means that the effective address is automatically incremented before it is used.

Assembly Language Format — There are four basic types of memory reference transfers:

a. Memory to register (MR).
b. Register to memory (RM)’
¢. Memory to self (MS).

d. Zero to memory (ZM).

These four transfers can be accomplished in four addressing modes: direct, deferred, immediate, and immediate
and deferred. Also, the indexing feature can be used with the instructions.

4.3.4.3 Indexing — Indexing is a valuable tool for expanding the capability of many memory reference instructions,
as well as Jump instructions (Data Testing). To effectively use indexing, it is essential that the programmer under-
stand the method of specifying indexing and the way in which indexing interacts with the various instructions.

In the GRI-99 any value that is used as an address can be indexed. For memory reference instructions, Jump
instructions, or any value sent to the SC, if bit 15 is set, the value will be indexed.

When a value is indexed, the 15 bit address quantity is added to the 16 bit XR to form a 15-bit effective address.
(The high-order bit of the sum is dropped.)

Example 1
If the XR contains 100 and the instruction
MR #3, AX

is executed, the quantity # 3, which is internally 100003, is added to the XR (000100) to produce the sum 100103.
The high-order bit is then dropped, yielding the effective address 103. (The contents of location 103 is then loaded
into AX.)

Example 2
If the XR contains 100 and the instruction
MR #-3, AX
is executed, the effective address is the low-order 15 bits of the sum of 100 and -3 (177775), which is location 75.
Example 3
Similarly, if the XR contains -3 and the instruction
MR # 100, AX

is executed, the effective address is the low-order 15 bits of the sum of the XR (177775) and the quantity # 100
(100100). The actual sum is 100075 ; however, the high-order bit is dropped to produce the effective address (75).

Example 4
If the XR contains 100 and the instruction
MRI #3,8C

is executed, the low-order 15 bits of the sum of the XR value and the quantity # 3 is incremented (refer to Section
4.3.9) and sent to the SC. Thus, the program resumes execution at location 104. :

Example 5
If the instruction:

MRI #3, AX (or any register
other than SC)-

is executed, the value 100003 is deposited in the AX (or the indicated register).

Memory to Register (MR) Direct Mode — The basic assembly language format for MR instructions in direct mode
is as follows:

MR address, MOD, DDA
where

MR
address

Instruction mnemonic

The address in memory from which data is fetched.
Address is stored in the second word of the instruction.

4-21

MOD = Modification to data, as defined in the MOD bits (9 and 8). The combinations of bits 9 and 8
and associated mnemonics are:

Bits 9-8 Mnemonic Modification
00 — None
01 Pl Add +1. If the result is 216, set Bus Overflow,
otherwise clear it.
10 L1 Rotate left one place. Bit 15 is shifted into the

link, the link into bit 0.

150

11 R1 Rotate right one place. Bit 0 is shifted into the link,
the link into bit 15.

1L =

150

DDA = Destination device that receives the data.
MR Direct with Indexing — The assembly language format for MR instructions in direct mode using indexing is as follows:
MR # address, MOD, DDA

where:

#

address

The special mnemonic to specify indexing (Sets bit 15).

The address to which the contents of the index register is added, yielding the address from
which data are to be transferred (effective address).

]

MR Deferred (MRD) — The basic assembly language format MRD instructions is as follows:
MRD address, MOD, DDA
where:

MRD
address

Instruction mnemonic for deferred addressing

Address is stored in the second word of the instruction and points to another location
which contains the effective address —1. During execution, the contents of this (latter)

location is auto-incremented to produce the effective address. Data are then fetched from
the effective address.

4-22

MRD with Indexing — The assembly statement for MRD instructions with indexing is as follows:
MRD # address, MOD, DDA
where

= the special mnemonic to specify indexing

address = The Index Register value is added to address to form a new address. The contents of
the new address is incremented and replaced and the incremented value is the effective
address.

MR Immediate Mode (MRI) — The basic assembly language format for MRI instructions is:

MRI data, MOD, DDA
MRI Instruction mnemonic for immediate mode addressing
data The contents of the second word of the instruction. DDA is loaded with this value.

where:

[}

NOTE

If DDA =07 (SC) for an MRI instruction, the SC is
loaded with data + 1. 1f data has bit 15 set (indexing),
then the sum of XR + dara + 1 is loaded into the SC.

MR Immediate and Deferred (MRID) — The basic assembly language statement for MRID instruction is:
MRID address —1, MOD DDA

where

MRID
Address —]

Instruction mnemonic for immediate and deferred mode addressing,

This is the second word of the instruction. It is incremented and replaced to produce
the effective address. Data are then transferred from the effective address to DDA.

MRID with Indexing — The basic assembly language statement for MRID instructions with indexing is:
MRID # address — 1, MOD, DDA

where:

The special mnemonic to specify indexing

address — 1 This is the second word of the instruction. It is incremented and replaced to produce
address. The XR value is then added to address (if bit 15 remains set after incrementing),
thereby producing the effective address. Data are then transferred to DDA from the

effective address.

Register to Memory (RM) Direct Mode — The basic assembly language format for RM instructions in direct mode is:

RM SDA, MOD, address (DDA = 06 is implied by the mnemonic)
where

RM = Instruction mnemonic

SDA = The source device that supplies the data

MOD = Modification to data, as defined in the MOD bits (9 and 8). For the combinations of
bits 9 and 8 and associated mnemonics, refer to MR direct mode.

The address in memory to receive the data. Address is stored in the second word of
the instruction.

address

RM Direct and Indexing — The basic assembly language format for RM instructions in direct mode using indexing is:
RM SDA, MOD, # address

4-23

where:

#

address

The special mnemonic to specify indexing

The address to which the contents of the Index Register is added, yielding the address
to which data are transferred (effective address).

RM Deferred (RMD) — The basic assembly language format for RMD instructions is:
RMD SDA, MOD, address

where

RMD
address

Instruction mnemonic for deferred mode addressing.

Address is stored in the second word of the instruction and points to a location which
contains the effective address —1. During execution, the contents of this location is
autoincremented to produce the effective address, to which data are then transferred.
RMD with Indexing — The assembly statement for RMD instructions with indexing is:

RMD SDA, MOD, # address

where

#

address = The Index Register value is added to address to yield an address the contents of which
is autoincremented to form the effective address.

The special mnemonic to specify indexing.

RM Immediate Mode (RMI} — The basic assembly language format for RMI instructions is:
RMI SDA, MOD, X
where

RM1I
X

Instruction mnemonic for immediate addressing.

A dummy expression. The effective address (where data are stored) is actually the
location following the instruction (i.e., SC + 1), thereby overwriting the value X.

RM Immediate and Deferred (RMID) — The basic assembly language statement for RMID instructions is:
RMID SDA, MOD, address —1
where

RMID
address —1

Instruction mnemonic for immediate and deferred mode addressing.

"

This is the second word of the instruction. It is autoincremented to produce the effective
address, to which data are then transferred.

RMID with Indexing — The basic assembly language statement for RMID instructions using indexing is:
RMID SDA, MOD # address — 1

where

#
address —1

The special mnemonic to specify indexing.

Address —1 is incremented to produce address and, if the incremented value has bit 15 set,
the contents of the Index Register is added to address, yielding the effective address.

i

424

Zero to Memory (ZM) — The ZM instruction is a special case of register to memory (RM). The source of a ZM instruction
is the null device (00); therefore, the source word is 0, and the data sent to memory depends on the operations
performed in the bus modifier. The basic assembly language format for ZM instructions is:

M MOD, address

where

M
MOD

Instruction mnemonic

Modification to data, as defined in the MOD bits (9 and 8). The combinations of bits
9 and 8 and associated mnemonics are shown under MR.

address = The effective address that receives data from the bus modifier.

The four addressing modes can be used with ZM in the same manner as RM. Also, ZM instructions can be indexed.

Memory to Self (MS) — The MS instruction specifies the MB as both the source and destination of data; thus, the contents
of a single memory location can be modified directly. The basic assembly language format for MS instructions is:

MS address, MOD
where
MS = Instruction mnemonic
address = The address in memory to be modified
MOD = The modification to data, as defined in the MOD bits (9 and 8). The combinations of

bits 9 and 8 and associated mnemonics are described under MR.
The four addressing modes can be used with MS. Also, MS instructions can be indexed.

ZM and MS Examples — For convenience the assembler recognizes special mnemonics for clearing a location and
transferring a location into itself. Letting W be the word given for the second location.

IMM, W is equivalent to RMO, M, W
MS W, M is equivalent to MR W M, 6

In both cases the letters D, I and ID can be appended to the basic mnemonic to select deferred, immediate, and immediate-
deferred addressing. To simply keep a count of thirty in the location following an instruction we could give

MSI —-36, P1 3010 = 364
which assembles as 06 0110 06 and 177742. The thirtieth iteration of this instruction sets the Bus Overflow flag.

Addressing Examples: Suppose AX contains 000132 and the following locations contain the numbers listed:

Location Contents
321 ‘001742
1742 005360
1743 134267
5361 000023

Also assume that the link contains a 0 prior to instruction execution. Executing each of the following instructions
in location 320 produces the effects given.

4-25

Instruction

MR 1742, AX
MRD 1742, AX
MRI 1742, AX
MRID 1742, AX
RM AX, 1742
RMD AX, 1742

RMI AX, 1742
RMID AX, 1742

MS 1742, R1
MSD 1742,R1
MSI 1742, R1
MSID 1742,R1

M P1,1742
ZIMD P1,1742

ZMi P1,1742
ZMID P1,1742

Suppose further that:
XR =100

NOTE

Each of the instructions is a two-word instruction;
thus, the second word is in location 321.

Effect

Load 5360 in AX.

Change location 1742 to 5361 and load 23 in AX.
Load 1742 in AX.

Change location 321 to 1743 and load 134267 in AX.
Store 132 in location 1742.

Change contents of location 1742 to 5361 and store 132 in
location 5361.

Store 132 in location 321.

Change contents of location 321 to 1743 and store 132 in
location 1743.

Change contents of location 1742 to 2570 (5360 divided by 2)
and clear link.

Change contents of location 1742 to 5361 and change contents
of location 5361 to 11 (23 divided by 2) and set link.

Change contents of location 321 to 761 (1742 divided by 2) and
clear link.

Change contents of location 321 to 1743 and change contents of
location 1743 to 56133 (134267 divided by 2) and set link.

Store 1 in location 1742 and clear BOV.

Change contents of location 1742 to 5361 and store 1 in location
5361 and clear BOV.

Store 1 in location 321 and clear BOV.

Change contents of location 321 to 1743 and store 1 in location
1743 and clear BOV.

Executing each of the following instructions in location 320 with indexing produces:

Instruction
MR #1642, AX
MRD #1642, AX
MRI #1742, AX

MRID # 1642, AX
RM AX, #1642
RMD AX, #1642

RMI AX, #1742
RMID AX, # 1642

MS #1642, R1
MSD #1642, R1

MSI #1742, R1

MSID #1642, R1

Effect

Load 5360 into AX.

Change location 1742 to 5361 and load 23 into AX.
Load 101742 into AX.

Change location 321 to 101643 and load 134267 in AX.
Store 132 in location 1742.

Change contents of location 1742 to 5361 and store 132 in location
5361.

Store 132 in location 321.

Change contents of location 321 to 101643 and store 132 in location
1743.

Change contents of location 1742 to 2570 and clear link.

Change contents of location 1742 to 5361 and change contents of
location 5361 to 11 and set link.

Change contents of location 321 to 40761 (101742 divided by 2)
and clear link.

Change contents of location 321 to 101643 and change contents of

location 1743 to 56133 and set link.

4-26

Indexing can also occur at fwo levels when deferred mode addressing is specified. Suppose further that:

location 1100 = 101642

Instruction Effect
MRD # 1000, AX Change contents of location 1100 to 101643 and load 134267 into AX.
RMD AX, #1000 Change contents of location 1100 to 101643 and the store 132 in

. location 1742.

MSD #1000, R1 Change contents of location 1100 to 101643 and change contents of
location 1743 to 56133. .

4.3.5 Program Interrupt

Most Input/Output (1/0) devices must be serviced infrequently relative to the processor speed. Only a small amount of
processor time is required to service these devices, but they must be serviced within a short time after they request service.
Failure 1o service within the specified time (varies for different devices) can often result in loss of information and
certainly results in operating the device below its maximum speed. The program interrupt is designed with these
considerations in mind, i.e., the use of interrupts in the current program sequence facilitates concurrent operation of

the main program and a number of peripheral devices. The hardware also allows a power failure to signal the program by
requesting an interrupt.

4.3.5.1 Interrupt Requests — Interrupt requests by a device are governed by its Ready and Interrupt Status bits. When
a device is ready to send or receive data, it sets Ready., and this action requests a program interrupt if its Interrupt Status
bit has been set by the program; if the Interrupt Status bit for a particular device is clear. the device cannot cause an
interrupt.

At the beginning of every cycle the processor synchronizes any requests that are then being made. After a request has
been synchronized, the device that made the request must wait for an interrupt to start. The request signal is a level;
thus, after being synchronized it remains on the bus until the program clears the Ready or Interrupt Status bit. In other
words, clearing either bit in a device disables any request the device has already made and that had been synchronized;
the device can no longer interrupt. If the Interrupt Status bit was cleared, but Ready remained set, then subsequently
setting the Interrupt Status bit again restores the request for that device.

4.3.5.2 Starting an Interrupt — The processor starts the interrupt sequence if all four of the following conditions are met:

a The processor has just completed an instruction or a direct memory access. Insofar as interrupts
are concerned, an entire sequence of external instructions is equivalent to a single instruction in
the program: when a sequence is started, the processor does not handle any interrupts until the
sequence is finished.

b. At least one device is waiting for an interrupt to start (i.e., it was requesting an interrupt at the
beginning of the last cycle).

c The interrupt control is on (via an FOI ICO instruction).

d. No device is waiting for direct memory access; i.e., there are no requests for such access that
the processor-has synchronized but not yet fulfilled. The direct memory channel has priority
over program interrupts.

When the processor finishes an instruction, it takes care of all direct memory requests before it starts an interrupt; this
order includes any additional direct memory requests that are synchronized while access is occurring. When no more
devices are waiting for access, the processor starts an interrupt if the interrupt control is on and a device was requesting
an interrupt at the beginning of the last access. The program governs the interrupt operator through the following
instruction:

FO ‘ Function Qutput, Interrupt
L 02 i MOD | 04]
15 10 9 8 7 6 5 0

4-27

Perform the functions specified by 1s in MOD as follows.

Bit Mnemonic Function
6 ICF Turn interrupt control off.
7 ICO Turn interrupt control on.

When an interrupt sequence occurs, the processor automatically turns off the interrupt control to prevent further
interrupts, saves SC (which points to the next instruction) in a location the address of which is supplied by the device,
and loads SC with an address one greater than that supplied. The processor then proceeds to the instruction in the
location now addressed by SC and continues sequential operation from there. In general, three locations are allocated
for each interrupt, as follows:

a. The first location (address is supplied by the device) receives the current
contents of SC,

b. The second location should contain the instruction 06 0010 07 i.e.,an MRI XXX, SC.
The third location should contain an address one less than the first location in the service
routine for the device.

The memory locations allocated to the basic 1/O devices are as follows:

Location Device
11-13 Teletype output
14-16 Teletype input
17-21 High-speed punch
22-24 High-speed reader

Other GRI supplied devices generally are allocated locations in lower core. (Appendix B lists the interrupt locations for
all GRI-supplied devices).

A breakpoint (refer to paragraph 4.3.5.6) or a power failure causes an interrupt to location 0. The first six locations
could be set up for these two combined channels in the following manner:

Location Device
0 SC stored here.
1 SFM POK (skip if power OK)
2,3 MRIPFAIL-1, SC (power fail routine)
4,5 MRI BRKPT -1, SC (breakpoint routine)

In a large system, it may be necessary to have two or more devices sharing a single channel; in such a case, the third
location must contain an address for a common routine for all of them. The hardwired address in any device can be
disabled so that it interrupts to location 0. If some device (but not all) interrupt to 0, then the instruction in location 4
should take the processor to a service routine for those device (plus breakpoint). If all devices interrupt to 0, the service
routine can begin right in lacation 1.

A device may be hardwired to interrupt directly to its service routine. In this case, SC is stored in the first location of
the routine, and the second location contains the first instruction of the routine.

4.3.5.3 Servicing an Interrupt — If more than one device is connected to a single channel, (generates the same interrupt
address) the service routine must first determine the device that requires service. A series of SF instructions is used for
this purpose. After the device has been identified, the routine should clear the Ready flag and save the contents of any
registers or flags that are to be used in the routine or may be affected by it. Consequently, the routine should save the
Machine Status Register if there is to be any modification in the bus modifier, as Bus Overflow or the Link can be
affected by such operations. Similarly TRP should be saved if the routine contains a jump or uses it as a general-
purpose register. Then the program services the device. While doing so it can simply leave the interrupt off, or it can
re-enable the interrupt and establish a priority structure that allows higher priority devices to interrupt the current
device service routine. This priority is determined by controlling the states of the individual Interrupt Status bits for
the various devices.

4-28

4.3.5.4 Device Priority — There are several ways in which priorities are assigned to devices:

a. An elementary priority is established by the hardware for devices that are requesting
interrupts simultaneously in that the processor brings in a channel address from one
and only one device: among those that are waiting it takes the address from the
device that is physically closest to the processor on the bus. This situation, however,
applies only to those devices that are waiting at the time an interrupt is started.

b. Using Sense Functions (SF’s) to determine which device to service establishes a
priority by the order in which the devices are tested, but again this situation applies
only to those devices that are waiting at the time.

c. The most significant method is by controlling the Interrupt Status bits to specify
which devices can interrupt a service routine currently in progress. These flags are
each connected to a particular data line in the Source and Destination Buses.
Collectively they constitute the Interrupt Status Register. By addressing this
register as device address 04, mnemonic ISR, the program can save the current
priority structure, establish a new one, or restore a previous one. There is no
established priority, as the program can set up any ISR configuration.

All devices whose Interrupt Status bits are clear cannot cause an Interrupt to start and, therefore, are regarded by the
program as being of lower priority. Those devices in which Interrupt Status is set can interrupt the current routine
and, therefore, are regarded by the program as being of higher priority.

The following lists the devices assigned to the bits in ISR. (Complete information on all devices is given in Appendix B.)

ISR Bit Device

0 Teletype output
1 Teletype input
2 High speed punch
3 High speed reader
4\
5
6
7
8
9 Other Devices

10

11

12

13

14

13/

By means of ISR the program can establish any priority structure with one limitation: rwo or more devices whose Slags
are the same bit in ISR (i.e., are connected to the same data line) are all at the same priority level. When an interrupt is
in progress for a device, the rest of the devices assigned to the same bit must be regarded as all of higher priority or all
of lower priority depending on whether they are enabled or not.

4.3.5.5 Dismissing an Interrupt — After servicing a device, the routine should restore the pre-interrupt states of any
devices affected by the routine (MSR, TRP, general registers, ISR), turn on the interrupt control (FO11CO), and
return to the interrupted program. The instruction that turns the interrupt on again has no effect until the next
instruction is completed. Thus, after that instruction the processor always executes one more instruction (assumed
to be the return to the interrupted program) before another interrupt can start. It is recommended that this return be
implemented by, thus guaranteeing that the TRP is not disturbed by the return after interrupt.

MR INTLC, SC

4-29

where:
INTLC = location where SC was stored on interrupt.

If the service routine allows interrupts by higher priority devices, then before dismissing as indicated above, the routine
should turn off the interrupt to prevent further interrupts during dismissal. In dismissing, the routine should re-enable
lower priority devices that were not allowed to interrupt the current routine but will be allowed to interrupt the program
to which the processor is returning.

4.3.5.6 Breakpoint — The program can generate special interrupt at any time by the use of the following instruction.

FO 2.1 Function Output, Breakpoint
[02 [oJoJ1Jo] 01 |
15 109 8 7 6 5 0

After executing this instruction, the processor first handles any direct memory requests that are waiting, but as soon as
the last DMA is completed, a break cycle occurs. The sequence counter is stored at 0, and execution begins at location
1. The ISR should be O, but the Interrupt control may be on or off. Starting the interrupt automatically removes the
breakpoint request, but as previously indicated by the instructions recommended for locations 1-5, it should be
assumed that a breakpoint has occurred if there is no power failure.

Obviously breakpoints are not used in any normal programming situation. They are used almost exclusively for
debugging purposes.

4.3.5.7 Timing -- The time a device must wait for an interrupt to start depends on how many devices are using interrupts,
how long the service routines are for devices of higher priority, and whether the direct memory channel is in use. A single
device shuts out all others of lower pricrity if every time its service routine dismisses the interrupt, it is already waiting
with another request. The direct memory channel can also preempt all processor time. If the channelis not in use, the
highest priority device need never wait longer than the time required for the processor to finish the instruction that is
being performed when the request is synchronized. Maximum waiting time for ordinary instructions including synchroni-
zation is, therefore, about 3 us. However, the maximum possible time can be much longer if the program uses optional
functional operators that stop the stored program (External Instruction devices). For example, multiplication can delay
an interrupt by 56 us when done by external instructions.

The time the processor takes to start an interrupt and jump to a service routine is three cycles, about 5 us. An interrupt
directly to a routine takes only the single cycle for storing SC.

4.3.5.8 When to Use the Interrupt — If the program has little computing to do and is using only one or two fast 1/O
devices or several slow ones, it may not be necessary to use the interrupt at all. On the other hand, if there are many
calculations to perform and the program is using a fast device or is processing data using several slower devices, then the
interrupt is necessary. The critical factors in determining whether to use the interrupt, and beyond that an ISR priority
scheme, are: what the program is doing in addition to IO and the time required by the service routines.

Example 1 Suppose the program is doing nothing but processing data using reader, punch and Teletype, and
further suppose that no service routine requires more than half a millisecond. In these circumstances,
the program could dispense with the interrupt and test all the devices (in the order just stated) by a
loop containing SF and jump instructions, where the reader service routine returns to the punch test
and all others return to the beginning of the loop. The fastest device, the reader, is still capable of
running at full speed with no loss of data.

Example 2 Suppose the program has a significant amount of computing to do. Then the interrupt must be used,
but priority is a very real consideration. If input-output service for the Teletype requires .8 ms and
punch service requires .5 ms, then the reader service is never delayed too much if the interrupt is simply
turned off while servicing each device. But if Teletype service requires 20 ms per character. then neither
reader nor punch is able to run at full speed uniess ISR is used to set up priority levels.

4-30

4.3.6 Direct Memory Access (DMA)

A DMA is a machine cycle granted to a requesting device for the purpese of sending a 16-bit word to memory or receiv-
ing a 16-bit word from memory or incrementing a memory location. Devices using the DMA channel require special
logic for synchronizing with the channel.

16-bit word. At lower rates the channej also frees processor time to allow execution of a program concurrently with data
transfers for a device.

In addition to the straightforward transfer of a word between memory and a device in either direction, the channel also
allows a device to increment by one a word already in memory. The direct memory channel is used by devices requiring
very high data transfer rates, such as magnetic tape or disk and by devices that utilize the memory increment feature,
sich as the real-time clock.

The program cannot affect the direct memory channel because there are no instructions for this purpose; instead the
program sets up the device to use the channel. When the device requires data service, it requests direct memory access.

waiting for service simultaneously, the first to receive service is the device that is physically closest to the processor on
the bus. After taking care of all direct memory requests, the processor returns to an external instruction sequence if one
is in progress; starts an interrupt if a device is waiting for one; or executes the instruction pointed to by the Sequence
Counter.

The DMA cycle is actually a stolen cycle from the operating program. Each DMA cycle occurs between instructions (at
the completion of the current instruction) and has a higher priority than an interrupt cycle or an external instruction

4.3.6.1 Timing — The time a device must wait for access depends on when its request is made and how many devices of
higher priority are also requesting access. After the processor starts handling requests, a given device must wait until al]
devices closer than that device on the bus have been serviced: the highest priority device can preempt all processor time

if it requests access at the maximum rate. At less than the maximum rate, the closest device need wait no longer than

4.3.7 External Instructions

Operations in some functional devices are limited to single data transfers or state changes; thus, these operations take
place entirely within the instructions that cause them. But, in many cases, an FO instruction for a device can trigger an
operational sequence that delays execution of the stored program until it is finished. This extended sequence actually
a macro-function (eg. multiply, divide, etc.) and the entire sequence is considered as one stored program function.

The extended instruction takes control of the ‘processor to execute a sequence of external instructions which are
retrieved from its own built in ROM and set to the IR.

In either case, the sequence is normally started by an FO instruction that addresses the device as destination. A sequence
of external instructions takes control of the processor in order to use other devices, such as the arithmetic operator, or
at least the data transfer paths. Such a sequence can be regarded as an extension of the FO that triggered it, for SC
Temains constant, and program interrupts are shut out until the sequence is finished. During EI execution, the processor
can pause for direct memory access. Thus, high-speed 1/0 operations are not endangered except to the extent that a
program interrupt may be delayed.

4-31

4.3.8 Input/Output (1/0)

With direct function processing, an 1/0 instruction is simply one that addresses an 1/O device, i.e.,a peripheral device.

A table in Appendix B lists all devices for which device addresses have been assigned, as well as their mnemonics. In
addition to the logic for decoding source and destination addresses, every device is assigned a Ready flag and an Inter-
rupt Status bit. The first of these denotes the state of the device. At power turnon, all Output Ready flags are set, all
Input Ready flags and Interrupt Status bits are clear. Placing a device in operation clears Ready. If the device is to be
used for input, the program generally places it in operation by giving an FO instruction. A complex device to be used

for output may require an FO, but a simple output device is usually started automatically by giving a data transmission
instruction that sends a unit of data — a word or character depending on how the device handles information. (The word
output used without qualification always refers to the transfer of data from the bus system to the peripheral equipment;
input refers to the transfer in the opposite direction.)

When the device has processed a unit of data, it sets Ready to indicate that it is ready to receive new data for output, or
that it has data ready for input. In the former case, the program responds with a transmission instruction to send more
data; in the latter case, the program responds with a transmission instruction to bring in the data, followed by an FO to
restart the device. If the program has set the Interrupt Status bit and turned the interrupt control on the setting of
Ready notifies the program by causing an interrupt; if Interrupt Status is clear, then the program must keep testing
Ready to determine when the device is available.

A device may require no data transfers, such as a real-time clock that uses only an FO to turn it on and off. All

of the simpler data handling devices have only one buffer (e.g., to hold a single character for the Teletype; tape reader
and tape punch, or to receive incremental plotting data for a single point in the plotter). A high-speed device, such as
magnetic tape or disk, may use data transmission instructions only for control information with data moving between
the device and memory via direct memory access. Control information that the program must supply to a tape system
includes a transport address and an actual command the tape device is to perform; input information includes error flags
and transport status levels.

439 Program Control

The present section discusses the use of the various instruction types to control the program sequence and the basic state
of the computer. The use of the jump instructions for handling subroutines is described in Section 4.3.3 A jump always
causes the next instruction to be taken from the address loaded into SC, but this case is not always true when a data trans-
mission instruction loads SC. The data transfer always occurs in the final cycle of the instruction, and SC is incremented
in the first and second cycles. Hence, if the instruction takes only one or two cycles (i.e., an RR or MRI), SC is incre-
mented after it is loaded. In general, this condition simplifies the return because the address saved in TRP must be
incremented in order to point to the correct return location. Thus, the instruction RR TRP, SC causes a correct return
(refer to Section 4.3.3.4). This incrementing can also be handled by using a deferred jump, but the program must incre-
ment in the bus modifier when using a data transmission instruction of three or four cycles to return with an address
originally saved in TRP. Refer to the GRI-99 Assembler Manual for further information.

Sending a word to a device that cannot receive information or that does not exist is a no-op, which is effectively a pro-
gram delay. The basic no-op (NOP) is a one-cycle null transfer. The length of the delay is equal to the number of cycles
the instruction takes. Provided no modification is called for, many transmission instructions have no effect on the com-
puter at all except for the regular SC incrementing to go to the next instruction; but the programmer must remember
that deferred addressing does affect some memory location.

Certain flags and control flip-flops in the computer are connected to the source and destination buses in such a way

that their states can be saved and then restored as though they constituted a register. These elements are referred to
collectively as the Machine Status Register, which can be addressed as device address 17, mnemonic MSR. The elements
that make up this register are the following:

[Bov | INK] [AO STATE] {sov] aov]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 9

4-32

Saving and restoring the machine state is a procedure used primarily in program interrupts, but the programmer can use

it anytime; he can even set up the machine state in any way he likes by loading a word of his own construction into MSR.
(AOV and SOV, however, are states that can only be affected by the arithmetic operator and the contents of AX and AY.)
Having the Bus Overflow (BOV) and Arithmetic Overflow (AOV) flags at the ends of the register is especially convenient
because either of them can be moved to the link in only one cycle without affecting the machine state. This is done by

RR MSR, L1,0 (BOV)
or
RR MSR, R1,0 (AOV)

respectively.

BOV is the sign bit of the machine status register and therefore may also be tested by a jump conditional instructional
(see section 4.33). There are also Function Generating and Function Testing instructions for the processor control
logic.

FOM Function Output, Machine
I 02 | MoD | 00]
15 10 9 8 7 6 5 0

Perform the functions specified by 1s in MOD as follows:

Bit Mnemonic Function

6 CLL Clear Link.

7 STL Set Link.

8 HLT Halt the processor.
Programming 1s in bits 6 and 7 (mnemonic CML) complements the link.
SFM Sense Function, Machine
L 00 | F [~] 02]

15 10 9 8 7 6 5 0

“Perform a function test on the conditions selected by 1s in F as follows:

Bit Mnemonic Condition

7 BOV Bus Overflow set.

8 LNK Link set.

9 POK Power ok.

The letter NV in bit 6 specifies logical negation of test results. The following instruction pair is used to determine whether
location 4 contains all Is:

MR A,P1,0 ; Add 1, throw away
; result

SEM BOV ; Skip-ifoverflow
; occurred

Suppose bit 0 of location A4 is to be used as a program flag. Bit O is set with this instruction:

yAY P1.4

and tested by giving this sequence:
MR A,R1,0 ; Put bit 0 in link
SFM LNK ; Skip if Link set

4.4 USING THE AO

The Arithmetic Operator (AO) contains two registers, AX and AY, both of which can be addressed as source and destin-
ation for data. At all times, the AO is in some specific functional state such that the AQ output, which is addressable as
a data source, is the given function of the contents-of the two registers. For example, turning on system power or start-
ing the processor from the console places AO in the ADD state, making the output continuously equal to the sum of AX

4-33

and AY. Changing the contents of either register changes the output to a new sum. When the AO is in a given state, it
retains that state until changed by the program or by the operator pressing the START switch.

The AO output is actually 17 bits, wherein the extra bit is a carry (AOV, bit 0 of MSR), or equivalently an extra magni-
tude bit in a sum. This extra bit is the overflow of the unsigned addition of AX and AY, regardless of the functional

state of AO (even if the low-order 16 bits of the AO output are a logical function). The overflow value can be determined
only by Function Testing or reading machine status.

The circumstances that generate an AOV are obvious when dealing with unsigned numbers. An addition with result
greater than 216 1 overflows. For subtraction, the condition is the same in terms of adding the two’s complement; in
terms of the original operands the subtraction 4 — B, which is executed by adding 4 and the two’s complement of B,
produces a carry if 4 2B (unless both 4 and B are zero).

The statement of the overflow conditions for signed arithmetic is as follows: if two number of the same sign are added
and the answer is of the opposite sign, an overflow (Sum Overflow — SOV bit 1 of MSR) has occurred. It should be
noted that AOV and SOV are nor the same thing.

The device addresses of AX and AY are 11 and 12, mnemonics AX and AY respectively. Device address 13, mnemonic
AO, addresses the arithmetic operator, both for its output and for Function Generating and Testing. The functional
state of the AO is available to the program as bits 9 and 8 of the Machine Status Register (in the same configuration as
given by the following FO instruction).

FOA Function Output, Arithmetic
| 02 | F] 0 [o 13]
15 10 9 8 7 6 5 0

This instruction sets AO to the state specified by F, as follows:

Bits 9-8 Mnemonic Function

0 ADD Addition

1 AND AND

2 XOR Exclusive OR

3 OR OR
SFA Sense Function, Arithmetic
| 13 i F [v] 02 B
15 10 9 8 7 6 5 0

This instruction performs a function test (as previously described) on the carry if bit 7 in F is 1. The mnemonic AOV
placesa 1 in bit 7. N specifies logical negation of test results. The instruction performs a Function Test on the signed
arithmetic overflow if bit 8 is F is 1. The mnemonic SOV places a 1 in bit 8.

One way to determine whether the contents of AX and AY are identical is as follows:

FOA XOR ; Exclusive or
IC ~AO,ETZ, YES ; Jump to YES if
;AX =AY

The followirig computes the number ten times that contained in location Z (Assume Z now has a number less than 216
divided by 10):

FOA ADD ; Add

FOM CLL ; Clear Link

MR Z, L1, AX ;AX=2Z

RR AX,L1,AY ;AY =47

RR AO, AX ;AX=6Z, AO=10Z

4-34

NOTE

The first two instructions above could be replaced by the
single instruction ZR MSR which clears the LNK, sets AQ
to the ADD state, but also clears BOV.
Suppose we wish to use the word in location Z with its bytes swapped. Example 1 can be used for this purpose.

Example 1

MR Z, AX
RR AX,AY ; Put word in AX and AY
MRI —10, TRP ; Set up count for eight shifts
RM TRP,M2+1
Mi: RS AY, L1 ; Shift AY into link
RS AX,L1 ; Shift link into AX
M2: MSI 0,P1 ; Count step
SFM BOV : Done?
JU M1 ; No shift again

i Yes, AX has word with bytes swapped

Note that the example does not use the functional properties of AQ; the shifting could just as well be done in a pair of
general-purpose registers, or in a pair of core locations if AO were not available (the latter would be longer in both space
and time). The count could be kept in the XR instead of in core; this alternative eliminates the memory reference in the
sixth line (inside the loop) and eliminates the fourth line altogether, because the third line could read:

MRI - 10,XR
4.5 OTHER ARITHMETIC OPERATIONS

Examples of using fixed point arithmetic for addition, subtraction, shifting, multiplication, division, and scaled arithmetic
operations, are contained in the GRI-99 Fixed Point Manual. The GRI-99 Floating Point Manual contains valuable pro-
gramming information for performing operations using floating point arithmetic.

4-35

Table 4-5
GRI-99 INSTRUCTION SUMMARY

MOD Bits
Class SDA 9 8 7 6 DDA Effect
Function 02 00
Generation
(control signals)
0 0 0 1 CLL (Clear Link)
0 0 1 0 STL (Set Link)
0 1 0 0 HLT
0 0 1 1 CML (Complement Link)
02 13
0 0 0 0 ADD
0 1 0] AND
1 0 0 0 XOR
1 1 0 0 OR
02 14
0 0 0 1 Multiply
0 0 1 0 Divide
0 0 i 1 Arith. Rt. Shift
0] 1 0 0 Normalize
02 04
0 0 4] 1 ICF (Int. Control Off)
0 0 1 0 ICO (Int. Control On)
02 76,77
0 0 0 1 STRT
1 0 0 0 CLIF (Clear IRDY)
0 0 1 0 CLOF (Clear ORDY)
02 -~ - - — | Any Depends on DDA.
Function Test (Skip) 00 0 0 0 1 02 Always Skip
0 0 1 - BOV (Bus Overflow)
0 1 0 - LNK
l 0 0 - POK (Power OK)
13 02
0 0 1 - AOV (Arith. Overflow)
0 1 - SOV (Sum Overflow)
76,77 02
1 0 0 - i IRDY
0 0 1 - ORDY
Any 02
- - - = Depends on Device
- - -0 Skip if Any Tests True
- - - 1 Skip if None Test True
Data Test* Any Except 03
(Jump) 06
0 0 - Always Jump
0 1 0 - ETZ
0 1 1 - NEZ
1 0 0 - LTZ
1 0 1 - GEZ
1 1 0 - LEZ
1 1 1 - GTZ
- - — 1 Deferred
Data Transmission Any Except Any Except
Non-Memory 06 06
Reference
0 0 0 0 None
0 1 - 0 Increment
1 0 - 0 Left One Bit
.1 - 90 Right One Bit
- - 1 0 I’s Compl. Before Bits 8, 9

4-36

Table 4-5 (Cont.)

GRI-99 INSTRUCTION SUMMARY

MOD Bits
Class SDA 9 8 7 6 DDA Effect
Memory Reference* 06 Any
Any 06
06 06
Same 0 0 Direct
as 1 0 Immediate
Non-Memory 0 1 Deferred
Reference 1 1 Immediate-Deferred

*These 'instructions can be used with indexing;

refer to the appropriate description in this chapter.

NOTE: Data cannot be complemented when transferred into or out of memory.

Table 4-6
GRI-99 INSTRUCTION TIMES
Length Memory Time
Class (words) Cycles (us)
Function Generation 1 1 1.76
Function Test
Skip 1 1.76
No Skip 1 1.76
Data Test
No jump 2 1 1.76
Jump direct 2 2 3.52
Jump deferred* 2 3 5.28
Data Transmission
Non-Memory reference I 1 1.76
Memory reference
direct 2 3 5.28
immediate 2 2 352
deferred* 2 4 7.04
immediate — deferred* 2 3 5.28

*The deferred mode selects one level of indirect addressin:

address is incremented prior to instruction execution.

NOTE: Indexing requires no additional execution time.

4-37

g with auto-indexing; the indirect

Table 4-7
GRI-99 INSTRUCTION EXAMPLES

Sample
Class Machine Instruction Description
Function 02 0001 77 Start Teletype paper-tape input
Generate
02110013 Select Arithmetic Operator OR
function.
Function Test 770011 02 Skip if Teletype output not ready.
13 0010 02 Skip if arithmetic operation caused
overflow (AOV)
Data Test 77 010003 If Teletype input equal to zero

jump address
DONE

go to DONE

13111003 If arithmetic result greater than
jump address zero, go to ALARM
ALARM
Data Transmission
Non-memory 350100 35 Increment the general purpose
Reference register 35.
77 0000 76 Transmit Teletype input character to
the high-speed punch.
65011012 Transmit the two’s complement of the
converter register to the AY register
(for a comparison with a limit value
in the AX register, for example).
Memory 060000 11 Transmit upper limit value to AX
Reference address UPLIM register.
03 0010 06 Store trap register immediate.
destination
06 0100 06 Increment value of counter.
address COUNT
06 0010 35 Transmit an immediate constant (12)

operand 12

to the general purpose register 35.

4-38

CHAPTER 5
GRI1-99

INSTALLATION

5.1 INSTALLATION CONSIDERATIONS

Figure 5-1 shows the physical layout of the GRI-99 chassis. The chassis is designed to be easily mounted in a standard
EIA 19-in. mounting rack and can be either bolted into the rack or mounted on slides. An expansion chassis is available
for mounting above or below the standard unit.

5.1.1 Access Points

The hinged console front panel swings aside to permit quick access to the front of the chassis. Viewed from the front,
the power supply is located on the left, the memories are on the right; seven slots are located near the center for large-
size PC cards. From the back of the chassis, the nine slots for small-size PC cards are easily accessible.

5.1.2 Temperature

It is recommended that the ambient temperature at the installation site be maintained between 20°C and 30°C (68°F to
86°F). The ambient temperature in the vicinity of the chassis can vary between 0°C and 55°C without adverse effect.
Relative humidity should be less than 90% (non-condensing). All exposed surfaces of the GRI-99 have been treated to
withstand corrosion; however, exposure to extreme humidity for extended periods of time should be avoided. When
mounting the processor in a typical rack mounting configuration with other equipment, the ultimate criterion for
proper cooling over the system’s specified temperature is the maximum temperature of the core stack itself. This
temperature must not excel 60°C (140°F) measured on the backside of the core stack board via a thermocouple or
temperature tell-tale. In large system configurations with other significant heat loads present, the system designer
must consider the use of forced air cooling for the entire system because temperature rises of 40°C are quite

possible. Proper attention must be given to the actual flow of air to make sure that fresh air is introduced in the

rack, moved freely through the computer and other equipment to be cooled, and expelled from the rack.

5.13 Power

The GRI-99 uses 85 — 144 Vac or 160 — 276 Vac, single-phase, 45 Hz — 65 Hz line power. The GRI-99 power cable
is equipped with a standard 3-wire plug. The receptacle must be properly grounded and rated at 15A. The line current
and power dissipation specification for the computer and associated Teletype are as follows:

Processor Teletype
Line Current 3A 2A nominal
(115 Vac) 7A turn-on surge
Dissipation 150W — 300W 92w

The +5 Vdc output of the power supply can deliver 20A, all' of which is used by the processor with 16K of memory and
other optional devices. An expansion module added inside the basic power supply provides power for the 1/0 expansion
chassis.

- 5.1.4 Specifications

A complete specification for the GRI-99 is included in Chapter 1 of this manual. Power supply specifications are in
Chapter 3. The physical dimensions of the GRI-99 and a Teletype Model 33 ASR are as follows:

Height Width Depth Weight

(in.) (in.) (in.) (in.)
Main Chassis 10 1/2 19 122 40
ASR 33 45 22 19 56

5.2 SPECIAL PROCEDURES

No special installation procedures are necessary for the GRI-99. The GRI-99 is built to be rack mounted (see Figure 5.2).
For rack mounting, it is important to allow at least 3 in. of space below the computer and 3 in. above the computer for
convection cooling. A complete description of installation procedures for the GRI-99 and references for Teletype instal-
lation are included in the GRI-99 Maintenance Manual Volume |,

5-1

—-[E —rl 1% I——
- S
e T !
——__— -_'—— T |
L L oy 1
\r‘,— - SEE
- NOTE
\ NO. 1
\ !
\ [
\\ 112
\ TOP :
16% RAD. ! 17
1
1
CONTROL PANEL !
OPENS 77~ APPROX. !
\\ b — - - .
N
N
\\
NOTES: SN
1. THE NOTED AREA MUST BE FREE OF ~
OBSTRUCTIONS TO ALLOW FOR POWER ~.
AND 1/0 CABLE SWEEPS, S~ J
2. THESE DIMENSIONS ARE FOR SLIDE plab S I I e e N |
MOUNTING OPTION. AR e —
u
_,LI 1/8 TYP.
17 2PLACES 1% ADJUSTABLE
cj ﬂ 1o s
10% ‘) N i D b b RN
I: :(’J I i [
% Id? FRONT :E. SIDE :: !
L4 | 1.._1: _.Jl
5 15/32 REF,
cj NOTE 2.
'l;/z ' |] - ——d.
- ['“ e 197/8- |
19 1.37——{ 21

Figure 5-1 GRI-99 Dimensional Drawing

e ——

Figure 5-2 Rack Mounted GRI-99 shown with Grisette 1 full duplex tape 1/0 system

CHAPTER 6
GRI-99
INTERFACING

A wide variety of GRI devices, as well as user-designed devices, can be easily interfaced to the GRI-99. The addition of
new source registers makes data available to all destination devices, and new destination devices can receive data from

both internal and external devices. It is important for the designer to understand the architecture of the GRI-99, as well
as the busing scheme and PC card setup; Chapter 3 of this manual describes these considerations, and the GRI-99
Maintenance Manual contains valuable theory of operation information.

6.1 BUSING SCHEME

The busing scheme and connections internal to the main chassis are shown in Figure 6-1. All PC cards shown in the
lower row are of the larger size (%-in. by 13-in.) The processor is contained on four large cards, labeled PC1, PC2, PC3,
and AOQ. Core memory cards are the largest cards used and contain the core planes, and all read, write, inhibit, sense
and control circuitry. Two connectors are available in the processor bus for the addition of firmware operators.

Both the processor bus and the 1/0 bus are actually each two buses: source and destination. In general, the destination
bus is associated with output from system devices, whereas the source bus is the source of data and control information
for input to system devices.

All connections between the buses and the console are made with ribbon cable running between the processor bus PC
and the console PC. An expansion chassis can be placed either above or below the main unit. Ribbon cable connects
the mainframe buses to the expansion bus where the bus signals are buffered.

6.2 BUS SCHEMATIC

Figure 6-2 is a bus schematic of the basic GRI-99 configuration. Except for most of the power wiring, all system signals
are distributed via the printed bus board. Some of the signals and signal groups shown in the schematic are private
communications signals between the three major control assemblies (PC1, PC2, and PC3) that make up the basic pro-
cessor. The power supply delivers voltages and a power status signal to the bus via a connector that goes to the

main processor bus. From PC3 through the last slot on the main processor bus, the signals become the system signals

used internally and, therefore, facilitate the use of internal options plugged into these slots, as well as I/O options.

All connections to the main processor bus or the 1/0 bus assembly are made by 44-pin connectors. Signal Origin drawings
are connector lists that describe all the bus signals that appear on the connectors at the various slots in the main processor.
These drawings, located in a separate volume titled GRI-99 Engineering Drawings, in addition to showing the connector
pin number and the signal name, also contain:

a A brief description of the signal functions.
b. Whether the signal is originated on the-board described on the drawing,

c. Whether the signal is simply used on that board, or whether the signal contains bus drivers that
are ORed onto one of the common buses that runs through the system.
In general, all signals with the suffix L are bus type signals that are driven from many points throughout the system by
open collector gates. Exceptions to this rule can be found by observing whether the signal is marked in the Origin column
or the Used column. A bus-type signal has more than one origin. If the signal is a bus-type and the Used column is
marked, the notation indicates a point of termination of the signal.

6-1

<9

MEMORY CONTROL
& DECODING
1/0 SOURCE BUS

UP TO 9 SMALL DEVICE OR FIRMWARE OPERATORS

I/0 DESTINATION BUS

PROCESSOR SOURCE BUS
S ——

PD
BUFFER

RIBBON CABLE

CONSOLE

2 LARGE
PCt || Pc2 || PC3 Ao | FIRMWARE

OPERATORS

N g’

PROCESSOR

DESTINATION
BUS

Figure 6-1 System Busing

MEMORY

\ X BUS

1/0 CONTROL
& DECODING
MEMORY
PROTECT
RIBBON
CABLE

CORE
MEMORY

S8

o 4K OR 8K
OPTIONS o8 MEMORY mse
SAB
DAB o8
ce
LINK (MA 1S SOURCE) SDOS
BOF ———————
{MB IS SOURCE) SD06
MAJOR STATES [y — Maemony
§ st | PROTECT 1
xevs! STK ENABLE (MA IS DEST) LMA
| STPK | SWITCH I
SYSTEM TIMING R — . PRTEN {MB IS DEST} LMB
DMA FLAGS TERM L
FUNCH NALS xcLe
MPS ~eat—q .
FTe's - MEMORY xTe
T PE] POWER
EX SWITCH DSTRB
DSTR MPS .
CLRr CLR
DDAH sAB e INTB
INTE EDSH | aic URMPERED se sDOS > INTERRUPT CONTROL
INTERRUPT CONTROL 1ASH Sg ;AEMORY SAB SDO6
ROTECT PRTEN
EASH gus IS FITTED Dag LgGic: LMA .
-~
10AH DAB »-1 XCL yemoRry LMB INHIBIT INH MBS -
bMR a] DSTR BUS xcLB WRITE
EIR = EXT DSTRB RDB
POUT DOUT DIN PIN EXTB PIN POUT
PIN s l L — ‘ l ' PIN
DIN ‘ POUT
— ; OTHER
MEMORY 8US MEMORY SLOTS
10
ExTEnsion @
1/0 BUS N
i PROCESSOR BUS
[N \ [Fout
o S8 GouT POUT sg S8 PIN DIN DOUT sg
oe D8 DB D8 0B
saB SAB SAB sas
DAB oAB DAB DAB DAB
(MOD. BITS) CB c8 ce cB cs
STK PF PS MPS
(STROBE DEV. DISP. REG.) SDS DISPLAY STROBES LINK LINK
(DEVICE SELECT) CDA jwm- KEYS BOF BOF
MAJOR STATES MAJOR STATES MAJOR STATES | w— MAJOR STATES
KEY STATES KEY STATES STK
POWER SUPPLY (STROBE SW. REG.) CCS (KEYS)
SYSTEM TIMING SYSTEM TIMING SYSTEM TIMING SYSTEM TIMING |t SYSTEM TIMING
DMA FLAGS DMA FLAGS
FUNCH FUNCH FUNCH FUNCH FUNCH |2
(FUNCTION TEST) FT .
(FUNC. TEST BITS} # FT8's FT8's FTB'S FTB'S
EXT EXT EXT EXT EXT
DSTR DSTR DSTR DSTR DSTR |«
Ayto CONSOLE CLR ISYSTEM CLEAR) CLR CLR CLR CLR |t
BUTTON Lock (MEMORY REQUEST) MBR MBR MBR | g
pet (DATATEST) XFR XFR XFR
INT.REQ.) $ INTB INTB INTB
INTERRUPT CONTROL INTERRUPT CONTROL| INTERRUPT CONTROL
(FORCE SKIP) PT PT
: PS - PS
| PF
ab CDsBL S8 DBy CCS MAJOR GPB LE DISPLAY CDA KEYS OMR FIRMWARE OMR
STATES STROBES PC2 # €I pc3 a0 OPTIONS EIR
L LOAD ERROR .
. S .
CONSOLE AUTO-LOAD SIGNAL
NOTE.

1.} TERMINATED POINT OF BUSSED SIGNAL IS SHOWN BY #

Figure 6-2 Bus Schematic

6.3 SOURCE AND DESTINATION BUS SIGNALS

The paths of the Source and Destination Bus signals are indicated in the block diagram of the GRI-99 architecture. This
treatment excludes communication paths between PC1, PC2, PC3 and the power supply. The signals discussed in

this section are found on the Source Bus connectors and Destination Bus connectors in the two large card-option slots
on the processor bus and the 9 small card-option slots on the 1/0 bus.

Figures 6-3 and 6-4 are diagrams of the two connectors, showing pin numbers and signals as they would appear looking
into the processor at the bus board. Those signals marked by an asterisk (*) appear only on the I/0 bus connectors.* A
short explanation of the signals is given in Table 6-1. ‘

6.4 PROCESSOR TIMING

The basic clock frequency in the GRI-99 is provided by a 9.09 MHz crystal clock (Y1). This clock produces a signal
(XCLL) that is distributed throughout the system on source bus pin L. The origin of the clock is on PC2. The basic
clock period is 110 ns. This clock frequency is divided by four to produce the 440 ns microcycle timing (TO, T1, T2,
T3). A timing chart demonstrating this relationship is shown in Figure 6-5. The four microcycles within the basic
memory cycle are shown with a 110 ns strobe occurring during the last 110 ns of each microcycle, except TO and T1,
which occur 110 ns earlier. All clocking of data transfers is done with these strobe pulses. The balance of the time
period between the trailing edge of one strobe and the leading edge of the next is used for propagation and settling time
through gates.

*These special signals on the 1/O bus are decoded combinations of SAB and DAB addresses commonly used in all 1/O
devices. This feature was provided to minimize the requirements for logic on the small 1/O cards.

6-4

Ground

+5VvV

CLRH

DMH

PINL

DINL

DAB1H

DAB3H

DABSH

DSTRH

CLIBH

IMBL

STPKL

EIRL

SBO1H

SBO3H

SBOSH

SBO7H

SBO9H

SB11H

SB813H

SBT5H

SOURCE BUS CONNECTOR

1 A
2 B8
3 Cc
4 D
5 E
6 F
7 H
8 J
9 K
10 L
1 M
12 N
13 P
14 R
15 S
16 T
17 U
18 \Y
19 W
20 X
21 Y
22 V4

Ground

+5V

ElH

BKH

POUTL

DOUTL

DABOH

DAB2H

DAB4H

XCLL

INTBL

DIRBL

STKL

DMRL

SBOOH

SBO2H

SBO4H

SBO6H

SBO8H

SB10H

SB12H

SB14H

Figure 6-3 Source Bus Connector

6-5

DESTINATION BUS CONNECTOR

DBO1L
DBO3L
DBOSL
DBO7L
DBO9L
DBI1L
DBI13L
DBI5L
SABOH
SAB1H
SAB2H
SAB3H
SAB4H
SABSH
IDAH*
EASH*
EDDH*
EXTH
CB3H
CB1H
-A

Ground

10

LR

12

13

14

15

16

17

18

19

20

21

22

DBOOL

DBO2L

DBO4L

DBO6L

DBO8L

DB10OL

DB12¢

DB14L

ISYNH

FTB1L

FTB2L

FTB3L

LINKH

BOH

P2H

ISAH*

EDSH*

FUNCH

CB82H

CBOH

+A

Ground

* APPEAR ONLY ON 1/0 BUS CONNECTORS

Figure 6-4 Destination Bus Connector

Table 6-1
SOURCE AND DESTINATION BUS CONNECTOR SIGNALS

Signal Direction Description

Source Bus

EIH Out External Instruction: the processor external instruction cycle.

CLRH Out Clear: system clear level generated by the START key or power
on or off,

BKH Out Break: the processor interrupt cycle.

DMH Out N Direct Memory: the processor direct memory access (DMA) cycle.

POUTL Out Priority Out: the serial interrupt priority determining level from a
higher priority device to the next lower priority device.

PINL Out Priority In: the serial interrupt priority determining level into a
lower priority device from the next higher priority device.

DOUTL Out DMA Out: the serial DMA priority-determining level out of a
device.

DINL Out DMA In: the serial DMA priority-determining level into a device.

DABOH-DABSH Out Destination Address Bus: the 6-bit address of the destination
device.

XCLL Out Crystal Clock: a square wave with 2 110 ns period.

DSTRH Out Data Strobe: used by a device to clock in data from the Source Bus.

INTBL In Interrupt Bus: a common line for all devices to request an interrupt.

CLIBH Out Clear Interrupt Bus: clears the Interrupt service flip-flop in the
requesting device.

DIRBL In Direction Bus: Sent by DMA device to indicate data transfer
direction for DMA (OV =in, +4V = out)

IMBL In Increment Memory Bus: sent by a DMA device to increment the
memory location during a DMA cycle.

STKL In Start Key: START request; wire ORed between front panel,
power supply and any 1/O device.

STPKL In Stop Key: STOP request, wire ORed between front panel and any
1/0 device.

DMRL In Direct memory Access Request: a common line for all devices to
request DMA.

EIRL In External Instruction Request: a common line for all devices to
request an external instruction cycle.

SBOOH-SB15H Out Source Bus Data: “the 16 data lines in the Source Bus.

Destination Bus

DBOOL-DB15L In Destination Bus: the 16 data lines in the Destination Bus.

ISYNH Out Interrupt Sync: generated in each cycle to synchronize interrupt
and DMA requests by devices.

SABOH-SBBS11 Out Source Address Bus: the 6-bit address of the source device.

FTBIL-FTB3L In Function Test Bus: devices use these lines for status input during
an SF instruction.

LINKH : ~ Out Link: the Link bit associated with the Bus Modifier.

6-6

Table 6-1 (Cont.)

SOURCE AND DESTINATION BUS CONNECTOR SIGNALS

Signal Direction Description

BOH Out Bus Overflow: the bus overflow tlag associated with the Bus
Modifier.

P2H Out Normally Time 2 Pulse: strobe that gates FO commands into a
device; however, during EI cycle, P2H is generated twice (at T1
and T3) due to doubled execution speed in the EI state.

IDAH* Out Interrupt Destination Address: the destination address is 04, the
interrupt status register.

EASH* Out External Address, Source: the source address is 16, the active
DMA address register or interrupt address generator.

ISAH* Out Interrupt Source Address; the source address is 04, the interrupt
status register.

EDSH* Out External Data, Source: the scurce address is 15, the active DMA
data register or logic that supplies an external instruction from a
ROM.

EDDH* Out Extemal Data, Destination: the destination address is 15, the
active DMA data register.

FUNCH Out Function: the current processor instruction is an SF or an FO.

EXTH Out Execute Time: Normally T2, during which the programmed
transfer occurs; however, during EI cycle, EXTH is generated
twice (at T1 and T3) due to doubled execution speed in the El
State.

CBOH-CB3H Out Control Bus: lines that transmit the four MOD bits.

+A Out Voltages generated by optional power supply card on the 1/O bus.
When this card is installed, —A from the power supply is

—A Out disconnected at a jumper on the bus. These voltages are nominally

*28V.

6-7

89

To T T2 T3

- 1.76us -
B L 11 I p—— MEMORY
CYCLE
xoLH -wmwm
=] 110 NS <l
TOH
TIH
T2H
T3H
DARK LINES
SHOW STROBE
EDGE USED BY
PROCESSOR I I
DSTRH
(DATA
STROBE
HIGH)

Figure 6-5 Nominal Processor Timing

6.5 INSTRUCTION EXECUTION

Chapter 4 discussed the instructions used by programmers to perform a task within a program. Those instructions are
referred to as macroinstructions. In the GRI-99, it is necessary to execute a group of microinstructions to complete a
macroinstruction. The microinstructions are in the same format as macroinstructions; the only difference between the
two instructions is the source of the microinstruction and the speed at which it is executed.

The GRI-99 macroinstruction set includes the instructions that require 1, 2, 3, or 4 major states to complete. In addition,
the interrupt, direct memory access, and external instruction states are three more major states. When power is applied
to the processor, it is in the FI state. During each state, one memory cycle is executed. Each state is given a two-letter
designator, as follows:

Fl Instruction cycle 1

FA Instruction cycle 2

FO Instruction cycle 3

FD Instruction cycle 4

BK Break cycle

DM Direct memory access cycle
El External instruction cycle

Figure 6-6 is a state flow diagram showing priorities and all possible paths between machine cycles.

The mnemonics INTB, EIR, and DMR are used to represent the request signals for the Break, External Instruction. and
Direct Memory Access cycles respectively. The End State, Halt State and Console Stop State are not separate machine
states but merely conditions that exist within the processor between machine states, Note that these states represent
stop states for the machine, and no new memory cycle is initiated. :

During each memory cycle, up to four microinstructions can be performed using either the Instruction Register or the
processor’s ROM as a microinstruction source. The technique of transferring 16 bits of data from a source to a destina-
tion was discussed in detail in Chapter 4.

For a single cycle instruction, at the start of the memory cycle (T0), the instruction word is in memory and the control
logic has no indication of what the macroinstruction will be. A data transfer of SC to the memory address (MA) registers
is made to read the macroinstruction from memory. During the next period (T1), the instruction word read from
memory into the MB is transferred through the bus modifier to the instruction register (IR). At the end of T1, the
control logic receives the macroinstruction the programmer wishes to perform (e.g., a data transfer from SDA to DDA).
During T2, the transfer is performed. To prepare for the next instruction, the SC must be incremented. During T3, the
SC is transferred to itself and incremented as it passes through the bus modifier.

Every macroinstruction is implemented in this manner with 1, 2, 3, or 4 memory cycles and various microinstruction
sequences. These sequences are stored in a read only memory (ROM), which is part of the basic machine control logic.
The arrangement shown in Figure 6-7 is used to derive microinstructions from either the IR or the ROM. In the sequence
previously discussed, during TO, T1, and T3, microinstructions were taken from the ROM. During T2, the IR supplied
the instruction to be executed.

6-9

1 CYCLE 2 CYCLE 3 CYCLE

PRIORITIES

1. DM DIRECT MEMORY ACCESS
2. ElI EXTERNAL INSTRUCTION
3. BKINTERRUPT (BREAK)

4. MACHINE CYCLES (FI, FA, FO, FD)

NOTE:

FI CYCLE IS DRAWN TWICE FOR
SIMPLICITY.

Figure 6-6 State Flow Diagram

16 DATA

SOURCE 6 ADDRESS
BUS
4- CONTROL
————
S 3
a a
NO SHIFT | SHIFT
mop | 'NCR | piGHT| LeFT
[a] o
—— g :
CompL. COMPL.
|
< <
[a} [a)
[72] w
IR ROM
6 ADDRESS
DESTINATION
BUS
16 DATA &

Figure 6-7 Derivation of Addresses and Control Signals from Either the IR or ROM

6-11

NOTE

When data are being manipulated in the control
registers of the machine (such as the trap or SC), it
is quite important to know the event sequence of
microinstructions relative to macroinstruction

execution.

Figure 6-8 describes all single-cycle instructions. Figure 6-9 describes the Data Test class of instructions. and Figure 6-10

covers memory reference data transmission. In each case. the hexagonal boxes indicate a transfer of information to or
nt the figures with exact sequence information.

from memory. Tables 6-2 through 6-9 are provided to suppleme

SC —»= MA

Qetch: (MA) — = MB D

EXECUTE

SC+1 — SC

END

Figure 6-8 Event Sequence for

6-12

Function Generate
Function Test
-Data Transmission
{Non Memory)

SC + 3 if SKIP

Single-Cycle Instructions

Table 6-2

FUNCTION GENERATE
Major State Time Slot Microinstruction Comments
TO SC to MA Begins memory reference.
FI T1 MB to IR Macroinstruction in IR and decoded.
Fetch Instruction T2 Execute (IR) Macroinstruction now executed as a
microinstruction.
T3 SC+1toSC The SC now points to next instruction
in memory.
Table 6-3
FUNCTION TEST (SKIP)
Major State Time Slot Microinstruction Comments
TO SC to MA Begins memory reference.
FI Tl MB to IR Macroinstruction in IR and decoded.
Fetch Instruction T2 Execute (IR) Macroinstruction executed as micro.
T3 SC+ 1 to SC Test condition not true.
SC+ 3 to SC Test condition true.
Table 6-4
NON-MEMORY REFERENCE DATA TRANSMISSION
Major State Time Slot Macroinstruction Comments
TO SC to MA Begins memory reference.
Fl1 T1 MB to IR Macroinstruction in IR and decoded.
Fetch Instruction T2 Execute (IR) M?cro‘instruct‘ion now executed as a
microinstruction.
T3 SC+1toSC The SC now points to next instruction in
memory.

6-13

SC ———s=MA

@TCH: (MA) — = MB

MB ———— IR

NOT SATISFIED TEST SATISFIED
CONDITION j
SC+ 1 ——m SC
SC+2 —= SC
SC ——m» TRP
END {NO JUMP)

SC —— MA

QETCH: (MA) —»Mb

TEST

\D(BIT 6)

not deferred
maode
FETCH: (MA} ——w MB

deferred mode

MB - MA

MB +1 ——— MB

RESTORE: MB —»= (MA)

MB ~—— 5C

(JUMP EXECUTED) END

Figure 6-9 Event Sequence for Data Test Instructions

6-14

Table 6-5

DATA TEST (JUMP)

Major State Time Slot Microinstruction Comments
: TO SC toMA Begin memory reference.
FI Tl MB to IR Macroinstruction in IR and decoded.
Fetch Instruction T2 Execute (IR) Perform test.
T3 SC+1toSC Test condition true; SC now points to jump
address; another memory reference required.
SC+2toSC Test condition not true; SC now points to next
instruction.
TO SC to MA Begin memory reference.
FA Tl SC to TRP SC now in trap register.
Fetch Address T2 No op No Operation.
T3 MB to SC* Address is now in SC. Non-deferred jump complete.
TO MB to MA Begin memory reference.
FO T1 No op No operation.
Fetch Operand T2 MB + 1 to MB Increment the address.
(Deferred only) T3 MB to SC Incremented address now in SC.

*If jump is deferred, this operation is not executed because SC is changed during the next major state.

Table 6-6
MEMORY REFERENCE DATA TRANSMISSION
(DIRECT MODE)
Major State Time Slot Microinstruction Comments
TO SC to MA Begin memory reference.
FI Tl MB to IR Macroinstruction in IR and decoded.
T2 No op No operation.
T3 SC+1toSC SC now points to address.
TO SC to MA Begin memory reference.
FA T1 No op No operation.
T2 No op No operation.
T3 SC+1toSC SC now points to next instruction.
TO MB to MA MA points to referenced location.
FO T1 No op No operation.
T2 Execute (IR) Execute macroinstruction as micro.
T3 No op No operation.

6-15

BEGIN

SC ——— MmA
'

<FETCH: (MA) —m B >

MB ————» R

!

SC+1 —w5C

!

S5C ———= MmA

immediate mode

TEST
IRBIT?

not immediate mode

!

QETCH: (MA) — = M8

not deferred mode

TEST
D (BIT 6)

< EXECUTE DATA TRANS-
MB — = MA MISSION TO/FROM MEM@

deferred mode

SC+1 e SC

TEST deferred mode

D (BIT 8)
/ r
FETCH: (MA) —= MB
END

MB+1 e MB

RESTORE: MB —a (MA)

direct ‘
mode

MB ———— MmA

!

SC+1 —s SC

f

EXECUTE DATA TRANS-
MISSION TO/FROM MEMORY

END

Figure 6-10 Event Sequence for Memory Reference Data Transmission Instructions

6-16

Table 6-7
MEMORY REFERENCE DATA TRANSMISSION

IMMEDIATE MODE
Major State Time Slot Microinstruction Comments
Immediate Address
TO SC to MA Begin memory reference.
Fl1 T1 MB to IR Macroinstruction in IR and decoded.
T2 No op No operation.
T3 SC+1toSC SC now points to address.
FA TO SC to MA Begin memory reference.
T1 No op No operation.
T2 Execute (IR) Mgcro_instruct_ion executed as
microinstruction.
T3 SC+1 to SC SC now points to next instruction.
Table 6-8
MEMORY REFERENCE DATA TRANSMISSION
(IMMEDIATE DEFERRED)
Major State Time Slot Microinstruction Comments
TO SC to MA Begin memory reference.
FI T1 MB to IR Macroinstruction in IR and decoded.
Fetch Instruction T2 No op No operation.
T3 SC+1toSC SC now points to address.
TO SC to MA Begin memory reference.
FA T1 No op No operation.
Fetch Address T2 MB + 1 to MB Increment address and store.
T3 SC+1toSC SC now points to next instruction.
TO - MBto MA MA now contains incremented address.
FO Tl No op No operation.
Fetch Operand T2 Execute (IR) Execute macroinstruction.
T3 No op No operation.

6-17

Table 6-9
MEMORY REFERENCE DATA TRANSMISSION (DEFERRED)

Major State Time Slot Microinstruction Comments
TO SC to MA Begin memory reference.
Fi1 T1 MB to IR Macroinstruction in IR and decoded.
Fetch Instruction T2 No op No operation.
T3 SC+1toSC SC now points to address.
TO SC to MA Begin memory reference.
FA T1 No op No operation.
Fetch Address T2 No op No operation.
T3 SC+1toSC SC now points to next instruction.
TO MB to MA Begin memory reference.
FO Tl No op No operation.
Fetch Operand T2 MB + | to MB Increment address and store.
T3 No op No operation.
TO MB to MA Begin memory reference.
FD T1 No op No operation.
Fetch Deferred T2 Execute (IR) Execute macroinstruction.
T3 No op No operation.

6.6 INTERFACES
There are two types of GRI-99 interfaces:

a. Internal devices that are simply extensions of the basic processor (e.g., the AQ). These devices may be
either 9 in. by 13 in. or 9 in. by 4 in. PC cards that plug directly into the processor bus or the 1/0 bus
(see Figure 6-11).

b. External device interfaces that connect the bus system to an external device (e.g., an A/D converter),
These device interfaces are in the form of 9 in. by 4 in. PC cards that plug into the I/O bus
(see Figure 6-12).

Internal devices can be built on the PC card shown in Figure 6-12 without using the external device connectors; however,
if the PC card shown in Figure 6-11 is used, one or more such devices can be built on a single card. The large-size card
holds up to 108 ICs.

The external device interfaces can be built on the PC card shown in Figure 6-14. This card can contain 33 IC packages.
Connections are provided for the Source and Destination 1/0 Buses and for an external device.

The external PC connector has 48 pins and mates to an Amphenol connector Type 583167-1. Contacts and keys for
these connectors are purchased separately, and only those that are needed are used.

The internal device options are summarized in Chapter 2. Chapter 2 also contains brief descriptions of various external
devices that can be interfaced to the GRI-99.

6.7 INTERFACE LOGIC AND TIMING

There are two types of 1/O data transfer:

a. The transfer of words or characters by the prbgram.
b. The automatic transfer of data by direct memory access (DMA).

6-18

SOURCE
= BUS
CONNECTION

EXTERNAL
DEVICE
CONNECTION

DESTINATION
BUS

CONNECTION

Figure 6-12 Small-Size External Device Interface PC Card (Component Side)

6-19

SOURCE
BUS
CONNECTION

DESTINATION
BUS
CONNECTION

The program handles 1/0 by Sensing the Ready flag or by allowing the device to interrupt as it requires service. If the
device operates automatically, it can use DMA for data transfer. In this case, the program responds only for control
purposes (for example: block transfer complete or an error condition to which the program must respond). Also.
internal devices (e.g., the AO) may be operated through the use of external instructions.

The two types of 1/O transfer can be divided into six categories of functions that are used to operate equipment added
to the GRI-99:

a. Programmed data transfers;

b. Function generation;
c Function testing;

d Interrupts;

e DMA;

A External instructions.

Typical circuit configurations and timing diagrams are provided for the various descriptions of these functions. The
timing diagrams show the relationships of the signals involved in each case. In the timing diagrams, the lines for control
signals represent the actual voltage levels. For groups of signals that carry binary information (such as data or addresses),
a raised section of the line indicates the time during which the information is held on the bus. The individual timing
diagrams should be used with the nominal processor and memory timing diagrams in the first part of this chapter.

NOTE

To properly interface any device to the GRI-99, it is
very important to understand the instruction execution
sequence. Refer to paragraph 6.4 and the accompanying
flow charts and tables.

6.7.1 Programmed Data Transfers

Figure 6-13 shows the timing, and Figure 6-14 shows a typical logic setup for data transmission between an interface
register and the bus system. If a register is to receive data it must be connected to the source bus data lines SBOOH to
SB15H and input gating for the register must include a decoder for the destination address lines DABOH to

DABSH and the data transfer strobe DSTRH so that only this device responds when its device address is specified

as the destination.

It is reccommended that the data lines be connected to the D inputs of type 7474 flip-flops or registers. That is,

a true edge triggered device is required for permitting the register to function with all instructions executed with
it as a source and/or destination. These flip-flops also offer the greatest versatility in that they also have d¢ clear
and set inputs for external data entry. The clock input to the data register is derived by combining the data
strobe DSTRH with the output of the address decoder. As can be seen in the timing diagram, the strobe occurs
at the end of the interval in which the destination address and source data are both valid. The address lines carry
high levels; thus, Is can be recognized by connecting the lines directl to the inputs of a decoder such as the
7430 gate. Lines for Os must be connected through inverters. Forexample, to decode address 75, DABIH is
connected through an inverter, the remaining lines are connected directly. If a master clear signal is desired for
the data register, the CLRH line is available; this line carries +5V during the power-up and power-down sequences
and also every time a start signal is sent from the console or remotely. CLRH is normally low and must, therefore,
be inverted to drive the direct clear inputs of the data register.

If a register is to supply data to the system, its outputs must be connected through open collector gates, such as the 7401
to the Destination Bus data lines DBOOL to DB15L. The gating input for the register output into the 7401s is derived
by decoding the address that appears on source address lines SABOH to SABSH. The decoding technique in a 7430
multiple-input gate is identical to that for the destination address. The timing of the transfer is the same as that for
output. The SAB address is valid for the same 440 ns period that a valid address appears on the DAB lines. The 110 ns
strobe at the input to the receiving register occurs at the end of this interval, allowing a settling time of 330 ns to trans-
mit the data from the DB lines, through the bus modifier, onto the SB lines. Whatever logic is added between the DAB

decoder and the open collector gates that connect to the DB lines must not have a delay time greater than 60 ns.

PROCESSOR TIMING

Machine cycle

Memory read

Memory write

T0

1 reus

noo| T

T3

——|‘—-—110Ns

440NS

D

d

OUTPUT
DAB valid
DSTRH
Data valid
INPUT
SAB vaiid
Data input
DSTRH >——
DABSH >——
DAB4H >——
DESTINATION DAB3H >——o
DEVICE DAB2H >——
ADDRESS
(DDA) DABIH >_<4>
DAB@H >——
SABSH >——
SAB4H >——
SOURCE SAB 3H >—
DEVICE SAB2H

ADDRESS
{SDA) SABIH >—<{>

SABOH >—

1

f——

Bus Modifier Time

Figure 6-13 Programmed Data Transfer, Timing

SOURCE BUS DATA LINES

Destination address bus
Data strobe

16 bits on source bus

Source address bus

16 bits on destination bus

SB15H SBOMH SB@OH
Decode X register SET SET SET
DDA -75 —
s D yis %y D ya0
74714 |—-|-—--=-——-=-—-— 7474 7474
7430 c ¢ ¢
CLR ©@ CLR @ cLr @
CLRH>_[>O | e T]
Clear on power
up, down, or start
7430 ? 3)
. 7401 |-—-— o ___ 7401 740
Decode X register oc oc 0c¢
$04-75,
DBISL DBAIL DBOAL

DESTINATION BUS DATA LINES

Figure 6-14 Programmed Data Transfers, Logic Diagram

621

The DDAH and SDAH signals produced by decoding the addresses may also be used by the logic for FO or SF instruc-

tions, rather than separately decoding the same addresses for use in testing, setting or clearing flags, or controlling an
I/0 device.

6.7.2 Function Generation

A function Generation (FO) instruction delivers up to four coded or individually usable pulses to devices for setting,
clearing, or complementing flags. These pulses are placed on the control bus lines CBOH to CB3H during T2 of the FO
instruction (see Figure 6-15). These lines are strobed by the combination of FUNCH, a signal present during any SF or
FO instruction; DDAH, the decoded destination address; and P2H, a strobe pulse occurring at the end of T2.

1.76uS
TO Tl T2 T3 T0 T

FO instruction

FUNCH [[
DAB valid 440NS

Contro! bus
lines valid

P2H

NOTE: AT THE SECOND T1 TIME, FUNCH MAY REMAIN HIGH IF ANOTHER
FO OR SF IS ISSUED.

Figure 6-15 Function Generation, Timing

The examples in Figure 6-16 show two uses for the CB signals. The type of connection at A is for clearing, setting and
Complementing a flag and is used with an edge triggered JK type flip-flop (such as SN74110 or SN7411 1). This permits
use of control bits 0 and 1 together to provide a microprogrammed complement of the flip-flop. Example B uses a
D-type flip-flop (7474) where the data input is connected to the CBOH line and the clock is provided by the gating of
FUNCH and P2H with DDAH. This arrangement permits the transfer of the current state of the CB line (0 or 1) into the
flip-flop, and it can be used to transfer up to four coded bits of data into a small function register for multiplexing or
selecting up to 16 functions.

By convention, if a device must be placed in operation by an FO instruction, CBOH is used for this purpose because
it is already defined in the assembler with the mnemonic STRT. This situation applies to both internal and external
devices, but a simple output device may be placed in operation simply by sending data to it. The READY flags in a
device should be cleared by either CB3H or CB1H, again because the assembler already carries the definitions of
CLIF for CB3H and CLOF for CB2H, Input Ready should be cleared by CB3H and Output Ready by CB1H.

6.7.3 Function Testing

Almost all devices contain flags, relay contacts, or status levels that must be sensed by the program using Function
Testing (SF) instructions. The timing for Function Testing is shown in Figure 6-17. The conditions to be sensed are
connected to the function test bus lines, FTBL, FTB2L and FTB3L, through open collector gates type 7401 or
equivalent (Figure 6-18). The gating function FUNCH may optionally be combined with SDAH and P2H if a pulse
is required during the sensing function. Otherwise, SDAH is sufficient since the processor will only examine the
signals on the FTB buses during a function test operation.

At the end of the interval defined by SDAH, the processor strobes the function test lines to compare the information
on them with the test specification given in the SF instruction. If the test result is positive, the processor increments
SC by 3 in the final time time interval of the cycle; otherwise it increments SC by 1.

By convention, the Ready flag in a device is connected to FTB1L or FTB3L with Input Ready connected to FTB3L
and Output Ready to FTB1L. The assembler again recognizes the standard mnemonics IRDY for FTB3 tests and
ORDY for FTBI tests. The other line is assigned at the user’s discretion to test conditions such as tight tape, low
paper, power on, etc.

o L OII

=Z T = < T

o Ol s Y 4 B o N
o

L a L Oa

< —<CB@H
=<—CB1H
o—<(CBOH

CLRH QSET CLRP
@

S

Figure 6-16 Function Generation Examples

6-23

1.761S

T0 T T2 T3
SF instruction
FUNCH [| I
SAB valid 440NS
Set processor skip —>]_-—IIONS
if test positive +3 if test positive
SC increment [if test negative
|
Figure 6-17 Function Testing, Timing
!/
Device 18003
P}elody Status contact
‘ 1 Fog ¢ (Tight tape, low
SDAH — . RDYH ’ paper, efc)
FUNCH >—— 2200
7401 7401
0C 0C L
FTBIL FTB2L

Figure 6-18 Function Testing, Logic Examples

6-24

6.7.4 Direct Memory Access

This feature can be set up for any device in the system that must pass data directly to memory, take data directly
from memory, or increment the contents of a memeory location by one. Each access requires one memory cycle
during which the program pauses. The device requesting access must always supply the memory address as well
as the control signals that specify mode of DMA access.

A DM request is initiated synchronously within a system device by that device grounding the DM request line through
an open collector gate at ISYN time. A DMA is granted if all the following conditions are met:

1. DMRLis true (Request for DMA).

2a. The processor has completed any BK, previous DM, or EI cycle.

or

2b. The processor is at the end of an instruction. v
When the DMA is granted the processor goes into the DM state. The DM state is a cycle consisting of four microstate
conditions: TO, T1, T2, T3 (refer to Table 6-10).

a. During TO, the external address is sent to the MA, resulting in a memory reference.

b. Tl is dependent on signals DIRB and IMB, which indicates the direction of the DMA transfer. If DIRB
is high or if IMB is low, the contents of the MB is transmitted to the external device. If DIRB is low orif
IMB is high, a no operation occurs in this microstate time.

¢ During T2, if DIRB is low, the word from the external device goes to the MB and is written into memory.
If IMB is low, the contents of the MB is incremented and sent back to itself; therefore, the incremented
value is stored in memory. If either of the two conditions are not met, this microstate becomes ano
operation.

d. T3 isano operation to allow time for the requesting device to disconnect itself or request the next
cycle for a DM.

DMA control is located on PC 2, but decision as to type of DMA ison PC 1.

Figure 6-19 shows timing considerations for DMA transfers. The logic for DMA (see Figure 6-20) is very similar to the
logic for an interrupt (Section 6.9.5) except that there is no status flag. An internal condition sets DMA SYNC . DMA
REQ sets the next time the processor generates the ISYNH pulse, which occurs in every cycle. Setting DMA REQ gives
rise to the DMA request signal DMRL on the bus. The DMA logic in a device also has hardware for a serial priority
determining signal that goes from one device to the next. In this case, a device that receives DINL generates DOUTL
for the next device if its own DMA REQ flag is clear. The setting of DMA REQ disrupts the serial signal so that it
terminates at (and gives priority to) the first device that both receives DINL and in which DMA REQ is set.

At the next available cycle after a request is made, the processor generates the direct memory address signal EASH,
which clears DMA SYNC (as a result, the next ISYNH clears DMA REQ) and sets DMA SERV in the device that has
priority. DMA SERV combined with EASH gates a memory address onto the Destination Bus data lines; and
combined with appropriate control levels in the device it may generate DIRBL to specify input (otherwise output is
specified) or IMBL to specify that the word in the addressed memory location is to be incremented.

Table 6-10
DMA EXECUTION
Major State Time Slot Microinstruction Comments
TO EAS to MA External address is sent to MA.
DM Tl MB to EDD If DIRB is high or IMB is low, contents of MB

80 to external device; if DIRB is low, no op.

T2 EDS to MB If DIRB is low data from external device

MB + 1 to MB go to MB;if IMB is low, MB is incremented

and sent to itself.

T3 No op No operation.

6-25

The next operations depend on the type of cycle. For output, the processor generates EDDH to place the data from
memory on the Source Bus data lines and sends a strobe DSTRH to load the data into a register at the device, If the
increment function is specified, the processor sends the incremented word out to the device and also writes it back in
memory in place of the original data.

For input, the processor generates EDSH to place data from the device on the Destination Bus data lines and generates
a strobe internally to load the data into MB. When access is complete CLIBH clears DMA SERYV to end the operation.

The logic diagram shows the basic request logic required for any type of cycle. Only input transfer logic and the gates
for supplying a memory address are shown. Output transfer logic is not shown; a series of DMA transfers necessitates
the use of a memory address counter for addressing consecutive locations and a word counter or end of

transfer decoder to determine completion of transfer. ‘

|T1|T2IT3|T0|T1|T2,TSITOIT1|T2I T3|T0|T1IT2'

le—1 76S —»|
ISYNH L [ll B L
omAasyne | /
DMRH
DINL /
Q{ X (0) X 7
DOUTL X N
DMH 176S—=L_____ DMAMEMORY CYCLE
DMA SERV SPECIFY DIRECTION, INCREMENT
EASH PROCESSOR STROBES DMA ADDRESS
\ INTO MA®
EDDH (OUT ONLY) [1 MB INCREMENT IF SPECIFIED
(OUT DIRECTION ONLY)*
EDSH (IN ONLY) :] PROCESSOR STROBES DATA
INTO MB*
CLIBH &

Figure 6-19 DMA Timing

6-26

TI-OMRH } DMRL
! D pey
INTERNAL DMA REQUEST —D DEV DMA
smfu% ISYNH>—c REQ
—c SY
DMRH — CLOCK C @ 0 |
DINH >— From device control
EASH {For in transfers only; no gale
CLRH -Da required for out transfers)
E } DIRBL
DINH DOUTL _
DINL .
) Clock input to
device data
DEhﬁlg: oev Dgggn;) l > register for
DMA dafa on
¢ SERV S8 lines
0 EDSH
oC IMBL
DMH >— ﬁ
CLIBH >— From device contro/

DEVICE MA COUNTER

DEVICE DATA REGISTER

DBOOL DB@IL

Figure 620 DMA, Typical Logic Diagram

6-27

6.7.4.1 Real-Time Clock (DMA Example) — An example of a GRI-99 device that uses the DMA feature is the Real-
Time Clock (RTC) option. The Real-Time Clock provides programmed variable time intervals for systems software (e.g.,
event timing, elapsed timing, absolute time of day, etc.)

The Real-Time Clock is a DMA device that increments location 103 by one each time a pulse occurs. When location 103
overflows, an interrupt request is set. By presetting the service routine to a location with a particular negative number,
a time base that is a multiple of the basic clock frequency is generated. For example, with a 60 Hz clock, pre-setting
location 103 to -74g (-601 (), generates an interrupt at 1-second intervals, When the interrupt (overflow) occurs, the
service routine is entered and the clock location 103 is reset to -74g (-601¢) again.

Figure 6-21 is a block diagram of the Real-Time clock. Note the variable clock frequencies and the connection of the
DMA and interrupt service logic.

The Real Time Clock is contained on one 9 in. by 4 in. I/O PC card that plugs into the back of the GRI-99 in any vacant
slot. Device priority relative to other devices for DMA or interrupt operations is determined by its position on the bus.
The order of priority is highest on the left side of the GRI-99 when facing the rear of the machine. The Real-Time
Clock uses the interrupt system; thus, priority chain jumpers (S40-215) must be inserted in positions SE-5 and SF-6

in all vacant slots between the RTC and the lefthand side of the machine as viewed from the rear.

The external connector, a 48-pin Amphenol (S40-203), is used to:

a Bring a low level AC signal at line frequency to the RTC.
b. Make the three oscillator frequencies available to other system components.
[Accept an external time standard.

In terms of DMA, when Clock Enable (CLK EN) is turned on, the clock pulses from the 60 Hz (50 Hz) Schmitt Trigger,
or one of the IC oscillator pulse trains (determined by the jumper on the board) causes a DMA by setting the Clock Flag
in the DMA service block. This action, in turn, enables the setting of DMA Request at the next ISYNH time. On
completing the next full instruction after the DMA Request is set, the processor goes into the DM state.

At TO of this cycle, the processor requests the memory address of the location that the RTC is to increment. This
address is loaded into the Memory Address Register from the RTC when it receives the external source code (EASH).

At T1 time of the DM cycle, the processor executes the microinstruction MB to EDDH. The Source Bus data lines carry
the previous value of location 103 during this time period and the value of SB1S5 is loaded into the OVERFLOW TEST
flip-flop.

At T2 time, the processor executes the microinstruction MB P1 to increment the previous value of location 103 in
preparation for writing the new value back into location 103. The Source Bus line SB15 now carries the new value

of the clock word, and pulse P2H is used to compare the contents of the OVERFLOW TEST flip-flop with the new value
of SB15.

This comparison yields one of the following results:
a At T1, the contents of SB15 was a 0 (OF Test not set), and at T2 C(SB1S5)isa 1 or a O;
i.e., there was no counter overflow.

b. At Tl, the C(SB15)was a 1 (OF Test is set), and at T2 C(SB15) is still a 1, i.e., there was no
counter overflow.

c At T1, the C(SB15) was a 1 (OF Test is set), and at T2 C(SB15)isa 0. There was counter
overflow, and the OVFL Flag is set.

The CLK flag flip-flop is cleared each time the processor is in a DMA cycle; as a result, the flip-flop can be set on the
next clock pulse and generate another request. This process continues until an overflow does exist. At that time, an
Interrupt Request is initiated.

6-28

679

; DATA
SOURCE BUS 4 ADDRESS
CONTROL
SB15H
1.0 msec
opa 704 | oscitiaton || COUNTER 0.1 msec OVERFLOW
SELECT LOGIC 100 KH2 ‘ TEST LOGIC
LOW LEVEL AC SIGNAL \ OVERFLOW OCCURRED
FROM POWER SUPPLY 16.7 msec
— AMPLIFIER s
{20.0 msec IF
50 Hz POWER) INTERRUPT
SERVICE LOGIC
1.0 msec
0.1 msec
16.7 msec
CLOCK
CONTROL
spa LOGIC
SDA DMA
SELECT LOGIC SERVICE LOGIC
SENSE
OVERFLOW
-
1 » SENSE CLK
ENABLE
‘ CONTROL
DESTINATION Bus , ADDRESS
DATA

Figure 6-21 GRI Real-Time Clock Block Diagram

To vary the basic time interval between overflow (interrupts), the program can preset the DMA increment location
(103g) to the 2’s complement of the number of clock ticks wanted. For example: presetting location 103 to 177400
with the board jumpered for 160 ps clock; it will take 25.6 ms for the clock to overflow. If the board was jumpered
for 1 ms operation, the same number requires 256 ms to overflow. If the board was set up for 60 Hz operation, it
would take 4.266 seconds to overflow.

For more detailed information concerning installation, testing, and interrupt servicing, refer to the GRI-99 Real-Time
Clock Manual.

6.7.5 Interrupt

Most I/O devices contain a flag (usually meaning Ready) that is set at the completion of an operation to cause an
interrupt. If the device is for output, the flag is also set by CLRH. Thus, following power on or use of the START key,
the device indicates that it is ready to output data. In an input device, CLRH clears the flag. In either case, the flag
must also have provision for a programmed clear by an FO instruction to take full advantage of the interrupt system.

An interrupt request is initiated synchronously within a system device by that device grounding the interrupt request
line through an open collector gate at ISYN time (P1 time); during a BK cycle, there is no ISYN. At the completion
of the current program instruction, the processor grants one cycle, during which the SC contents is saved in memory
and the SC is set to a new address as per the interface design.
An interrupt cycle is granted when all the following conditions are met:

1. The main interrupt control is on (an ICO has been issued by the program)i.e., IA on

console is lit;
2. INTBL s true (interrupt request);
3a. The processor is not in a DM or EI state;
or.

3b. The processor is finished processing a macroinstruction.
When the interrupt cycle is granted, the processor acknowledges this fact by going into the BK state. The signal POUT
(originated on PC3) is sent down the bus serially away from the processor. Each device not interrupting propagates
the signal. The interrupting device terminates the signal and accepts the interrupt acknowledge. When more than one
device requests interrupt at the same time, the device physically closest to the processor on the bus has the highest
priority.
When the processor goes into the BK state, four microstate conditions are generated: TO, T1, T2 and T3 (refer to
Table 6-11):

a. During TO, the External Address is sent to the MA. This function causes a
memory reference.

b. Tl is a no operation time slot (the contents of memory is being read).

During T2, the contents of the SC is sent to the MB. This action causes the contents of the
SC to be stored in memory during the Write phase of the memory reference.

d During T3, the external address is incremented by one and sent to the SC. The SC is now
pointing at the first instruction in the interrupt handling routine.

All the interrupt control logic is located on PC2. Microstate controlis on PC1.

Table 6-11
INTERRUPT EXECUTION

Major State Time Slot Microinstruction Comments

TO EAS to MA External address sent to MA.
BK Tl No op No operation.

T2 SC to MB Contents of SC sent to MB.

T3 EAS+1toSC ?xtsecmal address incremented by | and sent

o SC.

6-30

Figure 6-22 is a timing diagram for the interrupt. Figure 6-23 is a typical logic diagram. The following detailed descrip-
tion of interrupt signals and timing is keyed to Figures 6-22 and 6-23. The discussion, of course, assumes that an FOI
ICO instruction has been issued by the program thus activating the interrupt control logic in the processor (IA indicator
is lit).

When RDY is set, INT REQ sets at the next ISYNH time, providing that the INT STAT bit for the device is on. INT
STAT is a single bit in the Interrupt Status Register (ISR); the ISR can be addressed as a data source or destination. The
address of this register is decoded in the processor on the 1/O bus and is sent on the 1/0 bus as IDAH when used as a
destination and as ISAH when used as a source. Other registers of this type can be added to the system, but decoding
for them must then be done from the DAB and SAB lines.

After INT REQ is set, the interrupt bus line INTBL is pulled to ground, causing the next available cycle to be used for

a break. A serial signal PINL and POUTL determines which of the devices requesting an interrupt has the highest

priority.

The priority determining signal is passed along the bus from one device to another. If a device receives PINL and its

own INT REQ flag is clear, it generates POUTL, which becomes PINL at the input to the next device. INT REQ being

set disrupts the serial signal. Consequently, the first device on the bus with INT REQ set is the only one that both receives
PINL and has its own INT REQ flag set; this condition allows the acknowledgment signal BKH from the processor to
select a device for a break.

BKH is gated at two different times by the external address request signal EASH, which causes a fixed-wired set of open
collector gates to produce a hardwired address on the Destination Bus data lines during those periods of the break state
when an external address is required by the processor. If no address is generated at the time of the EASH signal, the
processor traps to location O (i.e., it stores SC in location O and resumes operation at location 1). If an address is
generated, the processor uses the address generated by the interrupting device for storing SC and uses the next consecu-
tive location to resume the execution of instructions.

Gating the address into the processor twice allows the device to supply a different address the second time. Thus, a
device might always store SC in the same pre-assigned location, but then begin program operation at various locations
depending on the cause of the interrupt, as for example in the pulse input detector.

6.7.5.1 Gate Input Card (Interrupt Example) — An example of a GRI-99 device interface that uses the interrupt
system is the Gate Input Card (GIC). The GIC is used to interface most devices that produce parallel data to be read
into the GRI‘99. Provisions for function testing and control of the device are also made on the GIC. A complete
interrupt system interface is provided. The GIC functions as a source of data only. The device address of GIC is normal
set for 63, but is selectable by the user through the programming of staples.

The Gate Input Card plugs directly into any vacant slot at the back of the GRI-99. Device priority relative to other
devices for DMA or interrupt operations is determined by position on the bus. The order of priority is highest on the
left side of the GRI-99 facing the rear of the machine. The GIC uses the interrupt system; thus, priority chain jumpers
(S40-215) must be inserted in positions SE-5 and SF-6 in all vacant slots between the left-hand side of the machine, as
viewed from the rear, and the GIC board.

All connections to the board are made via the standard 48-pin 1/0 cable plug and cable clamp assembly, $40-216. Ribbon
cable, twisted pair, or miniature coaxial cable can be used. Cable shields are terminated on one of the screws that

fastens the cable clamp assembly to the board. Grounding is important, as well as the cable length because the inputs

on GIC have no signal conditioning. If sufficient precautions are taken in relation to system grounding, cable length

can be up to 20 ft. Every ground connection must be used. Each signal has an adjacent ground to permit running
alternate wire grounds in a ribbon cable. EPOL(H)-EP3L(H) can be terminated at the device to both +5V and ground if
they are lightly loaded in the device. Table 6-12 is a listing of the external connections and associated pin numbers,

The GIC services many devices for data input to a GRI-99. In most cases, all that is necessary is proper choice of staple
arrangements for positive or negative level inputs on flags and status lines. The data line inputs are set up to handle only
positive assertion logic. If negative assertion logic is used, the result from the device can be 1’s complemented while it

is being read into another system register. The user can also increment the value as it is read in from the GIC and,
thereby, store the negative of the value (2’s complement).

6-31

|To|T1 |T2lT3|TO,T]IT2|T3,TO,T1|T2,T3,TO,T1|—[/‘——|TI T2

a, I~— 330NS

1.76;LS

Next instruction

ISYNH [—{|—_r1ons

| -

Program clears RDY and INT
REQ prior to re-enabling

interrupt control.

RDY l

INTBL

f—
r———

Interrupt request

INT STAT

PINL

(1

Allow interrupt

POUTL

(0)

BKH

EASH

=—132pS+

Gate interrupt address
onto destination bus

Processor strobe

_2\/

Address +1 to SC
——Address to MA

T2 of an FO to Dev.

Figure 6-22 Interrupt Timing

6-32

£€-9

CLRH >——-[>oj

INTERRUPT
CONDITION

CLOCK ———

Flag Clear

FUNCH >—
DDAH —
CBIH >—

P2H >—

DSTRH >—

0cC FTBIL

C

D
DEV
RDY

Flag Sense

(@]

1

.. SB@IH>—D DEV

CLRH —>f

>—c STAT
0

INT

-

ISAH

8it 1 of ISR

] INTBL
D pev
INT
ISYNH >—c REQ
1}
POUTL
PINL
EASH
Interrypt Address
Generalor.
Gates to DB lines
required only to
0c DBOIL generate Is.
BKH >— }» DBOIL
!
|
!

Figure 6-23 Interrupt, Typical Logic

0 DB1SL

W/

GIC EXTERNAL CONNECTIONS AND PIN NUMBERS

Table 6-12

Signal Pin GND
IOH (LSB) DATA IN A 1
I1H DATA IN B 2
I2H DATA IN C 3
I3H DATA IN D 4
I4H DATA IN F 6
ISH DATAIN H 7
IeH DATA IN J 8
I7TH DATA IN K 9
I8H DATA IN M 11
ISH DATA IN N 12
110H DATAIN P 13
I11H DATA IN R 14
112H DATA IN S 15
113H DATA IN T 16
I14H DATA IN U. 17
I15H (MSB) DATA IN \% 18
FSPH(L) FLAG SET IN w 19
EF1H(L) STATUS 1IN X 20
EF2H(L) STATUS 2 1IN Y 21
EPOL(H) FUNC. PULSE 0 OUT c 25
EP1L(H) FUNC. PULSE 1 OUT b 24
EP21(H) FUNC. PULSE 2 OUT a 23
EP3L(H) FUNC. PULSE 3 OUT z 22,

H = Positive Assertion
L = Low (GND) Assertion

H(L) = Positive or Low Assertion

6-34

There are four independent one shots (74121s) on GIC for the user to select a variety of pulse widths for function
commands. The nominal factory setting is 1.0 us and negative polarity. If the user desires a different set of pulse widths
the RC timing networks can be changed, and the polarity is changed by staples on the board.

NOTE

A pulse width in excess of 1.76 us may cause the
control pulse to overlap the next instruction after the
FO command that generated the pulse.

>

The device has a complete interrupt system connection. The ISR bit is normally connected to bit 6 for factory test
purposes and can be changed by the user. An address of 44, (45, 46) is normally generated when an interrupt occurs.
This address can also be easily changed by the user.

Device Address Selection — The device address selection consists of a dual row of staples marked 1 and 0 surrounding
decoders (7430) in positions A1 (DAB decode) and L1 (SAB decode). To set an address in a board, insert staples in
Row 1 for the SAB or DAB bits to be decoded as 1s. Insert staples in Row 0 for SAB or DAB to be decoded as Os. The
example shown in Figure 6-24 is for an address of 65g.

EXAMPLE ADDRESS = 658

DAB/SAB 543210
110101

INSTALL FOR INSTALL FOR
0's 1's

o o[~ o0—o
o o 0—o0 -
O—O | w» | O 0 _ o A8
o o o,

Oo——-oO O O
O O O_—'Oo

STAPLES STAPLES

A1 -DESTINATION ADDRESS (DAB)
L1 - SOURCE ADDRESS (SAB)

| Figure 6-24 Variable Address Selection

6-35

Device Interrupt Control — Some devices provide for a choice of interrupt status bit and interrupt address generation. The
ISR bit is normally set to aparticular bit. For interrupt status bit changes the same SB and DB bits must be chosen.
Interrupt address generation provides for up to four Is to be generated on any of the 16 DB lines. For example. assume
that the desired interrupt address for a device is 45g, 46g, 47g. Only the first address of the group need be generated.
This address is the address in which the SC is stored when the interrupt occurs. The generated address plus 1 (46g) is the
location at which program operation resumes after the interrupt. For 45g, three Is must be generated:

45g = 100101,

DB bits 0, 2, 5 must be connected to the address generator gates. Note that one of the four gates is not required and is,
therefore, left open.

The wiring of interrupt functions is described with each device manual in tabular form.

NOTE

All devices are set for a specific device address and
interrupt controls at the factory to facilitate testing
of the boards. The user can alter these addresses if
he desires by following the instructions in the device
manual. In systems where multiples of the same
device are used, the user must, of course, change the
addresses and interrupt controls.

The interrupt controls, however, need not all be different. The same status bit, for example, is often assigned to a group
of like devices. For example, assume five general-output registers are installed in a system. All five registers may be
assigned to the same status bit, but each one will generate a unique interrupt address. When all boards are on the same
status bit level, there is a hardware priority imposed by the order in which the boards are plugged into the rear of the
GRI-99. This priority is determined by the PINL-POUTL chain and runs from left to right (highest to lowest) looking at
the rear of the machine.

The Gate Input Card (GIC) has provisions for user selection of interrupt status bit, interrupt address generation. pulse
widths for external function pulses (4), external flag polarity selection, external status flag polarity selection, and clamp
type selection on all inputs (diode or resistor pull up).

6.7.6 External Instruction (EIR)

In EIR mode, a system device takes control of the bus and temporarily suspends operation of the stored program until
the device is finished. Instructions are presented directly to the IR as 16-bit words to be executed. The instructions do
not reference memory; however, each instruction requires only 880 ns (half the normal instruction cycle) to be executed.
In a sense, the EIR device borrows registers (such as the AO) from other devices and, thereby, performs certain operations
more efficiently than hardware modules, and at least twice as fast as equivalent software.

An El is granted if the following conditions are met:

1. EIRLis in a true condition (request for EI).

2a. Processor is not in a BK, DM, or El state.

or

2b. The processor is at the end of an instruction.
The EIR mode is generally initiated by an FO control pulse that sets an EIR flip-flop in a device. The EIR flip-flop is
gated onto the EIRL bus, causing EI request to be present when the processor completes execution of the FQ instruction.
The request is then granted, and the processor enters the El major state (refer to Table 6-13).

During TO, the processor executes the microinstruction EDSH = [R. Then, the EIR device gates the next instruction
from its ROM onto the Destination Bus lines, via the Bus Modifier to the IR. During T1, the instruction is executed by
a strobe pulse that occurs in the 330 ns to 440 ns segment of T1. In the El state, the device must supply an instruction

E}

to the Destination Bus on every even time period. In each odd time period. the instruction is executed. During T2,

6-36

the processor fetches another instruction and in T3 executes the instruction. The EI mode forces EXT signals to occur
during T1 and T3. To allow use of FO and SF class instructions in EI devices, P2H s also generated during T1 and T3,
and not during T2. When the EI device completes its last ROM access, the EIR flip-flop is reset. The EI request is
terminated, and the processor terminates the El state. The TI strobe pulse is reinstated at the 220 ns to 330 ns segment
of T1 for normal macro-instruction processing.

Table 6-13
EXTERNAL INSTRUCTION
Major State Time Slot Microinstruction Comments
TO EDS to IR External data is sent to the instruction register.
EI Ti EXT C (IR) Execute the external data as an instruction.
T2 EDS to IR See TO.
T3 EXT C (IR) See T1.

Figure 6-25 shows timing for EIR mode instructions, Figure 6-26 is a typical logic diagram. The sequence begins when
an FO instruction sets a flag to generate an external instruction request on the bus from the operator. An external
instruction sequence follows immediately, making the FO and the Sequence appear as one continuous macro-instruction.
The EI state is maintained until a done condition in the device combined with EDSH drops the request.

time period, the instruction is performed. Except for memory references, programs running in the EI state can
accomplish the same tasks as a core program, but at twice the speed.

6.7.6.1 Devices Using EIR — Typical devices that use the EIR mode are:

@ Medium Speed Multiply Operator (MPO)
b. Medium Speed Divide Operator (DVO)
c. Arithmetic Right Shift Operator (ARS)
d. Normalize Operator (NORM)

These devices, in conjunction with the AOQ, the Six General-Purpose Registers, and the Extended Arithmetic Operator,
are inexpensive hardware devices that perform hardware multiplication, division, double-precision shift and normalize,
and firmware double-precision and floating point arithmetic. In the GRI-99 Model 40, these devices are standard features.

The GRI-99 EIR channel effectively extends the ROM that is used for controlling the processor. For simplicity, the EIR
device is restricted to register-reference microinstructions only. These microinstructions are actually executed from the
IR, rather than directly from the ROM added to the EIR device. The EIR device is normally initialized by the execution
of an FO instruction.

For example, the instruction
FO STRT, MPO
initializes the Medium Speed Multiply Operator.

The FO control pulse causes the EIR flip-flop to set in the EIR device. The output of the EIR flip-flop is gated onto the
EIRL bus, which causes an EI request to be present when the processor completes execution of the FO instruction. The
El request is granted at the completion of the FO instruction, and the processor goes into the EI major state. Processor
timing now cause a fetch-execute microcycle every 880 ns, which is half the normal instruction cycle. During the EI
state, the processor sets up and executes the microinstruction sequence previously described, and the EIR flip-flop is
reset. A more detailed example of typical EIR device logic is shown in Figure 6-27. For detailed operation and pro-
gramming information about EIR devices, refer to the GRI-99 EIR Devices Manual,

6-37

FO instruction

External instruction

T0, T1. 72 T3 70 T1 T2 T3 T0.T1 T2 T3 T0.T1 T2 T3.T0.T1 T2 T3
EIRH
EIH
EDSH
Operator done l[! \\\\ |

Read-only memory to IR

033H~<{>—L

2H L
1H
on—oooJ

—

FUNCH
P2H

CLRH

OPERATOR DONE

EDSH—r

N\

Figure 6-25 EIR Timing

(o}

D

C

EIR

1

0

-~

Register to register transfer

Read-onfy memory input
to processor instruction register

e

1

DB15L

Figure 6-26 EIR, Simplified Logic Diagram

6-38

1 1

DB14L

6.8 DESIGN EXAMPLES

A common operation in many process control applications is mechanical positioning of a device on command from the
computer. Figure 6-28 shows a valve positioner interfaced to the GRI-99 Source Bus. Valve position in digital form is
loaded into the D/A converter when that device address is specified as a destination. The D/A converter output goes
directly to the external device connector, through the Amphenol plug to a positioning servo motor external to the
computer.

Figure 6-29 shows a device that monitors the status of 32 relay contacts. An FO instruction selects one of the two sets
of 16 contacts, which can then be addressed as a data source, where the 16 data bits equal the relay contact status (e.g.
indicates an open relay, 1 indicates a closed relay).

o

6.9 MEMORY EXPANSION

Power is available within the computer to drive most 32K systems. However, in the case of large configurations, es-
pecially those utilizing an I/O chassis, an auxiliary supply may be required.

6.9.1 8K Expansion

A pair of staples or switch closings are located at position E11 on the memory module. The position of one staple or
switch closing (0-3) defines the 8K segment of a possible 32K configuration. The second staple or switch closing is
placed in the 14K position to specify the first address of the 8K block selected by the staple in pins 0-3. Figure 6-30
shows examples of staple or switch arrangement for an 8K memory module.

6.9.2 4K Expansion

A pair of staples or switch closings are located at position E11 on the memory module. One staple or switch closing
(0-3) defines the 8K segment of a possible 32K configuration. The second staple or switch closing defines the upper 4K
(U4K)or lower 4K (L4K) segment of the 8K block. Figure 6-31 shows examples of staple or switch arrangement for a
4K memory module.

6-39

09

P2H EIRH EIH

END STATE
CLRH
ADVANCE
BOFH CB BITS P2H
s R D
LINKH >—{ E o) E ROM
aQ M c| 168ITS 147451
0 X b
c A D| NwWORDS
o D E
N D
RESET
s
A6
P2H D] |

FUNCH Dmmed
DDAH
(DECODED DEV) |
(DEST ADDR)

EIH >l

EIRH

EDSH >———

EXTH >——-Do—

EIRH

7401
7401

EIRL
DBOO-15L

Figure 6-27 Typical EIR Device Logic

9

SOURCE
BUS

Iaonuo) aaleA 87-9 aindiy

ADDRESS

’
DATA
.._*

CONTROL

ADDRESS

DECODER

Ih‘ EXTERNAL
DEVICE
CONNECTION
D/A - SERVO \ __
CONVERTER MOTOR

CONTROL

FLOW

DESTINATION) DATA

BUS

ADDRESS

ADDRESS

SOURCE{ DATA

BUS

CONTROL

ADDRESS
DECODER

FUNCTION
DECODER

[ENABLE

SET 1

EXTERNAL
DEVICE
CONNECTION

ENABLE

CONTROL

SET 2

ADDRESS
DECODER

f'_e.

I

16 CONTACTS

16 CONTACTS

DESTINATION{ DATA

BUS

ADDRESS

Figure 6-29 Relay Contact Monitor

6-42

U4K

L4K (ALWAYS INSTALLED)

SELECT 1 STAPLE

O 04 04 090 Om O
ododododo od o

) PER MODULE
3
E11
STAPLE SELECTION MEMORY CONFIGURATION

0,L4K 0K-8K
1,L4K 8K-16K
2,L4K 16K-24K
3,L4K 24K-32K

Figure 6-30 Staple Pattern for 8K Memory Module

U4K '
SELECT 1 STAPLE
PER MODULE

L4K

SELECT 1 STAPLE

O O O O O O O~
o-lodo-ioaoo-io-J

2 PER MODULE
3
EN
STAPLE SELECTION MEMORY CONFIGURATION
0,L4K 0K-4K
0.U4K 4K-8K.
1.L4K 8K-12K
1,U4K : 12K-16K
214K 16K-20K
2,U4K 20K-24K
3.L4K 24K-28K
3,U4K 28K-32K

Figure 6-31 Staple Pattern for 4K Memory Module

6-43

APPENDIX A
HARDCOPY EQUIPMENT

This appendix discusses the simpler peripheral devices: Teletype, tape reader, tape punch, card reader, card punch,
plotter and line printer. These devices are used principally for communication between the computer and the user using
a paper medium: tape, cards, form paper or graph paper. All transfers for them are made by the program.

The program can type out characters on the Teletype printer and can read characters that have been typed in at the key-
board. This device has the slowest transfer rate of any device, but it provides a convenient means of man-machine inter-
action. The KSR Teletypes comprise only a keyboard and printer; the ASR models also have a slow-speed tape reader
and punch. This punch and the separate high-speed punch supply output in the form of 8-channel perforated paper tape.
The information punched on tape can be brought into the system by the high-speed tape reader or the one mounted in
the Teletype.

The card equipment processes standard 12-row 80-column cards. Many programmers find cards a.convenient medium
for source program input and for supplying data that varies from one program to another. Cards and paper tape are both
convenient to prepare manually, but card input is much faster than tape, and simple changes are easier to make: individ-
ual cards can be repunched, and cards can be added or removed from the deck. A possible consideration in using cards is
that many installations do not include an on-line card punch.

The line printer provides text output at a relatively high rate. The program must effectively typeset each line; upon com-
mand the printer then prints the entire line.

A.1 TELETYPE

Two Teletype models are regularly available for use with the GRI-99; the ASR-33 and KSR-33, both of which are capable
of speeds up to ten characters per second. The program’can type out characters and can read in the characters produced
when keys are struck at the keyboard. With an ASR the program can also punch characters on tape and read characters
from a tape.

A.1.1 Customer Supplied Teletypes

The Teletype Corporation Model ASR-33 Teletype is available in a variety of model numbers. These model numbers are
designated by the ending two- or three-character codes on the name plate of the Teletype. The three most common
Teletypes being used, all of which may be easily used with the GRI-99 with minor modifications, are the ASR-33 7C, the
ASR-33 TU, and the ASR-33 TZ. The models 7C and TU are identical except that the numeral zero on the TU has a
slash through it (¢), whereas the numeral zero on the TC printwheel looks like the letter O. The 7C and TU are both
what is known as no-parity units; that is, they always produce a 1 in channel 8. The model 7Z is an even-parity model
that produces a 1 in channel 8 in order to make the total number of ones in the 8-bit character an even number. Al three
. of these models are equipped with “answer back,” which means that transmission of the “who are you” code (WRU) to

- the printer mechanism causes the “here is” drum to be tripped and a string of characters to be transmitted. This feature
must be disabled before using the Teletype with the GRI-99 software packages. Disabling of the answer back feature is a
relatively simple modification-which can be performed by any Teletype serviceman. All three of these Teletypes are the
most common Teletypes available, and they all have friction-feed typing units. The Model ASR-33 TV is identical to the
Model 7Z, except for the sprocket-feed typing unit. The common 50-cycle versions of the ASR-33 are the ASR-33 TAC
or TAJ, which are identical to the 7Z unit (the TAC comes without stand and chad box). The Model ASR-33 TBM is
identical to the TAC unit with the exception of a sprocket-feed typing unit for pin-feed paper.

A-1

None of the Model 33 Teletypes are capable of running in a remote reader/run mode, where the reader may be selected
by external command pulses. This feature is essential to the operation of the assemblers. This modification is installed
via the GRI-99 Teletype mod kit (Model number $40-212). Teletypes that are equipped with an automatic reader con-
trol function are not recommended for use with the GRI-99. If a Teletype utilizing this option is to be used with the
GRI-99, the X-ON and X-OFF remote reader control functions must be disabled: otherwise, generation of a binary tape
by the assembler may cause the reader to turn on or off overriding the remote reader/run control, which is installed with
the Teletype mod.

There is a Model ASR-33 TBE that has an even-parity feature, which has been disabled. Disabling of the even-parity,
although it apparently produces a no-parity tape, does not produce proper code when reading binary tape with the reader.
If this Teletype is to be used with the computer, then the disabling of even-parity must be removed and the unit converted
back to an even parity unit. The model TBE has a momentary reader/run manual select switch on it and is often equipped
with the remote reader control functions X-ON and X-OFF.

Before any of the Teletypes can be used with the GRI TTI and TTO option cards, the Teletypes must be converted
according to the standard Teletype instructions to a 20-mA current loop operation and to full-duplex operation. New
Teletypes generally come wired for 60-mA loop current and simplex operation. Instructions for making this conversion
are included in the instructions that come with the Teletype mod kit. If the GRI Teletype mod kit is not used with the
Teletype and the user desires to make up his own cables and add his own reader/run relay control, it is recommended
that at least the instructions for making the GRI mod be followed explicitly, because the proper grounding of the Tele-
type and the proper usage of thyractor suppressors on 110V switches is required to ensure safe system operation.

A.1.2 Input/Output Commands

The Teletype separates its input and output functions and is really two distinct devices that share the same device address.
Each device has its own Ready and Interrupt Status flags, as well as its own interrupt channel and status bit assignments.
Placing a code for a character in the output buffer causes the Teletype to print the character or perform the designated
control function. Striking a key places the code for the associated character in the input buffer where it can be retrieved
by the program, but it does nothing at the Teletype unless the program sends the code back as output.

Character codes received from the keyboard have eight bits; the most significant bit is always 1, but the printer ignores
this bit in characters transmitted to it (e.g., codes 123 and 323 print the same character). Lower case characters (codes
340-376) are not available on the keyboard, but transmitting a lower-case code to the Teletype causes it to print the
corresponding upper-case character. (There are, of course, no restrictions on the codes that can be punched in or read
from tape).

To go to the beginning of a new line the program must send both a carriage return, which moves the type block to the
left margin, and a line feed, which spaces the paper. The horizontal and vertical tabs and form feed have no effect on the
printer. Horizontal tabs are usually simulated by spaces, with tab settings at preselected columns.

The Teletype input and output both use device address 77, mnemonic TTI or TTO. As the source in a data transmission
(or Data Testing) instruction, this code retrieves a character from the Teletype input buffer; as the destination in data
transmission, it sends a character to the output buffer. In Function Generating or Testing instructions, it represents both
devices.

FO —,TTO FO, TELETYPE OUTPUT
FO -, TTI FO, TELETYPE INPUT
[02 | , F , | 77 I
15 10 9 8 7 6 S 0

Perform the functions specified by 1s in F as follows:

Bit Mnemonic Function

6 STRT Read one character from tape into
the input buffer.

7 CLOF Clear Output Ready.

9 CLIF Clear Input Ready
Programming 1s in bits 6 and 9 by combining the mnemonics CLIF STRT clears Input Ready and starts the reader.
SF TTO, SF, TELETYPE OUTPUT
SF TTI, SF, TELETYPE INPUT
[77 F [N] 02]
15 10 9 8 7 6 5 0
Perform a Function Test on the flags selected by 1s in F as follows:

Bit Mnemonic Flag

7 ORDY Output Ready

9 IRDY Input Ready

A.1.3 Teletype Output
Output Interrupt Status is bit 0 of the status register, and the Teletype output interrupts to location 11.

Sending a character from bits 0-7 of any source register to the output buffer clears Output Ready (removing the interrupt
request) and turns on the transmitter, causing it to send the contents of the output buffer serially to the Teletype (the
buffer is cleared during transmission). The printer prints the character or performs the indicated control function. If the
punch is on, the character is also punched on tape, with bit O corresponding to channel 1 (a 1 produces a hole in the tape).
Completion of transmission sets Qutput Ready, requesting an interrupt if Output Interrupt Status is set.

A.1.3.1 Timing — The Teletype can type or punch up to ten characters per second. After Output Ready is set, the pro-
gram has 18.18 ms to send another character to keep typing or punching at the maximum rate. The carriage return and
line feed, when given in that order, allows sufficient time for the type block to get to the beginning of a new line.

A.1.4 Teletype Input ‘
Input Interrupt Status is bit 1 of the status register, and the Teletype input interrupts to location 14.

Reception from the keyboard requires no initiating action by the program: striking a key clears Input Ready and transmits
the code for the character serially to the input buffer. Completion of reception sets Input Ready, requesting an interrupt
if Input Interrupt status is set. On retrieving the character in bits 0-7, the program gives an FO CLIF, TTI to clear Input
Ready and remove the interrupt request if more input is expected.

If the reader is under program control, giving an FO CLIF STRT, TTI clears Input Ready (removing the interrupt request)
and causes the reader to read all eight channels from the next frame on tape. The reader transmits the frame serially to
the buffer, with channel 1 corresponding to bit O (the presence of a hole produces a 1 in the buffer). Completion of re-
ception sets Input Ready, requesting an interrupt if Input Interrupt Status is set.

A.1.4.1 Timing — After Input Ready is set the character is available for retrieval for 20.45 ms before striking another key
can destroy it. If the reader is in use, the program has 20.45 ms to give an FO CLIF STRT, TTI and keep the tape in
continuous motion.

A.1.5 Programming Examples

There are basically two procedures for using the Function Testing instructions in a loop to process a series of characters.
Consider this loop for typing out characters from a table beginning at location TAB (assume the printer is not in use).

A3

OUT: MRID
SF
Ju

Ju

TAB-1,TTO
TTO, ORDY
—1

ouT

; Type out
; Wait till trans
; mission done
; Compute

; Go back

This procedure is inefficient because most of the time is spent waiting during the transmission, and there is very little
time to do anything afterwards if the next character is to be typed out at full speed. But with this arrangement:

OUT: SF
JU
MRID

JU

TTO, ORDY
—1
TAB-1,TTO

ouT

; Wait till printer
; free

; Type out

; Computer, etc.

; Go back

almost all of the time is useful and full speed-is attained, provided only that there is a jump back to OUT before the
entire Teletype cycle time is over. Also the first time into the loop, there is a delay until any previous (perhaps unknown)

Teletype output operation is finished.

Of course, using the interrupt eliminates all waiting time. Suppose 20 characters are to be typed out (one per location)
beginning at TAB, using one of the general-purpose registers to count the characters. The main program might resemble
Example 1 (assume that the program left Qutput Ready on the last time the Teletype output was used). Hence, an
interrupt occurs immediately for the first character. The interrupt routine might resemble Example 2. If we do not care

whether TRP is affected, the following could be substituted:

IC XR,ETZ,DONE

for testing overflow and loading SC. This method saves no time, but it takes only two locations instead of three.

Example 1 (Setup)

MRI

MRI
RM
MRI
RM
FOl
ZR

Example 2 (Interrupt Service)

OUT: MRID
RMI
RS
SFM
MRI
MR
FOl
MR

DONE: MR
ZR
MR

-24,XR
014207, TRP
TRP, 12
OUT-1, TRP
TRP, 13

ICO

P1,ISR

TAB-1,TTO
MSR,0

XR, Pi

BOV
DONE-1, SC
OUT+3, MSR
ICO

11,8C
OUT+3, MSR
ISR

11, SC

A4

;Set up XR: 20pg =24g
; Set up channel locations 12, 13
;014207 = 06 0010 07 = MRI —, SC.

; Turn interrupt on

; Set TTO ISR bit

; Continue program

; Locations 12, 13 say MRI OUT—1, SC

; Type out character

; Save machine state

; Count character

; Done yet?

; Yes, go to DONE

; Restore machine state
; Turn interrupt back on
; Return to main program
; Restore machine state
; Disable interrupt

; Return

Without using the interrupt, the same situation as described above exists for input operations. The following is an
example:

IN: FO CLIF STRT, TTO ; Read character
SF TTI, IRDY ; Wait till recep-
JU —~1 ; tion done
RMID TTI, TAB—1 ; Store character
. ; Decide whether to
; read another, etc.
:IU IN ; Go back
This sequence is more efficient:
IN: FO CLIF STRT, TTI ; Read character
. ; Lots of time
SF TTl, IRDY ; Wait till recep-
Ju —1 ; tion done
RMID TTI, TAB—1 ; Store character
SF TTO, ORDY ; Lets make a copy
JU —1 ; of the tape while
RR TTI, TTO ;we are at it
FO CLIF, TTI
; Decide whether to
: ; read another
JU IN ;Do this if want
; another
; Skip to here if
s not

A.1.6 Operation

A KSR Teletype is actually two independent devices, keyboard and printer, which can be operated simultaneously. An
ASR Teletype is really four devices, keyboard, printer, reader and punch, which can be operated in various combinations.
Power must be turned on by the operator: the switch is beside the keyboard and is labeled LINE/OFF/LOCAL or ON/OFF
and has an unmarked third position opposite ON. When this switch is set to LOCAL or the unmarked position, power is
on, but the machine is off line and can be used as a typewriter. Moreover, in an ASR, turning on the punch allows the
operator to punch a tape from the keyboard, and running the reader allows a tape to control the printer (if the punch is
also on, it duplicates the tape).

Turning the switch to LINE or ON connects the unit to the computer and separates its input and output functions. Thus,
any information transmitted to the computer from the keyboard affects the printer only insofar as the computer sends it
back. Turning on the reader places it under program control, and turning on the punch causes it to punch whatever is sent
to the printer by the computer.

The only control on the reader is a 3-position switch. When the-switch-is-in the F REE position, the tape can be moved by
hand freely through the reader mechanism. The STOP position engages the reader clutch so the tape is stationary, but the
reader is still off. Turning the switch to START causes the reader to read the tape if the unit is in local, but places it under
program control if on-line.

The operator controls the punch by means of four pushbuttons. The two on the right turn the punch on and off. Pressing
the REL button releases the tape, and the tape can be moved by hand through the punch mechanism. Pressing BSP moves
the tape backward one frame so the operator can delete a frame that is incorrect by striking the rubout key. Pressing HERE
IS with the keyboard in local punches twenty lines of blank tape (lines with only a feed hole punched).

The keyboard resembles that of a standard typewriter. Codes for printable characters on the upper parts of the key tops
are transmitted by using the shift key; most control codes require use of the control key.

A-5

The line feed spaces the paper vertically at six lines to the inch, and must be combined with a return to start a new line.
The local line feed and return keys affect the printer directly and do not transmit codes. (Appendix B lists the complete
Teletype code, ASCII characters, and key combinations.) Pressing the REPT button and striking any character key
causes transmission of the corresponding code if REPT is held down. Characters that require the shift key may also be
repeated in this manner, but there is no repetition of control characters.

Teletype manuals supplied with the equipment give complete, illustrated descriptions of the procedures for loading paper
and tape and changing the ribbon. An abbreviated version of this procedure is described here for convenience.

A.1.6.1 Tape — The tape moves in the reader from back to front with the feed holes, closer to the left edge. To load
tape in the reader:

Step Procedure
1. Set the switch to FREE.
2. Release the cover guard and place the tape so that the sprocket wheel
teeth engage the feed holes. :
3. Close the cover guard.
4. Set the switch to STOP.
To load tape in the punch:
Step Procedure
1. Raise the cover.
2. E eelc(i the tape manually from the top of the roll into the guide at the
ack.
3. Move the tape through the punch by turning the friction wheel.
4. Close the cover. '
5. Turn on the punch with the unit in LOCAL and punch about 2 feet
of leader by pressing HERE IS or the BREAK key to generate
null codes.

A.1.6.2 Paper — The printer has an 8 %-in. roll of paper at the back. Printed sections can be torn off against the edge of
the glass window in front of the platen. To replenish the paper, snap open the cover, remove the old roll and slip a new
one in its place. Draw the paper from the roll around the platen as in an ordinary typewriter.

A.1.6.3 Ribbon — Replace the ribbon whenever it becomes worn or frayed or the printing becomes too light. To replace
the ribbon:

Step Procedure

1. Disengage the old ribbon from the ribbon guides on either side of the
type block.

2. Remove the reels by lifting the spring clips on the reel spindles and
pulling the reels off.

3. Remove the old ribbon from one of the reels and replace the empty
reel on one side of the machine.

4. Install a new reel on the other side.

S. Push down both reel spindle spring clips to secure the reels,

6. Unwind the fresh ribbon from the inside of the supply reel, over the

guide roller, through the two guides on either side of the type block,
out around the other guide roller, and back onto the inside of the takeup
reel.

7. Engage the hook on the end of the ribbon over the point of the arrow in
the hub.

Step Procedure

8. Wind a few turns of the ribbon to make sure that the reversing eyelet
has been wound onto the spool.

9. Make sure the ribbon is seated properly and feeds correctly.
A.2 PAPER-TAPE READER AND PUNCH

The high-speed reader and punch are totally separate devices, but they share a single device address code in the same
manner that the Teletype input and output do. The common device address is 76, mnemonic HSR or HSP. Each inter-
face contains an 8-bit buffer that corresponds to bits 0-7 of a computer word; the reader buffer is addressable as a source
of data, the punch buffer as a destination.

FO — HSR FO, HIGH SPEED READER
FO - HSP FO, HIGH SPEED PUNCH
| 02 , F 76]
15 10 9 8 7 6 S 0
Perform the functions specified by 1s in F as follows:
Bit Mnemonic Function
6 STRT Read one character from tape into
the reader buffer.
7 CLOF Clear Punch (Output) Ready.
9 CLIF Clear Reader (Input) Ready.
Programming 1s in bits 6 and 9, combining the mnemonics CLIF STRT, clears Reader Ready and starts the reader.
SF HSR. SF. HIGH SPEED READER
SF, HSP, SF, HIGH SPEED PUNCH
[. 76 | F | | v] 02]
15 10 9 8 7 6 5 0
Perform a function test on the flags selected by 1sin F as follows:
Bit Mnemeonic Flag
7 ORDY Punch Ready
9 IRDY Reader Ready

A.2.1 Paper-Tape Reader

The reader reads 8-channel perforated paper or mylar tape photoelectrically at a speed of 300 frames per second. Reader
Interrupt Status is bit 3 of the status register, and the reader interrupts to Location 22.

Giving an FO CLIF STRT, HSR clears Ready (removing the interrupt request) and causes the reader to read all eight chan-
nels from the next frame on tape into the buffer. Channel 1 corresponds to bit 0 (the presence of a hole produces a 1 in
the buffer). When the operation is complete the reader sets Ready, requesting an interrupt if Interrupt Status is set.

A.2.1.1 Timing — At 300 frames per second the reader takes 3.3 ms per character, but the program must read several
frames before the reader reaches maximum speed. After Ready is set, the program has 1.5 ms to retrieve the character
and give an FO CLIF STRT, HSR to keep the tape in continuous motion. Waiting longer forces the reader to operate at
a speed no greater than 150 frames per second.

A7

A.2.1.2 Operation — Unoiled paper tape can be used, but it must be opaque. To load the reader:
Step : ‘Procedure

1. Place the fanfold tape stack vertically in the bin at the right, oriented
so that the front end of the tape is nearer the read head and the feed
holes are away from you.

2. Lift the gate and take three or four folds of tape from the bin.
3. Slip the tape into the reader from the front.
4. Carefully line up the feed holes with the sprocket teeth to avoid

damaging the tape, and close the gate.

5. Make sure that the part of the tape in the left bin is placed to corres-
pond to the folds, otherwise it will not stack properly.

6. Turn on the power switch so the reader can respond to the program.

A.2.2 Paper-Tape Punch
The punch perforates 8-channel paper tape at speeds up to 60 frames per second. Interrupt Status is bit 2 of the status
register, and the punch interrupts to location 17.

Sending a character from bits 0-7 of any source register to the punch buffer clears Ready (removing the interrupt request)
and causes the punch to punch the contents of the buffer in the tape, with bit O corresponding to channel 1 (a 1 pro-
duces a hole in the tape). After punching is complete, the device sets Ready, requesting an interrupt if Interrupt Status

is set.

A.2.2.1 Timing — Punching is synchronized to a punch cycle of 16.7 ms. After Ready sets, the program has 10 ms to
send another character to keep punching at the maximum rate; after 10 ms punching is delayed until the next cycle.

A.2.2.2 Example — With direct function processing a program for duplicating a tape is quite simple:

DUP: FO CLIF STRT, HSR ; Read

SF HSR, IRDY ; Wait for character

JU —~1

SF HSP, ORDY ; Got it, wait for

JU —1 ; punch

RR HSR, HSP ; Move character to
; punch

JU DUP ; Read another

A.2.2.3 Operation — Punch power must be on all the time that the punch might be used: otherwise it will not respond to
the program. Fanfold tape is fed from a box behind the punch inside its enclosure. After it is punched, the tape moves
into a storage bin from which the operator can remove it through a slot in the front. Pushing the feed button beside the
slot clears the buffer and punches blank tape (tape with only feed holes punched) as long as it is depressed (provided
power is on).

To load tape:
Step Procedure
1. Empty the chad box.
2. Tear off the top of a box of fanfold tape (the top has a single flap;

the bottom of the box has a small flap in the center as well as the flap
that extends the full length of the box).

3. Set the box in the frame and thread the tape through the punch
mechanism.

Step

Procedure

The arrows on the tape should be on the bottom and should point in
the direction of tape motion. If they are on top, turn the box around.
If they point in the opposite direction, the box was opened at the
wrong end; remove the box, seal up the bottom, open the top, and
thread the tape correctly.

To facilitate loading, tear or cut the tape carefully at one of the folds.
Thread the tape under the out-of-tape plate.

Open the guide plate (over the sprocket wheel), and push the tape
beyond the sprocket wheel.

Close the guide plate.

Press the feed button long enough to punch about a foot and a half of
leader. Make sure the tape feed holes are in a straight line. If not, tear
the tape and rethread through the punch (steps 5-7).

To remove a length of perforated tape:

Step
1.

Procedure

Press the feed button long enough to provide an adequate trailer at the
end of the tape (and also leader at the beginning of the next length of
tape).

Tear the tape at a fold within the area in which only feed holes are
punched.

After removal, turn the tape stack over so the beginning of the tape is on
top, and label it with name, date, and other appropriate information.

A9

APPENDIX B
CODES

B.1 DEVICE SELECTION CODES

The GRI-99 architecture allows 6 bits for addressing source and destination operators. This proviﬂes a range of 00g —
77g or 641 addresses of each type. Several of these addresses are used in conjunction with the basic machine and
others are assigned to some of the most popular options. Those addresses currently assigned are included in the Table B-1.

Table B-1
DEVICE ADDRESSES
Source or
Device Address Abbreviation Description Destination of Data
00 - Null S
00 - Null D
01 IR Instruction Register S
01 IR Instruction Register D**
02 FO Function Output S
02 SF Sense Function D
03* - Data Tests D
04 ISR Interrupt Status Register S
04 ISR Interrupt Status Register D
05 MA Memory Address S
05 MA .Memory Address D**
06 MB Memory Buffer S
06 MB Memory Buffer D
07 SC Sequence Counter S
07 SC Sequence Counter D
10 SWR Data Switch Register S
11 AX AX Register S
11 AX AX Register D
12 AY AY Register S
12 AY AY Register D
13 AO Arithmetic Operator S
13 AO Arithmetic Operator D**
,14 — Unused —
14 EAO Extended Arithmetic Operator D**
15 ED External Data S
15 ED External Data D**
16 EAS External Address S
16 EAS External Address D**
17 MSR Machine Status S
17 MSR Machine Status D
20 - Unused S
20 - Unused D
21 - Unused -
21 - Unused -
22 XR Index Register -
22 XR Index Register D
23 TRP Trap Register S
23 TRP Trap Register D
24 BSW Byte Swap S
24 BSW Byte Swap D

*Alternate address for Trap Register as a source, or as destination for a memory reference.

**1t appears as DDA in a data transfer instruction, it is equivalent to sending data to the NULL (0) register.
Except for MA (05), ED (15), and EAS (1 6), these generally appear as DDA for an FO instruction.

Table B-1 (Cont.)

DEVICE ADDRESSES
Source or
Device Address Abbreviation Description Destination of Data

25 BPK Byte Pack S
25 BPK Byte Pack D
26 BCA Byte Comparator A S
26 BCA Byte Comparator A D
27 BCB Byte Comparator B S
27 BCB Byte Comparator B D
30 GP1 General Purpose Register 1 S
30 GP1 General Purpose Register 1 D
31 GP2 General Purpose Register 2 S
31 GP2 General Purpose Register 2 D
32 GP3 General Purpose Register 3 S
32 GP3 General Purpose Register 3 D
33 GP4 General Purpose Register 4 S
33 GP4 General Purpose Register 4 D
34 GPSs General Purpose Register 5 S
34 GP5 General Purpose Register 5 D
35 GPé6 General Purpose Register 6 S
35 GPé6 General Purpose Register 6 D
36 - Unused S
36 - Unused D
37 — Unused S
37 — Unused D
40 — Unused S
40 —~ Unused D
41 — Unused S
41 - Unused D
42 - Unused S
42 - Unused D
43 - Unused S
43 - Unused D
44 — Unused S
44 — Unused D
45 — Unused S
45 - Unused D
46 - Unused S
46 — Unused D
47 - Unused S
47 — Unused D
50 BIM Binary Input Mux S
51 BOM Binary Output Mux D
52 - Unused S
52 - Unused D
53 - Unused S
53 - Unused D
54 - Unused S
54 — Unused D
55 CRDR 80 Col Card Reader S
55 - Unused

56 - Unused S
56 — Unused D
57 CARD 80 Col Card Reader (CAR) S
57 CARD 80 Col Card Reader (CAR) D
60 WIT Watchdog Interval Timer S
60 WIT Watchdog Interval Timer D

B-2

Table B-1 (Cont.)

DEVICE ADDRESSES
Source or
Device Address Abbreviation Description Destination of Data

61 DAC D/A Converter D

62 GOR General Qutput Register S

62 GOR General Output Register D

63 Gl Gate Input Register S

64 MUX Multiplexer S

64 MUX Multiplexer D

65 ADC A/D Converter S

65 - Unused D

66 WCT Disk Word Count S

66 WCT Disk Word Count D

67 CAD Disk Core Address S

67 CAD Disk Core Address D

70 DISK Disk Controller S

76 DISK Disk Controller D

71 LPR Line Printer D

72 — . Unused S

72 — Unused D

73 CRD Card Reader S

73 CRD Card Reader D

74 GRI Grisette II S

74 GRI Grisette I1 D

75 RTC Real-Time Clock (DMA)
75 RTC Real-Time Clock Only
76 HSP High-speed Reader S

76 HSP High-speed Punch D

77 TTI Teletype Input S

77 TTO Teletype Output D

*NA PID Pulse Input Detector

B.2 INTERRUPT STATUS AND TRAPS

Interrupt devices can interrupt (TRAP) to locate O or to a memory location of choice. These devices utilize one bit
of the interrupt status register (ISR) for ease of program interrupt control. Those trap locations and status bits cur-
rently assigned and considered standard are included in Table B-2,

Table B-2
TRAP LOCATIONS
Interrupt

Status Trap Device
Bit Location Device Abbreviation Address

0 Power Failure 00

0 Breakpoint 01

0 11 Teletype Output TTO 77

1 14 Teletype Input TTI 77

2 17 High-speed Punch : HSP 76

3 22 High-speed Reader HSR 76

4 25 Card Reader CRD 73

5 30 Line Printer LPR 71

*NA — not applicable

B-3

Table B-2 (Cont.)

TRAP LOCATIONS
Interrupt
Status Trap Operator
Bit Location Device Abbreviation Code
6 36* General Output Register GOR 62
44* Gate Input Card GI 63
7 33 80 Col Card Reader CRDR 55/57
8 104-124 Pulse Input Detector PID NA
9 44 Grisette-write - —
10 47 Grisette-read - -
11 100 Real-time Clock RTC 75
12 52 A/D Converter ADC 65
13 - Unused — —
14 53-55 Disk DISK 66-70
15 25 Watchdog Interval Timer WIT 61
| *For test purposes only. :

B.3 TELETYPE CODES

Table B-3 lists the complete Teletype code set. Codes generated by the keyboard may have a 1 or 0 in the most signifi-
cant bit depending on the Teletype model. For no parity Teletypes, the eighth channel is always punched 1’s. In the
case of even parity, the eighth channel is either punched or not punched, depending on the number of bits in the parti-

cular frame.

The lower-case character set (codes 340-376) is not available on the Model 33. Specifying one of the lower-case codes
causes the Teletype to print the corresponding upper case character. Definitions of control codes are those given by the
ASCII code set. Most control codes, however, have no effect on the Teletype and their definitions bear no necessary
relation to the use of the codes in conjunction with the GRI-99 software.

Table B-3
TELETYPE CODES (No Parity TTY)
8-Bit Octal Code Character Remarks
200 NUL Null, tape feed. Control shift P.
201 SOH Start of heading; also start of message (SOM). Control A.
202 STX Start of text; also end of address (EOA). Control B.
203 ETX End of text; also end of message (EOM). Control C.
204 EOT End of transmission; shuts off TWX machines. Control D.
205 ENQ Inquiry; also WRU, “Who are you?” Triggers identification
(“Here is"))
206 ACK Acknowledge; also RU, “Are you ...?” Control F.
207 BEL Rings the bell. Control G.
210 BS Backspace; also format effector (FEO). Backspaces some
machines. Control H.
211 HT Horizontal tab. Control I.
212 LF Line feed or line space; advances paper to next line. Dupli-
cated by Control J.
213 VT Vertical tab. Control K.
214 FF Form feed to top of next page. Control L.
215 CR Carriage return to beginning of line. Control M.
216 SO Shift out; changes ribbon color to red. Control N.
217 SI Shift in; changes ribbon color to black. Control O.

B4

Table B-3 (Cont.)
TELETYPE CODES (No Parity TTY)

8-Bit Octal Code | Character Remarks

220 DLE Data link escape. Control P (DCO).

221 DC1 Device control 1, turns transmitter (reader) on. Control Q.
(X ON).

222 DC2 Device control 2, turns punch or auxiliary on. Control R
(TAPE, AUX ON).

223 DC3 Device control 3, turns transmitter (reader) off. Control S
(X OFF).

224 DC4 Device control 4, turns punch or auxiliary off. Control T
(AUX OFF).

225 NAK Negative acknowledge; also error (ERR). Control U.

226 SYN Synchronous idle. Control V.

227 ETB End of transmission block: also logical end of medium
(LEM). ControlW.

230 CAN Cancel. Control X,

231 EM End of medium. Control Y.

232 SUB Substitute. Control Z.

233 ESC Escape, prefix. This code is also generated by control shift K.

234 FS File separator. Control shift L.

235 GS Group separator. Control shift M.

236 RS Record separator. Control shift N.

237 Us Unit separator. Control shift O.

240 SP Space

241 !

242 «

243 #

244 $

245 %

246 &

247 ’ Accent acute or apostrophe.

250 (

251)

252 *

253 +

254 s Comma.

255 —

256 .

257 /

260 0

261 1

262 2

263 3

264 4

265 5

266 6

267 7

270 8

271 9

272 :

273 ;

274 <

275 =

276 >

277 ?

Table B-3 (Cont.)
TELETYPE CODES (No Parity TTY)

8-Bit Octal Code Charactar Remarks

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364

Shift K.
Shift L.
Shift M.

Accent grave.

"YU NOoTWOoOSg—R—~ommoae o ~1\—»—\-—'N-<><€<CHWWOWOZZEN“”IO“NUOW>®

B-6

Table B-3 (Cont.)
TELETYPE CODES (No Parity TTY)

8-Bit Octal Code Character Remarks

365
366
367
370
371
372
373
374 .
375 On early versions, either of these codes may be generated by either
the ALT MODE or ESC key. ,
376

377 DEL Delete, rub out.

N< X g <g

Teletype Keys That Generate No Codes

REPT Causes any other key that is struck to repeat continuously until
REPT is released.

LOCLF Local line feed.

LOCCR Local carriage return.

BREAK Opens the line (machine sends a continuous string of null characters).

BRK RLS Break release (not applicable).

HERE IS Transmits predetermined 20-character message.

B-7

APPENDIX C
LOADERS

Before a program can be executed, it must be brought into memory. To bring a program into memory, a loading program
must already reside in core. If the memory is empty, the console switches are used to load in a bootstrap loader, which is
ordinarily used only to bring in a more extensive absolute loader. This absolute loader program is then used to read the
object GRI-99 software. If an undebugged user routine accidentally destroys the absolute loader, it can be restored by
first reloading the bootstrap manually. There are several bootstrap loaders, depending on which functional devices are
included in the system.

For a complete description of all loaders, refer to the GRI-99 Loaders Manual.

NOTE

In the loader descriptions, the letter X designates the
portion of the address that varies according to the core
size of the individual machine. The digits that replace
the Xs are determined by the highest locations in core.
For example: if the machine has 4K of core memory
and a load address of X7555 is specified, the actual load
address is 07555. (The highest location is 07777 for a
4K machine.)

Specific addresses are assigned for using the bootstrap and absolute loader tapes. The tape number specifies the tape
format. The tape number is in the following form:

7n —nn — nnnY-Z

where:

7 = Software engineering
n = Numeric designations as to category and release order
Y = Letter designating tape format

A = Absolute

B = Bootstrap

D = Directory

R = Relocatable

S = Absolute source

X = Relocatable Source

Z_= Letter or number designating revision level

C.1 BOOTSTRAP LOADER (%BLD)

The primary purpose of the bootstrap loader is to load the absolute loadet (%ALH); however, for the purposes of this
manual the basic processor bootstrap loader, which cannot be used to load %ALH, is described first. Section C.1.2
describes the version of %BLD that is used to load %ALH.

C.1.1 Basic Processor Bootstrap Loader

The basic bootstrap loader reads a bootstrap format object from paper tape and loads it into memory. No tests are
performed on the data from the reader to verify that the data have been read correctly.

The basic processor bootstrap loader does not use the AQ registers or functions. As a result, this loader is useful for
troubleshooting if the AQ is faulty (or is suspected) and the AQ diagnostic must be loaded (D99P1 or D99P2).

C-1

To load the basic processor bootstrap loader, proceed as follows:

NOTE

If the loader is to be used with a reader other than the
Teletype reader, all reference to device address 77 must
be changed to the new device address (e.g., for the high-
speed reader, change 77 to 76).

Step - Procedure
1. Key in the following sequence of instructions:

Location Instruction
X7605 02 0100 00
X7606 02 1001 77
X7607 77 1000 02
X7610 0C 0100 03
X7611 0X7607
X7612 77 0100 03
X7613 0X7605
X7614 77 0000 06
X7615 0X7637
X7616 77 0000 06
X7617 0X7650
X7620 02 1001 77
X7621 77 1000 02
X7622 000100 03
X7623 0X7621
X7624 77 0001 06
X7625 0X7646
X7626 02 1001 77
X7627 77 1000 02
X7630 000100 03
X7631 0X7627
X7632 77 0000 06
X7633 0X7635
X7634 06 1010 06
X7635 0
X7636 06 1110 06
X7637 0
X7640 00 0100 02
X7641 . 000100 03
X7642 0X7634
X7643 06 1000 06
X7644 0X7635
X7645 06 1000 06
X7646
X7647 06 111006
X7650 0
X7651 00 0100 02
X7652 00 0100 03
X7653 0X7643
X7654 00 0100 03
X7655 0X7606

Key load address — 1 into X7646.
Start at X7606.

C-2

Step Procedure
2. Set X7646 in the SWR.
Set the DEVICE SELECT switches to 07 and depress TRM.
Set the first address — 1 of the program to be loaded in the SWR.
Push the WR key up.
Set X7606 in the SWR.
Depress TRM.

Mount the bootstrap format tape in the reader and turn the
reader on. :

PN s W

9. Depress START. The loader halts each time it reads a zero word
until it reads a non-zero word. ~

10. Depress CONT as many times as necessary.

NOTE

This version of the bootstrap loader is for basic
diagnostics purposes only and cannot be used to load
the absolute loader. Use the version detailed in
Section C.1.2.

C.1.2 %BLD to Load %ALH

It is assumed that after the absolute loader has been loaded, the bootstrap loader is no longer necessary; therefore,
location zero has been chosen as the starting address. In this location, the bootstrap will most likely be destroyed by
other programs loaded later. To locate the loader in a different core area, simply increase all addresses by the value of
the address that is chosen to start keying in the program (e.g., to key in at 7000, add 7000 to all internal addresses).

To load the version of %ZBLD that is used to load %ALH proceed as follows:

NOTE

If the loader is to be used with a reader other than

the Teletype reader, all references to device address 77
must be changed to the new device address (e.g., for
the high-speed reader, change 77 to 76).

Step Procedure *

1. Key in the following:

00000 00 0100 03 JU GETO
00001 000023

00002 11 1000 12 RR AX, L1, AY
00003 12 1000 12 RS AY, L1
00004 12 1000 12 RS AY, L1
00005 12 1000 12 RS AY, L1
00006 12 1000 12 RS AY, L1
00007 12 1000 12 RS AY, L1
00010 12 1000 12 RS AY, L1
00011 12 1000 12 RS AY, L1
00012 00 0100 03 Ju GETO
00013 000023

; FOR OTHER THAN %ALH SET
; SECOND WORD OF NEXT INSTRUCTION
: TO ADDRESS —1 OF LOAD ADDRESS

Step Procedure

00014 13 0011 06 RMID AO
00015 000014
00016 00 0100 03 START:JU GETO ;START PROGRAM HERE

00017 000023
00020 11011003 IC AX, NEZ, .—20; PRESS CONTINUE
00021 000000
00022 02 0100 00 FOM HLT ; UNTIL NON 0 READ
00023 02 1001 77 GETO: FO CLIF STRT, TTI; OR HSR
00024 77 1000 02 SF TTI, IRDY
00025 06 0010 07 MRI -2,8C
00026 000023
00027 77 0000 11 RR TTI, AX
00030 03 0000 07 RR TRP, SC
2. Set 16 on the SWR.
Depress TRM.

> ow

Depress START once. The loader halts each time it reads a zero word until it
reads a non-zero word.

C.1.3 Bootstrap Tape Format

The bootstrap tape format is:

Blank Tape

Space

Control Code (200g)
Bits 15-8 of Data Word 1
Bits 7-0 of Data Word 1
Control Code (200g)
Bits 15-8 of Data Word 2
Bits 7-0 of Data Word 2

Space
C.2 ABSOLUTE LOADER (%ALH)

The absolute loader loads the user’s object program into memory. It-differs from the bootstrap loader in that it loads a
tape of a different format, checks to ensure correct loading, and is capable of loading data into non-sequential areas of
memory.

An object tape in absolute format consists of a series of data blocks as follows:

Space

Control Code (001)
Checksum (2 frames)
Block Start Address (2 frames)
Data Word Count (2 frames)

C4

Data Word (2 frames per word)

Data Word
Block Trailer (20g null frames)

The Control Code indicates the beginning of a block. The Checksum is the 16-bit sum, ignoring overflows, of the Block
Start Address, the Data Word Count, and the Data Words. The Block Start Address is the first location into which this
block of data is to be loaded sequentially. The Data Word Count is the number of data words contained in the block.

C.2.1 Using %ALH

The following procedure is used to read a tape in absolute format:

Step Procedure
1. Using the key-in bootstrap loader, load %ALH into memory.
2. Set 07 on the DEVICE SELECT switches.
3. Set X7661 on the SWR.
4. Depress TRM.
5. Position bit 15 of the SWR to select a reader,

0 = High-speed reader
1 = Teletype reader
6. Mount the absolute format object tape in the reader. Ensure
a null frame preceding the first block is under the head.
7. Depress START.

If the SC = X7661, the program has loaded correctly, and %SALH
is ready to load another. Begin at Step 3.

9. If execution is halted at another location, there is an error:

a. SC = X7676 indicates a control code error. Reposition
to beginning of block and go to Step 8.

b. SC = X7733 indicates a checksum error. Reposition to
beginning of block and depress START.

NOTE
The last location loaded s X7720.

The absolute loader (block loader) is available in many versions, depending-on the available firmware and amount of
memory. Refer to the GRI-99 Loaders Manual for a complete description.

C-5

APPENDIX D
RAS EXAMPLES

Toshow the wide variety of individual instructions available for the GRI-99, the following paragraphs list all the variations
of the basic instruction types for a single pair of devices (in this case, the AX register and general-purpose register 1). The
assemblers recognize mnemonic or structural forms for 11 instruction types, as follows:

1. Register to Register 7. Memory to Self

2. Zero to Register 8. Conditional Jump
3. Register to Self 9. Unconditional Jump
4. Register to Memory 10. Function Generate
5. Zero to Memory 1. Sense Function

6. Memory to Register

Indexing examples are shown in the simplest form. Increment, complement, and shift are variations on the basic format.
D.1 REGISTER TO REGISTER

Data transmission from one register to another is the fastest and most commonly used class of machine instruction. The
modifications performed on the data by the Bus Modifier while the data are in transit expand this form into the set listed
below. For the purpose of these examples, the arithmetic register AX is being sent to general-purpose register 1 (GR1)

Data Modification RAS

None RR AX, GRI1
Increment by 1 RR AX,P1,GR1
Shift left 1 RR AX, L1,GRI1
Shift right 1 RR AX,R1,GR1
Complement RRC AX, GR1
Complement and increment by 1 RRC AX, P1,GR1
Complement and shift left 1 RRC AX,L1,GR]1
Complement and shift right 1 RRC AX,R1,GR1

D.2 ZERO TO REGISTER

instructions results.

Data Modification RAS

None ZR AX
Increment by 1 ZR P1, AX
Shift left 1 ZR L1,AX
Shift right 1 ZR R1,AX
Complement ZRC AX
-Complement and-increment by 1 ZRC P1,AX
Complement and shift left 1 © ZRC L1, AX
Complement and shift right 1 ZRC R1, AX

D.3 REGISTER TO SELF

The Bus Modifier can be made to act directly on the contents of a single register by specifying that register as both source
and destination. This special case of register to register gives this instruction set.

Data Modification RAS

Increment by 1 RS AX, Pl
Shift left 1 RS AX,L1
Shift right 1 RS AX,R1
Complement RSC AX

Complement and increment by | RSC AX,Pi
Complement and shift left 1 RSC AX, L1
Complement and shift right 1 RSC AX, Rl

D.4 REGISTER TO MEMORY

To transfer data from a register to memory, the memory buffer is designated as the destination. The next consecutive
memory location in the program is then used as a memory address or as an immediate data sortage location. This
instruction type expands into the set given here when memory addressing modes and Bus Modifier options are considered.
AX is the source, MDATA is the address of a location containing data, and ADATA is the address of a location containing
a deferred address. In immediate mode, the second instruction location will be used to receive data, so we specify its
contents initially as 0.

Memory Addressing Data Modification RAS

Direct None RM AX,MDATA
Direct Increment by 1 RM AX,P1,MDATA
Direct Left 1 RM AX,L1,MDATA
Direct Right 1 RM AX.MDATA
Direct Indexed None RM AXH#MDATA
Deferred None RMD AX,ADATA
Deferred Increment by 1 RMD AX,P1,ADATA
Deferred Left 1 RMD AX,L1,ADATA
Deferred Right 1 RMD AX.R1,ADATA
Deferred Indexed None RMD AXF#ADATA
Immediate None RMI AX, 0
Imimediate Increment by 1 RMI AX,P1,0
Immediate Left 1 RMI AX,LL,0
Immediate Right 1 RMI AX,R1,0
Immediate deferred None RMID AX,ADATA
Immediate deferred Increment by 1 RMID AX,P1,4ADATA
Immediate deferred Left 1 v RMID AX,L1,ADATA
Immediate deferred Right 1 RMID AX,R1,4ADATA
Immediate deferred Indexed None RMID AXH#ADATA

D.5 ZERO TO MEMORY

This is a special case of register to memory where the source is the null device. The source word is therefore zero and the
data sent to memory depends only on the operations performed in the Bus Modifier. The set of instructions for this
special case are given using the same terminology as for register to memory.

Memory Addressing Data Modification RAS

Direct None M MDATA
Direct Increment by 1 M P1,MDATA
Direct Left I M L1,MDATA
Direct Right 1 M R1,MDATA
Deferred None ZMD ADATA
Deferred Increment by 1 ZMD P1,ADATA
Deferred Left 1 ZMD L1,ADATA
Deferred " Right 1 ZMD R1,4ADATA
Immediate None M1 0
Immediate Increment by 1 ZMI Pi1,0

D-2

Memory Addressing Data Modification RAS

Immediate Left 1 M1 L1,0
Immediate Right 1 ZMI R1,0
Immediate deferred None ZMID ADATA
Immediate deferred Increment by 1 ZMID P1,ADATA
Immediate deferred Left 1 ZMID L1,4DATA
Immediate deferred Right 1 ZMID R1,ADATA

D.6 MEMORY TO REGISTER

This instruction type is the exact inverse of register to memory discussed above. MDATA and ADATA have the same
meaning as before, but in immediate mode we must specify the data to be supplied from the second instruction location.
For an example, § is used as the data word.

Data Modification |

Memory Addressing RAS :
Direct None MR MDATA, AX
Direct Increment by 1 MR MDATA, P1, AX
Direct Left 1 MR MDATA, L1, AX
Direct Right 1 MR MDATA, R1, AX
Direct Indexed None MR #MDATA, AX
Deferred None MRD ADATA, AX
Deferred Increment by 1 MRD ADATA, P1, AX
Deferred Left 1 MRD ADATA, L1, AX
Deferred Right 1 MRD ADATA, R1, AX
Memory Addressing Data Modification RAS

Deferred Indexed None “MRD #ADATA, AX
Immediate None MRI S, AX

Immediate Increment by 1 MRI 5,P1, AX
Immediate Left 1 MRI 5,L1, AX
Immediate Right 1 MRI 5,RI1, AX
Immediate deferred None MRID ADATA, AX
Immediate deferred Increment by 1 MRID ADATA, P1, AX
Immediate deferred Left 1 MRID ADATA, L1, AX
Immediate deferred Right 1 MRID ADATA, R1, AX
Immediate deferred Indexed None MRID #ADATA, AX

D.7 MEMORY TO SELF

A memory reference instruction can access only one memory data location, but when the memory buffer is designated as
both source and destination, the contents of that location can be modified directly, giving this instruction set.

Memory Addressing Data Modification RAS

Direct Increment by 1 MS MDATA, P1
Direct Left 1 MS MDATA, 11
Direct Right 1 MS MDATA, R1
Deferred Increment by 1 MSD ADATA, Pl
Deferred Left 1 MSD ADATA, L1
Deferred Right 1 MSD ADATA, R1
Immediate Increment by 1 MSI 0,PIl
Immediate Left 1 MSI 0, L1
Immediate Right 1 MSI 0,R1
Immediate deferred None MSID ADATA
Immediate deferred Increment by 1 MSID ADATA, P1
Immediate deferred Left 1 MSID ADATA, L1
Immediate deferred Right 1 MSID ADATA, R1

D.8 CONDITIONAL JUMP

This is a Data Test instruction. The source data are sent directly to the data tester and is not subject to action by the Bus
Modifier. Jump addressing and conditions for testing the data produce this instruction set.

Memory Addressing Data Test RAS

Direct Data = 0 JC AX.ETZ, BEGIN
Direct Data <0 JC AX,LTZ,BEGIN
Direct Data < 0 JC AX, LEZ, BEGIN
Direct Data # 0 JC AX,NEZ, BEGIN
Direct Data = 0 JC AX,GEZ, BEGIN
Direct Data > 0 JC AX,GTZ,BEGIN
Deferred Data = 0 JCD AX,ETZ, BEGIN
Deferred Data < 0 JCD AX,LTZ, ABGIN
Deferred Data <0 JCD AX,LEZ, ABGIN
Deferred Data # 0 JCD AX,NEZ, ABGIN
Deferred Data. = 0 JCD AX,GEZ, ABGIN
Deferred Data > 0 JCD AX.GTZ, ABGIN

D.9 UNCONDITIONAL JUMP

In BASE, the unconditional jump is written as follows:

Memory Addressing RAS
Direct JU BEGIN
Deferred JUD ABGIN

D.10 FUNCTION GENERATE

The four function bits in an FO instruction word permit up to 16 unique FO instructions per destination device address.
These bit combinations can be given symbolic names or can simply be written in octal in RASX. The instruc-
tion set shown here generates functions for a device with a DDA mnemonic of DEV.

RAS RAS
FO 0,DEV FO 10, DEV
FO 1,DEV FO 11, DEV
FO 2,DEV FO 12, DEV
FO 3,DEV ~ FO 13, DEV
FO 4,DEV FO 14, DEV
FO 5,DEV FO 15, DEV
FO 6, DEV FO 16, DEV
FO 7,DEV FO 17,DEV

D.11 SENSE FUNCTION

The four control bits in an SF instruction word allow up to 14 different skip instructions per source device address. The
rightmost bit determines whether the skip shall occur if any condition specified by the other three is satisfied, or if no
condition specified by them is satisfied. The conditions may be given in octal as is done here in RAS.

RAS RAS
SF DEV, 2 SF DEV, NOT 2
SF DEV, 4 SF DEV, NOT 4
SF DEV, 6 SF DEV, NOT 6
SF DEV, 10 SF DEV, NOT 10
SF DEV, 12 SF DEV, NOT 12
SF DEV, 14 SF DEV, NOT 14
SF DEV, 16 SF DEV, NOT 16

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04

