VULCAN SYSTEM SERVICES

REFERENCE MANUAL

HARRIS

COMPUTER SYSTEMS

0860003-007

VULCAN SYSTEM SERVICES

REFERENCE MANUAL

Original Issue
August, 1977

Revision A
December 1977

Revision B
May, 1978

Revision C
December, 1978

Revision D
February, 1980

Revision E
January, 1981

Revision F
January, 1982

o HARRIS

HARRIS CORPORATION

COMPUTER SYSTEMS DIVISION
2101 W. CYPRESS CREEK RD.
P.0. BOX 6200

FT. LAUDERDALE, FL 33310

List of Related Publications

0860002 VULCAN Job Control Reference Manual

0860004 VULCAN 1/0 Services Reference Manual

0860005 VULCAN Operator Communications (OPCOM) Reference Manual
0860006 VULCAN GENASYS Reference Manual

0862001 VULCAN Terminal User’s Guide

0862003 VULCAN Concepts and Features

0864001 VULCAN Utilities Reference Manual

0861001 Harris COBOL Reference Manual
0861002 Harris BASIC-V Reference Manual
0861003 Harris APL Reference Manual

0861004 Harris FORTRAN 77 Reference Manual
0861005 Harris RPG |l Reference Manual

Please note that model numbers and product availability are
subject to change. All model numbers mentioned in this manual
are supported by the VULCAN operating system software
although the product to which the model number refers may
not be currently available as a standard product. Please consult
your sales representative concerning product availability.

Copyright © 1978 by Harris Corporation, Computer Systems Division. All
rights reserved. This publication or any part thereof is intended for use
with Harris products by Harris personnel, customers, and end-users. It may
not be reproduced in any form without the written permission of the
publisher.

The information contained in this document is believed to be correct at
the time of publication. It is subject to change without notice. Harris
makes no warranties, express or implied, concerning the information
contained in this document.

Printed in U.S.A.

0860003-007

Rev. F 1/82
LIST OF EFFECTIVE PAGES
TOTAL NUMBER OF PAGES IN THIS PUBLICATION I1S: 161
CONSISTING OF THE FOLLOWING:
Page Change Page Change Page Change
No. No. No. No. No. No.
Title Rev. F 5-1 Rev. C 14-1 thru 14-4 Rev. F
A Rev. F 5-2, 5-3 Rev. B 14-5 thru 14-7 Rev. E
i Rev. F 5-4 Original 14-8, 14-9 Rev. F
ii Rev. F 5-5 Rev. A 14-10, 14-11 Rev. E
iii, iv Rev. E 5-6 Original 14-12 Rev. F
V, Vi Rev. F 5-7 thru 5-9 Rev. C 14-13 Rev. E
1-1 Rev. F 5-10 Rev. A 14-14 Rev. E
1-2 thru 1-6 Rev. C 5-11 Rev. C 14-15, 14-16 Rev. F
2-1 Rev. C 5-12 Rev. D I-1 thru 1-4 Rev. F
2-2, 2-3 Rev. B 5-13 thru 5-18 Original
2-4 Rev. F 6-1, 6-2 Rev. C
2-41 Rev. B 7-1 Rev. E
2-5 thru 2-8 Rev. F 7-2 Original
2-9 thru 2-12 Rev. B 8-1, 8-2 Rev. F
2-121 Rev. B 8-3, 8-4 Rev. C
2-13 Rev. D 9-1 Rev. C
2-14 Rev. A 9-2 thru 9-3 Rev. F
2-14.1, 2-14.2 Rev. F 9-4 Rev. E
2-15 Rev. F 9-5 Rev. A
2-16 thru 2-17 Rev. B 9-6 Rev. F
2-18 thru 2-20 Rev. C 9-7, 9-8 Rev. C
2-21 Rev. F 9-9 Rev. D
2-23, 2-24 Rev. C 9-10 thru 9-11 Rev. F
3-1 Rev. C 9-12 thru 9-16 Rev. A
3-2 Rev. E 10-1 Rev. C
3-3, 34 Rev. A 10-2 thru 10-14 Original
3-5, 3-6 Rev. F 11-1, 11-2 Rev. C
3-6.1 Rev. E 11-3, 11-4 Rev. D
3-6.2 thru 3-64 Rev.D 12-1 thru
3-7 Rev. E 12-7/12-8 Rev. F
3-8 Rev. B 13-1 thru 13-6 Rev. E
4-1 Rev. C 13-6.1 thru 13-7 Rev. F
4-2 Original 13-8 thru 13-10 Rev. E
4-3 Rev. F
4-4 Rev. E

Insert Latest Revision Pages. Destroy Superseded Pages.

HARRIS CORPORATION COMPUTER SYSTEMS DIVISION

CHAPTER 1

$EXI

T S e
CoONOOGTAhWN=

CHAPTER 2

2.
2.
2.
2.
2.
2.

d—b—;.—b—;
U‘-hwl\,—‘

GENERAL SERVICES

INTRODUCTION . .
VULCAN EQU|VALENCES (EQIVS)

T.

$SEXIT .
$ABORT .
$SYSERR
$SYSABT
$DELAY
$HOLD

FORMAT SCANNER .
1 DEFINITIONS

Scanner Services Types

Delimiters
Quotes

Displacement .
End of Line .

2.2 NUMBERS .

2.3 QUAUFERSANDAREANAMES

24 REG

241
24.2

24.2.1
24.2.2
24.23

2.5 RETURNS FROM SCANNER SERVICES .
2.6 SCANNER CONTROL SERVICES .

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8

ISTERS

Register Usage
Types of Registers

Numeric Registers
Replacement Registers.
String Registers

$SCINIT .

$GTHEAD .

$STHEAD
$GTDISP
$STDISP

$SNXPARM .
$BKPARM .

$STCHAR

TABLE OF CONTENTS

0860003-007
Rev. F 1/82

- U
- g

MAhBOWOON =

—)))) b wed) o
'

2-1

0860003-007

Rev. F 1/82
TABLE OF CONTENTS (CONT'D.)
2.6.9 $DLIM .
2.6.10 $STREG .
2.6.11 $GTREG
2.6.12 $STMODE
2.7 SINGLE CHARACTER SERVICES.
2.7.1 $CHAR . .
2.7.2 $BKCHAR .
2.7.3 $NXCHAR .
2.8 PARAMETER SERVICES .
2.8.1 $NUMBER .
2.8.2 SONENUM .
2.8.3 $SPNUMB .
28.4 SNUMTEX .
2.8.5 STEXNUM .
2.8.5A $TEXRAN .
2.8.6 STEXT .
2.8.7 SLTEXT . .
2.8.8 SAREANM .
2.8.9 $QUAL .
2.8.10 $REGNAM . . .
2.8.11 $ASNOBJ and $ASN LST
2.8.11.1 Bit Mask of Allowable Objects.
2.8.11.2 Bit Mask of Allowable Attributes . . .
2.8.11.3 Parameter List Returned by $ASNOBJ or $ASN LST
2.8.11.4 Return Register Settings from $ASNOBJ and $ASN LST
2.8.11.5 Example Using SASNLST - . .
2.8.12 $USER
29 SCANNER EXAMPLE

CHAPTER 3 LOGICAL ASSIGNMENT SERVICES

3.1
3.2
3.3
34
3.6
3.6
3.7

LOGICAL FILE NUMBERS
$ASSIGN

$PDN .

$LFN . .

$LFINFO .

$LFNAME .

$ASGNM .

Page
29

2-10
2-1

2-12

212
2-12
2-121

2-13

213
2-13
2-14
2.14
2-14.1
2-14.1
2-15

2-16
2-17
2-17
2-18

2-19
2-20
2-20
2-21
2-22

2-22
2-23

3-1
3-2

361
3-6.2
37
3-8

- 0860003-006
“Rev. E 1/81

TABLE OF CONTENTS (CONT'D.)

CHAPTER 4 BACKGROUNDSERVICES 4-1

4.1 SNXTPRG e e e e e 4-1
4.2 S$OPTIONS« .« . . e e e e e e 4-1
4.3 S$LINES e e e e e e 4-2
4.4 $UNWORK e e e e e e 4-2
45 $DLINES e e e e e 4-2
4.6 S$LISTDV« .« . o .. e e e e e e 4-2
4.7 $BKSTOR e e e e e e 4-3
4.8 $CHWORK e e e e e e 43
CHAPTERS REAL TIMESERVICES e e e e e e 5-1
5.1 REAL TIME PROGRAM CONTROL e e e e e e 5-1
5.1.1 SleepState e e e 5-1
5.1.2 TimerSchedule e e e e e e 5-1
5.2 $INIT e e e e e . B-2
5.3 SWAKEUP e e e e e e 5-5
5.4 $TERMIN e e e e e e e 5-6
5.5 $SLEEP e e e e e e e e e 5-7
5.6 S$DEXIT e e e e e e 5-7
5.7 $SUSPo e e e e e e 5-7
5.8 $SRSTRT e e e e e e 59
5.9 $QSTAT o000 e e e e e e 5-9
510 $PABORT S, 5-11
511 $PRIOR e e e e e e e e e e 5-11
512 $CONNECT. T, 5-13
5.13 $DISCONNECT e e e e e e 5-15
514 $ENABLE e e e e 5-15
516 $INHIBIT e e e e 5-16
CHAPTER 6 TIME/DATE SERVICES. 6-1
6.1 $DATE e e e e e e 6-1
6.2 $TIME. C e e e 6-2
6.3 $EXTIME ‘ 6-2
6.4 $STRTIM 6-2

0860003-006
Rev. E 1/81

TABLE OF CONTENTS (CONT’D.)

Page
CHAPTER 7 TEMPORARY STORAGE SERVICES 71
7.1 SPUSH. . . . & v v o v v e e e e e e e e e e e . 741
7.2 SPOP e e e e e e e e e e e e e e e e e 7-1
7.3 $STEMP 72
7.4 TEMPORARY STORAGE EXAMPLE. « « « . . . 7-2
CHAPTER 8 MEMORY ALLOCATION SERVICES 8-1
8.1 SDCM . . . o o e e e e e e e e e e e e e e e e . 81
8.2 SLSPACE . . .« v v vt e e e e e e e e e e 83
8.3 SMSPACE &« v i e e e e e e e e e e e e e e 83
84 SYSTEMUSAGE e e e e e e e e 83
CHAPTER 9 DISC MANAGEMENTSERVICES 91
9.1 DISCAREATYPES e e e e e e e e e e e 91
9.2 $GENERATE & o v o v e e e e e e e e e e e e 94
9.3 SELIMINATE & o v v v v e e e e e e e e e e 9-7
9.4 SRNAME o vt e e e e e e e e e e e e e e 9-7
9.5 SRTYPE o o i e e e e e e e e e e e e e e 99
9.6 $SQUEEZE e e e e e e e e e e e e e e . . 9101
9.7 $DASAVE e e e e e e e e .. 911
9.7.1 Single Disc Area Information 9-12
9.7.2 Privileged Disc Area Information. 9-13
9.7.3 Multiple Disc Area Information 9-13
9.8 S$DAASGN e e e e e e e e e e 9-16
9.9 $DAREST e e e e e e e e e e e e e e e e e 9-16
CHAPTER 10 TAPE MANAGEMENT « . .+« « - . 10-1
10.1 $TAPEOP e e e e e e e e e e e e e e e 10-1
10.2 TAPE LABELLING. e e e e e 10-2
10.2.1 Standard Tape Labels e e e e e 10-2
10.2.2 Standard Label RecordContents. 10-5
10.2.3 Skeleton Tapes e 10-8
10.2.4 Access Determination e e e e e e e e e e e e 109
10.2.5 Tape Label System Service o . 10-10
10.3 S$TLABEL v o o i e e e e e e e e e e 10-11

0860003-007

TABLE OF CONTENTS (CONT'D)

CHAPTER 11 MESSAGE COMMUNICATION SERVICES

1.1
11.2
113
114

$SEND . .
$RECEIVE .
$LOOK .
$CMESAG

CHAPTER 12 INTERRUPT SERVICES

12.1
12.2

12.3
124
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12

Introduction

$SPINT: Special lnterrupt Enabhng/DlsabIlng Servnce

12.2.1 Special Interrupt Handling . ..

12.2.2 Restrictions on SPINT Usage

$TRIGER: Program-Generated SPINT

$SPINFOQ: Additional Information Retrieval .

$DEFID: Define Identifier for $TRIGER .

$INITSS: Initiate Sub-system program

$HPINT: Hold Program Interrupts .

$RPINT: Release Program Intertupts .

SIWAIT: Wait for Program Interrupts

SIDELAY: Delay for Program Interrupts

$IRETRN: Return from Program Interrupts .

Device-Generated SPINTs

12.12.1 Group N Device- Generated SPINTs .o .
12.12.1.1 Function Code "25: Set SPINT Lmkage .

12.12.1.2 Function Code '26: Reset SPINT Linkage .

12.12.1.3 Function Code ‘14: Close .
12.12.1.4 Function Code '24: Dump Buffer .
12.12.2 Group 0 Device-Generated SPINT

CHAPTER 13 INTER-PROCESS COMMUNICATION SERVICE .

13.1
13.2
13.3
13.4
13.6
13.6
13.7
13.8
13.9
13.10
13.11
13.12

$PLINK Services .

Request Link

Link Information

Accept Link

Reject Link

Alter Link

Send Message

Receive Message .

Flush Message .

Drop Link . . .
$PLINK - SPINT Summary .
Exceptional Conditions

Rev. F 1/82

Page
111

111
11-2
11-3
11-3

121

12-1
121
12-2
12-3
12-3
12-3
12-4
12-4
12-4.2
12-4.2
12-5
12-5
125
12-6
12-6
12-6
126
12-7
12-7
12-7

1341

13-1
13-1
13-2
13-3
13-4
13-6
13-5
13-7
13-8
13-8
139
13-10

0860003-007

Rev. F

1/82

TABLE OF CONTENTS (CONT'D.)

CHAPTER 14 MISCELLANEOUS SERVICES .

14.1
14.1A
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16

INDEX

21.

3-1.
3-2.
9-1.
9-2.
93

vi

$PTYPE .
$SYSLEV
$SPOOL .
$1JOB . .
$USERNO .
$OPCOM .
$PACK .
$BINASC.
$OCTASC
$C/RTN .
$MUNLD.
$RESORC
$PASSW .
$TPREAD
$SMTYPE .
$DEFLTS
$CHAIN .

LIST CF TABLES
Table of Register Types .

Standard LFN Usage

Device Types

Format of QDD Entry ..

M/TYPE Information in QDD .

M/TYP1, M/TYP2, M/TYP3, and M/TYP4 Data Area
Information inQDD

M/TYP1, M/TYP2, M/TYP3, and M/TYP4 Program Area
Information in QDD . .

14-1

141

14-1
14-1

14-2
14-3
14-5
14-5
14-6
14-6
14-6
14-7
14-8
14-11.1
14-11.1
14-12
14-14
14-15

-1

2-4

3-1

. 91
. 92

. 93

0860003-007
Rev. F 1/82

CHAPTER 1
GENERAL SERVICES

1.1 INTRODUCTION

System Services provide the interface between user programs and the VULCAN system. All
are implemented through use of the Branch and Link Unrestricted (BLU) instruction, which
is the only way a user program can enter or access the monitor. FORTRAN calls are
implemented with library routines which make the BLU calls.

VULCAN BLUs are implemented by using the spare 7 bits of the instruction to define
subtypes of BLUs. This provides a maximum of 4096 different BLUs, instead of the
hardware limit of 32. Software interprets this subtype into separated functions. Currently
about 96 system services may be accessed, which are implemented through the use of only
about 17 BLU entries.

VULCAN reserves the first 28 (BLU locations ‘00 thru ‘33) of the 32 BLU locations for
standard supported system service calls. The next 2 BLU locations (BLU locations ‘34 and '35
are reserved for the use of VULCAN software tools. The last BLU locations (BLU locations '36
and '37) are reserved for use by the customer site for any system service which that site may
implement.

All of the System Services described in this manual are defined in terms of assembly
language calls. Where they exist, the FORTRAN call is also included. It should be noted that
unless otherwise stated, all system services destroy all registers when called.

On return from every system service the | register is set to the current temporary storage
pointer. The C register always reflects the condition of the A register.

1.2 VULCAN EQUIVALENCES (EQIVS)

Displacements into parameter lists may be referenced as labels instead of as constants. These
labels are defined in the file 0000SORC*V.EQIV. Use of the labels, hereafter called
equivalences or EQIVs, increases the compatibility of user-written software with future
versions of the VULCAN operating system and is therefore highly encouraged.

The particular EQIVs for a service are defined in the section of this manual pertaining to the
individual services. Naming conventions for EQIVs are given below:

AAYYY is used as a displacement into a parameter list for a service. AA is a
mnemonic indicating which service is being used (e.g.,, LF implies
$LFINFO), and YYY is a mnemonic indicating the displacement within
the parameter list (e.g., LFIFC indicates the $LFINFO function code).

AAIYYY! is a mnemonic representing the value of a bit (e.g., LFIOPN! references
the value of a bit within a word of the parameter list for the SLFINFO
service).

AAlYYY®@ is a mnemonic representing the bit number (the consecutive position of a

bit within a word). For example, LF!OPN@ references the number of a bit
within a word of the parameter list for the $LFINFO service).

AA:YYY is used to represent the value of a function code (e.g., LF:LFN represents
the $LFINFO function code to query an LFN).

11

0860003-004
Rev. C 12/78

EQIVs of this form are typically used as follows:

TOA AAYYY

TAM PARLIST+AA!IFC
TLO PARLIST

BLU $service-name

PARLIST BLOK n

Certain blocks of data that are passed by system services and that are data structures other
than a parameter list are referenced by EQIVs with the following general format:

AA/YYY where AA indicates the table structure and YYY indicates a displacement
into the table structure (e.g., M/NAME is the areaname field of a QDD).

EQIVs of the format AA!YYY and AA/YYY are frequently suffixed with the characters !
and @ to indicate certain portions of a word. The ! suffix is used to indicate a mask of the
field. The @ suffix is used to indicate the bit number of the low order bit of the field. For
example,

TMA PL+LFIOPN
DMA =LF!OPN!
RLA LF!OPN@

can be used to (1) pick up the word containing the field LF!IOPN, (2) mask out all bits not
in the field LFIOPN, and (3) shift the field LFIOPN to bit O.

Table lengths are indicated by the form ‘“AA/"'. Parameter list lengths are indicated by the
form ““AA!"”. In certain cases where a parameter list or table may be a different length
depending upon circumstances, the form:

AA/. XXX
AALXXX

is used to designate the table size (XXX indicates the circumstances).

1.3 S$EXIT

The Exit service provides a mechanism for normal program termination. A call to $SEXIT
removes the program from the active program list and returns control to the operating
system. The calling sequences are:

Assembly Language FORTRAN
BLU S$EXIT CALL EXIT

If the exiting program was chained by another program using the $CHAIN service, then the
execution of the calling program is resumed. If the exiting program was running at a
control-point or at an interactive terminal and was not chalned to by another program, then
Job Control is loaded to read subsequent commands.

1-2

0860003-004
Rev. C 12/78

1.4 $SEXIT

Special Exit is the means by which a control point or interactive terminal terminates the job
stream. It should not be called by user programs. If called by user programs, the call is
converted into a regular Exit call. :

1.5 $SABORT

A user program may terminate abnormally by calling the Abort service, as follows:
BLU $ABORT

The address of the instruction following the abort call is output on the abort message uniless
the program is interactive or control-point, and the Job Control MODE EM=OFF is in
effect.

1.6 $SYSERR

A user program may output an error message with the System Error service. The calling
sequence is:

TLO address
TOA X-value
TOE error-code
BLU $SYSERR

The K register holds the address to output or is suppressed by being set to -1. The address is
output in octal. The A register holds the value written in the message as ‘‘X=value’’. It may
be suppressed by setting A to zero. !f non-zero and less than 1000000, A is output as a
- decimal number; otherwise, it is assumed to be ASCI| and written as three ASCII characters.
" The E register contains the error code, which is used as a displacement into the system error
message disc area (*VULCMESS) to obtain the meaning of the error number. The error

message is output only for interactive or control-point programs which have the Job Control
MODE EM=0ON set.

No registers are saved on this call, and return is to the location following the BLU
.instruction. For example, assume:

a. Record 5678 of *VULCMESS is “EXAMPLE ERROR"’
b. Mode EM=0ON is in effect

0860003-004
Rev. C 12/78

c. Program is interactive and called TESTPROG

then:
TOK ‘4156
TOA 67
TOE 5678
BLU $SYSERR
will output:

TESTPROG ER 5678 @ 04156 X = 67: EXAMPLE ERROR
If A was zero and Kvwas negative, the output would be:

TESTPROG ER 5678: EXAMPLE ERROR

" 1.7 $SYSABT

A user program may output an abort code and message using the System Abort service. The
calling sequence is:

TOK address
TOA parameter
TOE abort-code
BLU $SYSABT

The definition of the register contents is identical to the $SYSERR service. The $SYSABT
service combines a $SYSERR call with an $ABORT call. There is no return from this call.
An abort message will be output from the message area (*VULCMESS), depending on the E
register value, regardless of the program type or whether the EM=0ON mode was set.

1.8 $DELAY

The Delay service allows a user program to wait for a specified length of time before
continuing to execute. The calling sequences are:

Assembly Language FORTRAN

TOK n CALL TOADS (“WAIT",n)
BLU $DELAY

where n is the number of 120 Hz clock ticks {100 Hz on 50 cycle power supply systems) to
delay. :

1-4

0860003-004
Rev. C 12/78

Upon return, the V, H, E and A registers are restored to their contents on the original call
and control is returned to the location following the BLU.

For example, to delay 3 seconds:

TOK 360 or CALL TOADS (“WAIT",360)
BLU $DELAY :

1.9 $HOLD

The Hold service suspends a program from execution until released by the operator. Prior to
the suspension a message can be written from the program to the operator terminal. The
assembly language call is:

TMK PARLIST

BLU $HOLD
PARLIST b.ATA ‘nnaaaaaa
MES | DATA ‘message-text”’

The size of the message in words (three characters per word) must be specified in octal by
“nn”, and the address of the message must be specified in octal by “aaaaaa’”. The actual text
of the message is enclosed in quotes. For example:

™K PARLIST
| BLU $HOLD
PARLIST ‘05 MES
MES DATA “EXAMPLE MESSAGE"

writes to the operator terminal the program name followed by EXAMPLE MESSAGE and
then suspends the program.

The FORTRAN call for the $HOLD service is:

PAUSE message-text

1-5/(1-6 Blank)

0860003-004
Rev. C 12/78

CHAPTER 2
FORMAT SCANNER

VULCAN has as a non-resident handler, a standardized format scanner. This scanner is used
by Job Control, Operator Communications, Vulcanizer, other system routines, and user
programs.

2.1 DEFINITIONS

The following definitions apply to all scanner services except where specifically noted.

2.1.1 Scanner Services Types

There are three types of scanner services: control services, single character services, and
parameter services. Control services do not scan characters or parameters but control the
operation of the scanner. Single character services return only a single character. Parameter
services can potentially return one or more characters, depending on the text.

2.1.2 Delimiters

All blanks and commas are counted as delimiters for parameter services unless enciosed in
- quotes. A string of blanks is equivalent to one blank. Blanks after or preceding a comma are
ignored. If a parameter is followed by one or more spaces and then a comma, then the
comma is considered to be the true delimiter of the parameter. Other delimiters may be set
by the $STCHAR or $DLIM functions; these delimiters function the same as commas.

Examp/es:
Text Scanned Parameters True Delimiter of A

A,B Aand B comma

AlB Aand B space

ApiEB Aand B space

AB.BB Aand B comma

A,B A,null,and B first comma

AB 1B A,null,and B first comma
2.1.3 Quotes

Double quotes (‘') may be used to enclose a string of characters, including delimiters.
Delimiters are not usually significant in a string. An exception to this is that a * is still
significant when a string of the format qualifier*areaname is scanned by the function
SAREANM. Numeric digits are treated as text if they are withina string, and an error return
will occur if they are scanned by a number function. If a double quote is desired in a string,
it should be entered as a pair of double quotes.

21

0860003-003

Rev. B5/78
Examples:
Parameter Scanned Actual Argument

,ABCD, ABCD
,A""'BCD, ABCD null string
'IIAIIIIBCDII' AIIBCD
'AIIIIIIIIBCD' AIIBCD
S AB", ApB
/"A,B,C", AB,C
'Illlll’lllllll ll,ll One parameter
’lllrlllllllllllll, 9 and ” tWO parameters

2.1.4 Displacement

Displacement represents the current scan position and is normally equivalent to the column
number — i.e., the first character in the buffer is at displacement zero, the second character
is at one, etc. When registers or quotes are present, the displacement is affected as shown in
the following examples:

Displacement 012 345 A numeric register is counted as one

Text AB#N1,CD displacement.

Dispiacement 012 678 If #R1 is a replacement or string register contain-

Text AB#R1,CD ing the value XYZ, the characters in the register
are counted for displacements 3,4, and 5.

Displacement 01 2 34 5 When quotes are present, displacement is calculat-

Text. A e ed as if only the actual argument was present.

See the above discussion of quotes.

The scan displacement after a call varies among the scanner services. For single character
services, normally only $CHAR will change the displacement. However, if a numeric register
name, a bad register name, or the name of an undefined register is scanned by $CHAR or
$NXCHAR, the displacement is set to the first character following the register name. For
parameter services, the scan is positioned to pick up the next parameter; one character past
the true delimiter of the last parameter scanned. After an illegal parameter error return, the
scan position is undefined. When an error return occurs from a parameter service, a call to
$BKPARM may be used to position the scanner to reexamine the last parameter.

2.1.5 End of Line

The scanner returns an end of line status whenever the end of buffer is found or when a
space-dollar-space sequence is found. For example, if the following line were being scanned:

AA,BB +$

no scanner function will move the displacement beyond the position pointed to by the
arrow; rather, each call would result in an end of line error return.

2-2

0860003-003
Rev. B 5/78

2.2 NUMBERS

All numeric values are assumed to be decimal unless they are preceded by a single quote,
which indicates they are octal. Negative numbers are preceded by a minus sign. A number
range may be specified by placing a dash between the numbers; the second number in a
range must not be smaller than the first.

Number Scanned Decimal Value
77 77
77 63
-77 -77
277 -63
1-3 Base of 1, range of 2
‘4-14 Base of 4, range of 8
-1-3 Base of -1, range of 2

2.3 QUALIFIERS AND AREA NAMES

Standard VULCAN disc area qualifiers and area names may be input in truncated ASCII
with $QUAL and SAREANM respectively. A qualifier is of the form “nnnnxxxx’’ where
“nnnn” are 1 to 4 digits specifying an account number, and “xxxx"" are 1 to 4 characters,
starting with an alphabetic character, specifying an identifier. Leading zeros are prefixed to
the account number as needed. Trailing blanks are suffixed to the identifier as needed. The
format of an area name is “qualifier*areaname”’, where “‘areaname” is 1 to 8 characters of
which the first is alphabetic.

Examples:

Input Qualifier Areaname
1234ABCD*XYZ 1234ABCD XYz
1A*XYZ 0001AKBH XYZ
XYZ user’s default qualifier XYZ
*XYZ 0000SYST : XYZ
“ABBB*XYZ" 0000AKB) XYZ
ABCDEFGH! error (too many characters)

ABCDE*X error {identifier is too long)

24 REGISTERS

Job Control registers (software registers) should not be confused with hardware registers.
Job Control registers are local to an individual user and to a particular terminal session or
control point job. During any session or job, user registers are available to any processor
invoked.

0860003-007
Rev.F 1/82

2.4.1 Register Usage

Whenever a # sign is scanned, the characters |mmed|ately following the # sign, until the next
delimiter, are treated as a register name, except in the following situations:

— If the # is within a quoted string or string register

— If the program calling the scanner is a real time or monitor program, in which case,
registers are not allowed.

— If the user has turned register mode off using the Job Control command $MO,RG=0FF

A register name consists of a # followed by from 1 to 3 letters or decimal digits in any order.
If more than 3 characters are used, the excess is ignored. A $ sign is used as a special
delimiter which delimits a register name but not its contents. Any character other than a
letter or a decimal digit is treated as a delimiter of the register name.

When a register specification is encountered by the scanner, the contents of the register are
used in place of the register specification. The register type and register contents must both
satisfy the specifications of the scanner function which scans the register. For example, a
$NUMBER request on a register containing *“ABC”’ will return an error condition.

Registers may be defined through the $STREG scanner function as well as by the Job
Control command SR (Set Register). Registers may also be manipulated through the use of
the $GTREG scanner function and by the Job Control commands RR (Remove Register)
and DR (Display Register). The maximum number of user registers may be defined by the
Job Control MODE command, MO,NR = nn where nn is the number of user registers.

2.4.2 Types of Registers

There are three types of registers: numeric, string, and replacement. Numeric registers are, of
course, used for numbers. String registers are used for text. Replacement registers may be
used for either numbers or text.

In scanner services where a register type must be specified, use the register type number for
a register as shown in Table 2-1.

Table 2-1. Table of Register Types

Register Register Type Number
String register 1
Numeric register 2
Replacement register 3

2.4.2.1 Numeric Registers

Numeric registers may contain only a numeric value or range and return a valid parameter
only for the functions SNUMBER, SONENUM, $SPNUMB, $TEXNUM, or $NUMTEX.

Examples:

Text

N1,
l‘#N1I

I#N1$'#N21 .

N1,
JNT,
AN1,
AB#N1,
H#N1SAB,

Numeric
Register Value

#N1=77
#N1=77
#N1=7

#N2=10

#N1=7-10
#N1=7-10
#N1=77
#N1=77
#N1=77

Function

$NUMBER
$NUMBER
$NUMBER

$NUMBER
$SONENUM
$TEXT

$TEXNUM
SNUMTEX

0860003-003
Rev. B 5/78

Equivalent Text

r77l

"771
.7-10,

,7-10,

Error. Cannot have range.
Error. Not legal for STEXT
,AB77, ’
,177AB,

2-4.1

0860003-007
Rev. F 1/82

2.4.2.2 Replacement Registers

The contents of a replacement register are literally substituted in place of the register name.
Replacement registers may contain more than one argument, they may be nested, they may
contain other register names including other replacement registers, or they may be null, in

“which case they are ignored by the scanner. Note: certain undefined conditions may result by

having a quote character be the last character of a replacement register or having a quote be
the first character following a replacement register.

Examples:
Replacement
Text Register Value Equivalent Text

ABC#R1,DE #R1=123 ABC123,DE

AAA#R1¥BBB #R1=p#R2 AAA 123¢BBB
#R2=123

#R1$4#R2 #R1=AAA AAABBB
#R2=BBB

#R1#R2 #R1=AAA AAABBB
#R2=BBB

#* ‘ Error, Bad register name

2.4.2.3 String Registers

A string register is substituted in the same manner as a replacement register with an implied
set of quotes around the contents. Double quotes (') in a string register are scanned as
normal characters; i.e., they are not interpreted in any special manner. Scanning a string
register causes an invalid parameter error return from any function which scans a numeric
value, since numeric values within a string are treated as text. Delimiters and # signs have no
special meaning in string registers. String registers may be null, in which case they are
ignored by the scanner.

Examples:
String
Text Register Value Function Returned Value
#S1, #S1=ABC STEXT ABC
#S1, #S1="ABC"” $TEXT “ABC"”
#81 , #S1=IIIIIIII $TEXT arsr ey
#S1, #S1=3 $NUMBER Error. Invalid parameter
AAA#S14BBB #S1=P#S2 SLTEXT AAAB#S21HBBB
#52=123

2.5 RETURNS FROM SCANNER SERVICES

This section gives a general description of the returns from the scanner services. See the
documentation of the individual services for additions or exceptions.

Hardware registers:

= Pointer to user temporary space.

= Saved (return address).

K,E= Service return values, as documented.

= Error code if negative, or function return value, as documented.
= Not saved, or delimiter code, as documented.

= Saved.

25

0860003-007
Rev.F 1/82

Register A error codes:

-1= Invalid parameter, bad register name, undefined register, or inappropriate
numeric register.

-2= EOL; end of buffer or space-doliar-space.

-3= Null parameter.

The delimiter code is returned in register V by parameter services only. The code represents
the true delimiter of the parameter, not necessarily the delimiter immediately following the
parameter. The delimiter codes are:

0 blank

1 comma

2 EOL

3 First special delimiter (from $DLIM or $STCHAR)

4-14 2nd through 12th special delimiters (from $DLIM)

2.6 SCANNER CONTROL SERVICES

2.6.1 $SCINIT

The Scan Initialize service is used to initialize the scanner and to pass a buffer to be scanned.
Only one buffer may be processed by the scanner at a time. The calling sequence is:

TLO PARLIST
BLU $SCINIT

where the parameter list is a two word list:

PARLIST DATA buffer-length-in-words
DAC buffer-address

There are no error returns from the $SCINIT service.

2.6.2 $GTHEAD

The Get Header service captures and saves the major elements of the current scanner state.
Using the $GTHEAD service in conjunction with the $STHEAD service enables the user to
concurrently scan multiple buffers.

$GTHEAD saves the buffer pointers and any special delimiters set by $STCHAR or $DLIM.
Note that the user scan state as set by $STMODE is not saved.

$GTHEAD copies four words of information into a user-supplied buffer. If no special
delimiters are in effect, the last word will contain a zero. If special delimiters have been set,
the last word of the buffer will point to a small block of DCM (presently six words but
subject to change) allocated by the service on behalf of the user. If, for any reason, the

0860003-007
Rev. F 1/82

service is unable to allocate the DCM, the last word will contain a minus one indicating
special delimiters were not saved. The calling sequence is:

TLO PARLIST
BLU $GTHEAD

where PARLIST is the address (label) of the first word of the four-word user-supplied
buffer.

An example showing how to use $GTHEAD is provided following the description of the
$STHEAD service.

2.6.3 $STHEAD

The Set Header service restores the major elements of the scanner state as captured by the
$GTHEAD service. The calling sequence is:

TLO PARLIST
BLU $STHEAD

where PARLIST is the address (label) of the four-word user buffer utilized by the
corresponding $GTHEAD call.

EXAMPLE:

To save the scanner state, re-initialize to another buffer, process the new buffer and then
resume scanning the original buffer, use the sequence:

TLO BUF
BLU $GTHEAD save pointer.
TLO PL initialize to
BLU $SCINIT new buffer.
process new buffer
TLO BUF restore original
BLU $STHEAD pointers.
continue scanning first buffer

BUF BLOK 4

PL DATA word-count
DAC buffer-address

Note that the SGTHEAD and $STHEAD services allocate DCM to store extended scanner
states. There are, however, circumstances under which the scan state cannot be properly
restored. They include:

1. buffers on which the scan mode has been changed by the $STMODE service in the
middle of scanning the buffers.

2. buffers on which the $REGNAM service has been called.

0860003-007
Rev. F 1/82

2.6.4 $GTDISP

The Get Displacement service enables the current displacement to be saved, thus, allowing a
return to this position. The calling sequence is:

BLU $GTDISP

The current displacement is returned as a numeric value in register K.

2.6.5 $STDISP

The Set Displacement service allows a new value to be set as the current scanner
displacement. This is normally a value from a previous $GTDISP call but may be any
displacement within the range of the buffer. The calling sequence is:

TMK displacement
BLU $STDISP

For example, to reset the scanner to the start of the current buffer, set the displacement to
zero. A return with A=-2 means the displacement is past the end of the buffer.

2.6.6 SNXPARM

The Next Parameter service skips over redundant blanks and sets the scan position so that
the next character picked up is the first non-blank encountered. If the current displacement
is already at a non-blank character, no change is made. The calling sequence is:

BLU SNXPARM

The returned register settings are like those for $CHAR but the E register is undefined. The
A register is set to -1 if a numeric register is encountered.

2.6.7 $BKPARMA

The Back Parameter service resets the scan position back to the start of the most recently
input parameter. This refers only to parameters input by $NUMBER, $SPNUMB, $NUMTEX,
$TEXNUM, STEXRAN, $SONENUM, $TEXT, $LTEXT, SAREANM, and $QUAL. Any calls to
other scanner services will not affect the buffer displacement used by $BKPARM. For
example, following a call to $TEXT, it is determined that the parameter was greater than 6
characters. To obtain the entire parameter. a call to $SBKPARM, then a call to SLTEXT may be
made. The calling sequence is:

BLU $BKPARM

2.6.8 $STCHAR

The Set Character service allows a special delimiter character to be given to the Format
Scanner. This delimiter is in addition to the standard blank or comma delimiter. A call to
$STCHAR will replace any delimiters set by a previous call to $DLIM or $STCHAR.

0860003-003
Rev. B 5/78
The ca.lling sequence is:

TOK . “character’’
BLU $STCHAR

For example, if the following call were made:

TOK ll=ll
BLU $STCHAR

then the equal sign (=) would also delimit parameters. Thus the input text:
AB=CD
would be input as the two parameters AB and CD.

To remove all special delimiters with a call to $STCHAR, set the special delimiter to blank
(ll ll).

2.6.9 $DLIM

The Delimiter service allows multiple special delimiters to be given to the format scanner.
This service performs the same function as $STCHAR, except that more than one delimiter
(up to a maximum of 12) may be defined. A call to $DLIM will overwrite any delimiters set
by a previous call to $DLIM or $STCHAR. The calling sequence is:

TLO PARLIST
BLU $DLIM
PARLIST DATA number-of-special-delimiters
DATA list-of-delimiters

where number-of-delimiters is O through 12. If it is zero, all previously entered special
delimiters are removed. List-of-delimiters is 1 to 4 words of delimiters, packed left-justified
in any partially filled words.

for example, to set A", “B", “C", wre X! "Y' and 2" as special delimiters:
TLO PL
BLU $DLIM

PL DATA - 7
DATA “ABC.XYZ"

2.6.10 $STREG

The Set Register service is used to alter register contents. This service will always perform
the specified function regardless of the “Register Mode” flag (see the Job Control $SMODE
command). This service can be used to generate or eliminate registers.

0860003-003
Rev. B 5/78

On return the A register will be set:

A = 0 Function performed as specified
-1 Invalid register name syntax
-2 Too many registers currently defined
-3 Illegal type number
-5 Byte count greater than 255 or less than 0.

In all cases, if the register previously existed, the old value is eliminated prior to generation
of the new value. '

TLO PARLIST

BLU $STREG
PARLIST DATA type

DATA register-name

DATA value-1

DATA value-2

where type is 1 for a string register, 2 for a numeric register, or 3 for a replacement register
(see Table 2-1). Register-name is any valid register name. The appropriate substitution for
value-1 and value-2 is based on type. For a string or replacement register, value-1 must be
the byte count length of value-2 which is text; a zero-length byte count denotes a null
register. For a numeric register, value-1 must be the range and value-2 the base of the
numeric value.

To eliminate a register, use the following calling sequence:

TLO PARLIST
BLU = $STREG

where PARLIST is a two word parameter list:

PARLIST DATA - O
DATA register-name

If register-name is zero, then all registers will be eliminated. On return the A register will be
set to zero if the function was completed as specified, or -1 if the specified register did not
exist.

2.6.11 $GTREG

The Get Register service is used to obtain register information or contents. The calling
sequence is:

TLO PARLIST
BLU $GTREG
PARLIST DATA function
DATA register-name
DATA buffer-length
DAC buffer-address

See Table 2-1 for a list of register types.

2-1Nn

0860003-003
Rev. B 5/78

Depending on function, some ol the parameters are not used. When used, register-name is a
standard register name and buffer-length is the length in words of the supplied buffer at
buffer-address. |f an invalid function number is supplied, the A register will be set to -3 on
return. The following functions are available:

Get Register List — A list of all active registers may be obtained when function has a value
of 1. The register-name is used to indicate the starting point for copying register
information. If the register-name is zero, the list will start with the first entry. If the
register-name is not zero, the list will start with the first register after the specified name.
For each active register, three words will be copied to the supplied buffer:

Word O = Register type (1, 2 or 3)
Word 1 = Register name
Word 2 = Byte count (meaningless if type = 2)

On return, the A and E registers will be set as:

A = 20 Word count actually transferred
-1 Register-name not in list
-2 Buffer is too small (as much as possible
will be transferred)
E = Total number of active registers
Register Information — Information about a single register may be obtained when the

function has a value of 2. No buffer need be supplied for this function. On return, the A, E
and K registers will be set as:

A = 0 Function performed as specified

-1 Register name not in list, E and K undefined
E = Byte count (meaningless if type = 2)
K = Register type (1, 2 or 3)

Register Contents — Information and contents of a single register may be obtained when
function has a value of 3. This function is like function 2 except that the contents of the
register are returned in the supplied buffer. The layout of the buffer is identical to the
PARLIST used to define the register with $STREG. If the buffer is too small for the register
contents, the A register will be set to -2. Otherwise, the A register will be defined as for
function 2. If the register is found, the E and K registers will always be set to the byte count
and register type, respectively.

26.12 $STMODE

The Set Mode service is used to set special scan modes for all calls to the scanner until the
modes are reset. The calling sequence is:

TOK modes
BLU $STMODE

where bits set in register K determine which special scan modes are active. These bits are
defined as follows:

2-11

0860003-003
Rev. B5/78

Bit O Delimiter mode. If reset, the true delimiter of a parameter function is as defined
in Section 2.1.2 of this manual. If set, the first delimiter found is considered to be
the true delimiter of a parameter. ~

For example, if “PRUBB,F" is scanned by a parameter function with Bit O set, the
scan displacement will be PRUYY,F. If it is scanned with Bit O reset, the scan
displacement will be

PR6BY,F.
4

Bit 1 Register mode. If reset, a “'#" is treated as the start of a register specification, as
described in Section 2.4 of this manual. If set, then register mode is turned off; a
4" is treated as a normal character. This is useful, for example, if the name of a
register is desired instead of its contents.

A call to $STMODE resets any previous modes set by this service. To clear all special modes,
set the K register to 0 when calling $STMODE. A call to the $SCINIT service also clears all
special modes. .

There are no error returns from $STMODE.

2.7 SINGLE CHARACTER SERVICES

2.7.1 $CHAR

The Character service obtains the next character in the buffer, regardiess of parameters,
delimiters, etc., and then increments the displacement. The calling sequence is:

BLU $CHAR

The normal register settings are returned, with the following additions:

A= positive if no errors. Bits 7-0 are the ASCII character, bits 23-8 are zero.
E= 0 or bit 23 is set if the character is within a string
K= the current scan displacement, i.e., of the next character.

2.7.2 $BKCHAR

The Back Character service picks up the preceding character in the buffer (i.e., the last
character scanned).

The ASCII character is returned in bits 7-0 of the A register, with the rest of the register set
to zero. If the buffer has just been initialized, and there is no previous character, then the A
register is set to -2.

The buffer displacement pointer is not modified by this call. Hence, successive Back
Character calls will not backspace through the buffer but will merely return the same
character. The calling sequence is:

BLU $BKCHAR

2-12

0860003-003
Rev. B5/78

2.7.3 $NXCHAR

The Next Character service functions like $CHAR except that the buffer diSpIacement
pointer is not modified but is returned in the K register. ‘

The ASCII character picked up is returned in bits 7-0 of the A register, with the remainder
of A set to zero. If the end of the buffer is reached, A is set to -2. The calling sequence is:

BLU $NXCHAR

The following example is a sequence of calls demonstrating the function of the character
input routines just described. The underscore indicates the next character to be picked up.

Buffer before Cali _(Ea_l_l Character returned
ABCD BKCHAR none : (-2)
ABCD NXCHAR A
ABCD CHAR A
ABCD CHAR B
ABCD BKCHAR B
ABCD BKCHAR B
ABCD CHAR C
ABCD NXCHAR D

2-12.7

0860003-005
Rev. D 2/80

2.8 PARAMETER SERVICES

2.8.1 $NUMBER

The Number service is used to input a numeric parameter. The buffer is scanned for the next
argument and, if numeric, the binary value is returned to the calling program. The calling
sequence is:

BLU $NUMBER
Upon return, the A register is set either to the binary value or to an error code:
A = >0 Binary value scanned
1 Wrong type of argument was found
-2 End of buffer
3 Null argument (default case)
4

Negative number encountered, value in K register,
E is still length of range

The E register is set to the range of a pair of numbers. (Note: E can be zero if only one
number is input, or if the range is zero, e.g., (7-7). If the user must differentiate between
these two cases, the user should first use the SONENUM service, followed by the
$NUMBER service.)

Given the following text inputs, the register values returned after a $NUMBER call would
be:

Text A after call E after call
.32, 32 0
,32-32, 32 0
,32-41, 32 9
,'32-41, 26 7
,32A, -1 unspecified
,'32, 26 0
/3241, -1 unspecified
v -3 unspecified
,132", -1 unspecified
,-32, -4 (K=-32) 0
,-30-32, -4 (K=-30) 2
32" -1 unspecified

2.8.2 $ONENUM

The One Number service is useful if a group of numbers would be an incorrect argument.
The returns from the $ONENUM service are identical to those produced by SNUMBER
except that the A register is set to -1 if a group of numbers is encountered. In this case, the
K register is set to the first number of the group. The calling sequence is:

BLU $ONENUM

2-13

0860003-002
Rev. A 12/77

Given the following text inputs, the register values returned after a SONENUM would be:

Text A after Call E _after Call
32, 32 0

,32-32, -1 unspecified
32A, -1 unspecified

2.8.3 $SPNUMB

The Special Number service is used to input a number with embedded blanks. The service is
identical to the SONENUM service except that embedded blanks are ignored, and the
scanning is terminated by any non-blank non-digit character. The calling sequence is:

BLU $SPNUMB

The return conditions are identical to those of SONENUM. In addition, the V register can
be set:

v="177777 If the number was delimited by a character.
v="177776 If the number was delimited by a quoted string.

Examples:
Text A after Call
324, 32
3152, 32
J32A, 32 (pointer set to ““A”’)
,1A2B, 1 (pointer set to “‘A"’)

JB3P2BBA, 32 (pointer set to “A”’)

2.8.4 SNUMTEX

The Number-Text service returns the numeric and non-numeric values of an input text. The
calling sequence is:

BLU SNUMTEX
Upon return, the A register is set to the numeric value found, and the E register is set to the
first three characters found after the numeric portion of the text, and preceding any
delimiters.
The numeric portion of the text may be in a numeric register. Negative numbers are handled
in the same manner as with the SNUMBER service. In an error condition the normal error
codes are returned in the A register.

For example, assume the indicated text is scanned using the $SNUMTEX service:

Text A after Call E after Call
,32AB, 32 ABY
3A, 3 A
,3ABCD, 3 ABC
,3, -1 unspecified
A, -1 unspecified
,1-3AB, -1 unspecified
,A3, -1 unspecified
. -3 unspecified

0860003-007
Rev. F 1/82

2.8.5 $TEXNUM

The Text-Number service is the reverse of the $NUMTEX service. Non-numeric characters
are expected followed by an uninterrupted string of digits until a delimiter is encountered.
A numeric register may be used for the numeric portion of the text. The calling sequence is:

BLU $TEXNUM

Upon return, the E register is set to the first 3 non-digit characters found, and the A register
is set to the integer value following the text. In case of an error, the A register is set to the
normal error codes. Negative numbers are handled in the same manner as for the SNUMBER
service.

For example, assume the indicated text is scanned using the STEXNUM service:

Text A after Call E after Call
,AB3, 3 ABp
,ABCD32, 32 ABC
A3, 3 AR
3A, -1 unspecified
A, -1 unspecified
,3, -1 unspecified
A1, -4 (K=-1) A

2.8.5A STEXRAN

The Text-Range Service returns a text string and a range of numbers following the text
string. The service expects a string of non-numeric characters followed by a number or a

2-14.1/2-14.2 Blank

0860003-007
Rev. F 1/82

range of numbers. The rules for the numeric range are given for the $NUMBER service. The
calling sequence is:

BLU S$TEXRAN

Upon return, the K register is set to the first 3 non-numeric characters found, the A register
is set to the first integer value following the text, and the E register is set to the range of the
pair of numbers. Note: this service does not support a negative range. In the case of an error,
the A register is set to the normal error codes.

For example, assume the indicated text is scanned using the $TEXRAN service:

TEXT A after call E after call K after call
Ab-6, 5 1 Abp
A32, 32 0 Abp
,ABCD5-6, 5 1 ABC
SBA, -1 unspecified unspecified
A, -1 unspecified unspecified
3, -1 unspecified unspecified
A-1, -1 unspecified unspecified
A-1-2, -1 unspecified unspecified
A'6-7 6 1 Al
2.8.6 STEXT

The Text service picks up the first 6 characters in the next argument and returns them in the
E and K registers. For less than 6 characters, E and K are blank filled with the text left
justified, first in E, then in K. If the text is longer than six characters, only the first six
characters are returned in E and K; however, the scan is positioned after the true delimiter
of the entire text as if the entire parameter were scanned. The A register is set to the
number of characters in the argument just encountered. The calling sequence is:

BLU STEXT
Upon return, the E register has the first three characters picked up, the K register has the
second three picked up, and the A register has the number of characters encountered. In
case of error, the A register is set to the normal error codes.

The following examples show the results of $TEXT calls on the given texts.

Text A E K
,ABCDEF, 6 ABC DEF
,AB, 2 ABY iﬁ?ﬂd
A, 1 AgY .1
" -3 unspecified unspecified
,ABCDEFGH, 8 ABC DEF
S -3 unspecified unspecified
2.8.7 SLTEXT

The Long Text service is the same as the $TEXT service except that a parameter list is
supplied which enables an argument longer than six characters to be returned to the user.
The calling sequence is:

TLO PARLIST
BLU SLTEXT

2-15

0860003-003
Rev. B 5/78
where PARLIST is a two word parameter list:

PARLIST DATA buffer-word-count
DAC buffer-address

On return, the A register is set to the number of characters picked up. If this is greater than
the buffer size, the supplied buffer will hold only those that can be held. Otherwise, the A
register is set to the number of characters stored in the buffer. The remainder of the buffer
is blank filled. '

In case of error, the A register is set to the normal error codes.

If the following call were made:

TLO PL

BLU SLTEXT
PL DATA 3

DAC BUF
BUF BLOK 3

then the contents of BUF given the sample text would be:

Text A BUF
,ABCDEFGHI, 9 ABC/DEF/GHI
,ABCDEFG, 7 ABC/DEF/Gbb
,AB, 2 ABJ/ BRI/ BRI
,ABCDEFGHIJ, 10 ABC/DEF/GHI
" -3 BBpIeepIes

2.8.8 $AREANM

The Areaname service is used to input disc area names, which consist of a qualifier and an
areaname. The results are stored in a 4-word user supplied buffer, with the 8-character
areaname in truncated ASCII (6-bit characters) occupying the first two words, and the
8-character qualifier occupying the last 2 words. The calling sequence is:

TLO PARLIST
BLU $AREANM

where PARLIST is a user buffer at least 4 words long which will contain the results of the
scanner input. On return the A register will be set to be the total number of characters
picked up by the call. In case of an érror, A is set to the normal error codes. The E register is
set to the total number of characters specified for the qualifier.

The first character of all areanames must be alphabetic. The first four characters of the
qualifier are the account number. The $AREANM service will right justify the account
digits, zero fill the qualifier, and left justify and blank fill the areaname. If no qualifier is
present in the argument, the default (sign-on) qualifier is returned. An asterisk (*) must be
used to delimit the qualifier from ‘the areaname.

2-16

0860003-003
Rev. B 5/78

Given the specified input text, with the user signed on with the qualifier 1234USER, a
$AREANM call will produce:

Text PARLIST after Call
J1234ABCD*XYZ, XYZB/Bpp¥/1234/ABCD
,12AB*XYZ, XY Z/p1p/0012/ ABY
XYZ, XY Zs/pp)/0000/SYST
XYZ, XYZW@/Bppp/1234/USER
S*LG 71" LG/p$71/0000/SYST

2.8.9 $QUAL

The Qualifier service is used to pick up an argument that is a qualifier. This is effectively the
same service as the first half of the SAREANM service. A 2-word buffer must be supplied by
the user to store the argument. The calling sequence is:

TLO PARLIST
BLU $QUAL

The qualifier will be returned into PARLIST and PARLIST+1. Up to eight characters will be
picked up and returned in truncated ASCII. The A register will be set to the number of
characters scanned for this argument. For error conditions the A register will be set to the
normal error codes.

For example, assume the following inputs were scanned with the SQUAL service:

Text PARLIST after Call
,1234ABCD, 1234/ABCD
,12AB, 0012/Az§;5
AA, 0001/ APl
A, 0000/ AlpE
A, (error)

,12345A, (error)

2.8.10 $REGNAM

The register name service scans the input buffer for a register name. The format is:
BLU $SREGNAM
Upon return the hardware registers are set as follows:

A: 0 Successful return.

-1 Wrong type of argument.
E: First three ASCII characters of the register

name (with trailing blanks filled).

All other hardware registers are set to the normal values.

2-17

0860003-004
Rev. C 12/78

Prior to calling the SREGNAM service, the scanner must be positioned prior to or at the #
character of the register name. For example:

AbBY, BB #REG
ABIBB#REG

Care must be taken when scanning the parameter prior to the register name. In certain
instances the scan position may inadvertently be placed inside the register; for example,

AbbB#REG

where A is scanned via a BLU $TEXT and #REG contains “CDE". The scan displacement is
positioned at the ““C" rather than at or prior to the “#”. In this situation the $STMODE
sel_'vice may be used to turn the register mode off prior to scanning the parameter. :

28.11 $ASNOBJ and SASNLST

$ASNOBJ and $ASNLST are system services which scan a field that is a description of an
I/0 entity and which return a parameter list that may be used in a BLU $ASSIGN call. The
format of the 1/0 entity for each service is as follows:

Service 1/0 Entitiy

$SASNOBJ assign-object (attribute-list)
SASNLST Ifn=assign-object (attribute-list)

where “Ifn” is the logical file number to be assigned, ‘‘assign-object” is the, object of the
assign (see Section 2.8.11.1), and “attribute-list” is an optional list of attributes enclosed
within parentheses (see Section 2.8.11.2). The “assign-object" is optional for the SASNLST
service,

The calling sequence is:

TLO PARLIST
BLU service
BNZ error-check
TLO BA
BLU $ASSIGN
PARLIST DATA - bit mask of allowable objects
DATA bit mask of allowable attributes
DATA word count
DAC BA
BA BLOK word count

where “service” is SASNOBJ or $ASNLST. The minimum buffer length for SASNOBJ and
$ASNLST is defined through the AS!.MIN EQIV to be 12 words.

Standard VULCAN EQIVs are listed in the bit mask descriptions in the following sections.

” 20

0860003-004
Rev. C 12/78

2.8.11.1 Bit Mask of Allowable Objects

Bits set in the bit mask of allowable objects permit specific assign objects An error return
will occur if any object is scanned that is not allowed by this mask. The bits are defined
below.))

Bit EQlV Object Allowed** Description

B0 ASISEL! Ifn=* Assign to self. An “Ifn=*""is the same
as an assign to *3. A -10is returned as
the value of the A register.

B1 ASUFA! Ifn=*Ifn Specifies an indirect follow assign.

B2 AS!IPA! 1fn=%lfn _ Specifies an indirect permanent assign.
B3 ASIPDV! Ifn=:pdn Assign to a physical device.

B4 . ASIGPO! {fn=@pdn Assign to a spool file.

B5 ASICST! Ifn=:pdnTn Assign to a cassette. The “pdn” is a

Harris Model 2200 data terminal with
cassette. “T1" designates the left
cassette. ‘T2’ designates the right
cassette.

B6 | ASIREM! Ifn=:pdnxx Assign to a remote site. The “pdn’’ is
an RJE remote site number and “'xx"’
is one of the following:

LP — Remote line printer

TP — Remote tape punch

CP — Remote card punch

PL — Remote plotter

CS — Remote operator console

B7-B8 Reserved for future use.

B9 ASIARE! Ifn=qualifier*area Assign to a disc area.

B10-B21 Reserved for future use.

B22 ASINOC! Ifn=pdn If this bit is set, then the colon (:)

ifn=pdnxx preceding the specified PDN for Bits
Ifn=pdnTn 3, 5, and 6 above may be omitted.

B23 Reserved for future use.

** SASNOBUJ is identical to SASNLST except that ““Ifn="" is omitted.

219

- 0860003-004
Rev. C 12/78

§ 28.11.2 Bit Mask of Allowable Attributes

Bits set in this mask allow specific attributes to be present. An error return will occur if any
attribute is scanned which is not permitted by this mask. The bits are defined below.

Bits Set EQIV
B0-B21

B22 AS!EX!

B23

Attribute Allowed Description

EX

Reserved for future use.

An exclusive (EX) assign allows no more
assignments to be made to the object
until the object has been freed. An
exclusive assign is invalid if an assign--
ment has already been made to the
object.

Reserved for future use

I 2.8.11.3 Parameter List Returned by $ASNOBJ or SASNLST

$ASNOBJ and $ASNLST return a parameter list in the buffer specified in the calling
sequence. The format of this buffer is such that the buffer can be used as the parameter list
fqr a call to the $ASSIGN service. The format of the buffer is as follows.

- Word Bit Within Word

0 0-6

0 7

0 8

0 9-11
0 12-21
0 22

0 23

2-20

EQIV
AS!FUNC

AS!FC!
AS!FEX!

AS!IND!

AS!AEX!
AS!QSP!

Description

(Each bit of this word is described separately
as follows.) .

Contains the $ASSIGN function code.
Is always set and indicates that Word 1 is present.

Set only for an indirect permanent assign
(Ifn=%Ifn).

Contains the object of the assignment:

0 — The object is a remote line printer.

1 — The object is either a Harris Model 2200
data terminal (left cassette) or a remote
tape punch.

2 — The object is either a Harris Model 2200
data terminal (right cassette) or a remote
card punch. :

3 — The object is a remote plotter.

4 — The object is a remote operator console.

Reserved for future use.
If set, then attribute EX is present.

If set, then a qualifier is preserit (for function
code 0). :

0860003-007
Rev. F 1/82

Additional words in the buffer for FASNLST and $ASNOBJ are described below.

Word EQIV Function Code Description

1 ASIFUNX Function code extension. Always zero.

2 AS!FLFN Set to zero for SASNOBJ. Contains the LFN for
SASNLST.

34 AS!FARE Oor4 Two-word truncated ASCII disc area name.

3 AS!FPDN 1or2 The object, a PDN.

3 AS!F3LF 3 The object, an LFN for an indirect assign.

5-6 ASIFQUA Oor4 Two-word truncated ASCII qualifier name.

7-11 Reserved for future use.

2.8.11.4 Return Register Settings from $ASNOBJ and $ASNLST
$ASNOBJ and $ASNLST return the following information in the registers:

Register Value Description
A 0 Successful return.
-1 Wrong type of argument (e.g., incorrect syntax, use of an undefined

register, incorrect use of a numeric register, etc.). This error code does not
include errors detected within the attribute list.

-2 End of buffer or ““space dollar space’’.

-3 Null argument.

5 Return buffer too small.

-6 Invalid attribute scanned. Registers E and K are set.

-7 Mutually exclusive attributes were scanned. Registers E and K are set.
-8 Duplicate attributes were scanned. Registers E and K are set.

9 Wrong type of argument in the attribute list (e.g., a null argument, a

numeric register, or an undefined register was detected). Register K is set.
-10 The assignment is to self (e.g., “Ifn=""" for SASNLST).
-12 The object present is not allowed. The appropriate bit in the bit mask of
allowable objects was not set.

E For A register values: 0 and -10, E contains the length in words of the used
portion of the $ASSIGN parameter list.

For A register values: -6, -7 and -8, E contains the first three characters of
the last attribute scanned, left-justified and blank filled.

For all other A register values, E is undefined.
] Temporary pointer.
J Contains the return address.
K Contains the number of the attribute at which the error was detected.

This register is set only for error codes -6, -7, -8, or -9. Otherwise, Register
K is undefined.

2-21

0860003-004

Rev. C 12/78
\ Contains the delimiter code of the true delimiter of $ASNLST or
$ASNOBJ.
H Saved.

2.8.11.5 Example Using SASNLST
If buffer INBUF contains the following:

AS 6=LO

then the following sequence of instructions will perform the requested assignment:

TLO PARL1

BLU $SCINIT Initialize scanner to scan the buffer
BLU S$TEXT Scan the command

CME ="AS "

BNZ NOTASSIGN Branch if not the ASSIGN command
TLO PARL2 ’ _

BLU $SASNLST Scan the LFN and the assign object

BON ERROR
TLO ASBUF

BLU $ASSIGN Make the assignment

PARL1 DATA 27 SCINIT parameter list
DAC INBUF

INBUF BLOK 27 Command input buffer

PARL2 DATA AS!IPAI+ASISEL!+ASIARE! These assignments are allowed
DATA ASIEX! Allow the EX attribute
DATA ASLMIN Minimum possible return buffer size
DAC ASBUF Buffer for $ASSIGN call

ASBUF BLOK ASLMIN

2.8.12 $USER

The SUSER service is used to input a VULCAN user number. A user number can be either
one to six ASCII characters beginning with any alphabetic character or, if all digits, up to a
twelve digit number. The calling sequence is:

BLU $USER

Upon return, the registers are set to the standard values. In addition, the E, A and K
registers return as follows:

E= 24 most significant bits of the user number

K= 12 least significant bits of user number (left justified).
Bits 0-11 are zero.

A= 0 numeric user number found
positive number of characters in non-numeric user number
negative standard error code

\

2-22

0860003-004
Rev. C 12/78

2.9 SCANNER EXAMPLE

The following is a scanner example which will produce a $VA (Vassembler) statement in
Job Control. The basic format is:

$VA.options,input-areaname

Both the options field and the input-areaname field are optional.

TLO PL initialize scanner
BLU $SCINIT
TOK use “."” for delimiter
BLU $STCHAR '
BLU $TEXT
BON error
LRD 8
coB g ignore leading $
BNZ *2
LRD 8
LRD 16
TOB N
CMA =""VAB"
BNZ error
BLU $BKCHAR test delimiter
COB
BNZ NOOPTS
OPTS BLU $CHAR input an option
BON ENDOPTS
COB sep fer]
BOZ NOOPTS end of options
process option letter
BUC OPTS
ENDOPTS AOA 2
BOZz ENDCARD
_ BUC error
NOOPTS TLO NAME
BLU $SAREANM input areaname
BOP process areaname
AOA 2 .
BNZ error no areaname
ENDCARD continue processing
PL DATA 27
DAC - BUF
BUF BLOK 27 input buffer
NAME BLOK 4

2-22/(2.924 Riank)

0860003-004
Rev. C 12/78

CHAPTER 3
LOGICAL ASSIGNMENT SERVICES

3.1 LOGICAL FILE NUMBERS

The logical assignment services allow the user to control and query LFN assignments. LFNs
range from 0-255 (8 bits). LFNs 200-255 are not available to users. Systems processors use
LFNs 200-219 on a temporary basis. Job Control uses LFNs 220-225.

LFNs 0-199 are available to users. LFNs 0-10 are also used- by Job Control and systems
processors and should be assigned with caution. Table 3-1 describes the standard usage of
these LFNs and their default assignments.

The COBOL user must avoid assigning to LFNs used by COBOL at execution time. For each
COBOL SELECT/ASSIGN clause, COBOL uses one LFN in descending order beginning with
199. For example, if the program contains six SELECT/ASSIGN clauses, the user must not

assign LFNs 194-199.

Table 3-1. Standard LFN Usage

LFN Usage
E; = — - =£

0 Job Stream. Used to read Job Control commands for Control
Points and Terminals.

3 Diagnostic Output. Assigned to disc area LO for control points

* and to terminal for interactive terminal users. Reassignment

will prematurely terminate the job or terminal and should
be avoided.

4 Used by KEEP/FETCH routines. Must be assigned to the device
or disc area to keep to or fetch from.

5 Binary Output. Used for link code from the assembler, FORTRAN
compiler, etc. Default assignment is to disc area LR.

6 List Output. Used by compilers and the assembler to produce
listings. Default assignment is to disc area LO.

7 Source Input. Used by compilers and the assembler to read
source. Default assignment is indirect to LFN O (to read from
Job Stream).

8 Scratch Output. Used for intermediate output by Assembler.
Default assignment is to disc area W1.

9 Dump Output. Used by Job Control. $DLOAD and $DBOOT
commands for dump output.

10 Library File Input. Used by the Library File Edit commands to

read their modules to add, replace, etc. Default assignment is to
disc area LR.

0860003-006
Rev. E 1/81

3.2 $ASSIGN

"The system service $ASSIGN is used to assign LFNs to physical devices, disc areas, or other

~ LFNs. It is accessible from Job Control or from user programs using the following assembly
language sequence:

TLO PARLIST
BLU $ASSIGN
PARLIST DATA function-code
DATA Ifn
DATA 2-word areaname (8 characters-truncated
ASCl),

or physical-device-number,
or logical-file-number for indirect
assigns

DATA 2-word qualifier (8 characters-truncated
ASCII) may be used if the areaname is
supplied above

The function-code DATA word is defined as:

Bits 7-0 = 0 Disc Area Assign. Used to make an assignment to a disc area. The areaname

is taken from words PARLIST+2 and PARLIST+3. If bit 23 of the function
code word is zero, the sign-on qualifier for the user is used. If bit 23 is set,
the qualifier is taken from words PARLIST+4 and PARLIST+5.

If this qualifier field is all zero, then the system qualifier 0000SYST is
used. If the qualifier field is truncated ASCI! blanks, then the following
actions are taken:

Areaname is a workfile: Sign-on qualifier is used.
Areaname is not a workfile: Default qualifier is used.

If bit 22 of the function code is set, an exclusive assignment is
attempted. An area assigned by another program cannot be
exclusively assigned; an exclusively assigned area cannot be accessed
by another program.

If the assignment is made to a batch/interactive-terminal work disc area which
does not exist, the work area will be dynamically generated.

Spool Assign. Used to assign output to spool areas destined for interactive
terminals. The PDN of the terminal is specified in PARLIST+2. The
terminal need not be allocated as a resource in this case. A spool disc

area will be dynamically generated.

Physical Device Assign. Used to make an assignment to the physical device
specified in word PARLIST+2. If the physical device is an output device
only a spool disc area is generated and the assignment is made to it. If the
physical device is a card reader, the data input queue is searched for the
disc area destined for this purpose.

If the assignment is to device 0, all read requests return an end-of-file and all write requests
are accepted but ignored (i.e., output is discarded).

32

Any other

value

0860003-002
Rev. A 12/77

If the specified physical device is a Model 2200 Data Terminal,
then bits 9 and 10 of the function code are used to assign to
cassettes one and two, respectively. These bits should not be
on together. '

Used to make an assignment to a device or area to which another
LFN (the object LFN) is known to be assigned. The object LFN
is specified in PARLIST+2. If bit 8 of the function code is not
set, then this assignment follows the assignment of the object
LFN. If bit 8 is set, this assignment is not changed when the
object LFN is reassigned or freed.

invalid call — an abort will result.

Upon return from the $ASSIGN call, the A register will be set to reflect the status of the
requested assign, and the condition register is set to match the A register. The A register

values may be:

A

0

1

10

Valid assignment.

Referenced object does not exist. For disc area assigns: the disc area is
either not there or is not accessible to this user.

For card reader assigns: no input data file for this program.

For other PDN assigns: referenced device does not exist.

Physical device not ready.

Spool assign allowed only to interactive devices.'

Resource not allocated.

For disc area assigns: required disc pack is not resourced or mounted.
For PDN assigns: requested device has not been resourced.

User does not have required access bit to access this physical device.

Batch/interactive work file cannot be generated and does not exist
for this user.

Spool pack full or not mounted. Cannot create spool area for spool
assign. Cannot create spool area for output physical device assign.

No execute access for program.

Cannot exclusively assign; area in use by ancther program.

33

0860003-002
Rev. A 12/77

In addition, on disc area assigns, the E register is set:

Bits 23-2 contain disc area type as described in Section IX
Bit 1 . is set if the user has read access to the area
Bit O is set if the user has write access to the area

Examples of $ASSIGN calls:

1. Assign LFN 8 to physical device 6:

TLO PARLIST

BLU $ASSIGN
PARLIST DATA 2
 DATA 8
DATA 6

2. Assign LFN 8 to disc area 1234ABCD*CAT:

TLO PARLIST

BLU $ASSIGN
PARLIST DATA B23

DATA 8

DATA T CATHpIII"

DATA T1234ABCD"”

3. Assign LFN 8 to cassette two of data terminal PDN 23:

TLO PARLIST

BLU $ASSIGN
PARLIST DATA 2002

DATA 8

DATA 23

3.3 $PDN

The $PDN service returns inforrﬁation about a physical device. The calling sequence is:

TOK pdn
BLU $PDN

34

0860003-007
Rev. F 1/82

Upon return from this call, the A register is set:

A =0 Specified physical device does not exist.
1 Specified physical device was zero.
>1 Physical device type:

Bit 22 set if device is a virtual terminal.

Bit 21 set if device is an interactive terminal.

Bit 20 set if device is spooled input only (e.g., card reader).
Bit 19 set if device is spooled output only (e.g., line printer).
Bit 18 set if device requires resource call to be used. -
Bit 17 set if device is connected via CBC channel.

Bits 15-8 contain model information based on particular
device type. (See Table 3-2.)

Bits 7-0 contain device type (see Table 3-2).

Table 3-2. Device Types

Information in Bits 15-8 of

Type Device Name PDN or LFN Service Call.
2 TTY
3 CRT Model: 0=Model 8610 or 2310
1=Harris Standard Terminal
2=Model 3270
4=Harris 8680
4 'Paper Tape Reader
5 Paper Tape Punch
6 Line Printer Model: 1=Analex
2=Data Products
3=Data Printer
4=Potter
5=CDC
6=Tally
10=Versatec
11=0DEC
12=CDC Serial
7 Card Reader
8 Card Punch

0860003-007

Rev. F 1/82
Table 3-2. Device Types (Cont’d)
Information in Bits 15-8 of

Type Device Name PDN or LFN Service Call.

9 Mag Tape Drive or Cassette | Bit: 8=9 Track
10=200BPI
11=556BPI
12=800BPI
13=1600BPI

10 Synchronous Interface for

RJE-to “Host”” Computer

11 Remote RJE Line

12 Remote RJE site

13 Plotter

14 Real-Time Peripheral Device
15 Fioppy Disc

If A> 1 then the E register is set for TTYs, CRTs, and Line Printers as:

Bits 7-0: Number of characters per line
Bits 15-8: Number of lines per page

3-6

Rev. E 1/81

34 $LFN

The $LFN service returns the type of assignment made on a specific LFN. The calling
sequence is:

TOK Ifn
BLU $LFN

Upon return, the A, V, and C registers are set as follows.

Register Value Description
A -1 LFN is assigned to a disc area.
0 LFN is unassigned or is incompletely assigned. (See the
V register.)
>0 LFN is assigned to a physical device. In this case the A

register is set to describe the physical device type exactly
as returned by the $PDN service.

E If the value of the A register is greater than zero, the
contents of the E register are the same as those returned
for the E register by the $PDN service.

\' =0 LFN is unassigned.

#0 LFN may be indirectly assigned, but the assignment
series is incomplete.

C Reflects the condition of the A register.

If the LFN is assigned to a spooled device, SLFN returns information about the physical I
device, rather than the spool file.

36.1

0860003-003
Rev. D, 2/80

3.5 SLFINFO

The $LFINFO service obtains information about a particular logical file (LFN) assignment.
This information may include a description of the object of an assignment or of the current
status of a particular assignment. The calling sequence is:

PARLIST

BA

TLO
BLU

DATA
DATA
DATA
DATA
DATA
DAC

BLOK

PARLIST
$SLFINFO

function-code
logical file number to query
status-word-1

0

word/byte count of buffer BA

BA

LF/.LOC

The buffer fbr SLFINFO is defined through the LF/.LOC EQIV to be 12 words; the buffer
must be at least 12 words long or the program will abort. The LF! EQIV is defined to be 6
and is the total number of words set aside for the parameter list.

Standard VULCAN EQIVs are listed in the parameter list and object descriptor explanations

below.

The parameter list is defined as:

Base Location Displacement

EQIVs

Description

PARLIST +0

+0

+0

36.2

LFIFC

LF:LFN

LF:STAT

LF:NEXT

The function code. Only function codes 0,
4, and 9 are allowed for the $LFINFO ser-
vice (EQIVs for each function code are
given at the left under the column labeled
EQIVs):

0 —

4 —

Returns an object descriptor in the
buffer.

Returns the status of the LFN in
status words 1 and 2; however, the
buffer address area is not required.

Determines the assignment whose LFN
is next greater than the LFN in the
LFILFN word in the parameter list.
The service then returns the LFN of
that assignment in the parameter list
and executes as if function code 0 had
been specified. Repeated calls to
$SLFINFO are intended to sequentially
return all assigned LFNs. If the speci-
fied word count is O, the buffer
address is ignored and only the LFN
and link status are returned (i.e.,
function code 4 is called rather than
function code 0).

0860003-003
Rev. D, 2/80

Base Location Displacement EQIVs Description

PARLIST +1 LFILFN Contains the LFN for which information is
desired. If function code 0 or 4 was specified,
this parameter should be the LFN to query.

If function code 9 was specified, this parameter
should originally be set to -1 on the initial
call to the function.

+2 LFISTT1 Status word 1. Only bit 22 is applicable; all
other bits are reserved for future use. If
bit 22 is 0, the file is not open. If bit 22 is
1, the file is open. EGIVs for the PARLIST
word are:

LF!OPN PARLIST word displacement
LFIOPN! The bit value (B22)
LFIOPN@ The bit number (22)

+3 LFISTT2 Status word 2. Reserved for future use.

+4 LFIWC Word/byte count of the buffer address. Bits
23-22 contain a byte count indicator. If
bits 23-22 are 00, then bits 21-0 contain a
word count. If bits 23-22 are 01, then bits
21-0 contain a byte count starting from the
leftmost byte of the first word.

+5 LF!BA The buffer address. This area need not be
present if function code 4 was specified.

An object descriptor is returned in the buffer for function code 0. The format of the object
descriptor is:

Base Location Displacement EQIVs Description

BA +0 LF/TYPE Bits 23-0 contain the device type (as defined
for the $PDN service). Zero is returned for
disc areas. (D/TYPE EQIVs should be used
when interpreting values returned in this
word.)

+1 LF/TYP2 Bits 23-0 provide an additional device type
(as defined for the $PDN service). Zero is
returned for disc areas. (D/TYP2 EQIVs
should be used when interpreting values
returned in this word.)

+2 LF/NTYP Reserved for future use.
+3 LF/PDN Bits 23-0 contain the physical device num-

ber (if the device is a physical device or a
spooled device).

3-6.3

0860003-003
Rev. D, 2/80

Base Location

Displacement EQIVs

BA

+4 LF/AREA

+6 LF/QUAL

+8 LF/REGN
+10 LF/SITE

Description

Contains the eight-character truncated
ASCII areaname. This field is O if the
LFN is assigned to a non-spooled PDN.

Contains the eight-character truncated
ASCII qualifier.

Reserved for future use. Should be
ignored.

Reserved for future use. Should be
ignored.

Note: LF/.LOC is the size required for this buffer.

$LFINFO returns the following information in the registers:

A: -1 Means the LFN is not assigned or is invalid (if function codes 0 or 4
were specified).
-1 Means the end of the LFN list was reached (if function code 9 was
specified).
0 The LFN was assigned to a disc area.
1 The LFN was assigned to a physical device or spooled device.
E: Contents are unspecified (effectively, destroyed).
K: Contains the File Control Block (FCB) pointer.
V: Same contents as Register K.

3-6.4

0860003-006
Rev. E 1/81

3.6 SLFNAME

The $LFNAME service is used to find the name of the disc area to which an LFN is
assigned. It may also be used to find the physical device number if the LFN is assigned to a
physical device. If the LFN is assigned to a spooled device, SLFNAME will return the name l
of the spool file rather than the PDN. $LFNAME is called by:

TLO PARLIST

BLU $LFNAME
PARLIST DATA ifn

BLOK 3

Upon return the A register is:
A = - LFN not assigned.
0 LFN assigned to a disc area. The areaname is stored
in the first and second words; the qualifier is
' stored in the third and fourth words of PARLIST.
+1 LFN is assigned to the PDN stored PARLIST+0.
The C register reflects the condition of A.
For example, to find out what LFN 8 is currently assigned to and to assign LFN 9 to that

same device or disc area independently of LFN 8 (to work in same file position, use the
indirect assign feature):

TOA 8

TAM PAR2

TLO PAR2

BLU SLFNAME

TME =B23

CzZA

BON not assigned

BOZ *+2

TOE 2

TEM PAR1

TLO PAR1

BLU $ASSIGN
PAR1 DAC 0

DATA 9 LFN for $ASSIGN
PAR2 DAC 0

BLOK 3

3-7

0860003-003
Rev. B 5/78

3.7 $ASGNM

The Assign Name service returns information similar to that returned by the $SLFNAME
service but may be used to gather information on many LFNs by repeated calls to the
service. LFNs are queried in increasing numeric order. The calling sequence is:

TLO PARLIST
BLU $ASGNM

PARLIST DATA first-lfn’
BLOK 4

The next LFN with a number greater than first-Ifn will be sought. Upon return, the LFN
. queried will be in PARLIST+0 and the A register will be set:

A = - No LFNs assigned greater than PARLIST+0.

0 LFN assigned to a disc area. Areaname stored in
second and third words, qualifier stored in fourth
and fifth words of PARLIST.

+1 LFN assigned to PDN stored PARLIST+1.

The C register reflects the condition of A.

38

- 0860003-004
Rev. C 12/78

CHAPTER 4
BACKGROUND SERVICES

Background services are available only to interactive or control point programs. |f called by
real-time programs, the information returned is unspecified.

4.1 $NXTPRG

The Next Program service allows existing interactive or control point programs to ‘‘chain in”
another specific program rather than having Job Control come in by default. The calling
sequence is:

TLO _ PARLIST
BLU SNXTPRG
PARLIST BATA T ““areaname-qualifier’’

The parameter areaname-qualifier must be the 16 ASCII characters of the chained program
disc area name. For example, if the disc area name is 1234ABCD*PROGNAME, then this
field is T “PROGNAME1234ABCD". There is no return to the calling program from this
service. No registers are passed to the called program if it exists. This function performs an
exit followed by a program load. See also the $CHAIN service.

4.2 $OPTIONS

The Options service returns to the program the local option word associated with the
loading request of the program. These local options are the option letters following the
program name on the Job Control statement. The option letters A-X correspond to option
bits 0-23 respectively, where_bit 23 is the most significant bit in the option word (sign-bit).
The calling sequence for this service is:

BLU $OPTIONS

The local option word is returned in the E register.

0860003-001
Original 8/77

43 SLINES

The Lines service returns the number of lines per page that has been set eitheri by default or
by a Job Control MODE command. This number may be used to control printer page
spacing. The calling sequence is:

BLU S$LINES

The number of lines per page is returned in the E register.

4.4 $UNWORK

The $UNWORK service is used to eliminate all of the work disc areas (such as W1, LR, LO,
etc.) for a particular control point or terminal, regardless of their access bits. This may be
useful to ensure that no work areas were left over from a previous user. The calling sequence
is: -

BLU $UNWORK

4.5 $DLINES

The Default Lines service returns in the E register the system default lines per page as
specified in GENASYS. The calling sequence is:

BLU $DLINES

4.6 SLISTDV

The List Device service returns in the E register the system default list output PDN. For jobs
transmitted from a remote site, the remote site PDN is returned. The calling sequence is:

BLU $LISTDV

4.2

0860003-006

Rev. E 1/81

where:

areaname is a potential work file area name. The ‘‘areaname’’ may contain the
attached terminal number or control point letter.

qualifier is the qualifier of the area. Zero implies 0000SYST. A value of truncated

ASCII blanks implies the sign-on qualifier.

Onreturn the A, E, C, |, V, and H registers have the following values.

Register Value Meaning
A 0 The file is a valid work file for the current
process.
-1 The file has an invalid work file syntax.
>0 The file name has a valid work file syntax.

However, there is not a work file for the current
process. In addition, bits are set in the A register
to indicate why this work file does not belong to
the current process:

Bit O: The qualifier is not the sign-on
qualifier.

Bit 1: The work file identification is for
an interactive program other than
the calling program.

Bit 2: The work file identification is for a
control point program other than
the calling program.

Bit 3: The calling program is a real-time
program. Check other bits for work
file information.

E The work file identification for the current
process (if the value of the A register is not
negative).

C Reflects the status of the A register.

| ' The current temporary area pointer.
Vv Saved.
H Saved.

Note: The work file identification is the last four characters appended to a work file name
in truncated ASCII.

0860003-007
Rev.F 1/82

4.7 $BKSTOR

The Back-Store service is used to supply a data record to a specified logical file such that a
subsequent backspace record and symbolic read will input that record. Most VULCAN
processors do a backspace record and symbolic read to obtain the command that initiated
them, and this service provides a means of setting this record prior to calling a processor
with a service such as SNXTPRG. The calling sequence is:

TLO PARLIST
BLU $BKSTOR
PARLIST DATA XXXYY
DATA word-count
DAC buffer-address

where xxx is the specified LFN in octal and yy is any octal number. For example, to supply
a record to LFN 42, this field should be “05200. The word-count and buffer-address define
the record being stored. Upon return from this service, the A register is set to reflect the
status of the call:

A = 0 Record stored as requested

1 A record has already been stored on this
logical file (disc only).

2 Status call not yet done for specified
logical file (disc only).

3 Specified logical file not assigned.
4 Record larger than 255 words (disc only).
5 Invalid device type.

If the specified LFN is not open, the program will abort. Any $1/0 function code other than
'24-dumpbuffer, ‘13-open, ‘00-status, '37-flushbuffer and ’21-backspace record will
eliminate the backstored record. For information on the $1/0 function codes, see the
VULCAN 1/0 Service manual, Harris publication no. 0860004.

4.8 $CHWORK

The Check Work service determines syntactically if a specified area name is that of avalid
work file. The calling sequence is:

TLO PARLIST

BLU $CHWORK
PARLIST .D.A.TA T"areaname’’

DATA T"qualifier”

43

0860003-004
Rev. C 12/78

CHAPTER 5
REAL TIME SERVICES

5.1 REAL TIME PROGRAM CONTROL

Real Time services are designed to provide the user with a flexible method for controlling

real-time programs under VULCAN. The services are designed to affect the operation of

real-time programs only. However, most services may be invoked by any program executing

under VULCAN. Some, such as $SUSP, $SPABORT, and $RSTRT, may only be called by

real-time programs and require the user to have abort access, as defined at GENASYS. '
Additionally Operator Communications provides access to most of these services, allowmg

the operator to control the real-time system.

5.1.1 Sleep State

All real-time and monitor programs may ‘‘go to sleep’’ using the $SLEEP service. The sleep
state is a self-invoked suspension. Once a program has gone to sleep, it remains in the
program list in a suspended state until awakened by another program, the operator, a timer
schedule activation, or an external interrupt. This provides a means for a program to rapidly
go into execution following an external stimulus, rather than waiting for a complete load
operation. .

5.1.2 Timer Schedule

The Timer Schedule services provide means for activating tasks at specified intervals, or at a
specific time. Timer scheduled events are based on the 120 Hertz clock (100 Hertz on 50
cycle power systems), and may be specified in terms of clock ticks. There are 120 clock
ticks per second on a 60 cycle power system, 100 clock ticks per second on a 50 cycle
power system.

Timer scheduling may be used for two functions: program initiation and program wakeup.
The Wakeup and Sleep services are recommended for use with programs that must be
activated more often than once every two seconds. These services ensure that a program will
be ready when called upon. The Initiate service should not be used with these frequently
activated programs because it is impossible to load and unload real-time programs more
often than once every two seconds.

Two types of schedule entries are available: temporary and permanent. Temporary schedule
requests are lost when the system is booted from disc. Permanent entries remain through
system boots (they are kept on a disc area) and will be recalibrated to the current time each
time the system is booted. Events scheduled to occur while the system is not operatmg are
ignored.

0860003-003
Rev. B 5/78

5.2 S$INIT

The Initiate service initiates real-time programs at a specified time and date by loading the
program and placing it in execution. This service can also be used to place the initiated
program on a timer schedule so that the program will be reinitiated at regular intervals. The
specified interval must not be less than two seconds. The calling sequence is:

TLO PARLIST
BLU SINIT

where the parameter list is defined as:

PARLIST +0 } 8-character program areaname in truncated
: +1 ASCII.
+2 } 8-character program qualifier in truncated
+3 ASCII.
+4 Execution priority. If a -1 is entered,

the Vulcanized priority for the program

is used. Note, however, that the -1
parameter will cause three additional disc
accesses to occur during the execution of
the $INIT call. The priority may not exceed
the user’s priority limit.

+5 Initiation parameter. Passed to program
at initiation and loaded in its K register.

+6 Days in future from current day to start
program.

+7 Hour of day to start program. *(0-23)

+8 Minutes of hour to start program. *{0-59)

+9 Seconds of minute to start program. *(0-59)

+10 Ticks of clock after specified second to

start program (0-119 or 0-99). If these
words are negative, the current value in
the time-of-day clock is used.

+11 Period for re-initiation in days.

+12 Period for re-initiation in hours.:

+13 Period for re-initiation in minutes.

+14 Period for re-initiation in seconds.

+15 Period for re-initiation in clock ticks.

+16 Zero for temporary schedule entry, non-zero

for permanent entry

Upon exit from this service, the A register will be set.

5-2

0860003-003

Rev. B 5/78
A = 0 Operation performed as requested
1 invalid priority
2 Initiation interval of less than 2 seconds requested
3 Specified starting time has already passed

Four FORTRAN calls are available to perform the above functions. They are:

1. To initiate a program only once: CALL TOADS {"INITIATE’, name, priority, param,
istat)

2. To initiate a program only once at some time in the future: CALL TOADS (‘FSTART’,
name, priority, param, dd, hh, mm, ss, tt, perm, istat)

3. To schedule a program for periodic initiation: CALL TOADS (‘PSTART’, name,
priority, param, rdd, rhh, rmm, rss, rtt, perm istat)

4. To schedule a program for periodic initiation at some tine in the future: CALL
TOADS (‘DSTART’, name, priority, param, dd, hh, mm, ss, tt, rdd, rhh, rmm, rss, rtt,
perm, istat)

The parameters are specified as follows:

name A 17 character string giving the qualifier and areaname of the program to
initiate in standard disc area format.

priority Priority at which the program will execute; no greater than the user’s
maximum priority. ‘

param The initiation parameter which is passed to the program in the K register
when it is initiated.

dd Number of days in the future before the program is to be initiated.
istat An integer variable set as defined by the A register above.

hh Time in hours (24 hour clock) when the program is to be initiated.
mm Time in minutes when the program is to be initiated.

ss Time in seconds when the program is to be initiated.

tt Time in ticks when the program is to be initiated.

0860003-001

Original 8/77

rdd Number of days between program re-execution.

rhh Number of hours between program re-execution.

rmm Number of minutes between program re-execution.

rss Number of seconds between program re-execution.

rtt Number of ticks between program re-execution.

perm A flag to indicate whether or not the program is to be permanently
scheduled. |f a program is permanently scheduled, the scheduling
information will be retained between re-boots of the system. To indicate
that the program is to be permanently scheduled, perm should be set to a
non-zero value. o

Examples

1. Initiate program 1234ABCD*CAT immediately just orice, with parameter -2 at priority

50:

TLO PARLIST
BLU $INIT

PARLIST DATA T “CATHELEL"
DATA T*1234ABCD"”
DATA 50
DATA -2
DATA 0
DATA -1,-1,-1, -1
DATA 0,0,00,00

or CALL TOADS ('INITIATE’, 17H1234ABCD* CATEEEPE, 50, -2, ISTAT)

2. Initiate program 1234ABCD*CAT at exactly 11:30 A.M. every day after today, using
parameter -2 at priority 50.

TLO PARLIST
BLU SINIT
PARLIST DATA T“CATHBBLY"
DATA T1234ABCD”
DATA 50
DATA 2
DATA 1 tomorrow
DATA 11
DATA 30 11:30 AM.
DATA 0
DATA 0
DATA 1
DATA 0,0,00
DATA -1 (permanent)

or CALL TOADS (‘DSTART’, 17H1234ABCD*CATHg¥PK¥, 50, -2, 1, 11, 30,
C 0,0,1,0,0,0,0,-1, ISTAT) -

R4

0860003-002
Rev. A 12/77

5.3 $WAKEUP

The Wakeup service is used to wakeup or trigger a sleeping program at a specified time and
date and with an optional repeating frequency. In all cases, the program must be sleeping for
this operation to have any effect. The calling sequence is:

TLO PARLIST
BLU $WAKEUP

where the parameter list is the same as for SINIT.
Upon exit from this service, the A register will be set as:
A = -1 Program not found
-2 Program not asleep
0 Operation performed as requested
Four FORTRAN calls are used to access the above functions. They are:

1. Wakeup a program just once: CALL TOADS (‘WAKEUP’, name, param, istat)

2. Wakeup a program at some time in the future: CALL TOADS (‘FWAKEUP’, name,
param, dd, hh, mm, ss, tt, perm, istat)

3. Schedule a program for periodic wakeup: CALL TOADS (‘PWAKEUP’, name, baram,-
rdd, rhh, rmm, rss, rtt, perm, istat)

4. Schedule a program for periodic wakeup beginning at some time in the future: CALL
TOADS (‘DWAKEUP’, name, param, dd, hh, mm, ss, tt, rdd, rhh, rmm, rss, rtt, perm,
istat)

The parameters are defined as for $INIT.

Example

Wakeup prbgram 1234ABCD* CAT immediately and once every second thereafter:

TLO PARLIST
BLU SWAKEUP

PARLIST DATA T"CAT}S}S)‘)S)&"
DATA T*1234ABCD"”
DATA 0 :
DATA -2 parameter
DATA 0 first wakeup
DATA -1,-1,-1,1 is now
DATA 0,00
DATA 1 1 second
DATA 0
DATA 0 (temporary)

or CALL TOADS (‘PWAKEUP’, 17H1234ABCD*CATE¥MY, -2, 0, 0, 0,
‘C 0,1,0,0, ISTAT) '

0860003-001
Original 8/77

54 S$TERMIN

The Terminate service is used to remove a program entry from the timer schedule. A user
may terminate a program only if the user put the program on the timer schedule. Any
scheduled program may be terminated from the operator terminal. The calling sequence is:

TLO PARLIST
BLU $TERMIN
PARLIST DATA Tareanamequalifier”

where the parameter list contains the program disc areaname and qualifier as 16 ASCII
characters.

The entry for the specified program is removed regardless of whether the entry was
temporary or permanent. The corresponding FORTRAN call is:

CALL TOADS (‘TERMINATE’, name)
Example

Remove program 1234ABCD*CAT from the permanent wakeup list:

TLO PARLIST
BLU $TERMIN
PARLIST DATA T“CATHBBEE1234ABCD"

or CALL TOADS (‘TERMINATE’, 17H1234ABCD*CATHBPK)

0860003-004
Rev. C 12/78

5.5 $SLEEP

The Sleep service is the means by which a program places itself in the sleep state. It will
remain in this state until aborted or triggered by a wakeup request by another program,
timer schedule, operator, or external interrupt. The E, V, and H registers are preserved
through the sleep call. The K register will return the Wakeup parameter passed by the
program making the wakeup call. The calling sequence is:

BLU $SLEEP

When awakened, execution continues at the instruction following the BLU $SLEEP. The
FORTRAN call is:

CALL TOADS (‘SLEEP’)

5.6 SDEXIT

The Delay Exit service is a mechanism by which a program exits from the system for a
specified time interval, and is then re-initiated. The calling sequence is:

TOK n
BLU $DEXIT

where n is the number of clock ticks to delay before initiating.

When the call is made, the program is entirely unloaded from memory and all allocated
resources are removed. When the specified interval has elapsed, a new copy of the program is
loaded from disc as in any other program initiation. This service may be used only by
real-time or monitor programs.

Example

Exit for 5 seconds and then be reloaded (assume a 120 Hz clock).

TOK 600
BLU $DEXIT

5.7 $SuUSP

The Suspend service enables one program to suspend another program from execution for
an indefinite period of time. A Release Program command from the operator or another
program is required to continue execution. This service can only be called from monitor or
real-time programs.

The calIing'sequen.ce is:

TLO PARLIST
BLU $SUSP

57

0860003-004
Rev. C 12/78

where the parameter list is:

PARLIST +0} 8-character program areaname in
+1 truncated ASCII.
+2 } 8-character program qualifier in
+3 truncated ASCII.
+4 Physical device number used to

distinguish multiple copies of the
same program. This is the diagnostic
PDN of the desired program. If zero,
the highest priority program with the
specified name is suspended.

Upon return from this service, the A register is set:

A = 0 Operation performed as requested.
< 0 Program not found.
> 0 Program found, but already suspended.

The corresponding FORTRAN 66 call is:
CALL TOADS (‘SUSPEND’, name, pdn, istat)
The parameters are:

name A 17-character string giving qualifier and program‘name in standard disc
area format.

pdn The diagnostic PDN or zero...
istat An integer variable set as defined by the A register.
Example '

Suspend program 1234ABCD*CAT executing from terminal 42:

TLO PARLIST
: BLU $SUSP
PARLIST DATA T “CATHBEYK"
DATA T1234ABCD"
DATA - 42

or CALL TOADS (‘SUSPEND’, 17H1234ABCD* CATBBPY,42, ISTAT)

0860003-004 -
Rev. C 12/78

5.8 $RSTRT

from the point at which it was suspended. This service can only be called from monitor or

The Restart service releases a suspended program. The program will continue execution l
real-time programs.

The calling sequence is:

TLO PARLIST
BLU $RSTRT
where the parameter list is:

PARLIST +0 } 8-character program areaname in
+1 truncated ASCII.
+2} 8-character program qualifier in
+3 truncated ASCII.

PARLIST +4 Physical device number used to

distinguish multiple copies of the
same program. This is the diagnostic
PDN of the desired program. |f zero,
the highest priority program with the
specified name is released.

Upon return from this service, the A register is set as:

A = 0 Operation performed as requested
< 0 Program not found
> 0 Program found but not suspended
The FORTRAN 66 call is: - l

CALL TOADS (‘RESTART’, name, pdn, istat)

The parameters are:

name A 17-character string giving qualifier and program name in standard disc
area format.

pdn The diagnostic PDN or zero.

istat An integer variable set as defined by the A register

5.9 $QSTAT

The Query Status service is used to examine the status of another executing program. The
calling sequence is:

TLO PARLIST
BLU $QSTAT

59

0860003-002
Rev. A 12/77

where the parameter list is:

PARLIST +0 } 8-character program areaname in
+1 truncated ASCII.
+2 } 8-character program qualifier in
+3 truncated ASCII.
+4 Physical device number used to distinguish

multiple copies of the same program. If
zero, the highest priority program with
the specified name is tested.

Upon return from this service, the A register is used to return the status of the examined
program. A may be:

A = -1 Program not found
+1 Program is suspended
+2 Program is aborting
+3 Program is loading
+4 Not used.
+5 Program is sleeping
+6 Program is waiting for 1/0 transfer
+7 Program is in execution

in the event of more than one of the above conditions being true, the smallest number will
be returned. :

The FORTRAN: call is:

CALL TOADS (‘STATUS’, name, pdn, istat)

The parameters are:

name

pdn
istat

Example

A 17-character string giving qualifier and program name in standard disc
area format.

The diagnostic PDN or zero.

An integer variable set as defined by the A register.

Examine the status of program 1234ABCD*XYZ.

5-10

TLO PARLIST
BLU $QSTAT
PARLIST DATA T XY ZRpppp”
| DATA T1234ABCD"
DATA 0

or CALL TOADS (‘STATUS’, 17H1234ABCD* CATipHY, O, ISTAT)

0860003-004
Rev. C 12/78

5.10 $PABORT

The Program Abort service enables one program to remove another program from the

system. This service can only be called from monitor or real-time programs.

The calling sequence is:

TLO PARLIST
BLU $PABORT
where the parameter list:
PARLIST +0 } 8-character program areaname in
+1 truncated ASCII.
+2} 8-character program qualifier in
+3 truncated ASCII.
+4 Physical device number used to

distinguish multiple copies of the
same program. :

Upon return from this service, the A register is used to return the status of the call as:

A = 0 Operation performed as specified
< 0 Program not found
> 0 Program found and already aborting

The C register reflects the condition of the A register.
The corresponding FORTRAN 66 call is:
CALL TOADS (‘ABORT’, name, pdn, istat)

The parameters are:

name A 17-character string giving qualifier and program name in standard disc

area format.

pdn The diagnostic PDN or zero.
istat An integer variable set as defined by the A register.
5.11 $PRIOR

The change Priority service allows a program to change its own priority or the priority of

another program. The calling sequence is:

TLO PARLIST
BLU $PRIOR

5-11

0860003-005
Rev. D 2/80

where the parameter list is defined as:

PARLIST +0
: +1

+2
+3

+4

+5

8-character program areaname in
truncated ASCII whose priority is to

be changed. If both words are zero,

the calling program’s priority is changed.

8-character program qualifier in
truncated ASCII.

Physical device number used to distinguish
multiple copies of the same program, or PCA
address of the program. If B23 is set, the pdn
is assumed to be a control point letter. If zero,
the highest priority program of the specified
name is changed.

New priority value.

Upon return from this service, the A register is set to reflect the status of the call:

A = A

v
o

The FORTRAN call is:

Failed to find program

Cannot change memory-resident real-time
to non-resident

Invalid priority requested

Function performed as requested

CALL TOADS (‘PRIORITY”’, name, pdn, new-priority, istat)

The parameters are:

name “A 17 character string containing the program qualifier and area name

which is to be

changed. A qualifier and area name of

“QRPEEEEE*PEEE@E@E@®@@" will refer to the calling program’’.

pdn The optional terminal number or zero as discussed above.
new-priority The new priority value
istat An integer variable which is set to reflect the status of the call as returned

in the A register.

5-12

0860003-001
Original 8/77

Example

Change the priority of the calling program to 40.

TLO PARLIST
BLU $PRIOR
PARLIST DATA 0,0
BLOK 3
DATA 40

or, assuming calling program is 1234ABCD*CAT,
CALL TOADS (‘PRIORITY’, 17H1234ABCD*CATHBHY, O, 40, ISTAT)

5.12 $CONNECT

The Connect service is used to connect a real-time program to an unused external interrupt,
and optionally arm and enable that interrupt. When the interrupt occurs, the program will
be awakened from the sleep state. The calling sequence is:

TLO PARLIST
BLU $CONNECT

where the parameter list is defined:

PARLIST +0 8-character program areaname in

+1 truncated ASCII.

+2} 8-character program qualifier in

+3 truncated ASCI.

+4 External interrupt number. Group 1 is
numbered 0-23, and group 2 is numbered
24-47. :

+5 Parameter to be passed to program’s K
register when awakened.

+6 -1: temporary, arm and enable interrupt
immediately.

0: temporary, do not restore on reload
of system, do not arm and enable interrupt.

1: permanent, restore on reboot.

2: permanent, restore on reboot and arm
and enable interrupt.

513

0860003-001
Original 8/77

Upon exit from the service, the A register will be set:

A = 0 Operation performed as requested
1 Interrupt level does not exist
2 Interrupt level is used by standard system 1/0O device
3 Interrupt level is already connected to a program

The FORTRAN calling sequence is:
CALL TOADS (‘CONNECT’, name, interrupt, parameter, perm, istat)

The parameters are:

name ' A 17 character string containing the program name and qualifier.

interrupt The interrupt level to be connected (0-47).

parameter The value to be loaded in the program’s K register when awakened.

perm The flag set to indicate the type of operation: -1: temporary, do not

reload on reboot, arm and enable interrupt immediately.
0: temporary, do not arm and enable interrupt.

1: permanent, restore entry on reload of VULCAN, but do not arm and
enable interrupt.

2: permanent, and arm and enable interrupt immediately and on each
system load.

istat An integer variable which is set to the contents of the A register following
the operation as discussed above.

Example

Connect program 1234ABCD*CAT up to interrupt level 5 on group 2, with parameter -2:

TLO PARLIST
BLU $CONNECT
PARLIST DATA T CATEEBBE"
DATA T“1234ABCD”
DATA 29
DATA -2
DATA 0

or CALL TOADS ("CONNECT’, 17H1234ABCD*CAT)§WW, 29,-2,0, ISTAT)

514

0860003-001
Original 8/77

5.13 $DISCONNECT

The Disconnect service is used to remove a program connected to the specified external
interrupt. The interrupt is also disarmed by this call. The calling sequence is:

TOK : interrupt
BLU $DISCONNECT

where “interrupt’” is the external interrupt number from which the program is to be
disconnected. '

Upon return from this service, the A register is set:

A = 0 Operation performed as requested
1 Invalid interrupt designation
2 Specified interrupt level does not have a program connected
toit

The FORTRAN calling sequence is:
CALL TOADS (‘DISCON’, interrupt, istat)
The parameters are:
interrupt The interrupt level to be disconnected as discussed above.

istat An integer variable which is set to the contents of the A register as
discussed above following the operation.

Example
Disconnect the program from interrupt level 5 on group 2:

TOK 29
BLU $DISCONNECT

or CALL TOADS (‘DISCON’, 29, ISTAT)

5.14 $ENABLE

The Enable service is used to arm and enable a specified interrupt level. A program must be
connected to the level. The calling sequence is:

TOK interrupt
BLU $SENABLE

where ‘‘interrupt’’ is the external interrupt number.

0860003-001
Original 8/77

Upon return from the service the A register is set:

A = 0 Operation performed as requested
1 Interrupt invalid or does not exist
2 No program is connected to specified interrupt level

The FORTRAN calling sequence is:

CALL TOADS (‘'ENABLE’, interrupt, istat)
The parameters are:
interrupt The interrupt level

~ istat An integer variable which is set to the contents of the A register upon
completion of the operation.

Example
Enable interrupt level 5 on group 2:

TOK 29
BLU $ENABLE

or CALL TOADS (‘ENABLE’, 29, ISTAT)

5.15 SINHIBIT

The Inhibit service is used to disarm and inhibit a specific external interrupt level. A
program must be connected to the interrupt level. The calling sequence is: '

TOK ; interrupt
BLU SINHIBIT

where “interrupt’ is the external interrupt level designation.

Upon return from this service, the A register is set to reflect the status of the operation as:

A = 0 Operation performed as requested
1 Interrupt invalid or does not exist
2 No program is connected to the specified interrupt level

516

0860003-001
Original 8/77
The FORTRAN calling sequence is:
CALL TOADS (‘INHIB’, interrupt, istat)
The parameters are:
interrupt The interrupt level

istat An integer variable which is set to the contents of the A register given
above upon completion of the operation.

Example

Disable level 5 on group 2:

TOK 29
BLU SINHIBIT

or CALL TOADS (‘INHIB’, 29, ISTAT)

o= avefles a2

0860003-004
Rev. C 12/78

CHAPTER 6
TIME/DATE SERVICES

6.1 $DATE

This service returns the current date and time in ASCII format. The calling sequence is:

TLO PARLIST
BLU $DATE
PARLIST BLOK 6
Upon return PARLIST will contain:
PARLIST +0 day (ddp)
+1 month (3-letter abbreviation)
+2 year (Byy)
+3 hours after midnight (hh)
+4 minutes (:mm)
+5 seconds (:ss)

For example, if the current date and time were 11:24 PM on July 3, 1974, the service would
return:

PARLIST +0 B3y
+1 JUL
+2 p74
+3 %23
+4 124
+5 :00

The $DATE service also allows a special calling sequence which converts a date in $TIME
format to that described above. The calling sequence is:

TLO PARLIST
NSK
‘BLU $DATE
PARLIST BLOK 6 '

where Bit 23 of the K register indicates that the date to convert is located in PARLIST+0
and PARLIST+1.

6-1

0860003-004
Rev. C 12/78

6.2 STIME

This service returns the current date and time in binary format. It is called by:
BLU $TIME

Upon return the A and E registers are set:

A = tenths of seconds since midnight _
E = (bits 23-12) year
(bits 11-0) day of year, 1-366
K = number of clock ticks since last tenth second
6.3 SEXTIME

The $EXTIME service returns the execution time of the current job or program. This is the
CPU time that the program has used up to that point. It is called by: :

BLU $EXTIME
Upon return the D register contains the current execution time in T register increments. The
K register is set to a constant which is the number of T increments per second for the
particular CPU.

For example, the SEXTIME service can be used to return a value in seconds.

BLU $EXTIME
DVK

$EXTIME can be used to return seconds and milliseconds with the sequence:

BLU $EXTIME
DVK

TAM seconds
TEA

MYO 1000

DVK

TAM milliseconds

Note that this service will return unspecified values if the program making the call has been
Vulcanized as ‘non-accounting’, or if the system has been generated as not having the timer
option.

6.4 $STRTIM

The Start Time service returns the date and time at which this real-time program, terminal,
or control point began execution. It is called by: :

BLU $STRTIM
~ Upon return, the E register contains the starting date in $TIME format. The A register is set

to the starting time in tenths of seconds since midnight.

6-2

0860003-006
Rev. E 1/81

CHAPTER 7
TEMPORARY STORAGE SERVICES

For user or system subroutines to be reentrant, temporary storage is usually required.
Therefore, all programs have cataloged into them a variable size temporary storage area. The
default size is 125 words. The system services and control routines utilize this area, which is l
also available to user routines.

7.1 $PUSH

The $PUSH service allocates temporary storage by executing a “’push down’’ on the storage
stack. The calling sequence is:

TJK
BLU $PUSH
DATA n

where n is the number of temporary cells to be allocated.

The K register value to $PUSH is saved as the return address for the subsequent $POP call.
Return from $PUSH is to the location following “DATA n’’ and the J register will be set to
the value of the K register on input. The | register points to the first available temporary
cell. The E register is saved across the call.

On each $PUSH call, the system increases the number of cells requested by 2 to allow

storage of internal pointers. An abort will result if an attempt is made to push more
temporary storage than has been allocated.

7.2 $POP

The $POP service releases temporary storage and returns to the address passed in K on the
corresponding $PUSH call, and thus is the complement of the matching $PUSH call.

The A, E, and K registers remain intact through the $POP call. The | register returns the
current pointer to the temporary area as set after the storage has been released. The calling
sequence is:

BLU $POP

741

0860003-001
Original 8/77

7.3 $TEMP

The Temp service picks up the current value of the temporary storage pointer as determined
by the preceding $PUSH or $POP calls. The calling sequence is:

BLU $TEMP

The A, E, and K registers are not destroyed and the | register is returned as the current
temporary storage value.

7.4 TEMPORARY STORAGE EXAMPLE

The following example is a reentrant user subroutine using temporary storage to achieve
reentrancy. The subroutine saves the calling parameter, which is a floating point number,
multiplys it by a constant, and adds in the value in temporary storage, leaving the result in
the X register.

XDEF SUB,ENTRY

ENTRY GAP 1
TIE Save argument pointer
TJK
-BLU $PUSH
DATA 2
TEK K = Argument pointer
TMX* DACO/K Pick up argument
TXM 0,1 Save in temp.
MMX CONS
AMX 0,1 . Add in original argument
BLU $POP

CONS DATA 2.4D1

DACO/K LAC 0,K
END

This routine would be called:

BLL $SUB
DAC argument

7-2

0860003-007
Rev. F 1/82

CHAPTER 8
MEMORY ALLOCATION SERVICES

Blocks of memory may be allocated using the Dynamic Core Manager (DCM). These blocks
are allocated from the program’s logical address space and thus do not remain when a
program exits or chains to another program.

The logical address space from which the blocks are allocated is called dynamic memory. It
is above all program code, data, and temporary storage, extending up to the maximum
number of pages allocated when the program is Vulcanized.

Dynamic memory is divided into two parts: regular dynamic memory and special common
dynamic memory. For “‘non-X'’ programs, the regular dynamic memory cannot exist above
64K words of memory. Regular dynamic memory is followed by special common blocks, if
referenced in the program, and by special common dynamic memory. Special common
blocks and special common dynamic memory may begin below 64K. “ X" programs may not
have any special common dynamic memory.

There are normally three 1024-word pages of regular dynamic memory Vulcanized with
each interactive or control point program. The number of pages of regular dynamic memory
may be modified with the Vulcanizer ALLOCATE statement. Special common dynamic
memory pages, not normally included, may be Vulcanized with the program by using the
Vulcanizer SPALLOCATE statement.

8.1 $DCM

The Dynamic Core Manager is used to allocate and deallocate buffer space within the logical
address space of the calling program. The following calling sequence is used to allocate
memory:

TOE address

TOK n

BLU $DCM

DATA function-code

where “n’”’ is the number of words to allocate, “‘address” is the address at or above which -
the block is to be allocated (function 4 and 6 only), and “function-code’’ indicates the type of
memory to be allocated. On return, the registers are set up as follows:

K = non-negative; address of allocated block.

-1, Insufficient space of the type requested exists in logical memory to satisfy the
request.

-2; Insufficient Monitor Memory exists for the program to allocate DCM linkage
blocks. Some of the program’s DCM, JCL registers, or LFN assignments must
be returned before the program can request more DCM.

0860003-007
Rev.F 1/82

condition of K

C

| current temp pointer

The function codes are:

1.

2.

Allocate regular DCM memory.

Allocate regular DCM memory in semi-conductor memory which has been previously
resourced by the $RSOURCE service.

Allocate regular DCM memory at or above the address specified in E.

Allocate special DCM memory. “X” mode program’s cannot use this call since they
have no special DCM memory. If an X" program uses this call, it will return a message
saying “THERE IS NO SPECIAL DCM".

Allocate special DCM memory at or above the address specified in E. X" mode
programs cannot use this call since they have no special DCM memory. If an “X"”
program uses this call, it will return a message saying “THERE IS NO SPECIAL DCM"".

The following calling sequence is used to deallocate all types of DCM memory:

TMK address
BLU $DCM
DATA 2

where “address’’ contains the address of the memory block to be deallocated. There are no
error returns; an invalid address causes the program to abort.

8-2

0860003-004
Rev. C 12/78

8.2 $LSPACE

The Largest Space available service returns to the user the size of the largest block of
memory that could currently be allocated by $DCM. The calling sequence is:

BLU $LSPACE

On return, the E register is set to contain the size of the largest memory block available in
regular dynamic memory, and the K register is set to contain the size of the largest block of
special dynamic memory.

8.3 $MSPACE

The Map Space service returns to the user the size of the largest block of regular dynamic
memory, in a particular 32K memory map, at or above a specified address. The calling
sequence is:

TOK address
BLU $MSPACE

where address is the address, in a regular dynamic memory map, at or above which the
memory block is to be found. On return, the E register contains the size of the largest block
and the K register contains the total available regular dynamic memory at or above the
specified address in the same map.

8.4 SYSTEM USAGE

The VULCAN system uses program logical address space for each blocked disc area which is
open. The number of words used is the number of words in the block plus three. For
example, a blocking factor of 2 will cause an allocation of 2 * 112 + 3 = 227 words when
opened. With a maximum blocking factor of 7, the system will use 787 words per blocked
disc area open. If the disc area is double buffered, twice as'much space will be used by the
system. :

When using the $LSPACE service care should be taken to leave enough space for subsequent
blocked area opens. Each active $ADD file requires one additional blocking buffer area.

This example determines the largest available space, allocates it, and later returns the space.

BLU $LSPACE \
TEK
BLU $DCM
DATA 1
CzZK
BON no space
TKM BLOK
TMK BLOK
BLU $DCM
2

DATA

8-3/(8-4 Blank)

0860003-004
Rev. C 12/78

CHAPTER 9
DISC MANAGEMENT SERVICES

9.1 DISC AREA TYPES

Disc areas are classified according to type. The most basic classification is Program area or
Data area. Program areas are always unblocked areas and are generated by the Vulcanizer, or
by copying a program area to a non-existant area name. Reentrant library areas are created
by the Vulcanizer and are classified as program areas. Areas created through Job Control for
the storage of monitor common blocks are treated as program areas also.

Data areas may be generated using Job Control or user programs, and may be blocked,
unblocked, or random access.

The type of the area is stored in the Qualifier Disc Directory (QDD) entry for each area.

‘Table 9-1 shows the format of the QDD entry. Tables 9-2, 9-3, and 9-4 give further
information about specific area types.

Table 9-1. Format of QDD Entry

Field Name Word Usage
M/NAME 0,1 Area name
M/MAI 2 Starting sector number of Master Area Index
M/GRANL 3 B23 Create pendirig flag
| B20-BO Granule size in sectors
M/USER 4 High order 24 bits of user number
M/PACK 5 B23-B12 Low order 12 bits of user number
B11-BO Pack number
M/PROT 6 B18-B12 Access bits
B3-BO Access level
M/TYPE 7 B23 On for program areas
B22 On for core directory
B21 On for blocked disc areas
(always off for programs)
B20 On for random disc areas

(always off for programs)
B19-BO Additional type information

(see Table 9-2)
M/TYP1 8
M/TYP2 9 Additional type dependent information
M/TYP3 10
M/TYP4 11 (see Tables 9-3 thru 9-4 for additional

information)

9-1

0860003-007
Rev.F 1/82

Table 9-2. M/TYPE Information in QDD

Program and Data Areas

B23: On — Program area
Off — Data area

B22: On — Core Directory
Off — Disc Directory

B21: On if blocked disc area
Always off for program areas

B20: On if random disc area
Always off for program areas

Data Areas

B19: On — Double buffered blocked area
Always off for unblocked areas or single buffered blocked
area

B11-B8: Blocked area type
0 — Blocked standard
1 — Blocked output spool
2 — Blocked input spool
3 — Blocked data queue

B7 — B3 Data area subtype
0 — Normal data area
1 — Checkpoint data area
2 — Checkpoint word area
3 — Checkpoint spool file
4 — Swap area

B2-BO Type number (O through 7)

Program Areas

B19: On for multiple copy execution

B18: On for reentrant programs

B17: On for overlay programs

B16: On for “X" programs

B15: On for high core non-resident handler on monitor program
B14: On for non-paged program (non-resident handler or monitor)
B13-10: Reserved for future use

B9: Program uses SAU code

B8: Program uses 3800 code

B7: On for reentrant library program

B6: On for interactive/control-point program

B5: On for real time program (RTor RRT)

B4: On for monitor common block program

B3: On for resident monitor common or real time program

9-2

0860003-007
Rev. F 1/82

Table 9-2. M/TYPE Information in QDD (CONT’'D)

Program Areas

B2-BO Program area type
000 Non-Resident handler
001 Monitor program
010 Reentrant library area
011 Interactive/control-point program
100 Real time program
101 Resident real time program
110 Monitor common block area

111

Resident monitor common block area

9-2.1/9-2.2 Blank

0860003-007
Rev.F 1/82

Table 9-3. M/TYP1, M/TYP2, M/TYP3, and M/TYP4

Data Area Information in QDD

Field Name | Bits

Usage

M/TYP1 B2-BO

Blocking factor (always zero for unblocked areas)

M/TYP2 B15-B8 PDN for spool devices (only for spool areas)

B7-BO Remote site spool device type (only for remote site spool area)
M/TYP3 Reserved for future use
M/TYP4

Table 9-4. M/TYP1, M/TYP2, M/TYP3, and M/TYP4

Program Area Information in QDD

Non-Resident Handler or Monitor Program area

M/TYP1 Number of words to allocate for temporary stack (Monitor
programs only)

M/TYP2 Size of program in words

M/TYP3 Number of words in high map relocation vector

M/TYP4 Reserved for future use.

Reentrant Library area

M/TYP1 Number of words in program and data area.
M/TYP2 B15-B8 Number of reentrant pages.

B7-BO Number of data pages.
I\M/Igzgi Reserved for future use.

Interactive, Control

Point, or Real Time Program area

M/TYP1 Address of TEMP module.
M/TYP2 B23-B12 Number of reentrant pages.
B11-BO Number of paging registers required for program.
M/TYP3 B16-B12 Number of reentrant library pages.
B6 Program is checkpointed
B5 Program has subsystem access
B4-BO Number of data library pages
M/TYP4 B23-B12 Number of pages of monitor common.

B11-BO Number of non-reentrant program pages before
dynamic memory.

0860003-006
Rev. E 1/81

Table 9-4. M/TYP1, M/TYP2, M/TYP3, and M/TYP4
Program Area Information in QDD (CONT’D.)

Monitor Common Area

M/TYP1 Number of pages in monitor common block.

M/TYP2 Absolute page number for resident monitor common block.
M/TYP3 Reserved for future use.

M/TYP4

9.2 S$GENERATE

Disc areas may be created by using the Generate service. The calling sequence for this service
is:

TLO PARLIST
BLU $GENERATE

The parameter list is defined as:

PARLIST +0 } Areaname. Format is truncated ASCII (8 6-bit characters).
+1

+2 } Qualifier. Format is truncated ASCI| (8 6-bit characters).
+3 If other than blanks or the user’s sign-on qualifier is
entered, the user must have the appropriate access bit.

First four characters are account, second four are identifier.
If both words are zero, then the system qualifier is used.

if all 8 characters are blanks, then the user’s default
qualifier is used unless areaname is a workfile, in which
case the user’s sign-on qualifier is used.

+4 Granule size in sectors. If zero, default granule size for
the specified disc pack is used.

If bit 23 is set and this is an interactive or control-point
work area, the work area will be generated with its default
granule size and the specified granule size will be ignored.

If bit 22 is set, multiple granules will be allocated. The
number of granules to allocate is determined by the current
size, in sectors, in PARLIST+18.

If bit 21 is set and this is an interactive or control point
work area, the work area will be generated with its default
disc area type and the specified disc area type will be
ignored. If this is not a work area, bits 23 and 21 are
ignored.

9-4

PARLIST

+6

+7

+8

+9

+10

+11

+12

+13

+14
+15
+16
+17

+18

0860003-002
Rev. A 12/77

Maximum size in sectors to which this disc area may expand.
If zero, system default maximum area size is used.

Pack number. This pack must have been resourced if it is not
a permanently mounted pack. If zero, user pack is used.

Disc area type, as in Table 9—2.

Purge date. Entered as number of days the disc area will
be saved. If zero, the system default is used.

Blocking factor. Sectors per block specification for blocked
disc areas. Must be in range of 1-7. If zero, default for
the disc pack is used.

Spool PDN. Normally used only on system generated spool
disc areas.

Access bits:
Bit 6: 1 = public

0 = account
Bit 5 set: public/account read
Bit 4 set: public/account write
Bit 3 set: public/account execute
Bit 2 set: public/account delete
Bit 1 set: owner write
Bit O set: owner delete

Access Level. (0-15)

Forced starting sector. This must be input as an absolute
sector on the specified pack. If zero, the disc area is
generated wherever space exists.

Words M/TYP1 through M/TYP4 used by Vulcanizer for generating

program areas, or area name of edit area used by Job Control
for generating TP area during edit.

Number of sectors to aliocate on generation. Used if bit 22
is set in PARLIST +4. If zero, one granule is allocated.

9-5

0860003-007
Rev.F 1/82

On return from the $GENERATE call, the status of the operation is returned in the A
register as:

A = 0 Function performed as specified
1 Area name already used on master disc
2 No space on disc pack
3 No space on master disc to create qualifier directory
4 No space on satellite pack to create qualifier directory
5 Fatal disc 1/O error occurred
6 Area name already used on satellite disc
7 Pack not resourced
8 Invalid access level requested
9 Spool PDN supplied on non-spool generate
10 invalid sectors per block specification
11 Invalid area name syntax.
12 Old name for TP create does not exist
13 Old area for TP create does not have write access
14 Maximum size is less than granule size
15 Invalid granule size specified
16 User does not have proper access for this qualifier
17 User not allowed access to CD type
18 User not allowed to Vulcanize this program type
25 Granule size incorrect for area type

For example, with

Name = 1234ABCD* XYZ
Pack = 1
Granule Size = 20 sectors
Maximum size = Default
Type = Blocked data, 2 sectors per block
Access = Owner only
The call would be:
TLO PARLIST
BLU $GENERATE
BNZ error
PARLIST DATA T“XYZszjdk{jz{jd"
DATA T1234ABCD”
DATA 20
DATA 0
DATA 1 pack =1
DATA ‘10000000 type = blocked
DATA 0
DATA 2 blocking factor
DATA 0
DATA 3 access
DATA 0 #
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

0860003-004
Rev. C 12/78

9.3 SELIMINATE

Disc areas may be deleted by using the Eliminate service. The calling sequence is:

TLO PARLIST
BLU $ELIMINATE
The parameter list is defined as:
PARLIST +0 Areaname. Truncated ASCII (eight 6-bit
+1 characters).
+2 | Qualifier. Truncated ASCII. First 4
+3 characters are account, second four

are identifier. If both words are zero,
the system qualifier is used. If both are
full of blanks, user's sign-on qualifier
is used.

Upon return, the A register is set to reflect the status:

A = 0 Function performed as specified
5 Fatal disc 1/0 error
7 Pack not resourced
1 Invalid area name syntax
20 Disc area is open to another program
21 Disc area does not exist
22 User does not have delete access

For example, to remove disc area 1234ABCD*XYZ:

TLO PARLIST
BLU SELIMINATE
BNZ error

PARLIST DATA T“XYZ BHBp8"
DATA T+1234ABCD”

9.4 $SRNAME

The name of a disc area, along with the qualifier, may be changed with the Rename service.
Changing the name of a disc area requires that the user have delete access to the disc area.
The calling sequence is:

TLO PARLIST
BLU $RNAME

9-7

0860003-004
Rev. C 12/78

The parameter list is defined as:

PARLIST +0 } " Old areaname. Eight characters in
+1 truncated ASCII.
+2 } 0ld qualifier. Eight characters in
+3 truncated ASCIL. If both words are zero,

the system qualifier is used. If all
eight are blanks, the sign-on qualifier
for the user is used.

+4} New areaname. Eight characters in

+5 truncated ASCI}. The first character
must be alphabetic.

+6 | New qualifier. Eight characters in

+7 truncated ASCII. First four are account,

second four are identifier. If both words
are zero, the system qualifier is used.

If both are blanks, the sign-on qualifier
for the user is used.

Upon return from this service, the A register is set to reflect the status of the operation, as:
A = 0 Function performed as requested.

1 New area name and qualifier combination
already exists on master disc.

3 No room on master disc to create qualifier
directory.
4 No room on satellite pack to create

qualifier directory.
5 Fatal disc I/O error.

6 New areaname and qualifier combination
' already exists on satellite disc.

7 Disc pack not resourced.
1 Invalid area name syntax.
20 Old disc area is in use by another program.
21 Old disc area does not exist.
22 User does not have delete access.

0860003-007
Rev. F 1/82

For example, to change disc area 1234ABCD*XYZ to 1234FGHI*XYZ:

TLO PARLIST
BLU $RNAME
BNZ error

PARLIST DATA T"“XYZ jaf}djzﬂzfjd"
DATA T“1234ABCD"”
DATA T XYZps
DATA T"1234FGHI”

9.5 SRTYPE

The disc area type, access, and other parameters may be altered for an existing disc area by '
using the $RTYPE system service. $RTYPE can only be used by the file’s owner. ,

The calling sequence is:

TLO PARLIST
BLU $SRTYPE
The parameter list is defined as:
EQIV PARLIST

RTINAME +0 Areaname. Eight characters in truncated

+1 ASCII.

RTIQUAL +2 Qualifier. Eight characters in truncated

+3 ASCIL. If both words are zero, the system
qualifier is used. If all blanks, the user’s
sign-on qualifier is used.

RTITYPE +4 B23: If B23 is set, bits 2-0 contain new type

(E23:RTICTY!) information, otherwise bits 2-0 are
ignored.

RTICCD! B22: If B22 is set, bit 20 contains the new
core dictionary information, otherwise
the core will not be changed.

RTINTY! B21: If B21 is set, PARLIST+9 through
PARLIST+12 contains M/TYP1 through
M/TYP4 words to retype (for program
retypes), otherwise the type words will
not be changed.

RTICD! B20: If O, The DD disc dictionary is requested.

RTICST! B19: If 1, indicates that there is a new Data

Area. Subtype in bits 7-3.
B18-8: Reserved for future definition.

'B7-3: Data area subtype.

0860003-007
Rev.F 1/82

RTIPROT

RTIMAX

RTIPURG

RTIACC

RTITYP1

RTITYP2

RTITYP3

RTITYP4

+5

+6

+8

+9

+10

+12

B2-0:

For data areas, Bits 2-O contain the new
disc area type. For monitor common
blocks, Bits 2-0 contain:

6 — non-resident monitor common blocks

7 — resident monitor common blocks

If non-zero, Bits 6-0 are new area access bits to be
ORed with existing access bits. If Bit 23 if set, then
old bits are not used, and Bits 6-O become new
access bits. See $GENERATE for the definition of
bits. If PARLIST+5 is zero, the access is left
unchanged.

If non-zero, new area maximum size in sectors. If
zero, maximum remains unchanged.

if non-zero, new purge date in future from current
day. If zero, purge date remains unchanged.

New access level. If zero, old access level remains.
To change the access level to zero, set bit 23 only.

New M/TYP1 word for program areas (not used for
monitor common retypes).

New M/TYP2 word for program areas.

New M/TYP3 word for program areas (not used for
monitor common retypes).

New M/TYP4 word for program areas (not used for
monitor common retypes).

Upon return from this service, the A register is set to reflect the status of the operation:

A =

9-10 -

0
5
7
11
20
21
22

Operation performed as requested
Fatal disc 1/0 error

Pack not resourced

Invalid areaname syntax

Disc area in use by another program
Disc area does not exist

User is not the owner of the disc area.

0860003-007
Rev. F 1/82

For example, to change the access of disc area 1234ABCD*XYZ to public read, owner
write, and owner delete:

TLO PARLIST
BLU $RTYPE
BNZ error
PARLIST DATA T“XYZ ppppp"”
DATA T“1234ABCD"
DATA 0
DATA B23B6B5B1B0
DATA 0
DATA 0"
DATA 0

9.6 $SQUEEZE

A disc area may be compressed to a smaller size with the Squeeze service. This routine is
used to remove granules from the end of the disc area. Blocked areas are automatically
compressed to contain only valid data by this service. The user specifies the resultant size
desired for unblocked areas. The Squeeze service requires that the user have delete access to
the disc area. The calling sequence is:

TLO PARLIST
BLU $SQUEEZE
The parameters are defined as:
PARLIST +0 Areaname. Eight characters in truncated
+1 ASCII format.
+2 } Qualifier. Eight characters in truncated
+3 ASCII. If both are zero, the system
qualifier is used. If blanks, the user’s
sign-on qualifier is accessed.
+4 For unblocked areas, this parameter is

required to be the number of sectors to
compress to. The disc area will be
compressed to the next larger granule
boundary above this size. This parameter
is not required for blocked areas.

9-10.1/9-10.2 Blank

0860003-007
Rev. F 1/82

Upon return from this service, the A register is set to reflect the status of the operation:

A =

5
7
11
20
21
22

Operation performed as required
Fatal disc 170 error

Disc pack not resourced

Invalid areaname syntax

Disc area in use by another program

Disc area does not exist
User does not have delete access to disc area.

For example, assume disc area 1234ABCD*XYZ is unblocked and currently has three
granules of 20 sectors each. Then, after the following call is made, it will have only two
granules of 20 sectors each:

PARLIST

9.7 $DASAVE

TLO
BLU
BNZ

DATA
DATA
DATA

PARLIST
$SQUEEZE
error

T"XYZ Bppp"
T"1234ABCD”

30

The $DASAVE service obtains disc area information on a single disc area or a group of

areas. The calling sequence is:

TLO
BLU
DATA

PARLIST
$DASAVE
n

where the contents of the parameter list is determined by the specific function invoked, and

n is the function code.

Each of these services return the QDD (Qualifier Disc Directory) entry for one or more disc
_areas. A QDD entry is twelve words long. A description of the QDD entry is provided in Table

9-1.

9-11

0860003-002
Rev. A 12/77

9.7.1 Single Disc Area Information

This function obtains the area information of the specified disc area. This information will
be returned only if the user has valid access to the disc area. The calling sequence is:

TLO PARLIST
BLU $DASAVE
DATA 6

On entry, the parameter list is defined as:

PARLIST +0 Areaname. Eight characters in truncated
+1 ASCII.
+2 } Qualifier. Eight characters in truncated
+3 ASCII.

If the disc area is located, the following information is returned.
PARLIST +4
Disc Area QDD entry.

. The user-number field will be set to zero.
+15

+16 Qualifier.

+17

+18 Current disc area size in sectors.
+19 Maximum disc area size in sectors.
+20 Purge date/time.

+21

+22 Generated date/time.

+23

+24 } Last referenced date/time.

+25

+26 } Last written date/time.

+27

If the disc pack was not resourced, PARLIST+18 will be set to -1, and PARLIST+19 to
PARLIST+27 will not be returned. All date/time fields are in $TIME format. The first word
has the year in bits 23-12, the day of the year in bits 11-0. The second word is the time in
tenths of seconds since midnight. Upon return from this service, the A register is set to
reflect the status of the call:

9-12

0860003-002
Rev. A 12/77

Disc area not there

Function performed as requested
Disc read error in MDD

Disc read error in QDD

Disc read error in specified disc area

NRWON

For example, to find out information about disc area 1234ABCD*XYZ:

TLO PARLIST
BLU $DASAVE
DATA 6
BNZ error

PARLIST DATA T"XYZﬂﬁW}{"
DATA T'1234ABCD"”
BLOK 24

9.7.2 Privileged Disc Area Information

This service is identical to the single disc area service except that it returns the correct user
number field. Only disc areas generated by the user may be accessed, unless the requesting
program is Job Control, and the user has System Save access. The calling sequence is:

TLO PARLIST
BLU $DASAVE
DATA 7

9.7.3 Multiple Disc Area Information

This service obtains the area names and corresponding parameters of all disc areas that
match a specified parameter or group of parameters.

information for up to 9 disc areas is returned on each call. Subsequent calls may be made to
obtain further disc areas that match the previously specified parameters.

The calling sequence is:

TLO ‘ PARLIST
BLU $DASAVE
DATA n

9-13

0860003-002
Rev. A 12/77

where the matching function is determined by n as listed in the following table.

n

<0

10

1"

12

13

>13

Function

Invalid.

Used for subsequent calls to continue returning information on previously
specified parameters.

Find all disc areas on requested pack number supplied in PARLIST+0.

Find all disc areas with requested qualifier supplied in PARLIST+2 and
PARLIST+3.

Find all disc areas on requested pack in PAR LIST+0 that have requested
qualifier in PARLIST+2 and PARLIST+3.

Find all disc areas with requested account number supplied in
PARLIST+2.

Find all disc areas on specified pack in PARLIST+0 having requasted
account number in PARLIST+2.

Single disc area information.
Privileged disc area information.
Find all disc areas generated by current user.

Find all disc areas on specified pack in PARLIST+0 generated by current
user.

Find all disc areas with specified qualifier in PARLIST+2 and PARLIST+3
generated by current user.

Find all disc areas on specified pack in PARLIST+0 with specified
qualifier in PARLIST+2 and PARLIST+3 generated by current user.

Find all disc areas with specified account number in PARLIST+2
generated by current user.

Find all disc areas on specified pack in PARLIST+0 with specified account
number in PARLIST+2 generated by current user.

- Invalid

Access to disc areas is restricted to those generated by the current user unless the request
comes from the Job Control program and the user has System Save access. Thus for regular
user program requests, functions 1-5 are treated as if they were 9-13.

n1A

0860003-002
Rev. A 12/77

Upon return from this service, one or more 24-word Disc Area Information Blocks (DAIB)
are returned starting at PARLIST+4, PARLIST+28, PARLIST+52, etc. Because of the disc
optimization used by this service, 1-9 blocks are returned on each call. The word count
returned (24 times the number of information blocks returned) will be returned in register E
on each call. Subsequent calls may be made until the word count in E goes to zero (all disc
areas located). Each call after the first should be with a function code of n=0, to continue
scanning based on previously entered parameters.

The contents of the Disc Area information Blocks will be:

Word Contents

0-11 Disc area QDD entry

1213 Disc area qualifier

14 Current file size in sectors
15 Maximum file size in sectors
16-17 Purge date/time

18-19 Generated date/time

20-21 Last referenced date/time
22-23 Last written date/time

Each date/time is in $TIME service format.

If the disc pack containing the located disc areas has not been resourced, word 14 is set to -1
and words 15-23 are not returned. '

Upon return from this service, in addition to the word count in the E register, the A register
is set:
A = One or more disc areas are on unresourced packs
Function performed as requested
Invalid function requested
No initial call made though n passed as O
Disc read error in MDD
Disc read error in QDD
Disc read error in user disc area

NRWN=O=

For example, the following routine will locate all disc areas generated by the current user
located on disc pack 2:

START TLO BUF
BLU $DASAVE
DATA 9
CZA
BNZ error
LOOP process block
TLO BUF
BLU $DASAVE
DATA 0
CZA
BNZ error
CZE
BNZ LOOP
end all disc areas processed
BUF DATA 2 Pack
BLOK 3 not used
BLOCK BLOK 216 9 blocks times 24

words per block

0860003-002
Rev. A 12/77

9.8 $DAASGN

The Disc Area Assign service is used to access a disc area which is to be saved. It is used by
Job Control to assign to the disc area being accessed with the $KEEP command. However,
user programs may access the service to provide special purpose assignments.

This service will assign LFN 200 to the specified disc area, and will allow the disc area to be
accessed in an unblocked mode regardless of the mode of the disc area. The calling sequence
is:

TLO PARLIST
BLU $DAASGN

where PARLIST is the label of a Disc Area Information Block output from the $DASAVE
service. ‘

The status of the call is reflected in the contents of the A register returned from the service
as:

A = 0 Function performed as requested
1 User does not have valid access to disc area
2 Specified disc area does not exist .
3 User specified QDD entry does not match actual entry
9.9 S$DAREST

The Disc Area Restore service is used io generate a disc area prior to fetching it. The service
is used by Job Control for the $FETCH command. User programs should not need to use it.

The service generates a disc area matching the specified parameters. It then assigns LFN 200
to the disc area and provides unbiocked access to the area regardless of the status of the
area. The calling sequence is:

TLO FPARLIST
BLU $DAREST

where PARLIST contains a Disc Area Information Block in the format output by the
$DASAVE service.

The status of the call is returned in the A register as:
A = Function performed as requested
User does not have valid access to disc area

0

1,

2 Specified disc area already exists
3 Disc area cannot be generated

0860003-004
Rev. C 12/78

CHAPTER 10
TAPE MANAGEMENT

10.1 $TAPEOP

The Tape Option service is used to obtain the default system tape option word. This word is
set in GENASYS and is used on resource commands by Job Control when no specific tape
option information is included. The calling sequence is:

BLU $TAPEOP

Upon return, the A register is set to the default tape type:

Bit O = 1 9 track
0 7 track

8it 1 = 1 High Speed (greater than or equal to 75 IPS)
0 Low Speed (less than 75 IPS)

The E register is set to the default tape option word:

Bit 16 = 0 No conversion
1 BCD/EBCDIC conversion
Bit 14 = 0 Odd parity
1 Even parity
Bits 17, 13-12 Definition:
17 13 12
0 0 0 = 200 BPI
0 0 1 = 556 BPI
0 1 0 = 800 BPI
0 1 1 = 1600 BPI
1 0 0 = 6260 BPI
Bits 11-10 Characters per word:
1 10
0 0 =1 CPW
o 1 =2 CPW
1 0 =3 CPW
1 1 =4 CPW

All other bits are zero.

For a 9 track drive, 3CPW implies a complete 24-bit memory word transfer. For a 7 track
drive, 4 CPW implies a complete memory word transfer. With 9 track each character is 8
bits; with 7 track, 6 bits. A smaller CPW specification than a full 24-bit memory word
transfers correspondingly fewer bits. Characters are taken from or transferred to the lower
bits when less than a full memory word is transferred.

1Nn.1

0860003-001
Original 8/77

10.2 TAPE LABELLING

The VULCAN tape labelling system is composed of the non-resident ‘handlers V:TLSS:V,
V:TLH1:V, and V:TLH2:V. Since the handlers are loaded only when tape labelling is
requested, the impact on installations not using tape labelling is negligible.

For installations using the VULCAN tape labelling system, the chances of operator or user
error is minimized and tape data integrity and security are enhanced. Tape labelling also
provides for easy transfer of data tapes between a VULCAN system and other computer
installations using ANSI standard tape labels.

The tape labelling system has been organized so that tape labelling on individual tape drives
may be declared as default, optional, or mandatory. |f default, a user must explicitly declare
if unlabelled processing is desired. If optional, a user must declare if labelled processing is
desired. |1f mandatory, only users with the correct access mask (set at GENASYS) may
process labelled tapes as unlabelled.

10.2.1 Standard Tape Labels

Labelled tapes processed by the VULCAN tape labelling system must conform to ANSI
Standard X3.27-1969 and revisions. The standard is described in Magnetic Tape Labels for
Information Interchange published by the American National Standards Institute. A
summary of the standard as it applies to VULCAN tape labelling is provided in the following
paragraphs. Definitions of the key terms used are:

volume A reel of magnetic tape.
file A collection of user data records which does not include imbedded
user-end-of-file-records. When writing data records to a tape, the user may

separate “‘files”” with an end-of-file.

file section A part of a file recorded on any one volume. A large file continued on two
or more volumes consists of two or more “‘file sections’’.

multi-volume A file which is continued on two or more volumes and therefore consists
file of two or more file sections.

file set A collection of related files recorded consecutively on a set of volumes.

void file An empty data file indicated by a double tape mark which precedes
subsequent useable data on the tape volume.

label A record at the beginning or end of a voiume, file, or file section. The
label identifies and/or provides information about the file. A label record
is not considered part of a file.

label group A collection of one or more contiguous label records at the beginning or
end of a volume, file, or file section.

10-2

system labels

user labels

tape mark

double tape
“mark

a

n

0860003-001
Original 8/77

Label records read, written, and processed by the system with minimal
user control. The content of these labels is defined, maintained, and
verified by the system. The actual content of some fields of the system
labels may be supplied by the user, but the system will supply a default
content if none is specified by the user. All required labels are system
labels, although all system labels are not required. Only those labels which
are required are written by the VULCAN tape labelling system. Optional
system labels will be processed, checked for validity, and ignored by the
system on reading and will not be written by the system.

Optional user label records, the contents of which are defined by the user.
The length and content of certain fields is defined by the ANSI standard.
User labels will be processed, checked for validity, and ignored by the
system on reading and will not be written by the system.

A special hardware end-of-file record written on the magnetic tape by the
system to delimit the boundary between files and/or label groups. There is
no direct one-to-one correspondence between user write-end-of-file
functions and tape marks on the tape. A user write-end-of-file results in
one or more tape marks and label groups being written to the tape.

Two tape marks, one immediately following the other. The termination of
useable data on a tape volume is indicated by a double tape mark.

Any alphabetic character.

Any numeric character.

The following table defines the types of labels, names, identifiers, and numbers of labels as
described in the ANSI specification.

Identifier
and
Type Name Number
Beginning | Operating System Volume Header Required | VOL1
of Volume Label Optional Prohibited
User User Volume Optional UVL1 to
Header Label uvLo
End of Operating System End of Volume Requried | EOV1
Volume Label Optional EOV2
to EQVY
User User End of Optional UTLa
Volume Label
Beginning | Operating System File Header Required HDR1
of File Label Optional HDR2 to
HDR9
User User File Optional UHLa
Header Label

10-3

0860003-001
Original 8/77

Identifier

and
Type Name Number

End of File | Operating System End of File | Required | EOF1
Label Optional EOF2 to

EQF9

User User End of | Optional UTLa

File Label

The required system labels and their use are:

Volume-Header Label (VOL1) The first label record on each labelled volume. This label
record must appear at the beginning of every volume and may not appear at any other place
in the volume.

End-of-Volume Label (EOV1) 1f a volume ends within a file, the last user data record of
the file in that volume must be followed by an end-of-volume labet (EOV1). A single tape
mark must immediately precede and a double tape mark must immediately follow each
end-of-volume label group. File sets must not be terminated by an end-of-volume label
group.

File-Header Label (HDR1) Every file must be preceded by a file header label (HDR1). If a
volume ends within a file, the continuation of that file in the next volume must also be
preceded by a file header label. Every file header label group must be immediately followed
by a tape mark. Actual user data records follow this tape mark.

End-of-File Label (EOF1) The last record of user data of every file must be followed
immediately by a tape mark. An end-of-file label must immediately follow this tape mark
and another tape mark must immediately follow every end-of-file label group. The
end-of-file label group appearing at the end of the last (or only) file in a set must be
followed by two tape marks rather than one. This double tape mark indicates the end of
useable data on the volume.

The following examples illustrate how these labels are used with various tape formats. An
asterisk (*) indicates a tape mark.

Single file, single volume
VOL1 HDR1* — filg A — *EOF1**

Single file, multi-volume
VOL1 HDR1* — first part of file A — *EQV1**
VOL1 HDR1* — last part of file A — *EOF1**

Multi-file, single volume
VOL1 HDR1* — File A — *EOF1*HDR1* — File B — *EOV1**

Multi-file, multi-volume

vOL1 HDR1* — file A — *EOF1*HDR1* — first part of fileB — *EQV1™*
VOL1 HDR1* — continuation of file B — *EOV1 **

VOL1 HDR1* — last part of file B — *EOF1 *HDR1* — fileC — *EOF1**

aNn A

10.2.2 Standard Label Record Contents

VULCAN tape labels are 80 character records written in ASCI!l. Labels are not padded,
although the system can process foreign tapes which have padded labels. The contents of
each field of the required labels are defined:

Field

0860003-001
Original 8/77

VOL 1 — VOLUME-HEADER LABEL FORMAT

Name
Label Identifier

Volume Label
Number

Volume Serial
Number

Accessibility

Reserved for
future standardization

Reserved for
future standardization

Owner ldentification
Reserved for
future standardization

Label Standard
Level

Length in
Characters

3
1

20

14

28

Description
Must be “VOL”

Must be ‘1"

Any six “a’ characters to identify
this physical volume. Corresponds
to external reel identification (if
any).

Any ‘‘a’’ character which indicates
restrictions on who may have access
to the information in the volume.
Access determination is discussed

in paragraph 10.2.4.

Must be ‘‘spaces’’

Must be ‘‘spaces”

Any 14 characters supplied by
user : :

Must be ‘‘spaces’’

1 means the labels and data
formats on this volume conform

to the requirements of the ANSI
standard.” :

-

-n -

0860003-001
Original 8/77

HDR 1 — FILE-HEADER LABEL FORMAT

Length in
Characters

Field Name

1 Label Identifier 3

2 Label Number 1

3 File ldentifier 17

4 Set ldentification 6

5 File Section Number 4

6 File Sequence 4
Number

7 Generation Number 4

8 Generation Version 2
Number

9 Creation Date 6

10 Expiration Date 6

" Accessibility 1

10-6

Description
Must be “HDR"’

Must be “1”

a1

Any "“a’’ characters

LN

Any ‘‘a’’ characters

The file section number of the first
header label of each file is “0001"".
This applies to the first or only file

on a volume and to subsequent files

on a multi-file volume. This field is
incremented by one on each subsequent
volume of the file.

Four “‘n’’ characters denoting the
sequence (that is, 0001, 0002, etc.)
of files within the volume or set of
volumes. In all the labels for a given
file, this field will contain the same
number.

Four “spaces’. Not checked on input.

“Spaces’’ on output. Not checked on
input.

A “‘space’’ followed by two “n"’
characters for the year, followed by

three “'n’’ characters for the day
(*'001"" to "“366"') within the year.

Same format as field 9. The file is
regarded as “‘expired” when today’s
date is equal to, or later than, the date
given in this field. When this condition
is satisfied, the remainder of the volume
may be overwritten.

To be effective on multi-file volumes
therefore, the expiration date of a file
must be less than, or equal to, any
previous files on the volume.

Any “a”’ character which indicates any
restrictions on who may have access 10
the information on this file. Access
determination is discussed in paragraph
10.2.4.

Field
12
13

14

Field

311

12

13,14

0860003-001
Original 8/77

HDR 1 — FILE-HEADER LABEL FORMAT (CONT'D.)

Length in

Name Characters
Block Count 6
System ldentifier 13
Reserved for 7

future standardization

Description
Must be six zeros.

VULCAN operating system release
level. :

Must be ‘‘spaces’’.

EOF 1 END-OF-FILE LABEL FORMAT

Length in

Name Characters
rabel Indentifier 3
Label Number 1
Same as correspond- 50
ing fields in the File- (Total)
Header label
Block Count 6
Same as correspond- 20
ing fields in File- (Total)
Header label

Description
Must be “EOF".

Must be “1".

Identical to the corresponding fields

in the File-Header (HDR 1).

Six ‘‘n”’ characters denoting the
number of data blocks (exclusive
of labels and tape marks) since the
preceding HDR label group.

Identical to the corresponding fields
in the File-Header Label (HDR1).

EOV 1 END-OF-VOLUME LABEL FORMAT

Length in
Name Characters
Label Identifier 3
Label Number 1
Same as correspond- 76
ing fields in File- (Total)
Header label

Description
Must be “EOV".
Must be ““1".

identical to the corresponding fields
in the File-Header label.

107

0860003-001
Original 8/77

10.2.3 Skeleton Tapes

The tape labelling system will only write data files to labelled tapps. Consequently any new
tapes or tapes that are to be ‘‘scratched’’ must be skeletonized by a user with the proper
access mask. A skeleton tape contains a VOL1 label, a HDR1 label and three hardware tape
marks. The formats of the skeleton labels are:

VOL1 — SKELETON LABEL

Length in
Field Name Characters Description
1 Label Identifier 3 “voL”
2 Label Number 1 o
3 Volume Serial 6 6 “‘a’’ character to identify this
Number physical volume. Corresponds to
external ree! identification (if any).
4 Accessibility 1 See paragraph 10.2.4.
5-6 Reserved for future 26 All “spaces’’
standardization
7 Owner ldentification 14 The user name specified by the
person writing the skeleton label.
8 Reserved for future 28 “’spaces”’
standardization
9 Label Standard 1 B

Level

HDR1 — SKELETON LABEL

Length in
Field Name Characters Description

1 Label dentifier 3 “HDR"’

2 Labél Number 1 o

3 File Identifier 17 All “0"’s
4 Set ldentification 6 ‘spaces’’
5 File Section Number 4 0001"

6 File Sequence 4 0001

Number

10-8

0860003-001
Original 8/77

HDR1 — SKELETON LABEL (CONT'D.)

Length in
Field " Name Characters Description
7 Generation Number 4 ““spaces’’
8 Generation Version 2 ‘spaces’’
Number

9 Creation Date 6 Year and day
10 Expiration Date 6 Year and day
11 Accessibility 1 See paragraph 10.2.4
12 Block Count 6 All 0"
13 System ldentifier 13 VULCAN operating system level
14 Reserved for further 7 *“spaces’’

standardization

10.2.4 Access Determination

Since a primary objective of the labelling system is file security, access determination is an
integral part and is organized to allow maximum flexibility. In order to write to a tape, a
user must have write access both to the volume and to any files he intends to rewrite; in
order to read a file, the user must have both volume and file read access.

Volume access characters are specified when a tape is skeletonized and are not altered
thereafter. Note that volume access in no way alters file access restrictions. Access
characters supported and the access levels allowed are:

Volume Access Character Access
Owner Non-owner
Space Read,Write Read Write
R Read,Write Read
Other Read,Write None

109

0860003-001
Original 8/77

File access characters are written in the HDR1 label whenever the first record of a file is
written. Thus, the character is set when a new file is created or when an entire file is
rewritten; it is not altered when only a portion of an existing file is rewritten. All file access
is, of course, subject to volume access restrictions. Fiie access characters and the access
levels are:

File Access Character Access
Owner Non-owner
Space Read,Write Read,Write
R Read,Write Read,Write*
0 Read,Write Write*
Other ‘ Read,Write* Write*

WRITE* indicates that write access is allowed only if the file has expired or if the user is
writing a new file. Expired means that the current date is equal to or greater than the
expiration date in the file header label.

Sample Access Structures .

a. Volume access character ‘“R’’, file access character ‘‘R"’; the volume owner can read or
write to the file, but a non-owner can only read the file.

b. . Volume access character ‘‘space’’, file access character ““*’’; the owner can read the file
and can write to it only after it has expired; a non-owner cannot read the file and can
write to it only after it has expired.

c. Volume access character ““**’, file access character ‘‘space’’; the volume owner can read
or write the file, but a non-owner has no access.

Note that the structure of magnetic tape is such that al! information beyond the point of a
write must be regarded as being destroyed. Thus, the elimination dates for a file set must be
non-increasing in order to ensure the file access restrictions have the intended effect.

10.2.5 Tape Label System Service

In order to access tapes with the tape labelling system, the system service $STLABEL must
first be invoked to initialize the system. Although the service may be called directly from
any program, initialization will normally be effected through use of the Job Control
$TLABEL command. In initializing the system, the calling program submits both a list of
volume identifiers and file names. Taken together, these are regarded as constituting a file
set with no presumed correlation between specific volumes and specific files. Thus, the
order of the volume identifiers and file names is significant. in submitting the list of file
names, the calling program is in effect declaring its universe of reference to the tapes. Once
initialized, the system will operate as though all of the volumes constituted a single tape
containing only files specified by the calling program. If writing to the tape, files will be
written with file names taken sequentially from the list; if reading, the system will make the
tape appear to contain only the files specified in the fiie name list. The files will appear to
be separated from each other by a single tape mark.

10-10

0860003-001
Original 8/77

If during a forward motion of the tape the list of file names becomes exhausted, the last
name in the list is repeated as often as needed. A count of the number of times this name
has been repeated is maintained so that the correct correspondence of files and file names
can be maintained during a backwards motion of the tape. Thus, arbitrarily many files can
be written to the tape without the nced to specify a corresponding number of file names.

10.3 $TLABEL

The Tape Label service is used to initialize (or reinitialize) the tape labelling system. This
section details the calling sequence for the system services. The calling sequence for the
service is:

TLO PARLIST
BLU $TLABEL
where PARLIST is defined as:
PARLIST+O Bits 13-6 contain the LFN to be used in label

processing; Bits 5-0 contain a function code to
specify what processing is to be performed.

PARLIST+1 The number of volumes, or reels of magnetic
tape, in the file set. For each volume, there is
a seven word block describing the volume:

WORDO} Six ASCII characters to specify the
WORD1 volume name (Volume Serial Number,
or VSN).

WORD2 Fourteen ASCII characters for the

. volume owner’s user name. This is used

. only when creating skeletons. The fifteenth
WORDG6 character is the volume access character.

If v is the content of PARLIST+1 (the
number of volumes in the file set), then
the volume identification block for the
ith volume (1< i< v} will be located at
PARLIST+2+7%/-1,...,PARLIST+8+7*/-1.

After the volume identification blocks are
the file identification blocks, together with
a count of the number of files in the files
set:

10-11

0860003-001
Original 8/77

PARLIST+2+7*v The number of files in the file set. For each file
in the set, there is a nine word information block
describing the file:

WORDO Seventeen ASCI| characters for the file name
WORDS followed by the file access character.

WORD6 } Six ASCII characters for the file set to which
WORD?7 this file belongs.

" WORDS8 The expiration date of the file, given as the
year in bits 23-12 and the day of the year in
bits 11-0.

If v, as above, is the number of volumes in the
file set, then the file identification block for
the jth file is at: PAR LIST+3+7*v+9%/-1).

The LFN specified at PARLIST+0 is presumed to be assigned to a tape drive which has been
resourced. |f this is not the case, the calling program will be aborted.

Function codes {fc) processed by the service are:

1.

Query. Each volume specified is scanned to interpret the volume structure. The results
are sent to LFN 6, which will be dynamically assigned to work file LO if not presently
assigned. The results consist of an exact copy of each label record found on the tape, a
double asterisk (****') to indicate each hardware tape mark detected, and an indication
of each data region on the tape. When a function code of 1 is used, the number of file
identification blocks specified should be zero.

No label processing. This function directs the tape labelling system not to process any
1/O transfers on the LFN specified. Upon successful execution of this command, the
tape drive will operate as though the labelling system did not exist. This function code
is used to switch from labelled processing to unlabelled processing. In order to preserve
the security provided by the system, this command may not be executed on drives
having labelled processing mandatory unless the user has the correct access mask. For
this function code and function code 5, a short call may be used:

TNK “100*Mfn + fc
"BLU $TLABEL

Normal initialization for labelled read/write functions.

Create skeleton tapes. In order to execute this function, the user must have the correct
access mask to skeletonize. For this function, the user names in the volume
identification blocks are used in creating volume header 'abels. The system sequences
through each volume creating skeleton labels and then deallocates the drive upon
completion. Note that the number of file identification blocks is expected to be zero

for a function code of 4.

10-12

0860003-001
Original 8/77

5. Unlabelled processing. The subsystem examines the current volume to determine if itis
a labelled tape. If so, the current process is aborted. If unlabelled, the subsystem allows
the tape to be processed as an unlabelled tape. Note that the short-form call described
for function code 2 can be used for a function code 5.

File names in the file identification blocks may be any names the user chooses and need
have no correlation with any external names. If it is desired to write a new file on the
volume, bit 23 of the first word in the file identification block should be set. If it is desired
to read or rewrite a file known to exist, bit 23 should not be set.

The procedure followed while searching for a file is to search for an actual name match if

this bit is not set, or to position the tape to the first position encountered during a forward
scan at which a file could be written if the bit is set.

10-13/(10-14 blank)

0860003-004
Rev. C 12/78

CHAPTER 11
MESSAGE COMMUNICATION SERVICES

Message Communication services are used to pass information between any program, user,
terminal, or combination thereof. Messages can be either symbolic or binary, up to a
maximum of 1024 words. Messages are maintained on system disc areas and are thus saved
across system reboots. On each VULCAN reboot, the areas are squeezed automatically to
remove areas no longer used. Each message has associated with it a purge date, after which
the message is automatically removed if not already received by a program.

11.1 $SEND

The Send service is used to transmit a message to a program, terminal, and/or user. The
calling sequence is:

TLO PARLIST
BLU $SEND

where the parameter list is defined as:

PARLIST +0} Areaname of program to which the message is

+1 destined. The format is 8 characters in truncated
ASCII. All zeroes should be entered if no specific
program is required.

+2} Qualifier of program. The format is 8 characters

+3 in truncated ASCII. If no specific program, zeroes
should be used.

+4 Username of user to which the message is destined.

+5 This should be 12 ASCII characters left justified

+6 with blank fill, and must appear exactly as the

+7 user name stored for the user when added to the
system. All zeroes shouid be entered if no specific
user is required.

+8 The PDN of the terminal to which the message is
to be sent. If zero, any terminal may receive
the message.

+9 Purge Flag. Bit 23 should be set to indicate a

permanent message, which is not to be removed
until the purge date is reached. If Bit 23 is

off, the message is removed when received. Bits
22-0 of this word specify the number of days to
keep the message before automatic removal. If zero,
the default of 7 days is used.

11

0860003-004
Rev. C 12/78

+10 Word Count. This is the word count of the message
to be sent. If Bit 23 is set, a binary message is
assumed. If not set, symbolic 1/0 is used.

+11 Buffer Address. This word contains the address of
the message to be sent.

Upon return from this service, the A register is set as follows:

A = -1 Message areas in use by another program. The
message could not be sent.

0 Message sent as requested.

Note that if any of the three fields (programname, username, terminal) are zero, no match is
required on them in order to receive the message. Thus, if all three fields are entered as
zeroes, any program, terminal, or user may receive the message.

Note also that as a matter of good programming, should the return code in the A register
indicate ““Message areas in use by another program”, simply using a branch back to attempt

- to resend (such as via “BNZ *-2"') may cause the program to loop without ever allowing the
message files to be freed. A call to $SDELAY is recommended before attempting to resend
the message.

Example

Send a message to user “SMITH"":

TLO PARLIST
BLU $SEND
PARLIST DATA 0,0,0,0
DATA "SMI THBEBBBBY
"DATA 0
DATA 0
DATA 3
DAC BUF
BUF DATA “Hl SMITH"”

11.2 $RECEIVE

The Receive service is used to receive a message destined for the calling program, user,

and/or terminal. The calling sequence is: Wy
IR

TLO PARLIST
BLU $RECEIVE
PARLIST DATA Word count of buffer
DAC Buffer address to receive message

11.2

0860003-005

Rev. D 2/80
Upon return from this service, the A register is set:
A = -1 Message areas in use by another program and no
‘messages could be received.
0 There are no messages currently registered for

this program, user, and/or terminal.
> 0 Word count of message transferred.

If the word count of the message is greater than the length of the buffer, additional
characters are truncated at the right of the message string. |f the word count of the message
is less than the buffer’s length and if the message was sent in symbolic mode, blanks will be
appended to the right of the message string to fill the buffer; no padding occurs if the
message was sent in binary mode.

Note that the first word of the buffer contains the purge date of this message in $TIME
format. Thus, to receive a message which is known to be 27 words long, a word count of 28
with a 28-word buffer is required.

11.3 $LOOK

The Look service is used to determine if there are any outstanding messages for this
program, user, and/or terminal. The calling sequence is:

BLU $LOOK

Upon return from this service, the A register is set:

A = -1 Message areas in use and no query could be performed.
0 No messages found.
1 At least one message found.

11.4 $CMESAG

The Count Message service is used to determine the number of messages outstanding to the
calling program, user, and/or terminal. The calling sequence is:

BLU $CMESAG

Upoﬁ return from this service, the A register is set:

A = -1 Message areas in use and no count could be made.
0 No messages found.
> 0 Number of messages found.

It should be noted that if merely a determination as to whether any messages are
outstanding is required, the $LOOK service is potentially much faster as an entire search of
the message area may not be required.

11-3/(11-4 blank)

0860003-006
Rev. E 1/81

CHAPTER 12
INTERRUPT SERVICES

12.1 Introduction

The Special Interrupt services are designed to provide the user with program interrupt
capability. These interrupts, called "SPINTs,” can be generated from interactive terminals
resourced by the interrupted program or from other programs running concurrently on the
same system. A SPINT causes the interrupted program to execute a service routine defined
by the user for that SPINT. The methods for sending, receiving, and controlling these
interrupts are discussed in the remainder of this chapter.

12.2 $SPINT: Special Interrupt Enabling/ Disabling Service

A SPINT is defined as being within a particular gi'oup and at a specific level in that group.
The $SPINT service allows the program to enable or disable itself for SPINTs on any
group/level.

The calling sequence for this service is:

TLO SPLIST
BLU $SPINT

Where the parameter list referenced by "SPLIST” contains:

SPLIST DATA group/level-specification
DAC special-interrupt-data-block-address
DAC interrupt-routine-address

The group/level specification word in the parameter list will contain the group and level to
be enabled or disabled in the following format:

Bit 23: 1 - Disable levels specified

O - Enable levels specified
Bits 22-18: Group Specification

(1 or 2; binary value)

Refer to subsection 12.2.2 for restrictions on the use of group 1.
Bits 17-00: Level Specifications

(O through 17; bit map)

Multiple levels may be specified

The use of the interrupt data block and interrupt service routine are discussed in subsection
12.2.1.

Upon return from the $SPINT service, the contents of the registers will be:

E : Group O SPINT request bits

A : Group n SPINT request bits

(n is the group specified in the group/level specification word)
Current TEMP pointer

Saved

C -

12-1

0860003-006

Rev. E 1/81
K : Undefined
V : Undefined
H : Undefined
C : Set to reflect condition of A register

Multiple calls can be made to the $SPINT service. Each enable call can specify a different
interrupt data block and service routine for the enabled SPINTs, or additional SPINTs can be
enabled for a previously specified interrupt data block and service routine. The service
routine and data block for a SPINT can be redefined by calling the service with an enable
request for the group and level of the SPINT, specifying the new routine and data block. No
prior disable is required. Previously enabled levels that are not specified are not affected.

Note: A call to $SPINT should not be made from within an interrupt service routine as this
will force an exit from the routine.

12.2.1 Special Interrupt Handling

When a process or device "SPINTs” a program, the SPINT is queued with prior unserviced
SPINTs for that program. When a program is selected for execution by the operating system,
a check is made for pending SPINTs. The first SPINT on the queue will be selected for service
if any SPINT exists. Spint priorities are therefore chronologically determined.

The system first determines the interrupt data block and service routine addresses specified
for the group/level of the SPINT. The basic SPINT information (group/level of the SPINT and
information word) is then passed to the user program in the space designated by the
interrupt data block address. The program’s registers are saved in the data block and control
is given to the interrupt service routine.

The special interrupt data block must contain nine words for the basic SPINT information and
the register save area. The information is stored in this block as follows:

Word O: Group/Level Interrupting

Bit 23: 1 - Additional information block available
0 - No additional information

Bits 22-18: Group Specification
(O through 31; binary value)

Bits 17-00: Level Specification

(O through 17; bit map)
Word 1: Information Word

This word will contain information in a format defined by the interrupting
program or device. If the interrupt is from a device, the word will be formatted
as:

Bits 23-16: LFN assigned to device at time of BLU $1/0, function code ‘25
Bits 15-08: SPINT subtype
Bits 07-00: SPINT type

Word 2: P Register (Program Counter)
Word 3: C Register (Condition Codes)
Word 4: | Register
Word 5: J Register

12-2

0860003-007
Rev.F 1/82

Word 6: K Register
Word 7: E Register
Word 8: A Register

Upon entry to the user program SPINT service routine, the A register will be set to indicate
the size of the additional information block (if it exists). This information can be retrieved via
a call to $SPINFO.

Exit from the service routine is made by a call to the $IRETRN service.

12.2.2 Restrictions on SPINT Usage

Some Group 1 SPINT levels have special meanings in certain situations. These levels are
documented in the system equivalence file “*V.EQIV". For these group 1 levels to be used by
the program, it must be known that these special situations are not occurring. Group 2 is
reserved for user applications, and it is recommended that this group be used.

12.3 S$TRIGER: Program-Generated SPINT

A call to the $TRIGER service interrupts a program which has been enabled for interrupts via
$SPINT. The calling sequence to $TRIGER is:

TLO PLIST
BLU $TRIGER
PLIST DATA "jdxxxx"
DATA information-word
DATA group-level-specification
DATA word-count of additional information block (O if none)
DAC buffer-address of additional information block

The identifier "idxxxx” must have been previously defined as the identifier of the program to
be interrupted (see DEFID). The information word and contents of the additional information
block must have been previously defined for use between the two programs. The
group-level-specification is in the standard group/level format (Bit 23 is a zero).

Upon return from the service, the A Register will be set to reflect the status of the SPINT as
follows:

-2: Invalid additional information buffer

-1: Specified identifier not defined

0: TRIGER performed as specified

1: Invalid group/level specification

2: Invalid PCA associated with identifier

3: Desired group-level not defined/enabled by program

To call $TRIGER, either the user or the program must have subsystem access.

12.4 $SPINFO: Additional Information Retrieval

Often it is necessary for a SPINT to convey more information than simply group/level and a
single information word. Up to 64 words of additional information may be passed to the
interrupted program by means of an additional information block. This block is copied into a
buffer within the interrupted program by calling the service $SPINFO and specifying the
parameters of the buffer to which the additional information block is to be copied. For
example:

12-3

0860003-007

Rev. F 1/82
TLO PLIST
BLU $SPINFO
PLIST DATA word-count of user buffer
DAC logical-address of user buffer

If the buffer specified by the user is shorter than the actual information block passed by the
SPINT, only that portion requested by the user will be copied to his buffer. if, however, the
buffer specified is longer than the actual information block passed by the SPiiN7, ihe entire
actual information block will be copied to the user’s buffer with the excess user’s buffer
remaining unchanged. The status of the additional information block copy will be returned in
the A register (with the condition codes set) as follows:

0: Information block returned in specified buffer

-1: Specified buffer not provided in logical space of user program
-2: No additional information block associated with SPINT

-3: User program is not in SPINT interrupt routine

12.5 $DEFID: Define Identifier for STRIGER

For calls to $TRIGER to be performed, all programs expecting to receive a SPINT from
“another program must define the identifier under which they expect to receive the SPINT (as
defined by a $TRIGER). This is done by a call to $DEFID as follows:

TLO PLIST
BLU $DEFID
PLIST DATA "idxxxx"

Where "idxxxx” is a string of six ASCIl characters which will serve as the program-id.
Upon return from this call, the A register (and the corresponding condition codes) will be set
to reflect the outcome of the call as follows:

0 : Identifier accepted as specified
-1: Program already has a specified identifier
-2 : Some other program has already specified the same identifier

After this call has been accepted, all $TRIGER calls referencing this identifier will attempt to
SPINT the program making this call.

To call $DEFID, either the user or the program must have subsystem access.
12.6 SINITSS: Initiate Sub-system Program

The $INITSS service is used to initiate a sub-system program. Its use is similar to the SINIT
service in that it is used to initiate a real-time program. However, there are several
SPINT-related features provided by $INITSS, which allow it to be used to initiate and control
a sub-system.

First, a SPINT identifier which is specified in the $INITSS parameter list, is automatically
defined for the initiated program. This ensures that the initiated program will have an
identifier which cannot be changed and which is known by the initiating program.

Secondly, the calling program will be notified via a SPINT, when the initiated process exits or
aborts. This is called a contingency interrupt spint, and will be received by the calling

124

0860003-007
Rev.F 1/82

program on the group/level specified in the $INITSS parameter list. (This group/level must
have been previously defined and enabled using the $SPINT service.) When the contingency
spint is received, information about the exiting program will be placed in a user-defined
information block known as a contingency interrupt block or CIB. This block must be at least
4 words in length and will contain the following:

word O & 1 2-word SPINT identifier of the exiting process
word 2 Exit/abort code of the exiting process
word 3 Exit/abort address of the exiting process

It is recommended that the SPINT group/level used for contingency interrupts NOT be used
for any other purpose. This is not required, but may help avoid confusion as to whether a
received SPINT is a contingency SPINT or not.

The calling sequence for $INITSS is as follows:

TLO PARLIST
BLU $INITSS
PARLIST +0 Reserved for future use
+1 2-word truncated-ascii areaname
+2 of program to be initiated
+3 2-word truncated-ascii qualifier
+4 of program to be initiated
+5 Priority
+6 Initiation parameter
+7 2-word SPINT id to be defined for
+8 the program to be initiated
+9 SPINT selection word
+10 Address of CIB

Upon return from this service, the A-register will be set as follows:

A=0 Program initiated successfully.
1 Invalid priority specified.
5 No sub-system access.
6 Invalid CIB address.
7 Group O is invalid for contingency interrupts.
8 Contingency interrupt group is too large.
9 Multiple SPINT levels specified.
10 Invalid id specified for process being initiated.

12-4.1

0860003-007
Rev.F 1/82

12.7 S$HPINT: Hold Program Interrupts

To delay reception of program interrupts, a program may call $HPINT. This disabled state will
be re-enabled by a call to $RPINT, $IWAIT, or $IDELAY. The call to $HPINT is of the form:

BLU $HPINT
12.8 S$RPINT: Release Program Interrupts

If a program has held program interrupts through a call to $HPINT, interrupts may be
re-enabled by calling $RPINT. The call to $RPINT is of the form:

BLU S$RPINT

12-4.2

0860003-007
Rev. F 1/82

12.9 SIWAIT: Wait for Program Interrupts

If the program desires to wait until a program interrupt occurs, a call to $IWAIT will place the
program in a wait state until the receipt of a program interrupt. When a program interrupt
occurs, the program will be vectored to the SPINT interrupt routine (as specified in the call to
$SPINT) as is normally done. When the program exits the program interrupt, however, the
program will continue after the call to $IWAIT. When the program continues the returned
registers will contain:

Saved
Always O
Undefined
Saved
Undefined
Saved
Saved
Undefined

OI<ACTrm

The call to $IWAIT is of the form:
BLU SIWAIT
12.10 SIDELAY: Delay for Program Interrupts

If the program is to wait a specified period of time for a program interrupt, a call to $IDELAY
will place it in a delay state for the number of clock ticks specified in the K register. If a
program interrupt occurs within the specified period of time, the program will be vectored to
the SPINT interrupt routine. On returning it will continue after the call to $IDELAY (any clock
ticks remaining at the time of the interrupt will be ignored). If, however, the period of time
specified for the delay passes without a program interrupt, the program will resume after the
call to SIDELAY. In either case, when the program continues, the return register will contain:

E: Saved

A : O Delay terminated by interrupt

-1 Delay terminated by time out

Undefined

Saved

Number of ticks remaining in delay if delay terminated by interrupt
Saved

Saved

Undefined

OI<AC

An example calling sequence is:

TOK n
BLU $SIDELAY

where n is the number of clock ticks the program is to wait for an interrupt.

12.11 S$IRETRN: Return from Program Interrupts

When a SPINT has occurred and the program has been vectored to the SPINT interrupt
service, the program may only exit the service and return to the interrupted processing by a
call to SIRETRN. After this call has been made, any basic or additional information associated

with the SPINT will no longer be available to the program. A call to $IRETRN is of the form:

BLU $IRETRN

12-5

0860003-007
Rev. F 1/82

l 12.12 Device-Generated SPINTs

The striking of certain keys on the keyboard of an interactive device can generate SPINTs for
the program that has resourced that device. The SPINT generated by an interactive device
can be in group 1 or a higher group (group n device SPINT), or it can be a special system
SPINT on group O, level O (group O device SPINT). In all cases, the program to be interrupted
must be enabled for SPINTs via a call to $SPINT.

] 12.12.1 Group N Device Generated SPINTs

For an interactive device resourced by a program to generate group n SPINTSs, it is necessary
for the program to alert the device handler as to what SPINT parameters are expected to be
used for the interrupt. This information is passed to the respective handler through calls to
$1/0 with appropriate function codes to enable or disable the type of SPINT desired.

I 12.12.1.1 Function Code '25: Set SPINT Linkage
If the program expects to receive a SPINT from the device to which the 1/0 is being

performed, it must first set up the SPINT linkage through a call to $1/0 using function code
'25. The calling sequence is:

TLO PLIST
BLU $1/0
PLIST DATA ‘LFN25
DATA SPINT-type
DATA group/level-specification

The group/level-specification is in the same format as for the call to $SPINT except that bit
23 is always a zero. Only one level may be specified by this function; if more than one is
specified, an error condition will be returned. The SPINT-type is defined for each device in
the appropriate section of the VULCAN 1I/0 Services Reference Manual, Pub. No. 0860004.

No further calls by the user are required during the execution of the program unless the
group/level linkage must be changed or the SPINT is to be reset (function code '26). Upon
receipt of the SPINT, the information word of the interrupt data block will contain the number
defining the SPINT-type.

| 12.12.1.2. Function Code '26: Reset SPINT Linkage
If the program expects to receive no more special interrupts from the deVice to which the I/0

is being performed, it may reset the SPINT linkage through a call to $1/0 using function code
'26. The calling sequence is:

TLO PLIST
BLU $1/70

PLIST DATA ‘LFN26
DATA SPINT-type
BLOK 1

No group/level-specification is necessary for this command and is ignored if provided. The
reset is performed only according to SPINT-type as defined for each device in the appropriate
section of the VULCAN 1/0 Services Reference Manual.

12-6

- 0860003-007
Rev.F 1/82

12.12.1.3 Function Code ‘14: Close

If the close function is for the same LFN specified on any previous set SPINT function(s)
(function code "25), a reset SPINT function will automatically be executed for the associated
SPINT(s).

The calling sequence for a close function is:

TNK ‘LFN14
BLU $1/0

12.12.1.4 Function Code ‘24: Dump Buffer

If the dump buffer function is for the same LFN specified on any previous set SPINT
function(s) (function code '25), a reset SPINT function will automatically be executed for the
associated SPINT(s).

The calling sequence for a close function is:

TNK ‘LFN24
BLU $1/0

12.12.2 Group O Device-Generated SPINT

The special group O, level O device-generated SPINT utilizes special system SPINT services.
This SPINT will be serviced prior to all other SPINTs pending for the program. This SPINT is
enabled by a call to $SPINT with a group/level specification of 1. It is disabled via a disable
call to $SPINT. The keyboard sequences required for generation of this SPINT are
documented in the section of the VULCAN 1/0 Services Reference Manual that deals with
the specific device.

Note: A call to $SPINT to enable the group O, level O SPINT will redefine the service routine
for all levels in group 0. These levels are used by the system in certain situations, and an
interrupt service for group O may have been previously defined by the system. The user is

cautioned to ensure that no system use of group O is occuring prior to enabling the group O,
level O SPINT.

12-7/(12-8 Blank)

0860003-006
Rev. E 1/81

CHAPTER 13
INTER-PROCESS COMMUNICATION SERVICE

13.1 $PLINK Services

The following is a presentation of a system service that will permit general inter-process
communication on VULCAN. The service allows concurrent programs to communicate
arbitrarily large blocks of data back and forth. This communication is done via a "link”
initiated by one of the communicating programs. A description of the functions provided
by the $PLINK service follows. Note that the $SPINT, $SPINFO, and $DEFID services must
also be employed by the user of the $PLINK service.

13.2 Request Link

The request link function allows a process to request a link with another process. The
request is made via the other process’s program-id. This id is established via a call to
$DEFID. A SPINT group/level is specified for the link. Processes that wish to communicate
over the link must first enable themselves on this group/level via the $SPINT service.

The calling sequence for the request link service is:

TLO PLIST
BLU $PLINK

PLIST DATA 1
DATA 48-bit program-id of the program to
DATA ... which the link is being offered
DATA interrupt selection word
DATA link capability bytes
DATA -1 (to be used in future development)
DATA -1 (to be used in future development)

Word 0 of the parameter list is always a 1, indicating a link request. Words 1 and 2 are the
48-bit program-id that identifies the program to connect with over the link. Word 3 is the
interrupt selection word to be used for all SPINTSs related to the program link. Its format is
the same as the interrupt selection word used in a BLU $SPINT.

Word 4 of the parameter list contains the link capability bytes. These bytes define the read
and write capability that will exist over the link. Bits 15-8 define the capability that is being
offered to the process the caller is attempting to connect to. Bits 7-0 define the capability
that the process is defining for itself. The capability bytes are defined as follows:

B0 - send message capability

B1 - receive message capability

B2 - to be used in future development
B3 - drop link capability

B4-B6 - to be used in future development
B7 - alter capability access

Setting any of the above bits gives the appropriate access to the referenced process. Bit 0
set indicates that the referenced process will be capable of using the send message

13-1

08600003-006
Rev. E 1/81

service. Bit 1 set indicates that the referenced process will be capable of using the receive
message service. These two are equivalent to write and read access, respectively. Bit 3 set
indicates that the referenced process will be capable of using the drop link service. Bit 7
set indicates that the referenced process will be capable of altering both processes’
capability bytes using the alter link capability service.

If both bytes are 0, then both processes will have full capabilities. This is equivalent to
setting bits 0, 1, 3, and 7 for both processes’ capability bytes.

Words 5 and 6 should both be -1.
The possible returns from this service are:

A >0 A positive integer in register A indicates that the link has been offered to the
process specified by the program-id in the parameter list. The integer in
register A is the link-id for the communication link. The process specified by
the program-id in the calling parameter list is SPINTed on the specified
group/level with the following word passed as information:

B23-20=1
B19-00 = link-id being offered

A=-1 Program-id in the calling parameter list is not defined for any process in
execution on the system.

A = -2 Process specified by the program-id in the calling parameter list does not have
the specified SPINT group/level enabled. No link may be established with a
process that does not have the specified group/level enabled.

A =-4 Process specified by the program-id in the calling parameter list has a link
request pending to the caller. No link is offered. The calling process must first
accept or reject the link offered by the other process before a second link may
be formed.

A=- Invalid parameter list pointer.

A =-6 Invalid capability bytes. Neither process has alter capability access and both
processes have send message capability only.

A =-7 Invalid capability bytes. Neither process has alter capability access and both
processes have receive message capability only.

‘A =-8 Invalid capability bytes. Neither process has alter capability access and neither
process has drop link capability.

A = -10 Invalid group/level specified. The specified group/level is not a valid SPINT
level for program link communications.

13.3 Link Information

The link information service allows a process to request information about a particular link
via the link-id. The calling sequence is:

13-2

0860003-006

Rev. E 1/81
TLO PLIST
8LU $PLINK
PLIST DATA 2
DATA link-id
DATA word count of info block
DAC ... address of info block

Word 0 of the parameter list is always 2, indicating a link information request. Word 1 of
the parameter list is the link-id to obtain information on. Word 2 is the number of words of
information desired (the currently defined information block is 13 words long). Word 3 is
the address of a block into which information about the link will be placed. The format of
the link information block is as follows:

Words 0-1 = Program name of the process that the calling process is connected to.
Words 2-3 = Program qualifier of the process that the calling process is connected to.
Words 4-5 = Progr_am-id of the process that the calling process is connected to.
Word 6 = Status of the link as follows:
B7-0 : 0= link established
1 = link offered
Word 7 = Current link capability bytes.
Word 8 = Number of messages pending reception by caller.
Word 9 = Message-id of the next message available for reception.
Word 10 = Length of the next message available for reception.
Word 11 = ?Ae;sage-id of the last message received by the calling process via this
ink.
Word 12 = Message-id of the last message received by the connected process.

The possible returns from this service are:

A=

A =

0 The link information is placed in the block provided.
-1 The link-id is not defined for the calling program.

-3 The information block is not contained in the caller’s logical address space.

-5 Invalid parameter list pointer.

13.4 Accept Link

The accept link service allows a process to accept a link request from another process. The
calling sequence is:

13-3

0860003-006

Rev. E 1/81
TLO PLIST
BLU $PLINK
PLIST DATA 3
DATA link-id to accept
DATA -1 (to be used in future development)
DATA -1 (to be used in future development)

Word 0 of the parameter list is always a 3, indicating an accept call. Word 1 of the
parameter list is the link-id to accept. Words 2 and 3 should both be -1.

The possible returns from this service are:

A = 0 The communication link between the two processes is established. The process
which offered the link is SPINTed on the specified group/level for the program
link, indicating that the link has been established. The SPINT information word
passed has the following format:

B23-20=3 .
B19-00 = link-id that was accepted.

A = -1 The link-id specified is not offered to the calling process.

A = -2 The offering process has exited. The link is no longer available.

A = -5Invalid parameter list pointer.

13.5 Reject Link

The reject link service allows a process to reject a communication link with the process
that has requested one. The calling sequence is:

TLO PLIST
BLU $PLINK
PLIST DATA 4
DATA link-id to reject

Word 0 of the parameter list is always a 4, indicating a reject call. Word 1 of the parameter
list is the link-id to reject communications on.

The possible returns from this service are:

A = 0 The process that requested the link is SPINTed on the specified group/level for
the program link indicating that the link has been rejected. The format of the
information word is:

B23-20 =4
B19-00 = link-id that was rejected.
A = -1The link-id specified is not offered to the calling process.

13-4

0860003-006
Rev. E 1/81

A = -2 The offering process has exited.

A = -5Invalid parameter list pointer.

13.6 Alter Link

The alter link capability service allows a process to alter the link capability bytes of both
the connected and calling processes. This service is available to the calling process only if
it has alter capability access. The calling sequence is:

TLO PLIST
BLU $PLINK
PLIST DATA 12
DATA calling process’s new capability
DATA connected process’s new capability

Word 0 of the parameter list is always a 12, indicating an alter link capability call. Word 1
(bits 7-0) is the new capability byte for the calling process. Word 2 (bits 7-0) is the new
capability byte for the connected process. If the current capability byte of one of the
processes is to remain unchanged, then the appropriate word should be set to -1.

The possible returns from this service are:
A = 0 The capability bytes are altered as requested. A SPINT is generated to the
connected process, indicating a change in capability. The format of the

information word passed on the SPINT is:

B23-20 =12
B19-00 = link-id on which capability altered.

The connected process may do a link information call to determine the
new capabilities.

A = -6Invalid capability bytes. Neither process has alter capability access and both
processes have send regular message capability only.

= -7 Invalid capability bytes. Neither process has alter capability access and both
processes have receive regular message capability only.

A = -8Invalid capability bytes. Neither process has alter capability access and neither
process has drop link capability.

13.7 Send Message

The send message service allows a process to send a regular message to the process
connected via a particular link-id. The calling sequence is:

TLO PLIST
BLU $PLINK

13-6

0860003-006

Rev. E 1/81
PLIST DATA 8
DATA link-id to send on
DATA send buffer
DAC ... descriptor

Word 0 of the parameter list is always an 8, indicating that this is a send message request.
Word 1 is the link-id of the communication link to send the message on. The send buffer
descriptor describes the message to be sent. The buffer described must not be modified
until the "message received” SPINT (described under receive message service) is received.

A buffer descriptor is a sequence of data chains. Data chains are defined in pairs of words
which must consecutively follow each other in the parameter list. The first word of the data
chain pair is the byte count or word count:

BITS 23-22 = starting byte specification:

00 = bits 21-0 are a word count
01 = leftmost byte

10 = middle byte

11 = rightmost byte

BITS 21-00 = byte count or word count. This is determined by bits 23-22.

The second word defines the starting word of the data chain and whether or not another
data chain follows:

BITS 23-22 = restart bits:

00 = norestart, end of data chain
01 = no restart, end of data chain
10 = another data chain follows
11 = jnvalid

BITS 21-00 = address of first word of data chain

The data chain list is interpreted as follows. Bits 23 and 22 of the first word are examined. If
they are both zero, then bits 21-0 define the length of the data chain in words. Bits 21-0 of
the second word point to the starting word for the data chain. If bits 23 and 22 of the first
word are not both zero, then they are logically or'ed with bits 21-0 of the second word to
form a byte pointer. This byte pointer points to the first byte of the data chain. Bits 21-0 of
the first word define the length of the buffer in bytes.

The possible returns from this service are:

A > 0 The message specified has been queued to the connected process for reception.
The positive integer in A represents the message-id assigned to the message by
the operating system. The connected process will receive a SPINT on the
specified group/level for the program link, indicating that a message is pending
on the link. The format of the information word will be:

B23-20= 8
B19-00 = link-id that message is pending on

The process may determine the message-id of the next message on the link via
the link information service.

13-6

0860003-007
Rev. F 1/82

The link-id specified' is not established for the calling process.

The message buffer to be sent is not contained in the calling program’s
logical address space.

No send message capability for calling process.
Invalid parameter list pointer.

Invalid capability bytes. Neither process has alter capability access and both
processes have send regular message capability only.

Invalid capability bytes. Neither process has alter capability access and both
processes have receive regular message capability only.

13-6.1/13-6.2 Blank

0860003-007
Rev. F 1/82

A = -8 Invalid capability bytes. Neither process has alter capability access and
neither process has drop link capability.

A = -9 Invalid capability bytes. Send-receive hotline capability is not available to the
caller but a hotline buffer was defined.

A = -10 Invalid group/level specified. The specified group/level is not a valid SPINT
level for program link communications.

13.8 Receive Message

This service allows a process to receive a message from a connected process. The calling
sequence is:

TLO PLIST
BLU $PLINK
PLIST DATA 9
DATA link-id to receive on
DATA receive buffer
DAC ... descriptor

Word 0 of the parameter list is always a 9, indicating that this is a receive call. Word 1 is the
link-id to receive the message on. The receive buffer descriptor describes a buffer into
which the message header and the message will be placed.

The possible returns from this service are:

A = 0 The message is received into the specified buffer. The sending process is
SPINTed on the specified group/level for the program link, indicating that the
message is received. The format of the information word is:

B23-20= 9
B19-00= link-id that connected process received a message on.

The sending process may determine which message was received by issuing a
$SPINFO call. One additional word of information--the message-id that was
received by the connected process--is passed on the SPINT. This allows the
sender to free up the buffer associated with the message-id.

>
n

-1 The link-id specified by the calling program is not established.
A = -2 No message is pending on the communication link.

A = -3 The buffer provided to receive the message is not contained in the caller’s logical
address space.

A = -4 No receive regular message capability for calling process.

A = -5Invalid parameter list pointer.

13-7

08600003-006
Rev. E 1/81

Each message is preceded by an n-word header defined as follows:

Word 0 = The value of n. This is the number of words (including this one) that are
contained in the header message. The value is currently 4. This will allow
expansion of the header at a future time if necessary. All programs
should take this into consideration when processing messages.

Word 1 = Message-id of the message received.

Word 2 = Number of messages left to receive.

Word 3 = Status and word count transferred:

B22 : 0 = Byte count complete.
1 = Byte count not complete. The buffer provided was not large
enough to contain the message header and message.
B15-0 = Byte count transferred.

13.9 Flush Message

This service allows a process to remove all of the pending messages from its message
queue. The messages pending will be discarded and a “message received” SPINT will be
generated to the connected process for each message that is flushed. The calling
sequence is:

TLO PLIST
BLU $PLINK
PLIST DATA 13
DATA -1 (to be used in future development)

Word 0 of the parameter list is always a 13, indicating a flush message call. Word 1 must be
-1.

13.10 Drop Link

The drop link service allows a process that has established a communication link with
another process to terminate the communication link. The calling sequence is:

TLO PLIST
BLU $PLINK
PLIST DATA 5
DATA link-id to terminate

The possible returns from this service are:

A = 0 The communication link specified by the link-id in the calling parameter list is
terminated. The process connected via this link is SPINTed on the specified
group/level for the program link, indicating that the communication link is
dropped. The format of the information word passed is:

13-8

> > » >
]

-1

0860003-006
Rev. E 1/81

B23-20=5
B19-00 = link-id dropped

Two additional words of information are available through a $SPINFO call. The
first word is the number of messages sent by the calliing process to the
connected process that were pending reception when the link was dropped. The
second word is the number of messages sent by the connected process to the
calling process that were pending reception when the link was dropped. All

messages pending on the link in both directions are discarded.

The link-id specified is not defined for the calling process.

-2 The link-id exists but was never accepted.

-4 No drop link capability for calling process. The link is still available.

-5 Invalid parameter list pointer.

13.11 $PLINK - SPINT Summary

The following is a summary of all SPINTs which are defined for the $PLINK service and
their meaning. They all pass an information word of the form:

B23-20= N
B19-00 = link-id

The value of N may be:

N =

1

LINK REQUESTED. A process has issued a link request. The identity of the
process attempting to connect may be determined by 4 link information call.

PROCESS HAS EXITED. The process to which a link offer is outstanding has
exited. No link may be established.

LINK ACCEPTED. The process to which a link was offered has accepted the
link request. The communication link is established.

LINK REJECTED. The process to which a link was offered has rejected the link
request. '

LINK DROPPED. The process connected by the link-id has dropped the
communication link. Messages pending in both directions are lost.

MESSAGE AVAILABLE. The process connected by the link-id has sent a
message. Information about the next message on the link may be obtained by a
call to the link information service.

MESSAGE RECEIVED. The process connected by the link-id has received a
message. One additional word of information is available via a $SPINFO call.
This word is the message-id of the message received by the connected process.
The sender must not modify the message being sent between the time that the
send message call is issued and the time that this SPINT is received.

13-9

08600003-006
Rev. E 1/81

N = 12 LINK CAPABILITY ALTERED. The process connected by the link-id has altered '
the link capability bytes. A link information call may be used to obtain the new
capabilities.

N = 15 LINK EXITED. The process connected by the link-id has exited without
explicitly dropping this link. One additional word of information is available via
the $SPINFO service. This word is a zero if the process exited normally.
Otherwise, it is the abort code indicating the cause of the abort. Conditions
under aborts are described below.

13.12 Exceptional Conditions

The following are some exceptional conditions which may occur and the action to be
taken:

1. Process A has offered a link to process B. Process A aborts. In this case, process B
will get an error return when it attempts to accept or reject the communication link.

2. Process A has offered a link to process B. Process B aborts. In this case, process A is
SPINTed, indicating that process B has aborted. The link offer is no longer
outstanding.

3. Process A has established a communication link with process B. Process A aborts. in

this case, process B receives a SPINT indicating that process A has aborted and
receives the abort code via a $SPINFO call. Messages pending on the link are lost.

13-10

0860003-007
‘Rev. F 1/82

CHAPTER 14
MISCELLANEOUS SERVICES

14.1 $PTYPE

The Program Type service allows the calling program to determine if it is a control point,
interactive, or real-time program. The calling sequence is:

BLU $PTYPE

Upon return, the condition code and E register are set as follows:

E < 0 Real-time program
= 0 Interactive program
. > 0 Control-point program

14.1A $SYSLEV

The System Level service allows the calling program to determine the current system level.
The calling sequence is:

BLU $SYSLEV
Upon return, the E register is set as follows:
E = system level in 3 digit ASCII (e.g., "10A")

14.2 $SPOOL

The SPOOL service places a blocked disc area on the spool-out queue for a particular device.
The calling sequence is:

TLO PARLIST
BLU $spooOL

where the contents of the parameter list are:

PARLIST +0 } 8-character disc areaname in truncated
+1 ASCIHI
+2 } 8-character qualifier in truncated
+3 ASCII
+4 Bits 7-0: PDN of device to spool to.

Bits 23-8: Number of copies to spool
(default is one copy).

Upon return from this service, the A register is set as follows:

A = 0 Operation performed as requested
1 Requested physical device does not exist
2 Spool area is not a blocked disc area

14-1

0860003-007

Rev. F 1/82

3 Cannot ASSIGN to spool area

4 User does not have read access to spool area.

7 Spool area being written to by another program.
Example

Print two copies of disc area 1234ABCD*XYZ on printer 6:

TLO PARLIST

BLU $SPOOL
PARLIST DATA T“XYZpppY"

DATA T“1234ABCD"

FORM 16,8

DATA 12,6/

14.3 $1JOB

The Insert Job service places a disc area containing a control-point job on the jobs-to-be-run
queue. The calling sequence is:

TLO PARLIST
BLU $1JOB

where the contents of the parameter list are:

PARLIST +0 8-character disc areaname in truncated
+1 ASCHI ~
+2} 8-character qualifier in truncated ASCII
+3
+4 lero if the job is to be run as soon as

possible; non-zero if a 20 second delay is to

be placed on the job entry to delay execution.
This is used by Job Control to hold the execution
of jobs requiring resources which are not yet

available.
+5 Used only if JOBPASSWORD GENASYS parameter
+6 used in system generation, for password of user on
$JOB card.

If the system was generated without the |JOBPASSWORD parameter, PARLIST+5 and
PARLIST+6 are not used and ignored if specified. I1f the IJOBPASSWORD parameter was
used, PARLIST+5 and PARLIST+6 may contain:

Binary zero, denoting the user named on the $JOB card has no password or
is the same user as the one calling $1JOB.

ASCI| password of user named on $JOB card, left justified.
If the user named on the $JOB card has no password, PARLIST+5 and PARLIST+6 must be

zero. Any password specified must accurately match the password of the user on the $JOB
card.

14-2

0860003-007
Rev. F 1/82

Upon return from this service the A register is set:

A=

NOOABHBWN=O

14.4 SUSERNO

Operation performed as requested.

First record of area not $JOB card.

Disc area is not blocked.

Cannot assign to area.

User does not have read access to area.
Invalid $JOB card format.

Invalid password on $1JOB call.

Area being written to by another program.

The User Number service is used to access and validate user numbers. Job Control uses it to
handle sign-on, and any user program may use it to return the name of the current user.

The $USERNO service has two calling formats.

Format 1:
TLO PARLIST
BLU SUSERNO
Format 2:
TLO PARLIST
NSK
BLU $USERNO
The PARLIST for Format 1 is:
Base Location Displacement Description
PARLIST +0 Unused
+1 Unused
+2 Unused
+3 Unused
+4 The 12-character user name is returned in
+5 PARLIST+4 through PARLIST+7. The user
+6 name is returned as ASCIl characters, and,
+7 if necessary, the buffer is blank-filled.

Upon return the A register is set:
A =

O hWN=2O

Service completed.

User number invalid.

User number valid, qualifier invalid.

Call type invalid or do not have access. l
User does not have access to terminal.

User has no CPU time left.

Password mismatch.

Normally the A register value is used only by Job Control.

Example

Return the current user name to BUF:

TLO
BLU

BUF BLOK

BUF-4
$USERNO

4

14-3

0860003-007
Rev. F 1/82

The second format is available only to Job Control, OPCOM, and all high access programs.
PARLIST is a buffer in which the following information is supplied or returned.

The PARLIST for Format 2 is:

Base Location Displacement Description

PARLIST +0 PARLIST+0 and PARLIST+1 contain a user
+1 number in ASCII, left-justified and blank-filled.
+2 PARLIST+2 through PARLIST+3 contain
+3 the qualifier in ASCII, left-justified and

blank-filled.

+4 The 12-character user name is returned in
+5 PARLIST+4 through PARLIST+7. The user
+6 name is returned as ASCIl characters, and,
+7 if necessary, the buffer is blank filled.
+8 PARLIST+8 and PARLIST+9 contain the
+9 password for use by Job Control or high

access user programs.

144

~ 0860003-006
Rev. E 1/81

145 $OPCOM]

The OPCOM service is used to issue an OPCOM command. The valid commands accepted
from user programs, and their format, are discussed in the VULCAN Operator
Communications (OPCOM) manual.

Returns from the command will consist of A = 0 for valid commands, and A set to an
OPCOM error number for OPCOM errors. Commands producing output information will
write to LFN 3.

The calling sequence is:

TLO PARLIST
BLU $OPCOM

where PARLIST is a 24-word buffer containing the requested command in ASCII,
3-characters per word.

Example

Query the status of terminal 42 and return the output to LFN 3:

TLO BUF
BLU $OPCOM
BUF DATA “QPE42"
RDAT 22 ("B
146 $PACK | i

" The Pack service returns the system spool pack and work pack numbers. The calling
sequence is:

BLU $PACK

The system spool pack number is returned in the E register and the work pack number in
the K register.

145

0860003-006
Rev. E 1/81

14.7 $BINASC

_The binary to ASCIHl conversion service is used to convert a binary integer into ASCII
characters suitable for output. This routine will convert any 24-bit signed integer. Qutput
will have leading zeroes replaced with blanks, and the negative sign, if present, will be
positioned adjacent to the leftmost non-zero digit. The calling sequence is:

TMA number
BLU $BINASC

where ““number’’ is the binary number to convert. Upon return, the ASCI| characters are in
the K and D registers where the K register content should be concatenated to the left of the
D register content. The V register is saved.

14.8 $OCTASC

The Octal to ASCII conversion service converts an integer value into ASCII characters
suitable for output. The calling sequence is:

TMA number
BLU $OCTASC

where ‘“‘number” is the number to convert. The ASCII octal result is returned in the K, E,
and A registers:

K “space’’ followed by characters one and two
E characters three, four, and five
A characters six, seven, and eight

14.9 $C/RTN

The Contingency Return service provides a means whereby a program may regain control
after an SAU trap or system abort. Following an operator (either OPCOM or terminal user)
abort, any abort (including a second operator abort) is unconditionally fatal. After the user
program is given control of an abort, the next abort is fatal unless the user again makes a call
$C/RTN. The user program is allowed control of an unlimited number of non-aborting SAU
traps. The calling sequence for this service is:

TLO USRRTN K = address of user routine to
BLU $C/RTN which control is to be given
DATA parameter

USRRTN DATA O
DATA O

14-6

0860003-006
Rev. E 1/81

The user may specify in ““parameter” whether the system is to return control to the user
only in the case of an abort, or in both cases of aborts and non-aborting SAU traps. The user
may additionally specify whether system abort messages are to be output by the system.
Valid parameter values and their meaning are:

Parameter Definition
0 Remove previous C/RTN call entry.
1 Do not inhibit abort messages, branch to USRRTN+2

only in case of an abort.

2 Do not inhibit abort messages, branch to USRRTN+2
for both aborts and non-aborting SAU traps.

3 Inhibit system abort messages, branch to USRRTN+2
only in case of an abort.

4 Inhibit system abort messages, branch to USRRTN+2
for both aborts and non-aborting SAU traps.

In case of an abort, the system will branch to USRRTN+2 with USRRTN+0 containing the
system abort code and USRRTN+1 containing the abort location in bits 15-0. In case of a
non-aborting SAU trap, the system will branch to USRRTN+2 with USRRTN+0 containing
the SAU error code with bit 23 set. USRRTN+1 will contain the trap location in bits 15-0
and the C Register in bits 19-16. The user may return to the non-aborting SAU trap location
by restoring all registers to the values contained upon entry to USRRTN and executing a
BRL* USRRTN+1 instruction.

$C/RTN is valid and useful for monitor programs as well as for real-time and interactive
programs.

14.10 $MUNLD

The Monitor Common Unload service is used to force the updating of Monitor Common
disc areas. Normally “MCOM"* disc areas are only updated when the last program using them
exits or a demand page forces them to be swapped out. The calling sequence for this service
is:

TLO address
BLU $MUNLD

where "“address’ is any address in the Monitor Common Block that is to be updated. If it is

desired to update all “MCOM" blocks belonging to the program, the following call may be
made:

TNK 1
BLU $MUNLD

14-7

0860003-007
Rev.F 1/82

14.11

SRESORC

The Resource service is used for resource allocation. It allocates four types of resources
which are:

1. Disc Packs

2. Physical Devices

3. Magnetic Tapes

4. Floppy Disc Drives

The calling sequence is:

TLO PARLIST
BLU $RESORC
DATA n

where ‘‘n” is the function:

n=1

Allocate resource. This code is used to pass an initial resource request list. This is
the only function needed for non-interactive programs. Interactive programs must
follow this with function code 3.

Test allocation. Used only by interactive programs to test the status of the specified
resource allocation; also used by real-time programs to test allocations made after
using function code 5. '

Wait for allocation. Used only by interactive programs to wait for completion of
specified allocations. (Wait is implicit in calls made by real-time programs after using
Function Code 1, and control-point programs never wait.) This code is also used by
real-time programs to wait for allocations made after using function code 5.

Allocate resource. n=5 in real-time programs operates identically to n=1 in
interactive programs.

The format of PARLIST is a series of resource entries, terminated by a zero word. The size
and content of the resource entry is dependent on the device type, as follows:

Disc Pack One word entry (followed by a zero word): bits 7-04set to pack number;

other bits are zero.

Physical Device One word entry (followed by a zero word): bits 7-0 set to PDN; bits 15-8 set

to LFN which is to be assigned to the device in bits 15-8, and bits 23-16
setto a 2 (bit 17 on).

Magnetic Tape Five word entry (followed by a zero word): Word O: bits 15-8 set to LFN to

Drive

14-8

be assigned to tape drive; bits 23-16 set to a 1 (i.e., bit 16 on).

Words 1-2: six-character tape name in ASCIl; if both zero, scratch is
assumed.

Word 3: tape option word (see $TAPEOP; bit 23 set if write access required
{write ring to be inserted).

0860003-007
Rev. F 1/82

Word 4: has either the PDN’s of tape drives to resource or a tape
specification. Bit 23 of word 4 must be set if the resource is to a PDN. If a
specific drive is to be resourced, its PDN is set in bits 7-0. If an alternate
drive may be used, its PDN is set in bits 15-8. If any drive meeting tape
specifications may be used, the tape type is set in bits 1-0 as:

Bit 1: 1 = high speed
0 = low speed
Bit O: 1 =9 track

0 =7 track
Floppy Disc Five word entry (followed by a zero word): Word O: bits 15-8 set to LFN to
Drive be assigned to the drive; bits 23-16 set to 1 (i.e., bit 16 on)

Words 1-2: six-character diskette name in ASCII; if both zero, scratch is
assumed.

Word 3: bit 22 set; bit 23 set if write access is required.

Word 4: set to zero if any drive may be used. If a specific drive is required,
bit 23 is set and the PDN of the required drive is set in bits 7-0. If an
alternate drive may be used, it is specified in bits 15-8

Upon return from the call, the A register is set:

A = 0 Resources allocated as specified.

1 For control points: requested resources not available.
For interactive terminals: one or more resources not yet
available. Not returned for real-time programs that have
used function code 1; is returned for real-time programs
that use function code 5.

2 Non-existent physical device requested.

3 Non-allocatable physical device requested.

4 Disc 1/O error on *V:PACK area.

5 Disc pack does not exist.

6 Resource request for this device already entered.

7 No functional disc drives available for specified pack.

149

0860003-006

Rev. E 1/81

8 No functional tape drives of requested type are available.
9 Non-existent high speed memory requested.

10 More high speed memory requested than is available.

11 No functional floppy disc drives available.

12 LFN O or 3 requested from a control point or terminal

13 No access to requested tape drive(s).

14 No access to requested floppy disc drive(s).

15 No access to requested disc pack(s).

16 No access to requested physical device(s).

17 Physical device is marked down.

Interactive requests are queued while program execution continues. To access a requested
device, a “wait” request (n=3) must be made at the same time following the initial (n=1)
call. Real-time programs need make only an initial (n=1) call, and they will be suspended
until the requests can be satisfied. Real-time programs can now allocate resources like
interactive programs do. The function code n=5 operates the same as n=1 operates for
interactive programs. n=2 and n=3 are also available to real-time programs. Control point
programs will never wait; if one or more resources cannot be immediately allocated, all
resources will be returned, and status returned to the calling program.

Non-interactive program allocations for disc drives and tape drives will return after the drive
is allocated, but before the tape or disc is mounted. If the device is accessed before the
medium is mounted, the program will wait in the 1/0 handler. Interactive resourcing (n=3)
will wait until the medium is mounted.

Note: a real-time program that has used n=5 to allocate resources should not use n=1 until
all resource requests are satisfied or cancelled (with a close).

14-10

Example

0860003-006
Rev. E 1/81

Assign LFN 8 to a 9-track low speed drive to read tape “ABCD’’ which is 800BPi, 3
characters per word ASClI, and wait for the tape:

PARLIST

TLO
BLU
DATA
BOZ
CcOoB
BNZ
TLO
BLU
DATA
TNK
BLU

DATA
DATA
DATA
DATA
DATA

PARLIST
$RESORC
1

*+3

1

error
PARLIST
$RESORC
3

‘1013
$1/0

B16B11
“ABCDBY"
B13B11

1

0

open 8

LFN 8 (bit 11) and bit 16
tape option

low speed, 9 track
list termination

14-10.1/(14-10.2 Blank)

0860003-006
Rev. E 1/81
14.12 $PASSW

The Password service is used to change the user’s password. It is available to any program or
user, though its primary use is by the Job Control command CP. The calling sequence is:

TLO PARLIST

BLU $PASSW
PARLIST DATA new-password

DATA old-password

Each password is two words in ASCI! format (six 8-bit characters). A new-password of zero
implies that the user is no longer using passwords. The old-password field should be set to
zero if the user has no previous password. If old-password does not match the previous
password, then new-password is not accepted and the password remains unchanged. Upon
return the A register is set:

A = 0 Password changed
-1 Old password mismatch

14.13 $TPREAD

The $TPREAD service reads a word from the temporary storage area Vulcanized into a
program. The temporary storage area contains information about the internal structure of
the program and the program area. For example, it contains the number of reentrant and
non-reentrant pages in each memory map, and the starting sector number and size of VBUG
tables stored in the program area.

The calling sequence of the service is:

TLO PARLIST
BLU $TPREAD

where PARLIST is defined as:

PARLIST +0 Displacement in temp area of the word to read.
+1 LFN to be assigned to the program area.
+2} Eight character program areaname in truncated ASCI|I.
+3 If this field is all zeros, the calling program’s name and

qualifier are used.
Ig} Eight character program area qualifier in truncated ASCII.

On return the A register is set:

A= <0 Error condition; error code in E register
0 Word read as requested; word is in K register
>0 Unsuccessful assignment; A register contains $ASSIGN

service error code.

14-11

0860003-007
Rev. F 1/82

If an error condition occurred and the A register is negative, the E register is set:

E= 1 Displacement in PARLIST+0 not in temp area.
2 Area name from PARLIST not a program area.
3 Area is non-resident handler or monitor program

{no temp area).

User does not have area read access.
QDD entry contains errors.

Area cannot be opened for read.

N o g b

Disc 1/0O error during area read.

If successfully assigned, the supplied LFN remains assigned to the program area.

Example

To get the size in sectors and the starting sector number of the VBUG tables in the current
program, two calls are made to $TPREAD:

TLO PARLIST
BLU $TPREAD
BNZ error
TKM SIZE VBUG table size
TOA 57
TAM PARLIST
TLO PARLIST
BLU $TPREAD
BNZ error
TKM STRTSEC VBUG tables starting sector
SIZE DATA -1
STRTSEC DATA -1
PARLIST DATA 56
DATA 100 LFN to assign to program area
DATA 0,0 Use calling program’s area name

14.14 SMTYPE

The Machine type service allows the calling program to determine the type of machine on
which the program is running. $MTYPE also indicates the addressing mode for the operating
system as well as the calling program.

The calling sequence is:

BLU SMTYPE

14-12

0860003-007
Rev.F 1/82

The values returned in the A and E registers indicate the machine type and addressing
modes. See Table 14-1 for the A register and E register values and their meanings.

Table 14-1 $MTYPE A and E Register Values and Their Meanings

A oS E User

Machine Register Addressing Mode Register Addressing Mode
H80-1, H100-1 -4 X16 X16
H80-1, H100-1 -3 X18 0 X16
1 X18
Model 4 (S100) -2 X16 X16
Model 7 (S200) -1 X16 X16
H80, H100 0o X16 X16
H300, H500 1 X16 X16
H300, H500 2 X20 0 X16
1 X20
H800 3 X16 X16
H800 4 X20 0 X16
1 X20

Note: The X16 addressing mode is also known as ““non-x"’ or “‘compatibility mode”’.
The X20 addressing mode is also known as “’X mode”.

The C register reflects the A register’s condition.

14-13

0860003-006 -
Rev. E 1/81

14.15 $DEFLTS

The Defaults service is used to change or determine certain defaults associated with a user.
Any defaults that are changed apply only to the current interactive session, control-point
job, or real time/monitor program. This service is available to any program or user, though
its primary use is by the Job Control $STATUS and $MODE commands. The calling
sequence is:

TLO PARLIST
BLU $DEFLTS
PARLIST DATA function-code
DATA data-word
DATA data-word

Function codes are defined as follows:

Bits 23-9: Reserved for future definition.

Bit 8: Query the default or change the default bit.
0 Change default
1 Query default

Bits 7-0: Indicates which default to change/determine.
0 Qualifier .

PARLIST+1,2: default qualifier (6 bit truncated ASCII).
Binary zero implies 0000SYST.
TASCI! blanks imply the sign-on qualifier.

1-2 Reserved for future definition.

3 Program.
PARLIST+1,2: default program (6 bit truncated ASCII.
Binary zero implies *JOBCNTRL. The qualifier
0000SYST is always implied. The next exit or abort
from the calling program will invoke the program
named. In addition, exits and aborts from any future
program will invoke the named program. The quantity
of such returns to the named program is limited to 255
unless the program is a high access default program
(i.e., *JOBCNTRL).

!/
4 Reserved for future definition.

5 Checkpoint Data Area Name.
PARLIST+1,2: Checkpoint Data Area Name.
PARLIST+3,4: Checkpoint Data Area Qualifier.
Binary zero implies 0000SYST.
TASCII blanks imply the sign-on qualifier.

6-255 Reserved for future definition.

1414

- 0860003-007
Rev.F 1/82

On return from the service the A and C registers are set as follows:

A: 0 Function performed as requested
-1 Invalid data
-3 Area not found (function 3 only)
-4 Area not an interactive program (function 3 only)
-6 Calling program must be interactive (functions 3 and 5 only)
-7 Data not available (only if bit 8 is set)
C: Reflects the condition of the A register.

14.16 $CHAIN

The $CHAIN service allows a program to ““chain’ to or call another program and to resume
execution upon return. When a program chains to another program, an additional set of
Virtual Address Registers is assigned and a new link is said to be added to the program
chain. A program in a program chain may be chained to another program, etc., which results
in the addition of new links in the program chain. Note that a program may only chain to a
program of the same type (interactive/control-point, real-time, or monitor program). The
calling sequence for the $CHAIN service is:

TLO PARLIST
BLU $CHAIN

where PARLIST is defined as follows:

PARLIST

:?% Eight-character program areaname in truncated ASCII.

Ig% Eight-character program area qualifier in truncated ASCI|.

+4 Program size in pages. If PARLIST+4 is negative, the Vulcanized
program size is used. If PARLIST+4 is zero, the current program
size set using the Job Control command is used ($MO PS=nnnn).
If PARLIST+4 is positive, the new program size is used. If this
size is less than the Vulcanized program size, then the Vulcanized
program size is used.

14-15

0860003-007
Rev. F 1/82

PARLIST +5 Parameter to be passed to the program in the program
chain in its K register on initialization.

When control is returned to the calling program, execution continues at the instruction
following the BLU instruction. The A register is set to reflect the status of the exiting
program as follows:

A: =0 Normal exit.
>0 Abort code if the exiting program was aborted.

The C Register is set to reflect the status of the A register.

When a program exits the system using the S$EXIT service or if the program aborts and no
Contingency Return ($C/RTN) is taken, the link in the chain for the program is removed from
the program chain. If the program chain becomes empty for interactive and control-point
programs, then Job Control or a default program, if supplied, is reloaded for execution. In the
case of real-time and monitor programs, control is returned to the system. If the called
program in a chain aborts, the result depends upon the setting of the EA (Exit-on-Abort,
Jobcontrol MO command) mode. If Exit-on-Abort mode is selected, the terminal session or
control point will be terminated when the called program aborts. If it is not selected, the
system will return to the calling program with the error code in the A register.

A program in a program chain may also transfer control to another program using the
$NXTPRG service. In such a case the next program is executed at the same link of the
program chain as the exiting program, i.e., no new link is added to the program chain. When
a program calls the $SEXIT service, the entire program chain is emptied, and control returns
to the system. In the case of interactive or control-point programs, if the program making
the $SEXIT call is not Job Control, then the call is converted to a regular $SEXIT call.

A program may chain to itself (i.e., a program chain may contain more than one copy of the
same program). In such cases, each copy of a program is different from the others. The
maximum length of a program chain is limited by the value of the CHAINMAX parameter
defined during system generation. The default value for the CHAINMAX parameter is 2;and
a value of 0 or 1 disables chaining. This parameter may be changed using the Modify System
(MS) command at the operator’s console. If the maximum length of a program chain is
exceeded, the calling program is aborted.

When a program chains to another program, the following actions are taken:

1. The entire logical address space, including any regular DCM or special common DCM
allocated by the program, is saved.

2. The Contingency Return ($C/RTN) and the Special Interrupt ($SPINT) linkages, if
any, defined by the calling program are saved. Note that the program in the chain
must, if needed, define its own Contingency Return ($C/RTN) and Special
Iinterrupt ($SPINT) linkages.

3. A Dump Buffer function (1/O function code '24) is performed on all the assigned
LFN’s. In case of blocked disc area assignments, this results in the deallocation of
the blocking buffers. Hence, upon return from the program in the chain, an Open
function (1/0 function code ‘13) should be performed on the LFN’s assigned to
blocked disc areas before any other 1/O operations are performed on them.

14-16

0860003-007

Rev. F 1/82
INDEX
A D (Cont.)
$ABORT, 1-3, 1-4 Displacement, 2-2
Accept Link, 13-3 $DLIM, 2-1, 2-7, 2-8, 2-9
$ADD, 8-3 $DLINES, 4-2
ALLOCATE, 8-1 Drop Link, 13-8
Alter Link, 13-5 Dynamic Core Manager (DCM), 8-1
Area names, 2-3
$AREANM, 2-1, 2-3, 2-8, 2-16, 2-17 E
$ASGNM, 3-8
$ASNLST, 2-18 SELIMINATE, 9-7
$ASNOBJ, 2-18) $ENABLE, 5-15
$ASSIGN, 3-2 EQIVs, 1-1
Equivalences, 1-1
B $EXIT, 1-2, 14-14
$EXTIME, 6-2
‘Background services, 4-1
$BINASC, 14-6 F
$BKCHAR, 2-12
$BKPARM, 2-2, 2-8 Flush Message, 13-8
$BKSTOR, 4-3
BLU calls, 1-1 G
c GENASYS, 4-2, 5-1, 10-1
$GENERATE, 94
C register, 1-1 $GTDISP, 2-8
$CHAIN, 4-1, 4-15 $GTHEAD, 2-6
$CHAR, 2-2, 2:12 $GTREG, 24, 2-10
$CHWORK, 4-3
$CMESAG, 11-3 H
$CONNECT, 5-13
COBOL, 3-1 Hardware registers, 2-5
$C/RTN, 14-6, 14-7, 14-15 Hertz clock, 5-1
$HOLD, 1-5
D $HPINT, 124.2
$DAASGN, 9-16 [
$DAREST, 9-16
$DASAVE, 9-11 | register, 1-1
$DATE, 6-1 $IDELAY, 12-5
$DCM, 8-1 $1JOB, 14-2
$DEFID, 12-4 $INHIBIT, 5-16
$DEFLTS, 14-13 $INIT, 5-2
$DELAY, 14, 11-2 $INITSS, 124
Delimiters, 2-1 Interprocess Communication, 13-1
$DEXIT, 5-7 $IRETRN, 12-5
Disc area types, 9-1 $IWAIT, 12-5

Disc Management services, 9-1
$DISCONNECT, 5-15

I-1

0860003-007
Rev. F 1/82

J
$JOB card, 14-2
L

$LFINFO, 3-6.2

LFN, 3-1

$LFN, 3-6.1
SLFNAME, 3-7
$LINES, 4-2

Link Information, 13-2
$LISTDV, 4-2

Logical File Number, 3-1
$LOOK, 11-3
$LSPACE, 8-3
$LTEXT, 2-8, 2-15

M

Memory Allocation services, 8-1
Message Communication Services, 11-1
$MSPACE, 8-3

$MTYPE, 14-12

Multiple Disc Area Information, 9-13
$MUNLD, 14-7

N

$NUMBER, 24, 2-8, 2-13, 2-14
Numeric register, 2-4
$NUMTEX, 2-8, 2-14, 2-15
$NXCHAR, 2-2,2-121
$NXPARM, 2-8

$NXTPRG, 4-1, 4-3, 14-15

o

$OCTASC, 14-6
$ONENUM, 2-8, 2-13, 2-14
$OPCOM, 14-5
$OPTIONS, 4-1

P

$PABORT, 5-1, 5-11
$PACK, 14-5
Parameter services, 2-13
$PASSW, 14-11

PDN, 3-4

$PLINK, 13-1

$POP, 7-1

$PRIOR, 5-11

P (Cont.)

Privileged Disc Area Information,.9-13
$PTYPE, 14-1

$PUSH, 7-1

Q

$QSTAT, 59
$QUAL, 2-3, 2-8, 2-17

Qualifier Disc Directory (QDD), 9-1, 9-11

Qualifiers, 2-3
Quotes, 2-1

R

Real time services, 5-1

- $RECEIVE, 11-2, 11-3

Receive Message, 13-7
Register Mode, 2-9

Registers, types of, 2-3, 24, 2-§
$REGNAM, 2-17

Reject Link, 13-4
Replacement register, 2-4, 2-6
Request Link, 13-1
$RESORC, 14-8

$RNAME, 9-7

$RPINT, 12-4.2

$RSTRT, 5-1, 59

$RTYPE, 9-9

S

Scanner, 2-1

$SCINIT, 2-6, 2-18

$SEND, 11-1

Send Message, 13-5

$SEXIT, 1-3, 14-15

Single Disc Area Information, 9-12
Skeleton Tapes, 10-8

$SLEEP, 5-7

Sleep state, 5-1

SPALLOCATE, 8-1

$SPINFO, 12-3 .
$SPINT, 12-1, 13-1, 13-9, 14-15
$SPNUMB, 2-8, 2-14

$SPOOL, 14-1

$SQUEEZE, 9-10.1

$STCHAR, 2-1, 2-7, 2-8, 2-9
$STDISP, 2-8

$STHEAD, 2-7

$STMODE, 2-11, 2-18
$STREG, 2-4, 2-9, 2-11

S (Cont.)

String register, 2-4, 2-5
$STRTIM, 6-2

$SUSP, 5-1, 5-7
$SYSABT, 14
$SYSERR, 1-3, 14
$SYSLEV, 14-1

T

Tape Labelling, 10-2
Tape Labels, 10-2

Tape Management, 10-1
$TAPEOP, 10-1
$TEMP, 7-2
Temporary storage, 7-2
$TERMIN, 5-6
$TEXNUM, 2-8, 2-14.1
$TEXRAN, 2-14.1
$TEXT, 2-8, 2-15, 2-18
$TIME, 6-2, 9-15, 11-3
Time/Date services, 6-1

0860003-007
Rev. F 1/82

T (Cont.)

Timer schedule, 5-1
$TLABEL, 10-11
$TPREAD, 14-11, 14-12
$TRIGER, 12-3

u

SUNWORK, 4-2
$USER, 2-22
$USERNO, 14-3

v

*VULCMESS, 1-3
w

$WAKEUP, 5-5

1-3/(1-4 Blank)

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04.00
	02-04.01
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12.00
	02-12.01
	02-13
	02-14.00
	02-14.01
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06.00
	03-06.01
	03-06.02
	03-06.03
	03-06.04
	03-07
	03-08
	04-01
	04-02
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-01
	06-02
	07-01
	07-02
	08-01
	08-02
	08-03
	09-01
	09-02.00
	09-02.01
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10.00
	09-10.01
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	12-04.00
	12-04.01
	12-04.02
	12-05
	12-06
	12-07
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06.00
	13-06.01
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10.00
	14-10.01
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	I-01
	I-02
	I-03

