VULCAN

CONCEPTS AND FEATURES

Original Issue
March, 1977

Revision A
December, 1977

Revision B
May, 1978

HARRI S COMMUNICATIONS AND
INFORMATION HANDLING

HARRIS CORPORATION Computer Systems Division
1200 Gateway Drive, Fort Lauderdale, Florida 33309 305/974-1700

0862003-003

0862003-003

Rev. B 5/78
LIST OF EFFECTIVE PAGES
TOTAL NUMBER OF PAGES IN THIS PUBLICATION IS: 72
CONSISTING OF THE FOLLOWING:
Page Change Page Change Page Change
No. No. No. No. No. No.

Title Rev B

A Rev B

B Original

i ’ Rev B

ii, iii Original

iv, v Rev B

1-1 Rev B

1-2,1-3 Original

14, 1-5 Rev B

2-1 thru 2-5 Rev B

3-1 Original

3-2, 3-3 Rev B

4-1 thru 4-6 Rev B

4-7, 4-8 Original

4-9 Rev B

5-1 thru 5-5 Rev B

6-1 Original

6-2 Rev B

6-3 Original

64, 6-5 Rev B

6-6, 6-7 Original

6-8, 6-9 Rev B

6-10 Original

6-11 Rev B

7-1,7-2 Rev B

7-3 Originadl

7-4 thru7-6 Rev B

8-1, 8-2 Rev B

8-3 Original

A-1 thru A4 Rev B

A-5 Original

A<6 thru A-9 Rev B

B-1, B-2 Rev B

B-3 Original

I-1 thru I-5 Rev B

Insert Latest Revision Pages. Destroy Superceded Pages.

HARRIS CORPORATION Computer Systems Division

A

PROPRIETARY DATA

This document, the design contained herein, the detail and invention
are considered proprietary to Harris Corporation. As the property of
Harris Corporation it shall be used only for reference, contract or
proposal work by this corporation or for field repair of Harris
products by Harris service personnel, customers, or end users.

No disclosure, reproduction, or use of any part thereof may be made
except by written permission from Harris Corporation.

0862003-001
Original 3/77

0862003-003
Rev. B 5/78

PREFACE

VULCAN is the operating system for Harris Virtual Memory Computer Systems. This
manual describes what VULCAN can do and how well it does it and should be read by those
who are evaluating a Harris Virtual Memory System for purchase or who are preparing to be
VULCAN users. '

'If you are evaluating computer systems, you are probably more interested in the “what’'s"
of VULCAN rather than the “how’'s”. And you may be more interested in the way
VULCAN manages users rather than the way users manage VULCAN. If indeed these are
your interests, read Section | (VULCAN — An Overview), Section 11l (User Management)
and Section VIl (System Operation) in their entirety. Depending upon the types of
processing you need, the following paragraphs of Section Il (Processing Modes) are
recommended: Interactive Processing, Batch Processing, Job and Program Sequencing, and
What Is a Real Time Program.

If you still want more information, the subsection entitled Job Control Example, Table 4-2
(Job Stream File Example), and the paragraph on Job Control Macros, all in Section 1V, will
give you an idea of the capabilities and the ease of use of VULCAN's interactive command
language. The first paragraph of Section V has some important information on VULCAN's
language processors. Figures 6-2, 6-3, and 6-5 in Section VI illustrate the efficiency of
VULCAN’s disc storage techniques. |f you are concerned about the security of your disc
files, read Disc Area Security in Section VI. If you are interested in data base management,
read the first paragraph of Section VII on the TOTAL Data Base Management System and
the paragraphs on Security and Backup and Recovery. If you have a requirement for
Remote Job Entry or VULCAN’s Remote Job Hosting capabilities, read Remote Job Entry
(RJE) Subsystems in Section VII.

For programmers and analysts, this manual describes what tools VULCAN offers for the
solution of your tasks. Read Section | through IV and Section Vil in their entirety. in
Section V, Programming Facilities, the first three paragraphs are of general interest to all
programmers and analysts. Look over the rest of the chapters to see what other
programming facilities you can use. Section V1I, Optional Software, describes the TOTAL
Data Base Management System and Remote Job Entry Subsystems. Read these paragraphs if
they are applicable to your installation.

For more detailed discussions of the VULCAN operating system and its features, consult the
following manuals: VULCAN Job Control and System Processors (Publication No.
0860002), VULCAN Operator Communications — OPCOM (Publication No. 0860005),
VULCAN System Services (Publication No. 0860003), VULCAN 1/0 Service (Publication
No. 0860004), and VULCAN GENASYS (Publication No. 0860006). If you need details on
using a language processor, Harris has a reference manual for each language it supports.
Assembly language programmers should also have the appropriate CPU reference manual for
their hardware configuration. Finally, there are manuals on Harris TOTAL (Publication No.
0862002), Harris TOTAL Interactive Questioner 1Q (Publication No. 0862005), and RJE
under VULCAN (Publication No. 0863001).

0862003-001
Original 3/77

CONTENTS
Section ' Page
Preface00 oo
1 VULCAN — AN OVERVIEW

1-1 What Is VULCAN? . 1-1
1-2 What Is Virtual Memory?. . 1-1
1-3 Additional Virtual Memory Concepts e e .. 1-2
14 Features of the Harris Virtual Memory Implementatlon .. 1-3
1-6 Applications e e e e e e e e e e e 14
16 Usability . . . 1-b6
1-7 Reentrancy The Sharmg of Code 1-6

] PROCESSING MODES

21 Introduction . .

2-2 The Software Prlorlty Structure .

2-3 Interactive Processing .

24 Batch Processing . .

2-4.1 Multiple Batch Executlon
2-4.2 Control Points .

2-4.3 Resourcing . . .
2-4.4 Job and Program Sequencmg .
eal-Time Processing . . .
5.1 What Is A Real- Tlme Program7
5.2 Real-Time Program Initiation .
5.3
b.

2-5

:

Program Execution . .
4 Inter-Program Commumcatlon

NRNNNNNNNNDNNNN
AL PL,LERWOWWNNN= -

R
2-
2-
2-
2-

il USER MANAGEMENT

3-1 The Need for User Management . 3-1
3-2 User Identification . .. 3-1

3-2.1 The User I.D. 3-1

3-2.2 The Qualifier 31

3-2.3 SigningOn . . . 32
3-3 How Users Are Managed . . 3-2

3-3.1 User Control Parameters . 3-2

3-3.2 Internal System Accounting 3-3

v THE COMMAND LANGUAGE — VULCAN JOB CONTROL

4-1 Introduction 4-1
4-2 Command Structure 4-1
4-3 Text Editing . . . 4-2
4-4 Peripheral and Disc F|Ie Control 4-3
4-5 Job Control Example . 4-3
4-6 Message Communications . 4-4
4-7 Commands to Assist the Termmal User 4-5
4-8 Job Control Programming 4-6
4.9 Job Control Macros . 4-8

0862003-001

Original 3/77
CONTENTS (CONT'D.)
Section Page
\") PROGRAMMING FACILITIES
5-1 Introduction 5-1
5-2 The Language Processors . 5-1
5-3 VBUG (VULCAN Symbolic Debugger) 5-1
5-4 Libraries . . . 5-2
5-4.1 Subroutme lerarres 5-2
5-4.2 Reentrant Libraries . . . 5-2
5-4.3 The COBOL COPY Lrbrary 5-2
55 Monitor Common 5-3
5-6 System Services . . 5-3
5-6.1 General Capabllltles 5-3
5-6.2 /O System Services . 5-3
5-6.3 The Format Scanner 5-4
57 Monitor Programs . 54
5-8 Utility Packages . . . 5-4
5-8.1 Sort/Merge Package 5-4
5-8.2 VULCAN Indexed Sequentlal Package (VISP) .. 5-5
59 Overlays . . 55

Vi DISC FILE MANAGEMENT

6-1 Disc Space Allocation . 6-1
6-1.1 Sectors. . . . 6-1
6-1.2 Space Allocatlon Blts .. 6-1
6-1.3 Disc Areas and Disc Files . 6-2
6-1.4 Granules 6-2
6-1.6 The MAI and the EAI .. 6-4
6-1.6 Disc Directories — The MDD and the QDD 64

6-2 Disc Area Types 6-6
6-2.1 Blocked Disc Areas . 6-6
6-2.2 Unblocked Disc Areas 6-6
6-2.3 Concurrent Access Files (Random DISC Areas) 6-7
6-2.4 VULCAN Temporary Work Areas 6-8

6-3 Disc Area Security . .. 6-8
6-3.1 The Qualifier 6-8
6-3.2 Access Bits . 6-8
6-3.3 Access Level . . . 6-9

6-4 Disc Area Backup and Retrleval . 6-9
6-4.1 KEEP (Backup) . 6-9
6-4.2 FETCH (Retrieval) . 6-11
6-4.3 Incremental Backup. 6-11
6-4.4 MAP . . 6-11

Vil OPTIONAL SOFTWARE

7-1 The TOTAL Data Base Management System 7-1
7-1.1 Data Base Files 7-1
7-1.2 Data Base Networks. . . 71
7-1.3 Data Base Definition and Formattmg . 7-2
7-1.4 Accessing the Data Base . 7-2
7-1.5 Security 7-2
7-1.6 Backup and Recovery 7-4

A-7.1 Extensions .

0862003-003

Rev. B 5/78
CONTENTS (CONT'D.)

Section Page
7-2 Remote Job Entry (RJE) Subsystems . 7-4
7-3 BASIC-Vo 7-5

7-3.1 Modes of Operatlon 7-5

7-3.2 Naming Conventions . 7-5

7-3.3 Multiple Statements per Line and Lmes per Statement 7-6

7-3.4 1/0 . . e e . 7-6

7-3.5 Mathematlcal and Strmg Operatlons 7-6

7-3.6 Arrays and Matrices .. 7-6

Vil SYSTEM OPERATION

8-1 The Operator’'s Function . . 8-1
8-1.1 OPCOM — The Operator s Termmal 8-1

8-1.2 System Logs 8-1

8-1.3 Ease of Operating the System . 81

8-1.4 General Command Capabilities 8-1

8-1.5 User Access to OPCOM . 8-2

8-2 System Generation (GENASYS) . 8-2

Appendix Page
A THE LANGUAGE PROCESSORS

A-1 COBOL A-1
A-1.1 The COBOL COPY lerary A-1

A-1.2 Compiler Options A-1

A-2 FORTRANIV. . A-2
A-2.1 Structured FORTRAN A-2

A-2.2 Datapool . . . A2

A-2.3 Other Extensions . A-2

A-2.4 Debugging Aids A-3

A-2.5 Control Features . A-4

A3 BASIC. A4
A-3.1 String Manipulation . . A4

A-3.2 Unlabeled Statements . . . A-4

A-3.3 Structured Programming Control Statements . A5

A-3.4 Real-Time Capabilities . e A-b

A-3.5 Formatted1/O. A5

A-3.6 Compile-Time Options. . A-6

A4 Harris Macro Assembler . A-6
A-4.1 Instruction Set. .. A-6

A-4.2 Addressing Capabilities A-6

A-4.3 Data Formats A-6

A-4.4 Conditional Assembly . A-7

A-4.5 Assembler Macros A-7

A5 RPGII. . . A-7
A-5.1 Debugglng AIdS . . A-7

A-5.2 Compile-Time Optlons. e e A-7

A6 FORGO A-8
A-7 SNOBOL4 . A-8
A9

A9

A-7.2 Diagnostic Aids

0862003-003
Rev. B 5/78

CONTENTS (CONT'D.)

B VIRTUAL HARDWARE OPERATION
B-1 The Virtual Memory Registers. B-1
B-1.1 The Addressing Registers. B-1
B-1.2 The Page Access Registers .. B-1

Appendix Page

B-2 Virtual Memory Instructions e e e e e B-1

B-3 AddressMapping. B-2

B-4 In Search of a Page . e B-2
Index e e e e e e e e e e e e e I-1

ILLUSTRATIONS
Figure Page
6-1 Disc Sector . . . e e e e e e e e e e e e e e 6-1
6-2 Disc Space AIIocatlon. e e e e e e e e e e e e 6-3
6-3 Disc Space Fragmentation 6-3
6-4 Disc Directory Structure . . . e e e e 6-5
6-5 Comparison of Data Density among DISC Area Types. e e 6-7
7-1 SettingUpaDataBase 7-3
TABLES

Table Page
2-1 Sample Software Priority Layout. 2-1
4-1 Job Control Example 4-3
4-2 Job Stream FileExample. 4-7
6-1 Access Bits e e e e e e e e e e e e e e 6-9
7-1 VULCAN RJE Subsystems. e e e e e e e e e e 7-4

0862003-003
Rev. B 5/78

I. VULCAN
AN OVERVIEW

1-1 WHAT IS VULCAN?

VULCAN is a multi-use, multi-programming, multi-lingual virtual memory operating system
designed to make the best use of the hardware features of Harris Virtual Memory Computer
Systems.

VULCAN is a multi-use operating system. Because of its wide variety of capabilities and
flexibility, it is an excellent operating system for general scientific, commercial and
time-sharing applications. ;

VULCAN is a multi-programming operating system. It supports concurrent operation of
interactive time-sharing, multiple batch and real-time processing as well as the TOTAL Data
Base Management System, remote job entry and remote job hosting.

VULCAN is a multi-lingual operating system. It supports seven language processors, all of
which are concurrently available to interactive, batch and real-time processing. Programs
written in any set of languages can all execute concurrently in any combination of
processing modes.

VULCAN is a virtual memory operating system. In addition to its other operating system
functions, VULCAN works in conjunction with the virtual memory hardware in keeping
track of and directing memory allocation.

1-2 WHAT IS VIRTUAL MEMORY?

Virtual memory is a method by which one or more programs can execute in less real
memory than the combined sizes of the programs. How this works can be explained by
means of an analogy involving a research project.

A researcher has a very small office and is using a 26-volume encyclopedia for reference.
However, the office is so small that it can only accommodate a maximum of three volumes
at one time. Whenever a book is required, the researcher goes to a nearby library and gets
the specific volume from the library. See the illustration on the next page.

At the beginning of a new project, the office is empty. The first book that is needed is
volume five which is requested from the librarian and placed in a corner of the office. After
a few minutes of reading, a reference to volume fifteen is encountered, so that book is
obtained and is placed in another available corner. A little later on, volume eleven is sought
and placed in the only remaining corner of the office. After another hour passes, the
researcher finds that once again another volume must be requested, only this time there is
no room for it. The solution is to “swap’’ one of the books already in the office for a new
one. Since volume five has not been used for quite a while, it is selected to be ““swapped
out”.

0862003-001
Originai 3/77

LIBRARY

The Researcher’s Office

In a virtual memory computer, instead of encyclopedias there are programs. These are not
broken up into volumes, but rather into units called “’pages”. (Unlike the encyclopedia,
however, all “pages” are the same size — 1,024 computer words in a VULCAN system.) The
office is the computer’s memory and requesting a page that is not in memory is known as a
“demand page”. The library is analogous to a disc pack. The researcher is the Central
Processing Unit (CPU) and both the CPU and the swapping of memory pages are directed by

VULCAN.

1-3 ADDITIONAL VIRTUAL MEMORY CONCEPTS

To go back to the analogy, each corner in the office which can accommodate a book has a
number by which the corner can be identified. These numbers, illustrated below, are called

real, or physical, addresses.

SPACE SPACE
FOR FOR
ONE ONE
BOOK BOOK
SPACE
FOR
ONE
BOOK

n
w

A

Dot iDL nZnel A VN
FIGAI/ T 1Y I0dl AUUITTIIES

1-2

0862003-001
Original 3/77

Each volume of the encyclopedia also has an identifying number called a logical, or virtual,
address. Logical addresses are independent of physical addresses since it doesn’t matter in
which corner a book is placed. In other words, any (logical) page of a program may reside in
any (physical) page of memory that is available. The illustration shows this relationship;
volume eleven (virtual/logical address = 11) resides in corner two (real/physical address = 2).

s

" 15

s A

Logical Addresses vs. Physical Addresses

The analogy demonstrates how a program can be executed when the physical size of
memory is less than the logical size of the program. And had the researcher been working on
two projects concurrently, books from another encyclopedia could have been swapped in
just as easily — just as VULCAN can swap pages in and out that belong to different
programs.

For a more technical description of VULCAN'’s addressing and paging techniques, see
Appendix B.

14 FEATURES OF THE HARRIS VIRTUAL MEMORY IMPLEMENTATION

Not all virtual memory systems are alike. Because of an extremely efficifent and flexible
virtual memory implementation in both hardware and software, the Harris Virtual Memory.
System has several particularly advantageous features.

High-speed program loading: Program loading is little more than a simple
matter of copying program pages from disc directly into memory with
no modification. The Harris virtual memory hardware associates each
logical address in the program page with its physical location.

Hardware/software memory protection: Every program page in
memory is protected against access or inadvertent destruction by
another concurrently executing program. In addition, pages containing
instructions and constants, as opposed to variable data, are hardware
write-protected, even within the same program.

0862003-003
Rev. B 5/78

Extensive logical memory: Over 3.1 megabytes of logical address space
are availabie for running appiication programs regardiess of the physicai
memory available or the size of the operating system.

Efficient use of memory: A program need not occupy contiguous
memory. Anv physical page not occupied by the operating system can
hold any logical page. Memory, therefore, never needs reorganizing or
compacting.

1-5 APPLICATIONS

All of VULCAN's facilities provide a wide range of problem solving capabilities for all
applications.

For applications that are scientifically oriented, VULCAN supports ANSI-standard
FORTRAN IV and BASIC. Both have numerous extensions. The powerful Harris Macro
Assembler supports over 600 instruction mnemonics including bit and byte instructions and
extensive pseudo-operations as well. VULCAN contains a number of real-time processing
services which are callable from all three of these languages. For those installations that do
extensive mathematical computation (number crunching), VULCAN supports the Scientific
Arithmetic Unit (SAU), a high-speed floating point processor which has forty-seven of its
own instructions. For those instances where an interface to other computer installations is
required, VULCAN supports several remote job entry (RJE) protocols.

For commercially oriented applications, VULCAN supports COBOL, RPG Il, and the
TOTAL Data Base Management System. Since VULCAN hosts several RJE protocols, it can
be used to offload other computers in a large company or can itself be offloaded by
submitting jobs to other computers via RJE.

In the educational world, VULCAN can concurrently process administrative functions, such
as class scheduling, in batch while students are developing programs interactively, and
periodic samples of experimental data are being taken in real-time. The wide variety of
programming languages includes SNOBOL |V and FORGO. The latter is a diagnostic
load-and-go ANSi-standard FORTRAN compiler which is particularly useful for students
who are learning the language.

In a time-sharing environment, be it scientifically, commercially, or educationally oriented,
VULCAN can support up to 128 local and remote interactive terminals, depending on the
hardware/software configuration. For unsharable devices, such as magnetic tape drives,
peripheral resourcing is provided. Spooling for devices such as line printers and card readers
is automatic, and the spool queues may be manipulated and controlled by the console
operator and the interactive user.

In many applications, user management is an important consideration. It involves
controlling what each user shall be permitted to do and keeping track of what each user has
done. VULCAN provides the capability to place restrictions on users in such categories as
execution priorities, program size, access to monitor services, access to peripheral devices,
and use of the operator’'s console. VULCAN automatically keeps records on each user’s
accumulated CPU and connect time and peripheral usage and does not let the user exceed
his limits on computer and disc space utilization. An accounting utility is also provided
which may be used to generate system utilization reports and for calculating charges to
users, departments, etc.

1-4

0862003-003
Rev. B 5/78

1-6 USABILITY

In some computer systems, the value of good features is diminished because the features are
difficult to use. Such is not the case with VULCAN. It has a powerful, interactive command
language which uses common English words and is easy to learn. The command language,
which is available to both interactive and batch users, includes a wide variety of text editing
commands which help reduce the time required for program development and the
maintenance of data. All commands are entirely device independent making it unnecessary
to have different forms of commands to interface with different peripherals.

Commonly executed Job Control procedures may be stored on and executed off of disc
files. Some such procedures, called Job Control Macros, become, in effect, new Job Control
commands. Job Control Macros, which are extremely easy to implement, may be used to
tailor the Job Control language to meet the specific requirements of an installation.
Diagnostic commands are helpful both for program debugging and for learning to use the
system. (A separate processor, VBUG, provides an interactive symbolic capability for
high-level and Assembler languages — see “VBUG (VULCAN Symbolic Debugger’.)

1-7 REENTRANCY — THE SHARING OF CODE

It is extremely easy for VULCAN to produce reentrant code, i.e., code that can be shared
concurrently by different people. It's so easy, in fact, that all language processors and
support software under VULCAN are reentrant. In addition, FORTRAN, COBOL, BASIC
and RPG Il automatically generate reentrant code. Through the use of simple assembly
language pseudo-operations, assembly language programs can also be made reentrant.
Physical memory pages that contain reentrant code are hardware write-protected.

To explain the concept of reentrancy in more detail, let us rejoin the researcher.

The researcher is now working on two jobs, Project A and Project B. The same encyclopedia
is being used for both projects. While working on Project A, the researcher had occasion to
refer to volume three which is still in the office. Now, work is being done on Project B and
the same volume, volume three, is needed. The researcher knows that he can use the same
book; he doesn't have to bring in another copy. After all, the text hasnt changed. It is said
to be reentrant because any researcher on any project can “enter” it when required and get
the same information. Of course, this would not be true if any of the projects involved
modifying the book. In that case, the book would be non-reentrant.

Program pages, then, that are not modified can be used concurrently by different users
calling the same program. This sharing of program pages has two advantages. First of all, it
saves on memory requirements by eliminating the need for multiple copies of the same
machine instructions or fixed data to be loaded. This leads to a double saving in time —
unnecessary program loading is eliminated and fewer demand pages are generated resulting
in less swapping.

1-5

0862003-003
Rev. B 5/78

Il. PROCESSING MODES

2-1 INTRODUCTION

VULCAN supports three processing modes, all of which are available concurrently. These
processing modes are interactive processing, batch processing and real-time processing. The
primary way that VULCAN distinguishes between the modes is by software priority. It is
software priorities that ensure that high priority jobs such as those submitted by interactive
users can be serviced before batch jobs and that real-time requirements are met before those
of the interactive and batch modes.

2-2 THE SOFTWARE PRIORITY STRUCTURE

VULCAN supports up to 128 software priorities. They are used by the operating system to
determine which program or interactive terminal will have control of the CPU at any one
time. Programs with a high priority are allocated to the various processing modes in a way
that .best reflects the requirements of any particular installation. Table 2-1 is an example of
a typical software priority layout.

Table 2-1. Sample Software Priority Layout

63 Non-Paged (time-critical)
49 Real-Time Processing
438 Paged (non-time-critical)
32 Real-Time Processing
31 Interactive Processing
16
15 Multi-Batch Processing
0 (Control Points)

Whenever programs of equal priority are executing concurrently, the technique of
time-slicing is used to allocate CPU time. A time slice is a small unit of time which is
allocated sequentially to each of the equal-priority programs. Whenever one of these
programs either uses up its time slice or is in a state of suspension (as when waiting for an
1/O function to be completed), control passes to another program of equal priority that is
requesting CPU time. The duration of a time slice is selected when a VULCAN system is
generated. A typical value is 1/60th of a second.

0862003-003
Rev. B5/78

2-3 INTERACTIVE PROCESSING

Interactive processing permits the user to communicate with VULCAN on-line through an
interactive terminal. Interactive users can easily invoke either of the other processing modes
when they are needed. It is the interactive mode which gives VULCAN its time-sharing
capability.

An interactive terminal user has access to all language processors, support software and
peripherals; can initiate batch jobs, interactive programs (those running at an interactive
processing priority), and real-time programs; can submit and control RJE jobs; and can
query the status of the computer system and exert some control over it. In effect, then,
terminal users feel as if they each have their own computer.

The primary interface between the interactive terminal user and VULCAN is the VULCAN
interactive command language, VULCAN Job Control. It is through the use of this language
that the interactive terminal user can invoke a compiler, initiate a program, print a file, edit
data, etc. If certain sequences of Job Contro! commands are used frequently, the commands
can be stored in disc files and become job stream files. The command sequence can then be
invoked by a single command. (See *“The Command Language — VULCAN Job Control’’ for
a more comprehensive discussion of the command language.)

An interactive terminal has a software priority associated with it, that is, with the terminal
itself. It is at this priority that normal interactive commands are processed. From an
interactive terminal, however, a program of any priority can be initiated (provided that the
user initiating the program has the authority to use the selected priority). In a time-sharing
environment, all interactive terminals may run either at the same priority or at different
priorities depending on the requirements of the installation.

2-4 BATCH PROCESSING

Batch jobs are initiated from an interactive terminal or a card reader and generally run
unattended. Batch jobs communicate with the operating system through the same command
language that is used interactively. As a matter of fact, in most cases, to submit an
interactive job stream file as a batch job, all that is required is a JOB “card’ at the beginning
of the job stream and an EOJ (End Of Job) “card’ at the end. Hence, a batch job can
involve more than the execution of a single program. [t can be composed of multiple
program initiation requests and Job Control commands.

Once an interactive user submits a2 job stream file to batch, that user can continue
performing interactive tasks. The batch job is executed concurrently and the user can query
its status, find out when it’s done, and retrieve its output at the interactive terminal.

2-4.1 Multiple Batch Execution

Although a system operator can declare how many batch jobs should be permitted to run at
any one time, under the normal mode of operation it is VULCAN that makes that decision.
VULCAN constantly monitors the load placed on the system by the other processing modes
and dynamically adjusts the optimal batch load accordingly. The maximum number of
concurrent batch jobs to be permitted at an installation is determined in advance by the
computer center staff. A typical maximum is 16.

2-2

0862003-003
Rev. B 5/78

2-4.2 Control Points

Not all batch jobs are equally important. That's why several priorities are usually set aside
for batch (as in Table 2-1). Batch jobs can be run at any batch priority.

The priorities allocated to batch are distributed among several groups called control points.
A control point is a software entity within VULCAN that monitors and controls the
execution of a batch job. Just as an interactive program is associated with a terminal, a
batch job is always associated with a control point. If four control points are defined in the
system, then up to four batch jobs can run concurrently.

The number of control points and the range of priorities associated with each control point
varies with the number of concurrent batch jobs permitted. If, for example, VULCAN
determines that only four batch jobs can be run, then there are four control points available.
Control points are identified by a letter of the alphabet.

The priority ranges associated with the control points overlap. If there are four control
points in a system with sixteen batch priorities, for example, the priorities would be
allocated like this:

Control Point Priorities
A 0-15
B 4-15
C 8-15
D 12-15

This method of distributing priorities helps ensure that the more important batch jobs will
be processed first since they can run at any control point that is available, whereas the very
lowest priority batch jobs must wait for control point A to be available.

If a batch job is initiated and there is no appropriate control point free, the job is placed at
the end of a single batch job queue. As soon as any control point becomes free or is created
by VULCAN or the system operator, the queue is scanned for the highest priority job that
can be run at that control point and the job is executed. In case of a tie, the job that was
initiated first is processed first. :

The operator can alter the priority of a batch job in the queue. This facility is useful when a
system is running a large number of batch jobs and those with lower priorities have
difficulty getting initiated or getting resources in time for them to complete when needed.

2-4.3 Resourcing

Batch processing differs from interactive processing in the area of peripheral device
resourcing, i.e., getting control of an unsharable device, such as a magnetic tape drive. An
interactive user can request that a tape drive be allocated and that a particular tape be
mounted and can then continue with other processing until the tape is ready. However,
batch processing requires that all such resource requests for a particular job be satisfied
before that job is executed. If all resource requests cannot be satisfied immediately,
VULCAN tries again periodically to satisfy all the requests. This process prevents a control
point from being tied up waiting for a particular device for what could be a considerable
amount of time. It also prevents those resources that are immediately allocatable from being
tied up waiting for those that aren’t.

2-3

0862003-003
Rev. B 5/78

2-4.4 Job and Program Sequencing

Frequently it is necessary for one batch job to be completed before another one can be
started. Rather than having an operator constantly check to see whether the first job has
completed, VULCAN's job sequencing facility can be used. With this facility, a job can be
initiated but is not executed until one or more specified jobs are completed.

In addition, certain contingencies can be accounted for within the job stream. For example,
let's say that one job stream usually invokes three programs in sequence — first PROG-A,
then PROG-B and finally PROG-C. However, if a certain condition is detected during the
execution of PROG-B, it's necessary to skip PROG-C and execute PROG-D instead. Program
sequencing, then, can be built into the job stream.

The job and program sequencing facilities lessen the requirement for human intervention.

2-5 REAL-TIME PROCESSING

2-5.1 What Is A Real-Time Program?

Real-time programs monitor or interact with ongoing events outside of the computer system
itself. Such ongoing events can be experiments or industrial processes which require that
samples be taken periodically and that valves be adjusted or which involve stages in a
production line environment that need to be monitored and controlled.

Response time in such situations is often more critical than the response time at an
interactive terminal. VULCAN has many features besides just a high software priority which
make it possible for real-time programs, whether they are written in FORTRAN, BASICor
assembly language, or a combination of these, to react quickly to external situations.

In particular, VULCAN supports three aspects of real-time operation: program initiation,
program execution and inter-program communication. (Much of this support is available
through the use of VULCAN System Services. See ‘’System Services”’ for more information
on System Services.)

2-5.2 Real-Time Program Initiation

In cases where initiation speed is not critical, real-time programs can be initiated via
command from the operator's console, an interactive terminal, a job stream file, or even a
batch job stream. They can also be initiated by another program without external
intervention. : :

An even faster method of initiating real-time programs is in response to an external
hardware priority interrupt. Any number of external interrupts in the system can be set
aside for this purpose. They can be ‘“‘connected” to and “disconnected” from programs
either by another program or by command from the operator’s console or interactive
terminal. The interrupts can similarly be controlled (i.e., enabled and inhibited).

24

0862003-003
Rev. B 5/78

The initiation of a real-time program can also be a time-related event. A real-time program
can be scheduled to initiate at a certain time of day and/or on a certain date, or after a
certain specified time period has elapsed. It can also be scheduled to automatically
re-initiate at fixed time intervals such as every hour on the half-hour or every three seconds.
In between periodic executions, the program can remain in memory for faster re-initiation.
Timer scheduling can be specified when the program is initiated, either by command or by
another program.

‘Finally, real-time programs that must run whenever the computer is in operation can be
automatically loaded and initiated when the operating system is initiated.

2-5.3 Program Execution

In Table 2-1, real-time programs are broken down into two categories. The highest priority,
most time-critical programs fall into the category of non-paged real-time. These programs
are loaded in their entirety when they are initiated and stay in physical memory until they
are complete. Thus, their ability to respond quickly is not degraded by swapping. In cases
where response time during execution is less critical or during the development and testing
of programs, real-time programs fall into the second category of paged real-time. Such
programs are paged just like any interactive or batch program. Because paged real-time
programs do not tie up a large block of memory, less swapping is required for other
concurrent processing. (Think what happens in the library analogy if two books for Project
A are chained to their locations. Every time another book is needed for any other project,
the researcher has to run back and forth from the library to swap the one free book.)

Some programs fall into both categories. Such a program could be monitoring
non-time-critical functions. In this case a program can modify its own execution priority or
have it modified by another concurrently executing program.

During execution of any type of program, internal system accounting information is taken
periodically. If a real-time program cannot afford the overhead required for this function,
the generation of accounting information for the execution of that program can be inhibited
by authorized users.

2-5.4 Inter-Program Communication

Several real-time services are available which permit one program to query and/or control
another real-time program. Some of these have already been mentioned, such as dynamic
program initiation, dynamic timer-scheduling, and dynamic modification of a program’s
execution priority. Additional services include the ability of one program to suspend and
restart another program, to query its status, and to abort it.

As for passing data or parameters from one program to another, there are again several
methods. First of all, when a program is initiated, either dynamically or by a command, it
can be passed a 24-bit initiation parameter. During the execution, real-time programs can
use the four VULCAN message communications services which are generally available to all
types of programs. These four services are: send a binary or ASCIl message of arbitrary
length; receive a message of arbitrary length; check to see if there are any messages to be
received; and count how many messages are waiting to be received.

For the passing or sharing of large amounts of data, a common area, known as Monitor
Common, is available. See “Monitor Common*’.

2-5

0862003-001
Original 3/77

l1l. USER MANAGEMENT

3-1 THE NEED FOR USER MANAGEMENT

Any operating system that supports a time-sharing environment must provide facilities for
user management.

It must be able to prevent unauthorized access to data.

It must prevent any one user from occupying an inordinate amount of on-line
storage.

It must keep track of how much each person uses the system and prevent anyone
from using it too much.

It must offer each user as much power and flexibility as possible without
endangering its own operation.

It must ensure that each user gets a fair share of the available processing power.

This section will show how VULCAN meets these requirements.

3-2 USER IDENTIFICATION

Before discussing how users are managed, it is necessary to define how users are identified,
that is, how VULCAN determines which user is doing what.

3-2.1 The User 1.D.

The user i.d. uniquely identifies each person who is authorized to use the computer system.
VULCAN does not permit anyone to use the system unless a valid user i.d. is presented first.

User i.d.’s can have one of two forms. If a strictly numeric i.d. is desired, such as a social
security number, any string of from one to twelve decimal digits can be used. If an
alphanumeric i.d. is desired, such as a set of initials, a string of from one to six alphanumeric
and special characters can be used, the first of which must be alphabetic. In either case,
imbedded blanks and commas are not allowed. Each installation should choose either
alphanumeric or numeric i.d.’s and not use a mixture of both.

3-2.2 The Qualifier

A valid user i.d. is necessary but not sufficient to access the system. A valid qualifier must
be presented too. (There is one exception to this rule — the operator’s console. See *‘User
Access To OPCOM".)

0862003-003
Rev. B 5/78

The qualifier has two parts. The first part contains from one to four digits signifying an
account number or a department number. The second part of the qualifier is a one to four
character alphanumeric identifier which can be used to indicate an account name or a
subgrouping within a department.

Each user i.d. can be associated with more than one qualifier and each qualifier can be
associated with numerous user i.d.’s. For example, let us say that the account number for
the engineering department of a company is 1234. The department has two subgroupings —
development and applications — and so there are two qualifiers associated with the
engineering department:

1234DEV
1234APPL

A user in the engineering department has the user i.d. “FRED??"". Since this user sometimes
works on development and sometimes maintains current applications, his user i.d. is
associated with both qualifiers. Hence, both of the following combinations are defined to
VULCAN as valid sign-on identification at this installation:

1234DEV FRED??
1234APPL FRED??

3-2.3 Signing On

Signing on is the process by which users identify themselves to VULCAN. To work in the
interactive mode, signing on is accomplished by keying in a valid qualifier/user-id
combination as illustrated above. When submitting a batch job, this same information must
appear on the first record of the job stream or card deck. When initiating a real-time
program, it must appear on the program initiation request. Since most users are not
authorized to use the operator’'s terminal at all or in part, the operator’s terminal does not
accept any commands unless a valid user i.d. is presented first; that is, even operators must
sign on.

In addition to their function of identification, the qualifier and user i.d. are also used by the
internal accounting system and the disc file security system (see ‘Internal System
Accounting” and “Disc Area Security”’).

3-3 HOW USERS ARE MANAGED

3-3.1 User Control Parameters

Once a user i.d. and qualifier are assigned to a new user, they must be given to VULCAN
(through the operator's console) along with several additional parameters. Eight of these
additional parameters define the privileges that a user is to have — including the privilege of
giving VULCAN new user parameters. These parameters are:

1. Access level — The access level is a number between zero and fifteen, a higher

number indicating a more privileged status. Disc areas have an access level too, and a user
cannot access a disc area that has an access level greater than that user’s access level.

3-2

0862003-003
Rev. B5/78

2. Program size limit — The maximum allowable value is 256 virtual pages (768K
bytes).

3. Control point time limit — Batch jobs which exceed the number of seconds of
CPU time indicated are aborted. This prevents programs that ‘‘run away” from tying up
computer resources indefinitely. Users can impose lesser time on their jobs, if they desire,
when they initiate them.

4. Output spool size limit — One function of this limit is to prevent users from
printing or punching an inordinate amount of data. It is also useful in the case of run-away
programs.

5. Execution priority limit — This limit prevents low priority users from dominating
the system. '

6. CPU time limit — Users who have accumulated the indicated amount of CPU
time are not permitted to sign on.

7. Disc space limit — This limit indicates the maximum amount of disc space a user
can occupy at one time.

‘ 8. Access bit mask — This 24-bit mask is associated with several privileges. It
indicates which operator console commands a user can issue, if any; it can be used to
prevent a user from accessing particular peripheral devices; and it can be used to prevent
- access to some of VULCAN's System Services (see ‘“System Services”’).

3-3.2 Internal System Accounting

VULCAN automatically records CPU and peripheral device utilization for each user. The
latter includes such data as number of lines printed, number of tape records processed,
number of disc accesses, number of cards processed, connect time, and amount of disc space
occupied.

The Accounting Utility program (ACUTIL) is used to generate utilization reports from this
information. ACUTIL optionally accepts charge rates and produces billing reports for
individuals, qualifiers, and accounts. Different rates for different time periods can be
specified too, giving the capability of charging different rates for prime time, evenings,
weekends, etc.

33

0862003-003
Rev. B 5/78

IV. THE COMMAND LANGUAGE
VULCAN JOB CONTROL

41 INTRODUCTION

VULCAN Job Control is the interface between VULCAN and interactive and batch users.
This section gives an overview of the capabilities of VULCAN Job Control. The VULCAN
Terminal User’s Guide is recommended for those who wish to learn the command language.
Detailed information on the commands can be found in the VULCAN Job Control and
System Processors manual.

4-2 COMMAND STRUCTURE

Job Control commands are composed of one to three parts: the command word, command
options, and command parameters.

Command words are one to eight alphanumeric characters long. Except for four commands
which must start with a dollar sign {$), all command words of three or more characters be
abbreviated to two characters to allow faster input for users who are familiar with the
command language. With only a few exceptions, the abbreviations are the first two
characters of the command word.

Example: CQPY is equivalent to CO

Command options modify commands. Options are indicated with a letter of the alphabet
and are separated from the command word by a period. Multiple options are specified by a
string of characters in any order.

Examples:
Compile a COBOL program to check syntax only — COBOL.S

Get size and date information for a group of disc files belonging
to the signed-on user — MAP.SDGU or MA.DUSG etc.

Command parameters supply further information. They are separated from one another and
from the command- word or options by either a comma or a space. Parameters can be
specified in any order.

Example:

Create a disc file named MYFILE on disc pack 3
with public read access — GENERATE MYFILE P=3 PR or GE MYFILE PR P=3 etc.

Job Control commands can be keyed in one at a time directly at an interactive terminal or
they can be pre-stored on and executed off of disc. (A disc file containing Job Control
commands is called a job stream file. See “Job Control Programming’’ for more information
on job stream files.) Job Control commands can also be submitted via the card reader or a
disc file for batch processing.

0862003-003
Rev. B 5/78

4-3 TEXT EDITING

Text editing commands are a subset of VULCAN Job Control rather than being part of a
separate processor. This means that while editing a file the user can initiate and query batch
jobs, create new disc files, change the mode of operation of the terminal, query the status of
the system, etc,

Most text editing commands fall into two categories — record editing commands and
character editing commands.

The record editing commands operate on records, or lines, within a disc file. The records are
identified by line numbers which are provided by Job Control when a file is listed. These
commands have the following functions:

insert a record (e.g., a line of text)

delete a record

change (delete and add) a record

locate a record that contains a particular character string

locate a record that does not contain a character string

change all occurrences of one character string to another
The character editing commands operate on character strings within a record. Character
editing commands are exactly one character in length. These commands have the following
functions:

insert a character string

delete a character string

change a character string

locate a character string

replace a line (only for interactive CRT terminals)
When editing commands are entered, they do not immediately cause a change to the file
being edited. Instead, they are pre-stored until an UPDATE command is issued. Postponing
the updating has two advantages. First of all, if one is referring to a printed listing of the
data or program being edited, the line numbers on the iisting can be used for record
identification regardless of how many records have been added or deleted from the middie
of the file. Secondly, records can be edited in any order since Job Control sorts them by
record number and command hierarchy before actually performing the update. If desired,
however, a user can request continuous updating.
The user has the option of preserving or not preserving the original version of the file being
edited. A facility also exists to recover editing commands that were entered but not updated

prior to an abnormal termination of processing, such as a disconnect from a remote
terminal.

4-2

0862003-003
Rev. B 5/78

4-4 PERIPHERAL AND DISC FILE CONTROL

There are no special utility programs under VULCAN for file manipulation or
media-to-media conversion. Instead, all such functions are available in the form of simple
Job Control commands. The basic file manipulation commands include rewind, wind (the
opposite of rewind, meaning position the file at the end), write end-of-file, advance file(s),
advance record(s), backspace file(s), and backspace record(s).

The COPY command is the basic command for transferring data from one medium to
another. Copying of one or more files or one or more records can be specified. This
command can be used for any two media.

The MAP command is used to supply information about one disc area or a group of disc
areas. (For an explanation of the relationship between disc areas and disc files, see “'Disc
Areas and Disc Files””.) Standard output includes areaname, disc pack number, and the
current size of the area. Additional information can be requested by specifying options, e.g.,
option D for date information (date generated, expiration date, last date accessed, and last
date written on): option S for additional size information; option A for access information
(i.e., what security restrictions apply to the area); or option E for everything (equivalent to
specifying the D, S, and A options).

See “’Disc Area Backup and Retrieval” for more information on the MAP command.

45 JOB CONTROL EXAMPLE

Table 4-1 is an example of the use of Job Control commands. The purposes of the terminal
session illustrated are: (1) create a FORTRAN source program on disc (this program will be
keyed in directly but it could have been punched on cards); (2) compile and execute the
program; and (3) edit the source file.

Table 4-1. Job Control Example
Command Description
GENERATE MYFILE Reserve space on disc and name the area MYFILE.

COPY * MYFILE Copy the statements to follow from my terminal to
MYFILE.

(Key in the statements to be added.)

$SEOF Write an end-of-file on MYFILE and terminate the COPY
_ command. The next statement is a command, not data.

FORTRAN MYFILE Compile the source program on MYF| LE.

VX Vulcanize (link-edit; catalog) and execute the program

(this could be done in two steps, too).

EDIT MYFILE Identify an area to be edited.

0862003-003

Rev. B 5/78
Table 4-1. Job Control Example (Contd.)
Command , _Description
CHANGE 41-43 Indicate some records to be changed.
(Key in the statements to replace 41-43.)
EB7CLO Identify a record for character editing and change the
first L on the line to an O.
INSERT 22 The statements following this command will be
inserted after line 22 in MYFILE.
{Key in the statements to be added.)
$3% _ Stop inserting. The next statement is a command.
INSERT 49 FILEX 9-13| Insert lines 9-13 of FILEX into MYFILE following
’ line 49,
DELETE 5-10 Delete lines 5 through 10 of MYFILE.
UPDATE Incorporate the above changes to MYFILE.

In this example, the Vulcanized version of the program, the executable code itself, is stored

on a temporary disc file. The following command stores the program on a permanent file
called MYPROG:

VX MYPROG
To execute the program at a later time, the following command can be issued:

MYPROG

4-6 MESSAGE COMMUNICATIONS

There are three commands that fall into this category. They are SEND, RCEIVE
(ReCEIVE), and OM (Operator Message).

With the SEND command, a one-line message can be sent to another interactive terminal,
another user, or a program. When sending a message to another terminal, the terminal is
identified by a number. If no one is signed on to that terminal when the message is sent, the
message is held until someone does sign on. When sending a message to another user, the
user is identified by a username. (The username is not the same as the user i.d., which is
private.) If the specified user is not signed on when the message is sent, it is delivered when
that user does sign on (to any terminal). Messages can be sent to any program. It is the

44

0862003-003
-Rev. B 5/78

destination program’s responsibility to check for and receive messages. (Message
communication services for programs are discussed under “‘Inter-Program Communication”.) §

If a message is sent to a teletype device or to a user who signs on to a teletype device, the
" message is output after the next command is issued from that terminal. If the terminal in
question is a CRT, a “‘message”’ light illuminates. The message itself is then received by
issuing a RCEIVE command.

47 COMMANDS TO ASSIST THE TERMINAL USER

Error messages generated by VULCAN in response to an invalid interactive command or an
error in an executing program, or error messages generated by system processors such as
compilers, all have three levels of diagnostic aids. These are an error number, a one-line
extended message, and up to four lines of additional information which frequently includes
suggestions for getting around the problem. All of these aids are available at the terminal
itself — the user does not have to locate an appropriate manual and look up the error
number.

Error numbers are always provided. The associated extended message is automatically
written to CRT devices, although this output can be inhibited. On teletype devices, the
automatic extended message facility is optional: new users can “turn on’ the extended
message at their terminal for an entire interactive session; those already familiar with many
error numbers can request that the extended message be written only when they ask for it —
they need not be burdened with slow and often noisy typing when they don’t need the J
output.

If, after reading the extended message, the user still does not understand the problem or
doesn’t know what to do about it, the HELP command can be invoked to get the additional
diagnostic information described above.

If a person working at a teletype device gets an error message, the teletype hardcopy can be
examined to help find the source of the error. For CRTs, however, there is no hardcopy to
examine (unless the CRT has a hardcopy option). Therefore, a temporary log is kept of all
commands executed from that terminal — either directly or from a job stream file — which
the user can examine and/or save and/or print. A CRT user can also request that these same
commands be echoed back to the CRT screen after they have been transmitted. This
function is particularly useful when entering source statements and data and to monitor the
progress of a job stream file.

To assist in program debugging, the PMD (Post-Mortem Dump) command is available. With
this command it is possible to get a dump of user-specified sections of a program that has
aborted. It can dump all words of the specified area; dump only words that have been
changed during execution (e.g., data areas); and dump changed words along with their
original values. The output may be requested in octal, ASCII, truncated ASCII, decimal,
hexadecimal, or floating-point notation. The Post-Mortem Dump can be processed in batch
or interactively; portions of the aborted program can be selectively examined interactively.

The Interactive Debugger (VBUG) is also available to assist in program debugging. See
“\VBUG (VULCAN Symbolic Debugger)”.

0862003-003
Rev. B 5/78

4-8 JOB CONTROL PROGRAMMING

Job Control commands can be stored on a disc file called a job stream file and executed off
of that disc file. In response to a JSTREAM (Job STREAM) command, which names the job
stream file to be executed, the stored commands are executed sequentially just as if they
had been keyed in directly from a terminal. After the last command in the job stream file
has executied, controi automaticaily returns to the user’s terminai (i.e., the terminai is then
ready to accept a keyed-in command) or to a batch job stream if the job stream file is
initiated from batch.

A more sophisticated form of job stream file is a Job Control program. A program does not
necessarily execute commands in a linear sequence — it can make decisions and, depending
upon the outcome, it can “‘branch’’, or “jump”’.

There is a set of commands available only to job stream files. These commands include
several types of jumps: jump unconditionally, jump if an error has or has not occurred,
jump if any Job Control error has or has not occurred, and jump if specific option is or is
not set.

Whenever there are jumps, there must be labels to identify their destinations. Under
VULCAN, any Job Control statement in a job stream file can have a label of from one to six
alphanumeric characters.

Programs, in general, need some place to store and manipulate data, and Job Control
programs are no exception. For this purpose, there are Job Control registers. Although the
use of these registers is not restricted to job stream files (they can even be accessed by
programs), it is there that they are most useful. The registers can have mathematical, logical,
and string manipulations performed on and among them. Registers have user-supplied names
of one to three alphanumeric characters. Wherever a register name appears in a Job Control
command, its contents are substituted. (See the Job Control programming example, Table
4-2)

Job Control has 1/0 commands too. In their simplest form, these commands make it easy to
program a dialogue between an interactive terminal user and VULCAN. They can be used to
prompt and query. In addition, these commands can perform 1/0 to any device.

Finally, there is the IF command which evaluates an expression and, based upon the result,
causes another command to be executed or not executed. The expression to be evaluated
can be quite complex. Mathematical (addition, division, etc.), logical (and, or, exclusive or),
and relational (less than, greater than or equal to, not equal to, etc.) and other operations
are available. Multiple levels of parentheses can be used to modify the normal hierarchy of
expression evaiuation.

The applications of Job Control programs are too numerous to list. The example illustrated
in Table 4-2 involves controlling the execution sequence of a series of programs.

Here is the problem. Three programs are normally executed in seguence. The first program
is either PROG-1A or PROG-1B depending on an option set by the user when the Job
Control program is initiated. Then PROG-2 executes. If all goes well, PROG-3 is executed
next and the job is done. However, if a certain condition is detected by PROG-2, it
immediately terminates. In that case, PROG-3 must be skipped, PROG-4 executed instead,
and a message must be sent to the operator so that an entry will be made in the system log.

46

LY

Table 4-2. Job Stream File Example

Label Command Comment
ISTART JOPTION.A IDO-1A $ JUMP TO DO-1A IF OPTION A HAS BEEN SELECTED.
JOPTION.B !DO-1B $JUMP TO DO-1B IF OPTION B HAS BEEN SELECTED.
IINVOPT PRINT INVALID OPTION — DO YOU WANT A OR B? $ THIS MESSAGE WILL APPEAR AT THE INTERACTIVE TERMINAL
$ FROM WHICH THE JOB WAS INITIATED.
SREG.! #OPT $ SET A REGISTER FOR INPUT. WHATEVER 1S KEYED IN IS
$ STORED IN JOB CONTROL REGISTER #OPT.
IF (#OPT = A) SOPTION A $ SINCE THIS OPTION WAS EVIDENTLY NOT SET CORRECTLY ON
$ THE JSTREAM COMMAND IT MUST BE SET NOW WITH A SET
$ OPTION COMMAND.
IF (#OPT = B) SOPTION B $ (SAME COMMENT AS ABOVE.)
JUMP ISTART ' $ GO BACK TO THE TOP AND TRY AGAIN.
IDO-1A PROG-1A $ EXECUTE PROG-1A.
JUMP IDO-2 $ JUMP TO WHERE PROG-2 IS INITIATED.
IDO-1B PROG-1B $ EXECUTE PROG-1B
IDO-2 PROG-2 $ EXECUTE PROG-2.
JERROR.P !DO-4 $ JUMP ON AN ERROR IN THE LAST PROGRAM TO DO-4.
PROG-3 $ OTHERWISE EXECUTE PROG-3.
JSTREAM $ A JSTREAM COMMAND WITHOUT A PARAMETER WILL RETURN
$ CONTROL TO THE TERMINAL.
IDO-4 /OM PROG-4 EXECUTED INSTEAD OF PROG-3 $ THIS OPERATOR MESSAGE WILL BE WRITTEN ON THE OPERATOR'S
$ CONSOLE AND WILL BE ENTERED IN THE SYSTEM LOG.
PROG-4 $ EXECUTE PROG-4.
(End-of-File) $ AN EOF MARK WILL RETURN CONTROL TO THE TERMINAL.

LL/€ leutbliQ
L0O0-£002980

0862003-001
Original 3/77

All the commands necessary to execute this procedure are stored in a disc file named
EXAMPLE. To indicate whether PROG-1A or PROG-1B is to be executed first, a Job
Control option will be set when the job stream file EXAMPLE is initiated. To execute
PROG-1A first, option A is set; to execute PROG-1B first, option B is set. Here then are two
ways that job stream EXAMPLE can be initiated:

JSTREAM.A EXAMPLE
JSTREAM.B EXAMPLE

Some special characters used in the example are used by Job Control to identify special
fields. An exclamation point (!) indicates a label. A pound sign (#) indicates a Job Control
register. A dollar sign ($) followed by a space indicates that the rest of the line is to be
treated as a comment. The commands are free-format and are organized for easy reading.

4-9 JOB CONTROL MACROS

Far more powerful than a Job Control program is a Job Control macro, another special type
of job stream file. Several characteristics distinguish macros from other job stream files.

First of all, Job Control commands in macros can have dummy arguments which are filled in
when the macro is called. Thus it is possible to write generalized Job Control macros and fill
in the particulars when the macros are initiated.

Secondly, a macro becomes, in effect, a new Job Control command. Keying in the name of
the macro is all that is needed to set the macro into execution.

Thirdly, there are three levels of macros. The lowest is a user macro. Anyone can write one,
but their use is normally restricted to one user or all users having a particular qualifier. Next
is a system macro. These are available to all users. Only authorized users, however, can create
system macros. Finally, there are Harris macros which are actually an integral part of the
command language.

There is a hierarchy associated with macros. A user macro can override a system macro, a
Harris macro, or a regular Job Control command. A system macro can override the latter
two.

Here are some applications of macros.

1. A member of the accounting department is making an on-line inquiry to the data
base and needs to make a few arithmetic calculations. A macro is called up that
evaluates arithmetic operands, much like a hand calculator, and the answer is
displayed.

2. A manufacturer frequently has to calculate'the average cost of a series of parts. A
macro called AVERAGE is invoked followed by the prices to be averaged and the
answer is displayed.

0862003-003
Rev. B 5/78

A former keypuncher has been trained to key in data at an interactive terminal.
Each of several possible data formats requires a different set of tab stops. For
example, invoice line items require tab stops at columns 3, 7, 15, 35, 49 and 78. By
keying in INVTAB, the name of a macro, the keypuncher gets all these tabs set.
Such a a macro would look like this:

MSTART (Macro Start)
TAB 3,7,15,35,49,78
MEND - {Macro End)

A new VULCAN installation is installed at a site where it will be used by seventeen
application programmers. The programming staff is accomplished in the use of the
editing commands of a large time-sharing service and the management doesn’t want

to retrain everybody. So the time-sharing service editing commands are emulated |
through the use of macros.

49

0862003-003
Rev. B 5/78

V. PROGRAMMING FACILITIES

5-1 INTRODUCTION

The features and facilities described in this section are useful for those who will be m
programming under VULCAN. The Format Scanner and System Services are used primarily
by assembly language programmers; however, they can be incorporated into assembly
language subroutines which are then called by programs written in COBOL, FORTRAN,
BASIC or RPG II. Monitor Common can be used only by assembly language and FORTRAN
programmers. Monitor programs are useful to systems-level programmers and are not often
used by application programmers. Libraries and overlays are of interest to all programmers.

5-2 THE LANGUAGE PROCESSORS

VULCAN supports seven language processors. They are: FORTRAN iV, COBOL, BASIC,
RPG Il, Harris Macro Assembler, FORGO, and SNOBOL 4. All of these processors are
reentrant. In addition, FORTRAN |V, COBOL, BASIC and RPG Il generate reentrant code
automatically. With the help of simple pseudo-operations, assembly language programs can
also be reentrant.

With the exception of FORGO and SNOBOL 4, subroutines written in any languages can be
linked together to form a single executable program. For example, an RPG program can call
a FORTRAN subroutine to do complex mathematical processing. []

A description of each of these languages and of the extensions and enhancements that Harris
offers with each can be found in Appendix A.

5-3 VBUG (VULCAN Symbolic Debugger)

VBUG is an interactive, user-oriented debugging tool that provides extensive capabilities for
supervising and modifying the execution of a program.

To use VBUG, a program is compiled and linked with a VBUG option set. When the
program is subsequently initiated, VBUG writes a greeting message on the user’s terminal
and awaits command input. Some of the command functions are: modify a variable; display
a variable (in decimal or octal); restart program execution at a different point; display and
modify the contents of an internal register; and set and reset breakpoints.

A breakpoint is a user-specified location in a program at which the user wishes to suspend
execution for the purpose of entering additional VBUG commands. These additional
commands can be entered interactively. The user can also pre-define a series of commands
to be executed automatically whenever a particular breakpoint is reached (e.g., display a
variable and continue execution). A breakpoint need not occur every time the specified
location is reached — the user can specify breakpoint frequency (e.g., every fifth time) and a
limit on the number of times the breakpoint is executed (e.g., until seven breakpoints are
taken at this location).

5-1

0862003-003
Rev. B 5/78

Through the use of the terminal interrupt facility, users can break into executing programs
at an arbitrary time by hitting a special key on the terminal. At that time, the user can enter
new VBUG commands just as if a breakpoint had been preset. This feature is particularly
useful when a program is caught in a loop.

T ﬂ 110, “ r § l'\

11e uoor Uall sPGc:l l-l'e

statement number (e.g., for FORTRAN programs) or (2) by line number (e.g., for assembly
language programs). A combination of both can be used (e.g., label + 2 lines) and arithmetic
is permitted among labels, line numbers, and user-specified constants.

£+ {1\ L 1 1
location of breakpoints in one of two ways: {1} by label or

Variables are referenced by variable name. Arithmetic can be performed with variable names
and values as well.

5-4 LIBRARIES

5-4.1 Subroutine Libraries

A subroutine library is a collection of subroutines that are used by more than one program
or concurrently by separate initiations of the same program. It consists of “’link ready”
modules — subroutines that have been compiled or assembled but not linked by the iinkage
editor. The particular library subroutines required for a program are linked along with the
main program and other user-written subroutines to form a single integrated program ready
for execution.

VULCAN itself has a system subroutine library that contains standard subroutines used by
the FORTRAN, COBOL and BASIC compilers. Users can add new modules to the system
library or change or delete existing ones through the use of the Library Editing Job Control
commands. Users can easily create and maintain their own subroutine libraries as well. Any
number of subroutine libraries can be specified to the linkage editor.

The subroutines in the system library are reentrant, as can be those in a user subroutine
library. This reentrancy is beneficial when several users are executing the same program
concurrently.

5-4.2 Reentrant Libraries

A reentrant library is a collection of subroutines that are used by many different programs
concurrentiy. it consists of Vuicanized subroutine modules that are linked to a main
program when the main program is Vulcanized. In this case, the entire library is loaded as a
separate entity and shared by different concurrently executing programs, each calling
different subroutines or the same subroutines from the reentrant library.

Only one reentrant library per program is permitted, and reentrant libraries cannot exceed
45K bytes. If the size of a reentrant library changes, all programs using that library must be
re-linked.

5-4.3 The COBOL COPY Library
COBOL has a built-in facility for source statement libraries. See “The COBOL COPY

Lihrarv' in Annandiv A
Liprary’ in Annandiy A,

b-2

0862003-003
Rev. B 5/78

5-5 MONITOR COMMON

Monitor Common Blocks are common blocks containing data that is shared by several
programs. The data is stored on disc and is paged into memory as needed by executing
programs, or the data can be declared resident. Monitor Common Blocks are updated
periodically and, in the case of paged Monitor Common, they are always swapped out to
their original disc location. Values set into Monitor Common remain there until modified or
eliminated, even if VULCAN is reloaded from disc.

Any number of Monitor Common Blocks can be generated and any number can be used by
an individual program. Any number of programs can share a single Monitor Common Block
and all can have concurrent update access. Monitor Common Blocks are defined in the user’s
program (either FORTRAN- or assembler-coded) as regular common blocks with one
additional statement indicating which common blocks in the program are Monitor Common
Blocks.

5-6 SYSTEM SERVICES

System Services, sometimes known as monitor calls, are VULCAN routines, most of them
non-resident, which are available to users. All System Services are directly available to
assembly language programmers, although some are subject to security restrictions (see
“User Control Parameters’”). The real-time services that are discussed under ‘‘Real-Time
Processing” are also directly available to FORTRAN and BASIC programmers and are
indirectly available to all languages through calls to user-written assembly language
subroutines.

5-6.1 General Capabilities

Some of the System Services invoke selected Job Control functions from within a program;
for example, the generation and elimination of disc areas, the initiation of batch jobs, the
retrieval of the system date and time, the retrieval of the accumulated CPU time for a batch
job or a terminal session or a program. Other services provide batch program chaining, push
and pop stacks and control, dynamic allocation of logical memory, and binary-to-ASCI
conversion. A contingency return service is also available to allow a user program to regain
control after it has aborted.

The following services are discussed under ‘‘Real-Time Processing”: dynamic program
initiation, connecting and disconnecting external interrupts to and from programs,
controlling such external interrupts, timer-scheduling of programs, changing the priority of
an executing program, suspending and restarting programs dynamically, querying the status
of executing programs, and aborting programs. VULCAN's message communication services
are also discussed in this section.

The 1/0 Services and the Format Scanner each represent a group of services. They are
discussed below.

5-6.2 1/0 System Services

The 1/0 System Services perform logical 1/0 (as opposed to physical 1/0). That means that
it is not necessary to decide what physical devices a program is to use until just before the
execution of the program, via Job Control commands or the linkage editor, or during

5-3

0862003-003
Rev. B 5/78

execution of the program through the use of the ASSIGN System Service. Once VULCAN is
informed what physical devices are to be used, it can set up and execute the appropriate
physical 1/0 instructions. Physical 1/0 commands are not generally available to applications
programmers.

5-6.3 The Format Scanner

A number of VULCAN system programs and routines accept command input — Job
Control, the linkage editor, the Operator Communications processor, etc. Input to these
different processors conforms to a common format, or syntax. The Format Scanner consists
of a number of System Services which are used to analyze the various commands that use
this common syntax. When writing application programs which process input that has some
of the syntax characteristics common to those of VULCAN processor command input, the
programmer may find it convenient to use the Format Scanner instead of writing new
analysis routines,

5-7 MONITOR PROGRAMS

User-written programs normally have the following characteristics: their addresses are
mapped by the hardware rather than biased by the software; they are paged (except for
high-priority real-time programs); they cannot address real memory, that is, specify an
absolute memory address; they cannot access logical memory outside of their own logical
limits; and they cannot execute virtual memory instructions. These characteristics describe
what is known as the “’User Mode".

When necessary, programmers can be given the authority to write programs to run in the
““Monitor ‘Mode”. (The Monitor Mode is meant to be used by system programmers only.)
Such programs have software-biased addresses; they are not paged; they may address
absolute memory locations; they may access any real memory in the system; they can
execute restricted virtual memory instructions; and they run in the same mode as VULCAN
which is itself a monitor program. A special type of monitor program, called a Non-Resident
Handler, is designed to be called as a subroutine rather than being a complete program by
itself.

Examples of monitor programs are: |/O handlers, hardware interrupt service routines, and
System Services. The monitor program facility is also used to create absolute, stand-alone
load modules.

5-8 UTILITY PACKAGES

58.1 Sort/Merge Package

VULCAN'’s reentrant Sort/Merge Package sorts and merges files stored on any medium an
of arbitrary size. It can handle up to ten ascending and descending fields at a time.)

The Sort/Merge Package includes a Sort/Merge Utility program which accepts simple
parameters and which can be used by interactive and batch users. The rest of the package

i
-

0862003-003
Rev. B 5/78

consists of individual routines which can be called from high level languages. Thus it is
possible to sort or merge an input or output file dynamically, i.e., during the execution of a
program. (Dynamic sort/merge capability is built into COBOL which has its own SORT and
MERGE verbs.)

5-8.2 VULCAN Indexed Sequential Package (VISP)

VISP provides the ability to access records on a disc file sequentially, or directly by key.
VISP keeps records arranged logically by the collating sequence of one or more key fields
contained within each record. A tree structure of pointers is maintained to allow the user to
add, change, delete or query selected records of the file. This structure also allows sequential
processing (i.e., in increasing order of one of the keys) of the file. The search technique that
is used to determine the location of a record once its key is known is both fast and efficient
— it guarantees that the time to get any record in a file is the same as any other.

No initialization of a new indexed sequential file is required other than generating it and
writing an EOF on it. The user need never worry about reordering it either since the
structure of the file is such that maximum disc utilization is always attained. If the need for
reordering ever arises, VISP does it dynamically. Any number of VISP files can be used by a
program.

VISP includes an Indexed Sequential Utility program for interactive and batch users. It also
contains individual subroutines which may be called from high-level languages. (Support for
VISP is built into COBOL.) The functions performed by the Utility program and
subroutines are:

Random read (with key)

Random write {with key)

File Positioning

Record deletion

Sequential read (yields an implicit file sort)
Random rewrite

Sequential rewrite

59 OVERLAYS

Under VULCAN, programs can have up to 192K bytes of instructions and data. Programs
written in FORTRAN or Assembler can have up to 576K additional bytes of data for a total
program size of 768K bytes. Single sub-programs (e.g., a main program or any one
subroutine) can contain up to 96K bytes of instructions and data.

Larger programs can take advantage of the linkage editor’s ability to generate overlay
segments. (COBOL users may also use COBOL Segmentation.) An overlayed program is one
in which two or more program partitions, or overlay segments, share logical memory space.
These segments are relatively independent from one another since they cannot reference one
another. An example of two segments is two independent subroutines which are called from
a main program. The main program segment in an overlay structure is always logically
resident.

Any number of overlay segments and levels of overlaying can be specified. Hence, the
structure of an overlay program can be as simple or as complex as required.

b-5

0862003-001
Original 3/77

VI. DISC FILE MANAGEMENT

6-1 DISC SPACE ALLOCATION
6-1.1 Sectors

A sector is a subdivision of a circular track on a disc pack. It is 336 bytes long and is the
smallest element of disc space that can be addressed or physically retrieved. The number of
sectors per track varies with different disc drives. A disc pack that has eight sectors per track
is pie-sliced as illustrated in Figure 6-1.

TRACKS

SECTORS

Figure 6-1. Disc Sector

6-1.2 Space Allocation Bits

When a number of sectors of disc space is requested, VULCAN locates available sectors by
scanning an area on the designated disc pack which contains the Space Allocation Bits, or
SABs. Each SAB is associated with one or more sectors. An SAB is turned on to indicate
that its associated sectors are currently allocated.

" The number of sectors to be associated with each SAB is determined when the operating
system is generated and can vary from one disc drive to another.

6-1

0862003-003
Rev. B 5/78

Disc packs with a small SAB ratio (e.g., one sector per SAB) incur the greatest amount of
overhead when a search for disc space is underway or when disc space is being deailocated
because many SABs may have to be scanned and/or altered. On the other hand, disc packs
with a large SAB ratio incur some disc storage overhead. For example, if one SAB represents
25 sectors and a one-sector file is created, the remaining 24 sectors are wasted. The best
ratio for any one disc drive depends on the pack size that the drive accommodates and
whether most of the files to be stored on a pack will be large or small.

6-1.3 Disc Areas and Disc Files

When disc space is requested, certain information must be supplied such as the number of
sectors required (a default value is used when omitted) and a name (up to eight ASCII
characters) for that space. The name provides a convenient way of referring to the allocated
disc space without the necessity of knowing where it is. The sectors associated with the
name are collectively referred to as a disc area. A disc area may be thought of as a reel of
magnetic tape in that it can contain one or more files. Within the iape, the files are known
only as the first file, the second file, etc.

Because of the conceptual similarities between tape reels and disc areas, certain terms that
are commonly used to describe magnetic tape are used for disc areas as well: BOT
(Beginning Of Tape) refers to the first sector of a disc area; EOT (End Of Tape) refers to the
end of the area; and EOF refers to an End Of a File in the area. There may be multiple
EOFs between the BOT and the EOT.

6-1.4 Granules

Many operating systems traditionally require that disc areas occupy contiguous disc space.
This requirement often results in a significant waste of disc space. For example, if the exact
amount of disc space required for a particular file varies from week to week, sufficient space
has to be allocated in advance to accommodate the maximum anticipated size for the file —
and usually a little extra, just in case. If the file during a particular week requires only
one-fourth of the area, the remaining three-fourths are wasted since the entire area is
reserved.

Under VULCAN, however, disc areas dynamically and transparently expand. If part of a
disc area is no longer needed, the area can be “squeezed”, that is, unused sectors can be
returned to VULCAN and are immediately available for reallocation. The unit by which disc
areas are initially allocated and by which they expand and contract is called a granule. A
granule is an element of contiguous disc space, but different granules need not be
contiguous. If an area needs more room to expand, another granuie is automaticaiiy
allocated from any available space on the disc until a user-specified maximum area size is
reached. (See Figure 6-2.)

The size of a granule is specified when a new area is generated. Thus, the size of a granule
varies from disc area to disc area. This variation significantly reduces waste caused by disc
fragmentation — small granules can fill in the “holes” that may develop between larger
granules. {See Figure 6-3.)

The choice of the granule size for a particular disc area depends on several factors. One is
the SAB ratio. The granule size should always be a multiple of that ratio. To do otherwise
would be wasteful. For example, if one SAB is associated with two sectors, then a granule
size of five sectors would waste one sector for every granule.

5000 SECTORS
ALLOCATED TO

ACCOMODATE
MAXIMUM SIZE

TRADITIONAL
ALLOCATION

2000 SECTORS
CURRENTLY USED

3000 SECTORS
WASTED

VULCAN
ALLOCATION

Figure 6-2. Disc Space Allocation

)

N

UNUSED

UNUSED

UNUSED _

150 SECTORS

200 SECTORS
100 SECTORS
250 SECTORS

100 SECTORS

ADD AREA-C TO THIS DISC PACK
WHERE AREA-C REQUIRES 300 SECTORS

O

CAN'T

IT!

N

TRADITIONAL
ALLOCATION

VULCAN
ALLOCATION

Figure 6-3. Disc Space Fragmentation

0862003-001
Original 3/77

TWO
1000-SECTOR
GRANULES
ALLOCATED

NO MORE THAN
5 GRANULES
WILL BE
ALLOCATED

50 SECTORS
LEFT OVER

AREA-C. 3
100-SECTOR
GRANULES

0862003-003
Rev. B 5/78

Of course, choosing a large granule size for an area which contains a small file is wasteful
too, and it's harder to ailocate space for iarge granuies than for small ones. However, some
overhead is associated with locating granules, although that overhead is generally minimal.
Additional overhead is incurred for granules beyond the 87th. This additional overhead is
explained in the next section (“The MAI and the EAI”).

Granules for blocked files should also contain an integer multiple of the blocking factor of
the area. As a matter of fact, VULCAN ensures that this is always true. Disc file blocking is
discussed in the section entitled “Blocked Disc Areas”. .

6-1.5 The MAI and the EAI

The Master Area Index, or MAI, is the mechanism with which VULCAN keeps track of
granules. It resides on an “unseen’ sector that is tacked onto the beginning of the first
granule of every disc area.

The MAI can only accommodate pointers to 86 granules. If a disc area requires more than
that number, an Extended Area Index, or EAI, is tacked onto the front of the 87th granule.
A significant amount of overhead is incurred when accessing an area randomly across
different EAls. Therefore, whenever possible, the chosen granule size for a disc area should
be sufficiently large to prevent the creation of an EAI.

6-1.6 Disc Directories — The MDD and the QDD

Disc areas are referenced by user-specified names rather than by their locations (e.g.,
DATA1, PROGRAMS, XYZ123, etc.). The burden is on VULCAN to keep track of the first
sector of each disc area. This information, as well as other data, is stored in disc directories.

VULCAN uses two types of directories. These are called a Master Disc Directory, or MDD,
and a Qualifier Disc Directory, or QDD. The “‘master pack”, which is defined as the pack
that contains VULCAN, contains an MDD and a QDD which define all the disc areas known
to the system. In addition, there is an MDD and a QDD on each satellite (i.e., non-master)
pack which define the areas that reside on that pack. The directories on the master pack are
the ones that are generally used. The satellite directories are used for special functions, such
as transporting a disc pack from one VULCAN system to another or for backing up an
entire disc pack.

Disc areas are associated with qualifiers (see “‘Disc Area Security”’). The QDD maintains the
following information, in qualifier order, for each disc area in its realm:

areaname
disc pack number
starting sector number
user i.d.

security data

granule size

There is one MDD entry for each qualifier in the system for which disc areas exist. Each
entry simply defines the disc location of the QDD for its qualifier. (See Figure 6-4.)

6-4

0862003-003
Rev. B 5/78

When disc areas are being used from an interactive terminal or from a batch job, probably J]
most if not all of the disc areas referenced are associated with the sign-on qualifier of the
terminal or the job. Therefore, when any such area is first accessed, the MDD pointers for
the sign-on qualifier QDD are loaded into main memory. This action reduces from two to §
one the number of disc accesses required to locate additional disc areas associated with that
qualifier. (When extremely fast access to a disc area is required, as in some time-critical
real-time situations, the QDD entry for that area can optionally be stored permanently in
main memory. The memory directory is always checked before any disc directories.)

Both the MDD and the QDD are ““hashed”, that is, areanames are passed through a
randomizing formula to produce a random sector within the directory. Each sector can
handle a number of entries (28 MDD entries or 9 QDD entries). When a particular sector of
either directory becomes full, VULCAN automatically expands the directory and rehashes
the entries.

QDD FOR 1234ABCD

ENTRY FOR AREA-A

MDD

ENTRY FOR AREA-B

1234ABCD /

QDD FOR 5678EFGH

5678EFGH \

ENTRY FOR AREA-X

ENTRY FOR AREA-Y

Figure 6-4. Disc Directory Structure

6-5

0862003-001
Original 3/77

6-2 DISC AREA TYPES

6-2.1 Blocked Disc Areas

The term “blocking’ usually describes a scheme whereby a fixed number of (logical) records
are handied as a singie {physicai) record for purposes of /0. That is, although a program
requests that only one record be read, an entire block may be physically retrieved, stored in
a blocking buffer in memory, and only the requested logical record passed onto the
program. Most of the time, though, a read request does not require any disc access at all but
only a memory-to-memory transfer of the logical record from the blocking buffer to the
program’s logical record buffer. Similarly, when writing, records are stored in a blocking
buffer and are written to disc only when the block is full. The number of records in a block
is referred to as the blocking factor.

The advantage of blocking is that it significantly reduces the overhead associated with 1/0.
In a disc-oriented multi-programming environment, where several programs are sharing a
disc, this savings is extremely important.

Under VULCAN, the term “blocking” has a slightly different meaning when applied to disc
areas. Disc areas are blocked, not by logical records, but rather by sectors. The blocking
factor determines how many sectors are read or written at a time. The number of records in
a block can vary from block to block.

Data is stored in blocks in an efficient manner that uses every available bit of disc space. If a
block can only hold 3-1/2 records, then the rest of the fourth record is stored at the
beginning of the next block. Logical records can cross sector boundaries in a similar fashion,
but a block always starts on a new sector.

When a blocked disc file contains ASCII, or symbolic, data as opposed to binary data, blank
compression takes place. Any string of two or more blanks is converted into a one-byte
blank count. Blank compression can produce a rather dramatic saving of disc space. (See
Figure 6-5.)

Both blocking and blank compression are completely transparent to the user. All records
coming from or going to a blocked disc area automatically pass through the VULCAN
Blocked Fiie Handler which does ail the required housekeeping behind the scenes.

Blocked records are addressed by their relative record number within an area.

6-2.2 Unblocked Disc Areas

When records are stored in an unblocked disc area, each record begins on a new sector.
Unblocked disc areas are used for direct access files such as indexed sequential files and
COBOL SORT work files. Executable program load modules, which have a special format,
are also stored on unblocked files.

Unblocked records are addressed by relative sector number.

0862003-001
Original 3/77

ASSEMBLY
LANGUAGE
SOURCE

I APPROX.
50 SECTOk

APPROX.
250 SECTORS

U

BLOCKED
WITH BLANK
COMPRESSION
BLOCKED
. WITHOUT BLANK
l1000 COMPRESSION

SECTORS

N

UNBLOCKED

Figure 6-5. Comparison of Data Density among Disc Area Types

6-2.3 Concurrent Access Files (Random Disc Areas)

Both blocked and unblocked disc areas are provided with concurrent read/write protection.
That is, although any number of programs can concurrently read a disc area, no writing can
be done as long as any program is reading the area. If a program is writing to a disc area, no
other program can read it or write on it until the program doing the writing is finished using
the area.

There is one exception to this rule. There is a special type of unblocked area called a

random area. It is identical to a regular unblocked area in every respect except that more
than one program can read and write to it concurrently.

6-7

0862003-003
Rev. B 5/78

6-2.4 VULCAN Temporary Work Areas

Certain work areas are automatically supplied to interactive terminals and control point jobs
when they are needed. They are temporary because they are automatically eliminated when
a terminal is signed off or when a control point job terminates. Some of these areas are
blocked and some are unblocked.

Temporary work areas are identified by two-character names such as W1 (Work area 1) and
LO (List Output). However, the number of the terminal or the letter of the control point is
appended transparently to each work area name to make the name unique. Therefore, there
is a set of VULCAN work areas available to each terminal. '

6-3 DISC AREA SECURITY

VULCAN supports three disc area security schemes. Any combination of these security
schemes may be used.

6-3.1 The Qualifier

A qualifier, part of the identification of each interactive or control point user, is also an
integral part of the name of every disc area. Whenever an interactive terminal user or a
control point job references a disc area by areaname but does not explicitly state a qualifier,
the sign-on qualifier is automatically appended to the areaname. To access any disc area
having another qualifier, the full qualifier must be supplied.

The full format of an areaname with an explicit qualifier is
qualifier*areaname

An asterisk without a qualifier preceding it implies a special system qualifier 0000SYST.
For example,

*VULCFILE is equivalent to 0000SYST*VULCFILE

6-3.2 Access Bits

When a user generates a disc area, the user i.d. that was supplied at sign-on time is used to
identify the “owner’’ of the disc area. The owner of a disc area always has read access to the
area (that is, the owner can read it) and, for programs, the owner always has execute access
to the program (the owner can always execute it). In addition, when an area is first
generated, the owner has write access and delete access, either or both of which the owner
can take away and later restore.

The owner of a disc area can also grant any combination of read, write, execute and delete
access to other users who have the same account number (the first four digits of the
qualifier) as that associated with the area. Or, the owner of a disc area can grant any access
combination to all users of the system. Regardless of the accesses granted to other users,
only the owner of the disc area can alter the access states, or access bits as they are called.

0862003-003
Rev. B 5/78

The states of the access bits are represented by two-character codes as illustrated in Table
6-1.

Table 6-1. Access Bits

OWNER | ACCOUNT | PUBLIC
READ * AR PR
WRITE ow AW PW
EXECUTE * AX PX
DELETE oD AD PD

* The owner can always read or execute his own disc areas.

6-3.3 Access Level

An access level is a number which, like qualifiers, is associated both with users and disc
areas. An access level can have a value from zero to fifteen, with fifteen being associated
with the highest access privilege. The access level for each user is determined by the
computer center staff at each installation.

When a disc area is generated, it can be given an access level equal to or less than the
owner’s. To access a disc area, a user must have an access level equal to or greater than that
of the disc area — regardless of the settings of the access bits.

By using the access level, access can be restricted to a subset of the “public” or a subset of
the “account”. For example, assume that all managers of a company have an access level of
seven or more. A disc area with an access level of seven with public read access, then, can be
read by all the managers in the company, not by the entire computer “public”. If the disc
area has account read access, then only managers with the appropriate account number can
read the area.

6-4 DISC AREA BACKUP AND RETRIEVAL

6-4.1 KEEP (Backup)

Disc areas can be backed up to an auxiliary medium such as magnetic tape through the use
of the KEEP command. The format of the KEEP output contains periodic checksums to
ensure the integrity of the data. The data can be checked with the VERIFY command ; data
being retrieved is automatically verified.

Areas to be “kept” can be specified in a myriad of ways. Most of the following
specifications can be used in conjunction with one another to indicate the areas that fall
within the intersection of the specifications. The use of some of the following specifications
is restricted to authorized users only.

User — includes all areas belonging to the signed-on user.

Individual names — includes only the areas listed, e.g., KEEP FILE1,
FILE2,FILES. ..

0862003-001
Original 3/77

Pack number — includes all areas on a specified pack or on several packs
within a specified range.

Last written date or time — inciudes areas that were modified during
the specified period.

Generation date or time — includes areas that were created during the
specified period. '

Elimination date — includes areas that have expired or will expire
during the specified period.

Areaname mask — provides a ‘‘template’’ describing characteristics to
which areanames must conform (e.g., a particular character or numeric
character in a particular position) for inclusion.

Exception mask — causes the exclusion of areas that conform to the
areaname ‘‘template’’.

Access Jevel — includes areas having a particular access level or one that
falls within a particuiar range.

Name list — includes areas with a particular name regardless of their
qualifier.

Name bounds — includes areas with names that fall between the
designated alphanumeric limits, regardless of their qualifier.

Name exception — excludes areas with the specified name regardless of
their qualifier.

Qualifier list — includes only those areas which have the specified
qualifiers.

Qualifier bounds — includes areas with qualifiers that fall between the
designated alphanumeric limits.

Quaiifier exception — exciudes areas with the specified qualifier.

Account list — includes areas with a specified account number (first
part of the qualifier),

Account bounds — includes areas with an account number that falls
within the specified numeric limits.

Account exception — excludes areas with the specified account
number. :

Type — includes data or program areas that have the designated type.
For data areas, the type is a user-supplied field which may have a
number from zero to seven and an optional specification for blocked,
unblocked and random areas. For program areas, the type indicates the

type of program, such as interactive/control point program, real-time
nrogram, and monitor nroaram,

P
=3
=]

0862003-003
Rev. B 5/78

The KEEP command provides information on every area that is “’kept”. Standard output
includes areaname, type, pack and current size. Less or more information can optionally be
requested about the disc areas. The output can be in order by qualifier, areaname, type, user
i.d. or pack number. When more than one order is specified, the first order is the primary
order, the second is the secondary order, etc.

6-4.2 FETCH (Retrieval)

The opposite of KEEP is FETCH. The FETCH command has exactly the same format and
capabilities as the KEEP command except that it retrieves previously “kept’’ areas and
restores them on disc. The checksums previously added to the data are also checked.

6-4.3 Incremental Backup

Each VULCAN installation can determine its own method for backing up data on its disc
packs. One suggested method is the “incremental save’’ technique.

Using the “last-written date”” parameter, only those areas that have been modified since the
date and time of the last backup are “’kept” periodically (e.g., daily or weekly). If disc areas [J
are destroyed and restoration is necessary, all areas on the most recent tape are ““fetched”’
first, then those on the next most recent tape, etc. Since VULCAN does not “‘fetch’’ areas
that already exist, the net result is restoration with the most up-to-date copy of each disc
area.

6-4.4 MAP

The MAP command provides information about disc areas. It has the same format as the I
KEEP and FETCH commands and the same capabilities for selecting disc areas.

0862003-003
Rev. B 5/78

VIl. OPTIONAL SOFTWARE

7-1 THE TOTAL DATA BASE MANAGEMENT SYSTEM

The TOTAL Data Base Management System is the most widely used Data Base Management
system, having over 1200 installations world-wide. It is known for its low memory, disc, and
CPU time overhead; its ease of use; and because it is extremely fast to implement. Because
TOTAL provides data and program independence, changes to a data base do not affect
previously written user programs and vice versa. TOTAL is also open-ended meaning that
new applications can be added to the existing data base as these applications arise. TOTAL
provides complete logging, backup, and retrieval facilities as well. With TOTAL, data bases
can be accessed by programs written in COBOL, FORTRAN, BASIC, RPG |l and assembly
language.

7-1.1 Data Base Files

A TOTAL data base is composed of a group of files. Each fiie is one of two types — a master
file, or master data set, and a variable file, or variable data set.

Each record within a master data set contains a unique control key such as a part number, a
student i.d. code, a social security number, or a customer code. Each record also contains
information that is unique to that control key, such as name and address or part description.
The control key is passed through a randomizing algorithm to determine the location of the
record on disc. Master data sets are independent in that, although they may have
relationships with other data sets, master records can be accessed without regard to those
other data sets.

In a variable data set, control keys are not unique to each record; there can be several
records with the same control key. For example, a customer transaction data set can contain
several records for any customer reflecting several transactions over a period of time. Or a
student course data set can contain one record for each course in which a particular student
is enrolled. The associated master data set keeps track of the first and last variable record for
each control key. Variable data sets, therefore, are dependent upon a master data set.

7-1.2 Data Base Networks

Master data sets can be associated with more than one variable data set. For example, a
customer master record can have associated order number records in an order number
variable data set and associated item number records in an item number variable data set.
Another example is a university course master data set which is associated with an
enrollment variable data set and a schedule variable data set.

In addition, each variable data set can be associated with more than one master data set. For
example, a transaction variable data set can be associated with a customer master data set
and with a master data set containing commodity information. Or, a university transcript
variable data set containing several records for each student can be associated with a student
master data set and with a course master data set.

0862003-003
Rev. B 5/78

A data base that is composed of master data sets with muitiple associated variable data sets
and variable data sets associated with multiple master data sets forms a network data base
structure.

7-1.2 Data Base Definition and Formatting

The first step in creating a data base is to define, or describe, the data base to the TOTAL
Data Base Management System. It is not necessary to define the entire data base at one time
— one or more data sets can be defined and added to the data base system in a piecemeal
fashion, thus making it possible to get the most critical applications running while others are
still being analyzed.

The data base is defined through the use of a Data Base Definition Language (DBDL).
English-like DBDL statements are analyzed by the DBDL Processor which converts them
into assembly language source statements. These are then, in turn, assembled by the Harris
Macro Assembier creating a Data Base Descriptor Module. The Data Base Descriptor Module
is first linked to the Data Base Format program (DBFMT) which prepares the physical disc
space on which the actual data base is to reside. Then, the Data Base Descriptor Module and
TOTAL are linked to user programs. (See Figure 7-1.)

7-1.4 Accessing the Data Base

User programs use the Data Management Language (DML) to access the data base. DML
commands are implemented via a CALL statement, or its equivalent, from the host
language. The DML uses the facilities of TOTAL and VULCAN to validate the command
and to do the physical access to the data base.

If an invalid command is encountered, the data base is left in its original state, and a
diagnostic message is returned to the user program where it may be analyzed and an
appropriate action taken. DML functions include several methods for reading, writing,
adding, and deleting master and variable data set records.

User programs are independent from the data base. Therefore, changes to user programs do
not require modification of the data base; and changes to the data base, such as the addition
of a data set or a field, do not affect application programs.

7-1.5 Security

Data is password-protected to the field level. A user need only know the passwords to the
fields required by a program. Although TOTAL may read an entire record as a result of a
read command (it actually may read several records), only those fields specified in a
program are passed to that program. The reverse is true with a write command.

A data set can be ““locked’ by a user such that no other user programs may access it while
that program has it locked. Data sets are automatically locked in the case of an abnormal
termination of a user program that was updating rather than just reading the data set, since
an abnormal termination of such a program may leave the data set in an unknown state. The
data set remains locked until it is restored to a stable state through recovery procedures.

7-2

0862003-001
Original 3/77

DBOL
STATEMENTS

DBDL
PROCESSOR

ASSEMBLY
LANGUAGE
SOURCE
STATEMENTS

HARRIS
MACRO
ASSEMBLER

DATA ' USER
BASE TOTAL PROGRAM
DESCRIPTOR OBJECT
MODULE (DML PROCESSOR) CODE

DBFMT

%

USER
PROGRAM
(EXECUTABLE)

FORMATTED
DisC

Figure 7-1. Setting Up a Data Base

7-3

0862003-003
Rev. B 5/78

7-1.6 Backup and Recovery

TOTAL incorporates three logging facilities which facilitate the restoration of damaged data
sets.

The before-image logging option automatically records updated records as they were before
the updating took place. This log file can then be used to “backout’’ the data base to a
previous, known state.

The mark log DML function permits the user to record any information on the log data set,
such as transactions and comments. If transaction data is recorded, it can be used to update
the data after it has been backed out without resubmitting the transactions.

The /og quiet DML function forces all pending updates to the data base to be executed; puts
an indication on the log data set that a “‘quiet point” has been reached; and can optionally
be used like the mark log function to record user information on the log data set. If it
becomes necessary to backout a master or variabie data set, the data set need be backed out
only to the last quiet point.

7-2 REMOTE JOB ENTRY (RJE) SUBSYSTEMS

VULCAN supports six optional RJE subsystems. Two of these provide VULCAN with a
host capability and four permit sending jobs to a foreign host. (See Table 7-1 for a list of the
protocols that are available.) It should be noted that VULCAN supports the concurrent
operation of muitiple RJE subsystems which can be communicating with more than one
foreign site.

Table 7-1. VULCAN RJE Subsystems

Host Protocol
IBM 360/370 2780 and HASP
CDC 6000/7000 UT-200
UNIVAC 1100 1004
HARRIS S100 2780 and HASP
HARRIS S200 2780 and HASP

Sending jobs from VULCAN to a foreign host is considered to be just another batch or
interactive function to VULCAN. Remote sites can submit standard control point jobs to
VULCAN. The remote terminal can submit a variety of operator commands to VULCAN
for processing just as VULCAN can send messages to the operators of foreign hosts.

No special terminals are required to submit an RJE job to a foreign host. Any interactive
terminal will do. Jobs submitted through a card reader can initiate an RJE job as well.

When jobs are being submitted from VULCAN, it is not necessary to actually have
communications established when the RJE job is initiated. RJE jobs will be queued until
communications are established. At that time, they are sent either concurrent with or
following (depending on the protocol) the transmission of output (from previous RJE jobs)

7-4

0862003-003
Rev. B 5/78

from the host site to VULCAN. (If long distance phone lines are the means of
communications, this maximizing of line utilization can result in a significant savings of
phone charges.) Output from a job submitted to a foreign host can be directed to a local line
‘printer, card punch, or disc area. The user can also specify a program to be initiated after
the output from a foreign host has been received.

7-3 BASIC-V

Harris BASIC-V (V as in Virtual) is a powerful, high-level programming language processor
for educational, scientific, and business applications.

BASIC-V is an interactive, conversational language processor that uses simple English words,
abbreviations, and familiar mathematical symbols to define and control programming
operations. Harris BASIC-V is a superset of ANSI BASIC standard X3.60.

It is particularly well suited for time-sharing applications because the processor is reentrant
and it generates reentrant code.

7-3.1 Modes of Operation

BASIC-V is a language processor system consisting of two, separate language processors.
These language processors provide two modes of operation — incremental and compiler.

Incremental Mode

In the incremental mode, each line is analyzed for syntactic errors as it is entered. If a
statement is entered without a line number, BASIC-V executes the statement immediately.
The incremental mode is useful as a “super calculator’” and also to query or modify
variables. The incremental mode is useful for the interactive development of programs since
BASIC-V has extensive debugging facilities. The incremental compiler technique used
produces code that executes 10 to 15 times faster than most commercially available BASIC
interpreters. However, as with an interpreter, changes to large programs can be performed
rapidly.

Compiler Mode

in the compiler mode, BASIC-V generates link-ready code like that of the other standard
Harris processors. This permits the BASIC-V programmer to call routines written in
FORTRAN, COBOL, and Assembler. The VULCAN Indexed Sequential Package (VISP),
Sort/Merge, and TOTAL Data Base Management System can also be accessed by the
BASIC-V programs. The compiler mode executes three to four times faster than the
incremental mode. Once the user has developed a BASIC-V program in the incremental
mode, more efficient use of memory space and maximum execution speed can be obtained
by processing the program in the compiler mode.

7-3.2 Naming Conventions

Names for variables and functions may be combinations of letters and digits — up to 31
characters in length — -beginning with a letter. The usual restriction of using names !
consisting of a letter followed by an optional digit is not imposed.

7-5

0862003-003
Rev. B5/78

7-3.3 Muitipie Statements per Line and Lines per Statement

Multiple statements per line are permitted by separating each statement from the next with
a colon. Multiple lines per statement are permitted by breaking the statement with a
symboel at the end of the line. Multinle statements per line and multiple lines per statement

may aiso be combined. Therefore, ioops can be written in a singie iine and compiex
statements may be broken across several lines to reflect the structure of the statement.

7-3.4 1/0

Input and OQOutput under BASIC-V can be transacted with the terminal, other physical
devices, or disc areas.

Input may take place within the program, between the program and the user’s terminal, or
between the program and logicai files.

Output in BASIC-V is performed with variations of the PRINT command. The output may
be directed to the user's terminal or to a file or physical device. Expressions may be output
in a specified format with the PRINT USING statement. The format specified is an exact
image (picture) of the output line.

Record 1/0 deals with the handling of records composed of fixed-length fields, as COBOL
I/O does. With certain statements the user can manipulate portions of the 1/O buffer
directly to provide very powerful 1/0 capabilities.

7-3.5 Mathematical and String Operations

BASIC-V supports both numeric and string data types. Numeric data types can be stored as
floating point, integer, or complex numbers. Standard arithmetic and relational operators
are supported for all numeric data types. Strings are a series of characters usually
representing alphabetic character codes. Strings may be concatenated by the symbols + or
&. Relational operators are supported for string data.

There are 29 intrinsic mathematical functions and 17 intrinsic string functions.

7-3.6 Arrays and Matrices

Array is a generic name for any ordered set of data: vector, matrix, and higher-order arrays.
Arrays may be of any single data type. Array and matrix handling is greatiy extended in
BASIC-V. The size of the array is limited only by the maximum virtual memory storage. An
array may have up to 255 dimensions.

Numeric arrays may be added, subtracted, multiplied, and divided — on an
element-by-element basis — with the standard BASIC-V mathematical operators. The cross
product of two conformable matrices can also be taken. Two BASIC-V functions are
available to transpose arrays and invert matrices. Square matrices may be inverted. Both
transposing and inverting of matrices may be done in place.

0862003-003
Rev. B 5/78

VIIl. SYSTEM OPERATION

8-1 THE OPERATOR’S FUNCTION

8-1.1 OPCOM — The Operator’s Terminal

All VULCAN systems require a specific CRT, Harris model number 2310, to be dedicated to
operator communications. This CRT is commonly called OPCOM. The operator’s terminal
accepts input commands from thc operator which are different from those available at
interactive user (i.e., non-OPCOM) terminals. Besides using its screen to display output,
OPCOM also uses a light panel next to the screen to inform the operator of significant
events requiring some action.

8-1.2 System Logs

The operating system keeps a series of log files which supply a history of computer usage
and problems. These logs can be displayed on OPCOM and can be output to an alternate
device, such as the line printer, as required. The logs are:

Input log — includes all commands that have been entered at the
operator’s console including all sign-on and sign-off messages (an alias is
recorded rather than the user i.d. of the operator for security reasons).

Message log — includes all messages that have been sent to the opera-
tor’'s console either by the system or by system users.

Terminal log — includes information regarding the use of interactive
terminals including when each terminal has been in use and by whom.

Control point log — includes information regarding the use of control
points including a history of what jobs have been run, when run, by
whom, and for how long.

8-1.3 Ease of Operating the System

The operator’s function is very uncomplicated. Most of the operator’s efforts are required to
manage peripheral devices, e.g., replacing line printer paper, mounting a magnetic tape, etc.
System initialization usually only requires the use of two CPU control panel switches and
the keying in of the date and time; the procedure takes only a few seconds.

8-1.4 General Command Capabilities

Commands can be executed either one at a time as they are keyed in or, for frequently used
operator command sequences, they can be executed off of a disc file. Below are the major
classifications of operator commands and some of the capabilities that fall within each
category.

8-1

0862003-003
Rev. B5/78

only). Programs may be referenced by name, terminal number (for
interactive programs), and control point,

System and peripheral status — system status, peripheral status, disc
status (how much space is avaiiabie on a pack], active program iist, disc
area map, peripheral down, peripheral up, terminate terminal (i.e., sign
it off}), bad sector, modify system, tape ready, disc pack ready. {The
last two commands are not used frequently since VULCAN usually
detects the mounting of a tape or disc that has been requested
automatically.)

Spool control commands — hold, release, terminate, advance (e.g., skip
some lines), backup (e.g., repeat some lines), keep, multiple copies,
change priority, route output to another device, eliminate, postpone,
spooi queue dispiay.

Control point control — control point list; job queue display; query,
hold, release, change job priority; change number of control points.

User number control — add user, add qualifier, change user parameter,
remove user, remove qualifier, remove user files.

Diagnostic commands — get address, patch address, sector display,
modify disc, disc dump, modify program.

8-1.5 User Access to OPCOM

VULCAN does not accept any OPCOM commands until a user signs on to OPCOM with a
user i.d. However, not all users can execute all operator commands. As a matter of fact,
some users are not permitted to use OPCOM at all. It is up to the administrator of the
computer center to decide who has which operator privileges, if any.

Access to operator commands is controlled through the use of access bit masks (see “User
Control Parameters’). Each of several groups of OPCOM commands has a 24-bit word
associated with it called an access bit mask. Each user also has an access bit mask. In order
for the user to be able to use OPCOM and to use a command, at least one bit must be on in
the user’s access bit mask that is also on in the appropriate OPCOM access bit mask.

8-2 SYSTEM GENERATION (GENASYS)

A full system generation is required only to implement a new release of VULCAN or to
accommodate major changes in the system configuration. System generation is
accomplished through the stand-alone GENASYS program. This program, along with all the
modules necessary to configure any VULCAN system, are available on magnetic tape.

System generation is an interactive procedure. After the GENASYS tape is loaded (through
the use of one switch when the hardware bootstrap option is available), questions are output
to any terminal in the system as designated by CPU control panel switches. The entire
procedure can be executed in an interactive manner. :

?1
N

0862003-001
Original 3/77

However, frequently few parameters need to be changed, if any, as in the case of a new
VULCAN release. In that case, most system generation parameters can be stored on another
medium, such as punched cards. During the procedure, GENASYS can be directed to get

more input from the alternative medium.

At the end of the procedure, which usually takes ten to fifteen minutes, GENASYS
optionally outputs a summary describing the hardware configuration of the system.

83

0862003-003
Rev. B 5/78

APPENDIX A
THE LANGUAGE PROCESSORS

A-1 COBOL

Harris COBOL is a full high-level implementation of the American National Standard
Institute COBOL X3.23—1974. Included is full support for the following features:

Indexed-sequential 1/0 — for the processing of indexed-sequential files

COBOL source (COPY) library — (see ““The COBOL COPY Library”
following)

Segmentation — for the establishment of overlay segments
In-line sbrt/merge — with the SORT and MERGE verbs

Inter-program communciation — with the CALL statement and
argument passing

Report-Writer — for the generation of reports without the need for
coding detailed procedures

A-1.1 The COBOL COPY Library

The COBOL COPY Library consists of source statement modules which can be inserted in a
COBOL source program via the COBOL COPY verb. The source statements in the library
module specified by a COPY verb are then compiled along with the rest of the source
program as if they had been an original part of it.

One type of module that is frequently placed in a COBOL COPY Library is a lengthy data
description that is used in more than one program. Instead of re-coding the description for
each program that needs it, one COPY statement is used. Besides the obvious convenience
and time savings to the programmer, each description is accurate, up-to-date, and
compatible with the data. Another module frequently kept in a COPY library is part of the
Environment Division.

A-1.2 Compiler Options

At compilation time, the user can specify a number of options to the COBOL compiler.
Some of these options are used to optimize debugged programs or programs that do not use
certain COBOL facilities. Other options control the content of the source listing (list errors §§
only, generate object code listing, etc.). An option is also available which causes the
compiler to check for syntax only without producing any object code.

0862003-003
Rev. B5/78

As with the FORTRAN compiler, a programmer can insert statements, identified by a D in
column 7, throughout a program which are not needed for proper execution of the program
but are an aid to program debugging. The Debug option specifies that all statements with a
D in column 7 are to be compiled. Without this option, all such statements are treated as
comments.

A-2 FORTRAN IV

The Harris Optimizing FORTRAN IV Compiler is an extended version of the 1966
ANSI-standard FORTRAN, level X3.9. The compiler’s numerous extensions include
structured FORTRAN, Encode/Decode, Buffer In/Buffer Out, and Free-Format /0.
Real-time capabilities are provnded by the compiler’s ability to access VULCAN's real-time
System Services directly via a CALL statement.

A-2.1 Structured FORTRAN

The Harris FORTRAN Compiler provides statements for constructing blocks of a structured
program with minimal or no use of the GO TO statement and statement numbers. The
compiler can produce an indented source listing reflecting the structure of the program thus
making the source code easy to read and understand.

A-2.2 Datapool

The Harris Datapool Definition Processor is an aid in the development of large scale
software systems. It centralizes the definition of global or shared data items, thus
eliminating a common source of error. Development time is often saved since programs do
not need to be recompiled when changes are made to the Datapool Definition; at most they
need to be re-linked by the linkage editor.

The Datapool Definition Processor accepts Harris FORTRAN declarative statements such as
DIMENSION, COMMON, and EQUIVALENCE, and constructs a Datapool Directory area.
Variables in the datapool may then be referenced by their standard names without regard to
their locations.

A-2.3 dther Extensions

Access to VULCAN real-time services — (see ‘’System Services’’)

Support for Workshop on Standardization of Industrial Computer Languages
(Purdue Extensions) — facilitates data acquisition and analog/digital
conversions

Random access 1/0

Encode/Decode — does memory-to-memory data conversion with 1/0-like
statements

Asynchronous 1/0 (Buffer In/Buffer Out) — does double-buffering and

overlanped 1/0 and processes records of arhitrary lenath and format leq, 2
magnetic tape of unknown format)

I
N

0862003-003
Rev. B 5/78

Free-Format 1/0 — permits 1/O without FORMAT statements

END and ERR control functions — specify an action to be taken when an
end-of-file condition is detected or when an 1/0O or format error occurs

Tab specifications — provides the ability to position text or data on an output
record, or to read input data starting at a specified position in the input record

DATA statement extension — permits array names to be used to refer to all
elements in the array

Octal constants — interprets numbers preceded by an apostrophe as octal values
(e.g., ‘100 = 64)

Logical operator extensions — defines logical bits and logical integers which
may be shifted, rotated, and exclusive OR’ed

Multiple subroutine returns — allows different subroutine returns with different
destinations

RECUR statement — facilitates writing recursive subprograms

In-line assembly code — maintains compatibility between variables, constants
and statement numbers; requires only one control statement to enter assembly
language and one to exit it

Literal constants — permits the use of literal constants in place of real or-
integer constants throughout a source program, not just in DATA or FORMAT
statements

Implied DO-loops in DATA statements

CPU timing routines — provide accumulated time for program execution
PAUSE/STOP message output

Pseudo-random number generators

Integer byte — reduces by a factor of three to one the size of an array whose
values range between 0 and 255

Double Integer — extends integer capability to the range -70,368,744,177,664
to +70,368,744,177,663

A-2.4 Debugging Aids

A storage map and object listing are always available as is a Post-Mortem Dump and the
symbolic debugger, VBUG. In addition, FORTRAN has some built-in debugging aids.

At compile time, the Walkback option can be set. If the program subsequently aborts during
execution, the statement in which the error occurred is identified. Additionally, if the error
occurred within a subprogram, the source location of the corresponding call is identified for
up to ten levels of nested subprograms.

0862003-003
Rev. B5/78

The programmer can aiso inciude in a program statements identified by a D in column 1
which are not needed for proper program execution but which are helpfu! for debugging. By
setting a compile time option, these statements are either compiled or treated as comments.
If more selective control over which statements are compiled is desired, the programmer can
turn the debug and walkback options on and off through the use of in-line control
statements. Or the programmer can use the conditional compilation facility. With this
mechanism, blocks of statements are compiled or skipped depending on the settings of flags
which are set at compilation time.

Once a program is debugged, an executable module can be easily created that does not
contain the instructions associated with the debugging statements without actually editing
out these statements. If, at a later time, changes are made to the source program, the
debugging statements can easily be reinstituted.

A-2.5 Control Features

The compiler is I/O independent and logical file-oriented so that all input and output
functions (both compile time and execution time) can be assigned to the required physical
devices by means of Job Control commands.

Many other control features are available to control the format and content of the program
listing and the generated code (e.g., indented listing, object code listing, and IBM 026 to
IBM 029 code conversion). These options can be set at compile time and most can be
selectively controlled with in-line control statements within the body of the source program.

A-3 BASIC

The Harris BASIC Compiler is an extended version of Dartmouth BASIC. It supports several
features not often found in other implementations of the language. These include string
manipulation, unlabeled statements, structured programming control statements, multiple
statements on a line (including comments), real-time capabilities and formatted 1/0.

A-3.1 String Manipulation

Functions are available to concatenate, compare and determine the length of strings, and to
manipulate substrings. Character string arrays can be created and strings within an array can
be identified by up to three levels of subscripting. The EDIT and DE EDIT statements
provide a method to transfer between strings and numbers — the EDIT statement converts a
number to a string; the DE EDIT statement converts a string to a number.

String data can be read into a program just as any other variables are. Strings can also be
formatted with format strings (see “Formatted 1/0”’).

A-3.2 Unlabeled Statements

Usually, all BASIC statements must have a sequence, or statement, number which
determines the statement execution sequence of the program. Under VULCAN, however,
the user has the option of not using such labels on all lines. The user can also have VULCAN
supply consecutive statement numbers when the program is compiled. The use of unlabeled
statements is particularly convenient when uging ctructured programming contio!
statements,

A-4

0862003-001
Original 3/77
A-3.3 Structured Programming Control Statements

Harris BASIC supports extensive control statements for the design of a structured program.
The ability to have more than one statement on a line facilitates the use of these control
statements.

The IF statement provides conditional branching that depends on the evaluation of one or
more relational expressions.

Examples: IFA<3GOTO...
IFA=3DO...

ELSE...
IFA>32&B=5D0O... ELSE...

The FOR. . .NEXT statement provide an iterative capability (similar to that of FORTRAN
DO-loops).

Example: FORI1=1TO25

FORJ=1TO5b
P(LJ)=1*J
NEXT J
NEXT I

The WHILE. . .ELIHW and REPEAT. . .UNTIL statements are similar to the FOR. . .NEXT
statements except that the number of iterations is determined by a general condition rather
than a loop count.

A-3.4 Real-Time Capabilities

There are five statements which are used for inter-program communications. There is one
statement (CALL) for passing control to an external subroutine; two statements for
receiving a value from an external routine including values from the Scientific Arithmetic
(hardware floating-point) Unit when available; and one statement for receiving an initiation
parameter supplied when the BASIC program is initiated. Another statement (TRAP) allows
the user to keep control of a program after it has been aborted by the system.

The CALL statement can be used to link to FORTRAN and Assembler subroutines, the
FORTRAN library and the real-time services.

A-3.5 Formatted I/O

Formatting gives the programmer finer control over the appearance of input and output
data than does the standard free-format 1/0. Format strings, which are used to describe the
data, can be literals or can be separately defined in an IMAGE statement.

Any INPUT or PRINT statement can specify a format string with a USING clause. The

format string specification can either be a literal or a statement number of an IMAGE
statement.

A5

0862003-003
Rev. B5/78

A-3.6 Compile-Time Options

Several compile-time options are available. These include options to control the content of
the source listing (e.g., list errors only); to direct the compiler to check for syntax only and
not produce any object code; to generate an object code listing; to permit unlabeled
statements; to supply statement labels; and several debugging options. Some options can be
seiectively controiied within the body of the program.

A-4 HARRIS MACRO ASSEMBLER

A-4.1 Instruction Set

The Harris Macro Assembler supports over 600 mnemonics, most of which fall into the
following categories:

Arithmetic

Branch

Compare

1/0

Logical

Priority Interrupt

Shift

Transfer

Bit Processor (contains seventeen bit manipulation instructions)
SAU* (Scientific Arithmetic Unit)

Operations can be performed on words, doublewords, bits, and bytes.

Assembly language source statements can be fixed-format or free-format. Free-format input
is formatted on the assembly listing to aid legibility.

A-4.2 Addressing Capabilities

Most instructions permit direct addressing of up to 96K bytes of logical memory. Several
“long” branch instructions provide direct addressing to 192K bytes as do indexed and
indirect addressing. Addressing of up to 768K bytes can be accomplished with indirect
addressing.

A-4.3 Data Formats

The Harris Macro Assembler supports the following internal data formats:

Integer (single and double precision)

Floating-point (single and double precision)

Fixed-point (scaled integers) (single and double precision)

Alphanumeric text (three ASCII characters per word)

Truncated alphanumeric text (four truncated ASCII characters per word)
Address constants (for words and bytes)

* Thne SAU, optionai on some systems, provides hardware floating point capability.

A-6

0862003-003
Rev. B 5/78

A-4.4 Conditional Assembly

Twenty-seven pseudo-operations are available for skipping blocks of assembly language
source statements or single statements. These pseudo-operations test various conditions of
assembler macro operands (see below) as well as external flags set at assembly time.

A-4.5 Assembler Macros

An extensive macro capability provides a means for writing sophisticated generalized source
statement routines from which the Harris Macro Assembler generates tailored source code.
The generated source code is tailored according to operands supplied by the user at
assembly time and becomes an integral part of any source program that invokes it.
Assembler macros can be stored in an assembler macro library.

Assembler macros can have numeric and text pseudo-registers for operand manipulation.
Extensive branching, looping, and conditional branching capabilities are also provided.

A5 RPG II

RPG stands for Report Program Generator and, as the name implies, the language is oriented
towards the generation of reports. Harris offers a standard RPG || compiler.

RPG Il is user-oriented and easy to learn. An extensive programming background is not
required; the emphasis in RPG programming is on problem description rather than computer
manipulation. A user can become proficient in the use of RPG Il after writing only a few
programs. Input and output formats are defined on special pre-printed specification forms as
are all files to be used, calculations to be performed, etc.

A-5.1 Debugging Aids

RPG has a DEBUG operation code which, when encountered, causes one or more debug
records to be written to a file. The information in these records depends upon user
specifications. They may contain such information as the settings of indicators (internal
“switches’’ used in RPG programs) and the contents of a user-specified field.

Debug statements are treated as comments unless the Debug option is set at compilation
time (see the next section). Therefore, such statements can be left in a debugged program
without penalty in anticipation of changes to the program or in case any new problems are
discovered while the program is being used in a production mode.

A-5.2 Compile-Time Options

Four compile-time options are available with RPG. The ‘““debug’’ option enables DEBUG
statements in a program. If this option is not set, such statements are treated as comments.
The Errors Only option suppresses the list output of all statements unless they contain
errors. The Object option outputs an assembly language object code listing. The
Suppress-Sequence-Check option suppresses the listing of warning messages that occur if the
sequence numbers on source statements are out of order.

A-7

0862003-003
Rev. B 5/78

A-6 FORGO

FORGO (Load and Go FORTRAN) is a diagnostic FORTRAN compiler which provides
extensive compile-time checking as well as execution-time error checking to detect subtle
run-time errors in a FORTRAN program. Such checking includes detection of iliegal
DO-loop parameters and subscripts that exceed array bounds as defined by their
DIMENSION statemenis. These execution-itime errors are precisely located within the
source program for easier correction.

FORGO also contains two debugging aids. It can trace the execution of a program or any
portion of a program, indicating branching and changes in user-specified variables. It can
also provide a dump of variables at the termination of a program.

Throughput for small jobs is greatly increased under FORGO since it compiles directly into
memory and eliminates subroutine link time. Large programs can be run under FORGO for
debugging purposes and subsequently under FORTRAN to greatly decrease execution time.

FORGO statements are in standard FORTRAN syntax and accept all standard data types
including integer, real, double precision, complex, logical, and literal. Unextended 1974
ANSI standard FORTRAN and some facilities of the 1975 standard are supported.

A-7 SNOBOL 4

The SNOBOL language is designed to process and manipulate character strings. It is used in
such areas as compilation techniques, machine simulation, symbolic mathematics, text
preparation, natural language translation, linguistics and music analysis. Harris offers an
extended version of this language interpreter. SNOBOL has operations for joining and
separating strings, for testing their contents, and for making replacements in them. It can
break a sentence string into phrases or words, or break up a formula into components and
reassemble them into another format.

Different data types are available for use in string manipulation including: integer and real
numbers for arithmetic functions; arrays and tables; names for indirect references; patterns
for matching complicated string structures; and strings which themselves may be literals or
variables.

Pattern matching is the examination of the subject string contents for a desired structure of
characters. This operation can match: any one of a list of characters; an arbitrary number of
repetitions of any pattern; a string consisting of all characters up to any of a list of specified
characters; a string of specified length; any one character not in a specified list; a character
in a specified position in a string; a string of characters up to a specified position; a string of
characters consisting of the characters in any order from a specified string; an arbitrary
string delimited by two other patterns; a parenthetically balanced string; a string consisting
of the remaining characters of the subject string after other matches; a string consisting of
any one of a set of alternative patterns or arbitrarily complex combinations of the above.

0862003-003
Rev. B 5/78

A-7.1 Extensions

Extended features of Harris’ implementation of SNOBOL include:

automatic recursion

user-defined datatypes

up to 15 user-redefinable binary operators

up to 14 user-redefinable unary operators

REWIND, BACKSPACE, ADVANCE, and ENDFILE functions for
magnetic tape or disc 1/0

user-defined functions

extensive functions to perform data value tests

A-7.2 Diagnostic Aids

SNOBOL features two important diagnostic aids: DUMP and TRACE. DUMP can occur
during program execution or either by error or normal termination, at the user’s option.
TRACE permits tracing of user-selected variables, function calls and returns, statement label
references, keyword values, and any combination of these.

Selective tracing can be further facilitated by setting limits on the number of lines of trace
desired and optionally executing user-defined tracing procedures.

A9

0862003-003
Rev. B 5/78

APPENDIX B
VIRTUAL HARDWARE OPERATION

B-1 THE VIRTUAL MEMORY REGISTERS

The hardware that supports VULCAN’s virtual memory capabilities includes a variety of
registers. These registers decrease the burden on the software of many of VULCAN’sl
housekeeping requirements.

B-1.1 The Addressing Registers

A number of registers aré used to implement the virtual address mapping scheme. They are
the Virtual Address Registers, or VARs; the Virtual Base Register, or VBR; and the Virtual
Limit Register, or VLR. .

The VARSs are used to relate logical addresses with physical addresses. Each logical page ofan |}
active program is associated with one VAR, and VARs belonging to one program are
contiguous. The single VBR indicates the first VAR belonging to the currently executing
program, and the single VLR indicates how manyVARs are associated with that program.

The two high-order bits of each VAR contain status information about its associated page
indicating whether or not the page is loaded and, if it is loaded, whether or not the page
may be written on (i.e., whether or not it is reentrant). For a page that is loaded, the lower
bits of its associated VAR contain the physical location of that page. The physical location

is expressed as a memory page number. In a system with 192K bytes, or 64K words, of real
memory, the memory page number can have a value between 0 and 63. (In actuality, the §
low end of the range is the first page above the operating system, which is loaded in lower
memory.)

B-1.2 The Page Access Registers

The Virtual Usage Registers, or VURs, and the Virtual Not-modified Registers, or VNRs, are
one-bit registers. There is a VUR and a VNR associated with each page of real memory.
Every time a memory page is accessed, whether it is accessed for reading, writing, or
executing, its associated VUR is turned on (i.e., set). If the page is written on, i.e., modified, l
the associated VNR is turned on also. The VURs contain information that is needed to
determine what page will get swapped out when a page swap is required. The VN Rs help to
determine whether a page to be swapped out needs to be copied to disc. More on the use of
these registers can be found in “In Search of a Page”.

B-2 VIRTUAL MEMORY INSTRUCTIONS

The virtual memory instructions load and query virtual memory registers and implement the
User Mode in the CPU. They can be executed only by monitor programs, Non-Resident
Handlers, and System Services, i.e., they can only be executed when the CPU is in the
Monitor Mode. They are not privileged instructions since having a privileged program is
neither necessary nor sufficient to execute them.

0862003-003
Rev. B5/78

B-3 ADDRESS MAPPING

Following are the events that take place when mapping an address, i.e., converting a logical
address to a physical address.

i. Any indirect or indexed addressing specifications are evaiuated.

2. The high-order bits of the resulting address define the logical page address. This
address is compared to the VAR count in the VLR (Virtual Limit Register). If the logical
page address exceeds the VLR count, a memory protect violation has occurred, the
instruction that is pending is not executed, a memory protect interrupt is generated, and the
program is aborted.

3. The logical page address is added to the contents of the VBR (Virtual Base
Register). The sum is the address of one of the VARs belonging to the program.

4. The low-order ten bits of the address contain the address of a word within the
desired page. The contents of the indicated VAR, the actual physical address of the logical
page in question, are then combined with the word address to form an effective memory
address.

B-4 IN SEARCH OF A PAGE

Following is a description of the logic involved in locating a page in memory in response to a
demand page interrupt.

The Virtual Usage Registers (VURs) are read. For every VUR that is found set, a value is
stored in an internal table in a page-corresponding slot. This value is the number of demand
pages that have occurred since the last time the system was initialized; it is kept up-to-date
by VULCAN. All VUREs are reset.

Scanning of internal tables then begins starting with those entries that are associated with
the top of physical memory. These tables keep track of which pages are empty, which are
eligible for swapping, and which are ineligible. (Pages are ineligible if they are either part of
a permanently resident real-time program or are currently involved in an |/O transfer, i.e., if
they contain 1/O buffers for a current 1/0 operation.) If an empty page is found, the search
is terminated and the demand page is honored. If no empty page is found, a formula is
evaluated for each eligible page which yields the relative eligibility of these pages for
swapping. The “most eiigible’ page is swapped out.

There are two factors that are taken into consideration by the eligibility formula. One is the
difference between the current demand page count and the one that was last stored for each
page. This indicates how long ago each page was used (in a relative sense). The second factor
is the execution priority of the program to which the page belongs. Reentrant pages have
one-half of a priority point added to them, so they are less likely to be swapped out than is
a non-reentrant page with the same priority and usage.

0862003-002
Rev. A 12/77

Once a page to be swapped out is selected, further information about the page is evaluated.
If the page has not been swapped out since it was first loaded, it is copied to a “swap area”
on disc. If the page has been swapped out before and is reentrant (and hence not
modifiable) or if it is non-reentrant and has not been modified since it was loaded, no
further action is required besides loading the new page in place of the old and updating the
appropriate virtual memory registers. |f the page was modified, it is again copied to the swap
area before the new page is loaded. '

INDEX

access bit mask

access bits

access level

accounting

account number

ACUTIL

addressing

address mapping
Applications of VULCAN
Arrays and Matrices (BASIC-V)
Assembler instruction set
Assembler macros
assembly language

BASIC

BASIC-V

BASIC compile-time options
batch processing

blank compression

blocked disc areas

Biocked File Handler
blocking factor

breakpoint

checksum

COBOL

COBOL compile-time options
COBOL COPY library
compiler mode
concurrent access files
conditional assembly
conditional compilation
contingency return
control key

control point

control point log

COPY command

data base backup

data base definition

data base descriptor module
data base files

data base formatting

data base logging

Data Base Management
data base network

data base recovery

data base security

data formats

Data Manipulation Language
datapool

DBDL

0862003-003
Rev. B 5/78

3-3.1
6-3.2

3-3.1,6-3.3

3-3.2

3-2.2

3-3.2

13,59, A-4.2, B3
13, B-3

15

7-36

A-4.1

A-45

A-4

A-3
7-3
A-3.6
24
6-2.1

1 1] '
L e I T T YIS Qi e §

SNNNNNNNNN

[
—

> N> N
=
?‘
—
[o)]

wWvbwoohd Dwhwwo

N
—

0862003-003

Rev. B 5/78
DBFMT 7-1.3
debugging aids 4-7,6-1.4, A-24

A-5.1, A-6, A-7.2

demand page 1-3,B4
department number 3-2.2
disc area 6-1.3, 6-2.1
disc area backup 6-4.1,6-4.3
disc area retrieval '6-4.2,6-4.3
disc area security 6-3
disc directories '6-1.6
disc file definition 6-1.3
disc fragmentation 6-1.4
DML 7-14,7-16
EAI 6-1.5
editing 4-3
error messages 4-7
Extended Area Index 6-1.5
extended message 4-7
external interrupt 25.2
FETCH command ‘ 6-4.2
file manipulation 44
FORGO A-6
Format Scanner 5-6.3
FORTRAN 1V A2
FORTRAN compile-time options A-2.5
FORTRAN extensions . A-2.1, A-2.2, A-23
GENASYS 8-2
granule 6-1.4
Harris Macro Assembler A4
HELP command 4-7
IF command 4-8
incremental mode 7-3.1
indexed sequential 5-8.2, A1
input log 8-1.2
interactive processing 2-3
internal data representation A4.3
inter-program communication 254,46,54
interrupt service routine 57
i/G {BASIC-V) 7-3.4
i/0 System Services 5-6.2
Job Control 1/0 4-8
Job Control macros 49
Job Control programming 4-8
job sequencing 244
job stream file 2-3,24,4-8
jumps (Job Control) 4-8

KEEP command 6-4.1

XY

language processors
locked data sets
logical address

logs

Macro Assembler
macros (Assembler)
macros {Job Control)
MAI

MAP command
Master Area Index
master data set
Master Disc Directory

Mathematical & String Operations

MDD
message communications
message log

Modes of Operation (BASIC-V)

monitor common
Monitor Mode
monitor programs

multiple batch executions
MultiEIe Statements per Line

and Lines per Statement

Naming Conventions {(BASIC-V)

non-paged programs
Non-Resident Handler

OM command
OPCOM

Operator Message Command

Operator’s console
overlays

page
physical address
physical 1/0

PMD command
Post Mortem Dump
program initiation
program sequencing
protocol (RJE)

QDD
qualifier
Qualifier Disc Directory

random disc areas
real address
real-time BASIC
real-time FORTRAN
real-time processing

5-2, Appendix A
7-1.6

1-3
4-7,7-1.6,8-1.2

A4
A-4.5

49

6-1.5

4-4,6-4.4

6-1.5

7-1.1

6-1.6

7-3.5

6-1.6

2-5.4, 4-6, 5-4
8-1.2

7-3.1

2-5.4, 5.5, A-2.2
5-7, B-2

57, B-2

2-4.1

7-3.3

7-3.2
2-5.3
5-7, B-2

4-6 .

3-2.3, 3-3.1, 8-1.1
814,815

46

see OPCOM

59

1-3
13
5-6.2
4-7
4-7

2-3,2-4,25.2,2-5.4

2.4.4
7-2

6-1.6
3-2.2,3-2.3,6-3.1
6-1.6

6-2.3
1-3
A-3.4
A-2
2-5

0862003-003
Rev. B 5/78

0862003-003

Rev. B5/78

I-4

real-time program
ReCEIVE command
reentrant library
reentrancy

registers (Job Control)
Remote Job Entry
Remote Job Hosting
resourcing

response time

RJE

RPG I

RPG |l compile-time options

SAB

sector

SEND command
signing on

SNOBOL 4 :
SNOBOL 4 extensions
software priority
Sort/Merge Package
space allocation bits
squeezing

string manipulation
structured BASIC
structured FORTRAN
subroutine library
swapping

system accounting
system generation
system initialization
system library

System Services

terminal log
text editing
time-critical
time limit

timer scheduling
TOTAL

unblocked disc areas
user control parameters
user i. d.

User Management

User Mode

VAR

variable data set

VBR

VBUG

virtual address

Virtual Address Register
Virtual Base Register

2-5.1
4-6
5-4.2
1-7
4-8
7-2
7-2
2-4.3
2-5.1
7-2
A-5
A-5.2

6-1.2,6-14
6-1.1

4-6

3-2.3

A-7

A-7.1

Section 11, 3-3.1
5-8.1

6-1.2

6-1.4

48, A-3.1, A7
A-3.3
A-2.1
5-4.1
1-3,B-1.2, B
1-5, 2-6.3, 3-2.3
8-2

8-1.3

5-4.1
25.1,3-3.1,56, B-2

8-1.2
4-3
253
3-31
2-5.2
71

6-2.2
3-3.1
3-2.1, 3-
Section |

=N
)

o
3
w
N

r

AL
WWem =
-

W @
— —h
-

Virtual Limit Register

virtual memory

virtual memory hardware
virtual memory instructions
virtual memory registers
Virtual Not-modified Register
Virtual Usage Register

VISP

VLR

VNR

VULCAN Job Control
VULCAN temporary work areas
VUR

walkback option

0862003-003
Rev. B5/78

B-1.1

1-2
Appendix B
B-2

	0001
	0002
	0003
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	I-01
	I-02
	I-03
	I-04
	I-05

