
USER'S MANUAL
Revision A (Preliminary)
June 1991

HK68N3D
68030-based VMEbus Single-board Computer

HElRIK8N®
OPEN SYSTEMS: : OPEN TOOLS

HK68N3D
VMEbus 68030-based Single Board Computer

USER'S MANUAL
Revision A (Preliminary)

June 1991

HElRIK9N®
OPEN SYSTEMS: : OPEN TOOLS

ii

The information in this manual has been checked and is believed to be accurate and reliable.
HOWEVER, NO RESPONSIBILITY IS ASSUMED BY HEURIKON FOR ITS USE OR FOR ANY
INACCURACIES. Specifications are subject to change without notice. HEURIKON DOES NOT
ASSUME ANY LIABILITY ARISING OUT OF USE OR OTHER APPLICATION OF ANY PRODUCT,
CIRCUIT OR PROGRAM DESCRIBED HEREIN. This document does not convey any license under
Heun"kon's patents or the rights of others.

Heurikon and HK681V are trademarks of Heurikon Corporation.

Intel is a trademark of Intel Corporation. Ethernet is a trademark of Xerox Corporation. UNIX is a
registered trademark of AT&T. VxWorks is a trademark of Wind River Systems, Inc.

REVISION HISTORY

Revision Level Principal Changes Date of Publication Board Revision Level

A (Preliminary) First publication June 1991 EPa

Copyright 1991 Heurikon Corporation. All rights reserved.

HK68N3D User's Manual

Contents

1 -Overview
1.1 Introduction ... 1-1
1.2 Components and Features .. 1-1

1.3 Functional Description .. 1-4
1.4 Jumpers, Connectors, and Switches ... 1-6

1.4.1 Jumpers ... 1-6
1.4.2 Connectors .. 1-6
1.4.3 Interrupt or Reset Switch ... 1-7

1.5 Overview of the Manual... 1-8
1.5.1 Terminology and Notation .. 1-8
1.5.2 Additional Technical Information .. 1-8

2 - Setup and Installation
2.1 Introduction ... 2-1
2.2 Unpacking .. 2-1
2.3 Recording Serial Numbers ... 2-1
2.4 Providing Power .. 2-2
2.5 Reserving Space ... 2-2
2.6 Providing Air Flow ... 2-2
2.7 Checking Operation .. 2-3
2.8 Troubleshooting and Service Information 2-10
2.9 Monitor Summary .. 2-12

3 - Microprocessor Unit
3.1 Introduction ... 3-1
3.2 MPU Interrupts ... 3-1

3.3 MPU Exception Vectors ... 3-2
3.4 Status LEDs ... 3-6
3.5 Monitoring MPU Status from the Front Panel Interface 3-6
3.6 MPU Cache Control ... 3-7
3.7 Coprocessors .. 3-7

4 - Optional Floating Point Coprocessor
4.1 Feature Summary ... 4-1
4.2 Bypassing the Floating Point Coprocessor. 4-2

Revision A (Preliminary) / June 1991 iii

iv

5 - System Error Handling

6 - On-card Memory Configuration
6.1 Memory Configuration ... 6-1
6.2 ROM .. 6-1
6.3 On-card RAM .. 6-4
6.4 On-card Memory Sizing ... 6-4
6.5 Bus Memory .. 6-4
6.6 Physical Memory Map .. 6-4
6.7 Memory Timing .. 6-6
6.8 Nonvolatile RAM .. 6-7

7 - VMEbus Control
7.1 Introduction .. 7-1
7.2 Bus Control Signals .. 7-1
7.3 Bus Arbitration and Release .. 7-4
7.4 Accesses from the VMEbus (Slave Mode) ... 7-6
7.5 VMEbus Interrupts ... 7-12

7.5.1 Interrupter Module Operation ... 7-12
7.5.2 Interrupt Handler Operation ... 7-13

7.6 SYSFAIL Control' .. 7-14
7.7 Bus AddreSSing (Master Mode) ... 7-14
7.8 Mailbox Interface ... 7-15
7.9 Watchdog and Bus Timer .. 7-16

7.9.1 On-card Watchdog Timer. ... 7-16
7.9.2 VMEbus Timer .. 7-16

7.10 Bus Control Jumpers .. 7-17
7.11 VMEbus Interface ... 7-17
7.12 VMEbus Pin Assignments, PI .. 7-18
7.13 VMEbus Pin Assignments, P2 .. 7-19

8 - 7-segment Display

9 - CIO Implementation
9.1 Introduction .. 9-1

9.2

9.3
9.4
9.5
9.6
9.7
9.8

Port A Bit Definition .. 9-1
Port B Bit Definition .. 9-2
Port C Bit Definition .. 9-2
Counter/Timers .. 9-3
Register Address Summary (CIa) .. 9-3
CIa Initialization .. 9-3
CIa Programming Hints .. 9-5

HK68N3D User's Manual

10 - Serial 1/0
10.1 Introduction ... 10-1
10.2 RS-232 Pin Assignments ... 10-1
10.3 Signal Naming Conventions (RS-232) .. 10-3

10.4 Connector Conventions .. 10-4
10.5 SCC Intialization Sequence .. 10-6
10.6 Port Address Summary .. 10-6

10.7 Baud Rate Constants .. 10-6
10.8 RS-422 Or>eration .. 10-7
10.9 Relevant Jumr>ers (Serial I/O) ... 10-7
10.10 Serial I/O Cable ... 10-8

11 Optional SCSI Port
11.1 Introduction ... 11-1
11.2 SCSI Implementation Notes .. 11-1
11.3 Register Address Summary (SCSI) .. 11-2
11.4 SCSI Port Pinouts ... 11-2

11.5 SCSI Bus Termination ... 11-4

12 - Optional Ethernet Interface
12.1 Introduction ... 12-1

12.1.1 Network Interface Controller (82596CA) 12-1
12.1.2 Serial Network Interface (82CS01AD) 12-1

12.2 Ethernet Address ... 12-2
12.2.1 Verifying the Ethernet Address ... 12-2
12.2.2 Ethernet Address on the HK68N3D 12-3

12.3 82596CA Implementation on the HK68N3D 12-3

12.3.1 82596cA Configuration on the HK68N3D 12-3

12.3.2 82596cA Parameter Selections .. 12-3
12.4 Byte Ordering .. 12-5

12.5 Ethernet Access .. 12-5
12.5.1 Port Access .. 12-6
12.5.2 Channel Attention .. 12-7

12.6 SYSBUS Byte of the System Configuration Pointer 12-8
12.7 Recommended Initialization .. 12-9
12.8 Addresses of Ethernet Functions ... 12-9

12.8.1 Interrupts .. 12-11
12.9 Exception Conditions ... 12-13
12.10 Ethernet JumIJer ... 12-14

12.11 Ethernet Port Pin Assignments, P4 .. 12-14

Revision A (Preliminary) I June 1991 v

13 - Optional Real· Time Clock (RTC)
13.1 Introduction .. 13-1
13.2 Reading and Setting the RTC ... 13-2
13.3 Pin Assignments ... 13-4
13.4 RTC Operation ... 13-4
13.5 Nonvolatile Controller Operation .. 13-6
13.6 RTC Registers .. 13-6
13.7 AM-PM/12/24 Mode ... 13-6
13.8 Oscillator and Reset Bits .. 13-6
13.9 Zero Bits ... 13-7

14 - Hardware Summary
14.1 Software Initialization Summary .. 14-1
14.2 On-card I/O Addresses .. 14-2
14.3 Hardware Configuration Jumpers ... 14-3
14.4 Power Requirements .. 14-6
14.5 Environmental Requirements .. 14-6
14.6 Mechanical Specifications .. 14-6

Appendix A - The HK68N3D Monitor

Appendix B - Code Examples

Appendix C - NVRAM Information

Index

vi HK68N3D User's Manual

Figures
Figure 1-1
Figure 1-2
Figure 1-3
Figure 2-1
Figure 2-2
Figure 2-3

Figure "2-4

Figure 6-1
Figure 6-2
Figure 6-3
Figure 7-1
Figure 7-2

Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6

Figure 7-7
Figure 8-1
Figure 10-1
Figure 10-2
Figure 11-1
Figure 11-2

Figure 12-1
Figure 12-2

Figure 12-3
Figure 13-1
Figure 13-2
Figure 13-3
Figure 14-1

Tables
Table 1-1

Table 2-1

Table 2-2
Table 2-3
Table 2-4

Revision A (Preliminary) I June 1991

Component Map .. 1-3
HK68/V3D Block Diagram '" 1-5
Front Panel ... 1-7
Location of Serial Numbers .. 2-1
Guide to Jumper Locations ... 2-4
The HK68/V3D Configured as
VMEbus System Controller via Jumpers JI4-JI8 2-9
The HK68/V3D Not Configured as
VMEbus System Controller Via Jumpers JI4-J18 2-9
ROM Jumpers .. 6-2
ROM position for 28-pin ROMs .. 6-3
Physical Memory Map ... 6-5

Bus Request Jumper Settings, J16 ... 7-5
Bus Grant Level Jumper Settings, J14, J15, J17, J18 7-5
Slave Window Size Jumper Settings, J21-24 7-7

Bus Control Latch .. 7-10
Memory Accesses from the VMEbus 7-11
Interrupt Signal Routing .. 7-14
VMEbus Connectors, PI and P2 .. 7-17
7-segment Display .. 8-1
Serial Connector, P3 ... 10-1
Serial Cable .. 10-8
SCSI Connector, P2 ... 11-2
Location of SCSI Terminating Resistor Networks

and Fuse F6 .. 11-4
Ethernet Address Format ... 12-2
Required Settings of the System Configuration

Pointer SYSBUS Byte .. 12-8
Ethernet Connector, P4 ... 12-14
Real-time Clock Socket ... 13-1
RTC Comparison Register Definition 13-5
RTC Register Definition ... 13-7
Jumper Locations ... 14-5

Technical References ... 1-8

Power Requirements .. 2-2

Standard Jumper Settings .. 2-4
ROM Size Options .. 2-6
Monitor Command Summary .. 2-13

vii

viii

Table 3-1
Table 3-2

Table 3-3
Table 3-4

Table 3-5

Table 3-6a
Table 3-6b
Table 3-7

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6

Table 7-1

Table 7-2
Table 7-3
Table 7-4

Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-10

Table 7-11
Table 7-12
Table 7-13

Table 7-14

Table 8-1

Table 9-1
Table 9-2
Table 9-3
Table 9-4

Table 10-la
Table 10-lb
Table 10-2

Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7

MPU Interrupt Levels ... 3-1
MPU Exception Vectors ... 3-3
Suggested Interrupt Vectors .. 3-4
Device Interrupt Vector Values (Suggested) 3-5
Status LEDs .. 3-6

Front Panel Interface, P5, Output Signals " 3-6
Front Panel Interface, P5, Input Signals 3-7
MPU Cache Control ... 3-7

ROM Address Summary ... 6-1
ROM Capacity and Jumper Positions 6-2
Access Time Required for No Wait States 6-6
Inserting Wait States into RAM Cycles 6-6
Nonvolatile RAM Addresses .. 6-7

NY-RAM Contents (partial) .. 6-8

System Controller Functions ... 7-4

Bus Control Bits ... 7-6
Slave Mode Control ~ .. 7-6
Slave Window Size Jumpers ... 7-7
Bus Control Latch (YMEbus Slave Logic) 7-9
Slave Address Modifiers .. 7-10
VMEbus Interrupter Addresses ... 7-12
Interrupt Acknowledge Port Summary 7-13
VMEbus Regions .. 7-15
Mailbox Control ... 7-15
Mailbox Functions ... 7-15
Bus Control Jumpers ... 7-17
VMEbus Pin Assignments, PI ... 7-18

VMEbus Pin Assignments, P2 ... 7-20

Addresses for the 7-segment Display 8-1

CIa Port A Bit Definitions .. 9-1
CIa Port B Bit Definitions .. 9-2
CIa Port C Bit Definitions .. 9-2
CIa Register Addresses ... 9-3

Port A Serial Port Pin Assignments, P3 10-2
Port B Serial Port Pin Assignments, P3 10-2
Signal Naming Conventions .. 10-3

RS-232 Cable Reversal ... 10-4

SCC Initialization Sequence .. 10-5
SCC Register Addresses ... 10-6

Baud Rate Constants .. 10-7
Serial I/O Jumpers ... 10-7

HK68N3D User's Manual

Table 11-1
Table 11-2

Table 12-1
Table 12-2
Table 12-3
Table 12-4

Table 12-5
Table 12-6
Table 12-7

Table 13-1
Table 13-2

Table 14-1
Table 14-2

Table 14-3
Table 14-4
Table 14-5

Revision A (Preliminary) / June 1991

SCSI Register Address Summary .. 11-2
SCSI Pin Assignments, P2 ... 11-3

Efuernet Accesses .. 12-5

Port Access Definition '" 12-6
Port Accesses .. 12-7
SYSBUS Byte Selections .. 12-8
Efuernet Peripheral Addresses....... 12-10
Transmit Differential Line Configuration 01) 12-14
Efuernet Connector Pin Assignments, P4 12-15

Effect of RTC Installation on Board Height 13-2
Pin Assignments, Real-Time Clock. 13-4

Address Summary .. 14-2
Standard Jumper Settings.... .. 14-3
ROM Size Options .. 14-4
Power Requirements .. 14-6
Mechanical Specifications.... 14-6

ix

1.1 INTRODUCTION

1

Overview

The HK68N3D is a VMEbus single-board computer based on the
Motorola 68030. The 68EC030, which has all the features of the
68030 except a memory management unit, can be ordered as an
option. The HK68N3D is fully VMEbus compatible; it also has
two ports for serial I/O and a control panel interface. SCSI and
Ethernet ports, and the 68882 floating point coprocessor, are
optional.

1.2 COMPONENTS AND FEATURES

MPU Motorola 68030 or 68EC030 microprocessor chip, running at

FPU option

RAM

EPROM

32 MHz
32-bit internal architecture
32-bit address and data paths
32 address lines
4-gigabyte addressing range
256-byte data cache
256-byte instruction cache
MMU standard (option for 68EC030 MPU without MMU)

Optional 68882 floating point coprocessor
Uses the IEEE-P754 Binary Floating Point Standard

2-, 4-, or 16-megabyte capacity
One parity bit per byte
Uses 256K x 4 or 1024K x 4 DRAMs.
Hardware refresh

Two ROM sockets
2-megabyte total capacity
Page-addressable ROM and EEPROM capability

1-2

NY-RAM

VMEbus

Mailbox

LEDs

Serial I/O

CIO

SCSI option

Ethernet option

RTC option

HK68N3D User's Manual

Nonvolatile static RAM for programmable functions
256 x 4 configuration
Internal EEPROM
100-year retention
10,000 store cycle lifetime

32-bit addressing (4 gigabyte range)
32-bit data bus, compatible with 8-bit boards
Seven bus interrupts.

Allows remote control of the HK68N3D via specified
VMEbus addresses

MPU halt, reset, interrupt, and on-card bus lock functions

One 7-segment LED under software control
Three MPU/BUS status LEDs for master, bus (slave), and fail
Two LEDs for Ethernet transmit and receive

Two serial I/O ports (Zilog Z8530 Serial Communication
Controller)

Separate baud rate generators for each port
Asynchronous and synchronous modes
RS-232C interface, RS-422 option.

Zilog Z8536 counter/timer and parallel I/O unit; three 16-bit
counter/timers

Three parallel ports for on-card control functions

ANSI X3T9.2-compatible Small Computer System Interface
(SCSI) controller

Supports up to eight disk drive controllers or other devices.
Synchronous protocol support

Intel 82596cA Ethernet controller
On-chip DMA and memory management to handle Ethernet

transfers without host CPU intervention
Ethernet transfers conform to the IEEE-802.3 or Ethernet 1.0
standard.

Optional real-time clock module for time-of-day
maintenance

Revision A (Preliminary) I June 1991

:0
CD
< w·
o·
::J

»
-:0
~
3·
s·
I»

$
c...
C
::J
CD
~

(0
(0
-L

J5
J6

-!ib

061991

LU

seven-segment
LED

(")(")0 £0
iSai! ~~ P4

ETHERNET

L----.J L6

B 182596CA G;J ~ [JO
l..6

I
oT~:1 0

I~c 1 U25 !.!a

"31.

ti

t-Ul~ ~

~ I I ~ ~~~ t ~ r _=~i i- ! I

B EJ ~ ~
~ lR N'/RAM " ::: - I

OSII

059

~ : U70 ROMO U71MC68030:PGA Ciliiill U47 I~~ 0 EH ~ •

fld I~ I LOn ROM1 I ~ t.:~ 1= B 0 ~~;=
r '..!HZ ICWJ ~1lU3 I G !I~~

=~ 1~~Diil -NtQ
~~

CWJI U6031u;;]1 U116 I U103 I 0 ~

G; r- ~.103

FIGURE 1-1. Component map

o
<
CD

~.
CD
:E

w

1-4 HK68N3D User's Manual

1.3 FUNCTIONAL DESCRIPTION

Principal functional blocks are shown in Figure 1-2.

The VMEbus provides high throughput for data transfers between
boards or subsystems on the VMEbus, and is the main conduit for
transferring system-level information between processor subsys­
tems.

Revision A (Preliminary) I June 1991

Overview

68030 or
68EC030

CPU

;
/L..-___ ""\ ZS536

8 I sec
,..-----..,v/ 2 ports

RS-232 serial
inter- liD
face ports

(A&8)

.A

68882 V
FPP 1\

"
2 megabytes

~ EPROMISRAM .A

32 ~ iii. " r__------.
s \ tttt.v/L..--s _-J,) Z8536

21
\ two 32-pin V
J f\

v sockets 'I /I~''f''----y''''j '-__ C_I_O __

{~}:.

Itl------I~\ DRAM DRAM f.AL __ J \.

Jt6~J. 22 \ controller 1-16 M8 / 32

Il-· --.. y/la--___ ..:.-p_a_ri_tY_IO_9_iC "\'1 .. --.. f

................ ::::::::.;-::::::

.t-.
7-segment

4) display
-y

'" bus III \ nonvolatile VA ") 1'111
11::1-' __ s ---./,L..-__ RA_M __ I\\'1 .. --

4
---.1 .~---...,I '-_____

32 \
control latch J v

·.!:!iil:/j!::li mailbox

...
:
..

.•.. : :.; •... :.::! .. : : ••... ::::.l ... : :I •.... :: ::I:.:: .. : •..... ::.! .. : •.... : .•... : •.... ::i.< ... " \f __ 3_2_) j~_V_inM...,te_~b~a~_!_ ~\: .. __ 3_2 _ .. f) ii~::~:~ij~.:jli~--S --..., v'> I s~3!~:~er _ · ,lit /~

~[I;i;!;1;!;;1!¥~1,11i!!t!&1:i'
FIGURE 1·2. HK68N3D block diagram

Revision A (Preliminary) I June 1991

1-5

1-6 HK68N3D User's Manual

1.4 JUMPERS, CONNECTORS, AND SWITCHES

1.4.1 Jumpers

The HK68/V3D has 24 configurable jumpers. Jumpers)91 and)92
are factory-set and should not be altered.

ROM size JS-::-S configuration selects ROM size for ROM 0, and)9-12
configuration selects ROM size for ROM1. These jumpers must
be set to match each ROM type.

VMEbus arbitration)14 enables or disables VMEbus bus grant level 3 (BG3).
J15 enables or disables VMEbus bus grant level 2 (BG2).
)17 enables or disables VMEbus bus grant level 1 (BGl).
)18 enables or disables VMEbus bus grant level 0 (BGO).

VMEbus request level)16 selects bus request level. This jumper must be configured
to match the bus arbitration jumpers, as described in
section 7.

VMEbus system reset)19 selects SYSRESET* input to bus or output to bus. Installing
J19: 1-2 selects SYSRESET· input from the VMEbus.

VMEbus ACFAIL* control Install)20 to monitor ACFAIe from the VMEbus.

VMEbus slave window size)21-J24 configure address lines A23-A20, as described in
section 7.

VMEbus SYSCLK control Install J25 to drive the VMEbus SYSCLK signal.

VMEbus BCLR control Install)26 to drive BCLR from the VMEbus.

1.4.2

Serial I/O)2 selects +12V or -12V for RS-232. Installing)2:2-3 selects
+ 12V (true).

Ethernet

)3 is used to configure port A for Ring Indicator or Data
Carrier Detect.

J1 selects Ethernet transceiver type. Installing J1 selects full­
step mode (Ethernet 1.0, positive differential voltage).
Removing)l selects half-step mode (for IEEE-802.3-type
transceivers, for example).

Detailed descriptions of jumpers and standard configurations are
shown in Tables 2-2 and 14-2.

Connectors

PI and P2

P3

P4

P 1 and P2 are standard 96-pin VMEbus connectors. P2 is also
used for the optional SCSI interface.

P3 is a 34-pin male serial port connector that provides two
RS-232 ports.

Standard IS-pin male connector for the Ethernet option

Revision A (Preliminary) I June 1991

Overview

1.4.3

P5

1-7

P5 is the front panel interface. P5 is a 14-pin header with a
reset input, an interrupt input, and four output signals that can
be connected to LED cathodes.

Interrupt or Reset Switch

This switch has two settings. Pressing the switch toward the "INT"
side generates an interrupt. Pressing the switch toward the "RST"
side resets the HK68N3D and also resets the VMEbus if the
HK68N3D is jumpered as the VMEbus system controller.

serial I/O port, P3

I :
I
!
Is
! I
:0

I
i
l
I

E-NET

Ethernet port, P4--------I~

transmit indicator, T----__ -H~
receive indicator, R

front panel interface port, P5 ----f.

bus indicator, B
master indicator, M ---___ ~
fail indicator, F

T

R

I
IF
ip
! I

I
:

B
M
F

I&T
Nt" rocker switch for

board interrupt
or reset

rq programmable
lQJ~-- 7-segment

display

FIGURE 1·3. Front panel

Revision A (Preliminary) I June 1991

1-8 HK68N3D User's Manual

1.5 OVERVIEW OF THE MANUAL

1.5.1

1.5.2

Terminology and Notation

Throughout this manual byte refers to 8 bits; short refers to 16
bits; word and long word refer to 32 bits; and quad word refers
to 4 long words (that is, 128 bits).

Hexadecimal numbers are shown with a subscript 16 and binary
numbers with a subscript 2.

Additional Technical Information

Additional information is available on the HK68N3D peripheral
chips, either from the Heurikon sales department or directly from
the chip manufacturers.

This manual describes Heurikon's implementation of the intelli­
gent components of this board. Further information on basic
operation and programming can be found in the following
documents:

Revision A (Preliminary) I June 1991

Overview

TABLE 1·1
Technical

Device

MPU

FPU

cia

Serial
Interface

SCSI

Ethernet
Interface

Real-Time
Clock

1-9

references
Number

68030

68882

Z8536

Z8530

WD33C93

82596CA

DS1216F

Document HK68/V3D User's
Manual Section

MC68030 User's Manual, 2nd ed. (Englewood Cliffs, NJ: 3
Prentice-Hall. 1989). This manual is also available from
Heurikon (part number 001 M216).

MC688811MC68882 Floating Point Coprocessor User's 5
Manual, 1 st ed. (Englewood Cliffs. NJ: Prentice-Hall.
1985). This manual is also available from Heurikon (part
number 001 M207).

Z8036 Z-CIOIZ8536 CIO CounterlTimer and Parallel 110 9
Unit Technical Manual (Campbell. CA: Zilog. Inc., 1987).
The user's manual is also available from Heurikon (part
number 001 M206).

Z8030 Z-bus SCCIZ8530 SCC Serial Communications 10
Controller Technical Manual (Campbell, CA: Zilog, Inc .•
1989). This manual is also available from Heurikon (part
number 001 M205).

WD33C93 Technical Specification. This document is 11
also available from Heurikon (part number 001 M209).

Intel 82S96CA User's Manual (Intel publication number 12
296443-001) and Intel 82CS01AD Data Sheet. (Not
currently available from Heurikon.)

Dallas Semiconductor 1990-91 Product Data Book 13
(Dallas. TX: Dallas Semiconductor). (Not currently
available from Heurikon.)

Please contact our Customer Support Department at 1-800-327-
1251 if you have questions. We are prepared to answer general
questions and provide help with documentation and specific
applications.

Revision A (Preliminary) I June 1991

2.1 INTRODUCTION

CAUflON:

2.2 UNPACKING

2

Setup and Installation

The HK68N3D is a general-purpose board that can be used with a
power supply, card cage, and terminal as a single-board computer
or in a multiprocessor system as a VMEbus slave or master. This
section describes steps that should be taken when the board is
installed.

The HK.68/V3D uses the P2 connector for VMEbus power
and extended addressing, and for the optional SCSI
interface. Do not connect P2 to a VSB backplane, or the
HK68/V3D could be damaged.

Inspect the board for components that could have loosened during
shipment. Save the antistatic bag and box for future shipping or
storage.

2.3 RECORDING SERIAL NUMBERS

monitor version number

FIGURE 2.1.
Location of serial numbers

Before you install the HK68N3D in a card cage or rack, record the
board serial number, the serial number of the operating system, and
the version number of the monitor, in case you need them for refer­
ence by our service department. The board serial number is in­
scribed on the edge of the board (Fig. 2-1) . The version number of
the monitor is labelled on the monitor ROM, and the serial number
of the operating system is labelled on the ROM or tape case.

HK68N3D serial number: ____________ _

Operating system serial number: ______ _

Monitor version: ____________ _

2-2 HK68N3D User's Manual

2.4 PROVIDING POWER

Be sure the power supply is sufficient for the board. The HK68N3D
requires about 35 watts maximum. Power requirements for the
HK68/V3D are shown in Table 2-1.

TABLE 2·1
Power reqUirements
Voltage Current Usage

+5 7.0 A, max All logic

+12 20 rnA, max Reset timing, RS-232 interface

-12 20 rnA, max RS-232 interface

Note: All of the "+5" and "Gnd" pins on PI and P2 must be connected
to ensure proper operation. P2 contains power pins for the
VMEbus.

2.5 RESERVING SPACE

The board is a 6u board, 6.299" H x 9.187" W x 0.6" D (233.35 mm
W x 160 mm L x 15.25 mm D), that occupies a single slot in a
VMEbus card cage. If the board is the VMEbus system controller, it
should be installed in the first slot.

2.6 PROVIDING AIR FLOW

CAlITION: High operating temperatures will cause unpredictable
operation. Because of the high chip density, fan cooling is
required for all configurations, even when boards are
placed on extenders.

As with any printed circuit board, be sure that air flow to the board
is adequate. Recommended air flow rate is about 2 to 3 cubic feet
per minute, depending on card cage constraints and other factors.
Operating temperature is specified at 00 to 550 C ambient, as
measured at the board.

Revision A (Preliminary) / June 1991

Setup and Installation 2-3

2.7 CHECKING OPERATION

CAUI10N:

CAunON:

1

2

3

You need the following items to set up and use the Heurikon
HK68N3D.

o Heurikon HK68N3D microcomputer board
o Card cage and power supply
o Serial interface cable (RS-232)
o CRT terminal
o Heurikon EPROMs, which include both monitor and bootstrap

Do not handle the board unless absolutely necessary.

Ground your body before touching the HK.68/V3D board.

All semiconductors should be handled with care. Static
discharges can easily damage the components on the
HK68/V3D. Keep the board in an antistatic bag whenever
it is out of the system chassis.

Do not install the board in a rack or remove the board
from a rack while power is applied, at risk of damage to
the board.

All products are fully tested before they are shipped from the fac­
tory (please contact us if you would like to have current information
on mean time between failures). When you receive your HK68N3D,
follow these steps to assure yourself that the system is operational:

Read the monitor manual in Appendix A and the operating system
literature to become familiar with their features and available tools.

Visually inspect the boardCs) for components that could have
loosened during shipment. Visually inspect the chassis and all
cables.

Check the jumpers; standard configurations are shown in Figure 2-2
and Table 2-2. The ROM size jumpers are configured to match your
ROM (Table 2-3).

Revision A (Preliminary) / June 1991

2-4

J5
J6 ~! RaMO
J7
J8 MC68030.PGA

J9 @! ~ J10 ROM1 :%
J11
J12

B
EJ I SCSI I

J21
J22
J23
J24

HK68N3D User's Manual

J1 J2 J3

P4

o ETHERNET 0 P3·SIO 0

182596CA B
~ ~

1~~ __________ ----------~iJ91
L---------J~----------------------~~J92

D
D

P1·VME

J20

J16
J14

J15

J17
J18

J19
J25

J26

FIGURE 2·2. Guide to jumper locations

TABLE 2·2
Standardjurnpersetting~~ __ ___

Jumper

J1

J2

J3

Standard
Configuration

Installed

J2:1-2 False

J3:1-2 Ring
Indicator

Options

J1 installed: + (positive) idle differential
voltage on TX lines, full-step mode (for
example, for Ethernet 1.0-type transceivers)

J1 removed: 0 idle differential voltage on TX
lines, half-step mode (for example, for IEEE-
802.3-type transceivers)

J2:1-2 False (+12V)

J2:2-3 True (-12V)

J3:1-2 Ring Indicator

J3:2-3 Data Carrier Detect

Revision A (Preliminary) I June 1991

Function

Selects Ethernet
differential voltage

HK68/V3D
Manual
Section

12

RS-232 handshaking 10
defaults

Selects Ring Indicator 10
or Data Carrier Detect
for SCC Port A.

Setup and Installation 2-5

J5-J8 Matches ROMO 2764,27128,27256,27512,27010,27020, Selects ROM 0 size 5
size. See Table 2-3. 27040, 27080, 27513 paged, 2864 RIW (default is 2764)

EEPROM, 2817 RIW EEPROM

J9-J12 Matches ROM1 2764,27128,27256,27512,27010,27020, Selects ROM 1 size 5
size. See Table 2-3. 27040,27080,27513 paged, 2864 RIW (default is 2764)

EEPROM, 2817 RIW EEPROM

J14, J15, Bus Grant level 3 Bus Grant level 3 Selects VMEbus Bus 7
J17, Grant level
J18 Bus Grant level 2

Bus Grant level 1

Bus Grant level 0

J16 Bus Request Bus Request level 3 VMEbus arbitration 7
level 3)

Bus Request level 2
(bus request level 3,
not system controller)

rrn Bus Request level 1

Bus Request level 0

J19 J19:1-2 input from J19:1-2 input from VMEbus Enables VMEbus 7
VMEbus SYSRESET*

J19:2-3 output to VMEbus

~
J20 Removed J20 installed: Allows HK68N3D to respond ACFAll* connects to

..,
I

to ACFAll * interrupt. VMEbus

J21 removed: HK68N3D does not respond
to ACFAll* interrupt.

J21-J24 Matches memory 1, 2, 4, 8, or 16 megabytes VMEbus slave window 7
size. size

J25 Removed J25 installed: drives SYSClK Disables SYSClK 7

J25 removed: does not drive SYSClK

J26 Removed J26 installed: HK68N3D can drive BClR*. Disables BClR*. 7

J26 removed: HK68N3D cannot drive
BClR·.

J91 Factory set for memory configuration.
Do not alter.

J92 Factory set for memory configuration.
Do not alter.

Revision A (Preliminary) I June 1991

2-6 HK68N3D User's Manual

TABLE 2·3
ROM size options
ROM ROM Capacity Jumper Configuration
Type

2764 64 Kbits (8K x 8)

it 27128
0_ J50rJ9

128 Kbits (16K x 8) ° J6orJ10
27513 J7 or J11 (either A or B)
paged 0_ J8orJ12

27256 256 Kbits (32K x 8) ;I] 0_ J50rJ9
° J6orJ10

o J7 or J11 (either A or B)
o J8orJ12

27512 512 Kbits (64K x 8) drorJ9
o J6orJ10

o 0 J7 or J11 (either A or B)
o J8 or J12

27010 1 Mbits (128K x 8) IJ50rJ9
J6 or J1 0 (either A or B) 0_ J7orJ11

o J8 or J12

27020 2 Mbits (256K x 8) IJ5orJ9 27040 4 Mbits (512K x 8) o J6 or J10
0_ J7orJ11

o J8orJ12

27080 8 Mbits (1 M x 8) IJ50rJ9 .0 J6orJ10
o J7 or J11
o J8 or J12

2864 RIW 8Kx8

~
EEPROM J5 or J9 (any setting)

J6orJ10
J7 or J11 (either A or B)
J8orJ12

2817 RIW 2Kx8

I EEPROM J50rJ9
J6 or J10
J7 or J11 (either A or B)

o. J8 or J12

Revision A (Preliminary) I June 1991

Setup and Installation

4

CAlITION:

5

6

7

Install the HK68N3D in the VMEbus card cage. Be sure it is seated
firmly.

The HK681V3D uses the P2 connector for VMEbus power
and extended addressing, and for the optional SCSI
interface. Do not connect P2 to a VSB backplane, or the
HK.681V3D could be damaged.

2-7

Connect a CRT terminal to serial port B (port A for the VxWorks
operating system), via connector P3. If you are making your own
cable, refer to the cable drawing in section 10. Be sure all cables are
securely connected.

Set the terminal as follows:

• 9600 baud, full duplex

• Eight data bits (no parity)

• Two stop bits for transmit data

• One stop bit for receive data. If your terminal does not have
separate controls for transmit and receive stop bits, select one
stop bit for both transmit and receive.

Turn the system on.

Push the system RESET switch.

If you are using the HK68/V3D monitor or VxWorks, a sign-on
message and prompt should appear on the screen. If the prompt
does not appear, check your power supply voltages, EPROM
jumpering, and CRT cabling.

Revision A (Preliminary) I June 1991

2-8

8

HK68N3D User's Manual

Turn the power off before you remove boards from the card cage.
Reconfigure the jumpers as necessary for your application. See
section 12 for a summary of va device addresses.

• When the HK681V3D communicates with other boards
over the bus:

In a VMEbus system that uses multiple boards, one board must be
system controller. For example, you might want to configure the
HK68N3D as the system controller in a multiple-board VxWorks
system. If the HK68/V3D is the system controller in your system,
install it in the first slot.

An example configuration of the VMEbus jumpers is shown in
Figure 2-3. Under normal circumstances, the VMEbus system
controller card provides the system bus clock and access timer, and
participates in the arbitration logic. The HK68/V3D includes a bus
timer and single-level VMEbus arbiter logic that is enabled via
jumpers J14, J15, J17, and J18. The example shows jumpers J14, J15,
J17, and J18 configured for VMEbus single-level arbitration with the
HK68N3D as system controller.

In the example, SYSRESET is configured as an input via jumper J19,
even though the HK68/V3D is the system controller, when it is
preferable to use an enclosure reset switch for reset. J21-J24 are
configured for a 16-megabyte slave window size. J20 is rarely
installed; if J20 is installed, the HK68N3D drives ACF AIL.

The system controller board drives the bus clear (BCLR*) signal,
which is used to tell the current bus owner to release control of the
bus for a higher priority requester. This option is controller by
jumper J26 on the HK68N3D.

• When the HK681V3D is used as a stand-alone board or is not the
system controller tn a multiple-board system:

If the HK68N3D is not the system controller in your system,
configure the VMEbus jumpers as shown in Figure 2-4. For example,
if the HK68N3D is the only board in a system, and you are using
the HK68/V3D monitor to configure the board it does not need to
be configured as a system controller. An example configuration of
the VMEbus jumpers is shown in Figure 2-4.

Section 7 contains additional instructions for configuring the
HK68/V3D in a VMEbus system.

Revision A (Preliminary) / June 1991

Setup and Installation

J21
J22
J23
J24

P1 - VMEbus

In this example, J21-J24 are configured
for 16-megabyte slave window size.

J20

J16

J14

J15

J17

J18

2-9

In this example, J14-J18 are
configured for VMEbus request level
3 with the HK681V3D as system
controller.

J19 - Install as shown to configure
SYSRESET as an input.

J25 • Install to drive SYSCLK.

J26 • Install to drive BUSCLR.

FIGURE 2·3. The HK68N3D configured as VMEbus system controller via Jumpers J14·J18

J21
J22

J23
J24

P1 - VMEbus

In this example, J21-J24 are configured
for 16-megabyte slave window size.

J20

J16

J14

J15

J17

J18

In this example, J14-J18 are
configured for VMEbus request level
3 and the HK68N3D not the system
controller.

J19 • Install as shown to configure
SYSRESET as an input.

J25 - Do not install.

J26 - Do not install.

FIGURE 2-4. The HK68N3D not configured as VMEbus system controller
via jumpers J 14·J 18

Revision A (Preliminary) / June 1991

2-10

9

10

HK68N3D User's Manual

If you change either ROM, be sure the ROM size jumpers J5-J8 are
set to match the size of ROMO and. jumpers J9-J12 are set to match
the size of ROM 1. The possible configurations are shown in
Table 2-2.

If your HK68N3D has the optional SCSI interface and the
HK68N3D is at the end of a SCSI cable" install resistor networks
RN29. RN30, and RN31, which are socketed SCSI terminators located
next to connector P2 (Fig. 1-1). The SCSI specification requires that
the bus be terminated at both ends of the cable, so RN29, RN30,
and RN31 should be installed only if the HK68N3D is at an end of
the SCSI interface cable. See section 11 for details.

2.8 TROUBLESHOOTING AND SERVICE INFORMATION

In' case of difficulty, use this checklist:

LJ Be sure the system is not overheating.

LJ Inspect the power cables and connectors.

LJ If you are using the monitor program, run the diagnostics
by executing the monitor command testmem.

LJ Check your power supply for proper DC voltages. If pos­
sible, use an osdlloscope to look for excessive power sup­
ply ripple or noise. Note that P2 contains power and
ground pins for VMEbus. P2 must be used to meet the
power specifications.

LJ Check the chips to be sure they are firmly in place. Look
for chips with bent or broken pins. In particular, check the
EPROM.

o Check your terminal switches and cables. Be sure the P3
connector is secure. If you have made your own cables, pay
particular attention to the cable drawing in section 10.

LJ Check the jumpers to be sure your board is configured
properly. Check the ROM jumpers, espedally.

LJ The HK68N3D monitor uses an on-card EEPROM to con­
figure and set the baud rates for its console port. The lack
of a prompt might be caused by incorrect terminal settings,
an incorrect configuration of the EEPROM, or a malfunc­
tioning EEPROM. Try holding down the H character during
reset to abort autoboot from the EEPROM. If the prompt

Revision A (Preliminary) I June 1991

Setup and Installation 2-11

comes up, the EEPROM was most likely configured incor­
rectly. Type nvdtsplay to check the monitor configuration.
For more information about the way the EEPROM
configures the console port baud rates, refer to Appendix A.

o After you have checked all of the above items, call our
Factory Service Department at 1-800-327-1251 for help.
Please have the following information handy:

• The monitor program revision level Oabelled on the
monitor EPROM)

• The serial number of the operating system.
• The HK68N3D p.c.b. serial number (inscribed along the

card edge).
• Whether your board has been customized for options such

as processor speed or configuration for networking and
peripherals.

If you plan to return the board to Heurikon for service, contact
our Customer Service Department to obtain a Return
Merchandise Authorization (RMA) number. We will ask you to
list which items you are returning and the board serial number,
plus your purchase order number and billing information if your
HK68N3D is out of warranty. If you return the board, be sure to
enclose it in an antistatic bag, such as the one in which it was
originally shipped. Send it prepaid to:

Heurikon Corporation
Factory Service Department
8310 Excelsior Drive
Madison, WI 53717

RMA# ____ _

Please put the RMA number on the outside of the package so we
can handle your problem efficiently. Our service department cannot
accept material received without an RMA number.

Revision A (Preliminary) I June 1991

2-12 HK68N3D User's Manual

2.9 MONITOR SUMMARY

IIKU,VlD P_.r Up S.rial T •• t PASSED
IIK6ItvlD P_r Op _ry T .. t PASSED
CopyrilJht a.urikon Corp.. un
Cr_tN, Fr1 Mar • 0., $4,12 un

VlD Debuq Monitor
vvv Beurikon Corp.

vvv V.uion 1.X
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

vvv xxxxxxxxxxxx xxxxx..x.xxx

vvv vvv xxxxxxxxxxxx xx
xx xx

vvv xxxxxx.x.xxx.xxx. XJC.XA)OUlxxxx

VlDIl.X

Help

Helpmemmap

Help functions

Command editor

Command history

An EPROM-based debug-monitor!bootstrap for the HK68N3D is
available as an option. The monitor allows you to access almost
all of the hardware registers on the HK68N3D. You can
configure the master and slave bus interface registers, console
port, and download port with the monitor.

General functions include the capability to:

• Manually download data or 68030 program code.
• Check the processor, memory, VMEbus and va devices.

• Execute a bootstrap (for example, boot an operating
system).

The monitor uses the area between 0000,0000'6 and 0001,0000'6 for
stack and uninitialized-data space. Any write:, to that area can cause
unpredictable operation of the monitor. The monitor initializes this
area (that is, writes to it) to prevent parity errors, but it is left up to
the programmer to initialize any other memory areas that are
accessed.

Type help to view a summary of the monitor. There is an on­
line reference for using monitor commands, the command line
editor, and the board memory map. Additional help is available
for specific commands; type help and the command name for
details.

Type help memmap to view the memory map for the
HK68N3D.

Type help functions to view a list of functions that the
monitor commands call. The functions can be used directly
from the command line. It's better to use the monitor
commands in most cases, because calling the functions directly
from the command line bypasses argument checking.

The monitor provides a command line editor that uses typical
UNIX® vi editing commands. You can edit any command line
you type. Press the ESC key from the command line to start the
editor. Type help editor to access an on-line description of the
editor.

The monitor maintains a command history. Press the ESC key
from the command line to access the history. Then press K or­
to find previous commands. Press J or + to find subsequent
commands. Up to 50 command lines can be accessed for reuse.

Table 2-3 is a summary of monitor commands. A full description of
the monitor and a command reference are in Appendix A.

Revision A (Preliminary) / June 1991

Setup and Installation

TABLE 2·4
Monitor command summary

Help commands
help commands help editor help functions

Booting up
bootbus bootrom bootserial

Manipulating memory
checksummem displaymem findstr
clearmem fillmem readmem
cmpmem findmem setmem
copymem findnotmem swapmem

Manipulating nonvolatile memory (NVRAM)
nvdisplay nvi nit nvopen

Downloading and executing host applications
call download transmode

Debugging applications
disassemble dumpregs exectrace

Checking arbiter status and displaying Ethernet 10
prstatus

Controlling VMEbus slave access
slavedis
slaveenable

Controlling the timer
starttimer stoptimer

Testing local and external RAM
testmem

Viewing and setting the date
date setdate

Calculating with hex, deCimal, octal, or binary Integers

add sub mul div rand

help memmap

writemem
writestr

nvset

settrace

Revision A (Preliminary) I June 1991

2-13

nvupdate

step

3.1 INTRODUCTION

3

MPU

This section details some of the important features of the 68030
MPU chip and, in particular, features that are specific to its
implementation on the Heurikon HK68/V3D.

3.2 MPU INTERRUPTS

The MPU can internally set an interrupt priority level in such a
way that interrupts of a lower priority will not be honored. In­
terrupt level seven, however, cannot be masked off.

TABLE 3·1
MPU interrupt levels
Level Interrupt (bus) Interrupt (on-card)

7 IRQ7

6 IRQ6

S IRQS

4 IRQ4

3 IRQ3

2 IRQ2

IRQ1

o

Parity error, highest priority, non­
maskable, autovectored

CIO (vectored) (sub-priority: timer 3,
port A, timer 2, port 8, timer 1)

unused

SCSI (autovectored)

unused

SCC (vectored) (sub-priority: ports A
and B) (sub-sub-priority: rcv ready, tx
ready. status change)

Ethernet (autovectored)

Idle, no interrupt

When an interrupt is recognized by the MPU, the current instruc­
tion is completed and an interrupt acknowledge sequence is initi­
ated, whose purpose is to acquire an interrupt vector from the in­
terrupting device. The vector number is used to select one of 256

3-2 HK68N3D User's Manual

exception vectors located in reserved memory locations (see sec­
tion 3.3 for a listing.) The exception vector specifies the address
of the interrupt service routine.

If there are two interrupts pending at the same level, the on-card
device is serviced before the bus interrupt. The VMEbus interrupts
are masked on and off via the CIO. Refer to sections 10 and 9.4.

The SCC and CIO devices on the HK68N3D are capable of
generating more than one vector, depending on the particular
condition which caused the interrupt. This significantly reduces
the time required to service the interrupt because the program
does not have to rigorously test for the interrupt cause. Section 7.5
has more information on the HK68N3D interrupt logic. The
VMEbus interrupts are vectored; the vector is automatically read
from the interrupting device.

3.3 MPU EXCEPTION VECTORS

Exception vectors are memory locations from which the MPU
fetches the address of a routine to handle an exception
(interrupt). All exception vectors are two words long (four bytes),
except for the reset vector which is four words. The listing below
shows the vector space as it appears to the Heurikon HK68N3D
MPU. It varies slightly from the 68030 MPU manual listing due to
particular implementations on the HK68N3D board. Refer to the
MPU documentation for more details. The vector table normally
occupies the first 1024 bytes of RAM, but may be moved to other
locations under software control. Unused vector positions may be
used for other purposes (e.g., code or data) or point to an error
routine.

Revision A (Preliminary) / June 1991

Microprocessor Unit 3-3

TABLE 3·2
MPU excel!tion vectors
Vector Address Offs.t Assignment

0 000 Reset: Initial SSP (Supervisor Stack
Pointer)

004 Reset: Initial PC (Supervisor Program
Counter)

2 008 Bus Error (Watchdog Timer, MMU
Fauh)

3 OOC Address Error

4 010 Illegal Instruction

5 014 Divide by Zero

6 018 CHK Instruction (register bounds)

7 01C TRAPV Instruction (overflow)

8 020 Privilege Violation (STOP, RESET,
RTE, etc)

9 024 Trace (Program development tool)

10 028 Instruction Group 1010 Emulator

11 02C FPP Coprocessor not present

12 030 (reserved)

13 034 FPP Coprocessor Protocol Violation

14 038 Format Error

15 03C Uninitialized Interrupt

16-23 040-05F (reserved-8)

24 060 Spurious Interrupt, not used

25 064 level 1 autovector, VSB

26 068 level 2 autovector, not used

27 06C level 3 autovector, not used

28 070 level 4 autovector, SCSI Interrupt

29 074 level 5 autovector, not used

30 078 level 6 autovector, not used

31 07C level 7 autovector, parity error,
ACFAll

32-47 080-0BF TRAP Instruction Vectors (16)

48-54 OCO-ODB FPP Exceptions (8)

55-63 ODC-OFF (reserved-8)

64-255 100-3FF User Interrupt Vectors (192)

Revision A (Preliminary) I June 1991

3-4

Note:

HK68N3D User's Manual

Autovectoring is used for the parity error, SCSI and VSB inter­
rupts. Interrupts from all other devices can be programmed to
provide a vector number (which would likely point into the "User
Interrupt Vector" area, above). VMEbus interrupts (IRQ1 - IRQ7)
are vectored; the vector is supplied by the interrupting device
over the VMEbus.

The following table gives suggested interrupt vectors for each of
the possible (on-card) device interrupts which could occur. Note
that the listing is in order of interrupt priority, highest priority
first.

The ACFAIL line is connected to the VMEbus and can cause a
false level of interrupts if there is no power module monitor. For
this reason jumper J20 has been provided to allow ACF AIL to be
monitored only if the shunt is installed (see the jumper diagram
in section 12).

TABLE 3-3
Suggested interrupt vectors
Level Vector Device Condition

7 31 Parity err.lACFAIL autovectored
interrupt

6 96 CIO Timer 3

79 CIO External Interrupt (P6-11)

77 EEPROM 1 Ready

75 EEPROM 0 Ready

73 Mailbox Interrupt

69 VME Interrupt in Progress

67,65

98 CIO Timer 2

76, 74

72, 70

68, 66

64

100 CIO Timer 1

102 CIO Timer, error

4 28 SCSI SCSI Interface (autovectored)

2 92 sec Port A, Receive character available

94 Port A, Special receive condition

88 Port A, Transmit buffer empty

90 Port A, External/Status change

Revision A (Preliminary) I June 1991

Microprocessor Unit 3-5

84 Port B, Receive character available

86 Port B, Special receive condition

80 Port B. Transmit buffer empty

82 Port B, ExternallStatus change

25 Ethernet Ethernet Interface (autovectored)

The suggested interrupt vectors for the CIa and sec devices take
into account that the lower bit and upper four bits of the vectors
are shared, e.g., all CIa Port A vectors have five bits which are the
same for all interrupt causes.

Each vectored on-card device has interrupt enable and control
bits which allow the actual interrupt priority levels to be modified
under program control by temporarily disabling certain dev ices.

af course, fewer vectors may be used if the devices are pro­
grammed not to use modified vectors or if interrupts from some
devices are not enabled.

If you want to use the suggested vector numbers in the above
table, the proper values to load into the device vector registers
are:

TABLE 3·4
Device interrupt vector values (suggested)
Device Hexadecimal Value Decimal Value

SCC 1 (Ports A & B): 5016 80

CIO, Port A: 41 16 65

CIO. Port B: 4016 64

CIO, err vector: 60'6 96

Making your way through the Zilog CIa and see manuals in
search of details on the interrupt logic is quite an experience. We
suggest you start with these recommended readings from the CIa
and sec technical manuals:

Device Item
CIa Z8536 Technical Manual

Vector register: section 2.10.1
Bit priorities: section 3.3.2

see Z8530 Technical Manual
Port priorities: section 3.2.2, table 3-5
Vector register: section 5.1.3
Vectors: section 5.1.10, table 4-3

Revision A (Preliminary) I June 1991

3-6 HK68N3D User's Manual

3.4 STATUS LEDS

There are three status LEDs which continuously show the state of
the board as follows:

TABLE 3·5
Status LEDs
LED Name

F Fail

M Master

B Slave
(bus grant
acknowledge,
BGACK*)

Meaning

The SYSFAIL line is being driven active by this
board.

The HK68N3D is the master on the VMEbus. It
owns the VMEbus.

The HK68N3D is not the VMEbus master. It has
given up the local bus, which might be either
VMEbus or Ethernet.

3.5 MONITORING MPU STATUS FROM THE FRONT PANEL INTERFACE

Four status outputs allow remote monitoring of the HK68N3D
processor. Connections are made through a 14-pin connector, P5.

TABLE 3·6a
Front panel interface, PS, output signals
P5 pin Name Meaning

2 Supr The MPU is in the supervisor state.

4 User The MPU is in the user state.

6 not connected

8 Halt The MPU has halted. (Double bus fault, odd
stack address or the system reset line is
active.)

10 Bus grant The HK68N3D is being accessed as a slave
acknowledge on the VMEbus.
(BGACK*)

1,3,5,7,9 Vcc Vcc (+5) volts

The output signals are low when true. Each is suitable for connec­
tion to a LED cathode. An external resistor must be provided for
each output to limit current to 15 milliamps.

Two input signals are also provided on P5 for interrupt and reset.

Revision A (Preliminary) I June 1991

Microprocessor Unit

TABLE 3·6b
Front panel interface, PS, input signals
P5 pin Name Function

11 INTR*

12 Gnd

13 RESET*

14 Gnd

Connected to CIO bit A7, and pull-up Refer to
section 9.2)

When low, causes a local reset

A recommended mating connector for P5 is Molex PIN 15-29-
8148.

3.6 MPU CACHE CONTROL

3.7 COPROCESSORS

The 68030 caches may be controlled as follows:

TABLE 3·7
MPU cache control
Address

0280,000216

Function (write-only)

MPU Cache Control

DO = 0, cache disabled (default)

DO = 1, caches enabled

The cache control register in the MPU itself must also be set
properly to enable the MPU caches.

The HK68/V3D supports a floating point coprocessor, which is
described in section 4.

Revision A (Preliminary) / June 1991

3-7

4

Optional Floating Point Coprocessor

4.1 FEATURE SUMMARY

The HK68/V3D allows the use of an optional Mc68882 floating
point processor that runs as a coprocessor with the MPU.

The Mc68881 frequency may either run at a clock speed of 20
MHz (via the use of a jumper), or it may run at the same speed as
the MPU clock

The Mc68882 has the following features:

• Allows fully concurrent instruction execution with the main
processor.

• Eight general-purpose floating-point data registers, each
supporting a full SO-bit extended-precision real data format (a
64-bit mantissa plus a sign bit, and a I5-bit biased exponent).

• A 67-bit ALU to allow very fast calculations, with intermediate
precision greater than the extended-precision format.

• A 67 -bit barrel shifter for high-speed shifting operations (for
normalizing, etc.)

• 46 instruction types, including 35 arithmetic operations.

• Fully conforms to the IEEE P754 standard, including all re­
quirements and suggestions. Also supports functions not de­
fined by the IEEE standard, including a full set of trigonomet­
ric and logarithmic functions.

• Supports seven data types: byte, word, and long integers; sin­
gle, double, and extended-precision real numbers; and packed
binary coded decimal string real numbers.

• Efficient mechanisms for procedure calls, context switches,
and interrupt handling.

4-2 HK68N3D User's Manual

FPP programming details are available in the 68882 technical
manual.

4.2 BYPASSING THE FLOATING POINT COPROCESSOR

The HK68/V3D will operate without the floating point chip.
Simply unplug the MC68882 if it is not required. No wires or
jumpers are needed.

If the Watchdog Timer is enabled, the software can determine if
the floating point coprocessor is installed. An attempt to access a
nonexistent floating point coprocessor results in a watchdog
timeout and a bus error, forcing a line 1111 MPU exception,
vector number 11.

Revision A (Preliminary) / June 1991

Condition

RAM Parity

Watchdog Timeout

5

System Error Handling

Many events could cause an error. The responses to these events
are carefully controlled. The following error conditions might
arise during MPU cycles:

Meaning

Incorrect parity was detected during a read cycle from on-card
RAM memory. This may be due to a true parity error (RAM data
changed,) or because the memory location was not initialized
prior to the read and it contained garbage.

Parity errors generate a level 7 autovector interrupt.

A pointer to the parity error handling routine should be loaded at
Vector Base Register offset 00007C16• Parity checking cannot be
disabled.

During an on-card access or VMEbus slave access, no ac­
knowledge was received within a flXed time interval defined by a
hardware timer (about 100 microseconds). This is usually the
result of no bus device being assigned to the specified address. A
timeout could also occur if an access from the bus is not
terminated by the bus master.

Accesses to the bus (VMEbus only) use the system watchdog timer
and can hang indefinitely if the system watchdog is not enabled
(see section 7.10).

For an on-card bus cycle, the memory cycle is terminated, the
BERR (Bus Error) exception is taken by the MPU and execution
resumes at the location specified by the exception vector.

If an access from the bus was in progress, no BERR exception
occurs.

5-2

Double Bus Fault

Divide by Zero

PrIvileged Violation

Address Error

Illegal Instruction

Format Error

Line 1111 Emulator

FPP Exceptions

HK68N3D User's Manual

Another bus error occurred during the processing of a previous
bus error, address error or reset exception. This error is the result
of a major software bug or a hardware malfunction. A typical
software bug which could cause this error would be an improperly
initialized stack pointer, which points to an invalid address.

A double bus fault forces the MPU to enter the HALTstate.
Processing stops. The HALT status LED lights. The only way out of
this condition is to issue a hardware reset.

The value of the divisor for a divide instruction is zero. The
instruction is aborted and vector 5 is used to transfer to an error
routine.

A program executing in the user state attempted to execute a
privileged instruction. The instruction is not executed. Exception
vector 8 is used to transfer control.

An odd address has been specified for an instruction. The bus
cycle is aborted and vector 3 is used to transfer control.

The bit pattern for the fetched instruction is not legal or is
unimplemented. The instruction is not executed. Exception vector
4, 10 or 11 is used to transfer control.

The format of the stack frame is not correct for an RTE
instruction. The instruction is aborted and exception vector 14 is
used to transfer control.

The FPP or PMMU coprocessor is not present and a coprocessor
instruction was fetched. The instruction is not executed. Exception
vector 11 will be taken.

The FPP coprocessor has detected a data processing error, such
as an overflow or a divide by zero. The FPP causes the MPU to
take one of seven exceptions in the range from 48 to 54.

Revision A (Preliminary) I June 1991

6

On-card Memory Configuration

6.1 INTRODUCTION

6.2 ROM

The Heurikon HK68/V3D microcomputer can accommodate a va­
riety of RAM and ROM configurations. There are two ROM sockets
for PROM, page-addressable ROM or EEPROM, 36 ZIP RAM
positions, and a nonvolatile RAM. Off-card memory may be
accessed via the VMEbus.

Each ROM occupies a fixed 4-megabyte physical address space. At
power-on, the MPU fetches the reset vector from the first eight
locations of RaMO. The reset vector spedfies the initial program
counter and status register values. ROM access time must be 250
nanoseconds or less.

TABLE 6·1
ROM address summary
Base Address ROM Component Number

0000,0000'6 o U70

0040,0000'6 UOO

Four jumpers for each ROM must be set according to the ROM
type being used (Fig. 6-1). Jumpers J5, J6,]7, and J8 control RaMO
(U70); J9, J10, J11, and J12 control ROM1 (U80). It is possible to use
two ROMs of different types.

6-2

TABLE 6·2

J5
J6
J7
J8
J9
J10
J11
J12

HK68N3D User's Manual

o OJ] L--__ P5_-_F_PI __

~ f. _ROM0-----J ...-----
- MC68030,PGA

@ L----f _RO_M1 ---I ~

FIGURE 6·1. ROM jumpers

ROM capacity and jumper positions
PROM ROM Total Jumper Positions (for U70 and U80)
Type Capacity Board

Capacity J5 or J9

B

corvO)
J6,J7,J8,J10,J11,J12

([[])
AC A B

J5/J9 J6/J10 J7/J11 J8/J12

2764 8 kilobytes 16 kilobytes C B x B

27128 16 kilobytes 32 kilobytes C B x B

27256 32 kilobytes 64 kilobytes C B x A

27512 64 kilobytes 128 kilobytes B B x A

27010 128 kilobytes 256 kilobytes B x B A

27020 256 kilobytes 512 kilobytes B A B A

27040 512 kilobytes 1 megabyte B A B A

27080 1 megabyte 2 megabytes B A A A

27513 paged 64 kilobytes 128 kilobytes C B x B

2864RIW 8 kilobytes 16 kilobytes x B x B
EEPROM

2817 RIW 2 kilobytes 4 kilobytes A B x B
EEPROM

Revision A (Preliminary) I June 1991

On-card Memory Configuration

Each ROM contains consecutive (both even and odd) addresses.
When programming PROMs, do not split even and odd bytes be­
tween the two chips.

Both ROM sockets are 32 pins. If you use a 28-pin device, justify it
so socket pins 1, 2,31 and 32 are empty. Twenty-four-pin devices
are not supported. The ROM access time must be at most 250
nanoseconds.

32-pin socket

DO
231

28-pin
device

FIGURE 6·2. ROM position for 28-pin ROMs

The two ROM positions are not contiguous (although a mirror of
the lower ROM will be contiguous with the upper ROM). The best
way to create a contiguous image is to copy the contents of both
ROMs to contiguous RAM areas.

Electrically erasable or paged PROMs may be used. An EEPROM
allows specific addresses to be changed by writing to the ROM.
For writes to the EEPROM, a delay must be provided by the
software between write operations. For the 2864, this delay is 10
milliseconds. The EEPROM Busy/Ready signals are available at
the CIO to facilitate this timing; see section 9.1.

Paged ROMs allow future growth of ROM capacity without adding
address pins. A single device can contain multiple 16-kilobyte
pages. A specific page is selected by writing the page value to the
ROM. For example, to select page three of a 27513, write 0316 to
address 0000,000016,

Revision A (Preliminary) / June 1991

6-3

6-4 HK68N3D User's Manual

6.3 ON-CARD RAM

The HK68/V3D uses 36 ZIP RAM packages, each four bits wide.
There is one parity bit per byte. Standard memory configurations
are 1, 2, 3 and 4 megabytes (4,8,12, and 16 megabytes when 4-
megabit DRAMs are available). On-card RAM occupies physical
addresses starting at 0300,000016'

6.4 ON-CARD MEMORY SIZING

6.5 BUS MEMORY

The V3D supports memory sizes ranging from 1 to 16 megabytes.
Accessing nonexistent RAM can cause parity errors, so it is
necessary to initialize and trap on parity interrupts. Use the
following procedure and refer to the example code below:

1. Clear the minimum memory size (1 megabyte) starting at
0300,000016,

2. Initialize the parity exception vector to point to a function
that will set a flag indicating a failure.

3. For each I-megabyte boundary starting a 0310,000016:

a. Write the long word pattern 1234,5678 at the current
boundary as 4-byte accesses (12 at 0310,000016; 23 at
0310,000116, etc.).

b. Read the long word pattern from the current boundary as
a single long word.

c. If the pattern read equals 1234,5678 and the parity error
exception flag is not set, then continue. If not, then return
the current boundary as the top of RAM.

Repeat these steps for 0320,000016; 0330,000016 ••• 0340,000016 to
determine memory size.

See section 7 for details concerning the bus interface.

6.6 PHYSICAL MEMORY MAP

See section 14.2 for an I/O device address summary.

Revision A (Preliminary) I June 1991

On-card Memory Configuration 6-5

FFFF,FFFF
SCC1

02FO,OOOO

Ethernet

VMEbus ""'Il1;O

extended

02EO,OOOO

CIO

address space 0200,0000

mailbox

02CO,OOOO

miscellaneous control bits
0400,0000

0280,0000

bus control latch
RAM 02AO,OOOO

VMEbus interrupter

0300,0000 0290,0000

On-card I/O reserved
0200,0000

0280,0000

VMEbus NVRAM
standard

address space
0250,0000

reserved
0100,0000 0240,0000

OOCO,FFFF
>-- ~

0230,0000
SCSI

VMEbus short

OOCO,OOOO
address space

VMEbus interrupt vectors
0080,0000

ROM1

0040,0000

ROMO

0000,0000

FIGURE 6-3. Physical memory map

Revision A (Preliminary) / June 1991

6-6 HK68N3D User's Manual

6.7 MEMORY TIMING

The HK68N3D memory logic has been carefully tuned to give
optimum memory cycle times under a variety of conditions.

The base cycle time for a Mc6so30 is two clock cycles for a RAM
read or write and one clock cycle for subsequent burst cycles.
Although the MC6S030 cannot perform memory accesses any
faster than this, it can be made to perform accesses slower than
this. The following chart shows total access times required to
attain these base cycle times from a RAM interface. It should be
noted that this is the time from address valid to data input setup
of the MC6S030, including clock skew and various other factors.

TABLE 6·3
Access time reguired for no wait states
CPU Speed Read Cycle Write Cycle B ursl
(M Hz) (ns) (ns) Cycle (ns)

32 15 32 32

As Table 6-3 shows, current DRAM technology with access times
in the 60-nanosecond to 150-nanosecond range cannot support
the base transfer rates of the MC6S030, and additional cycles must
be inserted in each cycle to meet DRAM access time
requirements. The number of additional clock cycles inserted in
each access depends on both the processor speed and on the
RAM speed. Table 6-4 shows the number of extra cycles or "wait
states" inserted in RAM read or write cycles and burst cycles.

TABLE 6-4
Inserting wait states into RAM clcles
100-nanosecond DRAMS
CPU Speed Read Cycle Write Cycle Burst Cycle

32 MHz 3 3 3-1-1-1

80-nanosecond DRAMS
CPU Speed Read Cycle Write Cycle Burst Cycle

32 MHz 3 2 3-1-1-1

60-nanosecond DRAMS
CPU Speed Read Cycle Write Cycle Burst Cycle

32 MHz 2 2 2-1-1-1

60-nanosecond, SO-nanosecond and lOa-nanosecond times are
estimates based on existing 256K x 1 DRAMs.

While the above information is important in comparing the
relative performance of DRAM designs, the performance of

Revision A (Preliminary) / June 1991

On-card Memory Configuration 6-7

individual DRAM designs has much less impact on overall system
performance than one might expect. The reason for this is that
the internal cache(s) built into the Mc68030 chip is provided to
help decouple the processor from slower speed memories such as
DRAMs. Therefore, the better the job the MC68030 cache is doing,
the less difference in system performance DRAM speed will make.

6.8 NONVOLATILE RAM

A unique feature of the HK68N3D is its non-volatile RAM
(NVRAM), which allows predous data or system configuration
information to be stored and recovered across power cycles. The
RAM is configured as 256, four-bit words Oow half of a byte).
When the MPU reads a byte of data from the NY-AM, the upper
four bits of the value it receives are indeterminate. The NVRAM is
accessible as shown below.

TABLE 6-5
Nonvolatile RAM addresses
Address Mode

0270,000016 Read

0260,000016 Write

Function

Read/write RAM contents (4 bits).

Recall RAM contents from nonvolatile memory.

Store RAM contents in nonvolatile memory. The
68030 tas (test and set) instruction must be
used for this operation.

Physically, the NVRAM (an Xicor X2212 or equivalent) consists of
a static RAM overlaid bit-for-bit with a nonvolatile EEPROM. The
store operation takes 10 milliseconds to complete. Recall time is
approximately one microsecond. Allowances for those delays
should be made in software, since the memory hardware does
not stop the MPU during the store or recall cycles. The chip is
rated for 10,000 store cycles, minimum. During a store operation,
only those bits which have been changed are "cycled." The use of
a tas instruction helps prevent an unintentional store operation
by an errant program or a power failure glitch.

At power-up, the shadow RAM contents are indeterminate. Do a
recall operation before accessing the NVRAM for the first time.
Recall cycles do not affect the device lifetime.

The HK68/V3D monitor and certain system programs use the
NVRAM. The exact amount reserved for Heurikon usage depends
on the system. A major portion of the RAM, however, is available
for customer use. Heurikon usage is summarized below (details are
available separately):

Revision A (Preliminary) I June 1991

6-8 HK68N3D User's Manual

TABLE 6-6
NV-RAM contents (partial)
Function

Magic number

Checksum

Accumulated number of writes

Board type, serial number and revision level

Hardware configuration information

Software configuration information

System configuration information

Revision A (Preliminary) I June 1991

7.1 INTRODUCTION

7

VMEbus Control

The control logic for the VMEbus allows numerous bus masters to
share the resources on the bus.

The VMEbus interface uses 32 address lines for a total of 4 giga­
bytes of VMEbus address space, and 32 data lines to support 8-,
16-, 24- or 32-bit data transfers. The "short address" mode, which
uses only 16 address lines, is also supported.

There is an interrupter module as well as an interrupt handler.
Both are capable of utilizing any or all of the seven VMEbus
interru pt lines.

7.2 BUS CONTROL SIGNALS

AOI-A15

A16-A23

A24-A31

ACFAIL*

The following signals on connector PI and P2 are used for the
VMEbus interface. Pin assignments are in section 7.12.

ADDRESS bus (bits 1-15). Three-state address lines that are
used to broadcast a short address.

ADDRESS bus (bits 16-23). Three-state address lines that are
used in conjunction with A01-A15 to broadcast a standard
address.

ADDRESS bus (bits 24-31). Three-state address lines that are
used in conjunction with A01-A23 to broadcast an extended
address.

AC F AlLURE. An open-collector signal that indicates that the
AC input to the power supply is no longer being provided or
that the required AC input voltage levels are not being met.
This signal is connected to MPU interrupt level 7.

7-2

AMO-AM5

AS*

BBSY*

BCLR*

BERR*

B GO IN* -BG 3 IN*

BGOOUT*-BG30UT*

BRO*-BR3*

DOO-D31

DSO*, DS1*

DTACK*

HK68N3D User's Manual

ADDRESS MODIFIER (bits 0-5). Three-state lines that are used
to broadcast information such as address size and cycle type.
These lines are very similar in usage to the function lines on
the MPU.

ADDRESS STROBE. A three-state signal that indicates when a
valid address has been placed on the address bus.

BUS BUSY. An open-collector signal driven low by the
current master to indicate that it is using the bus. When the
master releases this line, the resultant rising edge causes the
arbiter to sample the bus request lines and grant the bus to
the highest priority requester. Early release mode is
supported.

BUS CLEAR. A totem-pole signal generated by an arbiter to
indicate when there is a higher priority request for the bus.
This signal requests the current master to release the bus. This
signal is an input and an output of the HK68/V3D, associated
withJ26.

BUS ERROR. An open-collector signal generated by a slave or
bus timer. This signal indicates to the master that the data
transfer was not completed.

BUS GRANT (0-3) IN. Totem-pole signals generated by the
arbiter and requesters. "Bus grant in" and "bus grant out"
signals form bus grant daisy chains. The "bus grant in" signal
indicates, to the board receiving it, that it may use the bus if it
wants.

BUS GRANT (0-3) OUT. Totem-pole signals generated by
requesters. The bus grant out signal indicates to the next
board in the daisy-chain that it may use the bus.

BUS REQUEST (0-3). Open-collector signals generated by
requesters. A low level on one of these lines indicates that a
master needs to use the bus.

DATA BUS. Three-state bidirectional data lines used to
transfer data between masters and slaves.

DATA STROBE ZERO, ONE. A three-state signal used in
conjunction with LWORD* and AOI to indicate how many
data bytes are being transferred (1, 2, 3, or 4). During a write
cycle, the falling edge of the first data strobe indicates that
valid data are available on the data bus.

DATA TRANSFER ACKNOWLEDGE. An open-collector signal
generated by a slave. The falling edge of this signal indicates
that valid data are available on the data bus during a read
cycle, or that data have been accepted from the data bus

Revision A (Preliminary) I June 1991

VMEbus Control

IACK*

IACKIN*

IACKOUT*

IRQl*-IRQ7*

LWORD*

RESERVED

SERCLK

SERDAT*

SYSCLK

SYSFAIL*

during a write cycle. The rising edge indicates when the slave
has released the data bus at the end of a read cycle.

7-3

INTERRUPT ACKNOWLEDGE. An open-collector or three­
state signal used by an interrupt handler when it acknowledges
an interrupt request. It is routed, via a backplane signal trace,
to the IACKIN* pin of slot one, where it forms the beginning
of the IACKIN·, IACKOUT* daisy-chain.

INTERRUPT ACKNOWLEDGE IN. A totem-pole signal. The
IACKIN* signal indicates to the VMEbus board receiving it
that it is allowed to respond to the interrupt acknowledge
cycle that is in progress if it wants.

INTERRUPT ACKNOWLEDGE OUT. A totem-pole signal. The
IACKIN· and IACKOUT* signals form a daisy-chain. The
IACKOUT* signal is sent by a board to indicate to the next
board in the daisy-chain that it is allowed to respond to the
interrupt acknowledge cycle that is in progress.

INTERRUPT REQUEST 0-7). Open-collector signals, generated
by an interrupter, that carry interrupt requests. When several
lines are monitored by a single interrupt handler, the line
with the highest number is given the highest priority.

LONG WORD. A three-state signal used in conjunction with
DSO·, DS1*, and AOl to select which byte 10cationCs) within
the 4-byte group are accessed during the data transfer.

RESERVED. A signal line reserved for future VMEbus
enhancements. This line must not be used.

SERIAL CLOCK. A totem-pole signal that is used to
synchronize the data transmission on the VMEbus. This signal
is not implemented on the HK68N3D.

SERIAL DATA. An open-collector signal that is used for
VMEbus data transmission. Not implemented on the
HK68/V3D.

SYSTEM CLOCK. A totem-pole driven signal that provides a
constant 16-MHz clock signal that is independent of any other
bus timing. This signal is controlled with J25.

SYSTEM FAIL. An open-collector signal that indicates a failure
has occurred in the system. Also used at power-on to indicate
that at least one VMEbus board is still in its power-on
initialization phase. This signal may be generated by any
board on the VMEbus. The HK68N3D drives this line low at
power-on. It is released by writing a one to address
02BO,OOOE16•

Revision A (Preliminary) I June 1991

7-4

SYSRESET·

WRITE·

+5V SroBY

HK68N3D User's Manual

SYSTEM RESET. An open-collector signal that, when low,
causes the system to be reset This signal is controlled by
jumper J19.

WRITE. A three-state signal generated by the MASTER to
indicate whether the data transfer cycle is a read or a write. A
high level indicates a read operation; a low level indicates a
write operation.

+5 Vdc STANDBY. This line supplies +5 Vdc to devices
requiring battery backup. This signal is not used on the
HK68/V3D.

7.3 BUS ARBITRATION AND RELEASE

When the MPU makes a request for VMEbus facilities, the arbi­
tration logic takes over. If necessary, the requesting board enters a
wait state until the bus is available (but only for the maximum
time allowed by the watchdog timer).

Under normal circumstances, the VMEbus system controller card
provides the system bus clock and access timer, and participates
in the arbitration logic. A separate system controller card is not
needed; however. The HK68N3D includes a bus timer and four­
level (prioritized) VMEbus arbiter logic, enabled via jumpers. The
following table details the system controller functions provided
by the HK68!V3D.

TABLE 7·1
System controller functions
Function Setting

System Clock (SYSClK*) J25 (install)

System Reset (SYSRESET*) J19:2-3 (output)

Bus Clear (BClR*) J26 (install)

When the HK68!V3D is acting as a system controller, it should be
in the first slot (VMEbus slot 1).

There are four separate bus request lines on the VMEbus. Each
bus request line has an associated bus grant daisy chain.

The following steps must be used to configure the HK68!V3D,
whether or not the HK68!V3D is the system controller. Failure to
follow these instructions could result in incorrect board
operation.

Revision A (Preliminary) I June 1991

VMEbus Control 7 -5

1. Decide which level the board will use to request the
VMEbus.

2 Set the Bus Request jumper, J16, to the chosen level
according to Figure 7-1.

3. Decide if the HK68N3D will be the system controller on
the VMEbus.

4. Install J14, J15, J17, and J18 corresponding to the
configuration chosen above. Select the appropriate setting
from the eight legal settings shown for those jumpers in
Figure 7-2.

Bus Request Level 0

Bus Request Level 1

Bus Request Level 2

Bus Request Level 3

Note: The Bus Request Level
must match the Bus Grant Level.

FIGURE 7·1. Bus request Jumper settings, .116

HK68N3D is
system controller.

HK68N3D is not
system controller.

Bus
Grant
Level 0

Bus
Grant

Level 0

Bus
Grant

Level 1

Bus
Grant
Level 1

Bus
Grant
Level 2

Bus
Grant

Level 2

Bus
Grant

Level 3

Bus
Grant

Level 3

FIGURE 7·2. Bus grant level Jumper .ettings
.114, .115, .117, and .118

Revision A (Preliminary) / June 1991

7-6 HK68N3D User's Manual

If the HK6sN3D is the bus master, when the requested bus opera­
tion is completed, the bus will be released according to the state
of two bus control signals, BCl and BCO. These signals are under
software control.

TABLE 7·2
Bus control bits
BCi BCO Bu. Relea .. Status

o o

o

o

Release when done. Release the bus after every
operation.

Release on request. Release the bus if any other
board has a request for the bus (or if BClR is true).

Release on priority. Release the bus only if BClR is
true. This means release only if a higher priority request
is pending.

No release. Never release the bus, once acquired.
This state can be used to capture the bus.

The bus control bits are set (or reset) by writing to the
appropriate bits of the bus control latch, described below.

7.4 ACCESSES FROM THE VMEbus (SLAVE MODE)

The slave address logic is enabled or disabled by writing the ap­
propriate value to the slave mode control bit, as follows:

TABLE 7·3
Slave mode control
Addre •• Function (write-only)

02BO,000C16 Slave mode enable

DO = 0, slave disable

DO = 1, slave enable

When the most significant VMEbus address lines match the slave
compare address and the address modifier matches the slave
address modifier" code, as set in the bus control Latch, a slave
access is recognized. The most significant address lines (A24-A31)
are tested only if the selected address modifier is "extended." The
base address of the window into on-card RAM is also set by bits in
the bus control latch. The size of the window is specified by J21
through J24 as shown in Figure 7-3 and Table 7-4.

Revision A (Preliminary) / June 1991

VMEbus Control

TABLE 7·4

J21
J22
J23
J24

1 MB 2MB 4MB ...
~

8MB

~
~

B3
~

FIGURE 7·3. Slave window .Ize Jumper .ettlng •
.. 21 24

Slave window size Jumpers __ _

7-7

Slave Window Size J21 J22 J23 J24 Addre •• Compare Replacement Address

1 megabyte

2 megabytes

4 megabytes

8 megabytes

16 megabytes

A B < __ 6) (0 __

B

A

A

A

A

B B B A20-A31 A2D-A23

B B B A21-A31 A21-A23

A B B A22-A31 A22-A23

A A B A23-A31 A23 only

A A A A24-A31 none

A 24-bit latch is used to specify various parameters concerning
the operation of the VMEbus. This is a write-only register. The
default state at power-up is all zeros.

The latch (Fig. 7-4) is composed of three 8-bit shift registers,
which are set as follows:

1. Disable the VMEbus slave logic by writing a zero to address
02BO,OOOC1S'

2. Write a 32-bit long word to the bus control latch at address
02AO,00001S' This is done by performing eight consecutive
writes to the bus control latch. The data are automatically
shifted into the shift registers. (See the code fragment in
Example 7-1.)

3. Enable the VMEbus slave logic by writing a one to address
02BO,OOOC1S'

Revision A (Preliminary) / June 1991

7-8 HK68N3D User's Manual

EXAMPLE 7-1. Bus control latch loading routine

#define BUS_LATCH (unsigned long *)Ox02AOOOOO
#define SLAVE_ENABLE (unsigned char *)Ox02BOOOOC

WrBusLatch(value)
unsigned long value;
{

int i;
SLAVE_ENABLE = 0: / disable slave interface */
for (i=O; i<8; i++) {

BUS_LATCH = (value » i); / shift in 016, 08 and DO */

SLAVE ENABLE = 1: / enable slave interface */
}

EXAMPLE 7-2. Setting the bus control latch with the HK68N3D monitor

If you are using the HK68/V3D monitor, use the command writemem to
set the bus control latch. In this example, a series of writemem
commands write the value 00380040'6 to the bus control latch. The effect
of the write is to set the latch as follows:

Set the slave address modifier bits to extended space C32-bit)

Set the bus release mode to release-when-done via bus control bits
BCO and BCl

Set the replacement address to 0 (base of RAM)

Set the slave address to 40000000,6'

writemem -b 02BOOOOC 0 Slave disable

writemem -1 02AOOOOO 0 Bits 0, 8, 16 are O.

writemem -1 02AOOOOO 0 Bits 1, 9, 17 are O.

writemem -1 02AOOOOO 0 Bits 2, 10, 18 are O.

writemem -1 02AOOOOO 00010000 1 on DB16 setting bit 19.

writemem -1 02AOOOOO 00010000 1 on DB16 setting bit 20.

writemem -1 02AOOOOO 00010000 1 on DB16 setting bit 2l.

writemem -1 02AOOOOO 00000001 1 on DBO setting bit 6.

writemem -1 02AOOOOO 0 Bits 7, 16, 23 are O.

writemem -b 02BOOOOC 1 Slave enable

Revision A (Preliminary) I June 1991

VMEbus Control 7-9

TABLE 7-5
Bus control latch (VMEbus slave logic)
Bit Function

23 (reserved)

22 Indivisible Read Modify Writes

21 Slave Address Modifier 2

20 Slave Address Modifier 1

19 Slave Address Modifier 0

18 VMEbus Slave Release Without Hold

17 Bus Control BC 1

16 Bus Control BC 0

15 Replacement Address 23

14 Replacement Address 22

13 Replacement Address 21

12 Replacement Address 20

11 Slave Compare Address 23

10 Slave Compare Address 22

9 Slave Compare Address 21

8 Slave Compare Address 20

7 Slave Compare Address 31

6 Slave Compare Address 30

5 Slave Compare Address 29

4 Slave Compare Address 28

3 Slave Compare Address 27

2 Slave Compare Address 26

Slave Compare Address 25

0 Slave Compare Address 24

Revision A (Preliminary) / June 1991

7-10 HK68N3D User's Manual

23 22 21 3) 19 18 17 16

D16~

15 14 13 12 11 10 9 8

D8~

7 6 543 2 0

DO~

FIGURE 7·4. Bu. control latch

The slave address modifier (SAM) is selected by three SAM bits in
the bus control latch according to the following chart:

TABLE 7·6
Slave address modifiers
SAM2 SAM 1 SAMO Slave Addre.s Space

0 0 0 No slave access allowed (disable)

0 0 Standard data

0 0 No slave access allowed

0 Standard (all)

0 0 Extended supervisor data

0 Extended data

0 No slave access allowed

Extended (all)

Once a valid bus request has been detected, an on-card bus
request is generated to the MPU. When the current MPU cycle is
completed, the MPU will release the on-card bus. The VMEbus ad­
dress and data are then gated on.

Bit 22 of the bus control latch, when set, allows indivisible read­
modify-writes to the VMEbus. Because the MC68030 asserts RMC
during MMU translation table walks, it is necessary to break up the
cycle to allow VMEbus memory cards to see the cycle as two
separate addresses.

The bus address lines are utilized as shown in Figure 7-4:

Revision A (Preliminary) / June 1991

VMEbus Control

VMEbus

8

(A31-A24

srave
compare replacement
address address

4 4

address J21 address
compare to replacement

J24

match

extended space
address compare

4

(A23-

slave address
modifiers

matdl

3

VMEbus
6 address modifier

~--~r-----" compare logic
AM5-AMO

match

FIGURE 7·5. Memory accesses from the YMEbus

7-11

RAM
address

For example, if the bus control latch is set to 383050'6 and J21-J24
are set to select a one megabyte window, then all extended space
accesses from 5000,000016 through 500F,FFFF'6 are mapped to the
fourth megabyte of on-card RAM at location 0330,0000'6'

After a slave access, control of the on-card bus will not be
returned to the MPU for approximately 500 nanoseconds.
However, if the release-without-hold bit in the bus control latch
(see above) is set, the bus will be returned immediately following
the slave access. This mode can be used to maximize bus
response time to the MPU and DMAC at the expense of having
more overhead on slave accesses. If you expect rapid requests
from the VMEbus, you may not want to use this mode.

The bus timer will automatically terminate any slave access which
lasts longer than 100 microseconds.

Revision A (Preliminary) I June 1991

7-12 HK68N3D User's Manual

7.5 VMEbus INTERRUPTS

7.5.1

The seven VMEbus interrupts are monitored and controlled by
the MPU and CIa. A vectored interrupt to the MPU can be
generated when a desired bus interrupt signal is on.

There are two functions described below. The interrupter gener­
ates bus interrupts; the interrupt handler receives interrupts from
the bus.

Interrupter Module Operation

To generate a VMEbus interrupt, follow these steps:

1. Decide which of the seven VMEbus interrupt lines you
wish to activate. IRQ7· has the highest priority.

2. Disable that level via the CIa so that the INTERRUPT
HANDLER does not respond to the interrupt line you are
about to use. If you fail to do this, you could interrupt
yourself.

3. Write an eight bit value to the appropriate VMEbus
Status/lDlatch, as described below. This value is usually
treated as a simple interrupt vector, but it could represent
other information as well. This value is provided to the
board that acknowledges the interrupt, which is done by
executing an INTERRUPT ACKNOWLEDGE cycle on the
VMEbus with your priority level encoded on address
lines 1 to 3 (see the Interrupt Handler description, below.)

The very act of writing to the Status/lD latch activates the
INTERRUPTER circuitry, and the interrupt is generated.

TABLE 7·7
VMEbus interrupter addresses
Address Vector Size Function (write-only)

0290,0004'6 8 Interrupt level 1

0290,0008'6 8 Interrupt level 2

0290,000C'6 8 Interrupt level 3

0290,0010'6 8 Interrupt level 4

0290,0014'6 8 Interrupt level 5

0290,001816 8 Interrupt level 6

0290,001 C'6 8 Interrupt level 7

Only one (outgoing) interrupt may be pending at a time.

Revision A (Preliminary) I June 1991

VMEbus Control

7.5.2

7-13

The state of the on-card interrupt logic can be tested by the CIO.
The Interrupt Active bit is true whenever an interrupt in still pend­
ing from this board.

Interrupt Handler Operation

Each bus interrupt generates an interrupt to the MPU at a specific
MPU interrupt priority level, as detailed in section 3.2. When an
interrupt is recognized, the MPU will execute an interrupt ac­
knowledge cycle on the VMEbus to read the vector from the inter­
rupting board. This vector is used as an index into the MPU
vector table.

When an interrupt is generated on the VMEbus, the interrupt vec­
tor of the interrupting board may be (manually) determined by
reading from the appropriate address, as shown below. The value
returned is that value written by the interrupting board to its
VMEbus Status/ID latch. Since the MPU automatically does
interrupt acknowledge cycles on the bus, the main use for these
ports is to clear a pending interrupt on the HK68/V3D (or
another VMEbus interrupt source).

The HK68/V3D can generate and read only 8-bit interrupt
vectors.

TABLE 7·8
Interrupt acknowledge port summary
a·bit Vector Addre •• (read.only)
Priority Level

IRQ1 0080,000316

IRQ2 0080,000516

IRQ3 0080,000716

IRQ4 0080,000916

IRQ5 0080,000816

IRQ6 0080,000016

IRQ7 0080,OOOF16

Accessing one of the above addresses also sends an interrupt ac­
knowledge signal to the interrupting board. Acknowledging a non­
existent interrupt will result in a bus error.

Revision A (Preliminary) I June 1991

7-14

SCSI
VIRQ P2 >--------------------,

GATES
7

enables

Port B

CIO INT 1-----

On-card
Interrupt
Sources

Port A

FIGURE 7·6. Interrupt signal routing

MPU

SCC1 SCC2

HK68N3D User's Manual

3
IPL MPU

7.6 SYSFAIL CONTROL

The SYSF AIL line is driven low by the HK68!V3D after power-on.
The SYSFAIL line will remain low on the VMEbus until all boards
release this line after completing their initialization and self test
sequences. The SYSF AIL line also signifies a system failure. The
current state of this signal may be read via the CIO (see section
9.4).

On the HK68/V3D, SYSF AIL must be released under software con­
trol. SYSFAIL must be released by writing a one to CIO port C, bit
D1 (see section 9.2).

7.7 BUS ADDRESSING (MASTER MODE)

The HK68/V3D supports three address modes, "short",
"standard," and "extended." Short addresses use the lower 16 log­
ical address lines to specify the target address. Standard addresses
use 24 address lines, and extended addresses use all 32 address
lines. The following table details the relationship between the on­
card physical address and the corresponding VMEbus region.

Revision A (Preliminary) / June 1991

VMEbus Control

TABLE 7·9
VMEbus regions

On-card addresses

OOCO,0000,6 through 00CO,FFFF'6

0100,0000'6 through 01 FF,FFFF'6

0400,0000'6 through FFFF,FFFF'6

7-15

VMEbus Region

VMEbus Short Address (0000'6 through FFFF,6)

VMEbus Standard (00,0000'6 through FF,FFFF'6)

VMEbus Extended (0400,0000'6 and up)

7.8 MAILBOX INTERFACE

Certain on-card functions can be controlled via special addresses
in the VMEbus Superoisor Short Address Space, that is, when the
address modifier lines CAMS· to AMO·) are 2D,6• The HK68/V3D
will respond Cas a slave) to a short address which matches the
Mailbox select lines, as described below. The mailbox logic must
be enabled by setting the control bit at address 02BO,0004,6.

TABLE 7·10
Mailbox control
Address Function (write-only)

0280,0004'6 Mailbox control

DO = 0, disable (default)

DO = 1 , enable

TABLE 7·11
Mailbox functio".s;:::... _______________ _
Address Function (Slave Mode)

Mbase+ 0 CIO input 04 (see section 9.2) (mailbox interrupt)

Mbase+2 HK68.N30 reset

Mbase+4 On-card bus lock on

Mbase+S On-card bus lock off

Mbase+ 6 MPU hatton

Mbase + 7 MPU halt off

The Mbase value is specified by 13 mailbox base bits in the
mailbox address latch at address 02CO,OOOO'6 C16-bits, write-only).
Address lines A1S through A3 must match the corresponding data
bits in the mailbox address latch. The lower three bits of the latch
are not used.

The lock function, when on, prevents the use of the on-card bus by
the MPU after the next access from the bus. The lock function

Revision A (Preliminary) I June 1991

7-16 HK68N3D User's Manual

must be cleared before the MPU is allowed to resume operation.
This feature can be used to reduce arbitration time during a block
data transfer from the VMEbus. With the on-card bus locked, slave
accesses will be acknowledged in 330 to 500 nanoseconds.

The SYSF AIL signal must be off for the mailbox halt function to
operate. (See section 7.6.)

7.9 WATCHDOG AND BUS TIMER

7.9.1

7.9.2

The HK68N3D has two timers which monitor board activity. One
is used to monitor on-card activity; the other is for the VMEbus.

On-card Watchdog Timer

If the on-card watchdog timer is enabled and if the on-card
physical address strobe stays on longer than 1.67 milliseconds,
the timer will expire. This will cause the current memory cycle to
be terminated. The watchdog timer is disabled by writing a one to
address 02BO,003016• The timer is enabled by writing a zero to
address 02BO,003016; this is the power-on default state.

See section 5.1 for more details on the watchdog timer.

VMEbus Timer

The second timer is associated only with activity on the VMEbus.
The timer will expire during a long bus access (greater than 100
microseconds) by any bus master and generate a VMEbus error
(BERR). This is normally a VMEbus system controller function.

The VMEbus timer is enabled by writing a 1 to address
02BO,001016• The default state is disabled.

Revision A (Preliminary) / June 1991

VMEbus Control 7-17

7.10 BUS CONTROL "UMPERS

TABLE 7·12
Bus control jumpers
.Jumper Function Position

J14 Bus Arbitration Level See section 7.3

J15 Bus Arbitration Level See section 7.3

J16 Bus Request Level See section 7.3

J17 Bus Arbitration Level See section 7.3

J18 Bus Arbitration Level See section 7.3

J19 SYSRESET* Ss;a section 7.3

J21 VMEbus Slave Window Size See section 7.4

J22 VMEbus Slave Window Size See section 7.4

J23 VMEbus Slave Window Size See section 7.4

J24 VMEbus Slave Window Size See section 7.4

J25 SYSClK* See section 7.3

J26 BelR* See section 7.3

7.11 VMEBUS INTERFACE

The VMEbus consists of P 1 address, data, and control signals. P2
is used for the extended VMEbus address and data lines as well as
the optional SCSI interface, which is described in section 11 (Fig.
7-7).

FIGURE 7·7. VMEbus connectors, P1 and P2

Revision A (Preliminary) I June 1991

7-18 HK68N3D User's Manual

7.12 VMEBUS PIN ASSIGNMENTS, Pi

TABLE 7-13
VMEbus pin assignments, Pi
Pi Pin Row A Signal Row B Signal Row C Signal
Number Mnemonic Mnemonic Mnemonic

000 BBSY* 008

2 001 BCLR* 009

3 002 ACFAIL* 010

4 003 BGOIN* 011

5 004 BGOOUT* 012

6 005 BG1IN* 013

7 006 BG10UT* 014

8 007 BG2IN* 015

9 Gnd BG20UT* Gnd

10 SYSCLK BG3IN* SYSFAIL*

11 Gnd BG30UT BERR*

12 OS1* BRO* SYSRESET*

13 OSO* BR1* LWORO*

14 WRITE* BR2* AMS

15 Gnd BR3* A23

16 OTACK* AMO A22

17 Gnd AM1 A21

18 AS* AM2 A20

19 Gnd AM3 A19

20 IACK* Gnd A18

21 IACKIN* SERCLK A17

22 IACKOUT* SEROAT* A16

23 AM4 Gnd A15

24 A07 IRQ7* A14

25 A06 IRQ6* A13

26 A05 IRQ5* A12

27 A04 IRQ4* A11

28 A03 IRQ3* A10

29 A02 IRQ2* A09

30 A01 IRQ1* A08

31 -12V +5VSTDBY +12V

32 +5V +5V +5V

Revision A (Preliminary) / June 1991

VMEbus Control 7-19

7.13 P2 YMEbus PIN ASSIGNMENTS

P2 is used for both the VMEbus and the optional SCSI interface.
The center row (B) of pins are the upper address and data lines of
the VMEbus. The outer two rows (A and C) make up the SCSI
interface. The use of P2 is required in order to meet VMEbus
power specifications.

Revision A (Preliminary) I June 1991

7-20 HK68N3D User's Manual

TABLE 7-14
VMEbus pin assignments, P2
P2 Pin Row A Signal Row B Signal Row C Signal
Number Mnemonic Mnemonic Mnemonic

AOOO +5 A001

2 A002 Gnd AD 03

3 A004 (reserved) A005

4 A006 A24 AD07

5 A008 A25 A009

6 A010 A26 A011

7 AD12 A27 A013

8 AD14 A28 A015

9 A016 A29 A017

10 AD18 A30 A019

11 A020 A31 A021

12 AD22 Gnd A023

13 AD24 +5 A025

14 A026 016 A027

15 A028 017 A029

16 A030 018 A031

17 Gnd 019 Gnd

18 IRQ* 020 Gnd

19 OS* 021 Gnd

20 WR* 022 Gnd

21 SPACEO 023 SIZEO

22 SPACE1 Gnd PAS*

23 LOCK* 024 SIZE1

24 ERR* 025 Gnd

25 Gnd 026 ACK*

26 Gnd 027 AC

27 Gnd 028 ASACK1*

28 Gnd 029 ASACKO*

29 Gnd 030 CACHE*

30 Gnd 031 WAIT*

31 BGIN* Gnd BUSY*

32 BREQ* +5 BGOUT*

Revision A (Preliminary) I June 1991

8

The 7 -segment Display

There is one 7-segment display on the front panel (Fig. 8-1) that
can be programmed (Table 8-2). Writing a zero turns the chosen
segment on; writing a one turns it off. At power-on or after a
system reset, the default character is an H (segments b, c, e, f, and
g are on).

a

'iLg !}
e![;lJc

d
FIGURE 8-1. 7.segment display

. TABLE 8-1
Addresses for the 7-segment display
Segment Address (write-only)

a 0280,001016

b 0280,002016

C 0280,003016

d 0280,004016

e 0280,005016

0280,006016

9 0280,007016

9

CIO Implementation

9.1 INTRODUCTION

The on-card CIa device performs a variety of functions. In addi­
tion to the three 16-bit timers, which may be used to generate in­
terrupts or count events, the CIa has numerous parallel I/O bits.

The CIa has two independent 8-bit, bidirectional I/O ports (ports
A and B) and a 4-bit special-purpose I/O port (port C). Data path
polarity (whether bits are inverting or noninverting), data
direction (whether bits are input or output), port configuration
(bit port or handshake port), ones catchers, and open-drain
outputs are programmable for all ports. The configuration and
functions of the ports are programmed by means of the port
specification registers for each port, which are described fully in
the CIa technical manual.

9.2 PORT A BIT DEFINITION

Port A handles various control signals. All bits should be
programmed as inputs.

TABLE 9·1
CIO port A bit definitions
Bit Function Data Path Interface HK68N3D User's

Polarity Manual Section

07 External Interrupt Negative True P5-11 3.3

D6 EEPROM 1 Ready (USO) Positive True USO-1 6.2

OS EEPROM 0 Ready (U70) Positive True U70-16 6.2

D4 Mailbox Interrupt Negative True 7.S

D3 unused

02 VME Interrupt in Progress Negative True 7.5

01 SCSI Reset Positive True P2-A20 11

DO Mailbox Halt Positive True

9-2 HK68N3D User's Manual

Bit D2 may be used to test if there is a pending interrupt still
active from this board. The mailbox interrupt is a pulse, so the
ones catcher should be used for that input bit.

9.3 PORT B BIT DEFINITION

TABLE 9-2
CIO port B bit definitions

Bit Function

The B port of the CIO is used to handle the Centronics interface
interrupt (input) and generate the VMEbus interrupt mask bits
(outputs).

Internal priorities of the CIO place D7 as highest (DO as lowest)
for simultaneous interrupts from either port.

Data Path Interface HK68/V3D
Polarity User's Manual

Section

07 Software Interrupt Negative True Interrupt Switch on 12
front panel

D6 IRQ7 enable Negative True P1 3.2

OS IRQS enable Negative True P1 3.2

D4 IRQS enable Negative True P1 3.2

03 IRQ4 enable Negative True P1 3.2

02 IRQ3 enable Negative True P1 3.2

01 IRQ2 enable Negative True P1 3.2

DO IRQ1 enable Negative True P1 3.2

9.4 PORT C BIT DEFINITION

Port C on the CIO chip is used to read four on-card status signals.
SYSOK· turns off the SYSFAIL LED, and it must be true (1) before
you can halt the CPU with the mailbox halt

TABLE 9·3
CIO Port C bit definitions

Bit Function Data Path Polarity

03 VMEbus ACFAIL Positive True

02 VMEbus SYSFAIL * Negative True

01 VMEbus SYSOK* utility bit Positive True

DO Port A Ring Indicator Negative True

Revision A (Preliminary) I June 1991

CIO Implementation 9-3

9.5 COUNTER/TIMERS

There are three independent, 16-bit counter/timers in the CIO.
For long delays, timers 1 and 2 may be internally linked together
to form a 32-bit counter chain. When programmed as timers, the
following equation may be used to determine the time constant
value for a particular interrupt rate.

TC = 2,457,600 / interrupt rate (in Hz)

When the timer is clocked internally, the count rate is 2.4576 MHz.
The HK68N3D board uses a 19.6608 MHz clock oscillator as the
system time base. The frequency tolerance specification is ±o.Ol%.
If you are using the 19.6608 MHz clock as the CIO time base, the
maximum accumulative timing error will be about 9 seconds per
day, although the typical error is less than one second per day.
Better long-term accuracy may be achieved via a power line (60
Hz) interrupt, using a bus interrupt or the Real-Time Clock (RTC)
option (see section 13).

9.6 REGISTER ADDRESS SUMMARY (Cia)

TABLE 9·4
CIO register addresses
Register Address Function

Port C, Data 0200,0001 '6 Miscellaneous Control Bits

Port B, Data 0200,0003'6 Miscellaneous Control Bits

Port A, Data 0200,0005'6 Miscellaneous Control Bits

Control Registers 0200,0007'6 CIO Configuration and Control

All registers are eight bits wide.

9.7 CIO INITIALIZATION

The following figure shows a typical initialization sequence for the
CIO. The first byte of each data pair in "ciotable" specifies an
internal CIa register; the second byte is the control data. The
specific directions of some of the PIa lines and interrupts need to
be changed in the table, based on your application. An active low
signal can be inverted (so that a "1 ~ is read from the data port
when the signal is true) by initializing the port to invert that
particular bit. Refer to section 3 for information concerning CIa
interrupt vectors.

Revision A (Preliminary) / June 1991

9-4 HK68N3D User's Manual

EXAMPLE 9-1. CIQ program (C portion)

char ciotable[) = {
OxOO, OxOl, OxOO,/* reset, set chip ptr to reg zero */

/* port A initialization */
Ox20, Ox06, /* bit port, priority encoded vector */
Ox22, Ox9c, /* invert negative true bits */
Ox23, Oxff, /* all bits are inputs */
Ox24, OxlO, /* one's catcher */
Ox25, OxOO, /* pattern polarity register */
Ox26, OxOO, /* all levels (can't use transitions */
/* in "or priority mode") */
Ox27, OxlO, /* pattern mask, enable mailbox interrupt */
Ox02, Ox41, /* set interrupt vector */
OxOS, OxcO, /* set int enable, no int on err */

/* port B initialization */
Ox2S, Ox06, /* bit port, priority encoded vector */
Ox2a, OxSO, /* invert negative true bit */
Ox2b, OxSO, /* one bit is an input */
Ox2c, OxOO, /* normal input (no ones catchers)
Ox2d, Oxff, /* bit interrupt on a one */
Ox2e, OxOO, /* no transition, levels only */
Ox2f, OxOO, /* no interrupts enabled */
Ox03, Ox40, /* set interrupt vector */
Ox09, OxcO, /* set int enable, no int on err

/* port c initialization */
OxOS, OxOf, /* invert negative true bits */
Ox06, OxOf, /* all bits are inputs */
Ox07, OxOO, /* normal inputs */

/* timer 3 and other CIO initialization */
Oxle, oxao, /* set mode to auto reload */
Oxla, OxaO, /* high byte delay constant */
Oxlb, OxOO, /* low byte delay constant */
Ox04, Ox60, /* interrupt vector */
OxOS, Ox20, /* clear any port A ints */
oxoa, Ox20, /* clear any port A ints */

*/

*/

OxOl, Ox94, /* enable timer 3, port a and port b */
OxOc, Oxc6, /* set interrupt enable and */
/* gate command bit and trigger cmd bit */
OxOO, Oxge /* master int enable and vector includes */
/* status for timer 3, port A and port B */
} ;

struct cdevice /* CIO register structure
char dummyO; char cdata; /* port C */
char dummyl; char bdata; /* port B */
char dummy2; char adata; /* port A */
char dummy3; char ctrl; /* control port

} ;

#define CIO «struct cdevice *)Ox02dOOOOO)

cioinit ()
{

int i, t3intr();

*/

*/

/*Don't forget to set CIO interrupt vectors. Example: */
* (int (*» (Ox60*4) = (int) t3intr: /* Timer 3 interrupt */
i = CIO->ctrl: /* assure register sync */
CIO->ctrl = ciotable[O); /* avoid clr instruction*/

Revision A (Preliminary) / June 1991

CIO Implementation 9-5

i CIO->ctrl;. /* assure register sync */
for (i = 0; i < sizeof(ciotable); i++)

CIO->ctrl = ciotable[i);/* send ciotable to CIO chip
*/
}

Aintr() /* clear Port A interrupt */
/* one of 8 routines */

/* process port A interrupts here */
CIO->ctrl = Ox08; CIO->ctrl = Ox20;

Bintr()/* clear Port B interrupt */ /* one of 8 routines */
{ /* process port B interrupts here */

CIO->ctrl = Ox09; CIO->ctrl = Ox20;

timer3() /* clear Timer 3 interrupt, get here via t3intr */
{ /* process timer interrupt here */

CIO->ctrl = OxOc; CIO->ctrl = Ox24;

EXAMPLE 9-2. CIO Program example (assembly code portion)

.globl t3intr%, timer3

the vector at Ox60*4 points to this routine

t3intr%: movm.l &OxFFFF,-(%sp) # save registers
jsr timer3 # to C portion
movm.l (%sp)+,&OxFFFF # restore registers
rte

9.8 CIO PROGRAMMING HINTS

1. To maintain compatibility with 68010 programs, do not
use the 68030 clr.b instruction to set a CIO register to
zero. On the 68000 and 68010, that instruction does a
"phantom" read of the port before it does the zero write.
The read operation will upset the CIO internal register
selection sequencer. Similarly, when using a high level
language, do not set a CIO register value to the constant
"0" because the compiler may use a clr.b. Use a variable
which is set to zero, or output the values from a lookup
table. For example:

zero = 0;
*CIOcntrl
*CIOcntrl

Ox20;
zero;

2. The ones catchers in a CIO port will be cleared whenever
any bits are changed in the pattern mask register. Avoid
changing the mask register if you are using a ones catcher.
If this is not possible, a program that writes to the pattern

Revision A (Preliminary) / June 1991

9-6 HK68N3D User's Manual

mask register should first OR the CIO data register into a
memory variable. Later, that memory value can be ORed
with the CIO data register to find out what the data
register would have been if the CIO had not cleared it.
Routines which respond to a ones catcher interrupt must
clear the corresponding bits in the memory value and the
CIO data register. There will still be a critical period
where a fast input pulse could be missed, even when using
this scheme.

3. If you get an unexpected interrupt from bit DO of a CIa
port, it may be because another enabled CIa input signal
went false before the MPU initiated the interrupt
acknowledge cycle. The use of a ones catcher may be
appropriate to latch the input line.

4. If you turn on a bit in the pattern mask register, that bit
will generate an interrupt (if the port is enabled) even if
the input signal is false. To prevent this, disable the port
while adjusting the pattern mask register.

5. The CIa may glitch the parallel port lines when a
hardware reset is done, even if all lines are programmed
as inputs. This may cause a problem in mUlti-processor
systems because the glitches may produce spurious
ACFAIL and SYSFAIL signals on other (operating) boards.
To prevent this effect, disable the port (via software) prior
to doing a board reset.

Refer to the Z8536 technical manual for more details on
programming the CIO. Some people find the CIa technical
manual difficult to understand. We encourage you to read all of it
twice, before you pass judgment. Especially study sections.2.10.1
and 3.3.2

Revision A (Preliminary) I June 1991

10.1 INTRODUCTION

10

Serial I/O

There are two RS-232C serial I/O ports on the HK68N3D board
(Fig. 10-1). Each port may optionally be configured for RS-422
operation with a special interface cable, as described in section
10.8. Each port has a separate baud rate generator and can
operate in asynchronous or synchronous modes.

10.2 RS-232 PIN ASSIGNMENTS

Data transmission conventions are with respect to the external
serial device. The HK68/V3D board is wired as data
communications equipment (DeE). The connector pin
assignments are shown in Table 10-1:

P3

DO I GOOD. 0000

DOICODD.ODCO

FIGURE 10-1. Serial connector, P3

10-2 HK68N3D User's Manual

TABLE 10·1A
Port A serial port pin assignments, P3
P3 Pin "D" Pin AS·232 Direction see Pin
Number Function Function

2 Port A Tx Data In Rev Data

2 15 Tx Clock In

3 3 Rev Data Out Tx Data

4 16 (not used)

5 4 Request to Send * In DCD

6 17 Rev Clock In

7 5 Clear to Send Out DlR

8 18 Ring Detect In Ring Ind

9 6 Data Set Ready Out RTS

10 19 (not used)

11 7 Gnd Sig Gnd

12 20 Data Terminal In CTS
Ready*

TABLE 10·18
Port 8 serial port pin assignments, P3
P3 Pin "D" Pin RS·232 Direction see Pin
Number Function Function

13 2 Port B Tx Data In Rev Data

14 15 Tx Clock In

15 3 Rev Data Out Tx Data

16 16 + 12v (via J2)

17 4 Request to Send * In DCD

18 17 Rev Clock Out

19 5 Clear to Send Out DlR

20 18 +5v (via JX)

21 6 Data Set Ready Out RTS

22 19 -12v (via J2)

23 7 Gnd Sig Gnd

24 20 Data Terminal In CTS
Ready*

Note that the interconnect cable from P3 is arranged in such a
manner that the "D" connector pin assignments are correct for
RS-232C conventions. Not all pins on the "D" connectors are
used. Recommended mating connectors are Ansley PIN 609-
5001CE and Molex PIN 15-29-8508.

Revision A (Preliminary) I June 1991

Serial I/O

Signals indicated with "." have default pull-up resistors,
controlled by J2. NOTE: The serial ports may appear to be
inoperative if J2 is set to default "FALSE" and if the device
connected to the port does not drive the DTR and RTS pins
TRUE. The HK68N3D monitor software, for example, initializes
the SCC channels to respect the state of DTR and RTS. The RI
signals for port A is routed to the CIa. See section 10.9.

10-3

10.3 SIGNAL NAMING CONVENTIONS (R5-232)

TABLE 10·2
Signal naming

see Signal

Tx Data

Rev Data

Tx Clock

Tx Clock

Rev Clock

RTS

CTS

DTR

DCD

Since the RS-232 ports are configured as DCE, the naming
convention for the interface signals may be confusing. The
interface signal names are with respect to the terminal device
attached to the port while the SCC pins are with respect to the
SCC as if it, too, is a terminal device. Thus all signal pairs, e.g.,
"RTS" and "CTS," are switched between the interface connector
and the SCC. For example, "Transmit Data," P3-1, is the data
transmitted fro:r; the device to the HK68N3D board; the data
appear at the sec receiver as "Received Data." For the same
reason, the "DTR" and "RTS" interface Signals appear as the
"CTS" and "DSR" bits in the sec, respectively. If you weren't
confused before, you might be by now. Study the chart below and
see if that helps.

conventions
Interface Signal Direction

Rev Data to device

Tx Data from device

Rev Clock from device (port A)

Rev Clock to device (port B)

Tx Clock from device

DSR to device

DTR from device

CTS to device

RTS from device

Ring Indicator from device

The sec was designed to look like a DTE. Using it as a DeE
creates this nomenclature problem. Of course, if you connect the
HK68/V3D board to a modem (DCE) , then the SCC signal names
are correct, however, a cable adapter is needed to properly
connect to the modem. (Three pairs of signals must be reversed.)

Revision A (Preliminary) / June 1991

10-4 HK68N3D User's Manual

TABLE 10-3
RS·232 cable reversal
see Signal P3 Pin liD" Pin. at "D" Pin. RS·232 Signal

•• HK68N3D at modem

x x 1 Protective Ground

Rcv Data 2 3 Rev Data

Tx Data 3 3 2 Tx Data

oeD 5 4 6 DSR

RTS 9 6 4 RTS

DlR 7 5 20 DlR

CTS 12 20 5 CTS

Ring Indicator 8 18 22 Ring Indicator

Signal Ground 11 7 7 Signal Ground

Summary: The HK68!V3D may be directly connected to a data
"terminal" device (DTE). A cable reversal is required for a
connection to a DCE device, such as a modem.

10.4 CONNECTOR CONVENTIONS

Paragraph 3.1 of the EIA RS-232-C standard says the following
concerning the mechanical interface between data
communications equipment:

liThe female connector shall be associated
with ... the data communications equipment ... An
extension cable with a male connector shall be
provided with the data terminal eqUipment ...
When additional functions are provided in a
separate unit inserted between the data terminal
equipment and the data communications
equipment, the female connector ... shall be
associated with the side of this unit which
interfaces with the data terminal equipment while
the extension cable with the male connector shall
be provided on the side which interfaces with the
data communications equipment."

Substituting "modem" for "data communications equipment" and
"terminal" for "data terminal equipment" leaves us with the
impression that the modem should have a female connector and
the terminal should have a male.

The Heurikon HK68!V3D microcomputer interface cables are
designed with female "D" connectors, because the serial I/O ports
are configured as DCE (modems). Terminal manufacturers

Revision A (Preliminary) / June 1991

Serial I/O 10-5

typically have a female connector also, despite the fact that they
are terminals, not modems. Thus, the extension cable used to run
between a terminal and the HK68N3D (or a modem) has male
connectors at both ends.

When you work with RS-232 communications, you might end up
with many types of cable adapters - double males, double
females, double males and females with reversal, or cables with
males and females at both ends. We will be happy to help make
special cables to fit your needs.

10.5 sec INITIALIZATION SEQUENCE

Table 10-4 shows a typical initialization sequence for the sec.
This example is for port A. Port B is programmed in the same
manner, substituting the correct control port address.

TABLE 10·4
SCC initialization seguence
Data Register Adress Function

00 02FO,000316 (write) Reset see register counter

09,eO 02FO,000316 (write) Force reset (for port A only)

04,4C 02FO,000316 (write) Async mode, x16 clock, 2 stop bits
tx

05,EA 02FO,000316 (write) Tx: RlS, Enable, 8 data bits

03,E1 02FO,000316 (write) Rcv: Enable, 8 data bits

01,00 02FO,000316 (write) No Interrupt, Update status

OB,56 02FO,000316 (write) No Xtal, Tx & Rev elk internal,BR
out

OC,baudL 02FO,000316 (write) Set Low half of baud rate constant

OD,baudH 02FO,000316 (write) Set high half of baud rate constant

OE,03 02FO,000316 (write) Null, BR enable

The notation "09,CO" (etc.) means the values 09 (hexadecimal)
and eo should be sent to the specified sce port. The first byte
selects the internal sec register; the second byte is the control
data. The above sequence only initializes the ports for standard
asynchronous I/O without interrupts. The 'baudL' and 'baudH'
values refer to the low and high halves of the baud rate constant,
which may be determined from the Baud Rate Constants section
below.

For information concerning sec interrupt vectors, refer to
section 3. Consult the 28530 technical manual for more details on
sec programming.

Revision A (Preliminary) / June 1991

10-6 HK68N3D User's Manual

To maintain compatibility with 68010 programs, do not use the
68030 clr.b instruction to set a see register to zero. On the 68000
and 68010, that instruction does a "phantom" read of the port
before it does the zero write. The read operation will upset the
see internal register selection sequencer. Similarly, when using a
high level language, do not set a see register value to the
constant "0" because the compiler may use a clr.b. Use a variable
that is set to zero, or output the values from a lookup table. For
example, this is correct:

zero = 0;
*SCCcntrl Ox20;
*SCCcntrl = zero;

10.6 PORT ADDRESS SUMMARY

TABLE 10·5
sec register addresses
Register Port A Port B Port C Port D

Control 02FO,000316 02FO,0001 16 02EO,000316 02EO,0001 16

Data 02FO,000716 02FO,0005'6 02EO,0007'6 02EO,0005'6

All ports are eight bits.

10.7 BAUD RATE CONSTANTS

If the internal sec baud rate generator logic has been selected,
the actual baud rate must be specified during the sec
initialization sequence by loading a 16-bit time constant value
into each generator. Table 10-6 lists the values to use for some
common baud rates. Other rates may be generated by applying
the formula given below.

Revision A (Preliminary) / June 1991

Serial I/O 10-7

TABLE 10-&
Baud rate constants
Baud Rate x1 clock rate x16 clock rate

110 22,340 1,394

300 8,190 510

1200 2,046 126

2400 1,022 62

4800 510 30

9600 254 14

19,200 126 6

38,400 62 2

The time constant values listed above are computed as follows:

TC = 4,915,200/(2 * baud * factor) - 2

The x16 mode will obtain better results with asynchronous
protocols because the receiver can search for the middle of the
start bit. (In fact, the xl mode will probably produce frequent
receiver errors.)

The maximum sec data speed is one megabit per second, using
the xl clock and synchronous mode. For asynchronous
transmission, the maximum practical rate using the x16 clock is
51,200 baud.

10.8 RS·422 OPERATION

As an option, one or more of the serial ports on the HK68/V3D
may be configured for RS-422 operation. The RS-422 option may
either be installed when the board is ordered, or an existing
HK68/V3D board may be factory-upgraded to add the option.
Please contact Heurikon for more information.

10.9 RELEVANT JUMPERS (SERIAL 1/0)

TABLE 10-7
Serial 1/0 jumpers
Jumper Function Options Standard Configuration

J2 RS-232 ports A and B status default J2-A (True) J2-A (True)
J2-B (False)

J3 Selects Ring Indicator of Data Carrier J3:1-2 (RI) J3:2-3 (DCD)
Detect for port A. J3:2-3 (OeD)

Revision A (Preliminary) / June 1991

25.;PIN

CONSOLE
PORTB

FEMALE "0" CONN.
HEURIKON PIN-1940147
W/STRAIN RELIEF
(2 PLACES)

PORTA

FIGURE 10-2. Serial I/O cable

PIN 1 OPEN

DWG.NO:314AOO1·BXX

"A" ON

24"
54"

r PINS 1-14

PINS 15-28~\\

w ~

14 CONDUCTOR RIBBON CABLE
P/N-1569015

PIN 1

28-PIN
HIGH DENSITY
"0" TYPE CONNECTOR
HEURIKON P/N-1940253

PIN 14

..
p ..
o

en
m
:II
;
r-

a
n
~
III
r­
m

-4

a
00

J:
A
0>
00

< tAl
o
C en
CD .,
en-
~
0>
:J
C
~

11.1 INTRODUCTION

11

Optional SCSI Port

The HK68/V3D uses the Western Digital WD33C93 chip to
implement a Small Computer System Interface (SCSI) port.

The SCSI port may be used to connect the HK68/V3D with a
variety of peripheral devices, such as memory storage devices and
streamer tape drives.

Supported features and modes include:

• Initiator role
• Target role
• Arbitration
• Disconnect
• Reconnect

11.2 SCSI IMPLEMENTATION NOTES

The SCSI Data Ready signal is routed to the CIa, which can cause
an MPU interrupt. The interrupt from the SCSI chip generates a
level 4 autovector. See MPU exception vectors, section 3.3 for
details. Data transfer functions can be handled in a polled I/O
mode.

11-2 HK68N3D User's Manual

11.3 REGISTER ADDRESS SUMMARY (SCSI)

TABLE 11·1
SCSI register address summary
Address R/W Bits Function

0230,0001 '6 W 8 Set Controller Address Register

0230,0001 '6 R 8 Read Auxiliary Register

0230,0003'6 FWI 8 SCSI Controller Registers

0240,0000'6 FWI 8 SCSI Data Register (pseudo-DMA)

0280,0006'6 W SCSI Bus Reset (1-reset, O=release)

0280,0020'6 W SCSI Interrupt Enable (1 =enable)

11.4 SCSI PORT PINOUTS

The SCSI option uses rows A and C of connector P2 (Fig. 11-1 and
Table 11-2).

P2

B32
--~ -.-:-:-:-:-:::-:.~ ~:

Bl

A32 AI

FIGURE 11·1. SCSI connector, P2

Revision A (Preliminary) I June 1991

Optional SCSI Port 11-3

TABLE 11·2
SCSI pin assignments, P2
P2 Pin Row A SCSI Row B RowC
Number Signal VMEbus

Mnemonic Signal
Mnemonic

OB(O) +5 Gnd

2 OB(1) Gnd Gnd

3 OB(2) (reserved) Gnd

4 OB(3) A24 Gnd

5 OB(4) A25 Gnd

6 OB(5) A26 Gnd

7 OB(6) A27 Gnd

8 08(7) A28 Gnd

9 OB(P) A29 Gnd

10 Gnd A30 Gnd

11 Gnd A31 Gnd

12 Gnd Gnd Gnd

13 SCSI VCC +5 not used
TERMPWR

14 Gnd 016 Gnd

15 Gnd 017 Gnd

16 ATN 018 Gnd

17 Gnd 019 Gnd

18 BSY 020 Gnd

19 ACK 021 Gnd

20 RST 022 Gnd

21 MSG 023 Gnd

22 SEL Gnd Gnd

23 C/O 024 Gnd

24 REQ 025 Gnd

25 I/O 026 Gnd

26 Gnd 027 not used

27 Gnd 028 not used

28 Gnd 029 not used

29 Gnd 030 not used

30 Gnd 031 not used

31 not used Gnd not used

32 not used +5 not used

Revision A (Preliminary) I June 1991

11-4 HK68N3D User's Manual

Recommended mating connectors are [Ansley PIN 609-5001CE
and Molex PIN 15-29-85081.

11.5 SCSI BUS TERMINATION

The HK68/V3D provides the recommended lSCSI-21 termination
of 110 ohms to 2.85 volts.

Resistor networks RN29. RN30, and RN31 are socketed SCSI
terminators located next to connector P2 (Fig. 11-3). The SCSI
specification requires that the bus be terminated at both ends of
the cable, so RN29, RN30, and RN31 should be installed only if the
module is at an end of the SCSI interface cable. Power for the
SCSI termination on the HK68/V3D is taken from the SCSI bus
TERMPWR signal (P2-A13).

D

I SCSI I

MC68881

In D
I F6 1A

D
RN30 RN29 RN31

I ~2-VME P
(jL...------------J10

FIGURE 11·2. Location of SCSI terminating resistor·
networks and fuse F6

The SCSI specification requires that initiators supply power to the
TERMPWR signal. The HK68/V3D drives TERMPWR through fuse
F6 (Fig. 11-3). The HK68N3D will not drive TERMPWR if the fuse
is removed.

Revision A (Preliminary) I June 1991

12.1 INTRODUCTION

12

Optional Ethernet Interface

The HK68N3D can be order with an Ethernet interface option,
which consists of a network interface controller and a serial
network interface. The network interface controller is an Intel
82596cA 32-bit local area network coprocessor. The serial network
interface is an 82C501AD encoder/decoder. Together, these
components implement a standard IEEE-802.3 CSMA/CD
10BASE5 (lO-megabit-per-second) Ethernet interface.

12.1.1 Network Interface Controller (82596CA)

The 82596CA performs complete CSMA/CD Medium Access
Control (MAC) functions according to the IEEE 802.3 indepen­
dently of the CPU. Significant features of the 82596CA include:

• On-chip memory management
• On-chip DMA with a 32-bit RAM interface
• Network statistics collection
• Transmit FIFOs and receive FIFOs
• Network monitor mode
• Self-test diagnostics and loopback mode

12.1.2 Serial Network Interface (82C501 AD)

The 82C501AD interfaces the 82596CA to the Ethernet network
and performs the required Manchester encoding and decoding of
the Ethernet signals. Significant features of the 82C501AD include:

• Loopback capability for diagnostics
• Adaptability to either Ethernet 1.0 or IEEE-802.3 transceivers

via jumper selection. On the HK68N3D, jumper J1 is used for
this configuration. See section 12.10.

12-2 Ht\tRS/V~U user 5 IVICiIIUCiI

12.2 ETHERNET ADDRESS

The importance of maintaining a correct Ethernet address for the
HK68N3D is best expressed by this excerpt from the IEEE docu­
ment entitled Discussion of the Use of 48-bit IAN Globally
Assigned Address Block (12-29-88):

The concept of GloballUniversal Addressing is based upon the idea that
all potential members of a network need to have a unique identifier if they
are to exist in a network. The advantage of a Global LAN Address is that a
node with such an address can be attached to any LAN network in the
world with a high degree of assurance that no other node on that network
will share its address. The concept of the 48-bit address scheme origi­
nated with Xerox's ETHERNET, but it is applicable to all equipment meet­
ing IEEE 802 committee address assignment protocol methods, and
equivalent standards.

The Ethernet address for your board is an identifier that gives
your board a unique address on a network and must not be
altered. The address consists of 48 bits divided into two equal
parts. The upper 24 bits'define a unique identifier that has been
assigned to Heurikon Corporation by IEEE. The lower 24 bits are
defined by Heurikon Corporation for unique identification of
each of its products.

12.2.1 Verifying the Ethernet Address

For convenience, the binary address is referenced as 12 hexadec­
imal digits, separated into pairs. Each pair represents eight bits.
Heurikon's identifier is 00 80 F9. Heurikon uses the fourth group
of eight bits as a product code, and the fifth and sixth groups to
identify each board within the product group (Fig. 12-1).

Ethernet Address:

Heurikon
identifier aSSigned by

IEEE

00 80 F9 XX xx xx

YT
PIocIuct Board

Code Code

Board
identifier assigned by Heurikon

FIGURE 12·1. Ethernet addre •• format

Revision A (Preliminary) I June 1991

Optional Ethernet Interface 12-3

12.2.2 Ethernet Address on the HK68/V3D

Each HK68N3D's address depends on information stored in
nonvolatile memory. The address assigned to an HK68N3D has
the following form:

00 80 F9 XX XX XX

where the first three pairs (00 80 F9) are the Heurikon identifier,
the fourth pair (XX) is the identifier for the HK68N3D product
group, and the fifth and sixth pairs (XX XX) constitute a unique
value assigned to each HK68N3D. The Ethernet address for your
board is labelled on the 82596CA.

See Appendix A for information on how to read the board's
address from its nonvolatile· memory.

12.3 82596CA IMPLEMENTATION ON THE HK68/V3D

This section summarizes the configuration and limitations of the
82596cA as it is used on the HK68N3D. Many of the items noted
here are described in greater detail in subsequent sections.

12.3.1 82596CA Configuration on the HK68/V3D

Big-endian Byte Ordering

32-bit Bus Width

Interrupt Enable

The 82596CA can be configured for use in either big-endian
or little-endian mode.

On the HK68N3D, the 82596cA is hard wired for big-endian
mode.

The 82596cA can be configured for 32-bit and 16-bit bus
widths.

On the HK68N3D, the 82596cA is hard wired for 32-bit data
bus operation.

The 82596cA interrupt generates a level 1 interrupt vector
(vector 25). The 82596CA itself provides no means to enable
or disable the interrupt, but logic on the board provides that
function.

12.3.2 82596CA Parameter Selections

The shared memory structure between the 82596cA and the
HK68N3D has four parts: Initialization Root, System Control
Block, Command List, and Receive Frame Area. The Initialization
Root contains the System Configuration Pointer and Intermediate
System Configuration Pointer.

Revision A (Preliminary) I June 1991

12-4

System Configuration
Pointer Address

Addressing Mode

.
Bus Throttle Timer

Locked Bus Cycles

Interrupt Polarity

HK68N3D User's Manual

The System Configuration Pointer points to the Intermediate
System Configuration Pointer, which, in turn, points to the System
Control Block, where the CPU and the 82596CA exchange control
and status information.

The System Configuration Pointer also contains the SYSBUS byte,
which is used to determine addressing mode, bus throttle trigger­
ing method, and interrupt polarity, and to enable locked bus
cycles.

The CPU can access the 82596CA directly via the PORT pin and
CA (Channel Attention) pins. The first CA signal after a valid
RESET causes the 82596CA to read the initialization sequence
beginning either at a default address or at an alternate System
Configuration Pointer (SCP) address, which can be changed

directly through the PORT access. All subsequent CA signals cause
the 82596cA to execute new command sequences from the System
Control Block.

The 82596CA uses a default System Configuration Pointer
address of 00FF,FFF4'6.

For all applications, this address for the System Configuration
Pointer must be changed via a Port command before issuing
the first Channel Attention command.

The 82596cA supports three operational modes: 82586, 32-bit
segmented, 0r linear.

On the HK68/V3D, the 82596CA supports linear addressing
mode. Thirty-twa-bit segmented mode should also work, but is
not supported by Heurikon on the HK68/V3D. The 82596CA
cannot be used in 82586-compatibility mode. Addressing
mode is set by bits 1 and 2 of the SYSBUS byte of the System
Configuration Pointer .

The 82596cA is designed to accommodate internal or exter­
nal triggering of the bus throttle timers.

On the HK68/V3D, the BREQ pin of the 82596cA is hard
wired to ground. Therefore, bit 3 of the SYSBUS byte of the
System Configuration Pointer must be O2 to use internal
triggering of the bus throttle timers.

Locked bus cycles by the 82596CA are supported as an option
for semaphore operations with the HK68/V3D.

Bit 4 of the SYSBUS byte is used to set interrupt polarity ac­
tive high or active low.

Revision A (Preliminary) / June 1991

Optional Ethernet Interface 12-5

Logic on the HK68/V3D expects the 82596CA interrupt to be
active high, so bit 4 of the SYSBUS byte of the System
Configuration Pointer must be 02.

12.4 BYTE ORDERING

The 82596CA supports both big-endian and little-endian byte
ordering. A review of the 82596CA user's manual shows, however,
that the 82596cA is fundamentally a little-endian part with
enhancements to support big-endian byte ordering. (Refer to sec­
tion 1.6.2 for an explanation of big-endian and little-endian byte
ordering.)

On the HK68N3D, the 82596CA is hard wired to big-endian
mode. As a programming reference, it is helpful to use the big­
endian chapter of the 82596CA user's manual. The 82596 data
sheet is written from a little-endian point of view and can be
confusing when the chip is used in big-endian mode. The big­
endian chapter of the user's manual can be helpful, but it must be
used carefully because it contains many small errors and
inconsistencies.

Programming Note

If all elements that constitute the 82596cA control structures are
defined as 16-bit words, then the same structures definitions may
be used for both big-endian and little.endian modes, and
82596CA driver software should be largely independent of the
mode.

12.5 ETHERNET ACCESS

TABLE 12·1
Ethernet accesses

Access R/W

-- W PORT

CA W

The HK68N3D can communicate with the Ethernet by means of
either Port or CA access, which are summarized in Table 12-1.

Address D19·D16 Function

02EO,OOOO'6 0 Reset the 82596CA.

1 Perform a self test on the 82596CA.

2 Write a new SCP address.

3 Dump the 82596CA registers.

02EO,OOO4'6 X Channel Attention

Revision A (Preliminary) / June 1991

12-6 HK68N30 User's Manual

12.5.1 Port Access

TABLE 12·2
Port access definition

The 82596CA has a CPU port access interface that allows the CPU
to cause the 82596CA to execute any of the Port functions shown
in Table 12-1.

PORT accesses require four writes on the HK68/V3D. Section

5.3.6.3 of the 82596 User's Manual says that all PORT accesses
must be 1-6-bit accesses. Thus, a 32-bit Port command requires two

writes to the 82596CA's PORT. Table 12-2 shows the order for
writing the upper and lower words and the data lines on which the
command value is transferred. Furthermore, we at Heurikon have
found that it is necessary to repeat the port access, although this
procedure is not documented in the 82596CA user's manual, for a
total of four writes.

In practice, then, we write the Port command value four times to

the 82596cA's PORT for a Port command to be executed.

Programming Note

Watch compiler optimization. A succession of four writes to the
same address may be optimized by a compiler to a single write.

First Access Second Access

Big end ian 015-00 > Lower Command Word ·031-016> Upper Command Word

The format to the port commands as given in Table 12-5 of the
Big-endian chapter of the 82596CA User's Manual is incorrect.
The correct format, shown in Table 12-3 below, swaps the two
halves of the port command long word.

Revision A (Preliminary) I June 1991

Optional Ethernet Interface

TABLE 12·3
Port accesses

Address

12-7

Is 02EO,000016

Function 031 020 019 018 017 016 D15 00

Reset

Self-test

NewSCP

Dump

A15 ... Don't care ... A4 0 0 0 0 A31 ... Don't care . .. A16

A15 ... Self-test ... A4 0 0 0 1 A31 ... Self-test . .. A16
results results

address address

A15 ... Alternate ... A4 0 0 1 0 A31 ... Alternate ... A16
SCP SCP

address address

A15 ... Dump area ... A4 0 0 1 1 A31 ... Dump ... A16
pointer area

pointer

12.5.2 Channel Attention (CA)

Accessing address 02EO,000416 issues Channel Attenu;;l (CA) to
the 82596cA and causes it to begin executing memory-resident
command blocks. The first CA after a reset forces the 82596CA
into the initialization sequence beginning at location OOFF,FFF4'6
or an alternate SCP address written to the 82596CA using the

PORT access mechanism. All subsequent CAs cause the 82S96cA
to begin executing new command sequences (memory-resident
command blocks) from the System Control Block.

Since the default SCP address (OOFF,FFF41J is not accessible
memory on the HK68N3D, the Alternate SCP POHT Access
command must be issued prior to the first CA after a reset.

Revision A (Preliminary) / June 1991

12-8 HK68N3D User's Manual

12.6 SYSBUS BYTE OF THE SYSTEM CONFIGURATION POINTER

The SYSBUS byte (Fig. 12-2 and Table 12-4) is composed of bits
7""() of the first long word of the System Configuration Pointer.

Not used. Intel requires setting to O.

Intel requires setting to 1.

Must be set to O.

Locked cycle enable

7 6 5 4 3 2 0

I L Not used. Intel requires setting to O.

~ Address mode select

~---- Bus Throttle Timer setting
Must be set to O.

FIGURE 12·2. Required settings of the System Configuration Pointer SVSBUS byte

TABLE 12-4
SYSBUS b t t-IY' e se ec Ions

Bit Function Selections Description

0 Not used - This bit must be set to O2, according to Intel
documentation.

2 and 1 Address Mode select 002 = 82586 mode The HK68N3D supports linear mode (bit 2:1
01 2 = 32-bit segmented = 102), 32-bit segmented mode should also
mode work but is not supported by Heurikon. 82586
102 = linear mode mode cannot be used.
112 = reserved

3 Bus Throttle Timer trig- O2 = internal The 82596CA's BREQ pin is tied to ground on
gering 12 = external the board, so external Bus Throttle timer

triggering is not possible. Bit 3 must be O2 .

4 Locked cycles enable O2 = enable Locked cycles are an option that can be
12 = disable used for updating the Ethernet statistics

counter. Both selections are supported on
the HK68N3D.

5 82596CA interrupt O2 = active high Logic on the board expects the 82596CA's
12 = active low INT signal to be active high. Bit 5 must be O2 .

6 12 The default must be used, according to an
erratum from Intel.

7 Not used. - This bit must be set to O2, according to Intel
documentation.

Revision A (Preliminary) / June 1991

Optional Ethernet Interface

12.7 RECOMMENDED INITIALIZATION

1. Reset the 82596CA with a Port Reset command.

2. Construct the System Control Pointer (SCP), Intermediate
System Control Pointer, and System Control Block :~!ructure.
Initialize the SYSBUS byte of the SCP to 44'6 or 54,t;

Note: The Alternate SCP Port command (step 4) requires the SCP
address to be 16-byte aligned, that is, at an address such as
XXXX,XXXO'6·

3. Initialize interrupts.

4. Issue an Alternate SCP Port command to the 82596CA, fol­
lowed by a Channel Attention.

Note: In big-endian mode, the SYSBUS byte is bits 7--0 of the first
long word of the System Configuration Pointer.

12.8 ADDRESSES OF ETHERNET FUNCTIONS

12-9

All Ethernet functions may be accessed as long words at the
addresses given in Table 12-5. Except for the Port command,each
function may also be accessed as a byte at the byte address that
corresponds to the least significant byte of the long word, that is,
long word address plus 3.

Revision A (Preliminary) I June 1991

12-10 HK68N3D User's Manual

TABLE 12·5
Ethernet pertphera a dd resses

Address Function Notes

02EO,OOOO'6 Write: 82596CA Port command This address MUST be accessed as a long word.

Writing to this address generates the PORT signal to
the 82596CA. The data for the write is the 32-bit value
to be latched by the 82596CA. See Table 12-3.

Read: Not used.

02EO,OO04'6 Write: 82596CA Channel Attention Writing to this address generates the CA signal to the
command 82596CA. The data for the write is of no consequence.

Read: Not used.

02EO,OO08,6 Write: Not used.

Read: Not used.

02EO,OOOC'6 Write: Ethernet section interrupt Writing to this address clears an active Ethernet
clear. section interrupt. Data for the write is of no

consequence. Clearing the interrupt turns off the
interrupt signal but does not clear either of the causes
of the interrupt.

Read: Not used.

02EO,0010'6 Write: 82596CA interrupt Writing a 1 to the least significant bit of this address
enable/d isable enables the interrupt signal from the 82596CA. Writing

a 0 to the least significant bit disables the interrupt.
Reading from this address returns the state of the
enable bit as the least significant bit. The other bits
are undefined.

Read: 82596CA interrupt
enable/disable

02EO,0014'6 Write: Abort interrupt enable/disable Writing a 1 to the least significant bit of this address
enables the 82596CA abort interrupt. Writing a 0 to the
least significant bit disables the interrupt. Reading
from this address returns the state of the enable bit as
the least significant bit. The other bits are undefined.

Read: Abort interrupt enable/disable

02EO,0018'6' Write: Not used.

Read: 82596CA interrupt status Reading from this address returns the state of the
82596CA interrupt signal as the least significant bit. A
1 bit indicates the interrupt is asserted; 0 indicates
not asserted. The other bits are undefined.

02EO,001 C'6 Write: Clear abort interrupt. Writing to this address clears the 82596CA abort
condition. The data for the write is of no consequence.

Read: Abort interrupt status Reading from this address returns the state of the
82596CA abort interrupt signal as the least significant
bit. A 1 bit indicates the interrupt is asserted; 0
indicates not asserted. The other bits are undefined.

02EO,0020 '6 -
Not used.

02EO,OO37,6

Continues

Revision A (Preliminary) I June 1991

Optional Ethernet Interface

TABLE 12-5 - Continued

Ethernet addresses

12-11

Address Function Notes

02EO,OO38'6 Write: Hardware trigger point #1

Read: Not used. Writing to these addresses produces a low-going
pulse at one of two test points. The data are of no
consequence. These addresses and test points are
intended to aid debugging.

02EO,OO3C'6 Write: Hardware trigger point #2

Read: Not used

12.8.1 Interrupts

The Ethernet interrupt causes a level 1 interrupt autovector to the
CPU (vector 25).

The Ethernet interrupt combines interrupt conditions from two
sources:

1. The interrupt signal from 82596cA controller itself.

2 The ABORT condition. The ABORT condition is generated by
logic external to the 82596CA (see section 12.9.1). It is set
when the 82596CA receives an exception acknowledge as the
response to a bus cycle.

To cause an interrupt, an interrupt condition must be enabled.
Each of the two interrupt conditions has its own enable.

Once the Ethernet interrupt is asserted, it stays asserted until the
processor writes to the interrupt clear address. Likewise, each
interrupt condition stays asserted until explicitly cleared or
disabled by the processor.

The ABORT condition is cleared by writing to the ABORT clear
address. The 82596CA interrupt is cleared by setting the appropri­
ate acknowledge bits in the command word of the 82596CA's sys­
tem control block (SCB), setting the next control commands in
the command word of the SCB, and issuing a Channel Attention
to the 82596cA.

The sequence of events for dealing with an Ethernet interrupt due
to an ABORT condition are:

Revision A (Preliminary) / June 1991

12-12 HK68N3D User's Manual

1. Enable the interrupt.

2. Assume that some time later the ABORT condition becomes
asserted. Once asserted, it will stay asserted until explicitly
cleared.

3. The enabled ABORT condition causes the Ethernet interrupt
to be asserted.

It will stay asserted until explicitly cleared.

4. The interrupt causes the HK68N3D to execute the Ethernet
interrupt service routine. The interrupt service routine of the
processor clears the Ethernet interrupt.

5. The interrupt service routine reads the interrupt status bits to
determine whether the interrupt is an ABORT condition or
82596cA interrupt signal. (This and the previous step may be
interchanged.)

6. The interrupt service routine clears the ABORT condition. At
this point, both the interrupt signal and the ABORT condition
have been cleared.

If the second interrupt condition is enabled and occurs before the
first is cleared, it will cause the interrupt signal to be asserted only
after the first condition is cleared; that is, not after the Ethernet
interrupt is cleared, but after the interrupting condition (ABORT
or 82596cA interrupt) is cleared. Thus, the interrupt signal may be
cleared early in an interrupt service routine knowing that it cannot
be reasserted until later in the routine when the interrupting
condition is cleared.

If the interrupt service routine checks the interrupt status bits and
both are set, it is not possible to determine which of the two
occurred first and thus which one to clear. In this case, the inter­
rupt service routine should handle both cases and clear both
conditions.

If an interrupt condition is true when it is enabled, an interrupt
will occur immediately.

Disabling an interrupt source is equivalent to clearing it to the
extent that it allows the other interrupt condition to generate an
interrupt.

Revision A (Preliminary) I June 1991

Optional Ethernet Interface 12-13

12.9 EXCEPTION CONDITIONS

HK68N3D bus cycles may terminate abnormally in two ways:
relinquish and retry, and exception. The 82596CA directly

supports relinquish and retry via the BOFF (backofl) pin.

Logic on the HK68N3D external to the 82596CA responds to an
exception acknowledge by setting an ABORT condition. The

ABORT condition asserts the 82596CA BOFF signal and keeps it
asserted until the ABORT condition is cleared. Asserting the

BOFF signal causes the 82596CA to relinquish its control of the
HK68N3D's local bus so that other bus masters may use it and
keeps the 82596cA from generating any additional bus cycles until
the processor intervenes.

The ABORT condition may also cause an interrupt to notify the
HK68N3D that 82596CA operation has been suspended.

When an ABORT condition occurs, there are three possible
responses:

1. Simply clear the ABORT condition and let the 82596CA
resume where it left off. If the exception acknowledge resulted
from accessing an undefir:;ed address, the exception acknowl­
edge will occur again.

2. Reset the 82596CA with a Port Reset command and then clear
the ABORT condition. This allows the 82596cA to be reinitial­
ized, but destroys any information about the cause of the
exception acknowledge.

3. Issue a Port Dump command to the 82596cA and then clear
the ABORT condition. According to Intel, a Port Dump

command may be issued while BOFF is asserted and will take
precedence over any transfers that were in progress when

BOFF was asserted. The Port Dump command dumps the
internal status of the 82596CA to memory, where it may
provide some clues about what the 82596cA was doing when
the exception acknowledge occurred. Following the Port
Dump command, the 82596CA should probably be reset using
a Port Reset command.

Note that the Dump command will occur only when the

BOFF signal is released, which is the same time that the
ABORT condition is cleared.

Revision A (Preliminary) / June 1991

12-14 HK68N3D User's Manual

12.10 ETHERNET dUMPER

The transmit differential signal pair for the Ethernet interface may
be configured for either half,;. or full-step modes to facilitate its use
with different types of transceivers, via configuration jumper J1.

The configuration of the jumper is briefly summarized in
Table 12-6.

TABLE 12·&
Transmit differential line configuration (J 1)

Position Configuration

J1 installed + (positive) idle differential voltage on TX lines full-
step mode (for example, for Ethernet 1.0-type
transceivers)

J1 not installed o idle differential voltage on TX lines half-step mode
(for example, for IEEE-802.3-type transceivers)

12.11 ETHERNET PORT PIN ASSIGNMENTS

Connector P4 is an Ethernet 1S-pin D connector (Fig. 12-3).

PIN 8 P4 PIN 1

PIN 15 PIN9

FIGURE 12·3. Ethernet connector, P4

Revision A (Preliminary) / June 1991

Optional Ethernet Interface 12-15

TABLE 12·7
Ethernet connector Din aSSignments. P4

Pin Name Description Direction Transceiver Cable D
Number Connector Pin Number

1 CLSNShld Control In circuit Shield In 1

2 CLSN- Control In circuit - In 9

3 CLSN+ Control In circuit + In 2

4 TX- Data Out circuit - Out 10

5 TX+ Data Out circuit + Out 3

6 TXShid Transmit Shield In 11

7 RxShld Data In circuit Shield In 4

8 RX- Data In circuit - In 12

9 RX+ Data In circuit + In 5

10 VPLUS Voltage Plus Out 13

11 VCMN Voltage Common In 6

12 VShid Voltage Shield In 14

13 CTLO+ Control Out circuit + Not connected 7

14 CTLO- Control Out circuit - Not connected 15

15 CTLOShld Control Out circuit Shield In 8

Revision A (Preliminary) / June 1991

13

Optional Real-Time Clock (RTC)

13.1 INTRODUCTION

As an option, one PROM can be fitted with a special socket which
has a built-in CMOS watch circuit and a lithium battery (Dallas
Semiconductor, part number DS1216F). The DS1216F is a 32-pin,
600 mil-wide DIP socket that accepts any 32-pin bytewide ROM or
nonvolatile RAM. The module socket is factory-installed in the
first HK68/V3D PROM position (U70). The timekeeping function
remains transparent to the memory device place above. The RTC
monitors Vee for an out-of-tolerance condition. When such a
condition occurs, the battery automatically switches on to prevent
loss of time and calendar data.

The timekeeping information provided by the RTC includes hun­
dredths of seconds, seconds, minutes, hours, days, date, month,
and year. The data at the end of the month is automatically
adjusted for months with fewer than 31 days, including correction
for leap years. The RTC operates in either 24-hour or 12-hour
format with an AM/PM indicator.

13-2

13.2

HK68N3D User's Manual

The module socket can plug into the existing socket or replace it
entirely. When the module socket is plugged into the existing
socket the board profile is wider. The following table lists resulting
board thickness values, depending on the installation method.
The values include a standard PROM thickness.

TABLE 13·1
Effect of RTC intallation on board height
Configuration

RTe module plugged into
existing ROM socket:

Component
Height Above
Board

.75 in.

Minimum
Board Spacing

.85 in. (2 slots)

Only one card slot is required if the board is in the end slot. The
RTC logic does not generate interrupts; a CIa timer channel is
still used for that purpose. The RTC contents, however, may be
used to check for long-term drift of the HK68/VE system clock,
and as an absolute time and date reference after a power failure.
Leap year accounting is included. Heurikon can provide complete
operating system software support for the RTC module.

The RTC module time resolution is 10 milliseconds. The RTC
internal oscillator is accurate to one minute per month, at 25
degrees C.

READING AND SETTING THE RTC

The clock contents are set or read using a special sequence of
ROM read commands, as detailed in the program example, below.
The RTC module "monitors" ROM accesses and, if a certain
sequence of 64 ROM addresses occur, takes temporary control of
the ROM space, allowing data to be read from or written to the
module. Writing is done by twiddling an address line, which the
module uses as a data input bit. There are never any MPU write
cycles directed to the PROM space.

Note: Do not execute the module access instructions out of ROM.
The instruction fetch cycles will interfere with the module
access sequence. Also, be certain the reset disable bit
Crtc_data.day bit D4) is always written as a "1".

Revision A (Preliminary) I June 1991

Optional Real-Time Clock

EXAMPLE 13-1. Real-Time Clock Software

#define WATCHBASE (unsigned char *)OxOOOOOOOO /* ROM socket */
#define WRO WATCH (unsigned char *) (WATCHBASE+2) /* write 0 */
#define WRI WATCH (unsigned char *) (WATCHBASE+3) /* write 1 */
#define RD_WATCH (unsigned char *) (WATCHBASE+4) /* read */
struct rtc data { /* D7 D6 D5 D4 D3 D2 Dl DO range */

unsigned char dotsec;/*-O.l sec-:-0.01 sec-;00-99 */
unsigned char sec; /* --10 sec-:-seconds-; 00-59 */
unsigned char min; /* --10 min-:-minutes-; 00-59 */
unsigned char hour; /*A 0 B Hr:-hours-; 00-23 */
unsigned char day: /*0 0 0 1:-day--; 01-07 */
unsigned char date: /*-10 date-:-date-; 01-31 */
unsigned char month: /*-10 month-:-month-; 01-12 */
unsigned char year: /*-10 year--: --year----- ; 00-99 */

}: /* "A" = "0" for 00-23 hour mode, "1" for 01-12 hour mode */
/* "B" = MSB of the 10 hours value (if 00-23 hour mode) else

= "0" for PM or "1" for AM (if 01-12 hour mode) */

/* set the real-time clock */
register unsigned char *data; /* rtc data pointer */
{

register int i, bit;
unsigned char temp;
static unsigned char key[] = { /* the unlock pattern */

OxCS, Ox3A, OxA3, OxSC, OxCS, Ox3A, OxA3, OxSC };

if (data) {
rtc_wr(O); /* send key pattern */
else { /* this is the unlock function */
i = *RD_WATCH; /* reset */
data = key;

for(i=O; i<8; data++, i++)
for(bit 1; bit & Oxff: bit «= 1)

temp = (*data & bit) ? *WR1 WATCH

rtc rd(data) /* read the real-time clock */
register unsigned char *data; /* rtc_data pointer */
{

register int i, bit;

rtc_wr(O); /* send key pattern */
for (i=O; i<8; data++, i++) {

*data = 0;
for(bit = 1: bit & Oxff; bit «= 1)

*data 1= (*RD_WATCH & 1) ? bit : 0 ;

Revision A (Preliminary) / June 1991

13-3

13-4 HK68N3D User's Manual

13.3 PIN ASSIGNMENTS

13.4 RTe OPERATION

The DS1216F uses pins 1, 10, 12, 13, 22, and 24. All pins pass
through to the socket receptacle except pin 22 (CE/) , which is
inhibited during the transfer of time information.

TABLE 13·2
Pin assignments, real-time clock
32-pln RTe
Pin Number Name Function

1 RST\ RESET

10 A2 Address Bit 2 (READIWRITE\)

12 AO Address Bit 0 (Data Input)

13 oao 1/00 (Data Output)

16 GND Ground

22 CE\ Conditioned Chip Enable

24 OE\ Output Enable

32 vee +5 VDC to the socket

A highly structured sequence of 64 cycles is used to gain access to
time information and temporarily disconnects the mated
memory from the system bus. Information transfer into and out of
the RTC is achieved by using address bits AO and A2, control
signals OE\ and CE\, and data I/O line DQO. All RTC data
transfers are accomplished by executing read cycles to the mated
memory address space. Write and read functions are determined
by the level of address bit A2. When address bit A2 is low, a write
cycle is enabled, and data must be input on address bit AO. When
address bit A2 is high, a read cycle is enabled, and data is output
on data I/O line DQO. Either control signal (OE\ or CE\) must
transition low to begin and high to end memory cycles that are
directed to the RTC; however, both control signals must be in an
active state during a memory cycle.

Communication with the RTC is established by pattern
recognition of a serial bit stream of 64 bits, which must be
matched by executing 64 consecutive write cycles, placing address
bit A2 low with the proper data on address bit AO.

Revision A (Preliminary) / June 1991

Optional Real-Time Clock 13-5

7 6 5 4 3 2 0 Hex Value

Byte 0 1 1 0 0 0 1 0 1 C5

Byte 1 0 0 1 1 1 0 1 0 3A

Byte 2 1 0 1 0 0 0 1 1 A3

Byte 3 0 1 0 1 1 1 0 0 5C

Byte 4 1 1 0 0 0 1 0 1 C5

Byte 5 0 0 1 1 1 0 1 0 3A

Byte 6 1 0 1 0 0 0 1 1 A3

Byte 7 0 1 0 1 1 1 0 0 5C

FIGURE 13·2. RTe comparison register definition

The 64 write cycles are used only to gain access to the RTC. Prior
to executing the first of 64 write cycles, a read cycle should be
executed by holding A2 high. The read cycle will reset the
comparison register pointer within the RTC, ensuring that pattern
recognition starts with the first bit of the sequence. When the first
write cycle is executed, it is compared with bit 0 of the 64-bit
comparison register. If a match if found, the pointer increments
to the next location of the comparison register and awaits the
next write cycle. If a match is not found, the pointer does not
advance and all subsequent write cycles are ignored. If a read
cycle occurs at any time during pattern recognition, the current
sequence is aborted and the comparison register pointer is reset.
Pattern recognition continues for a total of 64 write cycles, as
described above, until all the bits in the comparison register have
been matched (this bit pattern is shown in Figure 13-2).

With a correct match for 64 bits, the RTC is enabled and data
transfer to or from the timekeeping registers may proceed. The
next 64 cycles will cause the RTC to either receive data on Data In
(AO) or transmit data on Data Out (DQO) , depending on the level
of READ/WRITE\ (A2). Cycles to other locations outside the
memory block can be interleaved with CE\ and OE\ cycles
without interrupting the pattern recognition sequence or data
transfer sequence to the RTC.

An unconditional reset to the RTC occurs by either bringing up
A14 (RESET\) low if enabled, or on power-up. The RESET\ can

Revision A (Preliminary) / June 1991

13-6 HK68N3D User's Manual

occur during pattern recognition or while accessing the the RTC
registers. RESET\ causes access to abort and forces the
comparison register pointer back to bit 0 without changing
registers.

13.5 NONVOLATILE CONTROLLER OPERATION

13.6 RTe REGISTERS

The RTC performs circuit functions required to make the
timekeeping function nonvolatile. First, a switch is provided to
direct power from the battery or VCC supply, depending on
which voltage is greater. The second function provides power-fail
detection. Power-fail detection typically occurs at 4.25 volts.
Finally, the nonvolatile controller protects the RTC register
contents by ignoring any inputs after power-fail detection has
occurred. Power-fail detection also has the same effect on data
transfer as the RESET\ input.

The RTC information is contained in eight registers, each
containing eight bits. The registers are accessed in sequence, one
bit at a time, after the 64-bit pattern recognition sequence has
been completed. When updating the RTC registers, each must be
handled in groups of eight bits. Writing and reading individual
bits within a register could produce erroneous results. These
read/write registers are defined in Figure 13-3.

Data contained in the RTC registers is in BCD (binary coded
decimal) format. Reading and writing the registers is always
accomplished by stepping through all eight registers, starting with
bit 0 of register 0 and ending with bit 7 of register 7.

13.7 AM·PM/12/24 MODE

Bit 7 of the hours register is defined as the 12- or 24-hour mode
select bit. When high, the 12-hour mode is selected. In the 12-hour
mode, bit 5 is the AM/PM bit with logic high being PM. In the 24-
hour mode, bit 5 is the second 10-hour bit (20-23 hours).

13.8 OSCILLATOR AND RESET BITS

Bits 4 and 5 of the day register are used to control the RESET\
and oscillator functions. Bit 4 controls the RESET\ (pin 1). When
the RESET\ bit is set to logic 1, the RESET input pin is ignored.
When the RESET\ bit is set to logic 0, a low input on the RESET\
pin will cause the RTC to abort data transfer without changing
data in the watch registers. Bit 5 controls the oscillator. When set
to logic 1, the oscillator is turned off. When set to logic 0, the

Revision A (Preliminary) I June 1991

Optional Real-Time Clock

13.9 ZERO BITS

13-7

oscillator turns on and the watch becomes operational. Both bits
are set to a logic 1 when shipped from the factory.

7 6 5 4 3 2 o
o 0.1 second 0.01 second

10 seconds seconds

2 10 minutes minutes

3 hour

4 day

5 date

6 month

7 10 year year

FIGURE 13·3. RTe register definition

Range (BCD)

00-99

00-59

00-59

01-12
00-23

01-07

01-31

01-12

00-99

Registers 1, 2, 3, 4, 5, and 6 contain one or more bits that will
always read logic o. When writing these locations, either a logic 1
or 0 is acceptable.

Revision A (Preliminary) / June 1991

14

Hardware Summary

14.1 SOFTWARE INITIALIZATION SUMMARY

This section outlines the steps for initializing the facilities on the
HK68N3D board. Certain steps must be performed in sequence,
while others may be rearranged or omitted entirely, depending
on your application.

1. The MPU automatically fetches the reset vector following
a system reset and loads the supervisor stack pointer and
program counter. The reset vector is in the first 8 bytes of
ROM.

2 Recall the NVRAM contents. (Reference: section 6.8)

3. Determine RAM configuration. (Reference: section 6.4)

4. Set the bus control latch. (Reference: section 7.8)

5. Clear on-card RAM to prevent parity errors due to
uninitialized memory reads. (Reference: section 5.1)

6. Load the 68030 Vector Base Register with the location of
you: exception vector table (usually at the start of RAM).

7. Initialize the exception vector table in RAM (at the
selected base address.) This step links the various
exception and interrupt sources with the appropriate
service routines. (Reference: section 3.3)

8. Initialize the CIO. (Reference: section 9.7)

9. Initialize the serial ports. (Reference: section 10.5)

10. Initialize the SCSI port (Reference: section 11)

11. Initialize the Ethernet port. (Reference: section 12)

12. Initialize the 7-segment display (Reference: section 8.1)

13. Release the VMEbus SYSFAIL line. (Reference: section 7.6)

14. Initialize off-card memory and I/O devices, as necessary.

15. Enable system interrupts, as desired. (Reference: section
3.2)

14-2 HK68N3D User's Manual

14.2 ON·CARD 1/0 ADDRESSES

TABLE 14-1
Address summary

Address

4xxx,XXXX'6

04xx,XXXX'6
03xx,XXXX'6
02FO,000X'6
02EO,OOOX'6
02DO,000x'6

. 02CO,0000'6

02BO,0070'6
02BO,0060'6
02BO,OOSO'6

02BO,0040'6
02BO,0030'6
0280,0020'6
0280,0010'6
02BO,OOOE'6
02BO,000C'6
02BO,000A'6
02BO,0008'6
02BO,OO06'6
02BO,OO04'6
02BO,OO02'6
02AO,OOOO'6

0290,OOOX'6
0270,0000 '6

0260,0000'6
02S0,OOXX'6
0230,OOOX '6

0240,0000'6
01 xX,XXXX,6

00CO,XXXX
'6

0080,000X '6

0040,000016
0000,0000 '6

This section is a summary of the on-card port addresses. It is
intended as a general reference for finding additional
information about a particular device. Refer to section 6.6 for a
pictorial description of the system memory map.

Type Device HK68N3D User's
Manual Section

RNJ VMEbus (Extended 7.7
Address Mode)

RNJ VMEbus 7.7,7.9

RNJ HK68N3D on-card RAM 6.3

RNJ SCC1 (Ports A & B) 10

RNJ Ethernet 12

RNJ cia 9

W Mailbox Base Address 7.8

RNJ Display segment g 8

RNJ Display segment f 8

RNJ Display segment e 8

RNJ Display segment d 8

RNJ Display segment c 8

RNJ Display segment b 8

RNJ Display segment a 8

W VMEbus Bus Timer 7.X

W VMEbus Slave Enable 7.4

W On-card Watchdog Enable

W SCSI Interrupt Mask 11

W SCSI Reset 11

W Mailbox Enable 7.8

W MPU Cache Disable 3.6

W Bus Control Latch 7.4

W VMEbus Interrupt Request 7.5

R NV-RAM Recall 6.8

W NV-RAM Store (tas) 6.8

RNJ NV-RAM Data 6.8

RNJ SCSI 11

unused

RNJ VMEbus (Standard Space) 7.7

RNJ VMEbus (Short Space) 7.7

R VMEbus Interrupt Vectors

R ROM1 6.2

R RaMO 6.2

Revision A (Preliminary) I June 1991

Summary Information 14-3

14.3 HARDWARE CONFIGURATION JUMPERS

TABLE 14-2

Jumper settings are detailed in the manual section pertaining to
the associated device. This section can be used as a cross
reference for finding additional information about the jumpers.

Standard jumper settings
.Jumper Standard Options

J1

J2

J3

J5-J8

J9-J12

J14, J15,
J17,
J18

J16

Configuration

Installed

J2:1-2 False

(_ 0)

J3:1-2 Ring
Indicator

Matches ROMO
size. See Table 14-
3.

Matches ROM1
size. See Table 14-
3.

Bus Grant Level 3

Bus Request
level 3)

rrn

J1 installed: + (positive) idle differential
voltage on TX lines, full-step mode (for
example, for Ethernet 1.0-type
transceivers)

J1 removed: 0 idle differential voltage on TX
lines, half-step mode (for example, for
IEEE-802.3-type transceivers)

J2:1-2 False (+12V)

J2:2-3 True (-12V)

J3:1-2 Ring Indicator

J3:2-3 Data Carrier Detect

2764,27128,27256,27512,27010,27020,
27040,27080,27513 paged, 2864.RN.J
EEPROM, 2817 ANI EEPROM

2764,27128,27256,27512,27010,27020,
27040, 27080, 27513 paged, 2864 RN.J
EEPROM, 2817 ANI EEPROM

Bus Grant Level 3

Bus Grant Level 2

Bus Grant Level 1

Bus Grant Level 0

Bus Request Level 3

Bus Request Level 2

Bus Request Level 1

Bus Request level 0

Revision A (Preliminary) I June 1991

Function

Selects Ethernet
differential voltage

RS-232 handshaking
defaults

Selects Ring Indicator
or Data Carrier Detect
for SCC Port A.

Selects ROM 0 size
(default is 2764)

Selects ROM 1 size
(default is 2764)

Selects VMEbus Bus
Grant level

VMEbus arbitration
(bus request level 3,
not system controller)

HK68N3D
Manual
Section

12

10

10

5

5

7

7

14-4 HK68N3D User's Manual

J19 J19:1-2 input from J19:1-2 input from VMEbus Enables VMEbus 7
VMEbus

J19:2-3 output to VMEbus
SYSRESET·

~
J20 Removed J20 installed: Allows HK68N3D to respond ACFAll· connects to 7

to ACFAll· interrupt. VMEbus

J21 removed: HK68N3D does not respond
to ACFAll· interrupt.

J21-J24 Matches memory 1 , 2, 4, 8, or 16 megabytes VMEbus slave window 7
size. size

J25 Removed J25 installed: drives SYSClK Disables SYSClK 7

J25 removed: does not drive SYSClK

J26 Removed J26 installed: HK68N3D can drive BClR·. Disables BClR·. 7

J26 removed: HK68N3D cannot drive
BClR*.

J91 Factory set for memory configuration.
Do not alter.

J92 Factory set for memory configuration.
Do not alter.

TABLE 14-3
ROM size options
ROM ROM Capacity Jumper Configuration
Type

2764 64 Kbits (8K x 8)

I 27128
0_ J50rJ9

128 Kbits (16K x 8) o J6 or J10
27513 o J7 or J11 (either A or B)
paged 0_ J80rJ12

27256 256 Kbits (32K x 8)

II 0_ J50rJ9
o J60rJ10

o J7 or J11 (either A or B)
o J80rJ12

27512 512 Kbits (64K x 8)
fiJ50rJ9 o J60rJ10

J7 or J11 (either A or B)
_ 0 J80rJ12

27010 1 Mbits (128K x 8) firorJ9
J6 orJ10 (either Aor B) 0_ J70rJ11

_ 0 J80rJ12

27020 2 Mbits (256K x 8)

27040 IJ50rJ9
4 Mbits (512K x 8) _ 0 J60rJ10 0_ J70rJ11

o J8 or J12

Revision A (Preliminary) I June 1991

Summary Information 14-5

27080 8 Mbits (1M x 8) IJ50rJ9
o J6orJ10

_ 0 J7orJ11
o J8orJ12

2864 ANI 8Kx8 a EEPROM J5 or J9 (any setting)
J6 or J10
J7 or J11 (either A or 8)

0_ J8 or J12

2817 ANI 2Kx8

I EEPROM J50rJ9
J6 or J10
J7 or J11 (either A or 8) 0_
J8 or J12

RTe option
J1 J2 J3

P4

P5-FPI 0 ETHERNET 0 P3-SI0 0

182596CA EJ
~ ~

a J91

J92

J~
J7
J8

MC68030,PGA

J9 ~ D J10 ROM1
J11 :%
J12

D
B J16

B J14

I SCSI I J15

~~~ J17 

J23 J18 
J24 

J19 

J25 

P2-VME P1-VME J26 

J20 

Figure 14·1 • .lumper locations 

Revision A (Preliminary) I June 1991 



14-6 HK68N3D User's Manual 

14.4 POWER REQUIREMENTS 

TABLE 14-4 
Power requirements 
Voltage Current Usage 

+5 7.0A, max All logic 

+12 20ma, max RS-232 interface 

-12 20ma, max RS-232 interface 

The "+5" and "Gnd" pins on P2 must be connected for proper 
operation. 

14.5 ENVIRONMENTAL 

Operating temperature: 0 to +55 degrees Centigrade, ambient, at 
board. 
Humidity: 0% to 85%. 
Storage temperature: -40 to +70 degrees C. 
Power dissipation is about 35 watts. 

Fan cooling is required if the HK68/V3D board is placed in an 
enclosure or card rack. 

Fan cooling is also recommended when using an extender board 
for more than a few minutes. 

14.6 MECHANICAL SPECIFICATIONS 

TABLE 14-5 
Mechanical specifications 
Width Depth Height (above board) 

9.187 in. 6.299 in. 0.6 in. (0.8 in.) 

233.35 mm 160mm 15.25 mm (20.35 mm)· 

If the real-time clock (RTC) option is installed, see Table 13-1 for 
information on the effect of the RTC on board height. 

Standard board spacing is 0.8 inches. The HK68/V3D is a lO-layer 
board. 

Revision A (Preliminary) / June 1991 



Appendix A 

The HK68/V3D Monitor 

This appendix includes an introduction to monitor operation, 
instructions for command sequences that configure the 
HK68N3D, a command reference, and a function reference. 

INTRODUCTION 

The monitor consists of a set of about 1 SO C functions. A subset of 
these functions constitute the monitor commands, which are 
parsed into function calls. The monitor commands have been de­
signed to provide easy-to-use tools for (1) HK68N3D 
configuration at power-up or reset, and (2) communications, 
downloads, program tracing, and other common uses. A 
command line editor and history have been included to reduce 
the need to retype commands. The monitor uses nonvolatile 
memory to store all values. 

USING NONVOLATILE MEMORY TO CONFIGURE THE HK68N3D 

Group 

Console 

Download 

VmeBus 

Mailbox 

Cache 

Misc 

BootParams 

nvdisplay The nvdisplay command allows you to access almost all of the 
hardware registers on the HK68N3D by editing fields that 
contain configuration values. The fields have been collected 
into the main groups shown below. Each field can be edited 
from the display. 

Fields 
Port, Baud, Parity, Data, StopBits, XOnXOff, ChBaudOnBreak, RstOnBreak 

Port, Baud, Parity, Data, StopBits, XOnXOff, ChBaudOnBreak, RstOnBreak 

ExtSlaveMap, StdSlaveMap, AddrModSel, Replace Addr, EnblSlave, MastRelModes, 
SlaveRelOnReq, localBusTimer, VmeBusTimer, Sysfail, IndivRMC 

ShtSlaveMap, EnblSht 

InstrCache, DataCache 

PowerUpMemClr, ClrMemOnReset, PowerUpDiag, CountValue 

BootDev, loadAddress, RomBase, RomSize, DevType, DevNumber, ClrMemOnBoot 

Three other groups - HardwareConfig, Manufacturing, and 
Service - are reserved for use by Heurikon manufacturing and 
are read only. 



A-2 HK68N3D User's Manual 

Once fields have been edited, the new field values can be saved to 
nonvolatile memory with the nvupdate command. 

COMMAND SUMMARY 

The nonvolatile memory configuration information is used to 
completely configure the HK68N3D at reset The configboard 
command can also be used to reconfigure the board after 
modifications to the nonvolatile memory. 

Additional commands for a wide range of uses are summarized 
below. If you need additional assistance with the monitor, please 
call a Heurikon customer support representative at 1-800-327-1251. 

Access documentation for the HK68/V3D: 
help 
help editor 
help functions 
help memmap 
For details on a specific command, type help and any command name listed in this 
summary. 

Initialize, display, or change the contents of Heurikon-defined and 
user-defined memory fields in nonvolatile memory: 

nvdisplay 
nvinit 
nvopen 
nvset 
nvupdate 

Download and execute an application program from a host: 
call 
download 
transmode 

Test local and external memory boards: 
testmem 

Display, copy, or modify data: 
checksummem 
clearmem 
cmpmem 
copymem 
displaymem 
fillmem 
findmem 
findnotmem 
findstr 
readmem 
setmem 
swapmem 
writemem 
writestr 

Revision A (Preliminary) I June 1991 



Load and execute a program or operating system from a boot device: 
bootbus 
bootrom 
bootserial 

Display, trace, or execute application programs: 
disassemble 
dumpregs 
exectrace 
settrace 
step 

Display. Ethernet ID or check whether the HK68/V3D is VMEbus system controller: 
prstatus 

Control accessibility of the HK68/V3D in VMEbus short, standard or extended space: 
slavedis 
slaveenable 

Enable, disable, or set up bus interfaces and devices: 
configboard 
date 
setdate 
starttimer 
stoptimer 

Add, subtract, multiply, or divide two numbers: 
add 
div 
mul 
rand 
sub 

FUNCTIONS 

The functions described in the function reference can be called 
directly from the command line, but no argument checking will 
take place. It is advisable instead to use the monitor commands 
whenever possible. 

Revision A (Preliminary) I June 1991 



A-4 HK68N3D User's Manual 

EEPROM CONFIGURATION MEMORY 

The monitor uses an 128-byte EEPROM for nonvolatile memory. 
A general description of the organization of nonvolatile memory 
is given in the "On-card Memory Configuration" section (section 
5) earlier in this manual. A portion of nonvolatile memory is 
reserved for the monitor and is read-only. All other memory 
areas of nonvolatile memory are both read-accessible and write­
accessible for other uses. 

The start address, size, and description of the monitor EEPROM 
are shown below: 

EEPROM addresses 

.IS 

.IS 
J7 
J8 

Device Byte Offsets Data 
Addres. 

0270,0000'6 0 -15FF16 User-defined data area 

0270,800016 160016 - 17FF16 Monitorlboard initialization 

0270,C00016 180016 -1 FFF16 Manufacturing/service hardware 
information (write protected) 

r---

-w gill] I 
D~DI' 
D D D C 

> 1'NFW.1 II I 

~ I ROMO-_ROM Ie 
~I I 
I § I 

o D[}:J D 
C D 

DDI I 
I 

I I 

) 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-5 

MONITOR INSTALLATION AND SETUP 

J2 - Ports A and B 
defaults 

B A 

100 01 
A = True (+12V) 
B = False (-12V) 

l3-Serial 

RESET SEQUENCE 

Invalid configuration 
information 

Valid configuration 
information 

Be sure the ROM size jumpers J5-J8 are configured to match the 
size of ROM on the board (settings are described in the section 
"On-card Memory Configuration," section 5). The serial cable 
should connect the terminal with port B on the HK68/V3D. 
Terminal settings should be 9600 baud, 8 data bits, 1 stop bit, no 
parity. 

If no console device is connected to serial port B, be sure the RS-
232 default jumper J2 is set as J2:2-3, which sets the port to true 
( + 12V). Otherwise, the monitor will hang while it waits for the 
serial chip to transmit the start-up message. The "Setup and 
Installation" section (section 2) describes full installation 
instructions for the HK68/V3D. 

At power-up or a board reset, ROM-based power-up diagnostics 
check the serial port and memory. A function called StartMonitor 
performs hardware initialization, autoboot procedures, free 
memory initialization, and, if necessary, initializes the monitor to 
bring up the command line editor. 

The processor stacks and configuration are initialized before 
StartMonitor is called. 

StartMonitor does the following: 

1. 

2 

3. 

Initializes the nonvolatile memory configuration structures to 
their default state. 

The minimum set of hardware initialization is completed on 
the basis of the nonvolatile memory configuration structures. 
This usually includes a reset of devices to a known state. 

After initialization, the monitor tries to read the current 
nonvolatile memory configuration from the nonvolatile 
device. 

If the configuration information is invalid, a warning message 
appears: 

Warning protected region cannot be initialized. 

The board is fully configured using the default nonvolatile 
configuration. 

If the configuration information is valid, a countdown to the 
autoboot begins. 

Revision A (Preliminary) I June 1991 



A-6 

Console defaults 

Download defaults 

VMEbus defaults 

Mailbox defaults 

cache defaults 

Miscellaneous defaults 

BootParams defaults 

HK68N3D User's Manual 

If you allow the countdown to finish, autoboot begins and the 
board is fully configured according to the current nonvolatile 
device configuration. If the auto-boot portion of the 
configuration requires auto-boot, the correct device is opened 
and booted. If no auto-boot is necessary, then the board logo 
is printed, memory is initialized, and the line editor is started. 

If you cancel configuration before the autoboot begins, the 
board is configured with the default nonvolatile configuration, 
which is summarized below. 

Port B, 9600 baud, no parity, 8 data bits, 2 stop bits, XOn!XOff 
protocol on, no reset or baud change on break. 

Port A, 9600 baud, no parity, 8 data bits, 2 stop bits, XOn!XOff 
protocol on, no reset or baud change on break. 

Slave extended space mapped to 8000,0000'6. 
Slave standard space mapped to 000000,6. 
Address modifier select is "ExAlI". 
Slave standard space replacement address is 0000,0000t6. 
Slave is enabled. 
Master release mode is release-on-request. 
Slave release-on-request is enabled. 
The on-card bus timer is 32 microseconds. 
The VMEbus bus timer is 64 microseconds. 
SYSF AIL is off. 
Indivisible read-modify-write cycles are disabled. 

Slave short space mapped to FFF8, slave short space disabled. 

Instruction cache is on. Data cache is off. 

Clear memory on power-up, clear memory on reset, autoboot 
countdown set to longest value (7). 

No boot device specified, load address is 03010000,6' ROM 
base is at 00400000,6, ROM size is 00020000,6, device type and 
number are 0, and memory is not cleared at boot-up. 

Revision A (Preliminary) / June 1991 



The HK68N3D Monitor 

START-UP DISPLAY 

A-7 

At power-up or after a reset, the monitor runs diagnostics, reports 
the results, displays the name of the board, and then displays a 
prompt for commands. 

r 
Serial Test report ----....,: .... HK68/V3D Power Up Serial Test PASSED 
Memory Test report :: HK68/V3D Power Up Memory Test PASSED 

Copyright Heurikon Corp., 1991 

Prompt to cancel 
nonvolatile configuration 
and nonvolatile autoboot 

Created: Fri Mar 8 08:54:12 1991 
----~Hit 'H' to skip auto-boot 

vvv 
vvv 

vvv 

V3D Debug Monitor 

Heurikon Corp. 

Version 1. X 
vvv vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 

vvv vvv 
vvv vvv xxxxxxxxxxxx xxxxxxxxx 

vvv vvv xx xx xx 
vvv vvv xxxxxxxxxxxx xx xx 

vvvvv xx xx xx 
vvv xxxxxxxxxxxxx xxxxxxxxxxx 

Monitor 
command prompt ------:~V3D[1.X) 

Serial Test and 
Memory Test reports 

Nonvolatile Configuration 
and Nonvolatile Autoboot 

Monitor Command Prompt 

The results of the self -diagnostic tests are displayed at power­
up or after a reset. If the Memory Test fails, the display will 
show a DBug prompt instead of the usual monitor command 
prompt. A failed Memory Test could indicate a hardware 
malfunction that should be reported to our factory service 
department, 1-800-327-1251. 

At power-up and reset, the monitor configures the board 
according to the contents of nonvolatile configuration 
memory. If the configuration indicates that an autoboot device 
has been selected, the monitor attempts to load an application 
program from the specified device. 

You can cancel both the nonvolatile configuration sequence 
and the autoboot sequence by pressing the H key on the 
console keyboard before the boot ends. The monitor is then in 
a "manual" mode from which you can execute commands and 
call functions. The monitor also enters manual mode if the 
autoboot fails. Instructions for downloading and executing 
remote programs are given in the command reference and 
function reference. 

The monitor provides a command line interface that includes 
a command history and a vi-like line editor. The command 
line interface has two modes; Entry mode and Command 
mode. In Entry mode, you can type text on the command line. 
In Command mode, you can move the cursor along the 
command line and modify commands. Each new line is 
brought up in Entry mode. 

Revision A (Preliminary) I June 1991 



A-8 HK68N3D User's Manual 

COMMAND-LINE HISTORY 

k or-

j or + 

COMMAND-LINE EDITOR 

help editor 

<ESC> 

<cr> 

<DEL> 

The monitor maintains a history of up to 50 command lines for 
reuse. Press the ESC key from the command line to access the 
history. 

Move backward in the command history to access a previous 
command. 

Move forward in the command history to access a subsequent 
command. 

The command line editor uses typical UNIX® vi editing 
commands. 

To access an on-line description of the editor, type help 
editor or h editor. 

To exit Entry mode and start the editor, press <ESC>. You can 
use most common vi commands, such as x, i, a, A, $, 0, w, 
cw, dw, r, and e. 

To execute the current command and exit the editor, press 
Enter or Return. 

To discard an entire line and create a new command line, 
press <DEL> at any time. 

Editing Commands 
a orA Append text on the command line. 

Insert text on the command line. 
Delete a single character. 

i or I 
x orX 

r 

c 

cworcW 

ce or cE 

cb or cB 

c$ 

d 

dwordW 
de or dE 
db or dB 

d$ 

Replace a single character. 

Change. Use additional commands with c to change words or 
groups of words, as shown below. 
Change a word after the cursor (capital W ignores 
punctuation) . 
Change text to the end of a word. (capital E ignores 
punctuation) . 
Change the word before the cursor (capital B ignores 
punctuation) . 
Change text from the cursor to the end of the line. 

Delete. Use additional commands with d to delete words or 
groups of words, as shown below. 
Delete a word after the cursor (capital W ignores punctuation). 
Delete to the end of a word (capital E ignores punctuation). 
Delete the word before the cursor (capital B ignores 
punctuation). 
Delete text from the cursor to the end of the line. 

Revision A (Preliminary) / June 1991 



The HK68N3D Monitor A-9 

MONITOR COMMANDS 

Command Syntax 

There is no distinction between upper case and lower case. Press 
Enter or Return to end each command with a carriage return 
<cr>. 

Each command may be typed with the shortest number of 
characters that uniquely identify the command. For example, you 
can type nvdisp instead of nvdisplay, or elisa instead of 
disassemble. Note, however, that abbreviated command names 
cannot be used with on-line help; you must type help and the full 
command name. 

Arguments to commands must be separated by spaces. 

Command Format 

Specifying the base 

Put string arguments 
in double quotes. 

Put character arguments 
in single quotes. 

Start flags with a hyphen. 

The command line accepts three input formats: string, numeric, 
and symbolic. 

Monitor commands that expect numeric arguments assume a 
default numeric base for each argument. The expected arguments 
and the default numeric bases are described in the command 
reference. 

The numeric base can be specified by entering a colon C:) 
followed by the base. Several examples are provided below. 

1234ABCD:16 

123456789:10 

1234567:8 

101010:2 

hexadecimal 

decimal 

octal 

binary 

The default numeric base for functions is hexadecimal. Some 
commands use a different default base. 

String arguments must start and end with double quotation 
marks ("). For example, typing the argument "Foo" would 
result in a string argument with the value Foo, which is passed 
to the command. 

A character argument is a single character that begins and 
ends with a single quotation mark C'). The argument 'A' would 
result in the character A being passed to the command. 

A flag argument is a single character that begins with a hyphen 
(-). For example, the flag arguments -b, -war -I could be used 
for a byte, word or long flag. 

Revision A (Preliminary) / June 1991 



A-10 

MONITOR FUNCTIONS 

HK68N3D User's Manual 

There is a symbol entry for every function and command defined 
in the monitor. Each command must begin with a symbol. While 
all functions of the monitor can be executed, only those 
supported by the monitor as commands type-check and validate 
the arguments. 

Commands that are not symbolic are assumed to be numeric, and 
the hexadecimal, decimal, and character value of the number is 
printed. 

No argument checking will take place for functions that are called 
directly from the command line. It is advisable instead to use the 
monitor commands whenever possible. 

The functions require spaces between the function name and its 
arguments. No parentheses or other punctuation is necessary. 

EXAMPLES 

UnMasklnts 1 

ConnectHandler Oxf8 OxlOOO 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-11 

Using the commands 

INITIALIZING MEMORY 

This section includes instructions for common uses of the 
monitor. Full descriptions of the commands and functions are in 
the reference section. 

The monitor uses the area between 0000,0000'6 and 0001,0000'6 for 
stack and uninitialized-data space. Any write> to that area can 
cause unpredictable operation of the monitor. The monitor 
initializes all local memory on power-up and on reset, depending 
on the configuration of nonvolatile memory. The monitor ini­
tializes this area (that is, writes to it) to prevent parity errors, but it 
is left up to the programmer to initialize any other memory areas 
that are accessed, such as off-card or module memory. 

CHANGING BOARD CONFIGURATION 

The nvdisplay command shows the groups and fields in 
nonvolatile memory configuration that are used to configure the 
board. You can modify the groups and fields that are shown when 
you use nvdisplay. Then use nvupdate to save the new values. If 
you decide not to save your changes, type nvopen to re-read the 
previous values. 

EXAMPLE 

1. At the monitor prompt, type: 

nvdisplay 

2. Press <cr> until the group you want to modify is displayed. 
An example for the group "Console" is shown below. 

Group 'Console' 

Port 

Baud 

Parity 

Data 

StopBits 

XOnXOff 

A 

9600 

None 

8-bits 

2-bits 

On 

(A, B, C, 0) 

(Even, Odd, None, Force) 

(S-Bits, 6-Bits, 7-Bits, 8-Bits) 

(l-Bit, 2-Bits) 

(Off, On) 

ChBaudOnBreak False (False, True) 

RstOnBreak False (False, True) 

[SP, CR to continue] or [E, e to Edit] 

3. Press E to edit the group. 

4. Press <cr> until the field you want to change is displayed. 

Revision A (Preliminary) / June 1991 



A-12 

Group 'VmeBus' 

ExtSlaveMap 

StdSlaveMap 

AddrModSel 

ReplaceAddr 

EnblSlave 

MastRelModes 

5. 

6. 
7. 

HKtRS/V;:SU user s Manual 

Type a new value. For most fields, legal options are 
displayed in parentheses. 

Press ESC or Q to quit the display. 

Type nvupdate to save the new value or nvopen to cancel 
the change by reading the old value. 

EXAMPLE 

The default configuration for the VMEbus SYSFAIL· signal is to 
turn on at boot-up. In this· example, nvdisplay and nvupdate are 
used to turn off the SYSF AIL· signal when the system boots and 
the HK68/V3D is not system controller. 

1. At the monitor prompt, type: 

nvdisplay 

2. Press <cr> until the "VmeBus" group is displayed. 

OxBOOOOOOO 

Ox200000 

ExAll (None, StAll, ExOat, StOat, ExSuOat, ExAll) 

OxO 

True (False, True) 

OnRequest 

SlaveRelOnReq On 

(WhenOone, OnRequest, OnClear, Never) 

(Off, On) 

LocalBusTimer 32u (4us, 16u, 32u, 64u, 12Bu, 256u, 512u, Off) 

(4us, 16u, 32u, 64u, 12Bu, 256u, S12u, Off) 

(Off, On) 

VmeBusTimer 64u 

Sysfail Off 

IndivRMC Off (Off, On) 

[SP, CR to continue) or [E, e to Edit) 

3. Press E to edit the group. 

4. Press <cr> until the "Sysfail" field is displayed. 

5. Type the new value "Off". 

6. Press ESC or Q to quit the monitor. 

7. Type the monitor command nvupdate to save the new 
value to nonvolatile memory. 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-13 

ATTEMPTING TO CHANGE PROTECTED FIELDS 

Some of the Heurikon-defined groups shown with nvdisplay, 
namely, Hardware, Manufacturing, and Service, are write­
protected. Attempts to modify these fields result in the display of 
an error message: 

Warning, protected region was not modified. 

If you see this message, either re-read the nonvolatile memory 
defaults for these protected regions by typing the nvopen 
command, or return any fields you tried to edit to their original 
values. 

READING AND WRITING MEMORY 

Required flags 

Number bases 

Use readmem or displaymem to read memory, and 
writemem or setmem to write memory. 

readmem, writemem and setmem require one of the 
following flags, which determine the data size: 

-b indicates the data is in bytes. 

-w indicates the data is in words. 

-I indicates the data is in long words. 

All arguments default to hexadecimal. Specify other bases by 
typing a colon (:) and the base after the value. 

For example, type 52:10 for decimal 52. 

displaymem startaddr lines 

displays lines of memory starting at startaddr. If the lines 
argument is not specified, 16 lines are displayed. After you type 
this command, pressing <cr> displays the next block of memory. 
Access size is bytes. 

readmem - [b, w, 1] address 

reads a memory location specified by address. This command 
displays the data in hexadecimal, decimal, octal, binary, or string 
format. 

setmem - [b, w, 1] address 

allows memory locations to be modified starting at address. 
setmem first displays the value that was read. Then you can type 
new data for the value. If you press <cr> after the data, the address 
counts up. If you press <ESC> after the data, the address counts 
down. 

w r i t emem - [b, w, 1] address value 

writes value to a memory location specified by address. 

Revision A (Preliminary) I June 1991 



A-14 HK68N3LJ User's Manual 

CONFIGURING THE DEFAULT BOOT DEVICE 

Note: 

The default boot device is defined in the nonvolatile memory 
group " BootParams", in the field "BootDev". When the 
HK68N3D is reset or powered up, the monitor checks this field 
and attempts to boot from the specified device. 

Currently, the monitor supports Serial, ROM, and Bus as standard 
for all boards. If you edit the "BootDev" field and define a device 
that is unsupported on your board, the monitor will display the 
message: 

Unknown boot device 

Defining "BootDev" as "Serial" calls the function BootSerial, 
defining "BootDev" as "ROM" calls the function BootROM, and 
defining "BootDev" as "Bus" calls the function Boot Bus. See the 
function reference for details on these functions. 

EXAMPLE 

In this example, nvdisplay and nvupdate are used to change the 
default boot device from the bus to the ROM. The changes are 
made to the "BootParams" group. 

The fields in the "BootParams" group have different meanings 
for each device. For example, "DevType" values are not used 
for Bus devices, but are used by Serial devices to select the 
format for downloading. Consult the command reference for 
bootbus, bootROM, and boots erial for details. 

1. At the monitor prompt, type: 

nvdisplay 

2. Press <cr> until the "BootParams" group is displayed. 

Group 'BootParams' 
BootDev Bus (None, Disk, Floppy, Tape, Serial, Ethernet, ROM, Bus) 
LoadAddress Ox03010000 

ROMBase Ox00400000 

ROMSize Ox00020000 

DevType 1 
DevNumber o 
ClrMemOnBoot False (False, True) 

[SP, CR to continue) or [E, e to Edit} 

3. Press E to edit the group. 

4. Press <cr> until the "BootDev" field is displayed. 

5. Type the new value "ROM". 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-15 

6. Press <cr> to display the "LoadAddress" field. 

7. Type the address where execution begins. 

8. Press <cr> to display the "ROMBase" field. 

9. Type the ROM base address. 

10. Press <cr> to display the "ROMSize" field. 

11. Type the ROM size. 

12. Press ESC or Q to quit the display. 

13. Type nvupdate to save the new values. 

EXAMPLE 

In this example, nvdisplay and nvupdate are used to change the 
default boot device from the bus to the serial port. The changes 
are made to the "BootParams" group. 

1. At the monitor prompt, type: 

nvdisplay 

2. Press <cr> until the "BootParams" group is displayed. 

3. Press E to edit the group. 

4. Press <cr> until the "BootDev" field is displayed. 

5. Type the new value "Serial". 

6. Press <cr> until the "DevType" field is displayed. 

7. Type the new value for "DevType"j for example, 2 selects 
downloads in Heurikon binary format. 

8. Edit any other fields you want to modify. Whether you use 
the "DevType" and "DevNumber" fields depends on the 
application. 

9. Press ESC or Q to quit the display. 

10. Type nvupdate to save the new values. 

SETTING THE BUS CONTROL LATCH 

If you are using the HK68N3D monitor, use the command writemem to 
set the bus control latch (also see section 7.4). In this example, a series of 
writemem commands write the value 00380040'6 to the bus control latch. 
The effect of the write is to set the latch as follows: 

Set the slave address modifier bits to extended space (32-bit) 

Set the bus release mode to release-when-done via bus control bits 
BCO and BC1 

Set the replacement address to 0 (base of RAM) 

Set the slave address to 40000000,6. 

Revision A (Preliminary) I June 1991 



A-16 HK68N3D User's Manual 

EXAMPLE: Writing the value 00380040 to the bus control latch at 
address 02AOOOOO. 

writemem -b 02BOOOOC 0 Slave disable 

writemem -1 02AOOOOO 0 Bits 0, 8, 16 are O. 

writemem -1 02AOOOOO 0 Bits 1, 9, 17 are O. 

writemem -1 02AOOOOO 0 Bits 2, 10, 1B are O. 

writemem -1 02AOOOOO 00010000 1 on DB16 setting bit 19. 

writemem -1 02AOOOOO 00010000 1 on DB16 setting bit 20. 

writemem -1 02AOOOOO 00010000 1 on DB16 setting bit 21. 

writemem -1 02AOOOOO 00000001 1 on DBO setting bit 6. 

writemem -1 02AOOOOO 0 Bits 7, 16, 23 are O. 

writemem -b 02BOOOOC 1 Slave enable 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-17 

DOWNLOADING APPLICATIONS AND DATA 

The monitor commands transmode, download, and call are 
used for downloading applications and data in hex-Intel format, 
S-record format, or binary format. 

trans mode stands for "transparent mode," which means that the 
console port is connected to the download port via software. In 
this mode, a terminal connected to the console port can 
communicate with a host connected to the download port 
through the HK68N3D as though the HK68N3D were 
transparent. This allows you to edit your source code, recompile, 
initiate and complete the download, and return to the monitor, all 
from one terminal. This is convenient for downloading, because a 
single control sequence issues a carriage return to the host and 
issues a download command to the HK68/V3D. 

Configuring the Download Port 

EXAMPLE 

In this example, the nvdisplay command changes fields in the 
"Download" group, which contains fields for port selection, baud 
rate, parity, number of data bits, and number of stop bits: 

1. At the monitor prompt, type: 

nvdisplay 

2. Press <cr> until the "Download" group is displayed. 

3. Press E to edit the group. 

4. Press <cr> until the "Baud" field is displayed. 

5. Type a new value. 

6. Change other fields in the same way. 

7. <cr> over all fields whether you edit them or not, until the 
monitor prompt reappears. 

8. Type nvupdate to save the new value. 

Notes: A cable reverser might be necessary for the connection. 

Download Formats 

Hex-Intel and S-record are common formats for representing 
binary object code as ASCII for reliable and manageable file 
downloads. 

Both formats send data in blocks called records, which are ASCII 
strings. Records may be separated by any ASCII characters except 
for the start-of-record characters - usn for S-records and ":" for 

Revision A (Preliminary) I June 1991 



A-18 HK68N3D User's Manual 

hex-Intel records. In practice, records are usually separated by a 
convenient number of carriage returns, line feeds , or nulls to 
separate the records in a file and make them easily 
distinguishable by humans. 

All records contain fields for the length of the record, the data in 
the record, and some kind of checksum. Some records also 
contain an address field. Most software requires that the 
hexadecimal characters. that make up a record be in upper case 
only. 

Hex·lntel Format 

Hex-Intel format supports addresses up to 20 bits (1 megabyte). 
This format sends a 20-bit absolute address as two (possibly 
overlapping) 16-bit values. The least significant 16 bits of the 
address constitute the offset, and the most significant 16 bits 
constitute the segment. Segments can only indicate a paragraph, 
which is a 16-byte boundary. Stated in C, for example: 

or 

address = (segment « 4) + offset; 

segment 

offset 

address 

ssss 

+ 

aaaaa 

For addresses with fewer than 16 bits, the segment portion of the 
address is unnecessary. The hex-Intel checksum is a two's 
complement checksum of all data in the record except for the 
initial colon (:). In other words, if you add all the data bytes in the 
record, including the checksum itself, the lower 8 bits of the result 
will be 0 if the record was received correctly. 

Four types of records are used for hex-Intel format - extended 
address record, data record, optional start address record, and 
end-of file record. A file composed of hex-Intel records must end 
with a single end-of-file record. 

Extended Address Record 

:02000002sssscs 

is the record start character. 
02 is the record length. 
0000 is the load address field, always 0000. 
02 is the record type. 
ssss is the segment address field. 
cs is the checksum. 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-19 

The extended address record is the upper 16 bits of the 20-bit 
address. The segment value is assumed to be zero unless one of 
these records sets it to something else. When such a record is 
encountered, the value it holds is added to the subsequent offsets 
until the next extended address record. 

Here, the first 02 is the byte count Conly the data in the ssss field 
are counted). 0000 is the address field; in this record the address 
field is meaningless so it is always 0000. The second 02 is the 
record type; in this case, an extended address record. cs is the 
checksum, which is a checksum of all the fields except the initial 
colon. 

EXAMPLE 
:020000020020DC 

In this example, the segment address is 0020,6, This means that all 
subsequent data record addresses should have 200'6 added to 
their addresses to determine the absolute load address. 

Data Record 

:11aaaaOOdld2d3 ... dncs 

11 
aaaa 

00 
dl ... dn 
cs 

EXAMPLE 

is the record start character. 
is the record length. 
is the load address. This is the load address of the 
first data byte in the record Cdl) relative to the 
current segment, if any. 
is the record type. 
are data bytes. 
is the checksum. 

:0400100050D55ADF8E 

In this example, there are four data bytes in the record. They will 
be loaded to address 10,6; if any segment value was previously 
specified, it is added to the address. 50'6 is loaded to address 10,6, 
D5'6 to address 11,6, 5A'6 to address 12,6, and DF'6 to address 13,6' 
The checksum is BE,6' 

Revision A (Preliminary) I June 1991 



A-20 

Start Address Record 

:04000003ssssoo00CS 

is the record start character. 
is the record length. 

HK68N3D User's Manual 

04 
0000 
03 
ssss 
0000 

cs 

is the load address field, always 0000. 
is the record type. 

EXAMPLE 

is the start address segment. 
is the start address offset. 
is the checksum. 

:040000035162000541 

In this example, the start address segment is 5162'6' and the start 
address offset is 0005,6. so the absolute start address is 51625,6. 

End·of·file Record 

:OOOOOOOlFF 

is the record start character. 
00 is the record length. 
0000 is the load address field, always 0000. 
01 is the record type. 
FF is the checksum. 

This is the end-of-file record, which must be the last record in the 
file. It is the same for all output files. 

Revision A (Preliminary) / June 1991 



The HK68N3D Monitor A-21 

EXAMPLE: COMPLETE HEX-INTEL, FILE 

:OB00000020B2E446ABOA6CCE3F 

:020000020001FA 

:OBOOOOOODOEDOA2744617EFFE7 

:0400000300010002FS 

:04003000902BB4FDSF 

:OOOOOOOlFF 

Here is a line-by-line explanation of the example file: 

:OB00000020B2E446ABOA6CCE3F loads: 

byte 20'6 to address 00'6 
byte 82'6 to address 01'6 
byte E4'6 to address 02'6 
byte 46'6 to address 03,6 
byte A8'6 to address 04'6 
byte OA'6 to address 05,6 
byte 6C'6 to address 06'6 
byte CE'6 to address 07'6 

: 020000020001FA sets the segment value to 1, so 10'6 must be 
added to all subsequent load addresses. 

:OBOOOOOODOEDOA2744617EFFE7 loads: 
byte DO'6 to address 10'6 
byte ED'6 to address 11'6 
byte OA'6 to address 12'6 
byte 27'6 to address 13,6 
byte 44'6 to address 14'6 
byte 61'6 to address 15'6 
byte 7E'6 to address 16'6 

byte FF'6 to address 17'6 

: 04 00000300010002 F 5 indicates that the start address segment 
value is 1,6, and the start address offset value is 2'6' so the absolute 
start address is 12,6. 

: 04 003000902BB4FDSF loads: 

byte 90'6 to address 40'6 

byte 2B'6 to address 41 '6 
byte B4'6 to address 42'6 

byte FD'6 to address 43,6 

: OOOOOOOlFF terminates the file. 

Revision A (Preliminary) / June 1991 



A-22 HK68N3D User's Manual 

S-record Format 

S-records are named for the ASCII character "S," which is used for 
the first character in each record. After the S character is another 
character that indicates the record type. Valid types are 
0, 1, 2, 3, 5, 7, 8, and 9. After the type character is a sequence of 
characters that represent the length of the record, and possibly 
the address. The rest of the record is filled out with data and a 
checksum. 

The checksum is the one's complement of the 8-bit sum of the 
binary representation of all elements of the record except the "S" 
and the record type character. In other words, if you sum all the 
bytes of a record except for the "S" and the character 
immediately following it with the checksum itself, you should get 
FF for a proper record. 

SO-records (user defined) 

SOnndld2d3 ... dncs 

SO 
nn 
dl ... dn 
cs 

indicates the record type. 
is the count of data and checksum bytes. 
dl through dn are the data bytes. 
is the checksum. 

SO records are optional, and can contain any user-defined data. 

EXAMPLE 
S008763330627567736D 

In this example, the length of the field is 8, and the data 
characters are the ACSII representation of "v30bugs." The 
checksum is 6D1S• 

S1-, S2-, and S3-records (Data Records) 

SI 
nn 
a ... a 

Slnnaaaadld2d3 ••. dncs 

S2nnaaaaaadld2d3 ..• dncs 

S3nnaaaaaaaadld2d3 .•• dncs 

indicates the record type. 
is the count of data and checksum bytes. 
is a 4-, 6-, or 8-digit address field. 

dl ... dn dl through dn are the data bytes. 
cs is the checksum. 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-23 

These are data records. They differ only in that Sl-records have 
16-bit addresses, S2-records have 24-bit addresses, and S3-records 
have 32-bit addresses. 

EXAMPLES 

510B01A00030FFDC95B6 

In this example, the bytes 00,6, 30,6, FF'6' DC'6' and 95'6 are loaded 
into memory starting at address OIAO,6. 

530B30000000FFFF5555AAAAD3 

In this example, the bytes FF'6' FF'6' 55'6, 55'6' AA'6, and AA'6 are 
loaded into memory starting at address 3000,0000,6. Note that this 
address requires an S3-record because the address is too big to fit 
into the address range of an SI-record or S2-record. 

S5-records (Data Count Records) 

55nndld2d3 ... dncs 

S5 
nn 
dl ... dn 
cs 

indicates the record type. 
is the count of data and checksum bytes. 
dl through dn are the data bytes. 
is the checksum. 

S5-records are optional. When they are used, there can be only 
one per file. If an S5-record is included, it is a count of the SI-, S2-, 
and S3-records in the file. Other types of records are not counted 
in the S5-record. 

EXAMPLE 

55030343B6 

In this example, the number of bytes is 3, the checksum is B6'6' 
and the count of the S I-records, S2-records, and S3-records in the 
file is 343,6. 

S7-, S8-, and S9-records 

(Termination and Start Address Records) 

S705nnaaaacs 

S804nnaaaaaacs 

S903nnaaaaaaaacs 

S7, S8, or S9 indicates the record type. 
OS, 04, 03 Count of address digits and the cs field. 
a ... a is a 4-, 6-, or 8-digit address field. 
cs is the checksum. 

Revision A (Preliminary) / June 1991 



A-24 HK68N3D User's Manual 

These are trailing records. There can be only one trailing record 
per file, and it must be the last record in the output file. Included 
in the data for this record is the initial start address for the 
downloaded code. 

EXAMPLES 
S903003CCO 

In this example, the start address is 3C'6' 
S8048000007B 

In this example, the start address is 800000,6' 

EXAMPLE: COMPLETE S-RECORD FILE 

S0097A65726F6A756D707A 

SlOF000000001000000000084EFAFFFE93 

S5030001FB 

S9030008F4 

Here is a line-by-line explanation of the example file: 

S0097A65726F6A756D707A contains the ASCII representation of the 
string "zerojump". 

SlOF000000001000000000084EFAFFFE93 loads the following data to 
the following addresses: 

byte 00'6 to address 00'6 
byte 00'6 to address 01'6 
byte 10'6 to address 02'6 
byte 00'6 to address 03'6 
byte 00'6 to address 04'6 
byte 00'6 to address 05'6 
byte 00'6 to address 06'6 
byte 08'6 to address 07'6 
byte 4E'6 to address 08'6 
byte FA'6 to address 09'6 
byte FF'6 to address OA'6 
byte FE'6 to address OB'6 

S5030001FB indicates that only one Sl-record, S2-record, or S3-
record was sent. 

S9030008F4 indicates that the start address is 00000008,6' 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor 

Binary Format 

The binary download format consists of a two parts: 

Part 1. Magic number (which is Ox12345670) + number of 
sections 

Part 2. For each section, 

1. The load address (unsigned long) 
2 The section size (unsigned long) 

A-25 

3. A checksum (unsigned long), which is the long word sum of 
the memory bytes from load address to load address, plus 
section size. 

4. Data 

Note: If you download from a UNIX host in binary format, be sure to 
disable the host from mapping carriage return <cr> to carriage 
return line feed <cr-lf>. The download port is specified in the 
nonvolatile memory configuration. 

Transparent Mode - transmode 

The transmode command is a "transparent mode" for 
communications between a host system and the HK68N3D. 

Note: For transparent mode, the "Baud" fields in the "Console" and 
"Download" groups must be the same. ' 

1. At the monitor prompt, start transparent mode by typing: 

transmode 

2. Use one of these key sequences to start the download: 

For hex-Intel format: CTRL-@-Return 

or CTRL-@-h 

For Motorola Exormax format (50, 51, 52, 53,57, 58, and 59 
records): CTRL-@-m 

For binary format: CTRL-@-b 

3. To return to the monitor, type 

CTRL-@-E5C 

Revision A (Preliminary) I June 1991 



A-26 HK68N3D User's Manual 

EXAMPLE 

If the host is a UNIX system and you have a hex-Intel file called 
foo.hex in a directory foodtr to download, you can use the 
following sequence: 

V3D[1.X) transmode 
UNIXprompt>cd foodir 
UNIXprompt>cat foo.hex 

Press CTRL-@-Return . 

.............. .......•.... {dots continue during download} 

V3D [1. XJ 

Serial Downloads - download 

The download command lets you do serial downloads from a 
UNIX system to the HK68N3D. Add a -b flag to the command for 
binary format, -h for hex-Intel format, or -m for Motorola S­
record format. If no flag is added, the default is hex-Intel format. 

For example 

download -b 

downloads a binary file. 

Executing a Downloaded Program - call 

The call command lets you execute a downloaded program. Use 
the syntax: 

call function argO argl . . . arg7 

You can specify up to eight arguments. The arguments can be in 
numeric, character, flag, string, or symbolic format. 

Revision A (Preliminary) / June 1991 



The HK68N3D Monitor A-27 

DEBUGGING APPLICATIONS 

The following commands are available for program debugging: 

disassemble 
dumpregs 
settrace 
step 
exectrace 

The settrace command allows you to set up control 
configuration for tracing applications. A trace is started by calling 
exectrace. The step command allows you to single-step through 
a program after exectrace has been called. The disassemble 
command can be called at any time to disassemble a block of 
memory, and dumpregs can be called at any time to display 
register contents. 

The exectrace, step, and settrace commands call the functions 
Exec Trace, Step, and SetTrace, which are described together in 
the "Trace" page in the function reference. Details for the 
disassemble command are given on the "DisAssemble" page of 
the function reference, and details for the dumpregs command 
are on the "DumpRegs" page of the function reference. 

Revision A (Preliminary) / June 1991 





The HK68N3D Monitor A-29 

Command Reference 

TYPOGRAPHIC CONVENTIONS 

In the following descriptions, italic type indicates that you must 
substitute your own selection for the italicized text. Square brackets 
[ ] enclose selections from which you must select Q11& item. 

FORMAT FOR MEMORY COMMANDS 

Arguments 

Required flags 

Number bases 

NONVOLATILE MEMORY 

Memory commands take the following arguments: 

value 

startaddr 

endaddr 

is the data operand. 

is the starting address of the operation. 

is the ending address of the operation. 

source is the source address of the action to be 
performed 

destination is the destination address of the action to be 
performed 

bytecount is the number of sequential bytes to be operated 
on. 

For some memory commands, the data size is determined by 
the following flags: 

-b for data in bytes (8 bits) 

-w for data in 16-bit words 

-I for data in 32-bit long words. 

All arguments default to hexadecimal. Specify other bases by 
typing a colon (:) and the base after the value. 

For example, type 52:10 for decimal 52. 

The nonvolatile memory support functions provide the interface 
to the nonvolatile memory. The nonvolatile commands deal only 
with the monitor- and Heurikon-defined sections of the 
nonvolatile memory. The monitor-defined sections of nonvolatile 
memory are read/write and can be modified by the monitor. The 
Heurikon-defined sections of nonvolatile memory are read only 
and cannot be modified. Attempts to modify these sections will 
result in an error message. 

Revision A (Preliminary) I June 1991 



A-30 

add 

bootbus 

HK68N3D User's Manual 

add number number 

adds two integers in hexadecimal (the default), binary, octal, or 
decimal. 

The default numeric base is decimal. Specify hexadecimal by 
typing ":16" at the end of the value, octal by typing ":8" or binary 
by typing ":2". The result of the operation is displayed in hex, 
decimal, octal, and binary. 

bootbus 

is an autoboot device that allows you to boot an application 
program over a bus interface. This command is used for fast 
downloads to reduce development time. 

bootbus uses the LoadAddress field from the nonvolatile 
memory (group "Boot") definitions as the base address of a 
shared memory communications structure, described below: 

struct BusComStruct { 

} ; 

unsigned long MagicLoci 
unsigned long CallAddress; 

The structure consists of two unsigned long locations. The first is 
used for synchronization, and the second is the entry address of 
the application. The sequence of events used for loading an 
application is described below: 

1. The host board waits for the target to write the value Ox496d4f6b 
to "MagicLoc" to show that the target is initialized and waiting. 

2. The host board downloads the application program over the 
bus, then writes the entry point to "CallAddress", and then 
writes OxS96f4f6b to "MagicLoc" to show that the application is 
ready for the target. 

3. Target writes value Ox42796s21 to "MagicLoc" to show that the 
application was found and then calls the application at 
"CallAddress". 

When the application is called, four parameters are passed to the 
application from the nonvolatile memory boot configuration 
section. The parameters are seen by the application as shown 
below: 

Application (Device, Number, RomSize, RomBase) 
unsigned char Device, Number; 
unsigned long RomSize, RomBasei 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor 

bootrom 

bootserial 

call 

checksummem 

boot rom 

is an autoboot device that allows you to boot an application 
program from ROM. 

A-31 

When the application is called, two parameters are passed to the 
application from the nonvolatile memory boot configuration 
section. The parameters are seen by the application as shown 
below: 

Application (Device, Number) 
unsigned char Device, Number; 

There are no arguments for this command. The nonvolatile 
configuration is modified with the commands nvdisplay and 
nvupdate. 

bootserial 

is an autoboot device that allows you to boot an application 
program from a serial port. 

It determines the format of the download and the entry execution 
address of the downloaded application from the nonvolatile 
memory configuration. The nonvolatile configuration is modified 
with the commands nvdisplay and nvupdate. 

When the application is called, three parameters are passed to the 
application from the nonvolatile memory boot configuration 
section. The parameters are seen by the application as shown 
below: 

Application (Number, RomSize, RomBase) 
unsigned char Number; 
unsigned long RomSize, RomBase; 

call address arg arg arg arg arg arg arg arg 

allows execution of a program after a download from one of the 
board's interfaces. This function allows up to eight arguments to 
be passed to the called address from the command line. 
Arguments can be symbolic, numeric, character, flag, or string. 
The default numeric base is hexadecimal. 

Also see transmode, download 

checksummem source bytecount 

reads bytecount bytes starting at address source and computes 
the checksum for that region of memory. The checksum is the 16-
bit sum of the bytes in the memory block. 

Revision A (Preliminary) / June 1991 



A-32 

clearmem 

cmpmem 

configboard 

copymem 

date 

HK68N3D User's Manual 

c 1 e a rmem source bytecount 

clears bytecount bytes starting at address source. 

cmpmem source destination bytecount 

compares bytecount bytes at the source address with those at the 
destination address. Any differences are displayed. 

configboard 

configures the board to the state specified by the nonvolatile 
memory configuration. 

configboard can be used to reconfigure the board's various 
interfaces after modification of the nonvolatile memory 
configuration. This. function accepts no parameters. 

c opymem - [b, w, 1] source destination bytecount 

copies bytecount bytes from the source address to the 
destination address. 

date 

reads the real time clock. 

The date command displays the date in the format: 
Friday June 22, 1990 12:25:31.10 

If the real-time clock is not set up an error message is displayed: 
Warning: Real Time clock is invalid. 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-33 

disassemble 

displaymem 

div 

disassemble startaddr lines 

disassembles memory into MPU assembly language. This 
command accepts a variable number of arguments. The start 
address must be given. 

startaddr the address to start the display. The address is assumed to be 
hexadecimal. 

lines the number of lines to display. If the number of lines is not 
specified, the default is 20 lines. 

The disassembler recognizes all of the Mc68030 instructions 
except for floating point. Floating point instructions are displayed 
as unrecognized instructions that are represented with the . word 
directive. The format of the disassembler should correspond to 
the format used in the MC68030 instruction set manual. 

Unrecognized instructions can cause the disassembler to lose 
synchronization with an assembly program, which can result in an 
error in the display. This usually corrects itself within several 
instructions. 

displaymem startaddr lines 

displays lines of memory starting at startaddr. Press any key to 
interrupt the display. If the lines argument is not specified, 16 
lines are displayed. If the previous command was displaymem, 
pressing <cr> displays the next block of memory. 

di v number number 

divides two integers in hexadecimal (the default), binary, octal, or 
decimal. 

The default numeric base is decimal. Specify hex by typing If: 16" at 
the end of the value, octal by typing ":8" or binary by typing ":2". 
The result of the operation is displayed in hex, decimal, octal, and 
binary. 

Revision A (Preliminary) / June 1991 



A-34 

download 

Flags 

Note: 

dumpregs 

exectrace 

fillmem 

HK68N3D User's Manual 

download - [b, h, m] address 

provides a serial download from a host computer to the board. 
download uses binary, hex-Intel, or Motorola S-record format, as 
specified by flags -b, -h or -m: 

If no flag is specified, the default format is hex-Intel. 

-b binary 

-h hex-Intel 

- m Motorola S-record 

The binary download format is described briefly below: 

1. Magic number (Ox1234S670) + number of sections 

2. Each section: 

Load address (unsigned long) 

Section size (unsigned long) 

Checksum (unsigned long) 

Data 

The checksum is the long word sum of the memory bytes from 
load address to load address, plus section size. 

If you download from a UNIX host in binary format, be sure to 
disable the host from mapping <cr> to <cr-If>. The download 
port is specified by in the nonvolatile memory configuration. 

dump regs 

dumps the contents of the MPU registers from the last processor 
exception that occurred. This command accepts no arguments. 

exectrace address arg arg arg arg arg arg 

is used to execute the application program with the trace modes 
enabled. This command accepts up to 7 arguments from the 
command line. Arguments can be in symbolic, numeric, 
character, flag or string format. The default numeric base is 
hexadecimal. 

f i llmem - [b, w , 1 ] value startaddr endaddr 

fills memory with value starting at address startaddr to address 
endaddr. 

For example, to fill the second megabyte of memory with the data 
Ox1234S678 type: 

fill -1 12345678 100000 200000 

Revision A (Preliminary) / June 1991 



The HK68N3D Monitor 

findmem 

findnotmem 

findstr 

help 

mul 

findmem - [b, w, 1] searchval startaddr endaddr 

searches memory for a value from address startaddr to address 
endaddr for memory locations specified by the data sea rchva 1. 

findnotmem - [b, w, 1] searchval startaddr endaddr 

A-35 

searches from address startaddr to address endaddr for memory 
locations that are different from the data specified by searcbval. 

findstr searcbstr startaddr endaddr 

searches from address startaddr to address endaddr for a match 
to the same string specified by the data string searchstr. 

Use the help command to view the definitions and descriptions of 
monitor commands. 

For instructions on editing command lines, type help editor. 

For a list of command-line functions, type help functions. 

For a detailed memory map, type help memmap. 

For instructions on using the monitor entry points, type 
help entrypoint. 

For details on a specific command, type help and a command 
name. 

mul number number 

multiplies two integers in hexadecimal (the default), binary, octal, 
or decimal from the monitor. 

The default numeric base is decimal. Specify hex by typing ": 16" at 
the end of the value, octal by typing ":8" or binary by typing ":2". 
The result of the operation is displayed in hex, decimal, octal, and 
binary. 

Revision A (Preliminary) I June 1991 



A-36 

nvdisplay 

Group 

Console and 
Download 

VmeBus 

Fields 

Port 

Baud 

Parity 

Data 

StopBits 

XOnXOff 

ChBaudOnBreak 

RstOnBreak 

ExtSlaveMap 

StdSlaveMap 

HK68N3D User's Manual 

nvdisplay 

used to display the Heurikon-defined and monitor-defined 
nonvolatile sections. The values are displayed in groups. Each 
group has a number of fields. Fields are displayed as hexadecimal 
or as a list of legal values. 

To display the next group, press <space> or <cr>. 

To edit fields within the displayed group, press E. 

To quit the display, press ESC or Q. 

To save the changes, type the command nvupdate. 

To quit without saving the changes, type the command nvopen. 

The following error message indicates an attempt to change a 
write-protected field: 

Warning, protected region was not modified. 

The table on the following pages shows all the groups and fields 
you can edit when you use the nvdisplay command: 

Purpose Heurikon 
Default 

Optional Values 

Selects communications port. A (Download) (A, B, C, D) 

B (Console) 

Selects baud rate. 

Selects parity type. 

Selects the number of data bits 
for transfer. 

Selects the number of stop bits 
for transfer. 

Selects XOnXOff protocol. 

Break character causes baud 
rate change. 

Break character causes reset. 

9600 

None 

8-Bits 

2-Bits 

On 

False 

False 

Address to map slave extended Ox80000000 
space. 

Address to map slave standard OxOOOOOO 
space. 

Revision A (Preliminary) I June 1991 

(Even, Odd, None, Force) 

(5-B~s, 6-Bits, 7-Bits, 8-
Bits) 

(1-Bit, 2-Bits) 

(Off, On) 

(False, True) 

(False, True) 



The HK68N3D Monitor A-37 

AddrModSel ExAIl (None, StDat, StAll, 
ExSuDat, ExDat, ExAII) 

The abbreviations stand for: 
no slave access allowed 
(disable), standard data, all 
standard, extended 
supervisor data, extended 
data, all extended (see 
section 7.4) 

ReplaceAddr Standard space replacement OxOOOOOOOO 
address 

EnbleSlave Enable/disable slave standard True (False, True) 
space. 

MastRelModes Select master release modes. OnRequest (WhenDone, OnRequest, 
OnClear, Never) 

SlaveRelOnReq Enable/disable slave release- On (Off, On) 
on-request 

LocalBusTimer Select duration of on-card bus 32Jl (4~, 16~,32~,64~, 128~, 
timer. 

256~, 512~, Off) 

VmeBusTimer Select duration of VMEbus 64~ (4~, 16~,32~,64~, 128~, 
timer. 

256~, 512~, Off) 

Sysfail Turn SYSFAIL* on or off. Off (Off, On) 

IndivRMC Turn indivisible read-modify- Off (Off, On) 
write on or off. 

Mailbox 

ShtSlaveMap Address to map slave short Oxfff8 
space 

EnblSht Enable/disable short space. False (False, True) 

Cache 

InstrCache Turn instruction cache on or off. On (Off, On) 

DataCache Turn data cache on or off. Off (Off, On) 

Mise 

PowerUpMemClr Clear memory on power-up. True (False, True) 

ClrMemOnReset Clear memory on reset. True (False, True) 

PowerUpDiag Use power-up diagnostics. On (Off, On) 

CountValue Choose shortest (0) to longest 7 (0,1,2,3,4,5,6,7) 
(7) duration for autoboot 
countdown. 

BootParams 

BootDev Select boot device. None (None, Disk, Floppy, Tape, 
Serial, Ethernet, ROM, Bus) 

LoadAddress Define load address. Ox03010000 

Rom Base Define ROM base. Ox00400000 This field is used only when 
BootDev is defined as ROM. 

RomSize Define ROM size. OxOOO20000 This field is used only when 
BootDev is defined as ROM. 

Revision A (Preliminary) / June 1991 



A-38 

DevType 

DevNumber 

ClrMemOnBoot 

nvinit 

CAUTION: 

Arguments 

Potential error 

nvopen 

Define'device type. o 

Define device number. o 

Clear memory on boot. False 

n v ini t sernum revlev ecolev Writes 

HK68N3D User's Manual 

Whether you use this field 
depends on the application. 
When BootDev is defined as 
Bus or ROM, DevType 
refers to a device type. 
When BootDev is defined as 
Serial, DevType selects a 
download format (0 for hex­
Intel, 1 for S-records, 2 for 
Heurikon binary). 

Whether you use this field 
depends on the application. 

(False, True) 

used to initialize the nonvolatile memory to the default state 
defined by the monitor. First nvinit clears the memory and then 
writes the Heurikon and monitor data back to EEPROM. 

nvinit clears any values you have changed from the default. 
Use nvinit only if the nonvolatile configuration data structures 
might be in an unknown state and you must return them to a 
known state. 

sernum 

revlev 

ecolev 

writes 

serial number 

revision level 

standard ECO level 

the number of writes to nonvolatile memory 

Warning, protected region cannot be initialized. 

This message appears if you try to use nvinit to clear write­
protected memory. 

nvopen 

reads and checks the monitor and Heurikon-defined sections. If 
the nonvolatile sections do not validate then error messages are 
displayed. 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor 

nvset 

CAUTION: 

Note: 

nvupdate 

prstatus 

rand 

readmem 

A-39 

nvset group field value 

used to modify the Heurikon-defined and monitor-defined 
nonvolatile sections. To modify the list with the nvset command, 
you must specify the group and field to be modified and the new 
value. The group, field, and value can be abbreviated, as in the 
examples below: 

nvset console port B 

nvset con da t 6 

Use nvdisplay instead of nvset to reduce the risk of 
invalidating nonvolatile memory. 

The nonvolatile memory support functions provide the 
interface to the nonvolatile memory. The nonvolatile 
commands deal only with the monitor- and Heurikon-defined 
sections of the nonvolatile memory. The monitor-defined 
sections of nonvolatile memory are read/write and can be 
modified by the monitor. The Heurikon-defined section of 
nonvolatile memory is read only and cannot be modified. 
Attempts to modify these sections will result in an error 
message when the store is done. 

nvupdate 

attempts to write the Heurikon- and monitor-defined nonvolatile 
sections back to the EEPROM. First the data is verified, and then it 
is written to the device. The write is verified and all errors are 
reported. 

prstatus 

This command prints the physical Ethernet ID for the board 
based on the model and serial number and then indicates if the 
board is set up as the system controller. 

rand 

is a linear congruent random number generator that uses a 
function "Seed" and a variable "Value." "Value" is generated by 
the real time clock. The random number returned is an unSigned 
long. 

readmem - [b, w, 1] address 

reads a memory location specified by address. This command 
displays the data in hexadecimal, decimal, octal, binary, or string 
format. 

Revision A (Preliminary) I June 1991 



A-40 

setdate 

setmem 

settrace 

HK68N3D User's Manual 

set da te dayofwk mon dayofmon year hour min AM/PM 

sets the clock. The month, day of week, and AM/PM values are 
assumed to be character strings; other parameters may be 
numeric. 

dayofwk may be abbreviated (Su, M, Tu, W, Th, F, Sa). 

month may also be abbreviated Oa, F, Mar, Ap, May, Jun, Jul, Au, S, 
O,N,D). 

dayofmon is restricted to the range 0-31. 

year ranges from 1990 to 2089. 

hour is restricted to the range 0-23. 

min is restricted to the range 0-59. 

AM/PM is the string AM or PM. 

Also see date. 

setmem -[b,w,l] addre~ 

allows memory locations to be modified starting at address. 
setmem first displays the value that was read. Then you can type 
new data for the value. If you press <cr> after the data, the address 
counts up. If you press <ESC> after the data, the address counts 
down. 

settrace 

displays and modifies the current trace configuration. The trace 
configuration display is shown below: 
MPU Trace Configuration Display: 

SingleStep On (Off, On) 
Branch Off (Off, On) 
Call Off (Off, On) 

Return Off (Off, On) 
Prereturn On (Off, On) 
Breakpoints Off (Off, On) 
BreakPointl OxO 
BreakPoint2 OxO 
BreakPoint3 OxO 
BreakPoint4 OxO 
BreakPointS OxO 
BreakPoint6 OxO 
BreakPoint7 OxO 
BreakPoint8 OxO 

The trace configuration indicates the state of the various trace 
modes and break points. Trace modes can be turned on and off 
to allow tracing on every instruction, branches, calls or returns. 
There is a switch to stop tracing when a key is pressed and a 
switch to display instructions as they are executed. 

Revision A (Preliminary) / June 1991 



The HK68N3D Monitor 

slaveenable 

slavedis 

starttimer 

step 

stoptimer 

A-41 

slaveenable - [e, s, e] address 

enables the specified VMEbus address space. 

-e VMEbus extended space 

-s VMEbus standard space 

-c communications. Signifies VMEbus short space. 

address should contain the base address that will be be mapped, 
where the base address is a hex value. The useful portion of the 
address field is defined as: 

FFxxxxxx 

xxFxxxxx 

xxxxFFxx 

extended space 

standard space 

short space 

slavedis -[e,s,e] 

disables the specified VMEbus address space. 

-e VMEbus extended space 

-s VMEbus standard space 

-c communications. Signifies VMEbus short space 

This command only serves as a working example for initializing 
the timer/clock to. generate interrupts and for handling the 
interrupts. starttimer initializes the CIO, attaches the interrupt 
handler, and then starts the counter timer. In this example the 
variable "NumTicks" is incremented for every interrupt received 
and the LED display is incremented for every interrupt. The 
interrupts are turned off with the stoptimer command, which 
disconnects the interrupt handler. This command currently 
initializes the CIO to generate an interrupt every 10 milliseconds 
using vector number 8216• 

step 

is used to continue execution of an application program after a 
trace exception has occurred. This command can only ·be run 
after the exectrace command has been executed. 

stoptirner 

turns off the starttimer command. 

Revision A (Preliminary) / June 1991 



A-42 

sub 

swapmem 

testmem 

transmode 

writemem 

writestr 

HK68N3D User's Manual 

sub number number 

subtracts two integers in hexadecimal (the default), binary, octal, 
or decimal. 

The default numeric base is decimal. Specify hexadecimal by 
typing ": 16" at the end of the value, octal by typing ":8" or binary 
by typing ":2". The result of the operation is displayed in hex, 
decimal, octal, and binary. 

s w a pmem source destination bytecount 

swaps bytecount bytes at the source address with those at the 
destination address. 

testmem startaddr endaddr 

performs a nondestructive memory test. 

This command can be used to verify memory (DRAM, SRAM, 
VMEbus,). If no arguments are specified, the command reads the 
nonvolatile configuration and tests the on-card dynamic memory. 
If startaddr and endaddr are specified, then an alternate memory 
area can be tested. The default numeric base is hexadecimal. 

transmode 

provides an interface to UNIX@ through the board by connecting 
the console to a download port. Several key sequences are used to 
leave transparent mode and to initiate a download: 

CTRL-@-RETURN 
CTRL-@-h 
CTRL-@-m 
CTRL-@-b 
CTRL-@-ESC 

Download hex-Intel. 
Download hex-Intel. 
Download Motorola S-records. 
Download binary. 
Return to monitor. 

A cable reverser might be necessary for the connection. 

w r i t emem - [b , w, 1] address value 

writes value to a memory location specified by address. 

writestr "string' address 

writes the ASCII string specified by string to a memory location 
specified by address. The string must be enclosed in double 
quotes (CI "). 

Revision A (Preliminary) / June 1991 



• REMOTE HOST COMMANDS 

transmode 

provides an interface to UNIX® through 
the board via the console to a download 
port. Several key characters are used to 
leave transparent mode and to initiate a 
download: 

Download hex-Intel: 
CTRL-@-h or CTRL-@-RETURN 

Download Motorola S-records: 
CTRL-@-m 

Download binary: 
CTRL-@-b 

Return to Monitor: 
CTRL-@-ESC 

download -[b,h,m] address 

provides a serial download using 
binary (-b), hex-Intel (-h), or Motorola S­
record (-s) format. 

call address arg arg arg arg arg arg arg arg 

allows execution of a program after a 
download from one of the board's 
interfaces. This command allows up to 
8 arguments to be passed to the called 
address from the command line. 
Arguments can be symbolic, numeric, 
character, flag, or strings. The default 
numeric base is hexadecimal. 

• TRACE COMMANDS 

disassemble startaddr lines 

disassembles memory into MPU 
assembly language. The display of lines 
starts at startaddr. 

dumpregs 

dumps the contents of the registers from 
the last fault that occurred. 

exectrace address arg arg arg arg arg arg arg 

executes an application program with 
the trace modes enabled. This com­
mand allows up to 7 arguments to be 
passed to the called address from the 
command line. Arguments can be in 
symbolic, numeric, character, flag or 
string format. 

Crease and tear along perforation. 

step 

settrace 

• UTILITIES 

continues execution of an application 
program after a trace exception has 
occurred. This command can only be run 
after the exectrace command has been 
executed. 

displays and modifies the current trace 
configuration. 

configboard 

date 

configures the board to the state specified by 
the nonvolatile memory configuration. 
configboard can be used to reconfigure the 
board's various interfaces after modification 
of the nonvolatile memory configuration. 

displays the date in the format: 
Friday April 19, 1991 12:25:31.10 

setdate dayofwk mon dayofmon year hour min AM/PM 

sets the clock. 

starttimer 

This command only serves as a working 
example. starttimer initializes the CIO, 
attaches the interrupt handler, and then 
starts the counter timer. In this example the 
variable "NumTicks" is incremented for every 
interrupt received and the LED display is 
incremented for every interrupt. The 
interrupts are turned off with the stoptimer 
command, which disconnects the interrupt 
handler. 

• ARITHMETIC FUNCTIONS 
add number number 
sub number number 
mul number number 
div number number 
rand 

The default base is hexadecimal. To use another base, 
add a colon (:) and the base after the number. 

HK68N3D 
Monitor 

• 
Quick-Reference to 

Commands 

HElRIK9N® 



• HELP COMMANDS 

help 

displays a summary of the monitor. 

help functions 

displays a list of monitor functions. 

help memmap 

displays the memory map for the 
HK681V3D. 

• NV-RAM COMMANDS 

nvdlsplay 

nvopen 

nvupdate 

Displays the nonvolatile memory contents 
by group and field. Press E to edit a field. 

Reads and checks Heurikon nonvolatile 
memory. 

Saves changes to nonvolatile memory. 

• MEMORY COMMANDS 
All numeric arguments default to hexadecimal. 
Specify other bases by typing a colon (:) and the 
base after the value. For example, type 52:10 for 
decimal 52. 

checksummem source bytecount 

reads bytecount bytes starting at address 
source; indicates the checksum for that 
region of memory. 

clearmem source bytecount 

clears bytecount bytes starting at address 
source. 

cmpmem source destination bytecount 

compares bytecount bytes at source with 
those at destination. Any differences are 
displayed. 

copymem -[b,w,I] source destination bytecount 

copies bytecount bytes from source to 
destination. 

displaymem startaddr lines 

displays lines of memory starting at 
startaddr.· Lines defaults to 16. 
<cr> displays the next block. 

fillmem -[b,w,l] value startaddr endaddr 

fills memory with value between startaddr 
and endaddr in bytes, words, or longs. 

findmem -[b,w,I] search val startaddr endaddr 

searches from startaddr to endaddr for 
memory patterns specified by search val. 

findnotmem -[b,w,I] searchval startaddr endaddr 

searches from startaddr to endaddr for 
memory patterns that are different from 
searchval. 

findslr searchstr startaddr endaddr 

searches from startaddr to endaddr for a 
match to the same string specified by 
searchstr. " 

readmem -[b,w,I] address 

reads a memory location specified by 
address and displays the data in hexadeci­
mal, decimal, octal, binary, and string format. 

setmem -[b,w,I] address 

allows memory locations to be modified 
starting at address. setmem first displays the 
value that was read. Then you can type new 
data for the value. If you press <cr> after the 
data, the address counts up. If you press 
<ESC> after the data, the address counts 
down. 

swapmem source destination bytecount 

swaps bytecount bytes at the source 
address with those at the destination 
address. 

testmem startaddr endaddr 

performs a nondestructive memory test. 

writemem -[b,w,I] address value 

writes value to a memory location specified 
by address. 

writestr "string" address 

writes the ASCII string specified by string to 
a memory location specified by address. The 
string m\,lst be enclosed in double quotes ("). 

• BUS COMMANDS 

slaveenable -[e,s,c) address 

enables the VMEbus extended (-e), 
standard (-s) or short (-c) space. 
address should contain the base 
address that will be mapped. The base 
address is a hex value. The useful 
portion of the address field is defined 
as: 
FFxxxxxx (extended space) 
xxFxxxxx (standard space) 
xxxxFFxx (short space) 

slavedis -[e,s,c] 

disables the VMEbus extended (-e), 
standard (-s) or short (-c) space. 

prstatus 

displays the Ethernet ID and whether 
the board is VMEbus system 
controller. 

• BOOT COMMANDS 

bootbus 

bootrom 

receives applications over the 
backplane. Addresses and sizes are 
specified in nonvolatile memory. 

loads applications from ROM and 
executes. Addresses and sizes are 
specified in nonvolatile memory. Useful 
for booting user code or an operating 
system. 

bootserial 

loads applications from a serial port and 
executes. Addresses and sizes are 
specified in nonvolatile memory. 



• REMOTE HOST COMMANDS 

transmode 

provides an interface to UNIX® through 
the board via the console to a download 
port. Several key characters are used to 
leave transparent mode and to initiate a 
download: 

Download hex-Intel: 
CTRL-@-h or CTRL-@-RETURN 

Download Motorola S-records: 
CTRL-@-m 

Download binary: 
CTRL-@-b 

Return to Monitor: 
CTRL-@-ESC 

download -[b,h,m] address 

provides a serial download using 
binary (-b), hex-Intel (-h), or Motorola S­
record (-s) format. 

call address arg arg arg arg arg arg arg arg 

allows execution of a program after a 
download from one of the board's 
interfaces. This command allows up to 
8 arguments to be passed to the called 
address from the command line. 
Arguments can be symbolic, numeric, 
character, flag, or strings. The default 
numeric base is hexadecimal. 

• TRACE COMMANDS 

disassemble startaddr lines 

disassembles memory into MPU 
assembly language. The display of lines 
starts at startaddr. 

dumpregs 

dumps the contents of the registers from 
the last fault that occurred. 

exectrace address arg arg arg arg arg arg arg 

executes an application program with 
the trace modes enabled. This com­
mand allows up to 7 arguments to be 
passed to the called address from the 
command line. Arguments can be in 
symbolic, numeric, character, flag or 
string format. 

Crease and tear along perforation. 

step 

settrace 

• UTILITIES 

continues execution of an application 
program after a trace exception has 
occurred. This command can only be run 
after the exectrace command has been 
executed. 

displays and modifies the current trace 
configuration. 

conflgboard 

date 

configures the board to the state specified by 
the nonvolatile memory configuration. 
conflgboard can be used to reconfigure the 
board's various interfaces after modification 
of the nonvolatile memory configuration. 

displays the date in the format: 
Friday April 19, 1991 12:25:31.10 

setdate dayofwk mon dayofmon year hour min AM/PM 

sets the clock. 

starttimer 

This command only serves as a working 
example. starttimer initializes the CIO, 
attaches the interrupt handler, and then 
starts the counter timer. In this example the 
variable "NumTicks" is incremented for every 
interrupt received and the LED display is 
incremented for every interrupt. The 
interrupts are turned off with the stopt.imer 
command, which disconnects the interrupt 
handler. 

• ARITHMETIC FUNCTIONS 
add number number 
sub number number 
mul number number 
div number number 
rand 

The default base is hexadecimal. To use another base, 
add a colon (:) and the base after the number. 

HK68N3D 
Monitor 

• 
Quick-Reference to 

Commands 

HElRIK8N'@ 



• HELP COMMANDS 

help 

displays a summary of the monitor. 

help functions 

displays a list of monitor functions. 

help mernmap 

displays the memory map for the 
HK681V3D. 

• NV-RAM COMMANDS 

nvdlsplay 

nvopen 

nvupdate 

Displays the nonvolatile memory contents 
by group and field. Press E to edit a field. 

Reads and checks Heurikon nonvolatile 
memory. 

Saves changes to nonvolatile memory. 

• MEMORY COMMANDS 
All numeric arguments default to hexadecimal. 
Specify other bases by typing a colon (:) and the 
base after the value. For example, type 52:10 for 
decimal 52. 

checksummem source bytecount 

reads bytecount bytes starting at address 
source; indicates the checksum for that 
region of memory. 

clearmem source bytecount 

clears bytecount bytes starting at address 
source. 

cmpmem source destination bytecount 

compares bytecount bytes at source with 
those at destination. Any differences are 
displayed. 

copymem -[b,w,I] source destination bytecount 

copies byte count bytes from source to 
destination. 

displaymem startaddr lines 

displays lines of memory starting at 
startaddr. Lines defaults to 16. 
<cr> displays the next block. 

fillmem -[b,w,I] value startaddr endaddr 

fills memory with value between startaddr 
and endaddr in bytes, words, or longs. 

findmem -[b,w,I] search val startaddr endaddr 

searches from startaddr to endaddr for 
memory patterns specified by search val. 

findnotmem -[b,w,I] searchval startaddr endaddr 

searches from startaddr to endaddr for 
memory patterns that are different from 
search val. 

findstr searchstr startaddr endaddr 

searches from startaddr to endaddr for a 
match to the same string specified by 
searchstr. • 

readmem -[b,w,I] address 

reads a memory location specified by 
address and displays the data in hexadeci­
mal, decimal, octal, binary, and string format. 

setmem -[b,w,I] address 

allows memory locations to be modified 
starting at address. setmem first displays the 
value that was read. Then you can type new 
data for the value. If you press <cr> after the 
data, the address counts up. If you press 
<ESC> after the data, the address counts 
down. 

swapmem source destination bytecount 

swaps bytecount bytes at the source 
address with those at the destination 
address. 

testmem startaddr endaddr 

performs a nondestructive memory test. 

writemem -[b,w,I] address value 

writes value to a memory location specified 
by address. 

writestr "string" address 

writes the ASCII string specified by string to 
a memory location specified by address. The 
string must be enclosed in double quotes ("). 

• BUS COMMANDS 

slaveenable -[e,s,c] address 

enables the VMEbus extended (-e), 
standard (-s) or short (-c) space. 
address should contain the base 
address that will be mapped. The base 
address is a hex value. The useful 
portion of the address field is defined 
as: 
FFxxxxxx (extended space) 
xxFxxxxx (standard space) 
xxxxFFxx (short space) 

slaved is -[e,s,c] 

disables the VMEbus extended (-e), 
standard (-s) or short (-c) space. 

prstatus 

displays the Ethernet 10 and whether 
the board is VMEbus system 
controller. 

• BOOT COMMANDS 

bootbus 

bootrom 

receives applications over the 
backplane. Addresses and sizes are 
specified in nonvolatile memory. 

loads applications from ROM and 
executes. Addresses and sizes are 
specified in nonvolatile memory. Useful 
for booting user code or an operating 
system. 

bootserial 

loads applications from a serial port and 
executes. Addresses and sizes are 
specified in nonvolatile memory. 



The HK68N3D Monitor A-43 

Errors and Screen Messages 

Message 

Error while clearing NV memory. 

Error while reading NV memory. 

Error while storing NV memory. 

Hit 'H' to skip bus auto-boot 

No help for_. 

Power-up Memory Test FAILED. 

Power-up Serial Test FAILED. 

Unable to change 10. 

Unknown 

Unknown boot device 

Most commands return an explanatory message for misspelled or 
mistyped commands, missing arguments, or invalid values. This 
table lists errors that can be attributed to other causes, especially 
errors that indicate a problem in the nonvolatile memory 
configuration. 

Some errors can be resolved only with a call to Heurikon 
Customer Support, 1-800-327-1251. 

Source and suggested solution 

NV memory has become corrupted. Type nvlnlt to 
restore defaults. If the problem persists, call a 
Heurikon customer representative. 

Consult the introduction to this appendix for 
information about power-up conditions. 

The topic for help was misspelled or is not available. 
Check the spelling. H the topic was a command 
name, type help to check the spelling of the 
command. You must use the full command name, 
not an abbreviation. 

A failed Memory Test or Serial Test could mean a 
hardware malfunction. Report the error to Heurikon 
Customer Support. 

The Module 10 can be changed only by Heurikon. 

The Module 10 is incorrect. Report the error to 
Heurikon Customer Support. 

The boot device is invalid. Use nvdisplay to 
check and edit the "BootParams" group, "BootOev" 
field. Save a new value with nvupdate. 

Unexpected __ Exception at __ . There are many possible sources for this error. 

Warning NV memory board initialization skipped. 

Warning NV memory is invalid - using defaults. 

H the error is displayed during boot, it could mean 
that autoboot is enabled and invalid parameters are 
being used. 

H the error is displayed at reset or power-up and 
autoboot is not enabled, report the error to Heurikon 
Customer Support. 

H the error is displayed after a command has been 
executed, probably an attempt has been made to 
perform an operation that causes an exception. 

Only minimum configuration has been completed. 
The configuration data structures are invalid. 

Consult the introduction to this appendix for 
information about reset conditions. 

Revision A (Preliminary) / June 1991 



A-44 

Warning protected region of NV memory cannot be 
initialized. 

Warning protected region of NV memory was not 
modified. 

Warning protected region of NV memory is corrupt. 

Warning: Real Time clock is invalid. 

HK68N3D User's Manual 

An attempt was made to change a write-protected 
NV field. Either re-read the nonvolatile memory 
defaults for these protected regions by typing the 
nvopen command, or return any fields you tried to 
edit to their original values. 

The real-time clock has not been set up. See the 
RTC section of this manual and code samples in 
Appendix B for setup information. 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor A-45 

Function Reference 

FUNCTION SUMMARY 

The reference pages have been alphabetically sorted, but some 
pages contain the descriptions for several related functions. Use 
the cross-reference to function names to locate each function. 

No argument checking will take place for functions that are called 
directly from the command line. It is advisable instead to use the 
monitor commands whenever possible. 

The functions require spaces between the function name and its 
arguments. No parentheses or other punctuation is necessary. 

EXAMPLES 

UnMaskInts 1 

ConnectHandler Oxf8 OxlOOO 
... 

Examples of common uses of monitor functions and the functions 
available for each use are listed below. This list is not exhaustive, 
and not all functions on the list might be supported on the 
HK68/V3D. 

caIlable functions that are key entry points into the monitor: 

StartMonitor 

Interrupt support to read registers and tables used for interrupts: 

MasklntsO 
UnMasklntsO 
VecToVecAddrCVector) 
VectlnitO 
ConnectHandlereVector) 
DisConnectHandlereVector) 

Register and cache functions: 

FlushCacheO 

Configuring the board by using NV memory parameters: 
ConfigVmeBusO 
ConfigVsbBusO 
ConfigCioO 
ConfigScsiO 
ConfigSerDevsO 

Revision A (Preliminary) / June 1991 



A-46 

Initializing the board to the default conditions: 

InitBoardO 
InitCioO 
InitScsiO 

Controlling the serial ports: 

PutC(Char) 
RPutC(Char) 
GetCO 
RGetCO 
KBHitO 
RKBHitO 
TxMTO 
RTxMTO 
RChBaud(BaudRate) 
ChBaud(BaudRate) 

Writing to 00 data ports: 

ReadCIOPortAO 
ReadCIOPortBO 
ReadCIOPortCO 
WriteCIOPortBO 

Unmasking VMEbus interrupts: 

UnMaskVMElntO 

Writing to the LED display: 

SetLedDisplayO 

HK68N3D User's Manual 

Writing or reading the memory image to or from the NV memory device at the 
specified offset: 

NVOpCOperation, MemlmagePtr, Size, Offset) 
(Operations 0-4 are fix, clear, check, open and save.) 

Executing the device I/O: 

NVRamAcc(Flag, ByteNumber) 

Setting the memory images to the default monitor values: 

SetNvDefaultsO 

Booting a program from the specified drive: 

BootUpO 

Revision A (Preliminary) I June 1991 



The HK68N3D Monitor 

Setting the memory management functions and determining where free memory 
resides: 

MemResetO 
MemAdd(Address, Size) 
MemStatsO 
MemTopO 
MemBaseO 

Memory management - allocating and returning memory: 

Malloc(Size) 
Free(Address) 
Calloc(Number, Size) 
CFree(Address) 
ReAlloc(Address, Size) 

Revision A (Preliminary) I June 1991 

A-47 





FUNCTION XREF( 1) V3D (1) FUNCTION XREF(1) 

Function Name Page Title Section Title 

Add () ............... Add ................. Monitor (Std) 
atob () .............. atoh ............... . Monitor (Std) 
atod() .............. atoh ................ Monitor (Std) 
atoh () .............. atoh ................ Monitor (Std) 
atoo () .............. atoh ................ Monitor (Std) 
atoX () .............. atoh ................ Monitor (Std) 
BinToHex() .......... atoh ................ Monitor (Std) 
BootBus() ........... BootBus ............. Monitor (Std) 
BootRom () ........... BootRom ............. Monitor (Std) 
BootSerial() ........ BootSerial .......... Monitor (Std) 
BootUp() ............ BootUp .............. Monitor (Std) 
Call () .............. Call ................ Monitor (Std) 
Calloc () ............ MemMng .............. Monitor (Std) 
CFree () ............. MemMng .............. Monitor (Std) 
ChBaud () ............ Serial .............. Monitor (Std) 
CheckSumMem() ....... BlockMem ............ Monitor (Std) 
ClearMem() .......... BlockMem ............ Monitor (Std) 
CmpMem() ............ BlockMem ............ Monitor (Std) 
CmpStr() ............ Strings ............. Monitor (Std) 
ConnectHandler() .... Exceptions .......... Processor (MC68030) 
CopyMem () ........... BlockMem ............ Monitor (Std) 
Date() .............. Date ................ Monitor (Std) 
DisAssemble() ....... DisAssemble ......... Processor (MC68030) 
DisConnectHandler() . Exceptions .......... Processor (MC68030) 
DisDataCache() ...... Cache ............... Processor (MC68030) 
DislnstCache() ...... Cache ............... Processor (MC68030) 
DispGroup() ......... NVSupport ........... Monitor (Std) 
DisplayMem() ........ DisplayMem .......... Monitor (Std) 
Div () ............... Add ................. Monitor (Std) 
DownLoad () .......... DownLoad ............ Monitor (Std) 
DumpRegs() .......... DumpRegs ............ Processor (MC68030) 
EnbDataCache() ...... Cache ............... Processor (MC68030) 
EnblnstCache() ...... Cache ............... Processor (MC68030) 
ExecTrace() ......... Trace ............... Processor (MC68030) 
FastFiIIMem() ....... FastFillMem ......... Processor (MC68030) 
FillMem() ........... BlockMem ............ Monitor (Std) 
FindBitSet () ........ atoh ................ Monitor (Std) 
FindMem() ........... FindMem ............. Monitor (Std) 
FindNotMem() ........ FindMem ............. Monitor (Std) 
FindStr() ........... FindMem ............. Monitor (Std) 
FlushCache () ........ Cache ............... Processor (MC68030) 
Free () .............. MemMng .............. Monitor (Std) 
FromFifo () .......... InitFifo ............ Monitor (Std) 
GetC () .............. Serial .............. Monitor (Std) 
Help () ... "........... Help ................ Monitor (Std) 
HexToBin() .......... atoh ................ Monitor (Std) 
InitFifo() .......... InitFifo ............ Monitor (Std) 
InitTrace() ......... Trace ............... Processor (MC68030) 
IsLegal() ........... IsLegal ............. Monitor (Std) 
KBHit() ............. Serial .............. Monitor (Std) 
Malloc() ............ MemMng .............. Monitor (Std) 

Pagel June 21, 1991 



FUNCfION XREF(1) V3D (1) FUNCfION XREF(1) 

MaskInts() .......... Interrupts .......... Processor (MC68030) 
MemAdd() ............ MemMng .............. Monitor (Std) 
MemReset() .......... MemMng .............. Monitor (Std) 
MemStats() .......... MemMng .............. Monitor (Std) 
Mul () ............... Add ................. Monitor (Std) 
NVDisplay() ......... NVMemory ............ Monitor (Std) 
NVIni t () ............ NVMemory ............ Monitor (Std) 
NVOp () .............. NVSupport ........... Monitor (Std) 
NVOpen() ............ NVMemory ............ Monitor (Std) 
NVSet 0 ............. NVMemory ............ Monitor (Std) 
NVUpdate() .......... NVMemory ............ Monitor (Std) 
Probe() ............. Exceptions .......... Processor (MC68030) 
PutC() .............. Serial .............. Monitor (Std) 
Rand () .............. Add ................. Monitor (Std) 
RChBaud () ........... Serial .............. Monitor (Std) 
ReAlloc() ........... MemMng .............. Monitor (Std) 
RGetC () ............. Serial .............. Monitor (Std) 
RKBHit() ............ Serial .............. Monitor (Std) 
RPutC () ............. Serial ............. . Monitor (Std) 
RTxMT () ............. Serial .............. Monitor (Std) 
Seed () .............. Add ................. Monitor (Std) 
SetDate() ........... Date ................ Monitor (Std) 
SetMem() ............ DisplayMem .......... Monitor (Std) 
SetNvDefaults() ..... NVSupport ........... Monitor (Std) 
SetTrace () .......... Trace ............... Processor (MC68030) 
Step() .............. Trace ............... Processor (MC68030) 
StrCat() ............ Strings ............. Monitor (Std) 
StrCmp() ............ Strings ............. Monitor (Std) 
StrCpy() ............ Strings ............. Monitor (Std) 
StrLen() ............ Strings ............. Monitor (Std) 
Sub () ............... Add ................. Monitor (Std) 
SwapMem () ........... BlockMem ............ Monitor (Std) 
TestMem () ........... TestMem ............ . Monitor (Std) 
ToFifo() ............ InitFifo ............ Monitor (Std) 
TransMode() ......... TransMode ........... Monitor (Std) 
TxMT () .............. Serial .............. Monitor (Std) 
UnMaskInts() ........ Interrupts .......... Processor (MC68030) 
VectInit() .......... Exceptions ... ~ ...... Processor (MC68030) 
VecToVecAddr() ...... Exceptions .......... Processor (MC68030) 
xprintf() ........... xprintf ............. Monitor (Std) 
xsprintf () .......... xprintf ............ . Monitor (Std) 

June 21, 1991 Page 2 



Add(1) Monitor (Std) Add(1) 

SYNOPSIS 
Add(Argl, Arg2) 
unsigned long Arg1, Arg2; 

Sub(Argl, Arg2) 
unsigned long Arg1, Arg2; 

Mul(Argl, Arg2) 
unsigned long Arg1, Arg2; 

Div(Argl, Arg2) 
unsigned long Arg1, Arg2; 

unsigned long RandO 

Seed(Value) 
unsigned long Value; 

DESCRIPTION 

Pagel 

These functions are provided to allow the monitor to do basic arithmetic operations on the com­
mand line using a variety of numeric bases. Each function accepts two arguments Argl and Arg2 
to perform the arithmetic operation and returns the results. For the Add and Mul functions argu­
ment order is not important. The Sub function performs Argl minus Arg2. The Div function per­
forms the Argl divided by Arg2 operation checking to avoid division by zero. 

The function Rand is a linear congruent random generator. The random number returned is an 
unsigned long. The function Seed is used to seed the random number generator. The variable 
Value should be generated from the real time clock. 

June 21, 1991 



atoh(1) Monitor (Std) atoh(1) 

SYNOPSIS 
unsigned long atoh(p) 
char "'p; 

unsigned long atod(p) 
char·"'pi 

unsigned long atoo(p) 
char "'p; 

unsigned long atob(p) 
char "'Pi 

unsigned long atoX(p, Base) 
char "'Pi 
int Base; 

BinToHex(Val) 
unsigned long Val; 

HexToBin(Val) 
unsigned long Val; 

FindBitSet(Number) 
unsigned long Number; 

DESCRIPTION 

Pagel 

These functions are a collection of numeric conversion programs used to convert character strings 
to numeric values, convert Hex to BCD, BCD to Hex, and to search for bit values. 

The atoh function provides conversion of an ascii string to a hex number. The atoh function pro­
vides conversion of an ascii string to a decimal number. The atoo function provides conversion of 
an ascii string to an octal number. The atob function provides conversion of an ascii string to a 
binary number. 

The function atoX accepts both the character string p and the numeric base Base to be used in con­
verting the string. This can be used for numeric bases other than the standard bases 16, 10,8 and 
2. 

The BinToHex function provides conversion of a binary value to packed nibbles (BCD). The Hex­
ToBin function provides conversion of packed nibbles (BCD) to binary. This function accepts the 
parameter Val, which is assumed to contain a single hex number of value 0-99. 

The FindBitSet function searches the Number for the first non-zero bit. The bit position of the least 
significant non-zero bit is returned. This function accepts the parameter Val, which is assumed to 
contain a single BCD number of value 0-99. 

June 21, 1991 



BlockMem( 1) Monitor (Std) BlockMem (1) 

SYNOPSIS 
ClearMem(Dest, ByteCount) 
unsigned char *Dest; 
unsigned long ByteCount; 

FillMem(Flag, Value, StartAddr, EndAddr) 
unsigned long Value, StartAddr, EndAddr; 
char Flag; 

CopyMem(Src, Dest, ByteCount) 
unsigned char *Src, *Dest; 
unsigned long ByteCount; 

SwapMem(Src, Dest, ByteCount) 
char *Src, *Dest; 
int ByteCount; 

CmpMem(Src, Dest, ByteCounO 
char *Src, *Dest; 
int ByteCount; 

CheckSumMem(Addr, ByteCount) 
unsigned char * Addr; 
unsigned long ByteCount; 

DESCRIPTION 

Pagel 

These functions provide the ability to clear, fill, copy, swap, compare, and checksum blocks of 
memory. All of the functions treat memory as a block of bytes except for the FillMem function, 
which can treat memory blocks as bytes, words, or longs. 

The function ClearMem clears the number of bytes specified by ByteCount starting at address Dest. 

The function FillMem fills memory starting at address StartAddr to address EndAddr with the 
specified Value. Memory is treated as bytes, words, or longs as specified by the character Flag 
which must be b, w, or 1 for byte, word, and long. 

The function CopyMem copies from source address Src to destination address Dest the number of 
bytes specified by ByteCount. 

The function SwapMem swaps two memory blocks of size specified by ByteCount. The blocks are 
located at the addresses specified by Src and Dest. 

The function CmpMem compares two memory blocks of size specified by ByteCount. The blocks 
are located at the addresses specified by Src and Dest. If the memory blocks are different, a mes­
sage indicating where and how they differ is printed. 

The function CheckSumMem computes the checksum for the memory block of size ByteCount. The 
memory block is specified by the Address parameter. The checksum is the 16-bit sum of the bytes 
in the memory block. 

June 21, 1991 



BootBus(l) Monitor (Std) BootBus(l) 

SYNOPSIS 
BootBus(PowerUp) 
int PowerUp; 

DESCRIPTION 
The BootBus function is one of the autoboot devices supported by the Inonitof. The pucp08e of 
this function is to provide a method of loading an application program over a bus interface. This 
is accomplished by communicating with another board on the bus through a shared memory 
location. This provides very fast downloads that reduce software development time. This func­
tion uses the LoadAddress field from the NY memory configuration as the base address of a shared 
memory communications structure described below: 

struct BusComStruct { 
unsigned long MagicLoci 
unsigned long CallAddressi 
} i 

This structure consists of two unsigned long locations. The first is used for synchronization and 
the second is the entry address of the application. The sequence of events used for loading an 
application is described below: 

First, the host board waits for the target to write the value Ox496d4f6b (character string "ImOk") 
to the magic location MagicLoc, indicating the target is initialized and waiting for a download. 

Second, the host board downloads the application program over the bus, writes the entry point or 
execution address of the application to CallAddress, and then writes Ox596f4f6b (character string 
''Y oOk") to MagicLoc, indicating the application is ready for the target. 

Finally, the target detects the host has written to the magic location, copies the application pro­
gram to local memory, and then sets the value to Ox42796521 (character string "Bye!") indicating 
the application was found. The target then calls the application at CallAddress. When the applica­
tion is called, four parameters that are pulled from the NY memory boot configuration section are 
passed to the application. The parameters as seen by the application are shown below: 

Application(Device, Number, RomSize, RomBase) 
unsigned char Device, Number; 
unsigned long RomSize, RomBase; 

These parameters allow multiple boards using the same facility to receive different configuration 
information from the monitor. 

SEE ALSO 
BootUpO 

Pagel June 21, 1991 



BootRom(l) Monitor (Std) BootRom(l) 

SYNOPSIS 
BootRom(Power Up) 
int PowerUp; 

DESCRIPTION 
The BootRom function is one of the autoboot devices supported by the monitor. The purpose of 
this function is to provide a method of loading an application program from ROM. If only one 
ROM socket is provided, the application must be loaded into the same ROM as the monitor. The 
monitor must be located in either the highest or lowest portion of the ROM, depending on where 
the processor expects the monitor at reset. The 80960CA and Gmicro processors require the moni­
tor in the high portion, and the 68000 family requires the monitor in the lowest portion. 

The location, size and load address of the application is Specified in the NV memory boot 
configuration space. The NV memory configuration parameters used are Rom Base, RomSize and 
LoadAddress. 

This monitor function, when called, copies the number of bytes specified by the NV memory 
parameter RomSize from the ROM location specified by RomBase to the memory location specified 
by LoadAddress. After the memory is loaded, the application is called at LoadAddress. When the 
application is called, two parameters that are pulled from the NV memory boot configuration sec­
tion are passed to the application. The parameters as seen by the application are shown below: 

Application (Device, Number) 
unsigned char Device, Number; 

These parameters allows multiple boards using the same facility to receive configuration informa­
tion from the monitor. 

ARGUMENTS 
The flag PowerUp indicates if this function is called for the first time. If so, memory must be 
cleared. 

SEE ALSO 
BootUpO 

Pagel June 21, 1991 



BootSerial (1 ) Monitor (Std) BootSerial ( 1 ) 

SYNOPSIS 
BootSerial(PowerUp) 
int PowerUp; 

DESCRIPTION 
The BootSr;,;Ul function is one of L'1e autoboot devices supported by the monitor. The purpose of 
this function is to provide a method of loading an application program from a serial port. This 
function uses the LoadAddress and DevType fields from the NY memory configuration to deter­
mine the format of the download and the entry execution address of the downloaded application. 
The DevType field selects one of the download formats specified below: 

DEVICE NUMBER 

INT MCS86 0 
MOT EXORMAT 1 
HK BINARY 2 

DOWNLOAD FORMAT 

Intel MCS-86 Hexadecimal Format 
Motorola Exormax Format (SO-S3,S7-59 Records). 
Heurikon Binary Format. 

When the application is called, three parameters that are pulled from the NV memory boot 
configuration section are passed to the application. The parameters as seen by the application are 
shown below: 

Application {Number, RomSize, RomBase) 
unsigned char Number; 
unsigned long Rom5ize, RomBase; 

These parameters allow multiple boards using the same facility to receive different configuration 
information from the monitor. 

SEE ALSO 
BootUpO 

Pagel June 21, 1991 



BootUp(1) Monitor (Std) BootUp(1) 

SYNOPSIS 
BootUp(PowerUp) 
int PowerUp; 

DESCRIPTION 
The BootUp function is called immediately after the NV memory device has been opened and the 
board has been configured according to the NV configuration. First, this function determines if 
memory is to be cleared according to the NV configuration and the flag Power Up. 

The monitor provides an autoboot feature that allows an application to be loaded from a variety 
of devices and executed. This function uses the NV configuration to determine which device to 
boot from and calls the appropriate boot strap program. The monitor supports the ROM, BUS, 
and SERIAL autoboot devices, which are not hardware-specific. The remainder of the devices 
mayor may not be supported by board-specific functions described elsewhere. Currently, the 
board specific devices are SCSI (floppy, disk, and tape) and ethemet. 

ARGUMENTS 
The flag PowerUp indicates if this function is being called for the first time. If so, memory must be 
~ared. • 

SEE ALSO 

Pagel 

StartMon.c, NvMonDefs.h, NVTable.c BootRomO, BootBusO BootWinchO, BootFloppyO, Boot­
TapeO 

June 21, 1991 



Cache(1) Processor (MC68030) Cache(1) 

SYNOPSIS 
FlushCacheO 
EnblnstCacheO 
DislnstCacheO 
EnbDataCacheO 
DisDataCacheO 

DESCRIPTION 
These functions are used to enable, disable and flush the instruction and data caches. The Flush­
Cache function flushes both the instruction and data caches. 

The functions EnblnstCache and EnbDataCache enable the instruction and data caches respective 
by turning on the enables is the CACR register. 

The functions DislnstCache and DisDataCache disable the instruction and data caches respective by 
turning off the enables in the CACR register. Before a cache is disabled it is flushed. 

SEE ALSO 

Pagel June 21, 1991 



CaIlO) Monitor (Std) Call(1) 

SYNOPSIS 
Call(Funct, ArgO, Argl, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) 
int (IfoFunct )0; 
unsigned long ArgO, Argl, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7; 

DESCRIPTION 
The Call command allows execution of programs that have been downloaded through one of the 
board's interfaces. This function allows up to eight arguments to be passed to the called function 
from the command line. If the application program wants to return to the monitor, it is important 
that the processor stack registers and special purpose registers remain unchanged. 

ARGUMENTS 
The first argument Funct is the address of the application program to be executed. The next argu­
ments ArgO through Arg7 are the arguments to be passed to the application program. 

SEE ALSO 
DownLoadO, TransModeO. 

Pagel June 21, 1991 



Date(l) Monitor (Std) Date(1) 

SYNOPSIS 
DateO 

SetDate{DayOfWeek, Month, DayOfMon, Year, Hour ,Min, Period) 
unsigned long Hour, Minutes, DayOfMonth, Year; 
"h", .. *l.An",.h *n~,,(,,)AAT~1r *Porinn' 
,-1.1PI. .a. .... v.&a".&I, &..o#' .... J '"".& ...... "''''.'1 .a. ...... ...,-, 

DESCRIPTION 
The Date and SetDate commands provide the real-time clock support for the monitor. The Date 
function initializes a monitor time structure defined below by reading from the real-time clock 
device. This is done by calling the RtcAcc function. The structure entries are then checked for ille­
gal values and the date is printed. 

struct tm { 
unsigned long tm_fsec; * fract of seconds (0 - 99) * 
unsigned long tm_sec; * seconds (0 - 59) * 
unsigned long tm_min; * minutes (0 - 59) * 
unsigned long tm_hour; * hours (0 - 23) * 
unsigned long tm_mday; * day of month (1 - 31) * 
unsigned long tm_mon; * month of year (0 - 11 ) * 
unsigned long tmJear; * Year - 1900 * 
unsigned long tm_wday; * day of week (sunday = 0) * 
} ; 

The SetDate function accepts 7 parameters that describe the DayOfWeek, Month, DayOfMonth, 
Year, Hour, Minute, and Period (AM/PM). The month, day of week, and period are assumed to be 
character strings. All other parameters are numeric. This information is verified and used to ini­
tialize the time structure described above. After verifications, the structure is written to the real­
time device, and the time is again printed. 

ARGUMENTS 
The variable DayOfWeek is a character string that contains enough characters to uniquely define 
one of the following character strings: 

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday 

The variable Month is a character string that contains enough characters to uniquely define one of 
the following character strings: 

January, February, March, April, May, June, 
July, August, September, October, November, December 

The variable DayOfMonth is a numeric value from 0 to 31, the variable Year is a numeric value 
from 1990 to 2089, the variable Hour is a numeric value from 0 to 23, the variable Minute is a 
numeric value from 0 to 59, and the variable Period is a character string that contains either the 
character string AM or PM. 

SEE ALSO 
RctAccO. 

Pagel June 21, 1991 



DisplayMem (1 ) Monitor (Std) DisplayMem (1 ) 

SYNOPSIS 
DisplayMem(Address, Lines) 
unsigned long Address, Lines; 

SetMem(Flag, Address) 
int Flag; 
unsigned long Address; 

DESCRIPTION 

Pagel 

The DisplayMem function and the SetMem functions are used to display and modify memory loca­
tions. 

The SefMem function allows interactive modification of memory starting at the location specified 
by the argument Address using the fonnat specified by the character Flag, which indicates byte (b), 
word (w), or long (1). After the value is read and displayed, new data may be entered. If a <cr> 
follows the data entered, the address counts up. If <ESC> follows the data entered, the address 
counts down. If an empty line is entered, the data for that location is left unchanged. To quit this 
function, type any illegal hex character. 

The DisplayMem function displays memory in lines of 16 bytes each, starting at the location 
specified by the argument Address. The data is displayed first as hex character values on the right, 
and then as the ascii equivilent on the left, if printable. Non-printable ascii characters are printed 
as a dot. The number of lines displayed is specified by the parameter Lines. If Lines is not 
specified (equals NULL), the default number of lines (16) is displayed. The display can be inter­
rupted by hitting any character. This function returns the next address to be displayed so the 
command can be reentered from the last displayed location. 

June 21, 1991 



DisAssemble ( 1) Processor (MC68030) DisAssemble(l) 

SYNOPSIS 
DisAssemble(Addr, Cnt) 
unsigned short .. Addr; 
int Cnt; 

DESCRIPTION 
The DisAssemble function starts reading instructions at the memory address specified by Addr and 
displays the assembly langauge equivilent of memory. The argument Cnt indicates the number of 
instructions to be disassembled. If Cnt is not specified (0) then the default number of lines are 
printed. 

The disassembler knows about all of the MC68030 instructions with the exception of floating 
point. Floating point instructions will be displayed as unrecognized instructions which are 
represented with the .WORD directive. The format of the disassembler should correspond to the 
format used in the motorola MC68030 instruction set manual. 

Unrecognized instructions can cause the disassembler to loose synchronization with an assembly 
program which can result in an error in the display. This ussually corrects itself within several 
instructions. 

SEE ALSO 

Pagel June 21, 1991 



Download (1 ) Monitor (Std) Download (1 ) 

SYNOPSIS 
DownLoad(Flag, Address) 
char Flag; 
unsigned long Address; 

DESCRIPTION 
This monitor command provides a serial download using either Hex-Intel, Motorola S-Records, 
or binary format. The argument Flag, which is one of the following characters, indicates the 
download mode: 

h Intel MCS-B6 Hexadecimal Format 
m Motorola Exormax Format (SO-S3,S7-S9 Records). 
b Heurikon Binary Format. 

If Flag is NULL then this function defaults to using Hex-Intel. If the second parameter is specified 
(not NULL) the specified Address is added to those found in the download records. This allows a 
download to another board across a bus interface (which requires an offset). 

When the binary download format is used, the data are moved in raw 8-bit format. Thisdmproves 
the download time by about 220%. This format requires a header be sent to describe the data 
location, size, and checksum. This format is described briefly below. 

First received is the magic number and number of sections. The magic number is the unsigned 
long value Ox12345670 where the lowest nibble specifies the number of sections expected. Each 
section following the magic number requires a 12-byte header that specifies the load address, sec­
tion size, and checksum of the data. After the header are the raw data. The section header is 
described below: 

struct BinaryHeader 
unsigned long Address; 
unsigned long Size; 
unsigned long CheckSum; 
} BinHdr; 

For the magic number and section header, the bytes are sent most significant byte first. As an 
example, the magic number would be sent in the order Ox12, Ox34, Ox56,Ox73. 

SEE ALSO 
BootSerialO. 

Pagel June 21, 1991 



DumpRegs(1 ) Processor (MC68030) DumpRegs(1) 

SYNOPSIS 
DumpRegsO 

DESCRIPTION 
The DumpRegs function dumps a display of the processor registers at the point of the last excep­
tion. This function does not display the current register contents which would be meaningless but 
instead displays the registers values stored at the last exception. The stored register values are 
kept in a structure ProcRegs which has the following format. 

struct RegFile { 
unsigned long DataRegs[8]; 
unsigned long AddrRegs[8]; 
unsigned long CtrlRegs[16]; 
* VBR CACR CAAR SSP ISP MSP 
} RegFile; 

SR * 

* data registers 0-7 * 
* address registers 0-7 * 
* Control Regs PC SFC DFC * 

Currently the floating point registers are not displayed because of the lack of floating point sup­
port in xprintf. The trace mechanism interacts with this function by copying its register display 
structure over ProcRegs and then calling this function. After a trace exception the DumpRegs com­
mand can be used to display the registers saved at the exception as long as another exception 
does not occur. 

SEE ALSO 

Pagel June 21, 1991 



Exceptions (1 ) Processor (MC68030) Exceptions (1) 

SYNOPSIS 
VectInit() 

unsigned long ""V ecToV ecAddr(V ector) 
unsigned long Vector; 

ConnectHandler(Vector, Handler) 
unSigned long Vector; 
int (""Handler)(); 

DisConnectHandler(Vector) 
unsigned long Vector; 

Probe(DirFlag, SizeFlag, Address, Data) 
char DirFlag, SizeFlag; 
unsigned long Address; 
unsigned long Data; 

DESCRIPTION 
These functions are the 68030 processor specific functions which provide interrupt and exception 
handling support. 

The function Vectlnit initializes the entire interrupt table to reference the unexpected interrupt 
handler. This assures that the board will not hang when unexpected interrupts are received. The 
unexpected interrupt handler saves the state of the processor at the point the interrupt was 
detected and then calls the IntrErr function, which displays the error and restarts the monitor. 

The function VectTo VectAddr converts the argument Vector to the vector address contained in the 
interrupt table associated with the vector. This allows modification of vectors without knowing 
where the interrupt table is located in memory. 

The function ConnectHandler allocates an interrupt wrapper, links the wrapper into the interrupt 
table and then initializes the wrapper to call the Handler address. The argument Vector indicates 
the vector number to be connected and the argument Handler should be the address of the func­
tion that will handle the interrupts. The Interrupt Wrapper is a relocatable assembly language 
module that can be placed in free memory and linked into the interrupt table. This allows the pro­
grammer to avoid using assembly language programming for interrupts. 

The function DisConnectHandler modifies the interrupt table entry associated with Vector to use 
the unexpected interrupt handler and then de-allocates the memory used for the interrupt 
wrapper allocated by ConnectHandler. Because both ConnectHandler and DisConnectHandler use 
the Malloc and Free facilities it is necessary for memory management to be initialized. 

The function Probe should be used to access memory locations that mayor may not result in a 
watchdog timeout or bus error. This function returns TRUE if the location was accessed and 
FALSE if the access resulted in a bus error. The argument DirFlag indicates whether a read (0) or 
a write (1) should be attempted. The argument SizeFlag indicates whether a byte access (1), a 
word access (2) or a long access (4) should be attempted. The argument Address indicates the 
address to be accessed and the argument Data is a pointer to where the read or write data is. 

SEE ALSO 

Pagel June 21, 1991 



FastFillMem (1 ) Processor (MC68030) FastFillMem (1 ) 

SYNOPSIS 
FastFillMem(Value, StartAddress, EndAddress) 
unsigned long Value; 
unsigned long *StartAddress, *EndAddressi 

DESCRIPTION 
The FastFillMem function provides a fast method for filling memory with the Value Specified. The 
FillMem monitor command is too slow to clear large amounts of memory (megabytes). This func­
tion takes advantage of the burst ability of the processor, which can achieve much higher data 
rates than single reads and writes. 

The parameters StartAddress and EndAddress indicate the start and end of the block of memory to 
be filled. The argument Value is the value used to fill memory. The value is always assumed to be 
an unsigned long value and the start and end pointers are assumed to be long word aligned 
addresses. 

SEE ALSO 

Pagel June 21, 1991 



FindMem(l) Monitor (Std) FindMem(l) 

SYNOPSIS 
FinciNotMem(Flag, SearchVal, StartAddr, EndAddr) 
unsigned long StartAddr, EndAddr; 
unsigned long Search Val; 
char Flag; 

FindStr(SearchStr, StartAddr, EndAddr) 
unsigned long StartAddr, EndAddr; 
char *SearchStr; 

FindMem(Flag, SearchVal, StartAddr, EndAddr, InvFlag) 
unsigned long StartAddr, EndAddr; 
unsigned long SearchVal, InvFlag; 
char Flag; 

DESCRIPTION 

Pagel 

These functions are used to search memory for a particular pattern or lack of a pattern. If the 
specified pattern is found, the location of the pattern is displayed. All of these functions can be 
interrupted by hitting any character on the console device. 

The function FindNotMem searches memory from address startAddr to address EndAddr for 
memory locations that are not the same as the data specified by Search Val. The data size is deter­
mined by the character Flag, which indicates byte (b), word (w), or long (1). 

The function Findstr searches memory from address startAddr to address EndAddr for the 
occurrence of the string specified by searchstr. 

The function FindMem searches memory from address startAddr to address EndAddr for memory 
locations that are the same as the data specified by Search Val. The data size is determined by the 
character Flag, which indicates byte (b), word (w), or long (I). The last argument InvFlag, if TRUE, 
causes the search to act like the FindNotMem function. 

June 21, 1991 



Help(l) Monitor (Std) Help(1) 

SYNOPSIS 
Help(Name) 
char ""Name; 

DESCRIPTION 
The help function provides the on-line help facilities for the monitor. The monitor provides an 
on-line manual page describing each monitor command. Also provided is a set of auxiliary 
manual pages, which are not tied to any particular command. 

This function accepts the character string Name, which is used to search the symbol table and aux­
iliary manual table for a match. If a match is found, the manual page is printed. If no match is 
found, this function indicates there is no help for the specified string. If the argument Name is not 
specified (NULL), then the auxiliary manual page describing the help facility itself is displayed. 

SEE ALSO 

Pagel June 21, 1991 



InitFifo( 1 } Monitor (Std) InitFifo (1 ) 

SYNOPSIS 
InitFifo(FPtr, StartAddr, Length) 
struct Fifo *FPtr; 
unsigned char *StartAddr; 
int Length; 

ToFifo(FPtr, c) 
struct Fifo *FPtr; 
unsigned char c; 

FromFifo(FPtr, Ptr) 
struct Fifo *FPtr; 
unsigned char *Ptr; 

DESCRIPTION 

Pagel 

These functions provide the necessary interface to initialize, read, and write a software fifo. The 
fifo is used for buffering serial 110 when using transparent mode, but could be used for a variety 
of applications. All three functions accept as the first argument a pointer FPtr to a fifo structure 
that is used to manage the fifo. This fifo structure is described briefly below: •. 

struct Fifo { 
unsigned char *Top; 
unsigned char *BOttOffi; 
int Length; 
unsigned char *Front; 
unsigned char *Rear; 
int Count; 
} Fifo; 

The function InitFifo initializes the fifo control structure specified by FPtr to use the unsigned 
character buffer starting at StartAddr that is of size Length. 

The function ToFifo writes the byte c to the specified fifo, This function returns TRUE if there is 
room in the fifo, FALSE if the fifo is full. 

The function FromFifo reads a byte from the specified fifo. If a character is available, it is written to 
the address specified by the pointer Ptr and the function returns TRUE. If no character is avail­
able, the function returns FALSE. 

June 21, 1991 



Interrupts (1 ) 

SYNOPSIS 
UnMaskIntsO 
MaskIntsO 

DESCRIPTION 

Processor (MC68030) Interrupts ( 1) 

The functions UnMaskInts and MaskInts are used to enable and disable interrupts at the processor. 
The function UnMaskInts sets the interrupt level bits in the processor status register to 0 allowing 
all levels to interrupt the processor. The function MaskInts sets the interrupt level bits in the pro­
cessor status register to 7 disabling all interrupts except the non-maskable level 7 interrupt. 

SEE ALSO 

Pagel June 21, 1991 



IsLegal(l) Monitor (Std) IsLegal(l) 

SYNOPSIS 
IsLegal(Type,Str) 
unsigned char Typei 
char *Stri 

DESCRIPTION 

Pagel 

This function is used to detennine if the specified character string Sfr contains legal values to 
allow the string to be parsed as decimal, hex, upper case, or lower case. The function IsLe gal 
traverses the character string until a NULL is reached. Each character is verified according to the 
Type argument. The effects of specifying each type are described below: 

Type / Value Legal Characters 
------------- -------------------
DECIMAL Ox8 0 - 9 
HEX Ox4 0 - 9, A - F, a - f 

UPPER Ox2 A - Z, 0 - 9 
LOWER Oxl a - z 
ALPHA Ox3 A - Z, a - z, 0 - 9 

If the character string contains legal characters, this function returns TRUE; otherwise, it returns 
FALSE. The string equivalent of the character functions isalphaO, isupperO, islowerO, and isdi­
gitO can be constructed from this function, which deals with the entire string instead of a single 
character. 

June 21, 1991 



MemMng(1) Monitor (Std) MemMng(l) 

SYNOPSIS 
char ItMaIIoc(NumBytes) 
unsigned long NumBytes; 

char ItCalloc(NumElements, Size) 
unsigned long NumElements, Size; 

Free(MemLoc) 
unsigned long ItMemLoc; 

CFree(Block) 
unsigned long ItBlock; 

char ItReAllodBlock, NumBytes) 
char "'Block; 
unsigned long NumBytes; 

MemResetO 

MemAdd(MemAddr, MemBSize) 
unsigned long MemAddr, MemBSize; 

MemStatsO 

DESCRIPTION 

Pagel 

The memory management functions provide basic functions necessary to allocate and free 
memory from a memory pool. The monitor initializes the memory pool to use all on-card 
memory after the monitor's bss section. If any of the autoboot features are used, the memory pool 
is not initialized and the application program is required to set up the memory pool if these func­
tions are to be used. 

The functions Malloc, Calloc and ReAlloc are used to allocate memory from the memory pool. Each 
of these functions returns a pointer to the memory requested if the request can be satisfied and 
NULL if there is not enough memory to satisfy the request. The function Malloc accepts one argu­
ment NumBytes indicating the number of bytes requested. The function Calloc accepts two argu­
ments NumElements and Size indicating a request for a specified number of elements of the 
specified size. The function ReAlloc allows the reallocation of a memory block by either returning 
the block specified by Block to the free pool and allocating a new block of size NumBytes or by 
determining that the memory block specified by Block is big enough and returning the same block 
to be reused. 

The functions Free and CFree are used to returns blocks of memory to the free memory pool 
which were requested by either Malloc, Calloe, or ReAlloc. The address of the block to be returned 
is specified by the argument MemLoc, which must be the same value returned by one of the allo­
cation functions. An attempt to return memory to the free memory pool which was not acquired 
by the allocation functions is a fairly reliable way of blowing up a program and should be 
avoided. 

The function MemReset sets the free memory pool to the empty state. This function must be called 
once for every reset operation before the memory management facilities can be used. It is also 
necessary to call this function before every call to MemAdd. 

The function MemAdd is used to initialize the free memory pool to use the memory starting at the 

June 21, 1991 



MemMng(l) Monitor (Std) MemMng(1) 

address specified by MemAddr of size specified by MemSize. This function currently allows for 
only one contiguous memory pool and must be preceded by a function call to MemReset when­
ever called. 

The function MemStats provides the ability to monitor the memory usage. This function outputs a 
table showing how much memory is available and how much is used. and lost as a result of over­
head. 

SEE ALSO 
MemTopO, MemBaseO. 

June 21, 1991 Page 2 



NVMemory(1 ) Monitor (Std) NVMemory(l) 

SYNOPSIS 
NVDisplayO 

NVUpdate() 

NVOpenO 

NVSet(GroupName, FieldName, Value) 
char IIGroupName, *FieldName, *Value; 

NVlnit(SerNum, RevLev, ECOLev, Writes) 
int SerNum, ECOLev, RevLev, Writes; 

DESCRIPTION 

Pagel 

The NV memory support functions provide the interface to the NV memory. All of these func­
tions deal only with the monitor- and Heurikon-defined sections of the NV memory. The 
monitor-defined sections of NV memory are read/write and can be modified by the user. The 
Heurikon-defined section of NY memory is read only and cannot be modified. Attempts to 
modify the Heurikon defined sections will result in an error message when the store is done. 

The NVOpen function reads and checks the monitor and Heurikon-defined sections. If the NV 
sections do not validate, then an error message is displayed. 

The NVUpdate function attempts to write the Heurikon- and monitor-defined NV sections back to 
NV memory. The data are first verified, and then written to the device. The write is verified and 
all errors are reported. 

The NVlnit function is used to initialize the NY memory to the default state defined by the moni­
tor. It first clears the memory and then writes the Heurikon and monitor data back to NY 
memory. This function accepts as arguments the serial number, revision level, ECO level and the 
number of writes to NY Memory. If the monitor-defined NY memory section somehow becomes 
corrupt, the command sequence NVlnit followed by NVUpdate should result in the monitor­
defined NV memory resetting to the default state. This sequence of commands will result in error 
messsages that indicate the Heurikon-defined section was not changed. These messages can be 
ignored. 

The NVDisplay and NVSet commands are used to display and modify the Heurikon-defined and 
monitor-defined NV sections. The values are displayed in logical groups. Each group has a 
number of fields. Fields are displayed as hex, decimal, or a list of legal values. An example of the 
display is shown below: 

Group 'Console' 
Port 
Baud 
Parity 
Data 
StopBits 

A 

9600 
None 
8-Bits 
2-Bits 

(A, B, c, D) 

(Even, Odd, None) 
(5-Bits, 6-Bits, 7-Bits, 8-Bits) 
(l-Bi t, 2-Bi ts) 

After each group is displayed, the user has the option of moving to the next group display, edit­
ing the current group display, or quitting the display completely. If an edit is requested, all fields 
of the group are prompted for modification one-by-one. An empty line indicates that no 
modification is necessary. 

June 21, 1991 



NVMemory( 1) Monitor (Std) NVMemory( 1) 

To modify a field using NV5et, the group and field to be modified are specified and the new value 
is provided. This command allows abbreviation of the field and group names. The NVDisplay 
function allows fields to be changed interactively during the display. 

.. .. 

June 21, 1991 Page 2 



NVSupport(1 ) Monitor (Std) NVSupport(1 ) 

SYNOPSIS 
SetNvDefauIts(Groups, NumGroups) 
NVGroupPtr Groups; 
int NumGroups; 

DispGroup(Group, EditFlag) 
NVGroupPtr Group; 
unsigned long EditFlag; 

NVOp(NVOpCmd, Base, Size, Offset> 
unsigned long NVOpCmd, Size, Offset; 
unsigned char *Base; 

DESCRIPTION 

Pagel 

The support functions used for displaying, initializing, and modifying the NY memory data 
structures can also be used to manage other data structures which mayor may not be stored in 
NVmemory. 

The method used to create a display of a data structure is to create a second 'structure that con­
tains a description of every field of the first structure. This description is done using the NVGroup 
structure. Each entry in the NVGroup structure describes a field name, pointer to the field, size of 
the field, indication of how the field is to be displayed, and the initial value of the field. 

An example data structure is shown below as well as the NVGroup data structure necessary to 
describe the data structure. This example might describe the coordinates and depth of a window 
structure. 

struct NVExample 
NV_Internal Internal; 
unsigned long XPos, YPos; 
unsigned short Mag; 
} NVEx; 

NVField ExFields[] = { 
{"XPos", (char *) &NVEx.XPos, sizeof(NVEx.XPos), 
NV_TYPE_DECIMAL, 0, 100, NULL}, 
{"YPos", (char *) &NVEx.YPos, sizeof(NVEx.YPos), 
NV_TYPE_DECIMAL, 0, 200, NULL}, 
{"Depth" (char *) &NVEx.Mag, sizeof(NVEx.Mag), 
NV_TYPE_DECIMAL, 0, 4, NULL} 
} 

NVGroup ExGroups[] = { 
{"Window", sizeof(ExFields)/sizeof(NVField), ExFields } 
} ; 

If passed a pointer to the ExGroups structure, the function DispGroup generates the display 
shown below. The second parameter EditFlag indicates whether to allow changes to the data 
structure after it is displayed (Same as in the NVDisplay command). 

window Display Configuration 
XPos 100 
YPos 200 

June 21, 1991 



NVSupport(1 ) Monitor (Std) NVSupport(1 ) 

Magnitude 4 

The SetNvDefaults function, when called with a pointer to the ExGroup structure, can be used to 
initialize the data structure to those values specified in the NVGroup structure. The second param­
eter NumGroups indicates the number of groups to be initialized. 

The NVOp function can be used to store and recover data structures from NV memory. The only 
requirement of the data structure to be stored in NV memory is that the first field of the structure 
be NVlnternal, which is where all the bookkeeping for the NV memory section is done. The first 
parameter NvOpCmd indicates the command to be performed. A summary of the commands is 
shown below: 

Command Value Description 
----------- ----------------------------
NV_OP FIX 0 Fix NV section checksum 
NV OP CLEAR 1 Clear NV section 
NV OP CK 2 Check if NV section is valid 
NV OP OPEN 3 Open NV Section 
NV OP SAVE 4 Save NV Section -
NV OP CMP 5 Compare NV Section data 

The second parameter, Base, indicates the base address of the data structure to be operated on, 
and the Size parameter indicates the size of the data structure to be operated on. The Offset 
parameter indicates the byte offset in the NY memory device where the data structure is to be 
stored. An example of how to initialize, store, and recall the example data structure is shown 
below. 

NVOp(NV_OP_CLEAR, &NVEx, sizeof (NVEx) , 0) ; 

NVOp(NV_OP_SAVE , &NVEx, sizeof (NVEx) , 0) ; 

NVOp(NV_OP_OPEN , &NvEx, sizeof(NVEx), 0) ; 

NVOp(NV_OP_FIX, &NVEx, sizeof (NVEx) , 0) ; 

NVOp(NV_OP_ SAVE , &NVEx, sizeof(NVEx), 0) ; 

The clear, save, and open operations cause the NV device to be cleared and filled with the NVEx 
data structure; then the data structure is filled from NV memory. The fix and save operation are 
used to modify the NV device, which updates the internal data structures and then writes them 
back to the NV memory device. 

If errors are encountered during the check, save or compare operations, an error message is 
returned from the function NvOp. The error codes are listed below. 

Error number 

NVE NONE 0 
NVE OVERFLOW 1 
NVE MAGIC 2 
NVE CKSUM 3 
NVE STORE 
NVE CMD 
NVE CMP 

June 21, 1991 

4 

5 
6 

Description 

No errors. 
NV device write count exceeded. 
Bad magic number read from NV device. 
Bad checksum read from NV device. 
Write to NV device failed. 
Unknown operation requested. 
Data does not compare to NV device. 

Page 2 



NVSupport(1 ) 

SEE ALSO 
NVFields.h 

Page 3 

Monitor (Std) NVSupport (1) 

June 21, 1991 



Serial(l) Monitor (Std) Serial (1 ) 

SYNOPSIS 
char GetCO 
char RGetCO 

PutC(c) 
char c; 
RPutC(c) 
char c; 

KBHit() 
RKBHit() 

TxMTO 
RTxMTO 

ChBaud(Baud) 
int Baud; 
RChBaud(Baud) 
int Baud; 

DESCRIPTION 
The serial support functions defined here provide the ability to read, write, and poll the monitor 
serial devices. The monitor initializes and controls two serial devices: one is the console, which 
provides the user interface, and the other is the modem (also known as "download" or "remote") 
device, which can be used to connect to a development system. Each console function has a com­
plement function that performs the same operation on the modem device. The modem device 
functions are prefixed wi th the letter 'R' for remote. Each serial port is configured at reset accord­
ing to the NY memory configuration. 

The functions GetC and RGetC are used to read characters from the console and modem devices 
respectively. When called, these functions will not return until a character has been received 
from the serial port. The character read is returned to the calling function. 

The functions PutC and RPutC are used to write characters from the console and modem devices 
respectively. When called, these functions will not return until a character has been accepted by 
the ~rial port. The character c is the only argument these functions accept. 

The functions KBHit and RKBHit are used to poll the console and modem devices for available 
characters. If the receiver indicates a character is available, these functions return TRUE; other­
wise, they return FALSE. 

The functions TxMT and RTxMT are used to poll the console and modem devices if the 
transmitter can accept more characters. If the transmitter indicates a character can be sent, these 
functions return TRUE; otherwise, they return FALSE. 

The functions ChBaud and RChBaud allow modification of the console and modem device baud 
rates. The argument Baud specifies the new baud rate to use for the port. Because these functions 
accept any baud rate, care must be taken to request only baud rates the terminal or host system 
can support. 

SEE ALSO 
GetCharO, PutCharO, KeyHitO, TxEmptyO, ChangeBaudO. 

Pagel June 21, 1991 



Strings(l) Monitor (Std) Strings(1) 

SYNOPSIS 
CmpStr(Strl, Str2) 
char If$trl, If$tr2; 

StrCmp(Strl, Str2) 
char If$trl, If$tr2; 

StrCpy(Dest, Source) 
char ItDest, ItSource; 

StrLen(Str) 
char If$tri 

StrCat(DestStr, SrcStr) 
char ItDestStr, ItSrcStr; 

DESCRIPTION 
These functions provide the basic string manipulation func;:tions necessary to compare, copy, con­
catenate, and determine the length of strings. 

The function CmpStr compares the two null terminated strings pointed to by Strl and Str2. If they 
are equal, it returns TRUE; otherwise, it returns FALSE. Note that this version does not act the 
same as the UNIX® strcmp function. CmpStr is non-case-sensitive and only matches characters up 
to the length of Strl. This is useful for pattern matching and other functions. 

The function StrCmp compares the two null terminated strings pointed to by Strl and Str2. If they 
are equal, it returns TRUE; otherwise, it returns FALSE. Note that this version acts the same as 
the UNIX strcmp function. 

The function Strepy copies the null terminated string Source into the string specified by Dest. 
There are no checks to verify that the string is large enough or is null terminated. The only limit is 
the monitor-defined constant MAXLN (80), which is the largest allowed string length the monitor 
supports. The length of the string is returned to the calling function. 

The function StrLen determines the length of the null terminated string Str and returns the length. 
If the length exceeds the monitor defined limit MAXLN, then the function returns MAXLN. 

The function StrCat concatenates the string SrcStr onto the end of the string DestStr. 

SEE ALSO 

Pagel June 21, 1991 



TestMem(1) Monitor (Std) TestMem(l) 

SYNOPSIS 
TestMem(Base, Top) 
unsigned long Base, Top; 

DESCRIPTION 
The Testmem function is a non-destructive memory test. The variables Base and Top indicate the 
range to be tested. If the variable Top is set to 0, then the base and top addresses are obtained 
from the monitor memory functions MemBase and MemTop. When called, this function prints the 
progress of the test and summarizes the number of passes and failures of the test. This function 
can be interrupted after each pass of the test by hitting any character during the test. 

SEE ALSO 
MemTopO, MemBaseO. 

.. .. 

Page 1 June 21, 1991 



Trace(1) Processor (MC68030) Trace(l) 

SYNOPSIS 
ExecTrace(Funct, ArgO, Argl, Arg2, Arg3, Arg4, Arg5, Arg6) 
int (*Funct)O; 
unsigned long ArgO, Argl, Arg2, Arg3, Arg4, Arg5, Arg6; 

Step(Cnt) 
unsigned long Cnt; 

lnitTraceO 

SetTraceO 

DESCRIPTION 
The functions defined in this module are used to initiate maintain and manage the configuration 
and exception traces for the 68030 Processor. The trace facilities allow the programmer to step 
instruction by instruction through an application program. The tracing mechanism allows the 
programmer to select a variety of events to trace on. The trace events include every instruction, 
branches jumps, returns, or up to 8 instruction addresses. The trace can also be initialized to print 
every instruction or stop when a key is hit. 

The function ExecTrace initiates the trace mechanism for the function specified by the argument 
Funct and begins tracing by passing the arguments ArgO through Arg6 to the function to be 
traced. 

The function Step re-enters the trace mechanism after an exception has occured. This function can 
only be used after a trace is initiated by the ExecTrace function. The argument Cnt indicates the 
number of events to be skipped before stopping the trace. 

The function InitTrace initializes the structures used by the trace facilities to a default state. This 
function must be called at reset. 

The function /fISetTrace/fR provides the ability to change the trace configuration. The trace 
configuration display allows the trace configuration to be modified using the same type of 
display as the NY memory display. The tracing configuration is maintained through the use of 
the SetNVDefualts and DispGroup functions. 

When using trace facilities it is important to understand how the trace mechanism works. 
Because the stack and interrupt table are used by the trace functions the processor stack pointer 
and vector base register cannot be modified by the program which is being traced. The trace 
mechanism currently stops on every instruction and determines if an event has been reached. 
This results in the program running much slower than normal. 

SEE ALSO 

Pagel June 21, 1991 



TransMode(l) Monitor (Std) TransModeO) 

SYNOPSIS 
TransModeO 

DESCRIPTION 
This function connects the console port to the modem port to provide a connection to a develop­
ment system through the board. Several key characters are used to leave transparent mode 
(CTRL-@-ESC) and to initiate a download (C1RL-@-RETURN). To initiate a download using a 
specific download format, type the command that generates the download records without hit­
ting return. Then use one of the following character sequences: 

CTRL-@-RETURN 
CTRL-@-h 
CTRL-@-rn 
CTRL-@-b 

Download hex-intel 
Download hex-intel 
Download Motorola S-Records 
Download binary 

This function uses software fifos to buffer characters between the two systems. This seems to 
work reasonably well for most processors but can lose characters if large numbers of characters 
are displayed. In general, the only complete solution is to use serial interrupts rather than polling. 
Since this is not likely to happen, beware that the transparent mode command will allow execu­
tion of commands without problems, but may have problems if text editing is attempted. 

SEE ALSO 
DownLoadO. 

Pagel June 21, 1991 



xprintf(1) Monitor (Std) xprintf(1) 

SYNOPSIS 
xprintf(CtrlStr, ArgO, Argl ... ArgN) 
char ·CtrIStr; 
unsigned long ArgO, Argl, ... ArgN; 

xsprintf(Buffer, CtrlStr, ArgO, ArgI ... ArgN) 
char ·Buffer, ·CtrIStr; 
unsigned long ArgO, Argl, ... ArgN; 

DESCRIYI'ION 
This function serves as a System V UNIX®-compatible printf() without floating point. It imple­
ments all features of %d, %0, %u, %x, %X %c and %s. An additional control statement has been 
added to allow printing of binary values (%b). 

The xprintf and xsprintf functions format an argument list according to a control string which 
indicates the format of the arguments. The function xprintf prints the parsed control string to the 
console while the function xsprintf writes the characters to the buffer pointed to be the argument 
Buffer. The control string format is a string that contains plain characters to be processed as is and 
special characters that are used to indicate the format of the next argument in the argument list. 
There must be at least as many arguments as special characters, or the function may act unreli­
ably. 

Special character sequences are started with the character %. The characters after the % can pro­
vide information about left or right adjustment, blank and zero padding, argument conversion 
type, precision and more things too numerous to list. 

If detailed information on the argument formats and argument modifiers is required, seek your 
local C programmer's manual for details. Not all of the argument formats are supported. The 
supported formats are %d, %0, %u, %x, %X %c and %s. 

SEE ALSO 

Pagel June 21, 1991 



Board.c 

Board.h 

Bug.h 

Proc.c 

Proc.h 

ProcAsm.s 

RTC.c 

SCC.c 

Timer.c 

VME.c 

Appendix B 

Code Examples 
This appendix contains the example code listed below: 

This file is the catchall for the miscellaneous board-related 
functions. 

This file describes the hardware addresses and data structures 
for the board. 

This file is intended to provide standard constants and data 
structures common to all files independent of processor, 
compiler, and board model. 

This file contains processor-specific functions for interrupt 
support and exception-handling support. 

The interrupt wrapper is a relocatable assembly language 
module that is allocated on the stack. The interrupt table 
vector location is initialized to point to the wrapper and the 
wrapper is initialized to point to the interrupt handler. This 
level of indirection will reduce the necessity for assembly 
code. 

This file contains assembly language functions used by the 
board, monitor, and processor functions to perform 
processor-specific functions. 

The function in this file provides low-level real-time clock 
support for the monitor. 

The function in this file provides low-level I/O necessary to 
read, write, and configure the Z85C30 serial controller .. 

This file contains example functions for initializing the CIO 
counter timers. 

This file contains the functions necessary to initialize the 
VMEbus as· well as examples for performing several basic 
VME functions. 



Jun 28 199111 :25:15 Board.c Page 1 
1************************************************************************ 
* * Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
this software and its documentation. Heurikon grants 
this permission provided that the above copyright notice 
appears in all copies and that both the copyright notice and 
this permission notice appear in supporting documentation. In 

* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 

Heurikon Corporation not be used in advertising or publicity 
pertaining to distribution of the software or the documentation 

* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 

of, the software and documentation in terms of correctness, 
accuracy, reliability, currentness, or otherwise; and you rely 

* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 
* 
*****1 

'include "Bug.h" 
'include "Board.h" 
jJinclude "NvMonDefs.h" 

1***************************************************** ******************* 
* Board.c: This file is the catchall for the miscellaneous board-related 
* fundtions. Defined in this module are: 
* 
***1 

extern NV HkDefined HKFields; 
extern NV-MonDefs NvMonDefs; 
char BoardModel [1 = "V3D" 1 

1***************************************************** ******************* 
DOCSEC: ConfigBoard 1 V3D Board 

* SYNOPSIS: InitBoard () 

ConfigBoard () 

ConfigCaches () 

* DESCRIPTION: These functions provide configuration of the boards 
interfaces at various points in the monitor. All 
of these functions use the NV memory configuration 
to determine how to configure an interface so it is 
necessary that the NV memory data structures contain 
valid data before any of these functions are called. 

The InitBoard function initializes the minimum 
set of hardware to the default state defined by the 

Jun 28 1991 11 :25:15 Board.c Page 2 

***1 

InitBoard () 
( 

NV device structures. The hardware initialized is 
the serial port, the CIO, and the tracing mechanism. 

The function ConfigBoard does a complete 
initialization of all the hardware interfaces which 
are specified by the NV memory configuration. This 
includes the serial ports, VME interface, and 
processor caches. 
After changing the NV memory configuration using the 
NVDisplay or NVSet functions the board can 
be fully configured by calling this function. 

The ConfigCaches function initializes the processor 
caches to either the on or off state as defined by the 
NV device configuration. 

Delay (10); 
ConfigSerDevs(); 
ConfigVmeBus () ; 
InitCio () ; 
InitScsi (); 
InitTrace (); 
return TRUE; 

1* Initialize serial to default state. 
1* Initialize VMEBus to default state. 

ConfigBoard () 
( 

*1 
*1 

Delay(20); 
ConfigSerDevs(); 
ConfigVmeBus () ; 
Con fig Scsi () ; 
ConfigCaches () ; 
return TRUE; 

1* Allow all characters to be printed *1 
1* Initialize serial to NV specified state. *1 
1* Initialize VMEbus to NV specified state. *1 

Configcaches () 
{ 

register NV_MonDefPtr Conf &NvMonDefs; 

if (DataCacheEnble(Conf» 
EnbDataCache(); 

} else { 
DisDataCache(); 

} 
if (InstCacheEnble(Conf» 

EnblnstCache () ; 
else { 

DislnstCache () ; 

return TRUE; 

-~ 

1************************************************************************ 
* DOCSEC: Misc 1 V3D Board 

* SYNOPSIS: PrStatus () 



Jun 28 1991 11 :25:15 Board.c 
* 
* SetLedDisplay(Value) 

unsigned long Value; 

unsigned char *MemTop() 

unsigned char *MemBase() 

Delay (HundSec) 
int HundSecl 

* DESCRIPTION: This is a collection of miscellaneous board support 
functions. 

The PrStatus function should print useful 
information about the board configuration. Currently 
this function determines if the board is configured 
as a system controller and determines if a corebus 
module is present and what type of module is attached. 

The SetLedDisplay function presents the lower 
four bits of the argument Value on the user LEDs. 

The functions MemTop and MemBase are used to 
determine the address of the last and first long word 
in free memory. The size of DRAM is determined by the 
NV memory configuration. The base of free memory is 
determined by the compiler-created variable End 
which indicates the end of the monitors bss section. 

The Delay function is intended to provide a fixed 

Page 3 

delay for timing. It isn't very accurate and depends 
widely on whether the caches are enabled or disabled. 
As a crude delay generator this function can be used to 
delay in increments of 1/100 of a second as specified 
by the HundSec argument. 

***1 

PrStatus () 
{ 

unsigned long Temp; 

xprintf("\nVME System controller -> "); 
if (IsSystemController(» 

xprintf("On\n"); 
} else { 

xprintf("Off\n"); 
} 
if (IsModPresent(» { 

ModIDGet(FALSE); 
else { 

xprintf("No module found\n"); 

PrStatus () 
{ 

xprintf ("PrStatus (): not implemented\n"); 
return TRUE; 

SetLedDisplay(Value) 
register unsigned long Value; 

Jun 28 1991 11 :25:15 Board.c Page 4 

*LEDl (-Value); 
*LED2 (-Value» 1) 1 
*LED3 (-Value» 2); 
*LED4 (-Value» 3); 
return TRUE; 

unsigned char *MemTop() 
{ 

return«unsigned char *) (RAM_BASE + HKFie1ds.Hardware.DRAMSize - 4»; 

extern unsigned long end[l; 
unsigned char *MemBase() 
{ 

return«unsigned char *) end); 

'define HUND_SEC_DELAY 2000 

Delay (HundSec) 
int HundSec; 
{ 

volatile int i; 

for(i=HundSec * HUND SEC DELAY; i; i--); 
return TRUE; --

/************************************************************************ 
* DOCSEC: IntrErr 1 V3F Board 

* SYNOPSIS: IntrErr(AccAddr, Addr, Vector) 
unsigned long AccAddr; 
unsigned long Addr; 
char Vector; 

SetUnExpIntFunct(Funct) 
unsigned long Funct; 

* DESCRIPTION: When an unexpected interrupt is received it is necessary to 
remove the error condition before returning to the monitor. 
This function is called from the function UnExpIntr which 
parses the interrupt record for the address and the vector 
associated with the interrupt. The device is dealt with 
accordingly and the monitor is resumed. 

* 

* 

Because the interrupt condition may be a program that 
may continually generate exceptions it is 
necessary to abort the program and return directly to 
the monitor level. This is done by calling the function 
RestartMon, which causes the processor to return 
into the line editor. 

If desired a program can call the SetUnExpIntFunct 
function and then attach their own interrupt handler to 
all unexpected interrupts. This function attaches the 
handler specified by Funct to the unexpected interrupt 
handler. The new interrupt handler must determine the 



Jun 28 1991 11 :25:15 Board.c PageS 

source of the unexpected interrupt and remove the interrupt. 
* 
***1 

1* Generic re~on~e me~~age~ *1 
static char ExcErrStr[] "\n\n"GUnexpected ts Exception at oxt.ax (Acc at tx)\n"; 
static char DevIntStr[] "\n\n"GUnexpected ts Interrupt at Oxt.aX\n"; 
static char UnkIntStr[] = "\n\n"GUnexpected Interrupt at oxt.ax (tx) Vector Oxtx\n"; 

IntrErr(AccAddr, Addr, Vector) 
register long AccAddr, Vector; 
register char *Addr; 
I 

switch (Vector) { 
case BUS ERROR: ( 

xprintf(ExcErrStr,"Bus Error", Addr, AccAddr); 
break; 

case ADDRESS ERROR: { 
xprintf(ExcErrStr,"Address Error", Addr, AccAddr); 
break; 

case ILLEGAL INSTR: f 
xprintf(ExcErrStr,"Illegal Instruction", Addr, AccAddr); 
break; 

case ZERO DIVIDE: ( 
xprintf(ExcErrStr,"Zero Divide", Addr, AccAddr); 
break; 

case PRIV VIOLATION: ( 
xprintf(ExcErrStr,"Priv. Violation", Addr, AccAddr); 
break; 

case TRACE FAULT: ( 
xprintl'(ExcErrStr,"Trace fault", Addr, AccAddr); 
break; 

case EMULATOR 1010: { 
xprintf (ExcErrStr, "Emul 1010", Addr, AccAddr); 
break; 

case EMULATOR 1111: ( 
xprintf(ExcErrStr,"Emul 1111", Addr, AccAddr); 
break; 

case SPURIOUS INTR: ( 
xprintf(ExcErrStr,"Spurious Interrupt", Addr, AccAddr); 
break; 

case PARITY ERROR: ( 
xprintf(ExcErrStr,"Parity Error", Addr, AccAddr); 
break; 

case VSB VECTOR: ( 
xprintf(DevIntStr,"VSB",Addr); 
break; 

case SCSI VECTOR: ( 
ConfigScsi () ; 
xprintf(DevIntStr,"SCSI",Addr); 
break; 

case CIO VECTOR: ( 
ConfIgCio(); 
xprintf(DevIntStr,"CIO",Addr); 

Jun 28 1991 11 :25:15 Board.c 

} 

break; 

case sec AB VECTOR: 
case SCC-CD-VECTOR: ( 

ConfIgSerDevs(); 
xprintf(DevIntStr,"SeC",Addr)1 
break; 

} 
default: ( 

xprintf(UnkIntStr, Addr, AccAddr, Vector); 
break; 

DumpRegs (); 
RestartMon(); 1* Restart Monitor.*1 

Page 6 

1**************************····*************************************** 
* NotSupported; For those commands not supported. 
***1 

NotSupported () 
{ 

xprintf ("\nThis function is unsupported\n"); 



Jun 28 1991 11 :27:34 Board.h Page 1 
f*****************·***********·**********·********·**· ***********.******* 
* 
• Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION 
The copyright notice above does not evidence any 

• actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
• this permission provided that the above copyright notice 
• appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
• Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* AUTHOR 

* MODIFICATIONS: 

*****f 

f*******'**********'****"'*"**'**'****************** ******************* 
* Board.h: This file describes the v3d hardware addresses and data 

structures. included in this file are the definitions for: 

Z85C36 CIO Counter Timer. 
Z85C30 SCC Serial Controller, Ports A-B 
WD33C93 SCSI Controller. 
DS1216F Realtime clock. 
NMI Status Latch. * 

* B2596CA Ethernet Controller. 
28C64 EEPROM 

***f 

'define MON_REV_LEVEL "1.1" 1* define monitor revision level 

f*****************·*********************************** ******************* 
* Interrupt Vector assignments for v3d (68030). 
***1 

'define BUS ERROR 
'define ADDRESS ERROR 
'define ILLEGAL-INSTR 
'define ZERO DIVIDE 
'define PRIV-VIOLATION 
'define TRACE FAULT 
'define EMULATOR 1010 
'define EMULATOR-1111 
'define SPURIOUS-INTR 
'define VSB VECTOR 
'define scsI VECTOR 
'define PARITY ERROR 

Ox02 
Ox03 
Ox04 
Ox05 
Ox08 
Ox09 
OxOA 
OxOB 
Oxl8 
Ox19 
Ox1C 
Ox1F 

*1 

Jun 28 1991 11 :27:34 
'define CIO VECTOR 
'define SCC-AB VECTOR 
'define SCC:CD:VECTOR 

Ox90 
OxAO 
Ox80 

Board.h Page 2 

1·*·*··*·*····**··**··*··*·****··*·*··*····*·*···******************.***** 
* DRAM 
**·1 

'define RAM_BASE Ox03000000 

f********···*·*··**·***·******·***********·******·*·** .****************** 
* CIO: Definitions for the Z85C36 CIO Counter Timer and parrallel ports 
***1 

'define CIOPORT Ox02DOOO01 

'define CIO AData «volatile unsigned char *) (CIOPORT + Ox04» 
'define CIO-BData «volatile unsigned char *) (CIOPORT + Ox02» 
'define CIO-CData «volatile unsigned char *) (CIOPORT + OxOO» 
'define CIO-CTRL «volatile unsigned char *) (CIOPORT + Ox06» 

1******·*······*······*·····********·***************** ******************* 
* sec: Definition for the Z85C30 Serial ports A-D. 
***f 

'define sce REG SPREAD Ox03 
'define See:PORT_SPREAD Ox02 

1* Distance between registers 
f* Distance between ports 

'define BaudToTimeConst(baud) {«19660800 I (64 * baud» - 3) I 2) 

struct SCCPort { f* Serial device structure 
unsigned char Control; 
unsigned char Dummy[SCC REG SPREAD); 
unsigned char Data; - -

I; 1* Define port addresses 

«struct SCCPort *) Ox02F00001) 

*1 
*1 

*1 

*f 

'define SCC PORTB 
'define SCC-PORTA 
'define SCC-PORTD 
'define SCC:PORTC 

«struct SCCPort *) «int) SCC PORTB + SCC PORT SPREAD» 
«struct SCCPort *) Ox02E00001f --
«struct SCCPort *) «int) SCC_PORTD + SCC_PORT_SPREAD» 

f*********·*************************************·***** ********.****.***** 
* SCSI: Definition for the WD33C93 Scsi interface. 
**'1 

'define SCSI ADDR 
'define SCSI-ENABLE 
'define SCSI-RESET 

struct SCSIChip { 

Ox02300001 1* Base Address of SCSI schip *1 
«unsigned char .) Ox02B00020) 
«unsigned char *) Ox02B00006) I' Bus reset *1 

1* Define scsi structure *f 

I; 

unsigned char SC AddrPtr; 
unsigned char SC-Dummy[l]; 
unsigned char SC:Register; 

1* Define macros to read and write *1 

'define SCSI «struct SCSIChip *) SCSI_ADDR) 

'define SCWriteReg(Reg, Val) 

'define SCReadReg(Reg, Val) 

SCSI->SC AddrPtr = Reg;\ 
SCSI->SC:Register = Val 

SCSI->SC Addrptr = Reg;\ 
Val = SCSI->SC_Register 

1 



Jun 281991 11 :27:34 Board.h Page 3 

1************************************************************ •••••• * •• *** 
* SCSI bus interface controller registers 
***1 

.define SREG OWNID Oxoo 
'define SREG-CTRL OxOl 
'define SREG-TIMEOUT Ox02 
'define SREG-TSECT Ox03 
'define SREG-THEAO Ox04 
'define SREG-TCYLH Oxos 
'define SREG-TCYLL Ox06 
'define SREG-HH LAOR Ox07 
'define SREG-HM-LADR OxOB 
'define SREG-LM-LAOR Ox09 
'define SREG-LL-LADR OxOA 
'define SREG-SECT OxOB 
'define SREG-HEAO OxOc 
'define SREG-CYLH OxOO 
'define SREG-CYLL OxOE 
'define SREG-TLUN OxOF 
'define SREG-CPHASE Oxl0 
'define SREG-SYNT Oxll 
'define SREG-HTCNT Ox12 
'define SREG-MTCNT Ox13 
'define SREG-LTCNT Ox14 
'define SREG-DEST 10 Ox1S 
'define SREG-SRC 10 Ox16 
'define SREG-SCSI STAT Ox17 
'define SREG-CMD - Ox1B 
'define SREG:OATA Ox19 

'define SREG COB1 Ox03 
'define SREG-CDB2 Ox04 
'define SREG-CDB3 OxOS 
'define SREG-CDB4 Ox06 
'define SREG-CDBS Ox07 
'define SREG-CDB6 OxOB 
'define SREG-CDB7 Ox09 
'define SREG-COBB OxOA 
'define SREG-CDB9 OxOS 
'define SREG-COBI0 OxOC 
'define SREG-CDB11 OxOO 
'define SREG:CDB12 OxOE 

'define SCOMA_ADDRESS Ox02400000 1* OMA Acknowledge address *1 

1***************************************************** ******************** 
* RTC: Data structures and addresses for the real time clock 
***1 

'define WATCHBASE «volatile unsigned char *) OxOOOOOOOO) 
'define WRO WATCH «volatile unsigned char *) (WATCHBASE + 2» 
'define WRI-WATCH «volatile unsigned char *) (WATCH BASE + 3» 
'define RD_WATCH «volatile unsigned char *) (WATCHBASE + 4» 

struct rtc data { 1* D7 06 05 04 03 02 D1 DO *1 
unsigned-char dotsec; 1* -- 0.1 sec ----- 0.01 sec *1 
unsigned char sec; 1* -- 10 sec ------ seconds ------ *1 
unsigned char min; 1* ---10 min ------ minutes ------ *1 
unsigned char hour; 1* A 0 B Hr ---- hours -------- *1 
unsigned char weekday; 1* o 0 0 1 ----- day ---------- *1 
unsigned char date; 1* 10 date------ date --------- *1 
unsigned char month; 1* 10 Month ---- month -------- *1 

Jun 28 1991 11 :27:34 Board.h Page 4 

unsigned char year; 
}; 

1* -- 10 year ----- -- year --------- *1 

1************************************************************************* 
* VME: Must Write this 
***1 

'define MBOX BASE «unsigned short *) Ox02COOOOO) 
'define ENBL-OOG «unsigned char *) Ox02BOO030) 
'define VME TIMER «unsigned char *) Ox02BOOOI0) 
'define SYSfAIL «unsigned char *) Ox02BOOOOE) 
'define ENBL MBOX «unsigned char *) Ox02BOOO04) 
'define BUS LATCH «unsigned long *) Ox02AOOOOO) 
'define SLAVE_ENABLE «unsigned char *) Ox02BOOOOC) 

1***************************************************** ******************** 
* X2212 NVRAM: Definition for the Ny Memory Interface 
***1 

'define NV BASE Ox02S00000 1* Base address of NV memory 
'define NV-SIZE OxOOOOOOBO 1* Size in bytes of NV memory 

*1 
*1 

'define NV-PROTECTED OxOOOOO060 1* Beginning of protected NV memory *1 
'define NV=MON_DEFS OxOOOOO02B 1* Beginning of monitor NV defs. *1 

'define NV MAX NBR WRITES 10000 1* Limit on the number of writes *1 
'define NV-PAGE SIZE 1 1* Page size of 32 for fast program *1 
'define NV=SPAC1NG 1 1* Number of bytes between bytes *1 

'define NV STORE «unsigned char *) Ox02600000) 
'define NV=RECALL «unsigned char *) Ox02700000) 



Jun 271991 10:33:29 BoardAsm.s Page 1 

t -----------------------------------------------------------------------------
I This file contains much of the 6B030-specific data structures ~nd functions 
t necessary to configure the v3d properly. Many of the processor-specific 
I functions must be configured as seen in this file for the v3d monitor to 
I function reliably. 
I 
t -----------------------------------------------------------------------------

file "BoardAsm.s" 
text 
even 

global start ip 
global ColdSEart 
global MonEntryPt 
global end 

Pause 500 mSec for RAM and then do 8 RAS/CAS cycles to initialize 
memory. 

MonEntryPt: 
ColdStart: mov.l 

mov.l 
mov.l 
mov.l 
mov.l 
mov.l 

start ip: mov.l 
mov.l 
mov.l 

RamInit: mov.l 
dbra 

mov.l 
mov.l 
mov.l 

ClearSysMem: mov.l 
cmp.l 
ble 

SetState: mov.l 

StartMon: jsr 
mov.l 
mov.l 
jsr 
rts 

global -

warm: jsr 
bra 

&Ox02BOOO40, %aO 
&OxFFFFFFFF, %dO 
%dO, (%aO) 
%dO, OxIO(%aO) 
%dO, Ox20(%aO) 
%dO, Ox30(%aO) 

&OxOOO, %dO 
&int table, %aO 
&OxOTo, %dl 
%dO, (%aO) 
%dl, RamInit 

&Oxeeeeeeee, %dO 
&int table, %aO 
&end; %al 

%dO, (%aO)+ 
%aO, %al 
ClearSysMem 

&sup_stack,%a7 

VectInit 
&int table, %aO 
%aO,-%vbr 
StartMonitor 

warm 

VectInit 
SetState 

I Clear LED's 

Counter 
Any RAM Address 
Loop Count 

New supervisory stack 

Initialize Vector Table. 
Link in new table 

Start program. 

I Initialize Vector Table. 

RestartMon: Reeboots the line editor after reseting the stack pointer. 

RestartMon: 

global RestartMon 

mov.l 
jsr 

&sup stack,%a7 
LineEdit 

f Reset stack pointer 
f Start program. 

f -----------------------------------------------------------------------------

Jun 27 1991 10:33:29 BoardAsm.s Page 2 
AtomicAccess: Performs a RMW cycle on the address specified. 

global AtomicAccess 

AtomicAccess: movm.l 
mov.l 
tas 
movm.l 
rts 

&Ox0700,-l2(%a7) 
4(%a7),%aO 

save regs 
memory address 

(%aO) 
-l2(%sp),&Ox0700 

I -----------------------------------------------------------------------------
I Powerup detection: The following routines determine powerup conditions and 
I allow the user to set the powerup magic number 
# -----------------------------------------------------------------------------

set POWER_UP_MAGIC_NUMBER, Ox52364767 

text 
even 

global IsPowerUp 

IsPowerUp: mov.l 
mov.l 
mov.l 

%a6,-(%sp) 
%dl,-(%sp) 
%al,-(%sp) 

f Save %A6 

mov.l 
mov.l 
mov.l 
mov.l 

mov.l 
cmp.l 
bne 

mov.l 
bra 

%sp,%a6 
&int table + Ox7C,%al 
(%all, %dl 
&pu_yes, (%al) 

Save sp 
parity vector location 
Save old parity error 
Load new vector 

PwrUpLoc,%dO f Get power up magic 
%dO,&POWER UP MAGIC NUMBER I Is it right value 
pu_yes - - t If so is power up 

&O,%dO 
pu_exit 

return 

pu yes: 

pu_exit: 

mov.l 

mov.l 
mov.l 
mov.l 
mov.l 
mov.l 
rts 

&1,%dO 

%dl, (%al) 
%a6,%sp 
(%sp)+,%al 
(%sp)+,%dl 
(%sp)+,%a6 

Yes is power up 

Restore old vector 
Restore stack pointer 
Restore registers 

global SetNotPowerUp 

SetNotPowerUp: mov.l 
rts 

&POWER_UP_MAGIC_NUMBER, PwrUpLoc 

I -----------------------------------------------------------------------------
f 
I 
I 
t 
f 
f 
f 
f 
I 
I 
t 
I 

STACK DEFINITIONS: The following data definitions define the stacks for the 
6B030. The interrupt, supervisory and user stacks are 
defined. Depending on the application, the size of these 
definitions may be increased or decreased. 

DATA STRUCTURES: Space for the interrupt, fault and system procedure 
tables are defined here. The size of these tables is a 
fixed quantity. Details of how these structures are used 
can be found in the 6B030 manual. The initialization of 
these structures is performed by other functions. 



Jun 27 1991 10:33:29 

even 

global lnt table 
global sup-stack 
global pwrUpLoc 

BoardAsm.s 

lcomm int table, Ox0400 
lcomm top-stack, Ox4000 
lcomm sup-stack, Ox40 
lcomm PwrUpLoc, Ox04 
lcomm Reserved, OxOC 

Page 3 

I: 

-, 



Jun 261991 16:58:04 Bug.h Page 1 
1******************************·***··**·*·*·**·**·***· **.*** ••• **** •••• *. 
* 
• copyright (c) 1990 Heurikon Corporation 
• All Rights Reserved 

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* 
* Heurikon hereby grants you permission to copy and modify 

this software and its documentation. Heurikon grants 
this permission provided that the above copyright notice 
appears in all copies and that both the copyright notice and 
this permission notice appear in supporting documentation. In 

* addition, Heurikon grants this permission provided that you 
• prominently mark as not part of the original any modifications 

made to this software or documentation, and that the name of 
Heurikon Corporation not be used in advertising or publicity 

• pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

• Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
• of, the software and documentation in terms of correctness, 
• accuracy, reliability, currentness, or otherwise; and you rely 
• on the software, documentation and results solely at your own 
* risk. 

* AUTHOR 
RSS 

• MODIFICATIONS: 

*·*·*1 

1·*·**""···""""·**·***·*****************"******"*··*··*"******.*.******,,.* 
* Bug.h: This file is intended to provide standard constants and 

data structures common to all files independent of 
* processor compiler and board model. 
***1 

1********************"**·***·******·***********·****** ***,,**************** 
* Define the constants for TRUE, FALSE, NULL and ERROR. 
***1 

'define NULL 0 
'define TRUE 1 
'define FALSE 0 
'define ERROR -1 

'define FAILED 0 
'define PASSED 1 

'define READ 0 
.define WRITE 1 
'define READ PROBE 2 
'define WRITE_PROBE ) 

1**"**"***··***·*****·**************·***""*****·**·*·· .***.*.**** ••• **.*.** 
• Define the constants for BYTE, WORD, and LONG. 
***1 

'define BYTE 1 
'define WORD 2 
'define LONG 4 

Jun 26 1991 16:58:04 Bug.h Page 2 
1·**··****·**·***·*··"*"****·**"***"*·"""*"**********" ****.****.*,,******.* 

• Define the constants for DECIMAL, HEX, UPPER and LOWER case. 
"·*1 

'define DECIMAL oxe 
'define HEX Ox4 
'define UPPER Ox2 
'define LOWER Ox1 
'define ALPHA Ox) 

1*"***"*·*·****·*·*"*"*·****·"*****""**····*·*········ •••• * •• *" •••••• * •••• 
MAXLN is the character limit of the command line editor. 

*""1 

'define MAXLN eo 
1*""**"******···"····"*·"*··"··**···*·*··············· ••• * •••• ".,,*.* •••• *. 

character definitions 
··*1 

'define EOF 0 
'define DEL Ox7F 
'define ESC Ox1B 
'define SP 
'define BS '\b' 
'define CR '\r' 
,define LF ' \n' 
'define TAB ' \t' 

1"··"·····*····*·"···"·"""··"**·····*··*·······*······ ••••• " •• *."",,* •••••• 
* Argument structure argc - argv 
*·*1 

'define MAXARGS 20 

struct args I 
char argcount; 
char *argv[MAXARGSj; 

} ; 

1·*·***·····*·*·····"······*········**···*·*··**·*··** ••••••••••••• *** •••• 
UNIX style time structure 

**"1 

struct tm I 

} ; 

unsigned long tm fsec; 
unsigned long tm-sec; 
unsigned long tm-min; 
unsigned long tm-hour; 
unsigned long tm-mday; 
unsigned long tm-mon; 
unsigned long tm-year; 
unsigned long tm=wday; 

typedef struct tm tm; 

I· fractions of seconds (0 - 99} ·1 
I· seconds (0 - 59) ·1 
1* minutes (0 - 59) *1 
I· hours (0 - 23) ·1 
I· day of month (1 - 31) *1 
I· month of year (0 - 11) *1 
I· Year - 1900 *1 
I· day of week (sunday = 0) *1 



Jun 271991 10:33:49 CIO.c Page 1 
/************************************************************************ 
* 
* Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
* The copyright notice above does not evidence any 
* actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 

addition, Heurikon grants this permission provided that you 
prominently mark as not part of the original any modifications 

* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 

of, the software and documentation in terms of correctness, 
accuracy, reliability, currentness, or otherwise; and you rely 

* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 

*****/ 

finclude "Bug.h" 
'include "Board.h" 

/************************************************************************* 
* CIO.c: This file contains the functions necessary to read, write and 
* configure the Z85C36 Counter Timer / parallel port chip. 

The functions defined in this module are listed below: 

***/ 

InitCio () 
ReadCioPortA () 
Ciolntr () 

ConfigCio () 
ReadCioPortB() 
WriteCioPortB () 

StartTimer () 
ReadCioPortC () 

/************************************************************************* 
* This file contains all the CIO specific subroutines necessary to reset, 
* initialize, read and write to the CIO ports and counter timers. 

* Ini tCio () : Sets the CIO to the hardware reset state. 

* ConfigCio () : This is the default state of the CIO and it should be set 
to this state at reset. 

* WriteCioPortA() 
WriteCioPortB () 
WriteCioPortC() : 

*/ 

These are the routines used to write to ports A-C of 
the CIO. 

1************************************************************************* 
* InitCio(): This function resets the counter timer regardless 

what state the chip might be in. 

Jun 27 1991 10:33:49 
***/ 

InitCio () 
{ 

CIO.c 

volatile unsigned char *p, c;, 

p = CIO CTRL; 
c = *p;-
*p = OxOO; 
c = *p; 
*p OxOO 
*p Ox01 
*p = OxOO 

1* make sure we're waiting for a reg ptr */ 
1* master int ctl reg ptr */ 
1* (must be a good reason to do it again) *1 

/* reset bit on, off *1 

Page 2 

/************************************************************************* 
* ConfigCio(): This function initializes the counter timer to the 

state expected by the monitor. The configuration sets 
the parallel ports as bit output ports so that the 
VME slave comparison addresses can be written to ports 

* A, Band C. 
***1 

ConfigCio () 
( 

static unsigned char ciotable[) = { 

Ox20, 
Ox22, 
Ox23, 
Ox24, 
Ox25, 
Ox26, 
Ox27, 
Ox02, 
Ox08, 

Ox28, 
Ox2a, 
Ox2b, 
Ox2c, 
Ox2d, 
Ox2e, 
Ox2f, 
Ox03, 
Ox09, 
OxOe, 

Ox1e, 
Oxla, 
Oxlb, 
Ox04, 
Ox08, 

Ox06, 
Oxge, 
Oxff, 
OxlO, 
OxlO, 
OxOO, 
OxlO, 
CIO VECTOR, 
OxcD, 

Ox06, 
Ox80, 
Ox80, 
OxOO, 
OxOO, 
OxOO, 
OxOO, 
CIO VECTOR 
Oxen-, 
Oxff, 

Ox80, 
Oxff, 
Oxff, 
CIO VECTOR, 
Ox2D, 

/* Port A Initialization */ 
/* bit port, pri encoded vector *1 
/* Invert neg true bits */ 
/* all bits inputs */ 
/* ones catcher *1 
1* pattern polarity register */ 
/* all levels */ 
1* pattern mask, enable mailbox */ 
/* base interrupt vector *1 
/* set int enable, no int on err *1 

1* Port B Initialization */ 
1* bit port, pri encoded vector */ 
/* Don't invert inputs */ 
/* one input bit */ 
/* normal input (no ones catchers) */ 
/* bit interrupt on a one *1 
/* no transition */ 
/* no interrupts */ 
/* set interrupt vector */ 
/* set int enable, no int on err */ 
/* set int enable, no int on err */ 
/* Timer 3 and other CIO initialization */ 
/* Set mode to auto reload */ 
/* High byte delay constant */ 
/* Low byte delay constant */ 
/* Interrupt vector */ 
/* Clear any port A ints */ 

OxOl, 
OxOO, 

Ox84, 
OxB2 

/* enable ports A & B */ 
/* enable interrupts */ 

} ; 
register int cnt; 
volatile unsigned char *p; 

InitCio () ; 
p = CIO CTRL; 
for(cnt-= 0; cnt < sizeof(ciotable); cnt++) { 

*p = ciotable[cnt); 



Jun 27 1991 10:33:49 CIO.c Page 3 

/***************************************************** ******************** 
* writeCioPortA() 
* WriteCioPortB() 
* WriteCioPortC() These functions provide the ability to write to the 

CIO output ports. Ports A, Band C are used for the 
VMEbus slave maps for the Extended, Short and Standard 
spaces, respectively. 

***/ 

WriteCioPortB(Data) 
register unsigned char Data; 
( 

*CIO_BData Data; 

ReadCioPortA(Data) 
register unsigned char Data; 
( 

return (*CIO_AOata); 

ReadCioPortB(Data) 
register unsigned char Data; 
( 

return (*CIO_BOata); 

ReadCioPortC(Oata) 
register unsigned char Data; 
( 

return (*CIO_COata); 

/************************************************************************* 
* StartTimer(): This function is intended to provide an example of how 

to initialize the CIO counter timers. Here the CIO is 
initialized, the interrupt handler is attached, and then 
the counter is started. In this example the location 
'NumTicks' is incremented for every interrupt received 
and a dot is printed every second. This function is 
turned off by calling ConfigCio() and disconnecting 
the interrupt handler. 

***/ 

volatile int NumTicks; 

StartTimer () 
( 

register int cnt; 
register int Ciolntr(); 
static unsigned char ctitable[) 

OxOO, OxB2, /* Enable master interrupt VIS */ 
OxlE, OxBO, /* Channel 3 Continuous */ 
Ox lA, OxB2, OxlB, 
OxOC, Ox20, 
OxlO, OxBO, 
OxlB, Ox50, Ox19, 
OxOB, Ox20, 

OxIC, 
Ox16, 
OxOA, 

OxBO, 
Ox31, 
Ox20, 

Oxl7, 

Ox35, 

OxBA, 

OxC3, 

/* Channel 3 Count (1/60th sec) */ 
/* Clear IP and IUS for channel 3 */ 
/* Channel 2 Continuous */ 
/* Channel 2 Count (l/97th sec) */ 
/* Clear IP and IUS for channel 2 */ 

/* Channel 1 Continuous */ 
/* Channel 1 Count (1/157th sec) */ 
/* Clear IP and IUS for channel 1 */ 

Jun 27 1991 10:33:49 CIO.c Page 4 

} ; 

Ox05, 
Ox06, 
Ox07, 
OxOl, 
Oxoc, 
OxOB, 
OxOA, 

OxOO, 
OxFF, 
OxOO, 
Ox40, 
OxC6, 
OxC6, 
OxC6 

xprintf(ltNumTicks loaded at Ox%x\n", 
ConnectHandler(CIO VECTOR, Ciolntr); 
NumTicks = 0; -
*CIO CTRL = Ox04; 
*CIO-CTRL = CIO VECTOR; 
for(cnt = 0; cnt < sizeof(ctitable); 

*CIO CTRL = ctitable[cnt); 
UnMasklnts () ; 

/* Set up port 3 */ 

/* Enable counters 1, 2, and 3 
/* Enable Interrupts, start count 

&NumTicks); 

cnt++) 

/************************************************************************* 
* Ciolntr(): This is the interrupt handler for the counter timer. 

This function removes the interrupt in the device and 
then clears the interrupt in the processor. 

***/ 

static Ciolntr() 
( 

register unsigned char Vector, Status; 
register int i; 

fore i = 0 ; i < OxlOOO i++); 
Vector = *CIO CTRL; 
*CIO CTRL = Oi04; 
Vector = *CIO_CTRL; 

*CIO CTRL = OxOA; 
Status = *CIO CTRL; 
*CIO CTRL = OiOA; 
if «NumTicks++ % 157) 

PutC ('.'); 
} 
*CIO CTRL = Ox24; 

0) { 

*/ 
*/ 



Jun 26 1991 16:58:24 Proc.c Page 1 
/************************************************************************ 
* 
* Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 

* 

The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 

this permission notice appear in supporting documentation. In 
addition, Heurikon grants this permission provided that you 

* prominently mark as not part of the original any modifications 
* made to this software or documentatiQn, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 

pertaining to distribution of the software or the documentation 
without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* AUTHOR 
RSS 

* MODIFICATIONS: 

*****/ 

'include "Bug.h" 
'include "Proc.h" 

/************************************************************************* 
* DOCSEC: Exceptions 1 MC68030 Processor 
* 
* SYNOPSIS: 

* 

* 

* 
* 

VectInit () 

unsigned long *VecToVecAddr(Vector) 
unsigned long Vector; 

Connect Handler (Vector, Handler) 
unsigned long Vector; 
int (*Handler) (); 

DisConnectHandler(Vector) 
unsigned long Vector; 

Probe(DirFlag, sizeFlag, Address, Data) 
char DirFlag, SizeFlag; 
unsigned long Address; 
unsigned long Data; 

* DESCRIPTION: These functions are the 68030 processor specific functions 
which provide interrupt and exception handling support. 

* 
The function VectInit initializes the entire interrupt 
table to reference the unexpected interrupt handler. This 
assures that the board will not hang when unexpected interrupts 
are received. The unexpected interrupt handler saves the state 
of the processor at the point the interrupt was detected and 

Jun 26 1991 16:58:24 Proc.c Page 2 

* SEE ALSO: 
*******/ 

then calls the IntrErr function, which displays the 
error and restarts the monitor. 

The function VectToVectAddr converts the argument 
Vector to the vector address contained in the 
interrupt table associated with the vector. This allows 
modification of vectors without knowing where the 
interrupt table is located in memory. 

The function Connect Handler allocates an interrupt 
wrapper, links the wrapper into the interrupt table and then 
initializes the wrapper to call the Handler address. The 
argument Vector indicates the vector number to be 
connected and the argument Handler should be the 
address of the function that will handle the interrupts. 
The Interrupt Wrapper is a relocatable assembly language 
module that can be placed in free memory and linked into 
the interrupt table. This allows the programmer to avoid 
using assembly language programming for interrupts. 

The function DisConnectHandler modifies the interrupt 
table entry associated with Vector to use the unexpected 
interrupt handler and then de-allocates the memory used for 
the interrupt wrapper allocated by ConnectHandler. 
Because both Connect Handler and DisConnectHandler 
use the Malloc and Free facilities it is necessary 
for memory management to be initialized. 

The function Probe should be used to access memory 
locations that mayor may not result in a watchdog timeout 
or bus error. This function returns TRUE if the location 
was accessed and FALSE if the access resulted in a bus 
error. The argument DirFlag indicates whether a 
read (0) or a write (1) should be attempted. The argument 
SizeFlag indicates whether a byte access (1), a 
word access (2) or a long access (4) should be attempted. 
The argument Address indicates the address to be 
accessed and the argument Data is a pointer to 
where the read or write data is. 

extern unsigned long int_table[]; 

unsigned long *VecToVecAddr(Vector) 
unsigned long Vector; 

/* Address of interrupt table */ 

{ 
return «unsigned long *) Unt_table + Vector», 

Vectlnit () 
( 

int i, UnExpIntr(); 
unsigned long *VectPtr; 

VectPtr = int table; 
for(i = 0; i ~ 256; i++) { 

*VectPtr++ = (unsigned long) UnExpIntr; 

struct IntWrapper IntCode = { 
Ox4Be7ffff, Ox302f0046, Ox0240fOOO, OxOc40bOOO, Ox66000010, Ox2f7cOOOO, 
Ox00000090, Ox026ffeff, Ox004a302f, Ox0046e48B, Ox02800000, OxOOff222f, 
Ox00422fOO, Ox2f014eb9, 



Jun 261991 16:58:24 Proc.c 
OxOOOOOOOO, 
Ox50Bf4cdf, Oxffff4e73, 
Oxoooooooo, Oxoooooooo, Oxoooooooo 

} ; 

CorinectHandler(Vector, Handler) 
unsigned long Vector; 
int Handler () ; 
I 

unsigned long *CodePtr, *MemPtr; 
struct IntWrapper *Wrapper; 
int i, UnExplntr(); 
unsigned long *VectPtr, *VecToVecAddr(); 
unsigned char *Malloc(); 

VectPtr = VecToVecAddr(Vector); 
FlushCache () ; 

if (*VectPtr != (unsigned long) UnExplntr) I 
Wrapper = (struct IntWrapper *) *VectPtr; 
Wrapper->CallAddr = (unsigned long) Handler; 
return; 

MemPtr = (unsigned long *) Malloc(sizeof(struct IntWrapper»; 
Codeptr (unsigned long *) &IntCode; 
Wrapper = (struct IntWrapper *) MemPtr; 

Page 3 

for (i = 0; < (sizeof(struct IntWrapper) / sizeof(unsigned long»; i++) { 
*MemPtr++ *CodePtr++; 

I 
Wrapper->CallAddr = (unsigned long) Handler; 

*VectPtr = (unsigned long) Wrapper; 
FlushCache(); 

DisConnectHandler(Vector) 
unsigned long Vector; 
{ 

unsigned long OldWrapper, *VecToVecAddr(); 
int UnExplntr(); 

01dWrapper = *VecToVecAddr(Vector); 
Free(OldWrapper); 
*VecToVecAddr(Vector) = (unsigned long) UnExplntr; 

unsigned long BusError; 

Probe(DirFlag, SizeFlag, Address, Data) 
char DirFlag, SizeFlag; 
unsigned long Address; 
unsigned long Data; 
I 

int Cnt, buserr(); 
unsigned long *VectPtr, *VecToVecAddr()1 
unsigned long OldVector; 

Bus Error = FALSE; 
VectPtr = VecToVecAddr(2); 
OldVector = *VectPtr; 
*VectPtr = (unsigned long) buserr; 
switch (DirFlag & OxDF) I 

case 'R': I 

Jun 26 1991 16:58:24 Proc.c Page 4 
switch (SizeFlag & OxDF) 

case 'B': I 
if (! sav env (» I 

*(unsigned char *) Data *(unsigned char *) Address; 
else { 

BusError = TRUE; 
} 
break; 

case 'W': { 
if (! sav env () { 

* (unsigned short *) Data *(unsigned short *) Address; 
else { 

Bus Error = TRUE; 

break; 

case 'L': I 

I 

if (! sav env (» I 
*(unsigned long *) Data *(unsigned long *) Address; 

else { 
BusError = TRUE; 

} 
break; 

default: I 

I 
break; 

xprintf("error: argument 2 must be -b, -w or -l\n"); 

case 'W': { 

} 

switch (SizeFlag & OxDF) I 
case' B': { 

if (! sav env () I 
* (unsigned char *) Address * (unsigned char *) Data; 

else { 
BusError = TRUE, 

} 
break; 

case 'W': ( 
if (! sav env () { 

* (unsigned short *) Address *(unsiqned short *) Data; 
} else { 

Bus Error TRUE; 
} 
break; 

case 'L': { 

} 

if (! sav env (» { 
*(unsigned long *) Address 

else { 
BusError = TRUE; 

} 
break; 

*(unsig~ed long *) Data; 

default: ( 

} 
break; 

xprintf("error: argument 2 must be -b, -w or -l\n"); 

default: ( 
xprintf("error : argument 1 must be -r or -w\n"); 



Jun 26199116:58:24 

Cnt = 0, 
*VectPtr = (unsigned long) 
while(BusError == FALSE) 

if (Cnt++ > 100) 
return(TRUE); 

I 
return(FALSE); 

Proc.c PageS 

OldVector; 
/* This is strange but it is 
/* necessary to allow the 
/* processor to sync up to 
/* handler. Because things may 
/* not happen sequentially anymore 
/* a simple if would execute while 
/* a bus error was taking place 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

"'. 

3 



Jun 26 1991 16:58:53 ProcAsm.s Page 1 
1***************************************************** ****************** 
* * Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or pUblicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 
* 
*****1 

text 
even 

1***************************************************** ******************** 
* DOCSEC: Interrupts 1 MC68030 Processor 

* SYNOPSIS: UnMaskInts 0 
MaskInts() 

* DESCRIPTION: The functions UnMaskInts and MaskInts are used 

* SEE ALSO: 
*******1 

UnMasklnts: 

Masklnts: 

to enable and disable interrupts at the processor. The 
function UnMasklnts sets the interrupt level bits 
in the processor status register to 0 allowing all levels 
to interrupt the processor. 
The function MaskInts sets the interrupt level bits 
in the processor status register to 7 disabling all 
interrupts except the non-maskable level 7 interrupt. 

global 

and.w 
rts 

mov.w 
and.l 
eor.w 
or.w 
rts 

UnMaskInts, MaskInts 

&OxF8FF,\sr 

\sr, %dO 
&Ox00000700,%dO 
&Ox0700,%dO 
&Ox0700,%sr 

Clear interrupt levels 
Go home 

Jun 261991 16:58:53 ProcAsm.s Page 2 
1***************************************************** ******************** 
* DOCSEC: Cache 1 MC68030 Processor 

* SYNOPSIS: 
* 
* 

FlushCacheO 
EnbInstCache () 
DislnstCache 0 
EnbDataCache () 
DisDataCache 0 

* DESCRIPTION: These functions are used to enable, disable and flush 
the instruction and data caches. 

* SEE ALSO: 
*******/ 

FlushCache: 

EnblnstCache: 

DisInstCache: 

EnbDataCache: 

DisDataCache: 

ByeBye: 

The FlushCache function flushes both the 
instruction and data caches. 

The functions EnblnstCache and EnbDataCache 
enable the instruction and data caches respective by 
turning on the enables is the CACR register. 

The functions DislnstCache and DisDataCache 
disable the instruction and data caches respective by 
turning off the enables in the CACR register. Before 
a cache is disabled it is flushed. 

global FlushCache 
global EnbInstCache 
global DisInstCache 
global EnbDataCache 
global DisDataCache 

mov %cacr, 'dO 
or.l &OxOOOOO808,'dO f cacr 1= (CD 1 CI); 
bra Bye Bye 

mov %cacr, 'dO 
or.l &OXOOOOOO19,%dO f cacr 1= (IBE 1 CI 1 EI); 
bra Bye Bye 

mov 'cacr, 'dO 
and.l &OxFFFFFFE6,'dO f cacr &= - (lBE 1 CI 1 EI) ; 
bra Bye Bye 

mov 'cacr, 'dO 
or.l &OxOOOO1900,\dO , cacr 1= (DBE I CD 1 ED); 
bra Bye Bye 

mov 'cacr, %dO 
and.l &OxFFFFE6FF,%dO t cacr &= -(DBE 1 CD 1 ED); 

mov %dO, %cacr 
rts 

1***************************************************** ******************** 
* DOCSECP: UnExplntr 1 MC68030 Processor 

* SYNOPSIS: UnExpIntr () 
* * DESCRIPTION: This is the bad vector routine for catching unexpected 

interrupts. If all unused entries in the vector table are 
initialized to reference this function then it is not 
likely that an errant program can crash the monitor or 
an application. 

* When an unexpected interrupt occurs this function dumps 



Jun 261991 16:58:53 ProcAsm.s Page 3 

* SEE ALSO: 
*******/ 

UnExpIntr: 

the state of the processor registers to a processor 
register data structure. After the registers have been saved 
the function IntrErr is called, which prints the 
exception error message and the register dump before 
the command line editor is re-entered. 

global UnExplntr 
global ProcRegs 

movm.l &Oxffff, ProcRegs 
movm.l &Oxffff,- (%sp) 
mov.w 70(%sp),%dO 
Isr.l &2,%dO 
and.l &OxOOff,%dO 
mov.l 66 (hp) , %dl 
mov.l 80(%sp),%d2 
mov.l %dO, -(hpj 
mov.l %dl, - (hp) 
mov.l %d2, - (hp) 

mov.l &ProcRegs, %aO 
mov.l %dl, Ox40(%aO) 
mov.l %sr, Ox64(%aO) 
mov.l Ox3C (%aO), Ox58 (%aO) 
mov.l %sfc, %dl 
mov.l %dl, Ox44(%aO) 
mov.l %dfc, %dl 
mov.l %dl, Ox48(%aO) 
mov.l %vbr, %dl 
mov.l %dl, Ox4C (%aO) 
mov.l %cacr, %dl 
mov.l %dl, Ox50(%aO) 
mov.l %caar, %dl 
mov.l %dl, Ox54(%aO) 
mov.l %isp, %dl 
mov.l %dl, OxSC (%aO) 
mov.l %msp, %dl 
mov.l %dl, Ox60(%aO) 

jsr IntrErr 
jsr start_ip 

Imported from DumpRegs 

Dump Standard Registers 
save up state 
get vector off of stack 
divide by 4 to get vec # 
get rid of non-vector bits 
Get address of exception 
Get access address 
store vector result in variable 
save PC 
save Access Addr 

Pointer into control reg file 
Save off PC of exception 
Save off PC of exception 
Save SSP = a7 

Save SFC 

Save DFC 

Save VBR 

Save CACR 

Save CAAR 

Save ISP 

Save MSP 

print error message 
print error message 

/************************************************************************* 
* DOCSEC: FastFillMem 1 MC68030 Processor 

* SYNOPSIS: FastFillMem(Value, StartAddress, EndAddress) 
unsigned long Value; 
unsigned long *StartAddress, *EndAddress; 

* DESCRIPTION: The FastFillMem function provides a fast method 
for filling memory with the Value specified. 
The FillMem monitor command is too slow to 
clear large amounts of memory (megabytes). This 
function takes advantage of the burst ability of the 
processor, which can achieve much higher data rates 
than single reads and writes. 

The parameters StartAddress and EndAddress 
indicate the start and end of the block of memory to be 
filled. The argument Value is the value used to 
fill memory. The value is always assumed to be an unsigned 
long value and the start and end pointers are assumed to 

Jun 26 1991 16:58:53 ProcAsm.s Page 4 

be long word aligned addresses. 

* SEE ALSO: 
*******/ 

FastFi llMem: 

FillLoop: 

CleanUp: 

global 

movrn.l 
mov.l 
mov.l 
mov.l 

mov.l 
mov.l 
mov.l 
mov.l 
mov.l 
mov.l 
mov.l 

mov.l 
sub.l 
lsr.l 
sub.l 

movm.l 
dbra 

mov.l 
cmp.l 
bIt 

movm.l 
rts 

FastFillMem 

&OxFFFF,-(hp) 
Ox44(hp),%dO 
Ox48(bp),%al 
Ox4C(%sp),%aO 

%dO, %dl 
%dO, %d2 
%dO, %d3 
%dO, %a3 
%dO, %a4 
%dO, %as 
%dO, %a6 

%aO, %d6 
%al,%d6 
&S,%d6 
&1,%d6 

&OxFOIE,-(%aO) 
%d6, FillLoop 

%dO,-(%aO) 
%al,%aO 
CleanUp 

(bp)+,&OxFFFF 

Save registers 
Get 'FillValue' off stack 
Get 'Base' off stack 
Get 'Top' off stack 

Copy FillValue to other 
registers. 

Copy Top 
Count (Top - Base) 
Count Count / 32; 
Count = Count - 1; 

t Move 8 registers at a time. 
t Branch till done 

t*********************************************************************** 
sav env (env) 
jmp::::buf *env; 

res env (env, retval) 
jmp-buf *env; 
int-retval; 

Recover from anticipated bus error 
t*** 

even 
global sav env, res_env, buserr 

EnvBulfer 

sav_env: 

buserr: 
res_env: 

global 

mov.l 
mov.l 
mov.w 
movrn.l 
mov.l 
rts 

or.w 
mov.l 
movrn.l 
mov.w 
mov.l 
mov.l 
rts 

&EnvBuffer,%aO t get pointer to environment buffer 
(%Bp), (%aO) t save the pc 
%sr,4(%aO) t and status 
&OxFEFE,8(%aO) t save %Dl-%D7/%Al-%A7 
&O,%dO t return false 

&Ox0700, %sr disable ints 
&EnvBuffer,%aO 
8(%aO),&OxFEFE restore %Dl-%D7/%Al-%A7 
4 (%aO) , %Br 
(%aO), (bp) t restore %pc to just after sav_env call 
&l,%dO t return true 

t We magically return via the new PC 

~ 



Jun 26 1991 16:58:53 ProcAsm.s Page 5 

lcomm EnvBuffer, Ox50 t Bss Area to save environment 



Jun 26 1991 16:59:14 Proc.h Page 1 
/************************************************************************** 

* The Interrupt Wrapper is a relocatable assembly language module that * 
* Is allocated on the stack. The Interrupt table vector location is * 
* initialized to point to the wrapper and the wrapper is initialized to 
* point to the interrupt handler. This level of indirection will reduce 
* the dependency of the test software on the type of prooessor by 
* removing all assembly code from the tests. 

* The assembly language module is included below: 

* Wrapper: 

* NotBusErr: 

movm.l 
mov.w 
and.w 
cmp.w 
bne.s 
mov.l 
and.w 
mov.w 
lsr.l 
and.l 
mov.l 
mov.l 
mov.l 
jsr 
add.l 
movm.l 
rte 
space 
space 
space 

&Oxffff,-(hp) 
70(hp),%dO 
&OxfOOO,%dO 
%dO,&OxbOOO 
NotBusErr 
&0,114 (hp) 
&Oxfeff,74(%sp) 
70 (hp) , %dO 
&2,%dO 
&OxOOff,%dO 
66(%sp),%dl 
%dO,-(hp) 
%dl, - (hp) 

IntHdl 
&8,%sp 
(%sp) +, &Oxffff 

t save cpu state 
t get vector off of stack 
t mask high bits of vector offset 
• Compare to mask of bus exception 
• check if bus error 
• data for data input buffer 
• clear rerun bus cycle bit 
• get vector off of stack 
t divide by 4 to get vec t 
t get rid of non-vector bits 
• Get address of exception 
t store result in variable 
t push vector 
t jump to the test 
t Adjust stack pointer 
• restore cpu state 
t Return from exception 
f Storage for old Vector 
t Storage for old Vector 
t Storage for old Vector 

The basic operation of connecting an interrupt to the vector is 
* accomplished by allocating on the stack memory for the wrapper 
* copying the wrapper onto the stack, writing the correct call address 
* and finally saving the previous Vector pointer in the data space 
* allocated. 
* 
**************** disassembly for Interrupt Wrapper *********************** 

0: 48e7 ffff movm.l &Oxffff, - (hp) 
4: 302f 0046 mov.w Ox46(hp),%dO 
8: 0240 fOOD andi.w &-4096,%dO 
c: 0640 bOOO cmpi.w &-20480,%dO 

10: 6600 0010 bne.w Ox10 <22> 
14: 2f7c 0000 0000 0090 mov.l &0, 144 (hp) 
1c: 026f feff 004a andi.w &-257, 74 (hp) 
22: 302f 0046 mov.w Ox46(%sp),%dO 
26: e488 lsr.l &2,%dO 
28: 0280 0000 OOff andi.l &255,%dO 
2e: 222f 0042 mov.l Ox42 (%sp),%d1 
32: 2fOO mov.l %dO,-(hp) 
34: 2f01 mov.l %d1,-(hp) 
36: 4eb9 0000 0000 jsr 0.1 
3c: 508f addq.l &8,%sp 
3e: 4cdf ffff movrn.l (hp)+,&Oxffff 
42: 4e73 rte 
44: 4e71 nop 
46: 4e71 nop 
48: 4e71 nop 
4a: 4e71 nop 
4c: 4e71 nop 
4e: 4e71 nop 

**************************************************************************/ 

Jun 26 1991 16:59:14 
struct IntWrapper { 

I; 

unsigned long CodeSegO[14]; 
unsigned long CallAddr; 
unsigned long CodeSeg1[2]; 
unsigned long DatSegO[3]; 

Proc.h Page 2 

/************************************************************************** 
* Register File definitions for 68030: 
***/ 

typedef struct RegFile { 
unsigned long DataRegs[8]; 
unsigned long AddrRegs[8]; 
unsigned long CtrlRegs[16]; 

RegFile, *RegFilePtr; 

typedef struct TraceStackFrame 
unsigned short StatusReg; 
unsigned long ProgCtr; 
unsigned short Vector; 
unsigned long InstrAddr; 

TrStkFrame, *TrStkFramePtr; 

/* Status Register */ 
/* Next Instruction */ 
/* Vector Number */ 
/* Instruction Address */ 



Jun 271991 10:34:31 RTC.c Page 1 
/************************************************************************ 

* 
* Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code, 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 

*****/ 

linclude "Bug.h" 
'include "Board.h" 

unsigned char Key[S); /* bss and data versions of RTC Key */ 
static unsigned char InitKey[) = { 

Oxe5, Ox3A, OxA3, Ox5C, OxC5, Ox3A, OxA3, Ox5C 
1; 

/************************************************************************ 
rtc_acc: 

***/ 

This function reads or writes the real-time clock, depending 
on 'Type'. The 'data' is received and returned in the format 
of the real-time clock (Board. h). This function cannot be 
loaded into ROM; because of the way the RTC operates, the 
clock would be reset by ROM execution. 

static rtc acc(data, Type) 
register unsigned char *data; 
int Type; 
I 

register int i, bit; 
volatile unsigned char temp; 

temp = *RD WATCH; 
for(i = O;-i < 8; i++) { 

for (bit = 1; bit & OxFF; bit «= 1) { 
temp = (Key[i) & bit} ? *WR1_WATCH *WRO_WATCH; 

if (Type) 
for(i = 0; i < 8; i++) { 

for (bit = 1; bit & OxFF; bit «= 1) { 

Jun 27 1991 10:34:31 RTC.c Page 2 
temp (data[i] & bit) ? *WR1_WATCH 

else I 
for(i ;: 0; i < 8; i++} I 

data[i) '" 0; 
for (bit = 1; bit & OxFF; bit «= 1) { 

data [iJ 1= (*RD_WATCH & 1)? bit : 0; 

*WRO_WATCH, 

/************************************************************************ 
* RtcAcc: This function accepts the structure 'Time' and either reads 

the time into or writes the new time from this structure. 
'Flag' indicates whether the function is reading or writing 
the time. There are several very strange things that should be 
described about this function: 

***/ 

Because the RTC stores the time as packed nibbles internally 
it is necessary to convert to packed nibbles when writing 
and to binary when reading the RTC. 

Because the ROM cannot be accessed when the RTC is being read 
it is necessary to copy the function rtc acc into RAM and then 
execute the function. This is also why tne 'Key' is located in 
the 'bss' section. Great care was taken to assure that the 
function rtc acc was relocatable so be careful!!!. 

RtcAcc(Time, Flag) 
register tm *Time; 
int Flag; 
( 

int (*Funct) (); 
int Size, nibble(), rtc acc(}; 
char *Malloc(); -
register unsigned long tmp; 
register struct rtc_data RtcData; 

CopyMem(InitKey, Key, sizeof(InitKey»; 

if (Flag == WRITE) 
RtcData.hour BinToHex(Time->tm hour}; /* Write */ 
RtcData.min BinToHex(Time->tm-min); 
RtcData.month BinToHex(Time->tm-mon + 1); 
RtcData.weekday Time->tm wday I Ox10; 
if (Time->tm wday == 0) - /* Converts sunday to 7 */ 

RtcData.weekday = Ox17; 
RtcData.date BinToHex(Time->tm mday); 
RtcData.year BinToHex(Time->tm-year); 
RtcData.sec 0; -
RtcData.dotsec 0; 

IUdef RAM MON 
rtc acc(&RtcData, Flag}; 

'else -
Size = (int) RtcAcc - (int) rtc acc; 
Funct = (int (*)()) Malloc(Size); 
FlushCache () ; 
CopyMem(rtc acc, Funct, Size); 
Funct(&RtcData, Flag); 
Free(Funct); 

'endif 

/* If RAM based monitor */ 

/* If EPROM based monitor */ 
/* Size of function to copy */ 
/* Allocate memory for function.*/ 

/* Copy function to memory. */ 
/* Call function. */ 



Jun 271991 10:34:31 RTC.c Page 3 

if (Flag == READ) 
Time->tm fsec HexToBin(RtcData.dotsec); /* Read */ 
Time->tm-sec HexToBin(RtcData.sec) , 
Time->tm-min HexToBin(RtcData.min); 
Time->tm-hour HexToBin(RtcData.hour); 
Time->tm-mday HexToBin(RtcData.date); 
Time->tm-mon HexToBin(RtcData.month - I); 
Time->tm-year HexToBin(RtcData.year); 
Time->tm-wday (RtcData.weekday & Ox7); 
if (Time=>tm wday == 7) /* Converts sunday to 0 */ 

Time->tm=wday = 0; 

-. 



Jun 27 1991 10:34:52 SCC.c Page 1 
/************************************************************************ 
* Copyright (c) 1990 Heurikon Corporation 

All Rights Reserved 

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 

* actual or inteffinded publication of such source code. 

Heurikon hereby grants ou permission to copy and modify 
this software and its do umentation. Heurikon grants 
this permission provided that the above copyright notice 
appears in all copies an that both the copyright notice and 
this permission notice· ppear in supporting documentation. In 

* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 

made to this software or documentation, and that the name of 
Heurikon Corporation not be used in advertising or publicity 

* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 
* 

MODIFICATIONS: 

*****/ 

#include "Bug.h" 
#include "Board.h" 
#include "NvMonDefs.h" 

/************************************************************************* 
* SCC.c: This file contains the functions necessary to read, write and 

configure the ZSS(30-l6 Serial Controller. 
The functions defined in this module are listed below: 

***/ 

extern NV_MonDefs 

GetChar () 
TxEmpty () 
SCCReset() 

NvMonDefs; 

volatile unsigned long ConDev; 
volatile unsigned long ModDev; 

static unsigned long SerDevList[) 
(unsigned long) SCC PORTA, 
(unsigned long) SCC=PORTB, 

} ; 

PutChar() 
ChangeBaud () 
FoundBreak () 

KeyHit () 
ConfigSerDevs () 
ConfigPort() 

/* Monitor defined configuration 

/* Console Device 
/* Modern/Download Device 

*/ 

*/ 
*/ 

/* List of port assignments */ 
/* Corresponds to NV definitions.*/ 

/**************************************************************************** 
* GetChar(): Get a character from specified device 'Port'. This function 
* is also set up to check for a 'break' and allows the monitor 
* to perform functions on break, like reset or baud changes. 
*******/ 

GetChar(Port) 
volatile struct SCCPort *Port; 
{ 

Jun 27 1991 10:34:52 
register unsigned char Data; 

Port->Control = 0; 
while (1) { 

if (Port->Control , OxOl) { 
Data = Port->Data; 

SCC.c Page 2 

if (Port->Control & Ox80) 
Port->Control ~ Ox10; 
Port->Control = OxlO; 
FoundBreak(Port); 

/* Reset Ext/Status Ints */ 
/* Only works if done twice */ 

else { 
return(Data); 

/**************************************************************************** 
* PutChar(): Put a character 'c' to specified device 'Port' 
*******/ 

PutChar(Port, c) 
volatile struct SCCPort *Port, 
register char c; 
{ 

Port->Control = 0; 
while (! (Port->Control Ox04»; 
Port->Data = c; 

/**************************************************************************** 
* KeyHit(): Check for character on specified device 'Port'. This is 
* useful during power up and transparent mode. 
*******/ 

KeyHit (Port) 
volatile struct SCCPort *Port; 
{ 

Port->Control = 0; 
return(Port->Control & Ox01); 

/**************************************************************************** 
* TxEmpty(): Check transmitter if empty on specified device 'Port'. This 
* function is useful for transparent mode. 
*******/ 

TxEmpty(Port) 
volatile struct SCCPort *Port; 
{ 

return«Port->Control & Ox04) TRUE FALSE); 

/**************************************************************************** 
* ChangeBaud(): Change baud rate for specified port 'Port' to rate 'Baud'. 
*******/ 

ChangeBaud(Baud, Port) 
volatile struct SCCPort *Port; 
register int Baud; 
{ 

int tc; 
unsigned short dummy; 

for (tc = 0; tc < OxlOOO; tc++); 
tc = BaudToTimeConst(Baud); 



Jun 271991 10:34:52 SCC.c Page 3 

dummy = Port->Control; 
Port->Control Oxoc; 
Port->Control = tc; 
Port->Control = OxOD; 
Port->Control = tc » 8; 
for (tc = 0; tc < OxlOOO; tc++); 

1***************************************************** *********************** 
* SCCReset(): This function hard resets both ports associated with 'Port' 
* because it's too clumsy to reset individual ports. 
*******/ 

static SCCReset(Port) 
volatile struct SCCPort *Port; 
{ 

Port->Control 
Port->Control 
Port->Control 

0; 
Ox09; 
OxcO; 

1***************************************************** ******************* 
* ConfigSerDevs(): This function uses the current definitions in the 

NV structure 'NvMonDefs' to configure the serial ports. 
This function is called once when NvMonDefs contains 
the default system configuration and once after the 

* NOTICE: 

**1 

ConfigSerDevs () 
{ 

NV memory has been read with the user's configuration. 

It is important that the NvMonDefs be valid when this 
function is called! 

SCCReset(SCC_PORTB); 1* Reset all serial devices. *1 

ConDev = SerDevList[NvMonDefs.Console.PortNumj; 1* Set up Console. *1 
ConfigPort(ConDev, &NvMonDefs.Console); 
ChangeBaud(NvMonDefs.Console.Baud, ConDev); 

ModDev = SerDevList[NvMonDefs.DownLoad.PortNumj; 1* Set up Download.*1 
ConfigPort(ModDev, &NvMonDefs.DownLoad); 
ChangeBaud(NvMonDefs.DownLoad.Baud, ModDev); 

/************************************************************************ 
* ConfigPort(): Initialize specified port 'Port' to the configuration 

specified by 'Conf'. The configurable portion of this 
function includes: 

* 

**1 

Data Bits 
Stop Bits 
Parity 
XOnXOff 

static ConfigPort(Port, Conf) 
volatile struct SCCPort *Port; 
register NVU Port *Conf; 
{ -

static unsigned char SCCTabl[] 
Ox09, OxOO, 1* No Reset 
OxOA, OxOO, 1* NRZ 

5,6,7 or 8. 
l,or 2. 
None, Even or Odd. 
On/Off 

*1 
*1 

Jun 27 1991 10:34:52 SCC.c Page 4 

I; 

OxOB, Ox56, 
OxOE, Ox02, 
OxOE, Ox03, 
OxOF, Ox80, 
OxOl, Oxoo, 

register int Cnt; 

1* Txclk = RxClk = Baud Rate Gen *1 
1* Baud Rate Generator Source */ 
/* start Baud Rate Generator */ 
/* Enable interrupt on break *1 

register unsigned char Mask; 

for (Cnt 0; Cnt < OxlOOO; Cnt++); 

Port->Control = 0; 
for(Cnt = 0; Cnt < sizeof(SCCTabl); Cnt++) 

Port->Control = SCCTabl[Cntj; 

Mask = OxO; 
if (Parity (Conf) 

Mask = Ox3; 
if (Parity (Conf) 

Mask = Oxl; 

SP_PARITY_EVEN) 

SP_PARITY_ODD) 

if (StopBits(Conf» 
Mask = Mask I Ox08; 

1* Determine parity. 

1* Determine stop bits. 

*/ 

*1 

Port->Control Ox04; 
Port->Control Ox44 I Mask; 

/* Write register 4 */ 
1* l6x clock, parity, stop bits *1 

Mask = DataBits(Conf); /* Determine data bits. 
Mask = «Mask & Oxl) « 1) 

+ «Mask & Ox2) » 1); 
Port->Control = Ox05; 
Port->Control = (Ox8A I (Mask « 5»; 1* Set Tx bit size, enable Tx. 
Mask = Mask « 6; 
if (XOnXOff (Conf) ) 1* Turn on auto enables. 

Mask = Mask I Ox20; 
Port->Control Ox03; 
Port->Control (OxOl Mask); 1* Set Rx Bit Size, Enable Rx 

Port->Control Ox38; /* Reset highest IUS. 
Port->Control Ox30; /* Reset errors. 
Port->Control OxlO; /* Reset Ext/Status Ints. 
for (Cnt = 0; Cnt < OxlOOO; Cnt++); 

1**************************************************************************** 
* FoundBreak(): This function performs functions defined by the NV memory 

configuration when a break is received. Either the monitor 
is reset or the baud rate is changed. 

*******1 

static FoundBreak(Port) 
volatile struct SCCPort *Port; 
{ 

register NVU_Port *Conf; 

if «unsigned long) Port == ConDev) { 
Conf = &NvMonDefs.Console; 

else if «unsigned long) Port == ModDev) 
Conf = &NvMonDefs.DownLoad; 

else { 
return; 

*/ 

*1 

*1 

*/ 

*1 
*/ 
*/ 



Jun 271991 10:34:52 SCC.c Page 5 
if (ResetOnBreak(Conf» /* If reset on break allowed */ 

MonEntryPt(); /* Reset monitor */ 
if (chBaudOnBreak(Conf» { /* If baud changes on break */ 

Conf->Baud = GetNextBaud(Conf->Baud); 
ChangeBaud(Conf->Baud, Port); 
xprintf("\nbaud=%d\n", Conf->Baud); 



Jun 27199110:35:15 SCSl.c Page 1 
/************************************************************************ 

* Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON··CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 

*****/ 

'include "Bug.h" 
'include "Board.h" 
'include "NvMonDefs.h" 

extern NV_MonDefs NvMonDefs; 

/************************************************************************* 
* SCSI.c: This file contains the functions necessary to read, write and 

configure the WD33C93A SCSI controller. 
The functions defined in this module are listed below: 

* InitScsi(}: Sets the SCSI to the hardware reset state and removes 
the reset interrupt. 

* ConfigScsi(}: This sets the state of the SCSI according to the NV 
definitions. 

***/ 

extern NV_MonDefs NvMonDefs; /* Monitor-defined configuration */ 

'define SC RESET 
'define FREQ_SEL 

OxOO 
Ox80 

/* Issues an RESET Command to WD33C93 */ 
/* Select Frequency for Divisor of 4 */ 

InitScsi () 
{ 

register unsigned char Stat; 

MaskInts () ; 
SCWriteReg(SREG OWNID, FREQ SEL}; 
SCReadReg(SREG SCSI STAT, Stat); 
SCWriteReg(SREG CMD; SC RESET); 
SCReadReg(SREG_sCSI STAT, Stat}; 

1* Disable Interrupts. */ 
/* Initailize for 16MHZ operation.*/ 
/* Read Status register. */ 
/* Generate SCSI Reset. */ 
1* Remove SCSI Interrupt. */ 

Jun 27 1991 10:35:15 

ConfigScsi () 
{ 

register unsigned char Stat; 

SCSI.c 

register NV_MonDefPtr Conf = &NvMonDefs, 

Ini tscs i () ; 
if (ScsiResetEnbl(Conf» /* Reset SCSI on reset ? */ 

*SCSI RESET 1; /* Toggle the reset line. */ 
Delay(100}; /* Leave on - 1 second. */ 
*SCSI_RESET = 0; /* Remove SCSI reset. */ 

I 
if (ScsiIntMask(Conf}) /* SCSI interrupt mask ? */ 

*SCSI ENABLE 0; /* Disable SCSI Interrupt *1 
else { 

*SCSI_ENABLE = 1; /* Enable SCSI Interrupt */ 

Page 2 

1 



Jun 27 1991 10:35:35 VME.c Page 1 
/************************************************************************ 

* Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 

* 
*****/ 

linclude "Bug.h" 
linclude "Board.h" 
tinclude "NvMonDefs.h" 

/************************************************************************* 
* VME.c: This file contains the functions necessary to initialize the 

VMEbus as well as examples of how to perform several basic 
VME functions. 

ConfigBus () WrBusLatch() 
***/ 

extern NV MonDefs NvMonDefs; /* NV Monitor definitions */ 

/************************************************************************ 
* ConfigVmeBus(): This function uses the current definitions in the 

NV structure , NvMonDefs' to configure the VME bus. 
This function is called once when NvMonDefs contains 
the defualt system configuration and once after the 
NV memory has been read with the users configuration. 

Configured in the function are the following: 

Extended Space 
Standard Space 
Short Space 
Bus Req Level 
Bus ReI Modes 
Local Bus Timer 
VME Bus Timer 
Arbiter Mode 
Write Post Slv 
Write Post Mst 

Address and Enable 
Address and Enable 
Address and Enable 
BR3, BR2, BRl, BRO 
WhenDone, OnReq, OnClear, Never 
4us to Infinite 
4us to Infinite 
RoundRobin, Priority 
On/Off 
on/off 

Jun 27 1991 10:35:35 
Turbo mode 
Sys Fail State 
Indiv R-Mod-Wr 

VME.c 
On/Off 
On/Off 
On/off 

Page 2 

* NOTICE: It is important that the NVMonDefs be valid when this 
function is called! 

***/ 

ConfigVmeBus () 
{ 

register NVU BusConfig *Conf = &NvMonDefs.VmeBus; 
register unsIgned long BusVal; 

if (EnblSht (Conf» { 
*MBOX BASE ShtSlaveMap(Conf); 
*ENBL-MBOX 1; 

else { -
*ENBL MBOX 0; 

} -
if (Sysfail(conf» 

*SYSFAIL 0; 
I else { 

*SYSFAIL = 1; 
I 
if (LocBusTimer(Conf» 

*ENBL DOG 0; 
} else { -

*ENBL DOG = 1; 
} -
if (VmeBusTimer(Conf» 

*VME TIMER 1; 
else {-

*VME TIMER = 0; 

*SLAVE ENABLE = 0; 
BusVaI «ExtSlaveMap(Conf) »24) 

+ «StdSlaveMap(Conf) »12) 
+ «ReplaceAddr(Conf) »B) 
+ «MastReIMode(Conf) «16) 
+ «SlaveRelMode(Conf) « 16) , 
+ «Conf->AddrModSel «19) & 
+ «IndivRMC(Conf) « 16) & 

WrBusLatch(BusVal); 
if (EnblSlave(Conf» { 

*SLAVE_ENABLE = 1; 

WrBusLatch(value) 
register unsigned long value; 
{ 

int i; 

for (i = 0; i < B; i++) { 
*BUS LATCH = (value » i); 

OxOOOOOOFF) 
OxOOOOOFOO) 
OxOOOOFOOO) 
Ox00030000) 
Ox00040000) 
Ox003BOOOO) 
Ox00400000)1 





NV.c 

NVAssign.h 

NVDefs.h 

NVLih.c 

NvMonDefs.h 

Appendix C 

NVRAM Information 

The NVRAM memory is a 128-byte EEPROM that contains 
manufacturing, service, and hardware configuration information; 
monitor and board initialization information; and user-defined 
information. The start address, size, and description of the device 
are given in Table C-l: 

TABLE C-1 
EEPROM addresses 

Device Byte Offsets Data 
Address 

0270,0000'6 0-15FF'6 User-defined data area 

0270,8000'6 1600'6 - 17FF'6 Monitorlboard initialization 

0270,COOO'6 1800'6 - 1 FFF'6 Manufacturing/service 
hardware information 

This appendix contains the following files: 

This file contains the functions necessary to read, write, and 
configure the EEPROM. 

This header file defines the bit field assignments for the 
NVRAM!EEPROM, as they are defined by Heurikon. 

This header file includes the basic error codes and the codes 
passed to NVOp to indicate the type of operations to perform 
on nonvolatile memory. 

This file contains the nonvolatile library functions used to 
manage NVRAM or EEPROM. 

This header file defines the bit field assignments for the 
NVRAM/EEPROM, as they are defined by the board. 



Jun271991 10:34:13 NV.c Page 1 

1***************************************************** ******************* 
* 
* copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

MODIFICATIONS: 

*****1 

'include "Bug.h" 
'include "Board.h" 
'include "NvMonDefs.h" 

extern NV HkDefined 
extern NV=MonDefs 

HKFields; 
NvMonDefs; 

1***************************************************** ******************** 
1***************************************************** ******************** 

* DOCSECP: nv_recall 1 V3D Board 

* SYNOPSIS: nv recall() 
nv=store() 

* DESCRIPTION: These functions perform the store and recall operation 
for NVRAM devices. On some boards which use EEPROM 

* ALGORITHM: 

***1 

nv recall () 
{ -

Delay(20); 

as NV memory instead of NVRAM these functions are empty 
and must be defined to provide compatibility. 

On boards which have NVRAM it is necessary to install 
software delays after the store and recall operations. 

return (*NV_RECALL); 

nv _store () 

Delay(100); 
return(*NV STORE); 

Jun 27 1991 10:34:13 NV.c Page 2 

1***************************************************** ******************** 
* DOCSECP: NVRMaxNbrWrites 1 V3D Board 

* SYNOPSIS: NVRMaxNbrWrites() 

* DESCRIPTION: This function returns the number of writes that the 
NV memory device is rated for. This allows the NV 
memory libraries to determine the lifetime of a 
component without including the board header file. 

***1 

NVRMaxNbrWrites() 1* Returns limit of write count *1 
return (NV_MAX_NBR WRITES); 

1***************************************************** ******************** 
* DOCSEC: NvHkOffset 1 V3D Board 

* SYNOPSIS: NvHkOffset () 
NvMonOffset () 
NvMonSize () 
NvMonAddr ( ) 

* DESCRIPTION: These functions allow the NV library functions to operate 
on the NV memory sections without actually compiling the 
board con fig files into the library. This is desirable 
because they will change from board to board. 

***1 

The NvHkOffset and NvMonOffset functions 
describe where in the NV memory device the Heurikon and 
monitor defined data sections begin. 
In general the Heurikon defined data section 
resides in a hardware write protected region and the monitor 
data section resides in the user writable section of the NV 
memory device. The returned value is the offset in bytes 
from the beginning of the device in which the section 
is loaded. 

The functions NVMonSize and NVMonAddr return the 
size and location of the NV monitor configuration data 
structure. This again allows other monitor facilities and 
application programs to get at the monitor configuration 
structure without having to know too much about the monitor. 

NvHkOffset () 
return(NV_PROTECTED); 

NvMonOffset () 
return(NV_MON_DEFS); 

NvMonSize () { 
return(sizeof(NV_MonDefs»; 

NvMonAddr() { 
return ( (int) &NvMonDefs); 

1 



Jun 271991 10:34:13 NV.c Page 3 
1***************************************************** ******************** 

* DOCSEC: NvRamAcc 1 V3D Board 

* SYNOPSIS: unsigned char NVRamAcc(Mode, Cnt, Val) 
unsigned long Mode, Cnt; 
unsigned char *Val; 

* DESCRIPTION: These functions provide the physical interface to the 
board NV memory device and the module configuration space 
device. The Mode indicates one of four access types. 

***1 

The four modes are READ, READ PROBE, WRITE and WRITE PROBE. 
The probe modes perform reads-and writes which can -
recover from bus errors. This is necessary because some 
boards generate a bus error when attempting to write 
a protected data area and a bus error is generated when no 
module is installed. 

The Cnt indicates the byte location to be modified and 
assumes the NV memory is a linear array of memory locations. 
If there are gaps between bytes on the physical device they 
are dealt with here. The last parameter Val is a pointer 
to the character location to be written. 

Returned from this function is the number of bytes 
written to the device or the value read from the device 
depending on Mode This function supports bursts on 
writes to speed the storing of data around 32 times. 
The burst size is determined by NV PAGE SIZE. Another 
optimization is that only bytes that dirfer are written. 

unsigned char NVRamAcc(Mode, Cnt, Val) 
register unsigned long Mode, Cnt; 
register unsigned char *Val; 
{ 

register unsigned char *NVLoc; 
register unsigned char RamVal; 

NVLoc = (unsigned char *) (NV_BASE + (NV_SPACING * Cnt * 2»; 

if (Mode == READ) ( 
RamVal = ((NVLoc[O) & OxOF) « 4) + (NVLoc[l) & OxOF); 

return(RamVal); 
else ( 

NVLoc[O) = (*Val » 4); 
NVLoc[lj = *val; 
return(NV_PAGE_SIZE); 

unsigned char ModConfAcc(Mode, Cnt, Val) 
register unsigned long Mode, Cnt; 
register unsigned char *Val; 
{ 
I 



Jun 26 1991 16:57:03 NVAss~n.h Page 1 
1***************************************************** ******************* 
* 
* Copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 
* 
* MODIFICATIONS: 
* 
*****1 

1***************************************************** ******************* 
* NVAssign.h: This header file defines the bit field assignments 

* NOTICE: 

NOTE: 

***1 

for the NVRAM/EEPROM, as they are defined by Heurikon. 
It can be used where a program needs to know which bit fields 
are assigned to what. 
Note that the memory is divided into two separate sections: 
the Heurikon-defined, or write-protected, region and the 
user-defined region that can be modified interactively 
from the monitor or external programs. 

Because different compilers may generate different spacing 
between structures and structure elements based on the 
alignment it is important to be careful defining structures. 
Problems can be avoided by forcing shorts and longs onto 
long and short boundaries and padding structures to be 
a multiple of long words in size. 

The definition 'NV SMALL' is intended to conserve space 
for smaller NV devIces, which can be as small as 128 bytes. 

1******* INTERNAL BIT DEFINITIONS ************************************ 
* This structure provides the internal structures necessary to 
* maintain a nonvolatile section of memory. The magic number is 

used to quickly determine if the structure has been initialized. 
The checksum is used to verify the validity of the data. The 
write count indicates the number of times the section has been 
written and provides an indicator of the lifetime of the component. 

This structure must be. the first entry in a nonvolatile section. 
Many of the functions that manipulate nonvolative sections assume that 
this is the first structure in the section and will not function 

Jun 26 1991 16:57:03 NVAssign.h Page 2 
if it is omitted. 

***1 

typedef struct NV Internal ( 
unsigned short Magic; 
unsigned short WriteCnt; 
unsigned long ChkSum; 

NV_Internal, *NV_InternalPtrl 

.define NV_MAGIC Ox57CE 

1* Internal structure 
1* Magic number 
1* Write Count 
1* CheckSum 

8 bytes 

1* Magic number for nv memory 

*1 
*1 
*1 
*1 

1******* BOARD BIT DEFINITIONS *************************************** 
* The Manufacturing structure provides information necessary to 
* track the board's manufacturing history, revision, ship date, etc. 
* This structure is located in the write-protected region of the 
* nonvolatile memory device. Modification should only be done 
* by Heurikon's manufacturing departement. 
***1 

typedef struct NVH Manufacturing 
unsigned char -Revision; 
unsigned char ECOLevel; 
unsigned short SerlalNumber; 

'ifndef NV SMALL 
char Model [8]; 
char ManDate[12]; 
char ManPartNum(12); 
char WorkOrderNum[12]; 
char Reserved[40]; 

.endlf 
I NVH_Manufacturing; 

1* Manuf struct = 88/8 bytes 
1* Board Revision 
1* Board ECO Level 
1* Board Serial Number 

1* Board Model 
/* Manufacturing Date 
1* Manufacturing Part Number 
1* Work Order Number 

*1 
*1 
*1 
*1 

*1 
*1 
*1 
*1 

1******* SERVICE DEFINITIONS ***************************************** 
* This structure provides the service record of the board. This 
* structure consists of the RMA number, Ship Date, Technician name 
* and a short description of the problem. The last 3 records are 
* allowed to be stored in nonvolatile memory. 
***1 

typedef struct NVH ServRec 1* ServRec Struct = 72 bytes 
char RecNum[12T; 1* Service Record Number 
char Date[12]; 1* Service Record Date 
char Tech[8]; 1* Service Record Technician 
char Problem[40]; 1* Service Record Technician 

NVH_ServRec; 

typedef struct NVH Service 1* Service Struct = 232 bytes 
NVH ServRec Ree[3]; 1* Storage for the last three 
char Reserved[16]; 1* service records 

NVH_Service; 

*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 

*/ 

1******* HARDWARE DEFINITIONS ******************************************* 
* Board Hardware definitions are provided by this structure, which 
* describes memory sizes and peripheral configuration. 
***1 

typedef struct NVH Hardware ( 
unsigned char MPUType; 
unsigned char MMUType; 
unsigned char CacheType; 
unsigned char FPUType; 
unsigned char DMAType; 
unsigned char MemExpType; 
unsigned char DiskType; 
unsigned char TapeType; 

fifndef NV_SMALL 

1* Hardware Struct 36/24 bytes 
1* Processor Type 
/* MMU Type 
/* Cache Type 
1* Floating Point Type 
1* DMA Type 
1* Memory Expansion Type 
/* Hard Disk Controller Type 
/* Streaming Tape Type 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*/ 
*/ 

1 



Jun 26 1991 16:57:03 NVAssign.h 
unsigned char EthernetType; 
unsigned char Padding[3]; 

'endif 
unsigned long DRAMSize; 
unsigned long SRAMSize; 
unsigned long NVMemSize; 

'ifndef NV SMALL 
char Reserved[12]; 

'endif 
} NVH_Hardware; 

'define RAMSIZ 0 
'define RAMSIZ-128 
'define RAMSIZ-IK 
'define RAMSIZ-8K 
'define RAMSIZ-16K 
'define RAMSIZ-32K 
'define RAMSIZ-64K 
'define RAMSIZ-128K 
'define RAMSIZ-256K 
'define RAMSIZ-S12K 
'define RAMSIZ-IM 
'define RAMSIZ-2M 
'define RAMSIZ-3M 
'define RAMSIZ-4M 
'define RAMSIZ-SM 
'define RAMSIZ-12M 
'define RAMSIZ-16M 
'define RAMSIZ-32M 
'define RAMSIZ-64M 

OxOOOOOOOO 
OxOOOOOOSO 
Ox00000400 
Ox00002000 
Ox00004000 
Ox00008000 
Ox00010000 
Ox00020000 
Ox00040000 
OxOOOBOOOO 
Ox00100000 
Ox00200000 
Ox00300000 
Ox00400000 
OxOOBOOOOO 
OxOOCOOOOO 
Ox01000000 
Ox02000000 
Ox04000000 

1* Ethernet Controller Type 

1* Dynamic RAM Size 
1* Static RAM Size 
1* Nonvolatile memory size 

Page 3 

*1 

*1 
*1 
*1 

1******* COMBINED HEURIKON DEFINED VALUES ******************************** 
* The combination of the hardware, manufacturing record and the service 

record are bound together in this structure, which is stored in the 
* protected region of the nonvolatile memory. 
***1 

typedef struct NV HkDefined { 
NV Internal - Internal; 

1* Hk struct = 40/444 bytes *1 
1* Internal definitions *1 

NVH Hardware Hardware; 1* Hardware definitions *1 
NVH-Manufacturing Manuf; 

'ifndef-NV SMALL 
1* Manuf definitions *1 

NVH Service Service; 1* Service record *1 
'endif -
} NV_HkDefined; 



Jun 26 1991 16:57:34 NVOefs.h Page 1 
/************************************************************************ 
* * copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved . 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 
* * Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 
* 
*****1 

1***************************************************** ******************* 
* NvDefs.h: This header file includes the basic error codes and the 

codes passed to NVOp to indicate the type of operations 
* to perform on nonvolatile memory. 
***/ 

1***************************************************** ******************* 
* The Error flags are defined below. Note that these error codes have 

been used to construct error tables and must not be modified for 
any reason. 

*/ 

'define NVE NONE 0 /* No error */ 
'define NVE-OVERFLOW 1 /* Warning: Too many writes done *1 
'define NVE-MAGIC 2 /* Bad magic number in NVRAM image *1 
'define NVE-CKSUM 3 1* Bad checKsum in NVRAM image *1 
'define NVE-STORE 4 1* Could not write NVRAM to memory */ 
'define NVE-CMD 5 /* Unknown command requested *1 
'define NVE=CMP 6 /* Data does not compare to NVRAM *1 

1* On Board Non Volatile memory cmds. 
'define NV OP FIX 0 /* NVOp Command to fix checksum 
'define NV-OP-CLEAR 1 /* NVOp Command to clear NV section 
'define NV-OP-CK 2 /* NVOp to checksum NV sections 
'define NV-OP-OPEN 3 1* NVOp to Open NV Section 
'define NV-OP-SAVE 4 /* NVOp to Save NV Section 
'define NV:OP:CMP 5 /* NVOp to Compare NV Section 

/* Module configuration space commands 
'define NV OP MCS FIX 10 /* NVOp Command to fix checksum 
'define NV-OP-MCS-CLEAR 11 1* NVOp Command to clear NV section 
'define NV-OP-MCS-CK 12 1* NVOp to checksum NV sections 
'define NV-OP-MCS-OPEN 13 /* NVOp to Open NV Section 

*/ 
*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 
*1 
*/ 
*1 

Jun 26 1991 16:57:34 
.define NV OP MCS SAVE 
'define NV:OP:MCS:CMP 

~ 

14 
15 

NVOefs.h 
/* NVOp to Save NV Section 
/* NvOp to Compare NV Section 

Page 2 

*/ 
*/ 

1 



Jun 261991 16:56:23 NVLib.c Page 1 
/************************************************************************ 
* 

Copyright (c) 1990 Heurikon Corporation 
All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE Of HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* AUTHOR 
RSS 

*" MODIFICATIONS: 

*****/ 

tinclude 
tinclude 
tinclude 
linclude 

"Bug.h" 
"NVDefs.h" 
"NVAssign.h" 
"NVFields.h" 

extern NVGroup 
extern NV HkDefined 

NVGroups[]; 
HKFields; 

/* NV memory groupings structure 
/* Heurikon defined structure 

*/ 
*/ 

/************************************************************************* 
* NV Error Strings(): 

* NOTE: The Error table strings are defined according to the 
definitions in 'NVDefs.h'. Neither of these files should be 
modified without fear of complete disaster. 

****/ 

static char NVErrOStr[] 
static char NVErr1Str[] 
static char NVErr2Str[] 
static char NVErr3Str[] 
static char NVErr4Str[] 
static char NVErr5Str[] 

char *NVErrTable[] = { 

"No error"; 
"Maximum write count exceeded"; 
"Bad magic number"; 
"Illegal checksum"; 
"Write to NV memory does not verify"; 
"Unknown command"; 

NVErrOStr, NVErr1Str, NVErr2Str, NVErr3Str, NVErr4Str, 
NVErr5Str 

I; 

/************************************************************************ 
String definitions for error reporting. 

Jun 26 1991 16:56:23 NVLib.c Page 2 
***/ 

static char NVSupStrl[] "\nError while \s NV memory. \s."; 
static char NVSupStr2[] "\nWarning protected region of NV memory \s.", 

static char NVSetStr1[] "\nError: 'S "s' not found\n"; 
static char NVSetStr2[] "\nThis field only accepts's values"; 

"\nIllegal field selection try ..... ; 
"\nThis field limited to \d characters"; 

static char NVSetStr3[] 
static char NVSetStr4[] 

static char GroupStr[] "Group"; 
"field"; 
"Decimal"; 
"Hex"; 

static char FieldStr[] 
static char DecimalStr[] 
static char HexStr[] 

/************************************************************************* 
* DOCSEC: NVMemory 1 Std Monitor 

* SYNOPSIS: NVDisplay () 

NVUpdate() 

NVOpen () 

NVSet(GroupName, FieldName, Value) 
char *GroupName, *fieldName, *Value; 

NVInit(SerNum, RevLev, ECOLev, Writes) 
int SerNum, ECOLev, RevLev, Writes; 

* DESCRIPTION: The NV memory support functions provide the interface 
to the NV memory. All of these functions deal only 
with the monitor- and Heurikon-defined sections of the 
NV memory. The monitor-defined sections of NV memory 
are read/write and can be modified by the user. 
The Heurikon-defined section of NV memory is read only 
and cannot be modified. Attempts to modify the Heurikon 
defined sections will result in an error message when 
the store is done. 

The NVOpen function reads and checks the monitor 
and Heurikon-defined sections. If the NV sections do 
not validate, then an error message is displayed. 

The NVUpdate function attempts to write the Heurikon-
and monitor-defined NV sections back to NV memory. 
The data are first verified, and then written to the 
device. The write is verified and all errors are reported. 

The NVInit function is used to initialize the NV memory 
to the default state defined by the monitor. It first 
clears the memory and then writes the Heurikon and 
monitor data back to NV memory. This function accepts 
as arguments the serial number, revision level, ECO 
level and the number of writes to NV Memory. If the 
monitor-defined NV memory section somehow becomes corrupt, 
the command sequence NVInit followed by NVUpdate 
should result in the monitor-defined NV memory resetting 
to the default state. This sequence of commands will result 
in error messsages that indicate the Heurikon-defined section 
was not changed. These messages can be ignored. 

The NVDisplay and NVSet commands are used to 
display and modify the Heurikon-defined and monitor-defined 
NV sections. The values are displayed in logical groups. 
Each group has a number of fields. fields are displayed 



Jun 26 1991 16:56:23 NVLib.c Page 3 

* 

* 

* 

* 

as hex, decimal, or a list of legal values. An example of 
the display is shown below: 

Group 'Console' 
Port 
Baud 
Parity 
Data 
StopBits 

A 
9600 
None 
a-Bits 
2-Bits 

(A, S, c, D) 

(Even, Odd, None) 
(5-Bits, 6-Bits, 7-Bits, a-Bits) 
(1-Bit, 2-Bits) 

After each group is displayed, the user has the option of moving 
to the next group display, editing the current group display, 
or quitting the display completely. If an edit is requested, all 
fields of the group are prompted for modification one-by-one. 
An empty line indicates that no modification is necessary. 

To modify a field using NVSet, the group and field to be 
modified are specified and the new value is provided. This 
command allows abbreviation of the field and group names. 
The NVDisplay function allows fields to be changed 
interactively during the display. 

***1 

NVDisplay () 
{ 

int RetVal, i, Err; 
NV Internal *NvMon 
unsigned long NvMonSiz 

(NV Internal *) NvMonAddr(); 
NvMonSize () ; 

Err = NVOp(NV OP CK, NvMon, NvMonSiz); 
if (Err != NVE NONE) ( 

xprintf(NVSupStrl, "reading", NVErrTable[Err); 
return; 

xprintf("\nNon-Volatile Memory Configuration Display"); 
xprintf("\n-----------------------------------------"); 

for (i = 0; i < NumGroups() ; i++ ) ( 
xprintf("\nGroup '%s'\n", NVGroups[i).GroupName); 
DispGroup(&NVGroups[i), FALSE); 
if «RetVal = Continue(» == ESC) { 

return; 

(RetVal != CR) ( 
I 
J;,f 

xprintf("\nGroup '%s'\n", NVGroups[i).GroupName); 
DispGroup(&NVGroups[i), TRUE); 
NVOp(NV OP FIX, &HKFields, sizeof(NV HkDefined»; 
NVOp(NV-OP-FIX, NvMon, NvMonSiz); -

NVUpdate () 
{ 

i--; --

register int Err; 
NV Internal * NvMon 
unsigned long NvMonSiz 
unsigned long NvMonOff 
unsigned long NvHkOff 

(NV Internal *) NvMonAddr(); 
NvMonSi ze () ; 
NvMonOffset () ; 
NvHkOffset () ; 

Jun 26 1991 16:56:23 NVLib.c 
NvMon->WriteCnt++; 
Err = NVOp(NV OP CK, NvMon, NvMonSiz)1 
if (Err != NVE NONE) ( 

xprintf(NVSupStrl, "reading", NVErrTable[Err)I 
return; 

Err = NVOp(NV OP SAVE, NvMon, NvMonSiz, NvMonOff); 
if (Err != NVE NONE) ( 

xprintf(NVSupstrl, "storing", NVErrTable[Err]); 
return; 

HKFields.Internal.WriteCnt++; 
NVOp(NV OP CK, &HKFields, sizeof(NV HkDefined»; 

Page 4 

Err = NVOp(NV OP SAVE, &HKFields, sIzeof(NV HkDefined) , NvHkOff); 
if (Err != NVE NONE) ( -

HKFields.Internal.WriteCnt--; /* Maybe write protected */ 
Err = NVOp(NV OP CMP, &HKFields, sizeof(NV HkDefined) , NvHkOff); 
if (Err ! = NVE NONE) ( -

xprintf(NVSupStr2, "was not modified"); 

NVOpen () 
{ 

return; 

register int Err; 
NV Internal *NvMon 
unsigned long NvMonSiz 
unsigned long NvMonOff 
unsigned long NvHkOff 

(NV Internal *) NvMonAddr(); 
NVMonSize () I 
NvMonOffset (); 
NvHkOffset () ; 

NVOp(NV OP OPEN, &HKFields, sizeof(NV HkDefined) , NvHkOff); 
NVOp(NV-OP-OPEN, NvMon, NvMonSiz, NvMonOff); 
Err = NVOp(NV OP CK, &HKFields, sizeof(NV HkDefined»; 
if (Err != NVE NONE) ( -

xprintf(NVSupStr2, "is corrupt")1 
I 
Err = NVOp(NV OP CK, NvMon, NvMonSiz); 
if (Err != NVE NONE) ( 

xprintf(NVSupStrl, "reading", NVErrTable[Err); 

return Err; 

NVSet(GroupName, FieldName, Value) 
char *GroupName, *FieldName, *Value; 
( 

int Err; 
NVGroupPtr Group, FindGroup(); 
NV Internal *NvMon (NV Internal *) NvMonAddr(); 
unsigned long NvMonSiz = NvMonSize() I 
unsigned long NvMonOff = NvMonOffset(); 

if «GroupName == NULL) I I (FieldName == NULL» ( 
xprintf("Both a Group and Field must be specified\n"); 
return; 

I 
if «Group = FindGroup(NVGroups, NumGroups(), GroupName» == NULL) ( 

xprintf(NVSetStrl, GroupStr, GroupName); 
return; 



Jun 261991 16:56:23 NVLib.c 

if «Err ~ NVOp(NV OP CK, NvMon, NvMonSiz» != NVE NONE) 
xprintf(NV5upStrr; "reading", NVErrTable[Err); 
return; 

SetField(Group, FieldName, Value, TRUE); 

NVOp(NV OP FIX, &HKFields, sizeof(NV HkDefined»; 
NVOp(NV=OP=FIX, NvMon, NvMonSiz); -

NVInit(SerNum, RevLev, ECOLev, Writes) 
int SerNum, ECOLev, RevLev, Writes; 
{ 

register int Err; 
NV Internal *NvMon 
unsigned long NvMonSiz 
unsigned long NvMonOff 
unsigned long NvHkOff 

(NV Internal *) NvMonAddr(); 
NvMonSize(); 
NvMonOffset () ; 
NvHkOffset () ; 

&HKFields, sizeof(NV HkDefinedl ) ; 
NvMon, NvMonSiz); -

NvHkOff) ; 

NVOp(NV OP CLEAR, 
NVOp(NV-OP-CLEAR, 
NVOp(NV-OP-SAVE 
NVOp(NV-OP-SAVE , 
NVOp(NV-OP-OPEN , 
NVOp(NV=OP=OPEN , 

&HKFields, sizeof(NV HkDefined) 
NvMon, NvMonSiz, NvMonOff); 
&HKFields, sizeof(NV HkDefined) 
NvMon, NvMonSiz, NvMonOff); 

, NvHkOff); 

SetNvDefaults(NVGroups, NumGroups(»; 

HKFields.Manuf.Revision 
HKFields.Manuf.SeriaINumber 
HKFields.Manuf.ECOLevel 

HKFields.Internal.WriteCnt 
NvMon->WriteCnt = Writes; 

RevLev; 
SerNum; 
ECOLev; 

Writes; 

NVOp(NV OP FIX, &HKFields, sizeof(NV HkDefined»; 
NVOp(NV-OP-FIX, NvMon, NvMonSiz); 
Err = NVop1NV OP SAVE, NvMon, NvMonSiz, NvMonOff); 
if (Err != NVE NONE) { 

xprintf(NVSupStr1, "storing", NVErrTable[Err); 
return; 

Page 5 

Err = NVOp(NV OP SAVE, 'HKFields, 
if (Err != NVE NONE) ( 

sizeof(NV_HkDefined) , NvHkOff); 

xprintf(NVSupStr2, "cannot be initialized"); 
return; 

/************************************************************************* 
* DOCSEC: NVSupport 1 Std Monitor 

* S'tNOPSIS: SetNvDefaults(Groups, NumGroups) 
NVGroupPtr Groups; 
int NumGroups; 

DispGroup(Group, EditFlag) 
NVGroupPtr Group; 
unsigned long EditFlag; 

NVOp(NVOpCmd, Base, Size, Offset) 

Jun 26 1991 16:56:23 NVLib.c 
unsigned long NVOpCmd, Size, OffsetJ 
unsigned char *Base; 

Page 6 

* DESCRIPTION: The support functions used for displaying, initializing, 
and modifying the NV memory data structures can also be 
used to manage other data structures which mayor may not 
be stored in NV memory. 

The method used to create a display of a data structure is to 
create a second structure that contains a description 
of every field of the first structure. This description is 
done using the NVGroup structure. 
Each entry in the NVGroup structure describes a field 
name, pointer to the field, size of the field, indication 
of how the field is to be displayed, and the initial value 
of the field. 

An example data structure is shown below as well as the 
NVGroup data structure necessary to describe the 
data structure. This example might describe the 
coordinates and depth of a window structure. 

struct NVExample I 
NV Internal Internal; 
unsigned long XPos, 'tPos; 
unsigned short Mag; 
} NVEx; 

NVFieid ExFields[) = 
I "XPos", (char *) &NVEx.XPos, sizeof (NVEx.XPos), 
NV T'tPE DECIMAL, 0, 100, NULL}, 
I "'tPos", (char *) 'NVEx.'tPos, sizeof(NVEx.'tPos), 
NV TYPE DECIMAL, 0, 200, NULL}, 
I "Depth" (char *) 'NVEx.Mag, sizeof(NVEx.Mag), 
NV TYPE DECIMAL, 0, 4, NULL} 
} - -

NVGroup ExGroups[) = ( 
I "Window", sizeof(ExFields)/sizeof(NVField), ExFields } 
}; 

If passed a pointer to the ExGroups structure, the function 
DispGroup generates the display shown below. 
The second parameter EditFlag indicates 
whether to allow changes to the data structure after it is 
displayed (Same as in the NVDisplay command). 

Window Display Configuration 
XPos 100 
'tPos 200 
Magnitude 4 

The SetNvDefaults function, when called with a pointer 
to the ExGroup structure, can be used to initialize the data 
structure to those values specified in the NVGroup 
structure. The second parameter NumGroups indicates 
the number of groups to be initialized. 

The NVOp function can be used to store and recover 
data structures from NV memory. The only requirement of the 
data stnwture to be stored in NV memory is that the first 
field of 7. he structure be NVInternal, which is where 
all the bookkeeping for the NV memory section is done. 
The first parameter NvOpCmd indicates the command 
to be performed. A summary of the commands is shown below: 



Jun 26 1991 16:56:23 NVLib.c Page 7 
* 

* 
* 

* SEE ALSO: 
***/ 

Command Value 
-----------
NV OP FIX 0 
NV-OP-CLEAR 1 
NV-OP-CK 2 
NV-OP-OPEN 3 
NV-OP-SAVE 4 
NV::::OP::::CMP 5 

Description 

Fix NV section checksum 
Clear NV section 
Check if NV section is valid 
Open NV Section 
Save NV Section 
Compare NV Section data 

The second parameter, Base, indicates the base 
address of the data structure to be operated on, and 
the Size parameter indicates the size of the 
data structure to be operated on. The offset 
parameter indicates the byte offset in the NV memory 
device where the data structure is to be stored. An 
example of how to initialize, store, and recall the 
example data structure is shown below. 

NVOp(NV OP CLEAR, &NVEx, sizeof(NVEx), 0) 
NVOp(NV-OP-SAVE , &NVEx, sizeof(NVEx), 0) 
NVOp(NV::::OP::::OPEN , &NvEx, sizeof(NVEx), 0) 

NVOp(NV OP FIX, &NVEx, sizeof(NVEx), 0); 
NVOp(NV::::OP::::SAVE, &NVEx, sizeof(NVEx), 0); 

The clear, save, and open operations cause the NV device 
to be cleared and filled with the NVEx data structure; 
then the data structure is filled from NV memory. 
The fix and save operation are used to modify the NV device, 
which updates the internal data structures and then writes 
them back to the NV memory device. 

If errors are encountered during the check, save or 
compare operations, an error message is returned from the 
function NvOp. The error codes are listed below. 

Error number 

NVE NONE 0 
NVE-OVERFLOW 1 
NVE-MAGIC 2 
NVE-CKSUM 3 
NVE-STORE 4 
NVE-CMD 5 
NVE-CMP 6 

NVFields.h 

Description 

No errors. 
NV device write count exceeded. 
Bad magic number read from NV device. 
Bad checksum read from NV device. 
Write to NV device failed. 
Unknown operation requested. 
Data does not compare to NV device. 

SetNvDefaults(Groups, NumGroups) 
NVGroupPtr Groups; 
int NumGroups; 
{ 

unsigned long Value, Temp; 
register int i, j; 
NVFieldPtr Field; 

for (i = 0; i < NumGroups ; i++ ) { 
for (j = 0; j < Groups[i].NumFields 

Field = &Groups[i).Fields[j]; 
switch (Field->Type) { 
case NV TYPE HEX: 

{- -

j++ ) { 

Jun 26 1991 16:56:23 NVLib.c 
if (Field->Aux) ( 

Temp = FieldRead(Field->Address, Field->Size)1 
Temp = Temp & -Field->Aux; 
Temp = Temp I Field->InitVal; 
FieldWrite(Field->Address, Field->Size, Temp); 

else { 

Page 8 

FieldWrite(Field->Address , Field->Size, Field->InitVal); 
I 
break; 

case NV TYPE DECIMAL: 
case NV-TYPE-VAL LIST: 

{- - -

FieldWrite(Field->Address, Field->Size, Field->InitVal); 
break; 

case NV_TYPE_STRING: 

StrCpy(Field->Address, Field->InitVal); 
break; 

case NV_TYPE_BITFIELD: 

Temp = FindBitSet(Field->Aux); 
Value = FieldRead(Field->Address, Field->Size); 
Value &= -Field->Aux; 
Value 1= (Field->InitVal « Temp); 
FieldWrite(Field->Address, Field->Size, Value); 
break; 

DispGroup(Group, EditFlag) 
NVGroupPtr Group; 
unsigned long EditFlag; 
{ 

int NumFields = Group->NumFields; 
unsigned long Value, Temp; 
char Buffer[80), RetVal; 
NVFieldPtr Field; 
int j; 

for (j = 0; j < NumFields ; j++ ) ( 
Field = &Group->Fields[j); 
xprintf(" %-14s ", Field->Name); 
Value = FieldRead(Field->Address,Field->Size); 
switch (Field->Type) { 
case NV TYPE HEX: 

{- -
if (Field->Aux) 

Value = Value & Field->Aux; 
xprintf(U Ox%x\n",Value); 
break; 

case NV_TYPE_DECIMAL: 

xprintfC U %d\nU,Value); 
break; 

case NV TYPE STRING: 
( -

xprintf(U %s\nU,Field->Address); 

~ 



Jun 26 1991 16:56:23 NVLib.c 
break; 

case NV_TY~E_BITFIELD: 

} 

Temp = FindBitSet(Field->Aux); 
Value = (Value & Field->Aux) » TempI 
Temp = «Field->Aux » Temp) + 1); 
DispFieldName(Field->Vals, Temp, Value); 
break; 

case NV TYPE VAL LIST: 
{ -

DispFieldName(Field->Vals, Field->Aux, Value); 

} 
if (EditFlag) I 

xprintf(":"); 
RetVal = GetString(Buffer); 
xprintf("\r%75s\r", ""); 
if (RetVal == CR) I 

if (!SetField(Group, Field->Name, Buffer, FALSE» I 
--j; 

NVOp(NVOpCmd, Base, Size, Offset) 
unsigned long NVOpCmd, Size, Offset; 
unsigned char *Base; 
I 

int ByteNum, DataSize; 
unsigned char *DataSect; 
unsigned char (*NVFunct) (), NVRamAcc(), ModConfAcc(); 
unsigned long Operation, Sum; 
NV_Internal *Internals = (NV_Internal *) Base; 

Page 9 

if (NVOpCmd >= 10) { /* If Op on module configuration space */ 
Operation NVOpCmd - 10; 
NVFunct ModConfAcc; 

else { /* Op is on local NV Memory 
Operation NVOpCmd; 
NVFunct NVRamAcc; 

DataSect = (unsigned char *) &Internals[l]; 
DataSize = Size - sizeof(NV Internal); 
Sum = CheckSumMem(DataSect,-DataSize); 

switch (Operation) { 
case NV OP FIX: 

{ - -
Internals->Magic 
Internals->ChkSum 
return(NVE_NONE); 

case NV_OP_CLEAR: 

NV MAGIC; 
Sum; 

ClearMem(DataSect, DataSize); 
Internals->Magic NV MAGIC; 
Internals->ChkSum = 0;­
return(NVE_NONE); 

case NV OP CK: 

*1 

Jun 26 1991 16:56:23 NVLib.c Page 10 

if (Internals->Magic != NV MAGIC) 
return(NVE MAGIC), -

if (Internals->ChkSum != Sum) 
return(NVE CKSUM), 

if (Internals->WriteCnt > NVRMaxNbrWrites(» 
return(NVE OVERFLOW); 

return(NVE_NONE); 

case NV OP OPEN: 
{ -

nv recall(); 
for (ByteNum = 0, ByteNum < Size; ByteNum++) I 

Base[ByteNum] = NVFunct(READ, Offset + ByteNum); 
I 
return(NVE_NONE); 

case NV OP SAVE: 

if (NVFunct(WRITE PROBE, Offset, &Base[O]) == NULL) 
return(NVE STORE); 

I -
for (ByteNum = 1; ByteNum < Size; ByteNum++) { 

NVFunct(WRITE, Offset + ByteNum, &Base(ByteNum]); 

nv store () ; 
nv-recall (); 
for (ByteNum = 0; ByteNum < Size; ByteNum++) { 

if (Base [ByteNum] != NVFunct(READ, Offset + ByteNum» { 
return(NVE_STORE); 

I 
return(NVE_NONE); 

case NV_OP_CMP: 

I 
default: 

{ 

Offset += (Size - DataSize); /* Skip Header */ 
for (ByteNum = 0; ByteNum < DataSize; ByteNum++) { 

if (DataSect[ByteNum] != NVFunct(READ, Offset + ByteNum» { 
return(NVE_CMP); 

I 
return(NVE_NONE); 

return(NVE_CMD); 



Jun 281991 11 :33:44 NvMonDefs.h Page 1 

1***************************************************** ******************* 
* * copyright (c) 1990 Heurikon Corporation 
* All Rights Reserved 

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION. 
The copyright notice above does not evidence any 
actual or intended publication of such source code. 

* Heurikon hereby grants you permission to copy and modify 
* this software and its documentation. Heurikon grants 
* this permission provided that the above copyright notice 
* appears in all copies and that both the copyright notice and 
* this permission notice appear in supporting documentation. In 
* addition, Heurikon grants this permission provided that you 
* prominently mark as not part of the original any modifications 
* made to this software or documentation, and that the name of 
* Heurikon Corporation not be used in advertising or publicity 
* pertaining to distribution of the software or the documentation 
* without specific, written prior permission. 

* Heurikon Corporation does not warrant, guarantee or make any 
* representations regarding the use of, or the results of the use 
* of, the software and documentation in terms of correctness, 
* accuracy, reliability, currentness, or otherwise; and you rely 
* on the software, documentation and results solely at your own 
* risk. 

* MODIFICATIONS: 
* 
*****1 

'include, "NVAssign.h" 1* Pull in the Internal data definitions 

'define MPU 68030 3 1* Fixed Hardware devices 
'define MMU-68030 3 
'define CACHE NONE 0 
'define DMA NONE 5 
'define MEMEXP NONE 0 
'define STREAM:NONE 0 

'define ETH 82596CA 1 1* Ethernet may be optional 
'define ETH:NONE 0 

'define HDISK NONE 0 1* SCSI may be optional 
'define HDISK-WD33C93 3 
'define HDISK:WD33C93A 4 

'define FPU NONE 0 1* Floating Point is optional 
'define FPU-68881 1 
'define FPU:68882 2 

*1 

*1 

*1 

*1 

*1 

1***************************************************** ************************ 
* NvMonDefs.h: This header file defines the bit field assignments 
* for the NVRAM/EEPROM, as they are defined by the board. 

* NOTICE: 

It can be used where a program needs to know which bit fields 
are assigned to what. 
This section describes the board specifics and includes the 
Heurikon-specific structures and internal data structures 
necessary to maintain NV memory (NVAssign.h). 

Because different compilers may generate different spacing 
between structures and structure elements based on the 
alignment it is important to define structures carefully. 
Problems can be avoided by forcing shorts and longs onto 

Jun 28 1991 11 :33:44 NvMonDefs.h Page 2 
long and short boundaries and padding structures to be 
a multiple of long words in size. 

* 
* ***1 

An early version of the ic960 compiler generated the wrong 
structure addresses when the structures were organized as 
(long, short, byte) quantities in that order. If the smaller 
fields are first in the structure it works much better, so 
be careful !! !!. 

1******* SERIAL DEFINITIONS ********************************************* 
* This structure provides the definitions for a serial port. This 
* includes the port number, baud rate and configuration. 
* This structure should be loaded in the user-configurable portion of 
* the nonvolatile memory array. 
***1 

typedef struct NVU Port { 
unsigned char -Reserved; 
unsigned char PortNum; 
unsigned short PortFlagsl 
unsigned long Baud; 

1* Port struct 8/4 bytes 

1* Port number (A,B,C or D) 
1* Flags for port 
1* Port baud rate 

NVU_Port; 

/* Warning: These macros only work with pointers 

'define Parity(x) (x->PortFlags , OxOOO3) 
'define DataBits(x) «x->PortFlags , OxOOOC) » 2) 
'define XOnXOff(x) (x->PortFlags , Ox0010) 
'define ChBaudOnBreak(x) (x->PortFlags , OxOO40) 
'define ResetOnBreak(x) (x->PortFlags Ox0080) 
'define StopBits(x) (x->PortFlags OxOl00) 

'define SP APORT 0 1* Serial Port Assignments 
'define SP-BPORT I 
'define SP-CPORT 2 
'define SP:DPORT 3 

'define SP PARITY EVEN 0 1* Parity Type Assignments 
'define SP-PARITY-ODD 1 
'define SP-PARITY-NONE 2 
'define SP:PARITY:FORCE 3 

'define SP DATA SBITS 0 1* Data Bits Assignments 
'define SP-DATA-6BITS 1 
'define SP-DATA-7BITS 2 
'define SP:DATA:8BITS 3 

'define SP STOP IBITS 0 
'define SP:STOP:2BITS 1 

*1 

*1 
*1 
*1 

*1 

*1 

*1 

*1 

1******* BOOT DEFINITIONS *********************************************** 
* This sections defines the boot parameters for loading an application 
* from a device and executing the application. This section should be 
* located in the user section of the nonvolatile memory device. 
***1 

typedef struct NVU Boot { 1* Boot struct = 32/20 bytes *1 
unsigned char AutoBootDev; 1* Auto Boot Device *1 
unsigned Ch4f Device; 1* Boot Device */ 
unsigned char Number; 1* Boot Device Number *1 
unsigned char BootFlags; 1* Boot Flags *1 
unsigned long LoadAddress; 1* Load Address *1 
unsigned long RomSize; 1* Boot ROM Size *1 
unsigned long RomBase; 1* Boot ROM Base address *1 

'ifndef NV SMALL 

1 



Jun 28 1991 11 :33:44 NvMonDefs.h Page 3 
char Reserved[16]; 

.endif 
I NVU_Boot; 

'define ClrMemOnBoot(x) (x->BootFlags & Ox01) 1* Clear on boot *1 

'define AB DONT 0 1* Auto Boot Definitions *1 
'define AB-WINCH 1 
'define AB-FLOPPY 2 
'define AB-TAPE 3 
'define AB-SERIAL 4 
'define AB-ROM 6 
'define AB-ETHERNET 7 
'define AB=BUS 8 

1******* VME BUS DEFINITIONS ******************************************** 
* This structure defines the VMEbus configuration of the slave interface 
* and Vic configuration registers. This structure should be loaded in 
* the user-defined section of the NV memory. 
***1 

typedef struct NVU BusConfig ( 
unsigned char - Padding[3]; 
unsigned char AddrModSel; 
unsigned long MiscBusFlags; 
unsigned long SlaveBusMap; 

1* BusConfig struct = 16/4 bytes */ 
/* Reserved *1 
/* Address Modifier select *1 
/* Mise bus configuration bits */ 
/* Slave bus map configuration *1 

'ifndef NV SMALL 
unsigned char Reserved[4]; 

'endif 
1* Reserved */ 

I NVU_BusConfig; 

'define ExtSlaveMap(x) (x->SlaveBusMap OxFFFOOOOO) 
'define StdSlaveMap(x) (x->SlaveBusMap OxOOFOOOOO) 
'define ShtSlaveMap(x) (x->SlaveBusMap OxOOOOFFF8) 
'define EnblSlave(x) (x->slaveBusMap OxOOOOOO04) 

'define ReplaceAddr(x) (X->MiscBusFlags & OxOOFOOOOO) 
'define MastRelMode(x) (x->MiscBusFlags & OxOOOOOO03) 
'define SlaveRelMode(x) (x->MiscBusFlags OxOOOOOO04) 
'define LocBusTimer(x) (x->MiscBusFlags OxOOOOOO08) 
'define VmeBusTimer(x) (x->MiscBusFlags OxOOOOOO10) 
'define Sysfail(x) (x->MiscBusFlags & OxOOOOOO20) 
'define IndivRMC(x) (x->MiscBusFlags OxOOOOO040) 
'define EnblSht(x) (X->MiscBusFlags OxOOOOO080) 

/******* MONITOR DEFINED DEFINITIONS ************************************* 
* This section binds the Monitor-defined data structures into one 
* common structure, which should be loaded into NV memory in the user 
* read/write section. 
***/ 

typedef struct NV MonDefs 
NV Internal - Internal; 
unsigned long MiscFlags; 
NVU Port Console; 
NVU-Port DownLoad; 
NVU-Boot Boot; 
NVU-Busconfig VmeBus; 

NV_MonDefs, *NV_MonDefPtr; 

/* Mon Defs struct = 76/48 
1* Internal definitions 
1* Misc monitor flags 
1* Console Port Configuration 
1* Download Port Configuration 
1* Boot Definitions 
1* Bus Configuration Definitions 

*/ 
*1 
*1 
*/ 
*/ 
*/ 
*/ 

'define 
'define 
'define 
'define 

ClrMemOnPowerUp(x) (x->MiscFlags Ox01) 1* Clear on powerup */ 
ClrMemOnReset(x) (x->MiscFlags Ox02) 
DoPowerDiag(x) (x->MiscFlags Ox04) 
VsbMasterEnbl(x) (x->MiscFlags & Ox08) 

1* Clear on reset *1 
1* Do powerup diagnostics *1 
1* VSB Master enable *1 

I Jun 28 1991 11 :33:44 NvMonDefs.h Page 4 
'define VsbReleaseMode(x) (x->MiscFlags OxlO) 1* VSB Release modes *1 
'define ScsiResetEnbl(x) (x->MiscFlags Ox20) 1* Scsi reset enable *1 
'define ScsiIntMask (x) (x->MiscFlags Ox40) 1* Scsi interrupt mask *1 

I I 'define DataCacheEnble(x) (x->MiscFlags Ox80) 1* 030 data cache *1 
'define InstCacheEnble(x) (x->MiscFlags Ox100) 1* Instruction cache Enbl *1 
'define CountDownVal(x) «x->MiscFlags & OxOOOOOEOO) » 9) 

2 





Sales and • ••••• • •••• • • •• • Customer Service Offices • ••• • • • • • • 

Central Region 

Westem Region 

Heurikon Corporate Office 
8000 Excelsior Drive 
Madison, WI 53717 
Watts: 800-356-9602 
Phone: 608-831-0900 
Fax: 608-831-4249 

Heurlkon Customer Support 
and Factory Service Office 
8310 Excelsior Drive 
Madison, WI 53717 
Watts: 800-327-1251 
Phone: 608-831-5500 

Heurikon Northeast Regional Office 
67 South Bedford, Suite 400 W. 
Burlington, MA 01803 
Phone: 617-229-5831 
Fax: 617-272-9115 

Heurlkon Southeast Regional Office 
2010 Corporate Ridge, Suite 700 
Mclean, VA 22102 
Phone: 703-749-1474 
Fax: 703-556-0955 

Heurikon Central Regional Office 
13100 West 95th Street, Level 4D 
Lenexa, KS 66215 
Phone: 913-599-1860 
Fax: 913-599-1918 

Heurikon Western Regional Office 
23121 Plaza Pointe Dr., Suite 109 
Laguna Hills, CA 92653 
Phone: 714-581-6400 
Fax: 714-581-8509 

BN 
\ 

OPEN SYSTEMS :: OPEN TOOLS 

revised 1.91 



Regional Sales 
Representatives 

• NORTHEAST REGION 

CT, DE, ME, MA, Daner-Hayes, Inc. 
NU, l'ij, NY, 62 West Plain Street 
Eastern PA, RI Wayland,MA 01778 
andVI' Tel: (508) 655-0888 

Fax: (508) 655-0939 

IN, KY, MI, OH, Systems Compooents, Inc. 
Western PA and 1327 Jones, Suite 104 
WV Ann Arbor, MI 48105 

Tel: (313) 930-1800 
Fax: (313) 930-1803 

• CENTRAL REGION 

Aft, LA, OK and TX Acudata, Inc. 
720 Avenue F, Suite 104 
Plano, TX 75074 
Tel: (214) 424-3567 
Fax: (214) 422·7342 

MN, ND, SD and Micro Resources Corp. 
Northwest WI 4640 W. 77th Street, 

Suite 109 
Edina, MN 55435 
Tel: (612) 830-1454 
Fax: (612) 830-1380 

n, IA, KS, MO, NE Panatek 
and Southeast WI 2500 West Higgins Road, 

Suite 305 
Hoffinan Estates, IT. 60195 
Tel: (708) 519-0867 
Fax: (708) 519-0897 

• ••••• • •••• • • •• • • ••• • • • • • • 

• SOUTHEAST REGION 

MD, VA and Spectro Associates 
Washington, DC 1107 Nelson Street, #203 

Rockville, MD 20850 
Tel: (301) 294-9770 
Fax: (301) 294-9772 

• WESTERN REGION 

AZ, CO, NV, NM Compware Marketing 
andUT 100 Arapahoe Ave. 

Suite 7 
Boulder, CO 80302 
Tel: (303) 786-7045 
Fax: (303) 786-7047 

ID, MT, OR, WA, WY Electronic 
and Canada (Alberta Component Sales 
and British Columbia) 9311 S. E. 36th Street 

Mercer Island, WA 
98040-3795 
Tel: (206) 232·9301 
Fax: (206) 232·1095 

CA Qualtech 
333 West Maude Avenue, 
Suite 108 
Sunnyvaie,.CA 94086 
Tel: (408) 732-4800 
Fax: (408) 733·7084 

BN 
OPEN SYSTEMS :: OPEN TOOLS 

rmsed 1.91 



7-segment display 8-1 
82596CA 12-1 
82C501AD 12-1 

A 
abbreviations in monitor commands A-9 
add, monitor command A-30 
address error 5-2 
address modes, bus 7-14 
addresses, summary 14-2 
addressing mode, Ethernet controller 12-4 
ambiguous command, monitor error A-43 
arbitration, bus 7-4 
arguments to monitor memory commands 

A-29 
autoboot cancellation A-44 
autovectors 3-3 

B 
baud rates 10-6 
big-endian byte ordering, Ethernet 12-3 
binary arguments, monitor A-29 
binary format records, downloading with 

monitor A-25 
Board.c B-1 
Board.h B-1 
boot devices, configuration with monitor 

A-14 
Boot group, monitor display A-30, 31 
boot-up A-46 
bootbus, monitor command A-30 
BootParams Group, monitor A-37 
bootrom, monitor command A-31 
bootserial, monitor command A-31 
breakpoints A-40 
Bug.h B-1 
bus address modes 7-14 

bus arbitration 7-4 
bus control 7-1 

Index 

bus control latch, with monitor commands 
A-15 

bus error (MPU) 5-1 
bus grant jumpers, J14, J15, J17, J18 7-5 
bus interface 7-17 
bus interrupts 7-3, 12 
bus memory 6-4 
bus priorities 7-2, 4 
bus request jumper, J16 7-5 
bus throttle timers 12-4 
bus timer 7-11, 16 
bypass, FPP 4-2 
byte ordering 12-5 

C 
cache control 3-7 
Cache Group, monitor A-37 
call, monitor command A-31 
Centronics interrupt 9-2 
channel attention 12-5, 7 
character arguments, for monitor 

commands A-9 
checksum, binary files A-25 
checksum, S-records A-22 
checksummem, monitor command A-31 
CIO data ports, writes A-46 
CIO usage 9-1 
elearmem, monitor command A-32 
clock, CIO 9-3 
elr instruction, caution 9-5 
cmpmem, monitor command A-32 
command-line editor, monitor A-8 
command-line history, monitor A-8 

commands, monitor A-2 
configboard, monitor command A-32 



1-2 

configuration jumpers 14-3 
configuration, memory 6-1 
connectors 1-6 
connectors, overview 1-6 
Console Group, monitor A-38 
control panel interface (P5) 3-6 
copymem, monitor command A-32 
counter/timers (CIa) 9-2, 3 
CRT terminal, setup 2-7 

D 
date, monitor command A -32 
debugging applications, with monitor A-27 
defaults, monitor A-46 
device I/O execution A-46 
disassembler, monitor command A-33 
displaymem, monitor command A-33 
div, monitor command A-33 
divide by· zero error 5-2 
double bus fault error 5-1 
Download Group, monitor A-38 

download, monitor command A-17, 16, 34 
dumpregs, monitor command A-34 

E 
editor, monitor commands A-8 

EPROM 2-10 
equipment for setup 2-3 
error, timer frequency 9-3 
errors A-43 
errors, system response 5-1 
ESD prevention 2-3 
Ethernet address 12-2 
Ethernet byte ordering 12-5 
Ethernet exception conditions 12-13 
Ethernet peripheral address 12-10 
exception conditions, Ethernet 12-13 
exception vectors 3-2 
exception vectors, MPU 3-3 
exceptions, FPP 5-2 
exectrace, monitor command A-34 

F 
feature summary 1-1 
fillmem, monitor command A-34 
findmem, monitor command A-35 

HK68N3D User's Manual 

findnotmem, monitor command A-35 
findstr, monitor command A-35 
flags required for monitor memory 

commands A-29 
flags, for monitor commands A-9 
floating point processor (FPP) 4-1 
format for monitor commands A-9 
format for monitor memory commands 

A-29 
FPP exceptions 5-2 
free memory A-47 
function summary, monitor A-45 
functional description 1-4 

H 
HALT state 3-6; 5-1; 7-15 
help, monitor command A-35 
hex-Intel file, example A-21 

hex-Intel records A-17, 18, 34 
hexadecimal arguments, monitor A-29 
history of commands, monitor A-8 

illegal instruction error 5-2 
indicators, status· LEDs 3-6 
initialization error, nonvolatile memory 

A-43 
initialization, CIa 9-3 
initialization, Ethernet controller 12.;9 
initialization, software 14-1 
initializing memory, from the monitor A­

II 

initializing nonvolatile memory, caution 
A-38 

initializing the board to defaults A-46 
installation 2-3 
installation and setup, monitor A-5 
interrupt acknowledge 7-13 
interrupt enable 12-3 
interrupt handler, bus 7-13 
interrupt levels, MPU 3-1 
interrupt pending 7-13; 9-1 
interrupt polarity 12-4 
interrupt vector values 3-5 
interru pt, mailbox 7-15 
interrupt, mailbox 9-1 

Revision A (Preliminary) I June 1991 



Index 

interrupter module, bus 7-12 
interrupts 12-11 

interrupts, bus 7-3 
interrupts, VMEbus, unmasking A-45,46 
IRQ interrupt 3-3 

J 
J14, J15, J17, J18, bus grant jumpers 7-5 
J16, bus request jumper 7-5 
jumper summary 14-3 
jumpers 1-6 
jumpers, bus control 7-17 
jumpers, ROM type 6-2 
jumpers, serial I/O 10-7 
jumpers, watchdog 7-17 

L 
LEDs, status 3-6 
LoadAddress field, monitor A-30 
locked bus cycles 12-4 

M 
Mailbox Group, monitor A-37 
mailbox interrupt 7-15; 9-1 
mechanical specifications 14-6 
memory configuration 6-1 
memory management A-47 
memory map 6-4 
memory sizing 6-4 
Memory Test error A-44 
memory test, monitor A-7 
memory timing 6-6 
memory, bus 6-4 
Misc Group, monitor A-37 
monitor commands, errors A-44 
monitor defaults, nonvolatile memory 

configuration A-6 
monitor entry point A-45 
monitor operation A-I 
monitor program 2-12 
MPU status 3-6 
MPU summary 3-1 
mul, monitor command A-35 

N 
network interface controller (82596CA) 

12-1 
nonvolatile configuration and nonvolatile 

autoboot A-7 
nonvolatile memory configuration, 

monitor defaults A-6 
nonvolatile RAM 6-7; C-l 
number base definitions, monitor A-29 
number bases, for monitor arguments A-9 
numeric format A-9 
NVRAM C-1 
nvdisplay, monitor command A-II, 36 
nvinit, monitor command A-38 
nvopen, monitor command A-38 
nvset, monitor command, caution A-39 
nvupdate A-II 
nvupdate, monitor command A-39·' 

o 
octal arguments, monitor A-29 
operating temperature 2-3 
oscillator and reset bits, RTC 13-6 

P 
PI pin assignments, VMEbus 7-18 
PI signal descriptions 7-1 
P2 pin assignments (SCSI) 11-2 
P2 pin assignments (VMEbus) 7-19 
P 3 pinout (serial) 10-1 
P4 pin assignments 12-14 
P5 pinout (status) 3-6 
paged ROMs, 3 
parity, RAM 3-1; 5-1; 6-4 
physical memory map 6-4 
pin aSSignments, real-time clock 13-4 
pin asSignments, VMEbus, PI 7-18 
pinouts, SCSI and VMEbus 7-19 
pinouts, VMEbus 7-18 
port access 12-5, 6 
port addresses, CIO 9-3 
port addresses, SCC 10-6 
port addresses, SCSI 11-2 
port addresses, summary 14-2 
ports, overview 1-6 
power requirements 14-6 

Revision A (Preliminary) I June 1991 

1-3 



1-4 

power-up errors A-44 

power-up memory configuration 6-1 

precautions 2-3 
privileged violation error 5-2 
Proc.c B-1 
Proc.h B-1 
ProcAsm.s B-1 
protected fields, nonvolatile memory A-13 

prstatus, monitor command A-39 

R 
radix, monitor A-29 
RAM parity 6-4 
RAM, bus 6-4 
RAM, nonvolatile 6-7; C-1 
RAM, on-card 6-4 
rand, monitor command A-39 
reading memory, monitor command A-13 

readmem, monitor command A-39 
real time clock 13-1 
real time clock error A. -44 
real-time clock, pin assignments 13-4 
register definition, RTC 13-7 
register summary 14-2 
registers, RTC 13-6 
Release-without-hold bit 7-11 
reset 7-15 
reset sequence, monitor A-5 
reset switch 1-6, 7 

reset vector 3-3; 14-1 
ROM 2-10; 6-1 
RPACKs, SCSI 11-4 
RS-232 conventions 10-3 
RS-232 pinouts 10-1 
RS-422 operation 10-7 
RTC nonvolatile controller 13-6 
RTC registers 13-6 
RTC, AM-PM/12/24 mode, 6 
RTC, description of operation 13-4 
RTC.c B-1 

S 
S-record file, example A-24 
S-records A-17, 22, 34 
SO records A-22 
S1 data records A-22 

S2 data records A-22 

S3 data records A-22 

HK68N3D User's Manual 

S5 data count records A-23 

S7 termination and start address records 
A-23 

S8 termination and start address records 
A-23 

S9 termination and start address records 
A-23 

SCC.c B-1 
screen messages A-43 
SCSI bus termination 11-4 
SCSI pin assignments, P2 7-19 
SCSI port 11-1 
serial I/O 10-1 
serial network interface (82C501AD) 12-1 
serial numbers 2-1 

serial port control, from the monitor A-46 

Serial Test error A-44 

serial test, monitor A-7 

service 2-10 
setdate, monitor command A-40 
setmem, monitor command A-40 
settrace, monitor command A-40 
setup 2-3 
setu p, CRT terminal 2-7 
seven-segment display 8-1 
short addresses, bus mode 7-14 
sizing memory 6-4 

slavedis, monitor command A-41 

slaveenable, monitor command A-41 

software initialization 14-1 
standard addresses, bus mode 7-14 
start-up display, monitor A-7 

starttimer, monitor command A-41 
status LEDs 3-6 
status, MPU 3-6 
status/ID byte 7-12 
step, monitor command A-41 
stoptimer, monitor command A-41 
string format A-9 

sub, monitor command A-42 
summary, features 1-1 
swapmem, monitor command A-42 
symbol format A-9 
syntax for monitor commands A-9 

Revision A (Preliminary) I June 1991 



Index 

SYSBUS byte 12-3,8 
SYSFAIL bus signal 7-3, 14 
System Configuration Pointer 12-3 
System Configuration Pointer address 12-4 
System Control Block 12-3 
system controller board 7-4, 17 
system errors 5-1 

T 
technical documents 1-8 
terminators, SCSI 11-4 
testmem, monitor command A-42 
Timer.c B-1 
timers (CIO) 9-3 
timing, memory 6-6 
tracing A-40 
transmode, monitor command A-42 
transparent mode, monitor A-25, 26 
troubleshooting 2-10 

U 
unmasking VMEbus interrupts A-46 

V 
vectors, exception 3-2 
VME.c B-1 
VMEbus connectors, PI and P2 7-17 
VMEbus description 7-1 
VmeBus Group, monitor A-38 
VMEbus interrupts 7-12 
VMEbus interrupts, unmasking A-45, 46 
VMEbus pin assignments, P2 7-19 
VMEbus pinouts (PI) 7-17 

W 
watchdog, vector 3-3; 5-1; 7-11, 16 
writemem, monitor command A-42 
writestr, monitor command A-42 
writing memory, monitor command A-13 

Z 
zero bits, RTC 13-7 

Revision A (Preliminary) I June 1991 

1-5 







Heurikon Corporation 
8310 Excelsior Drive 

Madison, WI 53717 
Customer Support: 1-800-327-1251 

Sales: 1-800-356-9602 


