
FEATURES

- Hardware supported virtual memory system
- Over 6 million bytes of virtual memory
- High-speed, central system bus architecture
- Interleaved, error correcting main memory
- Multiple, concurrent functions
 - -Interactive time-sharing
 - -Multi-stream batch
 - Multiple Remote Job Entry (Host and Workstation)
 - -Sensor-based/real-time processing

HARRIS 100 COMPUTER

The Harris 100 is the entry level member of the Harris family of software compatible, virtual memory computers which include the Harris 500 and Harris 800 computer systems.

Features of the Harris 100 include:

- Maximum of 19 million bytes per second system bus transfer rate
- Over 6 million bytes of virtual memory space
- Over 768 K bytes of real memory
- Optional, hardware floating point unit
- Hardware supported virtual memory system
- Up to 32 interactive user terminals
- Error correcting main memory
- Field-proven hardware

The Harris 100 is offered with a complete line of peripherals and maintenance support.

MULTI-USE AND MULTIPLE USERS

The Harris 100 is a general purpose supermini computer designed for scientific and engineering use together with business applications. These applications require multiple, high-level languages, a multi-use environment, and the capability for remote and local operations. The Harris 100 system is a unique combination of hardware and software designed to meet these challenging multi-use applications.

The Harris 100 is designed for multiple user applications including interactive program development, time-sharing, multi-stream batch, multiple remote job entry and real-time processing. The Harris operating system, VULCAN, is reentrant,

thus permitting one copy to be shared by all users. The VULCAN language processors, (except the overlay versions) are also reentrant and, compiler-generated code optionally can be reentrant.

The Harris 100 multi-use and multiple user system is an ideal solution to the processing requirements of a multi-disciplined organization.

CENTRAL PROCESSOR

The Harris 100 computer is designed around a very fast central system bus for maximum system performance in a multiprogramming environment.

The system bus is capable of an aggregate transfer rate of 19 million bytes per second. The system bus has 48 lines for data transfers and 18 lines for addressing. The address bits allow the full 768 K bytes of main memory to be accessed by any subsystem using the bus. On writes to main memory, the system bus transfers the memory address together with 24 or 48 data bits in one bus cycle. Typically, input/output operations transfer 48 data bits at one time between main memory and discs or tapes on the Universal Block Channel via the system bus.

The Harris 100 central processor overlaps instruction fetch with execution. While one instruction is being executed, the next sequential instruction is fetched from main memory. The instruction set is compatible with both the Harris 500 and Harris 800 computers.

An Operator Console CRT (OPCOM) provides for communications between the operating system—VULCAN and the system operator.

HARRIS 100

SCIENTIFIC ARITHMETIC UNIT (SAU)

The Harris 100 features an optional, hardware floating point processor. The Scientific Arithmetic Unit provides concurrent floating point arithmetic operations independent of the central processor. Double-precision (48-bit) floating point employs an 8-bit signed exponent and 39-bit signed mantissa resulting in over 11 decimal digits of precision.

MEMORY SYSTEMS Virtual Memory

Ease of use is a primary benefit of a virtual memory system. On the Harris 100, users can write programs that are larger than the real memory of the system. Over six million bytes of logical address space are available for running application programs regardless of the physical memory available.

The Harris 100 is a demand-paged system supported by the VULCAN virtual memory management operating system. Hardware supporting VULCAN's virtual memory capabilities includes a variety of registers to decrease the burden of housekeeping requirements.

The Harris virtual memory system provides hardware and software memory protection. Every program page in memory is protected against access or inadvertent destruction by another concurrently executing program. In addition, pages containing instructions and constants, as opposed to variable data, are hardware write-protected, even within the same program.

Virtual memory allows programs to execute with only part of the code in real memory. Demand-paging causes the system to load blocks or "pages" of code and data into memory as required by a program to continue executing. In the Harris 100 system, a program "page" is 3072 bytes.

Another feature of the Harris 100 virtual memory system is efficient use of real memory. A program need not occupy contiguous memory pages. Any physical page not occupied by the operating system can hold any logical page. Memory, therefore, never needs reorganizing or compacting:

A combination of hardware and software features serve to minimize the amount of swapping that may occur in a high system usage environment. The Harris virtual memory hardware includes Virtual Usage Registers and Virtual Not-modified Registers. These registers are used by the VULCAN swapping algorithm to identify the most eligible memory pages for swapping.

The Harris systems have high-speed program

loading. Program loading is simply and quickly accomplished by copying program pages directly from disc into memory with no address modification. The Harris virtual memory hardware associates each logical address in the program page with its physical location.

Main Memory

The main memory of the Harris 100 is expandable to over 768 K bytes. Each memory module has its own timing and control logic and reads or writes 48 data bits plus error correcting bits in one memory cycle. The memory cycle time for 48 bits is 450 nanoseconds with an access time of 300 nanoseconds. A 48-bit central system bus data path is used for high-speed, direct memory access input/output between each memory module and the Unversal Block Channels.

Interleaved memory provides additional system performance. The Harris 100 memory is 2- or 4-way interleaved, depending on the memory configuration.

I/O CHANNELS

The Harris 100 has several types of input/output channels which interface the central system bus to the device controllers. The system supports up to 24 logical I/O channels.

Universal Block Channel (UBC)

The Universal Block Channel is a block-mode, direct memory access channel for high-performance peripheral controllers such as those for discs and magnetic tapes. The UBC has two operating modes—the scan mode and the scan-lock mode. In the scan mode, a UBC supports two concurrent input/output operations. In the scan-lock mode, the UBC operates as a single direct memory access channel. In addition to direct memory operations, the UBC also functions as a programmed I/O channel transferring data under CPU/program control between a CPU register and the channel. The UBC contains a 48-bit data buffer for each logical channel.

Integral Block Channel (IBC)

The IBC is a block-mode, direct memory access channel for interfacing the card reader to the system. The card reader controller plugs onto the IBC module.

Programmed I/O Channel (PIOC)

The PIOC is a channel for interfacing slow speed devices to the system. It supports up to four plugin controllers for devices such as a line printer, operator communications terminal, and user terminals. Input/output to these devices proceeds under program control through a CPU register.

External Block Channel (XBC)

The XBC is a specialized direct memory access channel for user-designed and developed controllers and devices.

Direct Memory Access Communications Processor (DMACP)

The DMACP is a direct memory access communications processor for interfacing various terminals to the system. The DMACP supports both synchronous and asynchronous communications.

SOFTWARE

A comprehensive set of software is available for use with the Harris 100 computer system.

VULCAN Operating System

The Harris Virtual Memory Operating System is a priority structured, demand-paged, multi-programming operating system. VULCAN concurrently supports:

- Multi-stream batch processing
- Interactive time-sharing
- Data base management
- Remote job entry
- Real-time operations

In addition to its operating features, VULCAN works in conjunction with the paging hardware to monitor and direct memory allocation. VULCAN virtual memory operation is totally transparent to the user—while providing the advantage of efficient memory management, extensive user memory space, complete program protection, system security, and a wide selection of system services.

Support Software

The field-proven VULCAN operating system supports nine languages, five support programs, a

programmable interactive command language, five remote job entry and two remote batch terminal packages, and TOTAL, a data base management system with T-ask, an information retrieval system.

Languages

- Extended BASIC Language Processor
- FORTRAN IV Compiler
- FORTRAN 77 Compiler
- Extended 1974 ANSI COBOL Compiler
- APL Interpreter
- RPG II Compiler
- Harris Macro Assembler
- SNOBOL 4 Interpreter
- FORGO (Load-and-Go FORTRAN Compiler)

Support Programs

- Sort/Merge Package
- VULCAN Indexed Sequential Package (VISP)
- System Accounting (ACUTIL)
- Cross Reference
- VULCAN Symbolic Debugger (VBUG)

Remote Job Entry (RJE) Support Packages

- CDC 200 UT
- IBM 2780
- IBM 3780
- IBM HASP II Multi-leaving
- UNIVAC 1004

Remote Batch Terminal (RBT) Host Packages

- IBM 2780
- IBM HASP II Multi-leaving

Interactive Terminal Package

■ IBM 3270

Data Base Management System (DBMS)

- TOTAL Central
- T-ask™ Information Retrieval

Harris Transaction Processor (HTP)

HARRIS 100 CENTRAL PROCESSING UNIT

Microprogrammed, general-purpose, digitial computer. Type

Multi-access central system bus.

Parallel, binary, two's complement fixed and floating point; optional hardware floating Arithmetic

> point processor. 300 nanoseconds

CPU Microcycle Time

CPU Word Length 24 bits

MEMORY SYSTEM

Main Memory

N-Channel MOS, with error correction. Type

196.608 Bytes Minimum size 786,432 Bytes Maximum Size

Increment 48 K Bytes or 192 K Bytes (K=1024)

Word Length 48 bits

450 nanoseconds (per 48 bits) Cycle Time 300 nanoseconds (per 48 bits) Access Time

ADDRESSING

INPUT/OUTPUT

Transfers 8- or 24-bits between a CPU register and the PIOC. Programmed Transfers

Mapped to 768 K Bytes

Direct Memory Access

Transfers 24- or 48-bits between main memory and either the IBC, UBC, DMACP or XBC Transfers

channels.

Aggregate Maximum

Input - Up to 19.0 MB per second Throughput

Output - Up to 7.9 MB per second

Single Channel Maximum Transfers Rates (per second)

IBC	Input 80 KB	Output 80 KB
XBC (no CPU contention) (with CPU contention)	2.4 MB 1.4 MB	2.0 MB 1.2 MB
UBC(with 30 ft. peripheral cable)	3.2 MB	2.5 MB

PRIORITY INTERRUPT STRUCTURE

Eight executive traps. Internal

Multi-level, vectored structure.

External

8 levels, standard

Optionally expandable to 24. External Priority Interrupts may be individually armed, disarmed, enabled, inhibited or Control

triggered under program control.

POWER FAIL PROTECTION Power fail alarm, standard.

ELECTRICAL REQUIREMENTS

(For CPU, memory and channels contained in a one cabinet configuration.)

230 VAC or 208 VAC ± 10%, Voltage

Single-phase, 4-wire (standard) 220/240 VAC, single-phase, 3-wire(optional).

 60 ± 3 Hz, $(50 \pm 3$ Hz, optional) Frequency 19 Amps RMS at 230V (maximum) Current

4000 watts Power

ENVIRONMENTAL REQUIREMENTS

(For CPU, memory and channels)

Temperature

50° F to 113° F (10° C to 45° C), ambient air Operating 32° F to 122° F (0° C to 50° C), ambient air Storage

Humidity

20% to 80%, relative (non-condensing) Operating Storage 20% to 90%, relative (non-condensing)

Altitude

-1,000 to 6,000 ft. (-305 to 1,829 m) -1,000 to 15,000 ft. (-305 to 4,572 m) Operating Storage

Forced air provided by internal fans on each chassis. Cooling

