0830005-000

REFERENCE MANUAL

SERIES 100 COMPUTER SYS}‘EMS

S115, 5125, AND 5135

Original Issue
March, 1978

HARRIS % N

o s

HARRIS CORPORATION Computer Systems‘Division
1200 Gateway Drive, Fort Lauderdale, Florida 33309 305/974-1700

0830005-000
Original 3/78

l LIST OF EFFECTIVE PAGES I

TOTAL NUMBER OF PAGES IN THIS PUBLICATION IS: 159
CONSISTING OF THE FOLLOWING:

Page Change Page Change Page Change
No. No. No. No. No. No.
Title Original

A, B Original

i thru vi Original

1-1 thru 1-10 Original
2-1 thru 2-20 Original
3-1 thru 34 Original
4-1 thru 4-20 Original
5-1 thru 5-6 Original
6-1 thru 6-4 Original
7-1 thru 7-72 Original
A-1 thru A-8 Original
B-1 thru B-6 Original

Insert Latest Revision Pages. Destroy Superseded Pages.

HARRIS CORPORATION Com.puter Systems Division

0830005-000
Original 3/78

PROPRIETARY DATA

This document, the design contained herein, the detail and invention
are considered proprietary to Harris Corporation. As the property of
Harris Corporation it shall be used only for reference, contract or
proposal work by this corporation or for field repair of Harris
products by Harris service personnel, customers, or end users.

No disclosure, reproduction, or use of any part thereof may be made
except by written permission from Harris Corporation.

0830005-000

Original 3/78
CONTENTS
Section Page
I INTRODUCTION
SCOPEOFMANUAL e e e e e e e e e e e e 1-i
SERIES 100/SYSTEMS 115,125,and135. e e e e e e 1-1
BASIC COMPUTER ORGANIZATION« v v v o . 11
BasicOperation e e e e e e . 11
Central ProcessingUnit (CPU) e e e e e e . 1-1
MemoryUnits c h e e e e . 13
Input/OutputOperation « « v v v v v v v . 1-3
Priority InterruptSystem 14
Programmer'sControlPanel 14
STANDARD AND OPTIONAL FEATURES 14
120 HertzClock G h e e e e e e e e e e . 14
Power Fail Shutdown andRestart 14
Firmware Bootstraps e e e e e e e e e e . 14
BitProcessor e e e e e e e e e e e . 14
StallAlarm e e e e e e e e e ... 14
Interval Timer e s e e e e e e e e . 15
Program Haltand Address Trap 15
Input/OutputChannels e e e e e e 15
Programmed Input/Output Channel (PIOC). 15
Universal BlockiChannel (UBC) 1-6
Direct Memory Access Communications Processor (DMACP) 16
External Block Channel (XBC) 1-6
Integral Block Channel (IBC) 16
"Communications Multiplexer . .| 16
Scientific ArithmeticUnit (SAU) e ... 16
Program Restrictand InstructionTrap 16
Real TimeClock e e e e e e e e e e e . 16
RunTimeMeter ¢ v v v v v ... 1-7
MOSDataSave e e e e e e e e e e e 17
I/OExpansionChassis v v v v v v o v v .. 1-7
ComputerLink ¢ v v v v v e 1-7
Multi-CPU Channel Adapter+« .+ 1-7
PERIPHERALEQUIPMENT v v v v v v e e e 1-7
SOFTWARE e e e e e e e e e e e e e e e 1-7
VULCAN OperatingSystem « « 1-7
Support Software e e e e e e e e e e 1-7
SUMMARY OF CHARACTERISTICS e e e e e e e e e e 1-8
Il CENTRAL PROCESSING UNIT
GENERAL DESCRIPTION e e e e e e e e e e e e e 21
BASICCPUREGISTERS ¢ v v e e e e e e e e o 21
Introduction e . 21
AandBRegisters 2-1
ERegister 21
DRegister e e e e e e e 2-1
- I,J,and K Reglsters e e e e e e e e - 241

L]

0830005-000

Original 3/78
CONTENTS (CONT'D.)
Section Page
I CENTRAL PROCESSING UNIT (CONT'D.)
ConditionRegister v v v 2-3
Program Address Register 2-3
Instruction Register and Shift Counter Register 2-3
ADDRESSINGFUNCTIONS+ ... 2-3
Basic Addressing Technique 2-3
DirectAddressing 2-3
Indirect Addressingt e e e e e e e 2-5
Indexing e e e e e e e e e e e e e e 2-5
Addressing, UserMode 2-5
Introduction 000 e e 25
Virtual Memory Registers 2-5
Basic Address Translation 2-7
DemandPaging 2-10
Instruction TrapProvision 2-11
PagingSystemControl 2-12
Virtual Memory InstructionSet 2-12
BIT PROCESSOR 2-12
GeneralDescription. v v ¢ v v 4 v . 2-12
BitProcessorRegisters 2-12
Operational Description 2-13
Prog)amControl v v e .. 2-13
Bit Processor|lnstructionSet 2-13
PROGRAM RESTRICT AND INSTRUCTION TRAP, 2-13
General Description. 2-13
Program Restrict Registers e 2-13
Operational Description e e e 2-14
ProgramControl e e e e e e e e e e . . e 2-14
Instruction Trap ¢ v v v v v e e . .. 2-14
INTERVALTIMER & v ¢« v v v v e v v C e 2-15
GeneralDescription. e e e e e 2-15
TimerRegister. ¢ ¢ v v i i e e e e e . 2-15
Operational Description 2-15
ProgramControl 2-15
STALLALARM e et e e e e e e e e e .. 2-15
T20HERTZCLOCK v v i v vt e e e e 2-16
FIRMWAREBOOTSTRAP & i i e e e v e e e e e e 2-16
POWER FAIL SHUTDOWN ANDRESTART. 2-16
PROGRAMHALTANDADDRESSTRAP. « 2-16
General Description. , ¢ ¢ ¢« v v v e v e e v 2-16
QueryRegister. & ¢« ¢ i i it e e e e e e 217
Operational Description 2-17
ProgramControl v 000 2-17
REALTIMECLOCK & & i i e et e e e e e e e e e e 2-17
General Description. ¢ i ¢ i e v e e e 2-17
Operational Description ¢ v v v v v o 2-17

0830005-000

Original 3/78
CONTENTS (CONT'D.)
Section Page
Il CENTRAL PROCESSING UNIT (CONT'D.)
Command AndStatusWord Formats 2-18
ProgramControl i i i i 2-18
PresetCountloading W e e e e e e e e e e e 2-18
AutomaticCountRestart 2-18
SnapshotOutput v v v e e 2-18
SelectionSampling e h e e e e e e e e e e e e 2-19
i1l MEMORY SYSTEM
MEMORY SYSTEMDESCRIPTION 31
Introduction e e e e e e e .. 31
DataTransfers. ¢ ¢ i v o v v v v .. 31
SEMICONDUCTORMEMORYMODULES 31
General Description. ¢« v v v vt u u e 31
OperatingModes ¢ v v v v e o v .. 3-1
ErrorComrection e e e e e e e e e e e 3-2
MAGNETICCOREMEMORYMODULE 3-2
GeneralDescription. ¢ ¢« v v v v v v .. 32
__ OperatingModes 32
FAST ACCESS OPERATION e e e e e e e e e e e e e e 32
ERRORREPORTING ¢ v i v v v e v e e v 33
INTERLEAVING s i it e s e e e e e e e w e 33
IV INPUT/OUTPUT CHANNELS
GENERALDESCRIPTION. ¢ ¢ i e e e e e e e 4-1
BASICI/OCONCEPTS & & & s e e e e e e e e e e e 41
Addressing L L L . e e e e e e e e e e e e . 41
Disconnect/ConnectSequences « « « & « o « . 43
Block I/OChannelPriority+« 43
Synchronization (Handshake) Condition. 43
Output Transfer Synchronization 4-3
Input Transfer Synchronization 43
XBC Channel Synchronization 43
IBC Channel Synchronization 4-4
UBC Channel Synchronization 44
Timing. L e e e e e e e e e e e e e e e e 44
Block Transfer Memory Access + v v v v o « . 44
Block TransferParameters ¢« 44
UBC Channel ParameterWords 44
XBC Channel ParameterWords 46
IBC Channel ParameterWords 4-6
DMACP Channel ParameterWords 4-7
INPUT/OUTPUTINSTRUCTIONS & & v v v v v o o u . 47
I/OCommands & & v v v v v v v e e e e e 47

0830005-000

Original 3/78
CONTENTS (CONT'D.)
Section » Page
IV INPUT/OUTPUT CHANNELS (CONT'D.)
I/OStatusWord e e e 4-8
SingleWordData T=ansfers 4-8
lnputDataWord 4-8
OutputDataWord 4-10
Address Transfers. « . v v« v v v v e .. 4-10
OutputAddressWord 4-10
InputAddressWord. 4-10
InputParameterWord 4-11
INTERRUPTCONTROL. & i v i e v e v v e e e 4-11
1/0 CHANNEL SWITCH/PATCHCONTROLS 4-11
I/O CHANNEL OPERATIONALSUMMARIES 4-11
Single-Word InstructionExecution 4-12
OCW/ODW L i s e e e e e e e e e e e e e 4-12
DWW . L L e e e e e e e e e e e e e e e . 4-12
ISW . & L L e e e e e e e e e e e e e e e 4-12
OAW | . L e e e e e e e e e e e e e e e e 4-12
IAW/IPW . . . L . . e e e e e e e e e e e e e 4-12
Block-TransferOperations « v v v « v « . . 4-12
UBCChannelBlock Transfers 4-12
XBCChannelBlock Transfers e e 4-17
IBCChannelBlock Transfers *. 4-17
DMACP Channel Block Transfers 417
ProgramLists ¢« v i v v i e e e e e e 4-18
IBC Channel Applications 4-18
UBCChannel Applications 4-19
XBC Channel Applications e e e e e e e e . 4-20
V PRIORITY INTERRUPT SYSTEM
GENERALDESCRIPTION. i v s s e e e e e 5-1
INTERRUPTORGANIZATION ¢ v v v v v e e e e 51
PriorityConventions « . v v v v e v 0. 51
Executive Traps (Group0) v v v v o . 51
Externalinterrupts (Group 1) 5-1
Dedicated Memory Locations T 5-1
OPERATIONANDCONTROL B&1
BasicOperation ¢ i v v v v .. - b1
Executive Traps(Group©0) 5-2
External Interrupts (Group 1) 5-2
INTERRUPT PROCESSINGCONSIDERATIONS 54
Vi SCIENTIFIC ARITHMETIC UNIT (SAU)
GENERALDESCRIPTION ., v v v v v v .. 6-1
FLOATING-POINTDATAFORMAT. v v ... 6-1
SAUREGISTERS s e e e e e e e e e e e e e 6-1

0830005-000

Original 3/78
CONTENTS (CONT'D.)
Section Page
VI SCIENTIFIC ARITHMETIC UNIT (SAU) (CONT’D.)
OPERATION ANDCONTROL v v v v e s e w o 6-1
DataTransfers. 6-1
SAUlnstructions i i e e e e e e e e 6-1
PROGRAMMINGCONSIDERATIONS 6-1
SAUINTERRUPT it e e e e e e e e e e e 64
VIl INSTRUCTION SET
INTRODUCTION & . i s e e e e e e e e e 7-1
INSTRUCTION FORMATS. v v v v e v e e e e e e 7-1
INSTRUCTIONFORMULA & v v e e e e a e 71
INSTRUCTIONDESCRIPTIONS v v v v .. 7-2
ARITHMETICINSTRUCTIONS ., , . ., 7-2
BRANCH INSTRUCTIONS .|, 7-14
COMPAREINSTRUCTIONS 7-19
LOGICALINSTRUCTIONS ¢ v v v v v .. 7-22
SHIFTINSTRUCTIONS & ¢ i v v v v e e e 7-24
TRANSFERINSTRUCTIONS ¢ o v .. 7-27
BYTEPROCESSINGINSTRUCTIONS v+ « .. 7-36
INPUT/OUTPUTINSTRUCTIONS. 7-42
BITPROCESSORINSTRUCTIONS 7-46
VIRTUALMEMORYINSTRUCTIONS 7-50
PROGRAMRESTRICTINSTRUCTIONS « .. 7-53
PRIORITY INTERRUPT CONTROLINSTRUCTIONS 7-54
MISCELLANEOUSINSTRUCTIONS 7-58
SCIENTIFIC ARITHMETICUNITINSTRUCTIONS 7-61
APPENDIX A — INSTRUCTION EXECUTIONTIMES T A1
APPENDIXB — INSTRUCTIONINDEX + v v v v v e e e u o _@-_1
ILLUSTRATIONS
Figure Page
1-1. Major Functional Units v v v v v ... 1-2
21. DataWordFormats ., v v v v v .. 2-2
2-2. Memory ReferencingSequence 24
2-3. Examples of indexed Addressing. v e e e e 26
24, Basic Address Translation, VM UserMode 2-8
2-5. Address Translation Example, VMUserMode 2-9
4-1. Computer /O Structure BlockDiagram 4-2
42, UBCand IBC ParameterWord Formats 45
43. DMACPParameterWord Formats « o v v v v v .. 46

44. OCWinstructionFormats 4-8

0830005-000

Original 3/78
ILLUSTRATIONS (CONT'D.)

Figure Page
45, IDW Instruction; Data Character Formatting 49

46. UBC Block Transfer Sequence; Simplified Flow Diagram 4-13

4-7. XBC Block Transfer Sequence; Simplified Flow Diagram 4-14

4-8. IBC Block Transfer Sequence; Simplified FlowDiagram 4-15

49, DMACP Channel Block Transfer Sequence; Simplified Block Diagram 4-16
5-1. Functional Block Diagram, Priority InterruptSystem 5-2
52. ExternalinterruptControl« 5-3
5-3. Interrupt SubroutineEntry00 5-5
54. InterruptSubroutineExit 55
6-1. FloatingPointDataFormats ¢ vouo. 6-2
62 SAUY (Condition)Register v v v 6-3
6-3. CPU — SAU Transfer Paths; Simplified Block Diagram 6-3

- TABLES

Table Page
1-1. Standard Features e e e e e e e e e e e e e e e e e e 15
12 Optional Features v i v v v v v e e 15

2-1. VPR Status Bits/Definitionsand Functions. 2-11

4-1. Peripheral UnitinterruptControl v ¢ ¢« v o« « . 411

4-2. I/O Channels Manual Control Capabilities e e e e e e 4-12

vi

0830005-000
Original 3/78

SECTION |
INTRODUCTION

SCOPE OF MANUAL

This manual contains reference material for the Series
100/S115, S125, and $135 Computer Systems designed and
manufactured by Harris Corporation, Computer Systems
Division, Fort Lauderdale, Florida. Included are
descriptions of the overall computer organization, central
processing unit (CPU), memory configurations, priority
interrupt system, input/output (I/0) channels, and
instruction set. Various hardware features and options are
also described; application and programming examples are
provided where appropriate.

The material in this manual is oriented toward the
user/programmer with a knowledge of computer
fundamentals and terminology.

SERIES 100/SYSTEMS 115, 125, and 135

The S115, S125 and S135 computer systems are members
of the Harris Series 100 family. This family is comprised of
high-performance, disc-based, virtual memory computer
systems for performing concurrent time-sharing,
multi-batch, remote job entry and real-time processing. The
- §115, $125, and S135 are building-block systems; each may
be expanded to support a variety of applications and

performance levels. Upgrades between systems are also-

available. Series 100 systems provide cost-effective
solutions for distributed data processing, transaction
oriented processing, and communications applications. Data
Base Management and inquiry software is available for fast,
efficient file maintenance and information retrieval. These
multi-use systems are ideal for scientific, commercial and
real-time applications — since they provide true
multi-programming and multi-lingual capabilities.

BASIC COMPUTER ORGANIZATION

Basic Operation

Figure 1-1 illustrates the functional relationship between
major units of a typical system. The major functional units
include the central processing unit (CPU), memory, priority
interrupt system, input/output (I/0O) channels,
programmer’s control panel, and the optional Scientific
Arithmetic Unit (SAU).

The computer has a 24-bit fixed word length, a multi-access
bus structure, and an integral memory system. Operations
are performed on, and from, 24-bit data and instruction
words. In addition, the computer is capable of selective
byte manipulation and performs Boolean functions on
single, selected bits. Two's complement arithmetic is
performed on parallel, binary, fixed-point operands.
Concurrent floating-point arithmetic is performed by the
SAU.

Data or instruction words may be retrieved from or stored
in memory, retained in one of the CPU registers, or received
from and transmitted to peripheral devices via the /0
channels. Prior to execution, instructions must be loaded
into, and subsequently retrieved from, physical memory.

- Main memory is accessed on a double word-boundary. This

arrangement permits an instruction prefetch which reduces
the effective access time of the memory system. In
addition, the CPU employs an asynchronous cycle that
automatically adjusts to the timing of the addressed
memory module. If, for example, memory contention
occurs, the CPU waits at a predetermined point until
memory becomes available.

Memory may be accessed at the word, double-word, byte,
and bit levels by the standard instruction set. If virtual

~ memory is disabled by the control panel key switch,

memory is divided into 32K word sections. Up to 32K
words per section may be directly addressed and up to
256K words can be accessed by indirect and indexed
address references. Executable code is restricted to 65,536
(64K) words at any given time.

When virtual memory is enabled, two addressing modes are
employed, User and Monitor. Addresses generated in the
User Mode (called logical addresses) are translated into
physical memory addresses by the virtual memory
hardware. The logical address is translated to the physical
address by selecting the appropriate 1024 (1K) word

" physical “page” and the offset within that page. The

division of main memory into physical pages allows a
program to be located in non-contiguous areas of memory,
and to be transferred {in page increments) between memory
and an external mass storage device under system control.
When the virtual memory hardware detects a reference to a

" page which is not currently resident in main memory, a

page fault occurs. This supports a demand-paging technique
which allows portions of a program to be absent from
memory while the program is running. The paging circuits
are disabled in the Monitor Mode, thus addresses generated
in the Monitor Mode are used directly as physical main
memory addresses.

Central Processing Unit (CPU)
Included in the CPU are several general and special-purpose

 registers, an arithmetic section, timing and control logic,

memory interface circuits, and 1/O channel interface

" circuits. Special paging registers and control logic are

provided for virtual memory operation. When the system
includes an SAU, the CPU includes special circuits for
CPU-SAU interface and communications.

0830005-000

Original 3/78
CONTROL
PANEL
CONTROL DATA
conmoL]
MEMORY
DATA
l¢
| ADDRESS
DATA ADDRESS
cPu ¢—CSONROL conmor |
ADDRESS | ADDRESS
' /o]
< RATA | CHANNELS e DATA ___»
STATUS < STATUS
INTERRUPTS
PERIPHERAL
DEVICES
DATA
CONTROL INTERRUPT
SAU

Figure 1-1. Major Functional Units

8D183S-97¢A

Five general-purpose registers are included in a basic CPU.
These registers are employed in a variety of logical,
arithmetic, and manipulative operations such as
register-memory, memory-register, and register-register
instructions. Three of the general-purpose registers can be
used for indexing in memory addressing functions. One
register serves as the |/O communication register during
single-word input/output operations. A double-word
register is formed by combining two 24-bit registers, and a
byte register is created by using the eight least-significant
bits of one general-purpose register. With the Interval Timer
included in the CPU, the Timer (T) Register becomes a
sixth general-purpose register in the Monitor Mode of
operation. In the User Mode, the T Register cannot be
accessed.

Among the special-purpose registers are those associated
with integral CPU functions such as addressing, instruction
decoding, and temporary storage during data manipulation.
Additional special-purpose registers are those supplied with
the bit (Boolean) processor, Interval Timer (T Register,

timing applications), Program Restrict and Instruction Trap

option, and the Program Halt and Address Trap.

The arithmetic section consists primarily of a 24-bit
arithmetic logic unit (ALU) and several buses to permit
data manipulation between the various registers and the
ALU. Arithmetic functions performed include addition,
subtraction, multiplication, division, and square root
computation. In addition, the ALU output is employed in
computing addresses during memory reference operations.

instruction execution sequences are established and
directed by the timing and control logic associated with the
CPU. This logic includes a crystal-controlied clock
generator that provides precise timing for all instruction
functions. Instruction words are retrieved from memory
and retained in an instruction register for the duration of
the operation. The control logic decodes these instruction
words and provides the internal commands necessary for
execution. In the User Mode of operation, the paging
control logic operates in conjunction with the basic CPU
timing to implement address translation and demand paging
techniques.

CPU memory interface circuits consist of address and
data-handling buses and registers, and parity
generation/checking or error checking and correction code
logic. Memory interface circuits include a 48-bit data
register that retains both the read and write data, an 18-bit
address register to define the physical memory location to
be accessed, data multiplexing logic to control read and
write data handling, and address multiplexing and control

logic for selecting the proper memory segment and a -

location within that segment. Data to be written (stored) in
memory is applied via the system data bus. Data read

{retrieved) from memory is applied to the CPU via the

system data bus. Address inputs are applied to the memory

interface via the system address bus. The address source

- 0830005-000
Original 3/78

~may be the CPU Memory Address Register, Program

Address Register (Program Counter), the ALU or Operand
Register in the arithmetic section, one of the block transfer
channels (DMACP, UBC, XBC, IBC), or, in the User Mode
of operation, the paging logic addressing circuits.

Communications between the CPU and the 1/0 channels are
conducted via the channel interface logic in the CPU. This
logic makes use of the system buses and one of the
general-purpose registers in order to implemern: data and
address flow between the CPU and 1/0 channels. Although
an 1/0 channel conducts channel-unit communications
independently and asynchronously, input/output
operations such as channel-unit selection and activation,
function commands, and status testing are initiated under

" program control.

When the Scientific Arithmetic Unit (SAU) is employed,
CPU-SAU communications are conducted via interface
circuits both in the CPU and SAU. Single or
double-precision transfers may be performed: with
double-precision transfers requiring two sequences. All SAU
instructions and data transfers are initiated on CPU timing.
All concurrent floating-point arithmetic operations are
performed on SAU timing.

:Memory Units

Storage of information, both instruction and data words, is
a function of the memory modules. Both semiconductor
and magnetic core memory modules may be used in the
memory configuration. Memory modules may all be of the
same type or may be mixed. Memory modules can be
mixed in the 125C and 135C systems. The 115, 125, and
135 systems do not support core. Semiconductor memory
is available in increments of 16K words, while increments
of 32K words are available with magnetic core modules.
Total main memory capacity is 256K words. Refer to

Section |li for additional details concerning the memory
system,
Input/Output Operation

Input/Output (I/0) operations consist of data, address,
command, or status transfers between selected peripheral
devices and the CPU or memory. All such operations are
initiated under program control and are conducted,
asynchronously, by an 1/0 channel. Various types of 1/0
channel boards may be installed in a system. All channels in
the system can be active simultaneously, and each channel
may communicate with a maximum of 16 devices (limited
by transfer rates).

An 1/0 operation is initiated by selecting and activating a
channel, and one of its assigned peripheral devices, through

- the execution of a computer input/output instruction. (The

instruction set, includes seven input/output instructions.) A
specific 1/0 operation may involve preparing a peripheral

" device for a subsequent communication, determining the

operational status of a device, or initiating a data transfer.
Once activated, the 1/0 channel provides complete

. functional control over the operation.

13

0830005-000
Original 3/78

Data may be transferred on a single word basis (i.e., one
data word per instruction) or automatically, in blocks of n
words per operation. Block data transfers are performed by
the Direct Memory Access Communication Processor
(DMACP), Universal Block Channel (UBC), External Block
Channel (XBC), or Integral Block Channel (IBC). Each
available type of 1/0 channel permits data transfers to
(input) and from (output) the computer.

1/0 operations may also be conducted on an interrupt basis
through the use of interrupt logic in the channel(s). The
channel interrupt system can be placed under program
control and selectively enabled or disabled by an
input/output instruction. Peripheral device functions may
be connected directly to the computer priority interrupt
system, bypassing the channel interrupt logic.

Priority Interrupt System

Each system contains an interrupt system that allows
additional program control of input/output and internal
CPU operations, and immediate recognition of special
external conditions on the basis of priority. Receipt and
recognition of an interrupt trigger permits normal program
flow to be diverted to a subroutine that services the
interrupt and returns the program to its normal sequence at
the point where the interruption occurred.

Two interrupt groups, 0 and 1, are available. Group 0 is
reserved for internal CPU functions and is comprised of
eight executive trap interrupt levels. All executive trap
levels are associated with specific functions. Group 1 is
reserved for external interrupts; the group may have up to
24 levels. A basic system is supplied with 16 external
interrupt levels. Eight additional external interrupts are
available.

Complete details pertaining to the priority interrupt system
are contained in Section V.

Programmer’s Control Panel

The Programmer’s Control Panel contains the facilities for
manually starting and halting operations, entering data into
memory and the various registers, and selecting registers for
display and/or entry. Indicators on the panel provide
display for the contents of registers and memory, system
status, and other important functions. Complete operating
instructions for the control panel are contained in
publication number 0840003.

STANDARD AND OPTIONAL FEATURES

Systems 115, 125, and 135 contain various hardware
features. Many options are also available to enhance system
performance. A brief description of standard features and
options are provided in the following paragraphs. Unless
otherwise indicated, additional details pertaining to system

14

features and options are contained in Section Il. Table 1-1
lists the standard hardware items provided with each
system, while Table 1-2 provides a summary of the optional
items available. ’

120 Hertz Clock

Continuously generated interrupt triggers are placed under
software control by enabling or disabling the associated
external interrupt level. By this method, the 120 Hertz
Clock may be used for various timing operations. The clock
continuously transmits 120 interrupt trigger pulses per
second for 60 Hertz power, and 100 interrupt trigger pulses -
per second for 50 Hertz power.

Power Fail Shutdown and Restart

This feature provides a means for protecting operating
programs in the event of a power failure and for restoring
the original conditions when power levels return to normal.
Two executive trap interrupt levels, one for power down
and the other for power up, are supplied.

Firmware Bootstraps

Automatic program loading from a selected peripheral
device is provided by the Firmware Bootstraps feature.
Through the use of console switches, the appropriate
bootstrap program is loaded into memory. Once loaded, the
bootstrap program will automatically load a minimum of
one record from the appropriate device. Programs stored in
a PROM provide for loading from disc, paper tape,
magnetic tape, punched cards, magnetic tape cassettes
(paper tape emulation), or floppy disc.

Bit Processor

Capability is provided by the Bit Processor for selectively
changing, testing, or performing logical operations on a
single bit in memory.

Stall Alarm

Certain operations in the instruction set and other internal
conditions prohibit the recognition of external interrupts.
A series of these instructions or conditions could, therefore,
produce a situation where external interrupts are, in effect,
““locked out”. The Stall Alarm monitors all instructions and
conditions in this interrupt-prohibiting category. If a series
of these instructions or conditions have not been completed
before the elapse of a predetermined time period, an
executive trap interrupt is generated. The subsequent
interrupt-processing routine may then examine the
situation and take any necessary corrective action. The Stall

- Alarm includes the appropriate control logic and is
. furnished with the associated executive trap interrupt.

Table 1-1. Standard Features

*MOS Data Save option is required for MOS Memory.

‘Interval Timer

The programmable Interval Timer functions as an internal
CPU timer that provides a method for regulating operating
program segments and recording other intervals. Depending
on the instruction used for its activation, the Interval
Timer clocks either CPU time or real time. In addition to its
timing applications, the Interval Timer provides the user

with an additional 24-bit general purpose register that may

be accessed through the standard instruction set when in
the Monitor Mode of operation. The T Register may not be
modified when in the User Mode.

Program Halt and Address Trap

This feature provides for a program halt or an executive

trap interrupt to occur at a specified address and under
certain conditions. The address trap is used as an on-line

Description $115 8125 S135) .
Central Processor with hardware multiply/divide/square [] ° °
root, power supplies, and CPU cabinet
Semiconductor (MOS) Memory with error correction
48K words) °
128K words [}
Virtual Memory
256K words L4
1024K words °
4096K words °
Programmer’s Control Panel ° . °
16 Priority Interrupt Levels) °)
120 Hertz Clock ° ° °
*Power Fail Shutdown and Restart ° . .
Firmware Bootstraps L] [} °
Bit Processor [[°
Stall Alarm o [[
Executive Traps ° L])
interval Timer L] [} °
Program Halt and Address Trap . o [}
Programmed Input Output Channel (PIOC) ° ° .
Universal Block Channel (UBC) ® . e
Communications Multiplexer, less ports)
Direct Memory Access Communications Processor [®
{DMACP) (includes 4 customer specified asyn-
ch ports or 1 synch port)
ive CRT Op C e and 0l ° ° °
10.8 MByte Cartridge Disc and Controlier . .
40 MByte Storage Module Drive and C: i [
9 Track, 800 BPI, 45 IPS Magnetic Tape Unit [. .
with cabinet {on UBC)

0830005-000
_Original 3/78

" Table 1-2. Optional Features

| Description S115 S126 §135
| 16K word Semiconductor (MOS) Memory increment
’ Up to 64K words °
Up to 208K words .
Up to 256K words .
*32K word Core Memory increment (] .
Scientific Arithmetic Unit [} °
Program Restrict and Instruction Trap °))
Real Time Clock [[[}
Run Time Meter [[L]
Programmed Input Output Channels (P1OCs) [[[}
Universal Block Channels (UBC) [o [}
External Block Channels (XBC) . . °
Integral Biock Channels (1BC) [° °
**Direct Memory Access Communications Processor [. .
(DMACP) channels
8 Priority Interrupt Levels [} ° 3
MOS Data Save [. .
1/0 Expansion Chassis .
Computer Link . [[
Multi-CPU Channel Adapter L] [[}
*$125C and S135C systems only

“** Requires special power

debugging aid for use in applications such as breakpoint
tracing. An address may be defined under program control
so that when the address is referenced, . an interrupt will be
generated at the assigned executive level. The address trap
may be enabled or disabled under program control.

Input/Output Channels

Various types of 1/O channels are availabie with a system.
Each channel is designed for a particular input/output data

-transfer application. A brief description of each type
-follows. A more detailed discussion of the 1/O channels is
-provided in Section IV.

 Programmed Input/Output Channel (PIOC)

“This is an 1/0O channel capable of implementing a single
“word, eight-bit, parallel data transfer between the CPU and

a suitable peripheral device. This channel has provisions for
installing up to four unit interface controllers on the 1/0
circuit board. In addition, the PIOC can drive up to 12

" additional remote device controllers. This board also
- contains a programmable Interrupt Generator which may
. be used in multi-processor installations. If required, one or
. two Real Time Clocks may be installed on the board.

0830005-000
Original 3/78

Universal Block Channel (UBC)

A UBC implements and controls automatic data transfers
between memory and a suitable peripheral device. The UBC
contains two 1/O ports with data transferred through each
port in a 24-bit parallel word format. Each port provides
either command chained block transfers or programmed
1/0 transfers. Chained block transfer capability permits the
transfer direction to be reversed and a subsequent data
block to be automatically transferred, without program
intervention. Addressing and block size (number of words
transferred) are established under program control. Once
initiated, all UBC operations proceed automatically. When
operating in the chained block mode, two word (48 bits)
transfers, to and from memory, take place. Each port is also
capable of programmed 1/Q operations in which single word
(24 bits) transfers take place between the CPU and
peripheral device. The UBC can drive up to 16 external
device controllers (limited by transfer rates).

Direct Memory Access Communications Processor (DMACP)

The DMACP is a multiport 1/O channel dedicated to serial
data commumwtlons Direct Memory access is provided for
up to eight communication devices. These devices can be
either asynchronous or synchronous. Up to eight
asynchronous interfaces can be used, or one synchronous
and up to four asynchronous interfaces can be
accommodated. The one synchronous interface takes the
place of four asynchronous interfaces. Each interface is
termed a port. Standard interfaces available are RS-232C,
20 ma current loop, and Harris differential.

Single word or block data transfers of 24-bits are performed
between the DMACP and CPU. Single word transfers are
used for status checking, initialization and control of the
DMACP. Block mode transfers are used for data transfers
between main memory and the communication devices
attached to the ports. These transfers are under control of
the microprocessor installed on the DMACP board and
require no intervention by the CPU. Transfers between the
DMACP and main memory are in the form of 24-bit words,
while transfers between the DMACP and communication
devices are in the form of 8-bit bytes.

External Block Channel (XBC)

An XBC is similar in operation to one port of a UBC except
that address control and block length are provided by an
external device, and that no command chaining capability is
provided. One XBC board can support up to eight external
device controllers.

Integral Block Channel (1BC)

An IBC performs automatic data transfers in a manner
similar to one port of a UBC. The IBC contains provisions
for the installation of up to two interface controlliers
directly on the channel board. The IBC transfers data in a

1-6

muitiplex mode between the device controllers and
memory. Only data chaining may be performed by the I1BC;
no single word transfer or command chaining capability is
provided for the IBC.

Communications Muitiplexer

The Communications Multiplexer (Comm Mux) is a
multiport 1/0 channel for multiple local and remote
communications devices. Interface to the CPU is by means
of the PIOC. Both synchronous and asynchronous line
interfaces to the Comm Mux ports are available for modems
or terminals. Synchronous ports are configured singly, with
up to eight ports available per Comm Mux. Asynchronous
ports are configured in pairs to provide a maximum of
sixteen ports per Comm Mux. A Comm Mux may be
configured with any combination of synchronous and
asynchronous ports up to the board limit.

Scientific Arithmetic Unit (SAU)

Available as an option with the S125 and S135, the SAU
provides concurrent floating-point arithmetic capability
independent from the CPU. A special repertoire of
instructions is provided for CPU-SAU transfers and for
performing double-precision, ﬂoating-point compumtions.

The SAU contains its own registers for mampulatmg
double-precision quantities and for selecting arithmetic
status (condition) after the operation is completed. Data
and condition information are displayed on the
Programmer’s Control Panel. An executive trap is provided
with the SAU for detection of overflow/underflow
conditions. Refer to Section VI for a more detailed
description of the SAU.

Program Restrict and Instruction Trap

These two functions are supplied as one integral unit. The
Program Restrict provision allows areas of memory to be
selected under program control, protected from
unauthorized access, and guarded against accidental
modification. When the CPU is in a restricted environment,
the Instruction Trap provides the means for preventing
execution of a predefined group of instructions. Two
registers, two executive trap interrupt levels, and the
associated control logic comprise the option.

Real Time Clock

This option provides the programmer with general purpose
clock pulses that are independent of the mainframe clock
pulses. With an accuracy of .05%, the real time clock pulses
are available whether the CPU is in standby or not. The
timing pulses can be used to measure user’s program
running time, or to generate periodic interrupts.
Programming is accomplished through normal input/output
commands. One or two real time clocks may be installed on
the Programmed Input Output Channel (PIOC) boards.

Run Time Meter
Available as an option, the Run Time Meter records the

time that power is applied to the computer, i.e., whenever

the circuit breaker is in the ON position. Elapsed time is
measured in hours and tenths up to 99,999.9 hours.

MOS Data Save

The MOS Data Save option provides voltages necessary for
the refresh circuits of the MOS Memory to maintain data
integrity during ac power failures. Voltages are provided by
a battery back-up system. Battery voltages are maintained
by a trickle charge during periods of normal ac line voltage
levels.

This option consists of a Master Module and up to seven

Expansion Modules. Data save protection for one MOS
memory board is provided by the Master Module. As
memory is expanded, the proper number of Expansion
Modules are added to provide the required data save
voltages. Battery back-up is limited to eight MOS memory
modules.

1/0 Expansioh Chassis

Auvailable as an option with the S125, the expansion chassis
increases the 1/O capacity of the system. All necessary
hardware and power supplies are provided with the option.

Computer Link

This option permits block data transfers between
interconnected computers in a dual computer installation.
The computer link is particularly useful in real-time control
applications involving dual computers.

Multi-CPU Channel Adapter

Used in a multiple computer configuration, the multi-CPU
channel adapter allows peripheral devices to be shared by
two or more computers.

PERIPHERAL EQUIPMENT

The Harris Series 100 systems can be expanded and

enhanced by selection of various peripheral equipment
offered with each system, including:

® Moving Head Discs (40, 80, 150 and 300M Bytes)
® Cartridge Discs (10.8M Bytes)

® Fixed Head Discs (.5, .8, 1.1, 1.7 and 2.1M Bytes)
® Floppy Discs (310K Bytes)

® Magnetic Tapes (45, 75, 100, 150 and 200 ips)

0830005-000
Original 3/78
~ @ Card Readers (300, 600 and 1000 cpm)
® |Card Reader/Punch (500/100 cpm)
® |Line Printers (300, 600 and 900 Ipm)

® |Electrostatic printer/plotter (300, 500, 1000, and
11200 ipm)

® |Paper Tape Devices
©® Console Devices, Local and Remote Terminals

® Supplementary equipment to meet most custom .’

requirements
SOFTWARE !
VULCAN Operating System
The Virtual Memory Manager (VULCAN) is a

priority-structured, demand paged, multi-programming
operating system. VULCAN concurrently supports
multi-stream batch processing, interactive terminal
time-sharing, transaction-oriented processing, multiple
remote job entry and real-time operations. Under

 VULCAN, the virtual memory hardware/software system is

transparent to the user. Up to 768K bytes (K = 1024) per
user is available — of which up to 192K bytes may be
executable code.

Support Software

The field-proven VULCAN operating system supports seven
languages, five support programs and a programmable
macro job control command language. Also available as
options are the Harris TOTAL data base management
system, interactive retrieval language, four remote job entry
support packages and two remote batch terminal host
packages.

Languages
® FORTRAN IV Compiler with extensions
® Interactive BASIC Compiler with extensions
® 1974 ANSI COBOL Compiter
® RPG Il Compiler
® Harris MACRO Assembler
® SNOBOL 4 Interpreter

® FORGO
.Compiler)

(Diagnostic Load-and-Go FORTRAN

0830005-000

Original 3/78
Support Programs Remote Batch Terminal (RBT) Host Packages
e |BM HASP 11 M/L
® Sort/Merge

®i|BM 2780
® |ndexed Sequential File Handler '
Data Base Management Systems (DBMS)

® System Accounting 4
® TOTAL Basic
® Cross Reference

: ® TOTAL Central
¢ VBUG Symbolic Debugger

e TOTAL — IQ
Remote Job Entry (RJE) Support Packages Harris TOTAL — the most widely used of all the Data Base:
Management Systems — is known for its efficient
. implementation, low memory requirements and ease of use. -
o |BM HASP 11 M/L) TOTAL DBMS supports network and hierarchal data
. structures.
e |IBM 2780
SUMMARY OF CHARACTERISTICS
® CDC200UT The major operating characteristics and pertinent technical
specifications of the S115, $125, and S135 are summarized
e UNIVAC 1004 below.
Computer Organization, ., , ., Microprogrammed, general-purpose digital computer,
single address, multi-access central system bus structure,
and buffered 1/0 channels.
CPU Microcycle Time 300nanoseconds
CPUWordlength 24bits
Arithmetic - Parallel, binary, two's complement number representation.

Hardware multiply/divide/square root. Hardware double-
precision, floating-point processor (SAU), optional (S125
. and S135 only).

Instruction Execution Time {microseconds),Values are for MOS Memory. Minimum floating-point times given.

Instruction Register to Register Memory Reference Double-Precision Floating Point

Arithmetic

Add/Subtract 0.72 1.44 273

Multiply 6.12 6.54 » 6.23

Divide 12.72 13.14 . 1143

sSquare Root 35.12 N/A 8.53
Algebraic Compare 1.02 1.44 243
Logical Compare 0.72 N/A N/A
Input/Output 0.72 N/A N/A
Shift n places 1.02 +0.15n N/A N/A
Transfers 0.72 1.44 .' 0.75

- MAIN MEMORY

Semiconductor

Type .

Minimum Size . .
Maximum Size (S135 only)
Increment .

Word Length

Parity

Access

Power Fail .

Core

Type .

Minimum Size . .
Maximum Size (S135 only)
Increment . '
Word Length

Parity

Access

Power Fail .

ADDRESSING

Monitor Mode .

User Mode .

INPUT/OUTPUT CAPABILITY

Programmed Data Transfers
Automatic Data Transfer .

Single Channel Maximum Transfer Rates
" (words/sec.)

UBC (1 port active) .
IBC

XBC (no mainframe contention) .
(with mainframe contention) .

DMACP .

0830005-000
Original 3/78

N-Channel MOS

16K words

256K words

16K words

48 bits (double word)
One bit error correct
Random

Battery back-up

3-wire, 3D planar core array
32K words

256K words

16K words

48 bits (double word)

Data parity check

Random

Data retention -

Immediate

Direct to 32K words

Direct to 64K words via long address instructions
indirect to 256K words (data only)

Indexed to 64K words

Each user has an address space equivalent to the amount of physical
memory. User addresses are translated to 256, 1024, or 4096-word
physical pages. Hardware detects accesses to non-resident pages.

Single word to/from CPU register, 8 or 24 bits.
Direct memory access via UBC, IBC, XBC and DMACP.

Input Output
1,336,000 1,000,000
Device Dependent Device Dependent
800,000 666,666
476,000 428,000
2,700 2,700

0830005-000
Original 3/78

Input/Output Command Modes
Normal .
Multiplex

Offline .

Reset

Priority Interrupt Structure

internal .

External
Control .

Power Fail Protection
Electrical requirements

Voltage .

Frequency .
Current .
Power

Phase

Environmental Requirements

Temperature
Operating
Storage .

Humidity
Operating
Storage .

Altitude
Operating
Storage .

Heat Dissipation .
Cooling .

1-10

Normal operation for each channel type

Channel released to master/slave peripheral units. Not available on
IBC, XBC, or DMACP

Channel drivers turned off allowing second CPU to share devices
without need for peripheral switches. Not available on IBC.

Resets Mulitiplex or Offline Mode. Channel restored online and
unit selected. Not available on IBC.

Maximum of eight executive traps. Dedicated memory locations.

Sixteen priority interrupt levels, standard. Optionally expandabie

. to 24 priority interrupt levels. Dedicated memory locations.

External interrupts may be individually armed, disarmed, enabled,
inhibited or triggered under program control.

Power fail shutdown and restart, standard.

230 VAC or 208 VAC £10% (115 VAC £10%, optional on S115
and S125)

60 + 3 Hz (50 £ 3 Hz, optional)
19 Amps RMS at 230V (maximum)
4000 Watts

Single phase, 4-wire with NEMA L14-30R twist-lock connectors
(250 VAC) on a 15 ft. power cord.

50° F to 113° F (10° C to 45° C), ambient air
32°F to 122° F (0° C to 50° C), ambient air

20% to 80%, relative (non-condensing)
20% to 90%, relative (non-condensing)

-1000 to 6000 ft. (-305 to 1829 m)
-1000 to 15,000 ft. (-305 to 45672 m)

13,650 BTU/hr. (3400 kg-cal/hr.)

Forced air provided by internal fans on each chassis

0830005-000
Original 3/78

SECTION 1l
CENTRAL PROCESSING UNIT

GENERAL DESCRIPTION

The Central Processing Unit (CPU) is a single-address, 24-bit
paraliel word-oriented, stored-program processor.
Operations performed by the CPU include data transfers,
arithmetic computation, and logical manipulation. These
operations are defined by instructions stored in, and
retrieved from, physical memory. The specified operation is
performed on single-word, double-word, byte, or single bit
operands stored in memory or contained in one of the CPU
registers. Data word formats, as defined by both hardware
and software, are illustrated in Figure 2-1.

In addition to the general and special-purpose registers, the
CPU contains an arithmetic section that performs the actual
computation and logical manipulation of operands, and a
control section that retrieves and decodes instructions from
memory and directs the functional processes of the system.
The control section also includes the paging logic that
implements the memory address translation and
demand-paging operations. The CPU contains interface
elements for communications with the other computer
elements; e.g., memory, the |/O channels, the control panel,
and the optional Scientific Arithmetic Unit (SAU).

BASIC CPU REGISTERS
Introduction

The following paragraphs provide a brief description of the
basic registers in a CPU. Registers associated with the
priority interrupt system and SAU are described elsewhere,
in the appropriate sections of this manual.

A and B Registers

Serving as the principal arithmetic accumulator, the 24-bit
A Register also functions as the input/output
communication register during programmed (single-word)
transfers between the CPU and peripheral devices. The A
Register has complete arithmetic and shift capability. Bits
7-0 of A form an 8-bit pseudoregister, termed the B (Byte)
Register. Both the A and B registers are accessible to the

N

E Register

Employed as an extension of the ‘A Register for increased
arithmetic and shift capability, the 24-bit E Register also
-functions as a general-purpose storage element during
various instructions. The E Register is accessible through
both the instruction set and the Programmer's Control
Panel.

i
e E REGISTER >
! T T T T T T T
I NS WO SRS NN U SN NN [N NN (NN G VRN NS SN SN U NN W S N G |
23)
D Register

The D (Double) Register is a 47-bit pseudoregister formed
by combining A and E to provide double-precision
arithmetic and shift capability. The A and E Registers form
the least-and most-significant halves, respectively, of the
'47-bit double-precision quantity {bit 23 of A is not used).
Several instructions provide direct access to the D Register;
Programmer’s Control Panel entry, however, must be
accomplished by accessing the E and A Registers in the
proper format.

¢———————— DOUBLE (D) REGISTER ———————»)

7L

T Y 7 T T T
f)e A
[y S A bbb g

“ 7 ¥ 23 ris o
1, J, and K Registers

Each of these is an independent, 24-bit general-purpose
register that can also be employed as an index register for
address modification. The 1, J, and K Registers are directly
accessible through the instruction set and the Programmer’s
Control Panel.

user by means of the instruction set and the Programmer’s ¢ | REGISTER ﬂ
Control Panel. ! ! ' ! ! " !
1 1 Ji [l 1] ¢ 1 19 1 1 1 1 LJ L1 [L 1 1] 1
Ik A REGISTER D' s °
T T T T T T T H J REGISTER 4
T] A i 1 T 1
] 1 1 1 1 L 11 L] I 1 L Ll 1 1 1 i L] [l
23 — BYTE (B) 231 [SS WONS ANE N N U VAT VR (NPU TN U N NN SN U WA O M B 10
REGISTER ¢ K REGISTER —>)
W}W T T T T T T T T T
SN I (N T W | [S (SR NN NS S VNN UM T U NN NNV N N S N O NN SN U NN S | .1
8 7 [3 0

0830005-000

~ Original 3/78
INTEGER
5|22 ' ' ' ' ' ' ' 20
T
BYTE INTEGER
¢ T r
A% F
DOUBLE INTEGER '
'WORD : WORI)l .
DG PR I O T
l‘.—z: 47- B‘I)T DATA2 3WORI'J :
SINGLE PRECISION - FLOATING POINT
WORD 1 WORD

e . DOk =
E—-——Z4-B|T MANTISSA—:-I ; —-l ’ 8-8IT Expongm'o e

DOUBLE PRECISION - FLOATING POINT

WORD WORD 2
sl {{ 2= oje={ (z]se® 20
= 1 I 1 i 1 L 1 H 1 1 5 = i K L [l s

39-BIT MANTISSA 8-BIT EXPONENT ta—o
COMPLEX NUMBR - FLOATING POINT

WORD 1 WORD 2
s {9 7% %e sf2¢ 2°l REAL PART
23 o 23 7 (-]
L-——24-BIT MANTISSA——"I — B—BIT. EXPONENT |le—o

WORD WORD 4

- ' ' -23 N ' of IMAGINARY

521 A <<_n hededd, 1‘21 gszl bd L 1 l2 PART
23] 23 7 (]
je——— 24-BIT MANTISSA ——= —»4 8-BIT EXPONENT jeo—rmr

MI60-033-7708

Figure 2-1. Data Word Formats

2-2

Condition Register

A 4-bit element that stores the results of specific
operations, the Condition (C) Register is accessible by
means of several instructions. Display for the C Register is
provided by the Programmer’s Control Panel.

CONDITION (C) REGISTER
PZNO
Positive (logic ONE) or Not Positive (logic ZERO)—% 2| T 7
Zero (logic ONE) or Not Zero (logic ZERO)
Negative (logic ONE) or Not Negative (logic ZERO)

Overflow (logic ONE) or No Overflow (logic ZERO)

Program Address Register

Also called the Program Counter, the 16-bit Program
Address (P) Register retains the memory address from
which the current instruction is fetched. A maximum of
65,636 memory locations can be accessed via the P
Register. The register can be loaded with a TOC instruction

" and its contents saved with a BSL instruction. The contents

of the P Register can be modified through the execution of
any of several branch instructions. The Programmer’s
Control Panel provides direct entry and display for the P
Register.

PROGRAM ADDRESS REGISTER _’l
(PROGRAM COUNTER)
| T | A

| S TR VN WY TN SN ISR S NN OO N S T N |
L] 4]

Instruction Register and Shift Counter Register

Once an instruction has been fetched from memory, it is
retained in the 24-bit Instruction Register during decoding
and execution. The Instruction Register is not
programmable. Bits 7-0 of the register serve as the Shift
Counter Register and is programmable via all shift
instructions. Entry and display of the register is provided
through the Programmer’s Control Panel.

le—————— INSTRUCTION REGISTER ————|

...

0830005-000
Original 3/78

ADDRESSING FUNCTIONS

The virtual memory operates in two distinct addressing
modes, “Monitor”” and ‘“User”. In the Monitor Mode, the
paging logic is disabled and addressing is identical to that of
a non-virtual memory system. In the User Mode, the paging
logic is activated and all effective address references
generated by the CPU are subjected to a memory
translation technique. All effective memory addresses are
translated. This includes addresses defined by the Program
Counter and all memory reference instructions, including
indirect and indexed operations.

Basic Addressing Technique

Total memory available to the CPU is 262, 144 (256K)
words. Because of the CPU’s basic architecture and the
corresponding addressing technique, executable code
{programs) is confined to the lower 64K (0-65,5636 words)
of memory. However, memory above 65K may be
addressed by means of special indirect references. Figure
2-2 illustrates the memory referencing sequence.

Direct Addressing

A standard memory reference instruction format is shown
below. The 15-bit address field (bits 14-0) in the instruction
word provides direct access to 32,768 (32K) words.

t i T 1

OP CODE |*| x 15 BIT ADDRESS

| S Y S W | 1 | S I | Ll | N OO TS SOV S O I |
23 8 17 16 15 14 °

The addressing logic divides the lower 64K of memory into
two areas; 0-32K and 32K-64K. Under this method, the
most-significant bit (P15) of the Program Counter is used to
bias all direct address references. P15 = 0 specifies an
address in the lower 32K, while P15 = 1 designates a
location in the upper 32K of the 0-64K memory increment.
By performing a logical-OR function between the
immediate (direct) address reference and P15, instructions
may directly address up to 32K words within their
respective sections of memory.

NOTE

An instruction in the last location of the lower
memory section should not reference another
address in the lower section. By the time the
effective address is computed, the Program
Counter will have advanced to bias the
immediate address reference by 100000g to
specify an effective address in the upper
memory section.

Modification of a 15-bit direct address by means of the
indirect (*) and/or indexing (X) features can permit an
instruction to address any memory location up to 256K
words.

2-3

0830005-000
Original 3/78

START

4

AC(FISS (/]
INSTRUCTION

DECODE
OPERATION
8ITS

YES
NO
\ 4
EMA @ MK X) EMA @M EMAS-M EMA @ M+{J)
EMA @— Prs
EMA. OR. P15 BAS
4
IN mhno
REF
YES
ACCESS (EMA)
FOR INDRECT Py
REFERENCE
ON EMA

EMA @~ MHX)

LEGEND:
BJL = BRANCM INDEXED BY J ~— LONG
EMA = EFFECTIVE MEMORY ADORESS
M = 15-BIT ADDRESS
M = 16-BIT OR 18-BIT ADDRESS
()} = CONTENTS OF
X = INDEX REGISTRR (1, J OR K)
P = PROGRAM ADORESS REGISTRR

24

Figure 2-2. Memory Referencing Sequence

MI180-003-10688

A special group of ““long branch’ instructions permit direct
addressing up to 64K words. The instruction word format
for this group is shown below. Note that these instructions
may be modified by indirect references (*), but have no
provision for indexing. Long branch instructions are not
biased by P15. Bit 16 is used to extend the Op Code.

1 | 1 M i I

OP CODE |*|E 16 BIT ADDRESS

) Y T A | | W IS S N NN NS N TSN AU NN SE S N
23 18 17 16 IS o

Indirect Addressing

Indirect address references permit the CPU to access up to
256K words of memory. When a memory reference
instruction is decoded, bit 17 (*) of the instruction word is
examined. If bit 17 is set (ONE), an indirect address
reference is indicated. An indirect reference signifies that
the effective address (defined by the instruction word plus
any index count) contains a second address rather than an
operand. The word retrieved from memory when the
effective address is cycled is treated as an indirect address
word. Indirect address word formats are illustrated below.

STANDARD INDIRECT FORMAT

7 T T T T I
*| x 0//// 16 BIT ADDRESS
! JA J8 1NN WU N N NN U N N TS IO SO SO SO N

23 22 21 20 16 15 [+]

LONG ADDRESS FORMAT

I 1

18 BIT ADDRESS

T T WS TN SOOI NN U OO T T TN Ty O O S oy
23 22 21 20 19 18 17 o

k| x 11

N

The standard indirect format, with its 16-bit address field,
permits access of up to 64K words. Up to 256K words can
be accessed by the 18-bit field in the long address word.
Neither type of indirect address is affected by the P15
address bias bit.

Bit 23 (*) of either indirect format may be set to specify
another fevel of indirect addressing. Each level of indirect
reference may be individually indexed to provide further
address modification.

Indexing

A direct or indirect address reference may be modified by
indexing. This operation adds the address in the current
instruction or indirect reference to the contents of a
specified index register (1, J, or K) to determine an effective
address. A two-bit field (X) in the instruction or indirect
reference specifies which register will be employed in each
indexing operation. Figure 2-3 provides some examples of
indexed addressing.

0830005-000
Original 3/7§

In the lower 32K memory section (P15 = 0}, immediate
address references may be indexed to access up to 65,536
words. However, instructions in the 32K-64K section of
memory {P15 = 1) may not reference the lower section by
indexing since all immediate address references will be

" biased by 100000g.

Addressing, User Mode

Introduction

Paging is a hardware addressing scheme that allows a
program’s memory area to be discontiguous. Program
segments may be absent from physical memory while other
portions of the program are being executed. This aspect of
the paging operation, termed ‘‘demand-paging”, also allows
the computer to execute programs larger than the available
physical memory; hence, the term “Virtual Memory*’. The
following paragraphs discuss the paging hardware and
describe the basic functions of the VM.

Virtual Memory Registers

Various registers are supplied with the VM paging logic. A
brief description of each is provided in the following
paragraphs. Entry and display of all VM registers is
provided on the Programmer’s Control Panel.

Virtual Address Registers (VARs)

At the user’s option, a total of 256, 1,024, or 4,096 of
these 10-bit VARs are supplied. The eight least-significant
bits (7-0) retain the address of a physical memory page,
while bits 9 and 8 define the manner in which the specified
page may be accessed. The access modes and their
corresponding bit configurations are defined in the
paragraph describing demand paging operation. Specific
operations within the VM instruction repertoire provide
transfers to and from the VARSs.

VIRTUAL ADDRESS REGISTER (VAR)

PAGE ADDRESS

\ 9 8 y 7
ACCESS MODE

Virtual Base Register (VBR)

The 12-bit VBR retains the lower page limit of the user
program; i.e., the address of the first assigned VAR for the
currently-executing program. Special VM instructions
provide for loading the VBR and retrieving its contents.

VIRTUAL BASE REGISTER (VBR)

LOWER PAGE LIMIT (1ST VAR)

0830005-000
Original 3/78

23 17 16 1S 14 0
INSTRUCTION FORMAT (TMA) 000, OI{*| Xlo01,001,001,001,001
llIII llllll'llllllll
* = INDIRECT BIT: — ! Y
0 = DIRECT ADDRESS OP-CODE BASE ADDRESS
1 = INDIRECT ADDRESS (055) (111115)
X = INDEX BITS:
00 = NO INDEXING
01 = INDEX W/ |

10 = INDEX W/ J
11 = INDEX W/ K

INDEX REGISTER | (01)

Woﬁ' 0,0.10,01001.0010

1S]

(ADDED TO BASE ADDRESS)

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS - ‘
EFFECTIVE ADDRESS (BASE + INDEX + P15)

INDEX COUNT (22222g)

o imiiiiig |

OJO'III|0'l_||0_IIIIO.I.IIO|IlI)

EFFECTIVE ADDRESS (33333p)

13 0
<

INDEX REGISTER J (10)
(ADDED TO BASE ADDRESS)

'|°.'.'1°.'.'|°.~'.'1°.'l'1°.'.'

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -

Wi

INDEX COUNT (133333g)

g |

EFFECTIVE ADDRESS (BASE + INDEX + P15)

23

I ILO.OI 100,100,100,100

EFFECTIVE ADDRESS (144444)

INDEX REGISTERK (11)
(ADDED TO BASE ADDRESS)

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -
EFFECTIVE ADDRESS (BASE + INDEX + P15)

‘WON.OP; 1.0.0,1 00,100,100

INDEX COUNT (444448)

i

'1'l°.'L'.°.'['.°.'|'.°.'|'.°,')

EFFECTIVE ADDRESS (1555558)

2-6

M160-028C-1176

Figure 2-3. Examples of Indexed Addressing

Virtual Limit Register (VLR)

Bits 7-0 of the 10-bit VLR define the upper page limit of a
user program, i.e., the number of VARs minus 1 which the
program may reference; bits 9 and 8 provide special
controls. When bit 9 is a ONE, any of a group of privileged
instructions (see paragraph describing instruction trap
provision) may be executed without generating an
instruction trap interrupt. When bit 8 is a ONE, the Release
Operand Mode (ROM) instruction will be suppressed.

The VLR may be loaded or its contents may be retrieved
by specific VM instructions.

VIRTUAL LIMIT REGISTER (VLR)

UPPER PAGE LIMIT

9 8 7 (o]
l T_ ROM SUPPRESSION
PRIVILEGED INSTRUCTION CONTROL
Virtual Usage Registers (VURs)

A total of 256 of these one-bit registers are supplied; one is
associated with each physical page of memory. Each time a
given memory page is accessed by a CPU instruction, a ONE
is stored in the appropriate VUR. The VURs may be
selectively tested and cleared under program control.

Virtual Not-Modified Registers (VNRs)

A total of 256 of these one-bit registers are supplied; one is
associated with each physical page of memory. Each time
data is written (stored) in a given memory page by an
instruction reference, a ONE is stored in the appropriate
VNR. The VNRs may be selectively tested and cleared
under program control.

Virtual Usage Base Register (VUB)

This 8-bit register retains the address of one of the VURs or
VNRs (equivalent to the associated physical page). This
address is used as a pointer to access the appropriate VUR
or VNR during the Query Virtual Usage Register (QUR) or
Query Not-Modified Register (QNR) instruction. The VUB
can be loaded or its contents retrieved by special VM
instructions.

VIRTUAL USAGE BASE REGISTER (VUB)

VUR OR VNR ADDRESS

0830005-000
Original 3/78

Virtual Source Register {VSR)

This 12-bit register retains the address of one of the VARs
and is used as a pointer for retrieving data from the VARs
during a Transfer 2 Virtual Address Registers to Double
{TRD) instruction. The VSR can be loaded under program
control.

VIRTUAL SOURCE REGISTER (*/5R)

VAR ADDRESS

Virtual Destination Register (VDR)

The 12-bit VDR retains the address of one of the VARs,
and is used as a pointer for storing data in the VARs during
Transfer A to 1 Virtual Address Register (TAR) and
Transfer Double to 2 Virtual Address Registers (TDR)
instructions. A special VM instruction provides
program-controlled loading of the VDR.

VIRTUAL DESTINATION REGISTER (VDR)

VAR ADDRESS

" [+]

Virtual Demand Page Register (VPR)

A special register (VPR) is used in the virtual memory
system to copy the logical page address (bits 11-4) of the
user program for each memory reference so that if a
particular cycle causes a fault, the operating system knows
which logical page is involved and the condition that caused
the fault. The address of the VAR that created a demand
page or limit register violation is the contents of the VBR
plus the contents of the VPR. Bits 3-0 identify the type of
violation. The contents of the VPR may be retrieved under
program control.

VIRTUAL DEMAND PAGE REGISTER (VPR)

LOGICAL PAGE ADDRESS | VIOLATION TYPE

1l 4 3 o]

Basic Address Translation

In a VM system, memory is divided into 1,024 (1K)-word

“pages’”, A translation scheme is applied to the
most-slgmflcant Dits of all memory references. This scheme
“consists of adding a base address (VBR contents) to the
address bits and subsequent translation by special registers
to select a page of memory. The remaining bits of the
original memory reference are used to select a specific word
within the selected page. Figure 2-4 illustrates the address -
translation scheme of the VM logic. Figure 2-5 provides an
example of the address translation using a standard memory
reference instruction.

2-7

0830005-000
Original 3/78

LOADED UNDER PROGRAM
CONTROL BY
TDP INSTRUCTION .

T
R VIR MSB
I T S T |

-
G
B~
r
4

ABOVE
mir UPPER
VIOLATION

NO

ADD
{(VeR)

T0
ADDRESS MSB

PAGE NO.
(0-255 VAR

\——p— =

SELECT

SELECT
WORD
(ONE OF 1,024)

PAGE
(ONE OF 256)

) Ll

WORD IN PAGE
) S N S il L.t 1 Ll 1 Ll 1
109 [

EFFECTIVE MEMORY
ADDRESS PAGE

Mi1820-176

Figure 2-4. Basic-Address Translation, VM User Mode

2-8

0830005-000
Original 3/78

LOCATION (OCTAL) LABEL MNEMONIC OPERANT.
00005 TMA XYZ
05560 XYz DATA 5

MACHINE LANGUAGE REPRESENTATION FOR TMA INSTRUCTION

ooonon]olooooow 1101110000

S y)
05¢ X 055&%

(TMA OP CODE) (ADDRESS TO BE MAPPED)

EXPANDED 18-BIT ADDRESS

17
R 000 0 001 0|11 0 11 1 0000
N’ :
8-BIT MSB & 0.0.0‘0.010"10 lxlnollx'.lnononono
10-8IT LS8 " ,
MSB - 002 L8 = 15605
USER VAR ASSIGNMENTS VAR
6 78 205 2144 ADDRESS
00100010 01001010 {020 ¢ 20 T T T v I | 0001 1000
 arure TRl VI bRFRTRTATRF I WPRPLVAVRVAFMSS BV huParaTa
ACCESS PHYSICAL PAGE 4CSESS mivsicaLPace ACSESS evsicaLrace ASSESS puvsical pace
42 112g 758 30g
VBR VLR
000000001110 000000 I |
RAAAIRIARTRT g
X . , N ,
1ST VAR ADDRESS = 16 CONTROL VAR COUNT =3

1. (VBR) + MSB = VAR ADDRESS OR 168 +2s= 2()B

2. (VAR ADDRESS) = PHYSICAL PAGE OR 758

3. MEMORY ADDRESS IS WORD ,5608 (LSB) OF PAGE 75s
4. PHYSICAL ADDRESS IS 173560,

MI11829C-977

Figure 2-6. Address Translation Example, VM User Mode

0830005-000
Original 3/78

Address translation is implemented via the 10-bit Virtual
Address Registers (VARs) and the Virtual Base and Virtual
Limit Registers (VBR and VLR). Each VAR has a unique
number, or address, from 0 through 256, 0 through 1,024,
or 0 through 4,096 depending on the system in use. A
specific VAR is selected by adding the -eight
most-significant bits (MSB).-of the 18-bit memory reference
to the contents of R. The selected VAR, in turn,
contains an address corresponding to 1-of-256, 1,024-word

pages.

In practice, the user program is assigned {by the software
operating system) a group of sequential VARs, The lower
limit of the user program area, and the base for computing
VAR addresses, is established by loading the VBR with the
first VAR address in the group. The user program upper
limit is established by the VLR contents corresponding to
the number (quantity) of assigned VARs. Since the MSB
value is added to the VBR to compute VAR addresses, the
VLR must contain a quantity that is one less than the
number of VARs assigned to the user's program. Referring
to Figure 2-5, VAR address 16g is specified when the MSB
value equals 0, 17g when MSB equals 1, 20g when MSB
equals 2, and 21g when MSB equals 3. In this example, the
VLR would be preloaded with a count of 3. When the MSB
value exceeds this count, a limit violation will be generated.
See paragraph describing demand paging operation. The
VARs, VBR, and VLR are loaded under program control.

Demand Paging

Demand paging is the aspect of the VM hardware that
permits a portion of the user’s program to be absent from
physical memory (and located instead on a disc
mass-storage device) while the program is being executed.
When the address transtation logic detects a reference to a
non-resident page, a special hardware interrupt (Group O,
Level 2) is triggered. Subsequent processing by the
operating system may then access the desired page and load
it into physical memory. If sufficient memory space is not
available, the operating system may interchange inactive
resident program segments with the incoming page(s) or
programs (i.e., transfer the inactive segments to the disc
storage device). Once the correct program sequence is
loaded into physical memory, the user’s program may
continue its normal sequence.

A non-resident page is < 7nified by ZEROs ip bit positions 9
and 8 of the selected VAR. Each time a VAR is accessed,
these bits are examined by the paging control logic to
determine if a demand page is required. The address of the
VAR that contains the non-resident page is stored in bits
11-4 of the Virtual Demand Page Register (VPR). The
address stored in the VPR is reiative to the lower limit of
the user program (stored in the VBR) and is equal to the
MSB value of the address reference (Figure 2-5).

2-10

The interrupt generated at Group 0, Level 2 may reflect a
limit register or restrict mode violation as well as a demand
page. Bits 3-0 of the VPR define which condition generated
the interrupt; these are examined by the operating system
to determine what steps are to be taken in processing the
interrupt. Entry into an interrupt-processing routine
requires saving a return address; usually, the interrupt
address plus one. Certain situations require reexecution of
the instruction that created the demand page or violation;
consequently, the program counter must be adjusted to
fetch the instruction again. The operating system makes the
appropriate adjustment based on the code in VPR bits 3-0.
Table 2-1 defines the VPR status and control bits.

The paging logic provides a program restrict system that
permits pages of memory to be protected from
unauthorized access. A user’s program area is defined by
the contents of the Virtual Base Register (VBR) and Virtual
Limit Register (VLR). The VBR defines the lower page
limit in the user’s program while the VLR defines the last
page, or upper limit. No user's programs can reference any
memory location below the lower page limit because ail
addresses are biased by the VBR's contents during the
address translation operation. Any attempt to reference
memory above the upper limit will result in a limit register
violation and trigger the Group 0, Level 2 executive trap
interrupt.

Each page of memory can be further protected by placing it
in one of three access modes. Bits 9 and 8 of the VARs
contain the access mode bits for the associated page. Any
attempt to access the selected page in any manner other
than that specified in the mode bits will result in triggering
the Group 0, Level 2 executive trap. The access mode bits
are defined below.

Mode Bit9 Bit8 Description
0 0 0 Page Missing —page is not contaiﬁed in physical

memory (demand page).

Unrestricted —instructions may be executed
within the page and data may be loaded from
or stored within the page.

2 1 0 Execute/Read —instructions may be executed’
within the page or data loaded from the page;
data may not be stored within the page.

3 1 1 Read —data may be loaded from the page;

instructions may not be executed within the
page and data may not be stored within the
page.

The program restrict functions are enabled only when the
VM system is in the User Mode. The paging logic is
manually enabled/disabled by the PROG REST/OFF/VM
key switch located on the control panel.

0830005-000
Original 3/78

Table 2-1. VPR Status Bits/Definitions and Functions

VPR Bits Type of Instruction or Sequence Program Counter

Condition 3210 Violation Causing Violation Adjustment

1 0001 Demand Page Operand address of EXM Do not change.

or branch instruction
2 0010 Demand Page Operand address of memory Decrement by one.
reference instruction;
OR
USP or AOM instruction;
OR
Indirect chain.

3 0011 Demand Page ROM instruction Decrement by two.

4 0101 Mode 3* Same as Condition #1 Do not change.
5 0101 Mode 3* Same as Condition #2 Decrement by one.
6 0111 Mode 3* Same as Condition #3 Decrement by two.

7 1001 Mode 2* Same as Condition #1 Do not change.
8 1010 Mode 2* Same as Condition #2 Decrement by one.
9 1011 Mode 2* Same as Condition #2 Decrement by two.

10 1110 Limit Register Same as Condition #1 Do not change.
1 1110 Limit Register Same as Condition #2 Decrement by one.
12 1111 Limit Register Same as Condition #3 Decrement by two.

*Page Access Mode Violation

Instruction Trap Provision

An instruction trap function is included as an integral part
of the paging hardware. The trap prevents the execution of
certain, predetermined, instructions. When the trap is
enabled, any attempt to execute one of the designated
instructions will result in an executive trap interrupt at
Group 0, Leve! 3.

The instruction trap function is automatically enabled
when the paging logic is placed in the User Mode. When
enabled, the trap will analyze bit 9 in the Virtual Limit
Register (VLR). When VLR bit 9 is set (ONE), the
following instructions may be executed without generating
an instruction trap violation. If bit 9 is reset (ZERO) and
the instruction trap is enabled, a violation will occur when
an attempt is made to execute any of the following
instructions.

2-11

0830005-000
Original 3/78

HaLT (HLT)

Qutput Data Word (ODW)

input Data Word (1DW)

Output Command Word (OCW)

Input Status Word (ISW)

Output Address Word (OAW)

Input Address Word (IAW)

Input Parameter Word (IPW)

Hold eXternal Interrupts (HXI)

Release eXternal Interrupts (RXI)
Unitarily Arm group 1 interrupts (UA1)
Unitarily Disarm group 1 interrupts (UD1)
Unitarily Enable group 1 interrupts (UE1)
Unitarily Inhibit group 1 interrupts (Ul1)
Transfer Double to group 1 (TD1)
Transfer Double to group 1 (TD4)
Transfer Double to Limit Register (TDL)

If the instruction trap is enabled, the VM group of
instructions will result in a violation (VLR bit 9 has no
effect on this group) if the user program attempts to
execute them. :

NOTE

Any attempt to execute an Interval Timer start
or stop instruction in the User Mode when VLR
bit 9 is reset causes the instruction to be treated
like a NOP. No interrupt is generated. The
following instructions are affected:

Hold Interval Timer (HIT)

Release Processor Time (RPT)

Release Clock Time (RCT)

Any register to register instruction that loads
the T Register, such as a TAT instruction, etc.

Paging System Control

When a master clear is generated, the Monitor Mode will be
established. The paging logic will remain in the Monitor
Mode until placed in the User Mode. The User Mode is
established under program control (i.e., via the RUM
instruction). The RUM (Release User Mode) instruction
causes the User Mode to be established at the completion of
the instruction following the RUM. (This instruction
should, in practice, always be an unconditional branch.)
After the new program address has been calculated, the
User Mode will be activated. The RUM instruction, together
with the following instruction, will be handled like an EXM
with respect to a demand page (VPR bits 0 and 1 will be set
to ONE and ZERO, respectively). Refer to Table 2-1.

A BLU (Branch and Link-Unrestricted) instruction will
automatically establish the Monitor mode; the BLU’s 5-bit
effective memory address will not be mapped. Bit 20 of the
J Register will be set (ONE) if the BLU was executed in the
User Mode, and reset (ZEROQ) if the BLU was executed in
the Monitor Mode.

2-12

When an- interrupt occurs, the Monitor Mode will be
established; the hardware-generated EXM (EXecute
Memory) instruction will not be translated. The BSL
(Branch and Save Return-Long) to the dedicated interrupt
location will transmit the paging mode at the time of the
interrupt to the BSL's effective memory address. Bit 20 will
be set (ONE) if the system was in the User Mode and reset
(ZERO) if it was in the Monitor Mode. If a demand page
request occurs while executing a ROM instruction, the
paging mode will be recorded as Monitor (i.e., bit 20 of the
BSL's effective memory address will be reset). When
returning from an interrupt routine via a BRL (indirect)
instruction, bit 20 of the entry point will be tested, and the
User or Monitor Mode will be re-established accordingly.

Virtual Memory Instruction Set

A virtual memory instruction set is provided for program
control of paging functions. These instructions can only be
executed in the Monitor Mode. If an attempt is made to
execute any of these instructions while in the User Mode,
an instruction trap interrupt will be generated. A detailed
description of each of these instructions is provided in
Section VI of this manual.

Transfer Double to Source and destination registers (TDS)

Transfer Source and destination registers to Double {TSD)

Transfer A to 1 virtual address Register (TAR)

Transfer Double to 2 virtual address Registers (TDR)

Transfer 2 virtual address Registers to Double (TRD)

Transfer Double to Paging limit registers (TDP)

Transfer Paging limit registers to Double (TPD)

Transfer Usage base register and demand page register to
Double (TUD)

Transfer E to Usage base register (TEU)

Query Virtual Usage Register (QUR)

Query Not-modified Register (QNR)

Release Operand Mode (ROM)

Release User Mode (RUM)

BIT PROCESSOR

General Description

The bit processor consists of the single-bit H Register, an
18-bit V Register (base register), and the associated control
logic. The bit processor provides the capability to
selectively change, store, or test a bit from memory.

Bit Processor Registers

Two registers are associated with the bit processor feature.
A single-bit element, the H Register, retains the bit selected
for use in the operation. The 18-bit V Register is employed
to store a base address that is, in turn, used to define a
memory location from which the designated bit will be:
retrieved. Both the H and V Registers are directly
programmable via the special group of bit processor

instructions. Provision is made on the Programmer’s
Control Panel for entry and display of the bit processor
registers. The registers are entered and displayed
simultaneously, with the V Register contents displayed in
bit positions 17-0 of the display register indicators and the
H Register contents displayed in bit position 23.

BIT PROCESSOR REGISTERS

H REGISTER[

f— V REGISTER »

Operational Description

The 18-bit V Register is loaded with a base address which
specifies a memory location to be manipulated. This is
accomplished by transferring an 18-bit memory address
from the K Register. The instruction word further defines
the memory location, the specific bit, and the operation to
be performed. :

After the operation is performed on the selected bit, the
results are displayed in the Condition Register.

Program Control

Two types of instructions are associated with bit processor
operations. The first (shown below) specifies a
displacement (bits 7-0) to be added to the base address (V
Register contents) to specify the location to be accessed.
Bits 12-8 (binarily coded) are used to select a specific bit to
be used in the operation. The Op Code is defined in bits
23-13.

T ¥ T T I 1 T

OP CODE b d

F I O (U NN N Y U AN (U (SO0 NN NN NI N S N N N N N
23 13 12 8 7]

The second word format is used for bit movement or
transfers where a specific bit from memory is not required.
Bits 23-12 contain the Op Code; the remaining bits are
undefined.

0830005-000
Original 3/78

Bit Processor Instruction Set

The bit processor {Boolean function) group of instructions
include branches, logical manipulation, and interrogation of
a specified bit selected from an effective memory address or
the H Register. The following instructions are included in
the bit processor group.

Dot Memory with H (DMH)

Dot Not {(memory) with H (DNH)
Flag Bit of Memory (FBM)

Negate of H to H (NHH)

Or Memory with H (OMH)

Or Not (Memory) with H (ONH)
Query bit of H {(QBH)

Query bit of Memory (QBM)
Transfer Flag to H (TFH)

Transfer H to Memory (THM)
Transfer K to V (TKV)

Transfer Memory to H (TMH)
Transfer V to K (TVK)

Transfer Zero to H (TZH)
eXclusive-or Memory with H (XMH)
eXclusive-or Not {(memory) with H (XNH)
Zero Bit of Memory (ZBM)

PROGRAM RESTRICT AND INSTRUCTION
TRAP

General Description

The Program Restrict and Instruction Trap option allows
areas of memory to be selected under program control and
protected from unauthorized access. The instruction trap
provides a means for preventing the execution of a
predetermined group of instructions. Two registers, two
executive trap interrupt trigger circuits, and the associated
control logic comprise this option. Control is maintained by
two instructions; Transfer Double Register to Limit
Register (TDL), and Transfer Limit Register to Double
Register (TLD).

Program Restrict Registers

Two 18-bit registers are provided with the Program Restrict
and Instruction Trap. These registers define the upper (UL
Register) and lower (LL Register) limits of a memory area
that is authorized access without restrictions. Both registers
are programmable and may be entered and displayed via the
Programmer’s Control Panel.

PROGRAM RESTRICT REGISTERS
j[¢————— LOWER LIMIT (LL) REGISTER ———¥
1 1 1 ¥ |

[I D NS DN NN NN S B L1 i 1t | 1
7 [}

s 77777777

23 2 1 o

0830005-000
Original 3/78

Operational Description

The CPU operates with the program restrict system enabled
or disabled depending on the position of the PROG
REST/OFF/VM key switch. When the restrict system is
disabled, all memory is accessible.

When the restrict system is enabled, the computer operates
in three distinct modes as established under program
control. The three program restrict modes are defined
below.

a. Unrestricted (Mode 0) — Programs working in this
mode may access and alter any location in memory.

b. Restricted/Privileged (Mode 1) — Programs operating
in this mode may access and load from any location in
memory; however, Mode 1 programs may not alter the
contents of, or transfer controi to, any memory
location outside the specified limits.

c. Restricted/Unprivileged (Mode 2) — Programs
operating in this mode may not reference, in any
manner, any memory location outside the specified
limits.

Once established, the restrict mode is maintained by two
flags operating concurrently. The mode flags can be set to
one-of-three significant states to establish Mode 0, 1, or 2,

Control over the restrict system is maintained by the
program restrict flag (PRF). The PRF operates under the
condition and in the manner outlined below.

a. The PRF may be set only when the restrict system is
enabled (i.e., when the PROG REST/OFF/VM key
switch is in the PROG REST position).

b. When in Mode 1 or 2, the PRF is set when an
instruction transfers control into the restricted area of
memory.

c. When MASTER CLEAR is depressed, the PRF is set
and Mode 2 is established automatically. MASTER
CLEAR also clears the limit registers. Once a violation
is made, the only way of recovering manually is by
placing the PROG REST/OFF/VM key switch to the

OFF position and then depressing the MASTER‘

CLEAR switch.

d. Priority interrupts reset (turn off) the PRF, rendering
the mode flags ineffective until control is returned to
the restricted area and the PRF is set again.

e. When the PRF is set, executive trap interrupt 2
(Group 0, Level 2) occurs if a restrict violation takes
place, except when operating in the Halt Mode. (A
restrict violation consists of any attempt to violate the
conditions established by the modes.) The one

214

exception to this is the Branch and Link Unrestricted
(BLU) instruction. The BLU instruction has been
implemented as an executive call to allow restricted
programs to communicate directly with the resident
operating system without being trapped. The BLU
instruction resets the PRF and transfers control
unconditionally to the address specified by the
instruction.

Program Control

The restricted area of memory is defined by two special
registers, the Lower Limit (LL) and Upper Limit (UL)
Registers. Each register retains an 18-bit address that
defines one limit of the restricted area.

Two instructions, Transfer Double to Limit Registers
(TDL) and Transfer Limit Registers to Double (TLD), are
provided for operating the limit registers. The limits are
defined by executing a TDL instruction where D = E and A;
bits E17-EOQ specify the lower limit and A17-AQ specify the
upper limit. The TDL instruction also establishes the
restrict mode by setting the mode flags with Bits A21 and
A22. The bit configuration determines which mode will be
established as shown below.

A2 A21 Mode
0 0 0
0 1 1
1 0 2
1 1 0
NOTE

If an attempt is made to execute the TDL
instruction while in Mode 1 or 2, the
instruction trap is activated.

The TLD instruction provides a method of saving the
contents of the limit registers plus the status of the mode
flags. The contents of the LL Register are transferred to
bits E17-EQ and the contents of the UL Register are
transferred to A17-A0. The mode flag bit configuration is
retained in bits A22 and A21.

Instruction Trap

The instruction trap is enabled and disabled by the PROG
REST/OFF/VM key switch. When the PRF is off, the
instruction trap is inhibited.

If an attempt is made to execute any of the instructions
listed below with the PRF.an, an interrupt occurs at Group
0, Level 3. The interrupt routine may then examine the

. trapped instruction and determine what action is to be

taken. The affected instructions are:

Halt (HLT)

Output Data Word (ODW)

Input Data Word (IDW)

Output Command Word (OCW)

Input Status Word (ISW)

Output Address Word (OAW)

Input Address Word (1AW}

Input Parameter Word (IPW)

Hold eXternai Interrupts (HXI)

Release eXternal interrupts (RX!)
Unitarily Arm group 1 interrupts (UA1)
Unitarily Disarm group 1 interrupts (UD1)
Unitarily Enable group 1 interrupts (UE1)
Unitarily Inhibit group 1 interrupts (U11)
Transfer Double to group 1 (TD1)
Transfer Double to group 1 (TD4)
Transfer Double to Limit Registers (TDL)

INTERVAL TIMER

General Description

The programmable interval timer consists of a 24-bit
register (T Register), a clock, and associated control logic.
The timer can be preset and subsequently released, under
program control, to measure elapsed processor (CPU) time
or clock (real) time.

Timer Register

Suppiied with the interval timer, the 24-bit Timer (T)
Register operates as a counter in two distinct modes of
operation. When not used for timing functions, the T
Register functions as an additional general-purpose register
that can be accessed through the instruction set when
operating in the Monitor Mode. Entry and display for the T
Register is provided via the Programmer’s Control Panel.

j¢—TIMER (T) REGISTER ————— ¥

Operational Description

A self-contained clock generates the 1 microsecond pulses
used to strobe the timer. In either mode of operation, a
negative count is loaded into the T Register and is
decremented once for each elapsed period of 1
microsecond. When the count reaches zero, an executive
trap interrupt is generated at Group O, Level 5. A maximum
count of 16,777,21519 (77777777g) may be loaded into
the register. With a resolution of 1 microsecond per count,
a maximum time interval of 16.777215 seconds is available.

0830005-000
Original 3/78

Program Control

Interval timer operation is controlled by three instructions:
Hold Interval Timer (HIT); Release Processor Time (RPT);
or Release Clock Time (RCT). A HIT instruction will
prohibit the start of any timing sequence or halt any
in-process timing operation until the timer is released by a
RPT or RCT instruction. The RPT instruction releases the
timer for measuring elapsed processor {CPU) time. In this
mode, counting is inhibited during block /O channel DMA
operations, whenever any interrupt is active or the CPU is
halted. Clock (real) time operation, where the timer counts
continuously regardless of CPU condition, is initiated by an
RCT instruction.

STALL ALARM

The stall alarm is enabled and disabled by the
OFF/CP.LK.ST.AL. key switch on the control panel. When
the stall alarm is disabled, normal CPU operations take
place. Once the stall alarm is enabled, a 128-cycle counter is
activated whenever certain instructions are executed or
certain operating conditions are encountered. The counter
is incremented once each CPU cycle until the specified
instruction{(s) or conditions are removed. If the
instructions/conditions are still present after 128 machine
cycles, an executive trap interrupt is generated at Level 4 of
Group 0.)

The following instructions and/or CPU conditions will
activate the stall alarm counter.

Unitarily Arm group 1 interrupts (UA1)
Unitarily Disarm group 1 interrupts (UD1)
Unitarily Enable group 1 interrupts (UE1)
Unitarily Inhibit group 1 interrupts (Ul 1)
Transfer Double to group 1 interrupts (TD1)
Transfer Double to group 1 interrupts (TD4)
Update Stack Pointer (USP)

Branch and Save return — Long (BSL)

Hold eXternal Interrupts (HXI)

Hold interrupts and Transfer | to memory (HTI)
Hold interrupts and Transfer to J memory (HTJ)
Hold interrupts and Transfer K to memory (HTK)
EXecute Memory (EXM)

Release eXternal interrupts (RXI)

Transfer Registers to Memory (TRM)

Transfer Memory to Registers (TMR)

Branch and Reset interrupt Long (BRL)

A halt condition

An indirect memory cycle

Each of the preceding instructions or conditions prohibit
the recognition of external interrupts for a period of one
cycle following completion of the instruction. Executing a
series of these instructions sequentially will lock out
external interrupts for the entire series. Multilevel indirect
addressing can produce a similar effect, since the
instruction must satisfy all address references before
completion. A halt condition — whether as a result of

X ¥4

~ 0830005-000

Original 3/78

programmed halt, operator action, or memory parity error
- also prohibits external interrupt recognition by the CPU.

If a power failure occurs, the stall alarm becomes disabied.
However, when power is restored, the stall alarm is
re-enabled and operations continue in a normal routine.

With the exception of an EXM instruction or an indirect
cycle, the monitored operation is allowed to complete its
sequence before the executive trap assumes control. An
EXM chain (where an EXM instruction references another
EXM which, in turn, specifies a third, etc.) has the same
overall effect as an indirect chain in that all references must
be completed before the sequence is complete. Therefore, if
an EXM or indirect cycle is in process when the executive
trap is generated, the stall alarm logic automatically
terminates the sequence. If a block controller channel is
transferring data into memory when the executive trap
interrupt is generated, the current cycle is completed before
termination occurs and the trap takes control. If a hait
condition is in effect when the executive trap interrupt is
generated, the stall alarm logic automatically forces the
CPU into a run mode.

120 HERTZ CLOCK .

This clock continuously transmits 120 or 100 mainframe
interrupt signals per second, depending on power line
frequency. The interrupt signal is controlled completely by
enabling (or disabling) the assigned CPU interrupt level. The
first interrupt following an enable signal will occur in less
than 1/120 (1/100) of a second because the clock never
stops transmitting signals; however, all subsequent
interrupts will be precisely 1/120 (1/100) seconds apart.

The accuracy in using this clock is a function of the user
interrupt routine logic. For example, if the clock is used to
update a “‘time-in-seconds’’ counter by adding one count
every 120 (100) interrupts, the “current time” at any given
query will be accurate within 1 second. If, however, the '
counter is updated each interrupt — 1/120 (1/100) — and
divided by 120 (100) when ‘‘current time’’ is queried, the
accuracy will be within 1/120 (1/100) of 1 second.

A simple example of coding, where the clock is assigned to
priority interrupt Group 1, Level 22, is as follows:

. Initialize Clock Routine

INITCT TMA = B22 . (A)=8it 22
TME = B22 . (E}=8it 22
UA1 . Arm L22/G1
UE1 . Enable L22/G1
TZMCLOCK T . Zero Clock Time
BUCO, J
o . Interrupt Routine
CLOCK IR bt . Enter
AUMCLOCK T Increment Clock Time
BRL® CLOCK IR Restore C register and Exit
oL . Current Time Routine
CTIME TMCLOCK T
ESA
DVO 120
BUCO, J

. Return: (A) = Seconds
(E) = Remainder

2-16

FIRMWARE BOOTSTRAP

The firmware bootstrap automatically stores in memory a
loader program that permits a more complex program to be
stored. Any program can be loaded as long as it is in
bootstrap format; however, the most common application
is to load a loader program which allows other programs,
operating systems, diagnostics, or other data to be stored in
selected memory locations. Eight sources are selectable for
transferring a program to memory via a selected peripherai
device: paper tape; cassette (paper tape emulation); disc;
card reader (word mode); card reader (block mode);
magnetic tape; and flexible diskette. The operation of the
bootstrap is implemented at the control panel. The specific
device may be selected with the BOOTSTRAP SELECT
switches and stored in memory by depressing the
BOOTSTRAP ENA switch. A description of the bootstrap
operation and individual bootstrap programs are
documented in the Operator’s Manual, 0840003.

POWER FAIL SHUTDOWN AND RESTART

This feature provides the capability of saving the operating
program in the event of a power failure and provides
program restoration and restart when power levels return to
normal. This feature is applicable to core memories or to
semiconductor memories with battery back-up. It is not
applicable to semiconductor memories without battery
back-up.

The shutdown circuits monitor the input ac power source
for amplitude fluctuations. A decrease in ac voltage below
the specified level causes an executive trap interrupt to be
generated at Group O, Level 0. If semiconductor memory
with battery back-up is installed in the computer, the
memory will be switched to battery. One millisecond after
the interrupt, a Master Clear signal is generated to complete
the shutdown process. In the one millisecond interval
between interrupt and final shutdown, the
interrupt-processing routine must save the operating
program along with parameters for returning to the point of
interrupt.

When the ac power level returns to its nominal level, a
restart signal is generated to begin the restore process. The
restart signal generates an executive trap interrupt at Group
0, Level 1. ‘

PROGRAM HALT AND ADDRESS TRAP

General Description

This feature provides address trap or program halt functions
as desired by the user. Memory reference addresses are
compared to a preset address. A comparison between the
reference and preset address. causes an executive trap
interrupt to be generated or a program halt to occur
depending on the state of mode control bits. Hardware
includes a register, an 18bit comparator, an interrupt
trigger circuit, and associated control logic.

Query Register

A 21-bit address Query Register is supplied with the
program halt and address trap. Bits position 17 through 0
contain either the trap address or the program halt address.
Bits 23 through 21 are the halt or address trap control bits.
When an address is reached in program that coincides with
the address stored in the Query Register, the machine halts
or an interrupt is generated. The Query Register may be
loaded under program control or via the Programmer’s
Control Panel.

}& QUERY REGISTER ——————»
1 1] ¥] T

TRAP OR HALT ADDRESS

R T VSR TSN TN TN INUON N T TN TS TN SR S T N N A
322 21 17 °
NN

CONTROL

Operational Description

The Query Register is loaded with the Transfer Memory to
Query Register (TMQ) instruction. This instruction
transfers the contents of the selected memory location to
the Query Register. The 18 least-significant bits,
representing the trap or hait address of the memory word,
are loaded into bit positions 17-0 of the Query Register.
Memory word bits 20-18 are not used and bits 23-21 of the
memory word are loaded into bit positions 23 through 21
of the Query Register. These three bits determine the mode
of operation to be performed and have functions as follows:

Bit 23 = ONE Disable Address Trap
Bit 23 = ZERO Enable Address Trap

Bit 22 = ONE Trap on Write only
Bit 22 = ZERO Trap each time selected address is
referenced

Bit 21 = ONE Trap or Halt during User Mode only
Bit 21 = ZERO Trap or Halt during Monitor Mode only

When the Program Halt Enable switch on the Programmer’s
Control Panel is enabled (PH ENA in the up position), the
contents of the Query Register are compared with the
program address. When they compare, the machine is
halted. If virtual memory is enabled and the address trap
disabled (bit 23 = ONE), a compare will cause the machine
to halt in the User Mode if bit 21 is set. If bit 21 is reset
(ZERO), the machine halts in the Monitor Mode.

When the PH ENA switch on the control panel is disabled,
the address trap is enabled or disabled with bit 23 of the
Query Register. The address trap is enabled when bit 23 is
reset, or ZEROQ. Each time a referenced memory address
corresponds with the address stored in the Query Register,
an executive trap interrupt at Group 0, Level 7 is generated
to inform the CPU. When bit 23 is set (ONE), the address
trap is disabled. Disabling the trap inhibits the executive
trap interrupt.

0830005-000
Original 3/78

Additional control of the address trap is provided with bits
22 and 21. With the trap enabled and bit 22 set {ONE), the
executive trap interrupt is generated when a write operation
is made to the referenced location. If bit 22 is reset
(ZERO), the interrupt is triggered whenever the referenced
location is accessed. With the virtual memory enabled and
bit 21 set (ONE), the address trap is enabled during User
Mode of operation; if bit 21 is reset, the trap is enabled
during the Monitor Mode. The memory address is taken
from the CPU at a point prior to the address translation
when virtual memory is enabled.

Memory addresses that result from DMA operations by
block controller channels are not affected by the address
trap.

Program Control

With the Query Register loaded and the address trap
enabled, an interrupt is generated (in accordance with the
control bit settings) each time a reference is made to the
memory location corresponding to the address stored in the
Query Register. If it is desired that a reference to the
selected memory location be recognized only once, a
second TMQ instruction should be executed following the
first interrupt to set bit 23 of the Query Register to a ONE.
This disables the address trap.

When the trap occurs, the instruction causing the trap is
terminated and execution of that instruction is not
compieted.

REAL TIME CLOCK

General Description

The Real Time Clock option consists of a 100 kHz
crystal-controlled clock, a counter, and associated control
logic. All components are mounted on a board which is
designed to plug into the internal controller locations of the
Programmed Input Output Channel (PIOC) board. Each
PIOC can accommodate one or two Real Time Clocks.
Although this option has no peripheral device connected to
it, programming is accomplished via normal 1/0
instructions. More than two Real Time Clocks may be used;
the limiting factor being the number of PIOCs used in the
system. An external interrupt is provided which is
configured in the same manner as any input/output
interrupt, i.e., the interrupt can be assigned to any level in
Group 1 except 0 and 1. The interrupt is generated when
the clock count reaches ZERO and the interrupt is enabled.

Operational Description

By means of the Real Time Clock, the programmer is
provided with an interval timer which operates independent
of CPU timing and provides output pulses when the CPU is
either in the Run or Halt condition. Elapsed time is
measured by counting down the pulses in the counter. A

217

0830005-000
Original 3/78

selected time interval is preset in the counter by loading up
to three, 8-bit bytes into the counter. Clock output puises
occur at 10 microsecond intervals. A maximum time period
of 167 seconds is available when the counter is loaded with
all bits set in the three bytes. Thus, the programmer can
preset the clock for time intervals from 10 microseconds to

167 seconds in 10 microsecond increments. Since the Real

Time Clock is asynchronous with CPU timing, the period
may be off by 10 microseconds on the first count-down
cycle.

Command and Status Word Formats

As a result of the CPU issuing an Output Command Word
(OCW) instruction, a command word is transferred from
the A Register to the Real Time Clock. The command word
initiates operation of the clock, and provides the necessary
set-up and control functions. A description of the function
performed by each bit of the command word is given
below.

7 6 5 4 3 2 1 0

Run/ Load Enable Enable| Byte | Byte | Enable Enable
Hold Preset Snapshot Bits | Count Cmim Auto

Interrupt
Count 03 | 2. | 2 |Restart| "o P

Bit0 (1) Enable count zero interrupt
{0) Disable count zero interrupt

Bit 1 (1) Enable Automatic Restart of preset count
(0) Go into-hold mode at count of zero

Bit2,3 Byte count for input and output

Bit4 (1) Sample bits 3-0
{0) Hold bits 3-0 unchanged

Bit5 (1) Enable count snapshot output
{0) No action

Bit6 (1) Enable loading of preset count
(0) No action

Bit7 (1) Enable count down

(0) Hold count down

An Input Status Word (ISW) instruction generated by the
CPU results in the status word being transferred from the
Real Time Clock to the A Register. The clock status word
consists of bit 0 only. It is set to the ONE state whenever
the clock module is plugged into the PIOC board, indicating
to the CPU that it is on-line.

Program Control

Real Time Clock operation is controlled with four
instructions: Output Command Word (OCW), Input Status
Word (ISW), Output Dats Word (ODW), and Input Data
Word (IDW). Each Real Time Clock is addressed by a

2-18

channei-unit code combination in the same manner as any
/O device. If one Real Time Clock is installed, a unit code
of 00, 01, or 02 is assigned according to its plug-in location.
If two Real Time Clocks are installed, unit codes of 00 and
02 are assigned. Access to the clock is via the A Register as
in normal 1/O operation.

Preset Count Loading

To initialize the Real Time Clock, an OCW instruction is
generated by the CPU to transfer the command word with
bit 6 = 1, and the desired byte count in bits 2 and 3. The
CPU then provides the specified number of ODW
instructions (one per byte) to transfer the bytes to the
clock, with the most-significant byte transferred first. When
the byte count is satisfied, an OCW instruction may be
given to transfer a command word with bit 7 =1. This
enables the counter to start counting down. If bit 7 =0 in
any command word, counting is inhibited until a command
word with bit 7 =1 is received. If a byte count less than
three is specified, the unused bytes in the counter are set to
ZERO.

Automatic Count Restart

If bit 1 = 0 in the command word, the automatic count
restart is enabled. This causes the Real Time Clock to
automatically reload the last preset count into the counter
and restart the count after the interrupt is given.

Snapshot Output

During Real Time Clock operation, the current count status
is made available to the CPU by means of the Snapshot
mode of operation. Snapshot output is initiated with an
OCW instruction and bit 5 = 1 in the command word. This
loads the 24 bit current count into a register. |DW
instructions, one per byte, transfer the contents of the
register to the CPU, the mostsignificant byte being
transferred first. This operation does not affect the
counting as long as bit 7 = 1 in the command word. If an
interrupt is generated during the Snapshot mode of
operation, the mode is terminated as the count is known to
be zero.

If snapshots are performed in a program with automatic
count restart selected, snapshot time prior to automatic
restart may be 10 microseconds different from snapshot
time after automatic restart. This is because of the 10
microsecond time frame used in the Real Time Clock.
Additionally, if a snapshot is performed at the trailing end
of a time out, before restarting or auto-restarting, the
snapshot bytes may be all zeroes. To minimize the
possibility of the foregoing occurrences, the snapshot of
any time must be accomplished in the least machine time
possible. An example of programming code that may be
used to do a snapshot in the shortest period of machine
time follows.

SNSH DAC *
TRM SAVE Save contents of register
TOA ‘240 Run, Snapshot command
ocw C/V Output command
IDW Cc/v Input most-significar* byte
-

BNZ -1 Possible wait

TAI Store most-significant byte in | register

iDW Cc/U Input middle byte

BNZ =1 Possible wait (needed if other units on channel)
TAJ Store middie byte in J register

IDW C/U Input least-significant byte

BNZ ' Possible wait (needed if other units on channel)
TAK Store least-significant byte in K register

TIA Restore most-significant byte in A register
LLA 8 Shift over 8 bits

TJB OR in middle byte into A register

LLA 8 Shift over 8 bits

TKB OR in least-significant byte into A register

TAM TIME Store whole word of time for later use
TMR SAVE Restore registers
BUC* SNSH Exit

SAVE BLOK 5 Register save area
TIME DATA O© Register save area
Selection Sampling

Selection Sampling is included as a feature of the Real Time
Clock for the convenience of the programmer. Since the
programmer would normally want to keep command word
bits 3-0 constant while he uses bits 7-b, bits 3-0 are sampled
only when command word bit 4 = 1.

0830005-000
Original 3/78

2-19/(2-20 blank)

0830005-000
Original 3/78

SECTION 111
MEMORY SYSTEM

MEMORY SYSTEM DESCRIPTION

introduction

Storage for the instruction and data words is provided for
by the main memory system. Memory modules are available
with either semiconductor or magnetic core storage
elements. Main memory may consist of all semiconductor
modules, all core modules, or a mixture of semiconductor
and core. System memory capacity from 48K to 256K is
available, where each word is 24 bits wide. Error detection
and correction circuits are available with semiconductor
modules. An optional data save unit is also available for
semiconductor memory modules to retain information in
the event of a facility power loss.

Data Transfers

Data transfers are over a 48-bit, asynchronous, bidirectional
system data bus. Other buses provided include an 18-bit
system address bus and a system control bus. All functional
elements in the computer system communicate with each
other through the system buses. The asynchronous bus
system allows each system element to function at its own
rate, independently of the other system elements. For
example, concurrent direct memory access 1/O transfer,
CPU instruction execution and SAU double-precision
floating point operation. All buses are located on the
backplane which is common to all boards in the system.
This interconnection scheme eliminates the need for
discrete wiring between the various boards in the system.

Transfer of data between the CPU and memory is over 24
of the data bus lines. CPU and Programmed Input Output
Channel (PIOC) data transfers use 8 of the data bus lines.
Data transfers between memory and the Integral Block
Channel (IBC), External Block Channel (XBC), and Direct
Memory Access Communication Processor {(DMACP) is via
24 data bus lines. Universal Block Channel (UBC) data
transfers to and from memory occur on all 48 lines. All
block 1/0 channels, once initialized, can perform blocked
data transfers between memory and the peripheral device
without CPU intervention.

SEMICONDUCTOR MEMORY MODULES

General Description
The basic storage element of the semiconductor memory

module is an N-channel metal oxide semiconductor (MOS), -

4K by 1-bit random access memory (RAM). A dynamic

device, the RAM requires a periodic rewrite or refresh cycle

‘to retain the stored data. It is also volatile — its data

content is lost when power is removed from the device. As
in all semiconductor memories, the RAM has a
non-destructive readout as opposed to a magnetic core
memory which has a destructive readout. In addition to the
RAM storage elements, each semiconductor memory
module contains an address register, a memory data
register, timing and control circuits, and, data error
correction circuits.

Each memory board is configured as a 16K word by 29-bit
memory module which can also be operated as an 8K by
58-bit memory module to provide a double-word fetch.
Minimum memory size is 48K words which can be
expanded to 256K words in 16K increments.

Semiconductor memory has a cycle time of 450
nanoseconds and an access time of 300 nanoseconds.

Operating Modes -

Operating modes of the semiconductor memory modules
include the Read Mode, Write Mode, and Power Fail
Refresh Mode. In either Read or Write Mode, a double
word of 48 bits or a single word of 24 bits may be selected.
In the Power Fail Refresh Mode of operation, memory
operations are discontinued but data stored in memory is
saved until normal power is restored if the data save unit is
instalied.

On a write to memory operation, data on the system data
bus is loaded into the memory data register. Data is then
transferred from the register to the location in memory
specified by the address bits on the system address bus.

A read operation causes data in the location specified by
the address on the system address bus to be transferred

- from memory to the memory data register. A single- or

double-word transfer is then made from the data register to
the system data bus.

When input power to the computer falls below specified
levels, a power fail safe signal is transmitted to the memory
modules. This signal inhibits any additional memory cycles
but allows completion of the current memory cycle. If the
optional battery backup is not installed in the system, data
stored in the RAMs is lost. With the battery backup
instalied, the power fail safe signal causes memory to go
into the Power Fail Refresh Mode of operation. In this
mode of operation, data stored in the RAMs is periodically
renewed or restored by a refresh only circuit. By this
means, data is not lost as a result of an ac power failure but
is saved for a period of up to two hours or until normal
power is restored.

31

0830005-000
Original 3/78

Error Correction

Single-bit error correction is provided by error correction
circuits contained on each semiconductor memory board.
All one-bit errors and some two-bit errors are corrected by
this circuit. An external interrupt is generated and the
parity error (PE) indicator on the control panel is lighted
whenever a parity error is detected, whether it is corrected
or not. Detection of a parity error does not halt the
machine,

All write operations to the memory will store either 24 or
48 bits of data and 5 bits of Hamming Code parity for each
24-bit data word. These parity bits are generated by the
memory module whenever data is asserted for a write

operation. All read operations of memory regenerate the

Hamming Code from the stored data bits and compare this
with the stored Hamming Code. This comparison generates
an address code that points to the bit in error, and the
correction circuit corrects the error. The corrected data is
stored in the memory data register and is written into the
appropriate memory location. This corrected data may then
be obtained from the memory data register by a read
operation to the same address, with no other operation
intervening.

MAGNETIC CORE MEMORY MODULE

General Description

The core memory module stores data in magnetic cores
configured in a single planar array. A magnetic core is a
non-volatile device, therefore, data is not lost when power
is interrupted. A core memory module also contains address
registers, an address comparator, data registers, parity
generators, and parity checkers.

A core memory module is operated as a 32K-word by
25-bit memory or as a 16K-word by 25-bit memory, where
each word is comprised of 24 data bits and 1 parity bit.

Core memory has a cycle time of 500 nanoseconds and a
normal access time of 240 nanoseconds.

Operating Modes

Single or double words may be placed on the data bus
during a read operation. If a single word . cad operation is
specified, two words (even and odd addresses) are retrieved
from core and are loaded into the memory data register.
Then, according to the address, the even or odd word is
gated to the bus. If the addressed word contains an error,
the parity error signal is asserted. A double-word read
operation places the addressed words into the data register
and onto the data bus. If an error is detected in either
word, the parity error signal is asserted.

3-2

Single or double words may be stored in memory during a
write operation. For a single-word write operation, two
words (even and odd) are accessed from storage. The 24-bit
word at the addressed location is cleared. The other word is
placed in the data register along with the 24-bit word which
is to be written into the addressed location. Then a parity
bit is generated for the new word and both words are
written into memory. In a double-word write operation,
both the odd and even single words on the data bus are
loaded into the data register. An odd parity bit is generated
for each word, and then a clear write operation is
performed to store the two single words in the addressed
location.

If input power is interrupted, a power fail safe signal allows
completion of the current cycle but prohibits any
additional cycles. When a parity error is detected, an
external interrupt is generated and the PE indicator on the
control panel is lighted, but the machine is not halted.

Fast Access Operation

A memory module always operates on two, 24-bit words at
a time. These two words have the same address, except for
the least significant address bit which defines the “even
word” or the ““odd word”. If the specified word is at
location 00 (even word), for example, the words at
locations 00 and 01 are accessed simuitaneously. if location
01 contains the specified word, the same two locations are
accessed.

Each memory module has a 48-bit data register, termed a
Content Addressable Buffer (CAB), to improve system
performance by reducing the effective cycle time of the
computer. Each memory access fetches and loads the two,
24-bit words into the CAB. When the CPU requests a word
from memory, a memory access is performed and the word
is transferred over the system data bus to the CPU.
However, if the CPU requires the next sequential word, it is
transferred from the CAB to the CPU without requiring a
second memory access. The CAB significantly reduces the
fetch and execute time for sequential instructions.

Fast access operation makes use of the Memory Data
Register (CAB), an address register, and comparison logic to
reduce the effective cycle time of the computer. The
address register retains the address of the last 24-bit word
memory location accessed. A new address to memory is
compared to the address stored in the address register. If
the new address is not equal to the previous address stored
in the address register, and if memory is not busy, a normal
memory cycle occurs. If the new address is equal to the
previous address, and memory is not busy, the data word is
gated from the Memory Data Register to the system data
bus immediately. In this case no memory cycle occurs and
no parity or data correction time is lost since these tasks
were done during the previous access.

ERROR REPORTING

Memory errors are reported to the system by means of the
external priority interrupt structure. When semiconductor
memory corrects an error, the parity error signal generated
is termed a “soft” parity error. If the error is not corrected
by the error correction circuits, the parity error signal is
referred to as a "“hard” parity error. Since magnetic core
memory contains no error correction circuits, they generate
only hard parity errors. Each time a hard parity error
occurs, a Group 1, Level O interrupt is generated. For each
soft parity error generated, the Group 1, Level 1 interrupt
is triggered. A count of the number of hard and soft
interrupts is recorded by software. The operating system
then responds according to the type and number of errors
recorded.

INTERLEAVING

Interleaving between memory moduies is available in either
two-way or four-way configurations, and up to sixteen
modules can be interleaved. Interleaving can provide an
improvement in system performance, but such
improvement is entirely dependent on the nature of the
program being executed.

0830005-000
Original 3/78

3-3/(3-4 blank)

0830005-000
Original 3/78

SECTION IV
INPUT/OUTPUT CHANNELS

GENERAL DESCRIPTION

The input/output (1/0) structure of the computer systeim
combines the characteristic economy of unit {/O systems
with the speed of a channel I/O system. This configuration,
in conjunction with the 1/0 instructions, permits maximum
flexibility in 1/0O communications. The relationship
between the CPU and the 1/O structure is illustrated in
Figure 4-1. The elements comprising the 1/O structure are
described in the following paragraphs.

The basic I/O structure aliows single word data transfers
between the Central Processing Unit (CPU) and a peripheral
unit. It also aliows 1/0 command and test operations to be
program controlled. Block 1/O channels may be used to
control the transfer of blocks of data between the CPU and
the peripheral units without program intervention.

The /O structure involves communication (such as data
transfers, addresses, and command status information)
between the CPU and a peripheral unit by way of a
channel. The CPU communicates with a specific channel
and the channel, in turn, communicates with a peripheral
unit. The 1/O structure varies with CPU configurations to
accommodate an applicable number of input/output
channel (IOC) boards, all of which can be active
concurrently. A channel can communicate with from one
to sixteen peripheral units using standard 1/O instructions.
Only one peripheral unit per channel can be connected;
however, all units can be active at any given time.

Communications between the 1/O structure and the CPU
may aiso be conducted on an interrupt basis. Logic in the
channel and unit allows unit interrupts to be placed under
program control and selectively enabled or disabled by
executing the appropriate 1/O instruction. An alternate
method permits unit functions to be wired directly to the
CPU priority interrupt structure and used as interrupt
triggers.

The 1/O interface is the link between each peripheral unit
and its channel. The interface and its associated unit
control facilities provide the physical means for connecting
the peripheral device to the 1/O structure and the logic
capability that allows the unit to adapt the standard 1/0
controls to its specific requirements. The interface facilities
and unit control logic are normally integrated with the
peripheral unit. However, some controllers are available as
options to the Integral Block Channel (IBC) and 8-bit
Programmed Input/Output Channel (PIOC) boards.

BASIC 1/0O CONCEPTS

The 1/O structure implements basic concepts to perform
input/output operations between the CPU and a variety of
channels and units. These basic concepts and their
applicability are described in the following paragraphs.

Addressing

a. Channel Addresses — The 1/O channels must each be
addressed via a unique address contained in each 1/0O
instruction. A channel is patched, or switched, to
recognize its assigned address. The recognition of this
code in an 1/O instruction activates channel logic to
execute the instruction. No other channel will
respond.

b. Unit Addresses — Since a channel is capable of
communicating with one or more unit controllers, any
instructions involving the transfer of data, commands,
or status must necessarily contain an address
applicable to the unit involved. The unit address is
contained in the format of the following instructions
(reference Section Vil for formats).

Output Data Word (ODW) — PIOC,
IBC, UBC, XBC and DMACP

Output Data Word (ODW) — PIOC,
UBC, XBC and DMACP

Input Data Word (IDW) — PIOC, UBC
and DMACP

Input Status Word (ISW) — PIOC, IBC,
UBC, XBC and DMACP

Output Address Word (OAW) — IBC, UBC,
XBC and DMACP

input Address Word (1AW) — IBC, UBC,
and DMACP

Input Parameter Word (IPW) — IBC, UBC,
and DMACP

NOTE

The inclusion of unit addresses in the IBC
channel OAW, IAW, and IPW instructions has
no transfer-to-unit control. The IBC channel
contains the capability to concurrently store
block transfer parameters for all unit
controllers on its interface and the parameters
must be addressed to reserved storage areas.

41

0830005-000

Original 3/78
{
CENTRAL PROCESSOR UNIT
/O CHANNEL CONTROL
DIRECT
PROGRAMMED INTEGRAL MEMORY
/O CHANNEL BLOCK ACCESS
(PIOC) CHANNEL COMMUNICATIONS
(1BC) PROCESSOR
UNIVERSAL EXTERNAL ADDITIONAL
(DMACP)
BLOCK BLOCK Vo
CHANNEL CHANNEL CHANNELS
1704 (UBC) (x8C) 1 OR2 uPTO8
DEVICE DEVICE COMMUNICATION
CONTROLLERS* CONTROLLERS INTERFACES
17016 17016 1708

PERIPHERAL DEVICE DEVICE DEVICE PERIPHERAL PERIPHERAL

DEVICES CONTROLLERS™ CONTROLLERS CONTROLLERS DEVICES DEVICES
*
TOTAL NUMBER OF INTERNAL AND EXTERNAL
PERIPHERAL PERIPHERAL PERIPHERAL DEVICE CONTROLLERS CANNOT EXCEED 16
DEVICES DEVICES DEVICES

4-2

Figure 4-1. Computer 1/0 Structure Block Diagram

BD1641-9T6A

An instruction containing a unit address, sent to any

channel other than the IBC channel is compared to the unit
code of the previous instruction. If a non-compare is
detected, the channel does not execute the ISW or IDW
instruction. Instead, a disconnect/connect sequence is
enteced in order to connect the addressed unit. A
non-compare detected during OCW and ODW instructions
forces the disconnect/connect sequence also, but the
channel loads the data/command, if not previously set
busy, and holds the data/command until the addressed unit
is ‘‘connected” to its interface. The transfer is then
completed and the channel returns to a ‘‘not busy”
condition.

Disconnect/Connect Sequences

Each 10C performs disconnect/connect sequences if the
unit address contained in the instruction differs from the
previously loaded address. In disconnect/connect sequences
occurring during input instructions, the channel is
prevented from setting the “ready” line to the CPU to
verify that the instruction was executed. This requires a
Branch on Not Zero (BNZ) instruction execution after each
1/0 instruction for a repetition of nonexecuted
instructions. Timeout routines sequenced by the CPU may
then detect channel/unit hangups and execute Input Status
Word (1SW) instructions to pinpoint conditions.

The IBC channel is not equipped to sequence
disconnect/connect operations; in this channel the unit is
automatically connected to the channel for the purpose of
instruction execution except during the time that data
transfers are taking place.

Block 1/0 Channel Priority

A programmable matrix is contained on each 10C capable
of performing block transfer operations. The matrix is
provided to resolve contention for simultaneous memory
cycle requests. The block 1/0 channels are assigned priority
levels and the highest priority channel requesting a memory
cycle inhibits any lower priority channel(s) from sensing a
“memory cycle granted” signal from the CPU. A system
should be configured to assign high speed devices a lower
priority level than relatively lower speed devices. Also, no
unused priority levels should appear between any two
channel levels. The priority matrix is patched on UBC and
XBC channels, and is switch-selectable on the DMACP and
IBC channels.

Synchronization (Handshake) Conditions

With few exceptions, all data and command sequences are
synchronized via ‘handshake’’ operations. This convention
ensures that the connected unit has received the command
or data in output transfers or frees the unit to load new
words in input transfers. If the unit is unable to accept the
command/data, the channel sets itself busy and will honor

0830005-000
Original 3/78

no output transfer operation except for the OCW
instruction in which “Override’” is specified. The normal
handshake function is modified in XBC and IBC channel
operations and is described following the conventional
handshake functions.

Output Transfer Synchronization

The output transfer handshakes are performed in
OCW/ODW single-word transfer operations and in output
block transfers of block 1/0O channels. In single-word
transfers, if the channel is not busy executing a previous
output instruction, the command/data is loaded into the
channel’s output buffer and the “Output Command Here”
or "Output Data Here” line is raised to the unit. The
channel sets itself busy to inhibit any new output transfer
operations. When the unit gates the command/data into its
own registers, it returns an ‘“‘Accepted” signal. This signal
resets the channel busy condition and the channel is free
for a new transfer.

in block transfer sequences, the channel, having been
previously initiated for output transfer operations,
automatically sequences memory request operations. When
the memory cycle is granted, the channel places the transfer
address on line -and loads the word from the specified
address. The channel then raises the data transfer
handshake line and, when the unit “accepts” the data,
fetches another word from memory. The channel remains

“busy” and the sequences continue until the transfer is

completed or overridden.

Input Transfer Synchronization

A channel cannot execute an IDW instruction until it senses
that the “Data Available” line from the unit has been set
true. In normal operations the channel automatically
transfers the input to the CPU and raises the ‘“‘Data
Accepted’’ handshake line. The unit drops “Data Available”
to prepare a new word for transfer.

An input block transfer begins when a unit raises its ““Data
Available” line after the channel and unit have been
commanded to the input mode. The channel loads the data
into its input buffer and raises its ““Data Accepted” line to
the unit. The channel then sequences a memory cycle with
the CPU to store the input word at the address specified by
the Transfer Address Register (TAR). The channel will not
honor any subsequent store requests until the memory
cycle has been completed.

XBC Channel Synchronization

The block transfer sequence control is under the control of
the external units in XBC applications. The unit may be
commanded to the block-transfer mode via an OCW
instruction and may require parameter inputs but, once
initiated, the device controls the transfers. In executing the
OCW instruction the channel uses the conventional

4-3

0830005-000
Original 3/78

“Command Data Here’’ handshake signal and the unit
returns “Accepted” to signal loading of the command. If
required by the unit, the channel executes an OAW
instruction to provide the Transfer Address (TA) to the
unit. The channel raises '*Address Word Here'’ which signals
the unit to “accept’” the address. This may be followed by
an ODW instruction in which the word count is sent to the
unit. The channel raises ‘“Word Count Here’’ which the unit
*accepts’’.

Data transfers to/from memory begin when the unit sets a
priority-structured ‘“Data Transfer Request” line to the
channel. If the channel is not busy executing an instruction
or servicing a higher-priority request, the channel raises its
“Send” line. The unit responds via its “Ready’’ line. The
unit then places the transfer address on line for channel
storage and sets a transfer direction control line, the “In”
line. If the “In" line is received in its true state, the channel
loads the data from the unit, sets itself busy, and requests a
memory cycle for storing the data in memory. When the
“In” line is received set false, the channel requests a
memory cycle for access purposes and, when the cycle is
granted, the channel loads the data word from the address
furnished by the unit. The channel then pulses its ““Output
Data Here’’ line to load the data into the unit.

IBC Channel Synchronization

The IBC channel is sequenced for block transfers via the
units’ “Data Transfer Request” lines. (See previous
paragraph for similar transfer capability.) The channel also
specifies the transfer direction, but this is a reflection of the
command word to the unit. In normal operation, channel
parameters are loaded via the conventional
block-transfer-initiate sequences into RAM locations
reserved for units served by the channel. The unit, however,
may be commanded to an external addressing mode in
which it loads the unit’s Transfer Address Register (TAR)}
and controls whether the TAR and/or Word Count Register
(WCR) are incremented/decremented, respectively.

The IBC channel does not ‘‘shake hands’ with the unit
during command transfers; the command is automatically
loaded by the unit controller since the channel “selects”
the unit, bypassing the usual disconnect/connect sequence.

UBC Channel Synchronization

UBC channel boards contain two logical channels which
share the unit bus via assigned scan cycles derived from
internal timing. Each channel communicates with an
addressed unit for transfer and handshake purposes only
during its assigned scan cycle. {f a data transfer occurs, the
scan cycle is extended until the handshake takes place or is
timed out. For OCW/ODW instructions the handshake
sequences are as previously described. For IDW/ISW
instructions, the channel must have first established that a
“status ready” condition exists. This condition requires
that the channel has iteratively received status
(automatically) or data (if available) from the addressed
unit during the most recent two assigned scan cycles. If this

is true, the channel automatically transfers the status to the
CPU during an ISW instruction; however, no handshake is
sequenced with the unit. If the input data has been loaded
by the channel, the data is transferred to the CPU during an
IDW instruction, and the channel signals ‘“‘acceptance’’
during the next assigned scan cycle.

The same handshake sequences occur during block
transfers, but the channel is capable of 48-bit (double)
word transfers to/from memory. This allows the channel to
shake hands with the unit twice for each memory cycle
requested, . transferring a 24-bit word with each handshake.

Timing

All of the 1/O channels except the UBC, DMACP and IBC
depend solely on computer clock puises for execution of
single-word instructions or, where applicable, block-transfer
operations. The UBC, DMACP and IBC channels are
synchronized to CPU timing for some sequences but may
provide other sequences via independent internal timing.

Block Transfer Memory Access

Block 1/0O operations are controlled by the channel after it
has been initiated under program control. The channel,
therefore, accesses memory for read/write operations and
must request memory cycles for this purpose. In memory
transfers, the requested memory cycle is automatically
granted unless the CPU is in an error correct cycle.

When a memory cycle is granted by memory, the control
signal is permitted into the highest priority channel
generating a cycle address. The “memory granted” signal
activates the channel to load the word from memory

- (output transfer) or transfer a previously-loaded word from

the unit to memory for storage {input transfer).

Block Transfer Parameters

The UBC, DMACP, and IBC are initiated for block-transfer
operation via an OCW instruction. The command word
itself must have bit 23 set to activate the block-transfer
mode. These conditions activate the channel to sequence
two simultaneous memory requests for parameters. The
designated parameter words are illustrated in Figures 4-2
and 4-3.

UBC Channel Parameter Words

The UBC channel parameter word formats are illustrated in
Figure 4-2. In this channel the QAW instruction preceding
the OCW used to initiate the block transfer control causes
the first parameter address (PA) to be loaded into a
parameter address register (PAR). This allows the
parameters to be located in a separate “list’”’, but the list
must be located in the lower 65K of memory. Each time
the PAR is addressed for a parameter word, the channel
increments the PAR for subsequent parameters.

0830005-000

Original 3/78
UBC CHANNEL
TWO-WORD PARAMETER LIST
PARAMETER WORD 1 (PAR)
SKIP COUNT WORD COUNT
23“ P NS S WO | 1'6 '51 TR T WD SR SNV TUE M W NN W N | |°
PARAMETER WORD 2 (PAR +1)
% ~ TRANSFER ADDRESS
23122 EI 1 1 1 Il 1 I I 1 1 I i 1 'l 1 9 1 s 10
|13 mames
: PARAMETER LIST
%}? L COMMAND AND RESTART (COMMAND CHAIN) (MEMORY)
s PARAMETER WORD 1
THREE -WORD PARAMETER LIST (COMMAND CHAINING) TWO-WORD LIST § [~ R AMETER WORD 2
COMMAND WORD (PAR) COMMAND WORD
T T Y \ Y T T THREE-WORD LIST PARAMETER WORD 1
UNIT COMMAND PARAMETER WORD 2
?2;'22 ZIL 1 1 1 g 1 L 1 1 ' I 1 " 3 Fe 1 1 [} 1 1 _p o PARAMETER me I
v I } NON-DMA COMMAND PARAMETER WORD 2
10 = RE-INITIALIZE INPUT TRANSFER COMMAND
11 = RE-INITIALIZE OUTPUT TRANSFER P—__\—_/./\

PARAMETER WORD 1 (PAR +1)

SKIP COUN WORD COUNT

Sk PO S S | TYS TS SRS S S WU H | U W W SN W |

23 16 15 0 ETC

T T

PARAMETER WORD 2 (PAR +2)

7 T T T T T v
% TRANSFER ADDRESS

4 AR N S SIS S S S ek PUR TR N N 1

2322 19 0
oL

I—-—- SEE PARAMETER WORD 2 ABOVE

IBC CHANNEL

PARAMETER WORD 1 (PAR) PARAMETER LIST
T T T T \] (MEMORY)
% WORD COUNT
3 e w5 PARAMETER WORD 1
PARAMETER WORD 2
PARAMETER WORD 2 (PAR +1) PARAMETER WORD 1
P ' T v T Y Y PARAMETER WORD 2
/4 TRANSFER ADDRESS [
23 IQL 1 L 2 1 ' 1 I 1 1 I I 1 it 1 1 I 1 l°
l { 0 - TERMINATE AFTER BLOCK
1 RESTART
ETC
MI1821-9768

Figure 4-2. UBC and IBC Parameter Word Formats

4-5

0830005-000
Original 3/78

PARAMETER ADDRESS
? T Rl T T T T
[)// PARAMETER ADDRESS

VSN VS WU TNy N TR SO WU T NS U U O U NS SO T A S N |
23 2 u

%0 INPUT
I QUTPUT

PARAMETER WORD 1

G, meaw

PARAMETER WORD 2
I—F;% TRANSFER ADDRESS

TR WO VU S TN W S SN SN S S N S S

23 21

I_ 3 O TERMINATE AFTER BLOCK
| RESTART

PARAMETER LIST
{MEMORY)

PARAMETER WORD 1

PARAMETER WORD 2
PARAMETER WORD 1
PARAMETER WORD 2
PARAMETER WORD 1
PARAMETER WORD 2

7 ~——

Mi2362-378

Figure 4-3. DMACP Parameter Word Formats

The first parameter applicable to UBC operations contains a
16-bit word count and the most-significant 8 bits contain a
“Skip Count”. The skip count is significant only in block
transfers designated for input and is loaded into the
channel’s skip count register (SCTR). This parameter
controls the actual transfer operations in which data is
loaded into memory. When a count is set into the SCTR,
the channel provides load sequences to transfer the data
from the unit to the channel but does not request memory
cycles to load the data into memory. The SCTR is
decremented with each word transferred and, when the
counter has decremented to zero, the channel begins data
transfers to memory based on the word count parameter.

The second parameter word in UBC applications contains a
20-bit TA. The two most-significant bits of PW2 are stored
in the channel and specify four termination sequences that
may be entered when the block transfer has been
completed; these are:

a. Normal termination — the channel goes to a “not
busy’ state when the last data word has been
transferred.

b. Data restart — the channel goes into a re-initiate
sequence to bring in two new parameters. The
subsequent block transfer is as specified in the OCW
initiating the previous block transfer.

c. Chain command restart — the channel goes into a
re-initiate sequence in which a new command (from
memory) is sent to the unit to change the transfer
direction. As with the OCW initiating block mode
operations, bit 23 of the command word must be set
to command the initiate sequence. This is followed by
bringing in PW1 and PW2 to set channel control action
for the block of data to follow.

d. Chain command terminate — the channel goes into a
re-initiate sequence in which a new command (from
memory) is sent to the unit. If bit 23 of the command
word is not set, the channel goes to a “not busy’’ state
when the transfer sequence is completed.

XBC Channel Parameter Words

The XBC channel does not contain circuits to store and
control parameters. Likewise, the channel does not provide
any restart actions. The parameters are controlled by the
external device, but the device may require that the
parameters be initially furnished from memory. ‘In the
latter case, the channel is sequenced to execute an OAW
instruction which transfers the TA to the unit. This is
followed by an ODW instruction which sends the word
count to the unit. After being initiated by the OCW
command, each data transfer is sequenced and the unit
itself furnishes the transfer address. The unit controls the
word count and generates any operational interrupts.

IBC Channel Parameter Words

The IBC channel is initiated to the block-transfer mode via
the conventional OCW with bit 23 of the command word
set. The IBC channel then enters the initiate sequence to
load two parameter words (Figure 4-2). The first parameter
word contains the word count of the subsequent block
transfer. The second parameter word contains an 18-bit TA
and the "restart” condition. The IBC channel does not
provide chain command functions in a restart operation.
But, since the 1BC channel contains storage for parameter
addresses, the channel may access PW1 and PW2 from a
“list".

DMACP Channel Parameter Words

Each port has assigned to it a Parameter Address Register, a
Byte Count Register, and a Transfer Address Register.
These registers are located in the Parameter Stack located
on the DMACP board. Refer to Figure 4-3.

The Parameter Address Register contains the starting
address in main memory of the next parameter list. The
parameter list specifies the byte count to be placed in the
Byte Count Register, and the transfer address to be placed
in the Transfer Address Register. Along with the parameter
address, a transfer direction bit (23) specifies whether the
transfer is to be an output from main memory to the
DMACP (ONE), or an input from the DMACP to main
memory (ZERO).

Parameter Word 1, loaded into the Byte Count Register,
contains in binary format the number of bytes of data to be
transferred between main memory and the selected port.
Maximum byte count per DMA sequence is 65,536.

Parameter Word 2, the transfer address, is loaded into the
Transfer Address Register. The transfer address represents
the location in main memory where the next data word
{three bytes) is to be transferred. Each time a word is
transferred, the TAR is incremented to point to the next
memory address. An automatic restart function is provided
to enable successive blocks of data to be transferred
without CPU intervention. This is accomplished with bit 23
of the transfer address. If this bit is a ONE, the
microprocessor will fetch a new byte count and transfer
address from main memory as specified by the Parameter
Address Register. A restart occurs when the existing count
in the Byte Count Register reaches zero. When bit 23 is a
ZERO, the restart function is disabled.

INPUT/OUTPUT INSTRUCTIONS

Execution of 1/0 instructions consists of the transfer or
command (OCW), data (ODW and IDW), status (ISW), or
address (OAW, 1AW, IPW) words between the A Register
and the specified channel/unit combination. The
channel/unit codes in each |/O instruction (excliding OAW,
IAW, and IPW instructions in applicable block-transfer
channels except the IBC) allow one channel to be selected
and one of up-to-16 units to be connected to the channel.
When an instruction to the same channel carries a different
unit code, the previously-specified unit is disconnected and
the new unit is connected automatically. During this
disconnect/connect sequence, the channel is busy and does
not respond to 1/O instructions until the sequence is
completed. If a channel is in the process of transferring
commands or data to a unit, an ISW or IDW instruction
addressed to a different unit on the same channel receives a
busy indication.

0830005-000
Original 3/78

Command and data words from the CPU are transferred to
the channel output buffer and subsequently to the
connected peripheral unit. Data and status words are
retained in the input buffer of the selected unit and
transferred to the A Register upon request (instruction)
from the CPU. Address words are applicable only to those
channels employing the block-control capability. (Refer to
I/0 instruction formats in Section VII for the following
discussions.)

1/0 Commands

The OCW instruction transfers a command word to the
specified channel/unit combination. The command word
bits specify the unit control function(s) to be performed
and/or the 1/0 condition to be established. Following the
execution of an OCW instruction, the channel remains busy
until the command has been accepted by the addressed
unit. Figure 4-4 shows the format for a typical OCW
instruction.

If the channel is busy or not ready when addressed by the
OCW instruction, the Condition Register is set to ““Not
Zero” to allow a programmed delay. The override function
causes the channel to automatically perform a unit
disconnect/connect sequence. This clears the channel of
any other activity and allows the current instruction to
assume control of the channel unconditionally upon
termination of the disconnect/connect sequence.

All of the 1/O channels execute the OCW instruction, but
channel capabilities may require setting of the instruction
contents as follows:

a. Unit Addresses — The IBC channel contains interface
capability for up-to-two devices. The unit address
must therefore be set in Unit Code bits 0 and 1. The
unit addressing requirements for the XBC channel is
contained in Unit Code bits 0-2. Unit code 10g is the
only valid code for the DMACP channel. All of the
remaining channels, having the capability to interface
with up-to-16 units, utilize all of the Unit Code bits
for addressing purposes.

b. Channel Command Mode — Bits 4 and 5 provide
command contro! to set an |/O channe! to one of four
modes: Normal, Offline, Multiplex, and Reset. The
Normal mode specifies “normal’’ command functions.
The Offline mode removes the units from the 1/0
channel interface, permitting a second computer and
1/0 channel to assume control over the units. The
Multiplex mode allows a “Master’” unit to
communicate with a ““Slave’” unit and the CPU cannot
intervene except via a Master Clear or an OCW
instruction with “Override’” specified or Reset mode
commanded. The Reset mode allows a return to
Normal mode operations from either the Offline or
Multiplex modes.

47

0830005-000

Original 3/78
0070.* +C.U ofofolofofofrfr{rfojofof*|c|cfc|c|c|m|njujufulu
232221 2019181716 151413121110 9 8 7 6 54 3 2 1| O
o -~ /V\ V___)
* = OVERRIDE BIT SNCUNIT
CHANNEL CODE
¢ = CHANNEL NUMBER BITS (0-11) CODE
- _ CHANNEL
N = MODE BITS (0-3) OVERRIDE COMMAND
U = UNIT NUMBER BITS (0-15) BITE MODE
Mi2363-378 -
Figure 4-4. OCW Instruction Format
The IBC and DMACP channels do not respond to the mode IBC and DMACP None
control specifications of an OCW instruction (they thus P1OC Bit 21 — Multiplex
always operate in the Normal mode). Bit 22 — Offline
uBsC Bit 21 — Multiplex
The XBC, DMACP, and IBC channels cannot be g:: gg—(B)uf:Ime
. R LS — Y
commanded to the Multiplex mode of operation. The XBC Bit 22 — Offline

remaining channels may be commanded to any of the
modes described above.

c. Override Control — This OCW instruction control
function is exercised in all 1/0 channels except the
XBC. An OCW instruction with this bit set assumes
immediate control of the channel/unit by forcing a
disconnect/connect sequence.

{/O Status Word

The ISW instruction is used to test the operational status of
the channel/unit. When a channel is addressed by the ISW
instruction, a 24-bit status word is transferred to the A
Register in the CPU. The quantity and significance of the
status bits depends on the type of peripheral unit involved.
Units controlled by 8-bit interface channels (e.g.,, PIOC)
furnish up to six unit-defined status bits which the channel
sets into the least-significant bits of the input word.
Channels with 24-bit unit interfaces (e.g., biock controllers)
may receive as many as 8 unit-defined status bits which are
set into the 8 least-significant bits of the input word.

Channel status may be set into the three most-significant
bits of the input word and reflect the channel’s current
mode or “busy”’ status as follows*

4-8

Single Word Data Transfers

Input Data Word

The IDW instruction is a request from the CPU to a specific
channel/unit combination for a data word. If data is
available, the data word is transferred immediately to the A
Register. If data is not available, the Condition Register is
set to *‘Not Zero” to allow a programmed delay.

Normally, the 24-bit input data word contains a single data
character. The actual number of data bits per character
depends on the channel and unit involved in the transfer.
For example, the console typewriter generates an 8-bit
character and a card reader may generate a 12-bit character.
In any case, the character is right-justified in the A Register
with the unused bit positions set to ZEROs.

Assuming the data character contains no more than 12 bits,
more than one character may be packed in the A Register
through the use of the Merge feature. When a character
Merge is employed, a logical OR is performed between the
previous contents of the A Register and the new input data
word. Without the Merge, the previous contents of A are
destroyed upon transfer of a new character to A. An
illustration of the character Merge technique, as compared
to a normal IDW instruction, is shown in Figure 4-5. :

The IDW instruction is executed by all 1/0 channels except .
the XBC and I1BC.

0830005-000
Original 3/78

EXAMPLE: THREE 8-BIT DATA CHARACTERS ARE TO BE PACKED IN THE A REGISTER.

(a) NORMAL (WITHOUT MERGE)

CODING

IDW CU

IDW CuU

IDW CU

(b) MERGE
CODING

IDW Cu

LLA 8

IDW* CU

LLA 8

IDW* CU

COMMENTS

BRING IN FIRST DATA CHARACTER

BRING IN SECOND CHARACTER

BRING IN THIRD CHARACTER

COMMENTS

BRING IN FIRST DATA CHARACTER

SHIFT LEFT 8 PLACES

BRING IN SECOND CHARACTER
AND MERGE

SHIFT LEFT 8 PLACES

BRING IN THIRD CHARACTER
AND MERGE

REGISTER A
0000000000009 0GDO ¢ —I
3 B 7 0
ﬁooooooooooooooo[Cz 1
2 7 o
|oooooooooooooooo Cs |
23 87 (4]

REGISTER A
[cnoc-oooooaocoaoo C |
&3 87 [+]
is_uc-aoooao] 2 10000000 0]

1
23 i D 47 4]
ioooocoavi o l c2 I

&

23 15 87 (]
[0 i . [ooooooool
21 w18 ﬁ7 0
T N
23 16 5 &7 1]

Figure 4-5. IDW Instruction; Data Character Formatting

MI60-008-770

4-9

0830005-000
Original 3/78

Output Data Word

When an ODW instruction is executed, an 8- or 24-bit data
word is transferred from the A Register to the specified
channel. The data word is subsequently transferred from
the channel to the unit that is currently connected. If the
channel is busy or not ready to accept the data word, the
Condition Register is set to “Not Zero” to allow a
programmed delay. If the unit is not ready to accept the
data from the channel, the data remains in the channel
buffer.

As soon as the peripheral unit is able to accept the data
from the channel, the channel-to-unit transfer is made,
thereby freeing the channel buffer for another data (or
command) word from the CPU.

The number of data bits accepted by the peripheral unit
varies according to the type of unit involved. Some
peripheral units are word-oriented and accept the entire
24-bit word. Others are character-oriented and accept only
a specific number of bits per character.

The ODW instruction function in XBC 1/0 channels serves
the purpose of sending a word count parameter from the
CPU A Register to the addressed unit, if required by the
unit. In subsequent block-transfer operations the unit
controls the WC parameter. The IBC channel does not
execute the ODW instruction. .

Address Transfers

Three address-transfer instructions are executed by
block-transfer channels for the purpose of channel or unit
set-up for subsequent transfers (OAW) or for CPU checks of
transfer progress (AW and IPW). However, the PIOC board
may execute the OAW instruction. The following
discussions cover applicability and qualifications for the
address-transfer instructions.

Output Address Word

The OAW instruction is executed by the DMACP, UBC and
IBC to set the starting address of parameters for
block-transfer control. The XBC also executes the QAW
instruction if a unit on its interface requires a TA starting
address.

The DMACP, IBC and UBC channels load their respective
PAR during execution of the OAW instruction. The
instruction is executed in a single machine cycle.

NOTE

In UBC execution of the OAW instruction, the
block-transfer logic is cleared. Therefore, this
instruction should not be programmed for
execution until all block transfer operations are
completed.

4-10

The XBC channel will not execute the OAW instruction if
the channel is busy executing an output command or a data
instruction. The instruction word must be addressed to the
unit to which the TA parameter is intended. Therefore, a
“programmed delay’’ should be programmed to facilitate
instruction execution.

In IBC channel OAW execution the instruction word must
be addressed to a unit controller contained on the channel
board. The channel executes the instruction in a single
machine cycle, writing the PA into a register reserved for
the addressed unit.

Available for software interrupt purposes, an Interrupt
Generator is located on the PIOC board to allow generating
one-of-four possible interrupt pulses in response to an OAW
instruction. The instruction is executed automatically by
the addressed channel to provide one microsecond interrupt
pulses which may be routed for use as interrupts in another
CPU or in any peripheral unit.

The Interrupt Generator responds to the particular OAW
instruction with the proper channel code. The four
least-significant bits (3-0) of the A Register, during the
OAW instruction, will trigger the pulse from the generator.
The pulse remains at the *“true” level for the 1 microsecond
cycle and then is restored to the “false’” state. There is no
interaction between the generation of different numbered
interrupts, but the generation of the same numbered
interrupt is limited to not more than one per microsecond.
There is no response to the mainframe C (condition)
Register during the execution of the OAW, i.e., if the C
Register were tested, it would indicate “not zero"’.

In summary, if an interrupt pulse is to be generated, the
following coding could be applied:

TOA BOB1B2B3 {Unitary bits; one for
each interrupt pulse line.)

OAW CcuU

Input Address Word

The IAW instruction may be addressed to any of the
block-controller channels except the XBC channel. For IBC
channel purposes the instruction word must be addressed to
the channel and unit; otherwise the instruction is addressed
only to the desired channel. In all applicable channels
s=cept the IBC the instruction is automatically executed
during the current instruction cycle. The IBC channel
executes the instruction only if it is not busy executing
another instruction or transferring data. In all cases, the
channel sets its “Ready” line to the CPU to clear the C
Register. The address word is sent to the A Register and
may be used as a check on transfer progress. The word
represents the TA of the current transfer and is always 18
bits wide.

Input Parameter Word

This instruction is very similar to the IAW. The instruction
is addressed only to those block I/0 channels capable of PA
storage: DMACP, UBC and IBC channels. The execution of
the IPW instruction is identical to the |AW instruction.

INTERRUPT CONTROL

The OCW instruction may be used to selectively enable and
disable two peripheral unit interrupts in PIOC board
operations. The two interrupts are defined as Input and
Output and are controlled by bits 2-0 of the command
word. Table 4-1 illustrates the various bit configurations.

Table 4-1. Peripheral Unit Interrupt Control

Command
Word Bit '
Configuration Action
2 1 0"
No Action.
No Action.

Disable input (or Alternate) Interrupt
Enable input (or Alternate) Interrupt
Disable Output (or Alternate) Interrupt
Enable Output (or Alternate) Interrupt
Disable Both Interrupts

- ek e - O 0O O O
- - O 0 = = 0 OO
- 0 = 0O = 0O = 0O

Enable Both Interrupts

*No significance to some units, i.e., the interrupts are
unconditionally enabled by CW Bits 1 and/or 2.

The terms “input interrupt” and ‘“‘output interrupt’’ are
applicable only to peripheral units that are equipped with
both input and output data handling facilities. Input-only
devices may make use of the input interrupt and an
alternate interrupt at the normal output level. Output only
devices may make use of the output interrupt plus an
alternate at the normal input level.

When the unit input interrupt has been previously enabled,
an input interrupt signal will be generated when the input
buffer in the unit is loaded (i.e., the same time the “Data
Available” signal is generated). An 1/O channel has no
control over an input interrupt.

When the unit “output interrupt” has been previously
enabled, an output interrupt signal may be generated by the
channel for two sets of conditions based on a
device-defined signal, ‘“Enable Channel Buffer Empty
Interrupt” (ECBEI). If the unit raises ECBEl to the

0830005-000
Original 3/78

channel, the output interrupt will be generated for a
minimum of 325 nanoseconds if:

A. PIOC board;

1. the channel has not been commanded to the
Offline or Multiplex mode, and,

2. the channel is not performing a
disconnect/connect sequence, and,

3. the channel’s output buffer is not holding a
command/data word for unit transfer purposes.

B. XBC, UBC and IBC channels;

These channels contain no output interrupt capability.

If the unit holds the ECBEI signal to the channel low, the
output interrupt will be generated by the channel but the
channel’s output buffer condition (3, above) is ignored.
instead, the device-defined state of Status Bit 2 from the
unit is allowed to set the output interrupt. The mode and
manual conditions described for each type of channel above
remain in effect.

The UBC channel contains the capability to generate a
“word count complete” interrupt when the channel has
loaded the final word of a block-transfer operation. (The
IBC channel generates a “‘word count complete” signal to
the unit when the channel has loaded the final word, if no
“Restart” is specified. This signal, however, is under the
control of the unit for interrupt purposes.) The
approximate duration of the interrupt is 475 nanoseconds.

C. DMACP Channel;

Two interrupts are generated by the DMACP channel: 1)
whenever a parity error is generated within the RAM
located on the DMACP board, and 2) whenever one of the
ports requires service. The particular event causing the
interrupt can be determined by executing an ISW
instruction to fetch the status word.

1/0 CHANNEL SWITCH/PATCH CONTROLS

The various 1/O channels contain switch and patching
provisions to perform a number of operational functions.
The PIOC board’s patching capabilities is restricted to
channel address selection. The block-transfer channels are
also patched, or switches set, to encode a unique channel
address, but those channels also contain a variety of other
manually-activated functions. These functions are listed in
Table 4-2 with 1/O channel applicability specified.

I/0 CHANNEL OPERATIONAL SUMMARIES

The following paragraphs summarize single-word and
block-mode transfer capabilities of the various I/0 channels
interfacing with the computer. Included are program lists
and suggestions. Refer to the paragraph describing
input/output instructions for application to specific 1/0
channels.

4-11

0830005-000
Original 3/78

Table 4-2. 1/O Channels Manual Control Capabilities

. Function PIOC IBC UBC XBC DMACP
Permanent Offline/Muitiplex mode selection Switch Switch
Channel code selection Switch Switch Switch Switch Switch
Memory cycle priority Switch Patch Switch Switch
Unit selection Patch

Single-Word Instruction Execution

OCW/ODW

The channel, if not busy, loads a command or data word
from the CPU A Register into its output buffer. The
channel sets itself “busy’’ to inhibit any further instruction
executions until it has completed the transfer to the
addressed unit. In the event of a disconnect/connect
sequence, the channel withholds the handshake until the
addressed unit is ‘““connected” to its interface. A BNZ
instruction should be programmed to verify channel
execution of the OCW instruction.

IDW

The channel executes this instruction in one machine cycle
if the channel is not busy executing an output transfer, is
not involved in a disconnect/connect sequence, and the
connected unit has signalled that data is available for
transfer via its ““Data Available” line. The BNZ execution
performed by the CPU provides verification of transfer. The
channel shakes hands with the connected unit and is ready
for further instructions.

ISW

An 1/O channel executes this instruction if the channel is
not busy executing an output transfer and is ‘connected’’
to the addressed unit.

OAW

This instruction is addressed to block 1/O channels (unit in
XBC/IBC applications) for the purpose of transferring the
address of the first word involved in control of a
subsequent block data transfer. Channel loading of the
output word from the CPU's A Register into the channei’s
PAR (UBC and DMACP applications) is automatic. In XBC
applications the instruction involves transferring a TA to
the unit for subsequent control by the unit. The XBC
channel must have gone to “not busy’’ prior to instruction
time for execution. A programmed delay must therefore be
executed by the CPU for verification of transfer. A
handshake with the unit is performed in this instruction
and the channel sets itself busy until the transfer-to-unit is

4-12

completed. In IBC applications the addressed channel
executes the instruction unless previously set busy via an
instruction or data transfer sequence.

IAW/IPW

The IAW/IPW instructions are executed to transfer the
contents of a block 1/0 channel’s TAR/PAR to the CPU's A
Register. The IPW and |AW instructions are not executed
by XBC channels. The instructions, when applicable, are
executed automatically in UBC channels. The IBC channel
is inhibited from executing the instruction if currently busy
in an instruction or data transfer operation.

Block-Transfer Operations

All block 1/0 channels are initialized by computer control
for block-transfer operations and proceed under self control
or unit control to perform the transfer operations. The
following paragraphs describe general performance of block
transfers applicable to each channel. Refer to Figures 4-6
through 4-9 for simplified flow diagram of block-transfer
operations.

UBC Channel Block Transfers

The UBC channel is “set-up’’ via an OAW instruction and
initiated via an OCW instruction with bit 23 of the unit
command specifying the block transfer and bit 22
specifying the direction of transfer. During the OCW
sequence the channel sets itself “‘busy’’ to all ODW, {DW,
and OCW instructions (except an OCW specifying
“Override’’). The channel remains busy for the duration of
transfers initiated by the OCW instruction. The channel
automatically loads two parameter words (see Figure 4-2).
If an output transfer has been specified, the channel
sequences a memory request and specifies the location via
its TAR. The channel increments the TAR, decrements its
WCR, and loads the data word in its output buffer when
the memory cycle is granted. The channel then ‘“‘shakes
hands'’ with the unit to complete the transfer. The channel
then fetches another word for transfer. When the WCR has
decremented to ZERO, the channel examines its ‘’Restart”
parameter (bit 23 of PW2) and either re-initiates itself for
another block transfer or returns to an “idle” state,
resetting its “‘busy’’ condition.

0830005-000
Original 3/78

START
CYCLE

LOAD WCR &
SCIR (IF INPUT)

FROM PWI

1

INCREMENT PAR

LOAD TAR &

RESTART BITS INCREMENT PAR

FROM PW2

L
ACCESS & XFER
INCREMENT PAR COMMAND WORD
FROM PAR ADDRESS
e YES INPUT
XFER
NO
SCm =0 YES
YES
No SFROM TAR ADDR NO
O T - COMMAND
INCR. TAR &
DECR. WCR CHAIN
YES [
iy COMPLETE INTERRUPT NTROGRAM

WQR = WORD COUNT REGISTER
SCIR = SKIP COUNTER
PW = PARAMETER WORD
PAR = PARAMETER ADDRESS REGISTER

TAR = TRANSFER ADDRESS REGISTRR
XFER = TRANSFER
ADDR = ADDRESS
INCR = INCREMENT
DECR = DECREMENT

AUTO YES /
RESTV
NO
END

Figure 4-6. UBC Block Transfer Sequence; Simplified Flow Diagram

Mi1822-176A

4-13

0830005-000
Original 3/78

STORE DTR
IN
PRIORITY REGISTER

YES

NO

SET
CHANNEL
BUSY

INPUT YES

RESET
CHANNEL
BUSY

XFER

NO

XFER WORD
FROM MEMORY
TO UNIT

XFER WORD
FROM UNIT
TO MEMORY

LEGEND:

DTR = DATA TRANSFER REQUEST
XFER = TRANSFER

Figure 4-7. XBC Block Transfer Sequence; Simplified Flow Diagram

4-14

MI1823-17¢

0830005-000

Original 3/78
START
CYCLE
— Y
A
LOAD WCR I)
FROM
PWI1 l
DTR
FROM
UNIT
INCREMENT PAR YES
|
STORE DTR
L IN
PRIORITY REGISTRR
LOAD TAR &
RESTART BITS
FROM PW2
RESET
CHANNEL
INCREMENT PAR BUSY
1
b 4
XFER. DATA WORD
TO/FROM TAR ADDR.
INCREMENT TAR
DECREMENT WCR
LEGEND:
WCR = WORD COUNT REGISTR
= PARAMETER WORD
PAR = PARAMETER ADDRESS REGISTER
- e o
- DATA TRAN ul
GENERATE WORD COUNT
XFER TRANSFRR
AODF ADDRESS COMPLETE TO UNIT
END
M11824-176

Figure 4-8. IBC Block Transfer Sequence; Simplified Flow Diagram

4-15

0830005-000

Original 3/78
ASSEMBLE/DISASSEMBLE | TRANSFER I INITIALIZE
| |
| |
) | |
RESET BUSY | | Jump
wal [l 1025
| ‘ ; }
TRANSFER
o | -
| || Meme | || iR
YES | l l
TRANSFER GATE I TRANSFER TRANSFER I ENASLE
WACC REGISTER WAD GATES TARTO G.P. TALTO GeP. MI8 TO BYTE YES .
o s nce or | | o caungE | | s ©
L] [I | | l "o
. |
TRANSFER
et Lo || arEm. L] o, -
G.P. COUNTER | RECISTER coe- O e l PAR WAIT
B ' —_— ' ;
DEC] | INCREMENT | TRANSFER
G.P. €
ADVANCE BYTE | SEGTJB;'YOTCE;E)ZN'?E'I | S
; | : | ;
TRANSFER I TRANSFER l TRANSFER
G..P. COUNTER G. P. COUNTERTO PARTO G, P.
T | Y || e
I | T
| I
| it
l CYCLE
| | I
I l INCREME
| S e
! POINTER £0
| R
I | ‘
JumP
IMMEDIATELY | I
| | LEGEND:
| ' GP GENERAL PURPOSE
Rt e
I | MOB MEMORY OUTPUT BUS
MICROPROCESSOR
e e
WACC WORD ACCUMULATOR
WAD WORD ASSEMBLY/DISASSEMBLY

MI 2087A-877

Figure 4-9. DMACP Channel Block Transfer Sequence; Simplified Block Diagram

4-16

If an input transfer was specified via the OCW, the channel
waits for the unit to signal data availability. The channel
then loads the input data into it's input buffer and signals
“‘accepted” to the unit to free it for the next word. The
channel then requests a memory cycle, and, when granted,
places the TA and data on line to memory. The channel
increments the TAR, decrements the WCR, and returns to
sense the unit’'s “Data Available’” line. This sequence
continues until the WCR fcrces the restart sequence as
described above.

The UBC channel contains a Skip Count Register for added
parameter control in input transfer operations and may
enter an alternate “‘Restart” after a block of data has been
transferred.

The output data transfers are sequenced in an identical
fashion. The channel’s capability to ‘“Restart and Chain
Command” allows the re-initiate sequence to access an
additional parameter (in this application, a new command
to the unit) to change transfer direction without program
intervention. In this situation, the new command word
initiates the channel in the same manner as did the original
OCW instruction.

The Skip Counter affects only those transfers slated for
memory. The skip count allows the channel to pass over
unwanted data (sync codes, etc.) before actual data loading
is sequenced. When the skip count parameter specifies a
count, the channel sequences handshakes with the unit to
unioad the unit, but the channel does not request the
memory cycles from the CPU to load the data into
memory. The SCTR is decremented with each transfer, but
the TAR and WCR remain unchanged. When the SCTR has
decremented to ZERO, the channel begins loading data
words into memory.

XBC Channel Block Transfers

The XBC channel is normally initiated to block-transfer
operations via an OCW instruction in which a command is
transferred to the unit. If required, the OCW may have been
preceded by OAW and/or ODW instructions to transfer TA
and WC p: meters to the unit. Once initiated, the channel
is under the ce.ntrol of the unit for transfer purposes. When
the u~'t -~gnals a “Data Transfer Request” (DTR), the
chann2t, if not previously set busy, sets itself busy and
stores the TA from the unit. The unit specifies the transfer
direction and, if an input transfer is specified, the channel
“accepts’’ the data from the unit. The channel then
requests a memory cycle and, when granted, transfers the
data to memory, based on the TA furnished by the unit.

If the unit specifies an output transfer, the channel requests
a memory cycle. When the cycle is granted, the channel
places the TA on line to memory, loads the data from
memory and performs a “Data Here”/'’Accepted”
handshake with the unit in which the data is transferred to
memory.

0830005-000
Original 3/78

The XBC channel’s “busy’’ condition is reset after each
instruction or data transfer is accomplished. The unit
controls the TA and WC parameters and generates any
required interrupts. With no mainframe contention, the
maximum block transfer rates are 800,000 (input) and
666,666 (output) words per second. With mainframe
contention, the transfer rates are 476,000 (input) and
428,000 (output) words per second.

IBC Channel Block Transfers

The IBC is set-up and initiated for block transfers via the
OAW and OCW instructions, but the channel sets itself *not
busy’ after each instruction or data transfer. The channel
may thus store the two parameter words for up-to-two
self-contained unit controllers {Figure 4-2) and interieave
data transfer.

Data transfers are sequenced by the channel based on “’Data
Transfer Request” signals from the units. The DTR lines are
priority-structured and the unit indicates the direction of
transfer. Data transfers then proceed as described for XBC
channel operations except as follows:

A. the unit allows/inhibits TA and WC incrementing and
decrementing by setting its ““Block Mode" control line
true/false (see External Addressing mode below).

B. the unit does not furnish the TA paramete; {except in
the External Addressing mode).

C. the channel/unit does not ‘shake hands” in output
transfers.

D. the channel generates “Word Count Complete” to the
unit only, which then controls the interrupt to the
CPU.

The IBC channel may enter an External Addressing mode
by the unit presenting its DTR, “‘Address Here,” and
“Input” lines set to the channel. The address is then loaded
into the TAR for the specified unit. The data presented
with the next DTR is transferred into or out, as set, of the
memory address of the unit’'s TAR. If the ““Address Here"”
signal is not presented again to change the TAR, any
further data transfers will use the same TAR address. This
allows the use of a specified memory address as a register.

The maximum transfer rates for the IBC channel
block-transfer operations are determined by the card reader
and floppy disc connected to the channel.

DMACP Channel Block Transfers

DMA transfers between the DMACP and memory are under
control of the microprocessor and associated logic located
on the DMACP board. After a parameter address is sent
with an OAW instruction, the CPU can command the
microprocessor to perform a block transfer with an OCW
instruction.

417

0830005-000
Original 3/78

Data transfers are controlied by a sequencer and transfer
control logic contained on the DMACP board. Three main
functions are performed by the transfer control logic;
initialization for a DMA transfer, word
assembly/disassembly, and the actual transfer. These
functions are performed by three subroutines comprising a
program which is stored in the sequencer PROM located on
the DMACP.

The microprocessor starts a DMA initialize operation by
accessing a special location in a RAM contained on the
DMACP board. Eight special locations in RAM are
provided, one for each port. The DMA logic in the DMACP
fetches the byte count and transfer address from the RAM
locations specified by the parameter address. If an output
operation is specified, the first 24-bit data word is
transferred to a Word Accumulator Register. The

Example 1: Simple, single buffer input.

microprocessor then transfers data bytes between the word
accumulator and a communications port until the byte
count equals zero. A terminate interrupt is sent to the
microprocessor at the completion of the operation. The
microprocessor then generates an interrupt to the CPU to
indicate that service is required.

Program Lists

The following program lists specify various software control
functions for block-transfer 1/0 channels. Note the
functional identity of the applicable channels.

IBC Channel Applications

The following examples illustrate two different IBC
applications.

Bit 23 and others as required by the /O device

TOA PA Parameter Address

OAW C Initialize TAR

TMA cw Command Word

ocw Cu Initiate transfer

BNZ *-1 Delay if channel is busy
cw DATA
PA DAC n Absolute Word Count

DAC BUFF Address of Input Buffer
BUFF BLOK n

Reserve n words. Word n+1 is of no significance since the AR bit is not set.

Example 2: Multi-buffered output with automatic restart and buffer switching.

TOA PA1 Parameter Address 1
OAW C Initialize TAR
TMA cw Command Word
OoCcw Cu Initiate first transfer
BNZ *-1 Delay if channel is busy
Ccw DATA Bits 23, 22, and others as required by the 1/O device.
PA1 DAC n Word Count
DAC* BUF1 Address of buffer 1 and the ARF (*)
PA2 DAC n Word Count
DAC BUF2 Address of buffer 2
BUF1 BLOK n Reserve n words
DAC PA2 Automatic Reinitialization address for TAR, to switch buffers
BUF2 BLOK n Reserve n words
DAC PA1 Automatic reinitialization address for TAR, to switch buffers
NOTE

Once this cycle is initiated it will continue,
without program intervention, until a new
command is received.

4-18

UBC Channel Applications

0830005-000
Original 3/78

The following examples illustrate four different UBC

applications.

Example 1: Simple, single butfer input.

TOA
OAW
TMA
ocw
BNZ
Ccw DATA
PA DAC

DAC
BUFF BLOK

PA
cu
cw
Cu

Parameter Address
Initialize PAR and TAR
Command Word
Initiate Transfer

Delay if chiannel busy

B23 and others as required by the 1/0 device
Word Count
Address of Input Buffer

Example 2: Use Skip Count to read a single word from within a record.

TOA
OAW
TMA
ocw
BNZ
cw DATA
FORM
PA DATA

DAC
BUFF BLOK

PA
Cu
cw
Ccu

-1

8 16
111,112/
BUFF

1

Parameter Address
Initialize PAR or TAR
Command Word
Initiate Transfer

Delay if channel is busy

B23 and others as required by the 1/0 device
Word count. Input 112 words from device, skipping first 111.

Address of Input Buffer
Input Buffer

Example 3: Use Automatic Restart to Read a single record into discontiguous buffers.

TOA
OAW
TMA
ocw
BNZ
cw DATA
PA DAC
DAC*
DAC
DAC
BUF1 BLOK
BUF2 BLOK

PA
Cu
Ccw
Ccu

Parameter Address
Initialize PAR and TAR
Command Word
Initiate Transfer

Delay if channel is busy

B23 and others are required by the 1/0 device
Word count of input into first buffer

Address of first buffer (*) = ARF

Word count of input into second buffer
Address of second buffer

Reserve n words
Reserve m words

4-19

0830005-000
Original 3/78

Example 4: Use Command Chaining to read two records into a single buffer on same UBC transfer.

TOA PA Parameter Address

OAW Cu Initialize PAR and TAR

TMA cw Command Word

ocw CuU Initiate Transfer

BNZ *—1 Delay if channel is busy
cw DATA B23 and others as required by device to read first record
PA DAC ‘n Word count of first record

DAC* BUFF,J Address of buffer for first record. (*) = ARF, and

{,J) = B22 for command and restart

DATA B23 and others as required by 1/O device to read second record

DAC m Word count of second record

DAC BUFF+n Address of buffer for second record
BUFF BLOK n+m Reserve n+m words

XBC Channel Applications .
The following exampile illustrates an XBC application.

TOA INPAD Set-up Input Buffer Address Start
OAW cu Output the Address to Channel/Unit
BNZ *—1 Delay if Channel busy
TOA OUTAD Set-up Output Buffer Address Start
OAW CcuU Output the Address to Channel/Unit
BNZ *1 Delay if Channel busy
. TMA wC Set-up the required Word Count
82(%5':8,, obw cu Output the WC to Channet/Unit
BNZ *-1 Delay if Channel busy
INPAD BLOK 100 Is the Starting Address of the Input Buffer that device may load
data into.*
OUTAD BLOK 100 Is the Output Buffer that the device may read data from.”
WC DATA 100 Number of Words to Transfer

*The external device controls the addressing and interrupt requests to the XBC channel. The external device also
controls the word count.

4-20

0830005-000
Original 3/78

SECTION V'
PRIORITY INTERRUPT SYSTEM

GENERAL DESCRIPTION

The priority interrupt system provides added control over
internal CPU operations and 1/0 functions, and immediate
recognition of special external conditions on the basis of
predetermined priority. Receipt and recognition of internal
or external triggers allows the normal program flow to be
diverted to interrupt service subroutines.

Two separate interrupt groups (0 and 1) are provided.
Group 0 is reserved for internal CPU functions and is
composed of up to eight executive trap levels. Group 1 is
reserved for external interrupts. A maximum of 24 external
interrupts are available.

INTERRUPT ORGANIZATION

Priority Conventions

All interrupt levels (both executive traps and external
interrupts) are assigned a unique priority number. This
assigned priority determines the order in which interrupts
will be recognized and serviced. Interrupt levels descend in
order of priority from Group 0, Level 0, to Group 1, Level
23. Group O has priority over Group 1; Level 0 has priority
over Level 23.

Executive Traps (Group 0)

Each executive trap level is associated with a specific
computer feature and is, therefore, permanently assigned.
Each executive trap includes the associated internal
interrupt level. Interrupt level assignments for the executive
traps (Group 0) are listed below:

Level
0 Power Down} Power Failure Shutdown/Restart
1 Power Up
2 Program Restrict
3 Instruction Trap
Or See note following
2 Demand Page
3 Instruction Trap
4 Stall Alarm
5 Interval Timer
6 SAU Overflow/Underflow
7 Address Trap

NOTE

The Program Restrict and Instruction Trap is
available as an option. If enabled by the key
switch, executive trap Levels 2 and 3 are
assigned to the Program Restrict and
Instruction Trap, respectively. When virtual
memory is enabled by the key switch, these
levels are assigned to the Demand Page and
Instruction Trap.

External Interrupts (Group 1)

A standard computer system includes interrupt logic and
sixteen individual external interrupt levels, Eight of these
levels are located on the mainframe CPU board and
represent Group 1, Levels 16 through 23. Eight additional
external levels are located on the option board. An
additional eight levels can be added to the option board to
provide a maximum of 24 external interrupts. The priority
interrupt levels installed on the option board represent
Group 1, Levels O through 15. With the exception of Levels
0 and 1, priority assignements of the interrupt levels are
determined by system requirements and are made to meet
user's requirements. lLevels O and 1 are permanently
assigned to report hard and soft parity errors, respectively.
See Section 111 for a description of this function.

Dedicated Memory Locations

Each interrupt level has a memory location dedicated for its
exclusive use. This applies to both the executive traps
(Group 0) and external interrupts (Group 1). Dedicated
memory locations for the interrupt system are as follows:

Addresses {Octal) Assignments (Respective)
60-67 Executive Traps, Levels 0-7

70-117 Group 1 Interrupts, Levels 0-23

OPERATION AND CONTROL

Basic Operation

Figure 5-1 is a functional block diagram of the priority
interrupt system. Both the executive traps and external
interrupts are initiated by a trigger from their assigned
functions. The primary operational difference between the
two interrupt types is the method of control; executive
traps are hardwired in an armed and enabled state, while
external interrupts must be previously armed and enabled
under program control before an interrupt trigger can be
recognized and processed.

51

0830005-000
Original 3/78

EXTERNAL
DEVICE

INTERRUPT TRIGGER

ARM/DISARM
ENABLE/INHIBIT

e
INTERRUI
LEVEL STATUS

INTERRUPT CONTROL
REQUEST SIGNALS

CENTRAL
CONTROL SIGNALS ROCESSING

INTERRUPT UNIT
SYSTEM DEDICATED ADDRESS

INTERRUPT CONTROL
REQUEST SIGNALS

EXECUTIVE INTERRUPT TRIGGER
TRAP

BD 60-068-972A
Figure 5-1. Functional Block Diagram,
Priority Interrupt System

Executive Traps (Group 0)

Each executive trap interrupt is designed so as to become
active immediately upon receipt of its associated internal
trigger, provided no higher-priority level is active. Executive
trap interrupt levels are physically integrated with their
associated CPU functions, so that installation of the
interrupt level is performed simultaneously with installation
of the functional logic. Since executive traps are constantly
armed and enabled, no program control over the activation
of these interrupts is provided.

External Interrupts (Group 1)

External interrupts are program-controlled and, with the
exception of Levels 0 and 1, are not permanently assigned.
Program control is afforded by several instructions.
Individual levels can be selectively (unitarily) armed,
disarmed, enabled, or inhibited under program control. The
entire group of interrupts can be simultaneously controlled.
For a detailed description of all priority interrupt
instructions, refer to the appropriate portion of Section Vil
in this manual.

Four registers are associated with the external interrupt
group. These registers may each be 8, 16, or 24 bits wide,
depending on the number of interrupt levels within the
group. As interrupt levels are added to the system, bits are
added to each of the four registers in the group. The

5-2

register bit positions correspond to the priority level
assignments, i.e., bit O represents Level 0, bit 1 represents
Level 1, etc. Control of the interrupt registers is
accomplished by the following group of instructions.

Transfer Double to group 1 (TD1)
Transfer group 1 to Double (T1D)

Transfer Double to group 1 (TD4 —
software-triggered interrupt)

Transfer group 1 to Double (T4D —
software interrupt status)

The armed/disarmed and enabled/inhibited states of each
interrupt level are retained in the Arm/Disarm (A/D) and
Enable/Inhibit (E/l) Registers, respectively. A TD1
instruction is used to selectively arm, disarm, enable, or
inhibit individual interrupt levels within the group. Upon
execution of a TD1 instruction, the contents of the E and
A Registers are transferred, respectively, to the A/D and E/|
Registers in Group 1. Transfers are performed in a
bit-for-bit pattern. A ONE in a given bit position of the A/D
Register and will cause the corresponding interrupt level to
be armed; a ZERO will disarm the level. An interrupt will
be enabled or inhibited by a ONE or ZERO, respectively, in
the corresponding bit position of the E/I Register.

The interrupt group’s armed/disarmed and
enabled/inhibited status may be determined under program
control by the execution of a T1D instruction. The
contents of the A/D and E/| Registers are transferred to the
E and A Registers, respectively. A/D and E/l Register
contents are not affected by the transfer. '

External interrupt triggers normally occur asynchronously
with respect to CPU operation. However, interrupt triggers
can be generated under program control by a TD4
instruction. The TD4 instruction performs a logical OR
between the contents of the E and A Registers and the
interrupt Request and Active Registers, respectively.
Loading the Request Register with a ONE has the same
effect as an external trigger at the corresponding interrupt
level. When the Active Register is loaded with a ONE, the
corresponding level will become active as long as no
higher-level interrupt is active. The T4D instruction
transfers the contents of the Request and Active Registers
to the E and A Registers, respectively. The Request and
Active Registers are not affected.

Figure 52 illustrates the control system for external
interrupts. Each external interrupt operates in three distinct
states: inactive, wa’''ng, and active. In the inactive state,
the level has not received an interrupt trigger. When a
trigger is received, the armed/disarmed status determines
whether the triggered interrupt will be placed in a waiting
state or ignored. If the triggered interrupt is armed, it will
be placed in the waiting state; if disarmed, it will be
ignored.

0830005-000
Original 3/78

EXTERNAL TRIGGERS; OR BITS
OF E REGISTER DURING TD4

INSTRUCTION.
y—\
ARM/DISARM| = I‘O'|'III'O 1 = ARMED
REGISTER . L v bbb U lo - pIsarmED
23 22 5 4 3 2 ! 0
l l l I EXTERNAL TRIGGER AT
THIS LEVEL IS IGNORED
REQUEST T y T T Y T T
REGISTER 1 |/ It 0 i 0 1 l 1 l'J l 4 o
23 22 5 4 3 2 1 o]
ENABLE/INHIBIT | "0 1 t 0 1|1 = €eNaseD
REGISTE{{ L fj 0 i OJ l i l d 0 i ' 0 = INHIBITED
23 22 5 4 3 2 1 0
THIS LEVEL IS WAITING FOR T l
HIGHER LEVELS TO BECOME THIS LEVEL IS WAITING
INACTIVE OR PERMISSIVE TO BE ENABLED

(SEE DETAIL BELOW)

FROM REQUEST REGISTER OR
~.——— BITS OF A REGISTER DIRING

'3 TD4 INSTRUCTION
ACTIVE T 1 = ACTIVE
REGISTER 0 0)/; 0 0 0 10 0]oZ iNacmve

23 22 2 i o]

t__rms LEVEL CAN BE PLACED

IN A PERMISSIVE STATE

ENABLED
INHIBITED

ENABLE/INHIBIT g '

4
| PREVIOUSLY ACTIVE LEVEL

INHIBITED BY PROGRAM

ACTIVE/PERMISSIVE
E % z 1 = ACTIVE
STATE 0 = INACTIVE
B2- permssive

M160-100-9768

Figure 5-2. External Interrupt Controf

5-3

0830005-000
Original 3/78

If an interrupt is armed but inhibited (i.e., not enabled), it
is held in the waiting state until such time as it is enabled
under program control. Once enabled, the interrupt will
become active as soon as the current instruction is
completed, assuming that no higher level is active and that
external interupts are not being held (HXI instruction).

Once an interrupt becomes active, it can be inhibited under
program control (TD1 instruction). This places the active
level in an off-line mode or permissive state. The permissive
state does not affect execution of the interrupt subroutine
but enables lower priority armed and enabled interrupts to
become active when triggered. For example, if active level
two is inhibited by the program, “waiting level three
becomes active immediately. After level three is serviced,
the processing of the level two subroutine is resumed until
it is completed or another interrupt becomes active. Should
another interrupt trigger be received by an interrupt that is
in the permissive state, it will be saved and recognized when
that level is returned to the on-line mode.

Hold and Release eXternal Interrupts (HXI and RXI)
instructions are employed to prohibit and restore the
activation of any external interrupt (other than
currently-active levels) regardless of that interrupt’s
armed/disarmed and enabled/inhibited states. Such a
prohibition would ensure that another, lower-level,
interrupt could complete its processing routine without
interruption. This hold condition can only be released by
an RXI instruction.

Several instructions are privileged. Should an interrupt
occur during the execution of one of these instructions, it
will not be allowed to become active until the completion
of the instruction following the privileged instruction. The
privileged instructions are:

Branch and Save return — Long (BSL)

Hold interrupts and Transfer | to memory (HTI)
Hold interrupts and Transfer J to memory {HTJ)
Hold interrupts and transfer K to memory (HTK)
Release eXternal Interrupts (RX1)

EXecute Memory (EXM)

Transfer Memory to Registers (TMR)

Transfer Registers to Memory (TRM)

Update Stack Pointer (USP)

Transfer Double to group 1 {TD1)

Transfer Double to group 1 (TD4)

Unitarily Arm group 1 interrupts (UA1)
Unitarily Disarm group 1 interrupts (UD1)
Unitarily Enable group 1 interrupts (UE1)
Unitarily Inhibit group 1 interrupts (Ul1)

If the virtual memory system is enabled, the following
instructions are also privileged.

Transfer Double to Source and destination registers (TDS)
Transfer Source and destination registers to Double (TSD)
Transfer A to 1 virtual address Register (TAR)

Transfer Double to 2 virtual address Registers (1DR)

Transfer 2 virtual address Registers to Double (TRD)

Transfer Double to Paging Limit register (TDP)

Transfer Paging limit registers to Double (TPD)

Transfer Usage base register and demand page register to
Double (TUD)

Transfer E to Usage base register (TEU)

Query virtual Usage Register (QUR)

Query Not-modified Register (QNR)

Release Operand Mode (ROM)

Release User Mode (RUM)

INTERRUPT PROCESSING CONSIDERATIONS

Each external interrupt and executive trap level is assigned
a unique memory location as previously explained. An
interrupt, when activated, generates an address and an
instruction operation code. The address specifies the
dedicated location and the operation code defines an
EXecute Memory (EXM) instruction. The address and EXM
instruction are placed in the Instruction Register, decoded,
and executed as a normal operation. This causes the
instruction in the dedicated location to be executed as if it
were the next instruction in the main program.

Although any instruction may be stored in an interrupt’s
dedicated memory location, the operation designed for
subroutine entry is the Branch and Save return — Long
(BSL) instruction. The BSL instruction is used to enter an
interrupt subroutine because it provides a means of saving
machine status and returning to the program location
following that being executed at the time of the interrupt.
When an interrupt is generated, the current instruction is
allowed to continue so the program counter can be
advanced before interrupt processing begins. Figure 5-3
illustrates the sequence of events.

If virtual memory is enabled, the BSL instruction will
record the paging mode (User or Monitor) in bit 20 of the
effective memory address. Bit 20 will be set to ONE if the
CPU was in the User Mode when the interrupt occurred, or
to ZERO if the Monitor Mode was active.

A means of exit from the interrupt routine is the Branch
and Reset interrupt — Long {BRL) instruction. Normally,
the BRL instruction would make use of an indirect
reference (*) to the address previously referenced by the
BSL instruction upon entering the routine. If this is done,
the Condition Register is restored to its originali contents
{at the time the interrupt occurred). The state of bit 20 (in
the return address) will be tested by the BRL and the
appropriate virtual memory mode will be reestablished
when the subsequent instruction is fetched. Figure 54
ilustrates the subroutine exit sequence. -

The BRL instruction resets the highest active (not in
permissive state) trap or external interrupt level provided
that external interrupts are not being ‘*held” (HXI
instruction). Active traps can only be reset by the BRL
instruction. Active interrupts can only be reset by the BRL
instruction, a TD1 instruction, or by master clearing the
CPU. A BRL instruction will not reset an interrupt that is
in the permissive state.

0830005-000

Original 3/78
LOCATION INSTRUCTION NOTES
: " " T T T T INTERRUPT OCCURS AND TRANSFERS CONTROL
6% oo, e p o OPERMD | TO DEDICATED LOCATION 100 (GROUP 1,
= — = LEVEL 8)
y T T T " T T DEDICATED LOCATION 100 CONTAINS
100 BSL 350 REFERENCE TO LOCATION 350 (STORAGE
ettt ddttbdii—i—d FOR RETURN ADDRESS AND CPU STATUS).
" N T " T T RETURN ADDRESS AND STATUS ARE STORED.
350 //A V] CREC PROGRAM COUNTER - 657 PROGRAM COUNTER IS SET TO 350+ 1(BRANCH
’ A SRR, V1 - USER MODE
=0 - MONITOR MODE
’ ' M T ' FIRST INSTRUCTION IN INTERRUPT
3 o] susROUTINE
23 - 4]

M160-080-9768
Figure 5-3. 'Interrupt Subroutine Entry
LOCATION INSTRUCTION NOTES
" " J . " " BRANCH TO STORAGE LOCATION CF
877 BRL - fwp 380 | RETURN ADDRESS AND MACHINE
= - = STATUS.
7 N r y N y T THE CONDITION REGISTER IS RESTORED
350 //A Vi CREC PROGRAM COUNTER - 65 AND THE PROGRAM COUNTER IS LOADED

23 20 T bbbttt WITH THE RETURN ADDRESS.

T Ll L , L L
657 c0B /////// OPERAND MAIN PROGRAM

N 12 7 [}

Mi60-157-1738

Figure 5-4 Interrupt Subroutine Exit

5-5/(5-6 blank)

0830005-000
Original 3/78

SECTION VI
 SCIENTIFIC ARITHMETIC UNIT (SAU)

GENERAL DESCRIPTION

The optional Scientific Arithmetic Unit (SAU) provides
concurrent double-precision, floating-point capability for
the computer. When used with the computer, the SAU
implements the execution of 47 additional instructions, or
operation codes. Of these instructions, 27 permit
concurrent computer/SAU operations. SAU data and
condition information are displayed on the Programmer’s
Control Panel as a function of selectable shared indicators.

FLOATING-POINT DATA FORMAT

All arithmetic operations are carried out in double-precision
format to yield a 39-bit mantissa and an 8-bit exponent.
Figure 6-1 illustrates the floating-point data formats
employed by the CPU’s Double (D) Register, memory, and
the SAU’s X and XW Registers.

Data transfers to the SAU from the CPU are either
single-precision integers or double-precision, floating-point,
normalized numbers. All arithmetic operations performed
within the SAU are executed in the double-precision,
fioating-point format as illustrated in Figure 6-1. Therefore,
any integer number transferred to the SAU for arithmetic
operations is first normalized and converted to
floating-point format within the SAU. All double-precision
transfers to the SAU, whether from the D Register or
memory, are assumed to be normalized, floating-point

quantities. Bit 23 of the least-significant half (LSH) of the ‘

double word is truncated.

SAU REGISTERS

Three SAU registers are available to the programmer. These
are:

a. X Register (signed mantissa — Figure 6-1);
b. XW Register (signed exponent — Figure 6-1); and

c. Y Register (SAU condition — Figure 6-2).

The XW Register can be independently modified via the
SAU instruction set. Figure 6-2 illustrates the Y (condition)
Register bit configuration and their significance in
reflecting the results of SAU operations.

OPERATION AND CONTROL

Data Transfers

A simplified block diagram of the SAU in relation to the
CPU is shown in Figure 6-3. All data transfers between the
CPU and SAU are, effectively, confined to the X, XW, and
Y Registers. CPU-SAU data transfers may involve the E and
- A Registers or memory. The transfer source and destination
are selected as a function of the instruction being executed.
in all double-precision transfers to and from the SAU, the
least-significant half (LSH) is transferred first. When
memory is involved in the double-precision transfer,
memory location N+1 (refer to Figure 6-1) must be
addressed before location N in order to maintain the proper
format. The CPU controls this addressing sequence as a
normal instruction execution function.

SAU INSTRUCTIONS

For a detailed description of SAU instructions, refer to
Section V1| of this manual. Appendix A shows instruction
execution times and also lists the concurrent times available -
for processing non-SAU instructions during SAU “busy”’
periods.

PROGRAMMING CONSIDERATIONS

The SAU and CPU will operate concurrently for one or
more microcycles, depending on the SAU instruction being
executed. In order to take advantage of the available
concurrent time, CPU and SAU instructions must be
intermixed.

if the instruction sequence contains several consecutive
SAU instructions, the CPU will wait for the SAU, i.e., if an
SAU instruction is in progress and another SAU instruction
follows it, the CPU must wait until the second instruction
has started (or completed, if there is no time-sharing)
before executing any non-SAU instruction. For example,
the sequence

™X A
MMX B (4.7 + RS available for concurrent operation)
DMX C (9.6 + RS available for concurrent operation)
TXM D

6-1

0830005-000

Original 3/78
e E REGISTER T A REGISTER e]
23 22 0o 22 T 6]
U P P I
3 // ' s
{5 MANTISSA (MSH) % MANTISSA (LSH) g EXPONENT | DREGISTER
N N (cP)
iv LOCATION N — =|‘4 LOCATION N +1 ————I
2: 22 o 22 7 6 [+]
1o i P I
S % 3
{3 MANTISSA (MSH) // MANTISSA (LSH) ‘G EXPONENT ggm% oD
N ~ u
o z’”' 26 2"l
S m L3
G g MANTISSA g c| ExPONENT SAU
N N
L«s s] J 7 o
- - — ——- — X REGISTER ot XW REGISTER——]

6-2

Figure 6 1. Floating Point Data Formats

Mi1226-9768

0830005-000

CPU-SAU INTERFACE

Original 3/78
2 5 4 3 2 1
NTERRUPT / EXPONENT
N
ENABLED/ { POSITIVE ZERO NEGATIVE | SURFLOW Y-REGISTER
DISABLED / /
/i
[{
Zero Indicates Not Positive | Set to one wha? arithmetic |
° . " operations result in an
oS;L::ti?:::ﬁer:?e:ﬂ:Te) exqonenf greater than +127
greater than zero. or less than -128.
. Set to One when X is negative
Set to One during compare
operations when the operand for Square Root.
is less than the X Reg. Set to One if Divide by Zero
is aftempted.
ZERO indicates not Zero. When set to One will generate
Set to one during arithmetic operations f:::lu;“:: :;?% lir;f:el’;u(;;:fgel’::p'o.
when the result is a mantissa of all zeros enabled) P
and an exponent of 201 (octal).)
Set to one during compare operation
when the operand equals the X-Reg.
ZERO indicates not negative.
Set to one during arithmetic operations when the
result is less than zero.
Set to one during compare operations when the
operand is greater than the X -Reg.
‘ Set by RSI (Release SAU Overflow Interrupt) instruction execution.
Reset by HSI (Hold SAU Overflow Interrupt) instruction execution.
MI1227-676
Figure 6-2. SAU Y (Condition) Register
! CONTROL FROM A&E FROM TO EXEC. TO A&E REGISTERS
l SIGNALS REGISTERS MEMORY TRAP 06 OR MEMORY
I 4 4 OVERFLOW 4
INTERRUPT

aT

{\

I
i
|
|
|
|
|
J

-—=71

W 39) ji A5 '
:
XW (EXPONENT)
REGISTER Y (CONDITION)
X (MANTISSA) REG REGISTER ONDITIC |
|

B8D1596-97¢8

Figure 6-3. CPU - SAU Transfer Paths; Simplified Block Diagram

6-3

0830005-000
Original 3/78

does not make use of the available concurrent time. Note,
however, that time equal to 14.3 + 2RS is available in the
sequence for executing non-SAU instructions. The
following sequence makes use of the available concurrent
time.

TMX A

MMX B

'IT‘glID 3:)(3: : 3:13 } 4A + 2.4 concurrent time used
DMX C

AMD Y 3A+24

TDM z A+18+ W

TIA A+03 :

NIt A+03 concurrent time used
AAM K 2A+09+ W

TXM D

SAU INTERRUPT

The executive trap (Group 0, Level 6) provided with the
SAU is used to detect overflow/underflow conditions
resulting from the execution of SAU instructions. The trap
is controlled by two SAU instructions and the hold/release
external interrupt instructions of the CPU.

The SAU instructions which control the trap are:

Hold SAU overflow Interrupt (HSI)
Release SAU overflow Interrupt (RSI1)

The trap, when enabled, is triggered by the overflow bit (bit
0) of the SAU condition register (Y Register). In order to
start SAU operation and enable the trap the following
sequence may be used.

TOY 0 TMX
or
RSI RSI

OPERAND

Either sequence clears the overflow bit and prevents an
extraneous interrupt.

64

When the SAU trap is enabled and an overflow occurs, the
SAU is set to a busy condition, preventing the execution of
any other SAU instruction except an HSI. This allows the
program to determine the location of the SAU instruction
which caused the overflow. The SAU interrupt processing
routine must execute an HSI as its first SAU instruction.
Prior to exiting the service routine, bit 0 of the Y Register
must be cleared and an RSI instruction performed to rearm
the SAU trap. A typical entry/exit sequence.is:

SAUPI i
HSI

TOY 0
RS
BRL* SAUPI

Note that an overflow can be caused by program control
with the sequence: :

HSI
RSI
TOY 1

It should be noted that the contents of the Program
Counter at the time of the interrupt does not necessarily
have a direct relation to the location of the SAU instruction
which caused the overflow. This is due to the concurrent
processing capability, the occurrence of other interrupts,
the execution of the HXI/RXI instructions and the way in
which the SAU and CPU instructions are intermixed.

When it is a requirement to know exactly where the
instruction causing the overflow is located, careful coding is
mandatory if the concurrent operation capability is to be
used. It is recommended that in cases where overflow is
likely, the SAU instructions be written consecutively to
simplify the procedure for finding which SAU instruction
caused the overflow.

0830005-000
Original 3/78

SECTION VII
INSTRUCTION SET

INTRODUCTION

The instruction set consists of several functional groups or

families of instructions. Among these are: arithmetic;

branch; compare; input/output; logical; shift; transfer; etc.
Each group, in turn, is composed of individual instructions
' that perform specific functions.

Through the application of the instruction set, the
programmer has access to each memory location and major
register in the CPU. In addition, the instruction set provides
for the alteration and control of program flow,
manipulation and modification (arithmetic and logical) of
data, servicing of priority inteniupts and control of /0
operations.

INSTRUCTION FORMATS

Each instruction is decoded from a 24-bit memory word.
The instruction word bits define the operation to be
performed and the manner in which it is to be performed.
All instruction formats contain an operation code (Op
Code) that defines the general process that is to be
undertaken (add, subtract, interchange, etc.). The Op Code
usually contains either six or 12 bits; a few instructions
require expansion of the Op Code beyond 12 bits.

Additional bits in the instruction word specify how the
general operation is to be performed. For example, when
adding the contents of one register to the contents of
another, the additional bits indicate which registers are
involved.

Some instructions access memory and use formats that
specify an address. The address bits are sometimes
supplemented by special bits (indirect, index) in the
instruction word. In other cases, the additional bits are not
used for address modification, but are used to define a
condition under which the specified memory location will
be accessed or to indicate which of the CPU registers will be
used in the operation. The appropriate formats are provided
with the individual instruction descriptions.

INSTRUCTION FORMULA

The instruction formula, presented with each instruction
description, provides a graphic representation of a 24-bit
instruction word. The formula expresses an instruction
word as a concatenation of its various fields where each
field is represented by one or more octal digits. For

example, the formula 21.*+X:a expresses a memory
reference branch where “21" represents a 6-bit (2 octal
digits) Op Code, * and X are additive quantities defining
the indirect (*) and index (X) field, and “*a”’ is a memory
reference in a 15-bit address field.

The period (.) and colon {:) provide field separation in the
formula, with the colon indicating right/left justification.
All digits or references to the left of the colon are
left-justified, and those to the right are right-justified in
their respective fields. The absence of a colon indicates that
all digits or references are left-justified in their fields.
Examples of instruction formulas are as foliows:

0034.

Blank Field
(bits insignificant)

Op Code

0027. r1. r2

Op Code—7_

Register
Specification
Field

-_ Register Specification
Field

64. r:o

Op Codej \-— Operand Field

Register
Specification
Field

0070. *+C. U

Op Code Unit Specification

Field

Channel
Specification
Field
W/Override

71

0830005-000
Original 3/78

INSTRUCTION DESCRIPTIONS

The following paragraphs describe, in detail, the various
instructions. The instructions are arranged by functional
groups (arithmetic, branch, compare, etc.). General
information pertaining to each group is presented in the
introductory paragraphs.

Each instruction description includes the three-letter
mnemonic identifier, instruction name, instruction formula,
and lists the registers affected. Bit assignments for each
instruction_are shown by means of the binary word format
illustration, and a brief explanation of the instruction
operation is provided. Special notes are given, where
required, to complete the instruction description.

ARITHMETIC INSTRUCTIONS

The arithmetic instruction group includes the standard
arithmetic operations — addition, subtraction,
multiplication and division — as well as square root,
normalization and sign extension instructions. Also
included are several register-to-register operations which
compute the absolute value, negate or round off the
contents, or negate the sign of one register and
subsequently transfer its contents to a second register.

The arithmetic instruction mnemonics provide a brief
definition of specific operations to be performed. The first
letter of the mnemonic signifies the action or type of
operation to be performed, the second letter identifies the
first quantity or reference (r1) to be used in the operation,
and the third letter identifies the second reference (r2). For
example:

AME .
Add ——/ \— Register E
(Action to be performed) (r2)
Memory

{r1)

In the majority of arithmetic instructions, the result of the
operation remains in r2 leaving r1 unchanged (except where
r1 and r2 are the same). Certain instructions — notably,
those performing multiplication, division, sign extension
and square root computation — do not comply with the r1
and r2 conventions stated above. These instructions are
described thoroughly in the individual instruction
descriptions.

Unless noted otherwise, each arithmetic operation causes
the Condition (C) Register to be set reflecting the status of

the result. The various arithmetic conditions are defined as
follo_ws:

a. Positive — Result is arithmetically greater than zero,
indicated by a ONE in bit position 3 of the C
Register. A ZERO in bit position 3 indicates “Not
Positive”.

b. Zero — All bits of the quantity under consideration
are ZEROs, indicated by a ONE in bit position 2 of
the C Register. A ZERO in bit position 2 indicates
“Not Zero”.

c. Negative — Result is arithmetically less than zero,
indicated by a ONE in bit position 1 of the C
Register. A ZERO in bit position 1 indicates “Not
Negative”.

d. Overflow — An Overflow results from an operation
instead of displaying the status of an operand. As a -
general rule, an arithmetic Overflow will occur when
a bit is carried into the designated sign bit position
and not carried out or vice versa. An Overflow
condition is indicated by a ONE in bit position 0 of
the C Register. A ZERO in bit position O indicates
“No Overflow".

The following instructions are included in the arithmetic
group.

AAM Add A to Memory 74
AEM Add E to Memory 7-5
AMA Add Memory to A 7-3
AMB Add Memory to Byte 7-4
AMD Add Memory to Double 7-4
AME Add Memory to E 7-3
AMx Add Memory to Register 7-3
AOB Add Operand to Byte 7-5
AOM Add Operand to Memory 7-5
AOr Add Operand to Register 7-5
Arr Add Register to Register 76
AUM Add Unity to Memory 7-3
AxM Add Register to Memory 74
DVM Divide by Memory 7-6
DVO Divide by Operand 7-6
DVT Divideby T 7-7
DVx Divide by Register 7-7
DV2 Divide by 2 7-7
ESA Extend Sign of A 7-8
ESB Extend Sign of Byte 7-8
FNO Floating Normalize 7-8
MYM Multiply by Memory 7-8
MYO Multiply by Operand 7-8
MYr Multiply by Register 7-9

. 0830005-000

. Original 3/78

NBB Negate of Byte to Byte 7.9 Notes
NDD Negate of Dou.ble to Doul?le 7-10 AMx is not a computer instruction mnemonic but
Nrr Negate °_f Register FO Register ;’9 represents a family of instruction mnemonics. x is coded as
NSr Negate Sign of Register -10 follows to select one of the index registers.
PBB Positive of Byte to Byte 7-10
PDD Positive of Double to Double 7-10 x = 1()
Prr Positive of Register to Register 7-11 2 ()
Rrr Round of Register to Register 7-11 3 (K)
SMA Subtract Memory from A 7-12
Sme Subtract Memory from Byte 712 A code of 41.*+1:a, for example, implements the Add
SMD Subtract Memory from Double 7-12 " Memory to | (AMI) instruction.
SME Subtract Memory from E 7-12
SMx Subtract Memory from Register ;'" The immediate memory reference cannot be indexed;
SoB Subtract Operand from Byte -13 however, indexing of indirect references is permitted.
SOr Subtract Operand from Register 7-13
SRE Square Root Extended ;:; The Condition Register is set to Positive, Negative, or Zero,
SRT Square ROOt, . 7' 13 based on the result of the Operation. Overflow is set if the
Ser Subtract Register from Register ’ arithmetic operation generates a carry into the sign bit

without a carry out, or a carry out of the sign bit (23)

. without a carry in.
AUM Add Unity to Memory
Formula 30.*+X:a Affected M.C AMA Add Memory to A
' ' ' : ' Formula 43.*+X:a Affected AC
OP CODE % X ADDRESS
1 PO | 1 1 L.l 1 1 1 1 [i il] I Y T T T T
23 7 4 o
OP CODE |*| X ADDRESS
i Lol 1 1 1 i 1 1 1 1 1] 1 | | | L 1 L

Operation 23 7 14 °

The contents of the effective memory address are
incremented by one.

Note

The Condition Register is set to Positive, Negative or Zero, -

based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AMx Add Memory to Register
Formula 41.*+x:a Affected x,C
H 1 1 1]
FP CODE [%] x ADDRESS
.} | L 1 1 1 1 1 " 1 1 i 1 1 1 1 |
23 "7 L] 0
Operation

The contents of the effective memory address are
algeb -aically added to the contents of register 1, J or K.

Operation

The contents of the effective memory address are
algebraically added to the contents of the A Register.

Note.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overfiow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AME Add Memory to E

Formula 42.*+X:a Affected E,C
1 T 1 1
OP CODE |*| X ADDRESS
L L i L1 1 L 1 1 1 1 1 1 1 1 1 1 1 L.l
23 17 (L} 0

Operation

The contents of the effective memory address are
algebraically added to the contents of the E Register.

7-3

0830005-000
Original 3/78

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AMD Add Memory to Double
Formula 44.*+X:a Affected E,AC
1 1 i I {
OP CODE |*]| X ADDRESS
Lt 1 i 1 1 i 1 |] 1] ||) S | L1 1
23 17 4 o

Operation

The contents of the effective memory address (EMA) and
the next sequential memory address (EMA+1) are
algebraically added to the contents of the D Register
according to the double integer format defined in Section
I

Notes

Bit A23 must be ZERQ. The state of A23, after the
addition of the LSH of the double words, is used to
determine a carry into the MSH of the addition. If A23 is
set and/or bit 23 of the LSH of the double word in memory
is set prior to the addition, the carry forward will be in
error.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the D Register after the operation.
Overflow is set if one occurs during the addition.

AMB Add Memory to Byte
Formula 45.*+X:a Affected A,C
L] { T 1 1
OP CODE |*%| X ADDRESS
| .] 1 1 i1 1 1 1 1 1 I 1 L1 1 1
23 7 4 0

Operation

Bits 7-0 of the contents of the effective memory address are
algebraically added to the contents of the B Register
{A7-A0). Bits 23-8 of the A Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,

based on the result of the operation. Overflow is set if the -

arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

7-4

AxM Add Register to Memory

Formula 46.*+x:a Affected M,C

I T 1 1 1

OP CODE |} x ADDRESS

I I S | | S TN T VOO S N TN NS W BN N N

-
=

23 7 e [}

Operation

The 24-bit contents of the |, J or K Register are
algebraically added to the contents of the effective memory
address.’

Notes

AxM is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(l)
2 (J)
3 (K)

A code of 46."+2:a, for example, implements the add J to
Memory -(AJM) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

AIM* X

X DAC Y.K

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AAM Add A to Memory

Formula 50.*+X:a Affected Mm,C

T T T T T

OP CODE [¥] X ADDRESS

| N S T | Il j SN TN NN U O (NN U AN TG SN N N A |
23 17 14]

Operation

The contents of the A Register are algebraically added to
the contents of the effective memory address.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AEM Add E to Memory
Formula 47."+X:a Affected M,C
T H ¥ 1 T
OP CODE |*%{ X ADDRESS
| 1 i 1 L 4 - 1 1.1 1 L i j - 1 1 1
23 17 4 [}

Operation
The contents of the E Register are algebraically added to
the contents of the effective memory address.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOr Add Operand to Register
Formula 64.r:0 Affected r,C
1 1 i T T
OP CODE r OPERAND
d J 1 ! | ' L 1) 1 1 L 1 i 1 1] | 1 1
23 17 14 o
Operation

The 15-bit unsigned operand is algebraically added to the
contents of the specified register.

Notes

AOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select any of the general purpose registers.

ro=1{1)
2 (J)
3 (K)
4 (E)
5 (A)
6 (T)

A code of 64.3:0, for example, implements the Add
Operand to K (AOK) instruction.

0830005-000
Original 3[78

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry out of the sign bit
without a carry in, or a carry out without a carry in.

AOB Add Operand to Byte
Formula 0012:0 Affected A,C
T 1 1 7/ 1 T
OP CODE / OPERAND
1 i 1 1 1 1 1 1 1 { A 1 1 1 | 1 1 1
23 12 7 [+
Operation

The 8bit signed operand is algebraically added to the
contents of the B Register (A7-AQ0). Bits 23-8 of the A
Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit

. without a carry out, or a carry out without a carry in.

AOM(n) .. AOM(n)

Add O d to Mem
DAC(I’I\) LAC(m) peran 0 iviemory

0074:0 (word 1) Affected M,C
*+X.0:A or *+X.1:A (word 2)

Formula

WORD 1 (AOM)
¥

T T 4 1] 1
OP CODE 7/ OPERAND
1 I] 1 1 | 1 | 1 1 1 dl | | 1 q 1 1 1

a3 12 7]

WORD 2 (DAC)
1 I 1

7 4 1
*| X |0 /// ADDRESS
i A) IR N TR S RV S T I S N N R I
23 20 15 5 (o]
or
WORD 2 (LAC
// 1 1 i 1

*| X |1 / ADDRESS

A é | I I U N N P S A | L Ll 1 1 Il
23 20 7 [¢]
Operation

The 8-bit signed operand (n) is algebraically added to the v
contents of the effective memory address (m).

75

0830005-000
Original 3/78

Notes

If a demand page, restrict mode violation, or limit violation
occurs when attempting to access the effective memory
address while in the virtual memory User mode, the
Program Counter will be decremented by one. If the
violation occurs during the fetch of the second word, the
Program Counter will be decremented by one.

An AOM instruction may not be used after a ROM
instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

Arr Add Register to Register

Formula 0020.r1.r2 Affected r,C
T | 1 I 1
OP CODE ri r2
i i 1 1 L L 1 1 1 1 1 L1 1 Jol L L 1 1 "
23 1] 5 [+]
Operation

The contents of r1 are algebraically added to the contents
of r2.

Notes

Arr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

=01 ()
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

r1 or r2

A code of 0020.10.40, for example, implements the Add E
to T (AET) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

11 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they
are logically ORed prior to the specified operation. The
result is copied into all of the selectéd r2 registers. Affected
registers are only those selected in group r2.

7-6

DVM Divide by Memory
Formula 57.*+X:a Affected E,AC
T T v 1 T
OP CODE |*| X ADDRESS
1 1] | 1 1 L 1 1 L1] 1 4 1 1 1 | L
23 17 14 [+]

Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the
single-precision contents of the effective memory address.
The signed, single-precision, quotient is left in A and the
remainder is left in E. The remainder will have the same
sign as the original dividend and the Condition Register will
be set according to the status of the quotient.

Notes

If it is desired to divide a single—precision number in A
by memory, an Extend Sign of A (ESA) instruction shouid
be executed prior to the DVM. This will establish the
proper format for the dividend.

If the contents of E are equal to, or greater than, the
contents of memory, an Overflow condition wiil result and
the Condition Register will be set accordingly.

DVO Divide by Operand
Formula 610:0 Affected E,AC
L T T 1 - { 1
OP CODE OPERAND
1] i | - - | L L] L1 1 1 1 1 Ll 1 1 1 1 1
23 N 14 0
Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the 15-bit
unsigned operand. The signed, single-precision, quotient is
left in A and the remainder is left in E. The remainder will
have the same sign as the original dividend and the
Condition Register will be set according to the status of the
quotient.

Notes

If it is desired to divide a single-precision number in A by
the operand, an Extend Sign of A (ESA) instruction should
be executed prior to the DVO. This will establish the
proper format for the dividend.

If the contents of E are equal to, or greater than, the
operand, an Overflow condition will result and the
Condition Register will be set accordingly.

Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the specified
register. The signed, single-precision, quotient is left in A
and the remainder is left in E. The remainder will have the
same sign as the original dividend and the Condition
Register will be set according to the status of the quotient.

Notes

DVx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1 (1)
2 Q)
3 (K)

A code of 61.1, for example, implements the Divide by |
(DVI) instruction.

If it is desired to divide a single-precision number in A by
the contents of the specified register, and Extend Sign of A
(ESA) instruction should be executed prior to the divide
instruction. This will establish the proper format for the
dividend.

(f the contents of E are equal to, or greater than, the
contents of the specified register, an Overflow condition
will result and the Condition Register will be set
accordingly. ‘

MY,

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the T
Register. The signed, single-precision, quotient is left in A
and the remainder is left in E. The remainder will have the
same sign as the original dividend and the Condition
Register will be set according to the status of the quotient.

0830005-000
Original 3/78

Notes

If it is desired to divide a single-precision number in A by
the contents of the T Register, an Extend Sign of A (ESA)
instruction should be executed prior to the divide
instruction. This will establish the proper format for the
dividend.

if the contents of E are equal to, or greater,than, the
contents of the specified register, an Overflow condiaon
will result and the Condition Register will be set
accordingly.

DV2 Divideby 2
Formula 615:0 Aﬁécted E
1 1 V 1 1
OP CODE W/ OPERAND
I U N S | 1 1 1 / 1 1 1 1 1 1 |
23 14 7 0
Operation

The DV2 instruction divides the contents of the E Register
by the contents of the A Register, except that the .
arithmetic operation will be Modulo 2 ({exclusive OR)
instead of 2's compiement arithmetic. The 8-bit operand
contained in the instruction specifies the number of shifts.

Notes

The specified number of shifts must be an even number and
cannot be zero. If zero shifts are specified, the operation is
the same as when a shift of one (1) is specified.

This instruction is used for generating and checking error
codes based on polynomial coding techniques. The
polynomial and the operand to be implemented must be
left-justified in the A and E Registers. The result will be
placed in the E Register while the polynomial will remain in -
the A Register.
‘ START ’ ——ﬁ
SHIFT

LOAD

SHIFT

ONE BIT
LEFT

COUNTER

DECREMENT
SHIFT
COUNTER

NO NO
I 3

(A)+(E)

0830005-000

ESA Extend Sign of A
Lo 7777777

The state of the sign bit (A23) of the A Register is copied
into all 24 positions of the E Register and bit A23 is then
set to zero. This forms a double-precision number in E and
A.

ESB Extend Sign of Byte

Formula 0010. Affected AC
TN/
Operation

The state of the register B sign bit (A7) is copied into bit
positions A8-A23, forming a sign extension of the byte.
Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

FNO Floating Normalize

Formula 0054. | Affected E.AlC
oo 700727
Operation

The contents of the D Register (E and A) are shifted left
arithmetically until bit E22 differs from E23. The negative
shift count (i.e., the number of shifts performed) replaces
the contents of the | Register.

Notes

Example: Convert a doubfe-precision integer in D to
double-precision floating point format.

TOC 0 Clear Overflow
FNO Normalize
TIB Position exponent in byte

(A7-A0).

BOZ *+2 If result is zero, no exponent
adjustment is necessary.
AOB 46 Adjust shift count

There are four special cases where the shifting process
differs from that described above.

If the binary pattern 11000...0 is detected in register
D, normalization is terminated to avoid creating the
invalid pattern 10000...0.

If the invalid binary pattern 10000...0 is detected, it
is shifted right one position producing the pattern
11000...0. The shift count is adjusted accordingly.

If the pattern 00000...0 is detected, the shift count is
set to -177g, making a zero less significant than any
other value.

If an Overflow condition is present when beginning
the operation, the contents of the D Register are
arithmetically shifted right one position. The shift
count is set to ONE and the sign of D is
complemented.

The Condition Régister is set to Positive, Negative, or Zero,
based on the result of the operation.

MYM Muitiply by Memory

Formula 56.%+X:a Affected E,AC
1 T T T 1
OP CODE (%] X ADDRESS
Il 1 1 | 1 L i 1 1l J L 1 1 1 1 L 1 1 1 1
23 7 14 0

Operation

The contents of the A Register are algebraically multiplied
by the contents of the effective memory address. The
double-precision product repiaces the previous contents of
the D Register {E and A).

Note

An Overflow will result if the full-scale negative number
{1000....00) is used as both the multiplier and multiplicand.

MYO Multiply by Operand
Formula 600:0 Affected E,AC
T I l v T T
OP CODE OPERAND
1 L 1 11 i L L L i 1 Il | |] 1 1 1 !] 1 L
23 4 (4]

Operation

The contents of the A Register are algebraically multiplied
by the 15-bit unsigned operand in the instruction word.
The double-precision product replaces the previous
contents of the D Register (E and A).

MYr Multiply by Register

Formula 60.r Affected

E,A.C

oraone | < V70

23 17 15 0

Operation

The contents of the A Register are algebraically multiplied
by the contents of the specified register. The
double-precision product replaces the previous contents of
the D Register (E and A).

Notes

MYr is not a computer instruction mnemonic but
represents a family of instruction mnemonics. r is coded as
follows to select one of the general purpose registers.

r=1(1)
2 (J)
3 (K)
4 (E)
5 (A)
6 (T)

A code of 60.4, for example, implements the Multiply by E
{MYE) instruction.

An Overflow will result if the full-scale negative number
(1000....00) is used as both the multiplier and multiplicand.

NBB

Formula

Negate of Byte to Byte

0005. Affected AC

e V7777

23 12 o

Operation

The contents of the B Register (A7-AQ) are two's
complemented. Bit positions A23-A8 are unchanged.

0830005-000
Original 3/78

Notes
An Overflow will result when negating 27 (full-scale
negative byte).

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Nrr Negate of Register to Register

Formula 0022.r1.r2 Affected r,C
1 { ¥ 4 T
OP CODE r r2
i | SN N N N SR SN I N |] | I T | | I T N |
23] 5 [+]
Operation

The two's complement of the contents of r1 replace the
previous contents of r2.

Notes

Nrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

= 01 (I)
02 (3
04 (K)
10 (E)
20 (A)
40 (T)

rl or r2

A code of 0022.40.01, for example, implements the Negate
of T to | (NTI) instruction.

An Overflow will result when negating 223 (full-scale
negative number).

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they
are logically iC_)Red prior to the specified operation. The
result is copied into all of the selected r2 registers. Affected
registers are only those selected in group r2.

if the Timer (T) Register is selected as source or

destination, the instruction is treated as a multiple register
instruction for timing.

79

0830005-000
Original 3/78

NDD

Negate of Double to Double

oo 7077

The contents of the D Register (E and A), in
double-precision format, are two’s complemented.

Notes

An Overflow will result when negating 246 (full-scale
negative double integer).

Bit A23 is copied into the carry flip-flop after the first half
of the double word is added. If A23 or bit 23 of the LSH of
the double word is set, a carry may be lost or added.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

NSr Negate Sign of Register
Formula 0032.r1.r2 Affected r,C
I I T 1 1
OP CODE r1 r2
1] I L1 | N N N .| 1 1 J 1 ! 11 Il 1
23 H 5 [+]
Operation

The sign bit of the specified register is complemented.

Notes

NSr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

rl and r2 = 01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0032.01.01, for example, implements the Negate
Sign of | (NS1) instruction.

An Overflow will result when negating zero to create a
full-scale negative.

7-10

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers. Affected
registers are those selected in group r2 and the Condition
Register.

PBB Positive of Byte to Byte
Formula 0006. Affected AC
T T 1 /
OP CODE W %
Operation

The absolute value of the contents of the B Register
(A7-AQ) is placed in the B Register.

Notes
An Overflow will resuit when negating a full scale negative

byte.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

PDD

Positive of Double to Double

W7/

Operation

The absolute value of the contents of the D Register is
placed in the D Register according to the double integer
format defined in Section Ii.

Notes
An Overflow will result when negating a full scale negative.

According to the double integer format, A is cleared by this
instruction execution.

Bit A23 is copied into the carry flip-flop after the first half
of the double word is added. If A23 or bit 23 of the LSH of
the double word is set, a carry may be lost or added.

0830005-000
Original 3/78

A code of 51."+1:a, for example, implements the Subtract
Memory from | (SM1) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect reference is permitted, e.g.,

smi* X

X DAC YJ

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMA Subtract Memory from A
Formula 53."+X:a Affected A,C
1 i I T T
OP CODE %} X ADDRESS
ul i 1 L 1 1 1 1 1 1 1 1 i 1 i 1 1 1 1 1
23 17 ©14 [s]

Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the A
Register. ‘

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the resuilt of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SME Subtract Memory from E
Formula 52.*+X:a Affected E.C
1 1 T T T
OP CODE [%]| X ADDRESS
i . 1] 1 1 1 1 1 1 L1]] 1 1 1 1 [1
23 17 14 [«

Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the E
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,

712

based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMD _ Subtract Memory from Double

Formula 54.%*+X:a Affected E,A,C
1 1 1 1 1
OP CODE [|*| X ADDRESS
1 1 1 1 1 i L1 1 1 1 1 L 1 | 1 1 1 | |
23 17 14 o]
Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) are algebraically
subtracted from the contents of the D Register (E and A),
according to the double integer format defined in Section

Notes

Failure to adhere to the double integer format will provide
incorrect resuits. Bits A23 must be ZERO. (A carry or
borrow may be lost between the E and A Registers.)

Bit A23 is copied into the carry flip-flop after the first half
of the double word is added. If A23 or bit 23 of LSH of the
double word in memory is set, a carry may be lost or
added.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMB Subtract Memory from Byte
Formula 55.*+X:a Affected AC
1 I I H T
OP CODE |&| X ADDRESS
231 1 i | 1 — 1 ” - 1 1 H 1 1 1 1 1 i 1 1 |l 5

Operation

The contents of bits 7-0 of the effective memory address
are algebraically subtracted from the B Register (A7-AQ).
Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero, .
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

0830005-000

Original 3/78
SOr Subtract Operand from Register Srr Subtract Register from Register
Formula 65.r:0 Affected r,C Formula 0021.r1.r2 Affected r12,C
T T H i T T I 1 1] 1

OP CODE r OPERAND OP CODE r1 Cor2

1 | I O W | L1 L1 | N U N T S | | S S | 3 W S T | L1 1 | . 1 | W | 111 1 i
23 17 14 (o} 23 1] 5 0
Operation Operation

The 15-bit unsigned operand is algebraically subtracted
from the contents of the specified register.

Notes

SOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

ro=1()
2 (3
3 (K)
4 (E)
5 (A)
6 (T)

A code of 65.1:0, for example, implements the Subtract
Operand from | {SOI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
result of the arithmetic operation generates a carry into the
sign bit without a carry out, or a carry out without a carry
in.

SOB Subtract Operand from Byte

Formula 0013:0 Affected A,C
T T 1 // T T
OP CODE /// OPERAND
1 1 1]] 1 1 1]] I /// | 1 1 14 1
23 12 7 o]
Operation

The 8-bit signed operand is algebraically subtracted from
the contents of the B Register (A7-A0). Bits A23-A8 are
unaffected.

Note

The Condition Redgister is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

The contents of r1 are algebraically subtracted from r2.

Notes

Srr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.
rt or r2 =01 (l)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0020.01.02, for example, implements the
Subtract | from J (S1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

SRT

Square Root

Formula 0076:014 Affected EAC
T T 1 // T T
OP CODE //
| | 1 i i 1 | | | | { IA |] 1 L i
23 12 7 0
Operation

The contents of the A Register are treated as a 23-bit
positive integer. The square root of this quantity is placed
in the A Register, right justified, and the remainder is
placed in the E Register so that:

root2 + remainder = original integer.

> 19

0830005-000
Original 3/78

Notes
If the sign bit (23) of the A Register is set, the Condition
Register will be set to Overflow.

SRT generates a root of 12 significant bits; i.e., the true
integer root of any positive integer in the A Register.

Consider the following examples where An implies a binary
point to the right of bit n.

Positive Integer Root (Octal)
2 at A0 1at A0
2 at A20 1.3240 at A10
SRE Square Root Extended
Formula 0076:027 Affected E,A,C
T 1] 7 |l R
OP CODE ///
1 i b] 1 T T i 1 A 1 1] L 1 L
23 12 7 []
Operation

The contents of the A Register are treated as a 23-bit
positive integer. The square root of this quantity is placed
in the A Register, right justified, and the remainder is
placed in the E Register so that:

root2 + remainder = original integer.

Notes

If the sign bit (23) of the A Register is set, the Condition
Register will be set to Overflow.

SRE generates a root of 23 significant bits. This extended
significance is obtained by assuming 22 zeros to the right of
bit AQ; effectively multiplying the contents of A by 222
and, consequently, the root by 211

Consider the following exakmples where: An implies a
binary point in the right of bit n.

Positive Integer Root (Octal)

2at AO
2 at A20

1.3240 at A11
1.3240474 at A21

BRANCH INSTRUCTIONS

The branch group of instructions can be divided into two
basic types; conditional and unconditional branches.
Conditional branches cause control to be transferred to a
specified address upon detection of a certain machine
condition as indicated by the contents of the Condition
Register. Unconditional branches cause control to be
transferred unconditionally to a specified address.

714

When virtual memory is disabled, or enabled and in the
Monitor Mode of operation, only long branch (BJL, BLL,
BRL, BSL, BUL) instructions or the Branch and Link —
Unrestricted {(BLU) instruction should be used in the last
location of the lower or upper 32K sections of memory.
Use of any other branch instruction will cause control to be
automatically transferred to the opposite memory section.

Caution should be observed when employing branch
instructions in conjunction with the virtual memory
system. When a Release Operand Mode (ROM) instruction
is executed, any branch instruction following the ROM wiil
cause the User Mode to be established. If the instruction is
a conditional branch, the User Mode will be established
regardless of the outcome of the conditional test. (SAU
conditional branches are exceptions to this rule.) A BLU
instruction automatically establishes the Monitor Mode.

The following instructions are included in the branch
group.

BBI Branch When Byte Address +1in | # 0 7-14
BBJ Branch When Byte Address +1inJ#0 7-15
BJL Branch Indexed by J Long 7-16
BLL Branch and Link (J) Long 7-17
BLU Branch and Link Unrestricted 7-18
BlLx Branch and Link Register 7-17
BOc Branch on Condition Code ' 7-16
BRL Branch and Reset Interrupt Long 7-18
BSL Branch and Save Return Long 7-17
BUC Branch Unconditionally 7-16
BUL Branch Unconditionally Long 7-16
BWx Branch When Register +1 # 0 7-16

Branch when Byte Address

BBI +1in1+0
Formula 607:a Affected |
T T T 1 T T
OP CODE ADDRESS
| 1 1 L {] L 1 1 1 1 1 1 | 1 1 L L1 L
23 14 [+]
Operation

The contents of bits 22 and 23 of the | Register are
incremented by one. If the result of this addition (in bits 22
and 23) is not 002 then the contents of the P Register
(current program address) are replaced by the 15-bit
effective memory address. If the result of the addition to
bits 22 and 23 is 002 then bits 22 and 23 are set to 012
and bits 21-0 are incremented by one. If the resultant sum
in bits 21-0 is zero, then the P Register advances to the next
sequential program location and the index register is set to

200000008 Otherwise, the contents of the P Register are
replaced by the 15-bit effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following examp! - which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

™J = ‘60000200
IMI = ‘20000300
TNk 11

EMB 0

RBM 0

BBI *41

BBJ *+1

BWK *-4

Occasionally, it is possible to use the address of a portion of
the | Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB oy

™I ='77777775 bits 22and 23 = 3,
bits 21-0 = -3

RBM *100+3

BBI 1

However, it should be noted this technique of using the
index register as both a byte counter and word pointer may
be used only in certain instances. Specifically, when the
following relationship is true.

(5 (%)

Where:

R() =remainder

b.n. = the starting byte number (1,2, or 3)

CT = The number of bytes to be referenced.

Branch when Byte Address
BBY +1indJ#0
Formula 617:a Affected J
4 1 T 1 1 1
OP CODE ADDRESS
b L | Ll 1 1 1 1 1 1 L1 1 1 1)\ 1 L) 1

” a B

0830005-000
Original 3/78

Operation

The contents of bits 22 and 23 of the J Register are
incremented by one. If the result of this addition (in bits 22
and 23) is not 002 then the contents of the P Register
(current program address) are replaced by the 15-bit
effective memory address. If the result of the addition to
bits 22 and 23 is 002 then bits 22 and 23 are set to 012
and bits 21-0 are incremented by one. If the resultant sum
in bits 21-0 is zero, then the P Register advances to the next
sequential program location and the index register is set to
20000000g Otherwise, the contents of the P Register are
replaced by the 15-bit effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

™J = ‘60000200
T™I = ‘20000300
TNK 1

EMB 0

RBM 0

BBI B

BBJ *+1

BWK "4

Occasionally, it is possible to use the address of a portion of
the J Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB “o

™I = ‘77777775 bits 22 and 23 = 3,
bits 21-0 = -3

RBM ‘10043

BBJ *1

However, it should be noted this technique of using the
index register as both a byte counter and word pointer may
be used only in certain instances. Specifically, when the
following relationship is true.

" (422) 0 ()

Where:
R() = remainder
b.n. = the starting byte number (1,2 or 3)
CT = The number of bytes to be referenced.

Z7.18

0830005-000

Original 3/78
BUC Branch Unconditionally
Formula 21."+X:a Affected P
T 1 1 T 1
OP CODE |*| X ADDRESS
i] L L I] I] 1 1 1 1 1] ! 1 1 1 i]
23 i7 4 1]

Operation

The contents of the P Register {(current program address)
are replaced by the 15-bit effective memory address.

BUL Branch Unconditionaily Long
Formula 26.*+0:A Affected P
| ¥ 1 i 4 1
OP CODE |*|0 ADDRESS
1 L1 il |] 1 1] 1 I 1 1 1 1 1 11 i
23 17 15 V]
Operation

The contents of the P Register (current program address)
are replaced by the 16-bit effective memory address.

Note

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

BUL" X

X DAC Y.l

" a family of instruction mnemonics. c is coded as follows to
select the branch on condition.

c = 0 (Overfiow)
1 (Negative)
2 (Zero)
3 (Positive)
4 {No Overflow)
5 (Not Negative)
6 (Not Zero)
7 (Not Positive)

A code of 22.1:a, for example, implements the Branch on
Negative (BON) instruction.

BOc Branch on Condition Code
Formula 22.c:a Affected P
T T 1 T 1
OP CODE c ADDRESS
1 1] 1 1 i 1 i 1 1 i 1 L 1 1 1] 1 1 1 1
23 7 4 o
Operation

The contents of the Condition Register are tested for the
specified condition. If the condition is present, the contents
of the P Register {current program address) are replaced by
the 16-bit effective memory address. |f the specified
condition is not present, the program advances to the next
sequential location (program address +1).

Note

BOc is not a computer instruction mnemonic but represents

7-16

BWX Branch When Register +1 #0
Formula 23.x:a Affected x,P
1 1 I I 1
OP CODE |0} x ADDRESS
L L1 1 1 1 j B | 1 1 1 1 1 1 1 1.4 1 1
23 17 16 4 [+)
Operation

The contents of the specified register are incremented by
one and then tested for zero. If the contents are not zero,
the contents of the P Register (current program address) are
replaced by the 16-bit effective memory address. If the
contents are zero, the program advances to the next
sequential location (program address +1).

Note

BWx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(l)
2
3 (K)

A code of 23.1:a, for example, implements the Branch
When 1+1#0 (BWI) instruction.

BJL Branch Indexed by J Long
Formula 23.4:A Affected P
1 1 1 Ll 1 1
OPCODE |10 ADDRESS
1 1 1 1 1 1 L1 1 1 1 1 1 1 L 1 [| 1 1 L

23

Operation
The contents of the.P Register (current program address)
are replaced by the 16-bit effective memory address.

Note

The immediate memory reference is automatically indexed
by J.

BLX Branch anc Link Register
Formula 24.*+x:a Affected x,P
T T | 1 - T
OP CODE || x ADDRESS
| S T . | | S SN R N U N NS TR N N N I S T |
23 7 L] [}

Operation

The contents of the |, J or K Register are replaced by the

next sequential address (program address +1) and the
contents of the P Register {current program address) are
replaced by the 15-bit effective memory address.

Notes

BLx is not a computer instruction mnemonic but represents
a family of instruction mnemonics. x is coded as follows to
select one of the index registers.

x =1 ()
2 (J)
3 (K)

A code of 24.* +1:a, for example, implements the Branch
and Link | (BL!) instruction.

On an indirect or index operation, the specified register is
loaded with the contents of the P Register (address of next
sequential instruction) before indexing or indirection takes
place.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

BLI* X

X DAC Y.J

BLL Branch and Link (J) Long

Formula 26.*+2:A Affected JP
T R H T T T
OP CODE |%k}1 ADDRESS
1 1 1 1 Ll L 1 1 I 1 L 1 1 1 1 1 L1
23 75 ry

0830005-000
Original 3/78

Operation

The contents of the J Register are replaced by the next
sequential address (program address +1) and the contents of_
the P Register (current program address) are replaced by
the 16-bit effective memory address.

Note

The immediate memory reference cannot be indexed;

. however, indexing of indirect references is permitted, e.g.,

BLL*

X DAC

BSL

Branch and Save Return Long

Formula 25.*+0:A Affected P
1 1 1 1 I I
OP CODE |%|0O ADDRESS
) I S T | | S N U N N T N (O T N T N N A |
23 ” 1] o)
Operation

The next sequential address (program address +1), along
with the contents of the Condition Register are stored in
the 16-bit effective memory address (EMA). The contents
of the P Register {(current program address) are then
replaced by the address following the effective memory
address (EMA +1).

Notes

This instruction is used to enter an interrupt subroutine
because it provides a means of returning to the main
program at the point of interrupt and saves the machine
status (condition) at the time of the interrupt.

The contents of the Condition Register are stored in bit
positions 19-16 of the EMA and the return address
(program address +1) is stored in bits 15-0. The remaining
bits are set to ZEROs; however, refer to the following for
variation on bit 20.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

When an interrupt occurs, the status of the virtual memory
system is recorded. Bit 20 is set to ONE if the system is in
the User Mode at the time of interrupt; bit 20 is set to
ZERO if the Monitor Mode is active.

717

0830005-000

Original 3/78
BRL Branch and Reset Interrupt Long
Formula 25."+2:A Affected cp
I 1 T T T L
OP CODE |*|1 ADDRESS

| I I | {1 Lt 111 1 1 1 L1 1
23 17 5. [+
Operation

The highest-level active interrupt is reset (i.e., returned to
the inactive state) and the contents of the P Register
- (current program address) are replaced by the 16-bit
effective memory address.

Notes

BRL is normally used to exit an interrupt subroutine. If
BRL contains an indirect reference, the last word in the
indirect address chain contains the previous status of the
virtual memory system in bit M20, the previous machine
status (i.e., C Register contents at the time of the interrupt)
in bit positions M19-M16, and the return address in bit
positions M15-MO as a result of the BSL instruction. The C
Register is restored and the program branches to the return
address (restarting the machine to the pre-interrupt status).

Example:
TMA
L AMA
SMA Interrupt occurs (EXM K).
K BSL M Dedicated interrupt location.
M i M becomes L+1 as a result of

BSL at K. The C Register con-
tents are stored in M19-M16.

BRL®™ M Restore C Register and return
to L+1.

The BRL will not reset the interrupt if external interrupts
have been held by an HXI instruction. Control will be
returned to the effective memory address.

Those executive traps, which aré not affected by the HXI
instruction, will be reset by the BRL.

7-18

The immediate memory reference cannot be indexed;
however, indexing indirect references is permitted, e.g.,

BRL" X

X DAC Y.K

If the BRL instruction is not indirected, the Condition
Register is not affected.

External interrupts are prohibited for the period of one
instruction following this instruction.

In virtual memory systems, if an indirect BRL is executed
in Monitor Mode, bit 20 of the effective memory address
determines mode of operation to which machine returns. If
bit 20 is set, User Mode is established; if reset, the Monitor
Mode is established. '

BLU Branch and Link Unrestricted
Formula 0067:a Affected J,P
OP CODE ADDRESS
3 [l 1 { 1 { 1 1 | } | / é 1 1 i 1
23 12 4 G
Operation

The next sequential address (program address +1) replaces
the contents of the J Register and the contents of the P
Register (current program address) are replaced by the 5-bit
immediate memory address.

Notes

If Program Restrict is enabled, execution of the BLU
instruction will turn OFF the Program Restricted Flag
(PRF). If the computer is in a HALT condition and the
PRF is ON, the BLU instruction will be treated as a NOP
instruction.

If virtual memory is enabled, execution of the BLU
instruction will automatically establish the Monitor Mode.
The 5-bit immediate memory address will not be mapped.
Bit 20 of the J Register will be set (ONE) if the system was
in the User Mode, and reset (ZERO) if the Monitor Mode
was active when the BLU was executed.

COMPARE INSTRUCTIONS

The compare group of instructions is composed of two.
basic types of operations; algebraic and logical comparisons.
Both types of instructions compare two referenced
quantities and set the Condition Register according to the
result. Algebraic comparisons treat the references as signed
(+ or -) quantities, while logical comparisons assume the
references are unsigned quantities.

Algebraic comparisons are identified by the letter ““C” as
the first letter in the instruction mnemonic (e.g., CAl).
Logical comparisons use a mnemonic code beginning with
the letter “K" (KAIl). The second letter of the mnemonic
code designates the first of the compared quantities (r1)
and the last letter designates the second quantity. For
example:

CMI
Algebraically Compare —/ \——Register |
{Type of operation) : (r2)
Memory
(r1)
or
KJA
Logically Compare —/ -\—Register A
(Type of operation) (r2)
Register J
(r1)

Both algebraic and logical comparisons are performed
according to the formula:

r2 - r1 = C (positive, zero or negative)
Therefore, r2 > 11, r2 < r1 and r2 = r1 will set the
Condition Register (C) to positive (+), negative (-) and zero
(0), respectively.

The following instructions are included in the compare
group.

CMA Compare Memory and A 7-19
CMB Compare Memory and Byte 7-20
CME Compare Memory and E 7-20
CMx Compare Memory and Register 7-19
CcOB Compare Operand and Byte 7-20
Crr Compare Register and Register 7-21

0830005-000

' Formula

Original 3/78
CzD Compare Zero and Double 7-21
CZM Compare Zero and Memory 7-20
C2r Compare Zero and Register 7-20
KOB Kompare Operand and Byte 7-21
Krr Kompare Register and Register 7-21
CMx Compare Memory and Register
Formula 31."+x:a Affected Cc
1 1 T 1] I
OP CODE |%k| x ADDRESS
L1 1 1 1 1 | S N NS SO N S TR N T A T T |
23 7 4 o

Operation
The contents of the effective memory address and the

contents of the |, J, or K Register are algebraically
compared.

Notes

CMx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1
2 (J)
3 (K)

A code of 31.*+1:a, for example, implements the Compare
Memory and | {CMI) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

cmi* X

X DAC Y.K

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

- CMA Compare Memory and A

33*+X:a Affected Cc
T T T T T
-OP CODE %] X ADDRESS
| N N S | | Ll ittt 3 4+ 1 1 1 1) 1
23 7 14 °

7-19

0830005-000
Original 3/78

Operation

The contents of the effective memory address and the
contents of the A Register are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CME Compare Memory and E

Formula 32.*+X:a Affected - C
Ll I T 1 ¥
OP CODE |%| X ADDRESS
i 1 [i 1 1 | $ 1t 1 1 1 L1 1.1 |
23 17 i4 0

Operation
The contents of the effective memory address and the
contents of the E Register are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CMB Compare Memory and Byte
Formula 34.*+X:a Affected Cc
I I I T T
OP CODE [%#{ X ADDRESS
L 1 1 | H 1 1 I 1 1 1 1 1 11 1 1 L L 1
23 17 4 o]

Operation

The contents of the B Register {A7-A0Q) and the contents of
the effective memory address (M7-MO) are algebraically
compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CZM Compare Zero and Memory
Formula 41.*+0:a Affected c
T I i i T
.OP CODE |*{00 ADDRESS
1 |- 1] 1 | S W | L1t 1 1 Ll L {1
23 1 14 (o]

7-20

Operation

The contents of the effective memory address and zero are
algebraically compared.

Notes

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

COB Compare Operand and Byte
Formula 0014:0 Affected C
! T T 7/ M]
OP CODE / OPERAND
L] i 3 11 1] i 1 1 é 1 F I | 1 1.1
a3 2 7 [+
Operation

The 8-bit signed operand and the contents of the B Register
(A7-AQ} are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit of the operation.

CZr Compare Zero and Register

Formula 002400.r2 Affected C
T 1 1 1 T 1
OP CODE r2
1 Ll L1 1 1 1 11 i |- | I N J S R B T 1
23 5 o]
Operation

The contents of the specified register and zero are
algebraically compared.

Notes

CZr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers.

r2=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 002400.01, for example, implements the
Compare Zero and | {(CZl) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r2 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. if more than
one register is selected in group r2, they are logically ORed
prior to the specified operation.

0830005-000
Original 3/78

A code of 0024.01.02, for example, implements the
Compare | and J (ClJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1, or r2, they
are logically ORed prior to the specified operation.

CZD Compare Zero and Double Krr Kompare Register and Register
Formula 00240030 Affected C Formula 0025.r1.r2 Affected C
1 1 4 T T T i] 1 4 T T
OP CODE OP CODE r r2
N S S | 1 1 i1 I | I 1 1 1 J 1 1 11] 1 1 1 Il 1 1 1 | N | 11 1 L1 1 1 1 [] L i
.23 o 23 i 5 (4]
Operation Operation

The contents of the E Register are logically ORed with the
contents of the A Register, and the result in the D Register
and zero are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit of the operation.

Crr Compare Register and Register
Formula 0024.r1.r2 Affected C
T 1 ¥ 1 i
OP CODE r1 r2
| 1 1 | | { 1 1]] 1 1 1 L 1) .
23 i 5 [+]
Operation

The contents of r1 and the contents of r2 are algebraically
compared.

Notes

Crr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

r1 or r2 = 01 (I)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

The contents of r1 and r2 are logically compared.

Notes

Krr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

rt orr2= 01 (i)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0025.01.02, for example, implements the
Kompare | to J (K1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 and r2, they
are logically ORed prior to the specified operation.

KOB Kompare Operand and Byte
Formula 0015:0 Affected c
1 I V/ 1]
. OP CODE OPERAND
1] 1 1 | 1 1 1 1 1 /A [| L 1 L 1

7

7-21

0830005-000
Original 3/78

Operation
The 8-bit operand and the contents of the B Register
(A7-AD) are logically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

LOGICAL INSTRUCTIONS

The logical group of instructions includes AND (Dot
product), OR and exclusive-OR operations. Ail three types
use two quantities to produce a logical result. The AND
instructions use a mnemonic code beginning with the letter
“D” for “Dot”. The OR instructions use a mnemonic
beginning with the letter ““O”, while exclusive-OR
instructions are distinguished by the letter X",

The second letter of the mnemonic code identifies the first
of the two quantities (r1). The third letter signifies the
second quantity (r2). Some examples are listed below.

DMA
Dot —-/ \—RegisterA
(Operation) (r2)
Memory
{r1)
Q0B
OR ——/ \—Byte
(Operation) (r2)
Operand

(r1)

XJK
Exclusive-OR———/ \—Register K
{Operation) (r2)

Register J

(r1)

Unless specifically noted otherwise in the individual
descriptions, the result of the logical operation replaces the
previous contents of r2 while r1 is unchanged. The
Condition Register is set to the status of the result
{Positive, Negative, or Zero) after the operation. The

7-22

various logical operations are illustrated in the following
table.

r1 r2 | r1 ANDr2 rTORr2 r1 XORr2
1 1 1 1 0
0 1 0 1 1
1 0 1] 1 1
0 0 0 0 0

The following instructions are included in the logical group.

DMA Dot Memory with A 7-22

DOB Dot Operand with Byte 7-22
Drr Dot Register with Register 7-23
OMA OR Memory with A 7-23
OOB- OR Operand with Byte 723
Orr OR Register with Register ;_gz
XMA Exclusive OR Memory with A 7.24
X0B Exclusive OR Operand with Byte 7.24
Xrr Exclusive OR Register with Register

DMA Dot Memory with A

Formula 36."+X:a Affected AC
T T I i 1
OP CODE |%| X ADDRESS
| I T S A | 1 1 1.1 1 || 1 L1 1 | S |
23 17 14 [+

Operation
A logical AND is performed between the contents of the

effective memory address and the contents of the A
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

DOB Dot Operand with Byte

Formula 0016:0 Affected A,C

i I V

OP CODE

///’ I |
llIlLllllLl/%lloplE?AlNlDI

23 12 T 4]

Operation

A logical AND is performed between the 8-bit operand and
the contents of the B Register (A7-AQ). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Drr Dot Register with Register
Formula 0026.r1.r2 Affected r2,C
)] 1 1 T T
OP CODE rl r2
1 1 L J 1.1 1 L A J. 1 1 1 1 L 1 L 1 1 1 1
3 " 5 4]
Operation

A logical AND is performed between the contents of r1 and
r2.

Notes

Drr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

=01 (b
02 (J
04 (K)
10 (E)
20 (A)
40 (T)

rt or r2

A code of 0026.01.02, for example, implements the Dot |
with J (DLJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Theretore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

OMA OR Memoiy with A

Formula 35."+X:a Affected AC
T 1 1 1 T
OP CODE [k} X ADDRESS
| [| | 1 1 | 1 1] 1 L 1] 1 L1
23 7 2] 1]

0830005-000
Original 3/78

Operation

A logical OR is performed between the contents of the
effective memory address and the contents of the A

" Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

OOB OR Operand with Byte

Formula 0004:0 Affected A.C
l op éODE | //'// é)PERA]ND
23 12 7 [+]
~ Operation

A logical OR is performed between the 8-bit operand and
the contents of the B Register (A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Orr OR Register with Register

Formula 0030.r1+r2.r2 Affected r2,C
| 1 T 1 1
OP CODE r1 +r2 r2
11 1 1 | Ll 3 L 1 | T . | 1 11 1 1 1
23 1] 5]
Operation

A logical OR is performed between the contents of r1 and
r2.

Notes

Orr is not a.computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (I
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

r1 or r2

0830005-000
Original 3/78

A code of 0030.03.02, for example, implements the OR |
with J (Ol)) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers. Affected
registers are the Condition Register and those selected in
group r2.

XMA Exclusive-OR Memory with A
Formula 37.*+X:a Affected AC
| T T T T T
OP CODE |%{ X ADDRESS
| Ll Ll 1 1 1 F I S N N N | L1 1 Ll 1
23 17 14 o]

Operation

An exclusive-OR operation is performed between the
contents of the effective memory address and the contents
of the A Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

XOB Exclusive-OR Operand with Byte
Formula 0017:0 Affected A.C
1 1 1 7 ¥ 1
OP CODE // OPERAND
i 1 1 1 ! 1 1] | % L4 H L 1 | 1
23 12 7 o]
Operation

An exclusive-OR operation i performed between the 8-bit
operand and the contents of the B Register {A7-A0). Bits
A23-A8 are unchanged.

Note

The Condition Register is set to Positive, Negative; or Zero,
based on the result in the Byte Register at the completion
of the operation.

7-24

Xrr Exclusive-OR Register with Register

Formula 0027.r1.r2 Affected r2,C
I I M I I
OP CODE r1 r2
1] i1 L1 1 1 1 1 1 1 L1l L 1] | 1]
23 1] 5 [+]
Operation

An exclusive-OR function is performed between the
contents of r1 and r2.

Notes

Xrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

rl or r2

A code of 0027.01.02, for example, implements the
Exclusive-OR | with J (X1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The resuit
is copied into all of the selected r2 registers. Affected
registers are the Condition Register and those selected in
group r2.

SHIFT INSTRUCTIONS

The shift instruction group consists of arithmetic and
logical shifts. The arithmetic shifts cause the contents of a
register to be shifted left or right a specified number of
times, while preserving the original sign. The logical shifts
are similar to the arithmetic shifts, except that the sign bit
is shifted along. with the other bits.

With both types of shift instructions, any number of shifts
from 1 to 63 may be programmed without restriction. The
number of shifts (n) are specified in bits 5-0 of the
instruction word.

At the conclusion of any shift operation, the Condition
Register is set to the status of the affected register's
contents (Positive, Negative, Zero).

The following instructions are included in the shift group.

LAA Left Shift Arithmetic A 7-25
LAD Left Shift Arithmetic Double 7-25
LLA Left Shift Logical A 7-25
LLD Left Shift Logical Double 7-25
LRA Left Rotate A 7-26
LRD Left Rotate Double 7-26
RAA Right Shift Arithmetic A 7-26
RAD Right Shift Arithmetic Double 7-26
RLA Right Shift Logical A 7-26
RLD Right Shift Logical Double 7-27
RRA Right Rotate A 7-27
RRD Right Rotate Double 7-27
LAA Left Shift Arithmetic A
Formula 0040:n Affected AC
" OP CODE ///V// '
n
1 1 1 1) I N |] 1] 1 A] H 1 1 1
23 2 L] (4]
Operation

0830005-000
Original 3/78

significant n bits are replaced with ZEROs. Bits E23 and
A23 are bypassed. E23 is the D Register sign bit and A23 is
not used in the double-precision format.

- l]
S §g 32 re-ZEROS
/)
B3 Ez2 Eo Aoz A2z Ao
Notes

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

If a bit shifted off from E22 differs from the sign bit, the
Condition Register will be set to Overflow. (This is in
addition to the Positive/Negative/Zero status.)

Bits A22-A0 are shifted left n places, with the most
significant n bits being lost and n ZEROs being shifted into
the least significant bit positions. The sign bit {A23) is
unchanged.

1

: b

3 2 (4]
Notes

l+-ZEROS

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

If a bit shifted off from A22 differs from the sign bit, the
Condition Register will be set to Overflow. (This is in
addition to the Positive/Negative/Zero status.)

LAD Left Shift Arithmetic Double
Formula 0046:n Affected E,AC
OP CODE n
i l I 1 1 1 1 1 1 | 1 4// | | H | |
23 12 5 (4]
Operation

Bits E22-E0 and A22-A0 are shifted, as one register, leftn
places. The most significant n bits are lost and the least

LLA Left Shift Logical A
Formula 0042:n Affected AC
1 1 1 // 1
OP CODE //
1] 1 | 1 1] | |] 1 / A [l 1 rl‘ 1 {
23 12 5 o]
Operation

Bits A23-A0 are shifted left n places, with the most
significant n bits being lost and the least significant n bits

replaced by ZEROs.

—ZEROS

Note

' The Condition Register is set to Positive, Negative, or Zero,

based on the result of the operation.

LLD Left Shift Logical Double
Formula 0050:n Affected E,A.C
1 N T // T
OP CODE ///// n
|1 | 1 |] { 1) 1 1 1 % L 1 1]
23 R 5 ()
Operation

Bits E23-EQ and A23-A0 are shifted, as one register, left n
places. The most significant n bits are lost and the least
significant n bits are replaced with ZEROs.

7-25

0830005-000

Original 3/78

- } g s f e-ZEROS
E23 Eo Az Ao

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

LRA Left Rotate A

Formula 0044:n Affected A,C
OP CODE / / n

" 1 1 1 1 1 1 1 | Ll 4 L1 i1

23 12 5 [o]

Operation

Bits A23-A0 are rotated left n places. No bits are lost.

B

. 3! .

23 o]

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

LRD Left Rotate Double
Formula 0052:n Affected E,A,C
1 1] / I
OP CODE W n
o e 0 4 1 11 1 1 / | W S T |
23 12 5 [}
Operation

Bits E23-EQ and A23-A0 are rotated, as one register, left n
places, with E23 replacing AQ and A23 replacing EO as each
shift takes place. No bits are lost.

N i

E2s € Az Ag

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

7-26

RAA Right Shift Arithmetic A
Formula 0041:n Affected AC
OP CODE /
1 1 Lt]] 1 1 1 1 1 A 1 L ? L 1
23 12 5 [+]
Operation

Bits A22-A0 are shifted right n places. The least significant
n bits are lost and the most significant n bits are replaced
by an extension of the sign bit (A23). The sign bit is not
changed.

23 22]

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RAD Right Shift Arithmetic Double
Formula 0047:n Affected E,A,C
1 1 L L/ T
OP CODE W n
§ I . | | R N | l/ 1.1 1 1 1
23 12 5 o]
Operation

Bits E22-E0 and A22-A0 are shifted, as one register, right n
places. The least significant n bits are lost and the most
significant n bits are replaced by an extension of the sign
bit (E23). Bit A23 is bypassed.

-

s
Az Ao

Ex3 E22 Eo

Note

NN I

8

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. ‘

RLA Right Shift Logical A

Formula

0043:n

Affected

AC

T

OP CODE

Ll L L 1 4 1 1

bl 1

).

23

12

Operation

Bits A23-A0 are shifted right n places. The least significant
n bits are lost and the most significant n bits are replaced
by ZERO:s.

ZEROS = ?? =

23 . (o]

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RLD Right Shift Logical Double
Formula 0051:n Affected E,AC
OP CODE n
| 1 | 1 | | 1 | | { 1 Ié | 1 |] 1
23 74 L] [+]
Operation

Bits E23-E0 and A23-AO0 are shifted, as one register, right n
places. The least significant n bits are lost and the most
significant n bits are replaced by ZEROs.

wod 3 ¥

E23 Eo Az3 Ao

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RRA Right Rotate A
Formula 0045:n Affected AC
1 1 1 7 ||
OP CODE ////// n
] [T S W | | 1 | - | /\é] | | 1]
23 12 5 [s]
Operation

Bits A23-A0 are rotated right n places. No bits are lost.

—y

- 5

23 0

0830005-000
Original 3/78

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RRD Right Rotate Double

Formula 0053:n Affected E.A,C
) H 1 7 I
OP CODE /// n
1 11 1 1 1 1 1 1 1 1 A | I - 11
23 12 S 4]
Operation

Bits E23-EO and A23-A0 are rotated, as one register, right n
places, with EO replacing A23 and AO replacing E23 as each
shift takes place. No bits are lost.

el

Iy -

€23 Eo A23 Ao

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the qperation.

TRANSFER INSTRUCTIONS

The transfer instruction group includes various types of
operations. Among these are: interchanges between
memory and a specified register, interchanges between
registers, memory-to-register and register-to-memory
transfers, and register-to-register transfers.

The mnemonic code for the transfer instruction describes
the individual operation. The first letter of the mnemonic
indicates what action is to be taken; *I” for interchange or
T for transfer. The second and third letters specify the
source (r1) and destination (r2), respectively. Some
examples are listed below:

I M1
Interchange ————/ -\——Registerl
(Operation) (r2)
Memory
(r1)

7-27

0830005-000

Original 3/78
TiJ
Transfer ————/- —\————RegisterJ
(Operation) (r2)
Register |

{r1)

With the exception of the interchange instructions, the
transfer group (r1) is not altered by the execution of any
instructions in the transfer group.

The Condition Register is always set to reflect the status
(Positive, Negative, or Zero) of the contents of r2, at the
completion of the instruction.

The following instructions are included in the transfer
group.

EMB Extract Memory Byte 7-28
IMA Interchange Memory and A 7-29
IME Interchange Memory and E 7-29
IMx Interchange Memory and Register 7-29
fre Interchange Register and Register 7-29
RBM Replace Byte in Memory 7-30
TAM Transfer A to Memory 7-35
TBM Transfer Byte to Memory 7-34
TDM Transfer Double to Memory 7-35
TEM Transfer E to Memory 7-35
TFM Transfer Flag to Memory 7-35
TIM Transfer | to Memory 7-35
TIM - Transfer J to Memory 7-36
TKM Transfer K to Memory 7-36
TLO Transfer Long Operand to K 7-33
TMA Transfer Memory to A 7-31
TMB Transfer Memory to Byte 7-30 .
TMD Transfer Memory to Double 7-30
TME Transfer Memory to E 7-31
TMI Transfer Memory to | 7-31
™J Transfer Memory to J 7-32
TMK Transfer Memory to K . 7-32
TMQ - Transfer Memory to Query Register 7-31
TMR Transfer Memory to Registers 7-32
TNr Transfer Negative Operand to Register 7-32
TOB Transfer Operand to Byte 7-32
TOC Transfer Operand to Condition Register 7-33
TOr Transfer Operand to Register 7-33
TrB Transfer Register to Byte 7-34
TRM Transfer Registers to Memory 7-36
Trr Transfer Register to Register 7-36
TSr Transfer Switches to Register 7-33
TZM Transfer Zero to Memory 7-35
T2r Transfer Zero to Register 7-34

7-28

EMB Extract Memory Byte
Formula 31.*+0:a Affected B.C
T 1 1 T 1
OP CODE - {*|00 ADDRESS
1 [l i i L 1 1 1 1 1 1 1l L 1 1] 1 |
23 18 17 15 14 o]

Operation

The effective memory address is added to the contents of
the J Register, producing the word address which contains
the byte to be extracted. The selected byte, as determined
by the contents of bits 23 and 22 of the index J Heglster is
then placed in the B Register.

Notes

The following table shows the correspondence between bits
23 and 22 of J and the byte to be extracted:

Bits 23 and 22
J Register Byte Selection

o1 Leftmost Byte (bits 23-16 of
EMA+J)

10 Middle byte (bits 15-8 of
EMA+J)

1 Rightmost byte (bits 7-0 of
EMA+J)

00 Rightmost byte (bits 7-0 of
EMA+J)

The final address of any indirect/index sequence should not
be indexed since implied indexing on the J Register takes
place. If indexing is specified on the final address, then the
specified index register will be algebraically added to the
EMA prior to the final addition of J with the EMA.

Examples:
ifJ = ‘40000030
and K = ‘00000010 when the following
is executed:

EmMB* ‘40

‘40 DAC* ‘60,K

‘42 DATA “XYzZ"

‘60 DAC ‘12

Then the character Y will be placed in the B Register. Note
that the effective address of the indirect/index sequence is
*12. However, ‘12 plus bits 15-0 of index J Register (‘30)
yields the final address of ‘42. Since a byte specification of
102 was made in bits 23-22 of index J Register, then the
second byte (bits 15-8) of memory location ‘42 is placed in
the B Register. -

The Condition Register is set to Positive, Negzzive, or Zero,
based on the result of the operation.

IMX Interchange Memory and Register
Formula 66."+x:a Affected M,x,C
H 1 T 1 ¥
OP CODE k| x ADDRESS
1 | S S . | 1 11 FUIS U S N U | 1 | [
23 7 L} 0o .

Operation
The contents of the effective memory address and the |, J,
or K Register are interchanged.

Notes

iMx is not a computer instruction mnemonic but represents
a family of instruction mnemonics. x is coded as follows to
select one of the index registers.

x =1()
2 (9
3 (K)

A code of 66*+1:a, for example, implements the
interchange Memory and 1 (IMI) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.

IMK* X

X DAC YJ

The Condition Register is set to Positive, Negative, or Zero,
based on the result in |, J, or K at the completion of the
operation.

0830005-000

Original 3/78
IMA Interchange Memory and A
Formula 70.*+X:a ' Affected M,A,C
T ¥ ¥ { T
OP CODE |*] X ADDRESS
I 1 L 1 1 1 1 1 11 L1 11 11 1 1 1
3 1”7 " (o]

Operation
The contents of the effective memory address and the A
Register are interchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

IME interchange Memory and E
Formula 67.*+X:a Affected MEC
T 1 1 T 1
OP CODE [%| X ADDRESS
{ s .1 } [} 1 1 i 1 [} 1 " 1 1 [1 1]]
3 [y S “ [J]

Operation
The contents of the effective memory address and the E
Register are interchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in E at the completion of the operation.

Irr Interchange Register and Register
Formula 0035.r1.r2 Affected r1,r12,C
1 1 I | 1
OP CODE r1 r2
1 1 1 1 1 1 1 1 | 1 1 1] 1 1 1 I L L il
23 . 1] 5 [o]
Operation

The contents of r1 and r2 are interchanged.

7-29

0830005-000
Original 3/78

Notes

Irris not a computer instruction mnemonic but represents a
family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 ()
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

rt or r2

A code of 0035.01.02, for example, implements the
Interchange | and J (I1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in r2 at the completion of the
operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2 they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 and r1 registers.
Affected registers are the Condition Register and those
selected in group r1 or r2. :

RBM Replace Byte in Memory
Formula 27.*+0:a Affected M
T 1 T L i
OP CODE {*|0 O ADDRESS
1 1 1 1 1] L1 L 1 1 1Ll 1 i i]] | 1
23 8 17 15 14 o]
Operation

The effective memory address is added to the contents of
the | Register producing the word address which contains
the byte to be replaced. The selected byte, as determined
by the contents of bits 22 and 23 of the index | Register, is
then replaced by the contents of the B Register.

Notes

The following table shows the correspondence between bits
22 and 23 of | and the byte to be replaced.

Bits 23 and 22
| Register Byte Selection

01 Leftmost byte (bits 23-16 of
EMAH)

10 Middle byte (bits 15-8 of
EMA+!)

11 Rightmost byte (bits 7-0 of
EMA+)

00 Causes no operation

The final address of any indirect/index sequence should not
be indexed since implied indexing of the | Register takes
place. If indexing is specified on the final address, then the
specified index register will be logically ORed with the |
Register prior to the add function with the EMA,

TMB Transfer Memory to Byte
Formula 07.*+X:a Affected AC
T ¥ 1 1 1
OP CODE [*| X ADDRESS
} | I 1 1 1 i1t 1.1 (] 1 1 1 11 1 L
23 17 14 0
Operation

The 8 least significant bits (7-0) of the contents of the
effective memory address replace the previous contents of
the B Register (A7-A0). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the B Regiter at the completion of
the operation.

TMD Transfer Memory to Double

Formula 06.*+X:a Affected EA,C
I T ¥ 1] 1]
OP CODE %] X ADDRESS
[| 1 | 1 L. 1t 1 4 1 1 1 1 1 1 1
23 17 ! 14]

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) replace the previous
contents of the D Register (E and A). EMA and EMA+1 are
transferred to E and A, respectively.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in D at the completion of the operation.

TMQ Transfer Memory to Query Register
Formula 51.7+0:a Affected Query
T T T 1 T

OP CODE |%{0 O ADDRESS
| U N N 1 | I S U N S NS N S N N W S
23 ¥4 4 10

Operation

Bits 23, 22, 21 and 17-0 of the contents of the effective
memory address replace the previous contents of the Query
Register. These bits are loaded into the Query Register in
bit positions 23, 22, 21, and 17-0, respectively.

Notes

Executing this instruction will cause the Program Halt and
Address Trap to be enabled or disabled, depending on the
state of bits 23, 22, and 21 of the effective memory
address.

Bit 23

=ONE - Disable Address Trap
Bit 23 = ZERO = Enable Address Trap
Bit22 =ONE = Trap on Write only
Bit 22 = ZERO = Trap each time selected address
is referenced
Bit21 =ONE = Trap or Halt during User
mode only
Bit 21 = ZERO = Trap or Halt during Monitor
mode only
Example:
TMQ OA
OA DAC ADDR Enable Address Trap
or
UA DAC* O Disable Address Trap

0830005-000
Original 3/78

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

™Q* X

X DAC Y.l

TMA Transfer Memory to A
Formula 05.*+X:a Affected AC
H 1 1 1 1
OP CODE [¥| X ADDRESS
1t 1 1 1] 1 1 1 1 { 1]] | 1 L 1 1 1
23 7 4 [+]

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

TME Transfer Memory to E

Formula 04."+X:a Affected E.C
1 L T |l 1
OP CODE |*| X ADDRESS
L1 4 1 1 -l | S U T N | i1 1 1 | I S |
23 ¢ 17 (L} o
Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in E at the completion of the operation.

T™MI

Transfer Memory to |

Formula 01."+X:a Affected 1,C
1 T 1 T T
OP CODE |%*| X ADDRESS
1 L 1 11 l 1 1 1 1 1 i 1 1 L1 1 L 1 1
.3 17 - 0 [+]

7-31

0830005-000
Original 3/78

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in | at the completion of the operation.

Operation

Thel, J, K, E and A Registers are loaded from consecutive
memory addresses beginning with the effective memory
address.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction,

TMJ Transfer Memory to J TNr Transfer Negative Operand to Register
Formula 02."+X:a Affected J.C Formula 63.r:0 Affected r,C
T 1 T { 1 T T 1 1 1]
OP CODE |[*¥| X ADDRESS OP CODE r OPERAND
R ! L U N0 WU WS NN WO WA SN S N SO N I | L [T W I DU OV Y SO S N N |
23 17 14 0 23 17 3 0
Operation Operation

The contents of the effegtive memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in J at the completion of the operation.

TMK Transfer Memory to K

Formula 03.*+X:a Affected K,C
T 1 1 T L)
OP CODE [*| X ADDRESS
1 H 1 1 1 1 1 1] L 1 L 1 i 1 1 1 1 L4
23 17 (3]

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in K at the completion of the operation.

TMR Transfer Memory to Registers
Formula 10.*+X:a Affected |,J,K,E A
] T T | 1 1
‘OP CODE |*| X 'ADDRESS
1 L 1 | 1 1 1 L] 1 1 L LJ i 1] 1 1 !
23 17 14)

7-32

The two’s compiement of the 15-bit unsigned operand
replaces the previous contents of bits 23-0 of the specified
register.

Notes

TNr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

r=11(
2 (J)
3 (K)
4 (E)
5 (A)
6 (T

A code of 63.1:0, for example, implements the Transfer
Negative Operand to | (TNI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

TOB Transfer Operand to Byte
Formula 0003:0 Affected AC
] T T / T T
OP CODE %/ OPERAND
1 L1 | | 1 1 1 |- / 14 {1 1 1
23 ie 7 []
Operation

The 8-bit signed operand replaces the previous contents of
the B Register (A7-A0). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

TOC Transfer Operand to Condition Register
Formula 0036:0 Affected C
T T T 7 T
OP CODE /‘//// Lé OPERAND!
i 1 1 1 .t 1t 1 11 B 11l
23 .12 3 o
Operation

The 4-bit operand replaces the previous contents of the
Condition Register.

Note

Operand definition is as follows:

Bit0 =ONE = Overfiow
= ZERO = No Overflow

Bit1 =ONE = Negative
= ZERO = Not Negative

Bit2 =ONE =Zero
=ZERO = Not Zero

Bit3 =ONE = Positive
= ZERO = Not Positive

TOr Transfer Operand to Register
Formula 62.r:0 Affected r,C
1 |l 1]
OP CODE r OPERAND
A S G N L1 SR TR U VR W NS SN (N OO SN WS VU S |
23 * 7) [}
Operation

The 15-bit unsigned operand replaces the previous contents
of bits 23-0 of the specified register.

Notes

TOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

0830005-000
Original 3/78

r =1 (1)
2 (J)
3 (K)
4 (E)
5 (A)
6 (T)

A code of 62.1:0, for example, implements the Transfer
Operand to | (TOI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

TLO Transfer Long Operand to K
Formula 236:A Affected K
1 1] T 1 T T 1
OP CODE OPERAND
| I A T | 1 1 j U W T O S S S | | 1 1 L1 1
T} 18 °
Operation

The 16-bit operand (or address) replaces the previous
contents of bits 15-0 of the K Register. Zeros are copied
into bit positions 23-16.

TSr Transfer Switches to Register

Formula 003100.r2 Affected r2,C
1 T T 1 1 T
OP CODE r2
4l 1l 1 I 1 i | L 1 1 1 1 1 L1) I T i
23 5]
Operation

The states (set = ONE) of the console control switches (i.e.,
switch register) are transferred to the corresponding bit
positions of the specified register.

Notes

TSr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers.

r2=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

7-33

0830005-000
Original 3/78

A code of 003100.01, for example, implements the
Transfer Switches to | (TSl) instruction.

The Condition Register is set to Positive, Negative, or Zero,

based on the result in the specified register at the

completion of the operation.

r2 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r2, the switches are copied
into all of the selected r2 registers. Affected registers are
the Condition Register and those selected in group r2.

TZr

Transfer Zero to Register

Formula 003000.r2 Affected r2,C
1 1 T 1 1 1
OP CODE r2
1 | L 1 L 1 1 1 1 L 1 ! 1 L1 1 | 1 1 1 i
23 5 o
Operation

The previous contents of the specified register are replaced
with ZERO:s.

Notes

TZr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers or the D register.

r2=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)
30 (D)

A code of 003000.01, for example, implements the
Transfer Zero to | (TZ1) instruction.

The Condition Register is set to Postive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

r2 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r2, they are logically ORed
prior to the specified operation. The result is copied into all
of the selected r2 registers. Affected registers are the
Condition Register and those selected in group r2.

TrB

Transfer Register to Byte

Formuia 0002.r1 Affected A
" op CODE | 77
OP CODE r /
Operation

The least significant 8 bits (7-0) of the contents of the
specified register replace the previous contents of the B
Register (A7-AQ). Bits A23-A8 are unchanged.

Notes

TrB is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded as follows to
select one-of-five general purpose registers.

r1 = 01 (1)
02 (J)
04 (K)
10 (E)
40 (T)

A code of 0002.01, for example, implements the Transfer |
to Byte (T1B) instruction.

The Condition Register is not affected.
r1 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than

one register is selected in group r1, they are logically ORed
prior to the specified operation.

TBM Transfer Byte to Memory

Formula 17."+X:a Affected M
T I I 1 T
OP CODE |*| X ADDRESS
[I | L1l I | 1 . | I | 1 | {1
23 17 14 (o]

Operation

The contents of the B Register (A7-A0) replace the 8 least -
significant bits of the contents of the effective memory
address. Bits 23-8 of the memory word are unaffected.

TDM Transfer Double to Memory
Formula 16.*+X:a Affected M
1 1 U 1 1
OP CODE j*| X ADDRESS
Ll 1 1 1 Loy 1 44 i J 1 31 111
23 17 L] 0

Operation

The contents of the D Register (E and A) replace the
previous contents of the effective memory address (EMA)
and the next sequential address (EMA+1). The contents of
E and A are transferred to EMA and EMA+1, respectively.

" 0830005-000
. Original 3/78

Notes
The Condition Register is set to the status of memory

(Positive, Negative, or Zero) prior to the transfer.

The immediate memory reference cannot be indexed;

however, indexing of indirect references is permitted, eg.,

TzZm* X

X DAC Y.

TAM Transfer A to Memory
TFM Transfer Flag to Memory Formula 15."+X:a Affected M
Formula 46."+0:a Affected M,C ' ! ! T T
OP CODE k| X ADDRESS
4 1 1 1 L L 4 1 1 1 L 1 1 1 1 1 1 1 1
' ! ! ! N 23 [14 [
OP CODE [*{0 0 ADDRESS
[I S R WS N NN S YU T N S TN SO S N N N T SN T Operation
23 17 4 o
The contents of the A Register replace the previous
Operation contents of the effective memory address.
The previous contents of the effective memory address are
replaced by ONEs.
TEM Transfer E to Memory
Notes
The Condition Register is set to the status of memory Formula 14."+X:a Affected M
(Positive, Negative, or Zero) prior to the transfer.
1 T T 1 T
The immediate memory reference cannot be indexed; .Or ?O‘DEI *)l(L IAP?RJESISI L
however, indexing of indirect references is permitted, e.g., 23 17 14 °
TEM* X Operation
The contents of the E Register replace the previous
. contents of the effective memory address.
X DAC Y, 1
TZM Transfer Zero to Memory TIM Transfer | to Memory
Formula 66.*+0:a Affected M,C Formula 11.*+X:a Affected M
1] T T T T T T T T T
OP CODE *]00 ADDRESS OP CODE [%*] X ADDRESS
1 1 1 11 1 L 1]] - [l 11 1 J 1 1 1 1 I i] 1 | I 1]] 1 j S T 1l L L
2 17 4 0 23 17 14 . o
Operation Operation

The previous contents ot the effective memory address are
.splaced hv ZEROs

The contents of the | Register replace the previous contents
of the effective inemory address.

0830005-000

Original 3/78
TJM Transfer J to Memory
formula 12."+X:a Affected M
i 1 1 4 1
OP CODE [* ADDRESS
1 1 1 1 1 L 1 1] 1 1 L I 1 1 1] !
23 17 14 o

Operation

The contents of the J Register replace the previous contents

of the effective memory address.

TKM Transfer K to Memory

Formula 13.*+X:a Affected M
T 1 1 I H
OP CODE |* ’ ADDRESS
1 1 L1 1 1 1 1 [1 1 1 1 I 1 1 L
23 17 14 0
Operation

The contents of the K Register replace the previous
contents of the effective memory address.

TRM Transfer Registers to Memory

Operation

The contents of r1 replace the previous contents of r2.

Notes

Trr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (I
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

rl or r2

A code of 0030.01.02, for example, implements the
Transfer | to J (T1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in r2 at the completion of the
operation.

BYTE PROCESSING INSTRUCTIONS

The byte processing group of instructions permits program
manipulation of all three bytes within the computer word
(24 bits); e.g., extract, replace, etc. The following
instructions are inclusive of byte processing operations.

Formula 20.*+X:a Affected M
T 1 v T 1
OP CODE |{%* ADDRESS
1 1 1 i 1]] Ll 1 1 1 1 1 1 | 11 1
23 17 14 [+]
Operation

The contents of the |, J, K, E and A Registers are stored in
consecutive memory locations beginning with the effective
memory address.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

Trr Transfer Register to Register
Formula 0030.r1.r2 Affected r2,C
R 1 1 T 1
OP CODE r r2
] | L1 1 41 1 1 1 | 11 111 1 1
23 1" 5 o

7-36

AMB Add Memory to Byte 7-37
AOB Add Operand to Byte 7-37
8Bt Branch when Byte address +1 in |#0 7-37
BBJ Branch when Byte address in +1 in J#0:! 7-38
CMB Compare Memory and Byte 7-38
coB Compare Operand and Byte 7-38
DOB Dot Operand with Byte 7-39
EMB Extract Memory Byte 7-39
ESB Extend Sign of Byte 7-39
EZB Extend Zeros from Byte 7-39
KOB Kompare Operand and Byte 7-40
NBB Negate of Byte to Byte 7-40
00B Or Operand with Byte 7-40
PBB Positive of Byte to Byte 7-40
RBM Replace Byte in Memory 7-40
Q8B Query Bits of Byte 7-41
SOB Subtract Operand from Byte 7-41
TBM Transfer Byte to Memory 7-41
TOB Transfer Operand to Byte 7-42
T™MB Transfer Memory to Byte 7-42
TrB Transfer Register to Byte 7-41
X0B Exclusive-Or Operand with Byte 7-42

AMB Add Memory to Byte
Formula 45.*+X:a Affected AC
H] T 1 T
OP CODE |[*| X ADDRESS -
|]] 1 1 1 L4 1 1 | i } I | L1 1
23 17 14 V]

Operation

Bits 7-0 of the contents of the effective memory address are
algebraically added to the contents of the B Register
(A7-AQ). Bits 23-8 of the A Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOB Add Operand to Byte
Formula 0012:0 Affected AC
1 T L] // ! i
OP CODE // OPERAN
L 1 1 | 1 1 L1l / /& i N S |] 1 i
23 . 12 7 [}
Operation

The 8-bit signed operand is algebraically added to the
contents of the B Register (A7-A0). Bits 23-8 of the A
Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

BBI Branch when Byte Address +1in 1 # 0
Formula 607:a Affected |
T t T 1 T 1
OP CODE ADDRESS
Ll it 4 1 1) R S T | | S S | S S |
23 14 o
Operation

The contents of bits 22 arid 23 of the | Register are
incremented by one. If the result of this addition (in bits 22
and 23) is not 002, then the contents of the P Register

0830005-000
Original 3/78

(current program address) are replaced by the 15-bit
effective memory address. If the result of the addition to
bits 22 and 23 is 002, then bits 22 and 23 are set to 012
and bits 21-0 are incremented by one. If the resultant sum
in bits 21-0 is zero, then the P Register advances to the next
sequential program location and the index register isset to
200000008 Otherwise, the contents of the P Register are
replaced by the 15-bit effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

T™J = ‘60000200
™I = ‘20000300
TNK 1"

EMB 0

RBM 0

BBI *+1

BBJ *+1

BWK *4

Occasionally, it is possible to use the address of a portion
of the | Register as a byte counter as well as a word pointer,
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB “p"

™I = 77777775 bits 22 and 23 = 3,
bits 21-0 =-3

RBM ‘100+3

BBI *1

However, it should be noted this technique of using the
index register as both a byte counter and word pointer may
be used only in certain instances. Specifically, when the
following relationship is true.

(5)-()

R ()= remainder

Where:

b.n. = the starting byte number
(1, 2, or 3}
CT = The number of bytes to be

referenced.

7-37

0830005-000
Original 3/78

BBJ Branch when Byte Address +1 in'J #0
Formula 617:a Affected J
T y T T Y T T
OP CODE ADDRESS
H 1 1 L 1 i L | 1 1 1 1 Ll ! 1 1 1 1 L 1 1
23 14 0
Operation

- The contents of bits 22 and 23 of the J Register are
incremented by one. If the resuit of this addition (in bits 22
and 23) is not 002, then the contents of the P Register
(current program address) are replaced by the 15-bit
effective memory address. If the resuit of the addition to
bits 22 and 23 is 002, then bits 22 and 23 are set to 012
and bits 21-0 are incremented by one. If the resultant sum
in bits 21-0 is zero, then the P Register advances to the next
sequential program location and the index register is set to
20000000g. Otherwise, the contents of the P Register are
replaced by the 15-bit effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

™J = ‘60000200

™I = ‘20000300
TNK 1

EMB 0

RBM 0

BBl *+1

BBJ 41

BWK *.4

Occasionally, it is possible to use the address of a portion of
the J Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB “g"

™I ='77777775 bits 22 and 23 =3,
bits 21-0 =-3

RBM ‘100+3

BBJ *1

However, it should be noted this technique of using the
index register as both a byte counter and word pointer may

7-38

be used only in certain instances. Specifically, when the
following relationship is true.

"(*5%)-+(5)

Where:

R ()= remainder
b.n. = the starting byte number
(1, 2, or 3)
CT = The number of bytes to be
referenced.
CMB Compare Memory and Byte
Formula 34.*+X:a Affected C
1 1 T T 1
OP CODE |*| X ADDRESS
1 | i 1 L1 i 1 1 1 1 Ll 1 | J I N
23 7 14]
Operation

The contents of the B Register (A7-AQ) and the contents of
the effective memory address (M7-M0) are algebraically
compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

COB Compare Operand and Byte
Formuta 0014:0 Affected C
T 1 1 // 1 M
OP CODE /// OPERAND
1 1 i L 1 1 1 1 1 1 i A L.l 1 1 1 1 i
23 12 T o]
O peration

The 8-bit signed operand and the contents of the B Register
(A7-AQ) are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

DOB Dot Operand with Byte
Formula 0016:0 Affected A,C
T T T [7 T T
OP CODE % OPERAND
i i 1 []] 1] 1 1 1 1 L1 1 1 L
23 12 T o
Operation

A logical AND is performed between the 8-bit operand and
the contents of the B Register (A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

EMB Extract Memory Byte
Formula 31.*+0:a Affected B.C
T 1 | 1 T
OPCODE [*|00 ADDRESS
1 L L1] i | I L 1 L 1 1 1 | 1 1 1 1
23 18 17 15 14 0

Operation

The effective memory address is added to the contents of
the J Register, producing the word address which contains
the byte to be extracted. The selected byte, as determined
by the contents of bits 23 and 22 of the index J Register, is
then placed in the B Register.

Notes

The following table shows the correspondence between bits
23 and 22 of J and the byte to be extracted:

0830005-000
Original 3/78

specified index register will be algebraically added to the
EMA prior to the final addition of J with the EMA.

Examples:
IfJ= ‘40000030
and K = ‘00000010 when the following
is executed:

EMB* ‘40

‘40 DAC" ‘60,K

‘42 DATA “XYz"

‘60 DAC ‘12

Then the character Y will be placed in the B Register. Note
that the effective address of the indirect/index sequence is
*12. However, ‘12 plus bits 15-0 of index J Register (‘30)
yields the final address of ‘42. Since a byte specification of
102 was made in bits 23-22 of index J Register, then the
second byte (bits 15-8) of memory location ‘42 is placed in
the B Register.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

ESB Extend Sign of Byte

Formula 0010. Affected A,C

oo

Bits 23 and 22
J Register Byte Selection

01 Leftmost byte {(bits 23-16 of
EMA+J)

10 Middie byte (bits 15-8 of
EMA+H))

11 Rightmost byte (bits 7-0 of
EMA+))

00 Rightmost byte (bits 7-0 of
EMA+J)

The final address of any indirect/index sequence should not
be indexed since implied indexing on the J Register takes
place. If indexing is specified on the final address, then the

23 2 12 ’ I 0

Operation
The state of the B Register sign bit (A7) is copied into bit
positions A23-A8, forming a sign extension of the byte.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

EZB Extend Zeros from Byte
Formula 0007. Affected A
AN/

Operation

Bit positions A23-A8 are set to ZERO. The contents of the
B Register (A7-A0) are not affected.

Note

rhe Condition Register is not affected.

7-39

0830005-000

Original 3/78
KOB Kompare Operand and Byte
Formula 0015:0 Affected C

1 T 1 7 T T

OP CODE //// OPERAND
| I | L 1 1 I 1 .) l/l] 1 | 1 1 L
23 12 7 [s]

Operation

The 8-bit operand and the contents of the B Register
(A7-AQ) are logically compared.
Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

NBB Negate of Byte to Byte

Formula 0005. AMd AC
e Y
Operation

The contents of the B Register (A7-AQ0) are two's
complemented. Bit positions A23-A8 are unchanged.

Notes

An Overflow will result when negating 27 (full-scale
negative byte).

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

OOB OR Operand with Byte

Formuia 0004:0 Affected AC

T T T T T
Y
OP CODE / /7] OPERAND
e | 1 1 1 1 1 1 1 | 1 1 / 1 1] 1 1 1 i

23 2 7 0

Creration

A logical OR is performed between the 8-bit operand and
the contents of the B Register {A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit in the Byte Register at the completion
of the operation.

7-40

P88

Positive of Byte to Byte

Formula 0006. Affected AC

e VI

23 12

Operation

The absolute value of the contents of the B Register
(A7-A0) is placed in the B Register.

Notes

An Overflow will result when negating a full scale negative
byte.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

RBM Replace Byte in Memory

Formula 27.*+0:a Affected M

T 1 i ¥ T

OP CODE |*j0 0 ADDRESS

§ VD N T S | [T S DU NN USRS U U T S AN TN S S |
23 18 17 15 14 o

Operation

The effective memory address is added to the contents of
the | Register producing the word address which contains
the byte to be replaced. The selected byte, as determined
by the contents of bits 22 and 23 of the Index | Register, is
then replaced by the contents of the B Register.

Notes

The foilowing table shows the correspondence between bits
22 and 23 of | and the byte to be replaced.

Bits 23 and 22
| Register Byte Selection

01 Leftmost byte (bits 23-16 of

EMA+HI)
10 Middle byte (bits 15-8 of

EMA+)

n Rightmost byte (bits 7-0 of
EMA+)

00 Causes no operation

The final address of any indirect/index sequence should not
be indexed since implied indexing on the | Register takes
place. If indexing is specified on the final address, then the
specified index register will be logically ORed with the |
Register. prior to the add function with the EMA.

QBB Query Bits of Byte

Formula 0011:b Affected C
T 1 I / 1 |
OP CODE / b
1 1]] 1] I 1 L1 1 A 1] 1 1 1] 1
23 12 7 o
Operation

A logical AND is performed between operand bits 7-0 and
the contents of the B Register. The Condition Register is
set according to the status of the result; i.e., Positive,
Negative, or Zero.

Note
Examples:
(1) TOA B7 A ='00000200 C = Positive
QBB 87 C = Negative
(2) TOA B6 A ='00000100 C = Positive
QBB B6 C = Positive
(3) TNA 1 A="'77777777 C = Negative
DMA MASK A ='40000000 C = Negative
MASK DATA ‘40000000
SOB Subtract Operand from Byte
Formula 0013:0 Affected AC
H 1 T / 1 |
OP CODE /// OPERAND
1 1 1] 1 1 1 i) W // 1 1 1 i} L 4 1
23 12 7T o

0830005-000
Original 3/78

Operation

The 8-bit signed operand is algebraically subtracted from
the contents of the B Register (A7-AQ). Bits A23-A8 are
unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

TBM Transfer Byte to Memory

Formula 17.*+X:a Affected M.
1 1 1 1 T
OP CODE J*| X ADDRESS
1 I 1 1 L Ny 1 1 1 1 1] 1 i 1 1 1 1] H
23 17 4 . 0

Operation
The contents of the B Register (A7-A0) replace the 8 least
significant bits (7-0) of the contents -of the effective

memory address. Bits 23-8 of the memory word are
unaffected.

TrB Transfer Register to Byte
Formula 0002.r1 Affected A
1 1 1 T W
P CODE 1 /
1 1 1 lo 1 Clo {1 1 .t 1 L1 rl | | ﬂ
23 1 [3 4]
Operation

The least significant 8 bits (7-0) of the contents of the
specified register replace the previous contents of the B
Register (A7-AQ0). Bits A23-A8 are unchanged.

Notes

TrB is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded as follows to
select one-of-five general purpose registers.

1 =01 (1)
02 (J)
04 (K)
10 (E)
40 (T)

741

0830005-000
Original 3/78

A code of 0002.01, for example, implements the Transfer |
to Byte (TIB) instruction.

The Condition register is not affected.

r1 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r1, they are logically ORed
prior to the specified operation.

Transfer Operand to Byte

TOB

Formula 0003:0 Affected A,C
1 1 T // T T
OP CODE /// OPERAND
1 ! | | 1 | i1 i / 1 L 11 1 L1
23 12 7 [}
Operation

The 8-bit signed operand replaces the previous contents of
the B Register (A7-AQ). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

TMB Transfer Memory to Byte
Formula. 07."+X:a Affected AC
T 1 1 1 T
OP CODE |*| X ADDRESS
| 1 1 i i 1 L 1 1 1 L1 i 1 1 | 1 1 1
23 17 14 0

Operation

The 8 least significant bits (7-0) of the contents of the
effective memory address replace the previous contents
of the B Register (A7-A0). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit in the B Register at the completion of
the operation.

XOB Exclusive-OR Operand with Byte

Formula 0017:0 Affected AC

T T T 7 T T
OP CODE // OPERAND
T S N TR S U SN SN TS B / TS T S B S W |

23 12 4 [o]

7-42

Operation

An exclusive-OR operation is performed between the 8-bit
operand and the contents of the B Register (A7-A0). Bits
A23-A8 are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

INPUT/OUTPUT INSTRUCTIONS

The input/output (I/O) instructions provide the required
control for all communications between the CPU and the
input/output structure. In addition to controlling data
transfers between the CPU and peripheral units, the /O
instructions allow peripheral unit command functions and
status testing to be placed under program control.

The specific 1/0 operation can be identified by examination
of the individual instruction mnemonic. All 1/O instruction
mnemonics use the letter “W*’ to indicate that a full word is
to be transferred between the CPU and the 1/O structure.
The first letter of the mnemonic indicates the direction of
the transfer (input or output). The second letter indicates
the type of word to be transferred. For example:

1D W
Input T -[- Word
(to the CPU)

Data

oOCw
Qutput T T Word
(from the CPU)

Command

There is no “1/0 hold”, or delay, imposed by the hardware.
All 1/0 instructions are executed unconditionally, i.e., the
CPU is not forced to wait for a response from the 1/0
structure in order to complete the instruction execution
cycle.

Although there is no built-in hold/delay provision, a
programmed delay can be implemented if desired. At the
beginning of each 1/0 instruction cycle, the Condition
Register is cleared. At the end of the execution phase of
each 1/0 instruction, bit 2 (Zero/Not Zero) is set to Zero if
the selected channel was ready and accepted the command.
If the selected channel was not ready, bit 2 of the

Condition Register remains set to Not Zero. The program
can test the Not Zero state of bit 2 with a branch
instruction following the 1/0 instruction. When bit 2 is set
to Not Zero, a programmed delay is implemented. For
example:

OoDW ‘0103 Output word to Channel 1, Unit 3
BNZ *1 Delay if not ready
Continue if ready

An example of a channel being not ready is when the
peripheral unit’s data transfer capability is slower than that
of the program loop and therefore cannot accept data as it
is available from the channel. Another example occurs in a
channel/multiunit environment where the channel is
connected to peripheral unit A and peripheral unit B is
selected for a data transfer.

In this instance, the channel remains not ready until a
disconnect/connect sequence is performed and peripheral
unit B is connected to the channel. Two cycies are required
for the disconnect/connect sequence.

NOTE

Status returned to the Condition Register
immediately after completion of an 1/0 instruction
refers to channel status only. A ready (Zero)
condition indicates the channel accepted the /O
command. This does not imply the 1/O operation was
completed with the selected peripheral unit.

If the program selects a non-existent channel or unit,
the channel accepts the command or data and leaves
bit 2 of the Condition Register set to Not Zero to
indicate not ready. The channel will remain not ready
for any subsequent commands.

NOTE
Channel number 308 cannot be assigned to an 1/0
channel.
If the system is equipped with the Program

Restrict/Instruction Trap option, all 1/0 instructions will be
affected.

The 1/0 command modes are determined by the
configuration of bits 5 and 4 of the OCW instruction and
are as follows:

1. Normal — The Normal Channet Operation command is
raised by bits 5 and 4 of the OCW being ZEROs (0,0).

2. Multiplex — This command is raised by bits 5 and 4 of
the OCW being in a ZERO, ONE (0,1) configuration.

0830005-000
Original 3/78

(The CPU releases the channel to a master/slave pair of
peripheral units.) (An XBC, IBC, or DMACP channel
will not respond to a Multiplex command.)

3. Offline — This command is the same as the Multiplex
command, except the 1/O drivers in the channel are
turned off, allowing the second CPU to share
peripherals without need of peripheral switches.
(Assumes control of 1/0 bus.) The command is raised
by bits 5 and 4 being in a ONE, ZERO (1,0)
configuration.

4. Reset — This command operates the same as a Normal
command, but resets the channel out of either the
Multiplex or Offline mode. (Channel restored on-line,
unit selected.) This command is raised by bits 5 and 4
being in a ONE, ONE (1,1) configuration.

The following instructions are included in the input/output
group.

IAW Input Address Word : 7-46
IDW Input Data Word 745
IPW Input Parameter Word 7-46
ISW Input Status Word 7-44
OAW Output Address Word 745
ocw Output Command Word 7-43
OoDW Output Data Word 7-44

OCW Output Command Word

Formula 0070.*+C.U Affected C
1 1 I 1 8 T
OP CODE k|CHANNEL| © | UNIT
l 1 1 1 1 I L1 1 1 1 1 1l L l: |) I .
23 1] 5 4 3 [+]
Operation

An 8-bit or a 24-bit command word is transferred from the
A Register to the specified channel/unit combination.

Notes

The Condition Register is cleared, then set to Zero if the
1/O channel is ready. If the selected channel is not ready,
the Condition Register remains set to Not Zero which
aliows a programmed delay if desired.

Bits 3-0 of the OCW instruction form a 4-bit paralleled unit
code that is used to select a particular peripheral unit. The
configuration of bits 4 and 5 determines the Multiplex or
Offline mode for a particular channel. The configuration of
bits 10-6 determines which channel is to be selected. Bit 11

- A

0830005-000
Original 3/78

is the Override Bit, and bits 23-12 define the general
process that is to be performed. The only valid unit code
for a DMACP channel is 10g; all others are rejected.

If the Override Bit (*) is set (ONE), the command word
assumes immediate control over the channel. The contents
of the A Register are transferred to the channel and a
disconnect/connect sequence is initiated. The Condition
Register is set to Zero to indicate the channel has accepted

but not necessarily executed the command. Upon .
compietion of the disconnect/connect sequence, the -

channel transfers the command word to the unit. In the
case of a DMACP channel, the Override bit clears the
channel and forces the MPU to a halt; the Condition
Register is not set to Zero, and no busy test is required.

If the Override Bit is not set (ZERQ) and the OCW specifies
a unit other than the unit connected to the channel and the
channel is ready, the command word is accepted by the
channel. The Condition Register is set to Not Zero to
indicate the channel is not ready. A disconnect/connect
sequence is performed and the command is transferred to
the unit. The Condition Register is reset to Zero to indicate
ready.

Following the execution of an OCW the channel remains
not ready until the peripheral unit accepts the data.

If the selected channel is a UBC channel and is actively
engaged in a block transfer, executing an OCW with the
Override Bit set terminates the transfer sequence leaving the
contents of the TAR/PAR and WCR intact. |f the Override
Bit is not set and the UBC channel is engaged in a block
transfer, the OCW instruction will be ignored. The
Condition Register will remain set to Not Zero. Once a
UBC channel is activated it will not accept an OCW with
the Override Bit not set until the word count is complete;
i.e., all words in the block have been transferred and WCR
equals zero.

ISW input Status Word
Formula 0073.00+C:U Affected AC
T 1 1 A / T
OP CODE o{CHANNEL / UNIT
1 1)| | ! L 1 1 1 1 1 1 1 1 1 d i i L
23 H 5 3 [+
Operation

A status word is transferred from the specified channel/unit
combination to the A Register.

7-44

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the addressed channel/unit
combination is not ready (see following notes) or status
word is not available, the Condition Register is set to Not
Zero to allow a programmed delay.

if the selected channel is in the process of executing a
command (resulting from a previous OCW), the channel
indicates not ready (Condition Register remains set to Not
Zero) and ignores the ISW instruction until the peripheral
unit accepts the OCW command. The channel indicates
ready (Condition Register set to Zero) and accepts the ISW
when it is executed again.

If the ISW specifies a unit other than the unit connected to
the channel, the channel indicates not ready and ignores the

- command. A disconnect/connect is initiated.

If the selected channel is a UBC channel engaged in a block
transfer, the Condition Register is set to Zero and a 24-bit
status word is transferred to the A Register. Bits 7 through
0 contain the unit status and bit 23 contains the UBC busy
status.

If the selected unit is receiving data as the resuit of an QODW

instruction, the ISW is accepted and the Condition Register
is set to Zero.

ODW Output Data Word

Formula 0071.00+C:U Affected C
T T T T 7 T
OP CODE 0|CHANNEL UNIT
| S O N B S B DA B T Lo 44 |
23 2 i) 3)
Operation

A data word is transferred from the A Register to the
specified channel/unit combination.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the channel is busy and cannot
accept the data word, the Condition Register is set to Not
Zero to allows a programmed delay.

Although, a 24-bit word is transferred to the channel, the
peripheral unit accepts only a predetermined number of
bits (dictated by peripheral unit design).

For character-oriented units and units accepting data words
of less than 24 bits, the data for transfer must be right-
justified in the A Register prior to executing the ODW
instruction.

If the ODW instruction specifies a unit other than the unit
connected to the channel and the channel is ready, the
channel accepts the ODW, sets the Condition Register to
Zero, and initiates a disconnect/connect sequence. After
completion of the disconnect/connect sequence, the ODW
is transferred to the unit. The channel indicates ready to
subsequent 1/0 instructions.

If the ODW instruction specifies a UBC channel that is
engaged in a block transfer, the Condition Register remains
set to Not Zero and the ODW is ignored. A UBC channel,
once activated, will not accept an ODW instruction until
the word count is complete, i.e., all words in the block have
been transferred and WCR equals zero.

IDW input Data Word

Formula 0072.*+C:U Affected AC

| opP (I:ODE | *CHA'«NNEL? TUN!T
23 " 5 3 o}
Operation

A data word is transferred from the specified channel/unit
combination to the A Register.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the channel is not ready or data
from the specified unit is not available, the Condition
Register is set to Not Zero to allow a programmed delay.

If the selected unit is in the process of executing a
command as the result of a previous OCW instruction, the
channel indicates not ready (Condition Register remains set
to Not Zero) and the IDW is ignored. At the completion of
the OCW, the Condition Register is set to Zero and the IDW
instruction is accepted by the channel.

If the selected unit is in the process of receiving data as a
result of an ODW instruction and data is available from the
unit, an ODW will be accepted and the Condition Register
set to Zero.

If the IDW instruction specifies a unit other than the unit
connected to the channel, the channel indicates not ready

0830005-000
Original 3/78

(Condition Register remains set to Not Zero), ignores the
instruction, and initiates a disconnect/connect sequence.

If an IDW instruction specifies a UBC Channel that is
engaged in a block transfer, the Condition Register remains
set to Not Zero (channel not ready) and the instruction is
ignored. A UBC channel, once activated, will not accept an
IDW instruction until +he word count is complete; i.e., all
words in the block have been transferred and WCR equals
zero.

When a UBC channel is employed in a single-word
programmed data transfer, an IDW instruction returns a
Not Ready (C Register = Not Zero) condition if the channel
is currently processing an output command. This situation
is in effect regardless of the status of the input data from
the peripheral unit.

The only valid unit code for a DMACP channel is 10g: all
others are rejected.

If the Merge bit (*) is ZERO the A Register is cleared prior
to the data transfer. Input data is right-justified in the A
Register,

If the Merge Bit is a ONE, an OR is performed between the
previous contents of the A Register and the incoming data -
word. This feature, in conjunction with a shift operation,
aliows input data characters to be packed in the A Register.

Example: Two 12-bit data characters are to be packed in
the A Register.

IDW ‘0102 Clear A and load first character from
channel 01, Unit 02.
BNZ *1 Wait if busy
LLA 12 Shift the contents of A left 12 bits
IDW* ‘0102 Merge second character
BNZ *-1 Wait if busy
Continue
OAW Output Address Word
Formula 0071.40+C:U Affected C

I T T T

(
OP CODE 1 |CHANNEL /(/é UNIT

N Y S T N T SN S N N | S |
23 1 [2 0

Operation
The contents of the A Register are transferred to an

appropriate register in the specified channel, or unit in XBC
Channel executions.

-2 A

0830005-000
Original 3/78

Notes

The Condition Register is cleared, then set to Zero if the
1/O channel is ready.

The unit is addressed in XBC and DMACP channels (bits
0-2) and IBC channels (bits 0, 1) only.

A UBC channel will always indicate ready for an OAW
instruction. However, if the OAW specifies an invalid
channel number, it will receive a “not ready” indication
and the Condition Register remains set to Not Zero. Since
XBC/IBC channels involve a unit address, the unit must be
“connected”’ before the instruction can be executed.

The OAW instruction does not activate a block-transfer
channel. It transfers the starting address of the first of two
parameter words from the A Register to the TAR or PAR
in the selected channel. in XBC channel operations the OAW
instruction transfers the contents of the A Register to the
unit; the channel has no register dedicated to this function.

If an OAW instruction addresses a UBC channel during a
block transfer sequence, the sequence will be terminated.

If the OAW instruction addresses a PIOC, the Condition
Register remains set to Not Zero; the instruction is
executed automatically. In this instruction the four least
significant bits (3-0) of the A Register are transferred to the
Interrupt Generator logic. These bits {unitarily) control the
triggering of the one-to-four ‘1 microsecond interrupt
pulses. ’

LAW Input Address Word

Formula 0073.40+C.0:U - »Abffvected AC
1 1 1 1 - //
OP CODE 1 |CHANNEL 0/ UNIT
[N VRO SR SRS WA DS WU SO T | [S | A [
23 I 6 5 2 o
Operation

The current contents of the Transfer Address Register
(TAR) in the specified channel (UBC, IBC, or DMACP) are
transferred to the A Register.

Notes

The Condition Register is cleared, then set to zero if the
/0 channel is ready. If the |AW instruction specifies an
invalid channel, the Condition Register remains set to Not
Zero indicating channel not ready.

The unit is addressed in IBC and DMACP channels only.

7-46

Bit 5 at the ZERO level distinguishes between the |AW and
IPW instructions.

The UBC channel always indicates ready to an AW
instruction. The IBC channel must go to “‘not busy’’ before
executing the instruction.

IPW Input Parameter Word
Formula 0073.40+C.4:U Affected A,C
' ' ' ' %
RS eI U \eoavhrad i 77 il
D m s s z 1 0
Operation

The current contents of the Parameter Address Register
(PAR) in the specified channel (UBC, IBC, or DMACP) are

transferred to the A Register.

Notes

The Condition Register is cleared, then set to zero if the
1/0 channel is ready. If the IPW instruction specifies an
invalid channel, the Condition Register remains set to Not
Zero, indicating channel not ready.

The unit is addressed in IBC and DMACP channels only.

IPW instructions addressed to an IBC channel must specify,
via the unit address, which of three possible channel PARs
is read.

Bit 5 at the ONE level distinguishes between the IPW and
|AW instructions.

vUBCvch'anne!s always indicate ready to an IPW instruction.
The IBC channel must go to ‘‘not busy” before executing
the instruction.

BIT PROCESSOR INSTRUCTIONS

The bit (Boolean function) processor group of instructions
include branches, logical manipulation, and interrogation of
a specified bit selected from an effective memory address or
the H Register. In most instznces, bit 2 (Zero/Not Zero) of
the Condition Register is used to display either the resuit of
an operation or the status of a bit before the operation is
performed.

The bit processor employs two instruction word formats.
The first format uses an Op Code (bits 23-12) to specify the
operation to be performed. The remaining 12 bits (bits

11-0) are undefined. The second instruction format
contains a displacement, bit specification, and an Op Code.
Eight bits (bits 7-0) are added to the base address contained
in the V Register to obtain a displacement from the base
address which is an effective memory address for the word
containing the bit in question. Five bits (bits 12-8) are used
to select a specific bit in the effective memory address for
an operation as specified in the 11-bit (bits 23-13) Op
Code. Both instructions word formats are illustrated below.

Lo U

23 12 4 0

T T 1 1 ¥ T

OP CODE b - d

N S N N S T S S N | I S | | S TN T W I |

23 13 12 8 7]

The following instructions are included in the bit processor
group.

DMH Dot Memory with H '7-48
DNH Dot Not (memory) with H 7-48
FBM Flag Bit of Memory 7-49
NHH Negate of H to H 7-48
OMH OR Memory with H 7-48
ONH OR Not (memory) with H 7-48
QBH Query bit of H 7-47
QBM Query bit of Memory 7-49
TFH Transfer Flag to H 7-47 .
THM Transfer H to Memory 7-49
TKV Transfer K to V 7-47
TMH Transfer Memory to H 7-49
TVK Transfer V to K 7-47
TZH Transfer Zero to H 7-47
XMH Exclusive-OR Memory with H 7-49
XNH Exclusive-OR Not (memory) with H 7-49
ZBM Zero Bit of Memory 7-50
TZH Transfer Zero to H
Formula 7742, Affected H,C
1 T 1 /
L1 1 ? 1 1 L1 I 1 . Z /

23 12 o]

Operation

A ZERO is placed in the H Register. The Condition
Register is set to reflect the original contents of H.

Note

If the original contents of the H Register were ZERO,
Condition Register Bit 2 is set to 1 (Zero). If the contents
were ONE, Bit 2 is set to 0 (Not Zero).

0830005-000

Original 3/78
TFH Transfer Flag to H
Formula 7743. Affected . H,C
= VI
Operation

A ONE is placed in the H Register and the Condition
Register is set to reflect the original contents of H.

Note

If the original contents of the H Register were ZERO,
Condition Register Bit 2 is set to 1 (Zero). If the contents
were ONE, Bit 2 is set to 0 (Not Zero).

TKV

Formula 7744.

Transfer K to V

Affected \Y

I T M

OP CODE

23 12]

Operation

The 18 least significant bits of the K Register replace the
present contents of the V Register. The Condition Register
is unaffected.

TVK

Formula 7745.

o 0

23 2 o]

Transfer V to K

Affected K

Operation

The contents of the V Register are transferred to the 18
least significant bit positions of the K Register. Bits 23-18
of the K Register are reset to ZERQOs. The Condition
Register is unaffected.

QBH Query Bit of H
Formula 7746. Affected Cc
o V70707

747

0830005-000
Original 3/78

Operation

The H Register bit is tested and the Condition Register is
set to display the result of the query.

Note

The Condition Register is cleared. If the resultant content
of thg H Register is ZERQ, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

NHH

Formula 7747.

Negate of Hto H

Affected H,C

w7

23 12 [¢]
Operation

The current content of the H Register is complemented and
returned to H. The Condition Register is set to display the
result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register -Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2isset to O (Not
Zero).

DMH Dot Memory with H
Formula 7750. 4:d Affected H,C
v 1 T 1 I T T
OP CODE b d
| 1 I i 1 L1 Il] J [| 1.1 1
23 13 7 [¢]
Operation

A logical AND is performed between the selected bit in the
effective memory address and the contents of the H
Register. The result is returned to the H Register and the
Condition Register is set to dispiay the resuit.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

7-48

DNH Dot Not (memory) with H
Formula 7752.4:d Affected H,C
T T ¥ T 1 i 1
OP CODE b d
L] 1 i 1 1 1 | | 1 | 1 L1 1 1 Ll 1 1 1
23 3 7 o
Operation

A logical AND is performed between the complement of
the selected bit in the effective memory address and the
content of the H Register. The result is returned to the H
Register and the Condition Register is set to display the
result.

Note

The Condition Register is cleared. If the résultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 {Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

OMH OR Memory with H

Formula 7754.5:d Affected H,C
) T Ll T 1 1
OP CODE b d
Lt 1 4t 111 11 J I . | | S G . .| 1
23 13 7 o
Operation

A logical OR is performed between the selected bit in the
effective memory address and the content of the H
Register. The Condition Register is set to display the resuit.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

ONH OR Not (memory) with H
Formula 7756. /:d Affected H,C
T T T T T T T
OP CODE b d
L i 1 L p 11 i .11 1 1 L1 i1 L | -
23 13 7 [+)
Operation

A logical OR is performed between the complement of the
selected bit in the effective memory address and the
content of the H Register. The Condition Register is set to
display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

XMH Exclusive-OR Memory with H
Formula 7760.4:d Affected H,C
1 T ¥ 1 1 1 T
OP CODE b d
1 1 1 1 1 i 11 1 i 1 1 i i i 1 L1 i i 1
23 13 7 [o]
Operation

An exclusive-OR function is performed between the
selected bit in the effective memory address and the
content of the H Register. The Condition Register is set to
display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

XNH Exclusive-OR Not (memory) with H
Formula 7762.5:d Affected H,C
1 T 1 A
OP CODE b d
1 1 1 1 | I 1 |] 1 1 1 1 1] i] I L]
23 13 7 o]
Operation

An exclusive-OR function is performed between the
complement of the selected bit in the effective memory
address and the content of the H Register. The Condition
Register is set to display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

0830005-000
Original 3/78

Operation

The selected bit in the effective memory address is
transferred to the H Register. The Condition Register is set
to display the resultant content of the H Register.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the resultant content is ONE, bit 2 is set to O
{Not Zero).

QBM Query Bit of Memory

Formula 7766.5:d Affected IC
1 1 1 1 I 1 1
OP CODE b d
] 1 1 1 1 ! | 1 1 1 1 1 1 1 J | 1] i L 1
23 13 7 4]
Operation

The selected bit in the effective memory address is tested
and the Condition Register is set to display the resuit of the
query.

Note

The Condition Register is cleared. If the resultant content
of memory is ZERO, Condition Register Bit 2 is set to 1
(Zero). If the, resultant content is ONE, Bit 2 is set to 0
(Not Zero).

THM Transfer H to Memory
Formula 7770.4:d Affected M
T I T 1 i T 1
OP CODE b d
1 i 1 Il | 1 1 1])| { 1 i | | 1 1 1] 1
23 13 7 0
Operation

The content of the H Register is placed in the selected bit
position in the effective memory address. The Condition
Register is not affected.

TMH Transfer Memory to H FBM Fiag Bit of Memory
Formula 7764.4:d Affected H,C Formula 7772.5:d Affected M.C
1 1 1 T T 1 { 1 1 1 1
OP CODE 5 d
AR S U WU NN U S N N [B | [ENT S W NS U NN R S S | J I T . | | W T N U IO O |
23 13 7 [+] 23 13 T [

749

0830005-000
Original 3/78

Operation

A ONE is placed in the selected bit position in the effective
memory address. The Condition Register is set to display
the original state of the selected bit in memory.

Note

If the original state of the selected bit in memory was
ZERO, Condition Register Bit 2 is set to 1 {Zero). If the
original state was ONE, Bit 2 is set to 0 (Not Zero).

ZBM Zero Bit of Memory
Formula 7774.5:d Affected M,C
1 1 1 i T ¥ 1
OP CODE b d
| j 1 L4 1.1 1)| 1 1 1 1 l | - I L 1 1 L
23 3 T ¢}
Operation

A ZERO is transferred to the selected bit position in the
effective memory address. The Condition Register is set to
display the original state of the selected bit in memory.

Note

If the original state of the selected bit in memory was
ZERO, Condition Register Bit 2 is set to 1.(Zero). H the
original state was ONE, Bit 2 is set to 0 (Not Zero).

VIRTUAL MEMORY INSTRUCTIONS

The majority of the virtual memory instructions involve
transfers between the paging registers and the A, E and D
Registers. The remaining instructions are special control
operations for activating and testing the virtual memory
logic.

The following instructions are included in the virtual
memory group.

QNR Query Not-modified Register 7-62
QUR Query Usage Register 7-52
ROM Release Operand Mode 7-52
RUM Release User Mode 7-53
TAR Transfer A to 1 Virtual Address

Register 7-50
TDP Transfer Double to Paging Limit

Registers 7-51
TDR Transfer Double to 2 Virtual Address

Registers 7-51
TDS Transfer Double to Source and

Destination Registers 7-50

7-50

TEU Transfer E to Usage Base Registers 7-52
TPD Transfer Paging Limit Registers

to Double 7-51
TRD Transfer 2 Virtual Address Registers

to Double 7-51
TSD Transfer Source and Destination

Registers to Double 7-50 .
TUD Transfer Usage Base Register and

Demand Page Register to Double 7-51

TDS Transfer Double to Source and

Destination Registers

Formuia 006410. Affected VSR,VDR
1 1 I 1 1 //
OP CODE ////
| 1] 1 1 1 1 1 1 1 1 1 1 1 L 1 L //
23 6 (]
Operation

Bits 11-0 of the A Register replace the previous contents of
the Virtual Destination Register (VDR) and bits 11-0 of the
E Register replace the previous contents of the Virtual
Source Register (VSR). The contents of A and E are not
changed.

TSD Transfer Source and Destination
Registers to D
Formula 006510. Affected AE
T T T T T 7
OP CODE W
] LI i] 1 | 1 1 1 1 | 1 1 | 1 L
23 6 (]
Operation

The contents of the Virtual Source Register (VSR) replace
the previous contents of bits 11-0 of the E Register; the
contents of the Virtual Destination Register (VDR) replace
the previous contents of bits 11-0 of the A Register. Bits
23-12 of both A and E are cleared (reset to ZEROs). The
contents of the VSR and VDR are not changed.

TAR Transfer A to 1 Virtual Address
Register
Formula 006050. Affected VAR,VDR
I I T 1 4 7
OP CODE ///////'
|] 1 i 1 1.1 1 i] 1 1 | |)] i i A
23 6 [o]

Operation
Bits 9-0 of the A Register replace the previous contents of

the Virtual Address Register {VAR) specified by the Virtual -

Destination Register (VDR). The VDR is incremented by
one. The contents of the A Register are not changed.

TDR Trarsfer Double to 2 Virtual
Address Registers
Formula 006430. Affected VAR(1),VAR(2),
VDR
L H H i 1 /
OP CODE ///
| N VU TN SN S SN NN YN G NN (N N N NN SO T 1 %
23 [o
Operation

Bits 9-0 of the E Register replace the previous contents of
the Virtual Address Register (VAR) specified by the
Virtual Destination Register (VDR); the VDR s then
incremented by one to specify the second VAR. Bits 9-0 of
A replace the previous contents of the second VAR. The
VDR is again incremented by one. The contents of the E
and A Registers are not changed.

Transfer 2 Virtual Address

TRD
Registers to Double
Formula 006530. Affected E.A,VSR
1 1 T T t 7
OP CODE /////
|| Ll I L1 1 | 1 114 1 1 1 /{/ J&
a3 " b}
Operation

The contents of the Virtual Address Register (VAR)
specified by the Virtual Source Register (VSR) replace the
previous contents of bits 23-16, 9, and 8 of the E Register.
The VSR is then incremented by one to specify the second
VAR. The contents of the second VAR replace the previous
contents of bits 23-16, 9, and 8 of the A Register. The VSR
is again incremented by one. Bits 15-10 and 7-0 of both E
and A are cleared (reset to ZERQ).

0830005-000

Note
The Transfer format is shown below.
Bit Bit
From No. To No.
VAR#1/#2 9 E/A 9
VAR#1/#2 8 E/A 8
VAR#1/#2 7 E/A 23
VAR#1/#2 6 E/A 22

Original 3/78
VAR#1/#2 5 E/A 21
VAR#1/#2 4 E/A 20
VAR#1/#2 3 E/A 19
VAR#1/#2 2 E/A 18
VAR#1/#2 1 E/A 17
VAR#1/#2 0 E/A 16
TDP Transfer Double to Paging
Limit Registers
Formula 006450. Affected VBR,VLR
1 1 1 T T //
OP CODE //,//
LoJ i 1 3 1 1 1 L 1 1 1 1 | 1 /I//
23 6]
Operation

Bits 11-0 of the A Register replace the previous contents of
the Virtual Base Register (VBR), and bits 9-0 of the E
Register replace the previous contents of the Virtual Limit
Register (VLR). The contents of A and E are not changed.

TPD Transfer Paging Limit
Registers to Doubie
Formula 006550. Affected E,A
U 1 T I V
OP CODE ////'/
i i 1 i 1 i A 1 1 L L 1 1 /
3 [] o
peration

The contents of the Virtual Base Register (VBR) replace
the previous contents of A Register bits 11-0, and the
contents of the Virtual Limit Register (VLR) replace the
previous contents of E Register bits 9-0. The remaining bits
of both A and E are reset to ZEROs. The contents of the
VBR and VLR are not changed.

TUD Transfer Usage Base Register and
Demand Page Register to Double
Formula (006570. Affected E.A
T 1 1 ¥ 1 //
OP CODE ///
I | 1 1) S | 1 1 L1 L 1 1 ///
23 6 [o]

7-51

0830005-000
Original 3/78

Operation

The contents of the Virtual Demand Page Register (VPR)
replace the previous contents of A Register bits 23-16 and
3-0, and the contents of the Virtual Usage Base Register
(VUB) replace the previous contents of E Register bits 7-0.
A Register bits 154 and E Register bits 23-8 are reset to
ZEROs. The contents of the VPR and VUB are not

changed.

Note

The VPR transfer format is as follows:

From To
VPR Bit 11 A23
VPR Bit 10 A22
VPR Bit 9 A21
VPR Bit 8 A20
VPR Bit 7 A19
VPR Bit 6 A18
VPR Bit 5 Al17
VPR Bit 4 A16
VPR Bit 3 A3
VPR Bit 2 A2
VPR Bit 1 Al
VPR Bit 0 AQ
TEU Transfer E to Virtual Usage
Base Register
Formula 006470. Affected vus
T T 1 1 1 // /
e 77
23 6 o]
Operation

The contents of E Register bits 7-0 replace the previous
contents of the Virtual Usage Base Register (VUB). The E
Register contents are not changed.

QUR Query Usage Register
Formula 007030. Affected VUR,VUB,C
T T 1 1 //
OP CODE /////
| T N S N N B W N | | S I T | %
23 [[¢]
Operation

The contents of the Virtual Usage Register (VUR) —
specified by the Virtual Usage Base Register (VUB) — is
tested. The Condition Register is set to ““Not Zero” or

7-62

“Zero” if the content of the VUR is ONE or ZERO,
respectively. The specified VUR is cleared and the VUB is
incremented by one.

QNR Query Not-modified Register

Formula 007070. Affected VNR,VUB,C

OP CODE ~ /

' WS W U W NN N N WS N S A | 1 1 1 1 /é

23 [[o]
Operation

The contents of the Virtual Not-modified Register (VNR)
— specified by the Virtual Usage Base Register (VUB) —is
tested. The Condition Register is set to “Not Zero” or

-“Zero” if the content of the VNR is ONE or ZERO,

respectively. The specified VNR is cleared and the VUB is
incremented by one.

ROM Release Operand Mode
Formula 006010. Affected None
T 1 1 1 i W
OP COD / /
1 1 1 1 1 L 1 i L 1 El i 1 1 1 11 /j
23 [} []
Operation

The operand address of the following instruction is
translated.

Notes

If bit 8 of the Virtual Limit Register is a ONE, the ROM
will be nullified; i.e., the following instruction will not be
translated.

The ROM, together with the following instruction, will be
treated as an USP or AOM instruction with respect to a
demand page.

No double-word instructions (USP, AOM) are permitted
after a ROM.

if an unconditional branch is executed following the ROM,
the User Mode will automatically be established.

If a conditionak branch follows the ROM, the User Mode
will be established regardless of the outcome of the
conditional test.

The User Mode is not established during indirect addressing
until completion of the indirect chain.

Execution of the ROM instruction inhibits merging of the
Map bit (PC15) in the following instruction, regardiess of
the state of bit 8 of the VLR.

RUM Release User Mode
Formula 006030. Affected None
T | T T 1 4
OP CODE %
1 1 i L] 1 i 1 | | 1 1 1 | L] J
23 [(4]
Operation

The User Mode is established upon completion of the
following instruction.

Notes

In practice, the instruction following the RUM should
always be a branch.

No conditional branches are permitted following the RUM.

The User Mode will not be activated until after the operand
address has been calculated. Indexing and/or indirect
references are permitted. When indirected, the User Mode
will not be established until completion of the indirect
chain.

The RUM, together with the foliowing instruction, will be
handled as an EXM instruction with respect to a demand
page.

Execution of the RUM instruction inhibits merging of the
Map bit (PC15).

PROGRAM RESTRICT INSTRUCTIONS

The following instructions provide control for the program
restrict system in the Program Restrict and Instruction
Trap.

BLU Branch and Link Unrestricted 7-53
TDL Transfer Double to Limit Registers 7-53
TLD Transfer Limit Registers to Double 7-53
BLU Branch and Link Unrestricted
Formula 0067:a Affected J.P
1 1 1 f 1
OP CODE ///// ADDRESS
b L1 /& j S S

23 12 4 [¢]

0830005-000
Original 3/78

Operation

The next sequential address (program address +1) replaces
the contents of the J Register and the contents of the P
Register (current program address) are replaced by the 5-bit
immediate memory address.

Notes

If Program Restrict is enabled, execution of the BLU
instruction will turn off the Program Restricted Flag (PRF).
If the computer is in a HALT condition and the PRF is on,
the BL.U instruction will be treated as a NOP instruction.

If virtual memory is enabled, execution of the BLU
instruction will automatically establish the Monitor Mode.
The 5-bit immediate memory address will not be mapped.
Bit 20 of the J Register will be set (ONE) if the system was
in the User Mode, and reset (ZERO) if the Monitor Mode
was active when the BLU was executed.

TDL Transfer Double to Limit Registers
Formula 0056. Affected LLUL
Lo W77707
Operation

The contents of bits E17-EO replace the previous contents
of the Lower Limit (LL) Register and the contents of bits
A17-A0 replace the previous contents of the Upper Limit
(UL) Register. Bits A21 and A22 set the restrict mode flags.

TLD Transfer Limit Registers to Double
Formula 0057. Affected E.A
e T
Operation

The contents of the limit registers replace the previous
contents of the D Register (E and A). The Upper Limit
Register contents are transferred to bits A17-A0 and the
contents of the Lower Limit Register are transferred to
E17-EO. The states of the restrict mode flags are transferred
to bits A21 and A22. All other bits in E and A are reset to
ZERO.

. 7-563

0830005-000
Original 3/78

PRIORITY INTERRUPT CONTROL
INSTRUCTIONS

The priority interrupt instruction group provides the means
for program control of external interrupts. External
interrupts may be selectively armed, disarmed, enabled or
inhibited under program control. Other instructions provide
the means for holding and releasing external interrupts,
while others are available for transferring control upon
interrupt detection. For a detailed description of the
priority interrupt system, refer to Section V of this manual.

If the system is equipped with the Program Restrict and

Instruction Trap, the following priority interrupt
instructions will be affected.

a) Hold External Interrupts (HXI)

b) Release Externai Interrupts (RXI)

c) Unitarily Arm Group 1 interrupts (UA1)

d) Unitarily Disarm Group 1 Interrupts (UD1)

e) Unitarily Enable Group 1 Interrupts (UE1)

f) Unitarily Inhibit Group 1 Interrupts (U11)

g) Transfer Double to Group 1 (TD1)

h) Transfer Double to Group 1 (TD4)

The following instructions are included in the priority
interrupt group.

BRL Branch and Reset Interrupt Long 7-54
BSL Branch and Save Return Long 7-54
HTx Hold Interrupts and Transfer Register

to Memory 7-55
HXI Hold External Interrupts 7-55
RXi Release External Interrupts 7-55
TiD Transfer Group 1 to Double 7-56
T4D Transfer Group 1 to Double 7-56
TD1 Transfer Double to Group 1 7-56
TD4 Transfer Double to Group 4' 7-56
UA1 Unitarily Arm Group 1 7-56
uD1 Unitarily Disarm Group 1 7-57
UE1 Unitarily Enable Group 1 7-57
ui Unitarily Inhibit Group 1 7-57
BSL Branch and Save return Long
Formula 25.*+0:A Affected P

1 i 1 T T T
OP CODE [*|0 ADDRESS
L1 1] 1] 11] 1) | | I | | U N
23 17 5 [+)

Operation

The next sequential address {program address +1), along

7-54

with the contents of the Condition Register are stored in
the 16-bit effective memory address {EMA). The contents
of Register P {current program address) are then replaced
by the address following the effective memory address
(EMA+1).

Notes

This instruction is used to enter an interrupt subroutine
because it provides a means of returning to the main
program at the point of interrupt and saves the machine
status (condition) at the time of the interrupt.

The contents of the Condition Register are stored in bit
positions 19-16 of the EMA and the return address
(program address +1) is stored in bits 15-0. The remaining
bits are set to ZEROs; however, refer to last note for
variation on bit 20.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

When an interrupt occurs, the status of the virtual memory
system is recorded. Bit 20 is set to ONE if the system is in
the User Mode at the time of interrupt; bit 20 is set to
ZERO if the Monitor Mode is active.

BRL Branch and Reset interrupt Long
Formula 25."+2:A Affected cP
L T 1 1 1§ ¥
OP CODE k|1 ADDRESS
[S W { I RN VOIS W NN NS U W NN (O S S S B |
23 17 5 [}
Operation

The highest-level active interrupt is reset (i.e., returned to
the inactive state) and the contents of the P Register
(current program address) are replaced by the 16-bit
effective memory address.

Notes

BRL is normally used to exit an interrupt subroutine. If
BRL contains an indirect reference, the last word in the
indirect address chain contains the previous status of the
virtual memory system in bit M20, the previous machine
status (i.e., C Register contents at the time of the interrupt)
in bit positions M19-M16, and the return address in bit
positions M15-MO as a result of the BSL instruction. The C

. Register is restored and the program branches to the return

address (restarting the machine to the pre-interrupt status).

Exampile:
TMA P
L AMA
SMA Interrupt occurs (EXM K).
K BSL M Dedicated interrupt location.
M il M becomes L+1 as a result of BSL
at K. The C Register contents are
. stored in M19-M16.
BRL* M

The BRL will not reset the interrupt if external interrupts
have been held by an HXI instruction. Control will be
returned to the effective memory address.

Those executive traps, which are not affected by the HXI
instruction, will be reset by the BRL.

The immediate memory reference cannot be indexed;
however, indexing indirect references is permitted, e.g.

BRL* = X

X DAC Y.K

If the BRL instruction is not indirected, the Condition
Register is not affected.

External interrupts are prohibited for the period of one
instruction following this instruction.

In virtual memory systems, if an indirect BRL is executed
in Monitor Mode, bit 20 of the effective memory address
determines mode of operation machine returns to. If bit 20
is set, User Mode is established; if reset, the Monitor Mode
is established.

Hold Interrupts and Transfer

HTx
Register to Memory
Formula 27.*+x:a Affected M
t 1 1 I H
OP CODE |%| x ADDRESS
A i] 1 1 H i | 1 i 1 | i L1 1] 1 1
23 7 L] 3]

Operation

The contents of the 1, J, or K Register replace the previous
contents of the effective memory address and external

0830005-000
Original 3/78

interrupts are prohibited for the period of one instruction
following the execution of this instruction.

Notes

HTx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(l)
2 (J)
3 (K)

A code of 27.*+1:a, for example, implements the Hold
interrupt and Transfer | to Memory {HT1) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

HTI* M

M DAC AK

HX1

Hold External Interrupts

Formula 00660. Affected None
e 777777
Operation

The activation of any external interrupt is prohibited. The
prohibition is effective immediately upon execution of the
instruction and lasts until the interrupts are released (see
RXI instruction). Executive traps (Group 0, Levels 5-7) are
prohibited from becoming active while the HXI is in effect.

Notes

Only the three executive traps mentioned are affected by
this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

RXI Release External Interrupts
Formula 00664. Affected None

7-55

0830005-000
Original 3/78

Operation

The prohibition imposed by the HXI instruction is
removed, ailowing any external interrupt to be activated 1
cycle after this instruction. This permits the next sequential
instruction to be executed without external interruption.

Notes

If any of the affected executive traps have been triggered
while an HXI was in effect, the highest level will come in
first after the RXI instruction.

External interrupts are prohibited for the period of one
instruction following the execution of the instruction.

TD1 Transfer Double to Group 1

Formula 006401. Affected 1 A/D,
» 1EN
1 I 1 1 1 7 P
OP CODE //////
23I 1 1 1 1 1 3 1) 1 | 1 1 1 1 I 1 < 4
Operation

The contents of the D Register (E and A) replace the
previous contents of the Arm/Disarm (A/D) and
Enable/Inhibit (E/l) Registers of interrupt group 1. The
contents of E are transferred to the A/D Register and the
contents of A are transferred to the E/l Register.

Notes
The external interrupt structure is cleared by the execution
of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

TI1D Transfer Group 1 to Double
Formula 0Q06501. Affected EA
1 U 1 T I Y
OP CODE //////
1 1 | | 1 Ll | .| L.l 1 1 1 A
23 6 -]
Operation

The contents of the Arm/Disarm (A/D) and Enable/Inhibit
(E/1) Registers of interrupt group 1 replace the previous
contents of the D Register (E and A). The contents of the
A/D Register are transferred to the E Register and the
contents of the E/I Register are transferred to the A
Register.

7-56

Notes

The states of the external interrupts are not affected by the
execution of this instruction.

" External interrupts are prohibited for the period of one

instruction following the execution of this instruction.

T4D Transfer Group 1 to Double
Formula 006541. Affected EA
OP CODE //////
1 4t 1 2 1.1 1 1 1 1 1.1 3 / A
23 6 [+
Operation

The contents of the Request and Active Registers of
interrupt group 1 replace the previous contents of the D
Register (E and A). The contents of the Request Register
are transferred to E, and the contents of the Active Register
are transferred to A. ’

Note
External interrupts are prohibited for the period of one

_instruction following the executicn of this instruction.

TD4 Transfer Double to Group 1
Formula 006441. Affected 1 Request,
Active
! 1 1 ¥ T /
QP CODE W
| W A U [S TN ISV O S U DU N N S N . |
3 6 [+]
Operation

if armed, the contents of the D Register (E and A) are
ORed with the current contents of the Request and Active
Registers of interrupt group 1. The contents of E are ORed
with the request Register and the contents of A are ORed
with the Active Register.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

UAI Unitarily Arm group 1 interrupts
Formula 006001. Affected 1A/D
OP CODE
y 4ttt ¢ ¢+ 1 1 1t 1 1 1 | L//
23 6 [}

Operation

Any number of the 24 interrupt levels in group 1 are
selectively armed; ie., the selected bit(s) of the
Arm/Disarm (A/D) Register is (are) set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Arm levels 1 and 3, group 1
TOA B1B3 Select levels 1 and 3
(set bits 1 and 3 of A)
UA1 Arm selected levels of

group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for arming is
already armed, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

UD1

Formula 006101.

Unitarily Disarm Group 1 Interrupts

Affected 1 A/D

T T U T 1

OP CODE

N U T S S TN U T O O Y N N N Y N

Any number of the 24 interrupts levels in group 1 are
selectively disarmed i.e., the selected bits of the
Arm/Disarm (A/D) Register are reset to ZERO.

2 6

Operation

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Disarm level 2, group 1
TOA B2 Select level 2 (set bit 2 of A)
uD1 Disarm selected level of group 1

Execution of this instruction will clear only those levels
which are selected. The remaining levels will not be
affected.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

! 0830005-000
Original 3/78

UET

Unitarily Enable Group 1 Interrupts

Formula 006201. Affected 1 E/I
1 1 I 1 1]/
OP CODE ////
| 1 { 1] 1 1 | 1 1 1 1 | 1 1 1 1 () A
23 €]
Operation

Any number of the 24 interrupt levels in group 1 are
selectively enabled, i.e., the selected bits of the
Enable/Inhibit (E/I) Register are set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Enable levels 0, 2 and 5, group 1

TOA BOB2B5 Select levels 0, 2 5

(set bits 0, 2 and 5 of A)

UE1 Enable selected levels of
group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for enabling is
already enabled, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

UIl

Unitarily Inhibit Group 1 Interrupts

Formula 006301. Affected 1E/
{] T 1 T //
OP CODE /////
I S W T T A N T N S N B T R T I d A
23 3 o
Operation

Any number of the 24 interrupt levels in group 1 are
selectively inhibited; i.e., the selected bits of the
Enable/Inhibit (E/I) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

0830005-000
Original 3/78

Example: inhibit levels 1, 4 and 7 of group 1

TOA B1B4B7 Select levels 1, 4, 7
(set bits 1, 4 and 7 of A)

ut1 Inhibit selected levels of group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If one or more of the selected
levels is active upon execution of this instruction, the
level{s) will be placed in a ‘’permissive’’ state.

External interrupts are prohibited for the period of one
instruction following execution of this instruction.

MISCELLANEOUS INSTRUCTIONS

The following instructions are included in | the
miscellaneous group because they do not fall into any
defined functional group.

EXM Execute Memory 7-598
EZB Extend Zeros from Byte 7-60
GAP Generate Argument Pointer 7-68
HIT Hold Interval Timer 7-60
HLT Hait 7-58
NOP No Operation 7-58
QBB Query Bits of Byte 7-59
Qass Query Sense Switches 7-60
RCT Release Clock Time 7-60
RPT Release Processor Time 7-60
USsP Update Stack Pointer 7-59
HLT Halt
Formuia 0000. Affected P
T T T “
OP CODE W
L 1 1 1 1 1 1 1 L Ll A//
23 12 ']
Operation

The program address (i.e., the contents of the P Register) is
advanced by one and program execution is terminated.
When the RUN switch is depressed, execution will begin at
the location defined by the program address.

NOP

Formula 620.

No Operation

Affected P

e

23 15 o

7-58

Operation

The program address is advanced by one and program
execution continues with the next instruction.

GAP Generate Argument Pointer
Formula 244:0 Affected I,J
T 1 1 1] | L)
OP CODE OPERAND
RS W WO N N U T | SN TN TR SN TS W VNS NN VO UOUP U T
23 15 14 (o]
Operation

The contents of the J Register are assumed to be the first
address in an indirect memory reference sequence. The
effective memory address derived from this indirect
sequence replaces the previous contents of the | Register.
The contents of the J Register and the 15-bit operand are
added, and the result is placed in the J Register.

Notes

If the final EMA in the indirect sequence is a DAC format,
bits 15-0 replace the contents of I. If the final EMA is a
LAC, bits 20-0 replace the contents of |.

The purpose of a GAP instruction is to generate an effective
memory address which points to one or more data words
not directly available to a subroutine. This is illustrated in
the following example where subroutine B requires the data
contained in location Y.

A BLJ B (J=C, (P)=8B

Cc DAC* X :

D ces RETURN

X DAC Y

Y DATA 2

B GAP 1 =Y, (J)=(J)+
TMA 0,1 (A) =2
BUC 0J (Pr=D

UsP or USP Update Stack Pointer i
DAC LAC '
Formula 0055:0 {(word 1) Affected K.C

*+X.0:A or *+X.1:A (word 2)
‘ WORD 1 (USP)

T T T 7/ T T
OP CODE /A/ OPERAND
§ U S Y TR S N N S S S // U S U U N B |

a3 12 7 o]

WORD 2 (DAC)
/ 1 T T T T
*| X O/A/ ADDRESS
1 1// i L 1t 1 1 | |4] 1 1 L1 1
23 20 15 [+]
or
' WORD 2 (LAC)
/ T T 1 1 1
*| X 1/ ADDRESS
| / 1]] 1 1 I 1 1 | S N | I 1 } {1
23 20 7 °
Operation

The contents of the K Register are replaced by the contents
of the effective memory address. The 8-bit signed operand

is then added to the contents of the effective memory

address.

Notes

BLJ ENT Call re-entrant routine

ENT TRM* SP Save registers in stack

uspP 5 Update Stack Pointer
[{K) = stack, (SP)
= stack +5)
DAC SP
HTK SP Reset stack pointer
TMR* SP Restore registers
BUC 0,J Return
SP DAC STACK Stack pointer

STACK BLOK 5N Where N represents
maximum number of

re-entrant levels

The Condition Register is set to reflect the result of the
operand addition.

External interrupts are prohibited for the period of one
instruction following this instruction.

0830005-000

Original 3/78
EXM Execute Memory
Formula 40.*+X:a Affected See Notes
1 I T T T
OP CODE %k} X ADDRESS
i 1] } t 1 1 1 1] § | 1 | 1 1 1 1 1 1
23 7 [z} [+

Operation

The instruction located in the effective memory address is
executed as though it were at the address of the EXM.

Notes

In the case that the referenced instruction is a two word
instruction, the second word must foliow the EXM.

Example:
EXM M
DAC L Second word
M AOM 10 Two word instruction
AOM 20
AOM 30

The registers affected will depend on the instruction in the
effective memory address.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

The program address (contents of P Register) is not
advanced when this instruction is executed.

QBB Query Bits of Byte

Formula 0011:b Affected C
I 1 1 7 I T
OP CODE % b
1 i | 1 1 { 1 1 1 1 i /]] 1 1 1 1 1
23 12 7 4]
Operation

A logical AND is performed between operand bits 7-0 and
the contents of the B Register. The Condition Register is
set according to the status of the result; i.e., Positive,
Negative, or Zero.

7-59

0830005-000

Original 3/78
Note
Examples:
(1) TOA B7 A = ‘00000200 C = Positive
QBB B7 C = Negative
(2) TOA B6 A ='00000100 C = Positive
QBB B6 C = Positive
(3) TNA 1 A="'77777777 C = Negative
DMA MASK A = ‘40000000 C = Negative
MASK L:);ATA ‘40000000
QSS Query Sense Switches
Formula 0001:s Affected C
T 1 1 // T
v
11 MO | Ll 1 1 11 I/A L.l 1 4
23 12 [+]
Operation

A logical AND is performed between operand bits 4-1 and
the state(s) of the sense switches. The Condition Register is
set to Positive, or Zero based on the result.

Note
Example: Test to see if either SS2 or SS3 are on, or if
both are on.
Qss B2B3
EZB Extend Zeros from Byte
Formula 0007. Affected A
] i 1 /
N R N NN B T A B N Y ¢
23 12 o
Operation

Bit positions A23-A8 are set to ZERO. The contents of the
B Register (A7-A0) are not affected.

Note
The Condition Register is not affected.

7-60

HIT

Formula

Hold Interval Timer

00770. Affected None

e O

Operation

The CPU’s Interval Timer is halted and will remain so until
released by an RPT or RCT instruction.

RPT Release Processor Time
Formula 00774. Affected None
=Y
1 1 L1 1 1 1 1 { 1 1 1 1 1 / A
23]]
Operation

The CPU’s Interval Timer is started; i.e., allowed to begin
counting CPU time.

Notes

The Processor Time Mode allows the Interval Timer to
count CPU time only. Counting is inhibited when an 1/0
block controller channel takes a memory cycle or when an
interrupt is active.

Once started, the timer counts until held by a HIT
instruction or until the CPU is halted.

At each one microsecond interval, the contents of the T
Register are decremented by one and tested for zero. If the
contents of T are zero, an executive interrupt is triggered.
The interrupt does not stop the timer.

RCT

Release Clock Time

00776. Affected None

Lo 727777

23 1 4

Formuia

Operation

The CPU's Interval Timer is started; i.e., allowed to begin
counting continuously.

Notes

The Clock Time Mode causes the Interval Timer to count
continuously.

Once started, the timer will count until held by a HIT
instruction.

At each one microsecond interval, the contents of the T
Register are decremented by one and tested for zero. If the
contents of T are zero, an executive interrupt is triggered.
The interrupt does not stop the timer.

SCIENTIFIC ARITHMETIC UNIT INSTRUCTIONS

The instruction set for the Scientific Arithmetic Unit is
divided into five functional groups; arithmetic, transfer,
branch, compare, and interrupt control. Concurrent time, if
any, occurs after the instruction has been initiated by the
SAU. The SAU is designed to operate on normalized
floating point numbers, and all descriptions of the
arithmetic instructions are based on this fact. If an
unnormalized operand is used in an arithmetic operation
the results are not considered valid. The results of an
arithmetic operation are truncated, not rounded.,

Standard arithmetic instructions — add, subtract, multiply,
and divide — as well as square, square root, fix and float are
included in the group. The instruction mnemonics provide a
brief definition of specific operations to be performed. The
first letter in the mnemonic specifies the action or type of
operation that is to be performed. The second letter
identifies the first quantity or reference (R1) to be used in
the operation, and the third letter identifies the second
reference (R2). For example:

AMX

Add —] -\— X Register

(Action to be performed) (R2)

Memory
(R1)

In the majority of SAU arithmetic instructions, the result
of the operation remains in R2 while R1 remains
unchanged (except where R1 and R2 are the same).

Unless otherwise noted, each arithmetic operation sets a bit
in the SAU condition (Y) register to reflect the status of
the result. Various conditions are described below:

a} Positive — The result is arithmetically greater than
zero, indicated by a ONE in bit position 3 of the Y
Register. A ZERO in bit position 3 indicates ““Not
Positive’’.

0830005-000
. Original 3/78

~b) Zero — All of the mantissa bits comprising the

quantity under consideration are ZERO and the
exponent is ‘201, indicated by a ONE in bit position 2
of the Y Register. A ZERO in bit position 2 indicates
“Not Zero”.

c) Negative — The result is arithmetically less than zero,
indicated by a ONE in bit position 1 of the Y Register.
A ZERO in bit position ONE indicates ‘’Not
Negative®’.

d) Overflow — An overflow results from an arithmetic
operation -which causes exponent overflow, i.e., an
exponent greater than 27 — 1 (127) or less than -27
(-128).

NOTE

If the SAU Overflow/Underflow executive trap is
enabled, any instruction causing the overflow bit of
the Y Register to be set will cause an interrupt.

Bits 1, 2 and 3 (Negative, Zero, Positive) of the Y Register
are normally mutually exclusive. In certain instances it is
desirable to know what operation caused an Overfiow, e.g.,
a division by zero. The following operations cause more
than two bits to be set in the Y Register:

a) Division by zero sets bits 0, 2, 3 (‘15)
bl A/ setsbits0,1,2 3(17)
c) Float to Fix, X>8388607 sets bits 0, 1, 3 (‘13)

The algebraic compare instructions which are included in
the SAU instruction set compare two referenced, signed (+
or -) quantities. The Y (condition) Register is set according
to the result of the comparison. Algebraic comparisons are
identified by the letter “C” as the first letter in the
instruction mnemonic (e.g., CZX). The second letter in the
mnemonic code identifies the first of the compared
quantities (R1) and the remaining letter identifies the
second quantity (R2). For example:

CzZX
Algebraically Compare j -\— X Register
(Type of Operation) (R2)
ZERO
{R1)

Comparisons are performed according to the following
formula:

R2 — R1 =Y (Positive, Zero, or Negative)

0830005-000
Original 3/78

Therefore, R2 > R1, R2 < R1, and R2 = R1, will set the
condition (Y) register to Positive (+), Negative (-}, and Zero
(0), respectively.

Two instructions provide control of the SAU interrupt
These instructions either release or hold the interrupt.

The transfer instruction group includes various types of
operations. Among these are transfers between memory and
registers, registers and memory, and register-to-register. The
transfer operation mnemonic code describes the individual
operation. What operation is to be performed is described
by the first letter in the mnemonic; “T" for transfer and
“1" for interchange. The second and third letters of the

mnemonic specify the source (R1) and destination (R2) of -

the transfer, respectively. Listed below are two examples:

TMX
Transfer ————/ -\——— X Register
(Operation) (R2)
Memory
(R1)
I DX ,
Interchange ———/ .\—— X Register
(Operatiop) (R2)
Register D
(R1)

With the exception of the interchange instruction, the
transfer source (R1) is not altered as a resuit of the
execution of a transfer instruction.

The following instructions are included in the SAU group.

ARITHMETIC

AAX Add A Register to X Register 7-63
ADX Add D Register to X Register 7-63
AMX Add Memory to X Register 7-63
AOW Add Operand to W Register 7-63
AOX Add Operand to X Register 7-63
DAX Divide A Register into X Register 7-63
DDX Divide D Register into X Register 7-64
DMX Divide Memory into X Register 7-64
DOX Divide Operand into X Register 7-64
FAX Floating Normalize of A Register

to X Register 7-64
FXA Fix of X Register to A Register 7-65

7-62

INX Inverse of X Register
MAX Multiply A Register and X Register
MDX Multiply D Register and X Register
MMX Multiply Memory and X Register
MOX Multiply Operand and X Register
NXX Negative of X Register to X Register
PXX Positive of X Register to X Register
SAX. Subtract A Register from X Register
SDX Subtract D Register from X Register
SEX Square X Register
SMX Subtract Memory from X Register
SOX Subtract Operand from X Register
SRX Square Root of X Register
BRANCH
BNR Branch on Negative Reset
BNS Branch on Negative Set
BOR Branch on Overflow Reset
BOS Branch on Overflow Set
BOX Branch on SAU Ready
BPR Branch on Positive Reset
BPS Branch on Positive Set
BZR Branch on Zero Reset
BZS Branch on Zero Set
COMPARE
CDX Compare D Register to X Register
cow Compare Operand to W Register
CcZX Compare Zero to X Register
INTERRUPT
HSI Hold SAU Overflow Interrupt
RSI Release SAU Overflow Interrupt
TRANSFER
IDX Interchange D Register and

X Register
TDX Transfer D Register to X Register
TMX Transfer Memory to X Register
TOW Transfer Operand to W Register
TOY Transfer Operand to Y Register
TXD Transfer X Register to D Register
TXM Transfer X Register to Memory
TYA Transfer Y Register to A Register
TZX Transfer Zero to X Register

7-65
7-65
7-65
7-65
7-65.
7-66
7-66
7-66
7-66
7-66
7-66
7-67
7-67

7-67
7-67
7-68
7-68
7-68
7-68
7-68
7-67
7-67

7-68
7-69
7-69

7-69
7-69

7-69
7-70
7-70
7-70
7-70
7-70
7-7
77
7-71

AAX Add A Register to X Register
Formula 77070. Affected XY
1 1 T 1 W
OP CODE
231 1l 1 Ll L 1 | 1 1 1 Ll —< /I/OI
Operation

The signed integer in the A Register is converted to
floating-point format and added to the number in the X

Register. The sum replaces the previous contents of the X ‘

Register.
ADX Add D Register to X Register
Formula 77100. Affected XY
¥ T T 1 V7
23l 1 L1 4 ¢4t 1 1 11 l’ . o/
Operation

The floating-point number in the D Register is added to the
‘number in the X Register. The sum replaces the previous
contents of the X Register.

0830005-000
Original 3/78

Operation

The 8-bit, signed operand is algebraically added to the
contents of the W Register.

Note

A subtraction may be accomplished by adding a negative
operand.

AOX

Formula

Add Operand to X Register

77060:0 Affected XY

1 T T 1

7
OP CODE f
8

i T

OPERAN

b I I W N N |
7 o

) N I S TR T N N N N N I
23 9

Operation

The signed, 8-bit integer operand is converted to
floating-point format and added to the contents of the X
Register. The sum replaces the previous contents of the X
Register.

DAX Divide A Register (integer)
AMX Add Memory to X Register into X Register
Formula 73.*+X:a Affected XY Formula 77073. Affected XY
1 1 1) T T Ll T T 7

OP CODE |*¥| X ADDRESS OP CODE W /

{4 1 1 1 1 1 4 1 11 1] 1 1] L.l 1 1 1 1 | 1 L L) I | 1 i] 1 1 1)//
23 17 1] -] 23 9 8 [
Operation Operation

The contents of the effective memory address {(EMA) and
the next sequential address (EMA+1) are added to the
contents of the X Register. The sum replaces the previous
contents of the X Register.

AOW Add Operand to W Register (exponent)
Formula 77012:0 Affected w,Y
1 1 1 L / T 1
OP CODE] oPERAND
1 L 1 1 1 1 1 1 1 1 1 L1 Al 1 1 1 ! |
23 ° 9 8 7]

The signed integer in the A Register is converted to floating
point format. The contents of the X Register are divided by
the converted number. The quotient replaces the previous
contents of the X Register.

Notes

If division by zero occurs, the condition register (Y) is set
to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be O after the divide.

763

0830005-000
Original 3/78

DDX Divide D Register (floating-point)

into X Register

Formula 77103 Affected XY
NRZZN 7
Operation

The floating-point contents of the D Register are divided
into the contents of the X Register. The quotient replaces
the previous contents of the X Register.

Notes

If division by zero occurs, the condition register (Y} is set

to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be O after the divide. '

DMX Divide Memory into X Register.
Formula 76.*+X:a Affected XY
1 1 1 T i
OP CODE |%| X ADDRESS
L T 1 1 L 1 1 1 L 1 1 L] 1 1 1 1] 1
23 22 17 14 []

Operation

The contents of the X Register are divided by the contents
of the effective memory address (EMA) and the next
sequential address (EMA+1). The quotient replaces the
previous contents of the X Register.

Notes

If division by zero occurs, the condition register ('Y) will be
set to Overflow, Pasitive, and Zero, i.e., (Y) = ‘15.

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be 0 after the divide.

DOX Divide Operand into X Register
Formula 77063:0 Affected XY
1] 1 1 7 T T
OP CODE] OPERAND
| U W TSN (NS N N T N N N T N Y | A1t
23 9 8 7))

764

Operation

The signed, 8-bit integer operand is converted to
floating-point and is divided into the contents of the X
Register. The quotient replaces the previous contents of the
X Register.

Notes

If division by zero occurs, the condition register (Y) wiil be
set to Overflow, Positive, and Zero, i.e., (Y) =‘15.

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case.is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be O after the divide.

FAX Floating Normalize of A Register
to X Register
Formula 7703. Affected XY
W 7//7/7
* Operation)

The signed integer quantity in the A register is converted to
a floating-point normalized quantity which replaces the
previous quantity in the X Register.

Notes

A positive normalized number will have as the sign and
most significant bit the following pattern:

01

A negative normalized number (where the value is not -1)
has the configuration

10

A negative normalizgd number, where the value is -1, results
in the mantissa having a bit pattern of all ONEs.

1
If thé result is zero, the mantissa will be zero and the

exponent will be set to a full scale negative value, i.e., (W) =
‘201,

The FAX instruction gives a different result than the FNO
instruction for'-2N (0SN<231¢).

FNO of 2N=1.10..0 EXP=(N+1)
FAX of 2N =1.00...0 EXP=N

FXA Fix of X Register to A Regiéter

Formula 7713. Affected AY

Lo G777

23 12

Operation

The floating-point number in the X Register is converted to
a 24-bit signed integer which replaces the previous contents
of the A Register.

Notes

If the exponent is greater than 23, the condition register
(Y) will be set to Overflow, Negative and Positive, i.e., (Y)
='13.

If the mantissa is negative, the result when truncated will be
“rounded” toward the greater negative number.

"INX Inverse of X Register
Formula 77050. Affected XY
o 7777
Operation

1
- The inverse of the contents [(“)'5] of the X Register re-
replaces the contents of the X Register.
Note

If division by zero occurs, the condition register will be set
to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

0830005-000

Original 3/78
MDX Multiply D Register (floating
point) and X Register
Formula 77102 Affected XY
OP CODE / /
231 1 1 1 1 1 1 i 1 1 1 1 i I9 < /{
Operation

The floating-point contents of the D Register are multiplied
by the contents of the X Register. The product replaces the
previous contents of the X Register.

Notes

If the sum of the exponents is 2200, Overflow will be
generated. However, the final result may be corrected, i.e.,
(0.100..0E177) X (0.100..E001) = 0.100... E(177) +
Overfiow.

if both operands are MNG (1.00...0) and the sum of their
exponents is 177, Overflow will be generated.

MMX Multiply Memory and X Register

Formula 75.*+X:a Affected XY
T 1 T ¥ T
OP CODE %] X ADDRESS
L [|]] { 1+ 1 1 0 | 1 {1 1 f | 1
3 17 - o

Operation

Th(e) contents of the X Register are multiplied by the
contents of the effective memory address (EMA) and the
next sequential address (EMA+1). The product replaces the
previous contents of the X Register.

MAX Multiply A Register (integer)
and X Register MOX Multiply Operand and X Register
Formula 77072 Affected XY Formula 77062:0 Affgcted XY
T 1 1 T //////// 1 T 1 1 4 1 T
OP CODE / / OP CODE] OPERAND

1 1 I 1 1 L I 1 1 L.l 1 [l A] Ll] L 11 1 | | 1 1 i 1 4 1 1 1 1 1] 1
23 9 8 o 23 9 8 Y [+]
Operation Operation

The signed integer in the A Register is cohverted to
floating-point format and multiplied by the contents of the
X Register. The product replaces the previous contents of
the X Register.

The signed, 8-bit integer operand is convarted to
floating-point format and is multiplied by the contents of
the X Register. The floating-point product replaces the
previous contents of the X Register.

7-65

0830005-000

Original 3/78
NXX Negative of X Register to
X Register
Formula 77041. Affected X,Y
OP CODE %
23[1 1 1] 1 1 1 1 { i 1 1 1 T S
Operation

The mantissa in the X Register is two’s complemented and
the result is loaded into the X Register. The Y Register is
changed to reflect the status of the new quantity.

Note

If the bit pattern of the mantissa is 100....0, the one’s
complement will be generated.

PXX Positive of X Register to
X Register
" Formula 77040 Affected X,Y
OP CODE .
[I VY O S N U | 1.1 i 1 1 1 / A
23 9 8 1]
Operation

The absolute value of the contents of the X Register
replaces the previous contents of the X Register.

Notes

If the bit pattern of the mantissa is 100....0, the one’s
complement will be generated.

The operation noted above may cause a significant
difference in a result, i.e., TNA (1), FAX, NXX, FXA
generate A = 0; the result should have been 1. However, this
may be alleviated by preceeding the NXX with an AOX (0)
to normalize the X Register:

Operation

The signed integer in the A Register is converted to

floating-point format and subtracted from the contents of
the X Register. The difference replaces the previous
contents of the X Register.

SDX Subtract D Register (floating
point) from X Register
Formula 77101. Affected XY
T 1 1 1 7///////
OP CODE
23I] 1 1 1 1 1 1 1 L 1.1] l’ < /I/ol
Operation

The floating-point contents of the D Register are subtracted
frqm the X Register. The difference replaces the previous
contents of the X Register.

SEX Square X Register

NI/

The square of the contents of the X Register replaces the
previous contents of the X Register. (i.e., the X Register is
replaced by X times X.)

SAX Subtract A Register {integer)
from Y Register
Formula 77071. Affected KXY
e 077777
. °

23

9

SMX Subtract Memory from X Register
Formula 74."+X:a Affected XY
1 1 1 1 1

OP CODE [*| X ADDRESS

| S U . 1 Ll | T | | U T T . | | I -
23 7 4 [+]
Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) are subtracted from
the contents of the X Register. The difference replaces the
contents of the X Register.

0830005-000

Original 3/78
SOX Subtract Operand from X Register BNS Branch on Negative Set
Formula 77061:0 Affected XY Formula 637:a Affected P
T 1 T T / 1 1 T H 1 1 A 1
OP CODE / OPERAND OP CODE ADDRESS
i ;1 1 1 1 1 1]]] 11 V. | S S SN | 1 i 1 1 [] 1 1 1 1 | 1 1 i 1 J |) S | 1 L 1
23 9 8 7 0 23 i4 [}
Operation Operation

The signed, 8-bit integer operand is converted to a
floating-point format and subtracted from the contents of
the X Register. The difference replaces the previous
contents of the X Register.

SRX Square Root of X Register

The contents of the condition (Y) register are tested for
the specified condition. If the condition is present, the
contents of the P Register (current program address) are
replaced by the effective memory address. If the specified
condition is not present, the program address advances to
the next sequential location (program address +1).

NI/

The square root of the contents of the X Register replaces
the previous contents of the X Register.

Note

If the content of the X Register is negative, the condition
register is set to Positive, Zero, Negative and Overflow, i.e.,
{Y)="17.

BNR Branch on Negative Reset
Formula 630:a Affected P
1 1 T T T I
OP CODE ADDRESS
| 1] 1 1 1 | 1 1 1] L L1 1 L1 1 1] 1]
23 (L} ()
Operation

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential location (program address +1).

BZR Branch on Zero Reset
Formula 640:a Affected P
1 1 H 1 T T
OP CODE ADDRESS
] 1 1 [l I [} 1 1 1 | 1 | 1] L 1 1 1
23 23 0
Operation

The contents of the condition (Y) register are tested for the

. specified condition. If the condition is present, the contents

of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential location (program address +1).

BZS Branch on Zero Set
Formula 647:a Affected P
T 1 | 1 v
OP CODE ADDRESS
Jd | S Y] 1 n 1 | n L] 1 1 L 1 1 1 i 1
23 14 0
Operation

The contents of the condition (Y) register are tested for
the specified condition. If the condition is present, the
contents of the P Register (current program address) are
replaced by the effective memory address. If the specified
condition is not present, the program address advances to
the next sequential location {program address +1).

7-67

0830005-000

Original 3/78
BPR Branch on Positive Reset BOS Branch on Overflow Set
Formula 650:a Affected P Formula 773:a Affected p
1 i T 1 A 1) T 1 1 1 1
OP CODE ADDRESS OP CODE ADDRESS
Lt 4 1 1 41 11 1 ¢ 1t .t 3 1 1 1 3 .t 1 1 1 | 1.1 11 | I N I N N T N S | 1 1]
23 14 [23 14)
Operation Operation

The contents of the condition (Y) register are tested for
the specified condition. If the condition is present, the
contents of the P Register (current program address) are

replaced by the effective memory address. If the specified

condition is not present, the program address advances to
the next sequential location (p_rograrn address +1).

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential location (program address +1).

BPS Branch on Positive Set
Formula 657:a Affected P
1 1 | 1)
OP CODE .ADDRESS
l .1 1 1 1 | | 1 1 1 1 i i J] { {1 1 [1

23

4

[+]

Operation

The contents of the condition (YY) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential location (program address +1).

BOR Branch on Overfiow Reset
Formula 772:a Affected P
T T 1) 1 I
OP CODE ADDRESS
11 L L 1 1] 1) . 1 L1 1 1 1 L1 I L1
23 14 0
Operation

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential location (program address +1).

7-68

BOX Branch on SAU Ready
Formula 627:a Affected P
¥] 1 L L 1
OP CODE ADDRESS
{4 1 1 4.1 1 .1 L 4 3 ¢+ 1 1+ 5 &t 1 1 1 t]
3 14 [}
Operation

A determination is made as to whether or not the SAU is
processing an instruction (the SAU busy latch is tested). If
the SAU is able to process another instruction (i.e., ready)
then the contents of the P Register (current program
address) are replaced by the effective memory address. If
the SAU is currently processing an instruction {i.e., not
ready) the program address advances to the next sequential
location (program address +1).

CDX Compare D Register to X Register

e 7777

The contents of the D Register and the contents of the X
Register are compared and the Y (condition) Register is set
to the status of the resuit.

Note

Comparison results are as follows:

If X is greater than D; Y = Paositive
If Xis equal to D; Y = Zero
If X is less than D; Y = Negative

COW Compare Operand to W Register
(exponent)
Formula 77013:0 Affected Y
1 I T I 7 i 1
OP CODE /] OPERAND
A L.l 11 1 1 1 i L | 1 1 1 Vs 1 1 1 1 1 1 1

23 9 8 7 o]
Operation

The 8-bit, signed operand and the contents of the W
Register are algebraically compared and the Y (condition)
Register is set to the status of the result.

Note
Comparison results are as follows:

If W is greater than the operand; Y = Positive
If W is equal to the operand; Y = Zero
If W is less than the operand; Y = Negative

CZX Compare Zero to X Register

Formula 77060000 Affected Y, X
OP CODE

N | L 1 1 | 1 L1 1 L 1] 1 | 1 1 1 1 1 1 1

23 (4]

Operation

The contents of the X Register and floating-point zero are
compared and the Y (condition) Register is set to the status
of the result.

Note

Overflow will result if the mantissa has the pattern 1100...0
and the exponent has the pattern 10000000. The least
significant bit of X will be set to a 1.

0830005-000
Original 3/78

HSI

Formula . 770200.

Hold SAU Overflow Interrupt

Affected None

1 1 4 ! T

OP CODE

23 6 5 o]

Operation

This instruction disarms the overfiow/underflow interrupt
(Executive trap Group O, Level 6). The trap remains
disarmed until the execution of the release instruction.

RSI Release SAU Overflow Interrupt
Formula 770201. Affected None
H T 1 T 1 7
OP CODE ////
) S | | | T} i Ll 1 | | 1 L /A//
23 6 5 (o]
Operation

This instruction arms the overflow/underflow interrupt
(Executive Trap Group 0, Level 6). When the trap is armed,
and not inhibited by an HXI instruction, any SAU
operation which causes bit O of the Y Register to be set
(Overfiow) will generate an interrupt request.

IDX iInterchange D Register and

X Register
Formula 7711. Affected D, XY
=
Operation

The contents of the X Register and the D Register are
interchanged. The Y (condition) Register is set to the status
of the X Register on completion of the instruction.

Note

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

7-69

0830005-000
Original 3/78

TDX Transfer D Register to X Register

Formula 7714, Affected XY

W/

23 12

Operation

The contents of the D Register replace the previous
contents of the X Register.

Notes

An unnormalized number transferred to X may not set the
Y Register properly.

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

A binary zero transferred to X will set Positive.

TMX Transfer Memory to X Register
Formula 71.*+X:a Affected XY
1 i T] 1
OP CODE |*¥| X ADDRESS
231 1 1 L 1 —] I‘I 1 1 1 1] i 1 1 ! 1 L 1 1 =

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) replace the previous
contents of the X Register. EMA and EMA+1 replace the
most significant and least significant part of X, respectively.

Note

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

TOW Transfer Operand to W Register
(exponent)
Formula 77011:0 Affected w,Y
T 1 1 1 / 1 T
OP CODE % OPERAND
Ll L1 11] i L4 1 1 | I | 1 1L L
23 9 8 7 [+]

7-70

Operation
The 8-bit, signed operand replaces the previous contents of

the W Register. Al other bits within the X Register are
unaffected.

Note

The Y (condition) Register is set to the status of the X and
XW Registers upon completion of the instruction. The SAU -
uses the two most significant bits of the mantissa and the
sign of the exponent to set the Y Register.

TOY Transfer Operand to Y Register
Formula 77010:0 Affected Y
1 ¥ 1} 1 7// I
OP CODE / OPERAND
] 1 | | i 1 1 1 1 [1 [l 1 / % { l 1
23 9 3 [}
Operation

The four bit operand replaces the previous contents of the
Y (condition) Register.

Note

Operand definition is as follows:

Bit 0 = ONE = Overflow
= ZERO = No Overflow

Bit 1 =ONE = Negative
= ZERO = Not Negative

Bit2=0ONE = Zero
= ZERO = Not Zero

Bit 3 =0ONE = Positive
= ZERO = Not Positive

TXD Transfer X Register to Memory

Formula 7715. Affected D
VI,
Operation

The contents of the X Register replaces the previous
contents of the D Register. The X Register is unchanged.

. 0830005-000
. Original 3/78

Note

The following table shows the bit placements of the various
Y (condition) Register settings when transferred to the A
Register.

TXM Transfer X Register to Memory
Formula 72.*+X:a Affected
T 1]] T
OP CODE |k ADDRESS
1] i |- 1 1 1 L1 1 bttt 1 1 1
23 17 14 (4]
Operation

The contents of the X Register replaces the previous
contents of the effective memory address (EMA) and the
next sequential address (EMA+1). The most and least
significant portions of X are transferred to EMA and
EMA+1, respectively.

Note

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

A Register Bit Function
Bit0=1 Overflow/Underf'-
Bit1=1 Negative
Bit2=1 Zero
Bit3=1 Positive
Bit6=0 SAU Interrupt Enabled -
Bit6=1 SAU Interrupt Disabled

All other bits within the A Register are set to zero.

TYA Transfer Y Register to A Register
Formula 7700. Affected A
LW/
Operation

The contents of the Y Register are transferred to the A
Register and the status of the SAU overflow/underflow
interrupt is placed in bit position 6 in the A Register.

TZX Transfer Zero to X Register
Formula 77042 Affected X
T] 1 1 7 .
[l 1 1 L1 1 1 1]] 1 1l Ié
23 9 8 (4]
Operation
The floating-point representation of zero

(0000000000000201) replaces the previous contents of the
X Register. The Y (condition) Register is unaffected.

7-71/7-72

0830005-000
Original 3/78

APPENDIX A
INSTRUCTION EXECUTION TIMES

COMPUTING INSTRUCTION EXECUTION TIMES

This appendix provides the formulas for computing the
execution times (in microseconds) of the computer
instructions. The time required to execute any particular
instruction is not constant, but is dependent upon certain
variables.

Instruction execution time is primarily a function of the
program. The time required to execute a particular
instruction is dependent on its location within the program.
Other factors affecting instruction execution time include
type of memory board used, memory access time, address
translation time, indexed and indirected operations, and
system configurations. When a Scientific Arithmetic Unit or
1/0 expansion chassis is included in the system, instruction
execution time is affected.

Each time that memory is accessed for a read operation,
two words are read out and loaded into a two-word data
register located on the memory board. This register is
referred to as the Content Addressable Buffer (CAB). When
a memory read operation is performed, if the addressed
word is in the CAB, no memory access is required. If the
addressed word is not in the CAB, then a memory access is
performed to read out the addressed word. Thus, access
time is not constant. A memory access made to read out a
word is referred to as a normal access. If the desired word is
located in the CAB, the operation is referred to as a fast
access.

Since instructions are overlapped by one microcycle during
execution, the decode microcycle time is omitted when
calculating instruction execution time. Execution time is
based primarily on the number of microinstructions
executed where each microinstruction is executed in one
0.3 microsecond microcycle. Added to this time is the wait
time, A, which is the time period from the end of one
instruction decode sequence to the beginning of the
subseqguent decode sequence. For a memory read operation,
wait time is dependent on whether the desired word is in
memory or the CAB. A memory wait time is also incurred
following a write operation if an access is made to the same
memory board. This wait time is designated by the letter W,
The wait periods, A and W, for the various memory
configurations and conditions are provided in Table A-1.

Instruction execution time may be calculated by using the
following basic formula.

instruction Time =

A +W + (0.3 X Number of Execution Cycles)

More than one A orW time may be involved. If a memory
reference instruction, such as a transfer memory to register
instruction, is executed, two memory accesses (A time) are
made; one to fetch the instruction and one to fetch the
operand. When the Transfer Registers to Memory (TRM)
instruction is executed, several successive memory write
operations are performed so that W time is the sum of the
delays incurred while waiting for memory to finish the
required number of cycles.

The basic instruction time formula is modified by particular
conditions and system configurations. The SAU
instructions, for example, in addition to the A and W wait
times, incur a delay referred to as the resynchronizing wait
time, RS. Since the CPU, SAU, and SAU interface boards
contain individual clocks, the clock pulses must be
synchronized when executing SAU instructions. RS varies
from a minimum time of 0.18, to a maximum of 0.48
microsecond.

When the virtual memory system is in the User Mode of
Operation, all addresses are translated. An additional 0.12
microsecond is added to A or W for memory read and write
operations. This delay is a result of the address translation
performed by the virtual memory hardware.

For memory reference instructions, an additional 0.33
microsecond is added -for an index operation. For each
indirect reference operation, additional time equal to A
plus 0.33 microsecond is added to the basic instruction
execution time.

When a system has the input/output expansion chassis
installed, execution of any of the 1/0 instructions results in
a delay of 0.06 microsecond. This delay is the result of
increased signal propagation times caused by the addition
of the 1/0 port board, 1/O interface board, and
interconnecting cables.

0830005-000
Original 3/78

Table A-1. Instruction Execution Wait Times™*

FUNCTION MOS CORE
A {(normal access — word in main memory) 0.3 0.245
(fast access — word in CAB)** Oor0.03 0or 0.03
w {access to memory board written to on 0.15 0.20
previous cycle)
(access to memory board not written to 0or 0.03 0 or 0.03
on previous cycle)
RS 0.18 to0 0.48 0.18 to 0.48
VM Address Translation 0.12 0.12
Indexed 0.33 0.33
Indirected (each) A+0.33 A+0.33
Expanded System (1/0 instructions only) 0.06 0.06
Error Correct Cycle 0.75 NA
Refresh Cycle 0.15 or 0.45 NA
Block I/0 Chanﬁel Memory Operation (read) 0.3 0.3
{write) 0.45 0.5

hd Time is in microseconds

** Time is dependent on memory configuration

NA Not Applicable

{f the CPU initiates a memory read cycle to MOS memory
and a parity error is recognized, the memory performs an
error correction cycle if configured with error correct
hardware. This operation increases instruction execution
time by about 0.75 microsecond.

MOS memory boards perform a refresh cycle
approximately every 32 microseconds. If a refresh cycle
occurs during the execution of an instruction, additional
time of either 0.15 or 0.45 microseconds is added to the
instruction execution time.

When a block 1/0 channel performs a DMA operation, the
execution time is increased by 0.3 microsecond if the

channel performs a read operation. A write operation
performed by the channel adds 0.456 microsecond for a
MOS memory board, and 0.5 microsecond for a core
memory board.

System performance is upgraded when the memory boards
are interleaved. Inteneaving reduces A time so that the
instruction execution time is reduced. The time that any
particular instruction is affected is program dependent.

Table A-2 provides the basic time formulas for ail
instructions.

0830005-000

Original 3/78
Table A-2. Basic Instruction Time Formulas
Mnemonic Formula Notes Mnemonic Formula Notes
AAM 2A+W+0.9 BUL A+0.6
AAX A+1.8+RS 1,2 BWx A+0.9
ADX A+18+RS 1,2 BZR A+ 0.6 1
AEM 2A+W+0.9 BZS A+06 1
AMA 2A +0.6 CDX A+21+RS 1,2
AMB 2A +0.6 CMA 2A + 0.6
AMD 3A+24 CMB 2A + 1.8
AME 2A + 0.6 CME 2A + 0.6
AMx 2A +0.6 CMx 2A +0.9
AMX 3A+2.1+RS 1,3 CcOB A+18
AOB A+03 cow A+1.0+RS 1,6
AOM 3A+24 4 Crr A+15 7
3A+27 5 A+3.0+0.3Ns +0.3Np 9,10,15
AOr A+03 CzZD A+3.9
AOW A+1.0+RS 1,6 CZM 2A +0.6
AOX A+1.0+RS 1.6 CZr A+15 7
Arr A+03 7 A +3.3+0.3Np 9,10,16
A +3.0 + 0.3Ng + 0.6Np 89,10 czx A+16+RS 1,17
AUM 2A+09+W DAX A+96+RS 1,18
AxM 2A+09+W DDX A+99+RS 1,18
BBI A+1.2 1 DMA 2A+0.6
A+18 12 DMH 2A + 3.0
A+21 13 DMX 3A+10.8+ RS 1,19
BBJ A+1.2 11 DNH 2A +3.0
A+18 12 DOB A+03
A+21 13 DOX A+94+RS 1,20
BJL A+0.6 Drr A+03 7
BLL A+09 A+ 27 +0.3Ng + 0.6Np 9,10,15
BLU A+09 DVM 2A+123 21,23,24,25
BLx A+09 2A+126 22,23,24,25
BNR A+0.6 1 DVO A+123 21,23,24,25
BNS A+0.6 1 A+126 22,23,24,25
BOc A+0.6 DVT A+ 123 21,23,24,25
BOR A+0.6 1 A+12.6 22,23,24,25
BOS A+0.6 1 DVx A+123 21,23,24,25
BOX A+06 1 A+126 22,23,24,25
BPR A+0.6 1 Dv2 A+15+21W
BPS A+0.6 1 EMB 2A +4.8 26
BRL A+0.9 2A+2.4 27
BSL A+12+W ESA A+0.9 28
BUC A+0.6 A+15 29
A+18 30

A-3

0830005-000

Original 3/78
Table A-2. Basic Instruction Time Formulas (Cont’'d.)

Mnemonic Formula Notes Mnemonic Formula Notes
ESB A+06 LRD A+15+0.15n 34,40
EXM A+0.6 A+1.2+0.15n 34,39
EZB A+03 MAX A+54 +RS 1,41
FAX A+12+RS 1,14 MDX A+57+RS 1.41
FBM . 2A+3.0+W MMX 3A+5.6 +RS 1,42
FNO A+24 31 MOX A+52+RS 1,43

A+3.6+03n 32,34 MYM 2A +5.7 44
A+42+03n 33,34 2A +6.0 45
FXA A+12 MYO A+57 44
-GAP A+1.2 A+6.0 45
HIT A+03 MYr A+5.7 44
HLT A+0.6 A+6.0 45
HSI A+09 NBB A+03
HTx A+09+W NDD A+18 39
HXI A+0.3 A+24 38
IAW A+03 35 A+21 37
A+0.36 36 NHH A+09
IDW A+03 35 NOP A+03
A+0.36 36 NSr A+03 7
IDX A+15 Nrr A+03 7
IMA 2A+15+W A +3.0 +0.3Ng + 0.6Np 8,9,10
IME 2A+15+W NXX A+1.0+RS 1,6
IMx 2A+15+W OAW A+03 35
INX A+94 +RS 1,20 A+0.36 36
IPW A+03 35 OoCcwW A+03 35
A +0.36 36 _ A +0.36 36
trr A+15 7 obw A+03 35
ISW A+03 35 A +0.36 36
A +0.36 36 OMA 2A + 0.6
KOB A+0.9 OMH 2A +3.0
Krr A+12 7 ONH 2A +3.0
A +2.7+0.3Ng +0.3Np 9,10,15 00B A+03
LAA A+0.6 +0.15n 34 Orr A +2.7 + 0.3Ng + 0.3Np 9,10
LAD A+3.6 +0.16n 34,37 PBB A+0.6
A+3.9+0.15n 34,38 PDD A+15 46
A+33+0.16n 34,39 A+21 47
LLA A +0.6 +0.15n 34 A+18 48
LLD A+15+0.16n 34,40 A+27 49
A+1.2+0.16n 34,39 A+24 50
LRA A+0.6 +0.15n 34 Prr A+0.9 7
' A +3.0 +0.3Ns + 0.6Np 8,9,10

A4

0830005-000

Original 3/78
Table A-2. Basic Instruction Time Formulas (Cont'd.)
Mnemonic Formula Notes Mnemonic Formula Notes
PXX A+1.0+RS 1,6 SRE A+66.0
QBB A+03 Srr A+03 7
QBH A+06 A+ 3.0+ 0.3Ng + 0.6Np 8,9,10
QBM 2A+3.0 SRT A+35.0
ONR A+03 SRX A+82+RS 1,53
Qass A+09 TAM A+0.6+W
QUR A+03 TAR A+06
RAA A+0.6+0.15n 34 TBM A+06+W
RAD A+21+0.156n 34,40 TDL A+1.2
A+18+0.16n 34,39 TDM A+18+W
RBM 2A+4.8+W 51 TDP A+0.6
2A+24+W 52 TDR A+06
RCT A+03 TDS A+0.6
RLA A+0.6+0.15n 34 TDX A+0.6 1
RLD A+15+0.15n 34,40 TD1 A+1.2
A+1.2+0.156n 34,39 ~TD4 A+1.2
ROM A+0.6 TEM A+06+W
RPT A+03 TEU A+06
RRA A+06+0.15n 34 TFH A+0.6
RRD A+1.2+0.15n 34,39 TFM A+09+W
A+1.5+0.15n 34,40 THM 2A+30+W
Rrr A+09 7 TIM A+0.6+W
A+3.0+03Ng+06Np | 89,10 TIM A+0.6+W
RS .A+0.9 1 TKM A+06+W
RUM A+0.6 TKV A+1.2
RXI A+03 TLD A+12
SAX A+1.8+RS 1,2 TLO A+03
SDX A+21+RS 1.2 TMA 2A + 06
SEX A+52+RS 1,43 TMB 2A +0.6
SMA 2A +0.6 TMD 3A+15 39
SMB 2A +0.6 3A+2.1 38
SMD 3A+24 39 3A+18 37
3A+3.0 38 TME 2A + 0.6
3A + 2.7 37 TMH 2A +3.0
SME 2A +0.6 T™I 2A + 0.6
SMx 2A +0.6 ™J 2A +0.6
SMX 3A+2.1+RS 1,3 TMK 2A + 0.6
so8 A+03 T™Q 2A +0.6
SOr A+0.3 TMR 6A +3.0
TMX 3A+09
SOX A+16+RS 1,17 TNr A+03

A5

0830005-000

Original 3/78
Table A-2. Basic Instruction Time Formulas (Cont'd.)
Mnemonic Formula Notes Mnemonic Formula Notes
TOB A+03 TZH A+0.9
TOC A+0.3 TZM A+09+W
TOr A+03 TZr A+03 56
TOW A+10+RS 1,6 A+3.0+0.3Np 10,57
TOY A+09 1 TZX A+06 1
TPD A+0.6 TiD A+12
TrB A+0.3 54 T4D A+12
A+ 24 +0.3Ng 9,55 UA1 A+1.2
TRD A+1.2 uD1 A+12
TRM A+3.0+W UE1 A+1.2
Trer A+03 7 ui A+12
A+27+0.3Ns+0.6Np | 910,15 usP 3A+33
TSD A+06 XMA " 2A+06
TSr A+09 XMH 2A+3.0
TUD A+0.6 XNH 2A+3.0
TVK A+1.2 XOB A+03
TXD A+0.6 1 Xrr A+03 7
TXM . A+2W+ 1.2 1 A +2.7 +0.3Ng + 0.6Np 9,10,15
TYA A+0.6 1 ZBM 2A+3.0+W
NOTES:
1. Appilicable only to model 615A SAU
2. Concurrent time available = 1.2 + RS
3. Concurrent time available = 0.9 + RS
4. |f operand is positive
5. |If operand is negative
6. Concurrent time available = 0.4 + RS
7. |f single source and destination
8. If multiple source and destination
9. Ng = number of registers selected in group r1
10. Np = number of registers selected in group r2
11. If bits 23 and 22 of index register are set to 012 or 102 prior to instruction execution
12. If bits 23 and 22 of index register are set to 112 prior to instruttion execution (branch not taken)
13. I bits 23 and 22 of index register are set to 112 prior to instruction execution {branch taken)
14. Concurrent time available = 0.6 + RS
15. |f multiple source and destinationor T
16. If multiple destination or T is destination
17. Concurrent time available = 1.0 + RS
18. Concurrent time available = 9.0 + RS
19. Concurrent time available = 9.6 + RS
20. Concurrent time available = 8.8 + RS
21. If signs of dividend and divisor are not equal
22. |f signs of dividend and divisor are equal

A-6

0830005-000
Original 3/78

NOTES:

23. Add 0.6 if correction cycle is required

24. Add 0.3 if overflow occurs

25. Add 0.9 if divisor is equal to zero

26. If bits 23 and 22 of J are set to 012 or 102

27. If bits 23 and 22 of J are set to 112 or 002

28. if sign bit is negative

29. If sign bit is positive

30. if sign bit is zero

31. If D is equal to zero or 4000...0g

32. If normalization takes place

33. If normalization takes place and result is equal to 4000...08

34. n = number of shifts

35. If non-expanded system

36. If expanded system

37. I result in D is equal to zero

38. If result in E is equal to zero

39. [If result in E is not equal to zero

40. If result in D or E is equal to zero

41. Concurrent time available = 4.8 + RS

42. Concurrent time available = 4.7 + RS

43. Concurrent time availabie = 4.6 + RS

44, If multiplicand is positive

45. If multiplicand is negative

46. If D initial value is positive and result in E is not equal to zero

47. |f D initial value is positive and result in E is equal to zero, or if D initial value is negative and result
in E is not equal to zero.

48. If D initial value is positive and result in D is equal to zero

49. If D initial value is negative and result in E is equal to zero

50. If D initial value is negative and result in D is equal to zero

51. If bits 23 and 22 of | are set to 012 or 102

52. If bits 23 and 22 of | are set to 112 or 002

53. Concurrent time available = 7.6 + RS

54. If single source

55. If multiple sourceor T

B56. If single destination

57. I multiple destination

A-7/{A-8 blank)

Mnemonic

AAM
AAX
ADX
AEM
AMA
AMB
AMD
AME
AMx
AMX
AOB
AOM
AOr
AOW
AOX
Arr
AUM
AxM

BBI
BBJ
BJL
BLL
BLU
BLx
BNR
BNS
BOc
BOR
BOS
BOX
BPR
BPS
BRL
BSL
BUC
BUL
Bwx
BZR
BZS

APPENDIX B

INSTRUCTION INDEX

Instruction

Add A Register to Memory
Add A Register to X Register
Add D Register to X Register
Add E Register to Memory
Add Memory to A

Add Memory to Byte

Add Memory to Double Register
Add Memory to E Register
Add Memory to Register
Add Memory to X Register
Add Operand to Byte

Add Operand to Memory
Add Operand to Register
Add Operand to W Register
Add Operand to X Register
Add Register to Register
Add Unity to Memory

Add Register to Memory

Branch when Byte Address +1in | # 0
Branch when Byte Address +1inJ# 0
Branch Indexed by J Long
Branch and Link (J) Long
Branch and Link Unrestricted
Branch and Link Register
Branch on Negative Reset
Branch on Negative Set

Branch on Condition Code
Branch on Overflow Reset
Branch on Overflow Set

Branch on SAU Ready

Branch on Positive Reset

Branch on Positive Set

Branch and Reset Interrupt Long
Branch and Save Return Long
Branch Unconditionally

Branch Unconditionally Long
Branch when Register +1 # 0
Branch on Zero Reset

Branch on Zero Set

Page

7-4

7-63
7-63

7-5

7-3

74, 7-37
74

7-3

7-3

7-63

7-5, 7-37
7-5

7-5

7-63
7-63

7-6

7-3

7-4

7-14, 7-37
7-15, 7-38
7-16
7-17
7-18, 7-53
717
7-67
767
7-16
7-68
7-68
7-68
7-68
7-68
7-18, 7-564
7-17,7-54
7-16
7-16
7-16
7-67
7-67

0830005-000
Original 3/78

0830005-000
Original 3/78

CDX
CMA
CMB
CME
CMx
cos
cow
Crr
CczD
CZMm
CZr
czX

DAX
DDX
DMA
DMH
DMX
DNH
DOB
DOX
Drr
DVM
DVO
DVT
DVx
Dv2

EMB
ESA
ESB
EXM
EZB

FAX
FBM
FNO
FXA

GAP

HIT
HLT
HSI
HTx
HXI

Instruction

Compare D Register to X Register
Compare Memory and A
Compare Memory and Byte
Compare Memory and E
Compare Memory and Register
Compare Operand and Byte
Compare Operand to W Register
Compare Register and Register
Compare Zero and Double
Compare Zero and Memory
Compare Zero and Register
Compare Zero to X Register

Divide A Register into X Register
Divide D Register into X Register
Dot Memory with A

Dot Memory with H

Divide Memory into X Register
Dot Not (memory) with H

Dot Operand with Byte

Divide Operand into X Register
Dot Register with Register
Divide by Memory

Divide by Operand

Divide by T

Divide by Register

Divide by 2

Extract Memory Byte
Extend Sign of A
Extend Sign of Byte
Execute Memory
Extend Zeros from Byte

Floating Normalize of A Register to X Register
Flag Bit of Memory

Floating Normalize

Fix of X Register to A Register

-

Generate Argument Pointer

Hold interval Timer
Halt
Hold SAU Overflow interrupt

Hold Interrupts and Transfer Register to Memory

Hold External Interrupts

Page

7-68
7-19
7-20, 7-38
7-20
7-19
7-20, 7-38
7-69
7-21
7-21
7-20
7-20
7-69

7-63
7-64
7-22
7-48
7-64
748
7-22, 7-39
7-64
7-23
7-6
7-6
7-7
7-7
7-7

7-28,7-39
7-8
7-8,7-39
7-59

7-39, 7-60

7-64
7-49
7-8

7-65

7-58

- 7-60

7-58
7-69
7-55
7-65

Mnemonic

IAW
IDW
iDX
IMA
IME
Mx
INX
IPW
Irr

IswW

KOB
Krr

NBB
NDD
NHH
NOP
NSr

Nrr

NXX

OAW
ocw
obw
OMA
OMH
ONH
O0B
Orr

Instruction

Input |Address Word

Input Data Word

Interchange D Register and X Register
interchange Memory and A
Interchange Memory and E
Interchange Memory and Register
Inverse of X Register

Input Parameter Word

Interchange Register and Register
Input Status Word

Kompare Operand and Byte
Kompare Register and Register

Left Shift Arithmetic A

Left Shift Arithmetic Double
Left Shift Logical A

Left Shift Logical Double
Left Rotate A

Left Rotate Double

Multiply A Register and X Register
Multiply D Register and X Register
Multiply Memory and X Register
Multiply Operand and X Register
Multiply by Memory

Muitiply by Operand

Multiply by Register

Negate of Byte to Byte

Negate of Double to Double

Negate of H to H

No Operation

Negate Sign of Register

Negate of Register to Register
Negative of X Register to X Register

Output Address Word
Output Command Word
Output Data Word

.OR Memory with A

OR Memory with H

OR Not {(memory) with H
OR Operand with Byte
OR Register with Register

Page

7-46

-7-45

7-69
7-29

7-29
7-65
7-46
7-29
7-44

7-21,7-40
7-21

7-25
7-25
7-25
7-25
7-26
7-26

7-65
7-65
7-65
7-65
7-8
7-8
7-9

7-9, 7-40
7-10
7-48
7-58
7-10

7-9

7-66

7-45
743
7-44
7-23
7-48
7-47
7-23, 7-40
7-23

0830005-000
Original 3/78

0830005-000
Original 3/78

B4

Mnemonic

PBB
PDD
Prr

PXX

QB8
QBH
aBm
QNR
ass

QUR

RAA
RAD
RBM
RCT
RLA
RLD
ROM
RPT
RRA
RRD
Rrr
RSI
RUM
RXI

SAX
SDX
SEX
SMA
smMB
SMD
SME
SMx
SMX

SRE
Srr

SRT
SRX

Instruction

Positive of Byte to Byte

Positive of Double to Double
Positive of Register to Register
Positive of X Register to X Register

Query Bits of Byte

Query Bitof H

Query Bit of Memory

Query Not-modified Register
Query Sense Switches

Query Virtual Usage Register

Right Shift Arithmetic A
Right Shift Arithmetic Double
Replace Byte in Memory
Release Clock Time

Right Shift Logical A

Right Shift Logical Double
Release Operand Mode
Release Processor Time

Right Rotate A

Right Rotate Double

Round of Register to Register
Release SAU Overflow Interrupt
Release User Mode

Release External Interrupts

Subtract A Register from X Register
Subtract D Register from X Register
Square X Register

Subtract Memory from A

Subtract Memory from Byte
Subtract Memory from Double
Subtract Memory from E

Subtract Memory from Register
Subtract Memory from X Register
Subtract Operand from Byte
Subtract Operand from Register
Subtract Operand from X Register
Square Root Extended

Subtract Register from Register
Square Root

Square Root of X Register

Page
7-10, 7-40
7-10
7-11
7-66

7-41, 7-59
7-47
7-49
7-52
7-60
7-52

7-26
7-26
7-30, 7-40
7-60
7-26
7-27
7-52

7-27
7-27
7-11
7-69
7-63
7-55

7-66
7-66
7-66
7-12
7-12
712
7-12
7-11
7-66
7-13, 7-41
7-13
7-67
7-14
7-13
7-13
7-67

Mnemonic

TAM
TAR
TBM
TDL
TDM
TDP
TDOR
TDS
TDX
TD1
TD4
TEM
TEU
TFH
TFM
THM
TIM
TIM
TKM
TKV
TLD
TLO
TMA
T™B
T™MD
TME
TMH
T™I
™J
TMK
T™Q
TMR
TMX
TNr
TOB
TOC
TOr
TOW
TOY
TPD
TrB
TRD
- TRM
Trr
TSD

Instruction

Transfer A to Memory

Transfer A to 1 Virtual Address Register
Transfer Byte to Memory

Transfer Double to Limit Registers
Transfer Double to Memory

Transfer Double to Paging Limit Registers
Transfer Double to 2 Virtual Address Registers
Transfer Double to Source and Destination Registers
Transfer D Register to X Register
Transfer Double to Group 1

Transfer Double to Group 1

Transfer E to Memory

Transfer E to Usage Base Register
Transfer Flag to H

Transfer Flag to Memory

Transfer H to Memory

Transfer | to Memory

Transfer J to Memory

Transfer K to Memory

Transfer K to V

Transfer Limit Registers to Double
Transfer Long Operand to K

Transfer Memory to A

Transfer Memory to Byte

Transfer Memory to Double

Transfer Memory to E

Transfer Memory to H

Transfer Memory to |

Transfer Memory to J

Transfer Memory to K _

Transfer Memory to Query Register
Transfer Memory to Registers

Transfer Memory to X Register

Transfer Negative Operand to Register
Transfer Operand to Byte

Transfer Operand.to Condition Register
Transfer Operand to Register

Transfer Operand to W Register

Transfer Operand to Y Register

Transfer Paging Limit Registers to Double
Transfer Register to Byte

Transfer 2 Virtual Address Registers to Double
Transfer Register to Memory

Transfer Register to Register

Transfer Source and Destination Registers to Double

Page

7-35
7-60
7-34, 7-41
7-63
7-35
7-51
7-51
7-50
7-70
7-56
7-56
7-35
7-52
7-47
7-35
7-49
7-35
7-36
7-36
7-47
7-63
7-33
7-31
7-30, 7-42
7-30
7-31
7-49
7-31
7-32
7-32
7-31
7-32
7-70
7-32
7-32, 7-42
7-33
7-33
7-70
7-70
7-61
7-34, 7-41
7-51
7-36
7-36
7-50

Original 3/78

B-5

0830005-000

Original 3/78
Mnemonic instruction Page

TSr Transfer Switches to Register ' 7-33
TUD Transfer Usage Base Register and Demand Page

» Register to Double 7-51
TVK Transfer V to K 747
TXD Transfer X Register to D Register 7-70
TXM Transfer X Register to Memory 7-71
TYA Transfer Y Register to A Register 7-1
TZH Transfer Zero to H 747
TZM Transfer Zero to Memory 7-35
TZr Transfer Zero to Register ’ 7-34
TZX Transfer Zero to X Register 7-M
TiD Transfer Group 1 to Double 7-56
T4D Transfer Group 1 to Double 7-56
UA1 Unitarily Arm Group 1 Interrupts 7-56
uD1 Unitarily Disarm Group 1 Interrupts 7-57
UE1 Unitarily Enable Group 1 Interrupts 7-57
Uit Unitarily Inhibit Group 1 Interrupts 7-57
usp Update Stack Pointer 7-59
XMA Exclusive-OR Memory with A 7-24
XMH Exclusive-OR Memory with H 7-49
XNH Exclusive-OR Not (memory) with H 7-49
X0B Exclusive-OR Operand with Byte 7-24, 7-42
Xrr Exclusive-OR Register with Register 7-24
ZBM Zero Bit of Memory 7-50

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	7-70
	7-71
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06

