REFERENCE MANUAL

HARRIS 800 GENERAL PURPOSE

DIGITAL COMPUTER

Original Issue
August, 1979

HARRI S COMMUNICATIONS AND
INFORMATION HANDLING

HARRIS CORPORATION Computer Systems Division
2101 Cypress Creek Road, Fort Lauderdale, Florida 33309 305/974-1700

0830007-000

Copyright @ 1978 by Harris Corporation, Computer Systems Division.
All rights reserved. This publication or any part thereof is intended for use
with Harris products by Harris personnel, customers, and end-users, and
shall be used only for installation, operation, and maintenance of Harris
products. It may not be reproduced in any form without the written
permission of the publisher.

The information contained in this document is believed to be correct at
the time of publication. It is subject to change without notice. Harris
makes no warranties, express or implied, concerning the information
contained in this document.

Printed in U.S.A.

0830007-000
Original 8/79

LIST OF EFFECTIVE PAGES

TOTAL NUMBER OF PAGES IN THIS PUBLICATION IS: 178
CONSISTING OF THE FOLLOWING:

Page Change Page Change Page Change
No. No. No. No. No. No.
Title Original

A Original

i thru vi Original

1-1 thru 1-13 Original

1-14 Blank Original

2-1 thru 2-20 Original

3-1 thru 3-5 Original

3-6 Blank Original

4-1 thru 4-21 Original

4-22 Blank Original

5-1 thru 5-8 Original
6-1 thru 6-3 Original

6-4 Blank Original
7-1 thru 7-17 Original
7-18 Blank Original
7-19 thru 7-87 Original
7-88 Blank Original
A-1 thru A-7 Original
A-8 Blank Original

Insert Latest Revision Pages. Destroy Superseded Pages.

HARRIS CORPORATION Computer Systems Division

CONTENTS

Section
| INTRODUCTION

SCOPE OF MANUAL .
HARRIS 800 SYSTEMS .
BASIC COMPUTER ORGANIZATION
Basic Operation
Central Processing Unit \CPU .
Scientific Arithmetic Unit {SAU) F
Memory Units . .
Input/Output Operation .
Priority Interrupt System . .
MAINTENANCE AID PROCESSOR
SWITCH PANEL . .
DATA TERMINALS
STANDARD AND OPTIONAL FEATURES .
Priority Interrupts
120 Hertz Clock .
Interval Timer . . .
100 kHz Real Time CIock
Power Fail Alarm .
Bootstraps
Bit Processor
Stall Alarm .
Address Trap . .
Input/Output and Commumcatlons Processor Channels .
Programmed Input Qutput Channel (PIOC) .
Buffered Block Channel (BBC)

Direct Memory Access Communications Processor (DMACP 8) .

External Bliock Channel (XBC)

Integral Block Channel (IBC) .
Input/Output Expansion Unit .
Interprocessor Communication Facility .
Multi-Channel Adapter

PERIPHERAL EQUIPMENT .
SOFTWARE
Language Processors
Utility Programs . . .
Remote Job Entry Support Packages .
Remote Batch Terminal Host Packages
Data Base Management System .
SUMMARY OF CHARACTERISTICS
Memory System .
Addressing . .
Input/Output Capablhty
Priority Interrupt Structure .
Power Fail Protection .
Electrical Requirements .
Environmental Requirements .

0830007-000
Original 8/79

Page

B L R L LT R RN N N AR A R SRR
WWWWNN=2 200000000

_—e e @ S) e e e e e e e e e e e)) e e) e e) e e emd e med med med el e))) o) emd) emd e med d e
' i '] [} ' [l f} 1

0830007-000
Original 8/79

Section
i CENTRAL PROCESSING UNIT

GENERAL DESCRIPTION . .
PRINCIPAL CPU REGISTERS
A and B Registers
E Registers .
D Registers .
{,J,and K Reglsters
Condmon Code Registers.
C Register . .
Y Register .
Program Address Reglster
Instruction Buffer . . .
VIRTUAL MEMORY DESCRIPTION
Introduction . .
Virtual Memory Instructlon Set .
Principal Virtual Memory Registers .
Virtual Address Register (VARs)
Virtual Base Register (VBR) .
Virtual Limit Register (VLR) .
Virtual Usage Registers (VURs) .

Virtual Not-Modified Registers (VNRs).

Virtual Usage Base Register (VUB) .
Virtual Source Register (VSR)
Virtual Destination Register (VDR) .

Virtual Demand Page Register (VPR) .

Demand Paging
Instruction Trap . .
Paging System Control . .
CPU OPERATIONAL CONTROL
CPU Modes of Operation .
Compatibility Mode .
Address Extension Mode
CPU Operational States .
ADDRESSING FUNCTIONS .
Compatibility Mode Addressing .
Direct Addressing .
Indirect Addressing .
Indexing .
Address Extension Mode Addressmg
Direct Addressing .
Indirect Addressing .
Indexing
Address Translatlon
120 HERTZ CLOCK
INTERVAL TIMER
General Description .
Timer Register

NI R R A D RO Y

)
WW ===

Page

Section

| CENTRAL PROCESSING UNIT (CONT.)

Operational Description .
Program Control .
REAL TIME CLOCK .
General Description .
Operational Description .
Command and Status Word Formats
Program Control .
Preset Count Loading
Automatic Count Restart .
Snapshot Output .
Selection Sampling .
FIRMWARE BOOTSTRAPS
BIT PROCESSOR
Generai Description .
Bit Processor Registers .
Operational Description .
Program Control .
Bit Processor Instruction Set
STALL ALARM .
ADDRESS TRAP
General Description .
Query Register . .
Operational Description .
Program Control .

il MEMORY SYSTEM

GENERAL DESCRIPTION .
MEMORY MODULES .

64K MOS Mamagry Mg

VN VIO VITTTTVL Y lVlUUU!G .

Read and Write Operations .
Fast Access Operation .
MAIN MEMORY
EXTENDED MEMORY UNIT
SHARED MEMORY UNIT .
General Description . .
Programming Considerations
Semaphore Operation .

ERROR CORRECTING AND REPORTING

Error Correction .
Error Reporting
Parity Errors and Interrupts .
Parity Error Address Register .
CACHE MEMORY . .
Operational Description . .
Algorithm for Filling Cache .
Programming Considerations

0830007-000
Original 8/79

Page

R R R R B LI
-_\—l;—-‘n-ﬂ-ld-d—l-—l—l—l—ﬂ—i-—‘-ﬂ—l
VOO XNOVOOOONNNNNOODOOOOOOOD

0830007-000
Original 8/79

Section
v INPUT/OUTPUT CHANNELS

GENERAL DESCRIPTION .
BASIC I/O CONCEPTS
Addressing .
Disconnect/Connect Sequences
Block 1/O Channel Priority .
Synchronization (Handshake) Condltlons
Output Transfer Synchronization
Input Transfer Synchronization .
PIOC Synchronization .
XBC Synchronization
IBC Synchronization
BBC Synchronization
Timing
Block Transfer Memory Access
Block Transfer Parameters
BBC Parameter Words .
XBC Parameter Words .
IBC Parameter Words
DMACP-8 Parameter Words .
INPUT/OUTPUT INSTRUCTIONS
1/0 Commands
I/0 Status Word ..
Programmed Data Transfers
Input Data Word .
Output Data Word
Address Transfers
Output Address Word
Input Address Word .
Input Parameter Word .
INTERRUPT CONTROL . .
I/O CHANNEL JUMPER CQNTROLS

I/0 CHANNEL OPERATIONAL SUMMAREIE.S

Single-Word Instruction Execution .
OCW/ODW .
IDW .,
Isw .
OAW .
1AW/IPW
Block-Transfer Operatlons
BBC Block Transfers
XBC Block Transfers.
IBC Block Transfers . .
DMACP-8 Channel Block Transfers
Program Lists .
IBC Applications .
XBC Application .

Ba e
W — wd -2

Page

. 43

. 44
. 44
. 44
. 44
. 45
. 45
. 45
. 45

45

. 45
. 47
. 47
. 47
. 48
. 48

. 4N
. 41
.41
S
. 411

4-13
4-13

. 413
. 414
. 414
. 414

4-14

. 414

4-14
4-14

. 415

4-15
4-15

. 415

4-20
4-20
4-20

. 420
421

Section
\Y/ PRIORITY INTERRUPT SYSTEM

GENERAL DESCRIPTION. . .
INTERRUPT ORGANIZATION .
Priority Conventions
Executive Traps (Group 0) .
External Interrupts (Groups 1, 2, and 3)
Dedicated Memory Locations .
OPERATION AND CONTROL
Basic Operation . .
Executlve Traps Control .
External Interrupts Control .
INTERRUPT PROCESSING .
Operational State Zero Interrupt Processmg .
Operational States One and Three Interrupt Processmg

Vi SCIENTIFIC ARITHMETIC UNIT OPERATION

GENERAL DESCRIPTION
FLOATING-POINT DATA FORMAT
SAU REGISTERS . . .
OPERATION AND CONTROL

Data Transfers .

SAU Instructions .
SAU INTERRUPT .

Vil INSTRUCTION SET

INTRODUCTION
INSTRUCTION TYPES AND FORMATS .

Introductlon

Standard instruction Format

Extended Instruction Format .
INSTRUCTION FORMULA . .
INSTRUCTION DESCRIPTIONS

Arithmetic Instructions

Branch Instructions

Compare Instructions .

Logical Instructions

Shift Instructions

Transfer instructions

Byte Processing Instructions

Input/Output Instructions

Bit Processor Instructions

Virtual Memory Instructions

Priority Interrupt Control Instructlons

Miscellaneous Instructions

Scientific Arithmetic Unit Instructuons

Decimal Arithmetic Instructions .

Diagnostic Instructions

APPENDIX A — INSTRUCTION INDEX

0830007-000
Original 8/79

Page

QGGG GO
(_I.)-.x.add_s__a_\

5-3

POPPPP D

-—ed mmd o)) ed)

0830007-000
Original 8/79

Figure

Table

vi

2-1.
4-1.

7-1.

ILLUSTRATIONS

Major Functional Units.

Data Formats . .
Memory Referencing Sequence Compatlblllty Mode .
Examples of Compatibility Mode Indexing .

Memory Referencing Sequence, Address Extension Mode
Address Translation, VM User Mode . . .

Address Translation Example, VM User Mode

Cache Memory Operation

Computer 1/0 Structure Block Diagram .

BBC and IBC Parameter Word Formats

DMACP-8 Parameter Word Formats

OCW Instruction Format .

IDW Instruction; Data Character Formattmg ..

BBC Block Transfer Sequence; Simplified Flow Dnagram
XBC Block Transfer Sequence; Simplified Flow Diagram.
IBC Block Transfer Sequence; Simplified Flow Diagram

DMACP-8 Channel Block Transfer Sequence; Simplified BlocI; Dlagram

Functional Block Diagram, Priority Interrupt System

External Interrupt Control . .

Interrupt Subroutine Entry, Operatlonal State Zero

Interrupt Subroutine Exit, Operational State Zero . . .
Interrupt Subroutine Entry, Operational States One and Three .
Interrupt Subroutine Exit, Operational States One and Three .

Floating-Point Data Formats
Y (Condition) Register.

Typical Instruction Word Formats
BSL, BSX, and BRL Functional Summary .

TABLES

VPR Status Bits Definitions and Functions .

Peripheral Unit Interrupt Control
1/0 Channels Jumper Control Capabilities

Summary of Extended Instructions Derived from Standard Instructions.

Page
1-3

2-2
29
2-11
2-12

214

2-15

3-5

. 42

4-6

. 47
. 49
. 412
. 416
. 417

4-18

. 419

5-2
5-4
57

5-8
5-8

62

7-2
7-17

Page
2-5

4-13

Ry

7-3

0830007-000
Original 8/79

SECTION |
INTRODUCTION

SCOPE OF MANUAL

This manual contains reference material for the Harris 800
Computer Systems designed and manufactured by Harris
Corporation, Computer Systems Division. Included are
descriptions of the overall computer organization, central
processing unit {CPU), memory configurations, priority
interrupt system, input/output (1/O) channels, and
instruction set. Various hardware features and options are
also described; application and programming examples are
provided where appropriate.

The material in this manual is oriented toward the
user/programmer with a knowledge of computer
fundamentals and terminology.

HARRIS 800 SYSTEMS

This family is comprised of high-performance,
disc-oriented, virtual memory computer systems for
performing concurrent time-sharing, batch, remote job
entry and real-time processing. The Harris 800 Computer
Systems are building-block systems; each may be expanded
to support a variety of applications and performance levels.
Upgrades between systems are alsoavailable. Harris 800
systems provide cost-effective solutions for distributed data
processing, transaction oriented processing, and
communications applications. Data Base Management and
Inquiry software is available for fast, efficient file
maintenance and information retrieval. These multi-use
systems are ideal for scientific, commercial, and real-time
applications since they provide true multi-programming and
multi-lingual capabilities.

The Harris 100, 500, and 800 systems comprise a series
of compatible data processing systems. These systems
include a family of central processors, peripheral devices
and programming support systems. The processors share a
common code structure and instruction formats. They
differ primarily in memory capacity, computational speed,
the number of instructions, and input-output throughput.
Harris 800 systems are products based on the experience
gained with 100 and 500 systems. Since an 800 is upward
compatible from 100 or 500 systems, a move from 100 or
500 systems to 800 systems is relatively easy.

Harris 800 instructions, character codes, interrupt faciiities,
and programming features are functionally the same as
corresponding features on 100 and 500 processors. Harris
800 systems provide the capability of running 100 and 500
operating systems, as well as operating systems designed
specifically for the advanced 800 features, with a minimum
impact on application programs and data. Users’ programs
which run on 100 and 500 systems will also run on 800
systems.

Harris 800 systems use the same standard instruction set as
100 and 500 systems. A decimal feature has been added
which includes pack, unpack, decimal add, and decimal
subtract instructions. The scientific instruction set executes
floating-point operations on 48-bit operands which employ
an 8-bit exponent and a 39-bit mantissa. Should greater
precision be required, extended floating-point operations
can be invoked. These operations employ a 24-bit exponent
and 70-bit mantissa.

Another major aspect of the 800 is the capability to attach
a wide variety of 1/0 devices through several types of block
channels. Like the 100 and 500 systems, channels are
provided for the attachment of large numbers of
communication devices. Most of the 800 1/O channels and
peripherals are upward compatible from 100 and 500
systems.

The increased performance of the 800 is achieved by
increasing the width of data paths and incorporating a
pipelining technique into the architecture. Data transfers
between memory and available 1/O channels proceed on a
48-bit basis. Most instruction fetches and many operand
fetches are 48-bit transfers as well. Pipelining provides
simultaneous instruction execution, address processing, and
instruction and operand fetches. it provides prefetch of
both operands and instructions. Several instructions are
processed simultaneously. When conditional branch
instructions are executed, instructions for both decision
paths are prefetched and preprocessed so that minimal time
is lost after the decision is made.

1-1

0830007-000
Original 8/79

BASIC COMPUTER ORGANIZATION

Basic Operation

Figure 1-1 illustrates the functional relationship between
major units of a typical system. The major functional
units include the central processing unit (CPU) consisting
of an Instruction Unit and an Execution Unit, main
memory, cache memory, shared memory, extended
memory, priority interrupt system, input/output {1/0)
channels, Maintenance Aid Processor (MAP), and switch
panel.

The computer has a variable word length, a muiti-access
bus structure, and an integral memory system. Operations
are performed on, and from, 48-bit and 24-bit data and
instruction words. In addition, the computer is capable of
selective byte manipulation and performs Boolean
functions on single, selected bits. Two’s complement
arithmetic is performed on parallel, binary, fixed-point or
floating-point operands. Fixed-point capabilities include
hardware multiply, divide, and square root functions, as
well as 48-bit add and subtract operations.
Double-precision (48-bit) floating-point operations employ
an 8bit exponent and 39-bit mantissa, while
quad-precision operations employ a 24-bit exponent and a
70-bit mantissa. Decimal addition and subtraction are
additional arithmetic functions included. Decimal
arithmetic is performed on data in packed format. In this
format, two decimal digits are placed in one byte.
Decimal pack and unpack capability is included in the
instruction set.

Data or instruction words may be retrieved from or
stored in memory, retained in one of the CPU registers,
or received from and transmitted to peripheral devices via
the 1/0 channels. Prior to execution, instructions must be
loaded into, and subsequently retrieved from, physical
memory. Main memory is accessed on a 48-bit boundary.
This arrangement permits an instruction prefetch which
reduces the effective access time of the memory system.
In addition, the CPU employs an asynchronous cycle that
automatically adjusts to the timing of the addressed
memory module. If, for example, memory contention
occurs, the CPU waits at a predetermined point until
memory becomes available.

Memory may be accessed at the 48-bit, 24-bit, 8-bit
(byte), and bit levels by the standard instruction set.
Memory is divided into thirty-two, 96K byte sections
(map 0 through map 31). If the system is in the
Compatibility Mode, up to 96K bytes per section may be
directly addressed and up to 768K bytes can be accessed

1-2

by indirect and indexed address references; executable
code is restricted 'to 192K bytes at any given time. When
in the Address Extension Mode, up to 3M bytes of
memory may be accessed directly, and executable code
may be located anywhere in memory and is not limited in
size.

When virtual memory is enabled, two addressing modes
are employed, User and Monitor. Addresses generated in
the User Mode (called logical addresses) are translated
into physical memory addresses by the virtual memory
hardware. The logical address is translated to the physical
address by selecting the appropriate 3K byte physical
“page’”’ and the offset within the page. The division of
main memory into physical pages allows a program to be
located in non-contiguous areas of memory, and to be
transferred (in page increments) between memory and an
external mass storage device under system control. When
the virtual memory hardware detects a reference to a page
which is not currently resident in main memory, a page

- fault occurs. This supports a demand-page technique

which allows portions of a program to be absent from
memory while the program is running. The occurrence of
a page fault initiates a system process which transfers the
referenced page to physical memory. The paging logic is
disabled in the Monitor Mode, thus addresses generated in
the Monitor Mode are used directly as physical main
memory addresses.

Central Processing Unit (CPU)

Included in the CPU are several general and
special-purpose registers, an arithmetic section, timing and
contro! logic, memory interface logic, and 1/0O channel
interface circuits. Special paging registers and control iogic
are provided for virtual memory operation.

Five general-purpose registers are included in a basic CPU.
These registers are employed in a variety of logical,
arithmetic, and manipulative operations such as
register-to-memory, memory-to-register, and
register-to-register instructions. Three of the
general-purpose registers can be used for indexing in
memory addressing functions. One register serves as the
1/0 communication register during input/output
operations. A 48-bit register is formed by combining two
general-purpose registers, and a byte register is created by
using the eight least-significant bits of one general-purpose
register. With the Interval Timer included in the CPU, the
Timer (T) Register becomes a sixth general-purpose
register in the Monitor Mode of operation. In the User
Mode, the T Register can not be loaded but can be read.

0830007-000

Original 8/79
' EXTENDED
CACHE MAIN OR
MEMORY MEMORY SHARED
MEMORY

0

20-BIT SYSTEM ADDRESS BUS

48-BIT SYSTEM DATA BUS
4 > >
\/ ADDRESS
CENTRAL INPUT/
PROCESSING < STATUS OUTPUT PEgé\P/ngsAL
UNIT CHANNELS
STATUS
INSTRUCTION <4L
UNIT
EXECUTION i i
UNIT ‘< INTERRUPTS

MAINTENANCE LOCAL
AID < $1 TERMINAL
SWITCH PROCESSOR 1
PANEL
A
LOCAL
P{ TERMINAL
2
—> REMOTE
MOD 44—
ODEM 4~ COMMUNICATION »| mopEm TERMINAL
LINK

BD1796

Figure 1-1. Major Functional Units

1-3

0830007-000
Original 8/79

Among the special-purpose registers are those associated
with integrai CPU
instruction decoding, and temporary storage during data
manipulation. Additional special-purpose registers are
those supplied with the Bit (Boolean) Processor, Interval
Timer (T Register for timing applications), and the
Address Trap.

funciions such as

The arithmetic section consists primarily of a 48-bit
arithmetic logic unit (ALU) and several buses to permit
data manipulation between the various registers and the
ALU. Arithmetic functions performed include addition,
subtraction, multiplication, division, and square root
computation.

Instruction execution sequences are established and
directed by the timing and control logic associated with
the Instruction Unit. This logic includes a
crystal-controlled clock generator that provides precise
timing for all instruction functions. Instruction words of
24 or 48 bits are prefetched and retained in an
instruction buffer. As many as four instructions may be
prefetched and stored in the buffer. The control logic
decodes these instruction words and provides the internal
commands necessary for execution. In the User Mode of
operation, the paging control logic operates in
conjunction with the basic CPU timing to implement
address translation and demand paging techniques.

CPU-memory interface circuits consist of address and
data-handling buses and registers, and parity
generation/checking or error checking and correction
logic. Memory interface circuits include a 48-bit data
register that retains both the read and write data, a 20-bit
up to 3,072K bytes of physical memory, data
multiplexing logic to control read and write data
handling, and address multiplexing and control logic for
selecting the proper memory segment and a location
within that segment. Data to be written (stored) in
memory is applied via the 48-bit system data bus. Address
inputs are applied to the memory interface via the system
address bus. The address source may be the CPU, one of
the block transfer channels, communications processor, or,
in the User Mode of operation, the paging logic addressing
circuits.

Communications between the CPU and the 1/O channels
are conducted via the channel interface logic in the CPU.
This logic makes use of the system buses and one of the
general-purpose registers in order to implement data and

address flow between the CPU and /O channels.
Althcugh an /O channe! conducts

communications independently and asynchronously,
input/output operations such as channel-unit
selection and activation, function commands, and status

testing are initiated under program control.

channel-unit

Scientific Arithmetic Unit (SAU) Functions

The Execution Unit provides floating-point arithmetic
capability. A special repertoire of instructions is provided
for performing floating-point computations. The E Unit
contains the X, XW and Y Registers for manipulating
48-bit quantities and for reporting arithmetic status
(condition) after the operation is completed. Data and
condition information may be displayed on the Map
Terminal. An executive trap is provided with the E Unit
for detection of overflow/underflow conditions. Refer to
Section VI for a more detailed description of the E Unit
execution of SAU instructions.

Memory Units

The memory system consists of main memory, extended
memory, cache memory, and shared memory units. The
Maintenance Aid Processor, [/O block channels,
communication processors, and the CPU communicate
directly with all memory modules. Each memory module
contains the address decode logic necessary to determine
when a particuiar moduie is seiected. The CPU provides
the required hand-shaking signals with the memory
module to ensure proper data transfer.

Storage of information, both instruction and data words,
is the function of main memory which may be located in
the CPU or in the Extended Memory Unit. The basic
memory module is a 192K byte MOS memory module
which features single bit error correction. A system can
be configured with up to 3,072K bytes of memory when
the Extended Memory Unit is attached.

Cache memory provides fast access to data stored in the
memory system. The 6K byte cache stores up to 1,024
memory word addresses and the information (instruction
or data) contained therein. Data storage in cache is
structured as two, 512 word sections, where each word is
48 bits wide. One section stores only instructions, and the
other section stores only operands. When the CPU
accesses the memory system, the address word is
presented to the main memory and the cache. If the
requested address and information is present in cache, the
information is placed on the 48-bit data bus. If the cache

does not contain the requested address and information,
the data is provided from main memory and the cache is
updated to contain it. Cache memory effectiveness is
significantiy affected by program structure.

" Shared memory is configured using the basic 192K byte
(MOS) memory modules. Maximum memory available to
a single CPU is 3,072K bytes which includes the
combination of main memory and shared memory.

Refer to Section Ill for additional details concerning the
memory system.

Input/Output Operation

Input/Output {I/O) operations consist of data, address,
command, or status transfers between selected peripheral
devices and the CPU or memory. Programmed and direct
memory access (DMA] data transfers are supported. Aii
such operations are initiated under program control and
are conducted, asynchronously, by an 1/0 or
communications processor channel. Various types of
channel modules may be installed in a system. All
channels in the system can be active simultaneously, and
each channel may communicate with up to 16 controllers,
however, only one device can transfer data at one time.

An 1/O operation is initiated by selecting and activating a
channel, and one of its assigned peripheral devices,
through the execution of a computer input/output
instruction. (The instruction set includes seven
input/output instructions.) A specific /O operation may
involve preparing a peripheral device for a subsequent
communication, determining the operational status of a
device, or initiating a data transfer. Once activaied, the
channel provides complete functional control over the
operation.

Data may be transferred on a single word basis (i.e., one
data word per instruction) or automatically, in blocks of
n words per operation. Block data transfers are performed
by the Direct Memory Access Communication Processor
(DMACP-8), External Block Channel (XBC), Integral Block
Channel (IBC), or Buffered Block Channel {BBC). Each
available type of /O channel and communications
processor permits data transfers to (input) and from
(output) the computer. Data transfers between memory
and the DMACP-8, XBC, or IBC are in a 24-bit parallel
format, and between memory and the BBC in a 48-bit
parallel format.

0830007-000
Original 8/79

I/0 operations may also be conducted on an interrupt
basis through the use of interrupt logic in the channel(s).
The channel interrupt system can be placed under
program control and selectively enabled or disabled by an
input/output instruction. Peripheral device functions may
be connected directly to the computer priority interrupt
system, bypassing the channel interrupt logic.

Priority Interrupt System

The interrupt system is a multi-level vectored structure
that allows additional program control of input/output
devices and internal CPU operations, and immediate
recognition of special external conditions on the basis of
priority. Receipt and recognition of an interrupt trigger
permits normal program flow to be diverted to a
subroutine that services the interrupt and returns the
program to its normal sequence at the point where the
interruption occurred.

MAINTENANCE AID PROCESSOR

The Maintenance Aid Processor (MAP), together with the
terminal connected to the MAP, replace the conventional
computer control panel. The MAP and terminal provide
an intelligent interface between the operator and the
computer,

Normal operator functions provided by the MAP Terminal
include facilities for manually starting and halting
operations, entering data into memory and various
registers, and selecting memory and registers for display.
System status and other important functions can be
displayed via the MAP and its connected terminal. Master
clear and initial program ioad {bootsirapj functions are
also provided.

In addition to the normal operator functions, the MAP
provides special maintenance functions. Special support
hardware operates in conjunction with the MAP to
provide selective monitoring and control of the com-
puter logic. A maintenance bus provides access to all
essential internal computer hardware not otherwise
accessible. Maintenance functions include the
capabilities to perform a limited master clear, step
through instructions and microinstructions, control the
CPU clock, and read/write non-programmable CPU
registers. 1/O channel read and write control, program
and memory address compare breakpoint control, and
power supply voltage monitoring are additional func-
tions performed by the MAP.

15

0830007-000
Original 8/79

SWITCH PANEL

Four switches are located on the Switch Panei, one
keylock switch and three toggle switches. The keylock
switch is used to lock and disable any of the maintenance
features that may affect computer operations. It also
enables or disables the Stall Alarm, and enables or
disables diagnostic testing of the 192K byte MOS memory
modules. Additionally, the keylock switch enables
selection of a local or remote terminal for connection to
the MAP.

The toggle switches provide for alternating the functions
of the local terminals, connecting the MAP to a selected
local terminal, and enabling the 192K byte MOS memory
modules for a diagnostic mode of operation. Memory
module interleaving, error correction and rewrite, and fast
access functions are disabled when the diagnostic mode is
selected.

DATA TERMINALS

Two local data terminals are provided with each system.
A similar data terminal is available for remote diagnostic
operations. All terminals are of the console type,
consisting of a CRT and keyboard.

One of the local terminals is dedicated to operator
communications (OPCOM). An operator using OPCOM
commands at this terminal can display information about
the system and exert control over the program, 1/0, and
user configurations. The second local terminal is used as a
MAP Terminal. A switch on the Switch Panel allows for
interchanging the assigned functions of the local
terminals, i.e., either terminal can be designated as the
OPCOM Terminal, while the second terminal is designated
as the MAP Terminai. When the system is powered up,
the MAP Terminal is automatically connected to the
MAP. A command issued to the MAP from the MAP
Terminal disconnects the MAP and connects the terminal
to the CPU as a User Terminal. The MAP Terminal can be
switched from the user function to the MAP function
from the Switch Panel.

System maintenance is facilitated through the use of a
remote terminal located at a diagnostic site. When a
system error occurs, a remote MAP Terminal at the
diagnostic site can be connected to the system. An
auxiliary communications link is available for each system
to implement this function. The remote terminal is
connected to the MAP with the keylock switch. This
function permits the engineer at the remote location to

1-6

examine the system for errors, and allows him to load,
run, and control diagnostics from the remote terminal.
The diagnostics can be run concurrently with other system
activities.

STANDARD AND OPTIONAL FEATURES

Harris 800 systems contain various hardware features.
Many options are also available to enhance system
performance. A brief description of standard features and
options are provided in the following paragraphs. Unless
otherwise indicated, additional details pertaining to
system features and options are contained in Section tl.

A listing of the standard hardware that is provided with a
typical system is as follows:

° Central Processor with hardware multiply/
divide/square root, power supplies, and two
cabinets

° Scientific Arithmetic Functions

L 960K bytes of MOS Memory with error
correction

° 6K byte Cache Memory

° 12,288K bytes of Virtual Memory address
space

° Maintenance Aid Processor with CRT Consoie

System Console CRT with Keyboard and
Controller

Switch Panel

16 Priority Interrupt Levels
120 Hertz Clock

Power Fail Alarm
Firmware Bootstraps

Bit Processor

Stall Alarm

Executive Traps

Interval Timer

Address Trap

Programmed Input Output Channel (P1OC)

Direct Memory Access Communications
Processor (DMACP-8) Channel with four
asynchronous ports

° Buffered Block Channel (BBC) (2)

A summary of optional hardware items that could be
added to the foregoing system follows:

100 kHz Real Time Clock

Programmed Input Output Channels (PIOCs)
External Block Channels (XBCs)

integral Block Channels (IBCs)

Buffered Block Channels (BBCs)

Direct Memory Access Communications
Processor (DMACP-8) Channels

56 Priority Interrupt Levels
Memory Extension Unit
Shared Memory Unit

1/O Expansion Unit

Interprocessor Communication Facility

Multi-Channel Adapter

Priority Interrupts

Four priority interrupt groups are available; groups 0, 1, 2
and 3. Group 0 is reserved for internal CPU functions and
is comprised of eight executive trap interrupt levels. All
executive trap levels are associated with specific functions.

Groups 1, 2, and 3 are reserved for external interrupts;
each group may have up to 24 levels. A basic system is
supplied with 16 external interrupt levels. Fifty-six
additional external interrupt levels are available.

Complete details pertaining to the priority interrupt

e b miem e e ke)i o Pm Qs \YJ
system are contained in Section V.

120 Hertz Clock

Continuously generated interrupt triggers are placed under
software control by enabling or disabling the associated
external interrupt level. By this method, the 120 Hertz
Clock may be used for various timing operations. The
clock continuously transmits 120 interrupt trigger pulses
per second for 60 Hertz power, and 100 interrupt trigger
pulses per second for 50 Hertz power.

Interval Timer

The programmable Interval Timer functions as an internal
CPU timer that provides a method for regulating
operating .program segments and recording other intervals.
Depending on the instruction used for its activation, the

0830007-000
Original 8/79

Interval Timer clocks either CPU time or clock (real)
time. In addition to its timing applications, the Interval
Timer provides the user with an additional 24-bit
general-purpose register that may be accessed through the
standard instruction set when in the Monitor Mode of
operation. The T Register may not be modified when in
the User Mode.

100 kHz Real Time Clock

This option provides the programmer with general
purpose clock pulses that are independent of the
mainframe clock pulses. With an accuracy of .05%, the real
time clock pulses are available whether the CPU is in
standby or not. The timing pulses can be used to measure
user’s program running time, or to generate periodic
interrupts. Programming is accomplished through normal
input/output commands. One or two real time clocks may
be installed on the Programmed Input Output Channel
(PIOC) boards.

Power Fail Alarm

The Power Fail Alarm Module monitors the ac line
voltage and generates power down signals to the CPU and
memory modules in the event of an ac power failure or
sustained low ac line voltage. An executive trap interrupt
is triggered and, to prepare the CPU for an orderly
restart, the major CPU registers and control logic are
cleared. A one millisecond interval is available between
the time of the interrupt and final shutdown. Once the ac
line voltage is restored to a normal level, an executive
trap is triggered and a restart signal is sent to the MAP.
This signal causes the MAP firmware to interrogate the

abams ~em e inst

| P v
system status ana reins

Bootstraps

Automatic program loading from a selected peripheral
device is provided by the Bootstrap feature. Through the
use of the MAP Terminal, the appropriate bootstrap
program is loaded into memory. Once loaded, the
bootstrap program will automatically load a minimum of
one record from the appropriate device. Programs provide
for loading from disc, magnetic tape, or punched cards.

Bit Processor

Capability is provided by the Bit Processor for selectively
changing, testing, or performing logical operations on a
single bit in memory. A special group of instructions
enables implementation of these functions.

0830007-000
Original 8/79

Stall Alarm

Certain operations i tie instuclion sel and other
internal conditions prohibit the recognition of external
interrupts. A series of these instructions or conditions
could, therefore, produce a situation where external
interrupts are, in effect, “locked out”. The Stall Alarm
monitors all instructions and conditions in this
interrupt-prohibiting category. If a series of these
instructions or conditions have not been completed before
the elapse of a predetermined time period, they are
terminated and an executive trap interrupt is generated.
The subsequent interrupt processing routine may then
examine the situation and take any necessary corrective
action. The Stall Alarm includes the appropriate control
logic and is furnished with the associated executive trap
interrupt.

Address Trap

This feature provides for an executive trap interrupt to
occur at a specified address and under certain conditions.
The Address Trap is used as an on-line debugging aid for
use in applications such as breakpoint tracing. An address
may be defined under program control so that when the
address is referenced, an interrupt will be generated at the
assigned executive level. The Address Trap may be
enabled or disabled under program control. The Query
Register provided with the Address Trap may not be
modified when the virtual memory is in the User Mode of
operation.

Input/Output and Communications Processor
Channels

A variety of 1/0O and communications processor channel
types are available with a system. Each channel is
designed for a particular input/output data transfer
application. Muitiple channels of a given type may be
used as the application demands. A brief description of
each type follows. A more detailed discussion of the
channels is provided in Section IV,

Programmed Input Output Channel (P10C)

This is an 1/O channel capable of implementing a
single-word, eight-bit, parallel data transfer between the
CPU and a suitable peripheral device. This channel has
provisions for installing up to four unit interface
controllers on the 1/O circuit board. In addition, the
PIOC can drive up to 12 additional remote device
controllers. This board also contains a programmable
Interrupt Generator which may be used in multi-processor
installations. |f required, one or two Real Time Clocks

1-8

may be installed on the board. Units which may be

interfaced to the PIOC include teletypes (with or without
cassette), line printers, CRT terminals, RS 232
asynchronous controllers, and communications
multiplexers.

Buffered Block Channel (BBC)

The Buffered Block Channel performs and controls
automatic data transfers between main memory and any
of up to 16 external high-speed peripheral controllers.
Data is transferred between main memory and the BBC in
a 48-bit parallel word format, and between the BBC and
peripheral controllers in a 24-bit parallel word format.
Data transfers between the BBC and a peripheral
controller may be performed simultaneously with
transfers between the BBC and memory.

Data and command chaining is supported as well as
programmed input/output transfers. After a block of data is
transferred, the data chaining capability permits a
subsequent data block to be automatically transferred
without program intervention. Command chaining enables
the channel to automatically access memory for a
command word upon completion of the current block
transfer. A new block of data is then automatically
transferred under new command restraints. In addition to
the standard forward motion read and write operations,
the BBC can also perform a read reverse operation which
alleviates the need for rewinding magnetic tapes if the
controller supports this feature. For this function, the
24-bit input data words from the peripheral controller are
assembled in reverse order by the BBC and are then
transferred to memory in 48-bit parallel format.
Addressing and transfer block sizes are established under
program control. Once initiated, all BBC DMA operations
proceed automatically.

A large internal buffer (48-bits wide by 16 words deep) in
the BBC allows peripheral transfer rates to be maintained
during periods when the CPU inhibits memory access by
the channel. The internal buffer and a dual priority
scheme make most BBC memory requests occur in
groups. This function increases CPU performance by
increasing the effective bandwidth.

A special function is provided which enables the BBC to
generate odd parity on command and data transfers to
designated controllers, and check for odd parity on data
transfers from the units. Parity errors occurring during
block or programmed word transfers are reported with a
status word.

Direct Memory Access Communications Processor
(DMACP-8)

The DMACP-8 is a multiport communications processor
channel dedicated to serial data communications and
" provides direct access to main memory for up to eight
devices. These communication devices can be either
asynchronous or synchronous. Up to eight asynchronous
interfaces can be used, or one synchronous and up to
four asynchronous interfaces can be accommodated. The
one synchronous interface takes the place of four
synchronous interfaces. Each interface is termed a port.

Standard interfaces available with the DMACP-8 are
RS-232C, 20 ma current loop, and Harris Differential.
Asynchronous devices supported are Harris Standard CRT
Terminals, interactive ~CRTs, teletypewriters, Bell
Asynchronous Modems, and Bell compatible modems up
o 18.2 kiivbaud. Aiso supported are Ti 700 devices with
or without cassettes. Synchronous devices supported are
Bell Synchronous RS-232C Modems, and Bell compatible
synchronous modems with transfer rates up to and
including 50 kilobaud.

Programmed data transfers or block data transfers of
24-bits are performed between the DMACP-8 and CPU.
Programmed word transfers are used for status check,
initialization, and control of the DMACP-8. Block mode
operations are used for data transfers between main
memory and the communication devices attached to the
ports. These transfers are under control of the
microprocessor installed on the DMACP-8 board and
require no intervention by the CPU. Transfers between
the DMACP-8 and main memory are in the form of 24-bit
words, while transfers between the DMACP-S and

communication devices are in the form of 8-bit bytes.

External Block Channel (XBC)

The External Block Channel provides for direct memory
access operations between memory and up-to-eight
user-defined external controllers. Any one of the eight
controllers connected to the XBC may initiate memory
transfer sequences. Since controllers may be self-starting,
no CPU commands are required to perform DMA
transfers. If required, however, controllers may be
activated by generating commands to the XBC by means
of the input/output instructions. Parameters required for
block transfers, such as block length and memory transfer
address, may be furnished by either the controller or the
CPU. Once a controller is activated for memory transfer
operations, the controller initiates word transfer sequences
and controls the operational parameters. Data is

0830007-000
Original 8/79

transferred between main memory and the controliers in a
24-bit parallel word format.

Integral Block Channel (IBC)

An Integral Block Channel provides automatic data
transfers between main memory and one seif-contained
controller. The controller is dedicated to a block mode
card reader. The IBC is initialized by the CPU to perform
DMA transfers under self-control. Data chaining provides
for the transfer of subsequent blocks of data without
program intervention. Data transfers between memory and

H i Jagry
the controller are in a 24-bit parallel word format.

Input/Output Expansion Unit

Available as an option, the input/output expansion unit
increases the input/output capacity of a system. The
maximum number of input/oulpul channeis supported by
a system is 31. 1/0 expansion is implemented by adding a
cabinet assembly to the basic system. The cabinet
contains a power distribution unit, power supplies, and a
22sslot chassis assembly. A pair of PC boards plus cables
is also provided which is used to connect the expansion
unit to the basic system. The /O expansion unit may be
used to expand the /O capabilities of computer systems
located in the field.

Interprocessor Communication Facility

The Interprocessor Communication Facility (ICF)
provides direct communications capability between
interconnected computers in a dual computer installation.
Memory-to-memory transfers are made under the control
of a DMA channel installed in each CPU. Either channel
in the link may control the transfer. The computer link is
particularly useful in real-time control applications
involving dual computers.

Two Harris 800 CPUs may be linked together, or the CPU
in an 800 system may be interconnected to a CPU in either
a Harris 100 or 500 system. The ICF is implemented
with two dedicated Buffer Block Channels, link cables,
and four Priority Interrupt Generators. The
interconnected systems may be separated by as much as
120 feet. Software interrupts generated by the Priority
Interrupt Generators are normally used to initialize link
operations.

This option is not supported by VULCAN except for the

priority interrupt structure. Establishment of control is
user implemented and requires user code.

19

0830007-000
Original 8/79

Multi-Channel Adapter

Usually used in a multiple computer configuration, the
Multi-Channel Adapter allows peripheral devices to be
shared bv two or more computers. CPUs share units via
an /O interface made common by daisy chain
installations. Normally, each CPU is equipped with an
interrupt generator for the purpose of generating software
interrupts required for daisy chain operations. When a
CPU wants to communicate with a unit on the common
interface, it generates an interrupt to cause the other
CPU(s) to set their daisy chained channels off-line. The
CPU generating the interrupt can then exercise the shared
unit without interference. This feature is not supported
by VULCAN except for the priority interrupt structure.
Proper establishment of control is user implemented and
requires user code. If simultaneous access is made to a
unit on the common interface, the results are
indeterminate.

PERIPHERAL EQUIPMENT

Harris 800 systems can be expanded and enhanced by
selection from a variety of peripheral equipment offered
for each system, including:

Moving Head Discs (40, 80, and 300M Bytes)
Magnetic Tapes (45 and 75 ips)

Card Readers (300, 600 and 1000 cpm)

Key Punch/Card Punch (35 cpm)

Line Printers (300, 600 and 900 Ipm)

Electrostatic printer/plotter (300, 500, 1000
and 1200 lpm)

e P

aper Tape Devices

Console Devices, Local and Remote Terminals

Supplementary equipment to meet most custom
requirements

SOFTWARE

The Virtual Memory Manager (VULCAN) operating
system is a priority-structured, demand paged,
multi-programming operating system. VULCAN
concurrently supports multi-stream batch processing,
interactive terminal time-sharing, transaction-oriented

processing, multiple remote job entry and real-time
operations. Under VULCAN, the virtual memory
hardware/software system is transparent to the user. Up
to 3M bytes per user is available, all of which may be
executable code.

Language Processors
L] FORTRAN 77
FORTRAN IV Compiler with extensions
Extended BASIC
COBOL Compiler
RPG Il Compiler
SNOBOL 4 Interpreter

FORGO (Diagnostic Load-and-Go FORTRAN
Compiler)

APL Interpreter
Harris MACRO Assembler

Utility Programs
® Sort/Merge
VISP (Indexed Sequential File Handler)
ACUTIL (System Accounting)
Cross Reference
VBUG (Symbolic Debugger)

Remote Job Entry Support Packages
L] IBM HASP Il M/L
e IBM 2780
] CDC 200 UT
L4 UNIVAC 1004

Remote Batch Terminal Host Packages
° IBM HASP 11 M/L
° IBM 2780

Data Base Management System
L TOTAL*

. T-ask*

* TOTAL and T-ask are registered trademarks of CINCOM Systems, Inc.

0830007-000
Original 8/79

SUMMARY OF CHARACTERISTICS

The major operating characteristics and pertinent technical specifications of the Harris 800 Computer
Systems are summarized below.

‘ Computer Organization Microprogrammed general-purpose digital computer,
Multi-level instruction pipelining.

Overlapped address preparation and memory access.
Multi-access central bus structure.

Buffered 1/0 channels.

CPU Microcycle Time 180 nanoseconds

R

Arithmetic Parallel, binary, two's compiement fixed and fioating
point; includes hardware multiply, divide, square root,
and hardware floating point processor.

Decimal addition and subtraction on packed operands.

Memory System

Main Memory
Type. N-Channel MOS
MinimumSize. 192K bytes
Maximum Size. 3Mbytes
Increment 192K bytes
Word Length 48bits
Parity. One biterror correct
Cache Memory
Type. Bipolar RAM
Size 6K bytes
Word Length 48 bits
Storage Configuration . . . Divided into two, 3K byte sections. One section
stores only instructions, and the other section
~ oy ae e o]

stores only operands.

Shared Memory

Type. N-Channel MOS

Minimum Size. 192K bytes

Maximum Size. 3M bytes

Increment 192K bytes

Word Length 48bits

Parity. Onebiterror correct
Number of Ports (maximum) . 6

Port Access Asynchronous, ring priority

0830007-000

Original 8/79
Addressing
Compatibility Mode Immediate
Direct to 96K bytes
Direct to 192K bytes via long address instructions
Indirect to 768K bytes (data only)
Indexed to 192K bytes
Address Extension Mode Immediate

Direct to 3M bytes
Indirect to 3M bytes
Indexed to 3M bytes

Input/Output Capability

Programmed Data Transfers To/from CPU register, 8 or 24 bits

Automatic Data Transfer Direct memory access via IBC, XBC, DMACP-8,
and BBC, 24 or 48 bits

Single Channel Maximum Transfer Rates (per sec.)

Input Output

BC 80Kbytes 80K bytes
XBC (no mainframe contention). . 2.4M bytes 2M bytes

(with mainframe contention) . 1.4M bytes 1.2M bytes
BBC 3.7Mbytes 3.7M bytes
DMACP8 81Kbytes 8.1K bytes

Input/Output Command Modes
Normal Normal operation for each channel type.
Muitiplex Channel released to master/slave peripheral units.
Not available on IBC, XBC, DMACP-8, or BBC.

Output Special Function Enables read reverse, channel-to-unit parity

checking, channel internal turnaround, and
unit master clear function. Applicable only
to BBC.

Offline Channeldrivers turned off allowing second CPU
to share devices without need for peripheral
switches. Not available on IBC.

Reset ResetsMultiplex or Offline Mode. Channel restored
online and unit selected. Not available on IBC.

Priority Interrupt Structure

Internal .

External

Control .

Power Fail Protection .

Electrical Requirements

Voltage .

Frequency .

Current (maximum)

Environmental Requirements

Temperature
Operating

Storage .

Humidity
Operating
Storage .

Altitude
Operating
Storage

Cooling

Maximum of eight executive traps. Multi-level
vectored structure.

Sixteen priority interrupt levels, standard. Optionally
expandable to 72 priority interrupt levels. Multi-level
vectored structure.

External interrupts may be individually armed, disarmed,
enabled, inhibited or triggered under program control.

Power fail alarm, standard.

120/208, 120/240, sinale-phase, 4-wire (standard)
220/240, single phase, 3-wire (foreign)

60+ 2 Hz (50 = 2 Hz, optional)
46 amps.

50° F to 113° F (10° C to 45° C), ambient air
32°F 10 122° F (0° C to 50° C) ambient air

20% to 80%, relative {non-condensing)

20% to 90%, relative (non-condensing)

-1,000 to 6,000 ft. (-305 to 1,829 m)
-1,000 to 15,000 ft. (-305 to 4,572 m)

Forced air provided by internal fans on each chassis

0830007-000
Original 8/79

1-13/(1-14 Blank)

0830007-000
Original 8/79

SECTION 11
CENTRAL PROCESSING UNIT

GENERAL DESCRIPTION

The Central Processing Unit (CPU) is a single-address
parallel word-oriented, stored-program processor.
Operations performed by the CPU include data transfers,
arithmetic., computation, and logical manipuiation. These
operations are defined by instructions stored in, and
retrieved from, physical memory. The specified operation
is performed on single-word, double-word, byte, or single
bit operands stored in memory or contained in one of the
CPU registers. Data word formats, as defined by both
hardware and software, are illustrated in Figure 2-1.

In addition to the general and special-purpose registers,
the CPU contains an arithmetic section that performs the
actual computation and logical manipulation of operands,
and a control section that retrieves and decodes
instructions from memory and directs the functional
processes of the system. The control section also includes
the paging logic that implements the memory address
translation and demand-paging operations. The CPU
contains interface elements for communications with the
other computer elements; e.g., memory, the I/O channels,
and the MAP Terminal.

PRINCIPAL CPU REGISTERS

The following paragraphs provide a brief description of
the principal registers in a CPU. Registers associated with
the priority interrupt system and SAU functions are
described elsewhere, in the appropriate sections of this
manual.

A and B Registers

Serving as the principal arithmetic accumulator, the 24-bit
A Register also functions as the input/output
communication register during programmed (single-word)
transfers between the CPU and peripheral devices. The A
Register has complete arithmetic and shift capability. Bits

E Register

Employed as an extension of the A Register for increased
arithmetic and shift capability, the 24-bit E Register also
functions as a general-purpose storage element during
various instructions. The E Register is accessible through

both the instruction set and the MAP Terminal.

e E REGISTER =

23 0

D Register

The D (Double) Register is a 48-bit pseudo register
formed by combining A and E to provide
double-precision arithmetic and shift capability. The A
and E Registers form the least- and most-significant
halves, respectively, of the 48-bit double-precision
quantity. A23 is reset for most instructions. Several
instructions provide direct access to the D Register; MAP
Terminal entry, however, must be accomplished by
accessing the E and A Registers in the proper format.

f*———— DOUBLE (D) REGISTER————
e lo| a

[I I S S L4 /4 a1

47 23 o)

I, J, and K Registers

Each of these is an independent, 24-bit general-purpose
register that can also be employed as an index register for
address modification. The |, J, and K Registers are
directly accessible through the instruction set and the
MAP Terminal.

7-0 of A form an 8-bit pseudo-register, termed the B }* | REGISTER >
(Byte) Register. Both the A and B registers are accessible ' ! ‘ ! ! ' !
to the user by means of the instruction set and the MAP
. 1 L L 1 1 I 1 | H I 1 | 1 1 Il - 1 | 1
Terminal. 3 0
e A REGISTER] f— J REGISTER !
T T 1 T I 1 T 1 1l T N | 1 l T
1 L 1 1 " J I Y S S\ 1 | S S | i | b1 1 1 | Il { 1 | | I J4 1 1 1 1 i [L1 | I 1 Il l I I\ |
23 . 0 23 (o]
BYTE (B)
REGISTER ;L# K REGISTER -
/ T T 1 T 1 T T T T
7 /7//
l//{ J//) S S S S | | S U N S W S S | | S S S S N [L1
23 8 7 o 23 o

0830007-000
Original 8/79

96 BITS

48 BITS N

t—BYTETBYTE BYTE—¢-BYTE-dle-BYTE-¢-BYTE-»1¢-BY TE-»j¢- BYTE

INTEGER

IIZZ
zllllllll|lllllllllllllJ

o

|<—-— z4|- BIT WORD ——=|

BYTE INTEGER ‘
’ 52'° S
23
" g-BIT
’ WORD
DOUBLE INTEGER‘ ‘
[SZ:SKllllllllll"!l]L!!!LIIILll‘llll|llll:llllllllll°|
023 o
l,Af | 48-8IT WORD |
| I
SINGLE-PRECISION FLOATING-POINT

023
8-BIT

F—24 BIT MANTISSA——"
| I I ‘ IEXPONENT

DOUBLE-PRECISION FLOATING-POINT | |

LRI N NG

G;——24 BITS —Me——— 24 BITS——d¢——— 24 BITS —¢——24 BITS —¥

¢ BYTE->1¢-BYTE ¢ BYTE-»¢BYTE-¥

48 BITS

23 023 0

fe————39-BIT MANTlSSA—————I 8-BIT |e

| ; EXPONENT

QUAD-PRECISION FLOATING-POINT |

Haz‘ 1 1 T T 1 Zolslc T T T L] 1 2_23| |2 A 1 T L] 1 ¥ 7‘46I 2_27 1 T hl T 1 l2-€
I NN IR RSN] o e e a3 s sty 1) bdl NSNS SN PN TS S5 TN TN I N O T N O I O

023 023 o023 [

}«—— 24-BIT EXPONENT —oe 70-BIT MANTISSA —!

COMPLEX NUMBER,FLOATING—POINT

| | | REAL PART | IMAGINARY PART

N

ISIT:IIllllllllllll:llIzl-zlslolzllIl:lllllllll‘sll|I:ll|IlLIllIIillllIIlll'lIlzl-fSIcI2|zl4lll|lllllIlzl-lllalslzllsll:lzjﬂ

o023 023

o
|-<—————39 -BIT MANTISSA-——-————l 8-BIT l‘——————39-BIT MANTISSA ————4 8-BIT

| | EXPONENT
PACKED DECIMAL NUMBER

[owsit[oiGir {oisir f ois DIGIT [men [oncnl

a3 19 (L "

|

ZONED DECIMAL NUMBER

|70N£|m(;n| ZONE [oreim | 20n€ [oicir | ZoNE e| DiGiT | 70N [oi6rT | zons[ouLJ

23 19 135 n 3 o023 19 5

023 87

EXPONENT

2-2

Figure 2-1. Data Formats

Mi12805

Condition Code Register

Condition codes indicate the nature of the results of an
instruction. The significance of the condition code bits
depends on the particular instruction just executed.
" Condition codes are loaded into a condition register. Two
such registers are provided; a C Register and a Y Register.

C Redgister

A 4-bit element that stores the results of specific
operations, the C (condition) Register is accessible by
means of several instructions. Condition codes generated
are loaded into the C Register. This register is termed the
C or Condition Register throughout this manual and
throughout related Harris 800 manuals. Display of the C
Register is provided by the MAP Terminal.

CONDITION (C) REGISTER
PZNO

Positive (fogic ONE) or Not Positive (logic ZERO)
Zero (logic ONE) or Not Zero (logic ZERQ) ———
Negative (logic ONE) or Not Negative (logic ZERO) —
Overflow (logic ONE) or No Overflow {logic ZERQ) —

Y Register

Condition codes generated by the SAU and decimal
arithmetic instructions are loaded into the Y (condition)
Register. A detailed description of this register is provided
in Section VI. This register is termed the Y Register
throughout this, and related, Harris 800 manuals.

Program Address Register

Also called the Program Counter, the 20-bit Program
Address (P) Register retains the memory address from
which the current instruction was fetched. In the
Compatibility Mode of operation, bits 19 through 16 are
not used and a maximum of 65,5636 memory locations
can be accessed via the P Register. In the Address
Extension Mode, all 20 bits are used and a maximum of
1,048,576 locations can be accessed. In the Compatibility
Mode, bit 15 is used as a map bit, and when in the
Address Extension Mode, bits 19 through 15 serve as map

0830007-000
Original 8/79

bits. The register can be loaded with a Branch and Link
instruction. Contents of the register can be saved with a
BSL instruction in the Compatibility Mode, or a BSL or
BSX instruction in the Address Extension Mode. The
contents of the P Register can be modified through the
execution of any of several branch instructions. The MAP
Terminal provides direct entry and display for the P
Register.

P REGISTER
(PROGRAM COUNTER) !
i i i I I
I S TS G NN S S A S S NS S S S N N SRR
19 18 7 16 I8 o]
MAP
BITS

Instruction Buffer

Once an instruction has been fetched from memory, it is
retained in the Instruction Buffer during decoding and
execution, The Instruction Buffer is not programmable.
The buffer holds up to four prefetched instructions.

VIRTUAL MEMORY DESCRIPTION

Introduction

Paging is a hardware addressing scheme that allows a
program’s memory area to be discontiguous. Program
segments may be absent from physical memory while
other portions of the program are being executed. This
aspect of the paging operation, termed
“demand-paging”, also allows the computer to execute
programs larger than the available physical memory;
hence, the term ‘virtual memory’. The following
paragraphs discuss the paging hardware and describe the
basic functions of the VM.

Virtual Memory Instruction Set

A virtual memory instruction set is provided for program
control of paging functions. These instructions can only
be executed in the Monitor Mode. If an attempt is made
to execute any of these instructions while in the User
Mode, an instruction trap interrupt is generated. A
detailed description of each of these instructions is
provided in Section VI! of this manual.

Principal Virtual Memory Registers

Various registers are supplied with the VM paging logic. A
brief description of each is provided in the following
paragraphs. Entry and display of all principal VM registers
is provided via the MAP Terminal.

2-3

0830007-000
Original 8/79

Virtual Address Register (VARs)

A total of 4,096 of these 12-bit VARs are supplied. The
ten least-significant bits (9-0) retain the address of a
physical memory page, while bits 23 and 22 define the
manner in which the specified page may be accessed. The
access modes and their corresponding bit configurations
are defined in the paragraph describing demand paging
operation. Specific operations within the VM instruction
set provide transfers to and from the VAR:s.

VIRTUAL ADDRESS
REGISTER (VAR)
T T T

PAGE ADDRESS

i | Y N D VS N W T |
23 22 9 0
N —

ACCESS MODE

Virtual Base Register (VBR)

The 12-bit VBR retains the lower page limit of the user
program; i.e., the address of the first assigned VAR for the
currently-executing program. Special VM instructions
provide for loading the VBR and retrieving its contents.

VIRTUAL BASE REGISTER (VBR)
1 T T
LOWER PAGE LIMIT

R S SN NN U (N T SO UV S|
H o

Virtual Limit Register (VLR)

Bits 9-0 of the 15-bit VLR define the upper page limit of a
user program, i.e., the number of VARs minus 1 which the
program may reference; bits 23 through 19 provide special
controls. Bits 22 and 22 control the operational state of the
CPU (see paragraph describing the CPU operational states).
When bit 21 is set, any of the privileged instructions may be
executed without generating an instruction trap interrupt
(see paragraph describing instruction trap). Virtual memory
instructions may only be executed in the Monitor Mode,
regardless of the state of bit 21. When an interrupt occurs
in the Address Extension Mode of operation, the virtual
memory mode of operation is saved in bit position 20. The
bit is set if the interrupt occurred in the User Mode, or reset
if the Monitor Mode was active. When bit 19 is set, the
Release Operand Mode (ROM) instruction is suppressed.

The VLR may be loaded, or its contents retrieved, by
specific VM instructions.

VIRTUAL LIMIT REGISTER (VLR)

+

UPPER PAGE LIMIT

A 1 i 1 J— 1 | 1 L
9'2‘2’ 21 20 >|9 9 o]
PERATI
° STAT%NAL L rom
CONTROL INHIBIT
PRIVILEGED
INSTRUCTION VM MODE
CONTROL

Virtual Usage Registers (VURs)

A total of 1,024 of these one-bit registers are supplied; one
is associated with each physical page of memory. Each time
a given memory page is accessed by a CPU instruction, a
ONE is stored in the appropriate VUR. The VURs may be
selectively tested and cleared under program control.

Virtual Not-Modified Registers (VNRs)

A total of 1,024 of these one-bit registers are supplied; one
is associated with each physical page of memory. Each time
data is written (stored) in a given memory page by an
instruction reference, a ONE is stored in the appropriate
VNR. The VNRs may be selectively tested and cleared
under program control.

Virtual Usage Base Register (VUB)

This 10-bit register retains the address of one of the VURs
or VNRs (equivalent to the associated physical page). This
address is used as a pointer to access the appropriate VUR
or VNR during the Query Virtual Usage Register (QUR) or
Query Not-Modified Register {QNR) instruction. The VUB
can be lcaded or its contents retrieved by special VM
instructions.

VIRTUAL USAGE
BASE REGISTER (VUB)

VUR OR'
_ YNR ADDRESS |

9 o

Virtual Source Register (VSR)

This 12-bit register retains the address of one of the VARs
and is used as a pointer for retrieving data from the VARs
during a Transfer 2 Virtual Address Registers to Double
(TRD) instruction. The VSR can be loaded under program
control.

VIRTUAL SOURCE REGISTER (VSR}

T T T

VAR ADDRESS

Virtual Destination Register (VDR)

The 12-bit VDR retains the address of one of the VARs,
and is used as a pointer for storing data in the VARSs during
Transfer A to 1 Virtual Address Register (TAR) and
Transfer Double to 2 Virtual Address Registers (TDR)

instructions. A special VM instruction provides
program-controlled loading of the VDR.

VIRTUAL DESTINATION REGISTER (VDR)
T T T
VAR ADDRESS

| R VU Y SR TS SN U W S S |
" 0

Virtual Demand Page Register (VPR)

A special register (VPR) is used in the virtual memory
system to copy the logical page address (bits 13-4) of the
user program for each memory reference so that if a
particular cycle causes a fault, the operating system knows
which logical page is involved and the condition that caused
the fault. The address of the VAR that created a demand
page or limit register violation is the contents of the VBR
plus the contents of the VPR. Bits 3-0 identify the type of
violation. The contents of the VPR may be retrieved under
program control.

VIRTUAL DEMAND PAGE REGISTER (VPR)

T 1 1 T
LOGICAL PAGE
ADDRESS VIOL
I3||1|l|t¢1431110

Demand Paging

Demand paging is the aspect of the VM hardware that
permits a portion of the user’s program to be absent from
physical memory (and located instead on a disc
mass-storage device) while the program is being executed.
When the address translation logic detects a reference to a
non-resident page, an executive trap interrupt (Group 0,
Level 2) is triggered. Subsequent processing by the
operating system may then access the desired page and load
it into physical memory. If sufficient memory space is not
available, the operating system may interchange inactive
resident program segments with the incoming page(s) or
programs (i.e., transfer the inactive segments to the disc
storage device). Once the correct program sequence is
loaded into physical memory, the user’s program may
continue its normal sequence.

0830007-000
Original 8/79

A non-resident page is signified by ZEROs in bit positions
23 and 22 of the selected VAR. Each time a VAR is
accessed, these bits are examined by the paging control
jogic to determine if a demand page is required. The iast
logical page presented to virtual memory is stored in bits
13-4 of the Virtual Demand Page Register (VPR).

The interrupt generated at Group 0, Level 2 may reflect a
limit register or restrict mode violation as well as a
demand page. Bits 3-0 of the VPR define which condition
generated the interrupt; these are examined by the
operating system to determine what steps are to be taken
in processing the interrupt. Entry into an
interrupt-processing routine requires saving a return
address; usually, the interrupt address plus one. Certain
situations require reexecution of the instruction that
created the demand page or violation, consequently, the
program counter must be adjusted to fetch the instruction
again. The Program Counter is automatically adjusted by
hardware before the interrupt is taken; no software
adjustment is made. (Note that in previous systems,
software used bits VPR1 and VPRO to adjust the Program
Counter.) Table 2-1 defines the VPR status and control
bits.

Table 2-1. VPR Status Bits Definitions
and Functions

VPR Bits
Condition 3210

Type of
Violation

1 0001 Demand Page
2 01 Mode 3*
3 1 01 Mode 2*
4 1101 Limit Register

* Page Access Mode Violation

The paging logic provides a program restrict system that
permits pages of memory to be protected from
unauthorized access. A user’s program area is defined by
the contents of the Virtual Base Register (VBR) and Virtual
Limit Register (VLR). The VBR defines the lower page
limit in the user’s program while the VLR defines the last
page, or upper limit. No user’s programs can reference any
memory location below the lower page limit because all
addresses are biased by the VBR's contents during the
address translation operation. Any attempt to reference
memory above the upper limit will result in a limit register
violation and trigger the Group 0, Level 2 executive trap
interrupt.

0830007-000
Original 8/79

Each page of memory can be further protected by placing it
in one of three access modes. Bits 23 and 22 of the VARs
contain the access mode bits for the associated page. Any
attempt to access the selected page in any manner other
than specified in the mode bits will result in triggering the
Group 0, Level 2 executive trap. The access mode bits are
defined below.

Mode Bit 23 Bit 22 Description

0 0 0 Page Missing —page is not contained in physical

memory {demand page).

Unrestricted —instructions may be executed
within the page and data may be loaded from
or stored within the page.

Execute/Read —instructions may be executed
within the page or data loaded from the page;
data may not be stored within the page.

Read —data may be loaded from the page;
instructions may not be executed within the
page and data may not be stored within the
page.

The program restrict functions are enabled only when the
VM system is in the User Mode.

Instruction Trap

An instruction trap function is included as an integral part
of the paging hardware. The trap prevents the execution of
certain, predetermined, instructions. When the trap is
enabled, any attempt to execute one of the designated
instructions will result in an executive trap interrupt at

Group 0, Leve! 3.

The instruction trap function is automatically enabled
when the paging logic is placed in the User Mode. When
enabled, the trap will analyze bit 21 of the Virtual Limit
Register (VLR). When VLR bit 21 is set (ONE), the
following instructions may be executed without generating
an instruction trap violation. If bit 21 is reset (ZERO) and
the instruction trap is enabled, a violation will occur when
an attempt is made to execute any of the following
instructions.

Halt (HLT)

Input Address Word (IAW)
Input Data Word (IDW)

Input Status Word (I1SW)

Input Parameter Word (IPW)
Output Address Word (OAW)
Output Command Word (OCW)

Output Data Word (ODW)

Hold External Interrupts (HXI)

Release External interrupts (RXi)
Unitarily Arm Group 1 Interrupts (UAT)
Unitarily Arm Group 2 Interrupts (UA2)
Unitarily Arm Group 3 Interrupts (UA3)
Unitarily Disarm Group 1 Interrupts (UD1)
Unitarily Disarm Group 2 Interrupts (UD2)
Unitarity Disarm Group 3 Interrupts {(UD3)
Unitarily Enable Group 1 Interrupts (UE1)
Unitarily Enable Group 2 Interrupts (UE2)
Unitarily Enable Group 3 Interrupts (UE3)
Unitarily Inhibit Group 1 Interrupts (Ul1)
Unitarily Inhibit Group 2 Interrupts (Ul2)
Unitarily Inhibit Group 3 Interrupts (UI3)
Transfer Double to Group 1 (TD1)
Transfer Double to Group 2 (TD2)
Transfer Double to Group 3 (TD3)
Transfer Double to Group 1 (TD4)
Transfer Double to Group 2 (TD5)
Transfer Double to Group 3 (TD6)
Transfer Group 1 to Double (T1D)
Transfer Group 2 to Double (T2D)
Transfer Group 3 to Double (T3D)
Transfer Group 1 to Double {T4D)
Transfer Group 2 to Double (T5D)
Transfer Group 3 to Double (T6D)

Hold Parity Error Retry (HER)

Release Parity Error Retry (RER)

Load Virtual Demand Page Register (LVR)
Read Parity Bits (RPB)

Transfer Parity Error Address Register to A (TPA)
Transfer Active Executive Traps to A (ACE)
MAP Interrupt Request (MIR)

Transfer CAM to Double {(TCD)

Transfer CAM Hit Status tc A {THA)

If the instruction trap is enabled, the VM group of
instructions will result in a violation (VLR bit 21 has no
effect on this group) if the user program attempts to
execute them. Any attempt to execute an Interval Timer
start or stop instruction, T Register load instruction, or
SAU interrupt control instruction in the User Mode when
VLR bit 21 is reset causes the instruction to be treated
like a NOP. No interrupt is generated. The following
instructions are affected:

1) Hold Interval Timer (HIT)

2) Release Processor Time (RPT)

3) Release Clock Time (RCT)

4) Any register to register instruction that loads
the T Register; e.g., a TAT instruction.

5) Hold SAU Overflow Interrupt (HSI)

6) Release SAU Overflow Interrupt (RSI)

Paging System Control

When a master ciear is generated, the Monitor Mode is
established. The paging logic then remains in the Monitor
Mode until placed in the User Mode.

The User Mode is established under program contro! (i.e.,
via the RUM instruction). The RUM (Release User Mode)
instruction causes the User Mode to be established at the
completion of the instruction following the RUM. (This
instruction should, in practice, always be an unconditional
branch.) After the new program address has been
calculated, the User Mode will be activated. The RUM
instruction, together with the following instruction, will be
handled like an EXM with respect to a demand page (VPR
bits 0 and 1 will be set to ONE and ZERO, respectively).
Refer to Table 2-1.

A BLU (Branch and Link-Unrestricted) instruction will
automatically establish the Monitor Mode; the BLU’s 5-bit
effective memory address will not be mapped. Bit 20 of the
J Register will be set (ONE) if the BLU was executed in the
User Mode, and reset (ZEROQ) if the BLU was executed in
the Monitor Mode.

When an interrupt occurs in the Compatibility Mode, the
Monitor Mode will be established; the hardware-generated
EXM (Execute Memory) instruction will not be translated.
The BSL (Branch and Save Return-Long) to the dedicated
interrupt location will transmit the paging mode at the time
of the interrupt to the BSL's effective memory address. Bit
20 will be set (ONE) if the system was in the User Mode,
and reset (ZERO) if it was in the Monitor Mode. If the
interrupt occurs in the Address Extension Mode, the
hardware gencrated BSX will not be translated and the
Monitor Mode will be established. The VM mode of
operation at the time of the interrupt will be saved in bit 20
of the Virtual Limit Register (VLR). If no other interrupt is
active, VLR20 will be set if the system was in the User
Mode, and reset if it was in the Monitor Mode.

If a demand page interrupt occurs while executing a ROM
instruction, the VM mode is recorded as Monitor. Bit 20 of
the BSL save word is reset if in the Compatibility Mode, or
VLR bit 20 is reset if in the Address Extension Mode. When
returning from an interrupt routine via an indirect BRL
instruction, bit 20 of the entry point is tested, and the User
or Monitor Mode is re-established accordingly.

When in the Compatibility Mode and an indirected BRL
instruction is executed in the Monitor Mode, the User Mode
is established if bit 20 of the save word is set. The
instruction following the indirect BRL is transiated. When
in the Address Extension Mode and an indirected BRL is
executed in the Monitor Mode, if the "currently active

0830007-000
Original 8/79

interrupt is the only one active and if bit 20 is set in the
VLR, the User Mode is established and the instruction
following the indirect BRL is translated. If VLR bit 20 is
reset, the Monitor Mode continues.

CPU OPERATIONAL CONTROL

CPU Modes of Operation

Since a Harris 800 Computer is an upward compatible
extension of the SLASH 6 Computer used in Harris 100
systems, all user software which can be run on the SLASH
6 can also be run on a Harris 800 Computer. New software
not previously available, can also be run on the Harris 800.
Two modes of operation, termed the Compatibility Mode
and the Address Extension Mode, are provided to select the
particular operation required.

Compatibility Mode

In the Compatibility Mode, the Harris 800 is downward
compatible with the SLASH 6. All user programs which run
on the SLASH 6 can run on the Harris 800 without
recompilation. Current user programs, including compilers
and assemblers, may also be run in this mode. All standard
instructions which can be executed on the SLASH 6
operate identically when executed on a Harris 800 in the
Compatibility Mode. In addition, all extended instructions
can be executed in this mode. Bits PC19-16 are kept in the
cleared state when operating in this mode, therefore, the
Program Counter is effectively 16 bits wide. Thus, branch
addresses cannot be over 16 bits wide. Direct addressing
capability is up to 64K words. In this mode of operation,
indexing, indirection, and interrupt linkage function
identically to the SLASH 6.

Address Extension Mode

In the Address Extension Mode, new software elements are
available with the Harris 800. This mode of operation does
not allow the use of earlier software such as DOS, TOS,
DMS, etc. With the exception of the BSL, BRL, BLU, TLO,
and GAP instructions, operation of the standard instruction
set is identical to the Compatibility Mode. Operation of
these five instructions is modified in the Address Extension
Mode. Differences in operation are explained in Section
VIl. All extended instructions can be executed in the
Address Extension Mode. All 20 bits of the Program
Counter are functional in this mode of operation to provide
the capability of direct addressing of up to 1024K words.
Indexing, indirection, and interrupt linkage operations are
modified versions of similar SLASH 6 operations.

0830007-000
Original 8/79

CPU Operational States

Under scftware contral, the CPU is capable nf heing placed
in one-of-four operational states. Two software settable bits
in the Virtual Limit Register (VLR), bits 23 and 22,
determine state selection. The setting of these bits control
the CPU operational states as follows:

VLR BITS
23 22

0 0 Zero

STATE OPERATION

System operates in the Compatibility
Mode in both the Monitor Mode and User
Mode. This state is established whenever
the CPU is master cleared.

0 1 One System operates in the Compatibility
Mode when in the User Mode, and in the
Address Extension Mode when in the
Monitor Mode. When the CPU leaves the
Monitor Mode (either foliowing a RUM
or an indirected BRL from the only
active interrupt level), the CPU is placed
in the User Mode. The instruction
executed after a ROM instruction should
be executed in the Monitor Mode. The
calculation of the final EMA uses the
Address Extension Mode definition of
indexing; the final EMA is translated into
user space. On machines with no VM
hardware, State One is equivalent to State
Three.

1 0 Two Operation is not permissible and is
undefined.

1 1 Three System operates in the Address Extension
Mode in both the Monitor Mode and User
Mode.

ADDRESSING FUNCTIONS

Addressing is a function of the Compatibility and Address
Extension Modes. Direct addressing, indirect addressing and
indexing are dependent on the particular mode enabled.

An address is calculated by the CPU without regard to
virtual memory. Addresses may be indexed and/or
indirected. Address generation is the same whether the
virtual memory is in the Monitor or User Mode. When the
CPU compiletes address processing and initiates a memory
cycle, virtual memory translates the address if the system
is in the User Mode. If in the Monitor Mode, the address is
not translated, and the address generated by the CPU is the
physical address. In the User Mode, all effective address
references generated by the CPU are translated to physical
addresses. This includes addresses defined by the Program
Counter and all memory reference instructions, including
indirect and indexed operations.

Compatibility Mode Addressing

Total memory available to the CPU is one megaword. When
the CPU is in the Compatibility Mode, executable code
{programs) is confined to 64K (0-65,536 words) of memory
when executing standard instructions. However, memory
above 64K may be addressed with standard instructions by
means of special indirect references. Figure 2-2 illustrates
the memory referencing sequence for the Compatibility
Mode. Extended instructions can address up to one
megaword of memory directly.

Direct Addressing

A standard memory reference instruction format is shown
below. The 15-bit address field {bits 14-0) in the instruction
word provides direct access to 32,768 (32K) words.

T T T ¥ T

OP CODE |*¥| X 15 BIT ADDRESS

| S |) U N TS W SN N S N N U W e S |
23 18 {7 16 15 14 0

In the Compatibility Mode, the addressing logic divides the
lower 64K of memory into two areas; 0 - 32K and 32K -
64K. Under this method, bit 15 (P15) of the Program
Counter is used to bias all direct address references. Bits
19-16 of the Program Counter are not used in the
Compatibility Mode. P15 = 0 specifies an address in the
lower 32K, while P15 = 1 designates a location in the upper
32K of the 0 - 64K memory increment. By performing a
logical-OR function between the immediate (direct) address
reference and P15, standard instructions may directly
address up to 32K words within their respective sections of
memory.

Modification of a 15-bit direct address by means of the
indirect bit, and with or without indexing, can permit a
standard instruction to address any memory location up to
256K words.

A special group of ‘“long branch” standard instructions
permit direct addressing up to 64K words. The instruction
word format for this group is shown below. Note that these
instructions may be modified by indirect references ("), but
have no provision for indexing. Long branch instructions
are not biased by P15. Bit 16 is used to extend the op code.

T 1 1 T T I

OP CODE [*|E 16 BIT ADDRESS

| S . N N S S (N W N W W [N NS N S
23 18 17 16 15 o

An extended memory reference instruction format is shown
below. The 20-bit address field in instruction word 2
permits memory access to 1,048,676 words.

0830007-000
Original 8/79

ACCESS (P)

FOR
INSTRUCTION

1

DECODE
OP CODE AND
ADVANCE P

EXTENDED
INST

ENABLE
20-BIT
ADDRESS

!

EMA@~ (P)

LONG
BRANCH

DA A+ (J)

VA= a

MAP BIT P15
ORED WITH EMA
EMAe A

INDIRECT NO
REF

vd

YES

ACCESS (EMA)
FOR INDIRECT
REFERENCE

NO

ENABLE ENABLE
16-BIT 18-8IT
ADDRESS ADDRESS

L]

INDEXED NO

YES

EMA@- MA + (X) EMAS= MA

' |

OPERATION
ON EMA

PERFORM

- 16 OR 18-BIT ADDRESS

-+ INDEX REGISTER (I, J, OR K)

-+ 5-BIT ADDRESS
- 15-BIT ADDRESS
- 16-BIT ADDRESS

- - BRANCH INDEXED BY J LONG
BRANCH AND LINK UNRESTRICTED
EFFECTIVE MEMORY ADDRESS

J REGISTER

LONG ADDRESS CONSTANT

- PROGRAM ADDRESS REGISTER

- CONTENTS OF

Figure 2-2. Memory Referencing Sequence, Compatibility Mode

Mi2419

29

0830007-000

Original 8/79
WORD 1
T T T I T
ESCAPE CODE OP CODE 0CO
i i | | J S S | 1 | } U S S | | 11
23 2 1 3 2 [¢]
WORD 2
v T T T T T
*| X % ADDRESS
i i [S GRS SRS S SN S S U S A | ; } S S U S |
23 22 21 20 19 [o)

Indirect Addressing

Indirect address references permit the CPU to access up to
256K words of memory in the Compatibility Mode. When a
standard memory reference instruction is decoded, bit 17
(*) of the instruction word is examined. If bit 17 is set
(ONE), an indirect address reference is indicated. The same
function is performed by bit 23 of word 2 in extended
instructions. An indirect reference signifies that the
effective address (defined by the instruction word plus any
index count) contains a second address rather than an
operand. The word retrieved from memory when the
effective address is cycled is treated as an indirect address
word. Compatibility Mode indirect address word formats
are illustrated below.

STANDARD INDIRECT FORMAT

7 1 1 T ! T
*| X 0//74 16 BIT ADDRESS

" ////Vlllllllllllllll

23 22 21 20 16 15 0

LONG INDIRECT FORMAT

T 1 T 1 Ll

*| X 1/ 18 BIT ADDRESS
L % R D St

§ U N U U SN WS NN Y WS S B B |
23 22 21 20 18 i8 17 o

The standard indirect format, with its 16-bit address field,
permits access of up to 64K words. Up to 256K words can
be accessed by the 18-bit field in the long address word.
Neither type of indirect address is affected by the P15
address bias bit.

Bit 23 (*) of either indirect format may be set to specify
another level of indirect addressing. Each level of indirect
reference may be individually indexed to provide further
address modification.

These two indirect word formats are valid only when the
CPU is in the Compatibility Mode of operation. When in
the Address Extension Mode, a single indirect word is used
which differs in format.

2-10

Indexing

A direct or indirect address reference may be modified by
indexing. This operation adds the address in the current
instruction or indirect reference to the contents of a
specified index register (1, J, or K} to determine an effective
address. A two-bit field (X) in the instruction or indirect
reference specifies which register will be employed in each
indexing operation. Figure 2-3 provides some examples of
indexed addressing.

In the lower 32K memory section (P15 = 0), immediate
address references may be indexed to access up to 65,536
words. However, instructions in the 32K — 64K section of
memory (P15 = 1) may not reference the lower section by
indexing since all immediate address references will be
biased by 100000g..

Address Extension Mode Addressing

When the CPU is operating in the Address Extension Mode,
direct addressing to one megaword is enabled. Instructions
are not restricted to the lower 64K of memory, but may be
located anywhere in memory. All 20 bits of the Program
Counter are significant so that a maximum of one
megaword of memory locations can be accessed via the
Program Counter. The memory referencing sequence for
the Address Extention Mode is shown in Figure 2-4.

Memory is divided into thirty two, 32K maps in the
Address Extension Mode. The most significant five bits of
the Program Counter serve as map bits. PC19-15 specify the
map in use, and PC14-0 specify the displacement within the
map. When PC19, 18, 17, 16, and 15 = 00000, map O (O
through 32,767) is specified, and when PC19, 18, 17, 16,
and 15 = 00001, map 1 {32,768 through 65,535} is
specified, etc. This mapping scheme is applied to all
standard memory reference instructions which contain
15-bit addresses. Standard long branch instructions (which
have 16-bit addresses), and extended instructions are not
mapped.

Direct Addressing

In the Address Extension Mode, the effective memory
address of a non-indexed standard memory reference
instruction is formed by appending bits 19-15 of the
Program Counter to the most significant end of the 15-bit
address contained in the instruction. The resulting 20-bit
address is termed a local map reference since bits PC19-15
determine map selection. A local map is defined when bits
19-15 of the EMA are equal to bits PC19-15.

0830007-000

Original 8/79
23 I7 16 15 14)
INSTRUCTION FORMAT (TMA) 000, OIf*l X001, 001,00¢t,001,001
AR B! | RS M MRS MRS AR
* = |NDIRECT BIT: — Y
0 = DIRECT ADDRESS OP-CODE BASE ADDRESS
1 = INDIRECT ADDRESS (058) (111118)

X = [INDEX BITS:
00 = NO INDEXING
01 = INDEX W/ |
10 = INDEX W/ J
11 = INDEX W/ K

INDEX REGISTER | (01)
(ADDED TO BASE ADDRESS)

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -

EFFECTIVE ADDRESS (BASE + INDEX + P15) 0

INDEX REGISTER J (10)
(ADDED TO BASE ADDRESS)

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -

EFFECTIVE ADDRESS (BASE + INDEX + P15) |

INDEX REGISTER K (11)
(ADDED TO BASE ADDRESS)

PROGRAM COUNTER BIT 15
(P15)

MEMORY ADDRESS BUS -

EFFECTIVE ADDRESS (BASE + INDEX + P15)

15

]

0! 0010010010010

INDEX COUNT (22222g)

(=]

ot nornot ol oI

15

EFFECTIVE ADDRESS (333338)

[

10.'.1101|.|Ioll.'10.|.|lo.|.l

INDEX COUNT (133333g)

(=}

i

l'.O.OII.O.Oll.O.Oll .O.OlI.OLO

—

23 15

EFFECTIVE ADDRESS (1444448)

[
-

(/0000100100100

-l

INDEX COUNT (444448)

D

'.0.'|'.°1'1'.°,'1'.0.'|',°,'

|
A

—

L {
EFFECTIVE ADDRESS (1555558)

Figure 2-3. Examples of Compatibility Mode Indexing

MI160-028B

2-11

0830007-000
Original 8/79

ENABLE
20-8IT
ADDRESS

!

ACCESS (P)
FOR

INSTRUCTION

!

DECODE
OP CODE AND
ADVANCE P

EXTENDED
INST

YES

NO

YES

NO
EMA €-0+(X) EMA€-Q EMA® A EMA S A4(J) EMA<4- 0
| I
SUM
19-15=0
YES

EMA@-EA

EMA®- (P)

ACCESS EMA
FOR INDIRECT
REFERENCE

YES

NO

PERFORM
OPERATION
ON EMA

EMAS— EA*{X)" [EMA @ EA

|

15-BIT ADDRESS

6-BIT ADDRESS

0-BIT ADDRESS

*BRANCH INDEXED BY J LONG
-BRANCH AND LINK UNRESTRICTED
- EFFECTIVE MEMORY ADDRESS

-J REGISTER

-PROGRAM ADDRESS REGISTER
X-----INDEX REGISTER (I, J, or K)
()r-e CONTENTS OF

212

Figure 2-4. Memory Referencing Sequence, Address Extension Mode

Mi2420

Standard long branch and all extended instructions are not
biased by the map bits. The 16-bit address in long branch
instructions, and the 20-bit address in word 2 of extended
instructions are used unmodified.

Indirect Addressing

Unlike the Compatibility Mode which provides for two
indirect address word formats, the Address Extension Mode
provides for only one indirect address word format. When
the indirect bit in an instruction is set, the word retrieved
from memory has the format as illustrated below.

ADDRESS EXTENSION MODE
INDIRECT ADDRESS WORD

! T 1 i T T

ADDRESS

*| X

I
23 22 21 20 19 0

RN

The indirect address word, with its 20-bit address field,
provides for accessing up to one megaword of memory.
Another ievel of indirect addressing may be specified by
setting bit 23. Each fevel of indirect reference may be
indexed to provide further address modification.

Indexing

Standard long branch and extended instructions are
indexed in the Address Extension Mode in the manner
described for indexing in the Compatibility Mode, with the
exception that the EMA is 20 bits wide. Indexing of 15-bit
memory reference instructions, however, differs in the
Address Extension Mode.

When indexing is specified in a 15-bit address memory
reference instruction, the result of the index operation may
be defined to be either a local reference address (indexed
address is in same map), or a global reference address
(indexed address is in another map). In either case, an EMA
is calculated by adding the 15-bit operand of the memory
reference instruction to the 24-bit contents of the specified
index register, and then examining bits 19-15 of the result
to determine if the result should be qualified by map bits
PC19-15.

If the sum of bits 19-15 of the result of the addition is
equal to zero, the address is mapped into a 20-bit address
by appending bits PC19-15 to bits 14-0 of the result. This is
the local map case where the calculated address is less than
32K so that the result is a displacement within the same
map.

If the sum of bits 19-15 of the result is not equal to zero,
PC19-15 are not appended and the EMA is equal to the
20-bit result of the index operation. This is the global map
case where bits 19-15 of the result specify another map.
The map bits are not used and the EMA is the result of the
index operation.

0830007-000
Original 8/79

Address Translation

“pages”’. A translation scheme is applied to the
most-significant bits of all memory references. This scheme
consists of adding a base address (VBR contents) to the 10
most significant bits of the effective memory address to
select a page of memory. The remaining bits of the original
memory reference are used to select a specific word within
the selected page. Figure 2-5 illustrates the address
translation scheme of the VM logic. Figure 2-6 provides an
example of the address translation using a standard memory
reference instruction.

Address translation is implemented via the Virtual
Address Registers (VARs) and the Virtual Base and
Virtual Limit Registers (VBR and VLR). Each VAR has a
unique number, or address, from 0 through 4095. A
specific VAR is seiected by adding the ten most
significant bits (MSB) of the 20-bit memory reference
address to the contents of the VBR. The selected VAR,
in turn, contains an address corresponding to 1-of-1024,
1K-word pages.

In practice, the user program is assigned (by the software
operating system) a group of sequential VARs. The lower
limit of the user program area, and the base for computing
VAR addresses, is established by loading the VBR with the
first VAR address in the group. The user program upper
limit is established by the VLR contents corresponding to
the number (quantity) of assigned VARs. Since the MSB
value is added to the VBR to compute VAR addresses, the
VLR must contain a quantity that is one less than the
number of VARs assigned to the user's program. Referring
o Figure 2-6, VAR address 10g is specified when the MSB
value equals 0, 17g when MSB equals 1, 20g when MSB
equals 2, and 218 when MSB equals 3. In this example, the
VLR is preloaded with a count of 3. When the MSB value
exceeds this count, a limit violation is generated. See
paragraph describing demand paging operation. The VARs,
VBR, and VLR are loaded under program control in the
Monitor Mode.

120 HERTZ CLOCK

This clock continuously transmits 120 or 100 mainframe
interrupt signals per second, depending on power line
frequency. The interrupt signal is controlled completely by
enabling (or disabling) the assigned CPU interrupt level. The
first interrupt following an enable signal will occur in less
than 1/120 (1/100) of a second because the clock never
stops transmitting signals; however, all subsequent
interrupts will be precisely 1/120 (1/100) seconds apart.

2-13

0830007-000
Original 8/79

214

Figure 2-5. Address Translation, VM User Mode

LOADED UNDER
PROGRAM CONTROL
8Y TOP INSTRUCTION
| USER PROGRAM
3 ! MEMORY REFERENCE
Y T 1 T T T T T T T T
USER PROGRAM USER PROGRAM .
LOWER LIMIT VEBR UPPER LIMIT VLR Mmsg LS8
L1 1 11 i 1.1 11 1 | W OO N B DO P T i1 1 1 1 1 1. 1.1 L1 11 114 1
7T) 73232120 19 9 0 g 0 5 0
o -/ \ /\ /
2V / \/
CONTROL
COMPARE (VLR)
AND
ADDRESS MSB
GENERATE
LIMIT
VIOLATION
If ABOVE
UPPER LIMIT
ADD (VBR)
10
ADDRESS MSB
SELECT ONE OF
4096 VARS
L]
PAGE NUMBER
(0-1023) VAR
NN NN
By
Vv A4
ACCESS
MODE
SELECT ONE SELECT ONE
OF 1024 OF 1024
PAGES WORDS
\
EFFECTIVE ! ! ! ! !
MEMORY PAGE WORD IN PAGE
ADDRESS
HEEEEEEEEEEEENE NN
™ o 5]
Mi2421B

0830007-000
Original 8/79

LOCATION (OCTAL) LABEL MNEMONIC OPERAND
00005 TMA XYZ
05560 XYz DATA 5

23 14 (3
Y
05g *, X 055608
(TMA OP CODE) (ADDRESS TO BE TRANSLATED)

EXPANDED 20-BIT ADDRESS

1 1 J T T !

ADDRESS IS DIVIDED INTO 10-BIT
MSB AND 10-BIT LSB FIELDS 0000O0O0OOCOT1TO}JY1IT O 1110000

USER VAR ASSIGNMENTS

/VAR
ADDRESS
168 178 208 218
I ¥ 1 T 1 1] I] L 1 L
00001 00O0T1 0 0001001010 000011 1T 11O 000O0OT1 1000
-1 L.t 1111 %31 1 | T N W I T O | 1 | I T W N N O U U N T A T B T B B |
23229 0.23 22.9 023 229 023 22,9 9
Y Y A Y
ACCESS PHYSICAL ACCESS PHYSICAL ACCESS PHYSICAL ACCESS PHYSICAL
MODE PAGE MODE PAGE MODE PAGE MODE PAGE
42, 112, 75, 30,
8 8 8 8
VBR VLR
I 1 Ll 1 T i
0000O0OO0OO0OTI1 110 000O0OO0OOGO T 1
) S S I I O A | | I T T Y I Y
n 4] 23222120199 0
A\ J L. A J
Y Y Y
1ST VAR ADDRESS = |68 CONTROL VAR COUNT =3

(VBR) + MSB = VAR ADDRESS OR 168 + 28= 208
(VAR ADDRESS) = PHYSICAL PAGE OR 758
MEMORY ADDRESS IS WORD 15608 (LsB) OF PAGE 758

PHYSICAL ADDRESS IS 1735608

bW N —

Mi2422

Figure 2-6. Address Translation Example, VM User Mode

0830007-000
Original 8/79

The accuracy in using this clock is a function of the user
interrupt routine logic. For example, if the clock is used to
update o “time-in-seconds’’ counter by adding onc count
every 120 (100) interrupts, the “‘current time’’ at any given
query will be accurate within 1 second. If, however, the
counter -is updated each interrupt — 1/120 (1/100} — and
divided by 120 {100) when ‘‘current time’’ is queried, the
accuracy will be within 1/120 (1/100) of 1 second.

A simple example of coding, where the clock is assigned to
priority interrupt Group 1, Level 22, is as follows:

-

Lo R initialize Clock Routine
INITCT TMA = B22

(A) = Bit 22

TME = B22 . (E)=Bit 22

UA1 . Arm G1/L22

UE1 . Enable G1/L22

TZMCLOCK T Zero Clock Time

BUCO, J
oo A .o . Interrupt Routine
CLOCK IR b . Enter

AUMCLOCK T Increment Clock Time

BRL" CLOCK IR Restore C register and Exit

*

oo R Current Time Routine
CTIME TMA CLOCK T
ESA
DVO 120
BUCO, J
Return: {A) = Seconds
(E) = Remainder

INTERVAL TIMER

General Description

The programmable interval timer consists of a 24-bit
register (T Register), a clock, and associated control logic.
The timer can be preset and subsequently released, under
program control, to measure elapsed processor (CPU) time
or clock (real) time.

Timer Register

Supplied with the interval timer, the 24-bit Timer (T}
Register operates as a counter in two distinct modes of

operation. When not used for timing functions, the T
Register functions as an additional general-purpose register
that can be accessed through the instruction set when
operating in the Monitor Mode. Entry and display for the T
Register is provided via the MAP Terminal.

e——————— TIMER (T) REGISTER ———+
T T l i T

T 1

S S S VR N IS N S O T S U S S U N U N VO U |

2-16

Operational Description

A self-contained clock generates the 1 microsecond pulses
used to strobe the timer. In either mode of operation, a
count is loaded into the T Register and is decremented once
for each elapsed period of 1 microsecond. When the count
reaches zero, an executive trap interrupt is generated at
Group O, Level 5. A maximum count of 16,777,2151¢
(77777777g) may be loaded into the register. With a
resolution of 1 microsecond per count, a maximum time
interval of 16.777215 second:s is available.

Program Control

Interval timer operation is controlled by three instructions:
Hold interval Timer (HIT); Release Processor Time (RPT);
or Release Clock Time (RCT). A HIT instruction will
prohibit the start of any timing sequence or halt any
in-process timing operation until the timer is released by a
RPT or RCT instruction. The RPT instruction releases the
timer for measuring elapsed processor (CPU) time. In this
mode, counting is inhibited during block 1/O channel DMA
operations, whenever any interrupt is active and enabled, or
the CPU is halted. Clock (real) time operation, where the
timer counts continuously regardless of CPU condition, is
initiated by an RCT instruction.

REAL TIME CLOCK

General Description

The Real Time Clock consists of a 100 kHz
crystal-controlled clock, a counter, and associated control
logic. All components are mounted on a board which is
designed to plug into the internal controller locations of the
Programmed Input Output Channel (PIOC) board. Each
PIOC can accommodate one or two Real Time Clocks.
Although the clock has no peripheral device connected to
it, programming is accomplished via normal 1/0
instructions. More than two Real Time Clocks may be used;
the limiting factor being the number of PIOCs used in the
system. An external interrupt is provided which is
configured in the same manner as any input/output
interrupt, i.e., the interrupt can be assigned to any level in
Group 1, 2, or 3. The interrupt is generated when the
clock count reaches ZERO and the interrupt is enabled.

Operational Description

By means of the Real Time Clock, the programmer is
provided with an interval timer which operates independent
of CPU timing and provides output pulses when the CPU is
either in the Run or Halt condition. Elapsed time is
measured by counting down the pulses in the counter. A
selected time interval is preset in the counter by loading up
to three, 8-bit bytes into the counter. Clock output pulses
occur at 10 microsecond intervals. A maximum time period

of 167 seconds is available when the counter is loaded with
all bits set in the three bytes. Thus, the programmer can
preset the clock for time intervals from 10 microseconds to
167 seconds in 10 microsecond increments. Since the Real
Time Clock is asynchronous with CPU timing, the period
’ may be off by 10 microseconds on the first count-down
cycle.

Command and Status Word Formats

As a result of the CPU issuing an Output Command Word
{OCW) instruction, a command word is transferred from
the A Register to the Real Time Clock. The command word
initiates operation of the clock, and provides the necessary
set-up and control functions. A description of the function
performed by each bit of the command word is given
below.

7 6 5 4 3 2 1 0

Run/ Load Enable Enable| Byte | Byte | Enable Enable
Bits | Count| Count| Auto

Hold | Preset Snapshot o Interrupt
Count 0-3 2! 2 Restart
Bit O (1) Enable count zero interrupt

(0) Disable count zero interrupt

Bit 1 (1) Enable Automatic Restart of preset count
(0) Go into hold mode at count of zero
Bits 2, 3 Byte count for input and output

Bit 4 (1) Sample bits 3-0
{0) Hold bits 3-0 unchanged

Bit5 (1) Enable count snapshot output
(0) No action

Bit 6 (1) Enable loading of preset count
(0) No action

Bit 7 (1) Enable count down
(0) Hold count down

An Input Status Word (ISW) instruction generated by the
CPU results in the status word being transferred from the
Real Time Clock to the A Register. The clock status word
consists of bit 0 only. It is set to the ONE state whenever
the clock module is plugged into the PIOC board,
indicating to the CPU that it is on-line.

0830007-000
Original 8/79

Program Control

Real Time Clock operation is controlled with four
instructions: Qutput Command Word (OCW), Input Status
Word (ISW), Output Data Word (ODW), and Input Data
Word (IDW). Each Real Time Clock is addressed by a
channel-unit code combination in the same manner as any
1/0 device. If one Real Time Clock is installed, a unit code
of 00, 01, or 02 is assigned according to its plug-in location.
If two Real Time Clocks are installed, unit codes of 00 and
02 are assigned. Access to the clock is via the A Register as
in normal 1/0 operation.

Preset Count Loading

To initialize the Real Time Clock, an OCW instruction is
generated by the CPU to transfer the command word with
bit 6 = 1, and the desired byte count in bits 2 and 3. The
CPU then provides the specified number of ODW
instructions {one per byte) to transfer the bytes to the
clock, with the most-significant byte transferred first. When
the byte count is satisfied, an OCW instruction may be
given to transfer a command word with bit 7 = 1. This
enables the counter to start counting down. If bit 7 = 0 in
any command word, counting is inhibited until a command
word with bit 7 = 1 is received. If a byte count less than
three is specified, the unused bytes in the counter are set to
ZERO:s.

Automatic Count Restart

If bit 1 = 0 in the command word, the automatic count
restart is enabled. This causes the Real Time Clock to
automatically reload the last preset count into the counter
and restart the count after the interrupt is given.

Snapshot Output

During Real Time Clock operation, the current count status
is made available to the CPU by means of the Snapshot
mode of operation. Snapshot output is initiated with an
OCW instruction and bit 5 = 1 in the command word. This
loads the 24 bit current count into a register. IDW
instructions, one per byte, transfer the contents of the
register to the CPU, the most-significant byte being
transferred first. This operation does not affect the
counting as long as bit 7 = 1 in the command word. [f an
interrupt is generated during the Snapshot mode of
operation, the mode is terminated as the count is known to
be zero.

If snapshots are performed in a program with automatic
count restart selected, snapshot time prior to automatic
restart may be 10 microseconds different from snapshot
time after automatic restart. This is because of the 10
microsecond time frame used in the Real Time Clock.
Additionally, if a snapshot is performed at the trailing end

2-17

0830007-000
Original 8/79

of a time out, before restarting or auto-restarting, the
snapshot bytes may be all zeroes. To minimize the
possibility of the foregoing occurrences, the snapshot of
any time must be accomplished in the least machine time
possible. An example of programming code that may be

used to do a snapshot in the shortest period of machine

time follows:

SNSH '
TRM SAVE Save contents of register
TOA ‘240 Run, Snapshot command
ocw C/U Output command
iDW C/U Input most-significant byte
BNZ -1 Possible wait
TAI Store most-significant byte in | register
1DW C/U Input middle byte
BNZ "1 Possible wait {needed if other units on channel)
TAJ Store middie byte in J register
IDW C/U Input least-significant byte
BNZ "o Possible wait (needed if other units on channei)
TAK Store least-significant byte in K register
TIA Restore most-significant byte in A register
LLA 8 Shift over 8 bits
TJB OR in middle byte into A register
LLA 8 Shift over 8 bits
TKB OR in least-significant byte into A register
TAM TIME Store whole word of time for later use
TMR SAVE Restore registers
BUC* SNSH Exit

SAVE BLOK 5§ Register save area

TIME DATA O Register save area

Selection Sampling

Selection Sampling is included as a feature of the Real Time
Clock for the convenience of the programmer. Since the
programmer would normally want to keep command word
bits 3-0 constant while he uses bits 7-5, bits 3-0 are sampled
only when command word bit 4 = 1.

FIRMWARE BOOTSTRAPS

The firmware bootstrap automatically stores in memory a
loader program that permits a more complex program to be
stored. Any program can be loaded as long as it is in
bootstrap format; however, the most common application
is to load a loader program which allows other programs,
operating systems, diagnostics, or other data to be stored in
selected memory locations.

Sources available for transferring a program to memory
via a selected peripheral device include disc, card reader
{(word mode), card reader (block mode), and magnetic
tape. The operation of the bootstrap is implemented at
the MAP Terminal.

BIT PROCESSOR

General Description

The bit processor consists of the single-bit H Register, a
20-bit V Register (base register), and the associated control
logic. The bit processor provides the capability to
selectively change, store, or test a bit from memory.

Bit Processor Registers

Two registers are associated with the bit processor feature.
A single-bit element, the H Register, retains the bit selected
for use in the operation. The 20-bit V Register is employed
to store a base address that is, in turn, used to define a
memory location from which the designated bit will be
retrieved. The V Register stores an 18-bit base address in
the Compatibility Mode, or a 20-bit base address in the
Address Extension Mode. Both the H and V Registers are
directly programmable via the special group of bit
processor instructions. Provision is made via the MAP
Terminal for entry and display of the bit processor
registers.

BIT PROCESSOR REGISTERS

H REGISTER

[¢]
le——— V REGISTER———
1 T T T 1 1

Operational Description

The V Register is loaded with a base address which specifies
a memory location to be manipulated. This is accomplished
by transferring an 18-bit (Compatibility Mode) or 20-bit
{Address Extension Mode) memory address from the K
Register. The instruction word further defines the memory
location, the specific bit, and the operation to be
performed.

After the operation is performed on the selected bit, the
results are displayed in the Condition Register.

Program Control

Two types of instructions are associated with bit processor
operations. The first (shown below) specifies a
displacement (bits 7-0) to be added to the base address (V
Register contents) to specify the location to be accessed.
Bits 12-8 (binary coded) are used to select a specific bit to
be used in the operation. The op code is defined in bits
23-13.

T T 1 1 T T T

OP CODE b d

S IS VU I D [N S G N | I N S N NS S B |
23 13 12 8 7 0o

. The second word format is used for bit movement or
transfers where a specific bit from memory is not required.
Bits 23-12 contain the op code; the remaining bits are
undefined.

N

22 i2

[

Bit Processor Instruction Set

The bit processor (Boolean function) group of instructions
provides for logical manipulation and interrogation of a
specified bit seiected from an effective memory address or
the H Register. The bit processor instructions are described
in Section VII of this manual.

STALL ALARM

The stall alarm is enabled and disabled by the key switch
on the switch panel. When the key switch is in the
PANEL LOCK position, the stall alarm is enabled. It is
disabled in the other two key switch positions. When the
stall alarm is disabled, normal CPU operations take place.
Once the stall alarm is enabled, a 128-cycle counter is
activated whenever certain instructions are executed or
certain operating conditions are encountered. Operation
of the counter is program dependent. The counter is
incremented once each active CPU cycle until the
specified instruction or condition is removed. If the
instruction or condition is still present after a minimum
of 128 CPU cycles, an executive trap interrupt is
generated at Level 5 of Group 0.

The following instructions and/or CPU conditions will
activate the stall alarm counter.

Input Address Word (IAW)

Input Data Word (IDW)

Input Status Word (ISW)

Input Parameter Word (IPW)

Output Address Word (OAW)

Output Command Word (OCW)

Output Data Word (ODW)

Transfer Doubie to Source and Destination Registers (TDS)
Transfer Source and Destination Registers to Double (TSD)
Transfer A to 1 Virtual Address Register (TAR)

Transfer Double to 2 Virtual Address Registers (TDR)

0830007-000
Original 8/79

Transfer 2 Virtual Address Registers to Double (TRD)

Transfer Double to Paging Limit Registers (TDP)

Transfer Paging Limit Registers to Double (TPD)

Transfer Usage Base Register and Demand Page
Register to Double (TUD)

Transfer E to Usage Base Register (TEU)

Query Virtual Usage Register (QUR)

Query Not-Modified Register (QNR)

Release Operand Mode (ROM)

Release User Mode (RUM)

Unitarily Arm Group 1 Interrupts (UA1)

Unitarily Arm Group 2 Interrupts {UA2)

Unitarily Arm Group 3 Interrupts (UA3)

Unitarily Disarm Group 1 Interrupts (UD1)

Unitarily Disarm Group 2 Interrupts (UD2)

Unitarily Disarm Group 3 interrupts (UD3)

Unitarily Enable Group 1 Interrupts (UE1)

Unitarily Enablc Group 2 Interrupts (UE2)

Unitarily Enable Group 3 Interrupts (UE3)
Unitarily Inhibit Group 1 Interrupts (Ul1)
Unitarily Inhibit Group 2 Interrupts (Ui2)
Unitarily Inhibit Group 3 Interrupts (Ul3)
Transfer Double to Group 1 (TD1)

Transfer Double to Group 2 (TD2)

Transfer Double to Group 3 (TD3)

Transfer Double to Group 1 (TD4)

Transfer Double to Group 2 (TD5)

Transfer Double to Group 3 (TD6)

Update Stack Pointer (USP)

Branch and Save Return — Long (BSL)

Branch and Save Extended (BSX)

Hold External Interrupts (HX1)

Hold Interrupts and Transfer | to Memory (HTI)
Hold Interrupts and Transfer J to Memary (HT.J)
Hold Interrupts and Transfer K to Memory (HTK)
Execute Memory (EXM)

Release External Interrupts (RXI)

Transfer Registers to Memory (TRM)

Transfer Memory to Register (TMR)

Branch and Reset Interrupt Long (BRL)

A halt condition

An indirect memory cycle

Each of the preceding instructions or conditions prohibit
the recognition of external interrupts for a period of one
cycle following completion of the instruction. Executing a
series of these instructions sequentially will lock out
external interrupts for the entire series. Multi-level
indirect addressing can produce a similar effect, since the
instruction must satisfy all address references before

completion. (Interrupts occur only on instruction
boundaries.) A halt condition — whether as a result of
programmed halt or operator action — also prohibits

external interrupt recognition by the CPU.

2-19

0830007-000
Original 8/79

If a power failure occurs, the stall alarm becomes
disabled. However, when power is restored, the stall alarm
is re-enabled and operations continue in a ncrmal reutine.

With the exception of an EXM instruction or an indirect
cycle, the monitored operation is terminated. An EXM
chain (where an EXM instruction references another EXM
which, in turn, specifies a third, etc.) has the same overall
effect as an indirect chain in that all references must be
completed before the sequence is complete. Therefore, if
an EXM or indirect cycle is in process when the executive
trap is generated, the stail alarm logic automatically
terminates the sequence. If a block 1/O channel is
transferring data into memory when the executive trap
interrupt is generated, the current cycle is completed
before termination occurs and the trap takes control. If a
halt condition is in effect when the executive trap
interrupt is generated, the stall alarm logic automatically
forces the CPU into a run mode.

ADDRESS TRAP

General Description

The address trap queries each referenced memory address
and compares it to the address preset in the Query
Register. A comparison between the reference and preset
address causes an executive trap interrupt to be generated.
Hardware includes a register, a 20-bit comparator, an
interrupt trigger circuit, and associated control logic.

Query Register

A 23-bit address Query Register is supplied with the
address trap. Bit positions 19 through 0 contain the trap
address. Bits 23 through 21 are the address trap control
bits. When an address is reached in program that coincides
with the address stored in the Query Register, an
interrupt is generated. The Query Register may be loaded
under program control or via the MAP Terminal.

f——————— QUERY REGISTER——————={
T Al T 1 I 1
TRAP ADDRESS

ASSOTUE T YN OO TS W Y N VNS U WO O Y S S B W
2322 21 19 o
\.V-/

CONTROL

Operational Description

The Query Register is loaded with the Transfer Memory
to Query Register (TMQ) instruction. This instruction
transfers the contents of the selected memory location to
the Query Register. The 20 least-significant bits,
representing the trap address of the memory word, are
loaded into bit positions 19-0 of the Query Register.
Memory word bit 20 is not used, and bits 23-21 of the

2-20

memory word are loaded into bit positions 23 through 21
of the Query Register. These three bits determine the
mode of operation to be performed and have functions as
follows:

Bit 23 = ONE
Bit 23 = ZERO

Disable Address Trap
Enable Address Trap

Bit 22 = ONE Trap only on write

Bit 22 = ZERO Trap each time selected address
is referenced

Bit 21 = ONE Trap only during User Mode

Bit 21 = ZERO Trap only during Monitor Mode

The address trap is enabled or disabled with bit 23 of the
Query Register. The address trap is enabled when bit 23
is reset, or ZERO. Each time a referenced memory
address corresponds with the address stored in the Query
Register, an executive trap interrupt at Group 0, Level 4
is generated to inform the CPU. When the trap occurs,
the instruction in process is allowed to compiete
execution. Since up to four instructions may be
prefetched from memory, an address trap interrupt caused
by an instruction prefetch may occur during an
instruction preceding the one causing the trap. When bit
23 is set (ONE), the address trap is disabled. Disabling the
trap inhibits the executive trap interrupt.

Additionai coniroi of the address trap is provided with
bits 22 and 21. With the trap enabled and bit 22 set
(ONE), the executive trap interrupt is generated when a
write operation is made to the referenced location. If bit
22 is reset (ZEROQ), the interrupt is triggered whenever
the referenced location is accessed. With bit 21 set
(ONE), the address trap is enabled during the User Mode
of operation; if bit 21 is reset, the trap is enabled during
the Monitor Mode. The memory address is taken from the
CPU at a point prior to the address translation so that
logical addresses are subject to the provisions of the trap.

Memory addresses that result from DMA operations by
block 1/0 channels are not affected by the address trap.

Program Control

With the Query Register loaded and the address trap
enabled, an interrupt is generated (in accordance with the
control bit settings) each time a reference is made to the
memory location corresponding to the address stored in
the Query Register. If it is desired that a reference to the
selected memory location be recognized only once, a
second TMQ instruction should be executed following the
first interrupt to set bit 23 of the Query Register to a
ONE. This disables the address trap.

0830007-000
Original 8/79

SECTION 111
MEMORY SYSTEM

GENERAL DESCRIPTION

Harris 800 systems are configured with main memory,
cache memory and, optionally, extended memory and/or
shared memory. Data and addresses gated to the system
buses are available to all memory units. Maximum
memory system capacity is three megabytes. Error
detection and correction circuits are provided with each
memory module.

Data transfers are over a 48-bit, asynchronous,
bidirectional system data bus. Other buses provided
include a 22-bit system address bus and a system control
bus. All functional elements in the computer system
communicate with each other through the system buses.
The asynchronous bus system allows each system element
to function at its own rate, independently of the other
system elements. For example, concurrent direct memory
access 1/O transfer and CPU instruction execution. All
buses are located on the backplane which is common to
all boards in the system. This interconnection scheme
eliminates the need for discrete wiring between the
various boards in the system.

Transfer of data between the CPU and memory is over 24
or 48 of the data bus lines. CPU and Programmed Input
Output Channel (PIOC) data transfers use 8 of the data
bus lines. Data transfers between memory and the Integral
Block Channel (IBC), External Block Channel {(XBC), and
Direct Memory Access Communication Processor
(DMACP-8) is via 24 data bus lines. Buffered Block
Channel (BBC) data transfers to and from memory occur
on 24 or 48 lines. All block channels, once initialized, can
perform blocked data transfers between memory and the
peripheral device without CPU intervention.

MEMORY MODULES

Main memory, extended memory, and shared memory
consist of all semiconductor memory modules. The
following paragraphs describe the memory modules used,
and the various modes of operation.

64K MOS Memory Module

The basic storage element of the semiconductor memory
module is an N-channel metal oxide semiconductor (MOS)
random access memory (RAM). A dynamic device, the
RAM requires a periodic rewrite, or refresh, cycle to
retain the stored data. It is also volatile — its data content

is lost when power is removed from the device. As in all
semiconductor memories, the RAM has a non-destructive
readout as opposed to a magnetic core memory which has
a destructive readout. In addition to the RAM storage
elements, each semiconductor memory module contains
an address register, a memory data register, timing and
contro! circuits, and data ¢ i ircui
Memory module capacity is 192K bytes. Modules are
addressable as single words of 29 bits, where five of the
bits represent the error correction code. They are also
addressable as double words of 58 bits to provide a
double-word transfer capability. In this case, ten bits (five
per word) represent the error correction bits.

The 64K MOS memory module has a cycle time of 400
nanoseconds and a normal access time of 290
nanoseconds. Fast access time is 45 nanoseconds.

Operating modes of the memory modules include the
Read Mode, Write Mode, and Power Fail Refresh Mode.
In either Read or Write Mode, a double word of 48 bits
or a single word of 24 bits may be selected.

Read and Write Operations

A memory module always operates on two, 24-bit words
at a time. These two words have the same address, except
for the least significant address bit which defines the
“even word” or the “odd word”. If the specified
word is at location 00 (even word), for example, the
words at locations 00 and 01 are accessed simultaneously.
If location 01 contains the specified word, the same two
locations are accessed.

A read operation causes data in the location specified by
the address on the system address bus to be transferred
from memory to the memory data register. A single- or
double-word transfer is then made from the data register
to the system data bus. If a single-word read operation is
specified, two words (even and odd addresses) are
retrieved and loaded into the memory data register. Then,
according to the address, the even or odd word is gated
to the bus. If the addressed word contains an error, the
parity error signal is asserted. A double-word read
operation places the addressed words into the data
register and onto the data bus. If an error is detected in
either word, the parity error signal is asserted.

31

0830007-000
Original 8/79

On a write to memory operation, data on the system data
bus is loaded into the memory data register. Data is then
transferred from the register to the location in memory
specified by the address bits on the system address bus.
Single or double words may be stored in memory during
a write operation. For a single-word write operation,
memory accepts the word from the system data bus and
places it into the appropriate half of the data register
according to the least significant address bit (even or
odd). It calculates the error correction bit(s) and writes
the word into memory. Simultaneously, the other word is
read from memory and is placed into the data register.
Thus, the other word is available for fast access if the
next access is a read to the same address. In a
double-word write operation, both the odd and even
single words on the data bus are loaded into the data
register. The error detection bit(s) for each word is
calculated and then a write operation is performed to
store the two words into the addressed location.

Fast Access Operation

Each memory module has a 48-bit memory data register,
termed a Content Addressable Buffer (CAB), to improve
system performance by reducing the effective cycle time
of the computer. Each memory access fetches and {oads
the two, 24-bit words into the CAB. When the CPU
requests a word from memory, a memory access is
performed and the word is transferred over the system
data bus to the CPU. However, if the CPU requires the
next sequential word, it is transferred from the CAB to
the CPU without requiring a second memory access. The
CAB significantly reduces the fetch and execute time for
sequential words.)

MAIN MEMORY

Main memory is configured with 64K MOS semiconductor
modules. Thus, minimum main memory size is 192K bytes
which can be expanded in 192K byte increments up to 3M
bytes.

EXTENDED MEMORY UNIT

Main memory can be expanded to the system maximum
capacity of 3M bytes by including an Extended Memory
Unit. This unit is housed in a separate cabinet which can
be configured with up-to-16, 192K byte memory
modules. CPU access is via port and interface modules
supplied with the unit.

When used to expand main memory, the Extended
Memory Unit is considered to be an extension of main
memory so that addressing is continuous and
uninterrupted. Since only one port is used in an extended
memory system, no execution time is lost because of

3-2

contention between CPUs for the same memory. A loss in
instruction execution time s ncurred when accessing
extended memory.

SHARED MEMORY UNIT

General Description

A Shared Memory Unit may be configured with up to
four chassis, each of which can contain up to six memory
ports. Each chassis may contain up to 3M bytes of
memory. Ports may be connected to CPUs or to either
types of devices. For Harris 800 CPUs, main memory plus
shared memory may not exceed 3M bytes. A single Harris
800 CPU may be interfaced with up to four Shared
Memory Units. Total addressable memory available to
each CPU is 3M bytes.

Shared memory is designed as a six-port, asynchronous,
ring priority access system. Access through the ports is
nonsimuitaneous. The ring priority system which services
cycle requests uses a fixed rank priority for granting
memory cycles to pending requests. However, no port is
granted a second cycle until all previously received
requests have been serviced. Priority is determined by the
physical focation of the port board in the shared memory
chassis.

Port boards are available with a port index for use with
CPUs having a cache memory system. The port index is a
duplicate of the cache index, and is used to record the
addresses stored in cache that correspond to the portion
of shared memory associated with the port. This insures
that the cache index is updated to correspond with the
current data stored in shared memory.

Programming Considerations

In shared memory systems, a loss of instruction execution
time is incurred when accessing the shared memory
portion of the memory system. If two or more ports
request entry simultaneously, access time increases for the
lower priority port(s) which must wait to access memory.

Semaphore Operation

Shared memory supports read and lock, and write and
unlock functions. Upon receipt of a read and lock
command, the port locks the addressed memory module
by initiating a read cycle, and prohibits entry to all
memory modules from any other port. The shared
memory remains locked until it receives a write and
unlock command from the same port that initiated the
lock function. The lock and unlock sequence always
occurs in pairs. During the lock interval, 1/0 access is
inhibited. Four instructions, the Transfer Flag to Memory

(TFM), Transfer Zero to Memory (TZM), Flag Bit of
Memory (FBM), and Zero Bit of Memory (ZBM)
instructions, implement the lock and unlock functions.
Shared memory performance is directly affected by the
. frequency of execution of these instructions, e.g., a
program containing many TFM instructions will lock up
shared memory for prolonged time periods, inhibiting
entry by other ports.

ERROR CORRECTING AND REPORTING

Error Correction

Single bit error correction is provided by error correction
circuits contained on each memory module. All one-bit
errors are corrected by this circuit. Detection of a parity
error does not halt the machine.

All wiite operations io memory wiii store either 24 or 48
bits of data and 5 bits of Hamming Code parity for each
24-bit data word. These parity bits are generated by the
memory module whenever data is asserted for a write
operation. All memory read operations regenerate the
Hamming Code from the stored data bits and compare
this with the stored Hamming Code. This comparison
generates an address code that points to the bit in error,
and the correction circuit corrects the error. The
corrected data is stored in the memory data register and
is written into the appropriate memory location. This
corrected data may then be obtained from the memory
data register by a read operation to the same address,
with no other operation intervening.

Error Reporting

Memory errors are reported to the system by means of
the priority interrupt structure. A register is provided
which saves the physical memory address at which a
parity error occurs. In addition, if memory fails to
respond within a specified time interval, a hard error is
reported and the address is saved.

Parity Errors and Interrupts

When a parity error is generated as the result of a read
operation, a retry is performed in which the location is
read again. If no parity error is generated during the
re-read operation, indicating that the error correction
circuits corrected the error, the parity error is termed a
‘ “soft” parity error. If a parity error is asserted during a
read operation and again on the re-read operation,
indicating that the error was not corrected by the error
correction circuits, the condition is referred to as a
“hard” parity error.

0830007-000
Original 8/79

Each time a hard parity error occurs, an executive trap
interrupt is generated at Group 0, Level 1. This interrupt
is also asserted if a memory time-out condition occurs.
For each soft parity error generated, an external priority
interrupt is triggered. A count of the number of hard and
soft parity errors may be recorded by software. The
operating system may then respond according to the type
and number of errors recorded.

Parity Error Address Register
The 24-bit Parity Error Address Register (PEAR) retains

the physical memory address associated with a memory
parity error or memory time-out location. Two of the
register bits provide for recording the type of operation
causing the error. The contents of the PEAR may be
retrieved with the Transfer Parity Error Address Register
to A (TPA) instruction.

PARITY ERROR ADDRESS REGISTER

1 T T T 1 l L

00 PHYSICAL MEMORY ADDRESS

L { S S S VU N TN N (N e S U (N T B A S R U |

23222 20 19 [o]
N

ERROR
CAUSE

Bits 19 through O trap the address corresponding to either
the parity error or memory time-out location. The
time-out is defined as no response to a memory command
for a period of 10 microseconds. Bits 21 and 20 are
defined to be zeroes, and bits 23 and 22 record the type
of operation causing the interrupt. Bits 23 and 22 are
defined as follows:

23 22 Error Cause

0 0] parity error on instruction access
0 1 parity error on operand access

1 0 parity error on I/O access

1 1 time out — no memory response

In the event that a hard error is detected following a soft
error before execution of the TPA instruction, the hard
error address replaces the soft error address in the PEAR.
If a second hard error or second soft error is detected
prior to execution of the TPA instruction, no action is
taken,

33

0830007-000
Original 8/79

CACHE MEMORY

Operational Description

Cache memory enhances system performance by reducing
the number of accesses made to main memory. When
cache contains the data for a specified address, cache
provides the data and no memory access is made. If the
address and data are not stored in cache, a memory access
is made to obtain the data. If the system software
restricts memory accesses to small groups of locations
over short periods of time, the time saving is considerable.
When cache contains the requested address and provides
the data, the condition is called a ‘hit’”’. When the
cache does not have the requested address and data in
storage, and the data is provided by main memory, the
condition is called a “miss”. The ratio of hits to misses
is dependent on the system software characteristics.

The cache data storage is configured as 1024 addresses by
48 bits and is divided into two, 512 double-word sections.
One section, called the instruction section, stores only
instructions. The other section, called the operand
section, stores operands. A control line informs cache
whether accessed data is an instruction or operand.

Addresses corresponding to the data stored in cache are
stored in locations called the instruction index and the
operand index. When the CPU accesses memory, the
address is presented to the memory modules and the
cache. The cache compares the address to the addresses
stored in the instruction index and operand index. If a hit
occurs, data is transferred from the cache to the data bus.
When a miss occurs, data is read from main memory.

When the cache is fuil, a new instruction or operand is
stored at a location determined by the address generated.
The cache is updated whenever the CPU performs a write
operation, or a read operation with a miss. 1/0O write
operations with a hit invalidate, but do not update the
cache location addressed.

Algorithm for Filling Cache

When a memory read operation is performed, the ten
least significant bits of the EMA select a location in the
cache. Refer to Figure 3-1. The contents of the
instruction index and operand index are then compared
to the ten most significant bits of the EMA. If there is a
compare, the data is read from the cache. If the address
does not compare, the cache location is purged. Data is
then read from main memory and is loaded into the CPU
and cache.

On a memory write operation, the ten least significant bits
of the EMA select a location in the operand section of the
cache. The contents of the selected location are purged and
replaced by the CPU write data which is also lcaded into
main memory.

NOTES

1) The cache monitors |/O memory write
operations to eliminate stale data.

2) CPU memory write operations are
monitored to eliminate stale data
in the instruction storage section.

3) The index is updated with EMA19-10
each time the cache is loaded.

Programming Considerations

Cache is transparent to the programmer except when an
address is generated outside the bounds of physical
memory. If non-existing memory is addressed, the address
and data are stored in cache. The cache then responds to
the address, and data is read out of cache although no
memory exists for the addressed location.

A search is performed by the operating system to determine
the amount of memory available. An ODW instruction is
executed to issue a command word to the cache to place it
offline. Write and read operations are then performed to
verify the amount of memory inciuded with the system. At
the conclusion of the memory search operation, the cache
is placed online. All user programs are run with the cache
online.

Cache stores 1024 instructions and 1024 operands.
Although each section contains 512 double words, cache is
updated a single word or double word at a time. Since the
purpose of cache is to reduce the number of memory
accesses, efficiency depends on cycling the instructions and
operands stored in the cache. Better performance is
achieved by looping programs within the 1K areas of cache.
When running large programs straight through without
looping within the 1K areas, performance may be degraded.
A loss in time is associated with not obtaining a cache hit
since the cache must search for requested addresses and
data. In addition, a cache miss requires that a memory
access be made to fetch the requested data.

0830007-000

Original 8/79
EMA MSB LS8
O i ng‘ "
Y Y
AN
CACHE MEMORY

0

IR

———————————————————————— -

INSTRUCTION INSTRUCTION DATA
{ INDEX STORAGE
511
COMPARATOR 5
‘ OPERAND OPERAND DATA
HIT OR MISS INDEX STORAGE

511

— AL J

Y Y
10 BITS 48 BITS
Mi2418

Figure 3-1. Cache Memory Operation

3-5/(3-6 Blank)

0830007-000
Original 8/79

SECTION Vv
INPUT/OUTPUT CHANNELS

GENERAL DESCRIPTION

The computer system input/output (1/O) structure
combines the characteristic economy of unit I/O systems
with the speed of a channel 1/0 system. This configuration,
in conjunction with the 1/0 instructions, permits maximum
fiexibility in /0 communications. The relationship
between the CPU and the I/O structure is illustrated in
Figure 4-1..The elements comprising the /O structure are
described in the following paragraphs.

The basic 1/O structure allows single word data transfers
between the Central Processing Unit (CPU) and a peripheral
unit. It also allows 1/0 command and test operations to be
program controlled. Block I/O channels may be used to
control the transfer of blocks of data between the CPU and
the peripheral units without program intervention.

The /0 structure involves communication (such as data
transfers, addresses, and command status information)
between the CPU and a peripheral unit by way of a
channel. The CPU communicates with a specific channel
and the channel, in turn, communicates with a peripheral
unit. The 1/0 structure varies with CPU configurations to
accommodate an applicable number of input/output
channel (IOC) boards, all of which can be active
concurrently. A channel can communicate with from one
to sixteen peripheral units using standard 1/O instructions.
Only one peripheral unit per channel can be connected;

however, ail units can be active at any given time.

Communications between the 1/O structure and the CPU
may also be conducted on an interrupt basis. Logic in the
channel and unit allows unit interrupts to be placed under
program control and selectively enabled or disabled by
executing the appropriate 1/0 instruction. An alternate
method permits unit functions to be wired directly to the
CPU priority interrupt structure and used as interrupt
triggers.

The 1/0O interface is the link between each peripheral unit
and its channel. The interface and its associated unit
control facilities provide the physical means for connecting
the peripheral device to the I/O structure and the logic
capability that allows the unit to adapt the standard |/O
controls to its specific requirements. The interface facilities
and unit control logic are normally integrated with the
peripheral unit. However, some controllers are available as
options to the Integral Block Channel (IBC) and 8-bit
Programmed Input/Output Channel (PIOC) boards.

BASIC I/O0 CONCEPTS

The 1/O structure implements basic concepts to perform
input/output operations between the CPU and a variety of
channels and wunits. These basic concepts and their
applicability are described in the following paragraphs.

Addressing

a. Channel Addresses — The /O channels must each he
addressed via a unique address contained in each /O
instruction. A channel is patched, or jumpered, to
recognize its assigned address. The recognition of this
code in an 1/Q instruction activates channel logic to
execute the instruction. No other channel will
respond,

b. Unit Addresses — Since a channel is capable of
communicating with one or more unit controllers, any
instructions involving the transfer of data, commands,
or status must necessarily contain an address
applicable to the unit involved. The unit address is
contained in the format of the following instructions
(reference Section Vil for formats).

Output Command Word (OCW) — PIOC, IBC,
XBC, DMACP-8, and BBC

Output Data Word (ODW) — PIOC, XBC,
DMACP-8, and BBC

Input Data Word (IDW) — PIOC, DMACP-8,
and BBC

Input Status Word (ISW) — PIOC, IBC,
XBC, and DMACP-8, and BBC

Output Address Word (OAW) — IBC, XBC
and DMACP-8

Input Address Word (IAW) — IBC, and
DMACP-8

Input Parameter Word (IPW) — IBC, and
DMACP-8

4-1

0830007-000
Original 8/79

CENTRAL PROCESSOR UNIT

/O CHANNEL CONTROL

DIRECT
PROGRAMMED INTEGRAL MEMORY
/O CHANNEL BLOCK ACCESS
(F1OC) CHANNEL COMMUNICATIONS
(18€) PROCESSOR
BUFFERED EXTERNAL ADDITIONAL
(DMACP-8)
BLOCK BLOCK vo
CHANNEL CHANNEL CHANNELS
1104 (88C) (xec) 1 uPTO 8
DEVICE DEVICE COMMUNICATION
CONTROLLERS* CONTROLLER INTERFACES
11016 17016 1108

PERIPHERAL DEVICE SEVICE DEVICE PERIPHERAL PERIPHERAL

DEVICES CONTROLLERS* CONTROLLERS CONTROLLERS DEVICE DEVICES
*
TOTAL NUMBER OF INTERNAL AND EXTERNAL
DEVICE CONTROLLERS CANNOT EXCEED 16
PERIPHERAL PERIPHERAL PERIPHERAL
DEVICES DEVICES DEVICES

Figure 4-1. Computer 1/O Structure Block Diagram

BD1641A

NOTE

The inclusion of unit addresses in the IBC,
OAW, [AW, and IPW instructions has no
transfer-to-unit control. The IBC contains the
capability to concurrently store block transfer
parameters for all unit controllers on its
interface and the parameters must be
addressed to reserved storage areas.

An instruction containing a unit address, sent to any
channel other than the IBC is compared to the unit
code of the previous i If a non-compare is
detected, the channel does not execute the ISW or IDW
instruction. Instead, a disconnect/connect sequence is
entered in order to connect the addressed unit. A
non-compare detected during OCW and ODW instructions
forces the disconnect/connect sequence also, but the
channel loads the data/command, if not previously set
busy, and holds the data/command until the addressed unit
is ‘“‘connected”’ to its interface. The transfer is then
completed and the channel returns to a ‘‘not busy”
condition.

33

Disconnect/Connect Sequences

Each 10C performs disconnect/connect sequences if the
unit address contained in the instruction differs from the
previously loaded address. In disconnect/connect sequences
occurring during input instructions, the channel is
prevented from setting the “‘ready’’ line to the CPU to
verify that the instruction was executed. This requires a
Branch on Not Zero (BNZ) instruction execution after each
i/O instruction for a repetition of nonexecuted
instructions. Timeout routines sequenced by the CPU may
then detect channel/unit hangups and execute Input Status
Word {ISW) instructions to pinpoint conditions.

The IBC is not equipped to sequence disconnect/connect
operations; in this channel the unit is automatically
connected to the channel for the purpose of instruction
execution except during the time that data transfers are
taking place.

Block 1/0 Channel Priority

Up to 31 channels may contend for memory access. The
channels request memory cycles according to their assigned
priorities. When a memory 1/0 cycle is granted, the channel
with the highest active priority is enabled to access
memory. All block /O channels except the BBC are
assigned a single priority. Each BBC is assigned two
priorities to enable high and low priority data transfers to,
and from, memory.

0830007-000
Original 8/79

A programmable matrix is contained on each 10C capable
of performing block transfer operations. The matrix is
provided to resolve contention for simultaneous memory
cycle requests.

The highest priority channel requesting a memory cycle
inhibits any lower priority channel(s) from sensing a
“memory cycle granted’’ signal from the CPU. A system
should be configured to assign high speed devices a higher
priority level than relatively lower speed devices. Also, no
unused priority levels should appear between any two
channel leveis.

Two priorities are assigned to the BBC because of the
32-word buffer contained on the BBC, and because of
buffers located on certain peripheral controllers which
interface with the BBC. The dual priority request system
prevents a high priority BBC from starving lower priority
channels during buffer filling.

The BBC uses the higher of the two priorities only at the
rate of 1/O transfers. Additional requests to fill or empty
the BBC buffer are made at the lower priority. In this way,
no BBC is granted more cycles than it needs to maintain its
1/0 transfer rate at the expense of other channels. When a
BBC is used in a system containing single priority channels,
the high BBC priority should be set above the single
priority channels, and the low BBC priority should be set
below,

During input transfers, a BBC activates the high priority
request when its buffer is full. For output transfers, the
high priority request is activated when its buffer is empty.
The particular BBC priority request activated is also
determined by certain buffered peripheral controllers. The
BBC activates the appropriate priority request based on
signals received from controllers having this capability.

Synchronization (Handshake) Conditions

With few exceptions, all data and command sequences are
synchronized via “‘handshake’” operations. This convention
ensures that the connected unit has received the command
or data in output transfers or frees the unit to load new
words in input transfers. If the unit is unable to accept the
command/data, the channel sets itself busy and will honor
no output transfer operation except for the OCW
instruction in which ‘““Override’’ is specified. The normal
handshake function is modified in XBC and IBC
operations and is described following the conventional
handshake functions.

4-3

0830007-000
Original 8/79

Output Transfer Synchronization

The output transfer handshakes are performed in
OCW/ODW single-word transfer operations and in output
block transfers of block /0 channels. In single-word
transfers, if the channel is not busy executing a previous
output instruction, the command/data is loaded into the
channel’s output buffer and the “Output Command Here"’
or “Output Data Here” line is raised to the unit. The
channel sets itself busy to inhibit any new output transfer
operations. When the unit gates the command/data into its
own registers, it returns an “‘Accepted’’ signal. This signal
resets the channel busy condition and the channel is free
for a new transfer.

In block transfer sequences, the channel, having been
previously initiated for output transfer operations,
automatically sequences memory request operations. When
the memory cycle is granted, the channel places the transfer
address on line and loads the word from the specified
address. The channel then raises the data transfer
handshake line and, when the unit “‘accepts’” the data,
fetches another word from memory. The channel remains
“busy’’ and the sequences continue until the transfer is
completed or overriden.

Input Transfer Synchronization

A channel cannot execute an IDW instruction until it senses
that the ‘“Data Available’’ line from the unit has been set
true. In normal operations the channel automatically
transfers the input to the CPU and raises the ‘‘Data
Accepted’’ handshake line. The unit drops ‘’Data Available”

re a new word for transfer.

An input block transfer begins when a unit raises its ‘‘Data
Available” line after the channel and unit have been
commanded to the input mode. The channel loads the data
into its input buffer and raises its ‘“Data Accepted” line to
the unit. The channel then sequences a memory cycle with
the CPU to store the input word at the address specified by
the Transfer Address Register {TAR). The channel will not
honor any subsequent store requests until the memory
cycle has been completed.

PIOC Synchronization

Programmed |/O transfers are performed by the PIOC via
the OCW, ODW, IDW, and ISW instructions. The P1OC sets
its ““ready” line true if conditions allow it to execute an
instruction from the CPU. If the unit cannot execute the
1/0 instruction, the channel sets itself busy. The busy
condition may be removed by setting the Override bit in
the OCW instruction.

The PIOC performs handshake sequences with the unit
controller in executing OCW, ODW, and IDW instructions.
When a command is placed on line by an OCW instruction,
the channel sets its “Command Data Here” line true. The
controller signifies acceptance of the command by setting
the ““Output Data Accepted’’ line true. Both handshake
signals are then dropped. The same sequence occurs for
ODW instruction except that the channel sets its ““Output
Data Here’’ line true. The controller uses the “Output Data
Accepted”’ signal to acknowledge receipt of the data and
both the channel and controller then drop their respective
handshake lines.

To perform IDW instructions, the controller signifies that it
has data available by setting its ‘’Data Available From Unit”
line true. When the channel has passed the data to the CPU,
the channel sets the ‘’‘Data Accepted to Unit” line true. The
channel and controller then drop the handshake lines.

No handshake is sequenced when the ISW instruction is
executed since status information from the unit is always
on line.

XBC Synchronization

The block transfer sequence control is under the control of
the external units in XBC applications. The unit may be
commanded to the block-transfer mode via an OCW
instruction and may require parameter inputs but, once
initiated, the device controls the transfers. In executing the
OCW instruction the channel uses the conventional
“Command Data Here"” handshake signal and the unit
returns “Accepted”’ to signal loading of the command.
required by the unit, the channel executes an OAW
instruction to provide the Transfer Address (TA) to the
unit. The channel raises ’Address Word Here'’ which signals
the unit to ““accept’’ the address. This may be followed by
an ODW instruction in which the word count is sent to the
unit. The channel raises “Word Count Here" which the unit
“accepts.”

Data transfers to/from memory begin when the unit sets a
priority-structured ‘‘Data Transfer Request’” line to the
channel. If the channel is not busy executing an instruction
or servicing a higher-priority request, the channel raises its
“Send’’ line. The unit responds via its “Ready’’ line. The
unit then places the transfer address on line for channel
storage and sets a transfer direction control line, the “In”’
line. If the “In"’ line is received in its true state, the channel
loads the data from the unit, sets itself busy, and requests a
memory cycle for storing the data in memory. When the
“In"" line is received set false, the channel requests a
memory cycle for access purposes and, when the cycle is
granted, the channel loads the data word from the address

furnished by the unit. The channel then pulses its ‘‘Output
Data Here" line to load the data into the unit.

IBC Synchronization

The IBC is sequenced for block transfers via the units’
“Data Transfer Request” lines. (See previous description
for similar transfer capability.) The channel also specifies
the transfer direction, but this is a reflection of the
command word to the unit. In normal operation, channel
parameters are loaded via the conventional
biock-transfer-initiate sequences into RAM locations
reserved for units served by the channel. The unit, however,
may be commanded to an external addressing mode in
which it loads the unit’s Transfer Address Register (TAR)
and controls whether the TAR and/or Word Count Register
(WCR) are incremented/decremented, respectively.

The IBC does not ‘‘shake hands’’ with the unit during
command transfers; the command is automatically loaded
by the unit controller since the channel “’selects’’ the unit,
bypassing the usual disconnect/connect sequence.

BBC Synchronization

For OCW/ODW instructions the handshake sequences are as
previously described. For IDW/ISW instructions, the channel
must have first established that a “‘status ready’’ condition
exists. If this is true, the channel automatically transfers
the status of the CPU during an ISW instruction; however,
no handshake is sequenced with the unit. If the input data
has been loaded by the channel, the data is transferred
to the CPU during an IDW instruction, and the channel

sianals “‘accentance’’

signals “acceptance”’,

The same handshake sequences occur during block
transfers, but the channel is capable of 48-bit (double)
word transfers to/from memory.

Timing

The PIOC and XBC depend solely on computer clock pulses
for execution of single-word instructions or, where
applicable, block-transfer operations. All remaining
channels are synchronized to CPU timing for some
sequences but may provide other sequences via independent
internal timing.

Block Transfer Memory Access

Block 1/0O operations are controlled by the channel after it
has been initiated under program control. The channel,
therefore, accesses memory for read/write operations and
must request memory cycles for this purpose. In memory
transfers, the requested memory cycle is automatically
granted unless the CPU is in an error correct cycle.

0830007-000
Original 8/79

When a memory cycle is granted by memory, the control
signal is permitted into the highest priority channel
generating a cycle address. The “memory granted” signal
activates the channel to load the word from memory
(output transfer) or transfer a previously-loaded word from
the unit to memory for storage (input transfer).

Block Transfer Parameters

The DMACP-8, BBC, and IBC are initiated for
block-transfer operation via an OCW instruction. The
command word itself must have bit 23 set to activate the
block-transfer mode. These conditions activate the channel
to sequence two simultaneous memory requests for
parameters. The designated parameter words are iliustrated
in Figures 4-2 and 4.3,

BBC Parameter Words

The BBC parameter word formats are illustrated in Figure
4-2. In this channel the OAW instruction preceding the
OCW used to initiate the block transfer control causes the
first parameter address (PA) to be loaded into a parameter
address register (PAR). This allows the parameters to be
located in a separate “’list” which may be located anywhere
in memory. Each time the PAR is addressed for a parameter
word, the channel increments the PAR for subsequent
parameters.

The first parameter applicable to BBC operations contains a
16-bit word count and the most-significant 8 bits contain a
“Skip Count”. The skip count is significant only in block
transfers designated for input and is loaded into the
channel’s skip count register (SCTR). This parameter
controls the actual transfer operations in which data is
loaded into memory. When a count is set into the SCTR,
the channel provides load sequences to transfer the data
from the unit to the channel but does not request memory
cycles to load the data into memory. The SCTR is
decremented with each word transferred and, when the
counter has decremented to zero, the channel begins data
transfers to memory based on the word count parameter.

The second parameter word in BBC applications contains a
20-bit TA. The two most-significant bits of PW2 are stored
in the channel and specify four termination sequences that
may be entered when the block transfer has been
completed; these are:

a. Normal termination — the channel goes to a “‘not
busy” state when the last data word has been
transferred.

4.5

0830007-000
Original 8/79

BBC

TWO-WORD PARAMETER LiST
PARAMETER WORD 1 (PAR)

Y T T

SKIP COUNT WORD COUNT

AR W S SN S G | [U TS R NOUS R N W NS SN SN SR S S |

23 16 15 [0)

Y T

PARAMETER WORD 2 (PAR +1)

T T

4 T
//// TRANSFER ADDRESS

T T T

23 22 B 5
2322
L1 e e
L' = AFTER BLOCK PARAMETER LIST
1 A NG RETART (COMMAND CHAIN) (MEMORY)
PARAMETER WORD 1
THREE -WORD PARAMETER LIST (COMMAND CHAINING) TWO-WORD LIST | [~ e A FTER WORD 2
COMMAND WORD (PAR) COMMAND WORD
: ' . . ' . ' THREE-WORD LIST { | PARAMETER WORD 1
UNIT COMMAND PARAMETER WORD 2
1 1 1 L L 1 1 1 1 1 1 1 1 1 1 Il L 1 1 1 1 1
23 22 2| 0 PARAMETER WORD 1
| 1902 NS ASHON | NON-DMA COmMAND PARAMETER WORD 2
110 = RE-INITIALIZE INPUT TRANSFER

COMMAND
11 = RE-INITIALIZE OUTPUT TRANSFER

PARAMETER WORD 1 (PAR +1)

SKIP COUNT WORD COUNT
7 T ——5 ETC

PARAMETER WORD 2 (PAR +2)

/ T T T T T T
//A TRANSFER ADDRESS

L 1 1 L 1 bk A Il it bl A L d L L Il
23 22 9]
—_——

|
L—— SEE PARAMETER WORD 2 ABOVE

18C

PARAMETER WORD 1 (PAR) PARAMETER LIST

6 15 o PARAMETER WORD 1
PARAMETER WORD 2
PARAMETER WORD 2 (PAR +1) PARAMETER WORD 1
% ' ' " ' ' T PARAMETER WORD 2
/ TRANSFER ADDRESS
i1 S RS NN SN (NN SRS (NN SN SUSNS WA NN N N WU N G /\/—\/
23 19 0
y 0 = TERMINATE AFTER BLOCK
} 1 = RESTART
ETC
MIi1821C

Figure 4-2. BBC and IBC Parameter Word Formats

4-6

0830007-000
Original 8/79

PARAMETER ADDRESS

l_ % O TERMINATE AFTER BLOCK
| RESTART

Dé PARAMETER ADDRESS PARAMETER LIST
e (MEMORY)
I_;o INPUT PARAMETER WORD 1
| OUTPUT PARAMETER WORD 2
PARAMETER WORD 1 i PARAMETER WORD 1
//////'//W CBYTE CONT PARAMETER WORD 2
4k - PARAMETER WORD 1
PARAMETER WORD 2
PARAMETER WORD 2 -
R/VZ o IlfleysleRlAPnLREﬁl o
i ° ETC.

Mi12362

Figure 4-3. DMACP-8 Parameter Word Formats

b, Data restart — the channel goes into a re-initiate
sequence to bring in two new parameters. The
subsequent block transfer is as specified in the OCW
initiating the previous block transfer.

C. Chain command restart — the channei goes into a
re-initiate sequence in which a new command (from
memory) is sent to the unit to change the transfer
direction. As with the OCW initiating block mode
operations, bit 23 of the command word must be set
to command the initiate sequence. This is followed
by bringing in PW1 and PW2 to set channel control
action for the block of data to follow.

d. Chain command terminate — the channel goes into a
re-initiate sequence in which a new command (from
memory) is sent to the unit. If bit 23 of the
command word is not set, the channel goes to a “not
busy”’ state when the transfer sequence is completed.

XBC Parameter Words

The XBC does not contain circuits to store and control
parameters. Likewise, the channel does not provide any
restart actions. The parameters are controlled by the
external device, but the device may require that the
parameters be initially furnished from memory. In the

latter case, the channel is sequenced to execute an OAW
instruction which transfers the TA to the unit. This is
followed by an ODW instruction which sends the word
count to the unit. After being initiated by the OCW
command, each data transfer is sequenced and the unit
itself furnishes the transfer address. The unit controls the
word count and generates any operational interrupts.

IBC Parameter Words

The IBC is initiated to the block-transfer mode via the
conventional OCW with bit 23 of the command word set.
The IBC then enters the initiate sequence to load two
parameter words (Figure 4-2). The first parameter word
contains the word count of the subsequent block transfer.
The second parameter word contains a 20-bit TA and the
“restart’’ condition. The IBC does not provide chain
command functions in a restart operation. But, since the
IBC contains storage for parameter addresses, the channel
may access PW1 and PW2 from a “list”’.

DMACP-8 Parameter Words

Each port has assigned to it a Parameter Address Register, a
Byte Count Register, and a Transfer Address Register.
These registers are located in the Parameter Stack located
on the DMACP-8 board. Refer to Figure 4-3.

47

0830007-000
Original 8/79

The Parameter Address Register contains the starting
address in main memory of the next parameter list. The
parameter list specifies the byte count to be piaced in the
Byte Count Register, and the transfer address to be placed
in the Transfer Address Register. Along with the parameter
address, a transfer direction bit (23) specifies whether the
transfer is to be an output from main memory to the
DMACP-8 (ONE), or an input from the DMACP-8 to main
memory (ZERO).

Parameter Word 1, loaded into the Byte Count Register,
contains in binary format the number of bytes of data to
be transferred between main memory and the selected port.
Maximum byte count per DMA sequence is 65,536.

Parameter Word 2, the transfer address, is loaded into the
Transfer Address Register. The transfer address represents
the location in main memory where the next data word
(three bytes) is to be transferred. Each time a word is
transferred, the TAR is incremented to point to the next
memory address. An automatic restart function is provided
to enable successive blocks of data to be transferred
without CPU intervention. This is accomplished with bit 23
of the transfer address. If this bit is a ONE, the
microprocessor will fetch a new byte count and transfer
address from main memory as specified by the Parameter
Address Register. A restart occurs when the existing count
in the Byte Count Register reaches zero. When bit 23 is a
ZERQ, the restart function is disabled.

INPUT/OUTPUT INSTRUCTIONS

Execution of 1/O instructions consists of the transfer of
command (OCW), data (ODW and IDW), status (ISW), or
address (OAW, IAW, IPW) words between the A Register
and the specified channel/unit combination. The
channei/unit codes in each i/O instruction {exciuding OAW,
IAW, and IPW instructions in applicable block-transfer
channels except the IBC) allow one channel to be selected
and one of up-to-16 units to be connected to the channel.
When an instruction to the same channel carries a different
unit code, the previously-specified unit is disconnected and
the new unit is connected automatically. During this
disconnect/connect sequence, the channel is busy and does
not respond to 1/O instructions until the sequence is
completed. If a channel is in the process of transferring
commands or data to a unit, an ISW or IDW instruction
addressed to a different unit on the same channel receives a
busy indication.

Command and data words from the CPU are transferred to
the channel output buffer and subsequently to the
connected peripheral unit. Data and status words are
retained in the input buffer of the selected unit and
transferred to the A Register upon request (instruction)

4-8

from the CPU. Address words are applicable only to those
channels employing the block-control capability. {(Refer to
1/Q instruction formats in Section Vi for the foilowing
discussions.)

1/0 Commands

The OCW instruction transfers a command word to the
specified channel/unit combination. The command word
bits specify the unit control function(s) to be performed
and/or the 1/O condition to be established. Following the
execution of an OCW instruction, the channel remains busy
until the command has been accepted by the addressed
unit. Figure 4-4 shows the format for the OCW instruction.

If the channel is busy or not ready when addressed by the
OCW instruction, the Condition Register is set to ‘‘Not
Zero” to allow a programmed delay. The override function
causes the channel to automatically perform a unit
disconnect/connect sequence. This clears the channel of
any other activity and allows the current instruction to
assume control of the channel unconditionally upon
termination of the disconnect/connect sequence.

All of the 1/O channels execute the OCW instruction, but
channel capabilites may require setting of the instruction
contents as follows:

a. Unit Addresses — The {BC contains interface
capability for up-to-two devices. The unit address
must therefore be set in Unit Code bits 0 and 1. The
unit addressing requirements for the XBC s
contained in Unit Code bits 0-2. Unit Code 10g is the
only valid code for the DMACP-8 channel. All of the
remaining channels, having the capability to interface
with up-to-16 units, utiiize aii of the Unit Code bits
for addressing purposes.

b. Channel Command Mode — Bits 4 and 5 provide
command control to set an |/O channel to one of
four modes: Normal, Offline, Multiplex — Output
Special Function, and Reset. The Normal mode
specifies ““normal’”’ command functions. The Offline
mode removes the units from the 1/0 channel
interface, permitting a second computer and /O
channel to assume control over the units. The
Multiplex-Output Special function mode serves two
purposes. For the PIOC, the multiplex function
allows a master unit to communicate with a slave unit
without CPU intervention. The multiplex function is
reset with a Master Clear, an OCW instruction with
the Override bit set, or the Reset mode commanded.
The Output Special Function is only applicable to the
BBC. This function is used to output special channel

0830007-000

Original 8/79
0070.* +C.U 0[0|OOjO|OfI|I[V[O]O|O(*f{CiC|C[{C|[C[(M|MJUJU{U]U
232221201918 17 16 15141312 1110 9 8 7 6 5 4 3 2
l ;_V__J\W.ILW__J
% — VERBIME RIT \
* OVERRIDE BIT CHANNEL \ <L:JSJI;TE
¢ = CHANNEL NUMBER (0-31) CODE
_ CHANNEL
M= MODE (0-3) OVERRIDE COMMAND
U = UNIT NUMBER (0-15) BIT MODE
MI2363A

Figure 4-4. OCW Instruction Format

functions to the BBC. These include the decrement
transfer address, unit 1/O parity check, internal

turnaround, and unit master clear functions. The
Rocot

ICSC

PN P

nwoue

Nlsroaal

+e
rewurn NOimai

allows a return to

o
mode allows a3

operations from either the Offline or Multiplex
modes.

The IBC, XBC and DMACP-8 do not respond to the
mode control specifications of an OCW instruction
(they thus always operate in the Normal mode).

Override Control — This OCW instruction control
function is exercised in all 1/0O channels except the
XBC. An OCW instruction with this bit set assumes
immediate control of the channel/unit by forcing a
disconnect/connect sequence.

1/0 Status Word

The ISW instruction is used to test the operational status of
the channel/unit. When a channel is addressed by the ISW
instruction, a 24-bit status word is transferred to the A
Register in the CPU. The quantity and significance of the
status bits depends on the type of peripheral unit involved.

Units controlled by 8-bit interface channels (e.g., PIOC)
furnish up to six unit-defined status bits which the channel
sets into the least-significant bits of the input word.
Channels with 24-bit unit interfaces (e.g., block controllers)
may receive as many as 8 unit-defined status bits which are
set into the 8 least-significant bits of the input word.

Channel status is reported in the most significant bits of the
input word and reflect the current channel status. Not all of
the available bits are used. Functions of the bits used to
report channel status are as follows:

4-9

0830007-000
Original 8/79

DMACP-8 None

IBC None

PIOC Bit 21 Multiplex

Bit 22 Offline

XBC Bit 22 Offline

BBC Bit 8 Unit Not Connected — The first ISW involving a unit code change is
not accepted by the channel until the disconnect/connect sequence is
completed. The disconnect/connect sequence provides a two microsecond
time-out. If the unit does not acknowledge selection after this time-out,
the channel accepts the ISW, regardless of unit acknowledgement, and
reports the time-out in bit 8.

Bit 9 Unit 1/O Parity Error

Bit 10 Buffer Count Not Zero — This bit is set if the channel data buffer
contains data. Status reported by this bit is not valid if bit 11 of the
status word is set.

Bit 11 Transfer not complete — This bit is set when a block transfer is
initialized and is reset automatically when the transfer terminates
normally. Clearing the channel (e.g., OCW with Override set or Offline
mode set) resets the bit.

Bit 13 Decrement TAR

Bit 16 Internal Turnaround Function Reporting

Bit 16 Unit Master Clear

Bit 17 1

Bit 18 0

Channel ldentification Code = 5

Bit 19 1 (

Bit 20 0)

Bit 22 Offline

Bit 23 Channel Busy — This bit is set by one or more of the

following conditions: Clearing the channel resets bit 23
for every condition except switched offiine.

a) Programmed offline

b) Switched offline

c) Transfer not complete

d) Unit 1/O parity error

e) Executing an OCW sequence

f) Executing an ODW sequence

g) Executing a disconnect/connect sequence

4-10

Programmed Data Transfers

Input Data Word

The IDW instruction is a request from the CPU to a specific
.channel/unit combination for a data word. If data is
available, the data word is transferred immediately to the A
Register. If data is not available, the Condition Register is
set to “Not Zero'’ to allow a programmed delay.

Normally, the 24-bit input data word contains a single data
character. The actual number of data bits per character
depends on the channel and unit involved in the transfer.
For example, the console typewriter generates an 8-bit
character and a card reader may generate a 12-bit character.
In any case, the character is right-justified in the A Register
with the unused bit positions set to ZEROS.

Assuming the data character contains no moie than 12 bits,
more than one character may be packed in the A Register
through the use of the Merge feature. When a character
Merge is employed, a logical OR is performed between the
previous contents of the A Register and the new input data
word. Without the Merge, the previous contents of A are
destroyed upon transfer of a new character to A. An
illustration of the character Merge technique, as compared
to a normal IDW instruction, is shown in Figure 4-5.

The IDW instruction is executed by all 1/0 channels except
the XBC and IBC.

Output Data Word

When an ODW instruction is executed, an 8- or 24-bit data
word is transferred from the A Register to the specified
channei. The data word is subsequently transferred from
the channel to the unit that is currently connected. If the
channel is busy or not ready to accept the data word, the
Condition Register is set to ‘““Not Zero’' to allow a
programmed delay. If the unit is not ready to accept the
data from the channel, the data remains in the channel
buffer.

As soon as the peripheral unit is able to accept the data
from the channel, the channel-to-unit transfer is made,
thereby freeing the channel buffer for another data (or
command) word from the CPU.

The number of data bits accepted by the peripheral unit
varies according to the type of unit involved. Some
peripheral units are word-oriented and accept the entire
24-bit word. Others are character-oriented and accept only
a specific number of bits per character.

The ODW instruction function in XBC operations serves the
purpose of sending a word count parameter from the CPU

0830007-000
Original 8/79

A Register to the addressed unit, if required by the unit. In
subsequent block-transfer operations the unit controls the
WC parameter. The IBC does not execute the ODW
instruction,

Address Transfers

Three address-transfer instructions are executed by
block-transfer channels for the purpose of channel or unit
set-up for subsequent transfers (OAW) or for CPU checks of
transfer progress (1AW and IPW). However, the PIOC board
may execute the OAW instruction. The following
discussions cover applicability and qualifications for the
address-transfer instructions.

Output Address Word

The OAW instruction is executed by the DMACP-8, IBC,
and BBC to set the starting address of parameters for
block-transfer control. The XBC also executes the QAW
instruction if a unit on its interface requires a TA starting
address.

The DMACP-8, IBC, and BBC channels load their respective
PAR during execution of the OAW instruction.

NOTE

In BBC execution of the QAW
instruction the block transfer logic is
cleared. Therefore, this instruction
should not be programmed for execution
until all block transfer operations are
completed.

The XBC will not execute the OAW instruction if the
channel is busy executing an output command or a data
instruction. The instruction word must be addressed to the
unit to which the TA parameter is intended. Therefore, a
“programmed delay” should be programmed to facilitate
instruction execution.

In IBC OAW execution the instruction word must be
addressed to a unit controller contained on the channel
board. The channel executes the instruction, writing the PA
into a register reserved for the addressed unit.

Available for software interrupt purposes, an Interrupt
Generator is located on the PIOC board to allow generating
one-of-four possible interrupt pulses in response to an OAW
instruction. The instruction is executed automatically by
the addressed channel to provide one microsecond interrupt
pulses which may be routed for use as interrupts in another
CPU or in any peripheral unit.

4-11

0830007-000
Original 8/79

EXAMPLE: THREE 8-BIT DATA CHARACTERS ARE TO BE PACKED IN THE A REGISTER.

(a) NORMAL (WITHOUT MERGE)

4-12

CODING COMMENTS REGISTER A
IDW CU BRING IN FIRST DATA CHARACTER 000000000000000 OI c
23 87 0
IDW CU BRING IN SECOND CHARACTER lo 0000000000000 0O ol Cz]
23 87 o]
IDW CU BRING IN THIRD CHARACTER Fo 0000000000000 01 Cs]
23 87 [}
(b) MERGE
CODING COMMENTS REGISTER A
IDW CU BRING IN FIRST DATA CHARACTER I°° boo0o0000000000 °| i |
23 87 0
LLA 8 SHIFT LEFT 8 PLACES [ooooooool Ci]oooooooo]
23 16 15 87 0
IDW* CU BRING IN SECOND CHARACTER [oo000000] 3 | |
AND MERGE 23 16 15 87 0
LLA 8 SHIFT LEFT 8 PLACES [¢ | c& Joooooooo]
23 615 87 0
IDW* CU BRING IN THIRD CHARACTER | 3 { ¢] ¢ |
AND MERGE 23 16 15 87 0
M160-005

Figure 4-5. IDW Instruction; Data Character Formatting

The Interrupt Generator responds to the particular OAW
instruction with the proper channel code. The four
least-significant bits (3-0) of the A Register, during the
OAW instruction, will trigger the puise from the generator.
The pulse remains at the ‘true’’ level for the 1 microsecond
cycle and then is restored to the ‘‘false” state. There is no
interaction between the generation of different numbered
interrupts, but the generation of the same numbered
interrupt is limited to not more than one per microsecond.
There is no response to the mainframe C (condition)
Register during the execution of the OAW, i.e., if the C
Register was tested, it would indicate “‘not zero”.

In summary, if an interrupt pulse is to be generated, the
following coding could be applied:

TOA BOB1B2B3 (Unitary bits; one for each
inienuptl puise fine.j

OAW CU

Input Address Word

The |AW instruction may be addressed to any of the block
channels except the XBC. For IBC purposes the instruction
word must be addressed to the channel and unit; otherwise
the instruction is addressed only to the desired channel. In
all applicable channels except the IBC the instruction is
automatically executed during the current instruction
cycle. The IBC executes the instruction only if it is not
busy executing another instruction or transferring data. In

all cases, the channel sets its ““Ready’’ line to the CPU to

cloar thoe C Roanictor Tho addroce winrd ic cont ta the A
Cigar tnNe L «egister. e aGGress wWorG 1§ sent e Int A

Register and may be used as a check on transfer progress.
The word represents the TA of the current transfer and is
always 20 bits wide.

Input Parameter Word

This instruction is very similar to the AW, The instruction
is addressed only to those block channels capable of PA
storage: DMACP-8, IBC, and BBC. The execution of the
IPW instruction is identical to the |AW instruction.

INTERRUPT CONTROL

The OCW instruction may be used to selectively enable and
disable two peripheral unit interrupts in PIOC board
operations. The two interrupts are defined as Input and
Output and are controlled by bits 2-0 of the command
word. Table 4-1 illustrates the various bit configurations.

0830007-000
Original 8/79

Table 4-1. Peripheral Unit Interrupt Control

Command
Word Bit
Configuration Action

2 1 0"
0 0 No Action.
0 1 No Action.
010 Disable Input (or Alternate) Interrupt
0 1 i Enabie input {or Aiternate} interrupt
100 Disable Qutput (or Aiternate) Interrupt
1 01 Enable Output (or Alternate) Interrupt
110 Disable Both Interrupts
1 1 1 Connbrla DAtha [easn e
1 L} t CHIQuIc puULri lIIlCIlUPLJ

*No significance to some units, i.e., the interrupts are
unconditionally enabled by CW Bits 1 and/or 2.

The terms “input interrupt” and “output interrupt’ are
applicable only to peripheral units that are equipped with
both input and output data handling facilities. Input-only
devices may make use of the input interrupt and an
alternate interrupt at the normal output level. Qutput only
devices may make use of the output interrupt plus an
alternate at the normal input level.

When the unit input interrupt has been previously enabled,
an input interrupt signal will be generated when the input
buffer in the unit is loaded (i.e., the same time the ‘Data
Available” signal is generated). An 1/O channel has no
control over an input interrupt.

When the unit “output interrupt’” has been previously
enabled, an output interrupt signal may be generated by the
channel for two sets of conditions based on a
device-defined signal, ‘‘Enable Channel Buffer Empty
Interrupt” (ECBEI). If the unit raises ECBEI to the
channel, the output interrupt will be generated for a
minimum of 325 nanoseconds if:

a. PIOC board;

1. the channel has not been commanded to the
Offline or Multiplex mode, and,

2. the channel is not performing a
disconnect/connect sequence, and,

3. the channel’s output buffer is not holding a
command/data word for unit transfer purposes.

b. XBC and IBC boards;

These channels contain no output interrupt capability.

0830007-000
Original 8/79

If the unit holds the ECBEI signal to the channel low, the
output interrupt will be generated by the channel but the
channel’s output buffer condition (3, above) is ignored.
Instead, the device-defined state of Status Bit 2 from the
unit is allowed to set the output interrupt. The mode and
manual eonditions described for each type of channel above
remain in effect.

The IBC generates a ““word count complete’” signal to the
unit when the channel has loaded the final word, if no
“restart” is specified. This signal, however, is under control
of the unit for interrupt purposes.

A BBC can be patched to select either a ““word count
complete’’ interrupt or a “’data chain complete’ interrupt.
The “word count complete’ interrupt indicates that the
channel has completed a single block transfer or any block
within a chain. The ‘data chain complete’’ interrupt
indicates that the channel has completed either a single
block transfer or the last block of a data chain. For both of
these interrupts, the interrupt is generated when an output
transfer to the unit is completed, or an input transfer to
memory is completed. The BBC also generates an
“initialize” interrupt to indicate that the channel has
performed an OAW instruction.

Two interrupts are generated by the DMACP-8 channel:
1) whenever a parity error is generated within the RAM
located on the DMACP-8 board, and 2) whenever one
of the ports requires service.

1/0 CHANNEL JUMPER CONTROLS

The various 1/O channels contain jumper provisions to
perform a number of operational functions. The PIOC
board’s jumper capabiiities is restricted to channei address
selection. The block-transfer channels are also jumpered to
encode a unique channel address, but those channels also
contain a variety of other manually-activated functions.
These functions are listed in Table 4-2 with 1/O channel
applicability specified.

Table 4-2. 1/0 Channels Jumper Control Capabilities

Function PIOC IBC XBC DMACP-8 BBC
Permanent Offtine/

Multiplexer mode X X
Channel code selection| X X X X X
Memory cycle priority X X X X
Unit selection X

X = function available

4-14

1/0 CHANNEL OPERATIONAL SUMMARIES

The following paragraphs summarize single word and
block-mode transfer capabilities of the various {/O channels
interfacing with the computer. Included are program lists
and suggestions. Refer to the paragraph describing
input/output instructions for application to specific 1/0
channels.

Single-Word Instruction Execution

ocw/oDw

The channel, if not busy, loads a command or data word
from the CPU A Register into its output buffer. The
channel sets itself “busy’’ to inhibit any further instruction
executions until it has completed the transfer to the
addressed unit. In the event of a disconnect/connect
sequence, the channel withholds the handshake until the
addressed unit is “‘connected”’ to its interface. A BNZ
instruction should be programmed to verify channel
execution of the OCW instruction.

iDW

The channel executes this instruction if the channel is not
busy executing an output transfer, is not involved in a
disconnect/connect sequence, and the connected unit has
signalled that data is available for transfer via its “‘Data
Available” line. The BNZ execution performed by the CPU
provides verification of transfer. The channel shakes hands
with the connected unit and is ready for further
instructions.

Isw

An 1/O channel executes this instruction if the channel is
not busy executing an output transfer and is “‘connected”’
to the addressed unit.

OAW

This instruction is addressed to block 1/O channels (unit in
XBC/IBC applications) for the purpose of transferring the
address of the first word involved in control of a
subsequent block data transfer. Channel loading of the
output word from the CPU’s A Register into the channel’s
PAR (DMACP-8, and BBC applications) is automatic. In
XBC applications the instruction involves transferring a TA
to the unit for subsequent control by the unit. The XBC
must have gone to ““not busy’’ prior to instruction time for
execution. A programmed delay must therefore be
executed by the CPU for verification of transfer. A
handshake with the unit is performed in this instruction
and the channel sets itself busy until the transfer-to-unit is
completed. In IBC applications the addressed channel
executes the instruction unless previously set busy via an
instruction or data transfer sequence. This instruction
causes an "initialize” interrupt to be generated by the BBC.

IAW/IPW

The IAW/IPW instructions are executed to transfer the
contents of a block 1/0 channel’s TAR/PAR to the CPU's A
Register. The IPW and |AW instructions are not executed
- by XBC. The instructions, when applicable, are executed
automatically by the BBC. The IBC is inhibited from
executing the instruction if currently busy in an instruction
or data transfer operation.

Block-Transfer Operations

All block 1/0 channels are initialized by computer control
for block-transfer operations and proceed under self control
or unit control to perform the transfer operations. The
following paragraphs describe general performance of block
transfers applicable to each channel. Refer to Figures 4-6
through 4-9 for simplified flow diagram of block-transfer
operations.

BBC Block Transfers

The BBC is ““set-up’” via an OAW instruction and initiated
via an OCW instruction with bit 23 of the unit command
specifying the block transfer and bit 22 specifying the
direction of transfer. During the OCW sequence the channel
sets itself “busy” to all ODW, IDW, and OCW instructions
(except an OCW specifying "‘Override’’). The channel
remains busy for the duration of transfers initiated by the
OCW instruction. The channel automatically loads two
parameter words (see Figure 4-2). If an output transfer has
been specified, the channel sequences a memory request
and specifes the location via its TAR. The channel
increments the TAR, decrements its WCR, and loads the
data word in its output buffer when the memory cycle is
granted. The channel then ‘‘shakes hands’’ with the unit to
complete the transfer. The channel then fetches another
word for transfer. When the WCR has decremented to
ZERO, the channel examines its ‘“Restart’” parameter {bit
23 of PW2) and either re-initiates itself for another block
transfer or returns to an “idle’’ state, resetting its “‘busy’’
condition.

If an input transfer was specified via the OCW, the channel
waits for the unit to signal data availability. The channel
then loads the input data into it's input buffer and signals
“accepted”’ to the unit to free it for the next word. The
channel then requests a memory cycle, and when granted,
places the TA and data on line to memory. The channel
increments the TAR, decrements the WCR, and returns to
sense the unit’'s ““Data Available” line. This sequence
continues until the WCR forces the restart sequence as
described above. The BBC has the capability to specify an
Output Special Function to decrement the TAR. This
operation causes the input words from the unit to be
written into memory in reverse order.

0830007-000
Original 8/79

The BBC contains a Skip Count Register for added
parameter control in input transfer operations and may
enter an alternate ““Restart” after a block of data has been
transferred.

The output data transfers are sequenced in an identical
fashion. The channel’s capability to ‘‘Restart and Chain
Command’’ allows the re-initiate sequence to access an
additional parameter (in this application, a new command
to the unit) to change transfer direction without program
intervention. In this situation, the new command word
initiates the channel in the same manner as did the original
OCW instruction.

The Skip Counter affects only those transfers slated for
memory. The skip count allows the channel to pass over
unwanted data (sync codes, etc.) before actual data loading
is sequenced. When the skip count parameter specifies a
count, the channel sequences handshakes with the unit to
unload the unit, but the channel does not request the
memory cycles from the CPU to load the data into
memory. The SCTR is decremented with each transfer, but
the TAR and WCR remain unchanged. When the SCTR has
decremented to ZERO, the channel begins loading data
words into memory.

XBC Block Transfers

The XBC is normally initiated to block-transfer operations
via an OCW instruction in which a command is transferred
to the unit. If required, the OCW may have been preceded
by OAW and/or ODW instructions to transfer TA and WC
parameters to the unit. Once initiated, the channel is under
the control of the unit for transfer purposes. When the unit
signals a “Data Transfer Request” (DTR), the channel, if
not previously set busy, sets itself busy and stores the TA
from the unit. The unit specifies the transfer direction and,
if an input transfer is specified, the channel “‘accepts’’ the
data from the unit. The channel then requests a memory
cycle and, when granted, transfers the data to memory,
based on the TA furnished by the unit.

If the unit specifies an output transfer, the channel requests
a memory cycle. When the cycle is granted, the channel
places the TA on line to memory, loads the data from
memory and performs a ‘“‘Data Here'/'Accepted”’
handshake with the unit in which the data is transferred to
memory.

The XBC “busy’’ condition is reset after each instruction or
data transfer is accomplished. The unit controls the TA and
WC parameters and generates any required interrupts.

0830007-000
Original 8/79

START
CYCLE

LOAD WCR &
SCTR (IF INPUT)
FROM PWI

INCREMENT PAR

DECR = DECREMENT

LOAD TAR &
RESTART BITS INCREMENT PAR
FROM PW2
|
ACCESS & XFER
INCREMENT PAR COMMAND WORD
FROM PAR ADDRESS
- YES INPUT
XFER
YES NO
SCTR = 0
YES
NO XFER DATA WORD o
A 3
(WCR) = 0 NO ro/F'RSCA'ALTTi LADDR c%“ﬁ’i‘ﬁi“’
DECR. WCR**
| TYES 4
XFER WORD REINITIATE
TO CHANNEL WJ;QGC%ESNT WITHOUT
INHIBIT MEMOR Y COMPLETE INTERRUPT PROGRAM
CYCLE REQUEST INTERVENTION
] z
/
/
LEGEND: //
WCR = WORD COUNT REGISTER /
SCTR = SKIP COUNTER
PW = PARAMETER WORD AUTA% YES /
PAR = PARAMETER ADDRESS REGISTER REST
TAR = TRANSFER ADDRESS REGISTER
XFER = TRANSFER
ADDR = ADDRESS
INCR = INCREMENT NO

END

*TAR IS DECREMENTED If DECREMENT TAR OUTPUT
SPECIAL FUNCTION SPECIFIED FOR INPUT TRANSFERS

**THE WCR 1S DECREMENTED ONCE FOR SINGLE-~
WORD TRANSFERS, AND TWICE FOR DOUBLE-WORD
TRANSFERS

Figure 4-6.

4-16

BBC Block Transfer Sequence; Simplified Flow Diagram

Mit8228

0830007-000
Original 8/79

START
CYCLE

YES

STORE DTR
IN
PRIORITY REGISTER 1

YES

NO

SET RESET
CHANNEL CHANNEL
BUSY BUSY

INPUT YES
XFER

NO

XFER WORD XFER WORD
FROM MEMORY FROM UNIT
TO UNIT TO MEMORY

LEGEND:
DTIR = DATA TRANSFER REQUEST
XFER = TRANSFER

Mit1823

Figure 4-7. XBC Block Transfer Sequence; Simplified Flow Diagram

4-17

0830007-000
Original 8/79

SiART
CYCLE

INCREMENT PAR

LOAD TAR &
RESTART BITS
FROM PW2

INCREMENT PAR

YES

STORE DTR

IN
PRIORITY REGISTER

CHANNEL
BUSY

SET
CHANNEL
BUSY

XFER. DATA WORD
TO/FROM TAR ADDR.
INCREMENT TAR
DECREMENT WCR

AUTO

LEGEND:

WCR = WORD COUNT REGISTRR
PW = PARAMETER WORD
PAR = PARAMETER ADDRESS REGISTER
TAR = TRANSFER ADDRESS REGISTER
DTR = DATA TRANSFER REQUEST
XFER = TRANSFER
ADDR = ADDRESS

RESTART

GENERATE WORD COUNT
COMPLETE TO UNIT

RESET
CHANNEL
BUSY

4-18

Figure 4-8. IBC Block Transfer Sequence; Simplified Flow Diagram

Mi1824

0830007-000
Original 8/79

ASSEMBLE/DISASSEMBLE

START

RESET BUSY
AND

WAIT

GATE
WAD GATES
WACC REGISTER

TRANSFER
WACC REGISTER
WAD GATES

le]
°

TRANSFER
BYTE COUNTER
10

G.P. COUNTER

:

DECREMENT
G. P, COUNTER,
ADVANCE BYTE

POINTER

:

TRANSFER
G..P. COUNTER
TO BYTE COUNTER,
LOAD BYTE POINTER

BYTE
POINTER #2

COUNT A0

JUMP
IMMEDIATELY

TRANSFER
TRANSFER TRANSFER
TARTO G. P. TARTOG.P.
COUNTER AND COUNTER AND
MAR MAR

: :

TRANSFER TRANSFER
MIB TO WACC WACC REGISTER
REGISTER - REQ. TO MOB - REQ.
MEMORY CYCLE MEMORY CYCLE
INCREMENT
G.P. COUNTER,

SET BYTE POINTER
TO ZERO

:

TRANSFER
G, P, COUNTERTO
TAR LOAD BYTE
POINTER, RESET
BYTE COUNT 40

BYTE
COUNIT 70

INITIALIZE

: !

TRANSFER
TRANSFER
PAR TO G.P.
COUNTER AND G.P, COUNTER

TO PAR, LOAD
MAg, oﬁrﬁ'/gm BYTE POINTER

I

L}

ENABLE
MIB TO BYTE
COUNTER AND

INCREMENT
G.P. COUNTER RETAEN
70 ADvANCE wor

:

TRANSFER
G.P. COUNTER
TO PAR

:

TRANSFER
PARTO G.P.
COUNTER AND
MAR

:

ENABLE
MIB TO TAR -
REQUEST
MEMORY CYCLE

:

INCREMENT
G.P. COUNTER
SET BYTE
POINTER 0

L

LEGEND:

GP GENERAL PURPOSE

MAR MEMORY ADDRESS REGISTER
MIB MEMORY INPUT BUS

MOB MEMORY OUTPUT BUS

MPU MICROPROCESSOR UNIT

PAR PARAMETER ADDRESS REGISTER
TAR TRANSFER ADDRESS REGISTER
WACC WORD ACCUMULATOR

WAD WORD ASSEMBLY/DISASSEMBLY

Figure 4-9. DMACP-8 Channel Block Transfer Sequence; Simplified Block Diagram

MI2057A

4-19

0830007-000
Original 8/79

IBC Block Transfers

The IBC is set-up and initiated for block transfers via the
OAW and OCW instructions, but the channel sets itself 'not
busy’’ after each instruction or data transfer. The channel
may thus store the two parameter words for the
self-contained unit controller {Figure 4-2).

Data transfers are sequenced by the channel based on the
“Data Transfer Request’’ signal from the unit and the unit
indicates the direction of transfer. Data transfers then
proceed as described for XBC operations except as follows:

a. the unit allows/inhibits TA and WC incrementing and
decrementing by setting its ‘‘Block Mode’’ control
line true/false (see External Addressing mode below).

b. the unit does not furnish the TA parameter (except in
the External Addressing mode).

c. the channel/unit does not ‘‘shake hands’’ in output
transfers.

d. the channel generates “Word Count Complete’’ to the
unit only, which then controls the interrupt to the
CPU.

The IBC may enter an External Addressing mode by the
unit presenting its DTR, “Address Here,”” and “Input” lines
set to the channel. The address is then loaded into the TAR
for the specified unit. The data presented with the next
DTR is transferred into or out, as set, of the memory
address of the unit’s TAR. If the ““Address Here’’ signal is
not presented again to change the TAR, any further data
transfers will use the same TAR address. This aliows the use
of a specified memory address as a register.

Program Lists

The maximum transfer rates for the IBC block transfer
operations are determined by the card reader connected to
the channel.

DMACP-8 Channel Block Transfers

DMA transfers between the DMACP-8 and memory are
under control of the microprocessor and associated logic
located on the DMACP-8 board. After a parameter address
is sent with an OAW instruction, the CPU can command the
microprocessor to perform a block transfer with an OCW
instruction.

Data transfers are controlled by a sequencer and transfer
control logic contained on the DMACP-8 board. Three main
functions are performed by the transfer control logic;
initialization for a DMA transfer, word
assembly/disassembly, and the actual transfer. These
functions are performed by three subroutines comprising a
program which is stored in the sequencer PROM located on
the DMACP-8.

The microprocessor starts a DMA initialize operation by
accessing a special location in a RAM contained on the
DMACP-8 board. Eight special locations in RAM are
provided, one for each port. The DMA logic in the
DMACP-8 fetches the byte count and transfer address from
the RAM locations specified by the parameter address. If an
ouiput operation is specified, the first 24-bit data word is
transferred to a Word Accumulator Register. The
microprocessor then transfers data bytes between the word
accumulator and a communications port until the byte
count equals zero. A terminate interrupt is sent to the
microprocessor at the completion of the operation. The
microprocessor then generates an interrupt to the CPU to
indicate that service is required.

The following program lists specify various software control functions for block-transfer 1/0 channels. Note the functional

identity of the applicable channels.

IBC Applications

The following examples illustrate two different IBC applications.

Example 1: Simple, single buffer input.

Bit 23 and others as required by the 1/0O device

TOA PA Parameter Address

OAW C Initialize TAR

TMA Cw Command Word

ocw Cu Initiate transfer

BNZ *1 Delay if channel is busy
cw DATA
PA DAC n Absolute Word Count

DAC BUFF Address of Input Buffer
BUFF BLOK n

4-20

Reserve n words. Word n+1 is of no significance since the AR bit is not set.

0830007-000
Original 8/79

Example 2: Muiti-buffered output with automatic restart and buffer switching.

TOA PA1 Parameter Address 1
OAW C Initialize TAR
TMA Ccw Command Word
ocw Ccu Initiate first transfer
BNZ ¥ Delay if channel is busy
cw DATA Bits 23, 22, and others as required by the 1/0O device.
PA1 DAC n Word Count
DAC* BUF1 Address of buffer 1 and the ARF (*)
PA2 DAC n Word Count
DAC BUF2 Address of buffer 2
BUF1 BLOK n Reserve n words
DAC PA2 Automatic Reinitialization address for TAR, to switch buffers
BUF2 BLOK n Reserve n words
DAC PA1 Automatic reinitialization address for TAR, to switch buffers

NOTE Once this cycle is initiated it will continue, without program intervention, until a new command is received.

XBC Application

The following example illustrates an XBC application.

INPAD
Ccu
*-1

OUTAD

Set-up Input Buffer Address Start
Output the Address to Channel/Unit
Delay if Channel busy

Set-up Qutput Buffer Address Start
Output the Address to Channel/Unit
Delay if Channel busy

Set-up the required Word Count
Output the WC to Channel/Unit
Delay if Channel busy

OUTAD

BLOK
wC DATA

100
100

Is the Starting Address of the Input Buffer that device may load
data into.*

Is the Output Buffer that the device may read data from.*
Number of Words to Transfer

*The external device controls the addressing and interrupt requests to the XBC. The external device also

controls the word count.

4-21/(4-22 Blank)

0830007-000
Original 8/79

SECTION V
PRIORITY INTERRUPT SYSTEM

GENERAL DESCRIPTION

The priority interrupt system provides added control over
internal CPU operations and 1/O functions, and immediate
recognition of special external conditions on the basis of
predetermined priority. Receipt and recognition of internal
or externai triggers allows the normal program flow to be
diverted to interrupt service subroutines.

Four separate interrupt groups (0, 1, 2, and 3) are provided.
Group 0 is reserved for internal CPU functions and is
composed of eight executive trap levels. Groups 1, 2, and 3
are reserved for external interrupts. A maximum of 72
external interrupts are available.

INTERRUPT ORGANIZATION

Priority Conventions

All interrupt levels (both executive traps and external
interrupts) are assigned a unique priority number. This
assigned priority determines the order in which interrupts
will be recognized and serviced. Interrupt levels descend in
order of priority from Group 0, Level 0, to Group 3, Level
23. Group 0 has priority over Group 1; Level O has priority
over Level 23.

Executive Traps (Group 0)

Each executive trap level is associated with a specific
computer feature and is, therefore, permanently assigned.
Each executive trap includes the associated internal
interrupt level. Interrupt level assignments for the executive
traps (Group 0) are listed below.

Level Function

Power Down and Power Up
Hard Parity Error

Virtual Memory Page Fault
Instruction Trap

Address Trap

Stall Alarm

Interval Timer

SAU Overflow/Underflow

N O O A W= O

External Interrupts (Groups 1, 2, and 3)

A computer system includes interrupt logic and up to 72
individual external interrupt levels. Sixteen of these levels
are located on the option board and represent Group 1,
Levels O through 15. Thirty-two additional external levels
are located on a priority interrupt expansion board. These
represent Group 1, Levels 16 through 23, and Group 2,
Levels 0 through 23. A second priority interrupt expansion
board contains the Group 3, Levels O through 23 external
interrupts. Priority assignments of the interrupt levels are
determined by system requirements and are made to meet
user’s requirements.

Dedicated Memory Locations

Each interrupt level has a memory location dedicated for its
exclusive use. This applies to both the executive traps
(Group 0) and external interrupts (Groups 1, 2, and 3).
Dedicated memory locations for the interrupt system are as
follows:

Addresses (Octal) Assignments (Respective)

60-67 Executive Traps, Levels 0-7

70-117 Group 1 Interrupts, Levels 0-23
120-147 Group 2 Interrupts, Levels 0-23
150-177 Group 3 interrupts, Levels 0-23

OPERATION AND CONTROL

Basic Operation

Figure 5-1 is a functional block diagram of the priority
interrupt system. Both the executive traps and external
interrupts are initiated by a trigger from their assigned
functions. The primary operational difference between the -
two interrupt types is the method of control: executive
traps are hardwired in an armed and enabled state, while
external interrupts must be previously armed and enabled
under program control before an interrupt trigger can be
recognized and processed.

0830007-000

Original 8/79
EXTERNAL
DEVICE
INTERRUPT TRIGGER
ARM/DISARM
v ENABLE/INHIBIT
PRIORITY <
INTERRUPT <
oy STATUS
INTERRUPT CONTROL
REQUEST SIGNALS
\ 4 CONTROL SIGNALS M
INTERRUPT UNIT
SYSTEM DEDICATED ADDRESS
CONTROL
A
INTERRUPT CONTROL
REQUEST SIGNALS
v
ER
EXECUTIVE |q_ INTERRUPT TRIGG
TRAP

5-2

Figure 5-1. Functional Biock Diagram, Priority Interrupt System

Executive Traps Control

Each executive trap interrupt is designed so as to become
active immediately upon receipt of its associated internal
trigger, provided no higher-priority level is active. Executive
“trap interrupt levels are permanently assigned to their
associated function. Five executive traps are constantly
armed and enabled, and no program control over the
activation of these interrupts is provided. Three executive
traps can be controlled by the Hold External Interrupts
(HXI) and Release External Interrupts (RXI) instructions.
These three include the Address Trap, Interval Timer, and
SAU Overflow/Underflow executive traps.

External Interrupts Control

External interrupts are program-controlled and are not
permanently assigned. Program control is afforded by
several instructions. Individual levels can be selectively
{unitarily) armed, disarmed, enabled, or inhibited under
program control, or an entire group of interrupts can be
simultaneously controlled. For a detailed description of all
priority interrupt instructions, refer to the appropriate
portion of Section VII in this manual.

Four 24-bit registers are associated with each external
interrupt group. These registers may each be 8, 16, or 24
bits wide, depending on the number of interrupt levels
within the group. As interrupt levels are added to the
system, bits are added to each of the four registers in the
group. The register bit positions correspond to the priority
level assignments, i.e., bit O represents Level 0, bit 1
represents Level 1, etc. Control of the interrupt registers is
accomplished by the following group of instructions.

Transfer Double to Group 1 (TD1)

Transfer Double to Group 2 (TD2)

Transfer Double to Group 3 (TD3)

Transfer Group 1 to Double (T1D)

Transfer Group 2 to Double (T2D)

Transfer Group 3 to Double {T3D)

Transfer Double to Group 1 (TD4) (software-triggered
interrupt)

Transfer Double to Group 2 (TD5) (software-triggered
interrupt)

Transfer Double to Group 3 (TD6) (software-triggered
interrupt)

Transfer Group 1 to Double (T4D) (software interrupt
status)

Transfer Group 2 to Double (T5D) (software interrupt
status)

Transfer Group 3 to Double (T6D) (software interrupt
status)

0830007-000
Original 8/79

The armed/disarmed and enabled/inhibited states of each
interrupt level are retained in the Arm/Disarm (A/D) and
Enable/inhibit (E/I) Registers, respectively. A TD1, TD2, or
TD3 (Group 1, 2, or 3) instruction is used to selectively
arm, disarm, enable, or inhibit individual interrupt levels
within the group. Upon execution of a TD1,(TD2, or TD3)
instruction, the contents of the E and A Registers are
transferred, respectively, to the A/D and E/I Registers in
Group 1 (Group 2, or 3). Transfers are performed in a
bit-for-bit pattern. A ONE in a given bit position of the
A/D Register will cause the corresponding interrupt level to
be armed; a ZERO will disarm the level. An interrupt will
be enabled or inhibited by a ONE or ZERO, respectively, in
the corresponding bit position of the E/I Register.

An interrupt group’s armed/disarmed and enabled/inhibited
status may be determined under program control by the
execution of a T1D, T2D or T3D {(Gioup 1, 2, ur 3)
instruction. The contents of the A/D and E/| Registers are
transferred to the E and A Registers, respectively. A/D and
E/l Register contents are not affected by the transfer.

External interrupt triggers normally occur asynchronously
with respect to CPU operation. However, interrupt triggers
can be generated under program control by a TD4, TD5, or
TD6 (Group 1, 2, or 3) instruction. The TD4, TDS, or TD6
instruction performs a logical OR between the contents of
the E and A Registers and the Interrupt Request and Active
Registers, respectively. Loading the Request Register with a
ONE has the same effect as an external trigger at the
corresponding interrupt level. When the Active Register is
loaded with a ONE, the corresponding level will become
active as fong as no higher-level interrupt is active. The
T4D, T5D, or T6D (Group 1, 2, or 3) instruction transfers
the contents of the Request and Active Registers to the E
and A Registers, respectively. The Request and Active
Registers are not affected.

Figure 5-2 illustrates the control system for external
interrupts. Each external interrupt operates in three distinct
states: inactive, waiting, and active. In the inactive state,
the level has not received an interrupt trigger. When a
trigger is received, the armed/disarmed status determines
whether the triggered interrupt will be placed in a waiting
state or ignored. If the triggered interrupt is armed, it will
be placed in the waiting state; if disarmed, it will be
ignored.

If an interrupt is armed but inhibited (i.e., not enabled), it
is held in the waiting state until such time as it is enabled
under program control. Once enabled, the interrupt will
become active as soon as the current instruction is
completed, assuming that no higher level is active and that
external interrupts are not being held (HX1 instruction).

53

0830007-000
Original 8/79

EXTERNAL TRIGGERS; OR BITS
OF E REGISTER DURING TD4
INSTRUCTION.

ARM/DISARM|[| 'o' Lo ' l ' 1 = ARMED
REGISTER) Y L 0 = DISARMED
23 22 5 4 3 2 1
l EXTERNAL TRIGGER AT
THIS LEVEL IS IGNORED
REQUEST o N ot
REGISTER | folol' 10
23 3 2 t [0}
ENABLE/INHIBIT| T TA 1 - ENABLED
REGISTER |, f 0 0 1 1 0 I']o. jNsimen
23 2 | 6]

THIS LEVEL IS WAITING FOR
HIGHER LEVELS TO BECOME
INACTIVE OR PERMISSIVE
(SEE DETAIL BELOW)

w
l_.bv
W

I THIS LEVEL IS WAITING

TO BE ENABLED

FROM REQUEST REGISTER OR
- BITS OF A REGISTER DURING

' TD4 INSTRUCTION
ACTIVE T N 1 = ACTIVE
REGISTER 010 ffo.o.o.l.o.o 0 = INACTIVE

2 1 0

?

L THIS LEVEL CAN BE PLACED
IN A PERMISSIVE STATE /

ENABLE/INHIBIT g '

I 1

INHIBITED

4 3

ACTIVE/PERMISSIVE 1 = ACTIVE
STATE g Z _30 INACTIVE

3 ENABLED
|

| PREVIOUSLY ACTIVE LEVEL

INHIBITED BY PROGRAM

PERMISSIVE

5-4

Figure 5-2. External Interrupt Control

Mi60-100B

Once an interrupt becomes active, it can be inhibited under
program control (TD1, TD2, or TD3 instruction). This
places the active level in an off-line mode or permissive
state. The permissive state does not affect execution of the
interrupt subroutine but enables lower priority armed and
enabled interrupts to become active when triggered. For
example, if active level two is inhibited by the program,
waiting level three becomes active immediately. After level
three is serviced, the processing of the level two subroutine

is resumed until it is completed or another interrupt

becomes active. Should another interrupt trigger be
received by an interrupt that is in the permissive state, it
will be saved and recognized when that level is returned to
the on-line mode.

Hold and Release External Interrupts (HX! and RXI)
instructions are employed to prohibit and restore the
activation of any externai interrupt (other than
currently-active levels) regardless of that interrupt’s
armed/disarmed and enabled/inhibited states. Such a
prohibition would ensure that another, lower-level,
interrupt could complete its processing routine without
interruption. This hold condition can only be released by
an RXI instruction.

Should an interrupt occur during the execution of certain
specified instructions, it will not be allowed to become
active until the completion of the instruction following the
specified instruction. The following instructions are
included in this group.

Branch and Save Return Long (BSL)

Hold Interrupts and Transfer | to Memory (HTI)
Hold Interrupts and Transfer J to Memory (HTJ)
Hold Interrupts and Transfer K to Memory (HTK)
Release External Interrupts (RXI)

Execute Memory (EXM)

Transfer Memory to Registers (TMR)

Transfer Registers to Memory (TRM)

Update Stack Pointer (USP)

Transfer Double to Group 1 (TD1)

Transfer Double to Group 2 (TD2)

Transfer Double to Group 3 (TD3)

Transfer Double to Group 1 (TD4)

Transfer Double to Group 2 (TD5)

Transfer Double to Group 3 (TD6)

Unitarily Arm Group 1 Interrupts (UA1)
Unitarily Arm Group 2 Interrupts (UA2)
Unitarily Arm Group 3 Interrupts (UA3)
Unitarily Disarm Group 1 Interrupts (UD1)
Unitarily Disarm Group 2 Interrupts (UD2)
Unitarily Disarm Group 3 Interrupts (UD3)
Unitarily Enable Group 1 Interrupts (UE1)
Unitarily Enable Group 2 Interrupt (UE2)
Unitarily Enable Group 3 Interrupts (UE3)
Unitarily Inhibit Group 1 Interrupts (Ul1)

0830007-000
Original 8/79

Unitarily Inhibit Group 2 Interrupts (U12)

Unitarily Inhibit Group 3 Interrupts (UI3)

Transfer Double to Source and Destination Registers (TDS)

Transfer Source and Destination Registers to Double {TSD)

Transfer A to 1 Virtual Address Register (TAR)

Transfer Double to 2 Virtual Address Registers (TDR)

Transfer 2 Virtual Address Registers to Double (TRD)

Transfer Double to Paging Limit Registers (TDP)

Transfer Paging Limit Registers to Double (TPD)

Transfer Usage Base Register and Demand Page Register to
Doubie (TUD)

Transfer E to Usage Base Register (TEU)

Query Virtual Usage Register (QUR)

Query Not-Modified Register (QNR)

Release Operand Mode (ROM)

Release User Mode (RUM)

INTERRUPT PROCESSING

Each external interrupt and executive trap level is assigned
a unique memory location, as previously described. This
location specifies an address at which to store certain
system parameters. When an interrupt becomes active the
contents of the C Register, program return address, and
virtual memory mode of operation are saved. A branch is
then made to the interrupt subroutine. At the conclusion of
the subroutine, the C Register contents and virtual memory
mode of operation are restored and a branch is made to the
main program.

Interrupt processing is dependent upon the operational
state of the CPU when the interrupt occurs. One procedure
is used for Operational State Zero, while a second
pracedure applies to Operational States One and Three.

Operational State Zero Interrupt Processing

An interrupt, which is activated when the CPU is in
Operational State Zero, generates an address and an
instruction operation code. The address specifies the
dedicated location and the operation code defines a pseudo
(hardwired) Execute Memory (EXM) instruction. The
address and EXM instruction are decoded and executed as a
normal operation. This causes the instruction in the
dedicated location to be executed as if it were the next
instruction in the main program.

Although any instruction may be stored in an interrupt’s
dedicated memory location, the operation designed for
subroutine entry is the Branch and Save Return Long(BSL)
instruction. The BSL instruction is used to enter an
interrupt subroutine because it provides a means of saving
machine status and returning to the program location
following that being executed at the time of the interrupt.

When an interrupt is generated, the current instruction is

5-5

0830007-000
Original 8/79

allowed to continue so the Program Counter can be
advanced before interrupt processing begins. Figure 5-3
illustrates the sequence of events.

The BSL instruction records the paging mode (User or
Monitor) in bit 20 of the effective memory address. Bit 20
is set to ONE if the CPU was in the User Mode when the
interrupt occurred, or reset to ZERO if the Monitor Mode
was active.

A means of exit from the interrupt routine is the Branch
and Reset Interrupt Long (BRL) instruction. Normally, the
BRL instruction wouid make use of an indirect reference
{*) to the address previously referenced by the BSL
instruction upon entering the routine. If this is done, the
Condition Register is restored to its original contents (at
the time the interrupt occurred). The state of bit 20 (in the
return address) is tested by the BRL and the appropriate
virtual memory mode is reestablished when the subsequent
instruction is fetched. Figure 5-4 illustrates the subroutine
exit sequence.

The BRL instruction resets the highest active (not in
permissive state) trap or external interrupt level provided
that external interrupts are not being ‘“‘held” (HXI
instruction). Active traps can only be reset by the BRL
instruction. Active interrupts can only be reset by the BRL
instruction, a TD1, TD2, or TD3 instruction, or by master
clearing the CPU. A BRL instruction will not reset an
interrupt that is in the permissive state.

5-6

Operational States One and Three Interrupt
Processing

When an interrupt is activated in Operational States One or
Three, a pseudo Branch and Save Extended (BSX)
instruction is executed by the microcode. An address
specifying the dedicated location is loaded into the
Instruction Register; no op code is loaded into the register.
Unlike Operational State Zero which stores an instruction at
the dedicated location, the address word {(word 2) of the
BSX is stored when the CPU is in Operational States One or
Three. Refer to Figure 5-5. An EMA which specifies the
storage location of the BSX save word is calculated from
the address stored in the dedicated location. Usually, this is
a direct address, but indirection or indexing may be
specified. In addition to storing the save word, which
contains the Condition Register contents and program
address of the next sequential instruction, the virtual
memory mode of operation is recorded in bit 20 of the
Virtual Limit Register (VLR). VLR20 is set if the CPU was
in the User Mode when the interrupt occurred, or reset if
the Monitor Mode was active.

Exit from the interrupt subroutine is by means of an
indirected Branch and Reset Interrupt Long (BRL)
instruction (no indirect chaining allowed). See Figure 5-6.
The Program Counter and Condition Register are restored
from the BSX save word. VLR bit 20 remains unchanged if
another interrupt is active and enabled. If no other
interrupt is active and enabled, VLR20 is reset.

Control of active interrupts by execution of the BRL
instruction, and certain other specified conditions is as
described for Operational State Zero interrupt processing.

0830007-000
Original 8/79

LOCATION INSTRUCTION NOTES
T " T T T " INTERRUPT OCCURS AND TRANSFERS CONTROL
6% TOA OPERAND TO DEDICATED LOCATION 100 (GROUP 1,
A e A 1 1 i 1 L A 1 s A L L L 1 L i e il LEVEL 8)
23 4
. . , , , r DEDICATED LOCATION 100 CONTAINS
100 85t 350 REFERENCE TO LOCATION 350 (STORAGE
. o L FOR RETURN ADDRESS, CPU STATUS, AND
P5) VM MODE OF OPERATION).
" " " N T RETURN ADDRESS AND STATUS ARE STORED,
350 00 0Jvi CREG PROGRAM COUNTER - 657 PROGRAM COUNTER IS SET TO 350+ 1 (BRANCH
g ADDRESS). V =1 - USER MODE
=0 - MONITOR MODE
) ' ' ' ' ' ' FIRST INSTRUCTION IN INTERRUPT
% LI o SUBROUTINE.
23 4
M160-060D
Figure 5-3. Interrupt Subroutine Entry, Operational State Zero
LOCATION INSTRUCTION NOTES
376 TMR 131 RESTORE REGISTERS.
4 A i 1 Ll L N | 1 11 il |
23 14
T T T y T v BRANCH TO STORAGE LOCATION OF
377 BRL » 350 RETURN ADDRESS, MACHINE STATUS
o PSS S S SR S S R S T AND VM MODE.
23 17
: . ; . . . THE C REGISTER IS RESTORED
. AND THE PROGRAM COUNTER IS LOADED
350 00 0fV] CRes | PROGRAM COWNTER-g57 WITH THE RETURN ADDRESS. VM MODE OF
PE) 20 e OPERATION IS RESTORED.
657 c08 ////// OPERAND MAIN PROGRAM
1 i i i A 1 1 i 1 1 V. 4 1 1 l L
23 12 T
MI160-157D
Figure 5-4. Interrupt Subroutine Exit, Operational State Zero

0830007-000
Original 8/79

LOCATION INSTRUCTION NOTES
EE— —— INTERRUPT OCCURS AND TRANSFERS
656 TOA OPERAND CONTROL TO DEDICATED LOCATION
= 1l 1l i 1 L i 1 l‘l 1 L 1 1 1 l 1 1 1 i L 1 LO]oo (GROUP], LEVEL 8)'
— DEDICATED LOCATION 100 CONTAINS
100 | x % 350 REFERENCE TO LOCATION 350
A7 v] (STORAGE FOR RETURN ADDRESS AND

CPU STATUS).

T T T T - T T RETURN ADDRESS AND STATUS ARE
350 C REG PROGRAM COUNTER = 657 STORED. PROGRAM COUNTER IS SET
— Il 120 ‘91 U N0 WY SN TS W SO T WY S0 W S S lo TO 350 + 1 (BRANCH ADDRESS)' VM

MODE IS SAVED IN VLR20.

i T T T H T

: FIRST INSTRUCTION IN
35 o TRMO 18 INTERRUPT SUBROUTINE.

23 15 14 o

Mi2424

Figure 5-5. Interrupt Subroutine Entry, Operational States One and Three

LOCATION INSTRUCTION NOTES

376 IMR N RESTORE REGISTERS.

VO T S N N T ' R NS S TR TN WS A N T S | Jl
23 14 c

377 ' T BRANCH TO STORAGE LOCATION OF
JBRLOM 3 | RETURN ADDRESS AND MACHINE STATUS.
23 17 o]
THE C REGISTER IS RESTORED AND
N A THE PROGRAM COUNTER IS LOADED WITH
350 C REG PROGRAM COUNTER = 657 THE RETURN ADDRESS. VM MODE OF
e e OPERATION IS RESTORED.

657 o //// OPERAND MAIN PROGRAM.

23 2 7 o

M12425

Figure 5-6. Interrupt Subroutine Exit, Operational States One and Three

0830007-000
Original 8/79

SECTION VI
SCIENTIFIC ARITHMETIC UNIT OPERATION

GENERAL DESCRIPTION

The Scientific Arithmetic Unit (SAU) instructions provide
double-precision, floating-point capability for the
computer. The E Unit implements the execution of 47 SAU
instructions, or operation codes. SAU data and condition

AAAD T

information may be dispiayed via the MAP Terminal.

FLOATING-POINT DATA FORMAT

All arithmetic operations are carried out in double-precision
format to yield a 39-bit mantissa and an 8-bit exponent.
Figure 8-1 illustrates the floating-point data formats
employed by the CPU’s Double (D) Register, memory, and
the SAU’s X and XW Register.

Data transfers to the floating-point registers are either
single-precision integers or double-precision, floating-point,
normalized numbers. AH arithmetic operations are executed
in the double-precision, floating-point format as illustrated
in Figure 6-1. Therefore, any integer number transferred to
the floating-point registers for arithmetic operations is first
normalized and converted to floating-point format. All
double-precision transfers to the floating-point registers,
whether from the D Register or memory, are assumed to be
normalized, floating-point quantities. Bit 23 of the
least-significant half (LSH) of the double word is truncated.

SAU REGISTERS

Three SAU registers are available to the programmer. These
are:

a. X Register (signed mantissa — Figure 6-1);
b. XW Register (signed exponent — Figure 6-1); and

c. Y Register (condition code — Figure 6-2).

The XW Register can be independently modified via the
SAU instruction set. Figure 6-2 illustrates the Y
{Condition) Register bit configuration and their significance
in reflecting the results of SAU operations.

Note that condition codes generated by the decimal
arithmetic instructions are also loaded into bit positions 3-0
of the Y Register. SAU and decimal instructions should not
be intermixed. If SAU instructions follow a string of
decimal arithmetic instructions, the Y Register must be

initialized prior to executing the SAU instructions.
Similarly, the Y Register must be initialized after executing
a string of decimal arithmetic instructions if the decimal
instructions are followed by SAU instructions.

Y reflects the result of that operation and not the condition
of X.

After an instruction modifies the XW Reaqister, the value in

OPERATION AND CONTROL

Data Transfers

All floating-point data transfers are, effectively, confined to
the X, XW, and Y Registers. Data transfers may invoive the
E and A Registers or memory. The transfer source and
destination are selected as a function of the instruction
being executed.

SAU Instructions

For a detailed description of SAU instructions, refer to
Section VII of this manual.

SAU INTERRUPT

The executive trap (Group 0, Level 7) provided for the
SAU instructions is used to detect overflow/underflow
conditions resulting from the execution of SAU
instructions. The trap is controlled by two SAU
instructions and the hold/release external interrupt
instructions of the CPU.

The SAU instructions which control the trap are the Hold
SAU Overflow Interrupt (HSI) and the Release SAU
Overflow Interrupt (RSI). The trap, when enabled, is
triggered by the overflow bit (bit 0) of the Y Register. In
order to start SAU operation and enable the trap the
following sequence may be used.

TOY 0 or TMX
RSI RSI

OPERAND

Either sequence clears the overflow bit and prevents an
extraneous interrupt.

0830007-000
Original 8/79

"_— E REGISTER ‘ll= A REGISTER —————1
+ I
23 22 o 2 7 6 o
[[L |
S S
IG MANTISSA (MSH) MANTISSA (LSH)]G EXPONENT D REGISTER
N N
LOCATION N s LOCATION N +1 ——’1
23 22 o 22 7 6 °
[[[|
S S
I SSA L | exponenT | MEMORY
L MANTISSA (MSH) MANTISSA (LSH) G | EXPO DOUBLEWORD
N N
a1 48 24 2 T . [
T - ool N
Pim : : SAU
G g MANTISSA g |G| EXPONENT REGISTERS
N N
L X REGISTER ‘].‘ XwW EGISTER—-I
MI1226F
Figure 6-1. Floating-Point Data Formats
é 5 4 3 1 0
C[)VERF'{.OW /////
N posimIvE | zero | NecaTive | EXPONENT Y REGISTER
il T
/ T
[})
Zero indicates not positive. lSet to one when arithmetic 1
. . . operations result in an
:;:::ﬁ(; r:‘: :’er':gr::ﬁ:";?hc exponent greater than +127
greater than zero. or less than -128.
. Set to one when X is negative
Set to one during compare
operations when the operand for square root.
is less than the X Reg. Set to one if divide by zero is
attempted.
Zero indicates not zero. When set to one will generate
. . . . i i 0,
Set to one during arithmetic operations executive trap interrupt group 0,
when the result is a mantissa of all zeros I"’i,ll 7d;‘ bit 6 is set (interrupt
and an exponent of 201 {(octal). enabled).
Set to one during compare operation
when the operand equals the X Reg.
Set o one during transfer to X if X
and XW =0,
Zero indicates not negative.
Set to one during arithmetic operations when the
result is less than zero.
Set to one during compare operations when the
operand is greater than the X Reg.
Set by RSI (Release SAU Overflow Interrupt) instruction execution.
Reset by HSI (Hold SAU Overflow Interrupt) instruction execution.
MI11227A

Figure 6-2. Y (Condition) Register

When the SAU trap is enabled and an overflow occurs, the
SAU is set to a busy condition, preventing the execution of
any other SAU instruction except an HSI. Execution of any
of the decimal instructions is also inhibited. This allows the
-program to determine the location of the SAU instruction
which caused the overflow. The SAU interrupt processing
routine must execute an HS! as its first SAU instruction.
Prior to exiting the service routine, bit 0 of the Y Register
must be cleared and an RSI instruction performed to rearm
the SAU trap. A typical entry/exit sequence is:

SAUP| B
HSI

TOY 0
RSI
BRL* SAUPI

0830007-000
Original 8/79

Note that an overflow can be caused by program control
with the sequence:

HSI
RS!
TOY 1

It should be noted that the contents of the Program
Counter at the time of the interrupt does not necessarily
have a direct relation to the location of the SAU instruction
which caused the overflow. This is due to the occurrence of
other interrupts, the execution of the HXI/RX| instructions
and the way in which the SAU and CPU instructions are
intermixed.

When it is a requirement to know exactly where the
instruction causing the overflow is located, careful coding is
mandatory if the concurrent operation capability is to be
used. It is recommended that in cases where overflow is
likely, the SAU instructions be written consecutively to
simplify the procedure for finding which SAU instruction
caused the overflow.

6-3/(6-4 Blank)

0830007-000
Original 8/79

SECTION VI
INSTRUCTION SET

"INTRODUCTION

The instruction set consists of several functional groups or
families of instructions. Among these are: arithmetic;
branch; compare; input/output; logical; shift; transfer; etc.
Each group, in turn, is composed of individual instructions
that perform specific functions.

Through the a
programmer has access to each memory location and major
register in the CPU. In addition, the instruction set provides
for the alteration and control of program flow,
manipulation and modification (arithmetic and logical) of
data, servicing of priority interrupts and control of 1/O

operations.

INSTRUCTION TYPES AND FORMATS

Introduction

The instruction word defines the operation to be performed
and the manner in which it is to be performed. All
instruction formats contain an operation code (op code)
that defines the general process that is to be undertaken
such as add, transfer, branch, and so forth. The op code
usually contains six or 12 bits, however, some instructions
require expansion of the op code beyond 12 bits.
Additional bits in the instruction word specify how the
general operation is to be performed. For example, when
adding the contents of one register to the contents of
another, the additional bits indicate which registers are
involved. The appropriate formats are provided with the
individual instruction descriptions.

The instruction set may be divided into three general types
of instructions which are designated memory reference,
immediate operand, and augmented. See Figure 7-1.
Memory reference instructions access memory and use
formats that specify an address. The address bits are
sometimes supplemented by special bits (indirect, index) in
the instruction word. In other cases, the additional bits are
not used for address modification, but are used to define a
condition under which the specified memory location will
be accessed. Instead of an address field, the immediate
operand type of instruction specifies an operand in the
instruction word. Instructions that are not of the memory
reference or operand type are included in the augmented
group. This type of instruction specifies data sources and
destinations or other parameters such as shift count, I/O
channel and unit numbers, and additional functions or
conditions.

Two basic types of instruction word formats are used in the
computer. The first of these, termed standard, is a
single-word instruction. The second type of instruction
word format, termed extended, is a double-word
instruction.

Standard Instruction Format

Each standard instruction, with the exception of the USP
and AOM instructions, is decoded from a 24-bit memory
word. The USP and AOM instructions are double-word
instructions which are included in this group because they
are not in the extended instruction format.

The functions of several of the standard instructions are
dependent upon whether the CPU is in the Compatibility or
Address Extension Mode of operation. The instructions
affected are the BSL, TLO, BRL, Branch and Link, and
GAP instructions. The differences in operation of these
instructions are provided with the individual instruction
descriptions.

Extended Instruction Format

Direct memory addressing to one megaword s
accomplished with instructions in the extended instruction
format. These are double-word instructions that are
identified by an octal 7740 (escape code) contained in bits
23-12 of word 1. The majority of the extended instructions
are extensions of the standard instructions. These are
identified in the individual instruction descriptions by
adding a percent sign to the instruction mnemonic. As an
example, TMA % indicates an instruction that can be
executed in both the standard instruction format and the
extended instruction format. When an instruction can be
executed in both the standard and extended formats, only
the standard instruction format is illustrated with the
instruction descriptions provided in this section. Unless
otherwise noted with the individual instruction description,
the extended version of this group of instructions uses the
format illustrated in figure 7-1.

Bits 11 through 3 of the first word of the extended
instruction contain the op code and appear as they would in
bit positions 23-15 of the standard instruction. Bits 2-0 of
word 1 are not used and are defined to be zeroes. Word 2 of
the extended instruction is an address word which is read
from memory as an indirect operand access. Bit 23 is the
indirect bit, and bits 22 and 21 are the indexing field. Bit 20
is, by definition, not used. The remaining bits, 19 through O,
comprise the 20-bit address field.

7-1

0830007-000
Original 8/79

MEMORY REFERENCE

IMMEDIATE OPERAND

T T N
OP CODE ADDRESS OP CODE K /Aop AM'J
l#'g////% |°1///
23
T T T T T STANDARD T T T T T T STANDARD
ropcoos *l xl ADDRESS l > INSTRUCTION r OP CODE a OPERAND ‘ > INSTRUCTION
L S A S FORMATS T S A A S L FORMATS
23 17 . 23 9 8 7 o
l OP CODE]*M ADDRESS | r OP CODE OPERAND I
J T e P
23 17 15 0 23 .8 o
[ESCAPE CODE l OP CODE [oo 0|WORD 1 | ESCAPE CODE l OP CODE lo 0 olwom')l
- L _ EXTENDED SV S i EXTENDED
INSTRUCTION INSTRUCTION
FORMAT FORMAT
H X ADDRESS J WORD 2 ‘ OPERAND |w0R0 2
B A & P N i N S
AUGMENTED
T T T T T N
[OP CODE | n l r2 |
nl Lt 1 | I N T S | "l W ’I i 1 lo
—_— — LSTANDARD
[OP CODE % n] INSTRUCTION
2,l 1 41 4 1 1 1 1 lI2 7! 144 _J i lo FORMATS
T T T T T T T
[OP CODE I) d j)
® ° ! ° e INDIRECT BIT
0 = DIRECT ADDRESS
1 = INDIRECT ADDRESS
Koewnoonann INDEX BITS
00 = NO INDEXING
— — 01 = INDEX BY
l ESCAPE CODE I OP CODE Io 0 0|WORDI 10 = INDEX BY J
T S S AT R A 11 = INDEX BY K
! 320 EXTENDED [SOURCE REGISTER
INSTRUCTION [7 2 DESTINATION REGISTER
. FORMAT Do e er e NUMBER OF SHIFTS
Ioooooooooooooooooooooooononoz :BDI[TS;SEEE;IA(EQ';[ON
e

Mi2423

Figure 7-1. Typical Instruction Word Formats

Two instructions, the BSX and RPB, are extended
instructions which are in the format shown in Figure 7-1,
but which cannot be executed in the standard instruction
format. Seven additional extended instructions that cannot
be executed in the standard instruction format include the
TLK, TPA, HER, RER, LVR, TCD, and THA instructions.
The word 1 format of these instructions is as shown in
Figure 7-1, but the word 2 contents differ. The word 2
format of the TLK instruction contains a 24-bit operand,
while word 2 of the remaining six instructions contain all
zeroes.

Table 7-1 is a list of standard instructions which can also be
executed in the extended format. Included with each
instruction mnemonic is the op code which is contained in bit
positions 11-3 of word 1 of the extended instruction
format.

Table 7-1. Summary of Extended Instructions Derived
From Standard Instructions

oP op op
INST CODE INST CODE INST CODE
AAM 500 BPR 650 OMA 350
AEM 470 BPS 657 RBM 270
AIM 461 BRL 252 SMA 530
AM 462 BSL 250 SMB 550
AKM 463 BUC 210 SMD 540
AMA 430 BUL 260 SME 520
AMB 450 BWI 231 SMI 511
AMD 440 BWJ 232 SMJ 512
AME 420 BWK 233 SMK 513
AMI 411 BZR 640 SMX 740
AMJ 412 BZS 647 TAM 150
AMK 413 CMA 330 TBM 170
AMX 730 CMB 340 TDM 160
AUM 300 CME 320 TEM 140
BBI 607 CMI 311 TFM 460
BBJ 617 cMJ 312 TIM 110
BLI 241 CMK 313 M 120
BLJ 242 cCzM 410 TKM 130
BLK 243 DMA 360 TMA 050
BLL 262 DMX 760 TMB 070
BNN 225 DVM 570 TMD 060
BNO 224 EMB 310 TME 040
BNP 227 EXM 400 ™I 010
BNR 630 HTI 271 T™J 020
BNS 637 HTS 272 TMK 030
BNZ 226 HTK 273 T™Q 510
BON 221 IMA 700 TMR 100
BOO 220 IME 670 T™MX 710
BOP 223 IMI 661 TRM 200
BOR 772 IMJ 662 TXM 720
BOS 773 IMK 663 TZM 660
BOX 627 MMX 750 XMA 370
BOZ 222 MYM 560

0830007-000
Original 8/79

INSTRUCTION FORMULA

The instruction formula, presented with each instruction
description, provides a graphic representation of a 24-bit
instruction word. The formula expresses an instruction
word as a concatenation of its various fields where each
field is represented by one or more octal digits. For
example, the formula 21."+X:a expresses a memory
reference branch where 21" represents a 6-bit (2 octal
digits) Op Code, * and X are additive quantities defining
the indirect (*) and index (X) field, and “'a’ is a memory
reference in a 15-bit address field.

The period (.) and colon (:) provide field separation in the
formula, with the colon indicating right/left justification.
All digits or references to the left of the colon are
left-justified, and those to the right are right-justified in
their respective fields. The absence of a colon indicates that
all digits or references are left-justified in their fieids.

Examples of instruction formulas are as follows:

0034.
Op Code Blank Field
(bits insignificant)
0027. r1. r2
Op Codej X_ Register Specification
Field
Register
Specification
Field
64. r:0
Op Code—7_ \— Operand Field
Register
Specification
Field
0070. *+C. U
Op Code \— Unit Specification
Field
Channel
Specification
Field
W/Override

7-3

0830007-000
Original 8/79

INSTRUCTION DESCRIPTIONS

instructions. The instructions are arranged by functional
groups {arithmetic, branch, compare, etc.). General
information pertaining to each group is presented in the
introductory paragraphs.

Each instruction description includes the three-letter
mnemonic identifier, instruction name, instruction formula,
and lists the registers affected. Bit assignments for each
instruction are shown by means of the binary word format
illustration, and a brief explanation of the instruction
operation is provided. Special notes are given,'where
required, to complete the instruction description.

Arithmetic Instructions

The arithmetic instruction group includes the standard

arithmetic operations — addition, subtraction,
multiplication and division — as well as square root,
normalization and sign extension instructions. Also

included are several register-to-register operations which
compute the absolute value, negate or round off the
contents, or negate the sign of one register and
subsequently transfer its contents to a second register.

The arithmetic instruction mnemonics provide a brief
definition of specific operations to be performed. The first
letter of the mnemonic signifies the action or type of
operation to be performed, the second letter identifies the
first quantity or reference (r1) to be used in the operation,
and the third letter identifies the second reference (r2). For
example:

AME
Add ———/ \—Register E
(Action to be performed) (r2)
Memory

{r1)

In the majority of arithmetic instructions, the result of the
operation remains in r2 leaving r1 unchanged (except where
r1 and r2 are the same). Certain instructions — notably,
those performing multiplication, division, sign extension
and square root computation — do not comply with the r1
and r2 conventions stated above. These instructions are
described thoroughly in the individual instruction
descriptions.

Unless noted otherwise, each arithmetic operation causes
the Condition (C) Register to be set reflecting the status of

7-4

the result. The various arithmetic conditions are defined as
follows:

a. Positive — Result is arithmetically greater than zero,

indicated by a ONE in bit position 3 of the C
Register. A ZERO in bit position 3 indicates “Not
Positive”.

b. Zero — All bits of the quantity under consideration
are ZEROs, indicated by a ONE in bit position 2 of
the C Register. A ZERO in bit position 2 indicates
“Not Zero"".

c. Negative — Result is arithmetically less than zero,
indicated by a ONE in bit position 1 of the C
Register. A ZERO in bit position 1 indicates ““Not
Negative”’.

d. Overflow — An Overflow results from an operation
instead of displaying the status of an operand. As a
general rule, an arithmetic Overflow will occur when
a bit is carried into the designated sign bit position
and not carried out or vice versa. An Overflow
condition is indicated by a ONE in bit position 0 of
the C Register. A ZERO in bit position 0 indicates
“No Overflow”.

The following instructions are included in the arithmetic
group.

AAM Add A to Memory 7-6
AEM Add E to Memory 7-7
AMA Add Memory to A 7-5
AMB Add Memory to Byte 7-6
AMD Add Memory to Double 7-6
AME Add Memory to E 7-5
AMx Add Memory to Register 7-5
AOB Add Operand to Byte 7-7
AOM Add Operand to Memory 7-7
AOr Add Operand to Register 7-7
Arr Add Register to Register 7-8
AUM Add Unity to Memory 7-5
AxM Add Register to Memory 7-6
DVM Divide by Memory 7-8
DVvO Divide by Operand 7-8
DVT Divide by T 7-9
DVx Divide by Register 7-9
DV2 Divide by 2 7-9
ESA Extend Sign of A 7-10
ESB Extend Sign of Byte 7-10
FNO Floating Normalize 7-10
MYM Multiply by Memory 7-10
MYO Mulitiply by Operand 7-10
MYr Multiply by Register 7-11

NBB Negate of Byte to Byte 7-11
NDD Negate of Double to Double 7-12
Nrr Negate of Register to Register 7-11
NSr Negate Sign of Register 7-12
PBB Positive of Byte to Byte 7-12
PDD Positive of Double to Double 7-12
Prr Positive of Register to Register 7-13
Rrr Round of Register to Register 7-13
SMA Subtract Memory from A 7-14
SMB Subtract Memory from Byte 7-14
SMD Subtract Memory from Double 7-14
SME Subtract Memory from E 7-14
SMx Subtract Memory from Register 7-13
SOB Subtract Operand from Byte 7-16
SOr Subtract Operand from Register 7-15
SRE Square Root Extended 7-16
SRT Square Root 7-15
Srr Subtract Register from Register 7-15

AUM % Add Unity to Memory

Formula 30."+X:a Affected M,C
T 1 T 1 H
OP CODE %} X ADDRESS
1 | 11 1 | S S I | | I T U N S
23 17 14 [+

Operation

The contents of the effective memory address are
incremented by one.

Note

The Condition Register is set to Positive, Negative or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AMx % Add Memory to Register

Formula 41.*+x:a Affected x,C

T T T T U

OP CODE [*]| x ADDRESS

) 1 S WSO U T TN Y T Y T Y N T |
23 17 4 (o}

Operation

The contents of the effective memory address are
algebraically added to the contents of register |, J or K.

0830007-000
Original 8/79

Notes

AMx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x = 1()
2 (J)
3 (K)

A code of 41.*+1:a, for example, implements the Add
Memory to | (AMI) instruction.

The immediate memory reference cannot be indexed:;
however, indexing of indirect references is permitted.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the Operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit ({23)
without a carry in.

AMA % Add Memory to A

Formula 43.*+X:a Affected A,C

I T I 1 I

OP CODE k| X ADDRESS

| 1 S W SR N N S S N B S R B A

23 17 14 [}

Operation

The contents of the effective memory address are
algebraically added to the contents of the A Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AME % Add Memory to E

Formula 42.*+X:a Affected E,.C
T I 1 T
OP CODE %] X ADDRESS
1 1 | 1 1 1 1 1 1 L 1 1 H 1 1 1 | 1 1 1
23 t7 14 o

Operation

The contents of the effective memory address are
algebraically added to the contents of the E Register.

7-5

0830007-000
Original 8/79

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

AMD % Add Memory to Double

Formula 44.*+X:a Affected E.A,C
1 I 1 1 1
OP CODE |*}| X ADDRESS
| 1 1 | i l | N S S U N N | L 41 L 11
23 17 14 o]

Operation

The contents of the effective memory address (EMA) and
the next sequential memory address (EMA+1) are
algebraically added to the contents of the D Register
according to the double integer format defined in Section
1.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the D Register after the operation.
Overflow is set if one occurs during the addition.

AMB % Add Memory to Byte
Formula 45.%+X:a Affected AC
I { T T 1
OP CODE |%| X ADDRESS
1 | I | | 4 1 4t 1 ittt 1 1 4 1
23 17 14 [¢]
Operation

Bits 7-0 of the contents of the effective memory address are
algebraically added to the contents of the B Register
(A7-A0). Bits 23-8 of the A Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AxM % Add Register to Memory
Formula 46.%*+x:a Affected M,C
T 1 1 1 T
OP CODE |*] x ADDRESS
) N S N 1) G G N W S T S S N N G S |
23 17 14 0
Operation

The 24-bit contents of the 1|, J or K Register are
algebraically added to the contents of the effective memory
address.

Notes

AxM is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(1)
2 (3
3 {K)

A code of 46.%+2:a, for example, implements the add J to
Memory (AJM) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

AIM* X

X DAC Y.K

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AAM % Add A to Memory

Formula 50.*+X:a Affected M,C

I T T T T

OP CODE %} X ADDRESS

N U S W T | IS (SN VS TN WS VN U (N U (N S SN N G |
23 17 14 (o}

Operation

The contents of the A Register are algebraically added to
the contents of the effective memory address.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AEM % Add E to Memory

Formula 47.7+X:a Affected M,C
T T T T T
OP CODE [*k| X ADDRESS
1 1 1 L1 n l 1 1 1 1 | 1 1 L 1 J S |
23 17 4 o]
Operation

The contents of the E Register are algebraically added to
the contents of the effective memory address.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOr Add Operand to Register

Formula 64.r.o Affected r,C
T T T T I
OP CODE r OPERAND
1 1 1 1 1 L1] 1 1 11 | | 1 L 1 1 L 1
23 17 14 l 0
Operation

The 15-bit unsigned operand is algebraically added to the
contents of the specified register.

Notes

AOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select any of the general purpose registers.

r=1{(l)
2 ()
3 (K)
4 (E)
5 (A)
6 (T)

A code of 64.3:0, for example, implements the Add
Operand to K {(AOK) instruction.

0830007-000
Original 8/79

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Qverflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOB Add Operand to Byte

Formula 0012:0 Affected A,C
T T 1 1 T T
OP CODE /] OPERAND
j L1 1 1 H 1 i L }//(/ 1 1 L 1 1 L
23 12 7 0
Operation

The 8-bit signed operand is algebraically added to the
contents of the B Register (A7-AQ). Bits 23-8 of the A
Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

AOM (n)
Word 2(m)

Add Operand to Memory

Formula 0074:0 Affected M,C
WORD 1 (AOM)
OP CODE / OPERAND
N N N 1 1 | 1 i)| 1 l/ | L1 ! | I\ L
23 i2 7 0

COMPATABILITY MODE:
WORD 2 (DAC)

! T T T 1
*| X o// ADDRESS
! l/ N W S S SN N N S N T A N O

23 20 15 5 0
or

WORD 2 (LAC)

T T l T

ADDRESS
] /1:111111111111111

23 20 7 0

ADDRESS EXTENSION MODE:
WORD 2
T

T [T 1 T

*| x ADDRESS
S N O U I VR O T T S B I S

23 20 19 Y

,_

7-7

0830007-000
Original 8/79

Operation

The 8-bit signed operand (n) is algebraically added to the
contents of the effective memory address (m).

Notes

If a demand page, restrict mode violation, or limit violation
occurs when attempting to access the effective memory
address while in the virtual memory User mode, the
Program Counter will be decremented by one. If the
violation occurs during the fetch of the second word, the
Program Counter will be decremented by one.

An AOM instruction may not be used after a ROM
instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

Arr Add Register to Register

Formula 0020.r1.r2 Affected r2,C
T T T T T
OP CODE r r2
i I | i 1 1 1 I I L1 O | L L | 1 1 L
23 1" 5 o
Operation

The contents of r1 are algebraically added to the contents
of r2.

Notes

Arr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

rl or r2 = 01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0020.10.40, for example, implements the Add E
to T (AET) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they
are logically ORed prior to the specified operation. The
result is copied into all of the selected r2 registers. Affected
registers are only those selected in group r2,

7-8

DVM % Divide by Memory
Formula 57.%+X:a Affected E,AC
T T T T T
OP CODE k| X ADDRESS
1 1 1 | 1 1] 1 1 J U 1 1 J | 14 1 1 4
23 17 14 o]

Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the
single-precision contents of the effective memory address.
The signed, single-precision, quotient is left in A and the
remainder is left in E. The remainder will have the same
sign as the original dividend and the Condition Register will
be set according to the status of the quotient.

Notes

If it is desired to divide a single-precision number in A
by memory, an Extend Sign of A (ESA) instruction should
be executed prior to the DVM. This will establish the
proper format for the dividend.

If the contents of E are equal to, or greater than, the
contents of memory, an Overflow condition will result and
the Condition Register will be set accordingly.

DVQO Divide by Operand

Formula 610:0 Affected E,AC
1 T 1 T T T
OP CODE OPERAND
23;‘ U S R S SR S | ‘41 HEE W SRS S S U S SN SR SR S § io
Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the 15-bit
unsigned operand. The signed, single-precision, quotient is
left in A and the remainder is left in E. The remainder will
have the same sign as the original dividend and the
Condition Register will be set according to the status of the
quotient.

Notes

If it is desired to divide a single-precision number in A by
the operand, an Extend Sign of A (ESA) instruction should
be executed prior to the DVOQ. This will establish the
proper format for the dividend.

If the contents of E are equal to, or greater than, the
operand, an Overflow condition will result and the
Condition Register will be set accordingly.

DVx Divide by Register

Formula 61.x Affected E,AC

T A Vv
OP CODE | x 7 ///
NS B A A A AT NS AP NSNS S
23 17 15 [¢]
Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the specified
register. The signed, single-precision, quotient is left in A
and the remainder is left in E. The remainder will have the
same sign as the original dividend and the Condition
Register will be set according to the status of the quotient.

Notes

DVx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(1)
2 (J)
3 (K)

A code of 61.1, for example, implements the Divide by |
(DVI) instruction.

If it is desired to divide a single-precision number in A by
the contents of the specified register, and Extend Sign of A
(ESA) instruction should be executed prior to the divide
instruction. This will establish the proper format for the
dividend.

n tha

If the contents of E are nnna! 0 han, the

contents of E are equ , ©
contents of the specified register, an Overflow condition
will result and the Condition Register will be set

accordingly.

DVT Divideby T

Formula 616. Affected E,A.C
T T

23l L L it J 1 I|5 i 5

Operation

A23 is cleared and the double-precision contents of the D
Register (E and A) are algebraically divided by the T
Register. The signed, single-precision, quotient is left in A
and the remainder is left in E. The remainder will have the
same sign as the original dividend and the Condition
Register will be set according to the status of the quotient.

0830007-000
Original 8/79

Notes

If it is desired to divide a single-precision number in A by
the contents of the T Register, an Extend Sign of A (ESA)
instruction should be executed prior to the divide
instruction. This will establish the proper format for the
dividend.

If the contents of E are equal to, or greater,than, the
contents of the specified register, an Overflow condition
will result and the Condition Register will be set
accordingly.

Dv2 Divide by 2
Formula 6150 Affected E
1 l T T
QP CODE OPERAND
1 L 1 1 1 | I\ 1 l//l//l// L1 1 1 1 |]
23 14 7 o]
Operation

The DV2 instruction divides the contents of the E Register
by the contents of -the A Register, except that the
arithmetic operation will be Modulo 2 (exclusive OR)
instead of 2's complement arithmetic. The 8-bit operand
contained in the instruction specifies the number of shifts.

Notes

The specified number of shifts must be an even number and
cannot be zero. If zero shifts are specified, the operation is
the same as when a shift of one (1) is specified.

This instruction is used for generating and checking error
codes based on polynomial coding techniques. The
polynomial and the operand to be implemented must be
left-justified in the A and E Registers. The result will be
placed in the E Register while the polynomial will remain in
the A Register.

SHIFT
ONE BIT
LEFT
LOAD A
SHIFT
COUNTER
DECREMENT
SHIFT
COUNTER
YES
A23>E23

NO NO
A 4 A

(A)+ (E)

7-9

0830007-000
Original 8/79

ESA

Formula 0037.

Extend Sign of A

Affected E,C.A

The state of the sign bit {(A23) of the A Register is copied
into all 24 positions of the E Register and bit A23 is then
set to zero. This forms a double-precision number in E and
A.

T T i

OP CODE

AN N N N S VO N T W . |
23 12

Operation

ESB

Formula 0010.

Extend Sign of Byte

Affected AC

OP CODE
L WA A A A
Operation

The state of the register B sign bit (A7) is copied into bit
positions A8-A23, forming a sign extension of the byte.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

FNO

Floating Normalize

Formuia 0054.

T T T

Affected E,A,i,C
OP CODE

23 12 o]

Operation

The contents of the D Register (E and A) are shifted left
arithmetically until bit E22 differs from E23. The negative
shift count (i.e., the number of shifts performed) replaces
the contents of the | Register.

Notes

Example: Convert a double-precision integer in D to
double-precision floating point format.

TOC 0 Clear Overflow
FNO Normalize
TIB Position exponent in byte

(A7-A0).

7-10

BOZ *+2 If result is zero, no exponent
adjustment is necessary.
AOB 46 Adjust shift count

There are four special cases where the shifting process
differs from that described above.

If the binary pattern 11000...0 is detected in register
D, normalization is terminated to avoid creating the
invalid pattern 10000...0.

If the invalid binary pattern 10000...0 is detected, it
is shifted right one position producing the pattern
11000...0. The shift count is adjusted accordingly.

If the pattern 00000...0 is detected, the shift count is
set to -177g, making a zero less significant than any
other value.

If an Overflow condition is present when beginning
the operation, the contents of the D Register are
arithmetically shifted right one position. The shift
count is set to ONE and the sign of D is
complemented.

The Condition Redgister is set to Positive, Negative, or Zero,
based on the result of the operation.

MYM % Multiply by Memory
Formula 56.*+X:a Affected E.A,C
T T T T T
OP CODE k| X ADDRESS
231 O T Y i = A !41 i i RS N SUUENY TN R DN SR § i xo

Operation

The contents of the A Register are algebraically multiplied
by the contents of the effective memory address. The
double-precision product replaces the previous contents of
the D Register (E and A).

Note

An Overflow will result if the full-scale negative number
(1000....00) is used as both the multiplier and multiplicand,
and the result is full-scale negative (1000....0).

MYO Muitiply by Operand

Formula 600:0 Affected E,A,C
1 T 1 T T 1
OP CODE OPERAND
! 1 1 1 1 1 1 I J 1 ! | | 1 1 1 | L 11§
23 14 o]

Operation

The contents of the A Register are algebraically multiplied
by the 15-bit unsigned operand in the instruction word.
The double-precision product replaces the previous
contents of the D Register (E and A).

MYr Multiply by Register

Formula 60.r Affected E.AC
T) x v vy

Wil NI/ /it

23 715)

Operation

he contents of the A Register are algebraically multiplied
by the contents of the specified register. The
double-precision product replaces the previous contents of
the D Register (E and A).

Notes

MYr is not a computer instruction mnemonic but
represents a family of instruction mnemonics. r is coded as
follows to select one of the general purpose registers.

r =1/{l)
2 (J)
3 (K)
4 (E)
5 (A)
6 (T)

A code of 60.4, for example, implements the Multiply by E
(MYE) instruction.

An Overflow will result if the full-scale negative number

{1000....00) is used as both the multiplier and multiplicand,
and the result is full-scale negative {1000....0}.

NBB

Formula 0005.

Negate of Byte to Byte

Affected AC

NEZ /)

23 12

Operation

The contents of the B Register (A7-A0) are two's
complemented. Bit positions A23-A8 are unchanged.

0830007-000
Original 8/79

Notes

An Overflow will result when negating 27 (full-scale
negative byte).

The Condition Register is set to Positive, Negative, or Zero,

based on the result in the Byte Register at the completion
of the operation.

Nrr Negate of Register to Register

Formula 0022.r1.r2 Affected r2,C
I T 1 i T
OP CODE r1 r2
1 | S T T N T | | 41 1 L4 1 1 |
23 [5 0
Operation

The two’s complement of the contents of r1 replace the
previous contents of r2.

Notes

Nrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 ()
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

r1 or r2

A code of 0022.40.01, for example, implements the Negate
of T to | (NTI) instruction.

An Overflow will result when negating 223 (full-scale
negative number).

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they
are logically ORed prior to the specified operation. The
result is copied into all of the selected r2 registers. Affected
registers are only those selected in group r2.

if the Timer (T) Register is selected as source or
destination, the instruction is treated as a multiple register
instruction for timing.

0830007-000
Original 8/79

NDD

Formula 0033.

Negate of Double to Double

Affected E.AC

077

T 1 T

OP CODE

F U S VRS N G A S S
23 12

Operation

The contents of the D Register (E and A), in
double-precision format, are two’s complemented.

Notes

An Overflow will result when negating 246 (full-scale
negative double integer).

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

NSr Negate Sign of Register
Formula 0032.r1.r2 Affected r2,C
1 T T T T
OP CODE r1 r2
) A S (N TN S TR S O N S | | I A W I | S O T |
23 1} 5 0
Operation

The sign bit of the specified register is complemented.

Notes

NSr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

rl and r2 = 01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T

A code of 0032.01.01, for example, implements the Negate
Sign of | (NSI) instruction.

An Overflow will result when negating zero to create a
full-scale negative.

7-12

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers. Affected
registers are those selected in group r2 and the Condition
Register.

PBB

Positive of Byte to Byte

Formula 0006. Affected AC
T T T
Illl()Fl)ClOlDEllIl (A AL A A A
2 2 °
Operation

The absolute value of the contents of the B Register
(A7-A0) is placed in the B Register.

Notes

An Overflow will result when negating a full scale negative
byte.

The Condition Register is set to Positive, Negative, or Zero,

based on the result in the Byte Register at the completion
of the operation.

PDD

Formula 0034.

Positive of Double to Double

Affected E.,A,C

77

The absolute value of the contents of the D Register is
placed in the D Register according to the double integer
format defined in Section Il.

T 1 T

OP CODE

¥ N T WS S NN U U N B
23 12

Operation

Notes

An Overflow will result when negating a full scale
negative number.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Prr Positive of Register to Register
Formula 0023.ri.r2 Affected r2,C
T T i T !
OP CODE r1 r2
i l SR Il 11 1 1 L1 1) W R S B |
23 n 5 [0}
Operation

The absolute value of the contents of r1 replaces the
previous contents of r2.

Notes

Prr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

rt or r2=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0023.01.02, for example, implements the
Positive of | to J (P1J) instruction.

An Overflow will result when negating a full-scale negative
number.

The Condition Register is set to Positive, Negative, or Zero,

f tl« aaaaa 3

donther ne operation.

acn
doc

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers. Affected
registers are only those selected in group r2 and the
Condition Register.

Rrr Round of Register to Register

Formula 0075.r1.r2 Affected r2,C
T T T T T
OP CODE r1 r2
L J J 1 |) | 1 1 1 11 1 | I 1 i i
23 n 5 Q
Operation

Round the contents of r1 as a function of A and place the
resultin r2.

0830007-000
Original 8/79

Notes

Rrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded to select
one-of-five general purpose registers, and r2 is coded to
select any of the general purpose registers.

r1 = 01 (1) r2 =01 (1)
02 {(J) 02 (J)

04 (K) 04 (K)

10 (E) 10 (E)

40 (T) 20 (A)

40 (T)

A code of 0075.04.20, for example, implements the Round
of K to A (RKA) instruction.

If bit A22 is a ONE, the contents of r1+1 are transferred to
r2. If A22 is ZERO, the contents of r1 replace the previous
contents of r2. In either case, r1 is unchanged except when
the same as r2.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

SMx % Subtract Memory from Register
Formula 51.%+x:a Affected x,C
T 1 1 T 1
OP CODE |*| x ADDRESS
It 1 | L) S S U S | N S T S T |
23 17 14 a

Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the |, J or K
Register,

Notes

SMx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1 (1)

2 ()
3 (K)

7-13

0830007-000
Original 8/79

A code of 51."+1:a, for example, implements the Subtract
Memory from | (SM1) instruction.

The immediate memory reference cannot be indexed:
however, indexing of indirect reference is permitted, e.qg.,

SM1* X

X DAC YJ

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Qverflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMA %

Subtract Memory from A

Formula 53.*+X:a Affected AC

T i 1 T 1
OP CODE [*| X ADDRESS
A1 | | | 1 1 1 !)| L1 11 1 I 1 1 1 i
23 17 4 o
Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the A
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Querfiow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SME %

Subtract Membry from E

Formula 52.*+X:a Affected E.C
T T T T T
OP CODE [*| x ADDRESS
L1 11] Ly
23 17 4 o

Operation

The contents of the effective memory address are
algebraically subtracted from the contents of the E
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,

7-14

based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMD %

Subtract Memory from Double

Formula 54 *+X:a Affected E,AC
T T I T i
OP CODE [*]| X ADDRESS
1 | | i 1 1 1 1 1 1 L 1 1 I} l 1 1 Il 1 1
23 17 14 (o)

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) are algebraically
subtracted from the contents of the D Register (E and A),

according to the double integer format defined in Section
1.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SMB %

56.+X:a

Subtract Memory from Byte

Formula Affected A,C

T T T T !

OP CODE |*| X ADDRESS

L1 1 1 J) S W S U (O O TN T T W O SN S
23 17 14 0

Operation

The contents of bits 7-0 of the effective memory address
are algebraically subtracted from the B Register (A7-AQ).
Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in,

SOr

Subtract Operand from Register

0830007-000
Original 8/79

Srr Subtract Register from Register

Formula 65.r:0 Affected r,C Formula 0021.r1.r2 Affected r2,C
1 I T 1 1 I T T T T
OP CODE r OPERAND OP CODE r1 r2
L L1 1 Il 1 1 11 N 1 | 1 L L L L | 1 1 J 1 | | 1 1 N | 1 I\ 1 11 1 L i 1 L .
23 17 14 [e] 23 i 5 (o]
Operation Operation

The 15-bit unsigned operand is algebraically subtracted
from the contents of the specified register.

Notes

SOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

ro=1()
2 ()
3 (K)
4 (E)
5 (A)
6 (T)

A code of 65.1:0, for example, implements the Subtract
Operand from | (SOI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
result of the arithmetic operation generates a carry into the
sign bit without a carry out, or a carry out without a carry
in.

SOB

Subtract Operand from Byte

Formula 0013:0 Affected AC
T T T I 1
OP CODE // OPERAND
S IR I S S S N O S N | 1 /) I Y T I T I
23 t2 7 [o]
Operation

The 8-bit signed operand is algebraically subtracted from
the contents of the B Register (A7-A0). Bits A23-A8 are
unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

The contents of r1 are algebraically subtracted from r2.

Notes

Srr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.
rl or r2 = 01 {1}
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0020.01.02, for example, implements the
Subtract | from J (S1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

1 and r2 are seiected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

SRT

Square Root

Formula 0076:014 Affected E,A,C
I 1 1 T T T
OP CODE '//00001100
N | 1 A A N WO W B | 1 ! | J N |
23 12 7 o}
Operation

The contents of the A Register are treated as a 23-bit
positive integer. The square root of this quantity is placed
in the A Register, right justified, and the remainder is
placed in the E Register so that:

root2 + remainder = original integer.

7-15

0830007-000
Original 8/79

Notes

If the sign bit {23) of the A Register is set, the Condition
Register will be set to Overflow.

SRT generates a root of 12 significant bits; i.e., the true

integer root of any positive integer in the A Register.

Consider the following examples where An implies a binary
point to the right of bit n.

Positive Integer Root (Octal)

2at A0
2 at A20

1 at A0
1.3240 at A10

SRE

Square Root Extended

Formula 0076:027 Affected E,A,C
T T / 1 1
OP CODE //00010111
U S N U U S N N B / [S B
23 12 7 (o}
Operation

The contents of the A Register are treated as a 23-bit
positive integer. The square root of this quantity is placed
in the A Register, right justified, and the remainder is
placed in the E Register so that:

root2 + remainder = original integer.

Notes

If the sign bit {23) of the A Register is set, the Condition
Register will be set to Overflow.

SRE generates a root of 23 significant bits. This extended
significance is obtained by assuming 22 zeros to the right of
bit AO; effectively multiplying the contents of A by 222
and, consequently, the root by 211,

Consider the following examples where An implies a
binary point in the right of bit n.

Positive Integer Root (Octal)

2at AO
2 at A20

1.3240 at A11
1.3240474 at A21

Branch Instructions

The branch group of instructions can be divided into two
basic types; conditional and unconditional branches.
Conditional branches cause control to be transferred to a
specified address upon detection of a certain machine
condition as indicated by the contents of the Condition
Register. Unconditional branches cause control to be
transferred unconditionally to a specified address.

7-16

Branch instructions follow the mapping rules described in
the addressing functions paragraph contained in Section II.

Caution should be observed when employing branch
instructions in conjunction with the virtual memory
system. When a Release User Mode (RUM) instruction is
executed, any branch instruction following the RUM will
cause the User Mode to be established. If the instruction is
a conditional branch, the User Mode will be established
regardless of the outcome of the conditional test. A BLU
instruction automatically establishes the Monitor Mode.

Three branch instructions modify machine operation when
executed. The BSL, BSX, and BRL instructions are affected
by the operational state of the CPU, and by the virtual
memory mode of operation. A summary of the functions of
these instructions is provided in Figure 7-2.

CPU operational states are shown along the top of the
chart. Under each operational state, the virtual memory
mode and state of VLR20 before and after instruction
execution is listed. Save word and indirect word formats are
also indicated. The first instruction listed is a BSL which
contains an op code and a 16-bit address; the indirect bit is
reset. In Operational State Zero, the virtual memory mode
and state of VLR20 are don’t cares prior to instruction
execution. These two functions remain unchanged after
instruction execution. The Compatibility Mode save word
format is used. In this format the return address is located
in bits 15-0, the condition code is contained in bits 19-16,
and the virtual memory mode of operation is saved in bit
20. Since the BSL is not indirected, the indirect word
format does not apply. '

Operation of the BSL instruction when the CPU is in state
one depends on the virtual memory mode of operation. If
in the User Mode, the CPU is placed in the Compatibility
Mode, and when in the Monitor Mode, operation is in the
Address Extension Mode. When the machine is in state one,
the virtual memory mode and state of VLR20 remain
unchanged after execution of the BSL. The Compatibility
Mode save word format is used in the User Mode, and one
of the Address Extension Mode save word formats is used
in the Monitor Mode. The latter save word contains the
return address in bits 19-0, and zeroes in bit positions
23-20; the condition code and virtual memory status are
not saved.

Operation of the BSL in state three is similar to state zero
operation except for the save word format. Since the
Address Extension Mode is established in state three, one of
the Address Extension Mode save word formats is specified.

0830007-000
Original 8/79

TATE ZERO STATE ONE STATE THREF
0 Il SAVE | INDR 10 Il SAVE | INDR 10 I SAVE INDR
INST vm | vir] vm | wvir] worD | worDp vM [virl vm | vir| woro | worD vM | VIR| vm | VLR | . WORD WOPRD
INSTRUCTION FORMAT |mope| 20 | Mope | 20 | FormaT | FORMAT | NoOTES | MODE| 20] mMoDe| 20 | FORMAT | FORMAT | NOTES | MODE | 20 | MODE | 20 | FORMAT | FORMAT| NOTES
USER x [user Juc|] ® NA
BSL O) X x| uc |uc ® NA o T X Tmon [oc T @ Y X x | uc |uc @) NA
UstR | x Juser Juc | ®) [©)
BSL* ® x | x| v juc| ® ® wont | x Tvont [uc | © x | x| uc |uc @
USER | x Juser Juc | ® NA 1
BSL % ® X X | uc |uc ® NA 1 vort 1 x Tmoi Toc T & A X X | uc |uc @ NA
UsER | x Juser luc | & @] 1,2
BSL* % ® X x| uc uc| ® (0] 1,2 vonT | x [mont [uc | &) X x | uc |uc @)
INTERRUPT
BSL @ @ X x | monT| UC @ @ NA NA I NA NA NA NA NA NA NA | NA NA NA
RSX Q) X X uc Juc ® NA 1 USER X JUSER } UC (2 NA ! X X uc |uc ®) NA
MONT | X [MONT JuUC | (&) Q0 ~
UstR | x [user Juc | ® [©) 1,2
BSX* X X uc | uc 1,2 - X X uc fuc
® ®© MONT | X [MONT |uc | ® 0
INTERRUPT HARDWARE | NA | NA| NA [NA | NA NA user | x [MONT | 1 | ®) © 3 USER 4 X IMONT] | @) @ s
BSX MONT | X [MONT | 0 [(® 10) 3 MONT | x |monT | 0 ® @ |3
BRL O) X X uc | uc NA NA X e uc NA NA X X uc |uc NA NA
ustR | x| - Juc| ® ® | .24 x |o |mMonT|oO ® ©)
BRL* 0] X X - uc ® ® |+ MONT | 0 [moONT] © [0)
MONT | 1 | USER ® 3,5 X | v Juser | o ©® W a5
USER x |uc NA NA 1
BRL % ® X x | uc Juc| Na NA 1 ue X x | uvc {uc NA NA -
MONT | x Juc uc | Na NA
USER | X - jucl G vzel 1y Tvont | o ®
BRL* % @ X X - juc| O 1,24 [mont [o [mont] 0 | ®
X 1 Juser | o ® 3,5
MONT | 1 Juser | o | ® () 3,5
INSTRUCTION FORMATS SAVE WORD FORMATS INDIRECT WORD FORMATS
T T T T T T T T T T T T T T A T T
@ OP CODE [0 ADDRESS COMPAT'B’&'E;"[;‘E’ o |v| cREG RETURN ADDRESS *(X 0/// ADDRESS
231 [—L ‘51 FT SN S T SO N S U S S S B lo 231 L = Ig1 1 I5A FR S WO T N O S S S S B S 10 COMPATIBILITY = 22‘2' = Isl S S U WO G U S B BT 10
T T T T T T VM MODE BIT MODE T T T T T
@ OP CODE |1 ADDRESS T T T T T T T @ k(X 11 ADDRESS
S e e L = C REG RETURN ADDRESS — L
ADDRESS 2!I 11 Igl 1 111 1 It 1 1 § IS T W T Y 1 Ll llj
r . T I , EXTENSION ADDRESS &l T T T T
7 7 4 0 OP CODE 0 MODE T ; T T T T T EXTENSION *| X ADDRESS
231 TR J U | ‘12 n‘ [R R 13 21 10 @ ‘ ? o r«l{EITl{RIN :{\{)‘D‘REIS? o MODE = 22‘2! 4 ISA RS RS U U U S T T WP S S N S SO0 St JALD
@ 23 * 9 9
T T T T T T
of X ADDRESS
i) 1 Ll | 4 i il 1
23 22 21 20 19 []
R - NOTES: 5. THE MODE AT T1 WILL REMAIN UNCHANGED
;1 a4 o 0P CODE o 1. THE FINAL EMA MAY NOT EXCEED 16 BITS. IF ANOTHER INTERRUPT IS ACTIVE AND ENABLED .
AT B 2. INTERMEDIATE ADDRESSES MAY BE 20 BITS. 6. CHART LEGEND
Z O veoo 3. VLR20 REMAINS UNCHANGED IF ANOTHER Xeononn DON'T CARE
O INTERRUPT IS ACTIVE AND ENABLED . uc...... UNCHANGED
—————— 4. THE MODE AT T1 WILL REFLECT THE STATUS TO...... STATUS BEFORE INSTRUCTION EXECUTION
1 x ADDRESS OF BIT 20 OF THE SAVE WORD. STATUS AFTER INSTRUCTION EXECUTION
T T ———— NA..... NOT APPLICABLE

MI2426A

Figure 7-2. BSL, BSX, and BRL Functional Summary

7-17/(7-18 Blank)

An indirected BSL functions the same as a non-indirected
BSL with certain exceptions. The indirect bit is set in the
instruction format and an indirect word format is specified.
One of the Compatibility Mode indirect word formats is
used in state zero and, if in the User Mode, in state one. |If
in the Monitor Mode in state one, or if in either of the
virtual memory modes in state three, the Address Extension
Mode indirect word format is specified.

When the BSL is in the extended instruction format,
operation is similar to the standard format BSL. Final
EMAs may not exceed 16 bits since in the Compatibility
Mode the program counter is only 16-bits wide. If the
extended BSL is indirected the final EMA cannot exceed 16
bits, but intermediate addresses may be 20 bits.

The interrupt BSL is defined only for state zero. An
interrupt generates a hardware Execute Memory (EXM)
instruction which accesses the interrupt BSL. No hardware
EXM is executed in operational states one or three.

The interrupt BSX is not defined for state zero but is
defined for states one and three. When an interrupt is
generated, a pseudo (hardware) BSX is executed to force a
branch to a dedicated location where an address is accessed
as the second word. Since 20-bit addresses are used, direct
accesses can be made to up to one megaword of memory.
Address Extension Mode save and indirect words are
specified. |f the virtual memory is in the User Mode when
the interrupt BSX is generated, the Monitor Mode is
established after execution of the BSX. All valid interrupts
reset the User Mode and place the system in the Monitor
Mode. If the Monitor Mode is set when the interrupt
occurs, the system remains in the Monitor Mode. VLR20
records the virtual memory mode of operation at the time
of the first interrupt. This bit remains unchanged if another
interrupt is active and enabled.

An indirect BRL instruction is usually used to exit an
interrupt subroutine. Indirect chaining is allowed in the
Compatibility Mode but not in the Address Extension
Mode. The Condition Register and program counter are
restored according to the contents of the save word stored
at the indirect location. Note that the Compatibility Mode
and Address Extension Mode save word formats differ.

The following instructions are included in the branch
group.

BBI Branch When Byte Address +1in |1 # 0 7-19
BBJ Branch When Byte Address +1inJ#0 7.99
BJL Branch Indexed by J Long 7-21
BLL Branch and Link (J) Long 7-22
BLU Branch and Link Unrestricted 7-24
BLx Branch and Link Register 7-22

0830007-000

Original 8/79
BNc Branch on Condition Code 7-21
BOc Branch on Condition Code 7-21
BRL Branch and Reset Interrupt Long 7-23
BSL Branch and Save Return Long 7-22
BSX Branch and Save Extended 7-23
BUC Branch Unconditionally 7-20
BUL Branch Unconditionally Long 7-21
BWx Branch When Register +1 # 0 7-21

Branch when Byte Address

BBI %

+1inl#0
Formula 607:a Affected |
T T 1 1 T T
OP CODE ADDRESS
1 | I J I S | Il 1 Ll 1 1 1| . i 1 . I 1
23 i o)

Operation

The contents of bits 22 and 23 of the | Register are
incremented by one. If the result of this addition (in bits 22
and 23) is not 002, then the contents of the P Register
(current program address) are replaced by the effective
memory address. If the result of the addition to bits 22 and
23 is 002, then bits 22 and 23 are set to 012 and bits 21-0
are incremented by one. If the resultant sum in bits 21-0 is
zero, then the P Register advances to the next sequential
program location and the index register is set to
20000000g. Otherwise, the contents of the P Register are
replaced by the effective memory address.

Notes

in generai, the BBi and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

™J = '60000200
™I = ‘20000300
TNK 1

EMB 0

RBM 0

BBI *+1

BBJ *+1

BWK *-4

Occasionally, it is possible to use the address of a portion of
the | Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

719

0830007-000
Original 8/79

TOB g

™I ='77777775 bits 22 and 23 = 3,
bits 21-0=-3

RBM ‘10043

BBI *1

However, it should be noted that this technique of using
the index register as both a byte counter and word pointer
may be used only in certain instances. Specifically, when
the following relationship is true.

() (%)

Where:
R() =remainder
B.n. = the starting byte number (1,2, or 3)
CT = the number of bytes to be referenced

BBJ % Branch when Byte Address

+1ind#0
Formula 617:a Affected J
I 1 T i T T
OP CODE ADDRESS
11 1 1 ! Il 1 1 J | I W N | I 1 | i
23 14 (o]
Operation

The contents of bits 22 and 23 of the J Register are
incremented by one. If the result of this addition (in bits 22
and 23} is not 002, then the contents of the P Register
(current program address) are replaced by the effective
memory address. If the result of the addition to bits 22 and
23 is 002, then bits 22 and 23 are set to 012 and bits 21-0
are incremented by one. If the resultant sum in bits 21-0 is
zero, then the P Register advances to the next sequential
program location and the index register is set to
20000000g. Otherwise, the contents of the P Register are
replaced by the effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

7-20

T™MJ = ‘60000200
™ML = ‘20000300
TNK 11

EMB 0

RBM 0

BBI *+1

BBJ *+1

BWK *4

Occasionally, it is possible to use the address of a portion of
the J Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB g

T™I ='77777775 bits 22 and 23 =3,
bits 21-0=-3

RBM ‘10043

BBJ *1

However, it should be noted that this technique of using
the index register as both a byte counter and word pointer
may be used only in certain instances. Specifically, when
the following relationship is true.

Where:
R() =remainder
B.n. = the starting byte number (1,2 or 3)
CT = the number of bytes to be referenced
BUC % Branch Unconditionally
Formula 21.%+X:a Affected P
T 1 1 T T
OP CODE |*| X ADDRESS
! | I 1 1 1 L 1 I\ | 1 . 1 i i L 1 I |
23 17 14 o]

Operation

The contents of the P Register {current program address)
are replaced by the effective memory address.

0830007-000

BUL % Branch Unconditionally Long
Formula 26."+0:A Affected
T T T
OP CODE [* ADDRESS
23! —— 7 s —
Operation

The contents of the P Register {current program address)
are replaced by the effective memory address.

Note

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

BUL® X

X DAC Y.l

BN¢c %
BOc %

Branch on Condition Code

Formula 22c:a Affected P
i T T T T
OP CODE c ADDRESS
i1 L 1 Il 1 I\ 1 1 | | 1 1 1 1 1 1 1 I
23 17 14 0
Operation

The contents of the Condition Register are tested for the
specified condition, If the condition is present, the contents
of the P Register {(current program address) are replaced by
the effective memory address. If the specified condition is
not present, the program advances to the next sequential

instruction.

Note

BOc and BNo are not computer instruction mnemonics but
represents families of instruction mnemonics. ¢ is coded as
follows to select the branch on condition.

¢ = 0 (Qverfiow)

(Negative) BOc
{Zero)
(Positive)

(No Overflow)
(Not Negative)
(Not Zero)
(Not Positive)

S WN -

()]

BNc

~N o

A code of 22.1:a, for example, implements the Branch on
Negative (BON) instruction.

Original 8/79
BWx % Branch When Register +1 # 0
Formula 23.x:a Affected x,P
T T T
OP CODE (0} x ADDRESS
1 . I | i ’e I H L 1

23 17 16 14]
Operation

The contents of the specified register are incremented by
one and then tested for zero. If the contents are not zero,
the contents of the P Register (current program address) are
replaced by the effective memory address. If the contents

are zero, the program advances to the next instruction.

Note

BWx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x = 1(l)
2 (J)
3 (K)

A code of 23.1:a, for example, implements the Branch
When 1+1#0 (BWI) instruction.

Indexing, if specified in word 2 of the extended instruction,
occurs before the register is modified.

BJL Branch Indexed by J Long
Formula 23.4:A Affected P
T) T T i T
OPCODE (10 ADDRESS
I I\ I . 1 1 I\ I\ | | 1) R W S| ! - H 1 I\
23 18 15 o}
Operation

The contents of the.P Register (current program address)
are replaced by the effective memory address.

Note

The immediate memory reference is automatically indexed
by J.

7-21

0830007-000
Original 8/79

BLx %

Branch and Link Register

Formula 24."+x:a Affected x,P
T T T T 1
OP CODE |*%}| x ADDRESS
D 1 i 1 1 J 1 L 1 | 1 .
23 i7 4q 0

Operation

The contents of the 1, J or K Register are replaced by the
program address of the next sequential instruction, and the
contents of the P Register (current program address) are
replaced by the effective memory address.

Notes

BLx is not a computer instruction mnemonic but represents
a family of instruction mnemonics. x is coded as follows to
select one of the index registers.

x =1 ()
2 (J)
3 (K)

A code of 24.%+1:a, for example, implements the Branch
and Link | (BLI) instruction.

If not in the extended instruction format, the immediate
memory reference cannot be indexed; however, indexing of
indirect references is permitted, e.g.,

BLI" X

X DAC Y.J

On an indirect or index operation, the specified register is
loaded with the contents of the P Register (address of next
sequential instruction) before indexing or indirection takes
place.

BLL % Branch and Link (J) Long

Formula 26.*+2:A Affected J,P
1 T 1 T T T
OP CODE k|1 ADDRESS
1 1 L | J J) S U S | 1 ! ! L ! |
23 7 15)

7-22

Operation

The contents of the J Register are replaced by the program
address of the next sequential instruction, and the contents
of the P Register (current program address) are replaced
by the effective memory address.

Note

If not in the extended instruction format, the immediate
memory reference cannot be indexed; however, indexing of
indirect references is permitted, e.g.,

BLL” X

X DAC Y, J

BSL %

Branch and Save Return Long

Formula 25.%+0:A Affected P
1 T T T Il T
OP CODE |*|0 ADDRESS
) S O N | S A NS NS U N S N N U G R U N
23 17 15 o]

Operation

in the Compatibiiity Mode, the program address of the next
sequential instruction along with the contents of the
Condition Register are stored in the effective memory
address (EMA). The contents of the P Register (current
program address) are then replaced by the address following
the effective memory address (EMA + 1).

In the Address Extension Mode, the program address of the
next sequential instruction is stored in the effective
memory address (EMA). The contents of the P Register
(current program address) are then replaced by the address
following the effective memory address (EMA + 1).

Notes

This instruction is used in the Compatibility Mode to enter
an interrupt subroutine because it provides a means of
returning to the main program at the point of interrupt and
saves the machine status (condition) at the time of the
interrupt.

In the Compatibility Mode, the contents of the Condition
Register are stored in bit positions 19-16 of the EMA and
the return address (program address of next sequential
instruction) is stored in bits 15-0. The remaining bits are set
to ZEROs. When an interrupt occurs, the status of the
virtual memory system is recorded. Bit 20 is set to ONE if
the system is in the User Mode at the time of interrupt; bit
20 is set to ZERO if the Monitor Mode is active.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

The Condition Register remains unchanged.

COMPATIBILITY MODE
SAVE WORD

1 ! 1 T T T
0 0 O|V| CREG RETURN ADDRESS

L -1 S S U S N TN S IO N (S N B S |
23 20 16 15 0

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSL or extended BSL is executed.
Intermediate Addresses may be 20 bits when an indirect
extended BSL is executed.

ADDRESS EXTENSION MODE
SAVE WORD
T

1 1 1 T T

0000 RETURN ADDRESS

N N N T TN U O W VA G S VO S S S N

23 20 19 0

In the Address Extension Mode, the return address is stored
in bit positions 19-0 of the EMA; bits 23-20 are reset to
ZERO:s.

BSX

Branch and Save Extended

0830007-000
Original 8/79

Operation

The program address of the next sequential instruction,
along with the contents of the Condition Reaister. are
stored in the 20-bit effective memory address (EMA)
location. The contents of the P Register (current program
address) are then replaced by the address following the
effective memory address (EMA + 1),

Notes

The BSX instruction is valid only in the extended
instruction format. This instruction provides a means of
returning to the main program and saves the machine status
(condition) at the time of instruction execution.

External interrupts are prohibited for a period of one
instruction following the execution of this instruction.

The Condition Register remains unchanged.

ADDRESS EXTENSION MODE

SAVE WORD
T T T T T T T
C REG RETURN ADDRESS
Py TN S T T S S U A S S N O S S S B SR A
23 9)

When the BSX is executed in the Address Extension Mode,
the contents of the Condition Register are stored in bit
positions 23-20 of the EMA location and the return address
(program address of the next sequential instruction) is
stored in bit positions 19-0.

COMPATIBILITY MODE
SAVE WORD
T L 1 1 li T

0 0 0|V| CREG RETURN ADDRESS

L [| § W S TS O T TS S N NS W S N N B |
23 20 19 15 o]

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSX is executed, however, intermediate
addresses may be 20 bits when the BSX is indirected.

Formula 7740.254.0 Affected P
*+X:EA

! ! ' ! ! BRL % Branch and Reset Interrupt Long

ESCAPE CODE OP CODE 000
23 E— l|z TEEE— 13 2‘ 10 Formula 25.7+2:A Affected cpP

T 1 1 T T T 1 1 1 I T T
| X /) ADDRESS OP CODE ||1 ADDRESS
L L R N S S | I N U | L1 1 1)| 1 Ll i 1 JE 411 i | 1 1 | ! L1

2322 21 20 19 o] 23 17 15 [o]

7-23

0830007-000
Original 8/79

Operation

The highest-ievel active and enabied interrupl is 1eset {i.e.,
returned to the inactive state) and the contents of the P
Register (current program address) are replaced by the
effective memory address.

Notes

The BRL instruction is normally used to exit an interrupt
subroutine.

In the Compatibility Mode, if the BRL contains an indirect
reference, the last word in the indirect address chain
contains the previous status of the virtual memory system
in bit M20, the previous machine status (i.e., C Register
contents at the time of the interrupt) in bit positions
M19-M16, and the return address in bit positions M15-MO
as a result of the BSL instruction. The C Register is restored
and the program branches to the return address (restarting
the machine to the pre-interrupt status).

Example:
TMA
L AMA
SMA Interrupt occurs (EXM K).
K BSL M Dedicated interrupt location.
M *** M M becomes L+1 as a result of
BSL at K. The C Register con-
tents are stored in M19-M16.
D. 1 octnra O aaictar and ratiirn
BRL M Restore C Register and return

In the Compatibility Mode, if an indirect BRL is executed
in Monitor Mode, bit 20 of the effective memory address
determines mode of operation to which machine returns. If
bit 20 is set, User Mode is established; if reset, the Monitor
Mode is established.

In the Address Extension Mode, if the BRL does not
contain an indirect reference, the program branches to the
return address and the states of VLR bit 20 and the C
Register are unchanged. If the BRL is indirected (no
indirect chaining is allowed), the destination address
contains the previous machine status in bit positions
M23-M20, and the return address in bit positions M19-MO
as a result of the BSX instruction. The C Register is
restored and the program branches to the return address.
VLR bit 20 remains unchanged if another interrupt is active
and enabled. If no other interrupt is active and enabled,

7-24

VLR20 is reset. VLR bit 20 determines the mode of
operation to which machine returns (if no other interrupt is
active and enabied). If VLR20 is set, User Mode is
established; if reset, the Monitor Mode is established.

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BRL or extended BRL is executed.
Intermediate address may be 20 bits when an indirect
extended BRL is executed.

The immediate memory reference cannot be indexed;
however, indexing indirect references is permitted, e.g.,

BRL* X

X DAC Y.K

If the BRL instruction is not indirected, the Condition
Register is not affected.

External interrupts are prohibited for the period of one
instruction following this instruction.

The BRL will not reset the interrupt if external interrupts
have been held by an HXI instruction. Control will be
returned to the effective memory address.

Those executive traps, which are not affected by the HXI
instruction, will be reset by the BRL.

BLU

Branch and Link Unrestricted

Formuia 0067:a Affected J,P
T T T T
OP CODE 7 /://’ ADDRESS
I\ I l 11 1 1 | I /l N 1 L1
23 12 4 0]
Operation

The program address of the next sequential instruction
replaces the contents of the J Register and the contents of
the P Register (current program address) are replaced by
the 5-bit immediate memory address.

Notes

If virtual memory is enabled, execution of the BLU
instruction will automatically establish the Monitor Mode.
The 5-bit immediate memory address will not be mapped.

Bit 20 of the J Register will be set (ONE) if the system was
in the User Mode, and reset (ZERO) if the Monitor Mode
was active when the BLU was executed.

Compare Instructions

The compare group of instructions is composed of two
basic types of operations; algebraic and logical comparisons.
Both types ot instructions compare two referenced
quantities and set the Condition Register according to the
result. Algebraic comparisons treat the references as signed
(+ or -) quantities, while logical comparisons assume the
references are unsigned quantities.

Algebraic comparisons are identified by the letter “C" as
the first letter in the instruction mnemonic (e.g., CALl).
Logical comparisons use a mnemonic code beginning with
the letter “K" {KAl). The second letter of the mnemonic
code designates the first of the compared quantities (r1)
and the last letter designates the second quantity. For
example:

CMI
Algebraically Compare —/ \~ Register |
(Type of operation) (r2)
Memory
(r1)
or
KJA
Logically Compare ——/ \—Register A
(Type of operation) (r2)
Register J

{ri)

Both algebraic and logical comparisons are performed
according to the formula:

r2 - r1 = C (positive, zero or negative)
Therefore, r2 > r1, r2 < r1 and r2 = r1 will set the
Condition Register (C) to positive (+), negative (-) and zero

(0}, respectively.

The following instructions are included in the compare
group.

CMA Compare Memory and A 7-25
CwmB Compare Memory and Byte 7-26
CME Compare Memory and E 7-26
CMx Compare Memory and Register 7-25
COoB Compare Operand and Byte 7-26
Crr Compare Register and Register 7-27

0830007-000

Original 8/79
CczD Compare Zero and Double 7-27
CzZM Compare Zero and Memory 7-26
CZr Compare Zero and Register 7-26
KOB Kompare Operand and Byte 7-27
Krr Kompare Register and Register 7-27

CMx %

Compare Memory and Register

Formula 31.%+x:a Affected C
T T
OP CODE % x ADDRESS
1l ! I\ | | A S N S | U G S S |
23 i7 14 6]
Operation

The contents of the effective memory address and the
contents of the |, J, or K Register are algebraically
compared.

Notes

CMx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1(l)
2 (J)
3 (K)

A code of 31.*+1:a, for example, implements the Compare
Memory and | (CMI) instruction.

Tha
11T

erence cCcaii

immediate ot be indexed;

§ 101
however, indexing of indirect references is permitted, e.g.,

cMmI* X

X DAC Y,K

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CMA %

Compare Memory and A

Formula 33*+X:a Affected C
T 1 1 T 1
OP CODE [*| X ADDRESS
1 J I\ i i 1 1 1 1 | | 1 1 J 1 J
23 17 14 o]

7-25

0830007-000
Original 8/79

Operation

The contents of the effective memory address and the
contents of the A Register are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CME % Compare Memory and E
Formula 32."7+X:a Affected C
T T T 1 T
OP CODE [*]| X ADDRESS
| S S S | { | J U S TS T | L | S S Y
23 7 14)

Operation

The contents of the effective memory address and the
contents of the E Register are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CMB %

Compare Memory and Byte

Formula 34."+X:a Affected C
T T T I 1
OP CODE |*| X ADDRESS
| + | | 1 | | ! I | ! I 1 JE 1 1 | 1
23 i7 4 0

Operation

The contents of the B Register (A7-A0) and the contents of
the effective memory address (M7-MO) are algebraically
compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

CZM % Compare Zero and Memory
Formula 41.%+0:a Affected C
T Al T li T
OP CODE |[*|00 ADDRESS
F U VS N | 1 [W SRS NS UUUEN U NS NS S WSS S S S
23 17 14 [¢]

7-26

Operation

The contents of the effective memory address and zero are
algebraically compared.

Notes

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

coB

Compare Operand and Byte

Formula 0014:0 Affected C
T 1 T M 1
OP CODE //// OPERAND
1 [1 1 l | 1 11 1 / 1 1 Il L Il . Il
23 12 7 [e]
Operation

The 8-bit signed operand and the contents of the B Register
(A7-A0) are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Clr Compare Zero and Register

Formula 002400.r2 Affected C
T 1 1 T T T
OP CODE r2
T W G U U (S NN (NS N N U N (N NN S | JE Ll
23 5 o]
Operation

The contents of the specified register and zero are
algebraically compared.

Notes

CZr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers.

r2 =01 (1)
02 (J)
04 (K)
10 (E)
20 {A)
40 (T)

A code of 002400.01, for example, implements the
Compare Zero and | (CZI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r2 is seiected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r2, they are logically ORed
prior to the specified operation.

CZD Com

0830007-000
Original 8/79

A code of 0024.01.02, for example, implements the
Compare | and J (ClJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, ail
six, or any combination of registers may be selected. If
more than one register is selected in group r1, or r2, they
are logically ORed prior to the specified operation.

nare Zaro and Douhle Krr Kaomnare Reagicter and Reaqgister

'l.rlul\’ =i\ UG WU LN I} l\\llll'-l\‘l\d II\AUIJ\\JI LSRR RS I lvul\ll.\ol

Formula 00240030 Affected Cc Formula 0025.r1.r2 Affected C
T T T T T T T T T T T
OP CODE OP CODE r1 r2
N S S N AN U W SN (A SO S S SN SN U SN S N N S B T T S S S U WA S G S [L

23 o] 23 1" 5 o}
Operation Operation

The contents of the E Register are logically ORed with the
contents of the A Register, and the result and zero are
algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Crr Compare Register and Register

Formula 0024.r1.r2 Affected C
T T T 1 i
OP CODE ri r2
|) R Y S BUDEY GRS S S | J 1 L1 1 1 1 1 1 L |
23 i 5 o]
Operation

The contents of r1 and the contents of r2 are algebraically
compared.

Notes

Crr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

r1 or r2 = 01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

The contents of r1 and r2 are logically compared.

Notes

Krr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

rlt or r2= 01 (I)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0025.01.02, for example, implements the
Kompare | to J (KLJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 and r2, they
are logically ORed prior to the specified operation.

KOB Kompare Operand and Byte

Formula 0015:0 Affected C
i 1 T T T
7
OP CODE 771 OPERAND
NI NI S S RN NN A o2 ok NN S S S
23 12 7 0

7-27

0830007-000
Original 8/79

Operation

The 8-bit aperand and the contents of the B Register
(A7-AQ0) are logically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Logical Instructions

The logical group of instructions includes AND (Dot
product), OR and exclusive-OR operations. All three types
use two quantities to produce a logical result. The AND
instructions use a mnemonic code beginning with the letter
“D” for “Dot”. The OR instructions use a mnemonic
beginning with the letter ““O"”, while exclusive-OR
instructions are distinguished by the letter X",

The second letter of the mnemonic code identifies the first

of the two quantities {r1). The third letter signifies the

second quantity (r2). Some examples are listed below.

DMA
Dot —/ \—RegisterA
(Operation) (r2)
Memory

OR \—Byte
(Operation) (r2)
Operand
(r1)
X JK
Exclusive-OR ——/ \———Register K
(Operation) (r2)
Register J
(r1)

Unless specifically noted otherwise in the individual
descriptions, the result of the logical operation replaces the
previous contents of r2 while r1 is unchanged. The
Condition Register is set to the status of the result
(Positive, Negative, or Zero) after the operation. The

7-28

various logical operations are illustrated in the following
table.

r1 r2 r1 AND r2 r1 ORr2 r1 XOR r2
1 1 1 1 0
0 1 0 1 1
1 0 0 1 1
0 0 0 0 0

The following instructions are included in the logical group.

DMA Dot Memory with A 7-28
DOB Dot Operand with Byte 7-28
Drr Dot Register with Register 7-29
OMA OR Memory with A 7-29
00B OR Operand with Byte 7-29
Orr OR Register with Register 7-29
XMA Exclusive OR Memory with A 7-30
X0B Exclusive OR Operanu with Dy te 7-30
Xrr Exclusive OR Register with Register 7-30
DMA % Dot Memory with A

Formula 36."+X:a Affected AC

7 1 T T 1
OP CODE |%| X ADDRESS
SN B S | 1 | N VN S N SO T N S S N NN N |
23 17 14 [¢]

Operation

A logical AND is performed between the contents o
effective memory address and the contents of the A
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

DOB Dot Operand with Byte

Formula 0016:0 Affected A,C

T T T

/ T T
// OPERAND
IR S N U N S U S DU § vAA L

OP CODE
23 12 7 0

Operation

A logical AND is performed between the 8-bit operand and
the contents of the B Register (A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Drr Dot Register with Register

Formula 0026.r1.r2 Affected r2,C
I T T T T
‘OP CODE r1 r2
L 1 ! 1 | | | | L 1)| 1 J 1 1 1 1 1 Il)
23 I 5 o]
Operation

A iogical AND is performed between the contents of r1 and
r2.

Notes

Drr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select one of the general purpose registers.

rtorr2 =01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 0026.01.02, for example, implements the Dot |
with J (DHJ) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers.

OMA % OR Memory with A

Formula 35.*+X:a Affected A,C
1 T T T T
OP CODE [%k| X ADDRESS
| | ! 1) S S N | | N W N B N A |
23 17 14 [o]

0830007-000
Original 8/79

Operation

A logical OR is performed between the contents of the
effective memory address and the contents of the A
Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

OOB OR Operand with Byte

Formula 0004:0 Affected AC
T T T // T 1
OP CODE /)] OPERAND
R IR VNS T N TN (N W G | VI A R [S '
23 12 7 o
Operation

A logical OR is performed between the 8-bit operand and
the contents of the B Register (A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Orr OR Register with Register

Formula 0030.r1+r2.r2 Affected r2,C
T 1 T T |
OP CODE r1+r2 r2
) Y S I R Y W S T | S N S | Ll 4 1]
23 1t 5 (o)
Operation

A logical OR is performed between the contents of r1 and
r2.

Notes

Orr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 ()
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

r1 or r2

7-29

0830007-000
Original 8/79

A code of 0030.03.02, for example, implements the OR |
with J (O1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers. Affected
registers are the Condition Register and those selected in
group r2,

XMA % Exclusive-OR Memory with A

Formula 37."+X:a Affected AC
T T T 1 1
OP CODE (%} X ADDRESS
L L | i . I 1 1 1 J 1 1 1 i 1 [i 1 1
<3 17 14 o]
Operation

An exclusive-OR operation is performed between the
contents of the effective memory address and the contents
of the A Register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

XOB Exclusive-OR Operand with Byte

Formula 0017:0 Affected AC
T T T T T
OP CODE / OPERAND
1 1 1 { ! I\ 1 1 J | 1 IA 1 1 | | I 1 1
23 12 7 0o
Operation

An exclusive-OR operation is performed between the 8-bit
operand and the contents of the B Register (A7-A0). Bits
A23-A8 are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

7-30

Xrr Exclusive-OR Register with Register
Formula 0027.1.2 Affected 12,C
T T T T T
OP CODE r r2
1 1 | 1 1 1 1 i 1 I 1 1 | 4 1 | L 1oLl
23 il 5 o]
Operation

An exclusive-OR function is performed between the
contents of r1 and r2.

Notes

Xrr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

=01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

r1 or r2

A code of 0027.01.02, for example, implements the
Exclusive-OR | with J (X1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,

- based on the result of the operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2, they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 registers. Affected
registers are the Condition Register and those selected in
group r2.

Shift Instructions

The shift instruction group consists of arithmetic and
logical shifts. The arithmetic shifts cause the contents of a
register to be shifted left or right a specified number of
times, while preserving the original sign. The logical shifts
are similar to the arithmetic shifts, except that the sign bit
is shifted along with the other bits.

With both types of shift instructions, any number of shifts
from O to 256 may be programmed without restriction. The
number of shifts (n) are specified in bits 7-0 of the
instruction word.

At the conclusion of any shift operation, the Condition
Register is set to the status of the affected
contents (Positive, Negative, Zero).

register

The following instructions are included in the shift group.

LAA Left Shift Arithmetic A 7-31
LAD Left Shift Arithmetic Double 7-31
LLA Left Shift Logical A 7-31
LLD Left Shift Logical Double 7-31
LRA Left Rotate A 7-32
LRD Left Rotate Double 7-32
RAA Right Shift Arithmetic A 7-32
RAD Right Shift Arithmetic Double 7-32
RLA Right Shift Logical A 7-32
RLD Right Shift Logical Double 7-33
RRA Right Rotate A 7-33
RRD Right Rotate Double 7-33
LAA Left Shift Arithmetic A
Formula 0040:n Affected A,C
1 T) T T
OP CODE // n

N S N U R B G| 1 1 " / 11 11 1 1 L
23 2 7 o]
Operation

Bits A22-A0 are shifted left n places, with the most
significant n bits being lost and n ZEROs being shifted into
the least significant bit positions. The sign bit (A23) is
unchanged.

]

: N

23 22 0
Notes

<-ZEROS

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

If a bit shifted off from A22 differs from the sign bit, the
Condition Register will be set to Overflow. (This is in
addition to the Positive/Negative/Zero status.)

LAD Left Shift Arithmetic Double
Formula 0046:n Affected E,AC
T ' 1 / T ,
OP CODE / n
23l E— 1I2 / 7l = o]
Operation

Bits E22-EQ and A22-A0 are shifted, as one register, left n
places. The most significant n bits are lost and the least

0830007-000
Original 8/79

significant n bits are replaced with ZEROs. Bits E23 and
A23 are bypassed. E23 is the D Register sign bit and A23 is
not used in the double-precision format.

S % i e Y % 2 +ZEROS
E23 22 Eo Az3Azp Ao
Notes

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

If a bit shifted off from E22 differs from the sign bit, the
Condition Register will be set to Overflow. {This is in
addition to the Positive/Negative/Zero status.)

LLA Left Shift Logical A
Formula 0042:n Affected AC
T T T T T
e
23 12 7 o}
Operation

Bits A23-A0 are shifted left n places, with the most
significant n bits being lost and the least significant n bits
replaced by ZEROs.

<—ZEROS

23 0

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

LLD Left Shift Logical Double
Formula 0050:n Affected E,A,C
T - T T T
i R
23 12 7 o]
Operation

Bits E23-EQ and A23-A0 are shifted, as one register, left n
places. The most significant n bits are lost and the least
significant n bits are replaced with ZEROs.

7-31

0830007-000
Original 8/79

3 o

€23 £o A3

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RAA Right Shift Arithmetic A

LRA Left Rotate A
Formula 0044:n Affected A,C
T T T T !
OP CODE / n
U | 1 [L i 1 I i 1 1 / Il L1 1 11 I
23 12 T 4]
Operation

Bits A23-A0 are rotated left n places. No bits are lost.

’ 0 .

23 [}

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

LRD Left Rotate Double
Formula 0052:n Affected EAC
T T T | T
Lo 7o
25 2 7)
Operation

Bits E23-E0 and A23-A0 are rotated, as one register, left n
places, with E23 replacing AO and A23 replacing EO as each
shift takes place. No bits are lost.

‘N

€23

Note

3

i

Ao

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

7-32

Formula 0041:n Affected AC
T T T) T
OP CODE o n
23lll'llllllllz A/ll//7lllll'Jo
Operation

Bits A22-A0 are shifted right n places. The least significant
n bits are lost and the most significant n bits are replaced
by an extension of the sign bit (A23). The sign bit is not
changed.

23 22 0

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RAD Right Shift Arithmetic Double

Formula 0047:n Affected E,A.C
T T T 7T T T
OP CODE / n
23L Lt 1 1 1 1t 1 | lI2 1 /l 71 | S Y S S S
Operation

Bits E22-EQ and A22-A0 are shifted, as one register, right n
places. The least significant n bits are iost and the most

significant n bits are replaced by an extension of the sign
bit (E23). Bit A23 is bypassed.
%
S % —~
i
E23 B2z Eo A2z A2z Ao
Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RLA Right Shift Logical A

Formula 0043:n Affected A,C

¥ i T

! T
OP CODE

%

23 12 7 Q

Operation

Bits A23-A0 are shifted right n places. The least significant
n bits are lost and the most significant n bits are replaced
by ZEROs.

ZEROS +~ ?Z >

23 c

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RLD Right Shift Logical Double

Formula 005%1:n Affected EAC
1 T T % T T
OP CODE j//{? n
U S S S S S U U NS U / / [S N
23 12 7 o]
Operation

Bits E23-E0 and A23-A0 are shifted, as one register, right n
places. The least significant n bits are lost and the most
significant n bits are replaced by ZEROs.

I

Ea3 Eo A2z Ao

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RRA Right Rotate A

Formula 0045:n Affected AC
T T T / T T
OP CODE L// n
Operation

Bits A23-AO0 are rotated right n places. No bits are lost.

~ i

23 0

0830007-000
Original 8/79

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

RRD Right Rotate Double

Formula 0053:n Affected E,A,C
i T T 1
OP CODE ?Zﬁg; n
23‘ 11 . 14 H L i i i = i 4% - 1 i i i
Operation

Bits E23-E0 and A23-AO0 are rotated, as one register, right n
places, with EQ replacing A23 and AOQ replacing E23 as each
shift takes place. No bits are lost.

gy

it I

E23 Eo A23 Ag

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

Transfer Instructions

The transfer instruction group includes various types of
operations. Among these are: interchanges between
memory and a specified register, interchanges between
registers, memory-to-register and register-to-memory
transfers, and register-to-register transfers.

The mnemonic code for the transfer instruction describes
the individual operation. The first letter of the mnemonic
indicates what action is to be taken; “’I"’ for interchange or
“T*" for transfer. The second and third letters specify the
source (r1) and destination (r2), respectively. Some
examples are listed below:

I M|
Interchange ———/ \—— Register |
(Operation) (r2)
Memory
(r1)

7-33

0830007-000

Original 8/79
TI1J
/ TN
Transfer — | Register J
(Operation) (r2)
Register |
(r1)

With the exception of the interchange instructions, the
transfer group (r1) is not altered by the execution of any
instructions in the transfer group.

The Condition Register is always set to reflect the status
(Positive, Negative, or Zero) of the contents of r2, at the
completion of the instruction.

The following instructions are included in the transfer
group.

EMB Extract Memory Byte 7-34
IMA Interchange Memory and A 7-35
iME interchange Memory and E 7-35
IMx Interchange Memory and Register 7-35
Irr Interchange'Register and Register 7-36
RBM Replace Byte in Memory 7-36
TAM Transfer A to Memory 7-41
TBM Transfer Byte to Memory 7-41
TDM Transfer Double to Memory 7-41
TEM Transfer E to Memory 7-41
TFM Transfer Fiag to Memory 7-41
TIM Transfer | to Memory 7-42
TIM Transfer J to Memory 7-42
TKM Transfer K to Memory 7-42
TLK Transfer Extended Operand to K 7-39
TLO Transfer Long Operand to K 7-39
TMA Transfer Memory to A 7-37
TMB Transfer Memory to Byte 7-36
TMD Transfer Memory to Double 7-36
TME Transfer Memory to E 7-37
T™I Transfer Memory to | 7-37
™J Transfer Memory to J 7-38
TMK Transfer Memory to K 7-38
T™Q Transfer Memory to Query Register 7-37
TMR Transfer Memory to Registers 7-38
TNr Transfer Negative Operand to Register 7-38
TOB Transfer Operand to Byte 7-38
TOC Transfer Operand to Condition Register 7-39
TOr Transfer Operand to Register 7-39
TrB Transfer Register to Byte 7-40
TRM Transfer Registers to Memory 7-42
Trr Transfer Register to Register 7-42
TSr Transfer Switches to Register 7-40
TZM Transfer Zero to Memory 7-41
TZr Transfer Zero to Register 7-40

7-34

EMB %

Extract Memory Byte

Formula 31.*+0:a Affected B.C
T 1 B T T
OP CODE |*{0 0O ADDRESS
S S N | 1 D WS U NS Y N DR S O (R N S |
23 8 17 15 14 [o}
Operation

The effective memory address is added to the contents of
the J Register, producing the word address which contains
the byte to be extracted. The selected byte, as determined
by the contents of bits 23 and 22 of the index J Register, is
then placed in the B Register,

Notes

The following table shows the correspondence between bits
23 and 22 of J and the byte to be extracted.

Bits 23 and 22
J Register Byte Selection

01 Leftmost Byte (bits 23-16 of
EMA+J)

10 Middle byte (bits 15-8 of
EMA+J)

11 Rightmost byte (bits 7-0 of
EMA+J)

00 Rightmost byte (bits 7-0 of
EMA+J)

The final address of any indirect/index sequence is
algebraically added to the contents of the J Register.

If indirection is specified, PC mapping occurs normally for
the generation of the indirect address. If indirection is not
specified, the implied index register is added to the
specified address with PC mapping following the rules
established for Compatibility or Address Extension Modes.

Examples:
IfJ = ‘40000030
and K = ‘00000010 when the following is executed:
EMB* ‘40
‘40 DAC* ‘60,K
‘42 DATA “Xyz"
‘60 DAC 12

then the character Y will be placed in the B Register. Note
that the effective address of the indirect/index sequence is
"12. However, ‘12 plus bits 15-0 of index J Register ('30)
yields the final address of ‘42. Since a byte specification of
102 was made in bits 23-22 of index J Register, then the
second byte (bits 15-8) of memory location ‘42 is placed in
the B Register.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

IMx % Interchange Memory and Register
Formula 66.*+x:a Affected M,x,C
T T T T 1

OP CODE }*| x ADDRESS
) N S S | I) D N W NN VS S SN T TN TN S N S|
23 17 14 o

Operation

The contents of the effective memory address and the I, J,
or K Register are interchanged.

Notes

IMx is not a computer instruction mnemonic but represents
a family of instruction mnemonics. x is coded as follows to
select one of the index registers.

x =1 ()
2 (J)
3 (K)

A code of 66*+1:a, for example, implements the
Interchange Memory and | {(IMI) instruction.

The immediate memory reference cannot be indexed:;
however, indexing of indirect references is permitted, e.g.

IMK* X

X DAC Y,J

The Condition Register is set to Positive, Negative, or Zero,
based on the result in I, J, or K at the completion of the
operation.

0830007-000

Original 8/79
IMA % Interchange Memory and A
Formula 70.7+X:a Affected M, A,C
T T T T
OP CODE |%*] X ADDRESS
) S W S | { I\ 1 | N S S S N S | 1 i
23 17 iq
Operation

The contents of the effective memory address and the A
Register are interchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

IME % Interchange Memory and E
Formula 67."+X:a Affected M,E,C
T T T T T
OP CODE [%| X ADDRESS
| | 1) S N G N S | J U W N | L
23 17 14 o]

Operation

The contents of the effective memory address and the E
Register are interchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in E at the completion of the operation.

Irr Interchange Register and Register
Formula 0035.r1.r2 Affected r1,r2,C
T T I 1 1
OP CODE r1 r2
IR O W U WY N S N S W N Y T | F S S T T |
23 1" S [o]
Operation

The contents of r1 and r2 are interchanged.

7-35

0830007-000
Original 8/79

Notes

Irris not a computer instrisction mnemonic hut represents a
family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

= 01 (1)
02 (J
04 (K)
10 (E)
20 (A)
40 (T)

rl or r2

A code of 0035.01.02, for example, implements the
Interchange | and J (11J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in r2 at the completion of the
operation.

r1 and r2 are selected by unitary bits. Therefore, none, all
six, or any combination of registers may be selected. If
more than one register is selected in group r1 or r2 they are
logically ORed prior to the specified operation. The result
is copied into all of the selected r2 and r1 registers.
Affected registers are the Condition Register and those
selected in group r1 or r2.

RBM % Replace Byte in Memory
Formula 27.*+0:a Affected M
T T 1 T 1
OP CODE |*|0 0 ADDRESS
| T U Il S R W T U U N TN SN N U B A |
23 18 17 15 i4 o]

Operation

The effective memory address is added to the contents of
the | Register producing the word address which contains
the byte to be replaced. The selected byte, as determined
by the contents of bits 22 and 23 of the index | Register, is
then replaced by the contents of the B Register.

Notes

The following table shows the correspondence between bits
22 and 23 of | and the byte to be replaced.

7-36

Bits 23 and 22
| Register Byte Selection

01 Leftmost byte (bits 23-16 of
EMA+!)

10 Middle byte (bits 15-8 of
EMA+I)

11 Rightmost byte (bits 7-0 of
EMA+I)

00 Causes no operation

The final address of any indirect/index sequence is added
algebracially to the contents of the | Register.

If indirection is specified, PC mapping occurs normally for
the generation of the indirect address. |f indirection is not
specified, the implied index register is added to the
specified address with PC mapping following the rules
established for Compatibility or Address Extension Modes.

TMB %

Transfer Memory to Byte

Formula 07.%+X:a Affected AC
T T T T 1
OP CODE |%*| X ADDRESS
1 1 i i L 1 i 1 1 1 1 1 1 L1 1 | 1 1
23 17 14 [+

Operation
The 8 least significant bits (7-0) of the contents of the

effective memary address replace the previous contents of

WO

the B Register (A7-A0). Bits A23-A8B are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the B Register at the completion of
the operation.

TMD %

Transfer Memory to Double

Formula 06.*+X:a Affected E.A.C
1 T T 1 T
OP CODE (%] X ADDRESS
| S U G N 1 | I S N S N | | S |
23 17 14 [+

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) replace the previous
contents of the D Register (E and A). EMA and EMA+1 are
transferred to E and A, respectively.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in D at the completion of the operation.

TMQ % Transfer Memory to Query Register
Formula 51.%+0:a Affected Query
T T T 1 I

QP CODE ixl0 0 ADDRESS
S N I | VS T (N N TS U W S N S |
23 17 14 10
Operation

Bits 23, 22, 21 and 19-0 of the contents of the effective
memory address replace the previous contents of the Query
Register. These bits are loaded into the Query Register in
bit positions 23, 22, 21, and 19-0, respectively.

Notes

Executing this instruction will cause the Address Trap to be
enabled or disabled, depending on the states of bits 23, 22,
and 21 of the effective memory address.

Bit23 =ONE = Disable Address Trap
Bit23 =ZERO = Enable Address Trap

Bit22 =ONE
Bit 22

= Trap only on Write
=ZERO = Trap each time selected address
is referenced

Bit21 =ONE = Trap only during User Mode
Bit 21 =ZERO = Trap only during Monitor Mode

Example:

TMQ OA
0OA DAC ADDR Enable Address Trap
OA Dc:C* o] Disable Address Trap

0830007-000
Original 8/79

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.qg.,

TMQ* X

X DAC Y,

TMA % Transfer Memory to A
Formula 05 *+X:3 Affected AC
i 1 T 1 T
OP CODE |*]| X ADDRESS
11 1 1 1 1 I\ . N | 1 | 1 I\ 1 I 1
23 17 14 o]

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

TME %

Transfer Memory to E

Formula 04.*+X:a Affected E.C

T T T T 1

OP CODE [*| X ADDRESS

| S G N S N N WS N T N N S S S N
23 17 14 o

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in E at the completion of the operation.

T™MI %

Transfer Memory to |

Formula 01.*+X:a Affected 1,C
I 1 T T T
OP CODE |%*| X ADDRESS
| 1 I 1)| 1 | | 1 i 1 ! 1 I I | i 1 1 1
23 17 14 10 0

7-37

0830007-000
Original 8/79

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the resuit in | at the completion of the operation.

TMJ % Transfer Memory to J
Formula 02.*+X:a Affected J,C
T T T T 1
OP CODE [*] X ADDRESS
" 1 1.1 1 1 1 1 1 1 1 1 1 1 i L 1 1)| 1
23 17 14 (o]

Operation

The contents of the effective memory address replace the

previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in J at the completion of the operation.

TMK % Transfer Memory to K
Formula 03.7+X:a Affected K.C
T 1 1 T T
OP CODE |*| X ADDRESS
,__l Lo 11 — 1 “l U VRS N (S HS U W N T W S B 1

Operation

The contents of the effective memory address replace the
previous contents of the specified register.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in K at the completion of the operation.

TMR % Transfer Memory to Registers
Formula 10."+X:a Affected |,J,K,E,A
T i T T 1
OP CODE |*| X ADDRESS
1 1 1 ! | 1 1 [l 1 11 i1 11 | WO W) !
23 17 14 0
Operation

The I, J, K, E and A Registers are loaded from consecutive

7-38

memory addresses beginning with the effective memory
address.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

An indexed TMR instruction will not execute properly if a
demand page occurs during the execution of the
instruction.

TNr

Transfer Negative Operand to Register

Formula 63.r:0 Affected r,.C
T T T T T
OP CODE r OPERAND
[| Ll U N Y N U VY SO A B |
23 17 14 0
Operation

The two's compiement of the 15-bit unsigned operand
replaces the previous contents of bits 23-0 of the specified
register.

Notes

TNr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers.

r=1(l)
2 .(J)
3 (K)
4 (E)
5 (A)
6 (T)

A code of 63.1:0, for example, implements the Transfer
Negative Operand to | (TNI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

TOB

Transfer Operand to Byte

Formula 0003:0 Affected A,C
1 T 1 / T T
OP CODE //‘/ OPERAND
J (SN U T WS N N W N N e | lA 1 I\ i 1 1 1
23 ¥4 7 0
Operation

The 8-bit signed operand replaces the previous contents of
the B Register (A7-A0). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

TOC

Transfer Operand to Condition Register

Formula 0036:0 Affected C
’ ’ ’ 777 R
OP CODE OPERAND
L1 lkjrl blUlIJCl A 1 i ///M 1 | Il =
23 12 3
Operation

The 4-bit operand replaces the previous contents of the

NAamAisine R,_.-~-.‘
[Rivaniely) cyidier.

Note

Operand definition is as follows:

Bit0 =ONE = Overflow
= ZERO = No Overflow

Bit1 =ONE = Negative
= ZERO = Not Negative

Bit2 =ONE = Zero
=ZERQO = Not Zero

Bit3 =ONE = Positive
=ZERO = Not Positive

TOr Transfer Operand to Register
Formula 62.r:0 Affected r,C
T 1 T i N
OP CODE r OPERAND
PR N S| L1 N S WS U G NS WS N SN SN S S B |
23 17 14 o]
Operation

The 15-bit unsigned operand replaces the previous contents
of bits 23-0 of the specified register.

Notes

TOr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r is coded as follows to
select one of the general purpose registers,

ro=1(1)
2 (J)
3 (K)

0830007-000
Original 8/79

4 (E)
5 (A)
6 (T)

A code of 62.1:0, for example, implements the Transfer
Operand to | (TOI} instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

TLO

Transfer Long Operand to K

Formula 236:0 Affected K
T T T T T T T
OP CODE OPERAND
l I\ 1 1 1 J | | H 1 Ll 1 1 l i 1 | 1 1 1 |
23 (1] [+
Operation

In the Compatibility Mode, the 16-bit operand replaces the
previous contents of bits 15-0'of the K Register. Bits 23-16
of K are cleared (reset to ZEROs).

In the Address Extension Mode, if bit 15 is set (ONE), the
operand is assumed to be a long absolute quantity which is
transferred to the K Register. Bits 23-16 of K are cleared. If
bit 15 is reset (ZERO), the 16-bit operand is assumed to be
a local address which requires map resolution. Bits 19-15 of
the Program Counter are appended to bits 14-0 of the
operand and the 20-bit result is then transferred to K. Bits
23-20 of K are cleared.

TLK

Transfer Extended Operand to K

Formula 7740.236.0 Affected K
o
i | 1 [i
ESCAPE CODE OP CODE 000
| L 1 1 1 I L I 1 1 1 1 1 1 i 1 I I 1 1 1
23 12 n 2 [¢]
1 T i T T T T
OPERAND
1 [1 1 1l 1 | | L1 i Il 1 L i I\ [[|
23 [o]

Operation

The 24-bit operand of the second word replaces the
previous contents of the K Register.

Notes

The TLK instruction is valid only in the extended
instruction format.

The Condition Register remains unchanged.

0830007-000
Original 8/79

TSr

Transfer Switches to Register

Formula 003100.r2 Affected r2,C
T T T T ! 1
OP CODE r2
| 1 1 1 1 | 1 I 1 1) S S | 1 L] 1 I i
23 5 o]
Operation

The states (set = ONE) of the switch register switches are
transferred to the corresponding bit positions of the
specified register.

Notes

TSr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers.

r2= 01 (1)
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)

A code of 003100.01, for example, implements the
Transfer Switches to | (TSI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

r2 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r2, the switches are copied
into all of the selected r2 registers. Affected registers are
the Condition Register and those selected in group r2.

TZr

Transfer Zero to Register

Formula 003000.r2 Affected r2,C
T T T H 1 I
OP CODE r2
S S S U | | VN N S S S S S |)| 1 l ! ! 1 i
23 5 0
Operation

The previous contents of the specified register are replaced
with ZEROs.
Notes

TZr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r2 is coded as follows to
select any of the general purpose registers or the D register.

7-40

r2 =01 ()
02 (J)
04 (K)
10 (E)
20 (A)
40 (T)
30 (D)

A code of *003000.01, for example, implements the
Transfer Zero to | (TZI) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the specified register at the
completion of the operation.

r2 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. |f more than
one register is selected in group r2, they are iogically ORed
prior to the specified operation. The result is copied into all
of the selected r2 registers. Affected registers are the
Condition Register and those selected in group r2.

Transfer Register to Byte

TrB

Formula 0002.r1 Affected A
-Y BE 1 T iy
)
OP CODE " /
[N N SR Pl /1/ /
23 il 6 o}
Operation

The least significant 8 bits (7-0) of the contents of the
specified register replace the previous contents of the B
Register (A7-A0). Bits A23-A8 are unchanged.

Notes

TrB is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded as follows to
select one-of-five general purpose registers.

r1 =01 (1)
02 (J)
04 (K)
10 (E)
40 (T)

A code of 0002.01, for example, implements the Transfer |
to Byte (TIB) instruction. '

The Condition Register is not affected.

r1 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. |f more than
one register is selected in group r1, they are logically ORed
prior to the specified operation.

TBM % Transfer Byte to Memory
Formula 17 *+X:a Affected M
T T T T I
OP CODE k) X ADDRESS
J N S S | . J I VS N SN SN N W N B B ¢
23 17 4 o]

Operation

The contents of the B Register (A7-AQ) replace the 8 least
significant bits of the contents of the effective memory
address. Bits 23-8 of the memory word are unaffected.

TDM % Transfer Double to Memory
Formula 168.*+X:2 Affected M
T I 1 T T
OP CODE |*| X ADDRESS
J I S | 1 D S Y [U SN N N (R S A T |
23 17 14 0

Operation

The contents of the D Register (E and A) replace the
previous contents of the effective memory address (EMA)
and the next sequential address (EMA+1). The contents of
E and A are transferred to EMA and EMA+1, respectively.

TFM %

Transfer Flag to Memory‘

Formula 46.*+0:a Affected Mm.,C

I T T 1 T

OP CODE %|0 0 ADDRESS

1 1 1 1 | N S U T VN Y T Y e N N S S A |

23 7 4 o

Operation

The previous contents of the effective memory address are
replaced by ONEs.

Notes

The Condition Register is set to the status of memory
(Positive, Negative, or Zero) prior to the transfer.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, eg.,

TFM* X

X DAC Y1

DMA transfers are inhibited and shared memory is locked
up during the execution of this instruction.

0830007-000

Original 8/79
TZM % Transfer Zero to Memory
Formula 66.*+0:a Affected M,C
i 1 i | T
OP CODE |*|0 0 ADDRESS
L1 1 L1 1 11 L1 1 | 1 L1 It i L1 1
23 17 14 o]

Operation

The previous contents of the effective memory address are
replaced by ZERO:s.

Notes

The Condition Register is set to the status of memory
(Positive, Negative, or Zero) prior to the transfer.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

TZM* X
X DAC Y.l

DMA transfers are inhibited and shared memory is locked up
during the execution of this instruction.

TAM % Transfer A to Memory
Formula 15.*+X:a Affected M
T T T T T
OP CODE |%| X ADDRESS
) S S | 1 N N S I | | I S S N S |
23 17 14 [o]

Operation

The contents of the A Register replace the previous
contents of the effective memory address.

TEM % Transfer E to Memory
Formula 14.%+X:a Affected M
1 1 I T I
OP CODE [*| X ADDRESS
L4 1 1 1 I N DU I U TN N N (N S T O S N ¢
23 17 4 [¢]

Operation

The contents of the E Register replace the previous
contents of the effective memory address.

0830007-000
Original 8/79

TIM % Transfer | to Memory TRM % Transfer Registers to Memory
Formula 11."+X:a Affected M Formula 20."+X:a Affected M
1 Ll 1 T T T 1 v I T
OP CODE |*| X ADDRESS OP CODE [*| X ADDRESS
F U S B S | .) (N U VN R D NN NS SN N U S G | 4 1 1 1 I\ § IS VU IV SN0 NS WD U ORI T S N S
23 17 14 o] 23 7 4 0
Operation Operation

The contents of the | Register replace the previous contents
of the effective memory address.

TIM % Transfer J to Memory
formula 12.*+X:a Affected M
1 | 1 T i
OP CODE [*| X ADDRESS
1 1 1 1 1 | 1 i 1 | 1 1 1 | i i L L 1 1
23 17 4 [o]

Operation

The contents of the J Register replace the previous contents
of the effective memory address.

TKM % Transfer K to Memory
Formula 13.*+X:a Affected M
1 1 T 1 T
OP CODE |*| X ADDRESS
) I B N | i | S S W U S T S | 11 1 4§ 1
23 i7 14 0
Operation

The contents of the K Register replace the previous
contents of the effective memory address.

7-42

The contents of the I, J, K, E and A Registers are stored in
consecutive memory locations beginning with the effective
memory address.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

Trr Transfer Register to Register

Formula 0030.r1.r2 Affected r2,C
) 1 T T i
OP CODE r1 r2
j N T SRS N T U N I N | | I S . | L1 1 1 |
23 1" 5 [o]
Operation

The contents of r1 replace the previous contents of r2.

Notes

Trr is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 and r2 are coded as
follows to select any of the general purpose registers.

rt or r2 = 01 (1)
02 (J)
04 (K)
10 (E)
20 (A)

40 (T)

A code of 0030.01.02, for example, implements the
Transfer | to J (T1J) instruction.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in r2 at the completion of the
operation.

Byte Processing Instructions

The byte processing group of instructions permits program
manipulation of all three bytes within the computer word
(24 Dbits); e.g.,, extract, replace, etc. The following
instructions are inclusive of byte processing operations.

AMB Add Memory to Byte 7-43
AOB Add Operand to Byte 7-43
BBl Branch when Byte address +1 in 120 7-43
BBJ Branch when Byte address +1 in J#0 7-44
CMB Compare Memory and Byte 7-45
coB Compare Operand and Byte 7-45
DOB Dot Operand with Byte 7-45
EMB Extract Memory Byte 7-45
ESB Extend Sign of Byte 7-46
EZB Extend Zeros from Byte 7-46
KOB Kompare Operand and Byte 7-46
NBB Negate of Byte to Byte 7-46
00B OR Operand with Byte 7-46
PBB Positive of Byte to Byte 7-46
RBM Replace Byte in Memory 7-47
QBB Query Bits of Byte 7-47
SMB Subtract Memory from Byte 7-47
SOB Subtract Operand from Byte 7-47
TBM Transfer Byte to Memory 7-48
TOB Transfer Operand to Byte 7-48
TMB Transfer Memory to Byte 7-48
TrB Transfer Register to Byte 7-48
X0B Exclusive-OR Operand with Byte 7-48
AMB % Add Memory to Byte

Formula 45.*+X:a Affected AC

i 1 1 1 li

OP CODE [*| X ADDRESS

I S N | | S VN S TN N N (N NSO SN N N A T |
23 17 14 o}

Operation

Bits 7-0 of the contents of the effective memory address are
algebraically added to the contents of the B Register
(A7-AQ). Bits 23-8 of the A Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

0830007-000

Original 8/79
AOB Add Operand to Byte
Formula 0012:0 Affected AC
T T 1 /Y T T
OP CODE /A OPERAND
L 11 1 1 1 I\ | 1 1 1 / / | i 1 1 11 1
23 12 7 (o]
Operation

The 8-bit signed operand is algebraically added to the
contents of the B Register (A7-AQ). Bits 23-8 of the A

Register are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates

a rarrv intn tho cinn hit
& Canmy Nt W Sigh OiX

without a carry out, or a carry out without a carry in.

BBI % Branch when Byte Address +1in | #0

Formula 607:a Affected |
1 ¥ T 1 T T
OP CODE ADDRESS
I 4 1 t & 1 [l 1 1 | S | i S N S S N S |
23 14 (o]
Operation

The contents of bits 22 and 23 of the | Register are
incremented by one. If the result of this addition (in bits 22
and 23) is not 002, then the contents of the P Register
(current program address) are replaced by the effective
memory address. If the result of the addition to bits 22 and
23 is 002, then bits 22 and 23 are set to 012 and bits 21-0
are incremented by one. If the resultant sum in bits 21-0 is
zero, then the P Register advances to the next sequential
program location and the index register is set to
20000000g. Otherwise, the contents of the P Register are
replaced by the effective memory address.

Notes

In general, the BBI and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

743

0830007-000

Original 8/79
™J = '60000200
TM™MI = ‘20000300
TNK 1
EMB 0
RBM 0
BBI *+1
BBJ *+1
BWK *.4

Occasionally, it is possible to use the address of a portion
of the | Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102.

TOB “b"

™I ='77777775 bits 22 and 23 = 3,
bits 21-0 =-3

RBM 10043

BBI *1

However, it shouid be noted that this technique of using
the index register as both a byte counter and word pointer
may be used only in certain instances. Specifically, when
the following relationship is true.

(5)+(5)

Where:
R {)= remainder
B.n. = the starting byte number
(1, 2, or 3)
CT = the number of bytes to be
referenced
BBJ % Branch when Byte Address
+1inJ#0
Formula 617:a Affected J
T T 1 1 1 1
OP CODE ADDRESS
| 1 1 Il)i 1 1 1 1 | L Il L | I\ 1 1 L L1 1
23 a4 [o]
Operation

The contents of bits 22 and 23 of the J Register are
incremented by one. If the result of this addition (in bits 22
and 23) is not 002, then the contents of the P Register
(current program address) are replaced by the
effective memory address. |f the result of the addition to
bits 22 and 23 is 002, then bits 22 and 23 are set to 012

7-44

and bits 21-0 are incremented by one. If the resultant sum
in bits 21-0 is zero, then the P Register advances to the next
sequential program location and the index register is set to
200000008. Otherwise, the contents of the P Register are
replaced by the effective memory address.

Notes

In general, the BBl and BBJ instructions are used as special
index register increments in order to sequentially reference
consecutive bytes in memory via the EMB and RBM
instructions. Consider the following example which will
move 11 consecutive bytes starting from the third byte at
location ‘200 to the first byte at location ‘300.

™J = ‘60000200
™I = ‘20000300
TNK 1

EMB 0

RBM 0

BBI *+1

BBJ *+1

BWK ¥4

Occasionally, it is possible to use the address of a portion of
the J Register as a byte counter as well as a word pointer.
This may be illustrated by the following example which will
set the buffer to blanks, starting at byte 3 of location ‘100
through byte 3 of location ‘102,

TOB g

™I ='77777775 bits 22 and 23 =3,
bits 21-0 =-3

RBM ‘100+3

BBJ *1

However, it shouid be noted that this technique of using
the index register as both a byte counter and word pointer
may be used only in certain instances. Specifically, when
the following relationship is true.

(%) (%)

Where:
R ()= remainder
B.n. = the starting byte number
(1, 2, or 3}
CT = the number of bytes to be
referenced

CMB % Compare Memory and Byte
Formula 34.%+X:a Affected C
li 1 i 1 1
OP CODE [*| X ADDRESS
1 L1 L 1 1 1 1 1 J L1 L L1 | 1
23 17 14 0

Operation

The contents of the B Register (A7-AQ) and the contents of
the effective memory address (M7-MQ) are algebraically

compared,

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

COB Compare Operand and Byte
Formula 0014:0 Affected Cc
I T T T T
OP CODE // OPERAND
Il 1 L L 1 1 L | | // 1 H 1 1 1 I 1
23 12 7 [¢]
O peration

The 8-bit signed operand and the contents of the B Register
(A7-A0) are algebraically compared.

Note

The Condition Register is set to Positive, Negative, or Zero.
based on the result of the operation.

DOB Dot Operand with Byte
Formula 0016:0 Affected AC
T T T 1 T
OP CODE /// OPERAND
L1 1 L1 1 1 1 | 1 1 / 1 L1 1 1 1 1
23 12 7 [¢]
Operation

A logical AND is performed between the 8-bit operand and
the contents of the B Register (A7-A0). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

0830007-000

Original 8/79
EMB % Extract Memory Byte
Formula 31.*+0:a Affected B,C
1 T T i T
OP CODE [*|00 ADDRESS
L 1 1 i L 1 Il) N | I Il Lo ! 1 _ L
23 18 17 15 14 [0}

Operation

The effective memory address is added to the contents of
the J Register, producing the word address which contains
the byte to be extracted. The selected byte, as determined
by the contents of bits 23 and 22 of the index J Register, is
then placed in the B Register.

Notes

The following table shows the correspondence between bits
23 and 22 of J and the byte to be extracted.

Bits 23 and 22
J Register Byte Seiection

01 Leftmost byte (bits 23-16 of
EMA+))

10 Middle byte (bits 15-8 of
EMA+J)

1 Rightmost byte (bits 7-0 of
EMA+J)

00 Rightmost byte (bits 7-0 of
EMA+J)

The final address of any indirect/index sequence is al-
gebraically added to the contents of the J Register.

If indirection is specified, PC Mapping occurs normally for
the generation of the indirect address. If indirection is not
specified, the implied index register is added to the
specified address with PC mapping following the rules
established for Compatibility or Address Extension Modes.

Examples:
ifJ= ‘40000030
and K = ‘00000010 when the following
is executed:

EMB* ‘40

‘40 DAC* ‘60,K

‘42 DATA “Xyz"

‘60 DAC 12

then the character Y will be placed in the B Register. Note
that the effective address of the indirect/index sequence is
‘12. However, ‘12 plus bits 15-0 of index J Register {‘30)
yields the final address of ‘42. Since a byte specification of
102 was made in bits 23-22 of index J Register, then the
second byte (bits 15-8) of memory location ‘42 is placed in
the B Register.

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

7-45

0830007-000
Original 8/79

ESB Extend Sign of Byte

Formula 0010. Affected A,C
T T 1 /
oo 7
[A R B | i
23 12 o]
Operation

The state of the B Register sign bit (A7) is copied into bit
positions A23-A8, forming a sign extension of the byte.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in A at the completion of the operation.

EZB Extend Zeros from Byte
Formula 0007. Affected A

§ I N T S U VS T S N | /&
23 12 [o]
Operation

Bit positions A23-A8 are set to ZERO. The contents of the
B Register (A7-A0) are not affected.
Note

The Condition Register is not affected.

KOB Kompare Operand and Byte
Formula 0015:0 Affected C
1 I ! T T
A7 R
= n 7 g
Operation

The 8-bit operand and the contents of the B Register
(A7-A0) are logically compared.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation.

7-46

NBB Negate of Byte to Byte
Formula 0005. Affected A,C
T 1 1 V g
e 007
L L4 1 1 1 1 {1 4 f /
23 12 [+]
Operation

The contents of the B Register (A7-AQ) are two's
complemented. Bit positions A23-A8 are unchanged.

Notes

An Overflow will result when negating 27 (full-scale
negative byte).

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

OOB OR Operand with Byte
Formula 0004:0 Affected AC
T T T 1 i
OP CODE /%’ OPERAND
| Y N TN N N U S (| 1 IA) Y OO I NN B N |
23 12 7 0
Operation

A logical OR is performed between the 8-bit operand and
the contents of the B Register (A7-AD). Bits A23-A8 are
unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

PBB

Positive of Byte to Byte

Formula 0006.

Affected A,C

Lo V7700

23 12 0

Operation

The absolute value of the contents of the B Register
(A7-A0) is placed in the B Register.

Notes

An Overflow will result when negating a full scale negative
byte.

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

RBM % Replace Byte in Memory
Formula 27.*+0:a Affected M
1 T T T 1
OP CODE |*|0 0 ADDRESS
B I S I | L) T S S | IS O S N O T U |
23 18 17 15 14 o]
Operation

The effective memory address is added to the contents of
the | Register producing the word address which contains
the byte to be replaced. The selected byte, as determined
by the contents of bits 22 and 23 of the Index | Register, is
then repiaced by the contents of the B Register.

Notes

The following table shows the correspondence between bits
22 and 23 of | and the byte to be replaced.

Bits 23 and 22
| Register Byte Selection

01 Leftmost byte (bits 23-16 of
EMA+I}

10 Middle byte (bits 15-8 of
EMA+)

1 Rightmost byte (bits 7-0 of
EMA+I)

00 Causes no operation

The final address of any indirect/index sequence is added
algebraically to the contents of the | Register.

If indirection is specified, PC mapping occurs normally for
the generation of the indirect address. If indirection is not
specified, the implied index register is added to the
specified address with PC mapping following the rules
established for Compatibility or Address Extension Modes.

QBB Query Bits of Byte

0830007-000
Original 8/79

Operation

A logical AND is performed between operand bits 7-0 and
the contents of the B Register. The Condition Register is
set according to the status of the result; i.e., Positive,
Negative, or Zero.

Note

Examples:

(1) TOA B7 A ='00000200 C = Positive
(01:1:] B7 C = Negative

(2) TOA B6 A ='00000100 C = Positive
QBB B6 C = Positive

(3) TNA 1 A ="'77777777 C = Negative
DMA MASK A ='40000000 C = Negative

MASK DATA ‘40000000

SMB %

Subtract Memory from Byte

Formula 55 %+X:a Affected A,C
i 1 T T T
OP CODE |*| X ADDRESS
1 L 1 1 i | 1 1 1 L1 1 1 1 | 1 1 1 L |
a3 iT i4 o
Operation

The contents of bits 7-0 of the effective memory address
are algebraically subtracted from the B Register (A7-A0).
Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

SOB

Subtract Operand from Byte

Formula 0011:b Affected C Formula 0013:0 Affected A,C
T 1 T) 1 I 1 1 T '/ 1 T
OP CODE / b OP CODE /// OPERAND
Al | 1 I 1 . 1 1 1 1 1 H | 1 1 1 | | A 1 1 | 1 | 1)| 1 1 1 / 1 1 1)|)| 1 |
23 12 7 o] 23 I3 7 [o]

7 A7

0830007-000
Original 8/79

Operation

The 8-bit signed operand is algebraically subtracted from
the contents of the B Register (A7-A0). Bits A23-A8 are
unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out without a carry in.

TBM % Transfer Byte to Memory
Formula 17.%+X:a Affected M
i 1 T T T
OP CODE [*]| X ADDRESS
[1 1 I 1 J 1l 1 i 11 1 | 1 1 1 1 1
23 17 14 0

Operation

The contents of the B Register (A7-AD) replace the 8 least
significant bits (7-0) of the contents of the effective
memory address. Bits 23-8 of the memory word are
unaffected.

TrB Transfer Register to Byte
Formula 0002.r1 Affected A
T T | | /
OP CODE r / /
Operation

The least significant 8 bits (7-0) of the contents of the
specified register replace the previous contents of the B
Register {A7-A0). Bits A23-A8 are unchanged.

Notes

TrB is not a computer instruction mnemonic but represents
a family of instruction mnemonics. r1 is coded as follows to
select one-of-five general purpose registers.

r1 =01 (1)
02 (J)
04 (K)
10 (E)
40 (T)

A code of 0002.01, for example, implements the Transfer |
to Byte (TIB) instruction.

7-48

The Condition register is not affected.

r1 is selected by unitary bits. Therefore, none, all six, or
any combination of registers may be selected. If more than
one register is selected in group r1, they are logically ORed
prior to the specified operation.

TOB

Transfer Operand to Byte

Formula 0003:0 Affected AC
T 1 T / 1 T
OP CODE // OPERAND
I NN O N N O T T B B / ' B
23 12 7 I 0
Operation

The 8-bit signed operand replaces the previous contents of
the B Register (A7-AQ). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

TMB % Transfer Memory to Byte
Formula 07.*+X:a Affected A,C
T 1 1 T T
OP CODE (%] X ADDRESS
1 | I S U | 1 I 1) I | I N (N A N !
23 17 14 o]

Operation

The 8 least significant bits (7-0) of the contents of the
effective memory address replace the previous contents
of the B Register (A7-A0). Bits A23-A8 are unaffected.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the B Register at the completion of
the operation.

XOB Exclusive-OR Operand with Byte

Formula 0017:0

T | 1

Affected AC
OP CODE

T T
OPERAND
YR N W N Y N S SO S N | /// TR N N S

23 12 7 0

Operation

An exclusive-OR operation is performed between the 8-bit
operand and the contents of the B Register (A7-AD). Bits
A23-A8 are unchanged.

Note

The Condition Register is set to Positive, Negative, or Zero,
based on the result in the Byte Register at the completion
of the operation.

Input/OQutput Instructions

The input/output (1/0) instructions provide the required
control for all communications between the CPU and the
input/output structure. In addition to controlling data
transfers between the CPU and peripheral units, the 1/0
instructions allow peripheral unit command functions and

11n Fantime b P N T T P R prrerN PR |
status testing to be placed under program contiol.

The specific |/0 operation can be identified by examination
of the individual instruction mnemonic. All I/O instruction
mnemonics use the letter ““W’’ to indicate that a full word is
to be transferred between the CPU and the 1/O structure.
The first letter of the mnemonic indicates the direction of
the transfer (input or output). The second letter indicates
the type of word to be transferred. For example:

| D W
Input T T Word
(to the CPU)

Data

OCW
Output -]- T Word
(from the CPU)

Command

There is no “I/O hold”, or delay, imposed by the hardware.
All 1/0 instructions are executed unconditionally, i.e., the
CPU is not forced to wait for a response from the 1/0
structure in order to complete the instruction execution
cycle.

Although there is no built-in hold/delay provision, a
programmed delay can be implemented if desired. At the
beginning of each 1/0 instruction cycle, the Condition
Register is cleared. At the end of the execution phase of
each 1/O instruction, bit 2 (Zero/Not Zero) is set to Zero if
the selected channel was ready and accepted the command.
If the selected channel was not ready, bit 2 of the

0830007-000
Original 8/79

Condition Register remains set to Not Zero. The program
can test the Not Zero state of bit 2 with a branch
instruction following the 1/0O instruction. When bit 2 is set
to Not Zero, a programmed delay is implemented. For
example:

ODW ‘0103 Output word to Channel 1, Unit 3
BNZ *.1 Delay if not ready
Continue if ready

An example of a channel being not ready is when the
peripheral unit’s data transfer capability is slower than that
of the program loop and therefore cannot accept data as it
is available from the channel. Another example occurs in a
channel/multiunit environment where the channel is
connected to peripheral unit A and peripheral unit B is
selected for a data transfer.

In this instance, the channel remains not ready until a
disconnect/connect sequence is performed and peripheral
unit B is connected to the channel. Two cycles are required
for the disconnect/connect sequence.

Status returned to the Condition Register immediately after
completion of an 1/O instruction refers to channel status
only. A ready (Zero) condition indicates the channel
accepted the 1/O command. This does not imply the 1/0
operation was completed with the selected peripheral unit.

If the program selects a non-existent channel or unit, the
channel accepts the command or data and leaves bit 2 of
the Condition Register set to Not Zero to indicate not
ready. The channel will remain not ready for any
subsequent commands.

Channel number 308 cannot be assigned to an 1/O channel.

The 1/0 command modes are determined by the
configuration of bits 5 and 4 of the OCW instruction and
are as follows:

1. Normal — The Normal Channel Operation command is
raised by bits 5 and 4 of the OCW being ZEROs (0,0).

2. Multiplex-Output Special Function — This command
is raised by bits 5 and 4 of the OCW being a ZERO,
ONE (0,1) configuration.

This is a multiplex function for the PIOC which, when

executed by the CPU, releases the channel to a
master/slave pair of peripheral units.

7-49

0830007-000

Origi

Bit0

Bit 2

Bit 3

7-50

nal 8/79

For the BBC, this is an Output Special Function which
causes the channel to modify its normal operation.
The CPU transfers the contents of the A Register to
the Special Function Register in the BBC. The bits
unitarily control the special functions. The special
functions are reset unitarily by issuing an OCW with
the respective A Register bit reset to zero. The bits
may also be reset by a Master Clear. This instruction is
not accepted while a block transfer is in process.
Definition of the bits when active (set) is as follows:

Decrement TAR — This function provides a
magnetic tape read reverse capability,
alleviating the requirement to rewind the tape.
This causes the channel to decrement, rather
than increment, the transfer address during
input block transfers. The 24-bit words from
the unit are assembled into 48-bit memory
words in reverse order.

Unit 1/O Parity Check — This function enables
channel-to-unit parity checking. The BBC
provides an odd parity on commands and data
to the unit, and it checks for odd parity on data
from the unit. Since some units do not provide
parity, the parity checking function has to be
specifically enabled. Parity errors on block or
single word (IDW) transfers are reported in bit
9 of the status word. The channel remains busy
after a parity error is detected, and must be
cleared to resume normal operation.

Internal Turnaround — This function causes the
channel to transfer data in and out of the
channel data buffer without accessing or
signaling the unit. This function is used for
block transfers only (maximum word count =
32). Incorrect results will occur if the Buffer
Count Not Zero Flag is not reset prior to
enabling internal turnaround. The flag can be
reset by initializing an input block transfer to a
non-existing unit by means of an OCW
instruction, incurring a delay of at least 30 CPU
cycles (e.g., executing 30 NOPs), and then
aborting the transfer. Executing an OCW with
the mode bits in the Offline configuration will
abort the transfer. Any normal block transfer
termination will also reset the flag. The state of
the Buffer Count Not Zero Flag is reported in
the status word.

Unit Master Clear — This function provides a
continuous Master Clear signal to the unit
interface.

Bits 4-23 Not used (reset to Zeros).

An XBC, IBC, or DM ACP-8 channel will not respond to a
Multiplex-Output Special Function command.

3. Offline — This command is the same as the Multiplex
command, except the 1/O drivers in the channel are
turned off, allowing the second CPU to share
peripherals without need of peripheral switches.
(Assumes control of 1/0 bus.) The command is raised
by bits 5 and 4 being in a ONE, ZERO (1,0)
configuration.

4. Reset — This command operates the same as a Normal
command, but resets the channel out of either the
Multiplex or Offline mode. (Channel restored on-line,
unit selected.) This command is raised by bits 5 and 4
being in a ONE, ONE (1,1) configuration.

The following instructions are included in the input/output
group.

IAW Input Address Word 7-52
IDW Input Data Word 7-52
IPW Input Parameter Word 7-53
ISW Input Status Word 7-51
OAW Output Address Word 7-52
ocw QOutput Command Word 7-50
obw Output Data Word 7-51
OCW Output Command Word
Formula 0070.*+C.M+U Affected C
1 T T 1 8 1
OP CODE *|CHANNEL| © | UNIT
§ VR VU VAU IO N N N U W S | | S S | l2 | I
23 n 5 4 3 [o]
Operation

An 8-bit or a 24-bit command word is transferred from the
A Register to the specified channel/unit combination.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the selected channel is not ready,
the Condition Register remains set to Not Zero which
allows a programmed delay if desired.

Bits 3-0 of the OCW instruction form a 4-bit paralleled unit
code that is used to select a particular peripheral unit. The
configuration of bits 4 and 5 determines the Normal,
Muitiplex-Output Special Function, Offline, or Reset
Channel mode for a particular channel. The configuration
of bits 10-6 determines which channel is selected. Bit 11 is
the Override Bit, and bits 23-12 define the general process
that is to be performed. The only valid unit code for a
DMACP-8 channel is 10g; all others are rejected.

If the Override Bit (*) is set (ONE), the command word
assumes immediate control over the channel. The contents
of the A Register are transferred to the channel and a
disconnect/connect sequence is initiated. The Condition
Register is set to Zero to indicate the channel has accepted
but not necessarily executed the command. Upon
completion of the disconnect/connect sequence, the
channei transfers the command word to the unit. in the
case of a DMACP-8 channel, the Override bit clears the
channel and forces the MPU to a halt; the Condition
Register is not set to Zero, and no busy test is required.

If the Override Bit is not set (ZERQ) and the OCW specifies
a unit other than the unit connected to the channel and the
channel is ready, the command word is accepted by the
channel. The Condition Register is set to Not Zero to
indicate the channel is not ready. A disconnect/connect
sequence is performed and the command is transferred to
the unit. The Condition Register is reset to Zero to indicate
ready.

Following the execution of an OCW the channel remains
not ready until the peripheral unit accepts the data.

This instruction is privileged.

ISW Input Status Word
Formula 0073.00+C.00+U Affected A,C
T 1 1 1 T
OP CODE O|CHANNEL|OO| UNIT
L L.t 1 1 1 1 1 Pl 1) N S | 1 i1 1
23 i1 5 4 3 o
Operation

A status word is transferred from the specified channel/unit
combination to the A Register.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the addressed channel/unit
combination is not ready (see following notes) or status
word is not available, the Condition Register is set to Not
Zero to allow a programmed delay.

0830007-000
Original 8/79

If the selected channel is in the process of executing a
command (resulting from a previous OCW), the channel
indicates not ready (Condition Register remains set to Not
Zero) and ignores the ISW instruction until the peripheral
unit accepts the OCW command. The channel indicates
ready (Condition Register set to Zero) and accepts the |SW
when it is executed again.

If the ISW specifies a unit other than the unit connected to
the channel, the channel indicates not ready and ignores the
command. A disconnect/connect is initiated.

If the selected unit is receiving data as the result of an ODW
instruction, the ISW is accepted and the Condition Register
is set to Zero.

This instruction is privileged.

ODW Output Data Word

Formuta 0071.00+C.00+U Affected C
1 1 T 1 T
OP CODE O|CHANNEL|OO| UNIT
-1 L Il L 1 i 1 1 1 1 1 i1 Ll 1 1 S
23 n 5 4 3 0
Operation

A data word is transferred from the A Register to the
specified channel/unit combination.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. If the channel is busy and cannot
accept the data word, the Condition Register is set to Not
Zero to allows a programmed delay.

Although, a 24-bit word is transferred to the channel, the
peripheral unit accepts only a predetermined number of
bits (dictated by peripheral unit design).

For character-oriented units and units accepting data words
of less than 24 bits, the data for transfer must be right-
justified in the A Register prior to executing the ODW
instruction.

If the ODW instruction specifies a unit other than the unit
connected to the channel and the channel is ready, the
channel accepts the ODW, sets the Condition Register to
Zero, and initiates a disconnect/connect sequence. After
completion of the disconnect/connect sequence, the ODW
is transferred to the unit. The channel indicates ready to
subsequent 1/0 instructions.

This instruction is privileged.

7-51

0830007-000
Origina! 8/79

IDW Input Data Word

Formula 0072."+C.00+U Affected A,C
1 L 1 T T
OP CODE %|CHANNEL|O O] UNIT
W W U N G U Y W S S | S | 1 L L1
23 " $ 4 3]
Operation

A data word is transferred from the specified channel/unit
combination to the A Register.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready. |f the channel is not ready or data
from the specified unit is not available, the Condition
Register is set to Not Zero to allow a programmed delay.

If the selected unit is in the process of executing a
command as the result of a previous OCW instruction, the
channel indicates not ready (Condition Register remains set
to Not Zero) and the IDW is ignored. At the completion of
the OCW, the Condition Register is set to Zero and the IDW
instruction is accepted by the channel.

If the selected unit is in the process of receiving data as a
result of an ODW instruction and data is available from the
unit, an ODW will be accepted and the Condition Register
set to Zero.

If the IDW instruction specifies a unit other than the unit
connected to the channel, the channel indicates not ready
(Condition Register remains set to Not Zero), ignores the
instruction, and initiates a disconnect/connect sequence.

The only valid unit code for a DMACP-8 channel is 10g; all
others are rejected.

1%y

If the Merge bit (™) is ZERO the A Register is cleared prior
to the data transfer. Input data is right-justified in the A
Register.

If the Merge Bit is a ONE, an OR is performed between the
previous contents of the A Register and the incoming data
word. This feature, in conjunction with a shift operation,
allows input data characters to be packed in the A Register.

Example: Two 12-bit data characters are to be packed in
the A Register.

IDW ‘0102 Clear A and load first character from
channel 01, Unit 02.
BNZ *1 Wait if busy
LLA 12 Shift the contents of A left 12 bits
IDW* ‘0102 Merge second character
BNZ *.1 Wait if busy
Continue

This instruction is privileged.

7-52

OAW Output Address Word

Formula 0071.40+C.00+U Affected C
kg 1) § 1 1
OP CODE t ICHANNEL|OO| UNIT
L4 4 ¢ 11 1 41 1 1 1 | S - i 11
2] " 5 4 3 o
Operation

The contents of the A Register are transferred to an
appropriate register in the specified channel, or unit in XBC
Channel executions.

Notes

The Condition Register is cleared, then set to Zero if the
1/0 channel is ready.

The unit is addressed only in XBC and DMACP-8 channels
(bits 0-2) and IBC channels (bits 0, 1).

Since XBC/IBC channel

must be “‘connected’”’ before the instruction can be
executed.

H 1 it ~d H
s involve a unit address, the unit

The OAW instruction does not activate a block-transfer
channel. It transfers the starting address of the first of two
parameter words from the A Register to the TAR or PAR
in the selected channel. In XBC channel operations the OAW
instruction transfers the contents of the A Register to the
unit; the channel has no register dedicated to this function.

If an OAW instruction addresses a BBC during a block
transfer sequence, the sequence will be terminated.

If the OAW instruction addresses a PIOC, the Condition
Register remains set to Not Zero; the instruction is
executed automatically. In this instruction the four least
significant bits (3-0) of the A Register are transferred to the
Interrupt Generator logic. These bits (unitarily) control the
triggering of the one-to-four 1 microsecond interrupt
pulses.

This instruction is privileged.

IAW Input Address Word
Formula 0073.40+C.00+U Affected AC
T T 1 1 1
OP CODE I{CHANNEL|O O] UNIT
1 1 1 1 1 | WS W W | 1 J -} 1 1 L 1 i
FY) m s a3 o

Operation

The current contents of the Transfer Address Register
(TAR) in the specified channel (IBC, or DMACP-8) are
transferred to the A Register.

Notes

The Condition Register is cieared, then set to zero if the
I/O channel is ready. If the IAW instruction specifies an
invalid channel, the Condition Register remains set to Not
Zero indicating channel not ready.

The unit is addressed only in IBC and DMACP-8 channels.

Bit 5 at the ZERO level distinguishes between the |AW and
IPW instructions.

The IBC channel must go to “not busy” before executing
the instruction.

This instruction is privileged.

IPW

Input Parameter Word

Formula 0073.40+C.40+U Affected AC
T 1 1 T L
OP CODE L ICHANNEL|I O] UNIT
) S N I | I I W N T Y L J b
23 M s 4 3 o
Operation

The current contents of the Parameter Address Register
(PAR) in the specified channel (IBC or DMACP-8) are
transferred to the A Register.

Notes

The Condition Register is cleared, then set to zero if the
i/0 channel is ready. If the IPW instruction specifies an
invalid channel, the Condition Register remains set to Not
Zero, indicating channel not ready.

The unit is addressed only in IBC and DMACP-8 channels.

IPW instructions addressed to an 1BC channel must specify,
via the unit address, which of three possible channel PARs
is read.

Bit 5 at the ONE level distinguishes between the IPW and
IAW instructions.

The IBC channel must go to “‘not busy’’ before executing
the instruction.

This instruction is privileged.

0830007-000
Original 8/79

Bit Processor Instructions

The bit (Boolean function) processor group of instructions
include branches, logical manipulation, and interrogation of
a specified bit selected from an effective memory address or
the H Register. In most instances, bit 2 (Zero/Not Zero) of
the Condition Register is used to display either the result of
an operation or the status of a bit before the operation is
performed.

The bit processor employs two instruction word formats.
The first format uses an Op Code (bits 23-12) to specify the
operation to be performed. The remaining 12 bits (bits
11-0) are undefined. The second instruction format
contains a displacement, bit specification, and an Op Code.
Eight bits (bits 7-0) are added to the base address contained
in the V Register to obtain a displacement from the base
address which is an effective memory address for the word
containing the bit in question. Five bDits (bits 12-8) are used
to select a specific bit in the effective memory address for
an operation as specified in the 11-bit (bits 23-13) Op
Code. Both instructions word formats are illustrated below.

NOTE
If a bit number greater than 23 is
specified in bit positions 12-8, the result
is unpredictable.

e 7770

23 12 1 o

i T L T 1 T

OP CODE b d

| SN N Y N T WY WL T I N N Y S|
23 13 12 8 7 o

The following instructions are included in the bit processor
group.

DMH Dot Memory with H 7-55
DNH Dot Not (memory) with H 7-55
FBM Flag Bit of Memory 7-56
NHH Negate of H to H 7-54
OMH OR Memory with H 7-65
ONH OR Not (memory) with H 7-55
QBH Query bit of H 7-54
QBM Query bit of Memory 7-56
TFH Transfer Flag to H 7-54
THM Transfer H to Memory 7-56
TKV Transfer K to V 7-54
TMH Transfer Memory to H 7-56
TVK Transfer V to K 7-54
TZH Transfer Zero to H 7-54
XMH Exclusive-OR Memory with H 7-55
XNH Exclusive-OR Not (memory) with H 7-56
ZBM Zero Bit of Memory 7-56

7-53

0830007-000
Original 8/79

TZH Transfer Zero to H
Formula 7742 Affected H,C
T 1 Ri 7
1 1 | TN U G W S | 1 1l 1 £ I3 1 /4
23 12 [o]
Operation

A ZERO is placed in the H Register. The Condition
Register is set to refiect the original contents of H.

Note

If the original contents of the H Register were ZERO,
Condition Register Bit 2 is set to 1 (Zero). |f the contents
were ONE, Bit 2 is set to 0 (Not Zero).

TFH

Formula 7743.

e U

23 12 0

Transfer Flag to H
Affected H,C

Operation

A ONE is placed in the H Register and the Condition
Register is set to reflect the original contents of H.

Note

If the original contents of the H Register were ZERO,
Condition Register Bit 2 is set to 1 (Zero). If the contents
were ONE, Bit 2 is set to 0 (Not Zero).

TKV Transfer K to V
Formuia 7744. Affected Vv
T T 1
OP CODE //A:/// M
Jl 1 N S S i l 1 L 1 1 A
23 12 0
Operation

In the Compatibility Mode, the 18 least significant bits of
the K Register replace the present contents of the V
Register.

In the Address Extension Mode, the 20 least significant bits
of the K Register replace the present contents of the V
Register.

Note

The Condition Register is Unaffected.

TVK Transfer V to K
Formula 77465. Affected K
OP CODE /
O S U DU S N NN N G S | 1 /é
23 2 0
Operation

In the Compatibility Mode, the contents of the V Register
are transferred to the 18 least significant bit positions of
the K Register. Bits 23-18 of the K Register are reset to
ZEROs.

In the Address Extension Mode, the contents of the V
Register are transferred to the 20 least significant bit
positions of the K Register. Bits 23-20 of the K Register are
reset to ZERO:s.

QBH AQueryBitof H

Formula 7746. Affected C
e VI
Operation

The H Register bit is tested and the Condition Register is
set to display the result of the query.

Note
The Condition Register is cleared. It the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set

to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

NHH

Formula 7747.

Negate of H to H

Affected H,C

1 ! 1

OP CODE

23 12 o

Operation

The current content of the H Register is complemented and
returned to H. The Condition Register is set to display the
result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2isset to O (Not
Zero).

DMH

Dot Memory with H

Formula 7750. 4:d Affected H,C
1) T T T .] 1
OP CODE b d
) S N I S S N | I N . | il 1t 1 1 1 1
23 3 7 [+]
Operation

A logical AND is performed between the selected bit in the
effective memory address and the contents of the H
Register. The result is returned to the H Register and the
Condition Register is set to display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERQ, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

ONH

Dot Not (memory) with H

Formula 7752.4:d Affected H,C
T T 1 T T T 1
OP CODE b d
d j D S . | 1 1 11 .t 1 1 1 | | S S .
23 13 7T . (4]
Operation

A logical AND is performed between the complement of
the selected bit in the effective memory address and the
content of the H Register. The result is returned to the H
Register and the Condition Register is set to display the
result,

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZEROQ, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

0830007-000
Original 8/79

OMH

OR Memory with H

Formula 7754.p:d Affected H,C
T 1 1 T 1 T i
OP CODE b d
} N S W S S S S S N { i i i i F U S U U S S §
23 13 7 0
Operation

A logical OR is performed between the selected bit in the
effective memory address and the content of the H
Register. The Condition Register is set to display the result,

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

ONH

OR Not {(memory) with H

Formula 7756. 5:d Affected H,C
1 T ¥ T T T T
OP CODE b d
1 1 | 11 L1 1 § I S A | 1 1 1 1 n n 1
23 i3 T 4]
Operation

A logical OR is performed between the complement of the
selected bit in the effective memory address and the
content of the H Register. The Condition Register is set to
display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

XMH

Exclusive-OR Memory with H

Formula 7760.4:d Affected H,C
1 T T 1 1 1 T
OP CODE b d
J i | - | I | | 1 1 11 1 1 |) I . 1
a3 13 7 (o]
Operation

An exclusive-OR function is performed between the
selected bit in the effective memory address and the
content of the H Register. The Condition Register is set to
display the result.

7-55

0830007-000
Original 8/79

Note

The Condition Register is cleared. if the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 {Zero). If the content is ONE, Bit 2 is set to O (Not
Zero).

XNH Exclusive-OR Not {(memory) with H
Formula 7762.46:d Affected H,C
T T T T T T T
OP CODE b d
) I W VR T U T A T e | I S | j I U TR W R |
23 i3 7)

Operation

An exclusive-OR function is performed between the
complement of the selected bit in the effective memory
address and the content of the H Register. The Condition
Register is set to display the result.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the content is ONE, Bit 2 is set to 0 (Not
Zero).

TMH

Transfer Memory to H

Formula 7764.5:d Affected H,C
¥ T ¥ 1 1 T T
OP CODE b d
B S NS W T T T G G | S T | | S W TS W S B
23 3 7 [+]
Operation

The selected bit in the effective memory address is
transferred to the H Register. The Condition Register is set
to display the resultant content of the H Register.

Note

The Condition Register is cleared. If the resultant content
of the H Register is ZERO, Condition Register Bit 2 is set
to 1 (Zero). If the resultant content is ONE, bit 2 is set to O
(Not Zero).

QBM Query Bit of Memory

Operation

The selected bit in the effective memory address is tested
and the Condition Register is set to display the result of the
query.

Note

The Condition Register is cleared. |f the resultant content
of memory is ZERO, Condition Register Bit 2 is set to 1
(Zero). If the resultant content is ONE, Bit 2 is set to O
(Not Zero).

THM

Transfer H to Memory

Formula 7770.5:d Affected M
1 I 1 T 1 RS 1
OP CODE b d
1 L1 4 1 1 1 1 N I U 1J 1 1 1 1 i
23 13 7 o]
Operation

The content of the H Register is placed in the selected bit
position in the effective memory address. The Condition
Register is not affected.

FBM Flag Bit of Memory

Formula 7772.4:d Affected M,C
T T T 1 T 1 T
OP CODE b d
d 1 U § N A N S | I 1 | A . | 11 1 1 A 1 1
23 3 7 o
Operation

A ONE is placed in the selected bit position in the effective
memory address. The Condition Register is set to dispiay
the original state of the selected bit in memory.

Notes

If the original state of the selected bit in memory was
ZERO, Condition Register Bit 2 is set to 1 (Zero). If the
original state was ONE, Bit 2 is set to 0 (Not Zero).

DMA transfers are inhibited and shared memory is locked
up during the execution of this instruction.

ZBM

Zero Bit of Memory

Formula 7766.4:d Affected C Formula 7774.4:d Affected M,C
T T 1 T 1 T 1 i 1 H 1 1 T T
OP CODE b d OP CODE b d
RS TS SO W G DU N0 B B | | | S N U N N S| S T W S W WU W S S B |) I | § W S W S N |
23 3 7 4] 23 3 T o

7-56

Operation

A ZERO is transferred to the selected bit position in the
effective memory address. The Condition Register is set to
display the original state of the selected bit in memory.

Notes

If the original state of the selected bit in memory was
ZERO, Condition Register Bit 2 is set to 1 (Zero). If the
original state was ONE, Bit 2 is set to 0 (Not Zero).

DMA transfers are inhibited and shared memory is locked
up during the execution of this instruction.

Virtual Memory Instructions

The majority of the virtual memory instructions involve
transfers between the paging registers and the A, E and D
Registers. The remaining instructions are special control
operations for activating and testing the virtual memory
logic.

The following instructions are included in the virtual
memory group.

QNR Query Not-modified Register 7-59
QUR Query Usage Register 7-59
ROM Release Operand Mode 7-59
RUM Release User Mode 7-60
TAR Transfer A to 1 Virtual Address

Register 7-57
TDP Transfer Double to Paging Limit

Registers 7-58
TDR Transfer Double to 2 Virtual Address

Registers 7-58
TDS Transfer Double to Source and

Destination Registers 7-57
TEU Transfer E to Usage Base Register 7-59
TPD Transfer Paging Limit Registers

to Double 7-58
TRD Transfer 2 Virtual Address Registers

to Double 7-58
TSD Transfer Source and Destination

Registers to Double 7-57
TUD Transfer Usage Base Register and

Demand Page Register to Double 7-58

0830007-000

Original 8/79
TDS Transfer Double to Source and
Destination Registers
Formula 006410. Affected VSR,VDR
i T | 1 /V/
OP CODE)
L L | |)| 1 1 | 1 | 1 1 L 1 1 1 |)/l)/! /
23 6 [}
Operation

Bits 11-0 of the A Register replace the previous contents of
the Virtual Destination Register (VDR) and bits 11-0 of the
E Register replace the previous contents of the Virtual
Source Register (VSR). The contents of A and E are not
changed.

Note

This instruction is privileged.

Transfer Source and Destination
Registers to D

TSD

Formula 006510, Affected AE
T T T T 1
OP CODE //7//
{ | L1 1 1 { 1 I 11 1 | S T S T | /(l/ i/
23 6]
Operation

The contents of the Virtual Source Register (VSR) replace
the previous contents of bits 11-0 of the E Register; the
contents of the Virtual Destination Register (VDR) replace
the previous contents of bits 11-0 of the A Register. Bits
23-12 of both A and E are cleared (reset to ZEROs). The
contents of the VSR and VDR are not changed.

Note

This instruction is privileged.

TAR Transfer A to 1 Virtual Address
Register
Formula 006050. Affected VAR,VDR
T T 1 T T P
s
1 I 1 | 1 L 1 1 1 1 1 1 1 il i | . }/ /
23 6 o]
Operation

Bits 23, 22, and 9-0 of the A Register replace the previous
contents of the Virtual Address Register (VAR) specified

7-57

0830007-000
Original 8/79

by the Virtual Destination Register (VDR). The VDR is
incremented by one. The contents of the A Register are not
changed.

Note

This instruction is privileged.

TDR Transfer Double to 2 Virtual
Address Registers
Formula 006430. Affected VAR(1),VAR(2),
VDR
1 T ¥ 1] T
OP CODE ///

AN S N NS YO SN S N SN SR (U SN G NS W S /
23 6 o]
Operation

Bits 23, 22, and 9-0 of the E Register replace the previous
contents of the Virtual Address Register (VAR) specified
by the Virtual Destination Register (VDR); the VDR is
then incremented by -one to specify the second VAR. Bits
23, 22 and 9-0 of A replace the previous contents of the
second VAR. The VDR is again incremented by one. The
contents of the E and A Registers are not changed.

Note

This instruction is privileged.

TRD Transfer 2 Virtual Address
Registers to Double
Formula 006530. Affected E,A,VSR
T 1 T T T
OP CODE AAQ?%i;y/
| . L)| i 1 | J | ! | | | | /
23 6 [o]
Operation

The contents of the Virtual Address Register {VAR)
specified by the Virtual Source Register (VSR) replace the
previous contents of bits 23, 22, and 9-0 of the E Register.
The VSR is then incremented by one to specify the second
VAR. The contents of the second VAR replace the previous
contents of bits 23, 22, and 9-0 of the A Register. The VSR
is again incremented by one. Bits 21-10 of both E and A are
cleared (reset to ZERO).

Note

This instruction is privileged.

7-58

TDP Transfer Double to Paging
Limit Registers
Formula 006450. Affected VBR,VLR
1 1 T 1 T //
OP CODE A//J////

| O S)| | | L1 1 IS SN U S S / /
23 6 [¢]
Operation

Bits 11-0 of the A Register replace the previous contents of
the Virtual Base Register (VBR), and 23-19 and 9-0 of the
E Register replace the previous contents of the Virtual
Limit Register (VLR). The contents of A and E are not
changed.

Note

This instruction is privileged.

TPD Transfer Paging Limit
Registers to Double
Formula 006550. Affected E.A
I T T T T
OP CODE /j;<;<;;/
[S WS NS WU SN U SN TN N NS IOUN SN S SN U | f /
23 6 o]
Operation

The contents of the Virtual Base Register {VBR) replace
the previous contents of A Register bits 11-0, and the
contents of the Virtual Limit Register (VLR) replace the
previous contents of E Register bits 23-19 and 9-0. The
remaining bits of both A and E are reset to ZEROs. The
contents of the VBR and VLR are not changed.

Note

This instruction is privileged.

TUD Transfer Usage Base Register and

Demand Page Register to Double
Formula 006570. Affected EA

1 1 Ll 1 1
OP CODE //;2;;//
1 | 1)| | U T T | 1 | 1 | 1 1

23 6 [+]
Operation

The contents of the Virtual Demand Page Register (VPR)
replace the previous contents of A Register bits 13-0, and
the contents of the Virtual Usage Base Register (VUB)

replace the previous contents of E Register bits 9-0. A
Register bits 23-14 and E Register bits 23-10 are reset to
ZEROs. The contents of the VPR and VUB are not
changed.

Note

This instruction is privileged.

TEU

Transfer E to Virtual Usage
Base Register

Formula 006470. Affected vuB
T T 1 T 1 /
Jd 1 1 1 L 1 1 1 L1 1 1 1 | I 1 /
23 6 (o]
Operation

The contents of E Register bits 9-0 replace the previous
contents of the Virtual Usage Base Register (VUB). The E
Register contents are not changed.

Note

This instruction is privileged.

QUR

Query Usage Register

Formula 007030. Affected VUR,VUB,C
T T 1 T T r]
OP CODE % A//
I | T | | | S I T N I }/
23 [(e
Operation

The contents of the Virtual Usage Register (VUR) —
specified by the Virtual Usage Base Register (VUB) — is
tested. The Condition Register is set to “Not Zero’' or
“Zero” if the content of the VUR is ONE or ZERO,
respectively. The specified VUR is cleared and the VUB is
incremented by one.

Note
This instruction is privileged.

QNR

Query Not-modified Register

Formula 007070. Affected VNR,VUB,C

T T T T T
OP CODE 4////

U WO TS N R S SN S A N N N S A /é
)

0830007-000
Original 8/79

Operation

The contents of the Virtual Not-modified Register (VNR)
— specified by the Virtual Usage Base Register (VUB) — is
tested. The Condition Register is set to ““Not Zero' or
“Zero” if the content of the VNR is ONE or ZERO,
respectively. The specified VNR is cleared and the VUB is
incremented by one.

Note

This instruction is privileged.

ROM Release Operand Mode

Formula 006010. Affected None
T T T T T /7 N 7
OP CODE /////
1 1 J - 1 Il] | - 1 1 1 H 1 1 1 l/
23 [o
Operation

The operand address of the foliowing instruction is
translated.

Notes .

With the exception of the PC mapping function, the ROM
instruction is nullified if bit 19 (ROM Inhibit) of the VLR
is set.

No double-word instructions (AOM, USP, or extended
instructions) are permitted after a ROM instruction.

No branch instructions are permitted after the ROM
instruction.

I1f an EXM is executed after a ROM, the ROM is treated as a
NOP, no translation occurs, and the EXM executes as
normal.

The ROM instruction translates only the final EMA after
indexing and/or indirection.

The ROM instruction controls the map bit of the following
instruction in accordance with the following example.

TMA Inhibits mapping of operand
TMA,I Inhibits mapping of operand

TMA* First address access is mapped,
succeeding accesses are not
mapped, operand is not mapped

TMA*,I Same as TMA*

This instruction is privifeged.

7-59

0830007-000
Original 8/79

RUM

Release User Mode

Formula 006030. Affected None
T 1 T 1 T 7 /
OP CODE // //
1 L 1 1 1 {1 1 Ll 1 1 1 I\ Ji]//
23 [y o]
Operation

The User Mode is established upon completion of the
following instruction.

Notes

The instruction following the RUM should always be a
branch instruction which may be indexed and/or
indirected. No conditional branches are allowed.

After the new program address is calculated, the User Mode
is activated.

The RUM instruction, together with the following
instruction, are handled as an EXM instruction with respect
to a demand page (bits 1 and 0 of the Virtual Demand Page
Register set to ZERO and ONE, respectively).

Only the final EMA, after indexing and/or indirection, of
the instruction following the RUM instruction is translated.

Execution of the RUM instruction inhibits mapping of the
following branch fetch.

This instruction is privileged.

Priority Interrupt Control Instructions

The priority interrupt instruction group provides the means
for program control of external interrupts. External
interrupts may be selectively armed, disarmed, enabled or
inhibited under program control. Other instructions provide
the means for holding and releasing external interrupts,
while others are available for transferring control upon
interrupt detection. For a detailed description of the
priority interrupt system, refer to Section V of this manual.

The following instructions are included in the priority
interrupt group.

BRL Branch and Reset Interrupt Long 7-61
BSL Branch and Save Return Long 7-60
BSX Branch and Save Extended 7-61
HTx Hold Interrupts and Transfer Register

to Memory 7-62
HXI Hold External Interrupts 7-63
RXI Release External Interrupts 7-63
T1D Transfer Group 1 to Double 7-64

7-60

T2D Transfer Group 2 to Double 7-64
T3D Transfer Group 3 to Double 7-64
T4D Transfer Group 1 to Double 7-64
T5D Transfer Group 2 to Double 7-65
T6D Transfer Group 3 to Double 7-65
TD1 Transfer Double to Group 1 7-63
TD2 Transfer Double to Group 2 7-63
TD3 Transfer Double to Group 3 7-63
TD4 Transfer Double to Group 1 7-65
TD5 Transfer Double to Group 2 7-65
TD6 Transfer Double to Group 3 7-65
UA1 Unitarily Arm Group 1 interrupts 7-65
UA2 Unitarily Arm Group 2 Interrupts 7-66
UA3 Unitarily Arm Group 3 Interrupts 7-66
UD1 Unitarily Disarm Group 1 Interrupts 7-66
uD2 Unitarily Disarm Group 2 Interrupts 7-67
uD3 Unitarily Disarm Group 3 Interrupts 7-67
UE1 Unitarily Enable Group 1 Interrupts 7-67
UE2 Unitarily Enable Group 2 Interrupts 7-68
UE3 Unitarily Enable Group 3 Interrupts 7-68
Uil Unitarily Inhibit Group 1 Interrupts 7-68
ul2 Unitarily Inhibit Group 2 Interrupts 7-69
UI3 Unitarily Inhibit Group 3 Interrupts 7-69

BSL %

Branch and Save Return Long

Formula 25.7+0:A Affected P
! T ! 1 T T
OP CODE [%*|0 ADDRESS
| N S S | | S (NS NS S W | 1 1 1 S T
23 17 15 0
Operation
In the Compatibility Mode, the program address of the next

sequential instruction along with the contents of the
Condition Register are stored in the effective memory
address (EMA). The contents of the P Register (current
program address) are then replaced by the address following
the effective memory address (EMA + 1).

In the Address Extension Mode, the program address of the
next sequential instruction is stored in the effective
memory address (EMA). The contents of the P Register
{current program address) are then replaced by the address
following the effective memory address (EMA + 1).

Notes

This instruction is used in the Compatibility Mode to enter
an interrupt subroutine because it provides a means of
returning to the main program at the point of interrupt and
saves the machine status (condition) at the time of the
interrupt.

In the Compatibility Mode, the contents of the Condition
Register are stored in bit positions 19-16 of the EMA and
the return address (program address of next sequential
instruction) is stored in bits 15-0. The remaining bits are set
to ZEROs. When an interrupt occurs, the status of the
virtual memory system is recorded. Bit 20 is set to ONE if
the system is in the User Mode at the time of interrupt; bit
20 is set to ZERO if the Monitor Mode is active.

The immediate memory reference cannot be indexed:
however, indexing of indirect references is permitted.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

The Condition Register remains unchanged.

COMPATIRILITY MODE
SAVE WORD
T i T T T T

00 0}V|] CREG RETURN ADDRESS

1 I I G Y O T T N U SO Nt S S S B O NS
23 20 16 15 0

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSL or extended BSL is executed.
Intermediate Addresses may be 20 bits when an indirect
extended BSL is executed.

ADDRESS EXTENSION MODE

SAVE WORD
T T T T T T T
0000 RETURN ADDRESS
| U Y A N T T T T S S N S S B N
23 20 19 o

In the Address Extension Mode, the return address is stored
in bit positions 19-0 of the EMA; bits 23-20 are reset to
ZERO:s.

BSX Branch and Save Extended

Formula 7740.254.0 Affected P
*+X:EA
T i T T 1
ESCAPE CODE OP CODE 000
1 L 1 1 ! L 1 1 L 1 11 | [i H I 1 l H
23 12 1 3 2 o]
/ T T T T T T
*| x é ADDRESS
I\ / 1 1 i 1 I\ I | 1 1 1 i | F— 1 i L i L
23 22 21 20 19 0

0830007-000
Original 8/79

Operation

The program address of the next sequential instruction,
along with the contents of the Condition Register, are
stored in the 20-bit effective memory address {(EMA}
location. The contents of the P Register (current program
address) are then replaced by the address following the
effective memory address (EMA + 1).

Notes

The BSX instruction is valid only in the extended
instruction format. This instruction provides a means of
returning to the main program and saves the machine status
(condition) at the time of instruction execution.

External interrupts are prohibited for a period of one
instruction following the execution of this instruction.

ADDRESS EXTENSION MODE

SAVE WORD
T T T T T T T
C REG RETURN ADDRESS
y N R TN W T N S S U N O S S T | | G T
23 20 19)

When the BSX is executed in the Address Extension Mode,
the contents of the Condition Register are stored in bit
positions 23-20 of the EMA location and the return address
(program address of the next sequential instruction) is
stored in bit positions 19-0.

COMPATIBILITY MODE
SAVE WORD

LA A

i 1 T 1 T l

00 O|vV| CREG RETURN ADDRESS

L | L1 1 N TN S S N T Y S T (N (O O W B |
23 21 20 19 16 15 o]

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BSX is executed, however, intermediate
addresses may be 20 bits when the BSX is indirected.

BRL % Branch and Reset Interrupt Long

Formula 25.*+2:A Affected c.P
T T T T ! v
OP CODE [#*]1 ADDRESS
I 1 1 1 | 1 1 | 1 i L 11 1 1 11 1 i 1
23 17 5] 0
Operation

The highest-level active and enabled interrupt is reset (i.e.,
returned to the inactive state) and the contents of the P

7-61

0830007-000
Original 8/79

Register (current program address) are replaced by the
effective memory address.

Notes

The BRL instruction is normally used to exit an interrupt
subroutine.

In the Compatibility Mode, if the BRL contains an indirect
reference, the last word in the indirect address chain
contains the previous status of the virtual memory system
in bit M20, the previous machine status (i.e., C Register
contents at the time of the interrupt) in bit positions
M19-M16, and the return address in bit positions M15-MO
as a result of the BSL instruction. The C Register is restored
and the program branches to the return address (restarting
the machine to the pre-interrupt status).

Example:
TMA
L AMA
SMA Interrupt occurs (EXM K).
K BSL M Dedicated interrupt location.
M *** M M becomes L+1 as a result of
BSL at K. The C Register con-
tents are stored in M19-M16.
BRL* M Restore C Register and return

to L+1.

In the Compatibility Mode, if an indirect BRL is executed
in Monitor Mode, bit 20 of the effective memory address
determines mode of operation to which machine returns. if
bit 20 is set, User Mode is established; if reset, the Monitor
Mode is established.

In the Address Extension Mode, if the BRL does not
contain an indirect reference, the program branches to the
return address and the states of VLR bit 20 and the C
Register are unchanged. If the BRL is indirected (no
indirect chaining is allowed), the destination address
contains the previous machine status in bit positions
M23-M20, and the return address in bit positions M19-MO
as a result of the BSX instruction. The C Register is
restored and the program branches to the return address.
VLR bit 20 remains unchanged if another interrupt is
active and enabled. If no other interrupt is active and
enabled, VLR20 is reset. VLR bit 20 determines the
mode of operation to which machine returns (if no other
interrupt is active and enabled). If VLR20 is set, User
Mode is established; if reset, the Monitor Mode is
established.

7-62

In the Compatibility Mode, the final EMA may not exceed
16 bits when a BRL or extended BRL is executed.
Intermediate address may be 20 bits when an indirect
extended BRL is executed.

The immediate memory reference cannot be indexed;
however, indexing indirect references is permitted, e.q.,

BRL" X

X DAC Y.K

If the BRL instruction is not indirected, the Condition
Register is not affected.

External interrupts are prohibited for the period of one
instruction following this instruction.

The BRL will not reset the interrupt if external interrupts
have been held by an HXI instruction. Control will be
returned to the effective memory address.

Those executive traps, which are not affected by the HXI
instruction, will be reset by the BRL.

HTx %

Hold Interrupts and Transfer
Register to Memory

Formula 27.*+x:a Affected M
i li i T 1
OP CODE %] x ADDRESS
11t § 1 Il L4 | T N S T T S T N S I
23 7 L} o
Operation

The contents of the i, J, or K Register replace the previous
contents of the effective memory address and external
interrupts are prohibited for the period of one instruction
following the execution of this instruction.

Notes

HTx is not a computer instruction mnemonic but
represents a family of instruction mnemonics. x is coded as
follows to select one of the index registers.

x =1()
2 (J)
3 (K)

A code of 27.*+1:a, for example, implements the Hold
Interrupt and Transfer | to Memory (HTI) instruction.

The immediate memory reference cannot be indexed;
however, indexing of indirect references is permitted, e.g.,

HTH* M
M DAC A.K

HXI

Hold External Interrupts

Formula 00660. Affected None

I

| S (N VSO NN W T WO N N U (N N S 1 1/ l//{

23 9 [¢]
Operation

The activation of any external interrupt is prohibited. The
prohibition is effective immediately upon execution of the
instruction and lasts until the interrupts are released (see
RXI instruction). Executive traps (Group O, Levels 4, 6,
and 7) are prohibited from becoming active while the HX1
is in effect.

Notes

Only the three executive traps mentioned are affected by
this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

RXI

Release External Interrupts

Formula 00664. Affected None
T T 1 1
0P CoDE 7
1 ot 1 1 1 It 1 1 1 1 i | 1 /
23 9 o
Operation

The prohibition imposed by the HXI instruction is
removed, allowing any external interrupt to be activated 1
cycle after this instruction. This permits the next sequential
instruction to be executed without external interruption.

Notes

If any of the affected executive traps have been triggered
while an HXI was in effect, the highest level will come in
first after the RXI instruction.

External interrupts are prohibited for the period of one
instruction following the execution of the instruction.

This instruction is privileged.

0830007-000

Original 8/79
TD1 Transfer Double to Group 1
Formula 006401. Affected 1A/D,
1E/i
1 | I 1 T //

OP CODE //// 7
Loy KA
23 6 o]

‘Operation

The contents of the D Register (E and A) replace the
previous contents of the Arm/Disarm (A/D) and
Enable/Inhibit (E/l) Registers of interrupt group 1. The
contents of E are transferred to the A/D Register and the
contents of A are transferred to the E/I Register.

Notes

The group 1 external interrupt structure is cleared by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TD2

Transfer Double to Group 2

Formula 006402. Affected 2 A/D, 2 E/i
T T T T T //
OP CODE //////
1 1 ! I 1 |- 1 1 1 { L1 L 1 1 1 A
23 6 o]
Operation

The contents of the D (E and A) Register replace the
A

previous contents of the Arm/Disarm (A/D} and

Enable/Inhibit (E/l) Registers of interrupt group 2. The
contents of E are transferred to the A/D Register, and the
contents of A are transferred to the E/I Register.

Notes

The group 2 external interrupt structure is cleared by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TD3

Formula

Transfer Double to Group 3

006404. Affected 3 A/D,3E/I

RN

23 6 Qo

7-63

0830007-000
Original 8/79

Operation

The contents of the D {E and A) Register replace the
previous contents of the Arm/Disarm (A/D) and
Enable/Inhibit (E/1) Registers of interrupt group 3. The
contents of E are transferred to the A/D Register, and the
contents of A are transferred to the E/I Register.

Notes

The group 3 external interrupt structure is cleared by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TID

Transfer Group 1 to Double

Formula 006501. Affected EA
T T T T T
OP CODE /// /
L | S S | j L1 1 1 | I T S |
23 6 (o]
Operation

The contents of the Arm/Disarm (A/D) and Enable/Inhibit
(E/1) Registers of interrupt group 1 replace the previous
contents of the D Register (E and A). The contents of the
A/D Register are transferred to the E Register and the
contents of the E/I Register are transferred to the A
Register.

Notes

execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

12D

Transfer Group 2 to Double

Formula 006502. Affected EA
i I 1 I i 7
OP CODE %
S U R (SN U NN (N (NN S D S (N MU S N N | 2
23 6 o
Operation

The contents of the Arm/Disarm (A/D) and Enable/Inhibit
(E/1) Registers of interrupt group 2 replace the previous
contents of the D (E and A) Register. The contents of the
A/D Register are transferred to the E Register, and the
contents of the E/l Register are transferred to the A
Register.

7-64

Notes

The states of the external interrupts are not affected by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

T3D

Transfer Group 3 to Double

Formula 006504, Affected E.A
T T T T T 7
OP CODE %
| Y N VRS U (NS U N S U N S W S S I B |
23 6 0
Operation

The contents of the Arm/Disarm (A/D) and Enable/Inhibit
(E/1) Registers of interrupt group 3 replace the previous
contents of the D (E and A) Register. The contents of the
A/D Register are transferred to the E Register, and the
contents of the E/I Register are transferred to the A
Register.

Notes

The states of the external interrupts are not affected by the
execution of this instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

T4D

Transfer Group 1 to Double

Formula 006541. Affected E,A
T 1 T 1 T
OP CODE ///
[I U T |) I U W U U N U | //
23 6 o]
Operation

The contents of the Request and Active Registers of
interrupt group 1 replace the previous contents of the D
Register (E and A). The contents of the Request Register
are transferred to E, and the contents of the Active Register
are transferred to A.

Notes

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

T5D

Transfer Group 2 to Double

Formula 006542. Affected EA
T T T T T 7
0P CODE 7 ////
W | L1 I} [| I ! L I ! | 1 i 1 /
23 3] o]
Operation

The contents of the Request and Active Registers of
interrupt group 2 replace the previous contents of the D (A
and E) Register. The contents of the Request Register are
transferred to E, and the contents of the Active Register are
transferred to A.

Note

External interrupts are prohibited for the period of one
instruction followina the execution of this instruction.

This instruction is privileged.

TeD

Formula

Transfer Group 3 to Double

006544. Affected EA
T T li i T

OP CODE
23 6 o]

Operation

The contents of the Request and Active Registers of
interrupt group 3 replace the previous contents of the D (A
and E) Register. The contents of the Request Register are
transferred to E, and the contents of the Active Register are
transferred to A.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TD4

Transfer Double to Group 1

0830007-000
Original 8/79

Notes

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TDS

Transfer Double to Group 2

Formula 006442. Affected 2 Request, Active
T i 1 1 i
OP CODE W / 7
RS G (N SN SR S S |) I N N S B S | /\///A b//
23 6)
Operation

If armed, the contents of the D Register (E and A) are
ORed with the current contents of the Request and Active
Registers of interrupt group 2. The contents of E are ORed
with the Request Register, and the contents of A are ORed
with the Active Register.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

TD6

Transfer Double to Group 3

Formula 006441. Affected 1 Request,
Active
T T 1 1 i
§ G N D N S I TN NN W S O S O O A O | 1
23 6 0
Operation

If armed, the contents of the D Register (E and A) are
ORed with the current contents of the Request and Active
Registers of interrupt group 1. The contents of E are ORed
with the request Register and the contents of A are ORed
with the Active Register.

Formula 006444. Affected 3 Request, Active
7 1 1 1 T /
OP CODE ////
1! | | | ! 1 | N S | i l 1 J//
23 6 [¢]
Operation

If armed, the contents of the D Register (E and A) are
ORed with the current contents of the Request and Active
Registers of interrupt group 3. The contents of E are ORed
with the Request Register, and the contents of A are ORed
with the Active Register.

Note

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UAI

Unitarily Arm Group 1 Interrupts

Formula 006001. Affected 1A/D
T 1 T 1 T
OP CODE ‘/A/
) W | /I | | | 1 | N Y | 1 /&‘
23 6 [¢]

7-65

0830007-000
Original 8/79

Operation

Any number of the 24 interrupt levels in group 1 are
selectively armed; i.e., the selected bit{s) of the
Arm/Disarm (A/D) Register is (are) set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s}) prior to executing this
instruction.

Example: Arm levels 1 and 3, group 1
TOA B1B3 Select levels 1 and 3
(set bits 1 and 3 of A)
UA1 Arm selected levels of

group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for arming is
already armed, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UA2

Unitarily Arm Group 2 Interrupts

Formula 006002. Affected 2A/D
1 T 1 1§ 1 ////
OP CODE / /
| S W (N R T VNS N (N U U (NN TR (N S H | /
23 6 0]
Operation

Any number of the 24 interrupt levels in group 2 are
selectively armed, i.e., the selected bit(s) of the
Arm/Disarm {A/D) Register are set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Arm levels 1 and 3, group 2
TOA B1B3 Select levels 1 and 3 (set
bits 1 and 3 of A)
UA2 Arm selected levels of

group 2

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for arming is

7-66

already armed, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UA3J

Unitarily Arm Group 3 Interrupts

Formula 006004. Affected 3A/D
T 1 1 1 1 7
OP CODE %
| S U NN N N NS (N O A SN (N N SO N | 4
23 6 Q
Operation

Any number of the 24 interrupt levels in group 3 are
selectively armed, i.e., the selected bit(s) of the
Arm/Disarm (A/D) Register are set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Arm levels 1 and 3, group 3
TOA B1B3 Select levels 1 and 3 (set
bits 1 and 3 of A)
UA3 Arm selected levels of

group 3

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for arming is
already armed, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

uD1

Unitarily Disarm Group 1 Interrupts

Formula 006101. Affected 1A/D
I I I 1 1
OP CODE /////
1 1 L l] 1 1 11 1 4 1 1 1 1 /
23) 6 [¢]
Operation

Any number of the 24 interrupts levels in group 1 are
selectively disarmed i.e., the selected bits of the
Arm/Disarm (A/D) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Disarm level 2, group 1
TOA B2 Select level 2 (set bit 2 of A)
UD1 Disarm selected level of group 1

Execution of this instruction will clear only those levels
which are selected. The remaining levels will not be

affecte

uuuuuu o,

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

ub2

Unitarily Disarm Group 2 Interrupts

Formula 006102. Affected 2A/D
T T T T T 7 ?
OP CODE /////
N S N T U T O NS N Y WS S Y I | IA
23 6 o
Operation

Any number of the 24 interrupt levels in group 2 are
selectively disarmed, i.e., the selected bit(s) of the
Arm/Disarm (A/D) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction,

Example: Disarm level 2, group 2
TOA B2 Select level 2 (set bit
2 of A)
ubD2 Disarm selected level
of group 2

Execution of this instruction will clear only those levels
which are selected. The remaining levels will not be
affected.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

0830007-000
Original 8/79

ub3

Unitarily Disarm Group 3 Interrupts

Formula 006104. Affected 3 A/D
1 T ¥ T T 7
OP CODE /////
S S N S S Y Y N S WS B A B N g %
23 6 0
Operation

Any number of the 24 interrupt levels in group 3 are
selectively disarmed, i.e., the selected bit(s) of the
Arm/Disarm {A/D) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Disarm level 2, group 3
TOA B2 Select level 2 (set bit
2 of A)
uD3 Disarm selected level
of group 3

Execution of this instruction will clear only those levels
which are selected. The remaining levels will not be
affected.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UET Unitarily Enable Group 1 Interrupts

Formula 006201. Affected 1E/I
i I 1 1 i
OP CODE // /
1 1 1 1 1 1 1 1 i | | | | A | 1 1 /
23 6 0
Operation

Any number of the 24 interrupt levels in group 1 are
selectively enabled, i.e., the selected bits of the
Enable/Inhibit (E/I) Register are set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction,

7 7

0830007-000

Original 8/79
Example: Enable levels 0, 2 and 5, group 1
TOA BOB2B5 Select levels 0,2 5
(set bits 0, 2 and 5 of A)
UE1 Enable selected levels of

group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for enabling is
already enabled, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UE2

Unitarily Enable Group 2 Interrupts

Formula 006202. Affected 2 E/
T T T T T 7
OP CODE //// /
i L 1 1 1 1 {1 J 1 i ! 1 l 1 1 1 /
23 6 0
Operation

Any number of the 24 interrupt levels in group 2 are
selectively enabled, i.e., the selected bits of the
Enable/Inhibit (E/1) Register are set to ONE.

Notes

The corresponding bitls) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Enable levels 0, 2, and 5, group 2

TOA BOB2B5 Select levels 0, 2, 5 (set

bits 0, 2, and 5 of A)

UE2 Enable selected levels
of group 2

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for enabling is
already enabled, it is not cleared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

7-68

UE3J

Unitarily Enable Group 3 iInterrupts

Formula 006204. Affected 3 E/i
T T T T T 7,
OP CODE W /
i 1 1 11 JE L 1 i 1 1 1 11 1 [} /
23 6 [o]
Operation

Any number of the 24 interrupt levels in group 3 are
selectively enabled, i.e., the selected bits of the
Enable/Inhibit (E/!) Register are set to ONE.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Enable levels 0, 2, and 5, group 3
TOA BOB2B5 Select levels 0, 2, 5 (set
bits 0, 2, and 5 of A)
UE3 Enable selected levels

of group 3

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If a level selected for enabling is
already enabied, it is not cieared by the execution of this
instruction.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

UI1l Unitarily Inhibit Group 1 Interrupts

Formula 006301. Affected 1E/I
i 1 1 T T
P CODE 7
i 1 L 1 i L i 1 i 1 1 It L 1 i1 /
23 6 [¢]
Operation

Any number of the 24 interrupt levels in group 1 are
selectively inhibited; i.e., the selected bits of the
Enable/Inhibit (E/I) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Inhibit levels 1, 4 and 7 of group 1

TOA B1B4B7 Select levels 1,4, 7
(set bits 1, 4 and 7 of A)

Ui Inhibit selected levels of group 1

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If one or more of the selected
levels is active upon execution of this instruction, the
level(s) will be placed in a ‘‘permissive’’ state.

External interrupts are prohibited for the period of one
instruction following execution of this instruction

This instruction is privileged.

ul2 Unitarily Inhibit Group 2 Interrupts

Formula 006302. Affected 2 E/I
T T T T T //
OP CODE W
S WA U RN VN NN SHNN NN SN N S U N N S / A
23 6 o]
Operation

Any number of the 24 interrupt levels in group 2 are
selectively inhibited; i.e., the selected bits of the
Enable/Inhibit (E/I) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Inhibit levels 1, 4, and 7 of group 2

TOA B1B4B7 Select levels 1, 4, 7 (set

bits 1, 4, and 7 of A)

uli2 Inhibit selected levels of
group 2

Execution of this instruction does not clear the interrupt
structure and, therefore, does not affect any interrupt levels
other than those selected. If one or more of the selected
levels is active upon execution of this instruction, the
level(s) will be placed in a "‘permissive’’ state.

0830007-000
Original 8/79

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

Ul3

Unitarily Inhibit Group 3 Interrupts

Formula 006304. Affected 3E/
T T T 1 T /////;/ 7
R AN/
23 3)
Operation

Any number of the 24 interrupt levels in group 3 are
selectively inhibited; i.e., the selected bits of the
Enable/Inhibit (E/l) Register are reset to ZERO.

Notes

The corresponding bit(s) of the A Register must be set to
select the appropriate level(s) prior to executing this
instruction.

Example: Inhibit levels 1, 4, and 7 of group 3
TOA B1B4B7 Select levels 1, 4, 7 (set
bits 1, 4, and 7 of A)
UI3 Inhibit selected levels of

group 3

Execution of this instruction does not cle
structure and, therefore, does not affect any interrupt levels
other than those selected. If one or more of the selected
levels is active upon execution of this instruction, the

level(s) will be placed in a '‘permissive’’ state.

External interrupts are prohibited for the period of one
instruction following the execution of this instruction.

This instruction is privileged.

Miscellaneous Instructions

The following instructions are included in the
miscellaneous group because they do not fall into any
defined functional group.

EXM Execute Memory 7-71
EZB Extend Zeros from Byte 7-72
GAP Generate Argument Pointer 7-70
HIT Hold interval Timer 7-72

7-69

0830007-000
Original 8/79

HLT Halt 7-70
NOP No Operation 7-70
QBB Query Bits of Byte) 7-71
Qss Query Sense Switches 7-72
RCT Release Clock Time 7-72
RPT Release Processor Time 7-72
uUsP Update Stack Pointer 7-70
HLT Halt
Formuia 0000. Affected P
T 1 T
OP CODE W

L 1 1 J " 1 ! 1 L 1 1 l//
23 12 o]
Operation

The program address (i.e., the contents of the P Register) is
advanced by one and program execution is terminated.
When the RUN command is executed, execution will begin
at the location defined by the program address.

Note
This instruction is privileged.

NOP

Formula 620.

RN

No Operation

Affected P

23 15 [o}
Operation
The program address is advanced by one and program
execution continues with the next instruction.
GAP Generate Argument Pointer
Formula 244:0 Affected LJ

T I T T T T

OP CODE OPERAND

L | Y N T | L1 It 1 1 1 1) I | 1 i PR . |

23 15 14 [+]
Operation

The contents of the J Register are assumed to be the first
address in an indirect memory reference sequence. The
effective memory address derived from this indirect
sequence replaces the previous contents of the | Register.
The contents of the J Register and the 15-bit operand are
added, and the result is placed in the J Register.

7-70

Notes

In the Compatibility Mode, if the final EMA in the indirect
sequence is a DAC format, bits 15-0 replace the contents of
I. If the final EMA is a LAC, bits 20-0 replace the contents
of 1. A 16-bit value in the J Register is used for the address
of the first indirect access.

In the Address Extension Mode, a 20-bit value in the J
Register is used for the address of the first indirect access.
Bits 20-0 of the final EMA replace the contents of 1.

The purpose of a GAP instruction is to generate an effective
memory address which points to one or more data words
not directly available to a subroutine. This is illustrated in
the following example where subroutine B requires the data
contained in location Y.

A BU B J)=C, (P =8B
Cc DAC* X

D .. RETURN

X DAC Y

Y DATA 2

B GAP 1

=Y,)= +1
TMA 0,1l (A)=2
BUC 0,J (P)=D
UsSP Update Stack Pointer
Word 2
Formula 0055:0 Affected K,C
WORD 1 (USP)
i il L 7/ 1
OP CODE OPERAND
23I 1 Lt t 1 | I S | 1 A/I// J N I T N N W
i2 7 4]

COMPATIBILITY MODE
WORD 2 (DAC)

AT A rooness

23 20 15 0

*
x
o

or

WORD 2 (LAC)

7 T T T T T
*| X 1/{/ ADDRESS
“

} IS N (N N W U N VN (NN SN Y N S (N B B |

23 20 7 o

ADDRESS EXTENSION MODE

WORD 2
v/ T 1 14 T 1
*| x U ADDRESS
1 //) S N (R N S SN (NSO v S U [N O OO N T I I |
23 20 19 [o]
Operation

The contents of the K Register are replaced by the contents
of the effective memory address. The 8-bit signed operand
is then added to the contents of the effective memory
address.

Notes
BLJ ENT Call re-entrant routine
ENT TRM* SP Save registers in stack
USP 5 Update Stack Pointer [(K)
= stack, (SP) = stack + 5]
DAC SP
HTK SP Reset stack pointer
TMR* SP Restore registers
BUC 0J Return
sP DAC STACK Stack pointer
STACK BLOK BN Where N represents max-

imum number of re-
entrant levels

The C Register is set to Positive, Negative, or Zero, based
on the result of the operation. Overflow is set if the
arithmetic operation generates a carry into the sign bit
without a carry out, or a carry out of the sign bit (23)
without a carry in.

External interrupts are prohibited for the period of one
instruction following this instruction.

EXM %

Execute Memory

Formula 40.*+X:a Affected See Notes
T L 1 T T
OP CODE [*| X ADDRESS
1 L1 i 1 1 1 1 1 1 1 4 L1 1 1 1 | 11
23 7 14 [o]

Operation

The instruction located in the effective memory address is
executed as though it were at the address of the EXM.

0830007-000
Original 8/79

Notes

In the case that the referenced instruction is a two word
instruction, the second word must follow the EXM.

Example:
EXM M
DAC L Second word
M AOM 10 Two word instruction
AOM 20
AOM 30

The registers affected will depend on the instruction in the
effective memory address.

All interrupts are prohibited for the period of one
instruction following the execution of this instruction.

The program address (contents of P Register) is not
advanced.

QBB Query Bits of Byte

Formula 0011:b Affected C
1 1 1 1 T
OP CODE // b
U S S U N S S U T LA ooy
23 12 7 o]
Operation
A logical AND is performed between operand bits 7-0 and

the contents of the B Register. The Condition Register is
set according to the status of the result; i.e., Positive,
Negative, or Zero.

Note
Examples:
(1) TOA B7 A ='00000200 C = Positive
QBB B7 C = Negative
(2) TOA B6 A ='00000100 C = Positive
QBB B6 C = Positive
(3) TNA 1 A="'77777777 C = Negative
DMA MASK A = ‘40000000 C = Negative

MASK DATA ‘40000000

7-71

0830007-000
Original 8/79

QSS

Query Sense Switches

Formula 0001:s Affected C
T T 1 f / 1 4
OP CODE ////// S
) U VTG U S U S U T S | f) l/ 11 i
23 2 0]
Operation

A logical AND is performed between operand bits 4-1 and
the state(s) of the sense switches. The Condition Register is
set to Positive, or Zero based on the result.

Note
Example: Test to see if either SS2 or SS3 are on, or if
both are on.
Qss B2B3

EZB

Extend Zeros from Byte

Formula 0007. Affected A

T T T /
23: L 11 1 | | 11 ll2 S
Operation

Bit positions A23-A8 are set to ZERO. The contents of the
B Register (A7-A0) are not affected.

Note
The Condition Register is not affected.

HIT

Hoid interval Timer

Formula 00770. Affected None
T T 1 1 /
OP CODE // ///
U W U NS NS U N (N SRS N T N U |
23 9 [o]
Operation

The CPU’s Interval Timer is halted and will remain so until
released by an RPT or RCT instruction.

RPT Release Processor Time
Formula 00774. Affected None
T B T T /
1 1.1 . | 1 1 1 1 1 1 1.1 1 /
23 9 [e]

7-72

Operation

The CPU’s Interval Timer is started; i.e., allowed to begin
counting CPU time.

Notes

The Processor Time Mode allows the Interval Timer to
count CPU time only. Counting is inhibited when an I/O
block channel takes a memory cycle or when an interrupt is
active.

Once started, the timer counts until held by a HIT
instruction or until the CPU is halted.

At each one microsecond interval, the contents of the T
Register are decremented by one and tested for zero. If the
contents of T are zero, an executive interrupt is triggered.
The interrupt does not stop the timer.

RCT

Release Clock Time

Formula 00776. Affected None
1 T 1 T /
11 1 11 | S S VS SR U T | /
23 9]
Operation

The CPU's Interval Timer is started; i.e., allowed to begin
counting continuously.

Notes

The Clock Time Mode causes the Interval Timer to count
continuously.

Once started, the timer will count until held by a HIT
instruction.

At each one microsecond intervai, the contents of the T
Register are decremented by one and tested for zero. If the
contents of T are zero, an executive interrupt is triggered.
The interrupt does not stop the timer.

Scientific Arithmetic Unit Instructions

The Scientific Arithmetic Unit instruction set is divided
into five functional groups: arithmetic, transfer, branch,
compare, and interrupt control. The CPU operates on
normalized floating-point numbers, and all descriptions of
the arithmetic instructions are based on this fact. If an
unnormalized operand is used in an arithmetic operation
the results are not considered valid. Full scale maximum
negative (1000....0) is an invalid input. The results of an
arithmetic operation are truncated, not rounded.

Standard arithmetic instructions — add, subtract, multiply,
and divide — as well as square, square root, fix and float are
included in the group. The instruction mnemonics provide a
brief definition of specific operations to be performed. The
first letter in the mnemonic specifies the action or type of
operation that is to be performed. The second letter
identifies the first quantity or reference (r1) to be used in
the operation, and the third letter identifies the second
reference (r2). For example:

AM _X\
Add —— \——— X Register
{Action to be performed) (r2)

Memory
(r1)

In the majority of SAU arithmetic instructions, the result
of the operation remains in r2 while r1 remains unchanged
(except where r1 and r2 are the same).

Unless otherwise noted, each arithmetic operation sets a bit
in the Y Register to reflect the status of the result. Various
conditions are described below:

a) Positive — The result is arithmetically greater than
zero, indicated by a ONE in bit position 3 of the Y
Register. A ZERO in bit position 3 indicates ‘“Not
Positive”.

b) Zero — All of the mantissa bits comprising the
quantity under consideration are ZERO and the
exponent is ‘201, indicated by a ONE in bit position 2
of the Y Register. A ZERO in bit position 2 indicates
““Not Zero"'.

c) Negative — The result is arithmetically less than zero,
indicated by a ONE in bit position 1 of the Y Register.
A ZERO in bit position ONE indicates ‘’‘Not
Negative".

d) Overflow — An overflow results from an arithmetic
operation which causes exponent overflow, i.e., an
exponent greater than 27 — 1 (127) or less than -27
(-128).

NOTE

If the SAU Overflow/Underflow executive trap is
enabled, any instruction causing the overflow bit of
the Y Register to be set will cause an interrupt.

0830007-000
Original 8/79

Bits 1, 2 and 3 (Negative, Zero, Positive) of the Y Register
are normally mutually exclusive. In certain instances it is
desirable to know what operation caused an Overflow, e.g.,
a division by zero. The foliowing operations cause more
than two bits to be set in the Y Register:

a) Division by zero sets bits 0, 2, 3 (‘15)
bl A/"x setsbits0, 1,2, 3('17)
c) Float to Fix, X>8388607 sets bits 0, 1, 3 (“13)

If the bit pattern of the mantissa is 100....0 (maximum
negative value), invalid answers may result. The
floating-point number containing the maximum negative
mantissa may be corrected by adding a floating-point zero
to it.

If a conditional branch SAU instruction follows an SAU

instruction that generates an oveiflow condition, the

interrupt is serviced prior to taking the branch.

Note that condition codes generated by the decimal
arithmetic instructions are also loaded into bit positions 3-0
of the Y Register. SAU and decimal instructions should not
be intermixed. If SAU instructions follow a string of
decimal arithmetic instructions, the Y Register must be
initialized prior to executing the SAU instructions.
Similarly, the Y Register must be initialized after executing
a string of decimal arithmetic instructions if the decimal
instructions are followed by SAU instructions.

The algebraic compare instructions which are included in
the SAU instruction set compare two referenced, signed (+
or -) quantities. The Y (condition) Register is set according
to the result of the comparison. Aigebraic comparisons are
identified by the letter ““C"” as the first letter in the
instruction mnemonic (e.g., CZX). The second letter in the
mnemonic code identifies the first of the compared
quantities (r1) and the remaining letter identifies the
second quantity (r2). For example:

czX
Algebraically Compare] \—— X Register
(Type. of Operation) (r2)
ZERO
(r1)

Comparisons are performed according to the following
formula:

r2 —r1 =Y (Positive, Zero, or Negative)

7-73

0830007-000
Original 8/79

Therefore, r2 > r1, r2 < r1, and r2 = r1, will set the
condition (Y) register to Positive (+), Negative (-), and Zero
(0), respectively.

Two instructions provide control of the SAU interrupt.
These instructions either release or hold the interrupt.

The transfer instruction group includes various types of
operations. Among these are transfers between memory and
registers, registers and memory, and register-to-register. The
transfer operation mnemonic code describes the individual
operation. What operation is to be performed is described
by the first letter in the mnemonic; “T" for transfer and
“1'" for interchange. The second and third letters of the
mnemonic specify the source (r1) and destination {r2) of
the transfer, respectively. Listed below are two examples:

TMX
Transfer ———/ T L— X Register
(Operation) ‘ (r2)
Memory

(r1)

I DX
Interchange ——/ T —\ X Register

(Operation) (r2)

Register D
(r1)

With the exception of the interchange instruction, the
transfer source (r1) is not altered as a result of the

execution of a transfer instruction.

The following instructions are included in the SAU group.

ARITHMETIC
AAX Add A Register to X Register 7-75
ADX Add D Register to X Register 7-75
AMX Add Memory to X Register 7-75
AOW Add Operand to W Register 7-75
AOX Add Operand to X Register 7-75
DAX Divide A Register into X Register 7-75
DDX Divide D Register into X Register 7-75
DMX Divide Memory into X Register 7-76
DOX Divide Operand into X Register 7-76
FAX Floating Normalize of A Register 7-77
to X Register 7-76
FXA Fix of X Register to A Register 7-76

7-74

INX Inverse of X Register
MAX Multiply A Register and X Register
MDX Multiply D Register and X Register
MMX Multiply Memory and X Register
MOX Multiply Operand and X Register
NXX Negative of X Register to X Register
PXX Positive of X Register to X Register
SAX Subtract A Register from X Register
SDX Subtract D Register from X Register
SEX Square X Register
SMX Subtract Memory from X Register
SOX Subtract Operand from X Register
SRX Square Root of X Register
BRANCH
BNR Branch on Negative Reset
BNS Branch on Negative Set
BOR Branch on Overflow Reset
BOS Branch on Qverflow Set
BOX Branch on SAU Ready
BPR Branch on Positive Reset
BPS Branch on Positive Set
BZR Branch on Zero Reset
BZS Branch on Zero Set
COMPARE
CDX Compare D Register to X Register
cow Compare Operand to W Register
CzX Compare Zero to X Register
INTERRUPT
HSI Hold SAU Overflow Interrupt
RSI Release SAU Overflow Interrupt
TRANSFER
IDX Interchange D Register and

X Register
TDX Transfer D Register to X Register
TMX Transfer Memory to X Register
TOW Transfer Operand to W Register
TOY Transfer Operand to Y Register
TXD Transfer X Register to D Register
TXM Transfer X Register to Memory
TYA Transfer Y Register to A Register
TZX Transfer Zero to X Register

7-77
1-77
71-77
7-77
7-77
7-77
7-78
7-78
7-78
7-78
7-78
7-78
7-78

7-79
7-79
7-80
7-80
7-80
7-79
7-79
7-79
7-79

7-80
7-80
7-81

7-81
7-81

7-81
7-81
7-81
7-81
7-82
7-82
7-82
7-82
7-82

AAX Add A Register to X Register
Formula 77070. Affected XY
T T 1 1 /)
) U G S U W T | L1 1 1 1 l/
23 9 8 [o]
Operation

The signed integer in the A Register is converted to
floating-point format and added to the number in the X
Register. The sum replaces the previous contents of the X

Register.

ADX Add D Register to X Register
Formula 77100. Affected XY
T T T 1
OP CODE W/
i Y S T | 1 11 j S U W W S |
23 9 8 (]

Operation

The floating-point number in the D Register is added to the
number in the X Register. The sum replaces the previous
contents of the X Register.

AMX % Add Memory to X Register
Formula 73.*+X:a Affected X.Y
T T T T T

OP CODE |*]| X ADDRESS
- i 1 1 1 | 1 1 L 1 1 L1 1 1 1 1 1 1
23 17 14 [+]

Operation

The contents of the effective memory address (EMA) and
the next sequential address (EMA+1) are added to the
contents of the X Register. The sum replaces the previous
contents of the X Register.

0830007-000
Original 8/79

Operation

The 8-bit, signed operand is algebraically added to the
contents of the W Register.

Note

A subtraction may be accomplished by adding a negative
operand.

AOX Add Operand to X Register

Formula 77060:0 Affected XY

T Bl T I 1 T

%
OP CODE /] OPERAND
Va

F I U N S U U WSS N NS W T s S | S S N W I |
23 9 8 7]

Operation

The signed, 8-bit integer operand is converted to
floating-point format and added to the contents of the X
Register. The sum replaces the previous contents of the X
Register.

DAX Divide A Register (integer)
into X Register
Formula 77073. Affected XY
1 1 T L y
OP CODE //////

) U GO (N N NN N (N R Y U U SO U) /
23 9 8 [o]
Operation

The signed integer in the A Register is converted to floating
point format. The contents of the X Register are divided by
the converted number. The quotient replaces the previous
contents of the X Register.

Notes

If division by zero occurs, the condition register (Y) is set
to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

Division by zero results in a quotient of zero.

. DDX Divide D Register (floating-point)
AOW Add Operand to W Register (exponent) into X Register
Formula 77012:0 Affected wy Formula 77103. Affected XY
1 i i | / T i U T N i /
OP CODE] OPERAND OP CODE /V/////
| S 1 JE 1 1 111 1 L 1 y. L1 1 1 1 11 1 1 | |) S U N N R | 1 1)| 1 I//
23 9 8 7 0 23 9 8 0

7-75

0830007-000
Original 8/79

Operation

The floating-point contents of the D Register are divided
into the contents of the X Register. The quotient replaces
the previous contents of the X Register.

Notes

if division by zero occurs, the condition register (Y) is set
to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

.

Division by zero results in a quotient of zero.

DMX % Divide Memory into X Register
Formula 76.*+X:a Affected XY
T 1) 1 |
OP CODE |%| X ADDRESS
1 1 . 1 b1 1 1 11 L 1 1 1 1 1 1 1
23 17 14 0

Operation

The contents of the X Register are divided by the contents
of the effective memory address (EMA) and the next
sequential address (EMA+1). The quotient replaces the
previous contents of the X Register.

Notes

If division by zero occurs, the condition register (Y) will be
set to Overflow, Positive, and Zero, i.e., (Y) = ‘15.

Division by zero results in a quotient of zero.

DOX Divide Operand into X Register
Formula 77063:0 Affected XY
T T T 1 / T 1
OP CODE] OPERAND
) U W U N U TN S W W TR SN W S | / j N N S S N |
23 9 8 7 [¢]
Operation

The signed, 8-bit integer operand is converted to
floating-point and is divided into the contents of the