REFERENCE MANUAL
SERIES 500 GENERAL PURPOSE
DIGITAL COMPUTER SYSTEMS

HARRIS

COMPUTER SYSTEMS

REFERENCE MANUAL

SERIES 500 GENERAL PURPOSE
DIGITAL COMPUTER SYSTEMS

Original Issue -
May, 1978

HARRI S COMMUNICATIONS AND
INFORMATION HANDUING

HARRIS CORPORATION Computer Systems Division
2101 Cypress Creek Road, Fort Lauderdale, Florida 33309 305/974-1700

0830006-000

0830006-000

Original 5/78
LIST OF EFFECTIVE PAGES
TOTAL NUMBER OF PAGES IN THIS PUBLICATION IS: 186
CONSISTING OF THE FOLLOWING:

 Page ° Change Page Change Page ' Change

No. No. No. No. No. No.

Title Original

A B Original

i thru vii Original

1-1 thru 1-12 Original
2-1 thru 2-22 Original
3-1 thru 3-6 Original
4-1 thru 4-22 Original
5-1 thru 5-8 Original
6-1 thru 6-6 Original
7-1 thru 7-84 Original
thru A-10 Original
thru B-6 Original

A-

1
B-1

Insert Latest Revision Pages. Destroy Superseded Pages.

HARRIS CORPORATION Computer Systems Division

PROPRIETARY DATA

This document, the design contained herein, the detail and invention

are considered proprietary to Harris Corporation. As the property of
Harris Corporation it shall be used only for reference, contract or
proposal work by this corporation or for field repair of Harris
products by Harris service personnel, customers, or end users.

No disclosure, reproduction, or use of any part thereof may be made
except by written permission from Harris Corporation.

0830006-000
Original 5/78

0830006-000
Original 5/78

CONTENTS
Section Page
| INTRODUCTION
SCOPEOFMANUAL & & v vt v e v e e e e e e A B
SERIESB00SYSTEMS & & i i e v e v e e e e e e 11
BASIC COMPUTER ORGANIZATION v o v v .. 11
BasicOperation « © ¢ ¢ v & v e e e e e e e e 11
Central ProcessingUnit (CPU) 1-3
Memory Units ¢ v v v o v v v v e 0o .. 14
Input/OutputOperation « . « v « « 14
Priority Interrupt System 0 ... L. . 14
Programmer'sControlPanel 14
STANDARD AND OPTIONAL FEATURES 15
Scientific ArithmeticUnit (SAU). 15
PriorityInterrupts« .« e eo. 18
T20HertzClock « & & ¢ ¢t e e e e e e e e e e 1-6
Interval Timer « v v v v e v . . . 16
100kHz Real TimeClock « « ¢ v v v v o . 1-6
Power Fail ShutdownandRestart e 16
FirmwareBootstraps « «v ¢ « v v v o « v .« . e e .. 16
BitProcessor L i i e e e e e e e e e e e e 1-6
StallAlarm e et et e e e e e e e .16
Program Haltand Address Trap 1-6
Input/OutputChannels 16
Programmed Input Output Channel (PIOC) 1-6
Universal BlockChannel (UBC)« . . . « « . S 1Y)
Direct Memory Access Communications Processor (DMACP) 1-7
External Block Channel (XBC)« . « & 4 v v v ¢ v « o« « 1-7
Integral Block Channel (IBC) & v v v v v v v v 1-7
MOSDataSave ¢« v v i e e e e e e e e e e e 1-7
I/OExpansionUnit ¢ v v v v v v v v v v . 17
ComputerLink e e e e . 1-7
Multi-CPU Channel Adapter e e e . 1-7
MAINTENANCE AIDS & . i e e e e e e e e e e e e e 1-8
PERIPHERAL EQUIPMENT v v v e e v e e e e e 1-8
SOFTWARE o e e e e e e e e e e e e e e e e 1-8
VULCAN OperatingSystem v v v v o v v v v v v . 18
SupportSoftware i . 0. e e e e . 1-8
SUMMARY OF CHARACTERISTICS « v v v v .. 19
I CENTRAL PROCESSING UNIT
GENERALDESCRIPTION.« ¢ v i v v e v e e o b o o 29
PRINCIPALCPUREGISTERS & v v v v v v e e e 21
AandBRegisters 0 e e e e e e e . 21
ERegister e e e e e e e e e e e e e e . 21
DRegister e e e e e e e e e e . 2-1

ILJ,and KRegisters ¢ v v it e 21

0830006-000

Original 5/78
CONTENTS (CONT’D.)
Section Page
Il CENTRAL PROCESSING UNIT (CONT'D.)
Condition Register . 2-3
Program Address Register . e . 23
Instruction Register and Shift Counter Reglster e . 23
VIRTUAL MEMORY DESCRIPTION. . 23
Introduction . e e e e . 23
Virtual Memory Instructlon Set 23
Principal Virtual Memory Registers 23
Virtual Address Registers (VARs) . . 23
Virtual Base Register (VBR) 24
Virtual Limit Register (VLR) . . 24
Virtual Usage Registers (VURs) . e e e e . N . 24
Virtual Not-Modified Registers (VNRs) 24
Virtual Usage Base Register (VUB) 24
Virtual Source Register (VSR) ; . 24
Virtual Destination Register (VDR). . .. 24
Virtual Demand Page Register (VPR) . . 24
Demand Paging . . . 25
InstructionTrap 26
PagingSystemControl 27
CPU OPERATIONAL CONTROL 27
CPU Modes of Operation e e e e e e e e e e e e . 27
Compatibility Mode + ¢ ¢ v 4 v 4 . . . 2-7
Address ExtensionMode v 4 4 e e e . . . 28
CPU Operational States . . 28
ADDRESSING FUNCTIONS 28
Compatibility Mode Addressing . . . 28
Direct Addressing. 28
Indirect Addressing + ¢ 4« 4 4 4 4 e e e e e e e e . 210
Indexing . e e e e e e e e e e . . 210
Address Extension Mode Addressmg . . 210
Direct Addressing .o . . 210
Indirect Addressing . . . 213
Indexing. . 213
Address Translatlon . . 213
120 HERTZ CLOCK . . 216
INTERVALTIMER. s e s e e i e i e . . 216
General Description v v 2-16
Timer Register 216
Operational Description 216
ProgramControl 216
REAL TIME CLOCK . . 2-16
General Description . 2-16

0830006-000

Original 5/78
CONTENTS (CONT’D.)
Section Page
Il CENTRAL PROCESSING UNIT (CONT'D.)
Operational Description « ¢« ¢ v v« v 0 o .. 2-17
Command and StatusWord Formats 2-17
ProgramControl « « ¢ ¢ i 4t e e e e e e e 2-17
PresetCountloading « + « « « « & « o« e e e e . 27
Automatic Count Restart « « & « « « « o o s+ o & « = = « = 2-17
Snapshot OUtPUt . . « « « « & & & = & & & & + o4 4 e e e e e e 2-17
SelectionSampling - & . . . 4 e 4 4 e e e e e e e e 2-18
POWER FAIL SHUTDOWN ANDRESTART ¢+ « « « « « 2-18
FIRMWARE BOOTSTRAPS & ¢ v v v e v e e e e e e 2-18
BITPROCESSOR &« v ¢ v e e et e e e e e e e e e e e 2-18
General Description. 0 4 4 e e e e e 2-18
BitProcessor Registers. « « « + + 4 4 e 4 . . . 218
Operational Description « « & ¢« « e v v ¢ 4 o . 2-19
ProgramControl ¢ . . 0 e e et e e e e 2-19
Bit Processor InstructionSet0 00 .. 2-19
STALLALARM it e et e e e e e e e e e e e e e 2-19
PROGRAM HALT ANDADDRESSTRAP. ¢« « v v = v v v « & 2-20
General Description. ¢ ¢ .« 4 4t 4 e 0 e e e .. 2-20
QueryRegister. & & & ¢ v 4« v 4 e e e e e e e e e 2-20
Operational Description 220
ProgramControl ¢ &« ¢ « v v 4 v 4 4 e e L2221
i1l MEMORY SYSTEM
GENERALDESCRIPTION. ¢ ¢ v v v v v v v v v . L. 341
MEMORY MODULES. © . & i s e e e e e e e e e e e e 31
SemiconductorMemoryModule 31
MagneticCore MemoryModule 32
Readand WriteOperation « « « v v v v + o « 3-2
Fast AccessOperation & & v v v s ¢ & « o v o o « =« 32
MAINMEMORYt e e e e e e e e e e e e e e e 3-2
MEMORY EXPANSIONUNIT ¢ v v v v v v v e v 3-2
SHAREDMEMORY SYSTEM « & v & v v v v e e e 3-3
General Description. & . ¢« v vt e e e e e e e e 3-3
Programming Considerations 33
SemaphoreOperation ¢ i 4t e 33
ERROR CORRECTINGANDREPORTING« .« . .. 33
ErrorCorrection & i i e e e e e e e e e e e 33
ErrorReporting 0 e e e e e e e e 33
Parity Errorsand Interrupts+ . ¢« 4 . 4 4 e e e e e e 34
Parity Error Address Register « & v & & v v & o 4 o v . . 34
CACHEMEMORY i i i e e e e e e e e e e e e e 34
Operational Description ¢ v ¢ v e v .. 34
Algorithm for FillingCache 34

Programming Considerations e e e e 35

CONTENTS (CONT'D.)

Section
IV INPUT/OUTPUT CHANNELS

GENERAL DESCRIPTION
BASIC 1/0 CONCEPTS
Addressing . . .
Disconnect/Connect Sequences
Block 1/0 Channel Priority .
Synchronization (Handshake) Condltlon
Output Transfer Synchronization . . .
Input Transfer Synchronization .
PI1OC Synchronization .
XBC Channel Synchronization
IBC Channel Synchronization. . .
UBC Channel Synchronization .
Timing
Block Transfer Memory Access
Block Transfer Parameters
UBC Channel Parameter Words . .
XBC Channel Parameter Words . .
IBC Channel Parameter Words
DMACP Channel Parameter Words .
INPUT/OUTPUT INSTRUCTIONS . .
I/OCommands
I/OStatusWord
Programmed Data Transfers
Input Data Word . e e e .
OutputDataWord
Address Transfers
Output Address Word . .

Input AddressWord

Input Parameter Word .
INTERRUPT CONTROL . . .
1/0 CHANNEL SWITCH/PATCH CONTROLS

I/0 CHANNEL OPERATIONAL SUMMARIES

Single-Word Instruction Execution .
Block-Transfer Operations . .

UBC Channel Block Transfers. .

XBC Channel Block Transfers.

IBC Channel Block Transfers . . .

DMACP Channel Block Transfers
Program Lists . . .

IBC Channel Apphcatlons

UBC Channel Applications.

XBC Channel Applications.

0830006-000
Original 5/78

Page

. 41
. 41
. 41

.. 43
. 43
.. 43
. 43

. 44
. 44

.. a4
.. 45
. 45

. 45

47

. 47
. 47

. . 48
. . 48
. 49
. 49
. . 49
.. 4N
. 411
. 41N
.. 412
. 412
.. 412
. 413
. 413
. 413
. . 413
. . 418
. . 418
. 418
. . 419
.. 419
. . 419
. 4-20
.41

CONTENTS (CONT'D.)

0830006-000
Original 5/78

Section Page
V PRIORITY INTERRUPT SYSTEM
GENERAL DESCRIPTION. © v v i v v v v v e w 5-1
INTERRUPTORGANIZATION. e e 5-1
Priority Conventions e e e e e e e e e e e e e e e 5-1
Executive Traps (Group0) « v v « . .. 5-1
External Interrupts (Groups1and2) 5-1
Dedicated Memory Locations« - v - . . b1
OPERATIONANDCONTROL & . v v v v v e v e e e 5-1
BasicOperation, . . . « v v & 4 ¢ v v e e e e e e e e 5-1
Executive Traps (Group0) v v v v o .. 5-1
External Interrupts (Groups1and2) 5-3
INTERRUPTPROCESSING « « v v v v v v oo 55
Operational State Zero InterruptProcessing 5-5
Operational States One and Three InterruptProcessing 5-6
VI SCIENTIFIC ARITHMETIC UNIT
GENERALDESCRIPTION. & i i e v e v v e e e s 6-1
FLOATING-POINTDATAFORMAT. 61
SAUREGISTERS & . i e et e et e e e e e e 6-1
OPERATIONANDCONTROL e v vt i v e e e 6-1
DataTransfers « & « ¢ v v v v e e e e e e e 6-1
SAU Instructions. e e e e e e e e e e e e e e e 6-1
CONCURRENTOPERATION « v v v v v v v v . « « 6-1
PREFETCHEDOPERATION 6-3
SAUINTERRUPT i o i e i e e et e e e e e e e 64
VIl INSTRUCTION SET
INTRODUCTION v v v o .. e e e e e e e 7-1
INSTRUCTION TYPES AND FORMATS Y A
Introduction o e e e e e e e e e . 741
Standard Instruction Format S A
Extended InstructionFormat 741
INSTRUCTION FORMULA v v v v v .. 7-3
INSTRUCTIONDESCRIPTION & v v v v v v v e v 74
ArithmeticlInstructions 74
Branch instructions 00 e e . 7-16
Comparelnstructions « v .. . 125
Logical Instructions00 e e e 7-28
Shiftinstructions.00 0. 7-30
Transfer Instructions v 0 e 7-33
Byte Processing Instructions. 743
Input/Output Instructions v 44 u 0. 748
Bit Processor Instructions 7-53

Section
Vil

Figure
1-1.
2-1.

2-3.
24,
2-5.
2-6.

3-1.

4-1.
42,
4-3.
4-4.
4-5.
4-6.
47.
4-8.
4.9,

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.

6-1.
6-2.
6-3.

7-1.
7-2.

CONTENTS (CONT’D.)

INSTRUCTION SET (CONT'D.)

Priority Interrupt Control Instructions
Miscellaneous Instructions . .
Scientific Arithmetic Unit lnstructlons

APPENDIX A — INSTRUCTION EXECUTION TIMES . .

APPENDIX B — INSTRUCTION INDEX

ILLUSTRATIONS

Major Functional Units

Data Word Formats . . .

Memory Referencing Sequence Compatlblllty Mode .

Examples of Compatibility Mode Indexing . e e e .

Memory Referencing Sequence, Address Extension Mode .. e e e
Address Translation, VM User Mode . . . e e e e e e e e e e
Address Translation Example, VM User Mode

Cache Memory Operation

Computer 1/0 Structure Block Diagram . .

UBC and IBC Parameter Word Formats .

DMACP Parameter Word Formats e e e e e e e
OCW Instruction Format. e e e e
IDW Instruction; Data Character Formatting . .

UBC Block Transfer Sequence; Simplified Flow Dlagram

XBC Block Transfer Sequence; Simplified Flow Diagram.

IBC Block Transfer Sequence; Simplified Flow Diagram .

Functional Block Diagram, Priority Interrupt System
External Interrupt Control . .

Interrupt Subroutine Entry, Operatlonal State Zero
Interrupt Subroutine Exit, Operational State Zero . .
Interrupt Subroutine Entry, Operational States One & Three
Interrupt Subroutine Exit, Operational States One & Three

Floating-Point Data Formats
SAU Y (Condition) Register . . .
CPU-SAU Transfer Paths; Simplified Block Dlagram

Typical Instruction Word Formats . . . e e e e e e e e s
BSL, BSX, and BRL Functional Summary ..

0830006-000
Original 5/78

Page

7-59
7-67
7-70
A-1

B-2

Page

. 22

. 29

.21
2-12
2-14

. 215

. 42
. 46

. 49
. 410
. . 414
. 415
.. S 2
DMACP Channel Block Transfer Sequenee; Simplified Block Dlagram. e e e e e

4-17

5-2
54

. 56

5-7
5-7
5-8

. 62
. 62
. 63

7-17

Tables

A-1.
A-2.
A-3.
A4.

TABLES

VPR Status Bits Definitions and Functions . .

Peripheral Unit Interrupt Control .
1/0 Channels Manual Control Capabilities

Summary of Extended Instruction Derived From Standard. Instructions

Maximum Values for A e e e e

Basic Non-SAU Instruction Time Formulas . . e e
Basic Prefetchable SAU Instruction Execution Times
Basic Non-Prefetchable SAU Instruction Execution Times .

0830006-000
Original 5/78

Page

25

. 412
. 413

73

. A2

A-3

. A8

0830006-000
Original 5/78

SECTION |
INTRODUCTION

SCOPE OF MANUAL

This manual contains reference material for the Series 500
Computer Systems designed and manufactured by Harris
Corporation, Computer Systems Division. Included are
descriptions of the overall computer organization, central
processing unit (CPU), memory configurations, priority
interrupt system, input/output (1/0) channels, and
instruction set. Various hardware ‘features and options are
also described; application and programming examples are
provided where appropriate.

The material in this manual is oriented toward the
user/programmer with a knowledge of computer
fundamentals and terminology.

SERIES 500 SYSTEMS

This family is comprised of high-performance,
disc-oriented, virtual memory computer systems for
performing concurrent time-sharing, batch, remote job
entry and real-time processing. The Series 500 Computer
Systems are building-block systems; each may be expanded
to support a variety of applications and performance levels.
Upgrades between systems are also available. Series 500
systems provide cost-effective solutions for distributed data
processing, transaction oriented processing, and
communications applications. Data Base Management and
Inquiry software is available for fast, efficient file
maintenance and information retrieval. These multi-use
systems are ideal for scientific, commerical and real-time
applications since they provide true multi-programming and
multi-lingual capabilities.

BASIC COMPUTER ORGANIZATION

Basic Operation

Figure 1-1 illustrates the functional relationship between
major units of a typical system. The major functional units
include the central processing unit (CPU), main memory,
cache memory, shared memory, priority interrupt system,
input/output (1/0) channels, programmer’s control panel,
and the Scientific Arithmetic Unit (SAU).

The computer has a 24-bit fixed word length, a multi-access
bus structure, and an integral memory system. Operations

are performed on, and from, 24-bit data and instruction
words. In addition, the computer is capable of selective
byte manipulation and performs Boolean functions on
single, selected bits. Two's complement arithmetic is
performed on parallel, binary, fixed-point operands.
Concurrent floating-point arithmetic is performed by the
SAU.

Data or instruction words may be retrieved from or stored
in memory, retained in one of the CPU registers, or received
from and transmitted to peripheral devices via the 1/0
channels. Prior to execution, instructions must be loaded
into, and subsequently retrieved from, physical memory.
Main memory is accessed on a double word boundary. This
arrangement permits an instruction prefetch which reduces
the effective access time of the memory system. In
addition, the CPU employs an asynchronous cycle that
automatically adjusts to the timing of the addressed
memory module. If, for example, memory contention
occurs,' the CPU waits at a predetermined point until
memory becomes available.

Memory may be accessed at the word, double-word, byte,
and bit levels by the standard instruction set. Memory is
divided into thirty two, 32K word sections (map O through
map 31). If the system is in the Compatibility Mode, up to

32K words per section may be directly addressed and up to

256K words can be accessed by indirect and indexed
address references. Executable code is restricted to 65,536
(64K) words at any given time. When in the Address
Extension Mode, up to one megaword of memory may be
accessed directly, and executable code may be located
anywhere in memory.

When virtual memory is enabled, two addressing modes are
employed, User and Monitor. Addresses generated in the
User Mode {(called logical addresses) are translated into
physical memory addresses by the virtual memory
hardware. The logical address is translated to the physical
address by selecting the appropriate 1024 (1K) word

_ physical “page” and the offset within that page. The

division of main memory into physical pages allows a
program to be located in non-contiguous areas of memory,
and to be transferred (in page increments) between memory
and an external mass storage device under system control.
When the virtual memory hardware detects a reference to a
page which is not currently resident in main memory, a
page fault occurs. This supports a demand-page technique

11

0830006-00C
Origina! 5/78

MAIN CACHE [SHARED AT
MEMORY MEMORY MEMORY
UNIT
£ N N
ADDRESS BUS
DATA BUS
. ADDRESS >|
g{'ﬁ%ﬁ <r_—D_’j£—_> PERIPHERAL
CHANNELS DEVICES
<ILSTATUS
. <: INTERRUPTS
L STATUS
cenTRAL | ¥
PROCESSING
UNIT

< DATA >

PROGRAMMER'S
CONTROL
PANEL

1-2

BD1750-678

which allows portions of a program to be absent from
memory while the program is running. The paging circuits
are disabled in the Monitor Mode, thus addresses generated
in the Monitor Mode are used directly as physical main
memory addresses.

Central Processing Unit (CPU)

Included in the CPU are several general and special-purpose
registers, an arithmetic section, timing and control! logic,
memory interface circuits, and /O channel interface
circuits. Special paging registers and control logic are
provided for virtual memory operation. When the system
includes an SAU, the CPU includes special circuits for
CPU-SAU interface and communications.

Five general-purpose registers are included in a basic CPU.
These registers are employed in a variety of logical,
arithmetic, and mainipulative operations such as
register-to-memory, memory-to-register,‘ and
register-to-register instructions. Three of the
general-purpose. registers can be used for indexing in
memory addressing functions. One register serves as the 1/O
communication register during single-word input/output
operations. A double-word register is formed by combining
two 24-bit registers, and a byte register is created by using
the eight least-significant bits of one general-purpose
register. With the Interval Timer included in the CPU, the
Timer (T) Register becomes a sixth general-purpose register
in the Monitor Mode of operation. In the User Mode, the T
Register can not be loaded but can be read.

Among the special-purpose registers are those associated
with integral CPU functions such as addressing, instruction
decoding, and temporary storage during data manipulation.
Additional special-purpose registers are those supplied with
the bit (Boolean) processor, Interval Timer (T Register,
timing applications), and the Program Halt and Address
Trap.

The arithmetic section consists primarily of a 24-bit
arithmetic logic unit (ALU) and several buses to permit
data manipulation between the various registers and the
ALU. Arithmetic functions performed include addition,
subtraction, multiplication, division, and square root
computation. In addition, the ALU output is employed in
computing addresses during memory reference operations.

Instruction execution sequences are established and
directed by the timing and control logic associated with the
CPU. This logic includes a crystal-controlled clock
generator that provides precise timing for all instruction
functions. Instruction words are retrieved from memory

0830006-000
Original 5/78

and retained in an instruction register for the duration ot
the operation. The control logic decodes these instruction
words and provides the internal commands necessary for
execution. In the User Mode of operation, the paging
control logic operates in conjunction with the basic CPU
timing to implement address translation and demand paging
techniques.

CPU memory interface circuits consist of address and
data-handling buses and registers, and parity
generation/checking or error checking and correction code
logic. Memory interface circuits include a 48-bit
data register that retains both the read and write
data, a 20-bit address register to define the
physical memory location to be accessed, data
multiplexing logic to control read and write data handling,
and address multiplexing and control logic for selecting the
proper memory segment and a location within that
segment. Data to be written (stored) in memory is applied
via the system data bus. Address inputs are applied to the
memory interface via the system address bus. The address
source may be the CPU Memory Address Register, Program
Address Register (Program Counter), the ALU or Operand
Register in the arithmetic section, one of the block transfer
channels (DMACP, UBC, XBC, IBC), or, in the User Mode
of operation, the paging logic addressing circuits.

Communications between the CPU and the 1/0 channels are
conducted via the channel interface logic in the CPU. This
logic makes use of the system buses and one of the
general-purpose registers in order to implement data and
address flow between the CPU and 1/0 channels. Although
an 1/O channel conducts channel-unit communications
independently and asynchronously, input/output
operations such as channel-unit selection and activation,
function commands, and status testing are initiated under
program control.

When the Scientific Arithmetic Unit (SAU) is employed,
CPU-SAU communications are conducted via interface
circuits both in the CPU and SAU. Single or
double-precision transfers may be performed; with
double-precision transfers requiring two sequences. When
the operand is aligned on an even word boundary address,
double-word (48 bits) operand memory-SAU transfers are
performed on read and write operations. Certain SAU
instructions are prefetchable, allowing prefetching of
instructions and operands when the SAU is busy. All SAU
instructions and data transfers are initiated on CPU timing.
All floating-point arithmetic operations are performed on
SAU timing.

Memory Units

The memory system consists of main memory, memory
expansion, cache memory, and shared memory units. 1/0
block channels and the CPU communicate directly with all
memory units. Each memory module contains the address
decode logic necessary to determine when a particular
module is selected. The CPU provides the required
hand-shaking signals with the memory module to ensure
proper data transfer.

Storage of information, both instruction and data words, is
the function of main memory. The basic storage unit is a
64K word (192K byte} MOS memory module which
features single bit error correction. A system can be
configured with up to sixteen, 64K word (192K byte)
memory modules when the memory expansion unit is
attached.

Cache memory provides fast access to data stored in the
memory system. The cache stores up to 1024 memory
addresses and the data contained therein. Data storage in
cache is structured as two, 512 double-word sections. One
section stores oniy instructions, and the other section siores
only operands. When the CPU accesses the memory system,
the address word is presented to the main memory and the
cache. If the requested address and data is present in cache,
the data is placed on the bus. If the cache does not contain
the requested address and data, the data is provided by
main memory. Cache memory effectiveness is primarily
software dependent.

Shared memory can be configured with either
. semiconductor (MOS) or core memory modules. A single
CPU can interface with up to four shared memory systems
through a dedicated port in each shared memory system.
Maximum memory avaiiabie to a singie CPU is iM word
(3M bytes) which includes the combination of main
memory and shared memory.

Refer to Section |1l for additional details concerning the
memory system.

input/Output Operation

Input/Output (1/0) operations consist of data, address,
command, or status transfers between selected peripheral
devices and the CPU or memory. All such operations are
initiated under program control and are conducted,
asynchronously, by an 1/0 channel. Various types of 1/0
channel boards may be installed in a system. All channels in
the system can be active simultaneously, and each channel
may communicate with a maximum of 16 devices (limited
by transfer rates).

14

An 1/0O operation is initiated by selecting and activating a
channel, and one of its assigned peripheral devices, through
the execution of a computer input/output instruction. (The
instruction set includes seven input/output instruction.) A
specific 1/O operation may involve preparing a peripheral
device for a subsequent communication, determining the
operational status of a device, or initiating a data transfer.
Once activated, the i/O channei provides compiete
functional control over the operation.

Data may be transferred on a single word basis {i.e., one
data word per instruction) or automatically, in blocks of n
words per operation. Block data transfers are performed by
the Direct Memory Access Communication Processor
(DMACP), Universal Block Channel (UBC), External Block
Channel (XBC), or Integral Block Channel (IBC). Each
available type of 1/O channel permits data transfers to
(input) and from (output) the computer.

1/0 operations may also be conducted on an interrupt basis
through the use of interrupt fogic in the channel(s). The
channel interrupt system can be placed under program
disabled by an

control and celectively enabled o
input/output instruction. Peripheral device functions may
be connected directly to the computer priority interrupt

system, bypassing the channel interrupt logic.

Priority Interrupt System

The interrupt system is a multi-level vectored structure that
allows additional program control of input/output devices
and internal CPU operations, and immediate recognition of
special external conditions on the basis of priority. Receipt
and recognition of an interrupt trigger permits normal
program flow to be diverted to a subroutine that services
the interrupt and returns the program to its normal

sequence at the point where the interruption occurred.

- Programmer’s Control Panel

" The Programmer’s Control Panel contains the facilities for

manually starting and haiting operations, entering data into
memory and the various registers, and selecting registers for
display and/or entry. Indicators on the panel provide
display for the contents of registers and memory, system
status, and other important functions. Complete operating
instructions for the control panel are contained in
publication number 0840004.

STANDARD AND OPTIONAL FEATURES

Series 500 systems contain various hardware features. Many
options are also available to enhance system performance.
A brief description of standard features and options are
provided in the following paragraphs. Unless otherwise
indicated, additional details pertaining to system features
and options are contained in Section {I.

A listing of the standard hardware that is provided with a
typical system is as follows:

® Central Processor with hardware
multiply/divide/square root, power supplies, and
CPU cabinet

® Memory Expandability

64K word (192K byte) MOS Memory increment
with error correction

Up to 576K words (1.728 bytes) directly

Up to 640K words (1.92M bytes) with 1/0
Expansion Unit

Up to 1M word (3M bytes) with Memory
Expansion Unit

e 2K word (6K byte) Cache Memory

® 4096K words (12.288M bytes) of Virtual Memory
address space

® Programmer’s Control Panel
® 16 Priority Interrupt Levels
® 120 Hertz Clock

® Power Fail Shutdown and Restart (MOS data save
option required)

® Firmware Bootstraps

® Bit Processor

® Stall Alarm

L] Exécutive Traps

® |nterval Timer

® Program Halt and Address Trap

® Programmed Input Output Channel (P1OC)

® Universal Block Channel (UBC)

A summary of optional hardware items that could be added
to the foregoing system follows:

0830006-000
Original 5/78

® Scientific Arithmetic Unit

® 100 kHz Real Time Clock

® Programmed Input Qutput Chanﬁels (P10Cs)
® Universal Block Channels (UBCs)

® External Block Channels (XBCs)

® |ntegral Block Channels (1BCs)

® Direct Memory Access Communications Processor
(DMACP) Channels

® 32 Priority Interrupt Levels
® MOS Data Save Units

® Memory Expansion Unit

® Shared Memory

® |/O Expansion Unit

® Computer Link

® Multi-CPU Channel Adapter

Scientific Arithmetic Unit (SAU)

The SAU provides concurrent floating-point arithmetic
capability independent from the CPU. A special repertoire
of instructions is provided for CPU-SAU transfers and for
performing double-precision, floating-point computations.

The SAU contains its own registers for manipulating
double-precision quantities and for reporting arithmetic
status (condition) after the operation is completed. Data
and condition information are displayed on the
Programmer’s Control Panel. An executive trap is provided
with the SAU for detection of overflow/underflow
conditions. Refer to Section VI for a more detailed
description of the SAU.

Priority Interrupts

Three priority interrupt groups, 0, 1, and 2, are available.
Group 0 is reserved for internal CPU functions and is
comprised of eight executive trap interrupt levels. All
executive trap levels are associated with specific functions.

Groups 1 and 2 are reserved for external interrupts; each
group may have up to 24 levels. A basic system is supplied
with 16 external interrupt levels. Thirty-two additional
external interrupt levels are available.

Complete details pertaining to the priority interrupt system
are contained in Section V.

0830005-000
Original 5/78

120 Hertz Clock

Continuously generated interrupt triggers are placed under
software control by enabling or disabling the associated
external interrupt level. By this method, the 120 Hertz
Clock may be used for various timing operations. The clock
continuously transmits 120 interrupt trigger pulses per
second for 60 Hertz power, and 100 interrupt trigger pulses
per second for 50 Hertz power.

Interval Timer

The programmable Interval Timer functions as an internal
CPU timer that provides a method for regulating operating
program segments and recording other intervals. Depending
on the instruction used for its activation, the Interval Timer
clocks either CPU time or clock (real) time. In addition to
its timing applications, the Interval Timer provides the user
with an additional 24-bit general purpose register that may
be accessed through the standard instruction set when in
the Monitor Mode of operation. The T Register may not be
modified when in the User Mode.

100 kHz Real Time Clock

This option provides the programmer with general purpose
clock pulses that are independent of the mainframe clock
pulses. With an accuracy of .056%, the real time clock pulses
are available whether the CPU is in standby or not. The
timing pulses can be used to measure user’s program
running time, or to generate periodic interrupts.
Programming is accomplished through normal input/cutput
commands. One or two real time clocks may be installed on
the Programmed Input Output Channel (PIOC) boards.

Power Fail Shutdown and Restart

This feature provides a means for protecting operating
programs in the event of a power failure and for restarting
the CPU when power levels return to normal. One executive
trap interrupt level is supplied. The interrupt is generated
during both power down and power up conditions.

Firmware Bootstraps

Automatic program loading from a selected peripheral
device is provided by the Firmware Bootstrap feature.
Through the use of control panel switches, the appropriate
bootstrap program is loaded into memory. Once loaded, the
bootstrap program will automatically load a minimum of
one record from the appropriate device. Programs stored in
a PROM provide for loading from disc, paper tape,
magnetic tape, punched cards, magnetic tape cassettes
(paper tape emulation), or floppy disc.

16

Bit Processor

Capability is provided by the Bit Processor for selectively
changing, testing, or performing logical operations on a
single bit in memory.

Stall Alarm

Certain operations in the instruction set and other internal
conditions prohibit the recognition of external interrupts.
A serias of these instructions or conditions could, therefore,
produce a situation where external interrupts are, in effect,
“locked out”. The Stall Alarm monitors all instructions and
conditions in this interrupt-prohibiting category. If a series
of these instructions or conditions have not been completed
before the elapse of a predetermined time period, they are
terminated and an executive trap interrupt is generated.
The subsequent interrupt processing routine may then
examine the situation and take any necessary corrective
action. The Stali Ailarm inciudes the appropriate controi
logic and is furnished with the associated executive trap
interrupt.

Program Halt and Address Trap

This feature provides for a program halt or an executive
trap interrupt to occur at a specified address and under
certain conditions. The address trap is used as an on-ine
debugging aid for use in applications such as breakpoint
tracing. An address may be defined under program control
so that when the address is referenced, an interrupt will be
generated at the assigned executive level. The address trap
may be enabled or disabled under program control. The
Query Register provided with the Program Halt and
Address Trap may not be modified when the virtual
memory is in the User Mode of operation.

Input/Output Channels

Various types of 1/Q channels are available with a system.
Each channel is designed for a particular input/output data
transfer application. A brief description of each type
follows. A more detailed discussion of the 1/0 channels is
provided in Section 1V.

Programmed Input Output Channel (PIOC)

This is an 1/O channe!l capable of implementing a single
word, eight-bit, parallel data transfer between the CPU and
a suitable peripheral device. This channel has provisions for
installing up to four unit interface controllers on the 1/0
circuit board. In addition, the PIOC can drive up to 12
additional remote device controllers. This board also
contains a programmable Interrupt Generator which may
be used in multi-processor installations. If required, one or
two Real Time Clocks may be installed on the board.

Universal Block Channel (UBC)

A UBC implements and controls automatic data transfers
between memory and a suitable peripheral device. The UBC
contains two 1/0O ports with data transferred through each
port in a 24-bit parallel word format. Each port provides
either command chained block transfers or programmed
1/0O transfers. Chained block transfer capability permits the
transfer direction to be reversed and a subsequent data
block to be automatically transferred, without program
intervention. Addressing and block size (number of words
transferred) are established under program control. Once
initiated, all UBC operations proceed automatically. When
operating in the chained block mode, two word (48 bits)
" transfers, to and from memory, take place. Each port is also
capable of programmed 1/0 operations in which single word
(24 bits) transfers take place between the CPU and
peripheral device. The UBC can drive up to 16 external
device controllers (limited by transfer rates).

Direct Memory Access Communications Processor
(DMACP) .

The DMACP is a multiport 1/0 channel dedicated to serial
data communications. Direct Memory access is provided for
up to eight communication devices. These devices can be
either asynchronous or synchronous. Up to eight
asynchronous interfaces can be used, or one synchronous
and up to four asynchronous interfaces can be
accommodated. The one synchronous interface takes the
place of four asynchronous interfaces. Each interface is
termed a port. Standard interfaces available are RS-232C,
20 ma current loop, and Harris differential.

Single word or block data transfers of 24-bits are performed
between the DMACP and CPU. Single word transfers are
used for status check, initialization and control of the
DMACP. Block mode transfers are used for data transfers
between main memory and the communication devices
attached to the ports. These transfers are under control of
the micro-processor installed on the DMACP board and
require no intervention by the CPU. Transfers between the
DMACP and main memory are in the form of 24-bit words,
while transfers between the DMACP and communication
devices are in the form of 8-bit bytes.

External Block Channel (XBC)

An XBC is similar in operation to one port of a UBC except
that address control and block length are provided by an
external device, and that no command chaining capability is
provided. One XBC board can support up to eight external
device controllers.

0830006-000
Original 5/78

Integral Block Channel (IBC)

An IBC performs automatic data transfers in a manner
similar to one port of a UBC. The IBC contains provisions

-for the installation of up to two interface controllers
" directly on the channel board. The IBC transfers data in a

multiplex mode between the device controllers and
memory. Only data chaining may be performed by the IBC;
no single word transfer or command chaining capability is
provided for the IBC.

MOS Data Save

The MOS Data Save option provides voltages necessary for
the refresh circuits of the MOS Memory to maintain data
integrity during ac power failures. Voltages are provided by
a battery back-up system. Battery voltages are maintained
by a trickle charge during periods of normal ac line voltage
levels.

This option consists of a Master Module and up to seven
Expansion Modules. Data save protection for two MOS
memory board is provided by the Master Module. As
memory is expanded, the proper number of Expansion
Modules are added to provide the required data save
voltages.

1/0 Expansion Unit

Available as an option, the expansion unit increases the /O
capacity of the system. All necessary hardware and power
supplies are provided with the option.

Computer Link

This option permits block data transfers between
interconnected computers in a dual computer installation.
The computer link is particularly useful in real-time control
applications involving dual computers.

Multi-CPU Channel Adapter

Used in a multiple computer configuration, the multi-CPU
channel adapter allows peripheral devices to be shared by
two or more computers.

0830006-000
Originail 5/78

MAINTENANCE AIDS

Fast, on-line maintenance diagnosis reporting is provided
with each Series 500 system. These maintenance features
are implemented with hardware and special diagnostic
instructions, Main memory addresses associated with a
parity error are reported, as are parity errors occurring in
microcode. Memory error correction codes may also be
checked to determine abnormal operations. Additional
memory diagnostic support functions include the
capabilities of running memory diagnostics, and inhibiting

or enabling the parity error retry circuits.

Hung machine conditions may be detected with the aid of
the limited clear function. Activated with a switch on the
control panel, the limited clear operation resets CPU
control logic but no data or programmable registers are
cleared. Other maintenance diagnostic aids include the
capability of storing and displaying the last translated
instruction and operand page addresses, and storing and
displaying the addresses of the last 15 branches taken.

PERIPHERAL EQUIPMENT

The Harris Series 500 systems can be expanded and
enhanced by selection of various peripheral equipment
offered with each system, including:

Moving Head Discs (40, 80, 150 and 300M Bytes)

Cartridge Discs (10.8M Bytes)

Floppy Discs (310K Bytes)

Magnetic Tapes (45, 75, 100, 150 and 200 ips)
Card Readers (300, 600 and 1000 cpm)

Card Reader/Punch (500/100 cpm)

Line Printers (300, 600 and 900 Ipm)

Electrostatic printer/plotter (300, 500, 1000 and
1200 !pm)

Paper Tape Devices

Console Devices, Local and Remote Terminals

Supplementary equipment to meet most custom
requirements

SOFTWARE

VULCAN Operating System

The Virtual Memory Manager (VULCAN) is a
priority-structured, demand paged, multi-programming

1-8

Fixed Head Discs (.5, .8, 1.1, 1.7 and 2.1M Bytes)

operating system. VULCAN concurrently supports
multi-stream batch processing, interactive terminal
time-sharing, transaction-oriented processing, multiple
remote job entry and real-time operations. Under VULCAN,
the virtual memory hardware/software system is
transparent to the user. Up to 1M word (3M bytes) per user
is available, all of which may be executable code.

Support Software

The field-proven VULCAN operating system supports seven
high level programming languages, utility programs and a
programmable macro job control command language. Also
available as options are the Harris TOTAL data base
management system, the TOTAL-IQ interactive retrieval
language, four remote job entry support packages and two
remote batch terminal host packages.

Languages
e FORTRAN IV Compiler with extensions
® [nteractive BASIC V Language Processor
& 1974 ANSI COBROL Compiler
® RPG Il Compiler
® SNOBOL 4 Interpreter
® FORGO (Diagnostic Load-and-Go FORTRAN

Compiler)
APL Interpeter
® Harris MACRO Assembler

Utility Programs
® Sort/Merge
® indexed Sequentiai Fiie Handier
® System Accounting
® Cross Reference
® VBUG Symbolic Debugger

Remote Job Entry (RJE) Support Packages

IRR LIACD Hl RA/I
SLPIVE § RS VSE B R AVE) b

IBM 2780
CDC 200 UT
UNIVAC 1004

Remote Batch Terminal (RBT) Host Packages
® |BM HASP Il M/L
® IBM 2780

Data Base Management System (DBMS)

® TOTAL Basic

® TOTAL Central

® TOTAL-IQ

0830006-000
Original 5/78

Harris TOTAL — the most widely used of all the Data Base

Management Systems is known for its efficient implemen-
tation, low memory requirements and ease of use. TOTAL
DBMS supports network and hierarchal data structures.

SUMMARY OF CHARACTERISTICS

The major operating characteristics and pertinent technical specifications of the Series 500 Computer systems are summarized

below,

Computer Organization

CPU .Microcycle Time
CPU Word Length

Arithmetic .

Microprogrammed, general-purpose digital computer, single address,
multiaccess central system bus structure, and buffered 1/0 channels.

300 nanoseconds

24 bits

Parallel, binary, two’'s complement number representation. Hardware multiply/
divide/square root. Hardware double-precision, floating-point processor (SAU).

Instruction Execution Time (microseconds). Assumes system is in User Mode of operation. Values are for cache and CAM
hits. Minimum floating-point times given.

instruction
Arithmetic

Add/Subtract

Multiply

Divide

Square Root
Algebraic Compare
Logical Compare
Input/Output
Logical Shift n Places

Transfers

Register to Memory
Register Reference
0.36 0.72
6.06 6.12
12.66 12.72
66.0 NA
0.96 0.72
0.36 NA
0.36 NA
/ n
0.96+ 0.3 k_{) NA
0.36 0.72

Double-Precision
Floating Point

1.0
4.4
8.7
7.8
1.0
NA
NA
NA
0.66

1-9

0830006-000
Original 5/78

Memory System

Main Memory

Type .
Minimum Size .

Maximum Size (directly)
{with 1/0 Expansion Unit},

(with Memory Expansion Unit) .

increment . e e .
Word Length (double word)
Parity

Power Fail

Cache Memory'

Type .

Size . e
Word Length (double word)
Storage Configuration .

Shared Memory

Type.

Minimum Size (MOS)
(Core)

Maximum Size (MOS)
(Core)

Increment (MOS)
{Core) .

Word Length (double word)

Parity (MOS) .
(Core)

Number of Ports {(maximum) .

Number of Shared Memories

interfaced per CPU (maximum) .

Port Access.

Compatibility Mode

Address Extension Mode .

N-Channel MOS
64K words (192K bytes)

576K words (1.728M bytes)
840K words {1.92M bytes)

1M word (3M bytes)

84K words (192K bvtes)

48 bits

One bit error correct per 24 bits

Battery back-up

Bipolar RAM

2K words (6K bytes)

48 bits

Divided into two, 512 word sections. One section stores

only instructions, and the other section stores only
operands.

N-Channel MOS or Planer Core array; may be mixed.

64K words (192K bytes)
32K words (96K bytes)

1M word (3M bytes)
256K words (768K bytes)

64K words (192K bytes)
32K words (96K bytes)

48 bits

One bit error correct
Data parity check

6

4

Asynchronous, ring priority

Immediate

Direct to 32K words

Direct to 64K words via long address instructions
Indirect to 266K words (data only)

Indexed to 64K words

Immediate

Direct to 1 Megaword
Indirect to 1 Megaword
Indexed to 1 Megaword

Input/Output Capability

Programmed Data Transfers

Automatic Data Transfer

Single Channel Maximum Transfer Rates (words/sec.)
UBC (1 port active) .
IBC

XBC (no mainframe contention) .
(with mainframe contention)

DMACP .
Input/Output Command Modes '
Normal . ‘

Multiplex

Offline .

Reset .

Priority Interrupt Structure

Internal .

External

Control .

Power Fail Protection
Electrical requirements

Voltage .
Frequency .

Current .

0830006-000
Original 5/78

Single word to/from CPU register, 8 or 24 bits
Direct memory access via UBC, IBC, XBC, and DMACP

Input Output
1,336,000 1,000,000
Device Dependent Device Dependent
800,000 666,666
476,000 428,000
2,700 2,700

Normal operation for each channel type

Channel released to master/slave peripheral units.
Not available on IBC, XBC, or DMACP

Channel drivers turned off allowing second CPU to -
share devices without need for peripheral switches.
Not available on IBC.

Resets Multiplex or Offline Mode. Channel restored
online and unit selected. Not available on I1BC.

Maximum of eight executive traps.
Multi-level vectored structure.

Sixteen priority interrupt leveis, standard. Optionaiiy
expandable to 48 priority interrupt levels. Multi-level
vectored structure.

External interrupts may be individually armed, disarmed,
enabled, inhibited or triggered under program control.

Power fail shutdown and restart, standard.

115/230 or 120/208 VAC, 4-wire
60 * 3 Hz (50 = 3 Hz, optional}
24 Amps

1-11

0830006-000
Original 5/78

Environmental Requirements

Temperature
Operating « 50°Fto 113’ F (10°C to 45 C), ambient air
Storage 32F1t0122°F(0°Cto 50" C), ambient air

Humidity
Operating+ « « « « « = . . 20%to80%, reiative {non-condensing}
Storage « « « « « o . . 20%to 90%, relative (non-condensing)
Altitude
Operating « « . « -1000to 6000 ft. (-305 to 1829 m) ‘
Storage « «.. « « -1000to 15,000 ft. (-305 to 4572 m)
Cooling. « « « Forcedair provided by internal fans on each chassis

0830006-000
Original 5/78

SECTION II
CENTRAL PROCESSING UNIT

GENERAL DESCRIPTION

The Central Processing Unit (CPU) is a single-address, 24-bit
parallel word-oriented, stored-program processor.
Operations performed by the CPU include data transfers,
arithmetic, computation, and logical manipulation. These
operations are defined by instructions stored in, and
retrieved from, physical memory. The specified operation is
performed on single-word, double-word, byte, or single bit
operands stored in memory or contained in one of the CPU
registers. Data word formats, as defined by both hardware
and software, are illustrated in Figure 2-1.

In addition to the general and special-purpose registers, the
CPU contains an arithmetic section that performs the actual
computation and logical manipulation of operands, and a
control section that retrieves and decodes instructions from
memory and directs the functional processes of the system.
The control section also includes the paging logic that
implements the memory address translation and
demand-paging operations. The CPU contains interface
elements for communications with the other computer
elements; e.g., memory, the 1/0 channels, the control panel,
and the Scientific Arithmetic Unit (SAU).

PRINCIPAL CPU REGISTERS

The following paragraphs provide a brief description of the
principal registers in a CPU. Registers associated with the
priority interrupt system and SAL are described elsewhere,
in the appropriate sections of this manual.

A and B Registers

Serving as the principal arithmetic accumulator, the 24-bit
A Register also functions as the input/output
communication register during programmed (single-word)
transfers between the CPU and peripheral devices. The A
Register has complete arithmetic and shift capability. Bits

E Register

Employed as an extension of the A Register for increased
arithmetic and shift capability, the 24-bit E Register also
functions as a general-purpose storage element during
various instructions. The E Register is accessible through
both the instruction set and the Programmer’s Control
Panel.

fe E REGISTER
1 [1 1 I 1 T
3t 1 (1 1 L.t t ¢ -+ 3 1+ 41 1 1 1 1 1
23 0
D Register

The D (Double) Register is a 47-bit pseudo register formed
by combining A and E to provide double-precision

~ arithmetic and shift capability. The A and E Registers form

the least- and most-significant halves, respectively, of the
47-bit double-precision quantity (bit 23 of A is not used).
Several instructions provide direct access to the D Register;
Programmer’s Control Panel entry, however, must be
accomplished by accessing the E and A Registers in the
proper format.

fe——————DOUBLE (D) REGISTER —————]
I 7/, i

T 7, T
'R W)
| N S T ¥ T N VO S | I I W Y A /S N T I |

46 a3 o]

1, J, and K Registers

Each of these is an independent, 24-bit general-purpose
register that can also be employed as an index register for
address modification. The |, J, and K Registers are directly
accessible through the instruction set and the Programmer’s
Control Panel.

7-0 of A form an 8-bit pseudo-register, termed the B (Byte) | REGISTER
Register. Both the A and B registers are accessible to the ! ! ! ! ! ! !
user by means of the instruction set and the Programmer’s
Control Panel J N U I N Y N G U N N S N N U S A N N N N |
. f£] 0
A REGISTER > J REGISTER >
T 1 T T T i T 1 1 T L T 1 T
L1t ¢+ 1t 1+ ¢+ ¢ 1+)1+ 1140 9 1 1 4 1 | S NN A S N NN TN D N S (N (N (N N NN N U A O N |
23 23 o]
BYTE(®) o
I"‘ REGISTER | K REGISTER >|
/ li I T 1 1 T T 1 1
%%
l//(A R S B B O S I (S NN (N (NN U A N N (N N Y S N A U N S |
23 8 7 4] 23 . o]

0830006-000

Original 5/78
INTEGER
S 222 L) L) 1 L ¥ 1}) 20
23 1) H 3 1 H 3 i Fl 1 £ 1 i 1 H i 1 g i 1 i lo
BYTE INTEGER
7 sl T o
23 7 [o]
DOUBLE INTEGER
WORD . WORD 2
5|2 { 2;3‘ 0[22 WL Pad
lfi o 23 o
e 47-BIT DATA WORD
SINGLE PRECISION - FLOATING POINT
WORD WORD 2
_ 1 | 1 _ ' L ¥
s 2II 1 I z(l 1 1 1] 1 2Iz3 V/A S 26! 1 1 [} 1 120
23 [4] 23 v [¢]
L——24-B|T MANTISSA ——» B-BIT EXPONENT |
DOUBLE PRECISION - FLOATING POINT
WORD WORD 2
e g{ 2 0 2‘2? {z-“ Sl2¢ 2°
23 i 1 1 H 1 1 1 1 i H o 23 i] a 1 Fi } £ i i i o
39~BIT MANTISSA ———————am RA-BIT EXPONENT |la—
COMPLEX NUMBER - FLOATING POINT
WORD WORD 2
5o ; i e %e 5|28 2| REAL PART
23 : — EE— [+ 23 ? ! 1]
-———24~VBIT MANTIS SA —————a —w= 8-BIT EXPONENT |e—ro
WORD WORD 4
“ i i A ' of IMAGINARY
S 2 1 1 1 {{l { 1 1 1 i 2L / S 2] 1 i 5 1 12 PART
23 0 23 7 o]
f———— 24 -BIT MANTISSA ———s»| — 8-BIT EXPONENT |e——rm

2-2

Figure Z-1, Data Word Formats

MI160-03237708B

Condition Register

A 4-bit element that stores the results of specific
operations, the Condition (C) Register is accessible by
means of several instructions. Display for the C Register is
provided by the Programmer’s Control Panel.

CONDITION (C) REGISTER

PZNO

0830006-000
Original 5/78

je————— INSTRUCTION REGISTER ————

I 1 1 L 1 1 1

Y I S T (N S S S Y (SO U TS U N W A [o
23 0o

SHIFT COUNTER
REGISTER

Positive (logic ONE) or Not Positive (logic ZEROM
Zero (logic ONE) or Not Zero (logic ZERQ)——
Negative (logic ONE) or Not Negative (logic ZERO)
Overflow (logic ONE) or No Overflow {logic ZERQO)——

Program Address Register

Also called the Program Counter, the 20-bit Program
Address (P) Register retains the memory address from
which the current instruction was fetched. In the
Compatibility Mode of operation, bits 19 through 16 are
not used and a maximum of 65,536 memory locations can
be accessed via the P Register. In the Address Extension
Mode, all 20 bits are used and a maximum of 1,048,576
locations can be accessed. In the Compatibility Mode, bit
15 is used as a map bit, and when in the Address Extension
Mode, bits 19 through 15 serve as map bits. The register can
be loaded with a Branch and Link instruction. Contents of
the register can be saved with a BSL instruction in the
Compatibility Mode, or a BSL or BSX instruction in the
Address Extension Mode. The contents of the P Register
can be modified through the execution of any of several
branch instructions. The Programmer’s Control Panel
provides direct entry and display for the P Register.

P REGISTER
(PROGRAM COUNTER)
1 I I

f— .

T 1 T

S NSRS SN (SO IS N (NN CINN (Y W NN ISR OO N T N O |
19 18 17 16 15 o

MAP
BITS

Instruction Register and Shift Counter Register

Once an instruction has been fetched from memory, it is
retained in the 24-bit Instruction Register during decoding
and execution. The Instruction Register is not
programmable. Bits 7-0 of the register serve as the Shift
Counter Register which is used for all shift, multiply,
divide, and square root instructions. Entry and display of
the register is provided through the Programmer’s Control
Panel.

8 7 0

VIRTUAL MEMORY DESCRIPTION

Introduction

Paging is a hardware addressing scheme that allows a
program’s memory area to be discontiguous. Program
segments may be absent from physical memory while other
portions of the program are being executed. This aspect of
the paging operation, termed ‘‘demand-paging’’, also allows
the computer to execute programs larger than the available
physical memory; hence, the term ‘‘virtual memory”’. The
following paragraphs. discuss the paging hardware and
describe the basic functions of the VM.

Virtual Memory Instruction Set

A virtual memory instruction set is provided for program
controi of paging functions. These instructions can oniy be
executed in the Monitor Mode. If an attempt is made to
execute any of these instructions while in the User Mode,
an instruction trap interrupt is generated. A detailed
description of each of these instructions is provided in
Section VII of this manual.

Principal Virtual Memory Registers

Various registers are supplied with the VM paging logic. A
brief description of each is provided in the following
paragraphs. Entry and display of all principal VM registers
is provided on the Programmer’s Control Panel.

Virtual Address Registers (VARs)

At the user’s option, a total of 1,024 or 4,096 of these
12-bit VARs are supplied. The ten ieast-significant bits
(9-0) retain the address of a physical memory page, while
bits 23 and 22 define the manner in which the specified
page may be accessed. The access modes and their
corresponding bit configurations are defined in the
paragraph describing demand paging operation. Specific
operations within the VM instruction set provide transfers
to and from the VARs.

VIRTUAL ADDRESS
REGISTER (VAR)
T 1 T

PAGE ADDRESS

1 | Y S W [N A T |
23 22 9 o]
_V-/

ACCESS MODE

0830006-000
Original 5/78

Virtual Base Register (VBR)

The 12-bit VBR retains the lower page limit of the user
program; i.e., the address of the first assigned VAR for the
currently-executing program. Special VM instructions
provide for loading the VBR and retrieving its contents.

VIRTUAL BASE REGISTER {VBR)
T T 1 |

LOWER PAGE LIMIT

Hi <

Virtual Limit Register (VLR)

Bits 9-0 of the 15-bit VLR define the upper page limit of a
user program, i.e., the number of VARs minus 1 which the
program may reference; bits 23 through 19 provide special
controls. Bits 23 and 22 control the operational state of the
CPU (see paragraph describing the CPU operational states).
When bit 21 is set, any of the privileged instructions may be
executed without generating an instruction trap interrupt
(see paragraph describing instruction trap). Virtual memory
instructions may only be executed in the Monitor Mode,
regardless of the state of bit 21. When an interrupt occurs
in the Address Extension Mode of operation, the virtual
memory mode of operation is saved in bit position 20. The
bit is set if the interrupt occurred in the User Mode, or reset
if the Monitor Mode was active. When bit 19 is set, the
Release Operand Mode (ROM) instruction is suppressed.

The VLR may be loaded, or its contents retrieved, by
specific VM instructions.

VIRTUAL LIMIT REGISTER (VLR)
H 1 1

UPPER PAGE LIMIT

L §) 1.1 L1] |]]
‘2’3.'_23’2'12|0|9 L] 0
PERATIONAL ' |
0 ONAL| L coM
STATE INHIBIT
CONTROL
PRIVILEGED
INSTRUCTION VM MODE
CONTROL ,

Virtual Usage Registers (VURSs)

A total of 1,024 of these one-bit registers are supplied; one
is associated with each physical page of memory. Each time
a given memory page is accessed by a CPU instruction, a
ONE is stored in the appropriate VUR. The VURs may be
selectively tested and cleared under program control.

Virtual Not-Modified Registers (VNRs)

A total of 1,024 of these one-bit registers are supplied; one
is associated with each physical page of memory. Each time

data is written (stored) in a given memory page by an
instruction reference, a ONE is stored in the appropriate
VNR. The VNRs may be selectively tested and cleared
under program control.

Virtual Usage Base Register (VUB)

This 10-bit register retains the address of one of the VURs
or VNRs (equivalent to the associated physical page). This
address is used as a pointer to access the appropriate VUR
or VNR during the Query Virtual Usage Register (QUR) or
Query Not-Modified Register (QNR) instruction. The VUB
can be loaded or its contents retrieved by special VM
instructions.

VIRTUAL USAGE
BASE REGISTER (VUB)

VUR OR'
_ VNR ADDRESS |

9 L]

Virtual Source Register (VSR)

This 12-bit register retains the address of one of the VARs
and is used as a pointer for retrieving data from the VARs
during a Transfer 2 Virtual Address Registers to Double
(TRD) instruction. Thé VSR can be loaded under program
control.

VIRTUAL SOURCE REGISTER (VSR)

VAR ADDRESS
S S N Y T S S

H o

Virtual Destination Register (VDR)

The 12-bit VDR retains the address of one of the VARs,
and is used as a pointer for storing data in the VARs during
Transfer A to 1 Virtual Address Register (TAR) and
Transfer Double to 2 Virtual Address Registers (TDR)
instructions. A special VM instruction provides
program-contro!led loading of the VDR.

VIRTUAL DESTINATION REGISTER (VDR)

T

U
N oArAnDe
VAN AVUNEOO
1 | S |

Virtuai Demand Page Register {VPR)

A special register (VPR) is used in the virtual memory
system to copy the logical page address (bits 13-4) of the
user program for each memory reference so that if a
particular cycle causes a fault, the operating system knows
which logical page is involved and the condition that caused
the fault. The address of the VAR that created a demand

page or limit register violation is the contents of the VBR
plus the contents of the VPR. Bits 3-0 identify the type of
violation. The contents of the VPR may be retrieved under
program control.

VIRTUAL DEMAND PAGE REGISTER (VPR)

T

T 1 T
LOGICAL PAGE
ADDRESS vioL
| I A | 40 1

13 4 3 [}

Demand Paging

Demand paging is the aspect of the VM hardware that
permits a portion of the user’s program to be absent from
physical memory (and located instead on a disc
mass-storage device) while the program is being executed.
When the address translation logic detects a reference to a
non-resident page, an executive trap interrupt (Group O,
Level 2) is triggered. Subsequent processing by the
operating system may then access the desired page and load
it into physical memory. If sufficient memory space is not
available, the operating system may interchange inactive
resident program segments with the incoming page(s) or
programs (i.e., transfer the inactive segments to the disc

0830006-000
Original 5/78

storage device). Once the correct program sequence is
loaded into physical memory, the user’s program may
continue its normal sequence.

A non-resident page is signified by ZEROs in bit positions
23 and 22 of the selected VAR. Each time a VAR is
accessed, these bits are examined by the paging control
logic to determine if a demand page is required. The last
logical page presented to virtual memory is stored in bits
13-4 of the Virtual Demand Page Register (VPR).

The interrupt generated at Group 0, Level 2 may reflect a
limit register or restrict mode violation as well as a demand
page. Bits 3-0 of the VPR define which condition generated
the interrupt; these are examined by the operating system
to determine what steps are to be taken in processing the
interrupt. Entry into an interrupt-processing routine
requires saving a return address; usually, the interrupt
address plus one. Certain situations require reexecution of
the instruction that created the demand page or violation,
consequently, the program counter must be adjusted to
fetch the instruction again. The operating system makes the
appropriate adjustment based on the code in VPR bits 3-0.
Table 2-1 defines the VPR status and control bits.

Table 2-1. VPR Status Bits Definitions and Functions

VPR Bits Type of Instruction or Sequence Program Counter
Condition 3210 Violation Causing Violation Adjustment
1 0001 Demand Page Operand address of EXM Do not change.
or branch instruction
2 o010 Demand Page Operand address of memory Decrement by one.
reference instruction; or a
USP or AOM instruction; or
an indirect chain.
3 0011 Demand Page Woibér'and ;xc?:;s_éf instruction [Decrement by two.
following a ROM instruction;
or an extended instruction.
4 0101 Mode 3* Same as Condition #1 Do not change.
5 0110 Mode 3* Same as Condition #2 Decrement by one.
6 0111 Mode 3* Same as Condition #3 Decrement by two.
7 1001 Mode 2* Same as Condition #1 Do not change.
8 1010 Mode 2* Same as Condition #2 Decrement by one.
9 1011 Mode 2* Same as Condition #2 Decrement by two.
10 1110 Limit Register Same as Condition #1 Do not change.
1 1110 Limit Register Same as Condition #2 Decrement by one.
12 1111 Limit Register Same as Condition #3 Decrement by two.

*Page Access Mode Violation

0830006-000
Original 5/78

The paging logic provides a program restrict system that
permits pages of memory to be protected from
unauthorized access. A user's program area is defined by
the contents of the Virtual Base Register (VBR) and Virtual
Limit Register (VLR). The VBR defines the lower page
limit in the user's program while the VLR defines the last
page, or upper limit. No user’s programs can reference any
memory location below the lower page limit because all
addresses are biased by the VBR'’s contents during the
address transiation operation. Any attempt to reference
memory above the upper limit will result in a limit register
violation and trigger the Group 0, Level 2 executive trap
interrupt.

Each page of memory can be further protected by placing it
in one of three access modes. Bits 23 and 22 of the VARs
contain the access mode bits for the associated page. Any
attempt to access the selected page in any manner other
than specified in the mode bits will result in triggering the
Group 0, Level 2 executive trap. The access mode bits are
defined below.

Mode Bit 23 Bit 22 Description

0 0 o Page Missing —page is not contained in physical
memory (demand page).

1 0 1 Unrestricted —instructions may be executed
within the page and data may be loaded from
or stored within the page.

2 1 0 Execute/Read —instructions may be executed

within the page or data loaded from the page;
data may not be stored within the page.

Read —data may be loaded from the page;
instructions may not be executed within the
page and data may not be stored within the
page.

The program restrict functions are enabied only when the
VM system is in the User Mode.

Instruction Trap

An instruction trap function is included as an integral part

i ho +» ahhn ~F
of the paging hardware, The trap prevents the execution of

certain, predetermined, instructions, When the trap is
enabled, any attempt to execute one of the designated
instructions will result in an executive trap interrupt at

Group 0, Levei 3

The instruction trap function is automatically . enabled
when the paging logic is placed in the User Mode. When
enabled, the trap will analyze bit 21 of the Virtual Limit
Register (VLR). When VLR bit 21 is set (ONE), the
following instructions may be executed without geﬁ‘erating

26

an instruction trap violation. If bit 21 is reset (ZERO) and
the instruction trap is enabled, a violation will occur when
an attempt is made to execute any of the following
instructions.

Halt (HLT)

Input Address Word (IAW)

Input Data Word (IDW)

Input Status Word (ISW)

Input Parameter Word (IPW)

QOutput Address Word (OAW}

Output Command Word (OCW)

Output Data Word (ODW)

Hold External Interrupts (HXI)

Release External Interrupts (RXI)
Unitarily Arm Group 1 Interrupts (UA1)
Unitarily Arm Group 2 Interrupts {(UA2)
Unitarily Disarm Group 1 interrupts (UD1)
Unitarily Disarm Group 2 Interrupts {UD2)
Unitarily Enable Group 1 Interrupts (UE1)
Unitarily Enable Group 2 Interrupts (UE2)
Unitarily Inhibit Group 1 Interrupts (Ul1)

Unitarily Inhibit Group 2 Interrupts (112}

Transfer Double to Group 1 (TD1)

Transfer Double to Group 2 (TD2)

Transfer Double to Group 1 (TD4)

Transfer Double to Group 2 (TD5)

Transfer Group 1 to Double {T1D)

Transfer Group 2 to Double (T2D)

Transfer Group 1 to Double (T4D)

Transfer Group 2 to Double (T5D)

Hold Parity Error Retry (HER

Release Parity Error Retry (RER)

Transfer Tracking RAM to Memory (LTM)

Load Virtual Demand Page Register (LVR)

Read Parity Bits {RPB)

Transfer A to Parity Error Address Register (TAP)
Transfer Parity Error Address Register to A (TPA)
Transfer Active Executive Trap toc A {ACE)

If the instruction trap is enabled, the VM group of
instructions will result in a violation (VLR bit 21 has no
effect on this group) if the user program attempts to
execute them. Any attempt to execute an Interval Timer
siart or stop instruction, or T Register ioad instruction, in
the User Mode when VLR bit 21 is reset causes the
instruction to be treated like a NOP. No interrupt is
generated. The following instructions are affected:

1) Hold Interval Timer (HIT)

2) Release Processor Time (RPT)

3} Release Clock Time (RCT)

4) Any register to register instruction that loads
the T Register; e.g., a TAT instruction.

The following two operations are illegal and cause an
instruction trap violation (Group O Level 3) to be generated
when the system is in the User Mode.

1) execution of an extended EXM instruction
followed by the execution of another
extended EXM instruction, and

2) execution of an extended EXM instruction
followed by the execution of a standard
EXM instruction.

Paging System Control

When a master clear is generated, the Monitor Mode is
established. The paging logic then remains in the Monitor
Mode until placed in the User Mode.

The User Mode is established under program control (i.e.,
via the RUM instruction). The RUM (Release User Mode)
instruction causes the User Mode to be established at the
completion of the instruction following the RUM. (This
instruction should, in practice, always be an unconditional
branch.) After the new program address has been
calculated, the User Mode will be activated. The RUM
instruction, together with the following instruction, will be
handled like an EXM with respect to a demand page (VPR
bits 0 and 1 will be set to ONE and ZERO, respectively).
Refer to Table 2-1.

A BLU (Branch and Link-Unrestricted) instruction will
automatically establish the Monitor Mode; the BLU'’s 5-bit
effective memory address will not be mapped. Bit 20 of the
J Register will be set (ONE) if the BLU was executed in the
User Mode, and reset (ZERQ) if the BLU was executed in
the Monitor Mode.

When an interrupt occurs in the Compatibility Mode, the
Monitor Mode will be established; the hardware-generated
EXM (Execute Memory) instruction will not be translated.
The BSL (Branch and Save Return-Long) to the dedicated
interrupt location will transmit the paging mode at the time
of the interrupt to the BSL's effective memory address. Bit
20 will be set (ONE) if the system was in the User Mode,
and reset (ZERO) if it was in the Monitor Mode. If the
interrupt occurs in the Address Extension Mode, the
hardware-generated BSX will not be translated and the
Monitor Mode will be established. The VM mode of
operation at the time of the interrupt will be saved in bit 20
of the Virtual Limit Register (VLR). If no other interrupt is
active, VLR20 will be set if the system was in the User
Mode, and reset if it was in the Monitor Mode.

If a demand page interrupt occurs while executing a ROM
instruction, the VM mode is recorded as Monitor. Bit 20 of

0830006-000
Original 5/78

the BSL save word is reset if in the Compatibility Mode, or
VLR bit 20 is reset if in the Address Extension Mode. When
returning from an interrupt routine via an indirect BRL
instruction, bit 20 of the entry point is tested, and the User

" or Monitor Mode is re-established accordingly.

When in the Compatibility Mode and an indirected BRL
instruction is executed in the Monitor Mode, the User Mode
is established if bit 20 of the save word is set. The
instruction following the indirect BRL is translated. When
in the Address Extension Mode and an indirected BRL is
executed in the Monitor Mode, if the currently active
interrupt is the only one active and if bit 20 is set in the
VLR, the User Mode is established and the instruction
following the indirect BRL is translated. If VLR bit 20 is
reset, the Monitor Mode continues.

CPU OPERATIONAL CONTROL

CPU Modes of Operation

Since a Series 500 Computer is an upward compatible
extension of the SLASH 6 Computer, ‘all user software
which can be run on the SLASH 6 can also be run on a
Series 500 Computer. New software, not previously
available, can also be run on the Series 500. Two modes of
operation, termed the Compatibility Mode and the Address
Extension Mode, are provided to select the particular
operation required.

Compatibility Mode

In the Compatibility Mode, the Series 500 is downward
compatible with the SLASH 6. All user programs which run
on the SLASH 6 can run on the Series 500 without
recompilation. Current user programs, including compilers
and assemblers, may also be run in this mode. All standard
instructions which can be executed on the SLASH 6
operate identically when executed on a Series 500 in the
Compatibility Mode. In addition, all extended instructions
can be executed in this mode. Bits PC19-16 are kept in the
cleared state when operating in this mode, therefore, the
Program Counter is effectively 16 bits wide. Thus, branch
addresses cannot be over 16 bits wide. Direct addressing
capability is up to 64K words. In this mode of operation,
indexing, indirection, and interrupt linkage function
identically to the SLASH 6.

0830006-000
Original 5/78

Address Extension Mode

In the Address Extension Mode, new software elements are
available with the Series 500. This mode of operation does
not allow the use of earlier software such as DOS, TQOS,
DMS, etc. With the exception of the BSL, BRL, BLU, TLO,
-and GAP instructions, operation of the standard instruction
set is identical to the Compatibility Mode. Operation of
these five instructions is modified in the Address Extension
‘Mode. Differences in operation are explained in Section
Vii. Al exiended instructions can be execuied in the
Address Extension Mode. All 20 bits of the Program
Counter are functional in this mode of operation to provide
the capability of direct addressing of up to 1024K words.
Indexing, indirection, and interrupt linkage operations are
modified versions of similar SLASH 6 operations.

CPU Operational States

Under software control, the CPU is capable of being placed
in one-of-four operational states. Two software settable bits
in the Virtual Limit Register (VLR), bits 23 and 22,
determine state selection. The setting of these bits control
the CPU operationa! states as follows:

VLR BITS
23 22 STATE

0 0 Zero

OPERATION

System operates in the Compatibility
Mode in both the Monitor Mode and User
Mode. This state is established whenever
the CPU is master cleared.

0 1 One System operates in the Compatibility
iiode when in the User Mode, and in the
Address Extension Mode when in the
Monitor Mode. When the CPU leaves the
Monitor Mode (either following a RUM
or an indirected BRL from the only
active interrupt level), the CPU is placed
in the User Mode, The instruction
executed after a ROM instruction should
be executed in the Monitor Mode. The
calculation of the final EMA uses the
Address Extension Mode definition of
indexing; the final EMA is translated into
user space. On machines with no VM
hardware, State One is equivalent to State
Three,

1 0 Two Operation is not permissible and is
undefined.

1 1 Three System operates in the Address Extension
Mode in both the Monitor Mode and User
Mode.

2-8

ADDRESSING FUNCTIONS

Addressing is a function of the Compatibility and Address
Extension Modes. Direct addressing, indirect addressing and
indexing are dependent on the particular mode enabled.

An address is calculated by the CPU without regard to
virtual memory. Addresses mav be indexed and/or
indirected. Address generation is the same whether the
virtual memory is in the Monitor or User Mode. When the
CPU compietes address processing and initiates a memory
cycle, virtural memory translates the address if the system
is in the User Mode. If in the Monitor Mode, the address is
not translated, and the address generated by the CPU is the’
physical address. In the User Mode, all effective address
references generated by the CPU are translated to physical
addresses. This includes addresses defined by the Program
Counter and all memory reference instructions, including
indirect and indexed operations.

Compatibility Mode Addressing

Total memory available to the CPU is one megaword. When
the CPU is in the Compatibility Mode, executable code
(programs) is confined to 64K (0-65,536 words) of memory
when executing standard instructions. However, memory
above 64K may be addressed with standard instructions by
means of special indirect references. Figure 2-2 illustrates
the memory referencing sequence for the Compatibility
Mode. Extended instructions can address up to one
megaword of memory directly.

Direct Addressing

A standard memory reference instruction format is shown
beiow. The 15-bit address fieid (bits 14-0) in the instruction
word provides direct access to 32,768 (32K) words.

J i

OP CODE |*| X 15 BIT ADDRESS

N Y R | L4 {1 1 & 1 3 ¢ 1 £ 1\ 1 1
23 19 17 18 15 14

©

In the Compatibility Mode, the addressing logic divides the
84K. Under this method, bit 15 (P15} of the Program
Counter is used to bias all direct address references. Bits
19-16 of the Program Counter are not used in the
Compatibility Mode. P15 = 0 specifies an address in the
lower 32K, while P15 = 1 designates a location in the upper
32K of the 0 - 64K memory increment. By performing a
logical-OR function between the immediate (direct) address
reference and P15, standard instructions may directly
address up to 32K words within their respective sections of
memory.

NOTE

An instruction in the last location of the lower
memory section should not reference another
address in the lower section. By the time the
effective address is computed, the Program
Counter will have advanced to bias the
immediate address reference by 100000g to
specify an effective address in the upper
memory section,

Modification of a 15-bit direct address by means of the
indirect bit, and with or without indexing, can permit a

0830006-000
Original 5/78

standard instruction to address any memory location up to
256K words,

A special group of “long branch” standard instructions
permit direct addressing up to 64K words. The instruction
word format for this group is shown below. Note that these
instructions may be modified by indirect references (*), but
have no provision for indexing. Long branch instructions
are not biased by P15, Bit 16 is used to extend the op code.

1 1 T 1 i I

OP CODE |*|E 16 BIT ADDRESS

) | N I S T N A T O TN (N Y S I |

18 17 16 15 o

ACCESS (P)
FOR
INSTRUCTION

!

DECODE
OP CODE AND
ADVANCE P

INDEXED

MAP BIT P15
ORED WITH EMA
EMA@- A

YES NO
[EMA+G+()01 [EMA €= a 1 l EMAQ-Aj I EMA€= A + (J) I LEMAQ—U 1

I EMA<= (P) I

mmhuo
REF/
vEs

ACCESS (EMA)
FOR INDIRECT
REFERENCE

PERFORM
OPERATION
ON EMA

ENABLE
16-BIT
ADDRESS

ADDRESS

P

@-.....5-BIT ADDRESS
Qeeenns 15-BIT ADDRESS
A--- -+ 16-BIT ADDRESS
MA-.oo-e 16 OR 18-BIT ADDRESS
BJL:- e BRANCH INDEXED BY J LONG
INDEXED NO BLY-- - - - - BRANCH AND LINK UNRESTRICTED
EMA---- - EFFECTIVE MEMORY ADDRESS
Joonnn J REGISTER
LAC-- - - - -LONG ADDRESS CONSTANT
YES P-- - -- PROGRAM ADDRESS REGISTER
PR INDEX REGISTER (I, J, OR K)
()ereees CONTENTS OF
EMA®= MA + (X) EMA= MA

!

MI24138-678

Figure 2-2. Memory Referencing Sequence, Compatibility Mode

Original 5/78

An extended memory reference instruction format is shown
below. The 20-bit address field in instruction word 2
permits memory access to 1,048,576 words.

WORD 1

T 1 T I I

ESCAPE CODE OPCODE (000

| S W VU N T N SN SN N B | | I O TS NN S I N | [
23 12 3 2 [}
WORD 2

Y T T T T T

*| x U ADDRESS
1 // Lottt 1 1t t 1 1 r) I N W A |

2322 21 2019 o]

Indirect Addressing

Indirect address references permit the CPU to access up to
256K words of memory in the Compatibility Mode. When a
standard memory reference instruction is decoded, bit 17
(*) of the instruction word is examined. If bit 17 is set
{ONE), an indirect address reference is indicated. The same
function is performed by bit 23 of word 2 in extended
instructions. An indirect reference signifies that the
effective address {defined by the instruction word plus-any
index count) contains a second address rather than an
operand. The word retrieved from memory when the
effective address is cycled is treated as an indirect address
word. Compatibility Mode indirect address word formats
are illustrated below.

STANDARD INDIRECT FORMAT

*| X 0% ‘ ¥16 BIT= ADDF;ESS

23 22 21 20 i6 15 0

LONG INDIRECT FORMAT

! L] T I 1

%
* X |1 // 18 BIT ADDRESS
)// N SN WS S NS NN ISUS AU NN AN N N NN N N

i
23 22 21 20 19 18 17 0

The standard indirect format, with its 16-bit address field,
permits access of up to 64K words. Up to 256K words can
be accessed by the 18-bit field in the long address word.
Neither type of indirect address is affected by the P15
address bias bit.

Bit 23 (*) of either indirect format may be set to specify
another level of indirect addressing. Each level of indirect
reference may be individually indexed to provide further
address modification.

These two indirect word formats are valid only when the
CPU is in the Compatibility Mode of operation. When in
the Address Extension Mode, a single indirect word is used
which differs in format.

[\]
.l
[+]

Indexing

A direct or indirect address reference may be modified by
indexing. This operation adds the address in the current
instruction or indirect reference to the contents of a
specified index register (I, J, or K) to determine an effective
address. A two-bit field (X) in the instruction or indirect
reference specifies which register will be employed in each
indexing operation. Figure 2-3 provides some examples of
indexed addressing,

In the lower 32K memory section (P15 = 0), immediate
address references may be indexed to access up to 65,536
words. However, instructions in the 32K — 64K section of
memory (P15 = 1) may not reference the lower section by
indexing since all immediate address references will be
biased by 100000g.

Address Extension Mode Addressing

When the CPU is operating in the Address Extension Mode,
direci addiessing 1o one megawoid is enabled. Instiuctions
are not restricted. to the lower 64K of memory, but may be
located anywhere in memory. Alf 20 bits of the Program
Counter are significant so that a maximum of one
megaword of memory locations can be accessed via the
Program Counter. The memory referencing sequence for

the Address Extention Mode is shown in Figure 2-4.

Memory is divided into thirty two, 32K maps in the
Address Extension Mode. The most significant five bits of
the Program Counter serve as map bits. PC19-15 specify the
map in use, and PC14-0 specify the displacement within the
map. When PC19, 18, 17, 16, and 15 = 00000, map 0 (0
through 32,767} is specified, and when PC19, 18, 17, 16,
and 15 = 00001, map 1 (32,768 through 65,535) is
specified, etc. This mapping scheme is applied to all
standard memory reference instructions which contain
15-bit addresses. Standard long branch instructions (which
have 16-bit addresses), and extended instructions are not
mapped.

Direct Addressing

In the Address Extension Mode, the effective memory
address of a non-indexed standard memory reference
instruction is formed by appending bits 19-15 of the
Program Counter to the most significant end of the 15-bit
address contained in the instruction. The resulting 20-bit
address is termed a local map reference since bits PC19-15
determine map selection. A local map is defined when bits
19-15 of the EMA are equal to bits PC19-15.

0830006-000
Original 5/78

NOTE Standard long branch and all extended instructions are not

An instruction in the last location of a map
should not reference another address in the
same map. By the time the effective memory
address is computed, the Program counter will
have advanced to bias the immediate address
reference by 1000008 to specify an effective
address in the next higher order map.

biased by the map bits. The 16-bit address in long branch
instructions, and the 20-bit address in word 2 of extended
instructions are used unmodified.

23 17 16 15 14 o]

INSTRUCTION FORMAT (TMA) 010101 ! IOll *

Xfoot,001,001,001,001
ol R DR R R AR A

\)

— J

* = |NDIRECT BIT: Y
0 = DIRECT ADDRESS OP-CODE
1 = INDIRECT ADDRESS (058)

X = INDEX BITS:
00 = NO INDEXING
01 = INDEX W/ |
10 = INDEX W/ J
11 = INDEX W/ K

BASE ADDRESS
(111118)

15 [}

INDEX REGISTER [(01) W/////

°1°.'.°|°.' lOIO'I.OlOII‘OIOlI'O

(ADDED TO BASE ADDRESS)

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -
EFFECTIVE ADDRESS (BASE + INDEX + P15)

23

\)

INDEX COUNT (22222g)
i
lo0 v 101101 1001001

EFFECTIVE ADDI;ESS (333338)

(=)

15 0

INDEX REGISTER J (10)
(ADDED TO BASE ADDRESS) W potrnorror ol ot

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -
EFFECTIVE ADDRESS (BASE + INDEX + P15)

[—)

INDEX COUNT (133333g)

B,

'1'.0.01'.°.°|‘.°.°|'J°l°|'.010

EFFECTIVE ADDRESS (1444448)

15 (]

23
INDEX REGISTER K (11)
(ADDED TO BASE ADDRESS) W°: 1001001001001 00

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -
EFFECTIVE ADDRESS (BASE + INDEX + P15)

[W— J

INDEX COUNT (444448)

Vi

III.O.III.OIIII.O.III.O.III.OLI

L 4
EFFECTIVE ADDRESS (1555558)

Figure 2-3. Examples of Compatibility Mode Indexing

M160-028-9768B

21

0830006-000
Original 5/78

ENABLE
20-BIT
ADDRESS

t

ACCESS (P)
FOR
INSTRUCTION

!

DECODE
OP CODE AND
ADVANCE P

YES
*NO
EMA €0 +(X) EMA<-a EMA® A EMA®~ AHJ) EMA®- 0
YES NO "
19-15=0
YES
MAP BITS P19-15
EMAe-EA ORED WITH EMA
EMA%-EA
[
)
EMA®~(P)
INDIRECT NO
REF
PERFORM
YES OPERATION
ON EMA
ACCESS EMA
FOR INDIRECT
REFERENCE
@.....5-BIT ADDRESS
Q.. ---15-BIT ADDRESS
A-....16-BIT ADDRESS
EA- - ---20-BIT ADDRESS
BRANCH INDEXED BY J LONG
YES -+BRANCH AND LINK UNRESTRICTED
EFFECTIVE MEMORY ADDRESS
J REGISTER
EMAe— EAHX) EMA<- EA PROGRAM ADDRESS REGISTER

!

INDEX REGISTER {1, J, or K}
--CONTENTS OF

Figure 2-4. Memory Referencing Sequence, Address Extension Mode

.MI12420-678

Indirect Addressing

Unlike the Compatibility Mode which provides for two
indirect address word formats, the Address Extension Mode
provides for only one indirect address word format. When
the indirect bit in an instruction is set, the word retrieved
from memory has the format as illustrated below.

ADDRESS EXTENSION MODE
INDIRECT ADDRESS WORD

V, I 1 I 1 I 1

*| X ? ADDRESS
7.

1 T T W T Y WO W WO
2322 21 20 19 0

N\

N

The indirect address word, with its 20-bit address field,
provides for accessing up to one megaword of memory.
Another level of indirect addressing may be specified by
setting bit 23. Each level of indirect reference may be
indexed to provide further address modification.

indexing

Standard long branch and extended instructions are
indexed in the Address Extension Mode in the manner
described for indexing in the Compatibility Mode, with the
exception that the EMA is 20 bits wide. Indexing of 15-bit
memory reference instructions, however, differs in the
Address Extension Mode.

When indexing is specified in a 15-bit address memory
reference instruction, the result of the index operation may
be defined to be either a local reference address {indexed
address is in same map), or a global reference address
{indexed address is in another map). In either case, an EMA
is calculated by adding the 15-bit-operand of the memory
reference instruction to the 24-bit contents of the specified
index register, and then examining bits 19-15 of the result
to determine if the result should be qualified by map bits
PC19-15.

If the sum of bits 19-15 of the result of the addition is
equal to zero, the address is mapped into a 20-bit address
by appending bits PC19-15 to bits 14-0 of the result. This is
the local map case where the calculated address is less than
32K so that the result is a displacement within the same
map.

If the sum of bits 19-15 of the result is not equal to zero,
PC19-15 are not appended and the EMA is equal to the
20-bit result of the index operation. This is the global map

0830006-000
Original 5/78

case where bits 19-15 of the result specify another map.
The map bits are not used and the EMA is the result of the
index operation.

Address Translation

In a VM system, memory is divided into 1024 (1K) word
“pages”. A translation scheme is applied to the
most-significant bits of all memory references. This scheme
consists of adding a base address (VBR contents) to the 10
most significant bits of the effective memory address to
select a page of memory. The remaining bits of the original
memory reference are used to select a specific word within
the selected page. Figure 2-5 illustrates the address
translation scheme of the VM logic. Figure 2-6 provides an
example of the address translation using a standard memory
reference instruction.

Address translation is implemented via the Virtual Address
Registers (VARs) and the Virtual Base and Virtual Limit
Registers (VBR and VLR). Each VAR has a unique
number, or address, from ' O through 1024, or O through
4096, depending on the system in use. A specific VAR is
selected by adding the ten most significant bits (MSB) of
the 20-bit memory reference address to the contents of the
VBR. The selected VAR, in turn, contains an address
corresponding to 1-0f-1024, 1K-word pages.

In practice, the user program is assigned (by the software
operating system) a group of sequential VARs. The lower
limit of the user program area, and the base for computing
VAR addresses, is established by ioading the VBR with the
first VAR address in the group. The user program upper
limit is established by the VLR contents corresponding to
the number (quantity) of assigned VARs. Since the MSB
value is added to the VBR to compute VAR addresses, the
VLR must contain a quantity that is one less than the
number of VARSs assigned to the user’s program. Referring
to Figure 2-6, VAR address 16g is specified when the MSB
value equals 0, 17g when MSB equals 1, 20g when MSB
equals 2, and 21g when MSB equals 3. In this example, the
VLR is preloaded with a count of 3. When the MSB value
exceeds this count, a limit violation is generated. See
paragraph describing demand paging operation. The VARs,
VBR, and VLR are loaded under program control in the
Monitor Mode.

0830006-000
Original 5/78

LOADED UNDER
PROGRAM CONTROL
BY TDP INSTRUCTION

I USER PROGRAM
r ‘ MEMORY REFERENCE
| T T T T T T T T T T
USER PROGRAM USER PRCGRAM
LOWER LIMIT VER UPPER LIMIT VIR MSB LS8
| N T OO T T O OO T T | 1 I T TR N T T T O | [S T T N T N SN S U A N T N S |
0 2322212019 9 0 10 9 0
- — \ o\ —
V Vv .
CONTROL
COMPARE (VLR)
AND
ADDRESS MSB
GENERATE
LIMIT
VIOLATION
IF ABOVE
UPPER LIMIT
ADD (VBR)
10
ADDRESS M58
SELECT ONE OF
1024 CR 4096
VARS
1 1
PAGE NUMBER
(0-1023) VAR
1 I U T 1
23 22 Y
el -
-
ACCESS |
MODE 1
SELECT ONE SELECT ONE
OF 1024 OF 1024
PAGES WORDS
1 L] I] 1
EFFECTIVE
MEMORY PAGE WORD IN PAGE
ADDRESS
it 1t 11 1.1 | I T T T T T
19 9 0

M12421-678

o
=
&

Figure 2-5. Address Translation, VM User Mode

0830006-000
Original 5/78

LOCATION (OCTAL) LABEL MNEMONIC OPERAND
00005 TMA XYz
05560 XYZ DATA 5

MACHINE LANGUAGE REPRESENTATION FOR TMA_INSTRUCTION -

T T T T T
000 1 01jojJoojoooi1o 11011 1000O0TO0
[S | S A T T T T OO I T Y I |
23 14 0
\ AV_A J
Y Y
035 * X 055605
(TMA OP CODE) (ADDRESS TO BE TRANSLATED)
EXPANDED 20-BIT ADDRESS
T T T T T T
ADDRESS 1S DIVIDED INTO 10-BIT
MSB AND 10-BIT LSB FIELDS 000000O0OCTO|1T10 1110000
[U T T Y T T N T I A O O
19 109 0
o J
Y
MSB = 002 LsB = 15604
USER VAR ASSIGNMENTS AR
/ADDRESS
165 17g 205 21
T T T T T T T T T T L T
00060100010 00010010T1O0 60000111101 00000711000
I [T O N W TN TN TN T T N TN N TN OO T T T T T T T N O T TS TN T T OO O T T N N O O O A S G A
23229 — 0,23 22,9 y 023 22,9 . 023 22,9 0,
Y Y
ACCESS PHYSICAL ACCESS PHYSICAL ACCESS PHYSICAL ACCESS PHYSI CAL
MODE PAGE MODE PAGE MODE PAGE MODE PAGE
425 12, 755 30,
VBR VLR
T T T T T T
000000001110 0000000011
[SO O T OO T I | i I N T T O T
1 0 23222120199 0
~— - A J

-y
1ST VAR ADDRESS = 1§8

W N -

(VBR) + MSB = VAR ADD!

CONTROL

RESS OR 16g + 25 = 205

(VAR ADDRESS) = PHYSICAL PAGE OR 75g
MEMORY ADDRESS 1S WORD '|5608 (LS8) OF PAGE 758

PHYSICAL ADDRESS IS 1

73560B

VAR COUNT =3

Figure 2-6. Address Translation Example, VM User Mode

Mi2422-678

2-15

0830006-000
Original 5/78

120 HERTZ CLOCK

This clock continuously transmits 120 or 100 mainframe
interrupt signals per second, depending on power line
frequency. The interrupt signal is controlled completely by
enabling (or disabling) the assigned CPU interrupt level. The
first interrupt following an enable signal will occur in less
than 1/120 (1/100) of a second because the clock never
stops transmitting signals; however, all subsequent
interrupts will be precisely 1/120 (1/100) seconds apart.

The accuracy in using this clock is a function of the user
interrupt routine logic. For example, if the clock is used to
update a “time-in-seconds”’ counter by adding one count
every 120 (100) interrupts, the ““current time’’ at any given
query will be accurate within 1 second. If, however, the
counter is updated each interrupt — 1/120 (1/100) — and
divided by 120 (100) when “‘current time’’ is queried, the
accuracy will be within 1/120 (1/100) of 1 second.

A simple example of coding, where the clock is assigned to
priority interrupt Group 1, Level 22, is as follows:

)) . Initialize Clock Routine
INITCT TMA = B22 . (A)=Bit22

TME = 822 . (E}=Bit22
UA1 . Arm G1/L22
UE1 . Enable G1/L22
TZMCLOCK T . Zero Clock Time
BUCO,J
e s . Interrupt Routine
CLOCK IR b . Enter
AUMCLOCK T Increment Clock Time

BRL® CLOCK IR Restore C register and Exit

. Current Time Routine

ESA
VG 126
BUCO,J
Return: (A} = Seconds
(E) = Remainder
INTERVAL TIMER

General Description

The programmable interval timer consists of a 24-bit
register (T Register), a clock, and associated control logic.
The timer can be preset and subsequently released, under
program control, to measure elapsed processor (CPU) time

LTI, 19 Qs

or clock (real) time.

Timer Register

Supplied with the interval timer, the 24-bit Timer (T)
Register operates as a counter in two distinct modes of

2-16

operation. When not used for timing functions, the T
Register functions as an additional general-purpose register
that can be accessed through the instruction set when
operating in the Monitor Mode. Entry and display for the T
Register is provided via the Programmer’s Control Panel.

(e——— TIMER (T) REGISTER————=
T T T T T T T
S
S TR VAN T S A NN SN S S A N A W A0 W N B W
= 22 o

Operational Description

A self-contained clock generates the 1 microsecond pulses
used to strobe the timer. In either mode of operation, a
count is loaded into the T Register and is decremented once
for each elapsed period of 1 microsecond. When the count
reacheg zero, an executive trap interrupt is generated at
Group 0, Level 5. A maximum count of 16,777,2151¢
{(77777777g) may be loaded into the register. With a
resolution of 1 microsecond per count, a maximum time
interval of 16.777215 seconds is available.

Durrmenmma o esdeml

riogiain LonGa o

-{nterval timer operation- is controlled-by three instructions:

Hold iInterval Timer (HIT); Release Processor Time (RPT);
or Release Clock Time (RCT). A HIT instruction will
prohibit the start of any timing sequence or halt any
in-process timing operation until the timer is released by a
RPT or RCT instruction. The RPT instruction releases the
timer for measuring elapsed processor (CPU) time. In this
mode, counting is inhibited during block I/0 channel DMA
operations, whenever any interrupt is active and enabied, or
the CPU is halted. Clock (real) time operation, where the
timer counts continuously regardless of CPU condition, is
initiated by an RCT instruction.

REAL TIME CLOCK

General Description

The Real Time Clock consists of a 100 kHz
crystai-conirolled ciock, a counter, and associated controi
logic. All components are mounted on a board which is
designed to plug into the internal controller locations of the
Programmed Input Output Channe! (PIOC) board. Each
PIOC can accommodate one or two Real Time Clocks.
Although the clock has no peripheral device connected to
it, programming is accomplished via normal /0O
instructions. More than two Real Time Clocks may be used;
the limiting factor being the number of PIOCs used in the
system. An external interrupt is provided which is
configured in the same manner as any input/output

interrupt, i.e., the interrupt can be assigned to any level in.

Group 1 or Group 2. The interrupt is generated when the
clock count reaches ZERO and the interrupt is enabled.

3 AN ¢ RS EITN ENE A IYS DRI O S R SR A O I 1 00 U0 N0 0 0 M U0 0 AU A0 S e AR e

Operational Description

By means of the Real Time Clock, the programmer is
provided with an interval timer which operates independent
of CPU timing and provides output puises when the CPU is
either in the Run or Halt condition. Elapsed time is

measured by counting down the pulses in the counter. A -

selected time interval is preset in the counter by loading up
to three, 8-bit bytes into the counter. Clock output pulses
occur at 10 microsecond intervals. A maximum time period
of 167 seconds is available when the counter is loaded with
all bits set in the three bytes. Thus, the programmer can
preset the clock for time intervals from 10 microseconds to
167 seconds in 10 microsecond increments. Since the Real
Time Clock is asynchronous with CPU timing, the period
may be off by 10 microseconds on the first count-down
cycle.

Command and Status Word Formats

As a result of the CPU issuing an Output Command Word
(OCW) instruction, a command word is transferred from
the A Register to the Real Time Clock. The command word
initiates operation of the clock, and provides the necessary
set-up and control functions. A description of the function
performed by each bit of the command word is given
below.

7 6 5 4 3 2 1 0

Run/ | L9ad | Enable En:able Byte | Byte | Enable Enable
Hold Preset Snapshot Bits Count | Count} Auto

Interrupt
Count 03 2! 2° |Restart P

Bit0 (1) Enable count zero interrupf
(0) Disable count zero interrupt

Bit 1 (1) Enable Automatic Restart of preset count
{0) Go into hold mode at count of zero

Bits 2, 3 Byte count for input and output ‘
Bit4 (1) Sample bits 3-0
(0) Hold bits 3-0 unchanged
Bit5 (1) Enable count snapshot output
(0) No action
Bit6 (1) Enable loading of preset count
{0) No action
Bit7 (1) Enable count down

(0) Hold count down

0830006-000
Original 5/78

An Input Status (ISW) instruction generated by the CPU |
results in the status word being transferred from the Real

- Time Clock to the A Register. The clock status word

consists of bit 0 only. It is set to the ONE state whenever
the clock module is plugged into the PIOC board, indicating
to the CPU that it is on-line.

Program Control

Real Time Clock operation is controlled with four
instructions: Output Command Word (OCW), Input Status
Word (ISW), Output Data Word (ODW), and Input Data
Word (IDW). Each Real Time Clock is addressed by a
channel-unit code combination in the same manner as any
1/0 device. If one Real Time Clock is installed, a unit code
of 00, 01, or 02 is assigned according to its plug-in location.
If two Real Time Clocks are installed, unit codes of 00 and
02 are assigned. Access to the clock is via the A Register as
in normal 1/O operation.

Preset Count Loading

To initialize the Rea! Time Clock, an OCW instruction is
generated by the CPU to transfer the command word with
bit 6 = 1, and the desired byte count in bits 2 and 3. The
CPU then provides the specified number of ODW
instructions {one per byte} to transfer the bytes to the
clock, with the most-significant byte transferred first. When
the byte count is satisfied, an OCW instruction may be
given to transfer a command word with bit 7 = 1, This
enables the counter to start counting down. If bit 7 =0 is
any command word, counting is inhibited until a command
word with bit 7 = 1 is received. If a byte count less than
three is specified, the unused bytes in the counter are set to
ZERO:s.

Automatic Count Restart

If bit 1 = 0 in the command word, the automatic count
restart is enabled. This causes the Real Time Clock to
automatically reload the last preset count into the counter
and restart the count after the interrupt is given.

Snapshot Output

During Real Time Clock operation, the current count status
is made available to the CPU by means of the Snapshot
mode of operation. Snapshot output is initiated with an
OCW instruction and bit 5 = 1 in the command word. This
loads the 24 bit current count into a register. IDW
instructions, one per byte, transfer the contents of the
register to the CPU, the most-significant byte being
transferred first. This operation does not affect the
counting as long as bit 7 = 1 in the command word. If an
interrupt is generated during the Snapshot mode of
operation, the mode is terminated as the count is known to
be zero.

217

Original 5/78

If snapshots are performed in a program with automatic
count restart selected, snapshot time prior to automatic
restart may be 10 microseconds different from. snapshot
time after automatic restart. This is because of the 10
microsecond time frame used in the Real Time Clock.
Additionally, if a snapshot is performed at the trailing end
of a time out, before restarting or auto-restarting, the
snapshot bytes may be all zeroes. To minimize the
possibility /of the foregoing occurrences, the snapshot of
any time must be accompiished 'in the ieast machine time
possible. An example of programming code that may be
used to do a snapshot in the shortest period of machine
time follows:

SNSH DAC *

TRM SAVE Save contents of register

TOA 240 Run, Snapshot command

ocw C/u Output command

IDW C/U Input most-significant byte

BNZ -1 Possible wait

TAI Store most-significant byte in | register

1DW (o/{V] Input middle byte

BNZ -1 Possible wait (needed if other units on channel)
TAJ ' Store middie byte in J register

oW fof4d) tnput least-significant byte

BNZ -1 Possible wait (needed if other units on channel)
TAK Store least-significant byte in K register

TIA Restore most-significant byte in A register
LLA 8 Shift over 8 bits

TJB OR in middle byte into A register

LLA 8 Shift over 8 bits

TKB OR in least-significant byte into A register
TAM TIME Store whole word of time for later use

TMR SAVE Restore registers

BUC* SNSH Exit
SAVE BLOK 5 Register save area
TIME DATA © Register save area

Selection Sampling

Selection Sampling is included as a feature of the Real Time
Clock for the convenience of the programmer. Since the
programmer would normally want to keep command word
bits 3-0 constant while he uses bits 7-5, bits 3-0 are sampled
only when command word bit 4= 1.

POWER FAIL SHUTDOWN AND RESTART

This feature provides the capability of saving the operating
program in the event of a power failure and provides
program restoration and restart when power levels return to
normal. This feature is applicable to core memories or to
semiconductor memories with battery back-up. It is not
applicable to semiconductor memories without battery
back-up.

The shutdown circuits monitor the input ac power source
for amplitude fluctuations. A decrease in ac voltage below
the specified level causes an executive trap interrupt to be

generated at Group 0, Level 0. If semiconductor memory
with battery back-up is installed in the computer, the
memory will be switched to battery. One millisecond after
the interrupt, a Master Clear signal is generated to complete
the shutdown process. In the one millisecond interval
between interrupt and final shutdown, the
interrupt-processing routine must save the operating
program along with parameters for returning to the point of
interrupt.

When the ac power level returns to its nominal level, a
restart signal is generated to begin the restore process. The
restart signal generates an executive trap interrupt at Group
0, Level 0.

FIRMWARE BOOTSTRAPS

The firmware bootstrap automatically stores in memory a
loader program that permits a more complex program to be
stored. Any program can be loaded as long as it is in
bootstrap format; however, the most common application
is to load a loader program which allows other programs,
operating systems, diagnostics, or other data to be stored in
selected memory locations.

Eight sources are selectable for transferring a program to
memory via a selected peripheral device: paper tape;
cassette (paper tape emulation); disc; card reader {(word
mode); card reader (block mode); magnetic tape; and
flexible diskette. The operation of the bootstrap is
implemented at the control panel. The specific device may
be selected with the BOOTSTRAP SELECT switches and
stored in memory by depressing the BOOTSTRAP ENA
switch. A description of the bootstrap operation and
individual bootstrap programs are documented

n the
Operator’s Manual.

'
i e

BIT PROCESSOR

General Description

The bit processor consists of the single-bit H Register, a
2G-bit V Register {base registerj, and the associated coniroi
logic. The bit processor provides the capability to
selectively change, store, or test a bit from memory.

Bit Processor Registers

Two registers are associated with the bit processor feature.
A single-bit element, the H Register, retains the bit selected
for use in the operation. The 20-bit V Register is employed
to store a base address that is, in turn, used to define a
memory location from which the designated bit will be
retrieved. The V Register stores an 18-bit base address in

the Compatibility Mode, or a 20-bit base address in the
Address Extension Mode. Both the H and V Registers are
directly programmable via the special group of bit processor
instructions. Provision is made on the Programmer’s
Control Panel for entry and display of the bit processor
registers. The registers are entered and displayed
simultaneously, with the V Register contents displayed in
bit positions 17-0 of the display register indicators in the
Compatibility Mode, or in bit positions 19-0 in the Address
Extension Mode. The H Register is displayed in bit
position 23.

BIT PROCESSOR REGISTERS

H REGISTER D

[}

e———— Vv REGISTER—————]
1 T

Obperational Description

The V Register is loaded with a base address which specifies
a memory location to be manipulated. This is accomplished
by transferring an 18-bit {Compatibility Mode} or 20-bit
(Address Extension Mode) memory address from the K
Register. The instruction word further defines the memory
location, the specific bit, and the operation to be
performed.

After the operation is performed on the selected bit, the
results are displayed in the Condition Register.

Program Control

Two types of instructions are associated with bit processor
operations. The. first (shown below) specifies a
displacement (bits 7-0) to be added to the base address (V
Register contents) to specify the location to be accessed.
Bits 12-8 (binary coded) are used to select a specific bit to
be used in the operation. The op code is defined in bits
23-13.

T T T T T T T
OP CODE b d

S TN T S NN TN O N N A | S N N T AN N I N T O |
23 1312 8 7 o]

The second word format is used for bit movement or
transfers where a specific bit from memory is not required.
Bits 23-12 contain the op code; the remaining bits are
undefined.

Lo 0000

23 12 1 [}

0830006-000
Original 5/78

Bit Processor Instruction Set

The bit processor {Boolean function) group of instructions
provides for logical manipulation and interrogation of a
specified bit selected from an effective memory address or
the H Register. The bit processor instructions are described
in Section VIl of this manual.

STALL ALARM

The stall alarm is enabled and disabled by the MEM
DIAG/OFF/CPLK STAL key switch on the control panel.
When the stall alarm is disabled, normal CPU operations
take place. Once the stall alarm is enabled, a 128-cycle
counter is activated whenever certain instructions are
executed or certain operating conditions are encountered.
The counter is incremented once each CPU cycle until the
specified instruction(s) or conditions are removed. If the
instructions/conditions are still present after 128 machine
cycles, an executive trap interrupt is generated at Level 4 of
Group 0.

The following instructions and/or CPU conditions will
activate the stall alarm counter.

Input Address Word (1AW)
Input Data Word (IDW)
Input Status Word (ISW)
Input Parameter Word (IPW)
Output Address Word (OAW)
Output Command Word (OCW)
Output Data Word (ODW)
Transfer Double to Source and Destination Registers {TDS)
Transfer Source and Destination Registers to Double (TSD)
Transfer A to 1 Virtual Address Register (TAR)
Transfer Double to 2 Virtual Address Registers (TDR)
Transfer 2 Virtual Address Registers to Double (TRD)
Transfer Double to Paging Limit Registers {TDP)
Transfer Paging Limit Registers to Double {TPD)
Transfer Usage Base Register and Demand
Page Register to Double (TUD)
Transfer E to Usage Base Register (TEU)
Query Virtual Usage Register (QUR)
Query Not-Modified Register (QNR)
Release Operand Mode {(ROM)
Release User Mode (RUM)
Unitarily Arm Group 1 interrupts (UA1)
Unitarily Arm Group 2 Interrupts (UA2)
Unitarily Disarm Group 1 Interrupts (UD1)
Unitarily Disarm Group 2 Interrupts (UD2)
Unitarily Enable Group 1 Interrupts (UE1)
Unitarily Enable Group 2 Interrupts (UE2)
Unitarily Inhibit Group 1 Interrupts (Ul1)
Unitarily Inhibit Group 2 Interrupts (U12)

219

0830006-000
Original 5/78

Transfer Double to Group 1 (TD1)

Transfer Double to Group 2 (TD2)

Transfer Double to Group 1 (TD4)

Transfer Double to Group 2 (TD5)

Update Stack Pointer (USP)

Branch and Save Return — Long (BSL)

Hold External Interrupts (HXI)

Hold Interrupts and Transfer | to Memory (HTI)
Hold Interrupts and Transfer to J Memory (HTJ)
Hold Interrupts and Transfer K tc Memory (HTK)
Execute Memory (EXM)

Release External Interrupts (RX1)

Transfer Registers to Memory (TRM)

Transfer Memory to Registers (TMR)

Branch and Reset Interrupt Long (BRL)

A halt condition

An indirect memory cycle

Each of the preceding instructions or conditions prohibit
the recognition of external interrupts for a period of one
cvcle following completion of the instruction. Executing a
series of these instructions sequentially will lock out
external interrupts for the entire series. Multi-level indirect
addressing can produce a similar effect, since the
instruction must satisfy all address references before
completion. (Interrupts occur only on instruction
boundaries.) A halt condition — whether as a result of
programmed halt, operator action, or memory parity error
— also prohibits external interrupt recognition by the CPU,

If a power failure occurs, the stall alarm becomes disabled.
However, when power is restored, the stall alarm is
re-enabied and operations continue in a normal routine.

With the exception of an EXM instruction or an indirect
cycle, the monitored operation is terminated. An EXM
chain (where an EXM instruction references another EXM
which, in turn, specifies a third etc.) has the same overall
effect as an indirect chain in that all references must be
completed before the sequence is complete. Therefore, if an
EXM or indirect cycle is in process when the executive trap
is generated, the stall alarm logic automatically terminates
the sequence. If a block 1/O channel is transferring data
into memory when the executive trap interrupt is
generated, the current cycle is completed before
termination occurs and the trap takes control. If a halt
condition is in effect when the executive trap interrupt is
generated, the stall alarm logic automatically forces the
CPU into a run mode.

)
[
[+

PROGRAM HALT AND ADDRESS TRAP

General Description

This feature provides address trap or program halt functions
as desired by the user. Memory reference addresses are
compared to a preset address. A comparison between the
reference and preset address causes an executive trap
interrupt to be generated or a program halt to occur
depending on the state of mode control bits. Hardware
includes a register, a 20-bit comparator, an interrupt trigger
circuit, and associated control logic.

Query Register

A 23-bit address Query Register is supplied with the
program halt and address trap. Bits positions 19 through 0
contain either the trap address or the program halt address.
Bits 23 through 21 are the halt or address trap control bits.
When an address is reached in program that coincides with
the address stored in the Query Register, the machine halts
or an interrupt is generated. The Query Register may be

loaded under program control oF via the Programimer’s
Control Panel,

fe——————— QUERY REGISTER —————»]
I T i 1

TRAP OR HALT ADDRESS

| N S W Y [N NS TN U TR [N TN Y N N N T N
2B 22 21 19 0
\W‘"’

CONTROL

Operational Description

The Query Register is loaded with the Transfer Memory to
Query Register (TMQ) instruction. This instruction
transfers the contents of the selected memory location to
the Query Register. The 20 ieast-significant bits,
representing the trap or halt address of the memory word,
are loaded into bit positions 19-0 of the Query Register.
Memory word bit 20 is not used, and bits 23-21 of the
memory word are loaded into bit positions 23 through 21
of the Query Register. These three bits determine the mode
of operation to be performed and have functions as
follows:

Bit 23 = ONE Disable Address Trap; may
Enable Program Halt
Bit 23 = ZERO Enable Address Trap
Bit 22 = ONE Trap on write only
Bit 22 = ZERO Trap each time selected address
is referenced
Bit 21 = ONE Trap or halt during User Mode only
Bit 21 = ZERO Trap or halt during Monitor Mode

only

When the Program Halt Enable switch on the Programmer’s
Control Panel is enabled (PH ENA in the up position), the
contents of the Query Register are compared with the
program address. When they compare, the machine is
halted. If the address trap is disabled (bit 23 = ONE), a
compare will cause the machine to halt in the User Mode if
bit 21 is set. If bit 21 is reset (ZERO), the machine halts in
the Monitor Mode.

When the PH ENA switch on the control panel is disabled,
the address trap is enabled or disabled with bit 23 of the
Query Register. The address trap is enabled when bit 23 is
reset, or ZERO. Each time a referenced memory address
corresponds with the address stored in the Query Register,
an executive trap interrupt at Group 0, Level 7 is generated
to inform the CPU. When the trap occurs, the instruction
causing the trap is allowed to complete execution. When
bit 23 is set (ONE), the address trap is disabled. Disabling
the trap inhibits the executive trap interrupt.

Additional control of the address trap is provided with bits
22 and 21. With the trap enabled and bit 22 set (ONE), the
executive trap interrupt is generated when a write operation

0830006-000
Original 5/78

is made to the referenced location. If bit 22 is reset
(ZERO), the interrupt is triggered whenever the referenced
location is accessed. With bit 21 set (ONE), the address trap
is enabled during the User Mode of operation; if bit 21 is
reset, the trap is enabled during the Monitor Mode. The

* memory address is taken from the CPU at a point prior to

the address translation so that logical addresses are subject
to the provisions of the trap.

Memory addresses that result from DMA operations by
block 1/0 channels are not affected by the address trap.

Program Control

With the Query Register loaded and the address trap
enabled, an interrupt is generated (in accordance with the
control bit settings) each time a reference is made to the
memory location corresponding to the address stored in the
Query Register. If it is desired that a reference to the
selected memory location be recognized only once, a
second TMQ instruction should be executed following the
first interrupt to set bit 23 of the Query Register to a ONE.

" This disables the address trap.

2.911{9 212 DI~

0830006-000
Original 5/78

SECTION Il
MEMORY SYSTEM

GENERAL DESCRIPTION

Series 500 systems are configured with main memory,
cache memory and, optionally, the Memory Expansion
Unit and/or shared memory. Data and addresses gated to
the system buses are available to all memory units.
Maximum memory system capacity is one megaword,
where each word is 24 bits wide. Error detection and
correction circuits are provided with semiconductor
modules, while parity generate and check circuits are
standard with magnetic core modules. An optional data
save unit is available for semiconductor memory modules to
retain information in the event of a facility power loss.

Data transfers are over a 48-bit, asynchronous, bidirectional
system data bus. Other buses provided include a 20-bit
system address bus and a system control bus. All functional
elements in the computer system communicate with each
other through the system buses. The asynchronous bus
system allows each system element to function at its own
rate, independently of the other system elements. For
example, concurrent direct memory access |/O transfer,
CPU instruction execution and SAU double-precision
floating point operation. All buses are located on the
. backplane which is common to all boards in the system.
This interconnection scheme eliminates the need for
discrete wiring between the various boards in the system.

Transfer of data between the CPU and memory is over 24
of the data bus lines. CPU and Programmed Input Output
Channel (PIOC) data transfers use 8 of the data bus lines.
Data transfers between memory and the Integral Block
Channel (IBC), External Block Channel (XBC), and Direct
Memory Access Communication Processor (DMACP) is via
24 data bus lines. Universal Block Channel (UBC) data
transfers to and from memory occur on all 48 lines. All
block channels, once initialized, can perform blocked data
transfers between memory and the peripheral device
without CPU intervention. Memory-SAU data transfers use
either 24 or 48 data bus lines.

MEMORY MODULES

Main memory consists of all semiconductor memory
modules, while shared memory and the Memory Expansion
Unit use semiconductor or magnetic core modules, or a
mixture of both. The following paragraphs describe the two
types of memory modules used.

Semiconductor Memory Module

The basic storage element of the semiconductor memory
module is an N-channel metal oxide semiconductor (MOS),
16K by 1-bit random access memory (RAM). A dynamic
device, the RAM requires a periodic rewrite or refresh cycle
to retain the stored data. It is also volatile — its data
content is lost when power is removed from the device. As
in all semiconductor memories, the RAM has a
non-destructive readout as opposed to a magnetic core
memory which has a destructive readout. In addition to the
RAM storage elements, each semiconductor memory
module contains an address register, a memory data
register, timing and control circuits, and data error
correction circuits.

Memory board capacity is 64K words. The board is
addressable as 65,536 words of 29 bits, where five of the
bits represent the error correction code. It is also
addressable as 32,768 words of 58 bits to provide a
double-word transfer capability. In this case, ten bits (five
per word) represent the error correction bits.

Semiconductor memory has a cycle time of 400
nanoseconds and a normal access time of 290 nanoseconds.
Fast access time is 45 nanoseconds.

Operating modes of the semiconductor memory modules
include the Read Mode, Write Mode, and Power Fail
Refresh Mode. In either Read or Write Mode, a double
word of 48 bits or a single word of 24 bits may be selected.
In the Power Fail Refresh Mode of operation, memory
operations are discontinued but data stored in memory is
saved until normal power is restored if the data save unit is
installed.

If the optional battery backup is not installed in the
system, data stored in the RAMs is lost when input power
falls below specified levels. With the battery backup
installed, the power fail safe circuit causes memory to go
into the Power Fail Refresh Mode of operation. In this
mode of operation, data stored in the RAM:s is periodically
renewed, or restored, by a refresh only circuit. By this
means, data is not lost as a result of an ac power failure but
is saved for a period of up to one hour or until normal
power is restored.

31

0830006-000
Originai 5/78

Magnetic Core Memory Module

The core memory module stores data in magnetic cores
' cbnfigured in a single planar array. A magnetic core is a
non-volatile device, therefore, data is not lost when power
is interrupted. A core memory module also contains address
registers, an address comparator, data registers, parity
generators, and parity checkers,

A core memory moduie is operdted as a 32K-word by
25-bit memory or as a 16K-word by 25-bit memory, where
each word is comprised of 24 data bits and 1 parity bit.

Core memory has- a cycle time of 500 nanoseconds and a
normal access time of 240 nanoseconds.

Read and Write Operations

A read operation causes data in the location specified by
the address on the system address bus to be transferred
from memory to the memory data register. A single- or
double-word transfer is then made from the data register to

the svstem data bue, If a cnnnln waord read oneration is

Sysseir Lol LS. WYL M 3 e Wpetes senawr

specified, two words (even and odd addresses) are retrieved
and loaded into the memory data register. Then, accordmg
to the address, the even or odd word is gated to the bus. If
the addressed word contains an error, the parity error signal
is asserted. A double word read operation places the
addressed words into the data register and onto the data
bus. If an error is detected in either word, the parity error
signal is asserted.

On a write to memory operation, data on the system data
bus is loaded into the memory data register. Data is then
transferred from the register to the location in memory
specified by the address bits on the system address bus.
Single or double words may be stored in memory during a
write operation. For a single word write operation, two
words (even or odd) are accessed from storage. The 24-bit
word at the addressed location is cleared. The other word is
placed in the data register along with the 24-bit word which
is to be written into the addressed location. Then a parity
bit is generated for the new word and both words are
written into memory. In a double word write operation,
both the odd and even singie words on the data bus are
ioaded into the data register. An odd parity bit is generated
for each word, and then a ciear write operation is
performed to store the two single words in the addressed
location.

Fast Access Operation

A memory module always operates on two, 24-bit words at
a time. These two words have the same address, except for
the least significant address bit which defines the ‘‘even

3.2

word” or the “odd word”. If the specified word is at
location 00 ({(even word), for example, the words at
locations 00 and 01 are accessed simultaneously. If location
01 contains the specified word, the same two locations are
accessed.

Each memory module has a 48-bit data register, termed a
Content Addressable Buffer (CAB), to improve system
performance by reducing the effective cycle time of the
computer. Each memory access fetches and loads the
24-bit words into the CAB. When the CPU requests a word
from memory, a memory access is performed and the word
is transferred over the system data bus to the CPU.
However, if the CPU requires the next sequential word, it is
transferred from the CAB to the CPU without requiring a
second memory access. The CAB significantly reduces the
fetch and execute time for sequential instructions.

Fast access operation makes use of the Memory Data
Register (CAB), an address register, and comparison logic to
reduce the effective cycle time of the computer. The
address register retains the address of the last 24-bit word
memory iocation accessed. A new address to memory is
compared to the address stored in the address register. If
the new address is not equal to the previous address stored
in the address register, and if memory is not busy, a normal
memory cycle occurs. If the new address is equal to the
previous address, and memory is not busy, the data word is
gated from the Memory Data Register to the system data
bus immediately. In this case no memory cycle occurs and
no parity or data correction time is lost since these tasks
were done during the previous access.

MAIN MEMORY

Main memory is configured with 64K MOS semiconductor
modules. Thus, minimum main memory size is 64K which
can be expanded in 64K increments. Without the 1/0 -
Expansion Unit, main memory can be expanded to 576K
words. With the 1/0 Expansion Unit installed, the system
can be expanded to 640K words. Expansion of memory to

" the system maximum capacity of one megaword is achieved

by including shared memory or the Memory Expansion
llnnf in tha cueta ’

oy
L I IV Y LR

MEMORY EXPANSION UNIT

When the Memory Expansion Unit is used, up to four
chassis, each of which can contain one memory port, may
be configured. Each chassis can contain up to one
megaword of semiconductor (MOS) memory, or up to
256K words of core memory. A chassis may also contain a
mix of semiconductor and core memory modules. When
used as an expansion of the Series 500 main memory

system, access is through a single port. Since the Series 500
maximum memory capacity is one megaword, one
expansion chassis is required for semiconductor expansion,
and up to four chassis are required for core. The four core
chassis may be interleaved.

When used to expand main memory, the Memory
Expansion Unit is considered to be an extension of main
memory so that addressing is continuous and
uninterrupted. Since only one port is used in a memory
expansion system, no execution time is lost because of
contention between CPUs for the same memory. A loss in
instruction execution time is incurred when accessing
expansion memory.

SHARED MEMORY SYSTEM

General Description -

A Shared Memory System may be configured with up to
four chassis, each of which can contain up to six memory
ports. Each chassis may contain up to one megaword of
semiconductor memory, or up to 256K of core memory.
Ports may be connected to CPUs or to either types of
devices. For Series 500 CPUs, main memory plus shared
memory may not exceed one megaword. A single Series
500 CPU may be interfaced with up to four Shared
Memory Systems.

Shared memory is designed as a six-port, asynchronous, ring
priority access system. Access through the ports is
nonsimultaneous. The ring priority system which services
cycle requests uses a fixed rank priority for granting
memory cycles to pending requests. However, no port is
granted a second cycle until all previously received requests
have been serviced. Priority is determined by the physical
location of the port board in the shared memory chassis.

Port boards are available with a port index for use with
CPUs having a cache memory system. The port index is a
duplicate of the cache index, and is used to record the
addresses stored in cache that correspond to the portion of
shared memory associated with the port. This insures that
the cache index is updated to correspond with the current
data stored in shared memory.

Programming Considerations

In shared memory systems, a loss of instruction execution

time is incurred when accessing the shared memory portion

of the memory system. If two or more ports request entry
simultaneously, access time increases for the lower priority
port(s) which must wait to access memory.

0830006-000
Original 5/78

Semaphore Operation

Shared memory supports read and lock, and write and
unlock functions. Upon receipt of a read and lock
command, the port locks the addressed memory module by
initiating a read cycle, and prohibits entry to all memory
modules from any other port. The shared memory remains
locked until it receives a write and unlock command from
the same port that initiated the lock function. The lock and
unlock sequence always occurs in pairs. During the lock
interval, 1/0 access is inhibited. Two instructions, the
Transfer Flag to Memory (TFM) and Transfer Zero to
Memory (TZM) instructions, implement the lock and
unlock functions. Shared memory performance is directly
affected by the frequency of execution of the TFM and
TZM instructions, e.g., a program containing many TFM
instructions will lock up shared memory for prolonged time
periods, inhibiting entry by other ports.

ERROR CORRECTING AND REPORTING

Error Correction

Single bit error correction is provided by error correction
circuits contained on each semiconductor memory board.
All one-bit errors are corrected by this circuit. The parity
error (PE) indicator on the control panel is lighted
whenever a parity error is detected, whether it is corrected
or not. Detection of a parity error does not halt the
machine.

All write operations to semiconductor memory will store
either 24 or 48 bits of data and 5 bits of Hamming Code
parity for each 24-bit data word. These parity bits are
generated by the memory module whenever data is asserted
for a write operation. All memory read operations
regenerate the Hamming Code from the stored data bits and
compare this with the stored Hamming Code. This
comparison generates an address code that points to the bit
in error, and the correction circuit corrects the error. The
corrected data is stored in the memory data register and is
written into the appropriate memory location. This
corrected data may then be obtained from the memory
data register by a read operation to the same address, with
no other operation intervening.

Error Reporting

Memory errors are reported to the system by means of the
priority interrupt structure. A register is provided which
saves the physical memory address at which a parity error
occurs. In addition, if memory fails to respond within a
specified time interval, a hard error is reported and the
address is saved. '

22

0830006-000
Originai 5/78

Parity Errors and interrupts

When a parity error is generated as the result of a read
operation, a retry is performed in which the location is read
again. If no parity error is generated during the re-read
operation, indicating that the error correction circuits
corrected the error, the parity error signal is termed a
“soft’ parity error. If & parity ervor is asserted during a read
operation and again on the re-read operation, indicating
that the error was not corrected by the error correction
circuits, the parity error signal is referred to as a “hard”
parity error. Since magnetic core memory modules contain
no error correction circuits, they generate only hard parity
errors.

Each time a hard parity error occurs, an executive trap
interrupt is generated at Group 0, Level 1. This interrupt is
also asserted if a memory time-out condition occurs. For
each soft parity error generated, an external priority
interrupt is triggered. A count of the number of hard and
soft parity errors is recorded by software. The operating
system then responds according to the type and number of
errors recorded.

Parity Error Address Register

The 24-bit Parity Error Address Register (PEAR) retains
the physical memory address associated with a memory
parity error or memory time-out location. Two of the
register bits provide for recording the type of operation
causing the error. The contents of the PEAR may be
retrieved with the Transfer Parity Error Address Register to
A (TPA) instruction. The register can be loaded by one of
the diagnostic instructions, the Transfer A to Parity Error
Address Register (TAP) instruction,

PARITY ERROR ADDRESS REGISTER
| ! T I i I i

00 PHYSICAL MEMORY ADDRESS

i I S N NS VRO RO U NN AN AN NS SN N NS SN A NN N
2322 21 20 19 0
\.,(.4

ERROR
CAUSE

Bits 19 through O trap the address corresponding to either
the parity error or memory time-out location. The time-out
is defined as no response to a memory command for a
period of 10 microseconds. Bits 21 and 20 are defined to be
zeroes, and bits 23 and 22 record the type of operation

causing the interrupt. Bits 23 and 22 are defined as follows:
23 22 Error Cause
0 0 parity error on instruction access
0 1 parity error on operand access
1 0 parity error on /O access
1 1 time out — nb memory response

In the event that a hard error is detected following a soft
error before execution of the TPA instruction, the hard
error address replaces the soft error address in the PEAR. If
a second hard error or second soft error is detected prior to
execution of the TPA instruction, no action is taken.

CACHE MEMORY

Operationai Description

Cache memory enhances system performance by reducing
the number of accesses made to main memory. When cache
contains the data for a specified address, cache provides the
data and no memory access is made. If the address and data
are not stored in cache, a memory access is made to obtain
the data. If the system software restricts memory accesses
to small groups of locations over short periods of time, the
time saving is considerable, When cache contains the
requested address and provides the data, the condition is
called a hit. When the cache does not have the requested
address and data in storage, and the data is provided by

main memory, the condition is called a miss. The ratio of

hits to misses is dependent on the system software
characteristics.

The cache data storage is configured as 1024 addresses by
48 bits and is divided into two, 512 double-word sections.
One section, called the instruction section, stores only
single word instructions and word 1 of extended
instructions. The other section, called the operand section,
stores operands, data from indirect locations, and word 2 of
extended instructions. A control line informs cache
whether accessed data is an instruction or operand.

Addresses corresponding to the data stored in cache are
stored in locations called the instruction index and the
operand index. When the CPU accesses memory, the
address is presented to the memory modules and the cache.
The cache compares the address to the addresses stored in
the instruction index and operand index. If a hit occurs,
data is transferred from the cache to the data bus. When a
miss occurs, data is read from main memory.

When the cache is full, a new instruction or operand is
stored at a location determined by the address generated.
The cache is updated whenever the CPU performs a write
operation, ‘or.a read operation with a miss. 1/0O write
operations with a hit also update the cache.

Algorithm for Filling Cache

When a Memory read operation is performed, the ten least
significant bits of the EMA select a location in the cache.
Refer to Figure 3-1. The contents of the instruction index

and operand index are then compared to the ten most -

significant bits of the EMA. If there is a compare, the data
is read from the cache. If the address does not compare, the
cache location is purged. Data is then read from main
memory and is loaded into the CPU and cache.

On a memory write operation, the ten least significant bits
of the EMA select a location in the operand section of the
cache. The contents of the selected location are purged and
replaced by the CPU write data which is also loaded into
main memory.

'NOTES

1) The cache monitors 1/0 memory write
operations to eliminate stale data.

2) CPU memory write operations are
monitored to eliminate stale data
in the instruction storage section.

3) The index is updated with EMA19-10
each time the cache is loaded.

Programming Considerations

Cache is transparent to the programmer except when an
address is generated outside the bounds of physical

0830006-000
Original 5/78

memory. If non-existing memory is addressed, the address
and data are stored in cache. The cache then responds to
the address, and data is read out of cache although no
memory exists for the addressed location.

A search is performed by the operating system to determine
the amount of memory available. An ODW instruction is
executed to issue a command word to the cache to place it
offline. Write and read operations are then performed to
verify the amount of memory included with the system. At
the conclusion of the memory search operation, the cache
is placed online. All user programs are run with the cache
online.

Cache stores 1024 instructions and 1024 operands.
Although each section contains 512 double words, cache is
updated a single word or double word at a time. Since the
purpose of cache is to reduce the number of memory
accesses, efficiency depends on cycling the instructions and
operands stored in the cache. Better performance is
achieved by looping programs within the 1K areas of cache.
When running large programs straight through without
looping within the 1K areas, performance may be degraded.
A loss in time is associated with not obtaining a cache hit
since the cache must search for requested addresses and
data. In addition, a cache miss requires that a memory
access be made to fetch the requested data.

EMA MSB LsB
& D 5,
Y Y
A
CACHE MEMORY
________________________ 0
INSTRUCTION INSTRUCTION DATA
INDEX STORAGE
511
COMPARATOR 0
‘ OPERAND OPERAND DATA
HIT OR MISS INDEX STORAGE
511
(. A J
Y Y
10 BITS 48 BITS

Figure 3-1. Cache Memory Operation

MI2418-678

2.R/{2.6 Rlanl-\

0830006-000
Original 5/78

SECTION IV
INPUT/OUTPUT CHANNELS

GENERAL DESCRIPTION

The computer system input/output (1/0) structure
combines the characteristic economy of unit /O systems
with the speed of a channel 1/0O system. This configuration,
in conjunction with the 1/0 instructions, permits maximum
flexibility in 1/O communications. The relationship
between the CPU and the 1/O structure is illustrated in
Figure 4-1. The elements comprising the 1/O structure are
described in the following paragraphs.

The basic 1/0 structure allows single word data transfers
between the Central Processing Unit (CPU) and a peripheral
unit. [t also allows 1/0 command and test operations to be
program controlled. Block /O channels may be used to
control the transfer of blocks of data between the CPU and
the peripheral units without program intervention.

The I/O structure involves communication (such as data
transfers, addresses, and command status information)
between the CPU and a peripheral unit by way of a
channel. The CPU communicates with a specific channel
and the channel, in turn, communicates with a peripheral
unit. The 1/O structure varies with CPU configurations to
accommodate an applicable number of input/output
channel (I0C) boards, all of which can be active
concurrently. A channel can communicate with from one
to sixteen peripheral units using standard 1/O instructions.
Only one peripheral unit per channel can be connected;
however, all units can be active at any given time.

Communications between the 1/O structure and the CPU
may also be conducted on an interrupt basis. Logic in the
channel and unit allows unit interrupts to be placed under
program control and selectively enabled or disabled by
executing the appropriate 1/0O instruction. An alternate
method permits unit functions to be wired directly to the
CPU priority interrupt structure and used as interrupt
triggers.

The 1/O interface is the link between each peripheral unit
and its channel. The interface and its associated unit
control facilities provide the physical means for connecting
the peripheral device to the 1/0 structure and the logic
capability that allows the unit to adapt the standard 1/0O
controls to its specific requirements. The interface facilities
and unit control logic are normally integfated with the
peripheral unit. However, some controllers are available as
options to the Integral Block Channel (IBC) and 8-bit
Programmed Input/Output Channel (PIOC) boards.

BASIC 1/0 CONCEPTS

The 1/O structure implements basic concepts to perform
input/output operations between the CPU and a variety of
channels and units. These basic concepts and their
applicability are described in the following paragraphs.

Addressing

a. Channel Addresses — The I/O channels must each be
addressed via a unique address contained in each 1/0
instruction. A channel is patched, or switched, to
recognize its assigned address. The recognition of this
code in an I/O instruction activates channel logic to
execute the instruction. No other channel will
respond.

b. Unit Addresses — Since a channel is capable of
communicating with one or more unit controllers, any
instructions involving the transfer of data, commands,
or status must necessarily contain an address
applicable to the unit involved. The unit address is
contained in the format of the following instructions
(reference Section VIl for formats).

Output Command Word (OCW) — PIOC, IBC,
UBC, XBC and DMACP

Output Data Word (ODW) — PIOC, UBC, XBC
and DMACP

Input Data Word (IDW) — P1OC, UBC and
DMACP

Input Status Word {ISW) — PI1OC, IBC, UBC,
XBC and DMACP

Output Address Word (OAW) — IBC, UBC,
XBC and DMACP

Input Address Word (IAW) — 1BC, UBC, and
DMACP

tnput Parameter Word (IPW) — IBC, UBC,
and DMACP

4-1

0830006-00C
Original 5/78

CENTRAL PROCESSCR UNIT

/O CHANNEL CONTROL

DIRECT
PROGRAMMED INTEGRAL . MEMORY
/O CHANNEL BLOCK ACCESS
(FICS) CHANNEL COMMUNICATIONS
(18C) PROCESSOR
UNIVERSAL EXTERNAL (DMACP) ADDITIONAL
BLOCK BLOCK Vo
CHANNEL CHANNEL " CHANNELS
1704 (uB<) (xBC) 1 OR2 upTO®8
DEVICE DEVICE COMMUNICATION
CONTROLLERS® CONTROLLERS INTERFACES
170 16 170 16 1708
PERIPHERAL DEVICE DEVICE DEVICE PERIPHERAL PERIPHERAL
DEVICES CONTROLLERS* CONTROLLERS CONTROLLERS DEVICES DEVICES
*
TOTAL NUMBER OF INTERNAL AND EXTERNAL
DEVICE CONTROLLERS CANMSOT ExCran 13
PERIPHERAL PERIPHERAL PERIPHERAL DEVICE CONTROLLERS CANNOT EXCEED 16
DEVICES DEVICES DEVICES

4-2

omputer i/0 Structure Biock Diagram

BDi641-976A

NOTE

The inclusion of unit addresses in the IBC
channel OAW, IAW, and IPW instructions has
no transfer-to-unit control. The IBC channel
contains the capability to concurrently store
block transfer parameters for all unit
controllers on its interface and the parameters
must be addressed to reserved storage areas.

An instruction containing a unit address, sent to any
channel other than the IBC channel is compared to the unit
code of the previous instruction. If a non-compare is
detected, the channel does not execute the ISW or IDW
instruction. Instead, a disconnect/connect sequence is
entered in order to connect the addressed unit. A
non-compare detected during OCW and ODW instructions
forces the disconnect/connect sequence also, but the
channel loads the data/command, if not previously set
busy, and holds the data/command until the addressed unit
is ‘“‘connected” to its interface. The transfer is then
completed and the channel returns to a ‘‘not busy”
condition.

Disconnect/Connect Sequences

Each 10C performs disconnect/connect sequences if the
unit address contained in the instruction differs from the
previously loaded address. In disconnect/connect sequences
occurring during input instructions, the channel is
prevented from setting the “ready’’ line to the CPU to
- verify that the instruction was executed. This requires a
Branch.on Not Zero (BNZ} instruction execution after each
I/O instruction for a repetition of nonexecuted
instructions. Timeout routines sequenced by the CPU may
then detect channel/unit hangups and execute Input Status
Word (ISW) instructions to pinpoint conditions.

The [IBC channel is not equipped to sequence
disconnect/connect operations; in this channel the unit is
automatically connected to the channel for the purpose of
instruction execution except during the time that data
transfers are taking place.

" Block 1/0 ChanneI-Priority

A programmable matrix is contained on each 10C capable
of performing block transfer operations. The matrix is
provided to resolve contention for simultaneous memory
cycle requests. The block 1/O channels are assigned priority
levels and the highest priority channel requesting a memory
cycle inhibits any lower priority channel(s) from sensing a

0830006-000
Original 5/78

“memory cycle granted’’ signal from the CPU. A system
should be configured to assign high speed devices a lower
priority level than relatively lower speed devices. Also, no
unused priority levels should appear between any two
channel levels. The priority matrix is patched on UBC and
XBC channels, and is switch-selectable on the DMACP and
IBC channels.

Synchronization (Handshake) Conditions

With few exceptions, all data and command sequences are
synchronized via ‘‘handshake’’ operations. This convention
ensures that the connected unit has received the command
or data in output transfers or frees the unit to load new
words in input transfers. If the unit is unable to accept the
command/data, the channel sets itself busy and will honor
no output transfer operation except for the OCW
instruction in which “Override” is specified. The normal
handshake function is modified in XBC and IBC channel
operations and is described following the conventional
handshake functions.

Output Transfer Synchronization

The output transfer- handshakes are performed in
OCW/ODW single-word transfer operations and in output
block - transfers of block 1/0 channels. In single-word
transfers, if the channel is not busy executing a previous
output instruction, the command/data is loaded into the
channel’s output buffer and the ““Output Command Here”
or “Output Data Here” line is raised to the unit. The
channel sets itself busy to inhibit any new output transfer
operations. When the unit gates the command/data into its
own registers, it returns an ‘‘Accepted’ signal. This signal
resets the channel busy condition and the channel is free
for a new transfer.

In block tramsfer sequences, the channel, having been
previously initiated for output transfer operations,
automatically sequences memory request operations. When
the memory cycle is granted, the channel places the transfer
address on line and loads the word from the specified
address. The channel then raises the data transfer
handshake line and, when the unit “‘accepts” the data,
fetches another word from memory. The channel remains
“busy’” and the sequences continue until the transfer is
completed or overriden.

Input Transfer Synchronization

A channel cannot execute an IDW instruction until it senses
that the “Data Available” line from the unit has been set

4-3

0830006-000
Originai 5/78

true. In normal operations the channel au"comatically
transfers the input to the CPU and raises the “Data
Accepted’’ handshake line. The unit drops ‘“Data Available’
to prepare a new word for transfer,

An input block transfer begins when a unit raises its “Data
Available” line after the channel and unit have been
commanded to the input mode. The channel loads the data
into its input buffer and raises its “Data Accepted” line to
the unit, The channel then sequences 2 memory cycle with
the CPU to store the input word at the address specified by
the Transfer Address Register (TAR). The channel will not
honor any subsequent store requests until the memory
cycle has been completed.

PIOC Synchronization

Programmed i/0O transfers are performed by the PIOC via
the OCW, ODW, IDW, and ISW instructions. The PIOC sets
its “ready’’ line true if conditions allow it to execute an
instruction from the CPU. If the unit cannot execute the
i/O instruction, the channei sets itseif busy. The busy
condition may be removed by setting the Override bit in
the OCW instruction.

The PIOC performs handshake sequences with the unit
controller in executing OCW, ODW, and IDW instructions.
When a command is placed on line by an OCW instruction,
the channel sets its “Command Data Here"” line true. The
controller signifies acceptance of the command by setting
the “"Cutput Data Accepted” iine true. Both handshake
signals are then dropped. The same sequence occurs for
ODW instruction except that the channel sets its “Output
Data Here" line true. The controiler uses the “Output Data
Accepted” signai 1o acknowiedge receipt of the data and
both the channel and controller then drop their respective
handshake lines.

To perform IDW instructions, the controller signifies that it
has data available by setting its ‘‘Data Available From Unit"
line true. When the channel has passed the data to the CPU,
the channel sets the ’Data Accepted to Unit” line true. The
channel and controller then drop the handshake lines.

No handshake is sequenced when the ISW instruction is
execqted since status information from the unit is always
on line.

XBC Channel Synchronization

The block transfer sequence control is under the control of

the external units in XBC applications. The unit may be
commanded to the block-transfer mode via an OCW

4.4

instruction and may require parameter inputs but, once
initiated, the device controls the transfers. In executing the
OCW instruction the channel uses the conventional
“Command Data Here”” handshake signal and the unit
returns “Accepted”’ to signal loading of the command. If
required by the unit, the channel executes an OAW
instruction to provide the Transfer Address (TA) to the
unit. The channel raises ““Address Word Here'’ which signals
the unit to “‘accept’ the address. This may be followed by

an ODW instruction in which the word count is sent to the

unit. The channel raises ‘“Word Count Here’” which the unit
“accepts.’’

Data transfers to/from memory begin when the unit sets a
priority-structured ““Data Transfer Request’ line to the
channel. If the channel is not busy executing an instruction
or servicing a higher-priority request, the channel raises its
““Send’’ line. The unit responds via its ’Ready” line. The
unit then places the transfer address on line for channel
storage and sets a transfer direction control line, the "In”
line. If the “In’ line is received in its true state, the channel
loads the data from the unit, sets itself busy, and requests a
memory cycie for storing the data in memory. When the
“In" line is received set false, the channel requests a
memory cycle for access purposes and, when the cycle is
granted, the channel loads the data word from the address
furnished by the unit. The channel then pulses its *‘Output
Data Here"” line to load the data into the unit.

IBC Channel Synchronization

The IBC channel is sequenced for block transfers via the
units’ “Data Transfer Request’”’ lines. (See previous
description for similar transfer capability.) The channel also
specifies the transfer direction, but this is a reflection of the
command word to the unit. In normal operation, channel
parameters are loaded via the conventional
block-transfer-initiate sequences into RAM locations
reserved for units served by the channel. The unit, however,
may be commanded to an external addressing mode in
which it loads the unit’s Transfer Address Register (TAR)
and controls whether the TAR and/or Word Count Register
(WCR) are incremented/decremented, respectively.

The iBC channel does not “shake hands” with the unit
during command transfers; the command is automatically
loaded by the unit controller since the channel “‘selects”
the unit, bypassing the usual disconnect/connect sequence.

UBC Channel Synchronization

UBC channel boards contain two logical channels which
share the unit bus via assigned scan cycles derived from

internal timing. Each channel communicates with an

addressed unit for transfer and handshake purposes only
during its assigned scan cycle. |If a data transfer occurs, the
scan cycle is extended until the handshake takes place or is
timed out. For OCW/ODW instructions the handshake
sequences are as previously described. For IDW/ISW
instructions, the channel must have first established that a
“status ready” condition exists. This condition requires
that the channel has iteratively received status
(automatically) or data (if available) from the addressed
unit during the most recent two assigned scan cycles. If this
is true, the channel automatically transfers the status of the
- CPU during an ISW instruction; however, no handshake is
sequenced with the unit. If the input data has been loaded
by the channel, the data is transferred to the CPU during an
IDW instruction, and the channel signals ‘“‘acceptance”
during the next assigned scan cycle.

The same handshake sequences occur during block
transfers, but the channel is capable of 48-bit (double)
word transfers to/from memory. This allows the channel to
shake hands with the unit twice for each memory cycle
requested, transferring a 24-bit word with each handshake.

Timing

All of the 1/0 channels except the UBC, DMACP and IBC
depend solely on computer clock pulses for execution of
single-word instructions or, where applicable, block-transfer
operations. The UBC, DMACP and IBC channels are
synchronized to CPU timing for some sequences but may
provide other sequences via independent internal timing.

Block Transfer Memory Access

Block /O operations are controlled by the channel after it
has been initiated under program control. The channel,
therefore, accesses memory for read/write operations and
must request memory cycles for this purpose. In memory
transfers, the requested memory cycle is automatically
granted unless the CPU is in an error correct cycle.

When a memory cycle is granted by memory, the control
signal is permitted into the highest priority channel
generating a cycle address. The “memory granted’’ signal
activates the channel to load the word from memory
{output transfer) or transfer a previously-loaded word from
the unit to memory for storage (input transfer).

Block Transfer Parameters

The UBC, DMACP, and IBC are initiated for block-transfer

0830006-000
Original 5/78

operation via an OCW instruction. The command word
itself must have bit 23 set to activate the block-transfer
mode. These conditions activate the channel to sequence
two simultaneous memory requests for parameters. The
designated parameter words are illustrated in Figures 4-2
and 4-3.

UBC Channel Parameter Words

The UBC channel parameter word formats are illustrated in
Figure 4-2. In this channel the OAW instruction preceding
the OCW used to initiate the block transfer control causes
the first parameter address (PA) to be loaded into a
parameter address register (PAR). This allows the
parameters to be located in a separate “list’”’, but the list
must be located in the lower 65K of memory. Each time
the PAR is addressed for a parameter word, the channel
increments the PAR for subsequent parameters.

The first parameter applicable to UBC operations contains a
16-bit word count and the most-significant 8 bits contain a
“Skip Count”. The skip count is significant only in block

" transfers designated for input and is loaded into the

channel’s skip count register (SCTR). This parameter
controls the actual transfer operations in which data is
loaded into memory. When a count is set into the SCTR,
the channel provides load sequences to transfer the data
from the unit to the channel but does not request memory
cycles to load the data into memory. The SCTR is
decremented with each word transferred and, when the
counter has decremented to zero, the channel begins data
transfers to memory based on the word count parameter.

The second parameter word in UBC appiications contains a
20-bit TA. The two most-significant bits of PW2 are stored
in the channel and specify four termination sequences that
may be entered when the block transfer has been
completed; these are:

a. Normal termination — the channel goes to a “not
busy”” state when the last data word has been
transferred.

b. Data restart — the channel goes into a re-initiate
sequence to bring in two new parameters. The
subsequent block transfer is as specified in the OCW
initiating the previous block transfer.

c. Chain command restart — the channel goes into a
re-initiate sequence in which a new command (from
memory} is sent to the unit to change the transfer
direction. As with the OCW initiating block mode
operations, bit 23 of the command word must be set
to command the initiate sequence. This is followed
by bringing in PW1 and PW2 to set channel control
action for the block of data to follow.

4.5

0830006-000
Original 5/78

UBC CHANNEL
TWO-WORD PARAMETER LIST

PARAMETER WORD 1 (PAR)
SKIP COUNT WORD COUNT

(R T BN S R | W T | [S DU SN W N N S |

1 i
23 16 15 o}

PARAMETER WORD 2 (PAR +1)

4 T T T T T T
//// TRANSFER ADDRESS
1 / 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 L] 2
23 22 19 o]
~——
[(o : mummacs
- PARAMETER LIST
10 = RESTART (DATA CHAIN
gn = COMMAY(~ID AAI\QD Rsérzm (COMMAND CHAIN) (MEMORY)
, + | | PARAMETER WORD 1
THREE -WORD PARAMETER LIST (COMMAND CHAINING) TWO-WORD LIST 4 I i o ETER WORD 2
COMMAND WORD (PAR) COMMAND WORD
r T T T r ' r THREE-WORD LIST { | PARAMETER WORD 1
UNIT COMMAND PARAMETER WORD 2
322 2 0 PARAMETER WORD 1
| %’3? 2 NG ASHON } NON-DMA COMMAND PARAMETER WORD 2
10 = RE-INIT N TRANSFER
\1()) = Rz-mriﬁtgé 'I:JUP%JPLT TRAl:SFER COMMAND

PARAMETER WORD 1 (PAR +1)

SKIP COUN WORD COUNT .
231 1 i 1 1 1 1'6 ,5! 1 1 1 1 1 1 1. 1 1 I 1 1 N3 e 0 ETC
PARAMETER WORD 2 (PAR +2)
7 1 Ll L) 1 1 T
17 L L
23 22 1] 0

——
I—— SEE PARAMETER WORD 2 ABOVE

IBC CHANNEL

PARAMETER WORD 1 (PAR) PARAMETER LIST

LA R i (MEMORY)
oz o SR
23 16 15 0 PARAMETER WORD 1
PARAMETER WORD 2
PARAMETER WORD 2 (PAR +1) PARAMETER WORD |
P T T T T T T
23 19 [s}

TERMINATE AFTER BLOCK .
RESTART ETC

P
—o
o

MI11821-9786B
Figure 4-2, UBC and IBC Parameter Word Formats

0830006-000
Original 5/78

PARAMETER ADDRESS

PARAMETER LIST

De PARAMETER ADDRESS
o INPuT
| OUTPUT

0 (MEMORY)
PARAMETER WORD 1
PARAMETER WORD 2

—

30 TERMINATE AFTER BLOCK
I RESTART

PARAMETER woao 1 PARANETER WORD 1
////// CBYTE COUNT PARANETER WORD 2
e W SR PARAMETER WORD |
PARAMETER WORD 2
PARAMETER WORD 2 |
RZ o TRA‘NSIFElRIAlDDlREIS§| o

ETC.

Mi2362-378

Figure 4-3. DMACP Parameter Word Formats

d. Chain command terminate — the channel goes into a
re-initiate sequence in which a new command (from
memory) is sent to the unit. If bit 23 of the
command word is not set, the channel goes to a “not
busy’’ state when the transfer sequence is completed.

XBC Channel Parameter Words

The XBC channel does not contain circuits to store and
control parameters. Likewise, the channel does not provide
any restart actions. The parameters are controlled by the
external device, but the device may require that the
parameters be initially furnished from memory. In the
latter case, the channel is sequenced to execute an QAW
instruction which transfers the TA to the unit. This is
followed by an ODW instruction which sends the word

count to the unit. After being initiated by the OCW
’ command, each data transfer is sequenced and the unit
itself furnishes the transfer address. The unit controls the
word count and generates any operational interrupts.

IBC Channel Parameter Words

The IBC channel is initiated to the block-transfer mode via
the conventional OCW with bit 23 of the command word

set. The IBC channel then enters the initiate sequence to
load two parameter words (Figure 4-2). The first parameter
word contains the word count of the subsequent block
transfer, The second parameter word contains a 20-bit TA
and the “restart” condition. The IBC channel does not
provide chain command functions in a restart operation.
But, since the IBC channel contains storage for parameter
addresses, the channel may access PW1 and PW2 from a
“list”.

DMACP Channel Parameter Words

Each port has assigned to it a Parameter Address Register, a
Byte Count Register, and a Transfer Address Register.
These registers are located in the Parameter Stack located
on the DMACP board. Refer to Figure 4-3,

The Parameter Address Register contains the starting
address in main memory of the next parameter list. The
parameter list specifies the byte count to be placed in the
Byte Count Register, and the transfer address to be placed
in the Transfer Address Register. Along with the parameter
address, a transfer direction bit (23) specifies whether the
transfer is to be an output from main memory to the
DMACP (ONE), or an input from the DMACP to main
memory (ZERO).

0830006-000
Original 5/78

Parameter Word 1, loaded into the Byte Count Register,
contains in binary format the number of bytes of datato be
transferred between main memory and the selected port.
Maximum byte count per DMA sequence is 65,536.

Parameter Word 2, the transfer address, is loaded into the
Transfer Address Register. The transfer address represents
the location in main memory where the next data word
{three bytes) is to be transferred. Each time a word is
transferred, the TAR is incremented to peint to the next
memory address. An automatic restart function is provided
to enable successive blocks of data to be transferred
without CPU intervention. This is accomplished with bit 23
of the transfer address. If this bit is a ONE, the
microprocessor will fetch a new byte count and transfer
address from main memory as specified by the Parameter
Address Register. A restart occurs when the existing count
in the Byte Count Register reaches zero. When bit 23 is a
ZERDO, the restart function is disabled.

INPUT/OUTPUT INSTRUCTIONS

Execution of i/O instructions consisis of the transfer or
command (OCW), data (ODW and I1DW), status (ISW), or
address (OAW, |AW, IPW) words between the A Register
and the specified channel/unit combination. The
channel/unit codes in each 1/0 instruction (excluding OAW,
IAW, and IPW instructions in applicable block-transfer
channels except the 1BC) allow one channel to be selected
and one of up-to-16 units to be connected to the channel.
When an instruction to the same channel carries a different
unit code, the previously-specified unit is disconnected and
the new unit is connected automatically. During this
disconnect/connect sequence, the channel is busy and does
not respond to 1/O instructions until the sequence is
completed. If a channel is in the process of transferring
commands or data to a unit, an ISW or IDW instruction
addressed to a different unit on the same channel receives a
busy indication. '

Command and data words from the CPU are transferred to
the channel output buffer and subsequentiy to the
connected peripheral unit. Data and status words are
retained in the input buffer of the selected unit and
transferred to the A Regisier upon ieguest {instruction)
from the CPU. Address words are applicable only to those
channels employing the block-control capability. (Refer to
1/0 instruction formats in Section VIl for the following
discussions.)

I/O Commands

The OCW instruction transfers a command word to the
specified channel/unit combination. The command word
bits specify the unit control function(s) to be performed

!;
0

and/or the 1/O condition to be established. Following the
execution of an OCW instruction, the channel remains busy
until the command has been accepted by the addressed
unit. Figure 4-4 shows the format for a typical OCW
instruction.

If the channe! is busy or not ready when addressed by the
OCW instruction, the Condition Register is set to “Not
Zero” to allow a programmed delay. The override function
causes the channel to automatically perform a unit
disconnect/connect sequence. This ciears the channei of
any other activity and allows the current instruction to
assume control of the channel unconditionally upon
termination of the disconnect/connect sequence.

All of the 1/O channels execute the OCW instruction, but
channel capabilities may require setting of the instruction
contents as follows:

a. Unit Addresses — The IBC channel contains interface
capability for up-to-two devices. The unit address
must therefore be set in Unit Code bits 0 and 1. The
unit addressing requirements for the XBC channel is
contained in Unit Code bits 0-2. Unit code 10g is the
only valid code for the DMACP channel. All of the
remaining ¢hannels, having the capability to interface
with up-to-16 units, utilize all of the Unit Code bits
for addressing purposes.

b. Channel Command Mode — Bits 4 and 5 provide
command control to set an 1/O channel to one of
four modes: Normal, Offline, Multiplex, and Reset.
The Normal mode specifies “normal’”’ command
functions. The Offline mode removes the units from
the 1/O channel interface, permitting a second
computer and 1/O channel to assume control over the
units. The Multiplex mode allows a “‘Master” unit to
communicate with a “Slave” unit and the CPU
cannot intervene except via a Master Clear or an OCW
instruction with “Override’’ specified or Reset mode
commanded. The Reset mode allows a return 1o
Normal mode operations from either the Offline or
Multiplex modes.

The IBC and DMACP channels do not respond to the mode
control specifications of an OCW instruction (they thus
always operate in the Normal mode).

The XBC, DMACP, and IBC channels cannot be

commanded to the Multiplex mode of operation. The

remaining channels may be commanded to any of the
modes described above.

c. Override Control — This OCW instruction control
function is exercised in all 1/0 channels except the
XBC. An OCW instruction with this bit set assumes
immediate control of the channel/unit by forcing a
disconnect/connect sequence.

0830006-000
Original 5/78

0070.* +C.U ojojofololjo|1{!

0

232221 2019181716 15141312110 9 8 7 6 54 3 2 |

0f0)*CICICICICIMIMIVIUIUIY
0

|\ ~ N o’ I

% = OVERRIDE BIT ONCUNIT
CHANNEL CODE

¢ = CHANNEL NUMBER BITS (0-11) CODE

= - CHANNEL
N = MODE BITS (0-3) OVERRIDE COMMAND
U = UNIT NUMBER BITS (0-15) BITE MODE
MI2363-378
Figure 4-4. OCW Instruction Format
1/0 Status Word Programmed Data Transfers

The ISW instruction is used to test the operational status of
the channel/unit. When a channel is addressed by the ISW
instruction, a 24-bit status word is transferred to the A
Register in the CPU. The quantity and significance of the
status bits depends on the type of peripheral unit involved.

Units controlled by 8-bit interface channels (e.g., PIOC)
furnish up to six unit-defined status bits which the channel
sets into the least-significant bits of the input word.
Channels with 24-bit unit interfaces (e.qg., block controllers)
may receive as many as 8 unit-defined status bits which are
set into the 8 least-significant bits of the input word.

Channel status may be set into the three most-significant
bits of the input word and reflect the channel’s current
mode or “busy”’ status as follows:

1BC and DMACP None

PIOC Bit 21 — Multiplex
Bit 22 — Offline

UBC Bit 21 — Multiplex
Bit 22 — Offline
Bit 23 — Busy

XBC Bit 22 — Offline

Input Data Word

The IDW instruction is a request from the CPU to a specific
channel/unit combination for a data word. If data is
available, the data word is transferred immediately to the A
Register. If data is not available, the Condition Register is
set to ““Not Zero"’ to allow a programmed delay.

Normally, the 24-bit input data word contains a single data
character. The actual number of data bits per character
depends on the channel and unit involved in the transfer.
For example, the console typewriter generates an 8-bit
character and a card reader may generate a 12-bit character.
In any case, the character is right-justified in the A Register
with the unused bit positions set to ZEROs.

Assuming the data character contains no more than 12 bits,
more than one character may be packed in the A Register
through the use of the Merge feature. When a character
Merge is employed, a logical OR is performed between the
previous contents of the A Register and the new input data
word. Without the Merge, the previous contents of A are
destroyed upon transfer of a new character to A. An
illustration of the character Merge technique, as compared
to a normal IDW instruction, is shown in Figure 4-5.

The IDW instruction is executed by all 1/0 channels except
the XBC and IBC.

0820005-000
Qriginal 5/78

CODING

IDW CU

IDW CU

IDW CU

(b) MERGE
CODING

IDW CU

LLA 8

IDW* CU

LLA 8

IDW* CU

(a) NORMAL (WITHOUT MERGE)

COMMENTS

BRING IN FIRST DATA CHARACTER

BRING IN SECOND CHARACTER

BRING IN THIRD CHARACTER

COMMENTS

BRING IN FIRST DATA CHARACTER

SHIFT LEFT 8 PLACES

BRING IN SECOND CHARACTER
AND MERGE

SHIFT LEFT 8 PLACES

BRING IN THIRD CHARACTER
AND MERGE

EXAMPLE: THREE 8-BIT DATA CHARACTERS ARE TO BE PACKED IN THE A REGISTER.

REGISTER A

0000000000000000

C

23 87

F)oooooooooooooooL

C2 l

23 87

rOOOOOOOOOOOOOOOO

Cs I

23 87

REGISTER A

Iooooooooooooooool

]

23 87 0
[ooooooool ¢ looooooool
23 16 15 87 0
fooo000000] ¢ | c2]
23 16 15 87 0
| ¢ | Ca looooooool

23 6 15 87

0

Cs l

4-10

Figuie 4-5. 1DW instiuclion; Ua

M160-005-770

Output Data Word

When an ODW instruction is executed, an 8- or 24-bit data
word is transferred from the A Register to the specified
channel. The data word is subsequently transferred from
the channel to the unit that is currently connected. If the
channel is busy or not ready to accept the data word, the
Condition Register is set to ‘“Not Zero” to allow a
programmed delay. If the unit is not ready to accept the
data from the channel, the data remains in the channel
buffer.

As soan as the peripheral unit is able to accept the data
from the channel, the channel-to-unit transfer is made,

thereby freeing the channel buffer for another data (or -

command) word from the CPU.

The number of data bits accepted by the peripheral unit
varies according to the type of unit involved. Some
peripheral units are word-oriented and accept the entire
24-bit word. Others are character-oriented and accept only
a specific number of bits per character.

The ODW instruction function in XBC 1/O channels serves
the purpose of sending a word count parameter from the
CPU A Register to the addressed unit, if required by the
unit. In subsequent block-transfer operations the unit
controls the WC parameter. The IBC channel does not
execute the ODW instruction.

Address Transfers

Three address-transfer instructions are executed by
block-transfer channels for the purpose of channel or unit
set-up for subsequent transfers {OAW) or for CPU checks of
transfer progress (1AW and IPW). However, the PIOC board
may execute the OAW instruction. The following
discussions cover applicability and qualifications for the
address-transfer instructions.

Output Address Word

The OAW instruction is executed by the DMACP, UBC and
IBC to set the starting address of parameters for
block-transfer control. The XBC also executes the OAW
instruction if a unit on its interface requires a TA starting
address.

The DMACP, IBC and UBC channels load their respective
PAR during execution of the OAW instruction. The
instruction is executed in a single machine cycle.

0830006-000
Original 5/78

NOTE

In UBC execution of the OAW instruction, the
block transfer logic is cleared. Therefore, This
instruction should not be programmed for
execution until all block transfer operations are
completed.

The XBC channel will not execute the OAW instruction if
the channel is busy executing an output command or a data
instruction. The instruction word must be addressed to the
unit to which the TA parameter is intended. Therefore, a
“programmed delay’” should be programmed to facilitate
instruction execution.

In IBC channel OAW execution the instruction word must
be addressed to a unit controller contained on the channel
board. The channel executes the instruction in a single
machine cycle, writing the PA into a register reserved for
the addressed unit.

Avaiiable for software interrupt purposes, an interrupt
Generator.is located on the PIOC board to allow generating
one-of-four possible interrupt pulses in response to an
OAW instruction. The instruction is executed automatically
by the addressed channel to provide one microsecond
interrupt pulses which may be routed for use as interrupts
in another CPU or in any peripheral unit.

The Interrupt Generator responds to the particular OAW
instruction with the proper channel code. The four
least-significant bits (3-0) of the A Register, during the
OAW instruction, will trigger the pulse from the generator.
The pulse remains at the ““true’’ level for the 1 microsecond
cycle and then is restored to the “false’’ state. There is no
interaction between the generation of different numbered
interrupts, but the generation of the same numbered
interrupt is limited to not more than one per microsecond.
There is no response to the mainframe C (condition)
Register during the execution of the OAW, i.e., if the C
Register was tested, it would indicate ‘’not zero"'.

In summary, if an interrupt pulse is to be generated, the
following coding could be applied:

TOA BOB1B2B3 (Unitary bits; one for each
interrupt pulse line.)
OAW CU

A 11

0830006-000
Originai 5/78

Input Address Word

The IAW instruction may be addressed to any of the
block-controller channels except the XBC channel. For IBC
channel purposes the instruction word must be addressed to
the channel and unit; otherwise the instruction is addressed
only to the desired channel. In all applicable channels
except the IBC the instruction is automaticaily executed
during the current instruction cycle. The IBC channel
executes the instruction only if it is not busy executing
another instruction or transferring data. In all cases, the
channel sets its ““Ready” line to the CPU to clear the C
Register. The address word is sent to the A Register and
may be used as a check on transfer progress. The word
represents the TA of the current transfer and is always 20
bits wide.

Input Parameter Word

This instruction is very similar to the IAW. The instruction

is addressed only to those block-controller channels capable

of PA storage: DMACP, UBC and IBC channels. The

execution of the IPW instruction is identical to the 1AW
instruction.

INTERRUPT CONTROL

The OCW instruction may be used to selectively enable and
disable two peripheral unit interrupts in PIOC board
operations. The two interrupts are defined as Input and
Qutput and are controlled by bits 2-0 of the command
word. Table 4-1 illustrates the various bit configurations.

Table 4-1, Peripheral Unit Interrupt Control

Command
Word Bit
Configuration Action

2 1 0"
00O No Action.
001 No Action.
010 Disable Input (or Alternate) Interrupt
g 11 Enable Input (or Alternate) Interrupt
100 Disable Output (or Alternate) Interrupt
101 Enable Output {or Alternate) Interrupt
110 Disable Both Interrupts
1 11 Enable Both Interrupts

*No significance to some units, i.e., the interrupts are
unconditionally enabled by CW Bits 1 and/or 2.

4.12

The terms “input interrupt’’ and ‘‘output interrupt’’ are
applicable only to peripheral units that are equipped with
both input and output data handling facilities. Input-only
devices may make use of the input interrupt and an
alternate interrupt at the normal output level. Qutput only
devices may make use of the output interrupt plus an
alternate at the normal input level.

When the unit input interrupt has been previously enabled,
an input interrupt signal will be generated when the input
buffer in the unit is loaded (i.e., the same time the “Data
Available” signal is generated). An /O channel has no
control over an input interrupt.

When the unit “output interrupt’” has been previously
enabled, an output interrupt signal may be generated by the
channel for two sets of conditions based on a
device-defined signal, ‘“Enable Channel Buffer Empty
Interrupt” (ECBEI. If the unit raiseste ECREl to the
channel, the output interrupt will be generated for a
minimum of 325 nanoseconds if:

a. PIOC board;

1. the channel has not been comimanded to the
Offline or Multiplex mode, and, |

2. the channel is not performing a
disconnect/connect sequence, and,

3. the channel’s output buffer is not holding a
command/data word for unit transfer purposes.

b. XBC, UBC and IBC channels;

These channels contain no output interrupt capability.

If the unit holds the ECBEI signal to the channel low, the
output interrupt will be generated by the channel but the
channel’s output buffer condition (3, above) is ignored.
Instead, the device-defined state of Status Bit 2 from the
unit is allowed to set the output interrupt. The mode and
manuai conditions described for each type of channel above
remain in effect.

The UBC channel contains the capability to generate a
“word count complete” interrupt when the channel has
loaded the final word of a block-transfer operation. (The
IBC channel generates a ““word count complete” signal to
the unit when the channel has loaded the final word, if no
““Restart’’ is specified. This signal, however, is under the
control of the wunit for interrupt purposes.) The
approximate duration of the interrupt is 475 nanoseconds.

c. DMACP Channei;

Two interrupts are generated by the DMACP channel: 1)
whenever a parity error is generated within the RAM
located on the DMACP board, and 2) whenever one of the
ports requires service. The particular event causing the
interrupt can be determined by executing an ISW
instruction to fetch the status word.

I/0 CHANNEL SWITCH/PATCH CONTROLS

The various 1/O channels contain switch and patching
provisions to perform a number of operational functions.
The PIOC board’s patching capabilities is restricted to
channel address selection. The block-transfer channels are
also patched, or switches set, to encode a unigue channel
address, but those channels also contain a variety of other
manually-activated functions. These functions are listed in
Table 4-2 with 1/O channe! applicability specified.

1/0 CHANNEL OPERATIONAL SUMMARIES

The following paragraphs summarize single-word and
block-mode transfer capabilities of the various 1/0 channels
interfacing with the computer. Inciuded are program lists
and suggestions. Refer to the paragraph describing
input/output instructions for application to specific 1/O
channels.

Single-Word Instruction Execution

ocw/oDw

The channel, if not busy, loads a command or data word
from the CPU A Register into its output buffer. The
channel sets itself “busy’’ to inhibit any further instruction
executions until it has completed the transfer to the
addressed unit. In the event of a disconnect/connect
sequence, the channel withholds the handshake until the
addressed unit is ‘“connected” to its interface. A BNZ
instruction should be programmed to verify channel
execution of the OCW instruction. .

IDW

The channel executes this instruction in one machine cycle
if the channel is not busy executing an output transfer, is
not involved in a disconnect/connect sequence, and the
connected unit has signalled that data is available for
transfer via its “Data Available’ line. The BNZ execution
performed by the CPU provides verification of transfer. The
channel shakes hands with the connected unit and is ready
for further instructions.

0830006-000
Original 5/78

ISW

An 1/O channel executes this instruction if the channel is
not busy executing an output transfer and is “‘connected’’
to the addressed unit.

OAW

This instruction is addressed to block 1/O channels (unit in
XBC/IBC applications) for the purpose of transferring the
address of the first word involved in control of a
subsequent block data transfer. Channel loading of the
output word from the CPU’s A Register into the channel’s
PAR (UBC and DMACP applications) is automatic. In XBC
applications the instruction involves transferring a TA to
the unit for subsequent control by the unit. The XBC
channel must have gone to ‘“‘not busy’’ prior to instruction
time for execution. A programmed delay must therefore be
executed by the CPU for verification of transfer. A
handshake with the unit is performed in this instruction
and the channel sets itself busy until the transfer-to-unit is
completed. In IBC applications the addressed channel
executes the instruction unless previously set busy via an
instruction or data transfer sequence.

IAW/IPW

The IAW/IPW instructions are executed to transfer the
contents of a block 1/0 channel’s TAR/PAR to the CPU's A
Register. The IPW and IAW instructions are not executed
by XBC channels. The instructions, when applicable, are
executed automatically in UBC channels. The IBC channel
is inhibited from executing the instruction if currently busy
in an instruction or data transfer operation.

Block-Transfer Operations

All block 1/O channels are initialized by computer control
for block-transfer operations and proceed under self control
or unit control to perform the transfer operations. The
following paragraphs describe general performance of block
transfers applicable to each channel. Refer to Figures 4-6
through 4-9 for simplified flow diagram of block-transfer
operations.

Table 4-2. 1/0 Chahnels Manual Control Capabilities

Function PIOC IBC uBC XBC DMACP
Permanent Offline/Multiplex mode selection Switch Switch
Channel code selection Switch Switch Switch Switch Switch
Memory cycle priority Switch Patch Switch Switch
Unit selection Patch

413

0830006-000
Original 5/78

START
CYCLE

LOAD WCR &
SCIR (IF INPUT)
FROM PW1

INCREMENT PAR

LOAD TAR &
RESTART BITS INCREMENT PAR
FROM PW2
Y
ACCESS & XFER
INCREMENT PAR COMMAND WORD
FROM PAR ADDRESS
— YES INPUT
XFER
ves NO
SCR = 0
YES
NO XFER DATA WORD o
(WCR) = 0 NO TO/F:!'&)&.TTMA& X C"e‘&“ﬁﬁi‘"
DECR. WQR
I /
YES 1
XFER WORD REINITIATE
TO CHANNEL W(DTS:{II)GC%ELRJNT WITHOUT
INHIBIT MEMORY oMM ST RRUPT PROGRAM
CYCLE REQUEST INTERVENTION
T T
] /
/
/
LEGEND: //
WCR = WORD COUNT REGISTER /
SWIR — JORNIF WLVJUIVIER
PW = PARAMETER WORD o, N YES 4
PAR = PARAMETER ADDRESS REGISTER
TAR = TRANSFER ADDRESS REGISTER
XFER = TRANSFER
ADDR = ADDRESS
INCR = INCREMENT NO
DECR = DECREMENT -
1
END

414

MI1822-176A

0830006-000
Original 5/78

YES

YES

\

STORE DTR
IN
PRIORITY REGISTER

NO
SET RESET
CHANNEL CHANNEL
BUSY BUSY
y
INPUT . YES
XFER
NO
\
XFER WORD XFER WORD
FROM MEMORY FROM UNIT
TO UNIT TO MEMORY
LEGEND:
DTR = DATA TRANSFER REQUEST
XFER = TRANSFER

Figure 4-7. XBC Block Transfer Sequence; Simplified Flow Diagram

M11823-176

4-15

0830006-000
Originai 5/78

START
CYCLE

LOAD WCR
FR
PW1

INCREMENT PAR

DTR

EROA,
ROM

UNIT

STORE DR
N
! PRICRITY REGISTER
LOAD TAR &
RESTART BITS
FROM PW2 {
1
! YES RESET
CHANDIEL CHANNEL
INCREMENT PAR BUSY
lNo
SET
CHANNEL
BUSY

XFER. DATA WORD
TO/FROM TAR ADDR.
INCREMENT TAR
DECREMENT WCR
H

AUTO

LEGEND:

WCR = WORD COUNT REGISTERR
PW = PARAMETER WORD
PAR = PARAMETER ADDRESS REGISTER
TAR = TRANSFER ADDRESS REGISTER
DTR = DATA TRANSFER REQUEST
XFER = TRANSFER
ADDR = ADDRESS

RESTART

lNO

Y

GENERATE WORD COUNT
COMPLETE TO UNIT

END

4-16

Mi1824-176

Figure 4-8, 1BC Biock Transfer Sequence; Simplified Fiow Diagram

0830006-000
Original 5/78

ASSEMBLE/DISASSEMBLE

START

RESET BUSY
AND
WAIT

MPU
READ

YES

TRANSFER
WACC REGISTER
0
WAD GATES

le—

NO

GATE
WAD GATES
WACC REGISTER

)

TRANSFER
BYTE COUNTER

G.P. COUNTER

:

DECREMENT
G, P. COUNTER,
ADVANCE BYTE

POINTER

|

TRANSFER
G.P. COUNTER
TO BYTE COUNTER,
LOAD BYTE POINTER

BYTE
COUNT#0

JUMP
IMMEDIATELY

TRANSFER
TRANSFER TRANSFER
TARTO G, P. TARTO G.P.
COUNTER AND COUNTER AND
MAR MAR

TRANSFER TRANSFER
MIB TO WACC WACC REGISTER
REGISTER - REQ. TO MOB - REQ.
MEMORY CYCLE MEMORY CYCLE

TRANSFER
G.P. COUNTER TO
TAR, LOAD BYTE
POINTER, RESET
BYTE COUNT 0

INITIALIZE
JuMP
T025
TRANSFER
TRANSFER
Cpéﬁ g‘? a?k';io G.P. COUNTER
MAR, RESET BYTE ok A
e BYTE POINTER
e
MIB
COUNTER AND ;2?::
REQ. MEMORY
CYCLE
1 NO
INCREMENT
G.P. COUNTER RETT%RN
10 AEXRAME WATT

TRANSFER
PARTO G. P.
COUNTER AND

MAR

:

ENABLE
MIB TO TAR ~
RI ST

EQUE!
MEMORY CYCLE

:

INCREMENT
G.P. COUNTER

SET BYTE
POINTER £0

L

LEGEND:

GP GENERAL PURPOSE
MAR MEMORY ADDRESS REGISTER

MPU MICROPROCESSOR UNIT

PAR PARAMETER ADDRESS REGISTER
TAR TRANSFER ADDRESS REGISTER
WACC WORD ACCUMULATOR

WAD WORD ASSEMBLY/DISASSEMBLY

MI2057A-577

Figure 4-9. DMACP Channel Block Transfer Sequence; Simplified Block Diagram

417

0830006-000
Original 5/78

UBC Channel Block Transfers

The UBC channel is “‘set-up’’ via an OAW instruction and
initiated via an OCW instruction with bit 23 of the unit
command specifying the block transfer and bit 22
specifying the direction of transfer. During the OCW
sequence the channel sets itself ‘busy’’ to all ODW, IDW,
and OCW instructions (except an OCW specifying
“*Override’”}). The channel remains busy for the duration of
transfers initiated by the OCW instruction. The channel
automatically loads two parameter words (see Figure 4-2).
if an output transfer has been specified, the channei
sequences a memory request and specifies the location via
its TAR. The channel increments the TAR, decrements its
WCR, and loads the data word in its output buffer when
the memory cycle is granted. The channel then *‘shakes
hands’’ with the unit to complete the transfer. The channel
then fetches another word for transfer. When the WCR has
decremented to ZERO, the channel examines its ‘’Restart”
parameter (bit 23 of PW2) and either re-initiates itself for
another block transfer or returns to an “idle” state,
resetting its “busy’’ condition.

If an input transfer was specified via the OCW, the channel
waits for the unit to signal data availability. The channel
then ioads the input data into its input buffer and signais
“‘accepted”’ to the unit to free it for the next word. The
channel then requests a memory cycle, and, when granted,
places the TA and data on line to memory. The channel
increments the TAR, decrements the WCR, and returns to
sense the unit’s “Data Available’” line. This sequence
continues until the WCR forces the restart sequence as
described above.

The UBC channel contains a Skip Count Register for added
parameter control in input transfer operations and may
enter an alternate “Restart” after a block of data has been
transferred.

The output data transfers are sequenced in an identical
fashion. The channel’s capability to ““Restart and Chain
Command” allows the re-initiate sequence to access an
additional parameter (in this application, a new command
to the unit) to change transfer direction without program
intervention. In this situation, the new command word
initiates the channel in the same manner as did the original
OCW instruction.

The Skip Counter affects only those transfers slated for
memory. The skip count allows the channel to pass over
unwanted data (sync codes, etc.) before actual data loading
is sequenced. When the skip count parameter specifies a
count, the channel sequences handshakes with the unit to
unload the unit, but the channel does not request the
memory cycles from the CPU to load the data into
memory, The SCTR is decremented with each transfer, but
the TAR and WCR remain unchanged. When the SCTR has
decremented to ZERO, the channel begins ioading data
words into memory.

418

XBC Channel Block Transfers

The XBC channel is normally initiated to block-transfer
operations via an OCW instruction in which a command is
transferred to the unit. |f required, the OCW may have been
preceded by OAW and/or ODW instructions to transfer TA
and WC parameters to the unit. Once initiated, the channel
is under the control of the unit for transfer purposes. When
the unit signals a ""Data Transfer Reqguest” {DTR), the
channel, if not previously set busy, sets itself busy and
stores the TA from the unit. The unit specifies the transfer
direction and, if an input transfer is specified, the channei
“accepts”’ the data from the unit. The channel then
requests a memory cycle and, when granted, transfers the
data to memory, based on the TA furnished by the unit.

If the unit specifies an output transfer, the channel requests
a memory cycle. When the cycle is granted, the channel
places the TA on line to memory, loads the data from
memory and performs a ‘‘Data Here'/"Accepted”
handshake with the unit in which the data is transferred to
memory.

The XBC channel’s “busy” condition is reset after each
instruction or data transfer is accomplished. The unit

controis the TA and WC parameters and generates any
required interrupts.

IBC Channel Block Transfers

The IBC is set-up and initiated for block transfers via the
OAW and OCW instructions, but the channel sets itself “not
busy” after each instruction or data transfer. The channel
may thus store the two parameter words for up-to-two
self-contained unit controllers (Figure 4-2) and interleave
data transfer.

Data transfers are sequenced by the channel based on “Data
Transfer Request’ signals from the units. The DTR lines are
priority-structured and the unit indicates the direction of
transfer. Data transfers then proceed as described for XBC
channei operations except as foilows:

a. the unit allows/inhibits TA and WC incrementing and
decrementing by setting its “’“Block Mode"’ control line
true/false (see External Addressing mode below).

b. the unit does not furnish the TA parameter (except in

+ha Evtarnal Addraccinng mnadal
il SXOTNG AGGISSSINgG OGS,

c. the channel/unit does not “shake hands” in output
transfers.

d. the channel generates “Word Count Complete” to the
unit only, which then controls the interrupt to the
CPU.

The IBC channel may enter an External Addressing mode
by the unit presenting its DTR, ‘“‘Address Here,” and
“Input” lines set to the channel. The address is then loaded

into the TAR for the specified unit. The data presented
with the next DTR is transferred into or out, as set, of the
memory address of the unit’s TAR. If the ““Address Here”
signal is not presented again to change the TAR, any
further data transfers will use the same TAR address. This
allows the use of a specified memory address as a register.

The maximum transfer rates for the IBC channel
block-transfer operations are determined by the card reader
and floppy disc connected to the channel.

DMACP Channel Block Transfers

DMA transfers between the DMACP and memory are under
control of the microprocessor and associated logic located
on the DMACP board. After a parameter address is sent
with an OAW instruction, the CPU can command the
microprocessor to perform a block transfer with an OCW
instruction.

Data transfers are controlled by a sequencer and transfer
control logic contained on the DMACP board. Three main

Program Lists

0830006-000
Original 5/78

functions are performed by the transfer control logic;
initialization for a DMA transfer, word
assembly/disassembly, and the actual transfer. These
functions are performed by three subroutines comprising a
program which is stored in the sequencer PROM located on
the DMACP.

The microprocessor starts a DMA initialize operation by
accessing a special location in a RAM contained on the
DMACP board. Eight special locations in RAM are
provided, one for each port. The DMA logic in the DMACP
fetches the byte count and transfer address from the RAM
locations specified by the parameter address. If an output
operation is specified, the first 24-bit data word is
transferred to a Word Accumulator Register. The
microprocessor then transfers data bytes between the word
accumulator and a communications port until the byte
count equals zero. A terminate interrupt is sent to the
microprocessor at the completion of the operation. The
microprocessor then generates an interrupt to the CPU to
indicate that service is required.

The following program lists specify various software control functions for block-transfer 1/0 channels. Note the functional

identity of the applicable channels.
IBC Channel Applications

The following examples illustrate two different IBC applications.

Exam_ple 1: Simple, single buff_elj input.

Parameter Address

TOA PA

OAW C Initialize TAR

TMA cw Command Word

ocw CcuU Initiate transfer

'BNZ -1 _ Delay if channel is busy

cw DATA Bit 23 and others as required by the /O device
PA DAC n Absolute Word Count

DAC BUFF Address of Input Buffer
BUFF BLOK n

Reserve n words. Word n+1 is of no significance since the AR bit is not set.

Example 2: Multi-buffered output with automatic restart and buffer switching.

TOA PA1 Parameter Address 1

OAW (o Initialize TAR

TMA CwW Command Word

ocw Ccu Initiate first transfer

BNZ * ~ Delay if channel is busy -

Cw DATA Bits 23, 22, and others as required by the 1/0 device.
PA1 DAC n Word Count

DAC* BUF1 Address of buffer 1 and the ARF (*)
PA2 DAC n Word Count

DAC BUF2 Address of buffer 2
BUF1 BLOK n Reserve n words

DAC PA2 Automatic Reinitialization address for TAR, to switch buffers
BUF2 BLOK n Reserve n words

DAC PA1 Automatic reinitialization address for TAR, to switch buffers

NOTE Once this cycle is initiated it will c'ontinue, without program intervention, until a new command is received.

4-19

0830006-000
Original 5/78

UBC Channel Applications

The following examples

Example 1: Simple, single buffer input.

Ccw
PA

BUFF

TOA
OAW
TMA
ocw
BNZ
DATA
DAC

DAC
BLOK

PA
Ccu
cw

illustrate four different UBC applications.

Parameter Address
Initialize PAR and TAR
Command Word
Initiate Transfer

Delay if channel busy

B23 and others as required by the 1/0 device
Word Count
Address of Input Buffer

Example 2: Use Skip Count to read a single word from within a record.

cw

PA

BUFF

TOA
OAW
T™MA
ocw
BNZ
DATA
FORM
DATA

DAC
BLOK

PA
Ccu
cw
Ccu
*—1

8 16
111,112/
BUFF

1

Parameter Address
Initialize PAR or TAR
Command Word
Initiate Transfer

Delay if channel is busy

B23 and others as required by the 1/0Q device
Word count. Input 112 words from device, skipping first 111.

Address of Input Buffer
Input Buffer

Example 3: Use Automatic Restart to Read a single record into discontiguous buffers.

cw
PA

BUF1
BUF2

4.20

TOA
OAW
TMA
OCwW
BNZ
DATA
DAC
DAC*
DAC
DAC
BLOK
BLOK

* Q) QO3
tC:gCZD

Parameter Address
Initialize PAR and TAR
Command Word
initiate Transfer

Delay if channel is busy

B23 and others are required by the 1/O device
Word count of input into first buffer

Address of first buffer (*) = ARF

Word count of input into second buffer
Address of second buffer

Reserve n words
Reserve m words

0830006-000
Original 5/78

Example 4: Use Command Chaining to read two records into a single buffer on same UBC transfer.

TOA PA Parameter Address

OAW cuU Initialize PAR and TAR

TMA Ccw Command Word

ocw cu Initiate Transfer

BNZ *1 Delay if channel is busy
Cw DATA B23 and others as required by device to read first record
PA DAC n Word count of first record

DAC* BUFF,J Address of buffer for first record. (*) = ARF, and

(,J) = B22 for command and restart

DATA B23 and others as required by 1/0 device to read second record

DAC m Word count of second record

DAC BUFF+n Address of buffer for second record
BUFF BLOK n+m Reserve n+m words

XBC Channel Applications
The following example illustrates an XBC application.

TOA INPAD Set-up Input Buffer Address Start
OAW CuU Output the Address to Channel/Unit
BNZ *—1 ~ Delay if Channel busy
TOA OUTAD Set-up Output Buffer Address Start
OAW - Ccu Output the Address to Channel/Unit
BNZ *—1 Delay if Channel busy A
. TMA WC Set-up the required Word Count
82&‘{1{;9(, OoDW cu Output the WC to Channel/Unit
BNZ *1 Delay if Channel busy
INPAD BLOK 100 - Is the Starting Address of the Input Buffer that device may load
data into.”
OUTAD BLOK 100 Is the Output Buffer that the device may read data from.*
WC DATA 100 Number of Words to Transfer

*The external device controls the addressing and interrupt requests to the XBC channel. The external device also
controls the word count.

0830006-000
Original 5/78

SECTION V
PRIORITY INTERRUPT SYSTEM

GENERAL DESCRIPTION

The priority interrupt system provides added control over
internal CPU operations and 1/O functions, and immediate
recognition of special external conditions on the basis of
predetermined priority. Receipt and recognition of internal
or external triggers allows the normal program flow to be
diverted to interrupt service subroutines.

Three separate interrupt groups {0, 1, and 2) are provided.
Group 0 is reserved for internal CPU functions and is
composed of up to eight executive trap levels. Groups 1 and
2 are reserved for external interrupts. A maximum of 48
external interrupts are available.

Any time an interrupt is active and enabled, the interrupt
indicator (INT) on the control panel is lighted.

INTERRUPT ORGANIZATION

Priority Conventions

All interrupt levels (both executive traps and external
interrupts) are assigned a unique priority number. This
assigned priority determines the order in which interrupts
will be recognized and serviced. Interrupt levels descend in
order of priority from Group 0, Level 0, to Group 2, Level
23. Group 0 has priority over Group 1; Level 0 has priority
over Level 23.

Executive Traps (Group 0)

Each executive trap level is associated with a specific
computer feature and is, therefore, permanently assigned.
lEach executive trap includes the associated internal
"interrupt level. Interrupt level assignments for the executive
traps (Group 0) are listed below.

Level Function

Power Down and Power Up
Hard Parity Error

Demand Page/Limit Violation
Instruction Trap

Stall Alarm

Interval Timer

SAU Overflow/Underflow
Address Trap

NOoO e WN=-=O

External Interrupts (Groups 1 and 2)

A computer system includes interrupt logic and up to 48
individual external interrupt levels. Sixteen of these levels
are located on the expanded option board and represent
Group 1, Levels 0 through 15. Thirty-two additional
external levels are located on the priority interrupt
expansion board. These represent Group 1, Levels 16
through 23, and Group 2, Level O through 23. Priority
assignments of the interrupt levels are determined by
system requirements and are made to meet user’s
requirements.

Dedicated Memory Locations

Each interrupt level has a memory location dedicated for its
exclusive use. This applies to both the executive traps
(Group 0) and external interrupts (Groups 1 and 2).
Dedicated memory locations for the interrupt system are as
follows:

Addresses (Octal) Assignments (Respective)
60-67 Executive Traps, Levels 0-7
70-117 Group 1 Interrupts, Levels 0-23
120-147 Group 2 Interrupts, Levels 0-23

OPERATION AND CCNTROL
Basic Operation

Figure 5-1 is a functional block diagram of the priority
interrupt system. Both the executive traps and external
interrupts are initiated by a trigger from their assigned
functions. The primary operational difference between the
two interrupt types is the method of control; executive
traps are hardwired in an armed and enabled state, while
external interrupts must be previously armed and enabled
under program control before an interrupt trigger can be
recognized and processed.

Executive Traps (Group 0)

Each executive trap interrupt is designed so as to become
active immediately upon receipt of its associated internal
trigger, provided no higher-priority level is active. Executive
trap interrupt levels are physically integrated with their
associated CPU functions, so that installation of the
interrupt level is performed simultaneously with installation

51

0830006-000

Original 5/78
EXTERNAL
DEVICE
INTERRUPT TRIGGER
ARM/DISARM
v ENABLE/INHIBIT
PRIORITY <
INTERRUPT
LEVEL | STATUS >
A
INTERRUPT CONTROL
REQUEST SIGNALS
y CONTROL SIGNALS m‘gg'ETs'g?,hG
INTERRUPT | € UNIT
SYSTEM DEDICATED ADDRE
CONTROL c A > >
A
INTERRUPT CONTROL
REQUEST SIGNALS
\ 4
executve | INTERRUPT TRIGGER
TRAP [€

BD60-068-972A

5-2

of the functional logic. Since executive traps are constantly
armed and enabled, no program control over the activation
of these interrupts is provided.

External Interrupts (Groups 1 and 2)

External interrupts are program-controlled and are not
permanently assigned. Program control is afforded by
several instructions. Individual levels can be selectively
(unitarily) armed, disarmed, enabled, or inhibited under
program control, or an entire group of interrupts can be
simuitaneously controlled. For a detailed description of all

priority interrupt instructions, refer to the appropriate. -

portion of Section VIl in this manual.

Four 24-bit registers are associated with each external
interrupt group. These registers may each be 8, 16, or 24
bits wide, depending on the number of interrupt levels
within the group. As interrupt levels are added to the
system, bits are added to each of the four registers in the
group. The register bit positions correspond to the priority
level assignments, i.e., bit O represents Level 0, bit 1
represents Level 1, etc. Control of the interrupt registers is
accomplished by the following group of instructions.

Transfer Double to Group 1 (TD1)
Transfer Double to Group 1 (T2D)
Transfer Group 2 to Double {T2D0

Transfer Double to Group 1 {TD4)
{software-triggered interrupt)

Transfer Double to Group 2 (TD5)
(software-triggered interrupt)

Transfer Group 1 to Double (T4D)
(software interrupt status)

Transfer Group 2 to Double (T5D)
(software interrupt status)

The armed/disarmed and enabled/inhibited states of each
interrupt level are retained in the Arm/Disarm (A/D) and
Enable/Inhibit (E/I) Registers, respectively. A TD1 (Group
1) or TD2 (Group 2) instruction is used to selectively arm,
disarm, enable, or inhibit individual interrupt levels within
the group. Upon execution of a TD1 (TD2) instruction, the
contents of the E and A Registers are transferred,
respectively, to the A/D and E/I Registers in Group 1
(Group 2). Transfers are performed in a bit-for-bit pattern.
A ONE in a given bit position of the A/D Register will
cause the corresponding interrupt level to be armed; a
ZERO will disarm the level. An interrupt will be enabled or
inhibited by a ONE or ZERO, respectively, in the
corresponding bit position of the E/l Register.

0830006-000
Original 5/78

An interrupt group’s armed/disarmed and enabled/inhibited
status may be determined under program control by the
execution of a T1D (Group 1) or T2D (Group 2)
instruction. The contents of the A/D and E/I Registers are
transferred to the E and A Registers, respectively. A/D and
E/I Register contents are not affected by the transfer.

External interrupt triggers normally occur asynchronously
with respect to CPU operation. However, interrupt triggers
can be generated under program control by a TD4 (Group
1) or TD5 (Group 2) instruction. The TD4 (TD5)
instruction performs a logical OR between the contents of
the E and A Registers and the Interrupt Request and Active
Registers, respectively. Loading the Request Register with a
ONE has the same effect as an external trigger at the
corresponding interrupt level. When the Active Register is
loaded with a ONE, the corresponding level will become
active as long as no higher-level interrupt is active. The T4D
(Group 1) or T5D (Group 2) instruction transfers the
contents of the Request and Active Registers to the E and
A Registers, respectively. The Request and Active Registers
are not affected.

Figure 5-2 illustrates the control system for external
interrupts. Each external interrupt operates in three distinct
states: inactive, waiting, and active. In the inactive state,
the level has not received an interrupt trigger. When a
trigger is received, the armed/disarmed status determines
whether the triggered interrupt will be placed in a waiting
state or ignored. If the triggered interrupt is armed, it will
be placed in the waiting state; if disarmed, it will be
ignored.

If an interrupt is armed but inhibited (i.e., not enabled), it
is held in the waiting state until such time as it is enabled
under program control. Once enabled, the interrupt will
become active as soon as the current instruction is
completed, assuming that no higher level is active and that
external interrupts are not being held (HXI instruction).

Once an interrupt becomes active, it can be inhibited under
program control (TD1 or TD2 instruction). This places the
active level in an off-line mode or permissive state. The
permissive state does not affect execution of the interrupt
subroutine but enables lower priority armed and enabled
interrupts to become active when triggered. For example, if
active level two is inhibited by the program, waiting level
three becomes active immediately. After level three is
serviced, the processing of the level two subroutine is
resumed until it is completed or another interrupt becomes .
active. Should another interrupt trigger be received by an
interrupt that is in the permissive state, it will be saved and
recognized when that level is returned to the on-line mode.

0830006-000

Original 5/78
EXTERNAL TRIGGERS; OR BITS
OF E REGISTER DURING TD4
INSTRUCTION.
 ———
l l $ |
ARM/DISARM[7 7 A v o1l = ArmED
REGISTER N N L™
23 22 5 4 3 2 | [+]
l EXTERNAL TRIGGER AT
THIS LEVEL IS IGNORED
REQUEST o]
REGISTER | 1{10.0.'.'.'.0
23 22 5 - 3 2 | 0
ENABLE/INHIBIT [f;‘ Al o1 oa 1 = ENABLED
REGISTER . 0 0 1 1 0 1}, Nmsmep
23 22 5 q 3 2 | [o]
THIS.LEVEL.IS WAITING. FOR .
HIGHER LEVELS TO BECOME THIS LEVEL IS WAITING
INACTIVE OR PERMISSIVE TO BE ENABLED
(SEE DETAIL BELOW)
FROM REQUEST REGISTER OR
- BITS OF A REGISTER DIRING
\ . TD4 INSTRUCTION
ACTIVE v vor ot o T 1 = ACTIVE
REGISTER| 0 0 330 0 O 1 0 0o - Nacmve
23 22 5 4 3 2 i (o]

I THIS LEVEL CAN BE PLACED
I

IN A PERMISSIVE STATE

ENABLED

ENABLE/INHIBIT g S A

- -

N
Q-
[]

(3
\ I PREVIOUSLY ACTIVE LEVEL
+ INHIBITED BY PROGRAM
ACTIVE/PERMISSIVE

STATE o | ACTIVE

INACTIVE
PERMISSIVE

M

5-4

MIi60-100-976B

rigure 5-Z. Exiernai interrupi Coniroi

Hold and Release External Interrupts (HXI and RXI)
instructions are employed to prohibit and restore the
activation of any external interrupt (other than
currently-active levels) regardless of that interrupt’s
armed/disarmed and enabled/inhibited states. Such a
prohibition would ensure that another, lower-level,
interrupt could complete its processing routine without
interruption. This hold condition can only be released by
an RXI instruction. ’

Should an interrupt occur during the execution of certain
specified instructions, it will not be allowed to become
active until the completion of the instruction following the
specified instruction. The following instructions are
included in this group.

Branch and Save Return Long (BSL)

Hold Interrupts and Transfer | to Memory (HTI)

Hold Interrupts and Transfer J to Memory (HTJ)

Hold Interrupts and Transfer K to Memory (HTK)

Release External Interrupts (RXI)

Execute Memory (EXM)

Transfer Memory to Registers (TMR)

Transfer Registers to Memory (TRM)

Update Stack Pointer (USP)

Transfer Double to Group 1 (TD1)

Transfer Double to Group 2 ({TD2)

Transfer Double to Group 1 (TD4)

Transfer Double to Group 2 (TDb5)

Unitarily Arm Group 1 interrupts (UA1)

Unitarily Arm Group 2 Interrupts {(UA2)

Unitarily Disarm Group 1 Interrupts (UD1)

Unitarily Disarm Group 2 Interrupts (UD2)

Unitarily Enable Group 1 Interrupts (UE1)

Unitarily Enable Group 2 Interrupts (UE2)

Unitarily Inhibit Group 1 Interrupts (Ul1)

Unitarily Inhibit Group 2 Interrupts (U12)

Transfer Double to Source and Destination Registers
(TDS) '

Transfer Source and Destination Registers to
Double (TSD)

Transfer A to 1 Virtual Address Register (TAR)

Transfer Double to 2 Virtual Address Registers (TDR)

Transfer 2 Virtual Address Registers to Double (TRD)

Transfer Double to Paging Limit Registers (TDP)

Transfer Paging Limit Registers to Double (TPD)

Transfer Usage Base Register and Demand Page Register
to Double (TUD)

Transfer E to Usage Base Register (TEU)

0830006-000
Original 5/78

Query Virtual Usage Register (QUR)
Query Not-Modified Register (QNR)
Release Operand Mode (ROM)
Release User Mode (RUM)

INTERRUPT PROCESSING

Each external interrupt and executive trap level is assigned
a unique memory location, as previously described. This
location specifies an address at which to store certain

system parameters. When an interrupt becomes active the
contents of the Condition Register, program return address,

and virtual memory mode of operation are saved. A branch
is then made to the interrupt subroutine. At the conclusion
of the subroutine, the Condition Regdister contents and
virtual memory mode of operation are restored and a
branch is made to the main program.

Interrupt processing is dependent upon the operational
state of the CPU when the interrupt occurs. One procedure
is used for Operational State Zero, while a second
procedure applies to Operational States One and Three.

Operational State Zero Interrupt Processing

An interrupt, which is activated when the CPU is in
Operational State Zero, generates an address and an
instruction operation code. The address specifies the
dedicated location and the operation code defines a pseudo
(hardwired) Execute Memory (EXM) instruction. The
address and EXM instruction are placed in the Instruction
Register, decoded, and executed as a normal operation.
This causes the instruction in the dedicated location to be
executed as if it were the next instruction in the main
program,

Although any instruction may be stored in an interrupt’s
dedicated memory location, the operation designed for
subroutine entry is the Branch and Save Return Long (BSL)
instruction. The BSL instruction is used to enter an
interrupt subroutine because it provides a means of saving
machine status and returning to the program location
following that being executed at the time of the interrupt.
When an interrupt is generated, the current instruction is
allowed to continue so the program counter can be
advanced before interrupt processing begins. Figure 5-3
illustrates the sequence of events.

The BSL instruction records the paging mode (User or
Monitor) in bit 20 of the effective memory address. Bit 20
is set to ONE if the CPU was in the User Mode when the
interrupt occurred, or reset to ZERO if the Monitor Mode
was active.

55

0830006-000
Original 5/78

NOTES

) INTERRUPT OCCURS AND TRANSFERS CONTROL
TO DEDICATED LOCATION 100 (GROUP 1,

LEVEL 8)

r DEDICATED LOCATION 100 CONTAINS
REFERENCE TO LOCATION 350 (STORAGE
FOR RETURN ADDRESS, CPU STATUS, AND

o VM MODE OF OPERATION).

j RETURN ADDRESS AND STATUS ARE STORED.
PROGRAM COUNTER 1S SET TO 350+ 1 (BRANCH

o ADDRESS). V=1 -USER MODE
=0 - MONITOR MODE

FIRST INSTRUCTION IN INTERRUPT
SUBROUTINE.

LOCATION INSTRUCTION
656 ‘ A OPERAND
23 4 [+}
100 BSL 350
231 A A ' A ol '5I A 1 A 1 A J 1
350 00 0fv] cres PROGRAM COUNTER - 657
APl R i S
351 TRM 131
23 “ 0

MIG60-060-678D

Figure 5-3. Interrupt Subroutine Entry, Operational State Zero

A means of exit from the interrupt routine is the Branch
and Reset Interrupt Long (BRL) instruction. Normally, the
BRL instruction would make use of an indirect reference
(*) to the address previously referenced by the BSL
instruction upon entering the routine. If this is done, the
Condition Register is restored to its original contents (at
the time the interrupt occurred). The state of bit 20 (in the
return address) is tested by the BRL and the appropriate
virtual memory mode is reestablished when the subsequent
instruction is fetched. Figure 5-4 illustrates the subroutine
exit sequence.

The BRL instruction resets the highest active (not in
permissive state) trap or external interrupt level provided
that external interrupts are not being ‘“held” (HXI
instruction). Active traps can only be reset by the BRL
instruction. Active interrupts can.only be reset by the BRL
instruction, a TDi or TDZ instruction, or by master
clearing the CPU. A BRL instruction will not reset an
interrupt that is in the permissive state.

Operational States One and Three Interrupt
Processing

When an interrupt is activated in Operational States One or
Three, a pseudo Branch and Save Extended (BSX)
instruction is executed by the microcode. An address
specifying the dedicated location is loaded into the

5-6

Instruction Register; no op code is loaded into the register.
Unlike Operational State Zero which stores an instruction
at the dedicated location, the address word {word 2} of the
BSX is stored when the CPU is in Operational States One or
Three. Refer to Figure 5-5. An EMA which specifies the
storage location of the BSX save word is calculated from
the address stored in the dedicated location. Usually, this is
a direct address, but indirection or indexing may be
specified. In addition to storing the save word, which
contains the Condition Register contents and program
address of the next sequential instruction, the virtual
memory mode of operation is recorded in bit 20 of the
Virtual Limit Register {VLR). VLR20 is set if the CPU was
in the User Mode when the interrupt occurred, or reset if
the Monitor Mode was active. '

Exit from the interrupt subroutine is by means of an
indirected Branch and Reset interrupt Long {BRL)
instruction (no indirect chaining aiiowed). See Figure 5-6.
The Program Counter and Condition Register are restored
from the BSX save word. VLR bit 20 remains unchanged if
another interrupt is active and enabled. If no other
interrupt is active and enabled, VLR20 is reset to establish
the Monitor Mode.

Control of active interrupts by execution of the BRL
instruction, and certain other specified conditions is as
described for Operation State Zero interrupt processing.

0830006-000

Original 5/78
LOCATION INSTRUCTION NOTES
376 TMR 731 | RESTORE REGISTERS.
i — Il 1 1 y } 1 1 { 31 1 1 1 'l 1 1 1 L]
23 4 [+
T T T T T T BRANCH TO STORAGE LOCATION OF
377 BRL * 350 RETURN ADDRESS, MACHINE STATUS
: o T AP T T T ~ AND VM MODE.
2 7

THE CONDITION REGISTER IS RESTORED

" y \) N AND THE PROGRAM COUNTER IS LOADED
350 000Jv] CRec |~ PROGRAM COWNTER-657 | i THE RETURN ADDRESS. VM MODE OF
R S ; ——=J OPERATION IS RESTORED.

657 ¢0B /////// OPERAND MAIN PROGRAM

23 12 7 [}

M160-157-678C

Figure 5-4. \Interrupt Subroutine Exit, Operational State Zero

LOCATION INSTRUCTION NOTES
T T T T T T INTERRUPT OCCURS AND TRANSFERS
656 TOA OPERAND CONTROL TO DEDICATED LOCATION
= T B "1 T T N H T S W I WA Y |° 100 (GROUP]l LEVEL 8).

7 T T T T Y DEDICATED LOCATION 100 CONTAINS
100 H X % 350 REFERENCE TO LOCATION 350
== z,,s' S (STORAGE FOR RETURN ADDRESS AND
CPU STATUS).
T T T r T T T RETURN ADDRESS AND STATUS ARE
350 C REG PROGRAM COUNTER = 657 ‘STORED. PROGRAM COUNTER IS SET
= 1 120 "I N TN IO N T NN T Y (NN W A M W NN A AV 1 lo TO 350 + 1 (BRANCH ADDRESS). VM

MODE IS SAVED IN VLR20.

¥ T 1 1 1 I

FIRST INSTRUCTION IN
351 oL | INTERRUPT SUBROUTINE.

23 5 14]

MI12424-678

Figure 5-5. Interrupt Subroutine Entry, Operational States One & Three

5-7

0830006-000
Original 5/78

LOCATION INSTRUCTION NOTES
376 TMR T RESTORE REGISTERS.
a: T A S — T T Y U W N N N W | i '0
477 T BRANCH TO STORAGE LOCATION OF
(BRLIM 3% | RETURN ADDRESS AND MACHINE STATUS.
3 17 o

THE CONDITION REGISTER IS RESTORED AND

T THE PROGRAM COUNTER 1S LOADED WITH
3%0 C REG PROGRAM COUNTER = 657 THE RETURN ADDRESS. VM MODE OF
e OPERATION IS RESTORED.
657 " cos [/// OPERAND MAIN PROGRAM.
2!'l 1 1 | H 1 1 1 1 1 llz /1I 1 1 1 1 1 I°

MI2425-678

Figure 5-6. Interrupt Subroutine Exit, Operational States One & Three

0830006-000
Original 5/78

SECTION VI
SCIENTIFIC ARITHMETIC UNIT

GENERAL DESCRIPTION

The Scientific Arithmetic Unit (SAU) provides concurrent
double-precision, floating-point capability for the
computer. When used with the computer, the SAU
implements the execution of 47 additional instructions, or
operation codes. Of these instructions, 28 permit
concurrent computer/SAU operations and 28 provide for
prefetching operands. SAU data and condition information
are displayed on the Programmer’s Control Panel as a
function of selectable shared indicators.

FLOATING-POINT DATA FORMAT

All arithmetic operations are carried out in double-precision
format to vield a 39-bit mantissa and an 8-bit exponent.
Figure 6-1 illustrates the floating-point data formats
employed by the CPU’s Double (D) Register, memory, and
the SAU’s X and XW Registers.

Data transfers to the SAU from the CPU are either
single-precision integers or double-precision, floating-point,
normalized numbers. All arithmetic operations performed
within the SAU are executed in the double-precision,
floating-point format as illustrated in Figure 6-1. Therefore,
any integer number transferred to the SAU for arithmetic
operations is first normalized and converted to
floating-point format within the SAU. All double-precision
transfers to the SAU, whether from the D Register or
memory, are assumed to be normalized, floating-point
quantities. Bit 23 of the least-significant half (LSH) of the
double word is truncated. :

SAU REGISTERS

Three SAU registers are available to the programmer. These are
a. X Register (signed mantissa — Figure 6-1);

b. XW Register (signed expdnent — Figure 6-1); and

c. Y Register (SAU condition — Figure 6-2).

The XW Register can be independently modified via the

SAU instruction set. Figure 6-2 illustrates the Y (condition)

Register bit configuration and their significance in
reflecting the results of SAU operations.

OPERATION AND CONTROL

Data Transfers

A simplified block diagram of the SAU in relation to the
CPU is shown in Figure 6-3. All data transfers between the
CPU and SAU are, effectively, confined to the X, XW, and
Y Registers. CPU-SAU data transfers may invoive the E and
A Registers or memory. The transfer source and destination
are selected as a function of the instruction being executed.
In all double-precision transfers to and from the SAU, the
least-signficant half (LSH) is transferred first. To maintain
the proper format when memory is involved in the
double-precision transfer, the SAU interface stores the most
significant word until the least significant word (memory
location N+1) is accessed. The CPU controls this addressing
sequence as a normal instruction execution function.

Six of the SAU instructions provide for 48-bit operand
transfers to an from memory when the operands are aligned
on even word address boundaries. The instructions affected
include the AMX, SMX, MMX, DMX, TMX, and TXM
instructions. When the final effective memory addresses of
these memory reference instructions are located on even
word boundaries, a performance advantage is gained by
performing double-word transfers. Only one memory access
is required to affect a 48-bit CPU-SAU data transfer. If the
final EMAs are aligned on odd word address boundaries,
two memory accesses are required to make the transfer.

SAU Instructions

For a detailed description of SAU instructions, refer to
Section Vil of this manual. Appendix A shows instruction
execution times and also lists the concurrent times available
for processing non-SAU instructions during SAU “busy””
periods. :

CONCURRENT OPERATION

The SAU and CPU may operate concurrently for one or
more microcycles, depending on the SAU instruction being
executed. In order to take advantage of the available
concurrent time, CPU and SAU instructions must be
intermixed.

0830006-000
Original 5/78

Zero Indicates Not Positive

Set to One during arithmetic
operations when result is
greater than zero.

Set to One during compare
operations when the operand
is less than the X-Reg. _

ZERO indicotes not Zero,
Set to one during arithmetic operations

and an exponent of 201 {octal).

Set o one during compare operation
when the operand equals the X-Reg.
ZERO indicates not negative.,

result is less than zero.

operand is greater than the X-Reg.

when the recult ie o manticen of all zarce

|
_

Set to one during arithmetic operations when the

Set to one during compare operations when the

lSet to one when arithmetic |
operations result in an
exponent gregter than +127
or less than -128,

Set to One when X is negative
for Square Root.

Set to One if Divide by Zero

is attempted.

When set to One will generate
executive frap interrupt group 0,
level 6 if bit 6 is set (interrypt
enabied),

‘ Set by RSI (Release SAU Overflow Interrupt) instruction execution.

Reset by HSI (Hold SAU Overflow Interrupt) instruction execution.

E REGISTER -+ A REGISTR ————l
23 22 o 22 T] [
i 1 |1 I
s S
g MANTISSA (MSH) MANTISSA (LSH) 'G EXPONENT | D REGISTER
N N
e 10CATION N —i LOCATION N +] s
23 22 0 22 7 13 1]
] 1 1ot |
s i f
1 MEMORY
S MANTISSA (MSH) MANTISSA (LSH) ﬁ EXPONENT | MEMORY
2! z‘“l 26 zOI
S m 1H
cls MANTISSA S|1g| EXPONENT SAU
NME BN
L—— - e X BREGISTER -L XW RE ,ls*rgg——l
M11226-976C
Figure 6-1. Floating-Point Data Formats
6 5 4 3 2 1 0
7
IOBYTEg{RLl?Ple EXPONENT
ENsAA%LLEE?)/ POSITIVE ZERO NEGATIVE OVERFLOW Y-REGISTER
DI
JI1114/7103 71
[[[} [)

»
[

Figure 6-2. SAU Y {Condition) Register

MI1227-676

0830006-000
Original 5/78

CONTROL FROM A&E
SIGNALS REGISTERS

FROM TOEXEC. TO A&E REGISTERS
MEMORY TRAP 06 OR MEMORY
' 24 CR 48 OVERFLOW
INTERRUPT

CPU-SAU INTERFACE

i

7~
lsa |
|)42 % JZ&

XW (EXPONENT)
STER Y (CONDITION)

| X AN 1T R, REGISTRR I
I I
| [

BD1596-9768B

Figure 6-3. CPU-SAU Transfer Paths; Simplified Block Diagram

If the instruction sequence contains several consecutive
SAU instructions, the CPU will wait for the SAU; i.e., if an
SAU instruction is in progress and another SAU instruction
follows it, the CPU must wait until the second instruction
has siarted {or completed, if there is no time-sharing)
before executing any non-SAU instruction. For example,
the sequence

TMX A
MMX B (4.25 — IA available for concurrent operation)
DMX C (8.55 — IA available for concurrent operation)

TXM D

does not make use of the available concurrent time. Note,
however, that time equal to 12.8 — 21A is available in the
sequence for executing non-SAU instructions. The
following sequence makes use of the available concurrent
time. Too much use of concurrent time can slow down
SAU instruction execution by allowing the SAU to go not
busy.

TMX A

MMX B 4A + 1.5 of

TMD X 3A+1.2 concurrent time

TOI 30 A+03 and A +0.45

DMX C A + 0.45 (set-up time) of DMX set-up
time used

AMD Y 3A+21

DM 2 A+1.5+2w

AMI J 2A+0.6 10A + 5.7 + 3W concurrent
TIA A+03 time used

Nii A+03

AAM K 2A+09+W

TXM D

PREFETCHED OPERATION

System performance is enhanced by including 28
prefetchable instructions in the SAU instruction group.
With prefetchable instructions, both the instruction and
operand are prefetched if the SAU is busy. Double
buffering is provided in the SAU to store the prefetched
instruction and operands. When the SAU completes
execution of the current instruction, the subsequent
instruction and data are immediately available for SAU
processing. A saving in time is obtained by providing
operands to the SAU before the SAU requires them for
processing. A listing of the prefetchable SAU instructions
follows. Note that none of the extended SAU instructions
are prefetchable.

6-3

0830006-000
Original 5/78

Add A Register to X Register (AAX)

Add D Register to X Register (ADX)

Add Memory to X Register (AMX)

Add Operand to W Register {AOW)

Add Operand to X Register (AOX)
Compare D Register to X Register (CDX)
Compare Operand to W Register {(COW)
Compare Zero to X Register (CZX)

Divide A Register into X Register (DAX}
Divide D Register Into X Register (DDX)
Divide Memory Into X Register (DMX)
Divide Operand Into X Register (DOX)
Inverse of X Register (INX)

Multiply A Register and X Register (MAX)
Multiply D Register and X Register (MDX)
Multiply Operand and X Register (MOX)
Multiply Memory and X Register (MMX)
Negative of X Register to X Register (NXX)
Positive of X Register to X Register (PXX)
Subtract A Register to X Register {SAX}
Square X Register (SEX)

Subtract D Register from X Register (SDX)
Subtract Memory from X Register (SMX)
Subtract Operand from X Register (SOX)
Square Root of X Register (SRX)
Transfer Operand to W Register (TOW)
Transfer Operand to Y Register (TOY)
Transfer Zero to X Register (TZX)

If, as an example, an MAX instruction is followed by an
AMX instruction in program, the CPU initiates a fetch of
the MAX instruction which is decoded by both the CPU
and SAU. The CPU then fetches the data and transfers it to
the SAU which, in turn, goes busy and initiates the required
calculations. Since the MAX instruction is no longer
required by the CPU, the CPU discards it and initiates a
fetch of the AMX instruction which is stored in both the
CPU and the SAU. With the SAU still busy with the MAX
instruction, the CPU fetches the operands associated with
the AMX instruction and transfers them to the SAU where
they are stored. When the SAU completes execution of the
MAX instruction, it starts processing the AMX instruction.
No delays are incurred since both the instruction and data
are immediately available to the SAU. With the SAU busy
executing the AMX, the CPU is free to initiate the fetch of
a third instruction.

Optimum time saving is realized by keeping the SAU busy
executing prefetchable instructions. Maximum efficiency is
achieved by stringing prefetchable SAU instructions.

6-4

Executing a non-prefetchable SAU instruction causes the
CPU to delay fetching operands until the SAU finishes
executing and goes not busy. Additional housekeeping
functions must be performed before the SAU can execute
the subsequent instruction.

SAU INTERRUPT

The executive trap (Group 0, Level 6) provided with the
SAU is used to detect overflow/underflow conditions
resulting from the execution of SAU instructions. The trap
is controlled by two SAU instructions and the hold/release
external interrupt instructions of the CPU.

The SAU instructions which control the trap are the Hold
SAU Overflow Interrupt (HSI) and the Release SAU
Overflow Interrupt (RSI). The trap, when enabled, is
triggered by the overflow bit (bit 0) of the SAU condition
register (Y Register). In order to start SAU operation and
enable the trap the following sequence may be used.

TOY 0 TMX
or
RSI RSI

OPERAND

Either sequence clears the overflow bit and prevents an
extraneous interrupt.

When the SAU trap is enabled and an overflow occurs, the
SAU is set to a busy condition, preventing the execution of
any other SAU instruction except an HSI. This allows the
program to determine the location of the SAU instruction
which caused the overflow. The SAU interrupt processing
routine must execute an HSI as its first SAU instruction.
Prior to exiting the service routine, bit 0 of the Y Register
must be cleared and an RSI instruction performed to rearm
the SAU trap. A typical entry/exit sequence is:

SAUPI bl
HSI

TOY
RSI
BRL* SAUPt

~
U

Note that an overflow can be caused by program controf
with the sequence:

HSI
RSI
TOY 1

It should be noted that the contents of the Program
Counter at the time of the interrupt does not necessarily
have a direct relation to the location of the SAU instruction
which caused the overflow. This is due to the concurrent
processing capability, the occurrence of other interrupts, the
execution of the HXI/RX! instructions and the way in
which the SAU and CPU instructions are intermixed.

0830006-000
Original 5/78

When it is a requirement to know exactly where the

- instruction causing the overflow is located, careful coding is

mandatory if the concurrent operation capability is to be
used. It is recommended that in cases where overflow is
likely, the SAU instructions be written consecutively to
simplify the procedure for finding which SAU instruction
caused the overflow.

6-5/(6-6 Blank)

0830006-000
Original 5/78

SECTION VII
INSTRUCTION SET

INTRODUCTION

The instruction set consists of several functional groups or
families of instructions. Among these are: arithmetic;
branch; compare; input/output; logical; shift; transfer; etc.
Each group, in turn, is composed of individual instructions
that perform specific functions.

Through the application of the instruction set, the
programmer has access to each memory location and major
register in the CPU. In addition, the instruction set provides

for the alteration and control of program flow, .

manipulation and modification (arithmetic and logical) of
data, servicing of priority interrupts and control of /O
operations,

INSTRUCTION TYPES AND FORMATS

Introduction

The instruction word defines the operation to be performed
and the manner in which it is to be performed. Aii
instruction formats contain an operation code (op code)
that defines the general process that is to be undertaken
such as add, transfer, branch, and so forth. The op code
usually contains six or 12 bits, however, some instructions
require expansion of the op code beyond 12 bits.
Additional bits in the instruction word specify how the
general operation is to be performed. For example, when
adding the contents of one register to the contents of
another, the additional bits indicate which registers are

involved. The appropriate formats are provided with the

individual instruction descriptions.

The instruction set may be divided into three general types
of instructions which are designated memory reference,
immediate operand, and augmented. See Figure 7-1.
Memory reference instructions access memory and use
formats that specify an address. The address bits are
sometimes supplemented by special bits (indirect, index) in
the instruction word. In other cases, the additional bits are
not used for address modification, but are used 1o define a
condition under which the specified memory location will
be accessed. Instead of an address field, the immediate
operand type of instruction specifies an operand in the
instruction word. Instructions that are not ef the memory
reference or operand type are included in the augmented
group. This type of instruction specifies data sources and
destinations or other parameters such as shift count, 1/O
channel and unit numbers, and additional functions or
conditions.

Two basic types of instruction word formats are used in the
computer. The first of these, termed standard, is a
single-word instruction. The second type of instruction
word format, termed extended, is a double-word
instruction.

Standard Instruction Format

Each standard instruction, with the exception of the USP
and AOM instructions, is decoded from a 24-bit memory
word. The USP and AOM instructions are double-word
instructions which are included in this group because they
are not in the extended instruction format:

The functions of several of the standard instructions are
dependent upon whether the CPU is in the Compatibility or
Address Extension Mode of operation. The instructions
affected are the BSL, TLO, BRL, Branch and Link, and
GAP instructions. The differences in operation of these
instructions are provided with the individual instruction
descriptions.

Extended Instruction Format

Direct memory addressing to one megaword is
accomplished with instructions in the extended instruction
format. These are double-word instructions that are
identified by an octal 7740 (escape code) contained in bits
23-12 of word 1. The majority of the extended instructions
are extensions of the standard instructions. These are
identified in the individual instruction descriptions by
adding a percent sign to the instruction mnemonic. As an
example, TMA % indicates an instruction that can be
executed in both the standard instruction format and the
extended instruction format. When an instruction can be
executed in both the standard and extended formats, only
the standard instruction format is illustrated with the
instruction descriptions provided in this section. Unless
otherwise noted with the individual instruction description,
the extended version of this group of instructions uses the
format illustrated in figure 7-1.

Bits 11 through 3 of the first word of the extended
instruction contain the op code and appear as they would in
bit positions 23-15 of the standard instruction. Bits 2-0 of
word 1 are not used and are defined to be zeroes. Word 2 of
the extended instruction is an address word which is read
from memory as an indirect operand access. Bit 23 is the
indirect bit, and bits 22 and 21 are the indexing field. Bit 20
is, by definition, not used. The remaining bits, 19 through 0,
comprise the 20-bit address field.

0830006-000

Original 5/78

MEMORY REFERENCE

T 3
| oP cone W Aoonsss‘_l
I T TN S T T B Wy | | I S
=
T T T T T STANDARD
ropcoos H xl ADDRESS J 7 INSTRUCTION
L P T T U S S 0 S S R RIS FORMATS
17 " 0
T T ~ ¥ T T T
[OP CODE |*{0 ADDRESS
e J
l ESCAPE CODE 0P CODE loo DIWORDI
N N N T T T Y W | i1 J I S N T T T | 11
" e EXTENDED
INSTRUCTION
FORMAT
T T L ¥ t
H X E ADDRESS IWORDZ
= alﬂ - nl Lol il ARG VWV OO S S S T T S T ')
AUGMENTED
T T T T T
[OP CODE Lo l 2 l)
H S OO N S T N T W | I § I T -} i
i & L]
T ¥ 7 T \ STANDARD
I ~ OPCODE % n I > INSTRUCTION
- L P T I S | ‘|g 71 I T T - |n FORMATS
T T T 1 T T T
[OP CODE ‘ b d]
| I R R B A AR bt v,
3 ” 7 o

T T T T T
r ESCAPE CODE l OP CODE IO 0 OJ WORD1

U S U S S W W NN S
1z 32 °

TN T GO S S N T A W
3

EXTENDED
INSTRUCTION
FORMAT

r - r g a T T 1
lOOOOOOOOOOOOOOOOODOOOOOOJWORDZ

(S SETURS SO0 SN TN UU00 T SN WO TN VU T 0 T A VAL WO T W S S ¢
23 o

IMMEDIATE OPERAND

T

r OPCODE
AR A AR N R SR

23

Wikl

T T T T T T STANDARD
r OP CODE a OPERAND I 7 INSTRUCTION
”1 PN NN W S G N R TR S T | I’ 5 ’1 Ll 11 < FORMATS
; T T T T T T
I OP CODE | OPERAND J
R S J
- L]
l ESCAPE CODE I OP CODE Io] o|w0RDl
AN BRI M
= = vE o EXTENDED
INSTRUCTION
FORMAT
T T T ¥ L T
! OPERAND lwoaoz
= U N WS SN T U U G U S S S W W T L

<« v+ .a . INDIRECT BIT

cemeceens DISPLACEMENT

0 = DIRECT ADDRESS

1 = INDIRECT ADDRESS
........ INDEX BITS

00 = NO INDEXING

01 = INDEX BY I

10 = INDEX 8Y J

11 = INDEX BY K
........ SOURCE REGISTER
........ DESTINATION REGISTER
........ NUMBER OF SHIFTS
........ BIT SPECIFICATION

Figure 7-

MI12423-678

1. Typical Instruction Word Formats

Three instructions, the BSX, LTM, and RPB, are extended
instructions which are in the format shown in Figure 7-1, but
which cannot be executed in the standard instruction format.
Eight additional extended instructions that cannot be
executed in the standard instruction format include the TLK,
TPA, TAP, HER, RER, LVR, TCD, and THA .instructions.
The word 1 format of these instructions is as shown in Figure
7-1, but the word 2 contents differ. The word 2 format of the
TLK instruction contains a 24-bit operand, while word 2 of
the remaining seven instructions contain all zeroes.

Table 7-1 is a list of standard instructions which can also be
executed in the extended format. Included with each
instruction mnemonic is the op code which is contained in bit
positions 11-3 of word 1 of the extended instruction
format. ’

Table 7-1. Summary of Extended Instructions Derived
From Standard Instructions

opP opP oP
INST. CODE INST. CODE INST. CODE
AAM 500 BOZ 222 MYM 560
AEM 470 BPR 650 OMA 350
AlIM 461 BPS 657 RBM 270
AJM 462 BRL 252 SMA 530
AKM 463 BSL 250 SMB 550
AMA 430 BUC 210 SMD 540
AMB 450 BUL 260 SME 520
AMD 440 BWI 231 SMmi 511
AME 420 BWJ 232 SsMJ 512
AMI 411 BWK 233 SMK 513
AMJ 412 BZR 640 SMX - 740
AMK 413 BZS 647 TAM 150
AMX 730 CMA 330 T™BM 170
AUM 300 CMB 340 TDM 160
BBI 607 CME 320 TEM 140
BBJ 617 CMi 311 TFM 460
BJL 234 cMJ 312 TIM 110
BLI 24 CMK 313 TIM 120
BLJ 242 czMm 410 TKM 130
BLK 243 DMA 360 TMA 050
BLL 262 DMX 760 T™MB 070
BNN 225 DVM 570 TMD 060
BNO 224 EMB 310 TME 040
BNP, 227 EXM 400 ™I 010
BNR 630 HTI 271 ™) 020
BNS 637 HTJ 272 TMK 030
BNZ 226 HTK 273 ™Q 510
BON 221 IMA 700 TMR 100
BOO 220 IME 670 ™X 710
BOP 223 IMI 661 TRM 200
BOR 772 IMJ 662 TXM 720
BOS 773 IMK 663 TZM 660
BOX 627 MMX 750 XMA 370

0830006-000
Original 5/78

INSTRUCTION FORMULA

The instruction formula, ‘presented with each instruction
description, provides a graphic representation of a 24-bit
instruction. word. The formula expresses an instruction
word as a concatenation of its various fields where each
field is represented by one or more octal digits. For
example, the formula 21.*+X:a expresses a memory
reference branch where “21’’ represents a 6-bit (2 octal
digits) Op Code, * and X are additive quantities defining
the indirect (*) and index (X) field, and “*a” is a memory
reference in a 15-bit address field.

The period (.) and colon (:) provide field separation in the
formula, with the colon indicating right/left justification.
All digits or references to the left of the colon are
left-justified, and those to the right are right-justified in
their respective fields. The absence of a colon indicates that -
all digits or references are left-justified in their fields.
Examples of instruction formulas are as follows:

0034.

Op Code —7_ —L Biank Field

(bits insignificant)

0027. r1. r2

Op Code—7— _\— Register Specification

Field
Register
Specification
Field

64.r:0

Op Code—7_ \—— Operand Field

Register
Specification
Field

0070. *+C. U

Op Code Unit Specification

Field

Channel
Specification
Field
W/Override

7-3

0830006-000
Original 5/78

- INSTRUCTION DESCRIPTIONS

The following paragraphs describe, in detail, the various
instructions. The instructions are arranged by functional
groups (arithmetic, branch, compare, etc.). General
information pertaining to each group is presentéd in the
introductory paragraphs. .

Each instruction description includes the three-letter
mnemonic identifier, instruction name, instruction formula,
and iists the registers affected. Bit assignments for each
instruction are shown by means of the binary word format
illustration, and a brief explanation of the instruction
operation is provided. Special notes are given, where
required, to complete the instruction description.

'Arithmetic Instructions

The arithmetic instruction group includes the standard
arithmetic operations — addition, subtraction,
multiplication and division — as well as square root,
normalization and sign extension instructions. Also
included are several register-to-register operations which
compute the absolute value, neégate or round off the
contents, or negate the sign of one register and
subsequently transfer its contents to a second register.

The arithmetic instruction mnemonics provide a brief
definition of specific operations to be performed. The first
letter’ of the mnemonic signifies the action or type of
operation to be performed, the second letter identifies the
first quantity or reference (r1) to be used in the operation,
and the third letter identifies the second reference (r2). For
example:

AME

Add ———/ \—Register E

(Action to be performed) (r2)

r1 an r2 are the same) Certam mstructlons - notably,
those performing multiplication, division, sign extension
and square root computation — do not comply with the r1
and r2 conventions stated above. These instructions are
described thoroughly in the individual instruction
descriptions.

Unless noted otherwise, each arithmetic operation causes
the Condition (C) Register to be set reflecting the status of

the result. The various arithmetic conditions are defined as
follows:

a. Positive — Result is arithmetically greater than zero,
indicated by a ONE in bit position 3 of the C
Register. A ZERO in bit position 3 indicates “Not
Positive”.

b. Zero — All bits of the quantity under consideration
are ZERQs, indicated by a ONE in bit position 2 of
the C Register. A ZERQ in bit position 2 indicates
“Not Zero”.

C. Negative — Result is arithmetically less than zero,
indicated by a ONE in bit position 1 of the .C
Register. A ZERO in bit position 1 indicates “Not
Negative”’.

d. Qverflow — An Overflow results from an operation
instead of displaying the status of an operand. As a
general rule, an arithmetic Overflow will occur when
a bit is carried into the designated sign bit position
and not carried out or vice versa, An Qverflow

condition is indicated by a ONE in bit position 0 of
the C Register. A ZERO in bit position 0 indicates

“No Overflow".

The following instructions are included in the arithmetic
group.

AAM Add A to Memory 7-6
AEM Add E to Memory 7-7
AMA Add Memory to A 75
AMB Add Memory to Byte 7-6
AMD Add Memory to Double 78
AME Add Memory to E 7-5
AMx Add Memory to Register 7-5
AOB Add QOperand to Byte 2-7
AOM Add Operand to Memory 7-7
AOr Add Operand to Register 7-7
Arr Add Register to Register 7-8
AUM Add Unity to Memory 7-5
AxM Add Register to Memory 76
ViV Divide by Memory 7-8
vGo Divide by Operand 7-8
DVT Divideby T 7-9
DVx Divide by Register ' 7-9
DV2 Divide by 2 79
ESA Extend Sign of A 7-10
ESB Extend Sign of Byte 7-10
FNO Floating Normalize 7-10
MYM Multiply by Memory 7-10
MYO Multiply by Operand 7-10
MYr Multiply by Register 7-1

0830006-000
Original 5/78

NBB Negate of Byte to Byte 7-11 Notes

NDD Negate of Dou.ble to Doul?le 7-12 AMx is not a computer instruction mnemonic but

Nrr Negate °f Register to Register -1 represents a family of instruction mnemonics. x is coded as

NSr Negate Sign of Register 712 follows to select one of the index registers.

PBB Positive of Byte to Byte 7-12

PDD Positive of Double to Double 712 x =1 ()

Prr Positive of Register to Register 713 2 (J)

Rrr Round of Register to Register 713 3 (K)

SMA Subtract Memory from A 7-14

SMB - Subtract Memory from Byte 714 A code of 41.*+1:a, for example, implements the Add

SMD Subtract Memory from Double 714 Memory to | (AMI) instruction.

SME Subtract Memory from E 7-14

SMx Subtract Memory from Register 13 The immediate memory reference cannot be indexed;

SOB Subtract Operand from Byte 715 however, indexing of indirect references is permitted.

SOr Subtract Operand from Register 7-15 .

SRE Square Root Extended 7-16 The Condition Register is set to Positive, Negative, or Zero,

SRT Square R°°t_ . +15 based on the result of the Operation. Overflow is set if the

Srr Subtract Register from Register 715 arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)

. without a carry in.
AUM % Add Unity to Memory
Formula 30."+X:a Affected M,C AMA % Add Memory to A
' ' ' ' ' Formula 43.*+X:a Affected AC
OP CODE |*| X ADDRESS
L 11 1 i | S T T VOO TN AUUN T NNUNN NN NN S 1 T T T T T
23 17 14 o]

Operation

The contents of the effective memory address are
incremented by one.

Note

The Condition Register is set to Positive, Negative or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AMx % Add Memory to Register
Formula 41.*+x:a Affected x,C
1 . 1 T 1 1
OP CODE [*| x ADDRESS
1 | 1 1 1 1 1 i 1 | N N |] 1 1 ! 1
23 17 14 [o}

Operation

The contents of the effective memory address are
algebraically added to the contents of register I, J or K.

OP CODE [¥]| X ADDRESS

B N S S | | S S IS AU NS NN (N (S NN N S S |
23 7 14 0

-

Operation

The contents of the effective memory address are
algebraically added to the contents of the A Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AME % Add Memory to E
Formula 42.*+X:a Affected E.C
T I ! |
OP CODE |*%| X ADDRESS
i 1 1 (| L 1] 1 L I 1 1 1 L 11 L1 1
23 17 14 0

Operation

The contents of the effective memory address are
algebraically added to the contents of the E Register.

0830006-000
Original 5/78

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AMD % Add Memory to Double
Formula 44.*+X:a Affected E.AC
J 1 1 1 1
OP CODE |*| X ADDRESS
[] PR T W VN WO NN N S N O W A |
23 7 14]

Operation

The contents of the effective memory address (EMA} and
the next sequential memory address (EMA+1) are
algebraically added to the contents of the D Register
according to the double integer format defined in Section
ii.

Notes

Bit A23 must be ZERO. The state of A23, after the
addition of the LSH of the double words, is used to
determine a carry into the MSH of the addition. If A23 is
set and/or bit 23 of the LSH of the double word in memory
is set prior to the addition, the carry forward will be in
error,

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the D Register after the operation.
Overflow is set if one occurs during the addition.

AxM % Add Register to Memory

Formula 46.*+x:a Affected M.C

T T 1 1 T

OP CODE %] x ADDRESS

IS N N N | N S O SN TN T N A A S N S

AMB %% Add Memory to Byte
Formula 45.*+X:a Affected AC
1 N 1 T 1 T
OP CODE - |%] X ADDRESS
| | | 1 ! | I . | |] L1l] [l [1
23 17 4 0

Operation

Bits 7-0 of the contents of the effective memory address are
algebraically added to the contents of the B Register
(A7-A0). Bits 23-8 of the A Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

23 17 14 0

Operation

The 24-bit contents of the I, J or K Register are
algebraically added to the contents of the effective memory
address.

~ Notes

AxM is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

~—

J

wh
Ny

WN =
o~ o~

A code of 46.*+2:a, for example, implements the add J to
Memory (AJM) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

AJM* X

X DAC Y.K

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AAM % Add A'to Memory
Formula 50."+X:a Affected M.C
I 1B 1 T T
OP CODE |*| X ADDRESS
1 [] L 1 N S A | 11l 1 | S L 1 1
23 ¥4 4 (4]
Operation

The contents of the A Register are algebraically added to
the contents of the effective memory address.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AEM % Add E to Memory
Formula 47.*+X:a Affected M,C
1 T T T T
OP CODE %] X ADDRESS
1 1 1]] L | |] 1 1 1] 1]] 1 1 1 1
23 17 14 0

Operation

The contents of the E Register are algebraically added to
the contents of the effective memory address.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOr Add Operand to Register
Formula 64.r:0 Affected r,C
I 1 1 1 T
OP CODE r . OPERAND
1] 1 Ll] 1 | .} 1]] L L L 1 | 1 1 1 1
23 17 4 0
Operation

The 15-bit unsigned operand is algebraically added to the
contents of the specified register.

Notes

AOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select any of the general purpose registers.

r=1{(l)
2 {J)
3 (K)
4 (E)
5 (A)
6 (T)

A code of 64.3:0, for example, implements the Add
Operand to K {AOK) instruction.

0830006-000
Original 5/78

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOB Add Operand to Byte
Formula 0012:0 Affected A,C
1 I T 1 1 T
OP CODE // OPERAND
1 11 1 1 Ll 1 | / J.1 Lt 1 1 1
23 12 7 o
Operation

The 8-bit signed operand is algebraically added to the

contents of the B Register (A7-A0). Bits 23-8 of the A

Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOM (n) Add Operand to Memory
Word 2(m)
Formula 0074:0 Affected M,C

WORD 1 (AOM)

T LI / T T
OP CODE /// OPERAND
TN TS S N TS NN (NN SO N M | 4 / T I T N B B |

23 12 7 3

COMPATABILITY MODE:
WORD 2 (DAC)

1 1 1 I 1 .
*| X o// ADDRESS
1 |A | N U N TN NN N N NN TN Ny N AN S Y

23 20 15 5 0
or

WORD 2 (LAC)

*l X 1% | AIDDRES'S | I

= 1 = I7| 1 1 1 1 L1 Ll | S . | 1 | lo
ADDRESS EXTENSION MODE:
WORD 2
7, T T T T T T
¥ X /) ADDRESS
] NN O AU NN N N N [N N U N TN SN N WO UG
23 20 19 o

0830005-000
Original 5/78

Operation
The 8-bit signed operand (n) is algebraically added to the
contents of the effective memory address (m).

Notes

If a demand page, restrict mode violation, or limit violation
occurs when attempting to access the effective memory
address while in the virtual memory User mode, the
Program Counter will be decremented by one. If the

violation occurs during the fetch of the second word, the

Program Counter will be decremented by one.

An AOM instruction may not be used after a ROM
instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

Arr Add Register to Register

Formula 0020.r1.r2 Affected r2,C
= T T T * T
QP CODE r1 r2
1 1 L l 1 1 | 1 1 1 11 1 1 l] | It i
23] 5 o]
Operation

The contents of r1 are algebraically added to the contents
of r2.

Notes

Arr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

=01 (B
02 {J)
04 (K)
10 (E)
20 (A)
40 (M)

r1 or r2

A code of 0020.10.40, for example, implements the Add E
to T (AET) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they
are logically ORed prior to the specified operation. The
result is copied into all of the selectéd r2 registers. Affected
registers are only those selected in group r2.

DVM % Divide by Memory
Formula 57.*+X:a Affected E,A,C
T 1 T T 1
OP CODE [|*| X ADDRESS
] 1 Ll L l 1 1 [| [L1 1 | 1] 1] 1
3 i7 4 o
Operation

AZ3 is cieared and the doubie-precision contents of the D
Register (E and A) are algebraically divided by the
single-precision contents of the effective memory address.
The signed, single-precision, quotient is left in A and the
remainder is left in E. The remainder will have the same
sign as the original dividend and the Condition Register will
be set according to the status of the quotient.

Notes

If it is desired to divide a single—precision number in A
by memory, an Extend Sign of A (ESA) instruction should
be executed prior to the DVM. This will establish the
proper format for the dividend.

if the contents-of E are-equal-to, or--greater-than, the
contents of memory, an Overflow condition will result and
the Condition Register will be set accordingly.

DVO Divide by Operand
Formula 610:0 Affected E.A,C
T 1 1 1 T T
OP CODE OPERAND
) T T N S W | | I O T I | | I S T S O S T |
23 4 0
Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the 15-bit
unsigned operand. The signed, single-precision, quotient is
left in A and the remainder is left in E. The remainder will
have the same sign as the original dividend and the
Condition Register will be set according to the status of the
quotient.

Notes
If it is desired to divide a single-precision number in A by
the operand, an Extend Sign of A (ESA) instruction should

be executed prior to the DVO. This will establish the
proper format for the dividend.

If the contents of E are equal to, or greater than, the
operand, an Overflow condition will result and the

- Condition Register will be set accordingly.

4 Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the specified
register. The signed, single-precision, quotient is left in A
and the remainder is left in E. The remainder will have the
same sign as the original dividend and the Condition
Register will be set according to the status of the quotient.

Notes

DVx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(1)
2 (J)
3 (K)

A code of 61.1, for example, implements the Divide by |
(DVI) instruction.

If it is desired to divide a single-precision number in A by
the contents of the specified register, and Extend Sign of A
(ESA) instruction should be executed prior to the divide
instruction. This will establish the proper format for the
dividend. '

If the contents of E are equal to, or greater than, the
contents of the specified register, an Overflow condition
will result and the Condition Register will be set
accordingly.

ek 00007

Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the T
Register. The signed, single-precision, quotient is left in A
and the remainder is left in E. The remainder will have the
same sign as the original dividend and the Condition
Register will be set according to the status of the quotient.

0830006-000
Original 5/78

Notes

If it is desired to divide a single-precision number in A by
the contents of the T Register, an Extend Sign of A (ESA)
instruction should be executed prior to the divide
instruction. This will establish the proper format for the
dividend.

If the contents of E are equal to, or greater,than, the
contents of the specified register, an Overflow condition
will result and the Condition Register will be set
accordingly.

DV2 Divideby 2
Formula 6150 Affected E
I I V { 1
OP CODE ////V OPERAND
]]] L 1]] 1 % | 1 1 1] l 1
23 14 7 0
Operation

The DV2 instruction divides the contents of the E Register
by the contents of -the A Register, except that the
arithmetic operation will be Modulo 2 (exclusive OR)
instead of 2's complement arithmetic. The 8-bit operand
contained in the instruction specifies the number of shifts.

Notes

The specified number of shifts must be an even number and
cannot be zero. If zero shifts are specified, the operation is
the same as when a shift of one (1) is specified.

This instruction is used for generating and checking error
codes based on polynomial coding techniques. The
polynomial and the operand to be implemented must be
left-justified in the A and E Registers. The result will be
placed in the E Register while the polynomial will remain in
the A Register.

SHIFT
ONE BIT
FT
LOAD A LE
SHIFT
COUNTER
DECREMENT
SHIFT
COUNTER
YES
A23>Ez3

NO NO
A

(A} +(E)

0830006-000
Original 5/78

ESA Extend Sign of A
oo 777777

The state of the sign bit (A23) of the A Register is copied
into all 24 positions of the E Register and bit A23 is then
set to zero. This forms a double-precision number in E and
A)

ESB

Formula 0010,

Extend Sign of Byte

Affected AC

oo)77

23 12

Operation

The state of the register B sign bit (A7) is copied into bit
positions A8-A23, forming a sign extension of the byte.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

FNO

Floating Normalize

e

The contents of the D Register (E and A) are shifted left
arithmetically until bit E22 differs from E23. The negative
shift count (i.e., the number of shifts performed) repiaces
the contents of the | Register.

Notes

Example: Convert a double-precision integer in D to
double-precision floating point format.

TOC 0 Clear Overflow
FNO Normalize
TiB Position exponent in byte

(A7-A0).

~J
-
(]

B0OZ *+2 If result is zero, no exponent
adjustment is necessary.
AOB 46 Adjust shift count

There are four special cases where the shifting process
differs from that described above.

if the binary pattern 11000...0 is detected in register
D, normalization is terminated to avoid creating the
invalid pattern 10000...0.

If the invalid binary pattern 10000...0 is detected, it
is shifted right one position producing the pattern
11000...0. The shift count is adjusted accordingly.

If the pattern 00000...0 is detected, the shift count is
set to -177g, making a zero less significant than any
other value.

If an Overflow condition is present when beginning
the operation, the contents of the D Register are
arithmetically shifted right one position. The shift
count is set to ONE and the sign of D is
complemented.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

MYM % Multiply by Memory
Formula 56."+X:a Affacted E,A.C
I 1 1 1 T
OP CODE [|¥] X ADDRESS
1 [| i | 1 i 1 L i1 1] | 1 1 i 1 |

23 7 14)

Operation

The contents of the A Register are algebraically multiplied
by the contents of the effective memory address. The
double-precision product replaces the previous contents of
the D Register {(E and A).

Note

An Overflow will result if the full-scale negative number
{1000....00) is used as both the multiplier and multiplicand.

MYO Multiply by Operand

Formula 600:0 Affected E.A,C

i | 1 T ! 1

OP CODE OPERAND

| SN NN NV WU W NN SN VR SN (OO VU PO N TN VRN N T (N T e |
23 4 0

Operation

The contents of the A Register are algebraically multiplied
by the 15-bit unsigned operand in the instruction word.
The double-precision product replaces the previous
contents of the D Register (E and A).

MYr . Multiply by Register

Formula 60.r Affected E,AC

oveone | 207707

23 17 15

Operation

The contents of the A Register are algebraically multiplied
by the contents of the specified register. The
double-precision product replaces the previous contents of
the D Register (E and A).

Notes

MYr is not a computer instruction mnemonic ' but
represents a family of instruction mnemonics. r is coded as
follows to select one of the general purpose registers.

r=14(l)
2 (J)
3 (K)
4 (E)
5 (A)
6 (T)

A code of 60.4, for example, implements the Multiply by E
{(MYE) instruction.

An Overflow will result if the full-scale negative number
(1000....00) is used as both the multiplier and multiplicand.

NBB

Formula 0005.

Negate of Byte to Byte

Affected AC

WEEWN

23 12

Operation

The contents of the B Register (A7-A0) are two's
complemented. Bit positions A23-A8 are unchanged.

0830006-000
Original 5/78

Notes

An Overflow will result when negating 27 (full-scale
negative byte).

The Condition Register is set to Positive, Negative, or Zero,

based on the result in the Byte Register at the completion
of the operation.

Nrr Negate of Register to Register

Formula 0022.r1.r2 Affected r2,C

1 T T I I
OP CODE r1 r2
Nl N N [S TN T T A | 11 i J | I I |
23 n 5 [¢]
Operation

The two's complement of the contents of r1 replace the
previous contents of r2.

Notes

Nrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

rt or r2

A code of 0022.40.01, for example, implements the Negate
of T to | (NTI) instruction.

An Overflow will result when negating 223 (full-scale
negative number).

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they
are logically ORed prior to the specified operation. The
result is copied into all of the selected r2 registers. Affected
registers are only those selected in group r2.

If the Timer (T) Register is selected as source or
destination, the instruction is treated as a multiple register

~ instruction for timing.

71

0830006-000
Original 5/78

NDD Negate of Double to Double

Formula- 0033. Affected E,AC
o 7570
Operation

The contents of the D Register (E and A), in
double-precision format, are two’s complemented.

Notes

An Overflow will result when negating 246 (full-scale
negative double integer).

Bit A23 is copied into the carry flip-flop after the first half
of the double word is added. If A23 or bit 23 of the LSH of
the double word is set, a carry may be lost or added.

The Condition Redister is set to Positive, Negative, or Zero,
based on the resuit of the operation.

NSr Negate Sign of Register
Formula 0032.r1.r2 Affected r2,C
T T T y T T
OP CODE r1 r2
) I NS U OSSO N AU P A B | I T I T | | S T T |
23 " 5 o]
Operation

The sign bit of the specified register is complemented.

Notes

NSr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

rl and r2 = 01 (1)
02 (J)
04 {K)
10 (E)
20 (A)
40 (T)

A code of 0032.01.01, for example, implements the Negate
Sign of | (NSI) instruction,

An Overflow will result when negating zero to create a
full-scale negative.

7-12

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers. Affected

registers are those selected in group r2 and the Condition
Register.

PBB Positive of Byte to Byte

Formula 0006. Affected AC
o 77777

Operation

The absolute value of the contents of the B Register
{A7-AD) is piaced in the B Register.

Notes

An Overflow will result when negating a full scale negative

byte,

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

PDD

Positive of Double to Double

e V7

The absolute value of the contents of the D Register is
placed in the D Register according to the double integer
format defined in Section 1.

Notes
An Overflow will resuit when negating a full scale
negative number.

According to the double integer format, A23 is cleared by
this instruction execution.

Bit A23 is copied into the carry flip-flop after the first half
of the double word is added. I A23 or bit 23 of the LSH of
the double word is set, a carry may be lost or added.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Prr Positive of Register to Register
Formula 0023.r1.r2 Affected r2,C
i I 1 1 T
OP CODE r1 r2
| | 1 L 1 1] [l L 1 1 1] 1 1 1 1.1 1 1
23 n 5 o]
Operation

The absolute value of the contents of r1 replaces the
previous contents of r2.

Notes

Prr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

r1 or r2=01 (I)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0023.01.02, for example, implements the
Positive of | to J (P1J) instruction.

An Overflow will result when negating a full-scale negative
number. -

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior. to the specified operation. The result
is copied into all of the selected r2 registers. Affected
registers are only those selected in group r2 and the
Condition Register.

Rrr Round of Register to Register

Formula 0075.r1.r2 Affected r2,C
1] 1 T 4
OP CODE r r2
1 J - 1 1 It t 1 11 | L1 Ll [1 1 1
23 " 5 [¢]
Operation

Round the contents of r1 as a function of A and place the
resultin r2.

0830006-000
Original 5/78

Notes

Rrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded to select
one-of-five general purpose registers, and r2 is coded to
select any of the general purpose registers.

r1=01 () r2 =01 (i)
02 (J) 02 (J)

04 (K) 04 (K)

10 {E) 10 (E)

40 (T) 20 (A)

40 (T)

A code of 0075.04.20, for example, implements the Round
of K to A (RKA) instruction.

If bit A22 is a ONE, the contents of r1+1 are transferred to
r2. If A22 is ZERO, the contents of r1 replace the previous
contents of r2. In either case, r1 is unchanged except when
the same as r2.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If -
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

SMx % Subtract Memory from Register
Formula 51.%+x:a Affected x,C
{ 1 I T 1
OP CODE [%]| x ADDRESS
| W I | 1 | I S T SO [N A S N S N N |
23 7 14 o]
Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the I, J or K
Register.

Notes .

SMx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(l)

2 Q)
3 (K)

713

0830006-000
Originai 5/78

A code of 51.%+1:a, for example, implements the Subtract
Memory from | (SMI) instruction.

" The immediate memory reference cannot be indexed;
however, indexing of indirect reference is permitted, e.g.,

sMmi* X

X DAC YJ

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out,.or a carry out without a carry in.

SMA % Subtract Memory from A
Formula 53.*+X:a Affected A,C
1 T T T T
OP CODE %} X ADDRESS
1 1 1 | 1 1 1 1 1] 1 i i |] 1 i 1] 1
23 17 4]

Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the A
Register.

Note

The Condition Register is set to Positive, Negative; or Zero,
based on the result of the operation. Qverflow is set if the
arithmetic operation generates a cariy into the sign bit
without a carry out, or a carry out without a carry in.

Subtract Membry from E

SME %

Formula 52.*+X:a Affected E.C

OpP CODE [¥| X

UNEND SS TV NUI S SN N SN U SN U S
23 7 14 0

Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the E
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,

714

based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMD % Subtract Memory from Double
Formula 54.*+X:a Affected EAC
I 1 i [1

OP CODE *] X ADDRESS
Ll 1 1 | L N NS WU (NN (NN OV NN OO SN NS SN [S |
23 17 14 (o]

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) are algebraically
subtracted from the contents of the D Register (E and A),
according to the double integer format defined in Section
.

Notes

Failure to adhere to the double integer format will provide
incorrect results. Bits A23 must be ZERO. (A carry or
borrow may be lost between the E and A Registers.)

Bit A23 is copied into the carry flip-flop after the first half
of the double word is added. {f A23 or bit 23 of LSH of the
double word in memory is set, a carry may be lost or
added.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMB % Subtract Memory from Byte
Formula 55.*+X:a Affected AC
T I 1 I T
OP CODE %] X ADDRESS
1 1 1 L 1 L 11 | 1] 1 i 1 1 Lt 1 1 L
23 17 14 i 0
Operation

The contents of bits 7-0 of the effective memory address
are algebraically subtracted from the B Register (A7-A0).
Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero, -
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SOr

Subtract Operand from Register

0830006-000
Original 5/78

Srr

Subtract Register from Register

Formula 65.r:0 Affected r,C Formula 0021.r1.r2 Affected r2,C
1 1 1 1 1 § 1 1 1 1
OP CODE r OPERAND OP CODE r r2
J 1t 1 1 L L | IR N N (P N N TR T O O W |] L1 L1 1 | | S | 1 Ll 11 | I T |
23 7 14 [0} 23 " 5 o
Operation Operation

The 15-bit unsigned operand is algebraically subtracted
from the contents of the specified register.

Notes

SOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

r=1(l)
2
3 (K)
4 (E)
5 (A)
6 (T)

A code of 65.1:0, for example, implements the Subtract
Operand from.| (SOI) instruction.

The Condition Register- is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
result of the arithmetic operation generates a carry into the
sign bit without a carry out, or a carry out without a carry
in.

SOB

Subtract Operand from Byte

The contents of r1 are algebraically subtracted from r2.

Notes

Srr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

r1 or r2

A code of 0020.01.02, for example, implements the
Subtract | from J (SIJ) instruction.

The Condition Register is set to Positive, Negative, or Zero, -
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

Formula 0013:0 Affected A,C
T T 1 / i 1
OP CODE //// OPERAND
1 L1 1 1] 1 1 1 l l () I// 1 1 L.J 1 1]
a3 12 7 [o]
Operation

The 8-bit signed operand is algebraically subtracted from
the contents of the B Register (A7-A0Q). Bits A23-A8 are
unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SRT square Root
Formula 0076:014 Affected E,AC
! I kH / T T T
OP CODE /“//00001100
S S B | | | L1 1 L1 / | | | 11 |
23 12 7 [o]
Operation

The contents of the A Register are treated as a 23-bit
positive integer. The square root of this quantity is placed
in the A Register, right justified, and the remainder is .
placed in the E Register so that:

root2 + remainder = original integer,

0830006-000
Originai 5/78

Notes
If the sign bit (23) of the A Register is set, the Condition
Register will be set to Overflow.

SRT generates a root of 12 significant bits; i.e., the true
integer root of any positive integer in the A Register.

Consider the following examples where An implies a binary
point to the right of bit n.

Positive integer Root (Octal)
2at AO 1at A0
2 at A20 1.3240 at A10
SRE Square Root Extended
Formula 0076:027 Affected E,AC
1 T T / 1 1
OP CODE //00010111
1 1 1 1 1 1 1)| 1 | 1 1 L 1 i 1 1 L
23 12 7 0
Operation

The contents of the A Register are treated as a 23-bit
positive integer. The square root of this quantity is placed
in the A Register, right justified, and the remainder is
placed in the E Register so that:

root2 + remainder = original integer.

Notes

If the sign bit (23) of the A Register is set, the Condition
Register will be set ta Overflow.

SRE generates a root of 23 significant bits. This extended
significance is obtained by assuming 22 zeros to the right of
bit AO; effectively multiplying the contents of A by 222
and, consequently, the root by 211,

Consider the following examples where An implies a
binary point in the right of bit n.

Positive Integer Root (Octal)
2at A0 1.3240 at A11
2 at A20 1.3240474 at A21

Branch Instructions

The branch group of instructions can be divided into two
basic types; conditional and unconditional branches.
Conditional branches cause control to be transferred to a
specified address upon detection of a certain machine
condition as indicated by the contents of the Condition
Register. Unconditional branches cause control to be
transferred unconditionally to a specified address.

Branch instructions follow the mapping rules described in
the addressing functions paragraph contained in Section Il.

Caution should be observed when employing branch
instructions in conjunction with the virtual memory
system. When a Release User Mode (RUM) instruction is
executed, any branch instruction following the RUM will
cause the User Mode to be established. If the instruction is
a conditional branch, the User Mode will be established
regardiess of the outcome of the conditional test. A BLU
instruction automatically establishes the Monitor Mode.

Three branch instructions modify machine operation when
executed. The BSL, BSX, and BRL instructions are affected
by the operational state of the CPU, and by the virtual
memory mode of operation. A summary of the functions of
these instructions is provided in Figure 7-2.

CPU operational states are shown along the top of the
chart. Under each operational state, the virtual memory
mode and state of VLR20 before and after instruction
execution is listed. Save word and indirect word formats are
also indicated. The first instruction listed is a BSL which
contains an op code and a 16-bit address; the indirect bit is
reset. In Operational State Zero, the virtual memory mode
and state of VLR20 are don‘t cares prior to instruction
execution. These two functions remain unchanged after
instruction execution. The Compatibility Mode save word
format is used. In this format the return address is located
in bits 15-0, the condition code is contained in bits 19-16,
and the virtual memory mode of operation is saved in bit
20. Since the BSL is not indirected, the indirect word
format does not apply.

Operation of the BSL instruction when the CPU is in state
one depends on the virtual memory mode of operation. if
in the User Mode, the CPU is placed in the Compatibility
Mode, and when in the Monitor Mode, operation is in the
Address Extension Mode. When the machine is in state one,
the virtual memory mode and state of VLR20 remain
unchanged after execution of the BSL. The Compatibility
Mode save word format is used in the User Mode, and one
of the Address Extension Mode save word formats is used
in the Monitor Mode. The latter save word contains the
return address in bits 19-0, and zeroes in bit positions
23-20; the condition code and virtual memory status are
not saved.

Operation of the BSL in state three is similar to state zero
operation except for the save word format. Since the
Address Extension Mode is established in state three, one of
the Address Extension Mode save word formats is specified.

© 0830006-000 °
Original 5/78

STATE ZERO STATE ONE STATE THREE
0 Il SAVE | INDR 10 1 save | INDR 1 L SAVE INDR
INsT | vv | vir| vM |wir| worp | worp vM {vir] wvm | vir| worD | woRrD vM | ViRl vMm {virR | WORD | woORrRD
INSTRUCTION | FORMAT “ |MODE | 20 | MODE | 20 | FORMAT | FORMAT | NoTEs | MoDE| 20 | MODE] 20 | FORMAT | FORMAT | NOTES | MODE| 20 | MODE | 20 | FORMAT | FORMAT| NOTES
‘USER [x Juser Juc| ® NA
BSL ® X x| vc |uc| ® NA worr T x [mot [oc T O A X x| uvc |uc @ NA
7 USER | x JUSER_|UC |) ®
BSL* @ x | x| vc |uc ® monT | x [MonT [uc | @ x | x| uvc |uc @)
USER | x Juser Juc| ® NA 1
BSL % ® | x x | vc Juc ® NA 1 wonT | x [monT [uc | O NA X x| vc |uc @ NA
USER | x [USER | uc @ 1,2
BSL* % ® x | x]u fuel ® ® | %2 o x Twont Tuc 8 x | x| uw Jue| @ ©
INTERRUPT ' NA [NA| NA [NA] NA NA
Bl O)0) X x | moNT| UC ® ® NA NA| NA NA | NA NA N
USER X Juser | uc (5) NA 1
1 x | x| uc |uc NA
BX © x | xfuw |w] © NA MONT | X [MONT | uc (0 ©
ustR | x [user [uc | ® (D) 1,2
* C 1,2 = x | x| uc fuc
BX ® x | xju juecl @ @ MONT | X [MONT | UC | ®) 0
INTERRUPT | aroware | ma | onal na Toal na | Na UeR | x ImonT |1 | G @ |3 Juser | x Imont] ® @ 3
BSX MONT | x [MONT | © 6 10 3 MonT | x Imont] o ® © |3
BRL ® x | x| uc Juc] Na NA X X uc uc | Na NA x | x| uc Juc NA NA
usR | x| - Juc] ® @] 124] x |o [monT]| o0 ® (D)
BRL* @ x | x| - || O |®@O® |4 MONT | 0 [MONT | 0 | @ p) ,
MONT | 1 Jusek | 0 [® 19 1 35 X |1 fuser | o ® @ |as
: v useR | x Juc uc | NA NA 1 .
9 1 x | x| uc fuc NA NA
FR" % ® X | X [uc fuc) NA NA MoNT | x Juc uc | Na NA
uslR I x| - Jucl ® (0 L2,4] wont | o ® ®
- BRL* % ® x | x| - Juc|l ®) 1,24 [MONT | 0 [MONT] 0 | ® 0 " TR 5) © 53
MONT] 1 Juser 1o | ® @ 3,5 ' ’
INSTRUCTION FORMATS SAVE WORD FORMATS INDIRECT WORD FORMATS
T T T T T T T T T T T T ! T v ! !
@ OP CODE 10 ADDRESS COMPATIB:A;I;: 0 |V[CReS RETURN ADDRESS *)1(/A//‘ ISR IADIDIREIS? L1
= L1l 1 e ‘sl Ll 1 L) I I 1 N 5 BI 1 = nl il 1l | SN Y NS [N N N N A N - ry wMPATIBILITY) my S
T T T T] T VM MODE BIT MODE T T T 1 T
@ OP CODE ! ADDRESS I] ' ' y . ' @ * X / S T W | ':'\DlD‘RElSSL S O
23I | - = Isl [T S W TN N Y S T N WU N S N 5 c REG RETURN ADDRE$ = 22!2] = = 5
ADDRE& 1 | |9] J L\ 1 | T T S N N W | Il 1 | 3 .
T T T T T EXTENSION ADDRESS T T T T T T
7 7 4 o0 OP CODE 0 MODE) . T L E— T r T T EXTENSION ¥ X ADDRESS
T S T T T W W S T S | T B R R | Il ® 0 RETURN ADDRESS MODE 2322|2| 4 ml TR N TN W T TN SN U AU A D N S B |°
2 2 32 ° ! | - R S I | NS SN N AN N N W N S | Ll i 1
® = 0 :
ol X I i ATDDRES‘S '
! | NN SN I N T N T N NN N Y O N T [N N I G N
S I NOTES: THE MODE AT T1 WILL REMAIN UNCHANGED
;7 s o P CODE 0 1. THE FINAL EMA MAY NOT EXCEED 16 BITS. IF ANOTHER INTERRUPT IS ACTIVE AND ENABLED.
[A A A S S B [S B B | i 2. INTERMEDIATE ADDRESSES MAY BE 20 BITS. 6. CHART LEGEND
= o) se e 3. VLR20 REMAINS UNCHANGED IF ANOTHER Xewrnnnn DON'T CARE
@ INTERRUPT IS ACTIVE AND ENABLED. uc..lo UNCHANGED
e 4. THE MODE AT T1 WILL REFLECT THE STATUS T0...... STATUS BEFORE INSTRUCTION EXECUTION
1| x ADDRESS OF BIT 20 OF THE SAVE WORD. ... STATUS AFTER INSTRUCTION EXECUTION
T S S WU U U S U T TN SN Y N S B B | NA . ‘NOT APPLICABLE

i
Bz22ZAN22W08

o

Mi2426-678

Figure 7-2. BSL, BSX, and BRL Functional Summary

7-17/(7-18 Blank)

An indirected BSL functions the same as a non-indirected
BSL with certain exceptions. The indirect bit is set in the
instruction format and an indirect word format is specified.
One of the Compatibility Mode indirect word formats is
used in state zero and, if in the User Mode, in state one. If
in the Monitor Mode in state one, or if in either of the
virtual memory modes in state three, the Address Extension
Mode indirect word format is specified.

When the BSL is in the extended instruction format,
operation is similar to the standard format BSL. Final
EMAs may .not exceed 16 bits since in the. Compatibility
Mode the program counter is only 16-bits wide. If the
extended BSL is indirected the final EMA cannot exceed 16
bits, but intermediate addresses may be 20 bits.

The interrupt BSL is defined only for state zero. An
interrupt generates a hardware Execute Memory (EXM)
instruction which accesses the interrupt BSL. No hardware
EXM is executed in operational states one or three. .

The interrupt BSX is not defined for state zero but is
defined for states one and three. When an interrupt is
generated, a pseudo (hardware) BSX is executed to force a
branch to a dedicated location where an address is accessed
as the second word. Since 20-bit addresses are used, direct
accesses can be made to up to one megaword of memory.
Address Extension Mode save and indirect words are
specified. If the virtual memory is in the User Mode when
the interrupt BSX is generated, the Monitor Mode is
established after execution of the BSX. All valid interrupts
reset the User Mode and place the system in the Monitor
Mode. If the Monitor Mode is set when the interrupt
occurs, the system remains in the Monitor Mode. VLR20
records the virtual memory mode of operation at the time
of the first interrupt. This bit remains unchanged if another
interrupt is active and enabled.

An indirect BRL instruction is usually used to exit an
interrupt subroutine. Indirect chaining is allowed in the
Compatibility Mode but not in the Address Extension
Mode. The Condition Register and program counter are
restored according to the contents of the save word stored
at the indirect location. Note that the Compatibility Mode
and Address Extension Mode save word formats differ.

The following instructions are included in the branch
group.

8Bl Branch When Byte Address +1in | # 0 7-19
BBJ Branch When Byte Address +1inJ # 0 7-20
BJL Branch Indexed by J Long ‘ 7-21
BLL Branch and Link (J) Long 7-22
BLU Branch and Link Unrestricted 7-24
BLx Branch and Link Register 7-22

0830006-000

Original 5/78
BNc Branch on Condition Code 7-21
BOc Branch on Condition Code 7-21
BRL Branch and Reset Interrupt Long 7-23
BSL Branch and Save Return Long 7-22
BSX Branch and Save Extended 7-23
BUC Branch Unconditionally 7-20
BUL Branch Unconditionally Long 7-21
BWx Branch When Register +1# 0 7-21

Branch when Byte Address

o,
BBI /o +1 inl % 0
Formula 607:a Affected |

1 I 1 1 1 1
OP CODE ADDRESS
i 1 1 1 1 i 1 1 1 1 I 1 1 1 1 1 1 1 i |] L
. 23 14 [s]

Operation

"The confents of bits 22 and 23 of the | Register are

incremented by one. If the result of this addition (in bits 22
and 23) is not 002, then the contents .of the P Register
(current program address) are replaced by the effective
memory address. If the result of the addition to bits 22 and
23 is 002, then bits 22 and 23 are set to 012 and bits 21-0
are incremented by one. If the resultant sum in bits 21-0 is
zero, then the P Register advances to the next sequential
program location and the index register is set to
20000000g. Otherwise, the contents of the P Register are
replaced by the effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

T™J = ‘60000200
TMI = ‘20000300
TNK 11

EMB 0

RBM 0

BBI *+1

BBJ *+1

BWK *.4

Occasionally, it is possible to use the address of a portion of
the | Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

7-19

0830006-000
Original 5/78

TOB g

T™I ='77777775 bits 22 and 23 = 3,
bits 21-0=-3
RBM ‘100+3

BBI *1

However, it should be noted this technique of using the
index register as both a byte counter and word pointer may
be used only in certain instances. Specifically, when the

folliowing relationship is true.

(55 (%)

Where:
R{) =remainder
B.n. = the starting byte number (1,2, or 3)
CT = The number of bytes to be referenced.
o Branch when Byte Address
BBJ % iins+0
Formula 617:a Affected J
[} 1 I i T 1
OP CODE ADDRESS
Il L 1 1] L Il] {4 | S S TN S W N N 1 [l 1
23 14 o
Operation

The contents of bits 22 and 23 of the J Register are
incremented by one. If the result of this addition (in bits 22
and 23) is not 002, then the contents of the P Register
(current program address) are replaced by the effective
memory address. If the result of the addition to bits 22 and
23 is 002, then bits 22 and 23 are set to 012 and bits 21-0
are incremented by one. If the resultant sum in bits 21-0 is
zero, then the P Register advances to the next sequential
progiaim iocation and the index regisier is set 1o
20000000g. Otherwise, the contents of the P Register are
replaced by the effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will

move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

7-20

T™J = ‘60000200
T™I = ‘20000300
TNK 11

EMB 0

RBM 0

BBI *+1

BBJ *+

BWK *4

Occeasionaily, it is possibie to use the address of a portion of
the J Register as a byte counter as weil as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB "

™I =‘77777775 bits 22and 23 = 3,
bits 21-0 = -3

RBM ‘100+3

BBJ *1

However, it should be noted this technique of using the
index register as both a byte counter and word pointer may
be used only in certain instances. Specifically, when the
following relationship is true.

 (52)-0(S)

Where:

R()} =remainder

B.n. = the starting byte number (1,2 or 3)

CT = The number of bytes to be referenced.
BUC % Branch Unconditionally
Formula 21.*+X:a Affected P

i I] ¥ 1
OP CODE |*| X ADDRESS

I T N S |] IS N VNN N N TN SO O N U Y N
23 17 14 [o]

Operation

The contents of the P Register (current program address)
are replaced by the effective memory address..

BUL % Branch Unconditionally Long
Formula 26.*+0:A Affected P
I 1 1 I T 1
OP CODE |*|0 ADDRESS
1 J - | 1 | S S U N N S NN R A | 1 1 L |
23 17 15 [o]
Operation

The contents of the P Register (current program address)
are replaced by the effective memory address.

Note

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

BUL* X

X DAC Y,

BNc %

Branch on Condition Code

BOc %
Formula 22c:a Affected P
T 1 1 1 1
OP CODE c ADDRESS
1 L1 1 1 11 1 1 1 | W A T I B! | I N N §
23 17 14 v ! ‘ . 0
Operation

The contents of the Condition Register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program advances to the next sequential
instruction.

Note

BOc and BNo are not computer instruction mnemonics but
represents families of instruction mnemonics. ¢ is coded as
follows to select the branch on condition.

¢ = 0 (Overflow)

- 1 (Negative) BOc
2 (Zero)
3 (Positive)
4 (No Overflow)
5 (Not Negative)
6 (Not Zero)
7 (Not Positive)

BNc

A code of 22.1:a, for example, implements the Branch on
Negative (BON) instruction.

0830006-000

Original 5/78
BWx % Branch When Register +1 # 0
Formula 23.x:a Affected x,P
I I 1 I T
OP CODE |0] x ADDRESS
1] I\ 1 1 ' 1] 1 L 1 1 L 1 1 i i | | 1
23 17 16 19 o]

Operation

The contents of the specified register are incremented by

~one and then tested for zero. If the contents are not zero,

the contents of the P Register (current program address) are
replaced by the effective memory address. If the contents
are zero, the program advances to the next instruction.

Note

BWx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x'=1(l)
2 ()
3 (K)

A code of 23.1:a, for example, implements the Branch
When [1+1#0 (BWI) instruction.

Indexing, if specified in word 2 of the extended instruction,
occurs before the register is modified.

BJL % Branch Indexed by J Long
Formula 234:A Affected P
I . T 1 I | i
OPCODE (10 ADDRESS
1] L L 1 1 1 1 L1 1 1 L 1] | 1
23 18 15 0
Operation

The contents of the.P Register (current program address)
are replaced by the effective memory address.
Note

The immediate memory reference is automatically indexed
by J.

0830006-000
Original 5/78

BLx % Branch and Link Register
Formula 24."+x:a Affected x,P
1 T 1] T T
OP CODE [%{| x ADDRESS
{1 1 11 ! 1 | S S T T | I} L1 | S
23 7 L} 0

Operation

The contents of the |, J or K Register are replaced by the
program address of the next sequential instruction, and the
.contents of the P Register (current program address) are
replaced by the effective memory address.

Notes

BLx is not a computer instruction mnemonic but represents
a family of instruction mnemonics. x is coded as follows to
select one of the index registers.

x =1 ()
2 (J)
3 (K)

A code of 24."+1:a, for example, implements the Branch
and Link | (BLI) instruction.

If not in the extended instruction format, the immediate
memory reference cannot be indexed; however, indexing of
indirect references is permitted, e.g.,

BLI* X

X DAC Y.J

On an indirect or index operation, the specified register is
loaded with the contents of the P Register {address of next
sequential instruction) before indexing or indirection takes
place.

BLL % Branch and Link (J) Long
Formula 26.*+2:A Affected J,P
T T 4 T I 1
OP CODE [|*]|1 ADDRESS
i | i 1 L i | i Il L1 11] | 1 i i]

23 7 15 0

7-22

Operation

The contents of the J Register are replaced by the program
address of the next sequential instruction, and the contents
of the P Register (current program address) are replaced
by the effective memory address.

Note

If not in the extended instruction format, the immediate
memory reference cannot be indexed; however, indexing of
indirect references is permitted, e.g.,

BLL*

X DAC

BSL %

Branch and Save Return Long

Formula 25.*+0:A Affected P
T 1 1 T lj i
OP CODE (*|0 ADDRESS
1 I | S | Il 1 | T | 1) N S T O W
23 7 15 [}
Operation

In the Compatibility Mode, the program address of the next
sequential instruction along with the contents of the
Condition Register are stored in the effective memory
address (EMA). The contents of the P Register (current
program address) are then replaced by the address following
the effective memory address (EMA + 1).

In the Address Extension Mode, the program address of the
next sequential instruction is stored in the effective
memory address (EMA). The contents of the P Register
(current program address) are then replaced by the address
following the effective memory address (EMA + 1).

Notes -

This instruction is used in the Compatibility Mode to enter
an interrupt subroutine because it provides a means of
returning to the main program at the point of interrupt and
saves the machine status (condition) at the time of the
interrupt.

In the Compatibility Mode, the contents of the Condition
Register are stored in bit positions 19-16 of the EMA and
‘the return address (program address of next sequential
instruction) is stored in bits 15-0. The remaining bits are set
to ZEROs. When an interrupt occurs, the status of the
virtual memory system is recorded. Bit 20 is set to ONE if
the system is in the User Mode at the time of interrupt; bit
20 is set to ZERO if the Monitor Mode is active.
The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

The Condition Register remains unchanged.

COMPATIBILITY MODE

SAVE WORD
T T T T T T
00 0|V|] CREG ~ RETURN ADDRESS
L L1 1 AN T TN SN A T T T TN WO W N T
23 20 16 15)

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSL or extended BSL is executed.
Intermediate Addresses may be 20 bits when an indirect
extended BSL is executed.

ADDRESS EXTENSION MODE
SAVE WORD

I 1 1 1 i

0000 RETURN ADDRESS

| Y (N I N NS N (N (Y NS N OO MU N TN N N N O I I I |
23 2019 o

In the Address Extension Mode, the return address is stored
in bit positions 19-0 of the EMA; bits 23-20 are reset to
ZEROs.

BSX Branch and Save Extended

0830006-000
Original 5/78

Operation

The program address of the next sequential instruction,
along with the contents of the Condition Register, are
stored in the 20-bit effective memory address (EMA). The
contents of the P Register (current program address) are
then replaced by the address following the effective
memory address (EMA + 1).

Notes

The BSX instruction is valid only in the extended
instruction format. This instruction provides a means of
returning to the main program and saves the machine status
{condition) at the time of instruction execution.

External interrupts are prohibited for a period of one
instruction following the execution of this instruction.

The Condition Register remains unchanged.

ADDRESS EXTENSION MODE
SAVE WORD

C REG RETURN ADDRESS

NN NN S N TN Y O (N 0 N [[O N Y T I |
23 9 [¢]

When the BSX is executed in the Address Extension Mode,
the contents of the Condition Register are stored in bit
positions 23-20 of the EMA and the refturn address
(program address of the next sequential instruction) is
stored in bit positions 19-0.

COMPATIBILITY MODE
SAVE WORD
! 1 I 1 I T

0 0 0|V| CREG RETURN ADDRESS

Ll § U U N N T N (NN (NN N A W O U O S A S
23 20 19 15 o]

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSX is executed, however, intermediate:
addresses may be 20 bits when the BSX is indirected.

Formula 7740.254.0 Affected P
*+X:EA

T T T T T BRL % Branch and Reset Interrupt Long

ESCAPE CODE OP CODE 000
e L L L Formula 25.*+2:A Affected cP

1 1 J 1 1 1 1 1 1 T 1 1
*| X ADDRESS OP CODE [%/1 ADDRESS
L 2] 1 1 1 1 1 [l 1 L 1 1 1 1 1 1]] 1] | L 1 1] 1 1 1 1 1 1 1 | } i] | 1

2322 21 20 19 0 23 17 15 [s]

7-23

0830006-000
Originai 5/78

Operation

The highest-level active and enabled interrupt is reset (i.e.,
returned to the inactive state) and the contents of the P
Register (current program address) are replaced by the
effective memory address.

Notes

The BRL instruction is normally used to exit an interrupt

subroutine.

In the Compatibility Mode, if the BRL contains an indirect
reference, the last word in the indirect address chain
contains the previous status of the virtual memory system
in bit M20, the previous machine status (i.e., C Register
contents at the time of the interrupt) in bit positions
M19-M16, and the return address in bit positions M15-MO
as a result of the BSL instruction. The C Register is restored
and the program branches to the return address {restarting
the machine to the pre-interrupt status).

Example:
TMA
L AMA
SMA Interrupt occurs (EXM K).
K BSL. M Dedicated interrupt location.
M *** M Mbecomes L+1 as a result of
BSL at K. The C Register con-
tents are stored in M19-M16.
BRL M Restore C Register and return

to L+1.

in the Compatibility Mode, if an indirect BRL is executed
in Monitor Mode, bit 20 of the effective memory address
determines mode of operation to which machine returns. If
bit 20 is set, User Mode is established; if reset, the Monitor
Mode is established.

in the Address Extension iMode, if the BRL does not
contain an indirect reference, the program branches to the
return address and the state of VLR bit 20 is unchanged. If
the BRL is indirected (no direct chaining is allowed), the
destination address contains the previous machine status in
bit positions M23-M20, and the return address in bit
positions M19-MO as a result of the BSX instruction. The C
Register is restored and the program branches to the return
address. VLR bit 20 remains unchanged if another interrupt
is active and enabled. If no other interrupt is active and
enabled, VLR20 is reset (Monitor Mode).

7-24

In the Compatibility Mode, the final EMA may not exceed -
16 bits when a BRL or extended BRL is executed.
Intermediate address may be 20 bits when an indirect
extended BRL is executed.

The immediate memory reference cannot be indexed;
however, indexing indirect references is permitted, e.g.,

BRL* X

X DAC Y.K

If the BRL instruction is not indirected, the Condition
Register is not affected.

External interrupts are prohibited for the period of one
instruction following this instruction.

The BRL will not reset the interrupt if external interrupts
have been held by an HXI instruction. Control will be
returned to the effective memory address.

Those executive traps, which are not affected by the HXI
instruction, will be reset by the BRL.

BLU

Branch and Link Unrestricted

Formula 0067:a Affected J,P
I oP CrODE ' 7//}////// ADIIDR ESS
1 1 [l 1 1 il 1 1 1 W L L1 1
23 12 4 0
Operation

The program address of the next sequential instruction
replaces the contents of the J Register and the contents of
the P Register (current program address) are replaced by
the 5-bit immediate memory address.

" Notes

If virtual memory is enabled, execution of the BLU
instruction will automatically establish the Monitor Mode.
The 5-bit immediate memory address will not be mapped.

In the Compatibility Mode, bit 20 of the J Register will be
set (ONE) if thé system was in the User Mode, and reset
(ZEROQ) if the Monitor Mode was active when the BLU was
executed. Bit 20 is not saved in the Address Extension
Mode.

Compare Instructions

The compare group of instructions is composed of two
basic types of operations; algebraic and logical comparisons.
Both types of instructions compare two referenced
quantities and set the Condition Register according to the
result. Algebraic comparisons treat the references as signed
(+ or -} quantities, while logical comparisons assume the
references are unsigned quantities.

Algebraic comparisons are identified by the letter ’C" as
the first letter in the instruction mnemonic (e.g., CAl).
Logical comparisons use a mnemonic code beginning with
the letter "K'’ {KAIl). The second letter of the mnemonic
code designates the first of the compared quantities (r1)
and the last letter designates the second quantity. For
example:

CMI
Algebraically Compare —/ \—Register |
(Type of operation) (r2)
Memory
(2]
or
KJA :
Logically Compare —/ -\—Register A
{Type of operation) (r2)
Register J
(r1)

Both algebraic and logical comparisons are performel
according to the formula:

r2 - r1 = C (positive, zero or negative)
Therefore, r2 > r1, r2 < r1 and r2 = r1 will set the
Condition Register (C) to positive (+}, negative (-) and zero

(0), respectively.

The following instructions are included in the compare
group. :

CMA Compare Memory and A 7-25
CMB Compare Memory and Byte 7-26
CME Compare Memory and E 7-26
CMx Compare Memory and Register 7-25
CcoB Compare Operand and Byte 7-26
Crr Compare Register and Register 7-27

0830006-000
Original 5/78

CZD Compare Zero and Double 7-27
CZM Compare Zero and Memory 7-26
CZr Compare Zero and Register 7-26
KOB Kompare Operand and Byte 7-27
Krr Kompare Register and Register 7-27
CMx % Compare Memory and Register
Formula 31.*+x:a Affected c
1 T I 1 1
OP CODE |*| x ADDRESS
| I N N 1 | N N NS N NN SN N SN N Y N N
23 7 14 0
Operation

The contents of the effective memory address and the
contents of the I, J, or K Register are algebraically
compared.

Notes

CMx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
foliows to select one of the index registers.

x =1(l)
2 (J)
3 (K)

A code of 31.*+1:a, for example, implements the Compare

" Memory and | (CMI) instruction.

-‘The immediate memory reference cannot be indexed;

however, indexing of indirect references is permitted, e.g.,

cMmI* X

X DAC Y.K

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CMA % Compare Memory and A
Formula 33*+X:a Affected c
! 1 i T 1
OP CODE k| X ADDRESS
1 L1 1 1 1 L 1 1 1 L 1 1 Il 1 | I N S Y
23 17 14 o]

7.9%

Original 5/78

Operation

The contents of the effective memory address and the
contents of the A Register are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CME % Compare Memory and E
Formula 32.*+X:a Affected c
1 T T T 1
OP CODE |*%] X ADDRESS
1 [L1 I] | I | L1 1 1 | 11 | Y
23 17 14 [e]

Operation

The contents of the effective memory address and the
contents of the E Register are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Operation

The contents of the effective memory address and zero are
algebraically compared.

Notes

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

The Condition Register is set to Positive, Negative, or Zero,

based on the result of the operation.
COB Compare Operand and Byte
Formula 0014:0 Affected C
T T 1 7 N I
OP CODE //// OPERAND
i i i 1 i i i i H i /)// L i i i H i

23 12 7 o
Operation

The 8-bit signed operand and the contents of the B Register
(A7-AQ) are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CMB % Compare Memory and Byte
Formula 34.*+X:a Affected c
1 T 1 1 T
OP CODE |*] X ADDRESS
1 1 i 1] 1 1 1 1 1 1 1 | |).] 1 1),
23 17 14 [¢]
Operation

The contents of the B Register {A7-A0) and the contents of
the effective memory address (M7-MO) are algebraically
compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CZM % Compare Zero and Memory
Formula 41.*+0:a Affected Cc
1 T T 1 i
OP CODE [*i00 ADDRESS
L 1 1 1] L I N | 1 I 1 L1] 1 L 1
23 17 14 [+]

~t
N
-]

CZr Compare Zero and Register
Formula 002400.r2 Affected Cc
i T T T T T
OP CODE r2
| N N T T T S | L i 1 i 1 1 1 | | S S S S |
23 3 o]
Operation

The contents of the specified register and zero are
algebraically compared.

Notes

CZr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers.

r2= 01 {I)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 002400.01, for example, implements the
Compare Zero and | (CZl) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r2 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r2, they are logically ORed
prior to the specified operation.

CcZD

Compare Zero and Double

0830006-000
Original 5/78

A code of 0024.01.02, for example, implements the
Compare | and J (ClJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1, or r2, they
are logically ORed prior to the specified operation.

Krr Kompare Register and Register

Formula 00240030 Affected C Formula 0025.r1.r2 Affected C
I T 1 T T T T 1 i T I I
OP CODE OP CODE r1 r2
1 Ll 1 L1 1 I | I N | 1 1 ! L1 1 |] L1 | 1 1l | S N | 1 l 1 | ! L L - |] [
23 0 23 1] 5 o]}
Operation Operation

The contents of the E Register are logically ORed with the

contents of the A Register, and the result and zero are |

algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Crr Compare Register and Register

Formuia 0024.r1.r2 Affected C
1 T T 1 1
OP CODE r1 r2
L1 1] 1 l] 1 1] I] 1 Ll 1] 1 31
23 1] 5 4]
Operation

The contents of r1 and the contents of rZ are aigebraicaily
compared.

Notes

Crr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

r1 or r2 = 01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

KOB

The contents of r1 and r2 are logically compared.

Notes

Krr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

rl or r2= 01 (l)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0025.01.02, for example, implements the
Kompare | to J (KH1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 and r2, they
are logically ORed prior to the specified operation.

Kompare Operand and Byte

Formula 0015:0 Affected C

l T i

[7 T T
OP CODE // OPERAND
IS S T N T T N S N / S R R

23 12 7 [o]

Operation

The 8-bit operand and the contents of the B Register
{A7-A0) are logically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Logical Instructions

The logical group of instructions includes AND (Dot
product), OR and exclusive-OR operations. All three types
use two quantities to produce a logical resuit. The AND
instructions use a mnemonic code beginning with the letter
“D” for “Dot”. The OR instructions use a mnemonic
beginning with the letter “O”, while exclusive-OR
instructions are distinguished by the letter “X"’.

The second letter of the mnemonic code identifies the first
of the two quantities (r1). The third letter signifies the
second quantity (r2). Some examples are listed below.

DMA
Dot ——/ -\—Register A
(Operation) (r2)
Memory
(r1)

O0B
OR —/ T \—Byte
{Operation) (r2)

Operand
(r1)

A B N

- v
Exclu nEGisier N

PYLYY.N
WIMIIVU W |

{Operation) I {r2}

Register J
(r1)

Unless specifically noted otherwise in the individual
descriptions, the result of the logical operation replaces the
previous contents of r2 while r1 is unchanged. The
Condition Register is set to the status of the result
{Positive, Negative, or Zero) after the operation. The

7-28

various logical operations are illustrated in the following
table.

M| 2| r1tANDr2 | r1ORr2 r1 XOR r2
1 1 1 1 0
0 1 0 1 1
1 0 0 1]
0 0 0 0 0

The following instructions are included in the logical group.

DMA Dot Memory with A 7-28
DOB Dot Opetand with Byte 7-28
Drr Dot Register with Register 7-29
OMA OR Memory with A 7-29
00B OR Operand with Byte 7-29
Orr OR Register with Register 7-29
XMA Exclusive OR Memory with A 7-30
X0B Exclusive OR Operand with Byte 7-30
Xrr Exclusive OR Register with Register 7-30
DMA % Dot Memory with A

Formula 36."+X:a Affected AC

T T 1 1 T
OP CODE [%] X ADDRESS
231 | S 0 i Mi SRS NS S SN U SN S S S S N | io

Operation
A logical AND is performed between the contents of the
effective memory address and the contents of the A
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

DOB Dot Operand with Byte

0016:0

! I 1 7 t :
OP CODE /‘// OPERAND
T T W U SO S T N M S | T S S S T

23 12 7 0

Formula Affected AC

Operation

A logical AND is performed between the 8-bit operand and
the contents of the B Register {(A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Drr Dot Register with Register

Formula 0026.r1.r2 Affected r2,C
i I 13 I 1
OP CODE r1 r2
1 1 1 1] 1 | 1 1 1 1] i)| 1 1 i 1 1 i]
23 n 5]
Operation

A logical AND is performed between the contents of r1 and
r2.

Notes

Drr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

=01 (1)
02 (J)
04 {K)
10 (E)
20 (A)
40 (N

rl or r2

A code of 0026.01.02, for example, implements the Dot |
with J (D1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

11 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

OMA % OR Memory with A
Formula 35.%+X:a Affected AC
1] 1 1 I
OP CODE |%| X ADDRESS
| W N | i] O S N N N O SN T N T | 1
23 17 14 0

0830006-000
Original 5/78

Operation

A logical OR is performed between the contents of the
effective memory address and the contents of the A
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

OOB OR Operand with Byte

Formula 0004:0 Affected AC
T T i 1 1)
OP CODE ///' OPERAND
! |] 1 1 1]] 11 l I/ 1 1 | | | 1 1
23 12 7 [o]
Operation

A logical OR is performed between the 8-bit operand and
the contents of the B Register (A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Orr OR Register with Register

Formuia 0030.r1+r2.r2 Affected r2,C
1 T 1 I 1
OP CODE r1+r2 r2
| N [I N I IO S | | I I | | I I I |
23 " 5 [s]
Operation

A logical OR is performed between the contents of ri and
r2.

Notes

Orr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (b
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

rl or r2

7-2Q

0830006-000
Original 5/78

A code of 0030.03.02, for example, implements the OR |
with J (OLJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2. registers. Affected
registers are the Condition Register and those selected in

group r2.

XMA % Exclusive-OR Memory with A
Formula 37."+X:a Affected AC
I T 1 T 1
OP CODE |*| X ADDRESS
| S N 1 | S VN (N U (SR AN NS N N NN N Ay A |
23 17 4 [+]

Operation

An exclusive-OR operation is performed between the
contents of the effective memory address and the contents
of the A Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

XOB Exciusive-OR Operand with Byte
Formula 00170 Affected AC
1 T 1 / /4 1 T
OP CODE / OPERAND
L1 l L i | 1 1 | L 1 // 1 1) I S |]
23 2 7]
Operation

An exclusive-OR operation is performed between the 8-bit
operand and the contents of the B Register (A7-A0). Bits
A23-A8 are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

7-30

Xrr Exclusive-OR Register with Register

Formula 0027.r1.r2 ° Affected r2,C
I 1 ¥ 1 1
~ OPCODE r1 r2
| - | 1 1 1 1 L1 1 1 1 L i 1 1 1] L1
22 1l 5 [+]
Operation

An exclusive-OR function is performed between the
contents of r1 and r2.

Notes

Xrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 ()
02 (J)
04 (K)
10 (E)

2 [A)

awv \ryg

40 (T)

1 or 72

A code of 0027.01.02, for example, implements the
Exclusive-OR | with J (X1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits, Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selecied 2 regisiers. Affecied
registers are the Condition Register and those selected in
group 2.

Shift Instructions

The shift instruction group consists of arithmetic and
logical shifts. The arithmetic shifts cause the contents of a
register to be shifted left or right a specified number of
....................

are similar to the arithmetic shifts, except that the sign bit
is shifted along with the other bits.

With both types of shift instructions, any number of shifts
from 0 to 256 may be programmed without restriction. The
number of shifts (n) are specified in bits 7-0 of the
instruction word.

At the conclusion of any shift operation, the Condition
Register is set to the status of the affected register's
contents (Positive, Negative, Zero).

The following instructions are included in the shift group.

LAA Left Shift Arithmetic A 7-31
LAD Left Shift Arithmetic Double 7-31
LLA Left Shift Logical A 7-31
LLD Left Shift Logical Double 7-31
LRA Left Rotate A 7-32
LRD Left Rotate Double 7-32
RAA Right Shift Arithmetic A 7-32
RAD Right Shift Arithmetic Double 7-32
RLA Right Shift Logical A 7-32
RLD Right Shift Logical Double 7-33
RRA Right Rotate A 7-33
RRD Right Rotate Double 7-33
LAA Left Shift Arithmetic A

Formula 0040:n Affected AC

T T ! I 1
OP CODE / / n
A1 4 3 1 1 11] L J// | | 11 L 1L

23 12 7 o]
Operation

Bits A22-A0 are shifted left n places, with the most
significant n bits being lost and n ZEROQs being shifted into
the least significant bit positions. The sign bit (A23) is
unchanged.

1

: h)

23 22] [}
Notes

<+ZEROS

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

If a bit shifted off from A22 differs from the sign bit, the
Condition Register will be set to Overflow. {This is in
addition to the Positive/Negative/Zero status.)

LAD Left Shift Arithmetic Double

Formula 0046:n Affected EAC
. T . -]

Haaam KN

= = 7 5

Operation

Bits E22-E0Q and A22-A0 are shifted, as one register, left n
places. The most significant n bits are lost and the least

0830006-000
Original 5/78

significant n bits are replaced with ZEROs. Bits E23 and
A23 are bypassed. E23 is the D Register sign bit and A23 is
not used in the double-precision format. *

hil

S %i -—J % 32 L« ZEROS
E23 Ez2 Eo AzzAzz Ao
Notes

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

If a bit shifted off from E22 differs from the sign bit, the
Condition Register will be set to Overflow. (This is in
addition to the Positive/Negative/Zero status.) ’

LLA Left Shift Logical A
Formula 0042:n Affected AC
T T T T T
o VA
2 2 7)
Operation

Bits A23-A0 are shifted left n places, with the most
significant n bits being lost and the least significant n bits
replaced by ZEROs.

-}

23 o

ZEROS

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

LLD Left Shift Logical Double
Formula 0050:n Affected E.A,C
; - | . ! -
Lo A
= = ; 5
Operation

Bits E23-EOQ and A23-AQ are shifted, as one register, left n
places. The most significant n bits are lost and the least
significant n bits are replaced with ZEROs.

2?21

0830006-000
Originai 5/78

1 i

E23 Eo A2 Ao

- ZEROS

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

LRA Left Rotate A
Formula 0044:n Affected AC
T T T ////l 1 !
OP CODE n
L1 1 1 1 1 1 1 1 /J/Z | I - i 11 1
23 2 7]
Operation

Bits A23-A0 are rotated left n places. No bits are lost.

P

- é? -

23 o]

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RAA Right Shift Arithmetic A
Formula 0041:n Affected AC
T 1 - 1 7 1 1
OP CODE n
T TR T TS TN T T % L1
22 12 7 o
Operation

Bits A22-A0 are shifted right n places. The least significant
n bits are lost and the most significant n bits are replaced
by an extension of the sign bit (A23). The sign bit is not
changed. ‘

LRD Left Rotate Double
Formula 0052:n Affected E,A,C
I T T / 1 1
OP CODE // n
b gy % Lot
23 12 7 o
Operation

Bits E23-E0 and A23-A0 are rotated, as one register, left n
places, with E23 replacing A0 and A23 replacing EO as each
shift takes place. No bits are lost. '

e ¢ i

€23 Eo Az Ao

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

7-32

Sp—» |

23 22 0

Note

The Condition Redgister is set to Positive, Negative, or Zero,
based on the result of the operation.

RAD Right Shift Arithmetic Double

Formula 0047:n Affected E.A.C
T T T / T T
OP CODE / n
23l E—— '|2 l / 1I E— l0
Operation

Bits E22-EQ and A22-A0 are shifted, as one register, right n
places. The least significant n bits are lost and the most
significant n bits are replaced by an extension of the sign
bit (E23). Bit A23 is bypassed.

O H T

Ez3 Bz €o
Note

Tha Panditinn Danmietnr ie cnt +Aa Dacitiuun Mamntiua ~
THIG WUIIRIILIVIT FIOYIDLGT 19 901 W ¥ UIIUIVY, Tveyative, Ui

Aoz A2 Ao

=X
N

hased on the result of the operation,

RLA Right Shift Logical A

Formula 0043:n Affected AC
T T T I T T
OP CODE % n o
| N S N UUY (NS S S T T | |/ IO I N WO W |
23 2 7 [\

Operation

. Bits A23-A0 are shifted right n places. The least significant
n bits are lost and the most significant n bits are replaced

by ZERO:s.

23 c

ZEROS =

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RLD Right Shift Logical Double
Formula 0051:n Affected E,A,C
T T . ///y 1 T
OP CODE V// n
23l BEE— Ilz / 7l B [}
Operation

Bits E23-E0 and A23-A0 are shifted, as one register, right n
places. The least significant n bits are lost and the most
significant n bits are replaced by ZERO:s.

§}(.

ZEROS—+ gg

Ez3 Eo A3 Ag

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RRA Right Rotate A

Formula 0045:n Affected AC
T T T % / T T
OP CODE V// n
23l F N N N A N Y N | I|2 é - L1 11 4 4 1 S
Operation

Bits A23-A0 are rotated right n places. No bits are lost.

Y

34

23 (¢}

0830006-000
Original 5/78

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RRD Right Rotate Double.

Formula 0053:n Affected E.A.C
T T T T . 1
e)

23 12 7 o

Operation

Bits E23-E0Q and A23-A0 are rotated, as one register, ri, n
places, with EOQ replacing A23 and AOQ replacing E23 as « ch
shift takes place. No bits are lost.

e}

i %

E23 Eo A2s Ao

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Transfer Instructions

The transfer instruction group includes various types of
operations. Among these are: interchanges between
memory and a specified register, interchanges between
registers, memory-to-register and register-to-memory
transfers, and register-to-register transfers.

The mnemonic code for the transfer instruction describes
the individual operation. The first letter of the mnemonic
indicates what action is to be taken; “’I” for interchange or
“T” for transfer. The second and third letters specify the
source (r1) and destination (r2), respectively. Some
examples are listed below:

I M1

Interchange —/_ \— Register |

{Operation) (r2)

Memory
(r1)

7.2

0830006-000
Original 5/78

TIJ
Transfer ———/- L—RegisterJ
(Operation) (r2)
Register |

{r1)

With the exception of the interchange instructions, the
transfer group (r1) is not altered by the execution of any
instructions in the transfer group.

The Condition Register is always set to reflect the status
(Positive, Negative, or Zero) of the contents of r2, at the
completion of the instruction.

The following instructions are included in the transfer
group.

EMB Extract Memory Byte 7-34
iMA interchange Memory and A 7-35
IME Interchange Memory and E 7-35
IMx Interchange Memory and Register 7-35
Irr Interchange Register and Register 7-35
LTM Transfer Tracking RAM to Memory 7-42
RBM Replace Byte in Memory 7-36
TAM Transfer A to Memory 741
TBM Transfer Byte to Memory 7-41
TDM Transfer Double to Memory 7-41
TEM Transfer E to Memory 741
TFM Transfer Flag to Memory 741
TIM Transfer | to Memory 7-42
TIM Transfer J to Memory 742
TKM Transfer K to Memory 7-42
TLK Transfer Extended Operand to K 7-39
TLO Transfer Long Operand to K 7-39
TMA Transfer Memory to A 7-37
T™MB Transfer Memory to Byte 7-36
TMD Transfer Memory to Double 7-36
TME Transfer Memory to E 7-37
TMI Transfer Memory to | 7-37
™J Transfer Memory to J 7-38
TMK Transfer Memory to K 7-38
™Q Transfer Memory to Query Register 7-37
TMR Transfer Memory to Registers 7-38
TNr Transfer Negative Operand to Register 7-38
TOB Transfer Operand to Byte 7-38
TOC Transfer Operand to Condition Register 7-39
TOr Transfer Operand to Register 7-39
TrB Transfer Register to Byte 7-40
TRM Transfer Registers to Memory 7-42
Trr Transfer Register to Register 7-42
TSr Transfer Switches to Register 7-40
TZM Transfer Zero to Memory 7-41
TZr Transfer Zero to Register 7-40

7-34

EMB % Extract Memory Byte
Formula 31.*+0:a Affected B,C
T 1 | 1 1
OP CODE {*j0 0 ADDRESS
1 1 1 1 1 1 1 1 1 1 i | 1 1 1]] 1
23 18 17 15 14 o]

Operation

The effective memory address is added to the contents of
the J Register, producing the word address which contains
the byte to be extracted. The selected byte, as determined
by the contents of bits 23 and 22 of the index J Register, is
then placed in the B Register.

Notes

The following table shows the correspondence between bits
23 and 22 of J and the byte to be extracted:

Bits 23 and 22
J Register Byte Selection

o1 Leftmost Byte (bits 23-16 of
EMA+))

10 Middle byte (bits 15-8 of
EMA+))

11 Rightmost byte (bits 7-0 of
EMA+))

00 Rightmost byte (bits 7-0 of
EMA+))

The final address of any indirect/index sequence should not
be indexed since implied indexing on the J Register takes
place. If indexing is specified on the final address, then the
specified index register will be algebraically added to the
EMA prior to the finai addition of J with the EMA.

Examples:
IfJ = ‘40000030
and K = ‘00000010 when the following is executed:
EMB* ‘40
‘40 DAC* ‘60,K
‘42 DATA “XYzZ”
‘60 DAC ‘12

then the character Y will be placed in the B Register. Note
that the effective address of the indirect/index sequence is
‘42. However, ‘12 plus bits 15-0 of index J Register (‘30)
yields the final address of ‘42, Since a byte specification of
102 was made in bits 23-22 of index J Register, then the
second byte (bits 15-8) of memory location ‘42 is placed in
the B Register.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

IMx % Interchange Memory and Register
Formula 66.*+x:a Affected M.,x,C
T I 1 I 1

OP CODE [|*]| x ADDRESS h
| L1 t 1 | | I O N N NN SN N | p 1 11
23 17 14 o]

Operation

The contents of the effective memory address and the 1, J,
or K Register are interchanged.

Notes

IMx is not a computer instruction mnemonic but represents
a family of instruction mnemonics. x is coded as follows to
select one of the index registers.

x =1(l)
2 ()
3 (K)

A code of 66*+1:a, for example, implements the
Interchange Memory and | (IMI) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.

IMK* X

X DAC Y,J

The Condition Register is set to Positive, Negative, or Zero,
based on the result in |, J, or K at the completion of the
operation.

0830006-000
Original 5/78

IMA % Interchange Memory and A
Formula 70.*+X:a Affected M,A,C
1 T 1 i !
OP CODE |*¥] X ADDRESS
L1 1 11 1 | WS U N A S AN NN N (N N N S
23 17 4 o

Operation

The contents of the effective memory address and the A
Register are interchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

IME % Interchange Memory and E
Formula 67.*+X:a Affected M,E,C
Ll B 1 1 T 1
OP CODE ¥} X ADDRESS
N 1 i 1 L1 1 t | 1 1 1 1 1 1 1
23 7 4 o]

Operation

The contents of the effective memory address and the E
Register are interchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in E at the completion of the operation.

Irr Interchange Register and Register
Formula 0035.r1.r2 Affected r1,r2,C
1 1 I 1 1
OP CODE rl r2
1 | I 1 | S T | L1 1 J I 1 1 1 i
23 I S o]
Operation

The contents of r1 and r2 are interchanged.

7-35

0830006-000
Original 5/78

Notes

Irr is not a computer instruction mnemonic but represents a
family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (b
02 ()
04 (K)
10 (E)
20 (A)
40 (T)

rl or r2

A code of 0035.01.02, for example, implements the
Interchange | and J {i1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in r2 at the completion of the
operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2 they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 and r1 registers.
Affected registers are the Condition Register and those
selected in group r1 or r2,

RBM % Replace Byte in Memory
Formula 27.*+0:a Affected M
1]] 1 i
OP CODE |*|0 O ADDRESS
g 1 i i i] i 41 L1t 4 ¢+ § 1 1
23 8 17 15 14 o]

Operation

The effective memory address is added to the contents of
the | Register producing the word address which contains
the byte to be replaced. The selected byte, as determined
by the contents of bits 22 and 23 of the index | Register, is
then replaced by the contents of the B Register.

Notes

The following table shows the correspondence between bits
22 and 23 of i and the byte to be repiaced.

7-36

Bits 23 and 22
I Register Byte Selection

01 _ Leftmost byte {bits 23-16 of
EMA+H)

10 Middie byte (bits 15-8 of
EMA+I)

1" Rightmost byte {bits 7-0 of
EMA+)

00 Causes no operation

The final address of any indirect/index sequence should not
be indexed since implied indexing of the | Register takes
place. If indexing is specified on the final address, then the
specified index register will be logically ORed with the !
Register prior to the add function with the EMA.

Formula 07."+X:a Affected AC
T 1 1 1 I
OP CODE %] X ADDRESS
1 11 1 1 1 1 i 11 1 1] i 1 1 | . L
23 7 4 0
Operation

The 8 least significant bits {7-0) of the contents of the
effective memory address replace the previous contents of
the B Register (A7-AD). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the B Register at the completion of
the operation.

TMD % Transfer Memory to Double
Formula 06.*+X:a Affected E,AC
1 T 1 I 1

OP CODE %} X ADDRESS
'R] [I S S SR R N B e e |
23 17 L] 0

i

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) replace the previous
contents of the D Register (E and A). EMA and EMA+1 are
transferred to E and A, respectively.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in D at the completion of the operation.

0830006-000
Original 5/78

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

™Q* X

X DAC Y.l

TMA % Transfer Memory to A
Formula 05*+X:a Affected AC
| i T I T
OP CODE |*]| X ADDRESS
L1 I [R N NN S N N A A0 S W X
23 T 14 o]
Operation

TMQ % Transfer Memory to Query Register
Formula 51.*+0:a Affected Query
1 1 T 1 I

OP CODE {%*|0 0 ADDRESS
| | 1 ! 1t 1 1 1 | I
23 7 14 10
Operation

Bits 23, 22, 21 and 19-0 of the contents of the effective
memory address replace the previous contents of the Query
Register. These bits are loaded into the Query Register in
bit positions 23, 22, 21, and 19-0, respectively.

Notes

Executing this instruction will cause the Program Halt and
Address Trap to be enabled or disabled, depending on the
state of bits 23, 22, and 21 of the effective memory
address.

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

TME % Transfer Memory to E
Formula 04.*+X:a Affected E,.C
1 1 1 1 1
OP CODE [%| X ADDRESS
Jd .1t 1 1 L NS 1 N NN N T TN O S (N N A A |
23 17 4 o
Operation

Bit23 =ONE = Disable Address Trap
Bit23 =ZERQO = Enable Address Trap
Bit22 =ONE = Trap on Write only
Bit 22 =ZERO = Trap each time selected address
is referenced
Bit21 =ONE = Trap or Halt during User
mode only
Bit21 =ZERO = Trap or Halt during Monitor
mode only
Example:
T™Q OA
OA DAC ADDR Enable Address Trap
or
OA DAC* O Disable Address Trap

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in E at the completion of the operation.

TMI %

Transfer Memory to |

Formula 01.*+X:a Affected 1,C
1 T 1 T T
OP CODE |%] X ADDRESS
l {1 J 1 1 L1 i 1 ;S N N OO A S |

23

o

7-37

Original 5/78

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in | at the completion of the operation.

TMJ % Transfer Memory to J
Formula 02.*+X:a Affected J,C
| I i T T
OP CODE |*¥| X ADDRESS
1 1 i 1 1 L1 1 L 1 1 1 1 11 1 1 1 1
23 17 14 (o]

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero, .

based on the result in J at the completion of the operation.

TMK % Transfer Memory to K
Formula 03."+X:a Affected K.C
1 I 4 1 T
OP CODE [*| X ADDRESS
| I I S | L f 1 .1t 1 1 1.1 | I T S T
3 7 4 0

Operation

‘The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Neqative, or Zero,
based on the result in K at the completion of the operation.

TMR % Transfer Memory to Registers
Formula 10.*+X:2 Affected !,J, K, E A
1 I T 1 1
OP CODE |%*| X ADDRESS
1 1 1 1] 1 i 1 1 L 1 1 1 l i i [\ | | 1
23 17 4 o]
Operation

The |, J, K, E and A Registers are loaded from consecutive

7-38

memory addresses beginning with the effective memory
address.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.
-

An indexed" TMR instruction wiii not execute properiy if a
demand page occurs during the execution of the

instruction,

LRLUO

TNr Transfer Negative Operand to Register
Formula 63.r:0 Affected r,C
) I 1 Ll 1
OP CODE r OPERAND -
[N I | L 1K I Y T N N U N B I O I |
3 7 14 [o]
Operation

The two's complement of the 15-bit unsigned operand
replaces the previous contents of bits 23-0 of the specified
register.

Notes

TNr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

r =1()
2 (J
3 (K)
4 (E)
5 (A)
6 (T)

A code of 63.1:0, for example, implements the Transfer
Negative Operand to | (TNI) instruction. '

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

TOB Transfer Operand to Byte
Formula 0003:0 Affected AC
] ¥ I / Ll T .
OP CODE %// OPERAND
1 11]] 1 1 1 1 [/IA J 1 1 I 1 .
23 }4 7 o
Operation

The 8-bit signed operand replaces the previous contents of
the B Register (A7-AD). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

TOC Transfer Operand to Condition Register
Formula 0036:0 Affected C

OP CODE / OPERAND
Operation

The 4-bit operand replaces the previous contents of the
Condition Register.

Note

Operand definition is as follows:

Bit0 =ONE = Overflow
=ZERO = No Overflow

Bit1 =ONE = Negative
= ZERO = Not Negative

Bit2 =ONE = Zero
=ZERO = Not Zero

Bit3 =ONE = Positive
= ZERO = Not Positive

. TOr Transfer Operand to Register
Formula 62.r:0 Affected r,C
1 1 I i
OP CODE r OPERAND
[| 11 I N NS N SN (N N N TN N S B e |
23 17 4 o]
Operation

The 15-bit unsigned operand replaces the previous contents
of bits 23-0 of the specified register.

Notes

TOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

r =1()
2 (J)
"3 (K)

_ 0830006-000
Original 5/78

4 (E)
5 (A)
6 (T)

A code of 62.1:0, for example, implements the Transfer
Operand to | (TOl) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

TLO

Transfer Long Operand to K

Formula 236:0 Affected K
1 T T T T T T
OP CODE OPERAND
1 1 1 H L 11 | 111 L 1] 1 1 L 1 i | 1
23 15 o
. Operation

In the Compatibility Mode, the 16-bit operand replaces the
previous contents of bits 15-0 of the K Register. Bits 23-16
of K are cleared (reset to ZEROs).

In the Address Extension Mode, if bit 15 is set (ONE), the
operand is assumed to be a long absolute quantity which is
transferred to the K Register. Bits 23-16 of K are cleared. If
bit 15 is reset (ZERO), the 16-bit operand is assumed to be
a local address which requires map resolution. Bits 19-15 of
the Program Counter are appended to bits 14-0 of the
operand and the 20-bit result is then transferred to K. Bits
i23-20 of K are cleared.

TLK Transfer Extended Operand to K
Formula 7740.236.0 Affected K
[o]
1 1 H | i
ESCAPE CODE OP CODE 000
1] 11 1 ! 1 i i 1 1] L 1 1.1 1 1 1 1 i
23 2 n 2 o
T T T I I I I
OPERAND
1] L 1 L1 [i | I | ||]] 1 l] L | L1 1
23 o]
Operation

The 24-bit operand of the second word replaces the
previous contents of the K Register.

Notes

The TLK instruction is valid only in the extended
instruction format.

The Condition Register remains unchanged.

7-39

0830006-000
Originai 5/78

TSr Transfer Switches to Register

Formula 003100.r2 Affected r2,C
1)] [} I]
OP CODE r2
1 . 1 | I I W | | I D N N A | 1 i 4 1 11
23 5 . [+]
Operation

The states {set = ONE) of the consoie controi switches (i.e.,
switch register) are transferred to the corresponding bit
positions of the specified register.

Notes

TSr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers.

2= 01 (l)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 003100.01, for example, implements the
Transfer Switches to | (TSI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

r2 is selected by unitary bits. Therefore, none, ali six, or
any combination of registers may be selected. If more than
one register is selected in group r2, the switches are copied
into all of the selected r2 registers. Affected registers are
the Condition Register and those selected in group r2.

TZr Transfer Zero to Register
Farmula 003000.r2 Affected 2,C
1 T 1 1 i T
OP CODE r2
) U T S | | N S W WY S I N | L1 1 | - |

22
22

Operation

The previous contents of the specified register are replaced
with ZEROs.

Notes

TZr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers or the D register,

7-40

r2= 01 (1)
02 (3
04 (K)
10 (E)
20 (A)
40 (T)
30 (D)

A code of 003000.01, for example, implements the
Transfer Zero to | (TZI) instruction,

The Condition Register is set to Postive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

r2 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r2, they are logically ORed
prior to the specified operation. The result is copied into all
of the selected r2 registers. Affected registers are the
Condition Register and those selected in group r2.

™8 Transfer Register to Byte
Formula 0002.r1 Affected A
1 1 1 1 /
OP CODE r1 ////‘// ;
[U TN T T S U N O | L1 g
23 H [o]
Operation

The least significant 8 bits (7-0) of the contents of the
specified register replace the previous contents of the B
Register (A7-A0). Bits A23-A8 are unchanged.

Notes

TrB is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded as follows to
select one-of-five general purpose registers.

=01 (1)
02 (J)
04 (K)
10 (E)
40 (T)

A code of 0002.01, for example, implements the Transfer |
to Byte {TIB) instruction.

The Condition Register is not affected.

r1 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r1, they are logically ORed
prior to the specified operation.

TBM % Transfer Byte to Memory
Formula 17.%+X:a Affected M
I T 1 1 1
OPCODE [|*]| X ADDRESS
TR N I | | | I Y [I S SN N DU (U N N s |
23 17 14 o]

Operation

The contents of the B Register (A7-A0) replace the 8 least
significant bits of the contents of the effective memory
address. Bits 23-8 of the memory word are unaffected.

TDM % Transfer Double to Memory
Formula 16.*+X:a Affected M
i 1] T 1 1
OP CODE [¥| X ADDRESS
111 1 1 1 I N U N IO (NN TN NN T O N S I |
23 17 14 [o]

Operation

The contents of the D Register (E and A) replace the
previous contents of the effective memory address (EMA)
and the next sequential address (EMA+1). The contents of
E and A are transferred to EMA and EMA+1, respectively.

TFM %

Formula 46.*+0:a

Transfer Flag to Memory'

Affected M.C

¥ I I | 1

OP CODE [*|0 O ADDRESS

| S S .| | N N I T N N N N N IS SN N A |

23 17 14 0

Operation

The previous contents of the effective memory address are
replaced by ONEs.

Notes

The Condition Register is set to the status of memory
(Positive, Negative, or Zero) prior to the transfer.

The immediate memory reference cannot be indexed;

however, indexing of indirect references is permitted, e.g.,

TFM* X

X DAC Y.l

DMA transfers are inhibited and shared memory is locked
up during the execution of this instruction.

0830006-000
Original 5/78

TZM % Transfer Zero to Memory
Formula 66.*+0:a Affected M.C
1 -1 1 1 1
OP CODE |%*|0 O ADDRESS
1 1 1 1 [1 1 1 1 1 1 i { 1 1 1 |]
23 i7 14 o

Operation

The previous contents of the effective memory address are
replaced by ZEROs.

Notes

The Condition Register is set to the status of memory
(Positive, Negative, or Zero) prior to the transfer.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

TzZm* X

X DAC Y.

DMA transfers are inhibited and shared memory is locked up
during the execution of this instruction.

TAM % Transfer A to Memory
Formula 15.*+X:a Affected M
) I I 1]
OP CODE k| X ADDRESS
Lt 1 1 1 1) IS A T N (N (NN U (S A U N (Y B |
23 17 (L3 (o)

Operation

The contents of the A Register replace the previous
contents of the effective memory address.

TEM % Transfer E to Memory
Formula 14.*+X:a Affected M
14 1 I 1 1
OP CODE |%] X ADDRESS
JUE I W N S |] | R SR Y N NN N O S I | L1 J I
23 17 14 o
Operation

The contents of the E Register replace the previous
contents of the effective memory address.

741

0830006-000
Original 5/78

TIM % Transfer | to Memory
Formula 11.*+X:a Affected M
1 1 1 T 1
OP CODE %] X ADDRESS
1 L | L 1 1 11 1] 1 | 1 1L 1 1 1 1
23 i7 4)

Operation

The contents of the | Register replace the previous contents
of the effective memory address.

TIM % Transfer J to Memory
"formula 12.*+X:a Affected M
I 1 i i I
OP CODE |*| X ADDRESS
1 1 1 L 1 H 1 L 1 | 1 L 1 1 1 11
23 17 4 (o)

Operation

The contents of the J Register replace the previous contents
of the effective memory address.

TKM % Transfer K to Memory
Formula 13.*+X:a Affected M
T T ¥ ¥ ¥
OP CODE [*] X ADDRESS
| I T W W L) T VN (NS Y N NN N IR A B | 11
23 T 4 [+]

Operation

The contents of the K Register replace the previous
contents of the effective memory address.

TRM % Transfer Registers to Memory
Formula 20.*+X:a Affected M
T I v I 1
OP CODE |*| X ADDRESS
| L1 1 1)| | S N D N N W (N TS S N WO N N |
23 i7 % 5]

Operation

The contents of the |, J, K, E and A Registers are stored in
consecutive memory locations beginning with the effective
memory address.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

Trr Transfer Register to Register

Formula 0030.r1.r2 Affected r2,C
J H 1 1 T
OP CODE r1 r2
) U S I N S S S I O | I I I | I S N |
23 1 5 (]
Operation

The contents of r1 replace the previous contents of r2.

Notes

Trr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 ()
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

r1 or r2

A code of 0030.01.02, for example, implements the
Transfer | to J (THJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in 2 at the completion of the
operation,

LTM Transfer Tracking RAM to Memory
Formula 7740.003.0 Affected M
*+X:EA
T T T ! 1
ESCAPE CODE OP CODE 000
1 [i 1 i H | S S 1 [1 i i 4 1 i i1
23 12 N 3 2]
/ 1 1 1 1 T 1
*| x ADDRESS
1 //‘ 1 J . ! 1 1 1 1 i 1 i 1 1 1] 1 | 1 1 1
23 22 21 20 19 0
Operation

The contents of the branch tracking RAM are transferred to
sixteen consecutive memory locations starting at the
effective memory address (EMA).

Notes

The LTM instruction is valid only in the extended
instruction format.

The first location is not a valid branch address.
The Condition Register remains unchanged.

This instruction is privileged.

Byte Processing Instructions

The byte processing group of instructions permits program
manipulation of all three bytes within the computer word
(24 bits); e.g., extract, replace, etc. The following
instructions are inclusive of byte processing operations.

AMB Add Memory to Byte 7-43
AOB Add Operand to Byte 743
BBI Branch when Byte address +1 in |1#0 7-43
BBJ Branch when Byte address +1 in J#0 7-44
CcmB Compare Memory and Byte 7-45
coB Compare Operand and Byte 745
DOB Dot Operand with Byte 7-45
EMB Extract Memory Byte 7-45

' ESB Extend Sign of Byte 7-46
EZB Extend Zeros from Byte 7-46
KOB Kompare Operand and Byte 7-46
NBB Negate of Byte to Byte 7-46
00B OR Operand with Byte 7-46
PBB Positive of Byte to Byte 7-46
RBM Replace Byte in Memory 7-47
QBB Query Bits of Byte 7-47
soB Subtract Operand from Byte 747
TBM Transfer Byte to Memory 7-47
TOB Transfer Operand to Byte 7-48
TMB Transfer Memory to Byte 7-48
TrB Transfer Register to Byte 7-48
XO0B Exclusive-OR Operand with Byte 7-48
AMB % Add Memory to Byte

Formula 45.*+X:a Affected AC

1 T Ll 1 L

OP CODE [*| X "ADDRESS

| I O N | | I SO O T I O S N U SN SO S Ay e |
23 17 14 [+]

Operation

Bits 7-0 of the contents of the effective memory address are
algebraically added to the contents of the B Register
(A7-A0). Bits 23-8 of the A Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

0830006-000

Original 5/78
AOB Add Operand to Byte
Formula 0012:0 Affected AC
1 1 1 // 1 |
OP CODE //// OPERAND

1 L1 1 1 L1 | 1 L1 /] 1 1 1 J -]
23 12 7 0
Operation

The 8-bit signed operand is algebraically added to the
contents of the B Register (A7-AQ). Bits 23-8 of the A
Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

BBI % Branch when Byte Address +1in 1 # 0

Formula 607:a Affected |
) t T I ¥ 1
OP CODE ADDRESS
1 [1 | T] | S S T] | S (O S N U N |
23 14 [s]
Operation

The contents of bits 22 and 23 of the | Register are
incremented by one. If the result of this addition (in bits 22.
and 23) is not 007, then the contents of the P Register
{current program address) are replaced by the effective
memory address. If the result of the addition to bits 22 and
23 is 002, then bits 22 and 23 are set to 012 and bits 21-0
are incremented by one. If the resultant sum in bits 21-O is
zero, then the P Register advances to the next sequential
program location and the index register is set to
20000000g. Otherwise, the contents of the P Register are
replaced by the ef_fective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

743

0830006-000
Original 5/78

™J - ='60000200
™I = ‘20000300
TNK 1

EMB 0

RBM o

BBI *+1

BBJ *+1

BWK *4

Occasionally, it is possible to use the address of a portion
of the | Register as a byte counter as well as a word pointer,
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB “p"

T™I ='77777775 bits 22 and 23 = 3,
bits 21-0 =-3

RBM ‘100+3

BBI *1

However, it should be noted this technique of using the
index register as both a byte counter and word pointer may
be used only in certain instances. Specifically, when the
following relationship is true,

{(5)(5)

Where:
R ()= remainder
B.n. = the starting byte number
(1, 2, or 3)
CT = The number of bytes to be
referenced.
BBJ % Branch when Byte Address
+1inJ#0
Formula 617:a Affected J
1 1 I I 1 ¥
OP CODE ADDRESS
I N T T N N TN N SN N SN N W N SN IS U NN SR SR SO |
23 14 4]
Operation

* The contents of bits 22 and 23 of the J Register are
incremented by one. if the resuit of this addition (in bits 22
and 23) is not 002, then the contents of the P Register
{current program address) are replaced by the
effective memory address. If the result of the addition to
bits 22 and 23 is 002, then bits 22 and 23 are set to 012

7-44

and bits 21-0 are incremented by one. f the resultant sum
in bits 21-0 is zero, then the P Register advances to the next
sequential program location and the index register is set to
20000000g. Otherwise, the contents of the P Register are
replaced by the effective memory address.

Notes

In general, the BBI and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the foliowing example which wili
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

™J = ‘60000200
™I = ‘20000300
TNK 1

EMB 0

RBM 0

BBI *+1

BBJ *+1

BWK *4

Occasionally, it is possible to use the address of a portion of
the J Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB "y

™I ='77777775 bits 22 and 23 =3,
bits 21-0=-3

RBM ‘100+3

88J *-1

However, it shouid be noted this technique of using the
index register as both a byte counter and word pointer may
be used only in certain instances. Specifically, when the
following relationship is true.

"(59)7(3)

R ()= remainder
B.n. = the starting byte number
{1, 2, or 3)

CT = The number of bytes to be
referenced.

CMB °% Compare Memory and Byte
Formula 34.*+X:a Affected C
I B 1 1 1 1
OP CODE. |*¥] X ADDRESS
[l 1] | 1 1 11 1 | 1 [] 1] 1 1 1 1] I
23 " 4 o .
Operation

The contents of the B Register (A7-A0) and the contents of
the effective memory address (M7-MO) are algebraically
compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

COB Compare Operand and Byte -
Formula 0014:0 Affected C
T 1 I / 1 !
OP CODE /// OPERAND
1 1 | I‘ 1 I L [] 11 / 41 1 1 1 1 1
23 12 7 o
Operation

The 8-bit signed operand and the contents of the B Register

{A7-A0) are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

DOB Dot Operand with Byte
Formula 0016:0 Affected AC
T T T 4 T T
OP CODE /// OPERAND
i1 1t 1 3 1 . 1.1 / | I O T O T I |
23 12 7 , 0
Operation

A logical AND is performed between the 8-bit operand and
the contents of the B Register (A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

0830006-000

Original 5/78
"EMB. % Extract Memory Byte
Formula 31.*+0:a Affected B,C
I T I 1 T
OP CODE [*{0 0 ADDRESS
) I S N I | 1 | N N T N TN O AN N TN SN SN N N
23 18-17 15 4 0

Operation

The effective memory address is added to the contents of
the J Register, producing the word address which contains
the byte to be extracted. The selected byte, as determined
by the contents of bits 23 and 22 of the index J Register, is
then placed in the B Register.

Notes
The following table shows the correspondence between bits
23 and 22 of J and the byte to be extracted:

Bits 23 and 22
J Register Byte Selection

01 Leftmost byte (bits 23-16 of
EMA+J)

10 Middle byte (bits 15-8 of
EMA+J)

11 Rightmost byte {bits 7-0 of
EMA+J) A

00 Rightmost byte (bits 7-0 of
EMA+J)

The final address of any indirect/index sequence should not
be indexed since implied indexing on the J Register takes
place. If indexing is specified on the final address, then the
specified index register will be algebraically added to the
EMA prior to the final addition of J with the EMA.

Examples:
IfJ= ‘40000030
and K = ‘00000010 when the following
is executed:
EMB* ‘40
‘40 DAC* ‘60,K
‘42 DATA “Xyz"

‘60 DAC 12

then the character Y will be placed in the B Register. Note -
that the effective address of the indirect/index sequence is
*12. However, ‘12 plus bits 15-0 of index J Register (‘30)
yields the final address of ‘42. Since a byte specification of
102 was made in bits 23-22 of index J Register, then the
second byte (bits 15-8) of memory location ‘42 is placed in
the B Register.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

745

0830006-000
Original 5/78

ESB Extend Sign of Byte

Lo V707707

The state of the B Register sign bit (A7) is copied into bit
positions A23-A8, forming a sign extension of the byte.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

NBB Negate of Byte to Byte

Formula 0005. Affected A,C
— e
Operation

The contents of the B Register (A7-A0) are two's
complemented. Bit positions A23-A8 are unchanged.

Notes

An Overflow will result when negating 27 (full-scale
negative byte).

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

EZB Extend Zeros from Byte OOB OR Operand with Byte
Formula 0007, Affected A Formula 0004:0 Affected AC
OP CODE OP CODE OPERAND
T S A | / /,é B U NN TN NN NN O NN (NN O A | / // I O N (S I |
= = o 23 12 7)
Operation Operation

Bit positions A23-A8 are set to ZERO. The contents of the
B Register {A7-A0) are not affected.

Note
The Condition Register is not affected.

KOB Kompare Operand and Byte
Formula 0015:0 Affected C
T T T T T T
OP CODE ////// OPERAND
.] 1 1 1] L 1 1 1 / / l/ 1 1 L | 1 1
23 12 7 0
Operation

The 8-bit operand and the contents of the B Register
(A7-A0Q) are logically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

7-46

A logical OR is performed between the 8-bit operand and
the contents of the B Register {A7-AD). Bits A23-A8 are
unchanged.

Note

The Condition Register is set 10 Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

PBB Positive of Byte to Byte

Formula 0006. Affected A,C.
“eprcope | 20000000

Operation

The absolute value of the contents of the B Reg:ster
{A7-AD) is placed in the B Register,

Notes

An Overflow will result when negating a full scale negative
byte.

"The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

RBM % Replace Byte in Memory
Formula 27.*+0:a Affected M
1] T i 1
OP CODE |*|0 0 ADDRESS
1 L1])| | | I I I N N |] [11 [| 1
23 18 7 15 4 [o]
Operation

The effective memory address is added to the contents of
the | Register producing the word address which contains
- the byte to be replaced. The selected byte, as determined
by the contents of bits 22 and 23 of the Index | Register, is
then replaced by the contents of the B Register.

Notes

The following table shows the correspondence between bits
22 and 23 of | and the byte to be replaced.

Bits 23 and 22
| Register Byte Selection

01 Leftmost byte (bits 23-16 of
EMA+I)

10 Middle byte (bits 15-8 of
EMA+I)

1 Rightmost byte (bits 7-0 of
EMA+I)

00 Causes no operation

The final address of any indirect/index sequence should not
be indexed since implied indexing on the | Register takes
place. If indexing is specified on the final address, then the
specified index register will be logically ORed with the |
Register. prior to the add function with the EMA.

QBB Query Bits of Byte

|

0830006-000
Original 5/78

Operation

A logical AND is performed between operand bits 7-0 and
the contents of the B Register. The Condition Register is
set according to the status of the result; i.e., Positive,
Negative, or Zero.

Note
Examples:
(1) TOA B7 A ='00000200 C = Positive
QBB B7 C = Negative
(2) TOA B6 A ='00000100 C = Positive
QBB B6 C = Positive
(3) TNA 1 A='77777777 C = Negative
DMA MASK A=‘40000000 C = Negative
MASK = DATA ‘40000000
SOB Subtract Operand from Byte
Formula 0013:0 Affected AC
T T T 77777} T T
OP CODE %// OPERAND
[N S WS NS T S VAN SN WO B | ;// [T TS B I I |
23 3 7
Operation

The 8-bit signed operand is algebraically subtracted from
the contents of the B Register (A7-A0). Bits A23-A8 are
unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

TBM % Transfer Byte to Memory

Formula 0011:b Affected C Formula 17.*+X:a Affected M
T T T V/ T T I 1 I] 1
OP CODE / b OP CODE [%| X ADDRESS
] l !] 1 1 1 1]]] l// |] 1]]] | 1 I | 1 | 1 1] 1 1 1 1 1 |]] | | L
23 12 7 0

23 17 4 o

7.47

0830006-660
Original 5/78

Operation

The contents of the B Register (A7-A0) replace the 8 least
significant bits (7-0) of the contents of the effective
memory address. Bits 23-8 of the memory word are
unaffected.

TrB Transfer Register to Byte
Formula 0002.ri Affected A
1 T 1 1
11 1 ||) | 1 1 1 1 L1 1 1 1 l/
23 " () o]
Operation

The least significant 8 bits (7-0) of the contents of the
specified register replace the previous contents of the B
Register (A7-AQ). Bits A23-A8 are unchanged.

Notes

TrB is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded as follows to
select one-of-five general purpose registers.

=01 (I)
02 (J)
04 (K)
10 (E)
40 (T)

A code of 0002.01, for example, implements the Transfer |
to Byte (TIB) instruction.

The Condition register is not affected,

r1 is selected by unitary bits. Therefore, none, ali six, or
“any combination of registers may be seiected. If more than
one register is selected in group r1, they are logically ORed
prior to the specified operation.

TOB Transfer Operand to Byte
Formula 0003:0 Affected A,C
1 i 3]]
OP CODE ///// OPERAND
1 [! L1 1 1.1 1 1 1l 11 1 1 1
23 12 7 I 0
Operation

The 8-bit signed operand replaces the previous contents of
the B Register {A7-A0). Bits A23-A8 are unaffected.

7-48

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation,

TMB % Transfer Memory to Byte
Formula 07.*+X:a Affected AC
1 1 l T T
OP CODE %] X ADDRESS
Lt 1 1 1 1 L1t .t 1 4 &1 11111
23 17 14 4]

Operation

The 8 least significant bits (7-0) of the contents of the
effective memory address replace the previous contents
of the B Register {A7-AD). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero, .
based on the resuit in the B Register at the compietion of
the operation.

XOB Exclusive-OR Operand with Byte
Formula 0017:0 Affected AC
1] T i 7 1 J
OP CODE /// OPERAND
I 1 1 ! 1 \‘I 11]] 1 / l// i] 1 1 1 1
23 12 7 (]
Operation

An exciusive-OR operation is performed between the 8-bit
operand and the contents of the B Register (A7-A0). Bits
A23-A8 are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Input/Output Instructions

The input/output (1/0) instructions provide the required
control for all communications between the CPU and the
input/output structure. In addition to controlling data
transfers between the CPU and peripheral units, the 1/0
instructions allow peripheral unit command functions and
status testing to be placed under program control.

The specific 1/0 operation can be identified by examinafion
of the individual instruction mnemonic. All 1/0 instruction
mnemonics use the letter “W’’ to indicate that a full word is
to be transferred between the CPU and the 1/O structure.
The first letter of the mnemonic indicates the direction of
the transfer (input or output). The second letter indicates
the type of word to be transferred. For example:

1D W

Input]- T Word
{to the CPU)
Data
oOCw
Output T T Word
(from the CPU)
Command

There is no “1/O hold”, or delay, imposed by the hardware.
All 1/0 instructions are executed unconditionally, i.e., the
CPU is not forced to wait for a response from the /O
structure in order to complete the instruction execution
cycle.

Although there is no built-in hold/delay provision, a
programmed delay can be implemented if desired. At the
beginning of each /O instruction cycle, the Condition
Register is cleared. At the end of the execution phase of
each 1/0 instruction, bit 2 {Zero/Not Zero) is set to Zero if
the selected channel was ready and accepted the command.
If the selected channel was not ready, bit 2 of the
Condition Register remains set to Not Zero. The program
can test the Not Zero state of bit 2 with a branch
instruction following the 1/0 instruction. When bit 2 is set
to Not Zero, a programmed delay is implemented. For
example:

Oobw ‘0103 Output word to Channel 1, Unit 3
BNZ *1 Delay if not ready
Continue if ready

An example of a channel being not ready is when the
peripheral unit’s data transfer capability is slower than that
of the program loop and therefore cannot accept data as it
is available from the channel. Another example occurs in a
channel/multiunit environment where the channel is
connected to peripheral unit A and peripheral unit B is
selected for a data transfer.

In this instance, the channel remains not ready until a
disconnect/connect sequence is performed and peripheral

0830006-000
Original 5/78

unit B is connected to the channel. Two cycles are required
for the disconnect/connect sequence.

Status returned to the Condition Register immediately after
completion of an 1/O instruction refers to channel status
only. A ready (Zero) condition indicates the channel
accepted the 1/O command. This does not imply the 1/O
operation was completed with the selected peripheral unit.

If the program selects a non-existent channel or unit, the
channel accepts the command or data and leaves bit 2 of
the Condition Register set to Not Zero to indicate not
ready. The channel will remain not ready for any
subsequent commands.

Channel number 30g cannot be assigned to an 1/0 channel.

If the system is equipped with the Program
Restrict/Instruction Trap option, all 1/0 instructions will be
affected.

The 1/0 command modes are determined by the
configuration of bits 5 and 4 of the OCW instruction and
are as follows:

1. Normal — The Normal Channel Operation command is
raised by bits 5 and 4 of the OCW being ZEROs (0,0).

2. Multiplex — This command is raised by bits 5 and 4 of
the OCW being in a ZERO, ONE (0,1) configuration.
(The CPU releases the channel to a master/slave pair of
peripheral units.) (An XBC, IBC, or DMACP channel
will not respond to a Multiplex command.)

3. Offline — This command is the same as the Multiplex
command, except the 1/O drivers in the channel are
turned off, allowing the second CPU to share
peripherals without need of peripheral switches.
(Assumes control of 1/0 bus.) The command is raised
by bits 5 and 4 being in a ONE, ZERO (1,0
configuration.

4. Reset — This command operates the same as a Normal
command, but resets the channel out of either the
Multiplex or Offline mode. (Channel restored on-line,
unit selected.) This command is raised by bits 5 and 4
being in a ONE, ONE (1,1) configuration.

The following instructions are included in the input/output
group.

1AW Input Address Word 7-52
IDW Input Data Word 7-51
IPW Input Parameter Word 7-62
ISW Input Status Word 7-50
OAW Output Address Word 7-52
ocw Output Command Word 7-50
obw Output Data Word 7-51

7.A0

0830006-000
Original 5/78

"OCW Output Command Word

Formula 0070.*+C.U Affected C
1 1 1 1 H 1
OP CODE *|CHANNEL| © | UNIT
1 | S T | | I T N I | P 1 11 I2 Lt
23 1} 5 4 3 [+
Operation

An 8-bit or a 24-bit command word is transferred from the
A Register to the specified channel/unit combination.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the selected channel is not ready,
the Condition Register remains set to Not Zero which
allows a programmed delay if desired.

Bits 3-0 of the OCW instruction form a 4-bit paralleled unit
code that is used to select a particular peripheral unit. The
configuration of bits 4 and 5 determines the Multiplex or
Offline mode for a particular channel, The configuration of
bits 10-6 determines which channel is to be selected. Bit 11
is the Override Bit, and bits 23-12 define the general
process that is to be performed. The only valid unit code

for a DMACP channel is 10g; all others are rejected.

If the Override Bit {*) is set (ONE), the command word
assumes immediate control over the channel. The contents
of the A Register are transferred to the channel and a
disconnect/connect sequence is initiated. The Condition
Register is set to Zero to indicate the channel has accepted
but not necessarily executed the command. Upon
completion of the disconnect/connect sequence, the
channe! transfers the command word to the unit. In the
case of a DMACP channel, the Override bit clears the
channe! and forces the MPU to a halt; the Condition
Register is not set to Zero, and no busy test is required.

If the Override Bit is not set (ZERQ) and the OCW specifies
a unit other than the unit connected to the channel and the
channel is ready, the command word is accepted by the
channel. The Condition Register is set to Not Zero to
indicate the channel is not ready. A disconnect/connect
sequence is performed and the command is transferred to
the unit. The Condition Register is reset to Zero to indicate
ready.

Following the execution of an OCW the channel remains
not ready until the peripheral unit accepts the data.

If the selected channel is a UBC channel and is actively

engaged in a block transfer, executing an OCW with the
Override Bit set terminates the transfer sequence leaving the

7-50

contents of the TAR/PAR and WCR intact. If the Override
Bit is not set and the UBC channel is engaged in a block
transfer, the OCW instruction will be ignored. The
Condition Register will remain set to Not Zero. Once a
UBC channel is activated it will not accept an OCW with
the Override Bit not set until the word count is complete;
i.e., all words in the block have been transferred and WCR
equals zero.

This instruction is privileged.

ISW

Formula

Input Status Word

0073.00+C:U Affected AC

L 1 T T '// T
OP CODE 0 CHANNEL// UNIT

I T S T U S T T N N S T | A L1
23 1] 5 3 [

Operation

A status word is transferred from the specified channel/unit
combination to the A Register.

Notes

The Condition Register is cleared, then set to Zero if the
I/O channel is ready. If the addressed channel/unit
combination is not ready (see following notes) or status
word is not available, the Condition Register is set to Not
Zero to allow a programmed delay.

If the selected channel is in the process of executing a
command (resulting from a previous OCW), the channel
indicates not ready (Condition Register remains set to Not
Zero) and ignores the ISW instruction until the peripheral
unit accepts the OCW command. The channel indicates
ready {Condition Register set to Zero) and accepts the ISW
when it is executed again.

If the ISW specifies a unit other than the unit connected to
the channel, the channel indicates not ready and ignores the
command. A disconnect/connect is initiated.

if the seiected channei is a UBC channel engaged in a biock
transfer, the Condition Register is set to Zero and a 24-bit
status word is transferred to the A Register. Bits 7 through
0 contain the unit status and bit 23 contains the UBC busy
status.

If the selected unit is receiving data as the result of an ODW
instruction, the ISW is accepted and the Condition Register
is set to Zero.

This instruction is privileged.

ODW Output Data Word

Formula 0071.00+C:U Affected C
T T T T / L
OP CODE 0|CHANNEL UNIT
j U N (N N W (N TR O | J N T] /é L1 1
23 u 5 3 v}
Operation

A data word is transferred from the A Register to the
specified channel/unit combination.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the channel is busy and cannot
accept the data word, the Condition Register is set to Not
Zero to allows a programmed delay.

Although, a 24-bit word is transferred to the channel, the
peripheral unit accepts only a predetermined number of
bits (dictated by peripheral unit design).

For character-oriented units and units accepting data words
of less than 24 bits, the data for transfer must be right-
justified in the A Register prior to executing the ODW
instruction.

If the ODW instruction specifies a unit other than the unit
connected to the channel and the channel is ready, the
channel accepts the ODW, sets the Condition Register to
Zero, and initiates a disconnect/connect sequence. After
completion of the disconnect/connect sequence, the ODW
is transferred to the unit. The channel indicates ready to
subsequent 1/0 instructions.

If the ODW instruction specifies a UBC channel that is
engaged in a block transfer, the Condition Register remains
set to Not Zero and the ODW is ignored. A UBC channel,
once activated, will not accept an ODW instruction until
the word count is complete, i.e., all words in the block have
been transferred and WCR equals zero.

This instruction is privileged.

IDW Input Data Word

Formula 0072.*+C:U Affected AC
I I 1 il 1
OP CODE % CHANNEL{// UNIT
oo 4144 1 1 1 1 1 | I | / L 1
23 Hn 5 3 o
Operation

A data word is transferred from the specified channel/unit
combination to the A Register.

Notes
The Condition Register is cleared, then set to Zero if the

0830006-000
Original 5/78

1/0 channel is ready. If the channel is not ready or data
from the specified unit is not available, the Condition
Register is set to Not Zero to allow a programmed delay.

If the selected unit is in the process of executing a
command as the result of a previous OCW instruction, the
channel indicates not ready (Condition Register remains set
to Not Zero) and the IDW is ignored. At the completion of
the OCW, the Condition Register is set to Zero and the IDW
instruction is accepted by the channel.

If the selected unit is in the process of receiving data as a
result of an ODW instruction and data is available from the
unit, an ODW will be accepted and the Condition Register
set to Zero. '

If the IDW instruction specifies a unit other than the unit
connected to the channel, the channel indicates not ready
(Condition Register remains set to Not Zero), ignores the
instruction, and initiates a disconnect/connect sequence.

If an IDW instruction specifies a UBC Channel that is
engaged in a block transfer, the Condition Register remains
set to Not Zero {channel not ready) and the instruction is
ignored. A UBC channel, once activated, will not accept an
IDW instruction until the word count is complete; i.e., all
words in the block have been transferred and WCR equals
zero.

When a UBC channel is employed in a single-word
programmed data transfer, an IDW instruction returns a
Not Ready {C Register = Not Zero) condition if the channel
is currently processing an output command. This situation
is in effect regardless of the status of the input data from
the peripheral unit.

The only valid unit code for a DMACP channel is 10g; all
others are rejected.

If the Merge bit (*) is ZERO the A Register is cleared prior
to the data transfer. Input data is right-justified in the A
Register.

If the Merge Bit is a ONE, an OR is performed between the
previous contents of the A Register and the incoming data
word. This feature, in conjunction with a shift operation,
allows input data characters to be packed in the A Register.

Example: Two 12-bit data characters are to be packed in
the A Register.

IDW ‘0102 Clear A and load first character from
channel 01, Unit 02,
BNZ *1 Wait if busy
LLA 12 Shift the contents of A left 12 bits
IDW* ‘0102 Merge second character
BNZ *1 Wait if busy
Continue

This instruction is privileged.

7-R1

0830006-000
Original 5/78

OAW Output Address Word
Formula 0071.40+C:U Affected C
T T T t V
OP CODE 1|{CHANNEL /// UNIT
1 1 1 1 1] 1 1 1 1 1 1 1] 1 / | 1
23 i 1 6 2 o
Operation

The contents of the A Register are transferred to an
appropriate register in the specified channel, or unit in XBC
Channel executions.

Notes

The Condition Register is cleared, then set to Zero if the
1/O channel is ready.

The unit is addressed in XBC and DMACP channels {bits
0-2) and IBC channels (bits 0, 1) only.

A UBC channel will always indicate ready for an OAW
instruction. However, if the OAW specifies an invalid
channel number, it will receive a “not ready” indication
and the Condition Register remains set to Not Zero. Since
XBC/IBC channels involve a unit address, the unit must be
"connected” before the instruction can be executed.

The OAW instruction does not activate a block-transfer
channel. It transfers the starting address of the first of two
parameter words from the A Register to the TAR or PAR
in the selected channel. In XBC channel operations the OAW
instruction transfers the contents of the A Register to the
unit; the channel has no register dedicated to this function,

If an OAW instruction addresses a UBC channel during a .

biock transfer sequence, the sequence will be terminated.

If the OAW instruction addresses a PIQC, the Condition
Register remains set to Not Zero; the instruction is
executed automatically. In this instruction the four least
significant bits (3-0) of the A Register are transferred to the
Interrupt Generator logic. These bits {unitarily) control the
triggering of the one-to-four 1 microsecond interrupt
pulses.

This instruction is privileged.

IAW Input Address Word
Formula 0073.40+C.0:U Affected AC
I | li 1 7
OP CODE 1{CHANNEL 0/ UNIT
[N IS NNV SN ORI VS WU N MRS | I S | A L1
23 i 6 5 2 [o]

Operation

The current contents of the Transfer Address Register
(TAR) in the specified channel (UBC, IBC, or DMACP) are
transferred to the A Register.

Notes

The Condition Register is cieared, then set to zero if the
1/0 channel is ready. If the |AW instruction specifies an
invalid channel, the Condition Register remains set to Not
Zero indicating channel not ready.

The unit is addressed in IBC and DMACP channels only.

Bit 5 at the ZERO level distinguishes between the IAW and
IPW instructions.

The UBC channel always indicates ready to an |AW
instruction. The IBC channel must go to “‘not busy’’ before
executing the instruction.

This instruction is privileged.

IPW input Parameter Word
Formula 0073.40+C.4:U Affected AC
1 1 ¥ T 7
OP CODE 1|CHANNEL |1 / UNIT
TR S N N W U S O | L1 A L
23 Bl [- 31 2 [¢]
Operation

The current contents of the Parameter Address Register
(PAR) in the specified channel (UBC, I1BC, or DMACP) are
transferred to the A Register.

Notes

The Condition Register is cleared, then set to zero if the
1/0 channel is ready. If the IPW instruction specifies an
invalid channel, the Condition Register remains set to Not
Zero, indicating channel not ready.

" The unit is addressed in IBC and DMACP channels only.

IPW instructions addressed to an IBC channel must specify,
via the unit address, which of three possible channel PARs
is read.

Bit 5 at the ONE level distinguishes between the IPW and
IAW instructions.

UBC channels always indicate ready to an IPW instruction.
The IBC channel must go to “not busy” before executing
the instruction.

This instruction is privileged.

Bit Processor Instructions

The bit (Boolean function) processor group of instructions
include branches, logical manipulation, and interrogation of
a specified bit selected from an effective memory address or
the H Register. In most instances, bit 2 (Zero/Not Zero) of
the Condition Register is used to display either the result of
an operation or the status of a bit before the operation is
performed.

The bit processor employs two instruction word formats.
The first format uses an Op Code (bits 23-12) to specify the
operation to be performed. The remaining 12 bits (bits
11-0) are undefined. The second instruction format
contains a displacement, bit specification, and an Op Code.
Eight bits (bits 7-0) are added to the base address contained

in the V Register to obtain a displacement from the base -

address which is an effective memory address for the word
containing the bit in question. Five bits (bits 12-8) are used
to select a specific bit in the effective memory address for
an operation as specified in the 11-bit (bits 23-13) Op
Code. Both instructions word formats are illustrated below.

23 2

e 7000007,

T T i T b 1

OP CODE b d

5 ISR SO (N OO N T O N U AU A (N I O N N NN O A S

23 13 12 8 7 0

The foilowing instructions are inciuded in the bit processor
group.

DMH Dot Memory with H 7-54
DNH Dot Not {(memory) with H 7-54
FBM Flag Bit of Memory 7-56 -
NHH Negate of Hto H 7-54
OMH OR Memory with H 7-55
ONH OR Not (memory) with H 7-55
QBH Query bit of H 7-54
QBM Query bit of Memory 7-55
“TFH Transfer Flag to H 7-53
THM Transfer H to Memory 7-56
TKV Transfer K to V 7-53
TMH Transfer Memory to H 7-55
TVK Transfer V to K 7-54
TZH Transfer Zero to H 7-53
XMH Exclusive-OR Memory with H 7-55
XNH Exclusive-OR Not {memory) with H 7-55
ZBM Zero Bit of Memory 7-56

0830006-000

Original 5/78
TZH Transfer Zero to H
Formula 7742 Affected H,C
o oP c'ooe | % W/
J | | N N |] L ///
23 12 o
Operation

A ZERO is placed in the H Register. The Condition
Register is set to reflect the original contents of H.
Note

If the original contents of the H Register were ZERO,
Condition Register Bit 2 is set to 1 (Zero). If the contents
were ONE, Bit 2 is set to 0 (Not Zero).

TFH Transfer Flag to H
Formula 7743. Affected H,C
OP CODE
L Y A
23 12 o]
Operation

A ONE is placed in the H Register and the Condition
Register is set to reflect the original contents of H.

Note

If the original contents of the H Register were ZERO,
Condition Register Bit 2 is set to 1 (Zero). If the contents

" were ONE, Bit 2 is set to 0 (Not Zero).

TKV Transfer Kto V
Formula 7744, Affected Vv
Operation

In the Compatibility Mode, the 18 least significant bits of
the K Register replace the present contents of the V
Register.

In the Address Extension Mode, the 20 least significant bits
of the K Register replace the present contents of the V
Register.

Note
The Condition Register is Unaffected.

7-R*

0830006-000
Original 5/78

Transfer V to K

TVK
MWW/

In the Compatibility Mode, the contents of the V Register
are transferred to the 18 least significant bit positions of
the K Register. Bits 23-18 of the K Register are reset to
ZERO:s.

In the Address Extension Mode, the contents of the V
Register are transferred to the 20 least significant bit
positions of the K Register. Bits 23-20 of the K Register are
reset to ZEROs.

Note
The Condition Register is unaffected.

QBH QueryBitofH

— e VI

The H Register bit is tested and the Condition Register is
set to display the result of the query.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 {Not
Zero).

NHH Negate of H to H

Formula 7747. Affected H,C
! ! ! DTS S

e 7777707

Operation

The current content of the H Register is complemented and
returned to H. The Condition Register is set to display the
result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2is set to O (Not
Zero).

DMH Dot Memory with H
Formula 7750. 4:d Affected H,C
L\l 1) 1 L)) 1
OP CODE b d
) IS I S W N N S | | I S | T N I T N B S
23) E] 7 0
Operation

A logical AND is performed between the selected bit in the
effective memory address and the contents of the H

tadnse Thum smmae smm den 5 moam om PR N At admis o) &
Xt S

DA Nl e pe] oD e o
NEGISIEr. Teslrt IS TELLITNEU 10 tn€ m NEGisier and ne

Condition Register is set to display the result.

Note

The Condition Register is cieared. if the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 {Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

ONH Dot Not {memory) with H
Formuia 7752.4:d Affected H,C
T T T T T ¥ T
OP CODE b d
23 A 1 1 1 1 1 L A 1 ‘3 A 1 L 1 7 L 1 L 1 L 1 L o
Operation

A logical AND is performed between the complement of
the selected bit in the effective memory address and the
content of the H Register. The result is returned to the H
Register and the Condition Register is set to display the
result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

OMH OR Memory with H

0830006-000
Original 5/78

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

Formula 7754.5:d Affected H,C
1 T T 1
OP CODE b d
IS N O N N O A | | A I | | I IS N IO I B |
23 13 7 o]
Operation

A logical OR is performed between the selected bit in the
effective memory address and the content of the H
Register. The Condition Register is set to display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

ONH OR Not (memory) with H
Formula 7756.4:d Affected H,C
T T T T T T T
OP CODE b d
B U N NS N A N N A S | | S | | S N IS A [S |
23 13 7 (o]
Operation

A logical OR is performed between the complement of the
selected bit in the effective memory address and the

display the result.
Note

The Condition Register is cleared. if the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

XNH Exclusive-OR Not (memory) with H
Formula 7762.5:d Affected H,C
! 1 1 i 1 1
OP CODE b d
11 L 1 1 L1 1 1 L1 1 1 [N (O W S [S |
23 13 7 [o]
Operation

An exclusive-OR function is performed between the
complement of the selected bit in the effective memory
address and the content of the H Register. The Condition
Regisier is set to display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

TMH Transfer Memory to H
Formula 7764.4:d Affected H,C
I T 1 I L} 1 1
OP CODE b d
| L1 | L] 1 1 L1 | 1 1 1 | 1 i L 1
23 13 7 [+]
Operation

The selected bit in the effective memory address is
transferred to the H Register. The Condition Register is set
to display the resultant content of the H Register.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the resuitant content is ONE, bit 2 is set to O
(Not Zero).

QBM Query Bit of Memory

XMH Exclusive-OR Memory with H
Formula 7760.4:d Affected H,C
1 1 1 T
OP CODE
1 ! | I | 11 L] 1 | 1 1
23 13 7 0
Operation

An exclusive-OR function is performed between the
selected bit in the effective memory address and the
content of the H Register. The Condition Register is set to
display the result.

Formula

7766. 4:d

Affected

c

OpP CODE

1

L

23

13

0830006-000
Original 5/78

Operation

The selected bit in the effective memory address is tested
and the Condition Register is set to display the result of the
query.

Note

The Condition Register is cleared. If the resultant content
of memory is ZERQO, Condition Register Bit 2 is set to 1
(Zero). If the resuitant content is ONE, Bit 2 is setto O
(Not Zero).

THM Transfer H to Memory
Formula 7770./4:d Affected M
1 1 I 1 1 I 1
OP CODE b d
1 1 1 1 1 1 1 1 1 | I | | I N N N W .
23 13 7 0
Operation

The content of the H Register is placed in the selected bit

position in the effective memory address. The Condition
Register is not affected.

FBM Fiag Bit of Memory

Formula 7772 4:d Affected M,C
OP CODE b d
I SN IO U B SN NN S N | I I | SR S S N N B |
23 13 7] [
Cperation

A ONE is placed in the selected bit position in the effective
memory address. The Condition Register is set to display
the original state of the selected bit in memory.

Note

If the original state of the selected bit in memory was
ZERO, Condition Register Bit 2 is set to 1 (Zero). If the

Avirimnal adndn sncaa ARE Dia N o s s N IR
WVIHIYInial JLait vwad Wivh, DIL £ D DOTL LU VU (IVUL

ZBM

Formula

Zero Bit of Memory

7774. 5:d

! 1 T 1 1 ! !

OP CODE b d

NS N N (N NN TN T [N NN AN O SO UM SR S N SN NN S N
23 13 7 0

Operation

A ZERO is transferred to the selected bit position in the
effective memory address. The Condition Register is set to
display the original state of the selected bit in memory.

Note

If the original state of the selected bit in memory was
ZERO, Condition Register Bit 2 is set to 1 (Zero). If the

~ im

original state was ONE, Bit 2 is set to 0 {Not Zero).

Virtual Memory Instructions

The majority of the virtual memory instructions involve
transfers between the paging registers and the A, E and D
Registers. The remaining instructions are special control
operations for activating and testing the virtual memory

logic.

The following instructions are included in the virtual
memory group.

QNR Query Not-modified Register 7-58
QUR Query Usage Register 7-58
ROM Release Operand Mode 7-59
RUM Release User Mode 7-69
TAR Transfer A to 1 Virtual Address
Register 7-57
T TDP Transfer Double to Paging Limit
Registers 7-58
TDR Transfer Double to 2 Virtual Address
Registers 7-57
TDS Transfer Double to Source and
Destination Registers 7-57
TEU Transfer E to Usage Base Registers 7-58
TPD Transfer Paging Limit Registers
to Double 7-58
TRD Transfer 2 Virtual Address Registers
to Double 7-57
TSD Transfer Source and Destination
: Registers to Double 7-57
TUD Transfer Usage Base Register and
Demand Page Register to Double 7-58

TDS Transfer Double to Source and
Destination Registers
Formula 006410. Affected VSR,VDR
1 1 1 T 1 /
OP CODE

L 1 1 1 L | S S I | | | 1 1 1 h////)/
23] [¢]
Operation

Bits 11-0 of the A Register replace the previous contents of
the Virtual Destination Register (VDR) and bits 11-0 of the
E Register replace the previous contents of the Virtual
Source Register (VSR). The contents of A and E are not
changed. :

Note
This instruction is privileged.

TSD Transfer Source and Destination
Registers to D
Formula 006510. Affected AE
T . 1 1 T 1 W
OP CODE
[N U WO TN N U VNN TN UM TN NN MU SO MO N / /
23 € o
Operation

The contents of the Virtual Source Register (VSR) replace
the previous contents of bits 11-0 of the E Register; the
contents of the Virtual Destination Register (VDR) replace
the previous contents of bits 11-0 of the A Register. Bits
23-12 of both A and E are cleared (reset to ZEROs). The
contents of the VSR and VDR are not changed.

Note

This instruction is privileged.

TAR Transfer A to 1 Virtual Address
Register
Formula 006050. Affected VAR,VDR
T 1 T T 1 7
OP CODE /////
1 1 I 1 L 1 1 L] 1 1] 1] | - l%
23 . 6]
Operation

Bits 23, 22, and 9-0 of the A Register replace the previous
contents of the Virtual Address Register (VAR) specified

0830006-000
Original 5/78

by the Virtual Destination Register (VDR). The VDR is
incremented by one. The contents of the A Register are not
changed.

Note

This instruction is privileged.

TDR Transfer Double to 2 Virtual
Address Registers
Formula 006430. Affected VAR(1),VAR(2),
VDR
1 1 T T T V
OP CODE /////
| I (N S SN U W N N N (N SN NN NN N | 1 J//
23 [o)
Operation

. Bits 23, 22, and 9-0 of the E Register replace the previous

contents of the Virtual Address Register (VAR) specified
by the Virtual Destination Register (VDR); the VDR is
then incremented by one to specify the second VAR. Bits
23, 22 and 9-0 of A replace the previous contents of the
second VAR. The VDR is again incremented by one. The
contents of the E and A Registers are not changed.

Note

This instruction is privileged.

TRD Transfer 2 Virtual Address
Registers to Double
Formula 006530. Affected E,A,VSR
1 1 I T) /
OP CODE ////
Y A I (N O N IO NN OO AN IS TN NN N O N | 4
23 6 o]
Operation

The contents of the Virtual Address Register (VAR)
specified by the Virtual Source Register (VSR) replace the
previous contents of bits 23, 22, and 9-0 of the E Register.
The VSR is then incremented by one to specify the second
VAR. The contents of the second VAR replace the previous
contents of bits 23, 22, and 9-0 of the A Register. The VSR
is again incremented by one. Bits 21-10 of both E and A are
cleared (reset to ZERO).

Note

This instruction is privileged.

7_R7

0830006-000
Original 5/78

TDP Transfer Double to Paging
Limit Registers
Formula 006450. Affected VBR,VLR
1 ! 1 1 T 7
OP CODE ////

| 1 | I O W U Y IO O T 1 L ! i H 1 //
23 6 0
Operation

Bits 11-0 of the A Register replace the previous contents of
the Virtual Base Register (VBR), and 23-19 and 9-0 of the
E Register replace the previous contents of the Virtual
Limit Register (VLR). The contents of A and E are not
changed.

Note

This instruction is privileged.

TPD Transfer Paging Limit
Registers to Double
Formula 006550. Affected E.A
| T 1 1 1 é'/
L 1 1 {1 SN VS OO I R S S S A N | A
23 6 o
Operation

The contents of the Virtual Base Register (VBR) replace
the previous contents of A Register bits 11-0, and the
contents of the Virtual Limit Register (VLR) replace the
previous contents of E Register bits 23-19 and 9-0. The
remaining bits of both A and E are reset to ZEROs. The
contents of the VBR and VLR are not changed.

Note

This instruction is privileged.

TUD Transfer Usage Base Register and
Demand Page Register to Double
Formula 006570. Affected EA
1 1 1 T T / 1
OP CODE ///
1 1] i | 1 1 [1 | | | 1 L /
23 [[+]
Operation '

The contents of the Virtual Demand Page Register (VPR)
replace the previous contents of A Register bits 13-0, and
the contents of the Virtual Usage Base Register (VUB)

replace the previous contents of E Register bits 9-0. A
Register bits 23-14 and E Register bits 23-10 are reset to
ZEROs. The contents of the VPR and VUB are not
changed.

Note

This instruction is privileged.

TEU Transfer E to Virtual Usage
Base Register
Formula 006470. Affected vuB
1 Ll I t 1 //
OP CODE /////
5 NN N S I S W A A | | I T I I S Y /
23 . 6 0
Operation

The contents of E Register bits 9-0 replace the previous
contents of the Virtual Usage Base Register (VUB). The E
Register contents are not changed.

Note

This instruction is privileged.

QUR Query Usage Register
Formula 007030, Affected VUR,VUB,C
T 1 T T I 7
OP CODE W
| R S T N T R U TN VNN U AV N IR N S B | /A
23) 4]
Operation

The contents of the Virtual Usage Register (VUR) —
specified by the Virtual Usage Base Register (VUB) — is
tested. The Condition Register is set to “Not Zero” or
“Zero” if the content of the VUR is ONE or ZERO,
respectiveiy. The specified VUR is cleared and the VUB is
incremented by one.

Aate

Hrtii

This instruction is priviieged.

QNR Query Not-modified Register

Formula 007070. Affected VNR,VUB,C

| 1 T T i

OP CODE

N N VN NI N N N [R S N T I |
23 6

Operation ‘
The contents of the Virtual Not-modified Register (VNR)
— specified by the Virtual Usage Base Register (VUB) —is
tested. The Condition Register is set to “Not Zero” or
“Zero” if the content of the VNR is ONE or ZERO,
respectively. The specified VNR is cleared and the VUB is
incremented by one.

Note

This instruction is privileged.

ROM Release Operand Mode

Formula 006010. Affected None
T T Ll T 1 7
i 1 Lt 1 i1 1] 1] 1 1 1 l [l 1
23 6 i O
Operation

The operand address of the following instruction is
translated.

Notes

The ROM instruction will not translate the operand address
of the following instruction if bit 19 is set in the Virtual
Limit Register; mapping is inhibited.

This instruction, together with the next instruction (must
be regular single word memory reference instruction) will,
if a demand page request occurs, set bits 1 and 0 of the
Virtual Demand Page Register to ONEs.

No double word instructions (AOM, USP, or extended
instructions) are permitted after a ROM instruction.

If an EXM is executed after a ROM, the ROM is treated as a
NOP, no translation occurs, and the EXM executes as
normal.

The ROM instruction translates only the final EMA after
indexing and/or indirection.

The ROM instruction controls the map bit of the following
instruction in accordance with the following example.

TMA Inhibits mapping of operand
TMA,I Inhibits mapping of operand
TMA* First address access is mapped,
succeeding accesses are not
mapped, operand is not mapped
TMA*,1 Same as TMA*®

This instruction is privileged.

0830006-000
Original 5/78

RUM

Release User Mode

Formula 006030. Affected None
H 1 ! i 1 - 7
| OP CODE //////
L1 1 1 § AN N N N N N NN R N D B | l//
23 6 0
Operation

The User Mode is established upon completion of the
following instruction. ' ‘

Notes

The instruction following the RUM should always be a
branch instruction which may be indexed and/or
indirected. No conditional branches are allowed.

After the new program address is calculated, the User Mode
is activated.

The RUM instruction, together with the following
instruction, are handled as an EXM instruction with respect
to a demand page (bits 1 and 0 of the Virtual Demand Page
Register set to ZERO and ONE, respectively).

Only the final EMA, after indexing and/or indirection, of
the instruction following the RUM instruction is translated.

Execution of the RUM instruction inhibits mapping of the
following branch fetch.

This instruction is privileged.

Priority Interrupt Control Instructions

The priority interrupt instruction group provides the means
for program control of external interrupts. External
interrupts may be selectively armed, disarmed, enabled or
inhibited under program control. Other instructions provide
the means for holding and releasing external interrupts,
while others are available for transferring control upon
interrupt detection. For a detailed description of the
priority interrupt system, refer to Section V of this manual.

The following instructions are included in the priority
interrupt group.

Ne2AN00L.000
WOV VU UUY

Original 5/78
BRL Branch and Reset Interrupt Long 7-61
BSL Branch and Save Return Long 7-60
BSX Branch and Save Extended 7-60
HTx Hold Interrupts and Transfer Reguster
to Memory 7-62
HXI Hold External Interrupts 7-62 -
RX! Release External Interrupts 762 '
T1D Transfer Group 1 to Double 7-63
T2D Transfer Group 2 to Double 7-63
T4D Transfer Group 1 to Double 7-63
T5D Transfer Group 2 to Double 7-64
TD1 Transfer Double to Group 1 7-63
TD2 Transfer Double to Group 2 763
TD4 Transfer Double to Group 1 7-64
TD5 Transfer Double to Group 2 7-64
UA1 Unitarily Arm Group 1 Interrupts 7-64
UA2 Unitarily Arm Group 2 Interrupts 7-64
UbD1 Unitarily Disarm Group 1 Interrupts 7-65
ubD2 Unitarily Disarm Group 2 Interrupts 7-65
- UE1 Unitarily Enable Group 1 Interrupts 7-65
UE2 Unitarily Enable Group 2 Interrupts 7-66
Ul1 Unitarily Inhibit Group 1 Interrupts 7-66

ul2 Unitarily Inhibit Group 2 Interrupts 7-66

BSL %

Branch and Save return Long

Formula 25.*+0:A Affected P
T - T T T T T
OP CODE [*{0 ADDRESS
23} S R S = |5= I VO SN SN S NN S T NN SN NN S S 1 5
Operation
In the Compatibility Mode, the program address of the next

sequential instruction along with the contents of the
Condition Register are stored in the effective memory
address {EMA). The contents of the P Register (current
program address) are then replaced by the address following
the effective memory address (EMA + 1).

In the Address Extension Mode, the program address of the
next sequential instruction is stored in the effective
memory address {EMA). The contents of the P Hegister
{current program address) are then repiaced by the address
foilowing the effective memory address (EMA + 1).

Notes

This instruction is used in the Compatibility Mode to enter
an interrupt subroutine because it provides a means of
returning to the main program at the point of interrupt and
saves the machine status (condition) at the time of the
interrupt.

7-60

In the Compatibility Mode, the contents of the Condition
Register are stored in bit positions 19-16 of the EMA and
the return address (program address of next sequential
instruction) is stored in bits 15-0. The remaining bits are set
to ZEROs. When an interrupt occurs, the status of the
virtual memory system is recorded. Bit 20 is set to ONE if
the system is in the User Mode at the time of interrupt; bit
20 is set to ZERO if the Monitor Mode is active.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

The Condition Register remains unchanged.

COMPATIBILITY MODE
SAVE WORD

T | | 1 T ¥

0 0 0|V| CREG RETURN ADDRESS

23 20 16 15 0

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSL or extended BSL is executed.
intermediate Addresses may be 20 bits when an indirect
extended BSL is executed.

ADDRESS EXTENSION MODE
SAVE WORD
I T | I I 1 1

0000 RETURN ADDRESS

N S N UV O N S N AU N NN T T S S (NS N N NN NN N
23 20 i9 0

In the Address Extension Mode, the return address is stored
in bit positions 19-0 of the EMA; bits 23-20 are reset to
ZEROs. :

BSX

Branch and Save Extended

Formula 7740.254.0 Affocted p
*+X:EA
1 T T T T
ESCAPE CODE OP CODE 000
| S S . | 11 1 1 L1 1 L1 i [l | - i [
23 2 1 3 2 (o]
// 1} 1 1 T i T
*| X é ADDRESS
L 2 1 i b1 I 1 i 1 | 1 L L 1 | 1 L1 Il 1
23 22 21 2019 0

Operation

The program address of the next sequential instruction,
along with the contents of the Condition Register, are
stored in the 20-bit effective memory address (EMA). The
contents of the P Register (current program address) are
then replaced by the address following the effective
memory address (EMA + 1).

Notes

The BSX instruction is valid only in the extended
instruction format. This instruction provides a means of
returning to the main program and saves the machine status
(condition) at the time of instruction execution.

External interrupts are prohibited for a period of one
instruction following the execution of this instruction.

The Condition Register remains unchanged.

ADDRESS EXTENSION MODE
SAVE WORD

I i [| I [i

C REG RETURN ADDRESS

Ll N N [O N N Y R T N SO O T N T O N Y|
23 20 19 [}

When the BSX is executed in the Address Extension Mode,
the contents of the Condition Register are stored in bit
positions 23-20 of the EMA and the return address
(program address of the next ‘sequential instruction) is
stored in bit positions 19-0.

COMPATIBILITY MODE
SAVE WORD

! I i U I I

00 O|V| CREG RETURN ADDRESS

| N N VU U T T T T N N T T Y T O M
23 21 20 19 16 15 0

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSX is executed, however, intermediate
addresses may be 20 bits when the BSX is indirected.

BRL % Branch and Reset Interrupt Long

Formula 25."+2:A Affected cP
T 1 t I I t
OP CODE [|%|1 ADDRESS
] 1 1 1 i 1 1] 1 L 1 [| 1 1 [| 1 1]
23 7 15 . [+]

0830006-000
Original 5/78

Operation

The highest-level active and enabled interrupt is reset (i.e.,
returned to the inactive state) and the contents of the P
Register (current program address) are replaced by the
effective memory address.

Notes

The BRL instruction is normally used to exit an interrupt
subroutine.

In the Compatibility Mode, if the BRL contains an indirect
reference, the last word in the indirect address chain
contains the previous status of the virtual memory system
in bit M20, the previous machine status (i.e., C Register
contents at the time of the interrupt) in bit positions
M19-M16, and the return address in bit positions M15-MO
as a result of the BSL instruction. The C Register is restored
and the program branches to the return address (restarting
the machine to the pre-interrupt status).

Example:
TMA
L AMA
SMA Interrupt occurs (EXM K).
K BSL M Dedicated interrupt location.
M *** M M becomes L+1 as a result of

BSL at K. The C Register con-
tents are stored in M19-M16.

BRL* M Restore C Register and return
to L+1.

In the Compatibility Mode, if an indirect BRL is executed
in Monitor Mode, bit 20 of the effective memory address
determines mode of operation to which machine returns. If
bit 20 is set, User Mode is established; if reset, the Monitor
Mode is established.

In the Address Extension Mode, if the BRL does not
contain an indirect reference, the program branches to the
return address and the state of VLR bit 20 is unchanged. If
the BRL is indirected (no indirect chaining is allowed), the
destination address contains the previous machine status in
bit positions M23-M20, and the return address in bit
positions M19-MO as a result of the BSX instruction. The C
Register is restored and the program branches to the return
address. VLR bit 20 remains unchanged if another interrupt
is. active and enabled. If no other interrupt is active and
enabled, VLR20 is reset {Monitor Mode).

7-61

0830006-000
Original 5/78

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BRL or extended BRL is executed.
Intermediate address may be 20 bits when an indirect
extended BRL is executed.

The immediate’ memory reference cannot be indexed;
however, indexing indirect references is permitted, e.g.,

BRL" X

X DAC Y, K

If the BRL instruction is not indirected, the Condition
Register is not affected.

External interrupts are prohibited for the period of one
instruction following this instruction.

The BRL will not reset the interrupt if external interrupts
have been held by an HXI instruction. Control will be
returned to the effective memory address.

Those executive traps, which are not affected by the HXI
instruction, will be reset by the BRL.

HTX % Hold Interrupts and Transfer
Register to Memory
Formuia 27.%+x:a Affected M
1 i i ! i
OP CODE |%| x ADDRESS
| S S N ! | I O N I SN S T SN S SN N T T |
23 7 4]

Operation

The contents of the I, J, or K Register replace the previous
contents of the effective memory address and external
interrupts are prohibited for the period of one instruction
following the execution of this instruction.

NMntae
Hfer e

HTXx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(l)
2 (J)
3 (K)

A code of 27.*+1:a, for example, implements the Hold
Interrupt and Transfer | to Memory (HTI) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

HTI* M

m DAC AK

HXI Hold External Interrupts
Formula 00660. Affected None
I 1 1 T /
owooe
| I O W S T N | 1 | S O T N) /
23 9 (o]
Operation

The activation of any external interrupt is prohibited. The
prohibition is effective immediately upon execution of the
instruction and lasts until the interrupts are released (see
RXI instruction). Executive traps (Group O, Levels 5-7) are
prohibited from becoming active while the HX1 is in effect.

Notes

Only the three executive traps mentioned are affected by
this instruction.

External interrupts- are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is priviieged.

RXI

Release External interrupts

Formula 00664 Affected None
RN
Operation

The prohibition imposed by the HXI instruction is
removed, allowing any external interrupt to be activated 1
cycle after this instruction. This permits the next sequentiai
instruction to be executed without externai interruption.

Notes

If any of the affected executive traps have been triggered
while an HXI was in effect, the highest level will come in
first after the RXI instruction.

External interrupts are prohibited for the period of one
instruction following the execution of the instruction.

This instruction is privileged.

TD1 Transfer Double to Group 1

Formula 006401. Affected 1A/D,
1E/I
1 | R I 1 I
OP CODE //
RN N SN NN SRS NN N TN NN TN TN SN SO NN B /
23 6 o
Operation

The contents of the D Register (E and A) replace the
previous contents of the Arm/Disarm (A/D) and
Enable/Inhibit (E/l) Registers of interrupt group 1. The
contents of E are transferred to the A/D Register and the
contents of A are transferred to the E/I Register.

Notes

The group 1 external interrupt structure is cleared by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TD2 Transfer Double to Group 2
Formula 006402 Affected 2 A/D, 2 E/I
1 T T 1 1 7
OP CODE /////
| SN N S N (N AN N NN T O U SN Y Y O | A
23 6 o]
Operation

The contents of the D (E and A) Register replace the
previous contents of the Arm/Disarm . (A/D) and
Enable/Inhibit (E/I) Registers of interrupt group 2. The
contents of E are transferred to the A/D Register, and the
contents of A are transferred to the E/I Register.

Notes

The group 2 external interrupt structure is cleared by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

Transfer Group 1 to Double

TID

Formula 006501. Affected EA
I T 1 I T W%
23I 1 1 L1 1 IOPI CIO?EI 1 1 L1 |] / 4

0830006-000
Original 5/78

Operation

The contents of the Arm/Disarm (A/D) and Enable/Inhibit
(E/1) Registers of interrupt group 1 replace the previous
contents of the D Register (E and A). The contents of the
A/D Register are transferred to the E Register and the
contents of the E/l Register are transferred to the A
Register.

Notes

The states of the external interrupts are not affected by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

Transfer Group 2 to Double

12D

Affected EA

Formula 006502.
T 1 1 1 1 7
OP CODE /////
| I I S O IO [A N VNS S U N N SN O I |
23 8 0
Oberation

The contents of the Arm/Disarm (A/D) and Enable/Inhibit
(E/1) Registers of interrupt group 2 replace the previous
contents of the D (E and A) Register. The contents of the
A/D Register are transferred to the E Register, and the
contents of the E/I Register are transferred to the A

Register.

Notes

The states of the external interrupts are not affected by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

T4D

Formula

Transfer Group 1 to Double

006541. Affected EA

L e 7

23 6
Operation

The contents of the Request and Active Registers of
interrupt group 1 replace the previous contents of the D
Register (E and A). The contents of the Request Register
are transferred to E, and the contents of the Active Register
are transferred to A.

7-63

Original 5/78

Notes

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

"T5D

Transfer Group 2 to Double

Formula 006542, Affected EA
1 1 1 1 1 ///
OP CODE /%/
Lt 1 1 4 4 3 1 0 4+ 1+ 11 111 %
23 [[+]
Operation

The contents of the Request and Active Registers of
interrupt group 2 replace the previous contents of the D (A
and E) Register. The contents of the Request Register are
transferred to E, and the contents of the Active Register are
transferred to A.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TD4

Transfer Double to Group 1

Formula 006441 Affected 1 Request,
Active
T 1) I t 7
OP CODE //////
23l | S N U S U N N W IO O I I /‘é
Operatior-lm I -

If armed, the contents of the D Register (E and A) are
ORed with the current contents of the Request and Active
Registers of interrupt group 1. The contents of E are ORed
with the request Register and the contents of A are DRed
with the Active Register,

Notes

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TDS Transfer Double to Group 2

Affected 2 Request, Active

Operation

If armed, the contents of the D Register (E and A) are
ORed with the current contents of the Request and Active
Registers of interrupt group 2. The contents of E are ORed
with the Request Register, and the contents of A are ORed
with the Active Register.

Note
External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UAIT

Unitarily Arm group 1 interrupts

Formula 006001. Affected 1A/D
1 T Li I T r
OP CODE ////
| S S N T T (N T Y (OO (N N T I O O | A
23 6 [+
Operation

Any number of the 24 interrupt levels in group 1 are
selectively armed; i.e., the selected bit(s) of the
Arm/Disarm (A/D) Register is (are) set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Arm levels 1 and 3, group 1
TOA B1B3 Select levels 1 and 3
(set bits 1 and 3 of A)
UA1 Arm seiected leveis of

group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for arming is
already armed, it is not cleared by the execution of this

“instruction.

| fedarciiods mma meolailta
External INEITUPLS aire pronivitea

instruction following the execution of this instruction.

This instruction is privileged.

UA2 Unitarily Arm Group 2 Interrupts

Formula 006442, Formula 006002. Affected 2A/D
! 1 i [I 1 1 ¥ i T 7
OP CODE ///// OP CODE //////
2§l 1 L1 i1 | E I T S N R | ﬂ 231 | S S S N T O T (O A T A O O O | /é
[} o] 6 [+]

i
8

Operation

Any number of the 24 interrupt levels in group 2 are
selectively armed, i.e., the selected bit(s) of the
Arm/Disarm (A/D) Register are set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Arm levels 1 and 3, group 2
TOA B1B3 Select levels 1 and 3 (set
bits 1 and 3 of A)
UA2 Arm selected levels of

group 2

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for arming is
already armed, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UD1

Unitarily Disarm Group 1 Interrupts

0830006-000
Original 5/78

This instruction is privileged.

ubD2

Unitarily Disarm Group 2 Interrupts

Formula 006101. Affected 1A/D
1 1 I 1 1 . /
OP CODE ////
| Y N Y I T N Y T N RO N R T N l/l/
23 [[+]
Operation

Any number of the 24 interrupts levels in group 1 are
selectively disarmed i.e., the selected bits of the
Arm/Disarm (A/D) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Disarm level 2, group 1
TOA B2 Select level 2 (set bit 2 of A)
UD1 Disarm selected level of group 1

Execution of this instruction will clear only those levels
which are selected. The remaining levels will not be
affected.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

Formula 006102 Affected 2A/D
T T 1§ 1 I V
OP CODE %
N T N T T Y (N TN TN N A TN T T A T ba
23 6)
Operation

Any number of the 24 interrupt levels in group 2 are
selectively disarmed, i.e., the selected bit(s) of the
Arm/Disarm (A/D) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction,

Example: Disarm level 2, group 2
TOA B2 Select level 2 (set bit
2 of A)
uD2 Disarm selected level
of group 2

Execution of this instruction will clear only those levels
which are selected. The remaining levels will not be
affected.

External interfupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UE1

Formula

Unitarily Enable Group 1 Interrupts

006201. Affected 1E/

Lo 77

23]

Operation

Any number of the 24 interrupt levels in group 1 are
selectively enabled, i.e., the selected bits of the
Enable/Inhibit (E/1) Register are set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

7-65

0830006-000

Original 5/78
Example: Enable levels 0, 2 and 5, group 1
TOA BOB2B5 Select levels 0,2 5
{set bits 0, 2 and 5 of A)
UE1 Enabile selected leveis of

group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. if a level selecied for enabling is
already enabled, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UE?2

Unitarily Enable Group 2 Interrupts

Formula 006202. Affected 2E/
T T T T T 7,
OP CODE W /
i T A N (N S O O S | | I S T A T | 1 /
23 6 o
Operation

Any number of the 24 interrupt levels in group 2 are
selectively enabled, i.e.,, the selected bits of the
Enable/Inhibit (E/l}) Register are set to ONE.

Notes

The corresponding bit{s) of the A Register must be set to
select the appropriate level{s} prior to executing this
instruction,

Example: Enable levels 0, 2, and 5, group 2
TOA BOB2BE Select levels 0, 2, B (set
bits 0, 2, and 5 of A)
UE2 Enable selected levels
of aroup 2

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected, If a level selected for enabling is

already enabled, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

7-66

selectively

UIl

Unitarily Inhibit Group 1 Interrupts

Formula 006301. Affected 1E/
I T 1 I H //
OP CODE /////
SRS W T SN U N NN TN SN AN N W TN R MR i /
23 6 o
-Operat_ioh

Any number of the Z4 interrupt leveis in group 1 are
inhibited; i.e., the selected bits of the
Enable/Inhibit (E/I) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Inhibit levels 1, 4 and 7 of groub 1
TOA B1B4B7 Selectlevels 1,4,7
(set bits 1, 4 and 7 of A)
Uit Inhibit selected levels of group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels -
other than those selected. If one or more of the selected
levels is active upon execution of this instruction, the
level(s) will be placed in a “permissive” state.

External interrupts are prohibited for the period of one
instruction following execution of this instruction,

This instruction is privileged.

UI2 uUnitarily Inhibit Group 2 Interrupts
Formula 006302. Affected 2E/
1 L) 1 1 i 7
OP CODE //
] I 1 | 1 L1 1 1 1 1 1 1 1.1 I 1 / /l//
a3 6 (o]
Operation

Any number of the 24 interrupt levels in group 2 are
selectively inhibited; i.e., the selected bits of the
Enable/Inhibit (E/I) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Inhibit levels 1, 4, and 7 of group 2
TOA B1B4B7 Select levels 1, 4, 7 (set
bits 1, 4, and 7 of A)
uvi2 Inhibit selected levels of

group 2

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
- other than those selected. If one or more of the selected
levels is active upon execution of this instruction, the
level(s) will be placed in a ’permissive’’ state.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

Miscgllaneous Instructions

The following instructions are included in the
miscellaneous group because they do not fall into any
defined functional group.

EXM Execute Memory 7-68
EZB Extend Zeros from Byte 7-69
GAP Generate Argument Pointer 7-67
HIT Hold Interval Timer 7-69
HLT Halt 7-67
NOP No Operation 7-67
QOBB Query Bits of Byte 7-68
Qss Query Sense Switches 7-69
RCT Release Clock Time 7-69
RPT Release Processor Time 7-69

uUsP Update Stack Pointer 7-68

HLT Halt

W/

The program address (i.e., the contents of the P Register) is
advanced by one and program execution is terminated.
When the RUN switch is depressed, execution will begin at
the location defined by the program address.

Note
This instruction is privileged.

0830006-000
Original 5/78

No Operation

NOP

Formula 620.

23 15 0

Affected P

Operation
The program address is advanced by one and program
execution continues with the next instruct_ion.

GAP

Generate Argument Pointer

Formula 244:0 Affected 1,J
1 1 1 f 1 I
OP CODE OPERAND
1 1t] 1 1 1 1 1 1 1 [1 1 1 | D T PO |
23 15 14 4]
Operation

The contents of the J Register are assumed to be the first
address in an indirect memory reference sequence. The
effective memory address derived from this indirect
sequence replaces the previous contents of the | Register.
The contents of the J Register and the 15-bit operand are
added, and the result is placed in the J Register. “

Notes

In the Compatibility Mode, if the final EMA in the indirect
sequence is a DAC format, bits 15-0 replace the contents of
I. If the final EMA is a LAC, bits 20-0 replace the contents
of I. '

In the Address Extension Mode, a 20-bit value is placed in
the J Register to be used for the address of the first indirect
access. Bits 19-0 of the final EMA replace the contents of I.

The purpose of a GAP instruction is to generate an effective
memory address which points to one or more data words

~ not directly available to a subroutine. This is illustrated in

the following example where subroutine B requires the data
contained in location Y.

U=¢C (P =8B

A BLJ B

C DAcC* X

D . RETURN

X DAC Y

Y DATA 2

B GAP 1 m=Y, =0 +1
TMA 0l (A)=2
BUC 0,J (Ph=D

7-87

nQ2ANONE_NNn

VUV VWY

Original 5/78

USP 'Update Stack Pointer

Word 2 |
Formula 0055:0 Affected K.C

WORD 1 (USP)

1 1 i

OP CODE

OPERAND

i N WY O N S N N T N %) AV S O B N S
23 i2 T o
COMPATIBILITY MODE

WORD 2 (DAC)

DN moomes

23 20 15 0

=

or

WORD 2 (LAC)
V. 1 1 T ! T
*| X W ADDRESS

23 20 7 o

ADDRESS EXTENSION MODE

WORD 2
V., T L 1 T 1 T
% X P ADDRESS
! 4 | S I N S U NS S AU U SN N N N SN B N |
23 20 19 o]
Operation

The contents of the K Register are replaced by the contents
of the effective memory address. The 8-bit signed operand
is then added to the contents of the effective memory
address.

MNotes
BLJ ENT Cali re-entrant routine
ENT TRM* SP Save registers in stack
usP 5 Update Stack Pointer [(K)
= stack, (SP) = stack + 5]
DAC SP
HTK SP Reset stack pointer
TMR™ SP Restore registers
BUC 0.l Return
SP DAC STACK Stack pointer
STACK BLOK BN Where N represents max-

imum number of re-
entrant levels

The Condition Register is set to reflect the result of the
operand addition,

External interrupts are prohibited for the period of ene
instruction following this instruction.

EXM % Execute Memory
Formula 40.*+X:a Affected See Notes
T T 1 L T
OPCODE &%l X ADDRESS
| T N | 1 J N S N S N N N N T S I S |
3 7 14 0
Operation

" The instruction located in the effective memory address is

executed as though it were at the address of the EXM.

Notes

In the case that the referenced instruction is a twe word
instruction, the second word must follow the EXM.

Example:
EXM M
DAC L Second word
M AOM 10 Two word instruction
AOM 20
AOM 30

The registers affected will depend on the instruction in the
effective memory address.

An extended EXM to an SAU instruction is invalid.

All interrupts are prohibited for the period of one
instruction following the execution of this instruction.

The program address (contents of P Register) is not
advanced when this instruction is executed in the standard
format. The program address is advanced by one when the
instruction is executed in the extended format.

QBB Query Bits of Byte
Formula 001i:b Affected C
1 1 T y/}/ I i
. OP CODE b
1 F I S S N T T S N | ///// Ll L1 1 1
23 2 7 [}
Operation

A logical AND is performed between operand bits 7-0 and
the contents of the B Register. The Condition Register is
set according to the status of the result; i.e., Positive,
Negative, or Zero.

Note
Examples:
(1) TOA B7 A = '00000200 C = Positive
dBB B7 C = Negative
(20TOA B6 A='00000100 C-= Positive
i).BB B6 C = Positive
(3) TNA 1 A="71777777 C = Negative
DMA MASK A = ‘40000000 C = Negative
MASK DATA ‘40000000
QSS Query Sense Switches
Formula 0001:s Affected =~ C
Al 1 1 7 T V
OP CODE ////// s U
Lttt 1+ 1 1 11 L 1 A | -] //
2 K 12)
Operation

A logical AND is performed between operand bits 4-1 and
the state(s) of the sense switches. The Condition Register is
set to Positive, or Zero based on the result.

Note
Example: Test to see if either SS2 or SS3 are on, or if
both are on.
Qss B2B3
EZB Extend Zeros from Byte
Formula 0007. Affected A
1 1 ¥
WU I N N G B e | 1 11
3 . 2 0
Operation

Bit positions A23-A8 are set to ZERO. The contents of the
B Register (A7-A0) are not affected.

Note
The Condition Register is not affected.

HIT

Formula

Hold Interval Timer

00770. Affected None

0830006-000
Original 5/78

The CPU’s Interval Timer is halted and will remain so until
released by an RPT or RCT instruction.

1 T T 1

OP CODE

| N T S IO TN S T |
9

11 1

Operation

RPT Release Processor Time
Formula 00774. Affected None
OP CODE
i T N S I I U N I I | / /A
23 9 o
Operation

The CPU's Interval Timer is started; i.e., allowed to begin

counting CPU time.

Notes

The Processor Time Mode allows the Interval Timer to
count CPU time only. Counting is inhibited when an 1/0
block controller channel takes a memory cycle or when an
interrupt is active.

Once started, the timer counts until held by a HIT
|nstruct|on or untll 'rhe CPU is halted.

At each one mlcrosecond interval, the contents of the T
Register are decremented by one and tested for zero. if the
contents of T are zero, an executive interrupt is triggered.
The interrupt does not stop the timer.

RCT Release Clock Tlme
Formula 00776 Affected
0P CODE ////////
S ——
Operation

The CPU’s Interval Timer is started; i.e., allowed to begin
counting continuously.

Notes

The Clock Time Mode causes the Interval Timer to count
contmuously

Once started, the timer will count until held by a HIT
mstructlon

At each one mlcrosecond mterval the contents of the T
Register are decremented by one and tested for zero. If the
contents of T are zero, an executive interrupt is triggered.
The interrupt does not stop the timer.

7-69

0830006-000
Original 5/78

Scientific Arithmetic Unit Instructions

The instruction set for the Scientific Arithmetic Unit is
divided into five functional groups; arithmetic, transfer,
branch, compare, and interrupt control. Concurrent time, if
any, occurs after the instruction has been initiated by the
SAU. The SAU is designed to operate on normalized
fioating point numbers, and aii descriptions of the
arithmetic instructions are based on this fact. If an
unnormalized operand is used in an arithmetic operation
the results are not considered valid. The results of an
arithmetic operation are truncated, not rounded.

Standard arithmetic instructions — add, subtract, multiply,
and divide — as well as square, square root, fix and float are
included in the group. The instruction mnemonics provide a
brief definition of specific operations to be performed. The
. first letter in the mnemonic specifies the action or type of
operation that is to be performed. The second letter
identifies the first quantity or reference (R1) to be used in
the operation, and the third letter identifies the second
reference (R2). For example:

AMX
Add J L X Register
{Action to be performed) (R2)
|
Memory
(R1)

In the majority of SAU arithmetic instructions, the result
of the operation remains in R2 while R1 remains
unchanged (except where R1 and R2 are the same).

Unless otherwise noted, each arithmetic operation sets a bit
in the SAU condition {Y) register to reflect the status of
the result. Various conditions are described below:

a) Positive — The result is arithmetically greater than
zero, indicated by a ONE in bit position 3 of the Y
Register. A ZERO in bit position 2 indicates “Not
Positive”’.

b} Zerc ~ All of the mantissa bits comprising the
quantity under consideration are ZERO and the
exponent is ‘201, indicated by a ONE in bit position 2
of the Y Register. A ZERO in bit position 2 indicates
“Not Zero™.

¢} Negative — The result is arithmetically less than zero,
indicated by a ONE in bit position 1 of the Y Register.
A ZERO in bit position ONE indicates ‘’Not
Negative”.

7-70

d) Overflow — An overflow results from an arithmetic
operation which causes exponent overflow, i.e., an
exponent greater than 27 — 1 (127) or less than -27
(-128).

NOTE

-If the SAU Overflow/Underflow executive trap is
enabled, any instruction causing the overflow bit of
the Y Register to be set wiii cause an interrupt.

Bits 1, 2 and 3 (Negative, Zero, Positive) of the Y Register
are normally mutually exclusive. In certain instances it is
desirable to know what operation caused an Overflow, e.g.,
a division by zero. The following operations cause more
than two bits to be set in the Y Register:

a) Division by zero sets bits 0, 2, 3 (*15)
b) A/ setsbits0,1,23('17)
c) Float to Fix, X>8388607 sets bits 0, 1, 3 (‘13)

The algebraic compare instructions which are included in
the SAU instruction set compare two referenced, signed (+
or -} quantities. The Y (condition) Register is set according
to the result of the comparison. Algebraic comparisons are
identified by the letter 'C” as the first letter in the
instruction mnemonic (e.g., CZX). The second letter in the
mnemonic code identifies the first of the compared
quantities (R1) and the remaining letter identifies the
second quantity (R2). For example:

CZX
Algebraically Compare -/ T —\-— X Register
(Type. of Operation) (R2)
I
ZERO
{R1)

Comparisons are performed according to the following
formula:

R2 — R1 =Y (Positive, Zero, or Negative)

Therefore, R2 > R1, R2 < R1, and R2 = Ri, will set the
condition (Y) register to Positive (+), Negative (-), and Zero
{0), respectively.

Two instructions provide control of the SAU interrupt.
These instructions either release or hold the interrupt.

The transfer instruction group includes various types of
operations. Among these are transfers between memory and
registers, registers and memory, and register-to-register. The
transfer operation mnemonic code describes the individual
operation. What operation is to be performed is described
by the first letter in the mnemonic; “T" for transfer and
“1”” for interchange. The second and third letters of the
mnemonic specify the source (R1) and destination (R2) of
the transfer, respectively. Listed below are two examples:

TMX
Transfer ———/ -\—X Register
{Operation) (R2)
Memory
(R1)
I DX
Interchange ——/ -\—— X Register
{Operation) (R2)
Register D
(R1)

With the exception of the interchange instruction, the
transfer source (R1) is not altered as a result of the
execution of a transfer instruction.

The following instructions are included in the SAU group.

ARITHMETIC
AAX Add A Register to X Register 7-72
ADX Add D Register to X Register 7-72
AMX Add Memory to X Register 7-72
AOW Add Operand to W Register 7-72
- AOX Add Operand to X Register 7-72
DAX Divide A Register into X Register 7-72
DDX Divide D Register into X Register 7-73
DMX Divide Memory into X Register . 7-73
DOX Divide Operand into X Register 7-73
FAX Floating Normalize of A Register
to X Register 7-73
FXA Fix of X Register to A Register 7-74

0830006-000

Original 5/78
INX Inverse of X Register 7-74
MAX Multiply A Register and X Register 7-74
_MDX Multiply D Register and X Register 7-74
MMX Multiply Memory and X Register 7-74
MOX Multiply Operand and X Register 7-74
NXX Negative of X Register to X Register 7-75
PXX Positive of X Register to X Register 7-75
SAX Subtract A Register from X Register 7-75
SDX Subtract D Register from X Register 7-75
SEX Square X Register 7-75
SMX Subtract Memory from X Register 7-75
SOX Subtract Operand from X Register 7-76
SRX Square Root of X Register 7-76
BRANCH
BNR Branch on Negative Reset 7-76
BNS Branch on Negative Set 7-76
BOR Branch on Overflow Reset 7-77
BOS Branch on Overflow Set 7-77
BOX Branch on SAU Ready 7-77
BPR Branch on Positive Reset 7-77
BPS Branch on Positive Set 7-77
BZR Branch on Zero Reset 7-76
BZS Branch on Zero Set 7-76
COMPARE
CDX Compare D Register to X Register 7-77
cow Compare Operand to W Register 7-78
CczX Compare Zero to X Register 7-78
INTERRUPT
HSI Hold SAU Overflow Interrupt 7-78
RSI Release SAU Overflow Interrupt 7-78
TRANSFER
IDX Interchange D Register and
X Register 7-78
TDX Transfer D Register to X Register 7-79
TMX Transfer Memory to X Register 7-79
TOW Transfer Operand to W Register 7-79
TOY Transfer Operand to Y Register 7-79
TXD Transfer X Register to D Register 7-79
TXM Transfer X Register to Memory 7-80
TYA Transfer Y Register to A Register 7-80
TZX Transfer Zero to X Register 7-80

2-71

0830006-000
Original 5/78

AAX Add A Register to X Register

Formula 77070. Affected XY

o7//////////%

a3 -

Operation

The signed integer in the A Register is converted to
floating-point format and added to the number in the X
Register. The sum replaces the previous contents of the X
Register.

ADX Add D Register to X Register

Formula 77100. Affected XY
RN
Operation

The floating-point number in the D Register is added to the
number in the X Register. The sum replaces the previous
contents of the X Register.

Operation

The 8-bit, signed operand is algebraically added to the
contents of the W Register.

Note

A subtraction may be accomplished by adding a negative
operand.

.

AOX Add Operand to X Register
Formula 77060:0 Affected XY
1 1 1 1 7 I 1
OP CODE /] OPERAND
[O N U A U U T N N SR N V. | I S N W I T
23 9 8 7 . o
Operation

The signed, 8-bit integer operand is converted to
floating-point format and added to the contents of the X
Register. The sum replaces the previous contents of the X
Register.

DAX Divide A Register (integer)
AMX % Add Memory to X Register into X Register
Formula 73.*+X:a Affected XY Formula 77073. Affected XY
i T i i T T T T T V

OP CODE |*| X ADDRES! OP CODE ////////

1l L1 1 1 t 1 i b a9t 1 i1 .1 i i i i i i i i i i i I 4
4 14 4] 23 9 8 [s]
Operation Operation

The contents of the effective memory address {EMA) and
the next sequential address (EMA+1) are added to the
contents of the X Register. The sum replaces the previous
contents of the X Regisier.

AQOW Add Operand to W Register (exponent)
Formula 77012:0 Affected w,Y
I 1 ¥] / 1 I
OP CODE /] OPERAND
L i 1 1 1 i i i i 1 1 | S ! 1 i 1 1 1 i
23 9 8 7 0

1-72

The signed integer in the A Register is converted to floating
point format. The contents of the X Register are divided by
the converted number. The quotient replaces the previous
contents of the X Register.

Notes

If division by zero occurs, the condition register (Y) is set

to Overflow, Positive, and Zero, i.e., (Y) = ‘15,

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be Q after the divide.

DDX Divide D Register (floating-point)
into X Register
Formula 77103. Affected XY
1 1 M)
i I | L1 | | SN N I O N T |
23 9 8
Operation

The floating-point contents of the D Register are divided
into the contents of the X Register. The quotient replaces
the previous contents of the X Register.

Notes

If division by zero occurs, the condition register (Y) is set
to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be 0 after the divide.

DMX % Divide Memory into X Register
Formula 76.*+X:a Affected XY
] T ! 1 I I
OP CODE %] X ADDRESS
11 1 1] 1] L1] 1 L | | 1 1] L1
23 17 14 o]
Operation

The contents of the X Register are divided by the contents
of the effective memory address (EMA) and the next
sequential address (EMA+1). The quotient replaces the
previous contents of the X Register.

Notes

If division by zero occurs, the condition register (Y) will be
set to Overflow, Positive, and Zerg, i.e., {Y) = *15.

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be 0 after the divide.

DOX Divide Operand into X Register
Formula 77063:0 Affected XY
T 1 T T //] 1
OP CODE /] OPERAND
1 | S N W U N N S T SO U O N | //] | T T T | 1
23 9 8 7 [s]

0830006-000
Original 5/78

Operation

The signed, 8-bit integer operand is converted to
floating-point and is divided into the contents of the X
Register. The quotient replaces the previous contents of the
X Register.

Notes

If division by zero occurs, the condition register (Y) will be
set to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

In setting up to divide, the least significant bit of the
mantissa is zeroed. The most obvious case.is when X is
divided by 1. If the least significant bit of the mantissa is 1,
it will be O after the divide.

FAX Floating Normalize of A Register
to X Register
formula 7703. Affected XY
OP CODE
| I U A N N N N A N | / %
23 12 _0
Operation

The signed integer quantity in the A register is converted to
a floating-point normalized quantity which replaces the
previous quantity in the X Register.

Notes

A positive normalized number will have as the S|gn and
most significant bit the following pattern:

01

A negative normalized number (where the value is not -1)
has the configuration

10

A negative normalized number, where the value is -1, resuits

in the mantissa having a bit pattern of all ONEs.
1"

If the result is zero, the martissa will be zero and the
exponent will be set to a full scale negative value, i.e., (W) =
‘201.

The FAX instruction gives a different result than the FNO
instruction for -2N (0SN<231q).

FNO of -2N=1.10..0 EXP=(N+1)
FAX of -2N=1.00..0 EXP=N

7-73

VWY WY W WY

Original 5/78

FXA

Formula 7713.

Fix of X Register to A Register

Affected AY

1 1 1

OP CODE

23 2

Operation
The floating-point number in the X Register is converted to

a 24-bit signed integer which replaces the previous contents
of the A Register.

Notes

If the exponent is greater than 23, the condition register
(Y) will be set to Overflow, Negative and Positive, i.e., (Y}
='13. '

If the mantissa is negative, the result when truncated will be
“rounded’’ toward the greater negative number.

INX

Inverse of X Register

Formula 77050. Affected XY

I I I L)

1
The inverse of the contents [TX—)] of the X Register re-
replaces the contents of the X Register.
Note

If division by zero occurs, the condition register will be set
to Overflow, Positive, and Zero, i.e., (Y) = ‘15,

MDX Multiply D Register (floating
point) and X Register
Formula 77102. Affected XY
QP CODE
11 1 | I T I | 11 1 | S | / }4
23 9 8 (]
Operation

The floating-point contents of the D Register are multiplied
by the contents of the X Register. The product replaces the
previous contents of the X Register.

Notes

If the sum of the exponents is 2200, Overflow will be
generated. However, the final result may be corrected, i.e.,
(0.100...0E177) X (0.100..E001) = 0.100... E(177) +
Overflow.

If both operands are MNG (1.00...0) and the sum of their
exponents is 177, Overflow will be generated.

MMX % Multiply Memory and X Register
Formula 75.*+X:a Affected XY
I 1 1 ¥ 1

OP CODE j*| X ADDRESS
zsi R S = i |‘= [N VY TN T I T S T N S
Operation

The contents of the X Register are multiplied by the
contents of the effective memory address (EMA) and the
next sequential address (EMA+1). The product replaces the
previous contents of the X Register.

MAX Multiply A Register (integer)
and X Register MOX Multiply Operand and X Register
Formula 77072. Affected XY Formula 77062:0 Affected XY
T 1 1 1 ’/ 1 1 1 1 4 A 1
OP CODE W OP CODE] OPERAND

L4t ‘1t .4 1 v 1t 1 111 // ﬁ } U I N U T N S (N N N N W 4 | I T T S N I |
23 9 8] 23 9 8 Y (4]
Operation Operation

The signed integer in the A Register is converted to
floating-point format and multiplied by the contents of the
X Register. The product replaces the previous contents of
the X Register.

‘,\l

The signed, 8-bit integer operand is convarted to
floating-point format and is multiplied by the contents of
the X Register. The floating-point product replaces the
previous contents of the X Register,

NXX Negative of X Register to
X Register
Formula 77041. Affected XY
T 1 T 1 //
OP CODE W/

! i 1 | | L 1 L1 1 L L 1 1 /é
23 9 8 [+
Operation

The mantissa in the X Register is two’s compiemented and
the result is loaded into the X Register. The Y Register is
changed to reflect the status of the new quantity.

Note

If the bit pattern of the mantissa is 100....0, the one’s
complement will be generated.

PXX Positive of X Register to
X Register
Formula 77040. Affected XY
OP CODE /
| A N (N T A N T N O I O A | / %
23 9 8 o]
Operation

The absolute value of the contents of the X Register
replaces the previous contents of the X Register.

Notes

If the bit pattern of the mantissa is 100....0, the one's
complement will be generated.

The operation noted above may cause a significant
difference in a result, i.e., TNA (1), FAX, NXX, FXA
generate A = 0; the result should have been 1. However, this
may be alleviated by preceeding the NXX with an AOX {0)
to normalize the X Register.

0830006-000
Original 5/78

Operation

The signed integer in the A Register is converted to
fioating-point format and subtracted from the contents of
the X Register. The difference replaces the previous
contents of the X Register.

SDX Subtract D Register (floating
point) from X Register
Formula 77101. Affected XY ’
o 70700
OP CODE /
j I (N T I OO OO AN NN N NN N S A /j
23 9 8 o]
Operation

The floating-point contents of the D Register are subtracted
from the X Register. The difference replaces the previous
contents of the X Register. '

SEX Square X Register

Affected

RN

The square of the contents of the X Register replaces the
previous contents of the X Register. (i.e., the X Register is -
replaced by X times X.)

23

SAX Subtract A Register (integer)
from X Register
Formula 77071. Affected XY
I 1 I ! /7
OP CODE /////r/u//
P | 1 1 | 1] 1 L1 1 /]/
8 0

SMX % Subtract Memory from X Register
Formula 74.*+X:a Affected XY
1 T T 1 1

OP CODE [*| X ADDRESS

| S O I | L | W A W Y S| | S N N I I A I |
23 17 14 V]
Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) are subtracted from
the contents of the X Register. The difference replaces the
contents of the X Register.

7-75

Lt e i

Original 5/78
SOX Subtract Operand from X Register BNS % Branch on Negative Set
Formula 77061:0 Affected XY Formula 637:a Affected P
1] 1 I / I 1 T 1] 1 v T
OP CODE / OPERAND OP CODE ADDRES
LN AN WU S S NN N SO SN U S SR N 2 LI IO S S B) | S S I N T I I | S T W T T S N N S N N S |

P2) s 8 7 ° %) 1% °
Operation Operation

The signed, 8-bit integer operand is converted to a
floating-point format and subtracted from the contents of
the X Register. The difference replaces the previous
contents of the X Register.

SRX Square Root of X Register

Formula 77052. Affected XY

' ' ! ' VS S S
23 9
Operation

The square root of the contents of the X Register replaces
the previous contents of the X Register.

Note

if the content of the X Register is negative, the condition
register is set to Positive, Zero, Negative and Overflow, i.e.,
(Y)="17.

The contents of the condition (Y) register are tested for
the specified condition. If the condition is present, the
contents of the P Register (current program address) are
replaced by the effective memory address. If the specified
condition is not present, the program address advances to
the next sequential instruction.

BZR % Branch on Zero Reset
Formula 640:a Affected P
) L) 1 1 I 1
OP CODE ADDRESS
L4 i 41 + 1 1 1 1t 1 1 1 | R T | | L1 !
23 14 5]
Operation

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is

not present, the program address advances to the next
sequential instruction.

SO

BNR % Branch on Negative Reset BZS % Branch on Zero Set
Formula 630:a Affected P Formula 647:a Affected P
OP CODE ADDRESS OP CODE ; ADDRESS
14 1 1.1 1 Ll 1 1 1 1 I 1 L L il 1 |] i i I | F | 1 A J s 1 1 1 i] 1 1] 1 1 1 1
23 4 [¢] 23 4 [+)
Operation Operation

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential instruction.

The contents of the condition (Y) register are tested for
the specified condition. If the condition is present, the
contents of the P Register (current program address) are
replaced by the effective memory address. If the specified
condition is not present, the program address advances to
the next sequential instruction.

0830006-000
Original 5/78

BPR % Branch on Positive Reset BOS % Branch on Overflow Set
Formula 650:a Affected P Formula 773:a Affected P
T T T T T T T T T < T T T
OP CODE ADDRESS OP CODE ADDRESS
J_ L 1 1 1 1 | 1 1 1 1 1 i i 1 11 ! 1 11 1 1 1 1 | 1 | i] 1 | | | 1 | 1 | I S S S W
23 14 [e] 23 4 o
" Operation Operation

The contents of the condition (Y) register are tested for
the specified condition. If the condition is present, the
contents of the P Register (current program address) are
replaced by the effective memory address. If the specified
condition is not present, the program address advances to
the next sequential instruction.

BPS % Branch on Positive Set
Formula 657:a Affected P
T T T T T T
OP CODE ADDRESS
| PO | L1 1 .t 1 1 | | S T S N S I S |
23 14 o]
Operation

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential instruction.

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential instruction.

BOX % Branch on SAU Ready

Formula 627:a Affected P
i 1 1 V 1 1
OP CODE ADDRESS
| S N T T A D N | Pt 0t 1 1 1 1 1.1 J 1t 1
23 t4 [¢]
Operation

A determination is made as to whether or not the SAU is
processing an instruction (the SAU busy latch is tested). If
the SAU is able to process another instruction (i.e., ready)
then the contents of the P Register {(current program
address) are replaced by the effective memory address. If
the SAU is currently processing an instruction (i.e., not
ready) the program address advances to the next sequential
instruction.

CDX

Compare D Register to X Register

BOR % Branch on Overflow Reset
Formula 772:a Affected P
T 1 I 1 1 I
OP CODE ADDRESS
111t 1 1 1 | I [TR (S N T U O T O N Y O |
23 14 o]
Operation

The contents of the condition (Y) register are tested for the
specified condition. If the condition is present, the contents
of the P Register (current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program address advances to the next
sequential instruction.

=M/

The contents of the D Register and the contents of the X
Register are compared and the Y {(condition) Register is set
to the status of the result.

2-77

0830006-000
Originai 5/78

Note

Comparison results are as follows:

If X is greater than D; Y = Positive
If Xisequal toD; Y = Zero
If X is less than D; Y = Negative

COW cCompare Operand to W Register
(exponent)
Formula 77013:0 Affected Y
1 1 1 1 7 1 I
OP CODE /] OPERAND
1 1 1 Ll i L1 i1 1 || 1 2 1 L 1 i 1 I I

23 9 8 7 o
Operation
The 8-hit, cigned operand and the contents of the W

Register are algebraically compared and the Y (condition)
Register is set to the status of the result.)

Note
Comparison results are as follows:

If W is greater than the operand; Y = Positive
If W is equal to the operand; Y = Zero
if W is iess than the operand; Y = Negative

CZX Compare Zero to X Register
Formula 77060000 Affected Y, X
T T T 1 1 1 T
OP CODE
1 L1 | N N | i 11 [1 1 | S | 1 | | 1]
Operation

The contents of the X Register and floating-point zero are
compared and the Y (condition) Register is set to the status
of the result.

Note

Overflow will result if the mantissa has the pattern 1100...0
and the exponent has the pattern 10000000. The least
significant bit of X will besettoa 1.

7-.78

HSI Hold SAU Overflow Interrupt
Formula 770200. Affected None
I T T T T W
OP CODE
] 1 | 1 1 1]] 1 1 1 i 1 | 1 1 / /
23 6 5 [+]
Operation

This instruction disarms the overflow/underflow interrupt
(Executive trap Group 0, Level 6). The trap remains
disarmed until the execution of the release instruction.

RSI Release SAU Overflow Interrupt

Formula 770201, Affected None
' L ' Y2

25I 1 1 1 1.1 IU’I'L‘lUlIJtI " N B S N A | //////I/////j

Operation

This instruction arms the overflow/underflow interrupt
(Executive Trap Group 0, Level 6). When the trap is armed,
and not inhibited by an HXI instruction, any SAU
operation which causes bit 0 of the Y Register to be set
{(Overflow) will generate an interrupt request.

IDX interchange D Register and
X Register
Formula 7711, Affected DXY
Corcove W7
S AR |i2'//|///////////y// 4
Operation

The contents of the X Register and the D Register are
interchanged. The Y (condition) Register is set to the status
of the X Register on completion of the instruction.

Note

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

TDX Transfer D Register to X Register
Formula 7714, Affected XY
e 07
Operation

The contents of the D Register replace the previous
contents of the X Register.

Notes

An unnormalized number transferred to X may not set the
Y Register properly.

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

A binary zero transferred to X will set Positive.

TMX % Transfer Memory to X Register
Formula 71.*+X:a Affected XY
1 T 1 1] \
OP CODE [¥| X ADDRESS
1 L1 L] 1 1 i 1 1 1 1 | Lt ! 1 1 1
23 I7 14 o]

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) replace the previous
contents of the X Register. EMA and EMA+1 replace the
most significant and least significant part of X, respectively.

Note

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

TOW Transfer Operand to W Register
(exponent)
Formula 77011:0 Affected w,Y
1 1 1 T / 1 1
OP CODE % OPERAND
) N S U T N S W N | | I | / 1 | N N T S I |
23 9 8 7 o]

0830006-000
Original 5/78

Operation
The 8-bit, signed operand replaces the previous contents of

the W Register. All other bits within the X Register are
unaffected.

Note

The Y (condition) Register is set to the status of the X and
XW Registers upon completion of the instruction. The SAU
uses the two most significant bits of the mantissa and the
sign of the exponent to set the Y Register.

TOY Transfer Operand to Y Register
Formula 77010:0 Affected Y
T T T T 4 T
OP CODE /////OPERAND
|| | S S T N T TR IOV I I W I | /// L1 1
23 9 3 o]
Operation

The four bit operand replaces the previous contents of the
Y (condition) Register. :

Note

Operand definition is as follows:

Bit 0= ONE = Overflow
= ZERO = No Overflow

Bit 1= ONE Negative
= ZERO = Not Negative

Bit2=0ONE = Zero
= ZEROQO = Not Zero

Bit 3= ONE = Positive
= ZERO = Not Positive

TXD Transfer X Register to D Register
Formula 7715. Affected D
e V00
Operation

The contents of the X Register replaces the previous
contents of the D Register. The X Register is unchanged.

7-79

Original 5/78

TXM % Transfer X Register to Memory TZX Transfer Zero to X Register
Formula 72.*+X:a Affected M Formula 77042, Affected X
T T T 1 1 1 1 1 I 7/////// / /
OP CODE 1%kl X ADDRESS OP CODE ////?/‘/ /7
.t 1 1 1 1 (N G RN NN SN N N N N S N N N | | I N T I O N AN TN N O N S N | / l// / / //I/
23 17 4 [v] 23 9 8 [
Operation Operation -
The contents of the X Register replaces the previous The floating-point representation of zero

contents of the effective memory address (EMA) and the
next sequential address (EMA+1). The most and least
significant portions of X are transferred to EMA and
EMA-+1, respectively.

Note

The SAU uses the two most significant bits of the mantissa
and the sign of the exponent to set the Y Register.

(0000000000000201) replaces the previous contents of the
X Register. The Y (condition) Register is unaffected.

Diagnostic Instructions

Diagnostic instructions are used primarily to support the
diagnostic software. The following instructions are included
in the diagnostic group.

TYA Transfer Y Register to A Register
Formula 7700. Affected A

1 1 T 7
23 2 [+]
Operation

The contents of the Y Register are transferred to the A
Register and the status of the SAU overflow/underflow

interrupt is placed in bit position 6 in the A Register.

Note

The following table shows the bit placements of the various
Y (condition) Register settings when transferred to the A

Register.

A Register

Bit0=1
Bit1=1
Bit2=1
Bit3=1
Bit6=0
Bit6=1

Bit Function

.Overflow/Underflow
Negative

Zero

Positive

SAU Interrupt Enabled
SAU Interrupt Disabled

All other bits within the A Register are set to zero.

ACE Transfer Active Executive Trapsto A 7.80
HER Hoid Parity Error Retry - 7-8i
LTM Transfer Tracking RAM to

Memory 7-83
LVR Load Virtual Demand Page Register 7-83
RER Release Parity Error Retry 7-81
RPB Read Parity Bits 7-81
TAP Transfer A to Parity Error

Address Register 7-82
TCD Transfer CAM to Double 7-82
THA Transfer CAM Hit Status to A °7-83
TPA Transfer Parity Error Address L

Register to A 782
ACE Transfer Active Executive Traps to A
Formula 77410000

T 1 I 1 i I 1
OP CODE
| I T W VO NORY SN S SO A TN SN YN P UNUS WUUNS SN TN SN N N P |

23 s [
Operation

The current status of the executive trap interrupts (Group 0,
Levels 7-0) is transferred to A7-A0, and the status of the
HX! instruction execution is transferred to A11. The
remaining bits of A are cleared:

Notes

The Condition Register remains unchanged.

This is a privileged instruction.

HER Hold Parity Error Retry
Formula 7740.005.0 Affected None
00000000
1 T T 1 1
ESCAPE CODE OP CODE 000
| I U N U N N O T A | | I I W I T N | L1

3 12 1 3 2 [+

1 i T I 1 i T

000000000000000000000000

§ SN VU SN S Y AU SN SO WS T (NN N N U NN (N N S N N

23 [o]

Operation

Memory read retry operations following parity errors are
inhibited.

Notes

The HER instruction is valid only in the extended
instruction format.

Once executed, the CPU or 1/O will not retry a memory
read operation if a parity error has occurred.

When this instruction is executed, all subsequent parity
errors are reported as being hard errors and an executive
trap (Group 0, Level 1) interrupt is generated.

The inhibit is removed by either executing the RER
instruction or activating the RESET switch located on the
control panel.

If a parity error occurs when memory read retries are
inhibited, operation of ‘the SAU is unpredictable, the
erroneous data is retained in cache memory, and the parity
error (PE) indicator on the control panel is lighted.

The Condition Register remains unchanged.

The second word of the extended instruction is read but
not used.

This instruction is privileged.

RER Release Parity Error Retry
Formula 7740.006.0 Affected None
’ 00000000
1 T i 1§ T
ESCAPE CODE OP CODE 000
1 1 | | I S | L L 11 1 | ! ! Ll 1 1 1 1
23 12 1 3 2 o]

0830006-000
Original 5/78

1 1 T 1 i T 1

00000000000000000000OOOVO

) NS S S [S N Y [T (O N N T N Oy (O Y Y T A
23 . (o]

Operation »
The memory read retry inhibit imposed by execution of the
HER instruction is removed.

Notes)
The RER instruction is valid only in the extended
instruction format.

When this instruction is executed, subsequent parity errors
are -reported as ‘being either soft or hard, providing no
parity error occurs after execution of the HER instruction
and before execution of the RER instruction.

The Condition Register remains unchanged.

The second word of-the extended instructior is read but
not used. S

This instruction is privileged.

RPB Read Parity Bits

Formula 7740.004.0 Affected A
*+X:EA
1 1 1 T 1
ESCAPE CODE OP CODE 000
| SN S S N NN S I N O | | I N S I I | 1
23 12 1 3 2 o
// T 1 T T T T
*| X é ' ADDRESS
] v i | | 1 1 L1 L] i 1 1 i1 1 1] 1 1
23222120 19 °
Operation

The error correction bits of the 64K MOS memory module
selected by the effective memory address are read and
loaded into the A Register. The even word error correction
bits are transferred to A8-Ab5, and the odd word error
correction bits are transferred to A4-A0.

Notes

The RPB instruction is valid only in the extended
instruction format and only for 64K MOS memory
modules.

The Condition Register remains unchanged.

This instruction is privileged.

. 7-81

0830006-000

Original 5/78
TAP Transfer A to Parity Error Address
Register
Formula 7740.002.0 Affected PEAR
00000000
1 ! T T ¥
ESCAPE CODE OP CODE 000
i i 1 i 1] 1 1 L 1 L i L 1] 1 L 1 L 1 1
3 2 n 3 2 [+]

T 1 T 1 1 1 T

|j000000000000000000000000

B I VSN N VRS [N NN VY TN N TN (N N NN N (NN N N AN SN S T |
23 0

Operation

Bits 19-0 of the A Register replace the previous contents of
bits 19-0 of the Parity Error Address Register (PEAR). Bits
23-20 of the PEAR are cleared (reset to ZERO).

Notes

The TAP instruction is valid only in the extended
instruction format.

The Condition Register remains unchaged.

The second word of the extended instruction is read but
not used.

This instruction is privileged.

TPA Transfer Parity Error Address
Register to A
Formula 7740.001.0 Affecied A, PEAR
00000000
I 1 I 1 T
ESCAPE CODE OP CODE 000
i | 1 Ll 1 1 1 L 1 | I I T |]] |] 1 1
23 2 1 3¢ 0
1 I I i 1 1 T
00000000000000000000C0O0O00O
| SR U JEVURN RN NN NN TN (NN N IO NN SENNN (N N NN NN NN AN NS NN SN U |
23 (o]

Operation

The 24-bit contents of the Parity Error Address Register
(PEAR) replace the previous contents of the A Register.
The PEAR is cleared and armed for the next parity error
occurrence immediately after the transfer has been
compieted.

Notes

The TPA instruction is valid only in the extended
instruction format.

The Condition Register remains unchaged.

The second word of the extended instruction is read but
not used.

This instruction is privileged.

TCD Transfer CAM to Double

Formula 7740.620.0 Affected E.A
00000000
ESCAPE CODE OP CODE 00co0
[R S B R B A AR IR RN R B
23 12 1 32 0

T v T I T T I

000000000000000000000000

| N U (N N TN N TN S N (N N TN O SN NN N (N TN N (N N |

23 * [}

Onperation

The contents of the Virtual Physical Fetch (VPF) Register -
replace the previous contents of E Register bits 11-0, and
the contents of the Virtual Physical Operand (VPD)
Register renlace the previous contents of A Register bits
11-0.

Notes

The TCD instruction is valid only in the extended
instruction format.

The Condition Register remains unchanged.

The second word of the instruction is read but not used.

THA Transfer CAM Hit Status to A
Formula 7740.621.0 Affected A
00000000
1 1 T i i
ESCAPE CODE OP CODE 000
| N | L4 1.1 1 1 L1 1 | I T I | 1L
3 12 n 3 2 [+]
1 1 I 1 1 i 1
0000000000000000000O0000O00O0
) - Y (N T IR I O T N | | I O I N O I I |
23 o]
Operation

The contents of the Virtual Hit Status (VHS) Register
replace the previous contents of A Register bits 2-0.

Notes

Bit VHS2 (fetch hit status) is transferred to A2, bit VHS1
(operand 1 hit status) is transferred to A1, and VHSO
(operand 2 hit status) is transferred to AO.

The THA instruction is valid only in the extended
instruction format.

The instruction following a ROM instruction leaves the
fetch hit status bit unchanged and both operand hit status
bits reset.

The Condition Register remains unchanged.

The second word of the extended instruction is read but
not used. :

LTM Transfer Tracking RAM to Memory
Formula 7740.003.0 Affected M
*+X:EA
I 1 i i T
ESCAPE CODE OP CODE 000
11 1 L1 i] L1 1 1 1 1 1 1 1 ! [
23 2 1 3 2 [¢]
" 1 | 1 1 1 1
*| X é ADDRESS
1 L 1 1 L1 L1 LI 1 1 1] 1 1 1 1 L L

23 22 21 20 19

0830006-000
Original 5/78

Operation

The contents of the branch tracking RAM are transferred to
sixteen consecutive memory locations starting at the
effective memory address (EMA).

Notes

The LTM instruction
instruction format.

is valid only in the extended

The first location is not a valid branch address.
The Condition Register remains unchanged.

This instruction is privileged.

LVR Load Virtual Demand Page Register
Formula 7740.007.0 Affected VPR .
00000000
I 1 1 I T
ESCAPE CODE OP CODE 000
L 1t 1t 41 1 1 1 | S T W W O I A | J 1
23 Rk 3 2 o]
T T I I I T 1
000000000000000000000000
o IS N N Y TS NN SN N S O S N N S N A T R N

23 0

Operation

Bits 19-10 and 3-0 of the A Register replace the previous
contents of the Virtual Demand Page Register (VPR). Bits
A19-10 are transferred to VPR13-4, and bits A3-0 are
transferred to VPR3-0.

Notes

The LVR instruction
instruction format.

is valid only in the extended

The Condition Register remains unchanged.

Execution of this instruction is valid only in the Monitor
Mode.

The second word of the extended instruction is read but
not used.

This is a privileged instruction.

T Anli~ Aa .

0830006-000
Original 5/78

APPENDIX A
INSTRUCTION EXECUTION TIMES

COMPUTING INSTRUCTION EXECUTION TIMES

This appendix provides the formulas for computing the
execution times (in microseconds) of the computer
instructions. The time required to execute any particular
instruction is not constant, but is dependent upon certain
variables.

Instruction execution time is primarily a function of the
program. The time required to execute a particular
instruction is dependent upon its location within the
program. Other factors affecting instruction execution time
include memory access time, index and indirect operations,
and system configuration. When a virtual memory,
Scientific Arithmetic Unit, 1/O expansion unit, memory
expansion unit, shared memory system, or cache is included
in the system, instruction time is affected.

Each time that main memory is accessed for a read
operation, two words are read out of the storage element
and loaded into a two-word data register located on the
memory board. This register is referred to as the Content
Addressable Buffer (CAB). When a memory read operation
is performed, if the addressed word is in the CAB, the word
is gated to the System Data Bus and no memory access is
required. If the addressed word is not in the CAB, then a
memory access is performed to read out the addressed
word. Thus, the access time is not constant. A memory
access made to read out a word is referred to a normal
access. If the desired word is located in the CAB, the
operation is referred to as a fast access.

.Since instructions are overlapped by one microcycle during
execution, the decode microcycle time is omitted when
calculating instruction execution time. The instruction
execution time is based on the number of microinstructions
executed where each microinstruction is executed in one 300
nanosecond microcycle. Added to this time is the wait time,
A, which is the time period from the end of one decode
sequence to the beginning of the subsequent decode
sequence. For a memory read operation, wait time is
dependent on whether the desired word is in memory,
CAB, cache, one of the CAM registers, or whether or not
the address is translated by virtual memory. A memory wait
time is also incurred following a write operation if an access
is made to the same memory board. This wait time is
designated by the letter W. When the memory module is
not busy from a previous write cycle, W is equal to 60

nanoseconds. If the memory module is busy from a
previous write cycle, W is equal to 150 nanoseconds.

Instruction time may be calculated by using the following
basic formula.

Instruction Time = A + W + (300 X Number of
Execution Cycles)

More than one A or W time may be involved. If a memory
reference instruction, such: as a transfer memory to register
instruction, is executed, two memory accesses are made;
one to fetch the instruction, and one to fetch the operand.
When the Transfer Registers to Memory (TRM]) instruction
is executed, several successive memory write operations are
performed so that W time is the sum of the delays incurred
while waiting for memory to finish the cycle. The values of
A for the various memory conditions are listed in Table
A-1.

In addition to the wait times, the instruction execution
time may be extended by several other factors. A memory
access following a cycle stealing write operation by a block
channel adds 150 (MOS memory) nanoseconds to the
access time. The memory uses this additional time to
complete the cycle initiated by the input/output channel. If
the CPU initiates a memory cycle to MOS memory and a
parity error is recognized, the memory initiates an error
correction cycle. This operation extends the access time to
about 950 nanoseconds; 450 nanoseconds for the memory
read cycle, and 400 nanoseconds for the error correct cycle.

In systems configured with the virtual memory board, an
additional 150 nanosecond delay is added to the access
time for memory read and write operations if the address is
not in one of the CAM registers. The delay is a result of the
address translation performed by the virtual memory board.
When in the User Mode all addresses are translated, while in
the Monitor Mode some of the addresses are translated. If
the required address is in one of the CAM registers, A time
is as shown in Table A-1.

For standard memory reference instructions an additional
330 nanoseconds is added to the instruction execution time
for index operations in the Compatibility Mode, and 390
nanoseconds in the Address Extension Mode. For extended
instructions, 30 nanoseconds are added for indexing. The
penalty for indirection is A + 300 nanoseconds. Indirection
with indexing has a penalty of A + 300 nanoseconds.

0830006-000
Original 5/78

Table A-1. Maximum Valpa for A

Access Situation Wé:hcggt gvai:::e
MOS Memory 300 450
MOS Memory with CAB Hit 30 120
Cache Hit NA 30
CAM Instruction Hit 30 30
CAM Operand 1 Hit 30 30
CAM Operand 2 Hit 60 60
CAM Miss ‘ 120 120
Time is in nanoseconds
NA = Not Applicable

CPU performance is affected by DMA operations. Each
DMA cycle granted requires time equal to A + 300
nanoseconds to which the 1/O parity check time of 120
nanoseconds is added. When a system has the input/output
expansion unit instaiied, i/C channei memory accesses
result in an additional delay of 60 nanoseconds. The delay
is caused by the addition of the 1/0 port board, 1/0
interface board, and interconnecting cables which increase
signal propagation times.

Memory access time is extended by 180 nanoseconds plus
cable delays for each access to the memory expansion unit.
For access to the shared memory system, access time is
extended by 200 nanoseconds pius contention pius cable
delay. Cable delay is equal to 4 nanoseconds per foot of
cable.

Instruction execution time may be affected by the MOS
memory refresh time which is 450 nanoseconds every 10
microseconds.

In addition to the A and W wait time, SAU instructions are
affected by the following parameters,

Set-up Time - CPU instruction execution time.
CPU instruction execution ter-
mination time. Occurs concur-
rently with SAU instruction
execution time.

Term Time -

SAU Execute Time — SAU instruction execution time.
Y - Constant used when end of set-
up time of subsequent instruction
minus end of SAU execution
time of current instruction is

less than the value of 7.

A CPU wait time, termed concurrent time, is incurred while
waiting for the SAU to complete an instruction execution.
Refer to Section VI for additional details.

Instruction time formulas for non-SAU, prefetchable SAU,
and non-prefetchable SAU instructions are provided in
Tabies A-2, A-3, and A-4.

0830006-000

Original 5/78
Table A-2. Basic Non-SAU Instruction Time Formulas
MNEMONIC FORMULA NOTES MNEMONIC FORMULA NOTES
AAM 2A+0.9+W 1 BWx A+0.93 1
ACE A+0.9 CMA 2A+06 1
AEM 2A+0.9+W 1 CMB 2A+1.8 !
AMA 2A+0.6 1 CME 2A+0.6 1
AMB 2A+0.6 1 CMx 2A+0.9 !
AMD 3A+2.1 1,24,36 coB A+138
3A+24 1,22,36 Crr A+0.9 4
3A+24 1,24,37 A+2.1+0.3Ng +0.3Np |56.7
3A+27 1,23,36,38 czD A+3.0
3A+27 1,22,37 czm 2A+0.6 1
3A+3.0 1,23,37,38 czr A+0.9 4
AME 2A+0.6 1 A+24+03Np 56.7
AMx 2A+06 ! DMA 2A +0.6 1
AOB A+03 2A+2.73 1,40
AOM 3A+2.1+W 2 DMH 2A +3.03
3A+24+W 3 DNH 2A +3.03 a0
AOr A+03 2A +3.33
Arr A+03 4 DOB A+03
AUM 2A+0.9+W 1 Brr A+03 4
AxM 2A+0.9+W 1 A+2.4+0.3Ng + 0.6Np 56,7
BBl A+15 1.8 DVM 2A +123 1,11,13,14,15
At2d 1.9 2A+126 1,12,13,14,15
At24 1.10 DVO A+123 11,13,14,15
BB A+15 1.8 A+126 12,13,14,15
At2i 1.9 DVT A+123 11,13,14,15
A+24 1.10 A+126 12,13,14,15
BIL A+0.63 1 DVx A+123 11,13,14,15
BLL A+09 1 A+126 12,13,14,15
BLU A+09 DV2 A+15+2.1n
BLx A+09 1 EMB 2A+33 1,31
BNe A+06 1 2A+1.5 1,32
BOc A+08 ! ESA A+06
BRL A+09 ! ESB A+06
BSL A+0.9+W 1 EXM A+06 :
BSX 2A+1.2+W EZB A+0.3
BUC A+06 1 FBM 2A+3.33+W 40
BUL A+06 1 2A+3.63+W

A-3

0830006-000

Original 5/78
Tabie A-2. Basic Non-SAU Instruction Time Formulas (Cont'd.)
MNEMONIC FORMULA NOTES MNEMONIC FORMULA NOTES
FNO A+24 16 MYM 2A+5.7 1,25
A+368+03n 17,19 2A+6.0 1,26
A+4.2+0.3n 18,19 MYO A+57 25
GAP 2A+1.2 A+6.0 26
HER 2A+0.9 MYr A+5.7 25
HIT A+03 A+6.0 26
HLT A+0.6 NBB A+03
HTx A+09+W 1 NDD A+18 24
HXI A+0.3 A+21 23
IAW A+03 20 NHH A+09
A+0.36 21 NOP A+0.6
IDW A+03 20 NSr A+0.6 4
A+036 21 A+30+ 0.3Ns + O.GND 5,6,7
IMA 2A+09+W 1 Nrr A+03 4
IME 2A+0.9+W 1 A+24+03Ng+06Ny | 567
IMx 2A+1.24+W 1 OAW A+03 20
IPW A+03 20 A+0.36 21
A+0.36 21 ocw A+03 20
Irr A+12 4 A+0.36 21
A+39+06Ng+06Ny | 567 obw A+0.3 20
A+03 20 A +0.36 21
Isw A+0.36 21 OMA 2A +0.6 1
KOB A+09 OMH 2A+ 273
Krr A+03 4 ONH 2A +273
A+21+ 0.3Ns + 0.3ND 5,6,7 0ooB A+03
LAA A+18+03 19,39 Orr A+24+ 0.3NS + O.GND 5,6,7
LAD A+36+0.3 19,24 PBB A+06
A+39+03 19,22 PDD A+15 27
A+42+0.3 19,23,38 A+18 28
LLA A+09+0.3 19 A+2.1 30
LLD A+15+03 19,24 A+24 29
A+18+0.3 19 Prr A+0.9 4
LRA A+09+03 19 A+27+ 0.3Ns + O.BND 5,6,7
LRD A+15+0.15n 19,24 QBB A+0.3
A+1.8+0.16n 19 QBH A+0.6
LTM A+ 15.6 + 16W 1 QBM 2A+243
LVR 2A+1.2 QONR A+03

0830006-000

Original 5/78
Table A-2. Basic Non-SAU Instruction Time Formulas (Cont'd.)

MNEMONIC FORMULA NOTES MNEMONIC FORMULA NOTES
ass A+0.9 s A+03 4
QUR | A+03 | A+24+03Ng+06Ny | 567
RAA | A+09+0.3(3] 19,39 SRT A+350
RAD | A+21+03[3 19,24 TAM A+09+W 1

A+24+03[3] 19 - TAP 2A+0.9
RBM | 2A+54+W 1,31 TAR A+06
2A+2.1+W 1,32 TBM 2A+15+W 1
2A+1.8 1,35 TCD A+0.9
RCT | A+03 TDL A+03
RER | 2a+0.9 TDM A+1.5+2W 1
RLA | A+0.9+03[3 19,39 TOP A+06
RLD | A+1.5+03[3] 19,24 TDR A+06
A+1.8+033] 19 DS A+06
ROM | A+06 D1 A+12 .
RPB A+1.2 1 ™2 | A+12
RPT | A+03 TD4 A+12
RRA | A+09+03[3] 19,39 D5 A+1.2
RRD | A+15+03[3| 19,24 TEM A+0.9+W 1
A+18 19 TEU A+06
Rer A+1.2 4 TFH A+0.6
A+27+03Ng+06Ny | 567 TFM 3A+15+W 1
RUM | A+06 THA A+0.6
RXI A+03 THM 2A+3.33+W
SMA | 2A+0.6 1 TIM A+0.9+W 1
sMB | 2a+06 1 TIM A+09+W 1
3A+2.1 1,24,36 TKM A+0.9+W 1
SMD | 3A+24 1,24,39 TKV | A+1.2
3A+24 1,22,36 TLD A+12
3A+3.0 1,23,37,38 TLK 2A+0.6
3A+2.7 1,22,37 TLO A+0.6
3A+27 1,23,36,38 A+1.2 33
SME | 2A+06 1 A+15 33,34
SMx | 2A+056 1 TMA | 2A+06 1
soB | A+03 T™B 2A+0.6 1
SOr A+03 T™D 3A+1.2 1
SRE | A+66.0 TME 2A+0.6 1
TMH 2A +2.73
™I 2A+0.6 1

0830006-000

Original 5/78
Table A-2, Basic Non-SAU iInstruction Time Formulas (Cont'd.)

MNEMONIC FORMULA NOTES MNEMONIC FORMULA NOTES
™J 2A +0.6 1 UsP 3A+24 2
TMK 2A+0.6] 3A+2.7 3
T™Q 2A+0.6 1 XMA 2A+0.6 1
TMR 6A+3.0 1 XMH 2A +3.03
TNr A+03 XNH 2A +3.03
TOB A+03 X0B A+03 _
TOC A+03 Xrr A+03 4
TOr A+0.3 A+24+ 0.3NS + O.GND 5,6,7
TPA 2A+1.2 ZBM 2A+3.33+W 40
TPD A+0.6 2A +3.63+W
TrB A+03

A+2.4+0.3Ng 5,6
TRD A+0.96
“TRM A+33+5W 1
Trr A+03 4
A+24+03Ng+06Ny | 567
TSD A+0.6
TSr A+09
A+1.2+0.3Np
TUD A+06
TVK A+0.6
TZH A+09
TZM 3A+156+W 1
T2r A+03 4
A+2.7+06Np 56
Ti1D A+1.2
T2D A+1.2
T4D A+1.2
T5D A+1.2
UA1 A+1.2
UA2 A+1.2
uD1 A+12
uD2 A+12
UE1 A+1.2
UE2 A+12
un A+1.2
U2 A+1.2

0830006-000
Original 5/78

Table A-2 NOTES
1. Add A + 300 if extended instruction
2, If operand is positive
3. If operand is negative
4. If single source and destination
5. If multiple source, destination, or T is selected
6. Ns= number of registers selected in group r1
7. ND= number of registers selected in group r2)
8. If bits 23 and 22 of index register are set to 01 g or 102 prior to instruction execution
9. If bits 23 and 22 of index register are set to 1 12 prior to instruction execution {branch not taken)
10. If bits 23 and 22 of index register are set to 112 prior to instruction execution (branch taken)
11. Ifsigns of dividend and divisor are not equal
12. If signs of dividend and divisor are equal
13. Add 0.6 if correction cycle is required
14. Add 0.3 if overflow occurs
16. Add 0.9 if divisor is equal to zero
16. If initial value of D is equal to zero or 4000 . . .08
17. If normalization takes place
18. If normalization takes place and result is equal to 4000 . . .08
19. n=number of shifts
20. If non-expanded system
21. If expanded system
22. [If resultin D is equal to zero
23. I resultin E is equal to zero
24. [If result in E is not equal to zero
25. If multiplicand is positive
26. If multiplicand is negative
27. if D initial value is positive and resuit in E is not equal to zero
28. If D initial value is positive and result in E is equal to zero
29. If D initial value is negative and result in E is equal to zero
30. If D initial value is negative and result in E is not equal to zero
31. If byte selected equals byte 1, 2
32. If byte selected equals byte 0
33. Address Extension Mode
34. If IR15 equals one
35. If no byte is selected
36. Nocarry fromAto E
37. Carry fromAto E
38. Result in D not equal to zero

39. | [%J truncate for odd n

40.

If result equals zero

0230008000

Original 5/78
Table A-3. Basic Prefetchable SAU Instruction Execution Times
SAU
SET-UP 'TERM EXECUTE CONCURRENT

MNEMONIC TIME ' TIME TIME Y TIME
AAX 0.51 iA +0.09 i.2 0.33 1.11-1A
ADX 0.81 IA+0.09 1.0 0.33 0.91- 1A
AMX (DW) OA +0.45 IA+0.15 1.0 OA +0.27 0.85- 1A
AMX (DW) 20A +0.75 1A+0.15 1.0 OA +0.27 0.85- 1A
AOW 0.15 IA+0.15 0.6 1A +0.27 0.45- 1A
AOX 0.15 IA+0.15 1.2 IA+0.17 1.05- 1A
CDX ' 0.81 1A +0.09 1.0 0.33 0.91-1A
cow 0.15 IA+0.15 0.6 1A +0.27 0.45- 1A
CzX 0.15 IA+0.156 1.2 IA+0.17 1.05- 1A
DAX 0.51 IA +0.09 8.7 0.33 8.61- 1A
DDX 0.81 1A +0.09 8.7 0.33 861-1A
DMX (DW) OA +0.45 IA+0.15 8.7 OA +0.27 8.65- IA
DMX (DW) 20A +0.75 IA +0.15 8.7 OA +0.27 8.55- 1A
DOX 0.15 IA+0.15 8.7 1A +0.27 8.8E-1A
INX 0.15 1A+0.15 8.7 1A +0.27 8.55- IA
MAX 0.51 1A +0.09 4.4 0.33 4.31- 1A
MDX 0.81 1A +0.09 4.4 0.33 4.31-1A
MOX 0.15 IA +0.15 4.4 IA+0.27 4.25- 1A
MMX (DW) OA +0.45 IA+0.15 4.4 OA +0.27 4.25- 1A
MMX (DW) 20A +0.75 IA+0.156 44 OA +0.27 4.25- 1A
NXX 0.15 1A +0.15 0.6 IA+0.27 0.45- 1A
PXX 0.15 1A +0.15 0.6 1A +0.27 0.45- 1A
SAX 0.51 1A +0.09 1.2 0.33 1.11-1A
SEX 0.15 IA+0.15 4.4 1A +0.27 4.25- IA
SBX 0.81 IA+0.09 1.0 0.33 0.21-1A
SMX (DW) OA +0.45 IA+0.15 1.0 OA +0.27 0.85-IA
SMX (DW) 20A +0.75 IA+0.15 1.0 CA +0.27 0.85- 1A
SOX 0.15 1A +0.15 1.2 IA+0.17 1.05- 1A
SRX 0.15 IA+0.15 7.8 IA+0.27 7.65- 1A
TOW 0.15 iA+0.15 0.6 iA +0.27 . 0.45-iA
TOY 0.15 1A +0.15 0.6 IA+027 |7 045-1A
TZX 0.15 IA+0.15 0.6 1A+0.27 0.45- 1A

Time is in microseconds

DW = Operands are aligned on even word address boundaries

DW = Operands are not aligned on even word address boundaries

A = Memory wait time or cache wait time

IA = Instruction access wait time

OA = Operand access wait time

Add A + 300 for extended instructions

0830006-000

Original 5/78
Table A-4. Basic Non-Prefetchable SAU Instruction Execution Times
SAU
SET-UP TERM EXECUTE

MNEMONIC TIME TIME TIME
BNR 0.6 1A vj
BNS 0.6 1A 0
BOR 0.6 1A 0
BOS 0.6 1A 0
BOX 0.6 1A 0
BPR : 0.6 1A 0
BPS 0.6 1A 0
BZR 0.6 1A 0
BZS 0.6 1A 0
FAX 0.51 1A +0.09 0.6
FXA 0.9 1A 510- 1A
HSI 0.6 1A 0
IDX 1.2 1A 0.3+P
RSI 0.6 1A 0
TDX 0.6 1A 03+P
TMX (DW) OA+0.6 1A 03+P
TMX (DW) 20A +0.9 1A 03+P
XM (DW) 09+W 1A 03+P
TXM (DW) 1.2+2W IA 0.3+P
TXD 0.6 1A 0.3+P
TYA 0.3 1A 0.3+P

Time is in microseconds
P = |A if next instruction is non-prefetchable
= Qif next instruction is prefetchable
DW = Operands are aligned on even word address boundaries
DW = Operands are not aligned on even word address boundaries
A = Memory wait time or cache wait time
IA = Instruction access wait time
OA = Operand access wait time
W = Memory wait time
Add A + 300 for extended instructions

A-9/(A-10 Blank)

Mnemonic

AAM
ACE
AAX

ADX
AEM
AMA
AMB
AMD
AME
AMx
AMX
AOB
ACM
AOr
AOW
AOX
Arr
AUM
AxM

BBI

BBJ

BJL

BLL
BLU
BLx
BNc
BNR
BNS
BOc

BOR
BOS
BOX
BPR
BPS

BRL
BSL

BSX
BUC
BUL
BWx

APPENDIX B
INSTRUCTION INDEX

Instruction

Add A Register to Memory

Transfer Active Executive Traps to A
Add A Register to X Register

Add D Register to X Register
Add E Register to Memory

Add Memory to A

Add Memory to Byte .
Add Memory to Double Register
Add Memory to E Register

Add Memory to Register

Add Memory to X Register

Add Operand to Byte

Add Operand to Memory

Add Operand to Register

Add Operand to W Register

Add Operand to X Register

Add Register to Register

Add Unity to Memory

Add Register to Memory

Branch when Byte Address +1in 1 #0
Branch when Byte Address +1inJ# 0
Branch Indexed by J Long
Branch and Link (J) Long
Branch and Link Unrestricted
Branch and Link Register
Branch on Condition Code
Branch on Negative Reset
Branch on Negative Set

Branch on Condition Code
Branch on Overflow Reset
Branch on Overflow Set

Branch on SAU Ready

Branch on Positive Reset

Branch on Positive Set

Branch and Reset Interrupt Long
Branch and Save Return Long
Branch and Save Extended
Branch Unconditionally '
Branch Unconditionally Long
Branch when Register +1 # 0

0830006-000
Original 5/78

Page

76
7-80
7-72
7-72

77

75

7-6, 7-43
76

75

75

7-72
77,743
77

77

772
7-72

78

75

76

7-19, 743
7-20, 7-44
7-21

7-22

7-24
7-22

7-21

7-76

7-76

7-21

7-77

7-77

7-77

7-77

7-77
7-23, 7-61
7-22,7-60
7-23, 7-60
7-20

721

7-21

B-1

0230006-000
Original 5/78 .

(LM

Mnemonic

DAX
DDX
DMA
DMH
DMX
DNH
DOB
DOX
Drr
DVM
DVO
DVT
DVx
DV2

EMB
ESA

Est

EXM
EZB

FAX
FBM
FNO
FXA

GAP

HER
HIT

Instruction

Branch on Zero Reset
Branch on Zero Set

Compare D Register to X Register
Compare Memory and A
Compare Memory and Byte
Compare Memory and E
Compare Memory and Register
Compare Operand and Byte .
Compare Operand to W Register
Compare Register and Register
Compare Zero and Dou_ble
Compare Zero and Memory
Compare Zero and Register
Compare Zero to X Register

Divide A Register into X Register
Divide D Register into X Register
Dot Memory with A

Dot Memory with H

Divide Memory into X Register
Dot Not {memory} with H

Dot Operand with Byte

Divide Operand into X Register
Dot Register with Register
Divide by Memory

Divide by Operand

Divide by T

Divide by Register

Divide by 2

Extract Memory Byte
Extend Sign of A

Evsnnd Qinm ~f Dyen
LALCHIU Iyl Ul Uy Lo

Execute Memory
Extend Zeros from Byte

Floating Normalize of A Register to X Register

Flag Bit of Memory
Floating Normalize
Fix of X Register to A Register

Generate Argument Pointer

Hold Parity Error Retry
Hold Interval Timer

Page

7-76
7-76

7.77

7-28

7-26, 7-45
7-26

7-25

7-26, 7-45
7-78
7-27

7-27

7-26

7-26

7-78

7-72
7-73
7-28
7-54
7-73
7-54
7-28, 7-45
7-73
7-29
7-8
7-8
7-9
7-9
79

7-34, 7-45

-7-10

710, 7-
7-46, 7-69

~J
P
[+,

7-73
7-56
7-10
7-74

7-67

7-81
7-69

Mnemonic

HLT

HSI

HTx
~HXI

1AW
IDW
IDX
IMA
IME
IMx
INX
IPW
Irr

ISW

KOB
Krr

LAA
LAD
LLA
LLD
LRA
LRD
LTM
LVR

MAX
MDX
MMX
MOX
MYM
MYO
MYr

NBB
NDD
NHH
NOP
NSr

Nrr

NXX

Instruction

Halt
Hold SAU Overflow Interrupt

Hold Interrupts and Transfer Register to Memory

Hold External interrupts

Input Address Word
Input Data Word

Interchange D Register and X Register

Interchange Memory and A
Interchange Memory and E
Interchange Memory and Register
Inverse of X Register

Input Parameter Word
Interchange Register and Register
Input Status Word

Kompare Operand and Byte
Kompare Register and Register

Left Shift Arithmetic A

Left Shift Arithmetic Double
Left Shift Logical A

Left Shift Logical Double
Left Rotate A

Left Rotate Double

Transfer Tracking RAM to Memory
Load Virtual Demand Page Register

Multiply A Register and X Register
Multiply D Register and X Register
Multiply Memory and X Register
Multiply Operand and X Register
Multiply by Memory

Multiply by Operand

Multiply by Register

Negate of Byte to Byte

Negate of Double to Double

Negate of Hto H

No Operation

Negate Sign of Register

Negate of Register to Register
Negative of X Register to X Register

Page

7-67
7-78
7-62
7-62

7-52
7-51
7-78
7-35
7-35
7-35
7-74
7-62
7-35
7-50

7-27,7-46
7-27

7-31
7-31
7-31
7-31
7-32
7-32
7-42, 7-83
7-83

7-74

- 774

7-74
7-74
7-10
7-10
71

7-11, 7-46
7-12
7-54
7-67
7-12
7-1
7-75

0830006-000
Original 5/78

B-3

0830006-000
Original 5/78

B-4

Mnemonic

OAW
ocw
obDw
OMA
OMH
ONH
00B
Orr

PBB
PDD
Prr
PXX

QBB
QBH
QBM
QNR
Qss

QUR

RAA
RAD
RBM
RCT
RER
RLA

SAX
SDX
SEX
SMA
SMB
SMD

Instruction

Output Address Word
Output Command Word
Output Data Word

OR Memory with A

OR Memory with H

OR Not (memory) with H
OR Operand with Byte
OR Register with Register

Positive of Byte to Byte

Positive of Double to Double
Positive of Register to Register
Positive of X Register to X Register

Query Bits of Byte

Query Bitof H

Query Bit of Memory

Query Not-medified Register
Query Sense Switches

Query Virtual Usage Register

Right Shift Arithmetic A
Right Shift Arithmetic Double
Replace Byte in Memory
Release Clock Time

Release Parity Error Retry
Right Shift Logical A

Right Shift Logical Double
Release Operand Mode

Read Parity Bits

Release Processor Time

Right Rotate A

Right Rotate Double

Round of Register to Register
Release SAU Overflow Interrupt
Release User Mode

Release External Interrupts

Subtract A Register from X Register
Subtract D Register from X Register
Square X Register

Subtract Memory from A

Subtract Memory from Byte
Subtract Memory from Double

Page

7-52

7-50

7-51

7-29

7-55

7-65

7-29, 7-46
7-29

712,746
7-12
7-13
7-75

7-47,7-68
7-54
7-55
7-58
7-69
7-58

7-32
7-32
7-36, 7-47
7-69
7-81
7-32
7-33
7-58
7-81
7-69
7-33
733
7-13
7-78
7-59
762

7-75
7-75
7-75
7-14
7-14
7-14

Mnemonic

SME
SMx
SMX
SOB
SOr
SOX
SRE
Srr
SRT
SRX

 TAM
TAP
TAR
TBM
TCD
TDM
TDP
TDR
TDS
TDX
D1
TD2
TD4
TD5
TEM
TEU
TFH
TFM
THA
THM
TIM
TIM
TKM
TKV
TLK
TLO
T™MA
T™B
TMD
TME
TMH
™I
™J
TMK

Instruction

Subtract Memory from E

Subtract Memory from Register
Subtract Memory from X Register
Subtract Operand from Byte
Subtract Operand from Register
Subtract Operand from X Register
Square Root Extended

Subtract Register from Register
Square Root

Square Root of X Register

Transfer A to Memory

Transfer A to Parity Error Address Register
Transfer A to 1 Virtual Address Register
Transfer Byte to Memory

Transfer CAM to Double

Transfer Double to Memory

Transfer Double to Paging Limit Registers
Transfer Double to 2 Virtual Address Registers
Transfer Double to Source and Destination Registers
Transfer D Register to X Register '
Transfer Double to Group 1

Transfer Double to Group 2

Transfer Double to Group 1

Transfer Double to Group 2

Transfer E to Memory

Transfer E to Usage Base Register
Transfer Flag to H

Transfer Flag to Memory

Transfer CAM Hit Status to A

Transfer H to Memory

Transfer | to Memory

Transfer J to Memory

Transfer K to Memory

Transfer K to V

Transfer Extended Operand to K
Transfer Long Operand to K

Transfer Memory to A

Transfer Memory to Byte

Transfer Memory to Double

Transfer Memory to E

Transfer Memory to H

Transfer Memory to |

Transfer Memory to J

Transfer Memory to K

Page

714
7-13
7-75
7-15, 7-47
7-15
7-76
7-16
7-15
7-15
7-76

7-41
7-82
7-57
7-41, 7-47
7-82
7-41
7-58
7-57
7-57
7-79
7-63
7-63
7-64
7-64
7-41
7-58
7-53
7-41
7-83
7-56
7-42
7-42
7-42
7-53
7-39
7-39
7-37
7-36, 7-48
7-36
7-37
7-55
7-37
7-38
7-38

0830006-000
Original 5/78

0830006-000
Original 5/78

b
)

Mnemonic
T™MQ
TMR
TMX
TNr
TOB
TOC
TOr
TOW
TOY
TPA
TPD
TrB
TRD
TRM
Trr
TSD
TSr
TUD

TVK
TXD
TXM
TYA
TXH
TZM
TZr
TZX
T1D
T2D
T4D
T6D

UA1
UA2
uD1
uD2
UE1
UE2
un

ui2

uUsP

XMA
XMH
XNH
X0B
Xrr

ZBM

Instruction
Transfer Memory to Query Regisier
Transfer Memory to Registers
Transfer Memory to X Register
Transfer Negative Operand to Register
Transfer Operand to Byte
Transfer Operand to Condition Register
Transfer Operand to Register
Transfer Operand to W Register
Transfer Operand to Y Register
Transfer Parity Error Address Register to A
Transfer Paging Limit Registers to Double
Transfer Register to Byte
Transfer 2 Virtual Address Registers to Double
Transfer Register to Memory
Transfer Register to Register
Transfer Source and Destination Registers to Double
Transfer Switches to Register
Transfer Usage Base Register and Demand Page
Register toc Double
Transfer V to K
Transfer X Register to D Register
Transfer X Register to Memory
Transfer Y Register to A Register
Transfer Zero to H
Transfer Zero to Memory
Transfer Zero to Register
Transfer Zero to X Register
Transfer Group 1 to Double
Transfer Group 2 to Double
Transfer Group 1 to Double
Transfer Group 2 to Double

Unitarily Arm Group 1 Interrupts
Unitarily Arm Group 2 Interrupts
Unitarily Disarm Group 1 interrupts
Unitarily Disarm Group 2 Interrupts
Unitarily Enable. Group 1 Inferrupts
Unitarily Enable Group 2 Interrupts
Unitarily Inhibit Group 1 Interrupts
Unitarily Inhibit Group 2 Interrupts
Update Stack Pointer

Exclusive-OR Memory with A
Exclusive-OR Memory with H
Exclusive-OR Not (memory) with H
Exclusive-OR Operand with Byte
Exclusive-OR Register with Register
Zero Bit of Memory

Page
7-37
7-38
7-79

7-38, 7-48
7-39

7-39

7-79

7-79

7-82 -
7-58
7-40, 7-48
7-57

7-42

742

7-57

7-40

7-58

7-54
7-79
7-80
7-80
7-53
741
7-40

763
7-63
7-63
7-64

7-64
7-64
7-65
7-65
7-65
7-66
7-68
7-66
7-68

7-30
7-55
7-55
7-30, 7-48
7-30
7-56

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	7-70
	7-71
	7-72
	7-73
	7-74
	7-75
	7-76
	7-77
	7-78
	7-79
	7-80
	7-81
	7-82
	7-83
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06

